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Abstract

Hysteresis-Based Selective Gaussian-Mixture Model for Real-Time

Background Update and Object Detection
Firas Achkar

Background subtraction refers to background update and object detection, and it is
a commonly used object segmentation technique. In this technique a background
model frame is built and updated over time such that it only corresponds to static
pixels of the monitored scene. Moving objects are then detected by subtracting each
new frame from this background model frame.

In this thesis, we propose two real-time effective techniques for video object seg-
mentation: the first is a background subtraction technique that includes background
update and object detection stages to extract object binary blobs; the second is an
improved contour tracing and a new filling algorithms to extract object features such
as area, compactness and irregularity. The proposed background subtraction tech-
nique effectively models the static background and detects true moving objects while
retaining computational efficiency for the real-time criteria.

In the background update stage of the proposed background subtraction tech-
nique, the reference background pixels are modeled as multiple color Gaussian dis-
tributions (MOGs) with a new selective matching scheme based on the combined
approaches of component ordering and winner-takes-all. This matching scheme not
only selects the most probable component for the first matching with new pixel data,
greatly improving performance, but also simplifies pixel classification and component
replacement in case of no match. Further performance improvement to background
update stage is achieved by using a new simple yet functional component variance
adaptation formula. A periodical weight normalization scheme is used to prevent
merging temporary stopped real foreground object into the background model, and
the creation of false ghosts in the foreground mask when these objects start to move
again. The proposed background update technique implicitly handles both gradual

illumination change and temporal clutter problems.

1i1
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The object detection stage uses two schemes that improve object blob quality: a
new hysteresis-based component matching to reduce the amount of cracks and added
shadows; and temporal motion history to preserve the integrity of moving object
boundaries. In this stage, the problem of shadows and ghosts is partially addressed
by the proposed hysteresis-based matching scheme, while the problems of persistent
sudden illumination changes and camera perturbations are addressed at frame level
depending on the percentage of pixels classified as foreground.

After background subtraction the detected moving object pixels (initial foreground
binary mask) are highly abstract and must be grouped together to form the actual
objects. We propose an improved contour tracing and new filling algorithms for
grouping object pixels. The proposed improved tracing algorithm can detect and
reject dead or inner branches, false non-closed contours, noise related small contours,
and then efficiently categorize each contour into inner or outer contours. The new
filling algorithm is efficient and never leaks, it uses the extracted contour points and
their chain-code information as seed points for horizontal line growing. Experimental
results show that the proposed tracing and filling techniques improve computational

performance with no tracing or filling errors compared to other reference techniques.
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Chapter 1

Introduction

The advances in computing power, availability of large-scale storage devices and high
bandwidth network infra-structures lead to the wide spread of video-based applica-
tions not only in research but in various fields of our real world such as automated
industrial quality verification, robotic arm vision, Internet and TV broadcast stream-
ing, and video surveillance.

Most video-based applications consist of a low-level pixel-based object segmenta-
tion stage, e.g., detecting object binary blobs or extracting object features such as
width, height, area, compactness and irregularity ratio.

Moving object detection is the most important stage in any content-based video-
processing based subsystem. The more accurate and reliable the moving object de-
tection is, the more effective and less complex the subsequent stages will be.

Precise moving object detection is a challenging scientific problem with many
promising real world applications, thus drawing the attention of many researchers,
institutes and companies. To detect objects in a changing environment a background
update method is required. In this thesis we study the background subtraction (i.e.,
background update and object detection) technique. Our motivation in studying
adaptive background-subtraction based object detection is to address the most im-
portant related problems [1] such as gradual ambient-illumination change, temporal
clutter, bootstrapping, sleeping person, shadows and ghosts, while retaining the real-

time functioning criteria necessary for any practical video system.
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1.1. Definitions 2
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Figure 1.1: Moving object segmentation.
1.1 Definitions

Moving object segmentation (Fig. 1.1) refers to the process of grouping pixels into
video objects. For an input video scene, background modeling corresponds to building
a frame representation of only the stationary object pixels in that scene. Background
subtraction (BS) includes two steps background update and object detection. Back-
ground update corresponds to temporal evolution and ambient change compensation
of background models. Moving object detection by BS is per-pixel difference between
each new frame and those corresponding pixels of the background model. Gaus-
sian component is Gaussian distribution based statistical modeling of pixel intensity
values. MOG is a per pixel Mixture (or multiple) of Gaussian components.

Contour tracing is an algorithm that groups neighborhood connected pixels in a
binary edge image. Contour filling fills the inner pixels of a contour with specific

gray-scale values.
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1.2. Objective and Problem Statement 3

1.2 Objective and Problem Statement

Various background update and object detection techniques have been presented in
the literature for detecting moving objects. We investigate those techniques that
are both effective and real-time or nearly real-time. We specifically focus on those
techniques in which one or more background models are estimated and evolved frame
by frame, and where moving objects are then detected by subtracting the current
frame with one or more of these background models. Backgrounds usually consists of
objects that remain passive in the scene. These objects can be either stationary static
pixels, such as walls, doors, room furniture, traffic signs, or non-stationary dynamic
pixels, such as wavering bushes, moving escalators, or most commonly environmental
conditions of rain, snow and ambient brightness. In BS moving objects are detected
by subtracting the current frame with one or more of those background models.

BS has broadly two problems usually related to its dynamic pixels. The first
problem is that the background models (at least one of them) should reflect the cur-
rent real background; this means addressing the following problems [1]: time of day,
camouflage, sleeping person, bootstrapping and waving trees. The second problem is
that the background model should be adaptive and immediately handle sudden scene
changes such as moved object, light switch and shadows (and ghosts). Our main
objective in this thesis is to address the previous problems of BS achieving precise
non-background dynamic moving object detection.

The detected moving object pixels (initial foreground binary mask) are highly
abstract and must be grouped together to form the actual objects. Contour tracing
and filling based techniques are widely used techniques to extract objects from binary
blobs. They adhere to the real-time and limited storage criteria necessary for practical
on-line video processing applications.

Classical still-image based contour tracing and filling algorithms blindly trace and
fill contours without consideration for their representativeness to true video objects.
This leads to many subtly non-corresponding contours that cause unpredictable be-

haviors and failures in subsequent higher object-processing stages. Our secondary
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1.3. Overview of Proposed Techniques 4

objective in this thesis is to achieve representative video object tracing by checking
the correctness of video contour shapes at pixel level and amending any cases where
unwanted distortions (e.g. inner branches) may occur at each new candidate contour
pixel. Note that after tracing and filling, various features such as width, height, area,
compactness, and irregularity ratio of each traced and labeled video object can be
easily extracted. These features then can be used in the following higher processing

stages of video object tracking, event analysis and content-based video coding.

1.3 Overview of Proposed Techniques

In this thesis, we propose an adaptive BS-based technique for moving object detection
and an improved video object labeling technique. The proposed techniques operate
on both gray-scale and color video streams obtained from any indoor or outdoor fixed
visual sensor.

In the proposed adaptive BS-based object detection technique, each pixel of the
adaptive background-model frame is modeled as MOG. In the background update
stage, MOG components are always descendingly stored according to their accumu-
lated weight values. New pixel data are compared with MOG components using a
hysteresis-based selective matching scheme. The mean, variance and weight values
of the matched component are recursively updated with the new pixel data. Com-
ponent update insures that the different components track changing background and
foreground intensity variations, only adapting to the most persistent in a predefined
time slice. Also in this stage, component weights are periodically normalized to em-
phasizing the effect of more recent pixel data over older ones.

In the object detection stage, motion history and weight value of the matched
component are used to classify new pixel data to either background or foreground. In
the frame level of this stage, sudden illumination changes are detected and handled
based on the percentage of pixels classified as foreground.

The proposed improved contour tracing algorithm takes as an input a binary edge

image. The tracing starts by locating, in a contra-clockwise manner, all 8-neighbor
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1.4. Contributions 5

connected closed contours in a video frame. And while tracing, if a visited non-start
pixel (complex contour) is detected with a given set of conditions corresponding to
dead, inner branches or non closed contours, our algorithm removes these traced
pixels, keeping only true video contours.

The proposed new contour filling algorithm combines the simplicity of a label-
based and the robustness of seed growing techniques. Labels are obtained during the
tracing phase, corresponding to the chain-code or directions of each contour point.
Then these points in a given scan-line of the contour are used as either a terminating
or line growing seeds depending on their label information, insuring that the algo-
rithm can handle all subtle cases of complex concavities, crossing edge points and
parallel edges. Also in this algorithm, specific features of each contour such as width,
height, are, compactness and irregularity ratio are computed while tracing the edge
image, and later stored with the extracted contour points as independent objects for

subsequent processing stages.

1.4 Contributions

1.4.1 Background Update and Object Detection

To the knowledge of the author at the time the proposed schemes of this thesis were
developed, the key original contributions of the proposed background update and

object detection technique!” compared to the techniques in [3-9] are:

e New selective matching scheme based on the combined approaches of compo-

nent ordering and winner-takes-all. This matching scheme not only selects the

LA conference paper based on the proposed background update and object detection technique
was accepted for publication: "Hysteresis-Based Selective Gaussian-Mixture Model for Real-Time
Background Maintenance", IS&T/SPIE Symposium on Electronic Imaging, Conference on Visual
Communications and Image Processing, January 2007, San Jose, CA, US. Also a journal paper
based on the proposed background update and object detection technique was submitted for publi-
cation: "Real-Time Background Update Using Hysteresis-Based Selective Gaussian-Mixture Model",
Springer Trans. on Signal, Image and Video Processing special issue, March 2007. In addition, a
journal paper "Accurate Tracing and Filling of Complex Contours for Object-Based Video Process-
ing" based on [2] and the improvements proposed to [2] in this thesis has been submitted to IEEE
Trans. on Image Processing, 2007.
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1.4. Contributions 6

most probable component for the first matching with new pixel data, greatly
improving performance, but also simplifies pixel classification and component

replacement in case of no match.

e New simple component parameter adaptation formulas that results in further

performance improvement.

e New embedded hysteresis-based component matching and temporal motion his-
tory schemes that improve object detection accuracy. Component hysteresis
matching improves detected foreground object blobs by reducing the amount
of cracks and added shadows, while motion history preserves the integrity of

moving objects boundaries, both with minimum computational overhead.

In addition, various reference methods and techniques [1,3-22] of adaptive-model
based BS techniques were studied, three state-of-the-art adaptive techniques [8,23,24]
were implemented, and their performance analyzed and compared with the proposed

background update technique.

1.4.2 Contour Tracing and Filling

The proposed tracing algorithm is an improvement of the original work of [2], while
the proposed filling algorithm is novel. The key original contributions of the proposed

contour tracing and filling technique compared to [25-29] are:

e Improved computationally efficient contour tracing algorithm for handling cross-
point connected contours, making this algorithm fast, robust and less error

prone.

e New fast and effective contour filling algorithm.

In addition, various reference tracing and filling techniques [2,25-31| were studied,
two reference binary tracing and filling techniques [25,29] were implemented, and
their performance analyzed and compared with the proposed contour tracing and

filling algorithms.
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1.5. Thesis Organization 7

1.5 Thesis Organization

The thesis is organized as following. In Chapter 2, we present a review of background
subtraction techniques. In Chapter 3, we present the proposed background update
and object detection techniques. In Chapter 4 we present the experimental results
and comparison of the proposed background subtraction method. In Chapter 5, we
present the proposed tracing and filling techniques. Finally Chapter 6 concludes the

thesis with the suggestions for future work.
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Chapter 2

Review of Background Subtraction

Techniques

In background subtraction, each arriving new video frame is compared against a
reference background model. Pixels in the current frame that differ significantly from
the corresponding background model pixels are considered to be foreground moving
objects.

Although many background subtraction algorithms have been presented in liter-
ature, roughly they all share the same four stage structure of: preprocessing, back-
ground update, subtraction (object detection), and post-processing (Fig. 2.1). The
preprocessing stage may include temporal and/or spatial smoothing to reduce camera
and transient environmental noise, global motion compensation to cancel the effect
of sudden camera perturbation, and histogram or color normalization to reduce am-
bient illumination change. In the background update stage, the background model is
updated to reflect the latest acquired data. A pixel-wise thresholding is preformed in

the subtraction stage producing the initial foreground mask. In the final stage each

moving object is extracted from the foreground mask and stored in a suitable format
for subsequent higher processing stages.

Despite that background subtraction and update is very active field of research in
video processing, computer vision and robotics there is no unified common method-

ology for classifying those techniques. Many works in literature try, within their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Review of Background Subtraction Techniques 9

Preprocessing Subtraction Contour Tracing
(Thresholding) & Filling

¢ A

Fixed or Adaptive
Background Model

Figure 2.1: Background subtraction flow diagram (with tracing and filling).

introduction or related work parts, to categorize moving object detection or back-
ground subtraction/update techniques in such a way to emphasize their presented
techniques. For instance Liyuan et al. [20] categorized background update techniques
based on their information domain; spectral, spatial or temporal. Cucchiara et al. [23]
tried to categorize previous work according to the problems these techniques address.
Suchendra et al. [22] focused on the sleeping person problem and grouped previous
work to those that handle this issue and those do not.

