High-performance robust decentralized control of inter connected systems
Lavaei Yanesi, Javad

ProQuest Dissertations and Theses; 2007; ProQuest

pg. na

High-Performance Robust Decentralized Control of
Interconnected Systems

Javad Lavaei Yanesi

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

October 2006

(© Javad Lavaei Yanesi, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28919-8
Our file  Notre référence
ISBN: 978-0-494-28919-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT
High-Performance Robust Decentralized Control of Interconnected Systems

Javad Lavaei Yanesi

This dissertation deals with the structurally constrained control of interconnected sys-
tems. A near-optimal decentralized control law is proposed for finite dimensional linear time-
invariant (LTI) systems, which under certain conditions leads to a quadratic performance in-
dex arbitrarily close to the LQR performance. A method is then proposed to implement any
centralized controller in a decentralized fashion in order to reduce the communication require-
ments. The decentralized controller obtained performs identically to the original centralized
controller if some a priori knowledge of the nominal model of the system and the expected
values of the initial states are available.The immediate application of this decentralization
scheme is in control of a formation of spacecraft in deep sapce, as it is an ongoing reasearch
in JPL. Design of a high-performance decentralized generalized sampled-data hold functions
(GSHF) is also studied, which relies on linear matrix inequality (I.LMI) techniques. Moreover,
the problem of simultaneous stabilization of a set of LTI systems using a periodic control law
is investigated. It is to be noted that prior to this work there were only sufficient conditions
for simultaneous stabilizability of more than four systems, although this problem has been
investigated in the literature for several decades. This thesis provides the first necessary and
sufficient condition for simultaneous stabilizability of any arbitrary number of systems.

Stabilizability of an interconnected system with respect to LTI decentralized control law
and also general (nonlinear and time-varying) control law is investigated in the literature, by
introducing the notions of decentralized fixed mode (DFM) and quotient fixed mode (QFM).
Since the existing methods aiming at identifying these fixed modes are ill-conditioned, two
graph-theoretic approaches are proposed here to obtain the DFMs and QFMs of a system in

a more efficient manner. In addition, it is asserted that the nonzero and distinct DFMs of a

iii
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system can be eliminated by means of a proper sampled-data controller. On the other hand,
decentralized overlapping control as a more advanced form of structurally constrained control
systems is investigated thoroughly. An onto mapping between the decentralized control and
the decentralized overlapping control is introduced, which makes the decentralized control de-
sign techniques applicable to the decentralized overlapping problem. A systematic method is
proposed to check stabilizability of general proper (as opposed to strictly proper) structurally
constrained controllers with respect to LTI and non-LTI systems. It is to be noted that the
extension of the existing techniques to this general problem not only is non-trivial, but not
feasible indeed. Besides, robust stability of the closed-loop system in the presence of polyno-
mial uncertainties is also investigated and a necessary and sufficient condition in the form of
sum-of-squares (SOS) is presented. It is to be noted that this problem has been investigated
in the literature for the past ten years but prior to this work, only sufficient conditions existed
for robust stability of this type of systems. The results presented in this treatise are applied
to several benchmark examples, including formation flying of three UAVs, to demonstrate the

efficacy of this work.

iv
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Chapter 1

Introduction

Control of interconnected systems has been of great interest in the literature in the past three
decades, due to its enormous applications in important real-world problems. Such applications
include for example power systems, communication networks, flexible space structures, to
name only a few. Due to the distributed nature of the problems of this type, the conventional
control techniques are often not capable of handling them efficiently. More specifically, it is
desired in the distributed interconnected systems to impose some constraints on the structure
of the controller to be designed. These constraints specify the outputs of which subsystems
can contribute to the construction of the input of any certain subsystem. To formulate the
control problem, these constraints are usually represented by a matrix, which is often referred
to as the information flow matrix.

A special case of structurally constrained controllers is when the controller of each sub-
system operates independently of the other subsystems; i.e. when there is no direct interaction
between the control effort of each subsystem and the output signal of other subsystems. This
case is of a particular interest in the control literature, and is usually referred to as decen-
tralized control problem. Each control component in a decentralized control system observes
only the output of its corresponding subsystem to construct the input of that subsystem. The

notion of decentralized fixed mode (DFM) was introduced in the literature to characterize the
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modes of an interconnected system which are fixed with respect to any decentralized linear
time-invariant (LTT) controller. Since a DFM may not be fixed with respect to a nonlinear and
time-varying controller, the notion of quotient fixed mode (QFM) was introduced later on to
identify those modes that are fixed with respect to any type of decentralized control law (i.e.,
nonlinear and time-varying). Various properties of decentralized controllers are investigated
thoroughly in the literature.

More recently, the case when the local controllers of an interconnected system can com-
municate with each other has been studied intensively in the literature. This problem is re-
ferred to as decentralized overlapping control, and is motivated by the following practical

issues:

1. The subsystems of many interconnected systems (referred to as overlapping subsystems)
share some states. In this case, it is often desired that the structure of the controller

matches the overlapping structure of the system.

2. Sometimes in centralized control systems, there are limitations on the availability of the
states. In this case, only a certain subset of outputs are available for constructing each

control signal. However, the control structure is not necessarily localized.

This work aims to investigate different aspects of decentralized and decentralized overlapping
control designs, such as stabilization, optimality, robustness. To this end, nine chapters are
included here to investigate a number of incorporated problems step by step. The relevant
subjects are spelled out below.

First, the problem of designing a near-optimal decentralized control law for acyclic in-
terconnected systems is studied and compared to the existing methods. Robustness of the
proposed control law is also investigated to verify its practical applicability, and its robust
performance is evaluated accordingly. The proposed method is applied to a formation of three

vehicles, which manifestly demonstrates its efficacy.
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Next, the technique exploited to design a near-optimal decentralized controller for acyclic
systems is further developed for the case of general interconnected systems. It is shown that
any given centralized controller can be equivalently transformed into a decentralized one at
the cost of more computational effort. A simple procedure is presented to design a decen-
tralized controller with the aim of achieving some desirable objectives, based on the available
centralized techniques. The key features of the proposed control law are studied accordingly.

It is known that discrete-time decentralized controllers can potentially outperform their
continuous-time counterparts in a broad class of interconnected systems. The problem of
designing a decentralized generalized sampled-data hold function for interconnected systems
is considered in Chapter 4. Some recent results in this area are utilized to solve the problem
of global optimization of a rational function. The proposed design technique has proved to be
quite efficient and superior to the existing works.

'The method developed in the preceding chapter for designing a periodic controller is
suitable for medium-sized systems. Thus, an LMI-based technique is introduced in Chapter 5
which can be applied to large scale systems and has significant advantages. More precisely,
for a given set of LTI systems, a periodic controller along with a compensator is proposed
to stabilize all the systems simultaneously, while it acts as an optimal controller for each
individual system.

By virtue of the restrictions in decentralized control, a system might have some DFMs,
which are not movable via LTI decentralized controllers (as pointed out earlier). These modes
deteriorate the performance of the control system, and may lead to instability. The question
arises: How can these modes be eliminated? It is shown in Chapter 6 that the distinct and
nonzero DFMs of a system can be simply eliminated by means of sampling. This means that
sampled-data decentralized controllers can be deployed to control the systems that may not be

stabilizable by means of the conventional continuous-time LTI decentralized controllers.
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As mentioned earlier, the fixed modes of any system play a crucial role in control de-
sign. Thus, characterization of fixed modes is intensively investigated in the literature. Since
the existing analytical methods for finding fixed modes are generally ill-conditioned and com-
putationally inefficient, a novel graph-theoretic approach is introduced in Chapter 7 to obtain
DFMs in a more efficient manner. This technique immensely diminishes the computational
cost, and is attractive from several standpoints, as discussed in this chapter. Moreover, the
proposed approach is extended to identify the QFMs of the system, which are the fixed modes
of the system with respect to any decentralized control law (i.e., nonlinear and time-varying).

The methods proposed in the preceding Chapters for high-performance continuous and
discrete feedback designs are mainly for the case when the control structure is strictly decen-
tralized (i.e., when the control configuration is localized). It is shown in Chapter 8 how these
results can be extended to the case of decentralized overlapping control design. The notions of
decentralized overlapping fixed mode (DOFM) and quotient overlapping fixed mode (QOFM)
are introduced. The significance of these notions as well as their relevance to DFMs and QFMs
are discussed thoroughly.

In practice, the controllers obtained in the preceding chapters (either strictly decen-
tralized, or decentralized overlapping) are to be applied to the systems subject to parameter
uncertainty and perturbation. Thus, it is assumed in Chapter 9 that the closed-loop system is
polynomially uncertain. Some important results are obtained for robust stability verification
of the system in this case. The result obtained presents the first necessary and sufficient con-
dition in the literature for the corresponding robust stability problem. This condition is in the
form of sum-of-squares (SOS).

Finally, the problem of global optimization of a rational function subject to some con-
straints in the form of rational inequalities is considered in Chapter 10. This problem is mo-
tivated by the robustness verification and optimal controller design in decentralized control

systems. Some SOS techniques are employed here to treat the underlying problem.
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Chapter 2

A Near-Optimal Decentralized Control

Law for Interconnected Systems

2.1 Abstract

In this chapter, an incrementally linear decentralized control law is proposed for the formation
of cooperative vehicles with leader-follower topology. It is assumed that each vehicle knows
the modeling parameters of other vehicles with uncertainty as well as the expected values of
their initial states. A decentralized control law is proposed, which aims to perform as close as
possible to a centralized LQR controller. It is shown that the decentralized controller behaves
the same as its centralized counterpart, provided a priori information of each vehicle about
others is accurate. Since this condition does not hold in practice, a method is presented to
evaluate the deviation of the performance of the decentralized system from that of its central-
ized counterpart. Furthermore, the necessary and sufficient conditions for the stability of the
overall closed-loop system in presence of parameter perturbations are given through a series

of simple tests. It is shown that stability of the overall system is independent of the magnitude
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of the expected value of the initial states. Moreover, it is shown that the decentralized con-
trol system is likely to be more robust than the centralized one. Optimal decentralized cheap
control problem is then investigated for the leader-follower formation structure, and a closed
form solution is given for the case when the system parameters meet a certain condition. Sim-
ulation results demonstrate the effectiveness of the proposed controller in terms of feasibility

and performance.

2.2 Introduction

In the past several years, a certain class of interconnected systems, namely acyclic systems,
has found applications in different practical problems such as formation flight, underwater
vehicles, automated highway, robotics, satellite constellation, etc., which have leader-follower
structures or structures with virtual leaders [1-13]. The main feature of this class of systems
is that their structural graphs are acyclic, i.e. they do not have any directed cycles.

In a leader-follower formation structure, each vehicle is provided with some information
(e.g., acceleration or velocity) of certain set of vehicles. It is shown in the literature that the
control problem of such formation can be formulated as the decentralized control problem
of an acyclic interconnected system, where each local controller uses only the information
of its corresponding subsystem (e.g., see [2]). The objective of this chapter is to design a
decentralized controller which stabilizes any system with an acyclic structure, and performs
sufficiently close to the optimal centralized controller. In other words, it is desired to reduce
the degradation of the performance due to the information flow constraints in decentralized
control structures.

During the past three decades, much effort has been made to formulate the optimal
decentralized control problem, or solve it numerically. The main objective is to find a de-

centralized feedback law for an interconnected system in order to attain a sufficiently small

10
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performance index. These works can mainly be categorized as follows:

1. The first approach is to eliminate all of the interconnections between the subsystems
in order to obtain a set of decoupled subsystems, and then design a local optimal con-
troller for each of the resultant isolated subsystems [14], [15], [16]. Since the effect of
interconnections has been neglected in this design procedure, the resultant closed-loop
system with these local controllers may be unstable. Even when the interconnected sys-
tem under the above controllers is stable, the performance index may be poor. As a
result, this decentralized control design technique is ineffective in presence of strong

coupling between the subsystems.

2. Another approach is to obtain a decentralized static output feedback law by using it-
erative numerical algorithms in order to minimize the expected value of the quadratic
performance index with respect to an initial state with a given probability distribution
[17], [18], [19], [20]. This type of design techniques are, in fact, the extended versions
of the algorithms for designing optimal centralized static output feedback gain, such as
Levine-Athans and Anderson-Moore methods. Although these techniques result in a
better performance compared to the preceding method, they have several shortcomings.
First of all, they only present necessary conditions, which are mainly in the form of
complicated coupled nonlinear matrix equations. Secondly, these iterative algorithms
require an initial stabilizing static gain, which should satisfy some requirements. Fi-
nally, using a dynamic feedback law instead of a static, the overall performance of the

system can be improved significantly.

3. In the third method, the optimal decentralized control problem is formulated by first
imposing some assumptions to parameterize all decentralized stabilizing controllers,
and then choosing the control parameters such that a desired performance is achieved

[21], [22]. However, the resultant equations are either some sophisticated differential

11
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matrix equations or some nonconvex relations, which makes them very difficult to solve,

in general.

4. This approach deals with a system with a hierarchical structure. For this class of sys-
tems, a rather centralized controller is designed in [23]. The decentralized version of this
work is discussed in [24] for a discrete-time system. However, this method can analo-
gously be applied to a continuous-time system, which can be interpreted as follows. In
the hierarchical structure, consider the subsystem with the highest-level. Design a cen-
tralized local controller for that subsystem assuming that the remaining subsystems are
in the open loop, which is desired to account for the performance index. Next, identify
the second subsystem with the highest-level, and similarly, design a centralized local
controller for it assuming that the first controller designed is a part of the system. Con-
tinuing this procedure, one can design all local controllers one at a time. The advantage
of this method compared to the Method 2, explained above, is that it reduces off-line
computation. However, this approach is inferior to Method 2, because the static gains
are computed one at a time in this approach, while in Method 2, explained above, all of
the static gains are determined simultaneously. As a result, this approach is proper once

the order of the system is so high that the computational complexity is a crucial factor.

(note that the first three approaches are for general interconnected systems, while the last one
is only for hierarchical systems). There are some other design techniques which are, in fact,
combinations of methods 2 and 3 discussed above. All of these approaches are generally
incapable of designing a decentralized controller with a satisfactory performance for most
systems, including the class of interconnected systems with acyclic structural graphs.

This chapter presents a novel design strategy to obtain a high-performance decentralized
control law for interconnected systems with leader-follower structure. It will later be shown
that the proposed control law outperforms the first, the second and the fourth methods dis-

cussed above, and also has a simpler formulation compared to the third method. It is assumed
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that the state of each subsystem is available in its local output (this is a realistic assumption in
many vehicle formation problems, e.g. see {25]), and that a quadratic cost function is defined
to evaluate the control performance. The local controller of each subsystem is constructed
based on a priori information about the model and initial states of all other subsystems. It
is shown that if a priori knowledge of each subsystem is accurate, the performance of the
decentralized control system is equal to the minimum achievable performance (which corre-
sponds to the LQR centralized state feedback). In addition, a procedure is proposed to evaluate
the closeness of the performance index in the decentralized case to the best achievable per-
formance index (corresponding to the centralized LQR controller) in terms of the amount of
inaccuracy in a priori knowledge of any subsystem. This enables the designer to statistically
assess the performance of the proposed controller. Moreover, a set of easy-to-check neces-
sary and sufficient conditions for the stability of the decentralized closed-loop system is given
for both cases of exact and perturbed models for the system. It is to be noted that providing
some information about the model of other subsystems for each individual local controller is
performed off-line, in the beginning of control operation, and does not require any commu-
nication link between different subsystems. In other words, the proposed control structure is
truly decentralized. Optimal cheap control problem is also studied for the leader-follower for-
mation flying. This may require new actuators to be implemented on the vehicles in order to
meet a condition on the input structure, which is necessary for the development of the results.
While cheap control strategy may not be for many formation flying applications, e.g., constel-
lation of satellites, where it is more desired to apply a minimum fuel control strategy, it can
be very useful in certain formation applications involving UAVs with fast tracking missions.
Throughout this chapter, each vehicle in formation will be referred to as a subsystem and the

whole formation consisting of the leader(s) and all followers will be referred to as the system.

13
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2.3 Decentralized control law

Consider a stabilizable interconnected system ¥ (,%,...,%) with the following state-

space equation:

X =Ax+Bu 2.1
where
A O 0
B 0 U X1
Ay Ap 0
A= , B:= U= , Xi=
0 BV Uy Xy
Avl sz o AVV
) i (2.2)

and where x; € R™, u; € R™, i € v:={1,2,..., v}, are the state and the input of the i subsys-
tem ., respectively. It is to be noted that the matrices A and B are block lower triangular and
block diagonal, respectively. Assume that the state of each subsystem is available in the cor-
responding local output. This is a feasible assumption in most formation flying applications.
For instance, the autonomous formation flying sensor (AFF) or the laser metrology [25] can
be used to accurately measure the relative position and velocity in different formation flying

missions.

Remark 1 Consider an interconnected system whose structural graph is acyclic. It is known
that the subsystems of this interconnected system can be renumbered in such a way that its
corresponding matrix A is lower block diagonal [28]. In other words, any system with an
acyclic structural graph can be converted to a system of the form .# given by (2.1) and (2.2),

by simply reordering its inputs and outputs properly, if necessary.
Consider now the following quadratic performance index:
J= / (x" Qx+u” Ru) dt (2.3)
0

14
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where R € R™*™ and Q € R (n:=Y.Y_;n;, m:=Y)_, m;) are positive definite and positive
semi-definite matrices, respectively. For simplicity and without loss of generality, assume that
Q and R are symmetric. It is known that if (A, B) is stabilizable, then the performance index

(2.3) is minimized by using the centralized state feedback lawz‘

u(t) = —Kx(r) (2.4
where the gain matrix
ki1 kyy
K= , kij € R G, jEV 2.5)
kyi - kyy

is derived from the solution of the Riccati equation [26].

Define the v x v block matrix ® = s] — A+ BK as

Py Py
o= . , Dy eRMM, 4 jev (2.6)
q)vl . Dyy
and for any i € v, define:
- 1
(1)11 e q)l(i—-l) Cpl(i—l—]) CDIV
M]l(S) = 3 M2i R ,
Py - Pl-ny-) L Pli-1)(i+1) - Py | o
Piryr - Plr)i-1) Pty - Pty
M3, = ' ' y Ma(s) = : :
(I)Vl e (I)V(i—-l) i (I)V(i+1) (I)VV ]

It is to be noted that the entries of the matrices My, (s) and My, (s) are functions of s, but

the entries of the two other matrices are constant and independent of s. Consider now the
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following v local controllers for the system (2.1):

[ My (s) My,
Uis) = | ki oo ki) ki) oo Ky
) M3i M4i(s)
Biky;
B ki v
x (I—D)*G-1)i Xi(s)
—Ag1)i T By ki
—Ay;+ Byky; |
) . 2.8)
r k k k M) Mo
T K e K-y K1) e Kiv
- Ms,  Ma(s)
S
X0
i-1,i
X0 .
X —kiiXi(S), rev
i1,
X0
v,i
| Yo |

Theorem 1 By choosing xht=x;(0 , I, J €V, i jin(2.8), the resultant decentralized con-
0 J

trol law will be equivalent to the optimal centralized controller (2.4).

Proof Substitute (2.2), (2.4), and (2.5) into (2.1), take the Laplace transform of the resultant

matrix equation, and eliminate its i row. Rearrange the equation to obtain a relation between

T
{XI(S)T X ()" o X' X ()T Xv(S)T] (2.9)
and
T
[XI(O)T e x0T X (007 - xv(O)T} (2.10)
16
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The proof follows immediately by substituting the resultant relation into the i™ block row of

the equation (2.4) in the Laplace domain. n

Note that U;(s) in (2.8) is expressed in terms of the corresponding local information
X;(s) and some constant values xé’i, j=1,...,i—1,i+1,..., v, but the parameters of the overall
system Aj;, B , i,j €V, i > j, are assumed to be known by each subsystem. This assumption,
however, is relaxed in Section 2.6. Note also that the control law given by (2.8) is time-
invariant and incrementally linear due to the constants xf)’j ,LJEV, i ]

Since the control law given by (2.8) depends on the constant values xé’i, LjEV, j#£i,it

is very important to check the stability of the system with the resultant decentralized controller.

2.4 Stability analysis via graph decomposition

It is desired now to find some conditions for the stability of the system (2.1) when the local
controllers (2.8) are applied to the corresponding subsystems. The following definition will

be used in Theorem 2.

Definition 1 Consider the system . given by (2.1). The modified system §', i € {2,...,v}, is
defined to be a system obtained by removing all interconnections going to the i" subsystem in
. The state equation of the modified system S' is as follows:

%=Ax+Bu
where A' is derived from A by replacing the first i — 1 block entries of its i™ block row with

Z€eros.

Theorem 2 Consider the system . given by (2.1). Assume that the v local controllers given
by (2.8) are applied to the corresponding subsystems. A sufficient and almost always neces-

sary condition for stability of the resultant decentralized closed-loop system, regardless of the
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constant values x{)’i, i,j €V, i j, is that all modified systems S', i =2,...,v, are stable

under the centralized state feedback law (2.4).

Remark 2 "Almost always necessary” in Theorem 2 means that for the given matrices A and
B, the set of stabilizing gains K for which the stability of S*, i =2, ...,V under the centralized
state feedback law (2.4) is violated but the proposed decentralized closed-loop system is still

stable, is either an empty set or a hypersurface in the parameter space of K [27].

Proof Proof of sufficiency: Suppose that the centralized LTI control system obtained by
applying the state feedback law u(t) = —Kx(t) to the modified system S’ is stable for all
i € {2,...,v}. It will be proved by using strong induction that the states of the decentralized
control system with the v local controllers (2.8) are bounded.

Basis of induction (i = 1): It is desired to show that the state of the first subsystem is
bounded. However, the proof is omitted due to its similarity to the proof of the induction step,
which will follow.

Induction hypothesis: Suppose that the state of the i subsystem is bounded for i =
1,2,...m—1.