We review and categorize previous work based on background modeling scheme
and the technique used to update it; also we emphasize the advantages of each
technique and what problems it fails to address. We found a review reference by
Piccardi [19] in which the author viewed various techniques based on their model-
ing/updating techniques, including relative comparisons of computational complexity,
memory requirement and output accuracy of these techniques. Also, we found two
other reports [11,16] with better content and details, in which they again categorize

the most effective methods based on the background modeling and the problems they
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2.1. Non-recursive Techniques 10

address. We present the various methods classifying them into two broad categories;
non-recursive and recursive.
Note that many of the papers we reviewed do not clearly differentiate between

background update and object detection but call both steps background update.

2.1 Non-recursive Techniques

A non-recursive technique stores a buffer of previous L video frames, and estimates
the background model based on per pixel buffer temporal variation. Non-recursive
techniques are highly adaptive but may require significant storage if a large buffer is
needed to cope with the subtle slow moving objects. Following are the most common

in this category:

2.1.1 Simple Frame Differencing

In this technique, one or two previous frames are used as background models and the
current frame is differenced from those background models. In this technique, usually
no background update is utilized (non-adaptive). Frame differencing alone is not very
effective since it fails in detecting the interior pixels of a uniformly-colored moving
objects. It will also totally fail and produce no significant output if the moving objects
simply stop moving. This technique although as mentioned is not affective by itself,
when used with other techniques, it can help to address various problems like moved
objects, camouflage and a waking person . The works of [1,20,22,32-34| are good

examples where frame differencing is used in combination with other techniques.

2.1.2 Median Filter

Median filtering is a very common, fast yet effective background modeling tech-
nique [17,23,35,36]. In this technique, the background model (adaptive) is defined to
be the temporal median at each pixel of all the L frames in the buffer, with typical

values for L range from 50-200. In the worst case, each pixel has to contain back-
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2.1. Non-recursive Techniques 11

ground content for at least half the buffer length, otherwise the median will not be the
mean background luminance or chrominance, but a shifted version of the real back-
ground pixel values. Foreground pixels (object detection) are marked by thresholding
the difference between current frame pixels and those of the background model. The
median-filter based techniques [17,23,35,36] can effectively handle: time of day, sleep-
ing person and noise related problems. However, since the adaptation of background
model pixels require at least L/2 exposure time, median-filter based techniques fail in
quickly addressing: bootstrapping, light switch, waving trees, moved object (waking
person), and shadows/ghosts. The work of [23] is a well detailed, latest good rep-
resentative of this category. They incorporated into the median-based background

model update:

e Adaptive weighting factor w, in the median calculation

SHI(P) = {Tkas(®), iy @), s @)} | we{ BYP)},  (21)

where S*(I(p)) is the set of buffer intensity values Irgp for the pixel p at location
(¢, j) at time t, Irgp(p) is the intensity values of a pixel p at location (i, j) in
the L length buffer, Bf(p) is background model at frame ¢, w, an adequate
weight that improve the stability of the background model.

e Selective updating through object-level-reasoning (higher level processing stages)
for reducing object detection errors especially in the case of moved object and

sleeping person problems.

e shadow and ghosts detection through the use of chromacity, optical flow and

the higher logic object analysis.

In general, this BS-based modeling technique 23] without the higher level processing

is computationally efficient with high storage requirement and can be quite effective.
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2.1.3 Linear Predictive Filter

The background model (adaptive) is computed by applying a linear predictive filter
on each corresponding pixel in the buffer. The only work we found that used this
kind of technique in the literature is Wallflower of Toyama et al. [1|. In their work,
moving object detection is achieved using a three-level based background subtraction
technique. At the pixel level they utilized a linear predictive Wierner filter to represent

intensity variations of background pixels based on a recent history of L values

L

Isy(p) = — Z axlst—k(p), (2.2)

k=1
where Ig,(p) is the predicted background model pixel intensity value for pixel p at
frame ¢, Is; (p) is a past value, and a, are the prediction coefficients. For object
detection any pixel value in the new frame ¢ 4+ 1 that deviates significantly from the
corresponding pixel values Ig;(p) of the background model are declared foreground.

The other two levels are region and frame levels. These higher levels address some
of the problems, that can not be handled by the pixel level such as: sleeping person
and light switch.

This technique can very slowly handle: moved object, time of day. However, it fails
to address the sleeping person, shadow, waving trees, moved object, bootstrapping
and light switch problems. Generally this technique is not suitable for real-time
applications since it is computationally demanding and requires a lot of storage to
handle the problem of moving foreground that corrupts the history values of the

storage buffer.

2.1.4 Non-Parametric Model

In this technique, a kernel density estimation (KDE) based function is used to cal-
culate a non-parametric estimate of the probability density function (pdf) of pixel
values in the buffer. That is, the histogram of the pixel values in the buffer is used to

calculate the parameters of the intensity/color distribution of each background pixel,
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2.1. Non-recursive Techniques 13

instead of estimating these parameters as it is the case in Gaussians-mixture based
techniques. The work of Elgammal et al. [10], is an example of this technique, where

they used a Gaussian kernel function n(ue g, Xt)

Mb«

L
n(I(p); ks, t) = I Z _5__)1___e~0-5(1t(p)—uk,t)TEt‘1(It(p)—uk,t)’
T

L= |z2

(2.3)
where f(I(p)) is the pdf of pixel p intensity, (i k, Xt) is the kernel Gaussian function,
L in the order of 100-200, d is the model dimension (if RGB color space used then
d = 3), the covariance matrix of color intensity values X; is the same for all kernels

(and assumed diagonal for simplicity)

o4 0 0
o= 0 o4 0 . (2.4)
0 0 o

For object detection, if f(I;(p)) is smaller than some predefined threshold, then the
current pixel is declared as foreground since it is unlikely to come from this distribu-
tion. X, must be estimated, which is the key problem of the KDE technique given the
limited length of the buffer (kernel window in time). In [10], the covariance matrix is
estimated by median absolute deviation over the samples in the buffer for consecutive
values of pixel location. Background model update is achieved by FIFO manner (the
oldest sample is discarded and the newest sample is added to the model, and this new
sample is chosen randomly from each interval of L frames) and given this new pixel
value they have used two background models: Short term model and long term model
with two mechanisms for updating the background pixel value: Selective update and
blind update.

The presented technique [10] addresses time of the day and the sleeping per-
son problems, with an overall objective of building a background model that adapts
quickly to the changes in the scene and supports sensitive detection with minimum

false negative/positive rates. However it fails to address the bootstrapping, light

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1. Non-recursive Techniques 14

switch, waving tree, moved object and shadow problems. The computational com-

plexity and storage requirement is high and not suitable for real-time applications.

2.1.5 Other Less Promising Non-recursive Techniques

Various other techniques have been presented in the literature, that are not recursive
in nature and require significant resources for initialization. In W4 [37,38|, a temporal
maximum and minimum inter-frame differences of all identified background pixels are

calculated and stored, a pixel is marked foreground (object detection) if

im = Li(p)| > Dor [N = I(p)| > D, (2.5)

where I(p) is pixel intensity, the per pixel parameters M, N and D represent the
minimum, maximum and largest inter-frame absolute difference observed in the back-
ground scene. These parameters are calculated from the first few seconds (tens of
seconds) of video and periodically updated selectively. W4 addresses the following
canonical problems: time of day, sleeping person and noise related changes. It fails
in addressing: moved object, waving trees, light switch, bootstrapping and shadows.
W4 has high computational and storage requirement with low/medium accuracy.

In Eigenbackground [39], L sample frames of motionless backgrounds are collected,
the mean and the covariance matrices are computed. Principle Component Analysis
(PCA) is then used to compute the best eigenvectors and stored in a matrix ¢,.
Then new incoming frames are projected onto the PCA subspace Ip;:(p). Since
the eigenspace is a good model of the static parts of the scene but not for moving
objects, differences |I;(p)—Iproj¢(p)| > T between the projection and the current frame
greater than a threshold 7' are considered foreground. This technique can address:
time of day, sleeping person and fails to address the critical problems of: moved
object (waking person), waving trees, light switch, bootstrapping and shadows. The
computational and memory requirement of the Eigenbackground is not high however

the accuracy is also not high.
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2.2 Recursive Techniques

This group of techniques is much more common compared to that of non-recursive.
Recursive techniques do not require a storage buffer for background estimation, in-
stead they recursively update the background models based on each new input frame.
Most of these techniques include a weighing mechanism for limiting the errors due to
noise and abrupt changes in the current input frame; they also incorporate positive

decision feedback to use only those background pixels for updating.

2.2.1 Approximated Temporal Median Filter

This technique is based on a pixel-wise median filter approximation over time, which
is a recursive alternative to the non-recursive median filtering that was discussed
in Sec. 2.1.2. McFarlane et al. [40] and Remagnino et al. [41] used this technique
for background modeling, in which the estimated pixel values of the current median
image are incremented by one if the input pixel is larger than the corresponding pixel
value in the estimated median image, or decreased by one if smaller. This estimate
image eventually converges to a value corresponding to the temporal median. This
technique requires at least one empty input frame without moving objects for good
initial estimate of the median image (background model). The problems that can
be addressed by this technique are: time of day and sleeping person, and those that
can not be addressed are: the bootstrapping, moved object, waving trees, sudden
illumination (light switch) and shadows. The approximated temporal median filter
technique has the lowest computational and storage requirements, and it produces

good results with an extremely simple implementation.

2.2.2 Kalman Filter and Single Gaussian

This is a common statistical technique with many different versions for background
modeling. One of the simplest versions uses only the luminance intensity values,
Karmann et al. [42] used both intensity values and their temporal derivatives, while

Koller et al. [43] used both intensity and their spatial derivatives. The Pfinder [44]
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uses a simple scheme of both luminance and color, and represents the background

model by a single Gaussian distribution for each pixel

|05 () =) TE = (Le(p)—pur)]

(2m)% ||z

n(Li(p); pe, £) = : (2.6)

where 7(L(p); e, X) is pixel intensity Gaussian distribution, I,(p) is pixel intensity,
ty is the spatial mean, ¥ is the covariance matrix of a per pixel Gaussian model
that corresponding to the various regions of the background model. In each frame,
only the mean values of visible background model pixel statistics are recursively and

non-selectively updated by

pe = aly(p) + (1 — o) g1, (2.7)

where « is an adaptation constant.
Heikkila et al. [45,46] used the same scheme as in Pfinder followed by a closing
operation with a 3x3 kernel and small region discarding. Halevy et al. used a different

background updating scheme as

e = aS(L(p)) + (1 — o), (2.8)

where S(I;(p)) is a smoothed I;(p) . The LOTS [47] system used three background
models; primary, secondary and old background, and all updated selectively using the
previous update formula of equation (2.7), after thresholding and getting the initial
blobs a connected component is employed. A recent LOTS-based technique presented
in [48], uses two background models, two threshold images I, Ity and Quasi Con-
nected Component analysis. The background model and the lower threshold image
Iy, are updated periodically every ty. In ARMA [49] a new robust Kalman-filter
based technique is presented to handle explicitly the non-stationary nature and clut-
ter like dynamic background textures.

The previous statistical-based techniques aim to tolerate the background varia-

tions caused by noise, ambient illumination changes, and motion of non-stationary
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objects, thus can address the following problems: time of day. Unless feedback or mul-
tiple background models are employed they fail to address: sleeping person, waving
trees, bootstrapping, moved object, and shadows. The computational and storage
requirements are high, and not suitable for real-time applications, the accuracy of

these methods is medium as reported by various publications.

2.2.3 Mixture of Gaussians (MOG)

The MOG-based techniques are the most commonly used recursive techniques given
their solid analytical and theoretical foundation. The first recursive version was pre-

sented in [3], where each pixel is modeled by a mixture of K Gaussians (components)

K
f(L(p)) = Zwk,m(ft(p); Pkt 2kit)s (2-9)
k=1

where f(I;(p)) is the pdf of pixel intensity, I;(p) is the intensity of pixel p at time
instance ¢, p = (z,y) is special pixel coordinates, K = 3...5 is the number of com-
ponents, (I;(p); ke, Xk,¢) is the k-th multi-dimensional Gaussian component with
intensity mean fuy; and independent covariance (standard deviation) ¥y = of ,\E (E
is the identity matrix) and wg, is a weight corresponding to the priori probability of
component k occurring. The Gaussian components for each pixel in the background
model are updated before the foreground is detected (before thresholding) as follows:

i) if the new frame intensity data for a given pixel location I;(p) satisfies

\Le(p) — ksl /oke < 2.5, (2.10)

then there is a match, and the k-th Gaussian component parameters are updated

using an exponential decay scheme with an adaptation factor, as

Wgt = Wk t—1,
Mkt = (1— P)Nk,t—l + pIt(p), (2-11)
Ul%t =(1- P)U%,tq + o (Ii(p) — Mk,t)T (I1(p) — twe)

1
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2.2, Recursive Techniques 18

where p = af (I,(p) | x1-1,0%,-1), corresponds to the likelihood of that this pixel
value was generated in state k. « is the adaptation rate coefficient (same as in single-
Gaussian based techniques).

ii) Other Gaussian components that do not match, are updated according to

Wet = (1 - Ol)wk,t~17
Pt = Hit—1, (2.12)

2 _ 2
Okt = Ok t1-

iil) If I;(p) does not match any component, then the Gaussian component with the

Wit

lowest
Dkt

i is replaced with a new component which has py, = I;(p), large £y, and
low wy, ;.

All Gaussian components for a given mixture are then sorted into the order of
decreasing Wg—’;i—ll, and the first B components (usually the first two) are considered

as background models

b
B = argbmin (Zwi > be> , (2.13)

i=1
where Ty is some predefined threshold. For object detection, if I;(p) does not match
one of those B background components then this pixel at time ¢ is considered as a
foreground.