Induction step: It is required to prove that the state of the m™ subsystem is bounded. To

18
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simplify the formulation, define the following matrices (m € V):

n

m

ESS

m

= Bmkml

L

Bikim

Bm—1)k(m-1)m

1,m
X0

m—1,m
X

m+1,m

v,m

L %o

Bmkm(m—l) ’

Y, =

m

m *

Bmkm(m+ 1) Bykmy

—A(mt1)m + Bt 1)K (ms1)m

“”Avm + kavm

Hp(s) := [sI — Amm + Bukmm)

(2.11)

Now, by using equations (2.8) and (2.1) (with the matrices A and B given by (2.2)), the fol-

lowing can be concluded:

+ Y

L

1,

m

-y

Y,

m

1

B

M, (s)

M,

M, (s)

My

m

7 -1
M, Zi,
Xon(s) +xm(0)
M, (s) 23,
1o
M, xg‘
Ma,,(s)

2.12)

Based on the induction assumption, x;(¢)’s are bounded for j = 1,2,...,m — 1, and conse-

quently they can be considered as exponentially decaying disturbances for the m™ subsystem.

Hence, they do not influence the stability of the m™ subsystem. Define the homogenous solu-

tion xp,, (¢) to be the part of the solution for x,,(¢) which corresponds to x1 (t) = - - - = xp—1 (2) =
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0. This solution satisfies the following equation:

M, (s) M,
SXhm(S) = AmmXnm (S) — BukmmXnm (s) - Y]m Yzm
Ms,  My,(s)
» (2.13)
My, (s) M, Z,
+ Ylm Y2m Xhm(S) +.Xm(0)
M, M, (s) Za,,
or equivalently
-1
My, (s) My, 2
(s — Apum + Brkum) — N, Y, Xpm(s) =
Ms, My, (s) 2,
» (2.14)
My, (s) My,
w01, 1]
M,  Ma,(s)
It can be concluded from (2.14) that xp, () can be expressed as:
!
2. (pi(t)xm(0) +qi(1)x5) (2.15)
i=1
where s = s;, i = 1,2,...,1, are the roots of the following equation
-1
My, (s) Mo, Zy,
(2.16)
M, (s M,
x det () Mo 1y
Ms,  My,(s)

and also p;(¢) and g;(¢), i = 1,2, ...,1 are matrices with polynomial entries of degree less than

or equal to the multiplicity of s = s; as the root of the above equation, minus one. On the other

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hand, it can be shown that:

Ly Ip Ls r
Ly L
L; Lo
Ly Ly Ly -
-1
Ly L4 Ly
X det L5—[L4 Ls}
Ly Ly Lg

where L;,Ls, and Lo are square matrices and L1, L3, L7, and Lg are matrices with the property

Ly Ls
that is nonsingular. Thus, the equation (2.16) can be simplified as follows:
L7 Lo

M, (s) 27, M,

m

Hu(s) 1» =0 2.17)

m

det Y,

m

Ms,  Zp, Ma,(s)

By substituting the entries of the above matrix from (2.7) and (2.11), it can be rewritten in the

following simplified form:
det(sI —A™ +BK) =0 (2.18)

On the other hand, the modes of the closed-loop system S™ under the feedback law (2.4) can
be obtained from (2.18). Since it has been assumed that this closed-loop system is stable, all
complex numbers sy, ..., s; will be in the open left-half s-plane. As a result, the state of the mh
subsystem is bounded.

Proof of necessity for almost all K’s: Suppose that some of the modified systems
S2,83,...,S" are not stabilized by the feedback law (2.4). It is desired to show that the system
- under the proposed local controllers (2.8) is almost always unstable. Let the first modi-
fied system which is unstable under the feedback law (2.4) be denoted by S§™, i.e. all of the

systems S2,S3,...,8" ! are stabilized by (2.4). Using the first m — 1 steps of the induction
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introduced in the proof of sufficiency, it can be concluded that the states of the subsystems
1,2,...,m—1 of the system .% under the proposed local controllers (2.8) are bounded. Now,
if the induction continues one more step, it can be concluded that since x j(¢) is bounded for
Jj=1,2,...,m—1, there exists a particular solution for x,,(¢) which approaches zero as time
goes to infinity, and the homogenous part of the solution for x,,(¢) (denoted by x4, (¢), which
corresponds to x1(¢) = - -+ = xp—1 (¢) = 0) satisfies the equation (2.13), or equivalently (2.14).
Choose any arbitrary unstable mode of the modified system 8™ under the feedback law (2.4),
and denote it with s = ¢™. This mode must satisfy (2.17) or equivalently (2.16). As mentioned
in the proof of sufficiency, x4, (f) can be expressed as 3/_, (Pi(2)xm(0) + qi(£)xF) &, where
s=us;, i=1,2,...,1, are the roots of the equation (2.16). However, it is required to determine
whether or not s = 0™ satisfying (2.16) appears among s = s;, i = 1,2,...,1. It can be easily

verified that 6™ # s;, for all i = 1,2, ..., iff both of the following conditions hold.

e 5= 0" is aroot of the following equation:

M m S M2m
det | i) ~0 2.19)
Ms, My, (s)

Note that if the above equation is not satisfied for s = ¢™, then
-1
M, (s) M, Zi

m

det | Hp(s) — { Y, Y, } -0

M, My, (s) Zs

for s = 6™, This will generate a term p;(2)x,,(0)e®"* in xp,,(¢) that makes x,,(z) go to
infinity as time increases. Since the matrix in the left side of (2.19) has been derived
from sI — A + BK by eliminating its m™ block row and m™ block column, this require-
ment is equivalent to the following statement:

The modified system S™ has an unstable mode s = 6™ under the feedback law (2.4), and
that mode is also the unstable mode of the system . under the feedback law (2.4) after
isolating its m™ subsystem (eliminating all of the inputs, outputs, and interconnections

of its m™ subsystem).
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¢ The mode s = 6™ is cancelled out in the following expression:

My, (s) My,
Y, Y,
M, My, (s)

-1

This means that s = ™ does not appear in any of the denominators of the entries of the
above matrix. Let the matrix obtained from A — BK by eliminating its m™ block row and
m'™ block column be denoted by ®™. It is easy to verify that this condition is equivalent
to the following statement:

The mode s = 6™ is an unobservable mode of the pair ( [ Y, b, ] ,q)m).

Apparently, for the given matrices A and B, the set of stabilizing gains K for which both of
the above conditions hold is either an empty set or a hypersurface in the parameter space of
K (for definition of a hyperssurface and some similar examples see [27]). If the stabilizing
gains K located on a hypersurface are neglected, s = ¢™ appears among s = s;, i = 1,2,...,1,
which makes x,,, () go to infinity, as ¢ increases. This yields the instability of the decentralized

closed-loop control systems. [ |

Theorem 2 states that the stability of the interconnected system given by (2.1) under
the proposed decentralized control law is almost always equivalent to the stability of a set of
v — 1 centralized LTI control systems, which can be easily verified from the location of the

corresponding eigenvalues.

2.5 Robust stability analysis

Since the decentralized control law (2.8) has been obtained based on the nominal parameters
of the system ./, it may become unstable once the proposed control law is applied to the
perturbed system. Thus, the robust stability of the controller with respect to uncertainties in

the original system is an important issue which will be addressed in this section.
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Suppose that the decentralized control law (2.8), which is computed in terms of the
nominal parameters A and B of the system .#, is applied to the system .&, which is the

perturbed version of . described as follows:

i=Ax+Bu (2.20)
where ~ -
All 0 . 0 _
- - By 0
Ay Ap ... 0

b
Il
S
i

0 ... By

Avl sz Avv

It is to be noted that the perturbed matrices A and B are also block lower triangular and block
diagonal, respectively. In other words, it is assumed that parameter variations will not generate

new interconnections, i.e. the structural graph of the perturbed system will also be acyclic.
Definition 2 The perturbed modified system S',i € V, is defined by:
x=Ax+Bu

where the matrix A’ is the same as A, except for its i — 1 block entries A1, ---»Aj(i—1), which are
replaced by zeros, and its A;; block entry which is replaced by A;;. Also, the matrix B' is the
same as B, except for its (i,i) block entry B;, which is replaced by B;. S' is, in fact, obtained

by modifying .7 as follows:
e All interconnections going to the i* subsystem are removed.

o The nominal parameters (Ai;,B;) of the i subsystem are replaced by the perturbed

parameters (A;, B;).

Theorem 3 Consider the system .# given by (2.20), and assume that the v local controllers

given by (2.8) are applied to the corresponding subsystems. A sufficient and almost always
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necessary condition for stability of the resultant decentralized closed-loop system, regardless
of the constant values xé’i, i,j €V, i# j, is that all perturbed modified systems S', i=1,...,v,

are stable under the centralized state feedback law (2.4).
Proof The proof is omitted due to its similarity to the proof of Theorem 2. |

Remark 3 Since none of the perturbed parameters A; j» i, J €V, i j, appear in the perturbed
modified systems S',8?,...,8Y, the robust stability of the proposed decentralized feedback law
is independent of the perturbation of the interconnection parameters (note that this statement
is valid for any decentralized control law designed by any arbitrary approach, which is applied

to an acyclic interconnected system. In other words, the controller need not be optimal).

Define the perturbation matrix as the perturbed matrix minus the original matrix. The
perturbed and perturbation matrices for a matrix M are denoted by M and AM, respectively.
Suppose that the decentralized feedback law (2.8) is designed in terms of the nominal matrices
A and B, and then applied to the perturbed system . with the state-space matrices A and
B. The objective is to find the allowable perturbation matrices AA = A —A and AB = B —
B, for which the decentralized closed-loop system will still remain stable. In Theorem 3, a
sufficient condition to achieve this objective is presented, which is almost always necessary.
Robustness analysis with respect to the perturbation in the parameters of the system can then

be summarized as follows;

o For decentralized case, the location of the eigenvalues of the v matrices A! — B'K, A% —

B%K,...,AY — BYK should be checked.

e For centralized case, the location of the eigenvalues of the matrix A — BK should be

checked.

Robustness analysis in both classes addresses the following problem, in general:

Consider a Hurtiwz matrix M, and assume that its entries are subject to perturbations. It is
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desired to know how much sensitive the eigenvalues of M are to the variation of its entries.
More specifically, it is desired to find out how much the matrix M can be perturbed so that the
resultant matrix is still Hurtiwz.

This problem has been addressed in the literature using different mathematical approaches
[29], [30], [31]. Sensitivity of the eigenvalues to the variation of its entries depends, in gen-
eral, on several factors such as the norm of the perturbation matrix, structure of the matrix
(represented by condition number or eigenvalue condition number [30]), and repetition or

distinction of the eigenvalues.

Theorem 4 The bound on the Frobenius norm of the perturbation matrix corresponding to
each of the matrices A' — B'K, i = 1,2, ..., v in the decentralized case is less than or equal to

that of the perturbation matrix corresponding to A — BK in the centralized case.

Proof The following relation holds for the decentralized case:

|AA' = B'K)||F = | (A’ — B'K) — (A’ = BK)||r = 2# |ABkij||% + || ABiki; + AA; |2
j=1, i

This results in:

IAA' = B'K)||lF < \/Taee;» i€V 2.21)
where
. 2 2 -
Tace, = ) |ABkij|l7 + |AAu]l7, i€V (2.22)
j=1

For the centralized case, on the other hand, one can write

IA(A - BK)||F = [|(A— BK) — (A~ BK)||r

i=1 j=1 i=1 j=i+1

= J > El, |ABik;; +-AAG 12+, Y, lABk;||%
Thus,

”A(A _BK)“F <V Tcen 2.23)
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where

\4

v Vv i
Teen =Y, 3, [|ABikij|i7+ 3 X, 1AdilI7 (2.24)
i=1 j=1 i=1j=1

It is apparent from (2.22) and (2.24), that

1—‘decl + 1-‘decz + - +rdecv < 1Hcen (2-25)
Therefore,
rdec,' S V Fcen ’ i= 1’27"'7‘/ (226)

The proof follows immediately from (2.21), (2.23) and (2.26). It is to be noted that the in-
equality (2.26) obtained above, is more conservative than (2.25), obtained in the preceding

step. |

According to Theorem 4, there are v perturbed matrices in the decentralized case, and
the bound on the Frobenius norm of the perturbation matrix for each of them is less than or
equal to the bound on the Frobenius norm of the corresponding perturbation matrix in the
centralized case. Therefore, it can be concluded from the above discussion and Remark 3,
that the proposed decentralized controller is expected to perform better than the centralized
counterpart in terms of robust stability with respect to the parameter variations of the system.

This result can also be deduced intuitively, because for any subsystems i and j (i > j):

o In the centralized case, any perturbation in subsystem i will influence the state of sub-

system j through the feedback and can cause the instability of the closed-loop system.

¢ In the decentralized case, no perturbation in subsystem i can influence the state of sub-
system j through the feedback or through the interconnections, due to the particular

structure of the system (i.e., lower-triangular structure of A and diagonal structure of B).
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2.6 Non-identical local beliefs about the system model

In practice, different local controllers may assume different models for the overall system. It
is desired now to find some results similar to the ones presented in Theorem 3, under the above
condition.

Suppose that control agent / assumes the matrices A’ and B’ instead of the matrices A and
B in the state-space representation (2.1) of the system .#. Denote the (i, j) block entry of A’
with Aﬁj € R™>*"j, for any i, j € ¥, i > j, and the (i,i) block entry of B with B € R"*™ for any
i € V. Now, for any I € ¥, replace A and B in the equation (2.1) with A’ and B, respectively.
Then solve the corresponding LQR problem for the above matrices, to obtain the optimal
static gain K', whose (i, j) block entry is denoted by k/;, for all i, j € 7. Define the matrices
M{i (s),]%i, Méi and Mii(s) similarly to the matrices in (2.7), by replacing @ = s/ —A + BK in
(2.6) with @' := s — A' + B'K’. Therefore, the I local control law, in this case, is given by

dev):

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mi(s) M,

= | i k k
Uis) ke kg kiggry <o v M. ML (s)
3 4
-~ ,\l/\ N
B1klu
B M
y (1-1*-1) X(s)
N Hl 21
Ay T By
Al L ALT
| _Avl +kavl . (2.27)
-1 :
_ o ~l
u o y ]'%l Mlz(s) M21
| o - iy Ry Y. M (s)
3 4
C o]
X0
pEY
x| — kX (s)
I+1,0
*0
v,l
L %o |

Definition 3 The uncertain model §', 1 € v, is defined by:
%(2) = A'x(t) + Blu(z)

where the matrix A’ is the same as Al except for its | — 1 block entries Afl, ""Ag(hl)’ which
are replaced by zeros, and its Af ; block entry, which is replaced by Ay Also, the matrix B! is

the same as B, except for its (1,1) block entry B!, which is replaced by B).

Corollary 1 Consider the system & given by (2.20). Assume that the v local controllers

given by (2.27) are applied to the corresponding subsystems. A sufficient and almost always
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necessary condition for stability of the resultant decentralized closed-loop system, regardless
of the constant values x(’)"i, i,j €V, i j is that the uncertain system S' is stable under the

centralized state feedback law u(t) = —K'x(t), for all i € V.

Proof The proof is omitted due to its similarity to the proof of Theorem 2. |

2.7 Centralized and decentralized performance comparison

So far, a decentralized control law has been proposed for a class of stabilizable LTI systems
with the property that if the modeling parameters and the initial state of each subsystem are
available in all other subsystems, then the proposed controller will be equivalent to the optimal
centralized controller. It is to be noted that the equalities Al = A, B' = B, | € ¥, will hereafter
be assumed to simplify the presentation of the properties of the decentralized control proposed
in this chapter. Note that the results presented under this assumption, can simply be extended
to the general case. It has also been shown that if the conditions of Theorem 2 are satisfied,
then by using any arbitrary constant values instead of the initial states of other subsystems
form each subsystem’s view, the resultant decentralized closed-loop system will remain stable,
which implies that the deviation AJ of the resultant quadratic performance index (2.3) from
the optimal performance index corresponding to the centralized LQR controller remains finite.

The following definitions are used to find AJ.

Definition 4 Define Aix;(0), i,j € V, i # j, as the difference between the initial state of the
j* subsystem x (0) and x(;’i. Throughout the remainder of the chapter, this difference will be

referred to as the prediction error of the initial state.

Due to the prediction errors defined above, there will be a deviation in the state x;(¢) and
control input u;(¢), i € V, of the resultant decentralized control system compared to those of
the centralized counterpart. Denote the state and the control input deviations with Ax;(¢) and

Au; (1), respectively.
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Definition 5 The matrices Axg and Apx(0), m € V, are defined as follows:

[ Ani(0) |
[ Ax(0) |
mo= | PO a2 O oy e
: Anmxi11(0)
| An(0) |
| Anx(0) |

The following algorithm is presented to find AJ in terms of the prediction errors A;x;(0),
i, jEV, i ]
Algorithm 1

1) Find AXy(s) in terms of A1x(0) by using equation (2.12) (for m = 1), which can be
expressed as AX1(s) = Fi1(s)A1x(0). Substitute AX;(s) into equation (2.8) for i =1 to
obtain AU\ (s) only in terms of A1x(0), i.e. AU\ (s) = G11(s)A1x(0).

m) Assume that AX;(s) and AUj(s) have been computed for i = 1,2,...,m— 1 in terms
of prediction errors in the previous steps of the algorithm. Now, for i = m, substitute
the expressions obtained for AX1(s),AX5(s),...,AXpu—1(s) into equation (2.12) to find
an equation relating AXy(s) to the prediction errors. Let this equation be represented
by AXin(s) = Fu1(s)A1x(0) + Fpa(5)A2x(0) + - - + Fou (8)Amx(0). By substituting this
expression into (2.8) for i = m, AU, (s) will be found in terms of the prediction errors,

i.e. AUp(s) = Gm1(s)A1x(0) + Gma(s)A2x(0) + - - - + G (8) Anx(0).

The algorithm continues up to step v. It is obvious from the expressions in step m

of Algorithm 1, that the deviation in the state of each subsystem depends not only on its
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own prediction errors, but also on the prediction errors of all previous subsystems due to the

interconnections. The results obtained from the algorithm can be written in the matrix form

as follows:
AX(s)=F(s)Axog , AU(s)=G(s)Axp
where
— Fii(s) O 0 0 1
F F 0 0 Afi(s)
F(s) = 21(5)  Faa(s) AX(s) = |
AXy(s)
I Fyi(s) Fyp(s) Fua(s) ... Fu(s) |
Gii(s) 0 0 . 0
Goi(s) Gls 0 0
G(s) = 21(s)  Gofs)
I Gy1 (S) sz(s) Gy3 (S) e va(s)

Therefore, the deviation of the performance index due to the prediction errors can be obtained

as follows:

AJ = /w ([x+Ax]TQ[x+Ax] + [u+Au]TR[u+Au]) dt — /m (xTQx+ uTRu) dt
o 0 (2.29)
- / (x QAx -+ AxT Ox + AxT QAx + u” RAu + Au Ru-+ AuT RAu) dt

0

It is to be noted that x and u are the state and the input of the centralized closed-loop system,
and x+ Ax and u + Au are those of the decentralized closed-loop system. On the other hand,

equations (2.1) and (2.4) yield:
X(s) =W(s)x(0) , U(s) =Z(s5)x(0)

where

W(s)=(SI—A+BK)™!, Z(s)=—-K(SI-A+BK)™!
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Suppose that w(z),z(¢), f(¢) and g(¢) represent the time domain functions corresponding to
W(s),Z(s),F(s) and G(s), respectively. Substituting these time functions into (2.29) results
in:
a7 = /  (x(O)Tw(t)T QS (1)Axo + AxE F(1)T Qw(1)x(0) + AxE £(0)T QF (1) Axo) di
+ [ (020 R (1) Ao+ A g(e) Re(e)+(0) + Axf (1) Re(1)Avo)
Due to the causality of the system, the arguments of both integrals in the above equation are

zero for negative time. As a result, the interval for both integrals can be changed from (0, +oo)

to (—eo,4o0). Hence, one can use the Parseval’s formula to obtain:

A= % | ()W ()T OF (— j)Axo-+ A F (jo)T W (~ ja)x(0)

+A F (jo)T QF (— jw)Axo) do (2.30)
+%/_Z( (0)"Z(j)"RG(~ jo) Axg + Axf G(jo)" RZ(~ jeo)x(0) |
+Ax§ G(jo)"RG(~ jo)Axo) do

Define the following matrices:
Vo= oo [ (W(jo) OF (—je) +2(jo) RG(~je)) do
Var = 2i | (Fljo) oW (= j) +Gljw) RZ(~ j0)) de
Vo =5 / F(j (~jo) +G(jo) RG(~ jo)) do

It is to be noted that since R and Q are assumed to be symmetric matrices, V51 and V»; are

equal to VlT2 and V., respectively. Thus, it can be concluded from (2.30) that:

AJ = x(O)TV12Axo + Ax0TV21x(O) +Agi22Ax0

[ 11 0 V2 x(0)
=| x(0)T Ax}
- A Va1 Va2 Axp (2.32)
r ] 0 Vi x(0)
=[50 ad
. 1 VE v Axg
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Proposition 1 The performance deviation AJ can be written as:
AT = Axk Vo Axg (2.33)

Proof Consider an arbitrary x(0), and assume that Axp is a variable vector. Note that the
entries of Axg can take any values, because they represent prediction errors of the initial states.

AJ given in (2.32) has the following properties:

o AJ is always nonnegative, because the centralized optimal performance index has the
smallest value among all performance indices resulted by using any type of centralized

or decentralized controller.
e Substituting Axg = 0 in (2.32) yields AJ = 0.

e AJ is continuous with respect to each of the entries of the variable Axg, because AJ is

quadratic.

It can be concluded from the above properties that Axg = 0 is an extremum point for AJ. Thus,

the partial derivative of AJ with respect to Axp is equal to zero at Axp = 0. Hence:

=0
Axg=0

[X(O)TVlZ + (Vl’g_x(O)) T -+ AX(]; (VZE + VZZ)}

which results in x(0)7Vi, = 0. This implies that any arbitrary vector x(0) is in the null space
of V12, or equivalently V5 = 0. The proof follows immediately from substituting Vi, = 0 into

(2.32), and noting that V,; = VlT2 =0. |

Remark 4 Equation (2.33) states that for finding the performance deviation AJ, there is no
need to obtain the time functions w(t) and z(t). In other words, only the functions f(t) and
g(t) are required for performance evaluation. Furthermore, one can directly use the Laplace

transforms F (s) and G(s), and substitute s = + j@ to obtain AJ through (2.31) and (2.33).