The recursive version of MOG as presented by Stauffer and Grimson [3], can effec-
tively handle gradual illumination change, temporal clutter and sleeping person, but
in addition to its computational complexity it has four important shortcomings of:
bootstrapping, moved object, sudden illumination changes and shadows and ghosts.
Various modified versions of the MOG have been presented in an attempt to ad-
dress some of the previous shortcomings, [4] used two different sets of component
parameter update formulas. The first used at the initial starting state incrementally
decreasing in time, [4] then switch to recent update set of equations in an attempt to
improve and fasten the adaptation issue of the MOG in scenes with initial high traffic

(bootstrapping). [4] also presented a shadow detection scheme based on color infor-
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mation. Other more complex schemes were presented to achieve better background
model adaptation. In Zivkovic [6] additional negative weight a.cr corresponding to
Dirichlet prior is added to suppress the transient components that are not supported
by input data (again « is an adaptation coefficient). In Lee [8], bootstrapping is han-
dled by including a component match counter into the component parameter update,
the author also presented a more complex component classification scheme and used
winner-takes-all component matching to improve the overall computational perfor-
mance. A more robust but very computationally demanding technique is presented
by [13] in which gradient-based spatial information is used along with the temporal

information to address both the initialization and moved object problems.

2.3 Summary

Non-recursive techniques are highly adaptive but may require significant storage and
processing resources. The works of [23,24], are the two most referenced techniques in
literature of the non-recursive based BS techniques. Both techniques reported high
background model adaptivity with good object detection accuracy.

Recursive techniques do not require a storage buffer for background modeling and
adaptation, instead they recursively update the background models based on each new
input frame data. MOG-based techniques are the most commonly used techniques of
the recursive-based category. MOG-based techniques are highly adaptive and address
many problems related to adaptive background modeling and object detection. The
work of [8] is a recent representative MOG-based technique with good reported results.

We selected the methods [8, 23, 24| for implementation and comparison with the

proposed techniques.
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Chapter 3

Proposed Background Subtraction
(Background Update and Object
Detection)

In this chapter, we present in detail the proposed background update and object
detection technique (Fig. 3.1). Video foreground object detection through simple
subtraction with a fixed background model frame has the computational and stor-
age advantage. However, this approach of non-adaptive model subtraction fails in
uncontrolled outdoor environments of changing ambient illumination, and temporal
clutter. Periodically updated adaptive background models can usually address these
problems. Given the fact that background pixels have more temporal persistence and
higher recurrence frequency than any foreground pixels, the most logical approach to
maintain a background model is by statistical averaging of video frames. Recursive
Gaussian mixture is commonly used cumulative-average-based update technique with
solid analytical and theoretical foundations (see Chap. 2).

There are three key contributions of the proposed MOG-based technique compared
to the techniques in [3,4,6,8,9]. In the background update stage they are: i) new faster
component parameter adaptation formulas and ii) new selective matching scheme
based on the combined approaches of component ordering and winner-takes-all. In the

object detection stage it is: iii) new embedded hysteresis-based component matching

20
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Background Component Initialization
Model Update Py{Gy: Gy -G\ C BIM,
&
Object Detection l
I
t . New Pixel Data p. . matching
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Matched Component G, parameter Update,
Components pb(Gl, G, ,..,Gk) c Bth re-ordering

Motion History
Frame Update R,
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p, classification,
Persistant Sudden lllumination Change Detection

Legend :
't : Input Captured Frame

Gm t: Matched Components Frame

MH, : Motion History Frame
Bt : Detected Objects Binary Frame
Ry : Reference Update Background Frame

Figure 3.1: Block diagram of the proposed background update and object detection
technique.

and temporal motion history schemes. The advantages of the proposed additions are

improved performance and increased segmentation accuracy.

3.1 Notation

In the following, let

I; be the current input frame at time ¢,

BgM; the current background model,

P € I; is the input pixel at (%, j) location,

I(p.) is the RGB or gray intensity value at p,,

py € BgM, is the background model pixel at (i, 7) location,

{G14,..., G} are the K Gaussian components of each p; at time instance ¢,
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® i+ is the mean of the Gy component,

® 0 is the Gy ; variance, and assumed to be the same for all RGB color channels,
® wy . is the weight or counter of Gy, ,

o G, is the matched component at time ¢,

e )\; and A, are the hysteresis-based variance thresholds,

® wy, is frame counter (pixel data integration threshold),

e « is component parameter adaptation rate (i.e., controls how fast the mean,

variance and weight of a G, ;are adapted),
® Wnorm 1S the normalization weight threshold,
o Top is the sleeping person time threshold,
e )y is secondary background component threshold,
® Ny is the number of p, that are classified as foreground pixels per new frame,
e T4, is the sudden illumination threshold,

e MH,; is the current motion history frame that is the accumulated result of

subsequent temporal differencing,
® Dpn: € MH, is the motion history of a pixel at (¢, j) location,
e hy is the history length,
® DSproc € BgM is surrounding processed-pixels of p, within a defined area,
e .. is current frame size,

e B, is the detected object frame (foreground mask).
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3.2 Model Formation

Each pixel of a video frame can be represented as a continuous random variable X.
X can be one-dimensional (gray-scale values) or three dimension 3D (RGB or YUV
values). At any given time ¢ each pixel may correspond to one of different foreground
or background object surfaces k € {1,2,..., K}, where K C [3 — 7] is the possible
number of surfaces that come into the view of a given pixel. Some of the K states
correspond to background surfaces, the rest are deemed to be foreground objects.
Based on this assumption the foreground object detection problem can be solved by
estimating which of the k surfaces gave rise (cause) the current pixel sample z C X.
This is a classical pattern classification problem of finding the maximum posterior
probability P, (k|z) for the current X reading, formulated by Bayes’s theorem [50] as

following
F, (z|k) Fi(k)

P (hiz) = = S5

(3.1)

where P, (z|k) is the likelihood probability of z corresponding to k, P.(k) is the prior
probability of a surface k, Py(z) = XK | P,(k|z) P,(k) is the evidence that is merely a
scale factor.
Thus
max [P, (z|k)] = arglna:r: [P, (z|k) Pi(k)]. (3.2)

In order to use equation (3.2) to find the maximum matching surface k, both dis-
tributions of P;(x|k) and P,(k) must be defined in order to compute the corresponding
probabilities. The probabilistic distribution of X given a surface k£ can be model as

Gaussian
1

05— ) TS e (3.3)
= € )
(2m) %[ S|

H

P,(z|k)

where fix ¢, 2+ are the mean and covariance of FP;(z|k) at time ¢, D is the dimension
of X, and T indicates matrix transpose. The py 1, Xk parameters of each P,(x|k) are
unknown but can be recursively estimated from new pixel data, as described in Sec.
3.3.2.

The prior probability P,(k) can be described in a classical statistical way as a
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Figure 3.2: Component tracking of pixel intensity in time.

weighing factor that reflect the number of matches (occurrences) for a given surface
k. After finding the matching surface k, k£ must be classified either as a foreground
or a background.

From above, a given background model BgM, corresponds to a single adaptive
frame in which each pixel consists of k Gaussian components Gy ;. Components Gy ;
are nothing but different cumulative clusters of RGB or pixel intensity variations.
Component means and variances are recursively updated. These different components
track changing background and foreground intensity variations, only adapting to the
most persistent in a predefined time slice (Fig. 3.2). New pixel data are compared
and classified according to the current accumulated Gy .

The proposed technique consists of two stages, background model update and
object detection. Initially all the components {Gk.} are reset as following: pg, =

Winit © Mings > 255 5 Ok = Oinag , Wee = 0, M H;y = 0 corresponding to no motion,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3. Background Update 25

wqts = 0 corresponding to integrate all new pixel data instantly.

3.3 Background Update

In this stage, the parameters of all G ; are adapted according to the new frame pixel
data. Note that py, and uoy (if Ga+ have enough supporting statistics) of each pixel
pp correspond to the updated background model frame BgM;; ( or frames BgM ;
and BgM,,) used in BS. This stage consists of: selective component matching and

component parameter updating.

3.3.1 Selective Component Matching

Selective matching (comparison) of new pixel data I;(p.) is achieved as following: i)
components Gy are always descendingly ordered according to their weights wy ¢, thus
matching always starts first with the most probable component Gj, ii) upon the first

match where

lIt(pc) —_ ,U’k,tl < )\10'k;,t. (34)

Matching terminates (winner-takes-all) and matched component’s parameters {ftx,¢, Ok ¢, Wt }
are updated, iii) if no match occurs, parameters of component Gr_x with smallest
weight are reset pr; = I;(p.), Okt = Ginit, Wi, = 1. For computational reasons, hys-
teresis is only used if a match occurs with the first component G; (BgM; component),

then G| parameters are updated with the new pixel data only if
Aoy > [ Li(pe) — pae| V 3pSproc & foreground. (3.5)

The proposed component re-ordering and selective winner-takes-all matching schemes
significantly improve performance and prevent possible component overlap (Fig. 3.3).
The proposed hysteresis component matching scheme improves detected foreground

object blobs by reducing the amount of cracks and shadows.
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Figure 3.3: Gy components overlap for a given pixel p..

3.3.2 Component Parameter Update

Matched component’s parameters are updated as

pig = ok, e—1) + o [| Le(pe) — pa-n)]
Okt = On,(t—1) + @ | Ie(pe) — piet] — Tre=1] (3.6)
Wit = Wre—1 + 1.

However, in case persistent sudden illumination change is detected (Sec. 3.4.3),
then set wg+ = wy .

Following parameters update, a periodic (i.e., not every frame) weight normaliza-
tion step is performed. First all components Gy, are descendingly re-ordered. All
components weights are normalized periodically if wgts > Wnorm, such to make the
largest weight py(w1¢) > 2T0p and then reset wgys = 0. This insures fast and cor-
rect bootstrapping recovery, and prevents temporary stopped object (sleeping person)

pixels from integrating into the background model.

3.4 Object Detection

In this stage, new frame I; pixels p, are grouped into foreground or background.
This stage has the following steps: motion history, pixel classification and sudden

illumination change detection.
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3.4.1 Motion History

The proposed motion history scheme helps reduce cracks and enhance real moving

object boundaries. Motion history at each pixel is calculated as

hL : IIt - It—ll > TTD
Pmht = y (37)
Pmht—1—1 ¢+ | —L 1| <Trp A pppi-1 # 0

Trp corresponds to the per pixel temporal difference threshold between consecutive
frames. In the motion history computation, we used two consecutive frame history

hy = 2 and a temporal difference threshold Trp = A0 .

3.4.2 Pixel Classification

Each pixel p, is classified as background only if the matched component was G, ;, or
the weight of the matched component satisfies wi,; > Apyw1, (have enough supporting
statistics). However, if pyn, > 0 then p, corresponds to foreground even if it matched
G, or G ywith a weight wy; > Appwi 4. This insures the blob-boundary-integrity of
real moving objects in the foreground mask.

Another possible classification approach is to use the updated background model

frames BgM, ;, BgM,, and the adaptive thresholding technique of [51] in the BS.

3.4.3 Sudden Illumination Detection

After classifying all pixels in [;, the frame counter wg, is increment by one. Persistent
sudden illumination changes can happen due to cloud cast or sudden global light
projection. Detection of sudden illumination change is accomplished by counting the

number of p.(t) that are classified as foreground pixels (N4 ). If Nggn > Tsan and the
change persists for more than predefined number of frames, a sudden illumination

change event is determined.
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3.9 System Implementation and Parameters

The proposed background update technique was incorporated into a real-time outdoor
monitoring system. The system’s input video stream was obtained from multiple fixed
visual sensors at a constant rate of 30 frames per second (fps). We also tested the
system on gray-scale and color (RGB) test video sequences of real traffic scenes. In
the case of gray-scale streams and sequences, the proposed model implementation is
straight forward. For color RGB streams and sequences, we use the red, green, and
blue channels for G, components matching and updating, and only the intensity
Y = R+ G + B for motion history. This means that G, components i ; consists of
{y > 15, and pb  for the red, green and blue channels respectively.

We chose the number of components per pixel K = 4. For parameter initialization
we used finie = 999, 0 = 10.0, a = 0.005. The choice of hysteresis thresholds
A1, Ag is dependent on the monitored scene. For scenes with small foreground moving
objects, typically when objects and their cast shadows has size less than 10% of Fj;,e,
it is good to use Ay € [1.0 — 1.5] and A; € [1.5 — 2.0]. Note that A, corresponds to
the base threshold that controls the minimum intensity difference required for being a
background pixel. While A; generally controls the amount of small cracks and added
shadows in/to foreground blobs. In the case of large foreground objects, with a size
larger than 20% of Fy, it is good to use Ag € [2.0 — 3.0] and A, € [3.0 — 5.0].

Weight normalization thresholds are chosen as following, assuming that the mon-
itored scene has a traffic light or inter-section where vehicles stop temporarily for up
to a minute. That means some foreground objects frequently may become static for
50 seconds, corresponding to Ty, = 50 X 30 fps = 1500 frames, then the normal-
ization threshold must be wporm > (%fﬁﬁ% where 0.5 is error margin corresponding
to foreground object stop time tolerance. To normalize we simply divide all compo-
nent weights by two. The choice of sudden illumination threshold T4, depends on
the scene and visual sensor frame size, assuming that the biggest moving foreground
object (e.g., of a bus or a truck) takes up to 35% of F;,e, we chose Tgg, = 0.75 Fyge.

In component matching and for color streams or sequences, the conditions in
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Egs. (3.4, 3.5) are implemented to correspond for the red, green and blue channels

respectively as

mag (|17 (pe) = ihe| |1 (pe) = wi| s |2 (pe) = o] < Moy

A0y > maz [[I[(pc) - ,uz,tl , lltg(pc) - ,u,gc,t| , |If(pc) — Uz,tH V 3psyroc & foreground.
(3.8)

Component updating (Eq. 3.6) are done in a similar way for color sequences

Nz,t = Nz,tq +a [I[(pc) - MZ,H} ) (3.9)
Hie = i, 1t o [Itg(pc) - Ui,t—J ) (3.10)
ui,t = MZ,H +o [Itb@c) - MZ‘H} ; (3.11)

IP%(pe) = 1

Okt = Oki—1 + Q. [max - Uk,t_l] . (3.12)

In object detection stage, the secondary background component threshold Ay depends
on the monitored scene and its value must be carefully considered. Depending on
the clutter frequency of the non-stationary dynamic pixels of the background in the

monitored scene, Ay can have the following range of values Ay = [0.3 — 0.9].

3.6 Analysis and Comparison to MOG Methods

We present here the functional analysis of the proposed background subtraction tech-

nique and compare it to the MOG-based techniques in [3-6,8,9,13, 52].

3.6.1 Contributions Analysis

i) The proposed novel hysteresis component matching scheme (Sec. 3.3.1) significantly
improves segmentation accuracy with minimum added computational overhead. None
of the reviewed techniques incorporated a similar scheme, instead most of the pro-
posed techniques in the literature rely on post processing steps of either connected

components or dilation followed by erosion, in order to reduce the small gaps in fore-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6. Analysis and Comparison to MOG Methods 30

ground detected objects and to remove the salt and pepper like noise. However, these
steps can not address largely dis-assembled foreground blobs (false negative) or the
presence of large noisy blobs (false positive), nor it can reduce the affect of shadows
and ghosts. In addition, most of the time these schemes significantly reduce the ac-
curacy of the detected foreground objects especially at their boundaries which can
be important for some applications. The hysteresis thresholds A\, Ay can be viewed
as two low pass filters, where their cut-off frequencies control the amount of pixels
that are classified as foreground. The choice of hysteresis thresholds is application
dependent and directly affects the integrity of foreground blobs (false negative), the
amount of added shadows and ghosts (false positive), and the scattered noise (false
positive).

ii) The proposed component mean update equations (Egs. 3.6, 3.9, 3.10, 3.11)
(Sec. 3.3) are reformulated to improve calculation performance. The simple compo-
nent variance update equation (Egs. 3.6, 3.12) is novel formula that greatly improves
performance with no adverse affects as we found from our simulation. The impor-
tance of these update equations not only to accurately estimate the parameters, but
also to accommodate for some non-stationarity in pixel values I,(p.). This allow the
parameters of Gy, to adapt to changing ambient illumination by emphasizing more
recent samples over older ones.

ili) The proposed component weight update technique uses a simple incremental
scheme (Sec. 3.3). This approach not only improves weight calculation performance
but also insures fast initial model adaptation and implicitly addresses the bootstrap-
ping problem (this problem was first indicated by [4]). The proposed periodical weight
normalization is important for addressing the critical problem of temporary sleeping
person (e.g., when traffic light stopped vehicles) that may stay for long time (up to
two minutes 120 x 30 = 3600 frames) and should not be merged into the background
components.

iv) The proposed motion history (Sec. 3.4.1)enhances moving foreground objects
boundaries with no adverse affect. This added boundary is important for reducing

the gaps in moving object boundaries without the need for a separate component
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connected processing as it is the case for most MOG-based techniques [3-6, 8,9, 53].
The effect of added motion history functionality is most evident in sequences where
the moving foreground object’s size is larger than 20% of Fj;,.(indoor or confined
monitored areas sequences). For sequences with small moving foreground objects,

motion history has no effect (the output contribution is negligible).

3.6.2 Addressed Problems

The proposed technique, as the case for all recursive MOG-framework based BS tech-
niques, can implicitly handle a realistic environment’s: gradual illumination change,
sleeping person, and temporal clutter (waving trees). However, the first presented
MOG framework of Stauffer and Grimson [3] fails to address four problems: boot-
strapping, moved object, sudden illumination changes, and cast shadows and ghost.
Following presented MOG-based BS techniques attempted to address these four short-
comings. »

i) The proposed component weight update scheme addresses the bootstrapping
problem as shown in Sec. 5.6.

ii) The moved object problem [1] is not addressed by most of the presented MOG-
based techniques including the proposed. However, the proposed technique addresses
a closely related problem of sleeping person where moving object temporally become
stationary, as in the traffic light stopped vehicles where the stationarity time can vary
from one to two minutes corresponding to 1800 — 3600 frames. The proposed peri-
odical weight normalization prevents pixel components Gy that correspond to those
stationary foreground objects from becoming dominant, and thus from getting par-
tially or fully merged into the background model. In most MOG-based techniques,
the chosen adaptation rates were o € [0.001—0.05] corresponding to 20— 1000 frames.
This leads most of the time to either partial or full merger of these stationary fore-
ground objects into the background model (false negative) as shown in Fig. 3.4-b.
Then when these objects start to move again the problem of moved objects occurs
leaving ghost in the foreground mask (false positive) as shown in Fig. 3.4-e. This cy-

cle keeps repeating and continuously producing false segmentation. A pragmatic but
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computationally expensive solution can be achieved by incorporating higher level log-
ical processing steps or by using spatial edge information as presented by [13], where
any false detected ghost in the temporal scheme that has no significant supporting
data in the spacial scheme are disregarded.

iii) The problem of sudden global illumination change is not addressed by most
presented MOG framework techniques. This problem occurs very frequently in real-
istic environments mainly due to cloud cast with varying pattern of occurrences. The
proposed sudden illumination change is very simple yet effective, a similar approach
was adopted by [13]. The main differences with the proposed technique is that we
verify change persistent before setting the corresponding components as a secondary
background components. The reason for this delay is to avoid the transient global
and local sudden illumination changes that can pass 7,4, threshold. These tran-
sient changes can happen due to e.g., small shallow clouds, spot light projection, and
foreground aperture problem [1].

iv) The problem of cast shadows and ghosts is common key problem to all video
segmentation techniques. Most of the reviewed MOG-framework based techniques
try to provide additional processing steps to partially address this problem. In our
case we rely on the proposed hysteresis thresholding scheme to reduce the effect of
shadows and ghost (false positive) while retaining the integrity of actual foreground

blobs (true positive) (Fig. 3.5).

3.6.3 Computational Performance Analysis

Computational complexity of any recursive MOG-based technique is directly related
to its model formation.The most significant contributions of the proposed formation
to the state of the art MOG framework that directly related to computational per-
formance are:

i) Descendingly re-ordering components Gy, according to their weights combined
with the winner-takes-all mechanism not only allows matching the new data with the
most probable (dominant) components first, greatly improving performance, but also

simplifies pixel classification and component replacement in case of no match. Most of
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»
(a) Original St.Catherine-St.Guy (b) Output of [8]. Detected objects
crossing, Ir7600- are merged into the background.

(¢) Quput of the proposed technique. (d) I770s.
Foreground objects are correctly de-

tected and not merged into the back-

ground.

(e) Output [8]. False ghosts corre- (f) Output of the proposed tech-
sponding to the moved vehicles are nique. Correct detection with no
detected. ghost.

Figure 3.4: The dual problem of merged foreground objects and the subsequent false
ghosts in most MOG techniques. In (b) all temporary stopped vehicles are wrongly
merged into the background model. For (c) the proposed technique correctly detected
temporary stopped vehicles without merging them into the background model. In (e)
all the detected vehicle objects actually correspond to false ghosts of these (once
merged) moved vehicles. For (f) the proposed technique correctly detected objects
with no false ghosts.
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(a) Hall original I3. (b) Proposed technique output, Ay =
3, Ao = 2.

(c) Proposed technique output, Ay = (d) Proposed technique output, A; =
4, My = 2. 4, Ay = 3.

(e) Proposed technique output, A; = (f} Proposed technique output, A1 =
4, dg = 1. 5, Ao = 3.

Figure 3.5: Shadow and ghost reduction using the proposed hysteresis thresholding
scheme. All parameters are fixed except for A, As.
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the other reviewed recursive techniques tend to either match new pixel data with all
the components and then re-order them (or their weights) prior to pixel classification
or components replacement in case of no match.

ii) New simple variance update formula Eq. 3.12 that improves performance. The
new formula always conveyed the important concept of emphasizing the effect of more
recent data samples over the older ones. Other reviewed techniques propose a more
computationally demanding update formulation similar to that of 02, = (1-p)o?, +
p(I(p) — pip)" (Ii(p) — piz) as originally presented by [3].

iii) The proposed hysteresis matching scheme introduces added computational
load that depends on the chosen neighborhood comparison window and the appli-
cation (processed scene). The motion history is very simple to implement thus its
computational load is negligible. The storage requirement of the proposed technique

aside from the motion history buffer is same as other MOG techniques.

3.7 Analysis and Comparison to Non-MOG Tech-
niques

In this section, we present the functional analysis for two commonly-referenced non-
MOG techniques and compare them analytically to the proposed technique. These
techniques are: i) median-filter based technique of [23] and the KDE non-parametric
technique of {10, 14, 24].

i) The pixel level median-filter based technique [23] can adapt to gradual illumi-
nation changes, but fails to address various problems without the higher level logical
stages. Most of the problems are related to the limited length of the buffer L, since
capturing the real-background statistics requires that more than half of the buffer
should correspond to background samples. A key problem in [23] is that all the
samples from foreground moving objects with different color have the same weight
in the buffer, i.e., samples from a red color moving foreground object has the same

contribution in the buffer as that of a blue object, unlike the MOG framework, where
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each different foreground object with different colors is treated as a separate com-
ponent. This key problem affects directly the adaptation rate of the median-based
technique, making it slower than the MOG-based techniques in addressing the boot-
strapping, moved object and sleeping person problems. Other problems of temporal
clutter, shadows and ghost can not be handled even when a long buffer is used. The
computational complexity of computing the median is higher than that of the MOG
framework for large buffers L > 80, even when more optimized functions are used [54].
The storage requirement of this technique is higher than MOG-based techniques.

ii) The work in [10] addresses most of the problems that MOG-based technique
can handle. However, temporal clutter can only be address given that cluttering
pixel displacement is limit to within neighboring window of five pixels. The com-
putational and storage requirement of this technique is very high even with eflicient

implementation using precalculated lookup tables for the kernel function values and

L d
by partial evaluation of the sum in fpqr (L (p)) = %Z H Ko, (Li(p) = L5, (p(2)]) (Eq.

i=1 j=1
(7) in [14]), where d = 3 is a dimensional vector representing the color. Also, and

since it requires a more complex post processing step than connect components [3]
for handling noise and filling gaps and removing temporal clutter false detection, it

is much more computationally complex than any MOG-based technique.

3.8 Summary

We proposed a novel MOG-based real-time video background update technique for
moving object detection. The background update stage consists of a new combined
approach of component ordering and winner-takes-all. This matching scheme not
only selects the most probable component for the first matching with new pixel data,
greatly improving performance, but also simplifies pixel classification and component
replacement in case of no match. Further performance improvement achieved by using
a new simpler yet functional component variance adaptation formula.

In the object detection stage of this technique, the proposed new hysteresis based

component matching and temporal motion history schemes improved segmentation
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quality. Component hysteresis matching improves detected foreground object blobs
by reducing the amount of cracks and added shadows, while motion history preserves
the integrity of moving objects boundaries, both with minimum computational over-
head. The proposed periodical weight normalization scheme prevents merging tempo-
rary stopped real foreground object, and the creation of false ghosts in the foreground
mask when these objects start to move again.

The proposed overall technique implicitly handles both gradual illumination change
and temporal clutter problems. The problem of shadows and ghost is partially address
by the proposed hysteresis based matching scheme. The problem of persistent sudden
illumination changes and camera movements are addressed at frame level depending
on the percentage of pixels classified as foreground.

The algorithm analysis shows that the proposed background update and object
detection technique not only robustly addresses more background adaptation related
problems compared to other MOG and non-MOG based techniques, but also compu-

tationally more efficient as we objectively show in the following chapter 4.
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Chapter 4

Experimental Results of Proposed

Background Subtraction

Our goal in this chapter is to evaluate the core performance of each algorithm at
pixel level without the added extra pre-processing or post-processing steps. In the
implementation of [23], higher processing stages of object tracking and logical cor-
respondence are not included since they are beyond the scope of this thesis. In the
implementations of [14,24], [8], we did not include the data validation and /or shadow
removal steps.

We selected three especially challenging (publicly available) color urban traffic
sequences (form the website maintained by KOGS/IAKS of Karlsruhe university
http://121www.ira.uka.de/image _sequences/). The first sequence “Winter” or “dt-
neu_ winter” is 300 frames of size 768x576 and shows a traffic intersection in snowing
winter day-light, it contains pedestrians and moving vehicles. The sequence starts
with moving pedestrians and vehicles (bootstrapping), but no stopped and later
moved foreground objects. The other two sequences “Fog” or “dtneu_nebel” (336
frames) and “Snowing” or “dtneu_schnee” (300 frames), show the same intersection
under different weather conditions and heavier traffic activity.