Remark 5 It can be concluded from (2.33), that the performance deviation AJ depends only

on the prediction error of the initial state, not the initial state itself.
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Theorem 5 To minimize the expected value of the performance index J, the constant value
xé’i should be chosen equal to the expected value of the j"* subsystem’s initial state from the

" subsystem’s view for any i,j € V, i # J.

Proof Consider an arbitrary initial state x(0). It can be concluded from (2.28) and Definition 4
that Axg can be written as Xo — xg, where X is a vector whose entries are related to the constant
values xd’m. Also, xp is a vector whose entries are related to the initial states x,,(0), m € V.

Consequently,
E{AJ} = E{Ax{Va2Axo} = E{(£ —x§)V22(%0 —x0)}
= )?g Vooko— E {xO}TVQZXA() - .fg VE{x}+E {xo}TngE {x0}
To minimize the above expression, take its partial derivative with respect to X and equate it to

zero as follows:
£ (Voo + Vo) — E{xo} Vi — (ViaE{x0})T =0
which results in:
(5 — E{xo}") (Va2 + V) =0 (2.34)

Since the optimal control strategy is unique, AJ should be positive for any nonzero Axg. As
a result, the matrix V53 in (2.33) is positive definite and consequently, the matrix Va + V. is
positive definite as well. Thus, the determinant of the matrix Vy; + V2T2 is nonzero, and so it can
be concluded from (2.34) that 2] — E{xo}” =0, or equivalently E{Axo} = E{fo—x0} =0. In
other words, the expected value of any entry of Axg should be zero. Thus, it can be deduced

from (2.28) and Definition 4 that
E{x§" ~xj(0)} =0, jmeV, j#m

This relation states that the best choice for xé’m is equal to E,{x;(0)}, the expected value of

the initial state of the j subsystem from the m™ subsystem’s view. ]
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Remark 6 One can use Proposition 1 and Theorem 5 to obtain statistical results for the per-
formance deviation AJ in terms of the expected values of the initial states of the subsystems.
This can be achieved by using Chebyshev’s inequality. This enables the designer to determine
the maximum allowable standard deviation for Axg to achieve a performance deviation within

a prespecified region with a sufficiently high probability (e.g. 95%).

Remark 7 Suppose that the initial state of an acyclic interconnected system is a random vari-
able whose mean Xy and covariance matrix are given. Consider a decentralized control law
obtained by using the method in [17] (i.e., the second approach discussed in the introduction).
For any given initial state x(0), compute the quadratic performance index (for any given Q and
R) of the resultant system and denote it with J1(x(0)). Define now J2(x(0)) as the quadratic
performance index (with the same parameters Q and R) for the closed-loop system with the
controller proposed in this chapter. It is to be noted that to design this controller, the pre-
diction values used in (2.8) are replaced by their corresponding mean values, as explained in
Theorem 5. Moreover, define J.(x(0)) as the minimum achievable performance index for the
centralized case. According to Theorem 1, J5(%o) = J.(Xo), which implies that J»(Xp) < J1(Xp).
This means that there is a region % around the point xq in the n dimensional space, such that
for any x(0) in this region, the inequality J>(x(0)) < J1(x(0)) holds. On the other hand, if
the function Jo(x(0)) is smooth around Xy, the initial state of the system will have a greater
likelihood inside the region Z rather than outside of it, in which case the controller proposed
in this chapter will outperform the one obtained by the method proposed in [17]. It is to be
noted that to evaluate the smoothness of the function J5(x(0)) one can use the formula (2.33)
to obtain the function Jy(x(0)), in a quadratic form, while for the numerical method such as
the one in [17], there is no closed-form formula for J1(x(0)) in terms of the initial state. Sim-
ilar comparison can analogously be made between the method presented in this chapter and

the method given in [14], [15] and [16] (first approach discussed in the introduction).
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2.8 Decentralized high-performance cheap control

Consider now the cheap control optimization problem, where it is desired to minimize a

quadratic performance index of the following form:
I= | (" Qx-+euT Ru) e (2.35)
0

where Q € R™*" and R € R™ ™ are positive definite matrices, and € is a positive number
which is chosen sufficiently close to zero for this type of problem. For simplicity and without
loss of generality, assume again that Q and R are symmetric. Consider the matrix K, such that
the feedback law:

u(t) = —Kex(t) (2.36)

minimizes the performance index (2.35). In the remainder of this section, assume that K
given in (2.5) is equal to K. According to Theorem 2, the local controllers given by (2.8)
can stabilize the system &, if all modified systems S¢, i = 2,3, ..., v, under the feedback law
(2.36) are stable. These conditions are also almost always necessary. In sequel, it will be
shown that if det (BR ‘IBT) # 0, and if € is sufficiently close to zero, there is no need to check

the stability of the v — 1 closed-loop modified systems.

Theorem 6 Assume that 55,55, ...,s;, are the eigenvalues of the system ./ under the feed-
back law u(t) = —Kex(t), and that the determinant of the matrix BR™'BT is nonzero. Then,
as € approaches zero, \/€s5,\/€s5,...,A/€s5 converge to n negative (nonzero) real numbers

81,52, ...,8n, which satisfy the following equation:
det (SFI-WQ) =0, i=1,2,...n (2.37)
where W = BR™!BT.

Proof It is known that the state and costate of the system .# under the optimal feedback law

u(t) = —Kex(t) satisfy the following equation [26]:
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, H= £ |, w=BR'B

The matrix H has 2n eigenvalues in mirror-image pairs with respect to the imaginary axis.
Those eigenvalues which are in the left-half s-plane are the eigenvalues of the closed-loop

system under the feedback law u(t) = —K¢x(t). The eigenvalues of the matrix H are obtained

from the following equation:

3
|
b
ol

=0 (2.38)
Q sI+AT

Let the roots of the above equation be denoted by s{,55, ..., 55,, where 57, = —s7, Re{s} <0,
for i=1,2,...,n. One can multiply the first » rows and the last # columns of the matrix in the

left side of (2.38) by /€ to obtain the following relation:

si-4 % 1 esl — /€A w
det ¢ = — det vesl = Ve (2.39)
0 sI+AT € 0 VEsI 4+ /EAT
Hence, it can be concluded from (2.38) and (2.39), that 5§, s5, ..., s;; are the roots of the follow-

ing equation:

VEsl — \/EA W

det =0

Q0 VEsI+/eAT

Define § = v/es¢, i=1,2,...,n. Consequently, §,55,..., 55 satisfy the following equation:

sl —+/EA w
det Ve = (2.40)

Q sI++/eAT

It can be easily verified that the above equation is equivalent to

2+ pon 1 (VE)S? 4 poy 2 (VE)SH 2 4 -+ p1(VE)s+ po(vE) =0 (2.41)
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where p;(1/€), i =1,2,...,2n— 1, is a polynomial in /€. Obviously, as € approaches zero,

and finite complex numbers denoted by §1, §2, ..., 8, (note that the roots of a polynomial equa-
tion with finite coefficients are finite), and also they satisfy the equation (2.41) for € = 0,

i.e.

§l'2n + Dan-1 (O)§%n_1 + p2n~2(0)§§n—2 +-+pi (O)§l +PO(O) = 07 i= 17 27 YL
To find §;, replace € with zero and substitute s = §; in the equation (2.40). This results in:

§4 W
det —0, i=1,2,..n
Q &I

The above equation can be simplified as follows:

omda |V | cae@r-wo), i=1,2,..n
Q sl
So far, it has been shown that as € approaches zero, \/€s5, /€55, ..., V/€s% converge to the def-
inite numbers §1, §5, ..., §,, which satisfy equation (2.37). Since R is positive definite and sym-
metric, W is positive definite and symmetric as well (note that det(W) # 0). Using Cholesky
decomposition, one can easily conclude that all of the eigenvalues of the matrix W(Q are pos-
itive real numbers. Therefore, the equation (2.37) implies that §2,53, ..., 52 are positive real
numbers and consequently, §1,5>,..., §, are purely real. Since the feedback law u(t) = —Kex()
stabilizes the system ., all of the eigenvalues of this closed-loop system are located in the
left-half s-plane. As a result, §1,52,...,5, are non-positive. Also, it is apparent that none of

$1,82,...,8, are zero, because in that case det(WQ) = 0, which is a contradiction to the as-

sumption of positive definite Q (note that det (W) # 0). [

It is to be noted that the result of Theorem 6 is an extension of the existing results for the
modes of optimal closed-loop SISO systems and the corresponding inverse root characteristic

equation [32], to the MIMO case.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As an example, consider a system consisting of two 2-input 2-output subsystems and

the following state-space matrices:

] ] i ]
1 2 00 2 60 0 0
230 0 0 2 6 0 0

A= , B= (2.42)
4 6 1 2 0 0 10 1
-5 5 75 00 3 3

Solving the centralized optimal LQR problem for R = Q = I and multiplying the eigenvalues
of the resultant closed-loop system (under the feedback law (2.36)) by /€ as described in
Theorem 6, will result in {/es%, /€55, /€55, v/€s5}. The following sets of eigenvalues are
obtained for € = 1072,1073,10™* and 107>, respectively:

{-60.336,—10.609, —3.4573,-2.7356}, {—60.339,—10.608,—2.5601,—2.0257},

{—60.339, —10.608, —2.5469, —1.8147}, {—60.339, —10.608, —2.5455, —1.7924}
(2.43)

On the other hand, the roots of (2.37) are given by:
{£60.339,+10.608,+2.5453,+1.7899} (2.44)

From (2.43) and (2.44), it is evident that as € become smaller, the modes of the optimal closed-
loop system under the feedback law (2.36) approach the negative elements of the set (2.44),

as expected from Theorem 6 (Note that BR~!BT is nonsingular in this example).

Lemma 1 Consider two arbitrary symmetric positive-definite matrices G and H. There is a

unique positive definite matrix X which satisfies the following relation:
XGX=H

Proof It is known that every symmetric positive-definite matrix can be uniquely written as
the square of another symmetric positive definite matrix. Therefore, there is a unique positive

definite matrix G such that G = G2. Define Y = GXG, or equivalently X = G~'YG1, It is
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clear that since G and X are positive definite and G is symmetric, ¥ is also positive definite,

and
H=XGX=G"YG'1G*G'vG 1 =G1r2 G}
or equivalently:
Y= GHG (2.45)

Similarly, since H and G are positive definite, GHG is positive definite as well. Therefore,
there is a unique positive definite matrix ¥ whose square is equal to GHG. The matrix ¥
satisfies the equation (2.45), and thus X is determined to be equal to G~1YG~!, which is also

unique. [ |

Theorem 7 Suppose that the matrix W corresponding to the system (2.1) and the performance
index (2.35) is nonsingular. Consider the modified system S7, j € {2,3,...,v}. There exists a
finite £* > 0 such that for every positive real number € less than €*, the modified system S/ is

stable under the feedback law (2.36).

Proof Assume that the modes of the system . under the feedback law (2.36) are s%,s5, ..., 55.

It is clear that these modes satisfy the following equation:
det (sil —A+BK¢) =0, i=1,2,...,n (2.46)

Suppose that P is the solution of the Riccati equation for the system . and the performance

index (2.35). Thus,
~PA-ATP.—Q+ éPgBR'lBTPg =0 (2.47)
Since K, = %R“lBTPe and W = BR™'BT, the equation (2.46) can be rewritten as
det (st—A—k%WPg) 0, i=12..n (2.48)
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According to Theorem 6, as € approaches zero, /€s{ converges to the negative definite num-
ber §; for i = 1,2,...,n. Using this approximation and substituting it into (2.48) will result in

(as € — 0):

N )
det (%I—A—}-EWPE) -0, i=12,...n

Define P, := %. It can then be concluded from the above equation that as € goes to zero,
det (] —VEA+WP) -0, i=12,.,n (2.49)
Substituting P; = 1/€P: in the Riccati equation (2.47) yields
—VeEP.A—/EATP, - Q+B.WP: =0

Since the solution of the Riccati equation as well as the matrices W and Q are all positive def-
inite, according to Lemma 1, as € approaches zero, P. converges to a unique positive definite
matrix denoted by P, which can be obtained by solving the equation Q = PWP, as discussed
in Lemma 1. In other words, as € goes to zero, the solution of the Riccati equation P¢ for the
system .% and the performance index (2.35) can be estimated by 1/€P. Accordingly, since Pe

converges to P as £ approaches zero, the equation (2.49) yields
det (SI+WP)=0, i=1,2,..,n (2.50)

Now, consider the modified system S/ under the feedback law (2.36), and let the corresponding

closed-loop modes be denoted by of;,05,...,0;;. It is clear that these modes satisfy the

following equation:
~ 1
det (GfJ-I—A’—l-EWPg) =0, i=12,..,n (2.51)

The above discussion shows that as € goes to zero, P converges to /€P. Therefore, it can be

concluded from the equation (2.51) that (as &€ approaches zero):

det (Veof I —VeA +WP) -0, i=1,2,..,n
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Since all entries of the matrix A/ are finite and independent of €, the above expression is

equivalent to the following:
det (VeoiI+WP) -0, i=1,2,..,n (2.52)

By comparing equations (2.50) and (2.52), it can be concluded that as € goes to zero, the
elements of the set {\/Eofj, - \/Ecrfj} converge to the elements of the set {§i,...,8,}. Ac-
cording to Theorem 6, §1,...,§, are all negative numbers. Thus, \/Eofj, . \/Ec,fj will goton
negative real numbers. As a result, as € approaches zero, all of these modes will move towards
the left-half s-plane, and eventually all of them will be located in the open left-half s-plane.
Thus, from continuity, one can conclude that there is a positive value €* such that for every
€ less than £*, all complex numbers O'fj, ey O',fj will have negative real parts, and hence, the

resultant closed-loop system will be stable. |

Remark 8 As € approaches zero, \/€0{,\/€05 ), ..., /€Oy, converge to n finite negative real

numbers. Thus, Of ;, 0%;,..., 0y, all g0 to —ee.

Remark 9 Since the elements of both sets {\/chj,...,\/éc,fj} and {\/€s5,...,\/€s5} ap-
proach the elements of the set {§1,...,5,} as € goes to zero, it can be deduced that the modes
of the modified system S’ under the feedback law (2.36) become closer to the modes of the

original system . under the feedback law (2.36), as € approaches zero.

Consider again the system represented by the state-space matrices (2.42). Solving the
centralized optimal LQR problem for R = Q = I and multiplying the eigenvalues of the re-
sultant closed-loop modified system S2 (under the feedback law (2.36)) by /€ as described
in Theorem 7, i.e. {\/€0f,,/€0%,,/€05,,1/€05,}, the following results are obtained for
€ =10"2,10"3,10"* and 1073, respectively:

{—60.467,—10.607,—3.4948, —2.5690}, {—60.352,—10.607,—-2.0194,—2.5533},

{—60.340,—10.608, —2.5460, —1.8143}, {—60.339, —10.608, —2.5454, —1.7923}
(2.53)
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Comparing (2.53) and (2.44), it can be seen that as € goes to zero, the eigenvalues of the
modified system S? under the feedback law (2.36) multiplied by /€ converge to the negative

elements of the set given by (2.44), as expected.

Corollary 2 Suppose that det(W) # 0. If € is sufficiently close to zero, the system # under

the proposed control law (2.36) is stable.

Proof It can be concluded from Theorem 7 that there is an £* such that for every positive
real value € < €*, all of the systems S2,S3,...,SY are stable under the feedback law (2.36).

Therefore, according to Theorem 2, the proposed decentralized feedback law stabilizes the

system . (for any 0 < € < €%). [

Remark 10 7o investigate robust stability of the proposed decentralized cheap control law,
one can use the result of Theorem 3 to find the permissible range of parameter variations. As
a particular case, assume that det(W) # 0 and that B; = B; for i = 1,2,...,V, i.e. there is
no perturbation in the entries of the matrix B. It was shown that as € approaches zero, the
modes of the modified system S' under the feedback law (2.36) ( 0f;» 05, ..., OF;) converge to
ﬁ times the numbers §1,82,...,8y, which are obtained for the given B,R and Q using (2.37).
In other words, dependency of the eigenvalues of the modified system S' under the feedback
law (2.36) on the entries of the matrix A is being reduced, as € goes to zero. Consider now the
modified perturbed system S'. The only difference between S and §' is in the matrices A* and
AL, or more specifically, in A;; and A;;. Hence, as discussed before, the discrepancy between
the modes of S and S under the feedback law (2.36) is reduced, as € approaches zero. This

means that as € goes to zero, the eigenvalues of the perturbed system S under the proposed

local controllers become insensitive to the entries of the matrix A.

Remark 11 It is to be noted that the condition det(W) # 0 is equivalent to det(BBT) # 0, or

equivalently det(B;B!) # O for any i € V. Therefore, if the number of inputs of any subsystem
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is less than the number of its outputs, then the matrix B ,-BiT will be singular, and consequently
the condition of Theorem 6 will be violated. Although this condition on the number of inputs
of each subsystem can be very restrictive in general, in many practical problems it can be

satisfied by adding certain actuators to some of the subsystems, if necessary.

2.9 Numerical examples

In this section, two examples will be presented. The first one is a numerical example which
aims to illustrate some of the procedures developed in the chapter. The second one applies the
results obtained in this chapter, to the formation flying problem in [2], and involves simula-

tions.

Example 1 Consider a system ., consisting of two SISO subsystems and the following state-

space matrices:

A=
-20 1 02

The modified system S2 is obtained by removing the interconnection going to the second sub-
system (i.e. by setting the entry —20 of A to zero). Suppose that K is the optimal feedback
gain for the system . and the performance index (2.35), with R = Q = 1. According to The-
orem 7, since det (BR™1BT) # 0, there exists a positive real £* such that for every positive
€ < £*, the modified system S2 under the feedback law u(z) = —Kx(¢) is stable. Computing
K for £ = 1, the eigenvalues of the modified system S2 under the feedback law u(t) = —Kx(t)
are obtained to be 0.2169 and —7.1087. According to Theorem 2, since one of these eigen-
values is positive, the overall closed-loop system is unstable. Therefore, £* has to be less than
one. It can be verified that for this example €* ~ 0.668. Hence, for every € < 0.668, the

proposed local controllers can stabilize the system .7,.
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Let € be equal to 0.001 . Computing K for this value of ¢, it can be shown that the eigen-
values of the system .%, and the modified system S2 under the feedback law u(t) = —Kx(¢) are
{—62.1381,—33.7765} and {—64.3194, —31.5952}, respectively. The eigenvalues of these
two closed-loop systems are close to each other as pointed out in Remark 9.

In the next step, it is desired to inspect the robustness of the system ., under the pro-
posed decentralized control law for € = 0.001, and compare it to the robustness of the system

&, under the centralized feedback law u(z) = —Kex(z).

1. Decentralized case: According to Theorem 3, the perturbed system ., under the pro-
posed decentralized controller is stable if the modified perturbed systems S} and §2
under the feedback law u(z) = —K¢x(¢) are both stable. Therefore, any s which satisfies

one of the following equations:
det(s/ —A'+B'K) =0, det(s]—A%+B°K)=0 (2.54)

should have a negative real part. It is desired now to find some relations which exhibit

the maximum allowable deviations from the nominal parameters of the system. Define:
AA;j=Ajj— Ay, i,je{1,2}, i>]
AB;:=B;—B;, i=1,2

Since all of the roots of the equations given in (2.54) should be in the left-half s-plane, it

is easy to verify that the allowable perturbations are given by the following inequalities:

32.366AB; — AA;; > —33.366, 32.013AB; —AAq; > —95.915,
31.951AB; —AAy > —95.915, —31.278AB; — AAy > —61.557, (2.55)

AAs = arbitrary

2. Centralized case: Consider the perturbed system ., under the feedback law u(t) =

—Kex(t). The closed-loop system s stable, iff all of the roots of the equation det (sI — A + BK) =
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0 have negative real parts. Hence, the allowable ranges of perturbations in the central-

ized case satisfy the following inequalities:

—9.910AA2; — 18.88AA11 — AAj; +611.163AB; +309.997AB> +0.3AA11AA
—9.591AA11AB; —9.610AAAB; — AA31AB; +300.386AB1AB; > —630.045

—AA11 —AA +32.013AB; +31.951AB, > —-95.915

To compare robustness of the decentralized and centralized controllers, suppose that AB; =
AB; = 0. According to the inequalities in (2.55), the admissible parameter variations in the

decentralized case are as follows:
AA11 < 33.366, AAyy < 61.557 , AAy < 4o (2.56)
The admissible parameter variations in the centralized case, on the other hand, are given by:

9.910AA, + 18.88AA11 4+ AAr — 0.3AA11AA; < 630.045 (2.57a)

AAj1 +AAp < 95.915 (2.57b)

From (2.56) and (2.57), it is clear that the centralized controller is less robust to the parameter

variations compared to its decentralized counterpart, because:

e Stability in the decentralized case is independent of AA,; but in the centralized case it is

not.

e Regardless of AAyp, there is the term AA1;AAjp in the centralized case. This implies
that when the two perturbations AAj; and AAj; have the same sign, (2.57a) can be

easily violated, even if AAs; is zero.

Example 2 Consider a leader-follower formation control system consisting of three unmanned
aerial vehicles. It is known that each vehicle, except the leader, can measure its relative posi-

tion with respect to the preceding vehicle by using a GPS based architecture [2]. Therefore, it
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is assumed in this example that each vehicle is equipped with this measuring device, and that
the velocity and the acceleration of each vehicle are not available for the other vehicles due
to the information exchange constraint between the vehicles. The objective is to design three
local controllers for these vehicles, such that they all fly at the same desired speed, with the
prespecified desired Euclidean distances between them. It is shown in [2] that using the exact
linearization technique, the tracking system with the normalized parameters can be modeled

as a regulation problem with the following state-space representation:

[ 02 00 02 02 0O W [ L 0y 02 ]
X1 L 0 - 0, 0O X1 02 02 02 u
Xo | =[02 02 0y 02 O x|tT]0 L 0 up (2.58)
X3 0, 00 L 0, —L x3 0, 0 0o u3
02 00 02 02 O | ] 02 0 I

where I and 0; represent a 2 x 2 identity matrix and a 2 X 2 zero matrix, respectively, and

) ] 0 T
x21 X31
X11 X22 X32
X1 = y X2 == y X3 = (2'59)
X12 X23 X33
X24 X34
wi |
and where u; = , i =1,2,3. Here, x; denotes the state of the leader, and x, and x3
U2

represent the state of vehicles 2 and 3 (i.e., the followers), respectively. More specifically:

1. x11 and x13 are the speed error of the leader (speed of the leader minus its desired speed)

along x and y axes, respectively.