In the development process of the proposed BS technique, we conducted long
hours of real-time simulations on video streams obtained from network cameras for

different scenes. In order to evaluate the long term performance of each algorithm,

38
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we used our own captured long real traffic video sequences in downtown Montreal.
We present the simulation results for two such sequences, the first is 2850 frames, it
shows the intersection of Rene-Levesque and Guy at mid-day time, with slight rain,
waving trees, and normal downtown traffic. The second is 1200 frames and shows
St-Catherine street in the afternoon, with slight wind, clouds and normal downtown
vehicle and pedestrian traffic.

We present first quantitative objective evaluation of algorithm performance for
the “Hall” and “Intelligentroom” sequences given that we have the ground-truths.
These are two well known test sequences, “Hall” is 300 frames of size 352x288 of and
“Intelligentroom” is 300 frames of size 320x240. For the remaining test sequences,
objective evaluation was not feasible as it requires unavailable ground-truth sequences.
For these test sequences we provide only subjective object-detection performance
evaluation approach that is based on i) the integrity and correct detection of real
moving foreground objects (true positive and false negative) and ii) the amount of
false detection of noise, shadows and ghosts (false positive).

Note that in both objective and subjective performance evaluations, and for all
test sequences, we used default parameter values of each reference technique as stated
in the corresponding publications [8,14,23]. For the proposed technique we used the
following parameter values o = 0.005, A\ = 2.0, A; = 3.0.

Algorithm simulation were achieved via our multi-threaded C++ based applica-
tion. The simulation platform is a Linux (FC4) based Intel P4 @ 2.0 Ghz with 512

MB of system memory.

4.1 Objective Evaluation

We objectively quantify object detection performance of each algorithm at the pixel
level against the object detection ground-truth of the “Hall” and “Intelligentroom”

sequences, by means of Euclidean distance [50| defined as

M N
d2E'F O Otruth ZZ Ot’ruth(k l)) (41)
k l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2. Subjective Evaluation 40

7e+08 T
6e+08 K
5e+08
(0]
[$)
c
@
B 4e+08
)
c
[ ]
8 3e+08
T
=
m
2e+08
% I R R Cucchiaraetal. i
1e+08 1 Elgammal et al. --—--
5 Lee --------
0 J - Proposeld
0 50 100 150 200 250 300

Frame Number

Figure 4.1: Euclidean distance objective comparison for “Hall” sequence.

where M and N are the width and height of a frame, and for a given BS technique,
O(k, 1) is the algorithm output at location (k, ), and Oyuin(k, 1) is the objects ground-
truth at location (k,!). Note that lower values for this measure corresponds to more
correct object detection.

For “Hall” sequence, the output of the proposed technique better matches the
ground-truth corresponding to more accurate object detection compared to other ref-
erence techniques [8,14,23] (Fig. 4.1). For “Intelligentroom” sequence, Fig. 4.2 shows
more clearly the advantage of accurate object detection by the proposed technique

over the reference techniques [8,14,23].

4.2 Subjective Evaluation

4.2.1 “Fog” Sequence

In the subjective evaluation of this sequence, we note the following:
i) Both the proposed and the median based [23] techniques, were the fastest to

recover from bootstrapping problem given that the sequence starts with moving fore-
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Figure 4.2: Euclidean distance objective comparison for “Intelligentroom” sequence.

ground objects. The KDE-based technique of [14, 24|, shows motion history (ghost
trace) of the moved objects. This happened due to the ragged density estimate ob-
tained of the very few sample set given the periodical model update of At = 10 as
illustrated in Fig. 4.3. A more visible trace of initial object ghosts was present in the
output of [8] technique mainly due to slow adaptation rate.

ii) In almost all the frames, the most correct object segmentation was obtained by
the proposed technique in terms of foreground blobs integrity and the noise present
(Figs. 4.3,4.4).

iii) All the algorithms, including the proposed, for some frames, failed to detected
the three moving dark color vehicles due to heavy fog presence and color resemblance
with the auto-route. However, in various frames there was partial object detection
by the proposed technique mainly due to the proposed motion history and hysteresis

thresholding schemes (Fig. 4.4). This indicate the better performance of the proposed

technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2. Subjective Evaluation 42

(a) Original "Fog", I110. (b) Output of [23].

(€) Output of [24]. (d) Output of [8].

(e) Output of proposed technique.

Figure 4.3: Algorithm outputs for sample frame /119 of "Fog" sequence. The proposed
technique output has more filled regions, boundaries and less noise.
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(a) Original "Fog", I10. (b) Output of [23].

(¢) Output of [24]. (d) Output of [8].

(e) Output of proposed technique.

Figure 4.4: Algorithm outputs for sample frame I51y of "Fog" sequence. The proposed
technique output is less noisy and detected objects are more filled.
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4.2.2 “Winter” Sequence

In the subjective performance evaluation of this sequence we note the following:

i) The same trend (see “i” Sec. 4.2.1) of bootstrapping recovery is repeated as for
the “Fog” sequence, however, due to the slower moving objects of this sequence, a
more clear ghost is present in the output of [8] (Fig. 4.5).

ii) The more correct segmentation output was obtained by the proposed technique.

iii) The output of the proposed technique was better than that of the reference
techniques. However, due to sever cracks present in detected foreground blobs in all
outputs (Figs. 4.5,4.6), each object appears as multiple objects, which may lead to

failure in following higher video processing stages.

4.2.3 “Snowing” Sequence

In the subjective and computational performance evaluation of this sequence, we note
the following:

i) The superiority of the proposed techniques was evident in all the frames as can
be seen in the sample results of Figs. 4.7, 4.8.

ii) In many frames the sever cracks in detected foreground blobs lead to multiple
false object representation at the final output of both the reference and proposed tech-
niques (Figs. 4.7, 4.8), despite the better performance of the proposed segmentation

technique compared to the other reference techniques.

4.2.4 “Rene-Levesque Guy” Sequence

With this sequence we evaluated the algorithms performance in addressing problems
that were not embedded in any of the previous sequences, mainly the waving trees
(temporal clutter) with large pixel displacement and the temporary stopped fore-
ground objects (sleeping person).

i) The multi-component (background update) nature of the proposed technique
and that of [8], significantly reduced the effect of multi state background pixels corre-

sponding to perturbing tree leave especially near tree boundaries, given that enough
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(c) Output of [24]. (d) Output of [8].

(e) Output of proposed technique.

Figure 4.5: Algorithm outputs for sample frame I119 of "Winter" sequence. for (d) the
output contains false detected ghost objects due to slow bootstrapping recovery, these
ghost overlap with the detected originals object thus appearing more filled compare

to other reference techniques and the proposed.
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(e) Output of proposed technique.

Figure 4.6: Algorithm outputs for sample frame Ip49 of "Winter" sequence. Proposed
technique output out-performs the reference techniques.
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(c) Output of [24]. (d) Output of {8].

(e) Output of proposed technique.

Figure 4.7: Algorithm outputs for sample frame I1¢7 of "Snowing" sequence. Proposed
technique output achieved better object detection with clearly less noise.
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(c) Output of [24]. (d) Output of [8].

{(e) Output of proposed technique.

Figure 4.8: Algorithm outputs for sample frame I514 of "Snowing" sequence. Proposed
technique output more correctly detected object with less noise and no false ghost
objects. In (b) a ghost corresponding to the tram falsely detected (sleeping person).
For (d) more ghost objects are falsely detected due to both sleeping person and
bootstrapping problems.
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sample frames of each state were gathered. The other two single-model based tech-
niques of [23,24], produced in many frames noise like false detections (Fig. 4.9).

ii) The periodical component weight normalization in the proposed technique, pre-
vented traffic-light stopped vehicles from getting merged into the background model
even with limited initial statistics (Fig. 4.9). Other reference techniques not only
merged these vehicles into their background models, but created temporary false
ghosts in the foreground mask when these object start to move again (green light).

iii) Also for this sequence, the proposed technique more accurately detected mov-

ing objects compared to the other reference techniques.

4.2.5 “St-Catherine” Sequence

With this sequence we evaluated algorithms adaptation rate, object detection accu-
racy and the performance in addressing the temporal clutter problem (waving flag).
i) The multi-component (background update) nature of the proposed technique
and that of [8], significantly reduced the effect of multi state background pixels cor-
responding to waving flag. The other two single-model based techniques of {23, 24],
produced in many frames noise like false detections (Fig. 4.10).
ii) The proposed technique had better object detection accuracy with more filled

objects, less shadows and noise compared to the other reference techniques.

4.3 Computational Performance

We present the average computational time required by each algorithm when simu-
lated on the first 100 frames of each test sequence. Note that for this evaluation only,
we used an update interval At = 3 and a median buffer length L = 30 for [23], in
order to simulate with a full buffer. For [14,24], we kept the update interval At = 10,
since it is very computationally demanding. For the proposed technique we used the
hysteresis thresholds A\; = 3.0, Ay = 2.0.

As shown in (Fig. 4.11) both the proposed technique and that of [23] in average

have similar computational performance. Note that the object detection accuracy of
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(a) Original Rene-Levesque and St
Guy crossing, Igig.

(c) Output of [24]. | (d) Output of [8]

(e) Output of proposed technique.

Figure 4.9: Algorithm outputs for the "Rene-Levesque Guy" crossing sequence. In
(b), (c), (d) two temporary stopped vehicles are falsely merged into the background.
For (b) false detection of shallow waving tree leaves (middle-right). For (b), (d)
a ghost corresponding to moved vehicle (at the top) is falsely detected. For (c)
more false noise is present and detected objects are less filled. For (e) the proposed
technique output has less noise with no false ghosts and no vehicles that are wrongly
merged into the background model.
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(c) Output of [24].

(e) Output of proposed technique.

Figure 4.10: Algorithm outputs for the "St-Catherine" sequence. In (b), (c), (d)
varying degree of false detections related to the waving flag (left-bottom of the satellite
receiver in center of the frame). For (c¢) more false noise is present and detected objects
are less filled. For (e) the proposed technique output has less noise, more accurate
object detection and negligible waving flag related false detection.
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Figure 4.11: Average computational performance chart for the first 100 over all the
test sequences.

the proposed technique outperform that of [23] (Figs. 4.1,4.2). The MOG-framework
based technique of [8] in average was close to real time. The KDE-based technique

of [14,24] is critically slow and computationally demanding.

4.4 Practical Considerations

The proposed techniques consists of various schemes (modules), each with its corre-
sponding parameters that effect the overall performance. In system implementation
(Sec. 3.5) we used a set of parameter values that generally performed very well in
many sequences, however depending on the current application (monitored scene),
even more better performance can be obtained by careful considerations of the fol-
lowing:

i) The choice of hysteresis thresholds Ay, Ay : For scenes with small foreground
moving objects, typically when objects and their cast shadows has size less than 10%
of frame size (Fig. 4.12), it is good to use A2 € [1.0—1.5] and A; € [1.5 —2.0].

Note that Ay corresponds to the base threshold that controls the minimum intensity
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Figure 4.13: Foreground objects larger than 20% frame size.

difference required for being a background pixel. While \; generally controls the
amount of small cracks and added shadows in/to foreground blobs.

In the case of large foreground objects, size larger than 20% of frame size (Fig.
4.13), and if motion history is used it is good to use Ay € [2.5—3.0] and )\ €
[4.5 — 5.0]. If motion history is not used then Ay € [2.5 — 3.0] and A; € [3.0 — 3.5].

ii) The state of motion history scheme: Generally the motion history always helped
in detecting moving objects boundaries, however in the case of very fast moving
objects, where they typically stay in the scene for two to three frames only (Fig. 4.14),
motion history creates lagging tails connecting close foreground objects together that
form a continuous false foreground region. The other case were motion history should
not be used is when object detection with precise boundary is required.

i) Weight normalization threshold / ratio: For any pixel, given that the real
background was obtained, these two parameters determine the time needed for a
stationary foreground object to get merged and become the new background. More

importantly, proper choice of these parameters will prevent unwanted merger of tem-
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(a) Autoroute Ville-Marie, frame {b) Autoroute Ville-Marie, frame
1254. 1255.

Figure 4.14: Very fast moving truck.

porary stopped foreground objects, i.e. if some foreground objects frequently become
static for 50 seconds corresponding to Ty, = 50 x 30 fps = 1500 frames, then the
normalization threshold must be wyopm > (—/\E‘F—Er%% where 0.5 is error margin corre-

sponding to foreground object stop time tolerance.
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Chapter 5

Contour Tracing and Filling

In this chapter, we introduce methods for grouping and identifying the connected
regions in the initial foreground binary masks. Component-labeling algorithms are
the most basic and commonly used techniques that consists of either region growing
or contour tracing and filling.

Region growing techniques [55-59] need an interior starting point (seed pixel)
and a recursion-based growing procedure, this category of techniques are more robust
but computationally demanding and require more storage compared to the other tech-
niques. Contour tracing and filling based techniques are more widely used techniques,
since they adhere to the real-time and limited storage criteria necessary for practical

on-line video processing applications.

5.1 Introduction

Contour tracing and filling are fundamental processes in various image and video
applications. Most of the presented tracing and filling algorithms are pixel or raster-
based, while there are few which are polygon or vector-based, also known as "Ordered
Edge List" [60,61]. In raster-based, the image or video frame is stored as a matrix cor-
responding to pixel luminance or color values. In vector-based, raster image or video
frame information is represented as geometrical data corresponding to the shapes in

the image plane, such as lines, curves or simple shapes. Then from these geometrical

95
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Figure 5.1: The neighborhood of a pixel p,.

information raster representations can be produced for visualization.

In an image defined on a rectangular sampling lattice, two types of neighbor-
hoods are distinguished (Fig. 5.1): 8-neighborhood and 4-neighborhood. In an 8-
neighborhood all the eight neighboring points around a point are considered. In a

4-neighborhood only the four neighboring points, right, left, up, and down, are con-

sidered.
A contour is a finite set of points, py, ..., p,, where for every pair of points p; and
p; in C there exists a sequence of points s = {p;,...,p;} such that i) s is contained in

C and ii) every pair of successive points in s are neighbors of each other. Any contour
can be represented by the point coordinates or by a chain code.

Contour tracing is an algorithm that groups neighborhood connected pixels in a
binary edge image E(n). Contour filling fills the inner pixels of a contour and the
pixels of any gaps in that contour with specific gray-scale values.

Schemes for contour tracing in raster graphics are broadly divided into two cate-
gories: edge-based and binary-based. Edge-based schemes rely on some sort of edge
detection schema, whether it is binary-based as in [62], or the more general second-
order zero-crossing of Laplacian or Canny [31]. Edge pixels are then traversed and
tracked producing fully connected sequences of pixels that define the outer object (or
inner gap) contours. Binary-based schemes [27,28,30] work directly on the binary
or segmented image or video frames, by tracing the outer or inner boundary of each
segmented blob. In both approaches, many algorithms try, while tracing, to label

traversed outer or inner boundary pixels with different labels (e.g. traversal chain
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code), to be used later for either efficient storing or for contour filling.

Contour filling can be classified into two categories: label-based filling, and parity-
check filling. In label-based filling [27-30] the pixel label information (e.g. chain-
code) obtained during tracing is used for filling. Parity-check filling |26] techniques
are generally faster and require less memory, however, they may leak in the case of

complex object contours.

5.2 A Survey of Related Work

In |25, 26], Pavlidis presented algorithms for both contour tracing and filling. The
contour tracing is based on the 8-neighbor connectivity of a pixel in an edge-detected
image and the contra-clockwise traversing concept for locating the next connected
neighboring pixels. The traversing consists of two phases: external or region contour
traversal and internal or inner contour traversal. Graph traversal, is used to extract
the LAGs (line adjacency graphs) as first presented by [63]. Pavlidis extended the
LAG definition into c-LAGs for contour pixels, and i-LAGs for interior (background)
pixels. After extracting the ¢c-LAGs during the contour tracing phase, the filling
algorithm uses the notion of parity-check or the LAG degrees to locate candidate
horizontal seeds, then it uses the notion of connectivity or seed growing to fill the gap
until the other horizontal point of the c-LAG pair is reached. In the case of reaching
an internal c-LAG during the filling, the algorithm starts filling the gap with different
gray scale. The tracing algorithm presented by Pavlidis, is an effective, fast and one
of the few algorithms that handle inner contours that share some of its points with
the bounding outer contour. However, both the tracing and filling algorithms fail in
most contours that have complex concavities and multiple cross points.

The tracing and re-filling (or re-labeling) algorithm of Chang et al. [27,28] starts
by first locating a non-labeled foreground pixel in a binary image or frame, upon
which the Tracer procedure is called, to start the tracing clockwise and labeling of
the outer boundary contour pixels of the region. After tracing the outer contour the

filling procedure starts labeling the interior pixels of the extracted outer contour with
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the same label as that of the outer contour pixels. During the filling operation, if an
unlabeled background pixel is detected, the Tracer procedure is called to trace in a
contra clockwise manner and label the interior contour pixels (the contour of a gap in
the current region). After closing the interior contour the filling procedure continues
again. The Chang et al. algorithms, do not need an edge detection of the binary or
segmented images or video frames and require only one image pass for both tracing
and filling. However, the algorithm is highly storage and computational demanding
and not suitable for real time video applications.

The work of Codrea et al. [29] is a detailed algorithm for both contour tracing and
filling that works on binary edge images. The contour tracing of Codrea et al. [29],
starts by scanning the image from left to right, top to bottom. After finding the first
contour pixel (starting point of the contour), next contour pixel is located by contra-
clockwise scanning of the 8-neighborhood of the current pixel starting at the pixel
positioned in the direction (dir+7) mod 8 for even direction values and (dir+6) mod 8
for odd direction values, until the first two points with the same sequence order of the
contour reached again. The direction variable is initialized to dir = 7, and updated
before each search for the next contour point, depending on the locations of both the
current and previous contour points. While tracing, each contour point is labeled
with one of four different labels R, L, T\, B, and stored in an accompanying separate
matrix. The labeling is done in one image pass via two different procedures : single
direction-based labeling and double directional-based labeling. After finishing tracing
and labeling, contour filling scheme is straight forward: it scans the labeled region
contour pixels horizontally line by line, filling between pairs of L — R pixels only.
The algorithm presented by Codrea et al. is fast and effective, however, it has filling
problems in inner contour gaps and not suitable for video processing.

The proposed contour tracing scheme that is based on [2] takes as an input a binary
edge image. But, unlike related algorithms, it addresses the following important key
issues at each new candidate contour pixel: i) detection and deletion of contour dead
branches, ii) detection and exclusion of unclosed contours that resulted due to faulty

segmentation, noise, occlusion, iii) detection of inner hole contours, and vi) efficient
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extraction of contours and their specific features such as compactness while tracing
the edge image, and later storing these features with the extracted contour points as
independent objects for subsequent processing stages.

The proposed contour filling scheme combines the simplicity of a label-based and
the robustness of seed growing techniques. Labels are obtained during the tracing
phase, corresponding to the chain-code or directions of each contour point. Then
these points in a given scan-line of the contour are used as either a terminating or
line growing seeds depending on their label information, insuring that the algorithm
can handle all subtle cases of complex concavities, multi-crossing edge points and

parallel edges.

5.3 Improved Contour Tracing Algorithm

In this section, we propose improvements to the tracing scheme in [2]. These improve-
ments are; i) new chain-code based candidate-point search mechanism (Sec. 5.3.3) for
improved performance, ii) new added functionality (Sec. 5.3.5) to address cross-point
connected closed contours (Fig. 5.6).

The proposed algorithms require as an input a binary edge image E, for each video
frame at time instance ¢. This binary edge image can be obtained in various ways.
We used the method in [51,62] to extract edge information. Fig. 5.2 shows the block
diagram of the proposed set of algorithms.

Following the edge extraction, the contour tracing algorithm is called for each
edge frame E; at time instance t. The result of tracing edges is a list C; of contours
and their features: starting point, perimeter, width, height, area, center of gravity,
compacthess, extent ratio, and irregularity ratio. Tracing is done in a contra-clockwise
manner and for each current point p, in E; the algorithm looks for a neighboring point
in the 8-neighborhood, always starting at the rightmost neighbor. This rule forces
the tracing algorithm to move around the object by looking for the rightmost point
and never inside the object. At each new contour point, the algorithm records both

its co-ordinates and tracing directions (chain-code).
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Figure 5.2: Proposed tracing algorithm block diagram.

5.3.1 Notation

In the following, let

e (; be the list of contours in the original video frame I; at time ¢,
o C. € ()} is the current contour with starting pixel p;,

e M BB, is the minimum bounding box of C,,

e p. is the current processed pixel,

e p; is an 8-neighbor of p., and p, corresponds to the next candidate contour pixel

Of pm

e d, is the search direction for the next contour pixel candidate, p;(d,) is the

8-neighbor of p, at location corresponding to ds (Fig. 5.1-b),

e contour pixels ps, p¢, p; and p, are structures of three properties; x co-ordinate,

y co-ordinate and the chain-code info cc;.
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Figure 5.3: Scanning Direction.

Only co-ordinate information (z,y) is considered when comparing two contour pixels
Pn = D; OF P, # ps, while all properties of co-ordinate and chain-code information
are set when matching p. := ps;. In E}, background pixels p, have the value of zero
(black), and foreground edge pixels p,, can have any given gray-scale value other than
Z€ero0.

The proposed tracing scheme consists of five integrated modules: i) tracing mod-
ule, ii) tracer module, iii) dead branch deleting module, iv) connected closed contour
module, v) internal contour check module. The functional details of each module are

presented next.

5.3.2 Module Tracing

Scan E; from top to bottom and left to right until finding a non-visited edge pixel
Pw. Upon finding p,,, set ps := p,, , set p. := ps and apply Module Tracer. If no more
Pw Pixels can be found then end the tracing in E;. Note that, in the case of objects
contain other objects, the given scanning direction (see Fig. 5.3) forces the algorithm

to trace first the outwards and then the inwards contours.
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5.3.3 Module Tracer

Track edge pixels contra-clockwise in order to find the neighboring points of p. as

following

1. Set the search direction ds := 5, which corresponds to the bottom-left neigh-

boring pixel of p,

2. Verify that p. is not an isolated edge pixel, by traversing all the surrounding

pixels:

e if an edge pixel p;(d;) is found: i) update the chain-code of p, to ccs := d;
and add p. to C,, ii) set p, := p;, iil) update d; as following: if d; =0or1l
then set d;, := 7; if ds = 20r3 then set d; := 1; if d; = 40r5 then set
ds =3 ;if dy = 60r 7 then set d; := 5, iii) execute step (c).

e if no neighboring edge pixel of p, is found, then p,. is an isolated edge pixel,
set this pixel to zero (background) in E;, return to Module Tracing to find

next non-visited py,.

3. While p. # ps repeat the steps in the block diagram shown in Fig. 5.4.

4. When p, = p, then C, is closed, update the M BB,, contour size, width, height,

area, extent ratio, compactness and irregularity ratio of C..
5. Perform Module Check Internal that checks if C, is internal.

6. Add C, to C, if its properties satisfy some given criteria:

e C, has a width or a height larger than specific thresholds T, and T}, or
e C, has a perimeter larger than a specific threshold 7}, , or

e C, satisfies a given irregularity ratio 7;.

7. Return to Module Tracing to find next non-visited edge pixel p,,.
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Figure 5.4: Module-Tracer block diagram.

It is very important to update the chain-code information ccs of each p. prior to
adding them to C,. This chain-code information should always correspond to the

chain-code relative to previous added p..

5.3.4 Module Delete Dead Branch

Delete dead branches (Fig.5.5-a,b) and return to Module Tracer.

1. Let p; correspond to the last contour point in C..

2. Keep removing p; from C, until finding another neighboring candidate edge

pixel p,, in FE;.

3. Upon finding p,, set p, := p; and return back to Module Tracer.

5.3.5 Module Connected Closed Contour

Remove any connected closed contours to C, (Fig. 5.5-c) and then add them to C,.
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Figure 5.5: Module Trace sub-cases illustrated.
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Figure 5.6: Special case contours illustrated.
1. Let Cynp be a temporary contour

(a) Start from p. and add all the contour points in C, to Ctyp until reaching

the contour point in C, corresponding to p,.
(b) Update the M BBy, of Cypp.
(c) Perform Module Check Internal that checks if Ciis internal.

(d) Update C, properties and add Cyy,y, to C; and return back to Module Tracer.

Note that the given scanning direction and the addition of connection pixels (one-
pixel-wide case) to both Cymp and C, in the Module Connected Closed Contour, pro-

duces the trace-outs contours shown in Fig. 5.6.
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5.3.6 Module Check Internal

Verify if the starting point p; of a given contour C, inside any of the contours C; € C;.
Let f; be a flag and for each C;:

a) Set f; = false.

b) If ps of C. is not inside any M BB; of C; then return and designate C. as
non-internal.

¢} If, however, p, is inside a M BB;:

e Create an array corresponding to a single scan-line in M BB, of C;, set all the
values in this array to eight (or any other value larger than the largest chain-code

seven).

e Locate those contour point in C; with the same y co-ordinate of pg, and set the
corresponding z co-ordinate locations in the array to those contour points with
directional information d, (see Fig. 5.7), however, if the directional information
ds of these contour points: i) zero or one: then check the dg of the following
contour point in C;, if it is seven then set the corresponding x co-ordinate
locations in the array to seven, if not seven set the location in the array to the
actual directional d, value, ii) six or seven: then check the ds of the following
contour point in C;, if it is one or two then set the corresponding = co-ordinate
locations in the array to one, if not one set the location in the array to the

actual directional d, value.

e Scan each array location, if a value less than eight is found : i) set f; = true
if this value is five, six or seven, if not set f; = false , ii) change the value
in the current array location to ten if f; was true, iii) check the array location
corresponding to the z co-ordinate of the p; of C after scanning all the array,

if it is equal to ten then C, is internal to C; € C(n).
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Figure 5.7: Internal checking mechanism in Module Check Internal.
5.4 Proposed New Filling Algorithm

After selective tracing of the valid closed contours C;, the proposed novel filling al-
gorithm fills every contour C; € Cy, based on contour point’s chain code information
obtained during tracing. Let F} be the list of filled contours, F; € F; correspond to a
filled contour, ccp; € C; is the current contour point, cep;1 € C; is the next contour

point. Fill C; corresponding to F; only for the following two cases for each ccp;:

1. If the chain-code cc; of cep; is {5 or 6 or 7 } and cc;y; for cepiyy satisfies
(cciy1 > ccimodb), then use the point to the right of ccp, as a seed, filling

rightwards until reaching the next contour point in the same scan-line.