2. x;; and xp, i = 2,3, are the distance error (distance between vehicles i and i — 1 minus

their desired distance) along x and y axes, respectively.
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3. x3 and x4, i = 2,3, are the speed error (speed of vehicle i minus its desired speed) along

x and y axes, respectively.

4. u;; and upp, i = 1,2,3, are the acceleration of vehicle i along x and y axes, respectively.

It is desired now to design a decentralized controller for the system given by (2.58), such
that the closed-loop system is stable. Moreover, the objective is that the state variables of the
closed-loop system decay as sharply as possible, with a reasonably small control effort. To
attain these specifications, consider the performance index given by (2.3) in the chapter, and
assume that Q = R = I. Two different design techniques will be used and the results will be
compared here: the iterative numerical procedure given in [17], and the method proposed in
this chapter. Suppose that each initial state is uniformly distributed in the intervals {200, 400],
and that any two distinct initial state variables are statistically independent. It is to be noted
that the units used for distance and velocity in the state vectors are ft and ft/s, respectively.
Assume that any two different subsystems consider the same expected value for the initial
state of the remaining subsystem, and that the model of each subsystem is exactly known by
the other subsystems. It can be concluded from Procedure 1 and Remark 7 that if the real
initial state variables are close to their expected value 300, the controller obtained by using the
proposed method performs better.

Assume that the real initial state variables are all equal to 400, which correspond, in
fact, to the worst case scenario (maximum discrepancy between the real initial state variables,
i.e. 400, and the corresponding expected values, i.e. 300, which are used by the proposed
controller). The iterative numerical procedure of [17] gives a static decentralized state feed-
back law which results in a performance index equal to 2,257,085. The performance index
obtained by applying the method proposed in this chapter, on the other hand, is equal to
2,090,939, while the best achievable performance index corresponding to the centralized LQR
controlier is equal to 2,068,513. This means that the relative errors of the performance indices

obtained by using the methods given here and in [17], with respect to the optimal centralized
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performance index are 1.08% and 9.12%, respectively. This shows clearly that the controller
proposed in this chapter outperforms the one presented in [17], significantly.

Figures 2.1 and 2.2 depict the time responses of the system under the controller pro-
posed in this chapter (dotted curve), the controller proposed in [17] (dashed curve), and the
optimal centralized controller (solid curve) for three state variables x;,x31,x33. Moreover, the
control signals u11, 21,431 obtained by using the three methods discussed above are depicted
in Figures 2.2 and 2.3 in a similar way. It is to be noted that despite the relatively big dif-
ferences between the real initial variables (400 ft for distance errors and 400 ft/sec for speed
errors) and the corresponding expected values which are used to construct the proposed con-
troller, the results obtained are reasonably close to the time response of the system under the
LQR controller.

The results obtained show that the method introduced in present work is much better
than the one in [17]. On the other hand, as stated in the introduction, the controller obtained
by the method in [17] has a better performance compared to the ones proposed in [14], [15],
and [16]. In addition, the control law given in [24] can potentially outperform the ones in [14],
[15], and [16], but can never perform better than the one in {17]. This exhibits superiority of

the proposed design technique over the existing ones.

2.10 Conclusions

In this chapter, an incrementally linear decentralized control law for the formation of vehicles
with leader-follower structure is introduced. The fundamental idea in constructing this control
law is that the local controller of each vehicle exploits a priori information about the models
and the expected values of all other vehicles. It is shown that the decentralized closed-loop
system can behave the same as the optimal centralized closed-loop system (with respect to a

quadratic performance index) if the a priori knowledge of each subsystem is perfect. Since
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Figure 2.1: The state variables x1; and x31 using three different design techniques.

this knowledge can be inaccurate, the performance degradation of the resultant decentralized
closed-loop system has been evaluated thoroughly, in presence of inexact information. The
proposed decentralized control strategy is very easy to implement, and the corresponding sta-
bility verification steps are very easy to check as illustrated in the examples. Furthermore, it
is shown that the decentralized control system is, in general, more robust than its centralized
counterpart. Optimal decentralized cheap control problem is investigated for leader-follower
formatton structure, and a closed-form solution is provided for the case when the input struc-
ture meets a certain condition. This can be very useful for UAV missions with fast tracking
objectives. Simulation results demonstrate the effectiveness of the proposed method compared

to the existing ones.
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Chapter 3

High-Performance Decentralized Control
Law Based on a Centralized Reference

Controller

3.1 Abstract

This work deals with the decentralized control of interconnected systems, where each subsys-
tem has models of all other subsystems (subject to uncertainty). A decentralized controller
is constructed based on a reference centralized controller. It is shown that when a priori
knowledge of each subsystem about the other subsystems’ models is exact, then the decen-
tralized closed-loop system can perform exactly the same as its centralized counterpart. An
easy-to-check necessary and sufficient condition for the internal stability of the decentralized
closed-loop system is obtained. Moreover, the stability of the closed-loop system in presence
of the perturbation in the parameters of the system is investigated, and it is shown that the
decentralized control system is likely more robust than its centralized counterpart. A proper

cost function is then defined to measure the closeness of the decentralized closed-loop system
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to its centralized counterpart. This enables the designer to obtain the maximum allowable
standard deviation for the modeling errors of the subsystems to achieve a satisfactorily small
performance deviation with a sufficiently high probability. The effectiveness of the proposed

method is demonstrated in one numerical example.

3.2 Introduction

In control of large-scale interconnected systems, it is often desired to have some form of
decentralization. Typical interconnected control systems have several local control stations,
which observe only local outputs and control only local inputs, according to the prescribed
restrictions in the information flow structure. All the controllers are involved, however, in
controlling the overall system.

In the past several years, the problem of decentralized control design has been inves-
tigated extensively in the literature [1-9]. These works have studied decentralized control

problem from two different viewpoints as follows:

1. The local input and output information of any subsystem is private, and is not accessible
by other subsystems [3, 5]. In this case, each local controller should attempt to attenuate
the degrading effect of the incoming interconnections on its corresponding subsystem,

in addition to contributing to the performance of the overall control system.

2. All output measurements cannot be transmitted to every local control station. Problems
of this kind appear, for example, in electric power systems, communication networks,
flight formation, robotic systems, to name only a few. In this case, each subsystem can
have certain beliefs about other subsystems’ models. A local controller is then designed

for each subsystem, based on this a priori knowledge.

More recently, the problem of optimal decentralized control design has been studied to

obtain a high-performance control law with some prescribed constraints for the system. The
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main objective in this problem is to find a decentralized feedback law for an interconnected
system in order to attain a sufficiently small performance index. This problem has been in-
vestigated in the literature from the two different viewpoints discussed above {3, 6, 7, 8, 9].
However, there is no efficient approach currently to address the problem from the second
viewpoint. The relevant works often attempt to present a near-optimal decentralized controller
instead of an optimal one. Furthermore, it is often assumed that the decentralized controller
to be designed is static [7]. This assumption can significantly degrade the performance of
the overall system. In other words, the overall performance of the system can be improved
considerably, if a dynamic feedback law is used instead of a static one.

This chapter deals with the decentralized control problem from the second viewpoint
discussed above. Hence, it is assumed that each subsystem of the interconnected system has
some beliefs about the parameters of the other subsystems as well as their initial states. A
decentralized controller is then constructed based on a given reference centralized controller
which satisfies the design specifications. This decentralized control law relies on the expected
values of any subsystem’s initial state from any other subsystem’s view and the beliefs of each
subsystem about the other subsystems’ parameters.

Some important issues regarding the proposed decentralized control law are also studied
in this work. First, an easy-to-check necessary and sufficient condition for the internal stabil-
ity of the interconnected system under the proposed decentralized control law is presented.
Note that although the expected values of the initial sates contribute to the structures of the
local controllers, it is shown that they never affect the internal stability of the overall system.
Second, it is shown that if the knowledge of any subsystem about the other subsystems’ pa-
rameters is accurate, then the decentralized closed-loop system can perform exactly the same
as the centralized closed-loop system. However, since the exact knowledge of the subsys-
tem’s parameters is very unlikely to be available in practice, a performance index is defined

to evaluate the closeness of the proposed decentralized closed-loop system to its centralized
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counterpart. This performance index enables the designer to statistically analyze the closeness
of the decentralized control system to its corresponding centralized counterpart. In addition,
the stability of the decentralized closed-loop system in presence of perturbation in the param-
eters of the system is studied. Finally, a near-optimal decentralized control law is introduced,
and its properties are investigated. The effectiveness of the proposed method is demonstrated
in a numerical example, where it is shown that even in presence of large error in the beliefs
of the subsystems, the performance of the proposed decentralized control law is very close to

that of the reference centralized controller.

3.3 Model-based decentralized control

Consider a stabilizable LTT interconnected system .# consisting of v subsystems S1, 52, ..., Sy.
Suppose that the state-space equation for the system . is as follows:

x(t) = Ax(t) + Bu(t)
3.1)

¥(t) = Cx(z)

where x € R", u € R, y € R” are the state, the input, and the output of the system .7,

respectively. Let

" T

ut) = | u ()" w(®)T ... uv(t)T] , (3.2a)
- T

x(t) = | x(()T x0T ... x0T } , (3.2b)
- T

yO) = | ()7 w0 ... yv(t)Tj| (3.2¢)

where x; € R, u; € R™ |y, e R, i€ v:={1,2,..., v}, are the state, the input, and the output
of the i subsystem S;, respectively. Let for any i, j € ¥, the (i, j) block entry of the matrix
A be denoted by A;; € R"*". Assume that the matrices B and C are block diagonal with the

(i,i) block entries B; € R"*™ and C; € R"*™, respectively, for any i € V. Assume also that a
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centralized LTI controller K, is designed for the system ., which satisfies the desired design

specifications, and denote its state-space equation as follows:

&(r) = Agz(t) + Bry(t)
(3.3)

u(t) = Cez() + Diy(t)
where z € R7 is the state of the controller. It is desirable now to design a decentralized
controller for the system . so that it performs approximately (and under certain conditions,

exactly) the same as the centralized controller K.. The following definitions are used to obtain

the desired decentralized control law.

Definition 1 Define X, i,] €V, i j, as the expected value of the initial state of the subsys-

tem S; from the viewpoint of the subsystem S ;.

Definition 2 For any i,j € V, i 5 j, the modified subsystem Slj is defined to be a system
obtained from the subsystem S; by replacing the parameters A;;, B;,C; of its state equations
with A{l,B{ ,Cij , respectively, for any |l € V. In addition, the initial state of S{ is xi)’j (instead of
xi(0)). Denote the state, the input, and the output of the modified subsystem S f with x{ , ul] and

y{ , respectively.

Note that Slj denotes the belief of subsystem j about the model of subsystem i. In other

words, ideally, it is desired to have S{ =§;, forall je v, j#i

Definition 3 For any i € v, %" is defined to be a system obtained from .#, after replacing

each subsystem S j with the corresponding modified subsystem S ;, j=12,..,i-1i+1,...,v.

It is be noted that .#* represents the belief of subsystem i about the model of the system

.

Definition 4 Consider the system %" under the centralized feedback law (3.3). Remove all in-
terconnections going to the i" subsystem S; from the other subsystems to obtain a new closed-

loop system. One can decompose this closed-loop system to two portions:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i) the system S;;

ii} all other interconnected components (consisting of S ;, Jj=12,..,i-1,i+1,...,v, and
K., and the corresponding interconnections). Define this interconnected system as aug-
mented local controller for the subsystem S;, and denote it with K. Denote the state of

the controller K. (inside the controller Ky,) with Z.

Define the controller consisting of all augmented local controllers K ,Ky4,,...,Ky, as
the augmented decentralized controller K;. Let this decentralized controller be applied to
the interconnected system & (K, to S;, for all i € V). Note that to obtain the augmented
local controller Ky, in addition to the output y;, all of the interconnections coming out of the
subsystem S; are also assumed to be available for the local controller K;,. However, since
these interconnections contain, in fact, the information of the subsystem S§;, this is a feasible
assumption in many practical problems, e.g. flight formation and power systems, and does
not contradict the requirement of the decentralized information flow for the control law. The

following theorem presents one of the main properties of the proposed decentralized controller.

Theorem 1 Consider the interconnected system . with the augmented decentralized con-
troller K. IfA{l = Ay, B{ =B, C,-j =, and x>’ =x;(0) foralli,j,l € v, i # j, then the input,
the output, and the state of the overall decentralized closed-loop system will be the same as

those of the system ¥ under the centralized controller K.

Proof Consider system . under the decentralized controller K;. One can easily write the

following equations for the state of the subsystem S; under its augmented local controller K

Aty =AX@)+BU @)+ Y, AVx(r)
JEV,j#i

Y(£) = C'¥ (1) (3.4)
#(t) = A (t) + Bo' (t)
W' (t) = G’ (1) + Dy (1)
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where

r T

dim T T AT

s T T AT 63
- T

u'= ”llT uz—-lT Uj ”f+1T “’vT}

and where

1. Al is obtained from A by replacing all of the entries of its i™ block row except A;; (i.e.

Ajj, J € V,i # j) with zeros, and replacing its entry A;; with Afj foranyl,je v, [ #i.
2. A (i # j)is obtained from A by setting all of its block entries except A;;, to zero.

3. B’ and C' are obtained from B and C, after replacing their entries B; and C; with B! and

;, respectively, forl =1,2,...,i—1,i+1,...,v.
The equation (3.4) can be rewritten in a matrix form as follows:

#(t) AT+ B'IDiC' BiG, | | #(2) v AT Opyn x/(t)
== +

40) B Ay () | jeniti | Opxn Onxn (1)
(3.6)

So far, the states of the subsystem S; and its corresponding augmented local controller K, are

obtained. In order to simplify (3.6), the following vector and matrices are defined:

. X (t ) A'+B'DC' BG AT 0
X (1) = '() , A= - . AU = S R
/(1) By C A Onxn Onxn

for any i, j € V, i # j. Note that the subscript ”g” denotes the parameters and variables of
the augmented equations. According to (3.6) and (3.7), the state of the system .% under the

proposed decentralized controller K; satisfies the following equation:

Xg(t) = Alx, (1) (3.8)
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where

o) Al A2 .. Al
2(t Al A2 ... A

Xg(t) := g'() e . ¢ (3.9)
| 5 () _Agl A ... AY _

and where the subscript d” represents the decentralized nature of the control system. On the
other hand, one can easily verify that the state of the system . under the centralized controller

K. satisfies the following:

Xg(t) = Agxg (1) (3.10)
where
A+BDC BC;
AZ, = (3.11D)
B.C A

Since it is assumed that A{ = Ay, B{ = B;, and C,-j =C;forall i, j,l € v, i # j, one can write:

Ay=AS—- Y AY (3.12)
j=Lj#i

According to (3.9) and (3.12), Ag can be written as the summation of two components ® and

T, where ) :
Ag o --- 0
. . ] (3.13)
yed) 112 il
= X1 j#14s Ag A
321 127 12
I A ~Zjeipds A"
ivl iv2 ivi
Ay Ay X avAs |

Note that the matrix © consists of v block matrices Ag on its main diagonal and that each of

the diagonal block entries of I" is equal to minus the summation of the other block entries of
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its own block row. Consider now the equation (3.8) in the Laplace domain:

Xg(s) = (s — Ag) ' x5(0) = ((sT — ©) —T) ' x,(0) (3.14)
It is known that for any arbitrary square matrices €21 and €2;:

Qi +Q) " =07 — Q7 (1+9,97Y) ' 2,07 (3.15)

provided Q; and (I —I—ngl"l) are nonsingular. It can be concluded from (3.14) and (3.15)
that:

X, (s) = (sI — ©) " 'xg(0) + (s — @)~ (I - T(sI — @)‘1)‘1 I'(sI — ©) x4 (0) (3.16)

Moreover, the assumption xf)’j =x;(0), i,j € V, i # j yields that x*(0) = x(0), i € V. Therefore,
' T
x(0) = [ x(0)T Z7(0) ] , 1€V (3.17)

Hence, x;;, (0)= xé(O), i, j € V. From the equation (3.17) and the definitions of © and I" given

by (3.13), the i entry of the vector I'(s] — ©)~!x,(0) can be obtained as follows:

ef v . v ~ pa— 7
B =)0 A - a) 0 S R (a-a) 0
J=1]Fi

+ ALY (T—AS) T AN 0) 4+ A (sT— A T XV (0) = 0

(3.18)
It means that T'(s — ©) ~1x,(0) = 0. Hence, it can be concluded from (3.16) that X,(s) =

(sI — ©)~1x,(0). Consequently, from (3.17):

. 1. 1 x(0
Xi(s) = (sT—AS) " X (0) = (sI—45) ™! ) (3.19)
z(0)
On the other hand, it follows from (3.10) that the state of the system .# under the centralized

controller K, satisfies the following equation in the Laplace domain:

X(s) = (sT—AS) ™ #0) (3.20)

z(0)
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(From (3.5) and (3.7), one can observe that the state of the subsystem S; of the system . under

the decentralized controller K is the i™ block entry of x("g (¢) which is, according to (3.19), the

x(0)

i™ block entry of (sI ——Ag) - in the Laplace domain. On the other hand, equation
z(0)
(3.20) expresses that the state of the subsystem S; of the system % under the centralized

controller K, is also the i block entry of the same matrix. This means that the state of the
system . under the decentralized and the centralized control configurations are equivalent.
Using this result, it is straightforward now to show that the output and the input of these two

closed-loop systems are the same. ||

Theorem 1 states that under certain conditions, the state, the input, and the output of
the system .% under the centralized controller K, are equal to those of the system .% under
the decentralized controller K;. These conditions are met when the belief of each subsystem
about the model and the initial state of any other subsystem is precise. Since these conditions
are never met in practice, it is important to obtain stability conditions for the case when the

corresponding beliefs are inaccurate. This issue is addressed in the following Corollary.

Corollary 1 The interconnected system ¥ under the proposed decentralized controller K ; is
internally stable, if and only if all of the eigenvalues of the matrixAg given in (3.9) are located

in the left-half s-plane.

Proof The proof follows immediately from the fact that the modes of the system .% under the

controller K are the eigenvalues of the matrix A%, according to the equation (3.8). |

Remark 1 Note that stability of the decentralized closed-loop system is verified by simply
checking the location of the eigenvalues of Ag. This signifies that it is independent of the

valuesxgj, LJEV,I# ]

Remark 2 The order of the local controller K, for the ™ subsystem of . is n+ [ minus

the order of the subsystem S;, for any i € V. Moreover; it can be concluded from Theorem
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1, that the local controller Kg, implicitly includes an observer to estimate the states of the
other subsystems. In contrast, if an explicit decentralized observer for each subsystem of .
is desired to be designed by the existing methods, then the order of the observers 1,2,...,v
(for subsystems 1,2,...,v) will be n,2n,...,nv, respectively. Note that in a practical setup
with explicit observers, each local controller consists of a compensator and an observer. This
means that the local controllers designed here include implicit observers, whose orders are

much less than those of conventional decentralized observers.

3.4 Robustness analysis

In the previous section, a method was proposed for designing a decentralized controller based
on a reference centralized controller and its stability condition was discussed in detail. Sup-
pose that there are some uncertainties in the parameters of the system . given by (3.1). Since
the decentralized controller K, is designed in terms of the nominal parameters of the system,
the resultant decentralized closed-loop system may become unstable. One of the main objec-
tives of this section is to find a necessary and sufficient condition for internal stability of the

perturbed decentralized closed-loop system.

Definition 5 For any arbitrary matrix M, denote its perturbed version with M, and definite its

perturbation matrix as AM := M — M.

Consider now the system . as the perturbed version of the system . whose state-space

representation is as follows:

%(t) = Ax(t) + Bu(t)

¥(t) = Cx(t)
Let for any i, j € ¥, the (i, j) block entry of the matrix A be denoted by A;;. Assume that the

(3.21)

matrices B and C are block diagonal with the block entries By, B;, ..., B, and C1,Cs,...,Cy,
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respectively. As discussed earlier, to construct the decentralized controller Ky, it is assumed
that in addition to the output of any subsystem .#;, all of the interconnections going out of
subsystem i are available as the inputs for the local controller K;,. Hence, it is required to make
some assumptions on the interconnection signals. Consider again the unperturbed system ..
Denote the interconnection signal coming out of subsystem i and going into subsystem j with
§;i(t). Since {ji(t) can be considered as an output for subsystem i, there is a matrix ITj; such
that §;;(¢) = I;x;(z). Similarly, since {ji(f) can be considered as an input for subsystem j,
there is a matrix I'j; such that Ajix;(¢) =T ;{;i(¢). As aresult, A;; = I';I1;. Denote now

the perturbed matrices corresponding to ITj; and I'j; with I ji and T'ji, respectively. Hence,

Aj,' =1'“,~,-l'1j,-.

Definition 6 1. Define B' and C', i € ¥, as the matrices obtained from B’ and C' by replac-

ing their block entries B; and C; with B; and C, respectively.

2. Define A, i,j €V, i# j, as the perturbed matrix of AY, derived by replacing the block

entry A;j ofﬁ‘igj with A,-j.
3. Define A, i € V, as the matrix derived from A as follows:

o Replace the entry A;; with A

e Forall j €V, j#1, replace the block entry A;i with T ;X1

Theorem 2 Suppose that the decentralized controller Ky which is designed based on the nom-
inal parameters of the system . as well as the centralized controller K, is applied to the per-
turbed system 7. The resultant decentralized closed-loop control system is internally stable

iff all of the eigenvalues of the matrix Ag are located in the open left-half of the complex plane,
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where _ }

AL A2 .. AW
A2l A2 ... A%
id .__ g g g
Agi=1 (3.22)
vl T2 -
A AR A
and
| Ai+BDC B, ]
A, = _ , IEV (3.23)
B C' Ay
Proof The proof of this theorem is omitted due to its similarity to Corollary 1. ]

Moreover, it can be easily verified that the modes of the perturbed system . under the

centralized controller K, are the eigenvalues of the matrix A, where

- A+BD,C BC
A= - (3.24)
B,C Ayg

Therefore, robustness analysis with respect to the perturbation in the parameters of the

system can be summarized as follows:

e For decentralized case, the locations of the eigenvalues of the matrix Ag should be

checked.

e For centralized case, the locations of the eigenvalues of the matrix Ag should be checked.

The equalities A}; = A;j, B; = Bi, C; = Ci, i, j,l € ¥, i # [ will hereafter be assumed to
simplify the presentation of the properties of the decentralized control proposed in this chapter.
It is to be noted that most of the results obtained under the above assumption, can simply be

extended to the general case.
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Theorem 3 The Frobenius norms of the perturbation matrices for the decentralized and the

centralized cases satisfy the following inequalities:
IAADI < M (3.25a)
IAMAR < A2 (3.25b)

where

(A =8 3 [ABIPIDUPIACIE +8 S, IAdulP+4 ¥, ATy P2

i=1 i=1 ijev
i#]
+ [ ABIPICHP +4 3, IIATyIP|ATL; |1 + [IBe|PIIACH +12 Y, | Ty||?||ATL;|2
ijev ijEev
4y . i
+8|1B|| 2| Dil P |AC)> + 8| AB|* | i * [ C 1>
(3.26)
and
(H5)? =32 3 AT P11+ [ABIPIC? +32 3 [[(AT3) P AL |2
l’iij l’i];fv
+8||AB||*| Di|*|AC|1* + 8| BI1* | Di | *|AC|1* + 8| AB || D |1 [ C 12 (3.27)
+32 3, (T IPIATLG | + | Bel PIIAC] +8 Y, [|AAx1?
ijev i=1
5
and where || - || represents the Frobenius norm.
Proof One can write:
IAAHIR = 1A - ALP = T A4y IP+ DB - BIGIP+ 3 IB(C - Ol
, L,jEV, iF#] i=1 i=1 (3.28)
+ 3 1A'= &) + (B'DyC' — BDiC) |2
i=1
On the other hand,
v . _. \% _. .
S (1B =B)Cell>+ 1B (C = O)1?) < X (1B = BIPIC* + IBel*IH(CT - O)11%)
i=1 i=1
< Y IABPICH + . 1Bel A 1? (329)
i=1 i=1

= | ABIP|ICell® + [|Bel*lAC)?
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Furthermore,

> ooadglP= Y T, - TR

LjEV, i#] LJEY, i#]

= z HAF,-jH,-J-—l—I“,-jAHij—l—Al“,-jAH,-sz

iLjEV, i£] (3.30)
<4 Y ATy +4 Y Tyl IATL)

iLjEY, i iL,JEV, i#]
+4 Y ||ATy|PArL)

LJEV, i#]

and also,

Y (&~ &) + (BDC — BD,O)P <8 (& )2 48 | (B — BYD(C — O)|)
i=1 J =1

i=1

+8 3 1B~ BIDCI +8 3 IDUC -0

Vv
<8y Al +8 X (T Iy — Iy 2
i=1 i,jEV, i#]
Vv \2
+8 3 [|ABi|* | De |2 ACH +8 X [IBI* 1Dl ACH1
i=1 i=1
\4
+8 1ABi| ! Dl |1
i=1
(3.31)
The above inequality is obtained by noting that the square of the summation of any four
numbers is less than or equal to the summation of the squares of those numbers times eight.
The proof of the inequality (3.25a) follows by substituting (3.29), (3.31) and (3.30) into (3.28).

Pursuing a similar approach, one can easily obtain the inequality (3.25b). |

The stability robustness analysis for the decentralized case can be described as follows.
Consider a Hurwitz matrix Ag , and assume that it is desired to find admissible variations for
the independent perturbation matrices AB;, AC;, All;;, ALj, AAy;, i,j €V, i # jsuch that the
perturbed matrix Ag remains Hurwitz. Analogously, for the centralized case one should check
if Ag, the perturbed version of the Hurwitz matrix Ag, is also Hurwitz. This kind of problem

has been addressed in the literature using different approaches [11], [12].
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To obtain some admissible variations for the independent perturbation matrices AB;,
AC;, All;j, ATy, AAy;, i,j € V, i # j, one can choose any existing result for the matrix per-
turbation problem, e.g. Bauer-Fike Theorem, and substitute the bound .47 for the norm of the

perturbation matrix to compute the admissible perturbations.

Remark 3 Sensitivity of the eigenvalues of a matrix to the variation of its entries depends,
in general, on several factors such as the structure of the matrix (represented by condition
number or eigenvalue condition number [12]), repetition or distinction of the eigenvalues,
and the most important of all, the norm of the perturbation matrix. On the other hand, it can
be easily concluded from (3.26) and (3.27) that the bound .#] for the decentralized case is
less than or equal to the bound .4; for the centralized case. Hence, it is expected that the
decentralized closed-loop system be more robust to the parameter variation compared to the

centralized closed-loop system.

3.5 Performance evaluation

Since the perfect matching condition given in Theorem 1 does not hold in practice, it is desired
now to evaluate the deviation in the performance of the decentralized closed-loop system with
respect to its centralized counterpart. Define Ax;(z) as the state of the i subsystem S; of the
closed-loop system . under K; minus the state of the i subsystem S; of the closed-loop
system . under K, for any i € V. Note that Ax;(¢) is, in fact, the deviation in the state of the
i™ subsystem due to the mismatch between the real initial states and their expected values in
the proposed decentralized control law.

To evaluate the closeness of the decentralized closed-loop system to the centralized

closed-loop system, the following performance index is defined:

Jiey = /0 - (Ax(t)T QAX(r)) dt (3.32)
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where
Ax(t)=| A ()T AT - An ()T (3.33)

and where Q € R™" is a positive definite matrix. Consider now the system .% under the
decentralized controller K;. This closed-loop system has the state x,(¢), which consists of the
states of the subsystems as well as those of the local controllers. However, only the states of
the subsystems contribute to the performance index (3.32). Thus, it is desirable to derive x(¢)

from xg(z). Define the following matrix:

q)i = Onixnl Onanz e Onixn,-~1 In,-xni On;xn,-_,.] Tt On,-xnv On,-xn ’ i € v
(3.34)
(From the definition of x;;, (¢) given in (3.7), one can write
xi(t) =@xi(r), i€V (3.35)
Now, define the block diagonal matrix ® as follows:
@ = diag ([®) , D2, ... , D)) (3.36)
It can be concluded from (3.35) and the above matrix that ®xg () = x(z).
Definition 7 Define Axy as follows:
T
o= | (AT (AT o (AT (337)
where
: n . . . . . T
Axg= | (Axg")T o (A )T (Onx)T (AXGTHT - (AHT (0gsr)T
(3.38)
Joranyi € v, and where
Al = x5 —x(0), i,jev, i#j (3.39)
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It is to be noted that Axg can be considered as the prediction error of the initial states from

different subsystems’ view.

Theorem 4 Suppose that the decentralized closed-loop system is internally stable. Then, the
performance index Jy,, given by (3.32) is equal to Axg PjAxqg, where the matrix Py is the

solution of the following Lyapunov equation.
a\T d ol
(Ag) Py+PiAY + @700 = 0 (3.40)

Proof According to (3.8), the state of the interconnected system . under the proposed de-
centralized controller K satisfies the equation %, (¢) = Agxg (t). Also, Theorem 1 states that for
the particular value of xgj = x;(0), the states of the subsystems of this decentralized closed-
loop system are equal to the states of the subsystems of .# under the centralized controller
K.. For this particular value, denote the state of the decentralized closed-loop system with
X, (1), which satisfies the equation X,(r) = Afglxg (t) as well. Subtracting these two equations

and using Definition 4, results in:
Ag(t) = AAxy(1), Axg(0)=Axg (3.41)
where Ax,(t) = Xg(t) — xg(2). Therefore:

Tges = /0 " Ax(r)T QAx(r)dt = /0 (@A (1)) 0 (@Axg(1)) s (3.42)
_ /O " Ay (1) T QDAX, (1)t

Thus, it can be concluded from (3.40), (3.41) and (3.42) that:
Jip = — °°Ax T Ad TP P Ad Ax d
aev 0 &) g) FatFaAg | Axg(r)ds
> T
- —/o ( <A2Axg(’)) PyfAxg (1) + Axg (1) TPy (AgAxg(t)> )dt

—_ /0 " (At (1)T Paling (1) + Axg (1) Py (1)) it

_ /N d (Axg(1)T PyAx, (1))
0 dt

(3.43)

dt
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On the other hand, stability of the decentralized closed-loop system implies that Axg(ec) = 0.

Furthermore, since Axg(0) = Axp, one can rewrite (3.43) as follows:

Jaey = —Axg(o0)T PyAxg(o0) + Axg (0)T PyAx, (0) = Axd PyAxg (3.44)
|

Consider now the interconnected system . under the centralized control law K., and

define the following performance index for it:

Jo= / " x(0)T Ox(r)dr (3.45)
0

Itis straightforward to use a similar approach and apply it to (3.10) to show that J. = x(0)7 P.x(0),

where the matrix P, is the solution of the following Lyapunov equation:
(A" P+ PAS+Q =0 (3.46)

Remark 4 One can use Theorem 4 and the equation (3.46) to obtain statistical results for
the relative performance deviation Jj—:” in terms of the expected values of the initial states
of the subsystems. This can be achieved by using Chebyshev’s inequality. This enables the
designer to determine the maximum allowable standard deviation for Axg to achieve a relative
performance deviation within a prespecified region with a sufficiently high probability (e.g.

95%).

3.6 Near-optimal decentralized control law

Consider the interconnected system . given by (3.1), and suppose that it is desired to find the

controller K, given by (3.3) in order to minimize the following performance index:

J= /O ) (x(6)T Qx(t) + u(t)"Ru(t)) dt (3.47)
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where R € R™*™ and Q € R™" are positive definite and positive semi-definite matrices, re-
spectively. Without loss of generality, assume that Q and R are symmetric. If C is an identity
matrix (i.e., if all states are available in the output), then the solution of this optimization

problem is as follows:
u(t) = —Kopry(t) = —Kopix(t) (3.48)

where the matrix K, is obtained from the Riccati equation. Assume now that it is desired
to design a decentralized controller, instead of the centralized controller (3.48), such that the
performance index (3.47) is minimized, under assumption that C = I,,«,. Unlike the central-
ized case, computation of the optimal decentralized controller can be cumbersome. Therefore,
many of the existing results, instead, present a near-optimal decentralized controller (instead
of an optimal one) with a static (local output or local state) feedback structure. It is clear that
this constraint can significantly affect the performance of the decentralized closed-loop sys-
tem. In this section, the proposed method for designing a decentralized controller is exploited
to present a near-optimal decentralized control law whose performance will later be evaluated.
Assume that the controller K. given by (3.3) is the optimal centralized controller given

by (3.48), i.e.
Ar=0, ,By=0, Ci=0, Di=—Kyy (3.49)

Construct the proposed decentralized controller K; based on this controller K, as described
in Section 3.3. It was shown that this decentralized controller relies on some constant values
xf)’j, i,j €V, i# j, and in a particular case when x8j =x;(0), i,j € V, i # j, the system .
under K; behaves exactly the same as the system . under K.. Denote the values of the per-
formance index (3.47) for the centralized and decentralized cases with J, and Jj, respectively.
Let the performance deviation be defined as AJ := J; — J.. Also, suppose that x(z) and u(¢)
are the state and the input of the centralized control system excluding the state and the input

of the controller, while x(z) + Ax(¢) and u(¢) + Au(z) denote those of the decentralized case.
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Theorem 5 AJ satisfies the following equation:
AT = / (AxT QAx -+ AuT RAu) dt (3.50)
0

Proof Using an approach similar to the proof of Theorem 4, one can rewrite J; as:

Vit Viz x(0)
Ja = [x(O)T Axg} (3.51)
VE Vo | | Axo

where the matrices V1 € R, Vip € RNV and vyy € RIHMyx(n+mv are functions of
A, B and K,,;. The fact that the (2, 1) block entry of the above matrix is transpose of its (1,2)
block entry Vj;, results from the symmetry of the Q and R matrices. According to Theo-
rem 1, when Axy is zero, the centralized and decentralized closed-loop systems are identical.

Therefore, by substituting Axg = 0 into the equation (3.51), J. will be obtained as follows:
Je = x(0)Tv11x(0) (3.52)

It can be concluded from (3.51) and (3.52) that

0 V12 x(O)
A= x(0)T Al (3.53)
VE Vi Axg

Suppose now that x(0) is any arbitrary vector. It is desired to find a simple closed from
relationship between the performance deviation AJ and the initial state prediction error Axg.

AJ given in (3.53) has the following properties:

e AJ is always nonnegative, because the centralized optimal performance index has the

smallest value among all the performance indices obtained by using any type of control.
e Substituting Axg == 0 in (3.53) yields AJ = 0.

e AJ is continuous with respect to each of the entries of Axg, because AJ is quadratic.
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It can be concluded from the above properties that Axg = 0 is an extremum point for AJ. Thus,

the partial derivative of AJ with respect to Axg has to be zero at Axg = 0. Hence:

=0 (3.54)
Axg=0

{X(O)TVH + (Vlgx(O))T + A (V2T2 + sz)]

Accordingly, x(0)7Vj, = 0. This implies that x(0) is in the null-space of the matrix V,.
Since x(0) is any arbitrary vector, thus Vi3 = 0. Substituting this result into (3.53), it can
be concluded that AJ = AxgVAxp. This means that AJ does not directly depend on x(0).

Furthermore,
A= /Ox (x4 Ax)T Qx + Ax] + [u+ Au)" R[u+ Aul)dt — /0oc (x" Ox+u" Ru) at
- /0 " (AT QAx + AuTRAW) di + /0 " (¥ QAx+ u” Raw) dr (3.55)
+ /Ow (AxTQx—i-AuTRu) dt

Using the equation (3.48) and after some mathematical computations, one can easily conclude
that the summation of the second and the third integrals in the right side of the last equation
above is in the form of x(0)7 VAxo -+ AxIV7x(0), respectively. Since it was shown that AJ
is not directly dependent on x(0), the summation of these two integrals should be zero. This

completes the proof. [ ]
Definition 8 Define the block diagonal matrix ® as follows:

@ = diag( [Kops » Onxny » Kopr » Onxny 5 -+ Kopr , Onxn]) (3.56)
where the block entry K,p, appears Vv times in the above matrix.

Since ui(t) = —Kopx'(¢), it is straightforward to verify that the vector q)d—)xg (t) (the
matrix @ is given by (3.36)) is equal to the input of the system . under K4, which is denoted
by u(t) + Au(t).
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Theorem 6 AJ can be written as Axg PAxg, where P is the solution of the following Lyapunov
equation:

T - -
(42)" P+PAY + (970D + BT OTROD) =0 (3.57)

Proof The proof is omitted due to its similarity to the proof of Theorem 4. |

3.7 Numerical example

Consider an interconnected system consisting of two SISO subsystems, with the following

parameters:

1 -2 -1 0
A= , B= , C=Dyxs (3.58)
1 2 0 1

Suppose that a centralized controller K, is given for this system with the following parameters:

-1 -2 1 1 1 2
Ap= , By= v Cr=Dhys, Di= (3.59)
1 -1 2 1 1 -3

It is desired now to design a decentralized controller K, such that the system under K; behaves
as closely as possible to the system under K. Using the method proposed in this chapter, K,;
can be designed in terms of two constant values x(l)’2 and xg’l, which are the expected values
of each subsystem’s initial state from the other subsystem’s view. For simplicity, suppose that

T
x1(0) =x2(0) =1, x(0) = [ 11 } . Consider now the following two mismatching cases:

i) Suppose that x(z)’1 = 0.5 (—50% prediction error) and x(l)’2 = 1.5 (50% prediction error).
Note that the numbers within the above parentheses show the percentage of errors in
predicting the initial states. The output of the first subsystem is sketched with both cen-
tralized and decentralized controllers, in Figure 3.1 (note that the output of the second
subsystem is not depicted here due to space restrictions). It is evident that the output

trajectory of the decentralized case is very close to that of the centralized case.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ii) Assume that x>' = 0 (—100% prediction error) and xy* = 2 (100% prediction error).
Figure 3.2 illustrates the output of the first subsystem, with both centralized and decen-
tralized controllers. Despite the large prediction errors, the outputs are close to each

other.

«— Decentralized

~<—Centralized

Qutput of the first subsystem

o 5 10 1% 20 25 30
Time (sec)

Figure 3.1: The output of the first subsystem with both centralized and decentralized con-

trollers. The prediction errors of the initial states are £50%.

Now, to evaluate the performance of the proposed decentralized controller with respect to
its centralized counterpart, consider the performance index defined in (3.32) and assume that

Q =I. It can be concluded from Theorem 4 that:
2 2
Jaew=1.128 (x3") " +1.107 (xg”) "~ 0.259x 'xg? (3.60)

On the other hand, it can be easily verified that J. = 18.147 by using the equation (3.46).
Now, one can find that the expected value and the standard deviation of %LV, provided some

probabilistic data regarding x(l)’2 and x(z,’1 are available.
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-« Decentralized

<« Centralized

Output of the first subsystem

o 5 i6 75 20 25 30
Time (sec)
Figure 3.2: The output of the first subsystem with both centralized and decentralized con-

trollers. The prediction errors of the initial states are +100%.

3.8 Conclusions

A decentralized controller is proposed for interconnected systems. The control law is con-
structed based on the parameters of a given centralized controller and a priori knowledge
about each subsystem’s model from any other subsystem’s view. It is shown that the proposed
controller behaves exactly the same as its centralized counterpart, provided the knowledge
of each subsystem has no error. Furthermore, a set of conditions for the stability of the de-
centralized closed-loop system in presence of inexact knowledge of the subsystems’ model
as well as perturbation in the system’s parameters is presented. Moreover, it is shown that
the decentralized control system is likely more robust than the centralized control system. In
addition, a quantitative measure is given to statistically assess the closeness of the resultant
decentralized closed-loop performance to its centralized counterpart. The proposed method
is also used to design a near-optimal decentralized control law. The deviation of the decen-
tralized near-optimal performance index from the centralized optimal performance index is

obtained in a closed form, which enables the designer to determine how small the standard
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deviation of the initial state predictions should be in order to achieve a prespecified perfor-
mance index with a certain likelihood. Simulation results demonstrate the effectiveness of the

proposed decentralized control law.
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Chapter 4

Structurally Constrained Periodic

Feedback Design

4.1 Abstract

This chapter aims to design a high-performance controller with any predefined structure for
continuous-time LTI systems. The control law employed is generalized sampled-data hold
fucntion (GSHF), which can have any special form, e.g. polynomial, exponential, piecewise
constant, etc. The GSHF is first written as a linear combination of a set of basis functions
obtained in accordance with its desired form and structure. The objective is to find the coeffi-
cients of this linear combination, such that a prespecified linear-quadratic performance index
is minimized. A necessary and sufficient condition for the existence of such GSHF is first
obtained in the form of matrix inequality, which can be solved by using the existing methods
to obtain a set of stabilizing initial values for the coefficients or to conclude the non-existence
of such structurally constrained GSHF. An efficient algorithm is then presented to compute
the optimal coefficients from their initial values, so that the performance index is minimized.

This chapter utilizes the latest developments in the area of sum-of-square polynomials. The
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effectiveness of the proposed method is demonstrated in two numerical examples.

4.2 Introduction

There has been a considerable amount of interest in the past several years towards control of
continuous-time systems by means of periodic feedback, or so-called generalized sampled-
data hold functions (GSHF) [1, 2, 3, 4]. Periodic feedback control signal is constructed by
sampling the output of the system at equidistant time instants, and multiplying the samples
by a continuous-time hold function, which is defined over one sampling interval. Several
advantages and disadvantages of GSHF and its application in practical problems have been
thoroughly investigated in the literature and different design techniques are proposed [3, 4, 5].

It is known that if a system has an unstable fixed mode with respect to a given informa-
tion flow structure, there is no LTI controller to stabilize the system [6]. In that case, under
some conditions a time-varying control law, e.g. periodic feedback, can be used to stabilize
the system [7, 8]. It is shown in [9] that using GSHF with exponential form may eliminate the
unstable fixed modes. However, designing a controller which only takes stability into account
is not beneficial in practice, as it may not provide a satisfactory performance. This issue is
addressed to some extent in [10] by minimizing a performance index. Nevertheless, only a
piecewise-constant GSHF is considered there.

In this chapter, the problem of structurally constrained optimal GSHF with respect to a
quadratic continuous-time performance index is considered. The main objective is to design a

GSHF which satisfies the following constraints:
i) It stabilizes the plant.
ii) It has the desired decentralized structure.

iii) It has a prespecified form such as polynomial, piecewise constant, etc.
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iv) It minimizes a predefined guaranteed cost function.
It is to be noted that condition (iii) given above is motivated by the following practical issues:

¢ In many problems involving robustness, noise rejection, simplicity of implementation,
elimination of fixed modes, etc., it is desired to design GSHFs with a specific form, e.g.

piecewise constant, exponential, etc. [11, 9, 3].

e Design of a high performance stabilizing piecewise constant GSHF is studied in [10],
which can be classified as a special case of the most general form considered in the

present chapter.

¢ Design of unconstrained optimal GSHF using a continuous-time quadratic performance
index has been studied by several researchers [12, 13]. The optimal GSHF is derived
from a two-boundary point partial differential equation, which is very difficult to solve
analytically [12]. Different methods are proposed to solve the problem numerically [13,

14]. These methods are iterative and may not be computationally efficient in general.