2. If the chain-code cc; of ccp; is {0 or 1 } and cc;+1 = 7, then use the point to the
right of ccp; as a seed, filling rightwards until reaching the next contour point

in the same scan-line.

Fig. 5.8 illustrates the only four different cases where filling should take place depend-
ing on the chain-code information cc; of each contour point. For example, a contour
point with cc; = 6 (second row in Fig. 5.8) filling rightwards should start only if
cciv1 = 5 or 6 or 7. Other cases of c¢;41 correspond either to special cases of sudden
change in tracing direction cc;pq = Oor 1 (last two cases of the second row in Fig.

5.8), or to non-existent contour points due to the nature of contra-clockwise tracing
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Figure 5.8: Filling cases illustrated.

mechanism (first two cases of the second row in Fig. 5.8). Our implementation of the
proposed simple filling algorithm is efficient and is on average three times faster than

the reference [25,29] filling algorithms.

5.5 Analysis of Proposed Contour Tracing and Fill-
ing

In this section, we analyze and compare the accuracy, performance and efficiency of
the proposed tracing and filling algorithms with Pavlidis [25,26], considered as refer-
ence set of algorithms, and Codrea and Nevalainen [29], a recent promising scheme

of algorithms.
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Figure 5.9: Un-efficient next contour points search mechanism by Pavlidis.

5.5.1 Functional analysis

We analyze the functional concept of the two reference algorithms and investigate

their convenience for real time video applications.

The work of Pavlidis

The Pavlidis tracing algorithm has the following main performance functional draw-

backs:

e The first one is related to the search technique presented for finding the next
contour point in the edge image, while searching for the next candidate contour
point, if it is not found at the current search row 1,2, or3 in Fig. 5.9, then
the search row is rotated 90° left (or right in case an inner contour is traced),
and the surrounding locations of the current pixel is searched again at the new
rotated 1,2, or 3, this leads to checking the same location twice. This location
corresponds to 3 in the previous row before rotation, and corresponding to 1
after rotation, that is; first it checks locations 1, 2, 3 then 3peforerotation —
Vrotated, 2rotated, Srotated, SO €ach time there is rotation in the search procedure,

the last location corresponding to 3 is checked twice.

¢ Another important issue related to the search mechanism, is that depending on
the current search direction dg, the search for the next contour point always

starts with either the leftmost (or rightmost) pixel in the row perpendicular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5. Analysis of Proposed Contour Tracing and Filling 69

crossed
contour L.
points

Figure 5.10: Crossed contour points of a real video object.

to the current search direction ds, and in many practical contour cases the
next point is usually located just above the first search location in the row (see
Fig. 5.9). This means that the algorithm has to look into eleven locations (3

rotations) before finding the next contour point.

e No mechanism for checking whether a contour is internal or not, although
Pavlidis presented in [26] a way for detecting specific internal contours that
share some of its points with the outer contour, although it was not clearly

stated and it caused filling errors.

e In various cases of contours that have crossed points (see Fig. 5.10), the algo-
rithm fails to correctly extract the single closed contour, instead it separates
the contour into more than one connected contours which leads to leaks in the

filling process.

e Fundamentally not suitable for object-based video applications. Since there
is no mechanism for detecting connected dead branches or connected closed
contours, thus producing contours that are not representative of the actual real
video objects. This non-representativeness corresponds to contours that have
very different features of video object shape, width, height, area, compactness

and irregularity ratios.

The presented parity check scan-line based Pavlidis filling is fast but fails with

complex contours, especially in the presence of cross contour points. Also, the lack
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of internal contour check mechanism, lead to the treatment of inner hole contours as
other external contours which not only wrongly filled these contours but also produced

unwanted leaks in the outer containing contours.

The work of Codrea and Nevalainen

The tracing algorithm of Codrea et al. has an efficient technique to search for the next
contour points. It also has a special contour search termination condition: “finding the
first two contour points again with the same sequence of occurrence as the one obtained
when first started the tracing” [29]. The algorithm succeeded in blindly tracing the
whole contour regardless of the contour’s complexity, but has the following main

drawbacks:

e It may trace the same set of contour points more than once before reaching the
termination condition. This often occurs when the video scene contains many
foreground objects with complex contours that have dead branches or in the
presence of many unclosed contours due to noise. This greatly increases the

tracing time and storage necessary for storing the extracted contours.

e There is no mechanism for checking if the contour extracted is located inside
another already detected contour. This is important in various cases, if the
contours are of large size then they correspond to inner object gaps and should
not be treated as different independent contours. If these inner contours are of
a small size then mostly related to noise or segmentation errors and should be

rejected and removed.

e The absence of a mechanism to detect the presence of connected dead or inner
branches and connected closed contours makes the tracing algorithm fundamen-

tally not suitable for object-based video applications.

The Label-based filling algorithm by Codrea et al. is simple and robust. It is rather
done in the same way of scan-line filling, but instead of parity-checking pair calculation

as it was the case in Pavlidis’s filling schemes, it relied on the special labels extracted
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during the tracing. Also, here the lack of internal contour check mechanism lead to

wrongly filled inner gaps and leaks in the outer containing contours.

The proposed algorithms

The advantages of our tracing for object-based video applications can be summarized

with:

e It has an efficient conditional-based mechanism (see Module Tracer) for updat-
ing the search direction d;s used to locate the next contour points. This insures
that the tracing algorithm always moves around the objects and never inside

the objects.

e It never re-traces the same contour points twice, and deletes while tracing any

connected with noise or occluded objects.

o It effectively addresses some of the most important issues for object-based video
applications. These issue are connected closed contours, dead or inner branches
and inner gap contours. Connected closed contours are detected and extracted
correctly as shown in Figs.5.10, 5.6. Dead or inner branches are detected and re-
moved, which not only produces more corresponding contours, but also greatly
reduces tracing time especially in complex video sequences. Valid large-enough
inner gaps contours are correctly related to the containing contours, while dis-

carding those small noise or faulty segmentation related inner contours.

e Every extracted contour is stored and processed as an independent object with
the features: starting point, minimum bounding box, width, hight, size, center
of gravity, internal state, area, compactness, extent ratio and irregularity ratio.
These features are calculated and updated while tracing. This is important
step since these features are used in various subsequent processing stages such

as video object tracking, video event analysis or video object classification.

e The proposed filling algorithm is contour-based since only the interiors of each

contour is scanned instead of redundantly scanning the whole frame as it is in
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the reference filling algorithms [25,29]. The contour-based filling not only makes

the proposed filling simple and effective, but also ensures that it never leaks.

5.5.2 Complexity and efficiency

We analyze the complexity of the proposed tracing and filling algorithm through the

following features:

e Proposed tracing algorithm wvisits each pizel in the input edge frame E; only
once. Since each input edge frame is scanned once, and all the encountered
edge pixels are labeled to wvisited , regardless if they belong to a connected
dead or inner branches or other connected contours, this insures that each edge
pixel is visited only once. Unlike the other related tracing algorithms each edge
pixel may be visited more than once especially in complex scenes. And since
the search for each next contour pixel requires a variable amount of time, this

makes our tracing algorithm more efficient.

e Proposed tracing algorithm is linear in time. The proposed tracing algorithm
proceeds in a contra-clockwise manner, moving linearly in time pixel by pixel
starting from the first non visited edge pixel, until re-reaching the same starting
point or not finding anymore non-visited edge pixels. This means that the
tracing time for a given set of contours is always the same regardless of their

locational distribution.

e Proposed filling algorithm traverses only the inner part of each extracted contour
(contour-based), labeling each traversed inner pizel only once. Since the filling
operation for each contour is accomplished by scanning only the projection of
each contour from top to bottom and left to right, labeling each traversed inner
pixel only once according to the label information of the contour points along
that filling line, thus visiting and labeling each inner contour pixel only once.
On the other hand, all the other presented filling algorithms including the two

reference algorithms require scanning the whole contour image for filling and
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| frame size l Pavlidis | Codrea et al. l Proposed l

352 x 288 | 0.0476 s/f | 0.0488 s/f | 0.0475 s/f
320 x 240 | 0.0378's/f | 0.0382s/f | 0.0344 s/f

Table 5.1: Average tracing and filling times in seconds per frame.

not only the projection of each contour, which adds extra overhaul to the overall

filling operation.

The algorithms were implemented in C++ on a single processor Linux based PC with
Intel P4@2.4GHz and 768MB of memory. All reference and presented tracing and
filling algorithms run in real-time with an average time that depends on the video
scene complexity (Table 5.1). As the scene complexity increases and more other
processing stages are added to the system, the efficiency of the proposed tracing
scheme becomes more clear, as the number of false extracted video objects is greatly
reduced. For example, given that a non closed contour is extracted and added to true
video contour list by the two reference algorithms, this will lead to great computation
overhead in the following tracking stage while trying to match this video object or
make a correspondence with the other valid video objects in this frame. Note that the
proposed filling algorithm is on average three times faster than the reference methods.

The speed ratio of the proposed filling to tracing is 1:32.

5.5.3 System Implementation and Parameters

The proposed contour tracing and filling scheme implementation is straight forward
since it is based on binary frames. We used a value of 250 for foreground binary pixel
representation (white blobs), background pixels were represented by zero intensity
values. In Module Tracer, we marked visited edge pixels with intensity value of 251
(any other value can be used, except for zero and 250). The only non-automated
parameter is the minimum contour size, which is chosen based on the desired size of

objects to be included in the final list of contour objects.
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Figure 5.11: Complex contours indicated on the “Synthetic Image” and sample frames
of “Hall” and “Meetingroom” sequences.

5.6 Experimental Results

We evaluate the performance of the tracing and filling algorithms based on their
contour representativeness for object-based video processing. We present objective
and subjective results obtained by applying the proposed scheme of algorithms and
those of Pavlidis’s and Codrea et al.’s on four widely used video sequences, indoor:
“Hall” and “Meetingroom”, outdoor: “Survey” and “Highway”. These sequences con-
tain scenes with varying complexity, depending on the moving foreground objects and
the illumination conditions. We also test the algorithms on a synthetic image (Fig.
5.11-a) created to show tracing and filling problems related to complex contours in
real-world sequences. Some of these problems are connected closed contours, dead,

or inner branches, and inner hole contours as can be seen in Fig. 5.11.
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5.6.1 Objective evaluation

We objectively quantify both the traced and filled contours of each algorithm at the
pixel level against the contour ground-truth of that sequence, by means of Euclidean

distance [50] defined as

d2 C Ctruth l) - Ctruth(kv l))2 )

> (Cl,
Mok (5.1)
o (5 Fru) =32

(F, Fyruin) = 1) = Fyun(k, 1),

F
where M and N are the width and height of a frame, and for a given tracing scheme,
C(k,1) is the contour point at location (k,!), and Ciryn(k, 1) is ground-truth contour
point at location (k,[), F(k,1) is the filled contour point at (k,{), and Fiyn(k,l) is
ground-truth point at (k,[). Note that lower values for this measure corresponds to
more representative tracing and filling.

Fig. 5.12 shows the objective comparison for the synthetic image where the output
of the proposed tracing and filling schemes better matches the ground-truth as to
those of Pavlidis [25,26] and Codrea et al. [29]. Fig. 5.13 subjective supports Fig.
5.12. Reference tracing algorithms of Pavlidis [25,26] and Codrea et al. [29] blindly
trace the original edge image producing non-representative contours compared to
true existing image objects (Figs. 5.13-c,d). Dead or inner branches are added to real
contours affecting not only their correspondence to true object but also the extracted
features of image contour size, width, height, compactness and irregularity ratios.
Inner gap contours are falsely traced as external contours with no correspondence
to the containing external contours. Non-closed contours are wrongly considered as
valid contours that can greatly effect the performance of subsequent higher object
based processing stages.

For “Hall” sequence, the overall advantage and stability of the proposed schemes
compared to the reference algorithms is objectively supported by Euclidean distance
measures (Fig. 5.14). The subjective evaluation in Fig. 5.15 supports the objective

measures. The proposed tracing algorithm is more stable than the reference algo-
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Figure 5.12: Objective comparison of tracing and filling outputs for “Synthetic Image”.

(b) Ground truth.

(c) Pavlidis tracing. (d) Codrea et al. tracing. (e) Proposed tracing.

Figure 5.13: Subjective comparison for "Synthetic Image". For (c), (d) connected
closed contours are falsely considered as a single contour, dead or inner branches are
falsely added to the real contours, and inner gaps are wrongly traced as separate non-
related contours. For (e) dead or inner branches and closed connected contours are
correctly detected and rejected, also inner gap contours are labeled correctly (bright
white).
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Figure 5.14: Objective comparison for “Hall” sequence.

rithms which falsely trace connected closed contours, false inner gap contours and
some small noise related contours.

For “Meetingroom” sequence, Fig. 5.16 shows the objective Euclidean distance of
tracing and filling results compared to their ground-truth. As can be seen the pro-
posed algorithms clearly outperform the reference algorithms. Fig. 5.17 subjectively
supports Fig. 5.16, showing the advantage of the proposed tracing algorithm over the
those proposed by Pavlidis [25,26] and Codrea et al. [29].