In this chapter, conditions (ii) and (iii) are formulated by writing the GSHF as a linear combi-
nation of appropriate basis functions. The problem is then reduced to finding the coefficients
of the linear combination, such that conditions (i) and (iv) are met. It is shown that the afore-
mentioned problem is solvable (i.e., the desired GSHF exists), if and only if another system
which is derived from the original one is stabilizable by means of a constrained static output
feedback. A method is then proposed to solve the optimization problem for each coefficient
analytically, by keeping all remaining coefficients unchanged. The coefficients are obtained
one at a time and can be improved by solving the optimization problem with respect to each

coefficient iteratively, using the new improved values for other coefficients at each iteration.
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4.3 Existence of a stabilizing constrained GSHF
Consider a system . with the following state-space representation:

x(t) = Ax(¢) + Bu(r) (4.1a)

¥(t) = Cx(t) (4.1b)

where x € R, u € R™ and y € R" are the state, the input and the output, respectively, and
the matrices A, B and C have proper dimensions. It is desired to design a GSHF f(¢) which

minimizes the following performance index:

J= /0 " ()T Qx(t) + u(t) Rule)) de 42)

where R € R™™ and Q € R"™*" are positive definite and positive semidefinite matrices, re-
spectively. It is to be noted that since (4.2) is a continuous-time performance index, it takes
the intersample ripple effect into account. Consider now a set of basis functions for f(r),
denoted by:

f:={fi(1), 22(0), .. filt) } (4.3)

where:

fit) = filt+h), i=1,2,..k t>0 4.4

and where f;(z) € R"*" i=1,2,...,k, are matrices with only one nonzero element each (this
is clarified in Examples 1 and 2 of Section 4.5). It is to be noted that the equation (4.4) implies
that the basis functions are periodic with the period k. Assume that f(¢) is desired to be in the

form of a linear combination of the basis functions in f, as follows:

f@)=oufilt) +oafa(t) + -+ ou filt) (4.5)

It is to be noted that the set of basis functions (4.3) can be easily found, once the desired
form (e.g. polynomial, piecewise constant, etc.) and structure (e.g. block diagonal, etc.) of

the GSHF is specified. The desired structure is determined based on the information flow
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matrix which represents the control constraint. The motivation for using a specific form for
GSHE, on the other hand, was discussed in Section 4.2. For instance, one can use a GSHF of
the polynomial form with any arbitrary order, as an approximation to the Taylor series of the
optimal GSHF, which is very difficult to find in a closed form, in general.

The input u(t) is related to the samples of the output through the following equation:
u(t) = f(t)ylx], xh<t<(xk+1)h, x>0 (4.6)

Note that the discrete argument corresponding to the samples of any signal is enclosed in
brackets (e.g., y[k] := y(xh)). It is known that the state of the system (4.1) under the control

law (4.6) is given by:
t
x(r) = e ~*MAx(xch) + /he(’_T)ABu(T)d’L' 4.7
K

for any kh <t < (k+1)h, k¥ > 0. Let the following matrices be defined:

My(t) == e, (4.8a)
M;(t) := /O t VABf(T)Cdr, i=1,2,...k (4.8b)

k
M(t,00) := Mo(t) + Y 0M;(r) (4.8¢)

i=1

where o := [y, 03, ..., 0%]. One can easily conclude from (4.1b), (4.6), (4.7), and (1), that:
x(t) =M@t —xh,o)x[x], xh<t<(x+1)h 4.9
Consequently:
x[x] = (M(h,@))*x[0], x=0,1,2,... (4.10)

Now, define:

h h
N() = / M7 (¢, 00) QM (t, 0))di + / CT f(6)TRf (1)Cdt
0 o @.11)
M(1) :=[M1(t)T My@)T - Mk(t)T]
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Lemma 1 There exists a GSHF f(t) with the desired structure (given by the equation (4.5))
such that the system % is stable under the periodic feedback law (4.6) if and only if there
exist a symmetric positive definite matrix Q, and scalars 01,0y, ...,04 such that the matrix

:=| oql, opl, --- oyl, | satisfies the following inequality:

(Mo(h) + 6 (1)) Q (Mo () + G (R)) — Q + (&M (k)T (@M (h)) < O (4.12)

Proof It can be concluded from (4.9) that the system . is stable under the feedback law (4.6)
if and only if x[k] — 0 as k£ — co. On the other hand, x[k] — 0 as k — o if and only if all of
the eigenvalues of the matrix M(h, o) are located inside the unit circle in the complex plane
(according to (4.10)). As a result, the system .# is stable under the periodic feedback law
(4.6) if and only if all of the eigenvalues of the matrix M(h, ) = My(h) + &M (h) are located

inside the unit circle, or equivalently, the system with the representation:

7K+ 1] = Mo(h)x[x] + Ly x]
(4.13)
ylK] = M(h)xx]
is stabilizable by a static output feedback with the gain &. This problem is usually referred
to as "stabilization of a LTI system via structured static output feedback”, which has been
investigated intensively in the literature; e.g. see [10] and the references therein. The proof

follows immediately by applying the necessary and sufficient condition for the existence of a

stabilizing static output feedback gain obtained in [10] to the system given by (4.13). |

Remark 1 Iz results from the proof of Lemma 1, that for any given o, the system .# is stable
under the feedback law (4.6) iff all of the eigenvalues of the matrix M(h, &) are located inside

the unit circle in the complex plane.

Lemma 1 presents a necessary and sufficient condition for the existence of a structurally
constrained GSHF f(r) which stabilizes the system .. One can exploit the LMI algorithm

proposed in [10] to solve the matrix inequality (4.12) in order to obtain initial stabilizing values
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for the matrices o, i =1,2,...,k, denoted by 6;, i = 1,2,...,k, or conclude the non-existence

of such GSHF £(z).

Lemma 2 Suppose that the unknown coefficients 01,0y, ..., 04 are such that the GSHF f(t)

stabilizes the system .. The performance index J can be written as:

J = xT (0)K(ct)x(0) (4.14)

where K (o) satisfies the following discrete Lyapunov equation:
MT (h, 0)K ()M (h, o) — K(0t) +N(a) =0 (4.15)

Proof Substituting (4.9) and (4.6) into (4.2) and using (4.10) and (4.11), the performance

index can be rewritten as follows:

oo

J= i </(K+1)h (xT(t)Qx(t) +uT(t)Ru(t))dt) = Z (xT[K']N((x)x[K])
k=0 \xh k=0 (4.16)
=x7(0) 3 (M (,00))" () (M(h, 1)) x(0)
K=0
Since the system . is assumed to be stable under the feedback law (4.6), the infinite series
given above is converging. The proof follows from the well-known property that the solution
of this series satisfies the discrete Lyapunov equation given by (4.15), if the series is conver-

gent. |

As a result of Lemma 2 and Remark 1, the following steps should be taken in order to

find the optimal values for o, 0, ..., 04 which minimize the performance index (4.2):

1. Finding a region of convergence (ROC) for the infinite series in (4.16): As discussed
earlier, convergence of the series in (4.16) follows from the condition that all of the
eigenvalues of the matrix M(h, ) lie inside the unit circle. Since there are k variables
o4, 0, ..., Of, the corresponding ROC is a region in the k-dimensional space. It is im-

portant to note that this ROC is not empty, because it contains at least the following
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point (and a sufficiently close neighborhood of it, due to continuity):
(aq,00,...,04) = (61,02,...,6k)

It is to be noted that the non-emptiness of the ROC is required here because the opti-
mization will later be carried out in this region. Finding this ROC, in general, can be
cumbersome. However, using some inequalities, a conservative ROC can be obtained

(for example by using Bauer-Fike theorem, which will be explained later).

2. Solving the discrete Lyapunov equation given in (4.15): Since this equation is paramet-

ric, it cannot be solved easily by any computer software.

3. Solving a constrained optimization problem: After finding the ROC (or a subset of it)
and solving the Lyapunov equation and substituting its solution into (4.14), the perfor-
mance index will be obtained in terms of ¢y, ¢, ..., &g, which is valid in the obtained
ROC. Now, the performance index function should be minimized over this region. This
is a constrained global optimization problem, which is not solvable in general, if the

problem is not convex.

In the next section, a remedy for the drawbacks of the above steps will be presented.

4.4 Optimal performance index

To optimize a multivariate function numerically, when its derivative or gradient is unavailable,
one can use the following procedure, which is usually used in direct search methods [15]:

Consider all except one of the variables in the optimization problem as constants. Then, try to
find the optimal value for that particular variable. Similarly, select another variable, set all
other variables to be fixed, and solve the optimization problem with respect to that variable.

Continue this procedure for all variables one by one (it may require to repeat several times).
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It is to be noted that the above procedure may lead to a locally optimal point. This
method will now be used to solve the optimization problem formulated in the previous section,
and its effectiveness will later be discussed. Since only one variable is considered in each step
of the procedure and all other variables are set to be fixed, the problem can be reformulated as

follows:

Suppose that f(t) is a stabilizing GSHF for the system (4.1) in a closed-loop set-up. Suppose
also that it is desired to add a term proportional to a given function g(t) in the set of basis

functions £ given by (4.3) to generate a new GSHF f(t), i.e.:

f(t) = F(t) + ag(t) 4.17)

where o is a real constant number, which is desired to be found such that the continuous-time
performance index (4.2) is minimized. Note that the GSHF f(t) stabilizes the system . for

o = 0. Define the following matrices similar to (1):
1
My(t) := ™ +/ PDABF(1)Cdn,
0
1
Mi(r) = / =DABg(1)Cdr,
0

M(t,00) := Mp(t) + aM;(t)

Consider now the matrix defined in (4.11). It can be written as follows:

N(a) := Py+ P+ Pyor?

where:
Po:= [ (Mol QM) +CT T RF)C)
Pi= [ (Mo QM)+ M (1T M)
+ [ (ORI + CT o) RAIC)
Pyo= [ (436 QML)+ CTg(0) Re(C)
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Therefore:
J = xT(0)K (o) x(0) (4.20)
where:
(Mo(m)" + My (h)T) K (c) (Mo(R) + oMy (h)) — K () + (Po+ Pia+ Poo?) =0 (4.21)

Note that the equations (4.20) and (4.21) are obtained from (4.14) and (4.15). The problem is
now reduced to solving the discrete Lyapunov equation given in (4.21). The following theorem

will be used to simplify the problem formulation.

Theorem 1 The matrix K(a.) satisfying (4.21) can be written in the following closed form:

2
To+Tia+To?+-- -+ T, 0"
K(o) = - o (4.22)
r+rio+rnoct-+reo

where T; € R"™", i =0,1,...,2n%, are constant matrices, and r;, i =0,1,...,2n2, are real

constant numbers.

Proof One of the approaches for solving a discrete Lyapunov equation is the expansion
method, where the matrix equation is expanded into a set of linear algebraic equations. The
conventional techniques are then used to solve the resultant equations. This approach is now
used to prove Theorem 1. Denote the (i, j) entry of K(o) as k;j(o), for any i, j € {1,2,...,n}.
Expanding the equation (4.21), n? linear equations with n? variables k;;(a), i, j € {1,2,...,n},
will be obtained. It can be easily verified that each of these linear equations has the following

structure:

2 Z (OC U(a "ZV(O‘)’ V=152a"'7n2 (423)

1<i,j<n

where 77/ (), i,j € {1,2,...,n}, and zy (), v = 1,2, ...,n%, are polynomials with degrees of
less than or equal to 2. Using Kramer’s rule to solve this set of linear equations, one can

express k;j(ct), i,j € {1,2,...,n}, as a fraction whose numerator and denominator orders do
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not exceed 2n?. Furthermore, all of these fractions have the same denominator (because it is,
in fact, the determinant of the coefficients matrix). After substituting these expressions into

the matrix K (o), the equation (4.22) will be obtained. |

Theorem 2 Suppose that ri, i =0,1,2,....2n% in (4.22) are known. The unknown matrices
T;, i=0,1,2,...,2n% can be computed recursively, such that in each recursion one numerical

discrete Lyapunov equation is solved.

Proof Substituting (4.22) into (4.21), results in:

(Mo () + oM, (h)T) (To +Tio+ o+ Tz,,zaz”z) (Mo(h) + oMy (h))

_ <T0+Tloc+---+T2nza2”2) + (r0+r1a+---+r2nza2"2) (Po+Pra+Pra?) =0
(4.24)

One can rearrange the relation given by (4.24) to obtain a polynomial of degree less than or
equal to 2n® -2 with respect to ¢, where its coefficients are matrices. Since this polynomial
is equal to zero for any value of a, all of its coefficients should be zero matrices. This implies

that:

Mo(h)T ToMo(h) — Ty + Porg = 0 (4.25a)
Mo(h)T ToM1 (h) 4+ My (R)T ToMo(h) + Mo(R) TyMo(R) — Ty + Piro+Por; =0 (4.25b)
My ()" T;oMy (h) + Mo(h) T Timy My (h) + My (h)T T Mo(h) + Mo(h)T TiMo(h) — T;

+Pri g+ Pirio +Por; =0, i=23,...,2n° (4.25¢)

Consider now the equation (4.25a). Since the matrices Py and My(k) have already been com-
puted and also it is assumed that rp is known, this equation is a discrete Lyapunov equation
with numeric coefficients, which can be easily solved for Tp. Substituting the computed ma-
trix Tp into (4.25b) gives another discrete Lyapunov equation, from which 77 can be obtained.
Continuing this procedure, all of the matrices 7;, i = 0,1, ...,2n%, will be obtained. As dis-

cussed earlier, the discrete closed-loop system is stable for & = 0. Thus, all of the eigenvalues
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of My(h) are located inside the unit circle, and consequently, each of the foregoing discrete

Lyapunov equations has a unique solution. |

Theorem 2 gives a recursive method for computing the matrices T;, i = 0,1, ...,2n2,

provided the scalars r;, i =0, 1,...,2n, are available. It is desired now to present a method for

computing these scalars.

Definition 1 Consider a row vector Vi € R™, and a column vector Vo € R"2. Define the
global multiplication of these two vectors as follows:

T
GM(V\,V2) = | viv] vEv] ... viv]

where V! represents the i™ entry of Vi, i=1,2,...,n1. As an example, the global multiplication

of [123]and[012]Tis[012024036]7.

Theorem 3 The scalars r;, i =0,1,...,2n> in the denominator of the expression for K(a)
in (4.22), can be found by computing the matrix Mo(h) + aMy (k) at 2n® + 1 arbitrary and

distinct values of Q.

Proof Let the denominator of the expression given in (4.22) be denoted by den(c). Using

(4.23) and (4.21), one can easily verify that:

den(a) =rg+ro+ ro? 4+ r2n2a2”2

=det([GM(E1(oc),F1(oc)) y oy GM(E(@),Fy(@)) , GM (Ex(0), Fi (&) , ..., (4.26)
GM(EZ(OC),F,,(OC)) y ot GM(En(a)aFl(a)) LIS GM(E,,(OC),Fn(OC))] “Inzxn2)

(it is to be noted that den(¢) is, in fact, the determinant of the coefficients matrix for the set
of linear equations given by (4.23)) where E;(«) and Fi(a), i = 1,2,...,n, are the i™ row and
the /" column of the matrix Mo(h) + acM (h), respectively. Consider now 2n? 4 1 arbitrary

and distinct values for a denoted by &g, @1, ..., 0p,2. Compute Moy(h) + aM, (k) for each of
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these values in order to obtain E;(o) and F;( ), and then den(a) from (4.26). Eventually, the

unknown values r;, i =0, 1,...,2n2, will be obtained as follows:

— - - e -

— 2n2

ro 1 & &3 den(do)
n| |1 & of .. o den(dy) @2
- - -2 -
Fo,2 i 1 02 Otgnz e (XZZ;ZZ den(aznz)

It is to be noted that since &, @1, ..., 0,2 correspond to 2n2 41 distinct values of o, the matrix

given in (4.27) is invertible according to the Vandermond’s formula. [ |

As aresult, in order to compute K (), one should first find r;, i =0, 1, ..., 2n?, by using
Theorem 3, and then compute 7;, i =0,1,..., 2n2, according to Theorem 2.

So far, despite the parametric structure of the discrete Lyapunov equation in (4.21), it is
analytically solved by using numerical methods. Substituting the result into (4.20) gives the
performance index (4.2) in terms of the unknown variable o and the initial state x(0). Note that
for any initial state, the performance index obtained is a rational function whose numerator
and denominator are polynomials in a. Note also that to obtain this result, it was assumed
that the discrete-time equivalent system corresponding to . is stable under the GSHF (4.17).
Thus, a ROC for o which guarantees the stability of the system . under the GSHF (4.17)
should be obtained. This one-dimensional ROC consists of those values of & for which all
of the eigenvalues of the matrix My(h) + aM;(h) are located inside the unit circle. Since it
is assumed that f(¢) stabilizes the system . for o = 0, the point & = 0 belongs to the ROC.
Moreover, since finding the exact ROC can be cumbersome and very complicated, it is desired

to obtain a subset of the exact ROC. This problem is addressed in the following theorem.
Theorem 4 Let the eigenvalues of My(h) be denoted by A;, i=1,2,...,n, where:
] <A <--- <Al < 1
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a) For any o0 € (—Y,7Y), where y is the smallest positive real root of the following polyno-

mial:

(o) =~ ooy o o) o+ o ) o)

and where || - ||2 represents the 2-norm of the corresponding matrix, all of the eigenvalues

of the matrix Mo(h) + aM(h) are located inside the unit circle.

b) If the matrix Mo(h) is diagonalizable, then y can be obtained from the following equa-

tion:
il
condy(V)||Mi (k)2
where condy(V) := ||V ||2||[V "2 is the condition number of an eigenvector matrix V of
Mo(h).

Proof Let the eigenvalues of My(h) + oM (k) be denoted by A%, i =1,2,...,n. The Elsner
theorem [16] states that for any eigenvalue A* of Mo(h) + oM (h), there is an eigenvalue A;

of Mo(h), such that:
~1 i 1-1
A% = Aj) <227 |loMy ()13 (| Mo(h) |2+ |Mo(h) + oMy (R)|2) ™
Consequently, if o satisfies the following inequality:
1 _1
225l (1) 5 (211 Mo() 2+ | oy () 2)' ™7 < 1= ||

then all of the eigenvalues of the matrix My(h) + otM;(h) will be inside the unit circle. The
proof of part (a) follows directly from (4.28), and by noting that this inequality holds for oc =0,
and does not hold for & = +oo.

On the other hand, if My(h) is diagonalizable, the Bauer-Fike theorem [17] states that

for any eigenvalue A% of Mo(h) + aMi(h), there is an eigenvalue of Mo(h) denoted by A,

such that:
|A% — 4| < condy (V)| oM (R)||2 (4.28)
The proof of part (b) follows immediately from (4.28). |
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The bound for o given in part (b) of Theorem 4 is less conservative than the one given
in part (a). Hence, when the matrix Mo(h) is diagonalizable, it is better to use the bound given
in part (b). It is to be noted that the interval obtained for « in part (b) of Theorem 4 is typically
large, because M (h) is the integral over the sampling period [0, 4], which is typically small,
and consequently its 2-norm is small too. It is to be noted that the bounds given in Theorem
4 are symmetric around the origin, due to the nature of the theorems utilized for attaining the
bounds. This may lead to a conservative solution, in general. However, one can use the LMI
approach proposed in [18, 19] to obtain the exact bound at the cost of more computational
effort.

After finding K (o) in terms of o by using Theorems 2 and 3, and substituting them into
the equation (4.20), a rational performance index will be obtained with respect to o. Let this
performance index be denoted by J = %(%), where @ and I are polynomials of order less than
or equal to 2n%. The last step of optimization is to minimize this rational function over the
interval (—7,7). This problem is often referred to as “global optimization of a constrained
rational function” which is, in general, difficult to solve. However, for univariate rational
functions, it can be reformulated as a semidefinite programming (SDP) problem [20], which
can be solved by several available softwares. It is to be noted that one can directly take the
derivative of J with respect to o, equate it to zero, and then find its roots. However, for
large values of r, this rudimentary technique is not efficient. Therefore, reformulation of the

problem as a SDP will be discussed next. The following lemma is borrowed from [21].

Lemma 5 Consider the rational function w(t) = %(% over the interval (a,b), and suppose
that 7(t) and v(t) are relatively prime polynomials. If v(t) changes its sign over (a,b), then
the minimum value of the function w(t) over this interval is —eo.

Consider now the performance index J = %(g% over the interval (—7,¥). There exist

many simple algorithms to verify whether or not (o) and I'(ox) are relatively prime, and in

the case they are not relatively prime, cancel out their greatest common divisor (GCD). Hence,

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



without loss of generality, assume that ®(cr) and I'(¢t) are relatively prime polynomials. On
the other hand, since the closed-loop system is stable for any o € (—7,7), the function J
should be finite and positive in this interval. Consequently, according to Lemma 5, the sign of
the function I'(o) does not change in the interval (—7,y), i.e., it is either always positive or
always negative. Now, compute I'(¢) for an arbitrary value of @ which belongs to the interval
(—7,7)- If the result is negative, change the signs of the coefficients of both ®(a) and I'(«x).
This conversion does not affect J, but makes the sign of I'(e) positive for all o in (—7,7).
As a result, without loss of generality, assume that I'(ar) > 0 for any o € (—7,7). Let the

minimum value of J in this interval be denoted by J,,;. One can write:
Jopt =sup {A : ®(a) —Al(@) >0, Ve € (-7,7)} (4.29)

The above technique is the key to solve the problem of “global optimization of a constrained
rational function”, because it reduces the optimization of a rational function to the optimization
of a polynomial [21].

It follows from the results of M. Fekete theorem [21] and the discussion in Section 3.1.1

of [22], that there exist two positive semidefinite matrices €21 and Q5, such that:
®(a) - AT(0) = XTQ %) + (Y — o) XT %, (4.30)
where
T T
X1=[1 a o .- az”z} ; X2=[1 a o’ - oc2”2‘1}

Let the polynomial ®(a) — AT'() be denoted by Z,-zﬁ) &i(A)ol. In addition, define Q’ij and Q;_j
as the (7, j) entries of the matrices Q and €, respectively. Equating the corresponding coeffi-
cients in the two sides of the equation (4.30) yields the following relation for v =0, 1,...,2n%:

L= 3 Qi+ Y @f- ¥ ) 4.31)

i+j=v i+j=v i+j=v-2
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The optimization problem (4.29) is now equivalent to finding the supremum of A subject to
(4.31), where Q; and Q, are positive semidefinite matrix variables. This is a SDP problem,

which can be solved numerically [21], [23].

Algorithm 1
Step 1) Set a? = 6;, i=1,2,....k, and j=1= 1.
Step 2) Set g(t) = f;(¢).

Step 3) Compute K () by using Theorems 3, 2 and 1, and substitute them into (4.20) in

order to obtain J.
Step 4) Find a region of convergence, denoted by (—7v,7), using Theorem 4.

Step 5) Cancel out the GCD of the numerator and the denominator of J, make the sign
of its denominator positive in the interval (—7v,7) as discussed ealier, and denote the

. .. Do
resultant function with %.

Step 6) Denote ®(a) — AT'(ax) with Z?ﬁz Ci(A)a'. Now, solve the following optimization
problem, which is, in fact, a SDP problem:
Find the value of o which results in the supremum of A for the variables Q1, Qj and o

subject to (4.31), where 21 and €2, are positive semidefinite variables.

Step 7) Denote the value obtained for o in Step 6 with Oop. Set Oc; = aj-—l + Oops, and
let the new function f(t) be the old f(t) plus 0topug(t). If j < k, increase j by one and

go to Step 2.

Step 8) If 3%, |t — al™!| > &, where § is a prescribed tolerance, then set j = 1,

increase the value of | by one, and go to Step 2.

Step 9) The optimal coefficients of the GSHF f(t) defined in (4.5) are given by o; =

o, i=1,2,..,k
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It is to be noted that Algorithm 1 should be ideally halted when ail = oc,.l'l, i=1,2,...,k.

However, Step 8 is added to the algorithm to assure that it will stop in a finite time.

Remark 2 The problem of finding the optimal value of « is, in fact, formulated as a con-
strained optimization problem by concentrating on only the values of a. in the open interval
(—7,7). However, if the solution of this problem is —y" or y~, this implies that the global
minimum of the performance index most likely corresponds to a value of ¢ outside the region
given by Theorem 4. In other words, if the minimum value of the above constrained opti-
mization problem occurs at o = —y* or o0 = Y, the global minimum of the unconstrained
optimization problem (where the only implicit constraint is stability), occurs for a value of o
less than or equal to vy, or greater than or equal equal to —%, respectively. To take these case
into consideration, one can replace Step 7 of Algorithm I with the following:

Step 7) Denote the value obtained for & in Step 6 with oy, Set ocil = ocf T Oopt, and the
new function f(r) as the old f(¢) plus Qppg(t). If Ctopy = —y+ 0r Olpp = 7™, go to Step 2. If

i < k, increase the value of i by one and go to Step 2.

Remark 3 As discussed earlier, the optimal value of & depends on the initial state x(0).
However, if the exact initial state is unknown or if it is desired to find a value of o which
is independent of the initial state, the optimization problem can be treated probabilistically.
Assume that the expected value of x(0)x(0)T is known and denoted by Xo. Suppose that it is

desired to minimize the expected value of J over all initial values. One can write:

E{J} = E {xT (0)K(0)x(0)} = trace (K(a)xo) (4.32)

If K(a) (which is obtained by using the method discussed earlier) is substituted into the above
equation, a new rational function will be obtained. Now, the probabilistic optimization prob-
lem reduces to minimizing this rational function over the interval (—7v,v), which can be treated

by using the SDP approach as discussed before.
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Remark 4 After formulating the problem with the equations (4.20) and (4.21), one can choose
any converging numerical algorithm to find the optimal value of . However, the problem is
not convex, and also the step sizes required for convergence to a point with a desired accuracy
is unknown. Hence, one of the novelties of the approach presented in this chapter is that it
specifies the step sizes (except for Step 6 of Algorithm I regarding the optimization of a rational
function that generally converges to its optimal point very fast compared to the algorithm

presented in [13, 10]).

4.5 Numerical examples

Example 1 (Harmonic Oscillator) Consider a continuous-time LTI system with the following

state-space matrices:

A= 0 ¢ , B= 0 ,C=[10} (4.33)
-¢ 0 1

and x(0) = [ 1 1 ]7. Two different values (1,2) and (—5,1) for the pair (£, k) will be con-
sidered here, which correspond to the examples presented in [13] and [12], respectively.

i) { =1, h = 2sec: If a ZOH is used with a unity controller, it can be easily verified
that the overall closed-loop system will be unstable. Note that for ZOH, f(¢) is equal to 1.
Suppose that it is desired to obtain a constant GSHF, which minimizes the performance index
(4.2), with Q = R = 1. To find the desired GSHF f(z), an initial constant stabilizing GSHF
f(2) is required. One can verify that f(¢) = 0.9 stabilizes the system. For this constant GSHF,
the performance index is 28.199. Let the function g() given in (4.17) be equal to 1. Pursuing
the proposed method, the optimal GSHF £(¢) is obtained to be 0.502, which yields J = 9.078.
This means that the minimum achievable performance index is 9.078 under the constraint of
constant GSHF. It is to be noted that a constant GSHF is equivalent to a ZOH and a constant

gain controller.
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Suppose now that it is desired to use a piecewise constant GSHF to further improve the

performance index. Consider the following three basis functions for the desired GSHF:

f,(t) =u <l‘— (i—31)h> — U (l‘—%), i=1,2,3 4.34)

where u{(-) represents the unit-step function. One can commence the proposed procedure

from the values 8; = 6, = 63 = 0.9 in (4.5). Tuning these coefficients by using Algorithm 1
yields oy = —0.399, a; = 0.690 and o3 = 0.903. Hence, the optimal piecewise constant

GSHF with the basis functions (4.34) is as follows:

F(t) = —0.399, (1) +0.690£2(¢) +0.903 £3(¢) (4.35)

and the corresponding optimal performance index is 7.088.

The unconstrained optimal GSHF for this system is derived in [13]. However, since it is
obtained through an iterative procedure, the optimal GSHF is a curve for which no judgement
can be made (because the function does not have any closed-form expression). However, the
performance index corresponding to the GSHF given in [13] is 6.8. In contrast, by using a
very simple structure for GSHF as discussed above, the resultant performance index (7.088)
is very close to the unconstrained optimal value (6.8).

ii) { = —5, h= lsec: Suppose that it is desired to have a piecewise constant GSHF with

the basis functions:

() =m (t—(i—zl)h> —u <r—5’—’—), i=1,2 (4.36)

Starting from 0; = 6, = —4, the optimal GSHF is obtained to be:

Ft) = —1.371£1(r) +0.960£2(r) 4.37)

and the corresponding optimal performance index will be 3.474. On the other hand, using
the optimal continuous-time LQR controller and assuming that both states are available in

the output (i.e., without using an observer), the minimum performance index will be 2.651
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(note that this is, in fact, the minimum achievable performance index for the system using any
type of control). The output of the system under the optimal continuous-time LQR controller
and under the optimal GSHF (4.37) are depicted in Figure 4.1. This figure demonstrates that
the proposed GSHF performs very closely to the optimal LQR controller. This is due to the
fact that by using GSHF, one can obtain much of the efficiency of state feedback, without the

requirement of state estimation [3].

1

0.8

0.6

GSHF
0.4
LQR

Figure 4.1: The output of the system in Example 1 under the continuous-time optimal LQR

controller and under the optimal GSHF given in (4.37).

Example 2 Consider a continuous-time LTI system with the following state-space matrices:

-1 -4 -3 0 10
14 - y 13:= C?::

5 3 0 1 01

and the initial state x(0) = [ 1 1 ]. Let the sampling period be # = 0.1sec. It can be easily
verified that the minimum achievable performance index (4.2) with Q = R = I for the system
is 2.857. Assume now that it is desired to design a decentralized periodic controller for the

system. In other words, it is required to obtain a 2 x 2 diagonal GSHF. Furthermore, assume
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that the basis functions for the GSHF are to be:

10 00 sin(t) 0
fil) = , f)= , A=
00 01 0 0

Let the algorithm start with the initial parameters 8, = 1, 6, = 1, 63 = 0. Note that these pa-
rameters represent a simple ZOH for each input-output agent in the closed-loop configuration,
and result in an initial performance index equal to 475.110. Now, let the coefficients of these

three basis functions be tuned as proposed in the present chapter. This will result in:

_ 1.084 +27.128sin(¢) 0
fle)= (4.38)
0 ~1.360

Consequently, the resultant performance index will be 5.396. This implies that the decentral-
ized performance index is improved from 475.110 to 5.396, while the minimum achievable

performance index (with no structural constraint) is 2.8566.

4.6 Conclusions and suggested future work

In this chapter, a novel approach is proposed to design a generalized sampled-data hold
function (GSHF) with any prespecifed structure (e.g., decentralized with block diagonal in-
formation flow matrix) and any given form (e.g., polynomial) for a continuous-time finite-
dimensional linear time-invariant system. The resultant GSHF is optimal with respect to a
linear-quadratic cost function, subject to the constraints imposed on the structure and the form
of the GSHF. A necessary and sufficient condition for the existence of a stailizing GSHF with
the desired constraints is obtained. Then, an algorithm is proposed to find the optimal GSHF.
This chapter uses the recent results in semidefinite programming. Simulation results demon-
strate the effectiveness of the proposed method.

There are several suggestions as the continuation of the work proposed in present chap-

ter. First, it would be very useful to find an optimal choice of the set of basis functions with
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any given size (in terms of the number of functions in the set). Another direction for the future
work, could be a systematic methodology to obtain a set of basis functions which can poten-
tially stabilize a large-scale system by means of a decentralized controller, when there is no
LTT decentralized controller to achieve stability. Furthermore, using H.. norm instead of H, as

the performance index can be interesting as far as robustness is concerned.
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Chapter 5

Simultaneous Stabilization using

Decentralized Periodic Feedback Law

5.1 Abstract

In this chapter, controlling a set of continuous-time LTI systems is considered. It is assumed
that a predefined guaranteed continuous-time quadratic cost function, which is, in fact, the
summation of the performance indices for all systems, is given. The main objective here is
to design a decentralized periodic output feedback controller with a prespecified form, e.g.,
polynomial, piecewise constant, exponential, etc., which minimizes the above mentioned guar-
anteed cost function. This problem is first formulated as a set of matrix inequalities, and then
by using a well-known technique, it is reformulated as a LMI problem. The set of linear ma-
trix inequalities obtained represent the necessary and sufficient conditions for existence of the
desired structurally constrained controller. Moreover, an algorithm is presented to solve the
resultant .MI problem. Finally, the efficiency of the proposed method is demonstrated in two

numerical examples, which are investigated in several relevant papers.
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5.2 Introduction

The idea of using generalized sampled-data hold functions (GSHF) instead of a simple zero-
order hold (ZOH) in control systems was first introduced in [1]. Kabamba investigated several
applications and properties of GSHF in control systems [2, 3, 4]. He showed that many of
the advantages of state feedback controllers, without the requirement of using state estimation
procedures can be obtained by using a GSHF. A comprehensive frequency-domain analysis
was done by Feuer and Goodwin to examine robustness, sensitivity, and intersample effect
of GSHF [5]. Several advantages and disadvantages of GSHF and its application in practical
problems have been thoroughly investigated and different design techniques are proposed in
the literature [6, 7].

Simultaneous stabilization of a set of systems, on the other hand, is of special interest in

the control literature [8, 9], and has applications in the following problems:

e A system which is desired to be stabilized by a fixed controller in different modes of

operations, e.g., failure mode.
¢ A nonlinear plant which is linearized at several equilibria.

¢ A system which is desired to be stabilized in presence of uncertainties in its parameters.

Despite numerous efforts made to solve the simultaneous stabilization problem, it still
remains an open problem. In the special case, when there are only two plants to be simulta-
neously stabilized, the problem is completely solved in [10, 11], and for the case of three and
four plants, some necessary and sufficient relations in the form of polynomial are presented
in [12]. However, no necessary and sufficient condition has been obtained for simultaneous
stabilization of more than four plants, so far. Moreover, it is proved in [13] that if the number
of plants is more than two, then the problem is rationally undecidable. It is also shown in

[14] that the problem is NP-hard. These results clearly demonstrate complexity level of the
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problem. Since there does not exist any LTI simultaneous stabilizing controller in many cases,
a time-varying controller is considered in [15]. It is shown that for any set of stabilizable
and observable plants, there exists a time-varying controller consisting of a sampler, a ZOH,
and a time-varying discrete-time compensator which not only stabilizes all of the plants, but
also acts as a near-optimal controller for each plant. This result points to the usefulness of
sampling in simultaneous stabilization problem. Nevertheless, fast sampling requirement and
large control gain are the drawbacks of this approach.

Stabilizing a set of plants simultaneously by means of a periodic controller in order
to achieve good behavior for the control systems is investigated in the literature [4, 16]. A
method is proposed in [4] to not only minimize a guaranteed cost function corresponding to
all of the systems, but also accomplish desired pole placement. The drawback, however, is
that the problem is formulated as a two-boundary point differential equation whose analyti-
cal solution is cumbersome, in general. Some algorithms are proposed to solve the resultant
differential equation numerically, in the particular case of only one LTI system, which is no
longer a simultaneous stabilization problem [17, 18]. Design of a high-performance simulta-
neous stabilizer in the form of a piecewise constant GSHF is investigated in [19].

On the other hand, it is not realistic in many practical problems to assume that all of
the outputs of a system are available to construct any particular input of the system. In other
words, it is often desired to have some form of decentralization. Problems of this kind ap-
pear, for example, in electric power systems, communication networks, large space struc-
tures, robotic systems, economic systems and traffic networks, to name only a few. Note that
throughout this chapter the term ”decentralized control” refers to a controller which constructs
any input of the system using certain outputs, determined by the given information flow struc-
ture [20, 21].

This chapter deals with the problem of simultaneous stabilization of a set of systems by

means of a decentralized periodic controller. It is assumed that a discrete-time decentralized
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compensator is given for a set of detectable and stabilizable LTI systems. This compensator is
employed to simplify the simultaneous stabilizer design problem. In certain cases, however,
the problem may not be solvable without using a proper compensator (e.g., in presence of
unstable fixed modes [21]). The objective is to design a GSHF which satisfies the following

constraints:
i) The GSHF along with the discrete-time compensator simultaneously stabilize the plants.
i1) It has the desired decentralized structure.
iii) It has a prespecified form such as polynomial, piecewise constant, etc.

iv) It minimizes a predefined guaranteed cost function, which is the summation of the per-

formance indices of all plants.
It is to be noted that condition (iii) given above is motivated by the following practical issues:

¢ In many problems involving robustness, noise rejection, simplicity of implementation,
elimination of fixed modes, etc., it is desired to design GSHFs with a specific form, e.g.

piecewise constant, exponential, etc. [2, 22, 23].

¢ Design of a high performance simultaneously stabilizing piecewise constant GSHF with
no compensator is studied in [19]. Therefore, the present chapter solves the most general

form of the problem.

¢ In the case of sufficiently small sampling period, the optimal simultaneous stabilizer
(whose exact solution, as pointed out earlier, involves complicated computations), can

be approximated by a polynomial (e.g., the truncated Taylor series).

Conditions (ii) and (iii) are formulated by writing the GSHF as a linear combination

of appropriate basis functions. The problem is then reduced to finding the coefficients of the
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linear combination, such that conditions (i) and (iv) are met. It is shown that the aforemen-
tioned problem is solvable (i.e., the desired GSHF and compensator exist), if and only if a
particular set of systems are simultaneously stabilizable by means of a decentralized szatic
output feedback, which unlike the general simultaneous stabilization problem, is rationally
decidable [14]. Furthermore, one of the substantial features of the present work is that in
order to improve the performance of the system, one can simply extend the set of the ba-
sis functions and find the corresponding new coefficients, accordingly. On the contrary, in
the case of continuous-time LTI controller, the order of the controller needs to be increased
(which increases the complexity of the overall system) in order to achieve a higher perfor-
mance. Moreover, it is shown in an example that there may exist no LTI controller to stabilize

the system, while a simple GSHF can stabilize it and result in an excellent performance.

5.3 Problem formulation

Consider a set of 17 continuous-time detectable and stabilizable LTI systems .#,.%, ..., %y

with the following state-space representations:

)'C,'(t) =Aix,-(t)+B,~u,~(t) (5.1a)
yi(t) = Cixi(t) (5.1b)
where x; € R™, u; € R™ and y; € RY, i € ) := {1,2,...,1}, are the state, the input and the

output of ., respectively. Assume that the discrete-time compensator K., i € 7j, with the

following representation is given:

zi[k+1] = Ezi[x] + Fy;[x]
5.2)
(Pi[K] = Gzi[K'] +H}’1[K]

and assume also that z;{0] = 0. It is to be noted that the discrete argument corresponding

to the samples of any signal is enclosed in brackets (e.g., y;[k] = yi(kh)). K. can be either
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decentralized with block-diagonal transfer function matrix or centralized. Suppose now that
the system .%, i € fj is desired to be controlled by the compensator K and the hold controller

K! represented by:
ui(t) = f(O)¢ilx], xh<r<(xk+1)h, x=0,1,2,..

where h is the sampling period, and f(t) = f(r+h), t > 0. Note that f(¢) is a sampled-data

hold function, which is desired to be described by the following set of basis functions:

£:={fi(), fo(1), -, fi()}

where fi(¢) € R™*4, i=1,2,...,k. Thus, f(t) can be written as a linear combination of the

basis functions in f as follows:

f@t) = filt)oay + fa(t) o+ + fi(t) o (5.3)

where some of the entries of the variable matrices o € R4*¥!, i =1,2,...,k, are set equal to
zero and the other entries are free variables so that the structure of f(¢) complies with the
desired control constraint, which is determined by a given information flow matrix [21]. This
is illustrated later in Example 2. Furthermore, the set of basis functions f is obtained according
to the desirable form of GSHF (e.g, exponential, polynomial, etc.). This will be demonstrated
in Examples 1 and 2. Note that the motivation for considering a special form for f(¢) is
discussed in the introduction. Besides, some examples are presented in [24] to demonstrate
the effectiveness of the proposed formulation for GSHE.

For any i € {1,2,...,k}, put all of the indices of the zeroed entries of ¢; in the set E;.
Assume now the expected value of x;(0)x;(0)7, which is referred to as the covariance matrix
of the initial state x;(0), is known and denoted by Xé for any i € 7). The objective is to obtain

the constrained matrices @, ..., 0% such that the following performance index is minimized:
< [ T T
J= E{ D /O (xi ()" Quxi(t) + ui(z) R,-u,-(t))dt} (5.4
i=1
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where R; € R™™ and Q; € R™*" are symmetric positive definite and symmetric positive
semi-definite matrices, respectively, and E{-} denotes the expectation operator. Note that by
minimizing the cost function given above, the stability of the system .#; under the discrete-
time compensator K: and the hold controller K}, for any i € ), is achieved because the cost
function becomes infinity otherwise. Note also that since (5.4) is a continuous-time perfor-
mance index, it takes the intersample ripple effect into account.

The equation (5.3) can be written as f(¢) = g(t) @, where:

s0):=1A() folt) - f0)], @:=[of of .. af]" (5.5)

Define a new set E based on the sets Eq, ..., Ei, such that any of the entries of & whose index

belongs to E is equal to zero. On the other hand, it is known that:
xi(t) = e~ MAix, (1ch) + /Kt ) DA (1)dT
for any kh <1 < (k+1)h, k¥ > 0. Let the following matrices be defined for any i € 7:
Mi(r) ==&, M(r) := /Ot e=DAiBe(T)dT
Therefore:
x;(£) = My(t — kh)x;[K] + M;(t — kh) ad; k] (5.6)

for any kh <t < (x+1)h. It can be easily concluded from (5.1b), (5.2), and (5.6) by substitut-
T
ingt = (k+1)h, thatx;[x +1] = M;(h, o)x;[k] for any x > 0, where x;[x] = [ x[x]T z[x]T ] .

and:
- M;(h) +M;(h)oHC; M;(h)aG
My(h, ) := (k) + Mi(R)HC; - Mi(h) (5.7)
FC; E
It is straightforward to show that:

xi[x] = (My(h,@)) x;[0], x=0,1,2,...
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5.4 Optimal Structurally Constrained GSHF

It is desired now to find out when the structurally constrained GSHF f(¢) exists such that the

system .%; is stable under the compensator K. and the hold controller K}, for any i € 7.

Lemma 1 There exists a GSHF f(t) with the desired form (given by the equation (5.3)) such
that the system ., is stable under the compensator K' and the hold controller K ,’l foranyi€ 1,

if and only if there exists an output feedback with the constant gain o, with the properties that:
1. Each entry of a whose index belongs to the set E is equal to zero.

2. It simultaneously stabilizes all of the 1 systems A, 5, ...,jn, where the system %,

i € 7, is represented by:

Mi(h) 0 M;(h)
B[+1] = (k] + iti[ ]
FC FE 0

yilk|=| HC, G |%ilK]

(note that each of the two 0’s in the above equation represents a zero matrix with proper

dimension).

Proof The proof follows from the fact that the system .%;, i € 7, is stable under K’ and K,‘; if
and only if all of the eigenvalues of the matrix M;(h,a) given in (5.7) are located inside the

unit circle in the complex plane. |

Remark 1 Lemma I presents a necessary and sufficient condition for the existence of a struc-
turally constrained GSHF f(t) with a desired form, which simultaneously stabilizes all of the
systems |, 5, ...,y along with a given discrete-time compensator. The condition obtained
is usually referred to as ”simultaneous stabilization of a set of LTI systems via structured static

output feedback”, which has been investigated intensively in the literature. For instance, one
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can exploit the LMI algorithm proposed in [19] to solve the simultaneous stabilization prob-
lem given in Lemma 1 in order to obtain a stabilizing matrix o denoted by & (which is later

used as the initial point in the main algorithm), or conclude the non-existence of such GSHF,

otherwise.

Define now the following matrices for any i € 7}:

fac)

= [ (o) o)
, h
P! Z=/ M,'(t)TQ,'Mi(t)) dt
= [ 07 00) +8) Rigle)

gh(a) := Pi+ PlaHC; + (PlaHC;)T + (aHC)T Pi(aHC))

—

[32

¢ (o) := PlaG+ (aHC)T PsoG

go(0)  qy(a)
¢()T GTa™PlaG

Ni(OC) =

Theorem 1 Suppose that the system &, is stable under K\ and K,"l, for any i € 7). The perfor-

mance index J defined in (5.4) can be written as:

n X5 0
J=trace | Y K| ° (5.8)
= {0 0

where K; , i € 1), satisfies the following discrete Lyapunov equation:
M (h, 0)KiMi(h, &) ~ Ki+ Ni(et) = 0 (5.9)
Proof One can write the performance index as follows:

J= E{ >3 [ 0o+ (ORa()) s

i=1x=0

{" S (i@ xm)}

1 k=0
E{

H

-~

M:

H

X; (O)KiX,'(O) }

T
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where:

oo

K=Y M[(h,0)*Ni(o0)Mi(h, )" (5.10)

k=0

Since it is assumed that the system .}, i € 7], is stable under Ké and K,’;, it can be
concluded from the discussion in the proof of Lemma 1 that all of the eigenvalues of the
matrix M;(h, o), i € 7, are located inside the unit circle in the complex plane, This implies
the convergence of the infinite series given in (5.10), where its solution satisfies the discrete

Lyapunov equation (5.9). This completes the proof. ]

The following lemma reformulates the problem of minimizing the performance index

defined by (5.4) (or equivalently (5.8)).
Lemma 2 Assume that all of the eigenvalues of the matrix M;(h, &) lie inside the unit circle.
a) Consider an arbitrary matrix K}, such that:
MY (h, 0)K}M;i(h,00) — K} + Ni(a) < 0 (5.11)
Then x;(0)T K;ix;(0) < x;(0)T K*x,(0).

b) For any number { greater than x;(0)T Kix;(0), there exists a positive definite matrix K}

satisfying the inequality (5.11) such that x;,(0)TK}x;(0) < &.