5.6.2 Subjective evaluation

For “Hall” Sequence (300 frame of size 352x288):

e The tracing algorithm of Pavlidis [25,26] produced many problematic frames:
i) small dead or inner branches in many frames, ii) small noisy connected closed
contours considered as part of the true big contours in various frames (Fig.5.18),
iii) tracing failures and filling failures (leaks) in many frames, mainly due to
faulty search direction and the in-ability of retracing, or the presence of crossed

points. The main filling problem was the wrongly filled inner hole contours

(Fig.5.19).

e The algorithms of Codrea et al. [29] has the same tracing problems as those
produced by Pavlidis’s tracing algorithm (Fig.5.18). Also there was the same

filling problem of inner hole contours in many frames (Fig.5.19).
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(a) E(27). (b) Ground truth.

(c) Pavlidis tracing. (d) Codrea et al. tracing. (e) Proposed tracing.

Figure 5.15: Subjective comparison for "HALL" sequence. In (c), (d): the falsely
traced and added outer connected closed contour, and the large inner gap contour
falsely traced as independent external contour. For (e) the connected closed contour
is rejected, and the inner gap contour is detected and labeled correctly (bright white).
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Figure 5.16: Objective comparison for “Meetingroom” sequence.
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(a) E(285). (b) Ground truth.

(c) Pavlidis tracing. (d) Codrea et al. tracing. (e) Proposed tracing.

Figure 5.17: Subjective comparison for "Meetingroom" sequence. Note in (c), (d)
the falsely traced and added connected closed contour and falsely traced inner gap
contour as independent external contour. For (e) the connected closed contour is
rejected , and the inner gap contour is detected and labeled correctly (bright white).

o The proposed set of algorithms succeeded in both tracing and filling all the
frames without any tracing or filling failures, and without any of the problematic

issues related to object-based video processing.
For “Survey” sequence (1000 frames of size 320x240):

e The algorithms proposed by Pavlidis [25,26] had more of the same problems as
those in the “Hall” and “Highway” sequences (Fig.5.20).

e The Codrea et al. [29] tracing algorithm due to the complexity of this sequence
produced more undesirable contours for object-based video processing. More
than that there was a noticeable increase in filling errors especially those related

to connected inner contours and inner hole contours (Fig.5.20).

e Proposed set of algorithms also succeeded in both tracing and filling all the

frames without any problems.
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Connected Close Contour

(b) Pavlidis tracing. (c) Codrea et al. tracing. (d) Proposed tracing.

Figure 5.18: “Hall” sequence: non-representative tracing by reference methods of dead
or inner branches and connected small contours.
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(b) Pavlidis tracing. (c) Codrea et al. tracing. (d) Proposed tracing.

(e) Pavlidis filling. (f) Codrea et al. filling. (g) Proposed filling.

Figure 5.19: "Hall" sequence: (b), (c) produce falsely traced multiple inner dead
branches and inner gap contours that falsely traced as independent external contours.
For (d) all multiple dead inner branches that resulted from initial tracing of the
external contour are correctly rejected, while correctly keeping the resulting inner
gap contour (bright white). For (e), (f) multiple dead inner branches and inner gap
contours caused leaks or non-filled part in the outer containing contour.
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(b) Pavlidis tracing. {(c) Codrea et al. tracing. (d) Proposed tracing.

(e) Pavlidis filling. (f) Codrea et al. filling. (g) Proposed filling.

Figure 5.20: "Survey" sequence: (b), (c) the contours of the two persons are falsely
joined as single contour, the inner gap contour (in left-most person contour) is falsely
traced as independent external contour. In (d), the two connected contours are cor-
rectly detected and labeled separately (showing as different gray values), the large
inner gap contour is detected and labeled correctly. In (e), a filling leak occurred due
to the presence of a cross-point. In (f), the inner gap contour of the left-most contour
is falsely filled, and leak occurred in the outer containing contour.

5.7 Summary

In this chapter we proposed schemes for contour tracing and filling for object-based
video applications. The proposed tracing algorithm locates, in a contra-clockwise
manner, all the 8-neighbor connected closed contours. The proposed tracing algo-
rithm that builds on [2], is fundamentally different from classical image based tracing

algorithms, since it checks the correctness of video contour shapes at pixel level by
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detecting and amending any cases where unwanted distortions (e.g. closed connected
contours) may occur at each new candidate contour pixel. The filling algorithm uses
the traced contour points and their chain-code information as seed points for hori-
zontal line growing.

The proposed set of tracing and filling algorithms outperformed, both objectively
and subjectively, the reference algorithms. This was evident in i) handling complex
contours such as dead, inner branches, or crossed contours, ii) avoiding the many noise
related small contours, ii) handling connected contours that should not be appended
to the original bigger contours as it is the case in all the currently proposed tracing
algorithms in literature, but should be addressed as separate closed contours, iii)
never re-tracing the same set of contour points twice which greatly reduces tracing
time especially in complex video sequences with noise or highly occluded objects, and
iv) every extracted contour is stored and processed as an independent object with
specific properties which is a very important issue from subsequent video processing

stages.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we presented a set of schemes for robust real-time video segmentation
(background subtractions including background update and object detection, and
contour tracing and filling). These schemes can be directly and effectively employed
in real-world video processing subsystems such as video surveillance, event analysis,
and content-based video coding.

We proposed first a novel MOG-based real-time background update technique
for moving object detection and foreground mask formation. In this technique, the
background update stage uses a new selective matching scheme based on the com-
bined scheme approaches of component ordering and winner-takes-all. This matching
scheme not only selects the most probable component for the first matching with
new pixel data, greatly improving performance, but also simplifies pixel classification
and component replacement in case of no match. Further performance improvement
is achieved using a new simple yet functional component variance adaptation for-
mula. The used periodical weight normalization scheme prevents merging temporary
stopped real foreground object, and the creation of false ghosts in the foreground
mask when these objects start to move again.

The proposed object detection includes, hysteresis-based component matching

and temporal motion history schemes. Component hysteresis matching improves

84
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detected foreground (object-binary) blobs by reducing the amount of cracks and added
shadows, while motion history preserves the integrity of moving objects boundaries,
both with minimum computational overhead.

The proposed background update technique implicitly handles both gradual il-
lumination change and temporal clutter problems. The problem of shadows and
ghosts is partially addressed by the proposed hysteresis-based matching scheme. The
problem of persistent sudden illumination changes and camera perturbations are ad-
dressed at frame level depending the percentage of pixels classified as foreground. We
implemented three different state-of-the-art background subtraction techniques and
compared their segmentation quality and computational performance with those of
the proposed technique.

The proposed background subtraction technique produces binary object pixels
that are highly abstract and must be grouped together to form the actual objects. To
extract actual objects we proposed contour tracing and filling methods. The improved
contour tracing algorithm is fundamentally different from classical still-image oriented
tracing algorithms, for it considers video contour representativeness at the pixel level
by detecting and correcting any cases where potential contour distortion (e.g. dead
branches) may occur at each new candidate contour pixel. The proposed tracing
algorithm can detect and reject dead or inner branches, false non-closed contours,
noise related small contours, and then efliciently categorize each contour into inner
or outer contours. The novel filling algorithm is efficient and never leaks, it uses
the extracted contour points and their chain-code information as seed points for
horizontal line growing. Experimental results show that the proposed tracing and
filling technique improves computational performance with no tracing or filling errors

compared to other reference techniques.

6.2 Future Work

There are issues to consider in order to further improve the performance of the pro-

posed techniques. In the background update stage, for any monitored scene, most of
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the pixels actually correspond to background pixels where no foreground object ever
come into their view. Possible future work would be to consider a different periodical
component update scheme only for these specific pixels which will greatly improve
computational performance. Another future work is to fully address the shadows and
ghosts problem at the object detection stage. (Note that we partially address the
shadow and ghost problem.) Also for the object detection stage, we think that it
is very important to investigate the effect of feedback from higher logical processing
stages (e.g., from object tracking) and not rely only on pixel or region level data.
The proposed filling algorithm is used to count pixels inside each video object
contour. The counted pixels correspond to the area feature of the traced video object.
Possible future work would be to compute the area feature based on video object
contour size and chain-code informations, which will greatly improve computational

performance.
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Appendix A

List of Symbols and Abbreviations

A.1 List of Symbols

L Buffer length of non-recursive techniques
W Median-filter based adaptive weighting factor

St(I(p)) A set of buffer intensity values of median-filter based technique

IrcB Color intensity values of a pixel
Bt(p) background model at frame ¢
Is:(p) Predicted background model pixel intensity value for a pixel in a linear

predictive filter
ak Prediction coefficients in a linear predictive filter

n(pek, 2¢) Kernel Gaussian function of a non-parametric technique

i Covariance matrix of color intensity values
D Eigenvectors matrix
E Identity matrix
o) Likelihood of a pixel value
95
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A.1. List of Symbols 96

Iy
B
BgM,
pe € Iy

It (pc)

Current input frame at time ¢
Background model components
Current background model
Input pixel at (7, j) location

RGB or gray intensity value at p,

py € BgM,; Background model pixel at (i, j) location

{G1y, ..

Mkt

Ok,t

Wgts

wnorm

Tstop

Tsdn

Tsdn

MH,

., Gt} K Gaussian components of each p; at time instance ¢

Mean of the Gy : component

Gy variance, and assumed to be the same for all RGB color channels
Weight or counter of Gi

Matched component at time ¢

Ao are the hysteresis-based variance thresholds

Frame counter (pixel data integration threshold)

Parameter adaptation rate

Normalization weight threshold

Sleeping person time threshold

Secondary background component threshold

Number of p. that are classified as foreground pixels per new frame
Sudden illumination threshold

Current motion history frame that is the accumulated result of subsequent

temporal differencing
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A.1. List of Symbols 97

Pmht € M H; Motion history of a pixel at (i, j) location
hr, History length

PSproc € BgM; Surrounding processed-pixels of p, within a defined area

Fae Current frame size
B Detected object frame (foreground mask)
Cy List of contours in the original video frame [, at time ¢,

C. € Cy  Current contour with starting pixel ps,

MBB, Minimum bounding box of C.,

De Current processed pixel,

Di 8-neighbor of p., and p, corresponds to the next candidate contour pixel
of pe,

dg Search direction for the next contour pixel candidate

pi(ds) 8-neighbor of p. at location corresponding to d;
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A.2. Abbreviations

A.2 Abbreviations

ARMA Autoregressive Moving Average Model
ECE  Electrical and Computer Engineering
KDE  Kernel Density Estimation
LAG Line Adjacency Graph
LPF  Low Pass Filter

MJPG Motion JPG
MOG Mixture of Gaussians

MPEG Moving Picture Experts Group
PCA  Principle Component Analysis
pdf  Probability Density Function
RGB  Red, Green and Blue color triplet
YUV A video Coding scheme
LAGs Line Adjacency Graphs
MBB  Minimum Bounding Box
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Appendix B

Algorithms Bench Application

B.1 Description

We developed a universal multi-threaded robust bench application to test both the
proposed set of algorithms and the other reference algorithm. We used C++ devel-
opment environment, thus if recompiled can work under all operating systems. We

incorporated in this application the following functionality (Fig. B.1):

e Novel MOG-based segmentation and post processing algorithms

e State of the art segmentation reference algorithms

Robust multi-threading support

Real-time simultaneous viewing, capturing and processing from any connected

network cameras, web-cams, DV cameras

Support for YUV and Motion JPG video streams

Dynamical easy algorithm parameter change

99
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B.2. Installation and Usage Guide 100

8960 Adaptive Background Algorithms Demo o
Eile  Axis O i Logitech Operatl Yids O i Motion JPG Operations Windows Help

Live Stream from Cyonlyfzyoyrdia EV.10.105
| Frame-Size:320x240, Frame-Rate: 30,
1 JPEG-Compression:no compression,

Imedia/f_drive/linux/VIDS _SEQS/dtneu_nebel_vids,
Width: 768, Height:576, frames# 336, Frame Rate:30,
Interaced:No, Chroma-Format:4:2:0,

Zoom Factor: .88,

Zoom Factor: 0.76,

* A EEEEE

! Ready 1o play the following sequence...

Figure B.1: Screen shot of the test bench application.
B.2 Installation and Usage Guide

If TrollTech QT ( www.trolltech.com/products/qt ) is installed on a target system,
the application is built from the source code by simple 'make’. The produced binary
can run directly without the need for installation or any third party libraries.

Following the launch of the application (the GUI) , connected video devices are
detected and there corresponding menus are created. Using the application is straight
foreword, from each corresponding device menu, a new multi-threaded child-window
can be launched either for viewing and capturing streams, or for real-time stream-
processing (while viewing). The functionality of each device menu or its sub-menus
are clearly described in two forms, tool-tip and status-bar message techniques.

We also provide with the source code, DOXYGEN based documentation system as

a development support and coding guidance.
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B.3. On-Line System Operation 101

B.3 On-Line System Operation

In the development process of the proposed BS technique, we conducted long hours
of real-time simulations on video streams obtained from network cameras for different
scenes. In order to evaluate the long term performance of each algorithm, we applied
the proposed as well as the reference techniques on on-line captured video scenes from
downtown Montreal. These scenes were captured at different time of the day with
different weather conditions, including heavy snow, heavy rain, and clouds. On-line
simulations were performed also at night and under heavy traffic. The accuracy of
the object detections was satisfactory. Note that the scenes included different objects
(e.g., pedestrians, cars, buses, bicycles, waving trees, and traffic or advertisement

lights.)
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