Proof Proof of (a): Suppose that the matrix K/ satisfies the inequality (5.11). It can be

concluded from (5.9) that:
M (h, o) (K} — K;)M;(h,a) — (K} —K;) <0 (5.12)

Since all of the eigenvalues of the matrix M;(h, o) are inside the unit circle, it can be concluded

from the above inequality that K — K; is positive semidefinite. Hence:

x;(0)T (K — K;)x;(0) > 0 (5.13)
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or equivalently:

x;(0)T K;x;(0) < x;(0) K;x;(0) (5.14)

Proof of (b): Consider the following discrete Lyapunov equation:
M (h, 0)Qeli(h, ) — Qe + €1 =0 (5.15)

Since all of the eigenvalues of the matrix M;(h, ) are located inside the unit circle, for any
€ > 0, there exists a unique matrix ¢ > 0 that satisfies the above equation. Define now
the matrix K7 := Q. + K;. It is clear that K satisfies (5.12) and also (5.11). The upper
bound for the solution of a discrete Lyapunov equation presented in [25] yields the inequality
16l < € x s(h,a), where || - || represents the Frobenius norm, and the function s(k, @) is
related to M;(h, ). Therefore, it can be concluded that as € goes to zero, the matrix Qg
approaches the zero matrix. As a result, when € goes to zero, the matrix K;* converges to
the matrix K;. This means that the term x;(0)7K*x;(0) can be made sufficiently close to

Xi(O)TK,'X,'(O). [ |

According to Lemma 2, the problem of minimizing J given by (5.8) subject to the con-
straint (5.9) can be equivalently considered as the minimization of J subject to M? (h, o) K;M (h, o) —

K;+Ni(a) <0, fori=1,2,...,n. According to [26], this matrix inequality is equivalent to:

K, +N:(o) MT(h )K;
’N (o) M7 (h, o)k <0 (5.16)
KiM;(h, o) —K;

Lemma 3 The matrix Pé is positive definite if and only if there does not exist a constant

nonzero vector x such that g(t)x =0 for all t € [0, h].

Proof Consider an arbitrary nonzero vector x € Ri1+t2+-+k  Since R; is positive definite,
the term x7 g(¢)TR;g(¢)x is always nonnegative. Hence, its integral over the interval [0, 4] is
zero if and only if g(¢t)x = O for all ¢ € [0,4]. In addition, the term M;(z)T Q;M;(¢) is always

nonnegative due to the positive semi-definiteness of the matrix Q;. If there exists a nonzero
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vector x such that g(¢)x = 0 for all 7 € [0, ], then it is straightforward to show that the matrix
P! is not positive definite, otherwise the term x” g(¢)7 R;g(¢)x is always positive, which implies

the positive definiteness of the matrix PJ. |

Lemma 3 presents a necessary and sufficient condition for the positive definiteness of
the matrix PJ, which “almost always™ holds in practice. It is assumed in the remainder of the
chapter that the matrix Pé' is positive definite, as this assumption is required for the develop-

ment of the main result.

Theorem 2 The matrix inequality (5.16) is equivalent to the following matrix inequality:

@ (@) (@)

@, @ (d)T | <0 (5.17)
o, P -
where
| i 1 PloHC; + (PlaHG)" PiaG
¢ll = —Kl . 3
(PilaG)T 0
. Mi(h) ©
(I)lz = Ky l y
FC; E
. Mi(h)(P)~M;(m)T 0
o gk, | HOETET 0|

0 0
. L1
m:ﬁﬁﬁabm;G}

@ = | ¢yt o |K

Proof One can write the inequality (5.16) as follows:

(I)i (Di T (I)i T

|| e 0] & o]0
o, @5 (@5)"
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The matrix inequality (5.17) yields by applying the Schur complement formula to the above

inequality. L

It can be easily verified that in the absence of the block entry @, the matrix given in
the left side of (5.17) is in the form of LMI. Moreover, this block entry cannot be converted to
the LMI form due to the negative quadratic term inside it [27]. Thus, the technique introduced
in [28] will now be used to remedy this drawback. Consider the arbitrary positive definite
matrices I'1, I, ..., I’y with the same dimensions as K1,Kj, ..., Ky, respectively. Since Pé' is

assumed to be positive definite, one can write (K; — I;)Q;(K;—T;) > 0, i € 7}, where:

Mi(h)(P;)~' Mi(h)" O
0 0

Therefore:

-KQK; <IL;, ien (5.18)

where IT; :=1T,Q;; — K;Q.T', - TQK;, i € 7).

Theorem 3 There exist positive definite matrices K1,K>, ..., Ky satisfying the matrix inequal-
ity (5.17) if and only if there exist positive definite matrices K1,K»,...,Ky and I'1, 12, ...,T'y
satisfying the following matrix inequalities:

o (@) (@)

®, —K+IL (@)7 | <0, i€ (5.19)

o] oL -1
Proof If there exist positive definite matrices K1, K3, ..., Ky and I'y, Iy, ..., Iy, satisfying (5.19),
then according to (5.18), the matrices K1, K3, ..., Ky satisfy (5.17) as well. On the other hand,
suppose that there exist positive definite matrices K1, K3, ..., Ky satisfying the matrix inequal-
ity (5.17). Choosing I'; = K; for i = 1,2,...,m, one can easily verify that d>g = —K; +1I1,.

Hence, the inequality (5.17) is equivalent to the inequality (5.19) in this case. [
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It is to be noted that the matrix inequality (5.19) is LMI for the variables Kj, i € 1}, and
o, if the matrices I';, i € 7}, are set to be fixed. The following algorithm is proposed to compute

the coefficients o, 0, ..., 0ty in order to obtain the desired GSHF f().
Algorithm 1

Step 1) Set o = & (where O is defined in Remark 1) and solve the discrete Lyapunov

equation (5.9) in order to obtain K1,K;, ..., Ky.
Step 2) Set I'; = K| for all i € T, where the matrices K;, i € 1), are obtained in Step 1.
Step 3) Minimize J given by (5.8) for K1,K3, ...,Kyn and o subject to

— The LMI constraint (5.19)
- K;>0forallieq

~ The constraint that each entry of 0. whose index belongs to the set E must be zero.
Step 4) I 3, |K; — Tl < 8, where § is a predetermined error margin, go to Step 6.

Step 5) Set I'; = K for i = 1,2,...,m, where the matrices K;, i € 1}, are obtained by

solving the optimization problem in Step 3. Go to Step 3.

Step 6) The value obtained for o is sufficiently close to the optimal value, and substitut-
ing the resultant matrices K;, i € 7, into (5.8) gives the minimum value of J. Note that

the coefficients 0., 0, ..., O can be obtained from (5.5).

Remark 2 The matrix ¢ defined in Remark 1 has the property that all of the eigenvalues of the
matrices M;(h, &), i € 7}, are located inside the unit circle. As a result, the discrete Lyapunov

equation (5.9) is solvable for a. = {, as it is required in Step 1 of the above algorithm.

Remark 3 It can be easily verified that the value of J decreases each time that the optimiza-

tion problem of Step 3 is solved, which indicates that the algorithm is monotone decreasing.
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On the other hand, since the inequality (5.18) will be converted to the equality if I'; = K;,
Algorithm 1 should ideally stop when 2?21 |[Ki —Ti|| = 0 in order to obtain the exact result.
However, since it is desirable that the algorithm be halted in a finite time, Step 4 is added. It
is to be noted that § determines (indirectly) the closeness of the performance index obtained

to its minimum value.

5.5 Numerical examples

Example 1 This example can be found in [28, 29], and represents the ship-steering system

with two distinct modes. Consider two systems with the following parameters:

[ —-0.298 -0.279 0 - - 0.116 -
Ap=| —4370 —-0.773 0 |, Bi=| -0.773

i 0 1 0 ] I 0 ]

[ —-0.428 —0.339 0 ] [ 0.150 -
Ay= ] -2939 -1.011 0 |, B2=| —1.011

i 0 1 0 . I 0 ]

and C; = C, = I. Assume that the initial state of each of these systems is a random variable
whose covariance matrix is equal to the identity matrix, and that # = 0.1sec. Assume also that
it is desired to find a GSHF which minimizes the performance index J given by (5.4) with

R, =Q;=1, i=1,2, while it has the following structure:

ft)= [ x+xsin(t)  x  k+ke! ] (5.20)

where the symbol ”*” represents constant values which are to be found. Note that no com-

pensator is considered in this example. The following basis functions and coefficient matrices
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can therefore be defined for (5.20):

fi(e) =sin(t), L()=1, ft)=¢"

a=[roo]im=[s s ]iw=[o0]

It is to be noted that the ”*” elements used above imply that these entries of the vectors o1, ot
and o are the ones that are not set equal to zero. Let Algorithm 1 start with the following

initial stabilizing point:

0 00
&=|-755
0 00
Accordingly, the optimal value for a will be:
2.805 0 0
=1 -3925 2117 —0.188
0 0 1.480

which results in a GSHF equal to the following:

—3.925+2.805 sin(¢) 2.117 —0.188+1.480¢*

The corresponding performance index is 31.581.

Example 2 Consider a two-input two-output system . consisting of two single-input single-

output (SISO) agents with the following state-space matrices:

05 0 0 0 -2
-2 0 2
A= 0 -25 0 , B={ -2 2 |, C=
0 -2 2
0 0 -55 -4 0

It is desired to design a high-performance decentralized controller with the diagonal infor-

mation flow structure for this system. It can be easily concluded from [21] that A = 0.5 is
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a decentralized fixed mode (DFM) of the system. Thus, there is no LTI controller to stabi-
lize the system. As a result, the available methods to design a continuous-time LTI controller
(e.g., see [27]) are incapable of handling this problem. On the other hand, it results from [30]
that A = 0.5 is an unstructured DFM (as opposed to a structured one), which implies that this
DFM can be eliminated by means of sampling. Choose & = 1sec, and denote the discrete-
time equivalent model of the system . with .#;. As expected from the result given in [30],
the system .#; does not have any DFM, and consequently, is decentrally stabilizable. If the
algorithm presented in [19] is exploited to design a discrete-time static stabilizing controller
for the system %, it will fail. This signifies that in order to design a decentralized controller
for the system ., two different types of controllers can be used: a dynamic discrete-time

controller or a periodic controller. These two possibilities are explained in the following:

i) Let a deadbeat dynamic stabilizing controller K, for the system .#; be designed by
using the method given in [21]. To evaluate the performance of the system . under
the discrete-time controller K, consider the performance index (5.4) and assume that
QO = R = I, and that the initial state of the system .7 is a random variable with the
identity covariance matrix. In this case, the corresponding performance index will be
equal to 83439.49, which is inadmissibly large. The resultant output of the second
agent, for instance, is depicted in Figure 5.1 for x(0) = [0.5 0.5 0.5]7. This illustrates
the inferior intersample ripple, while the magnitude of the output is approximately zero
at the sampling points. To improve this ripple effect, a hold controller K}, is desired to
be added to the control system. Assume that the hold function f(¢) is desirable to have

the following form:
diag([* + * cos(850t)  *+x cos(8501)])

Using Algorithm 1 with several iterations results in the hold function f(z) = diag([1.003 —

0.071cos(850¢) , 0.958 + 0.754co0s(850¢)]), and the corresponding performance index
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turns out to be 81517.97. This indicates an improvement of about 2.36% by using the

hold controller K. However, this enhancement is not noticeable.

i) It is desired to find out whether there exists a hold controller K}, to stabilize the system
S by itself (i.e., without any compensator K,). Consider the following basis functions

for the hold function f(z):

where u,(-) denotes the unit-step function. It is to be noted that this GSHF is equivalent
to a piecewise constant function with two different levels. Applying the result of [19] to

Lemma 1 leads to the controller K with the hold function:

diag([~1.4f1() —0.185£2(r) 0.5£i(r)+ f2(1)]) (5.21)

The resulting performance index is equal to 2121.18. Hence, Algorithm 1 can now
be utilized to adjust the coefficients of this hold function properly. The optimal f(¢)

obtained will be equal to:

diag([-2.71£1(£) + 1.08£2(1)  0.97f1(t) — 0.30£(1)]) (5.22)

and the performance index of the closed-loop system will be 301.73. This implies that
a high-performance stabilizing controller is designed for the ill-controllable system .&.
The outputs of the first and the second agents of .# under the hold functions (5.21)
and (5.22) are illustrated in Figures 5.2(a) and 5.2(b) for x(0) = [0.5 0.5 0.5]T. In
addition, the inputs of the first and the second agents of . are depicted in Figures 5.3(a)
and 5.3(b). Note that the solid curves and the dotted curves correspond to the GSHFs
given in (5.22) and (5.21), respectively. The value of the cost function J is plotted for
the first 150 iterations in Figure 5.4, which demonstrates the fast convergence of the

algorithm, specially in the beginning. It is to be noted that although the initial point in
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the optimization algorithm is chosen far from the optimal point, the convergence speed

is very good.

30 ; . ; .

20

Figure 5.1: The output of the second agent of the system in Example 2 under the dead-beat

controller.
10 T T " T 4 T T T
e Result for GSHF given in (15) e Result for GSHF given in (15)
P Result for GSHF given in (14) |. N Result for GSHF given in (14)
=
Ng 0
H
g -5
-10
-1 . . . -
%2 4 6 8 10 % 2z 4 5 8 10
Time (sec) Time (sec)

Figure 5.2: The outputs of the first agent and the second agent of the system in Example 2 are
depicted in (a) and (b), respectively, under the GSHFs (5.21) (dotted curves), and (5.22) (solid

curves).
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Figure 5.3: The inputs of the first agent and the second agent of the system in Example 2 are
depicted in (a) and (b), respectively, under the GSHFs (5.21) (dotted curves), and (5.22) (solid

curves).

5.6 Conclusions

In this chapter, a method is proposed to design a decentralized periodic output feedback with
a prescribed form, e.g. polynomial, piecewise constant, sinusoidal, etc., to simultaneously sta-
bilize a set of continuous-time LTI systems and minimize a predefined guaranteed continuous-
time quadratic performance index, which is, in fact, the summation of the performance indices
of all of the systems. The design procedure is accomplished in three phases: First, the prob-
lem is formulated as a set of matrix inequalities. Next, it is converted to a set of linear matrix
inequalities, which represent necessary and sufficient conditions for the existence of such a
structurally constrained controller. An algorithm is then presented to solve the resultant LMI

problem. Simulation results demonstrate the effectiveness of the proposed method.
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Chapter 6

Elimination of Fixed Modes by Means of

Sampling

6.1 Abstract

This chapter deals with structurally constrained periodic control design for interconnected sys-
tems. It is assumed that the system is linear time-invariant (LTT), observable and controllable
and that its modes are distinct and nonzero. It is shown that the notions of quotient fixed mode
and structured decentralized fixed mode are equivalent for this class of systems. If the system
is stabilizable under a general decentralized controller (e.g. nonlinear, time-varying), then it is
proved that a decentralized LTI discrete-time compensator followed by a zero-order hold can
stabilize the system. Moreover, the problem of designing a structurally constrained controller
for an interconnected system is converted to the design of a decentralized compensator and a
decentralized hold function for an expanded system. In addition, the problem when the struc-
turally constrained hold function is desired to have a special form, e.g. piecewise constant,
polynomial, etc., is formulated. A procedure is given in this case to design the optimal hold

function with respect to a quadratic performance index.
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6.2 Introduction

The notion of decentralized fixed mode (DFM) is introduced in [1] to identify those modes
of an interconnected system, which are fixed with respect to any linear time-invariant (LTI)
decentralized control law. In addition, the notion of structurally fixed mode is introduced
in [2], and it is shown that a mode is fixed due to either the structure of the system, or the
perfect matching of the parameters. This idea is used in [3] to classify the modes of a de-
coupled decentralized system as being either structured or unstructured. It is also shown in
[3] that the distinct and nonzero unstructured DFMs of a system can be eliminated by means
of sampling. Furthermore, the notion of quotient fixed mode (QFM) is introduced in [4] to
determine when an interconnected system is decentrally stabilizable under a general nonlinear
and time-varying control law.

On the other hand, there has been a considerable amount of interest in the past several
years towards control of continuous-time systems by means of periodic feedback, or so-called
generalized sampled-data hold functions (GSHF) [5-11]. Periodic feedback control signal is
constructed by sampling the output of the system at equidistant time instants, and multiplying
the samples by a continuous-time hold function, which is defined over one sampling interval.
Several advantages and disadvantages of GSHF and its application in practical problems have
been thoroughly investigated and different design techniques are proposed in the literature
[5,6,8,9].

This chapter investigates the decentralized periodic control design problem for the ob-
servable and controllable finite dimensional LTT systems with distinct and nonzero modes. It
is shown that for this broad class of systems, the notions of QFM and structured DFM are
identical. Using this result, it is proved that if a system is decentrally stabilizable by means
of a general control law, then there exists a decentralized LTI discrete-time controller with a
simple zero-order hold (ZOH) to stabilize it. This is due to the elimination of the non-quotient

DFMs, in the sampled system. Then, the problem of controlling the aforementioned class
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of LTI systems by means of a structurally constrained controller is studied. The design of a
structurally constrained controller consisting of a discrete-time LTI compensator and a GSHF
is converted to the design of a decentralized LTI discrete-time compensator and a decentralized
GSHF for an expanded system.

In addition, a method is proposed to design an optimal structurally constrained controller
with a certain configuration. This is accomplished by using the expanded system correspond-
ing to the given structural constraint. A decentralized discrete-time compensator with a simple
ZOH is designed to stabilize the expanded system. Then, the ZOH in the control system is
replaced by a GSHF with a prespecified form, e.g. piecewise constant, polynomial, etc., to
improve the performance of the overall system by minimizing a continuous-time quadratic
cost function, which accounts for the intersample ripple effect. The significance of the results

obtained in this chapter is demonstrated in two numerical examples.

6.3 Preliminaries

Consider a linear time-invariant (LTI) interconnected system % consisting of v subsystems

31,82, ..., Sy, represented by:

1) = Ax(r) + Y Bua(r)
i=1 (6.1)
yi(t) = Cix(¢), iev.={1,2,..,v}

where x(¢) € R" is the state, and u;(r) € R™ and y;(¢) € R", i € ¥, are the input and the output
of the i™ subsystem, respectively. Assume that the modes of the system . are all distinct and

nonzero, and that the state-space model is in the decoupled form, i.e.,

A= diag([o-l y 025 ey o-n]) (6.2)
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where 0; # 0, 0; # 0}, Vi,j € {1,2,...,n}, i # j. Assume that the system . is controllable

and observable. Define the following matrices:

T
B::[}g1 By --- Bv], Ci:{ClT ct .. C‘?} (6.3)

Define also,

- T
0= [ @ w0 - w7 | 0= | mOT 7]
6.4)

The notion of decentralized fixed mode (DFM) is defined in [1] and [12] to identify
those modes of an interconnected system which remain fixed with respect to any LTI con-
troller with a block diagonal information flow structure. Throughout this chapter, the term
“decentralized controller” is referred to the union of local controllers. In order to specify the
local subsystems corresponding to the local controllers, the subsystems are enclosed within
parentheses throughout the chapter, if necessary. For instance, a decentralized controller for
the system (81, 5,53) is the union of the local controllers u;(¢) = g:(yi(¢),?), i € {1,2,3},
corresponding to the subsystems S1, Sy, S3, while a decentralized controller for #(S1US;, S3)
is composed of two local controllers: one for the new subsystem consisting of 1 and S5, and
the other one for the subsystem S3.

The following definitions are extracted from [3].

Definition 1 Assume that A € sp(A) is a DFM of the system #(81,52,...,Sv). A is defined
to be a structured decentralized fixed mode (SDFM) of the system, if it remains a DFM after

arbitrary perturbing the nonzero entries of the matrices B and C.

It is to be noted that in the definition of SDFM given in [3], the nonzero elements of
A (the elements on the main diagonal) are also assumed to be perturbed. However, it can be

easily verified that such assumption is not necessary, in general.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 2 Assume that A is a DFM of the system .#(S81,82,...,8v). Then, A is called an
unstructured decentralized fixed mode (UDFM) if it is not a SDFM of #($1,82,...,8v), or
equivalently, if it is resulted from the exact matching of the nonzero elements of the matrices

A, B and C in the state-space model.

Define .#; as the discrete-time equivalent model of . with a constant sampling period

h > 0 and a ZOH. Hence, the state-space representation of .#; is as follows:

v
X[ +1) = Ax[k] + Y Biuj[x]
i=1 (6.5)
yilk] =Cix[x], i€V

where the discrete argument corresponding to the samples of any signal is enclosed in brackets
(e.g., x[x] = x(xh)). It can be easily shown that and A = eA”, B;=A~1(A—1I,)B;, i € V, where
I, represents the n x n identity matrix (note that the matrix A is assumed to have no eigenvalues
in the origin, and thus, it is nonsingular). Denote the subsystems of #; corresponding to

S1,82,...,8y with #,, S, ..., #4,. The following Lemma is extracted from [3].

Lemma 1 Assume that the system %(S1,82,...,Sy) contains P, > 0 UDFMs and P; > 0
SDFMs A;, i=1,2,...,P;. The discrete-time system %4( Sy, Ldy; ---»¥a,) comprises Ps SDFMs
Mt i=1,2,..., P, and no UDFMs for almost all values of h.

Remark 1 The term “for almost all values of h” in Lemma 1 means that the values of h for
which the discrete-time system y(Fa,, L, ...,7a,) has UDFMs, lie on a hypersurface in
the one dimensional space [13] (i.e. among infinite possible values for h, only a finite number

of them violate Lemma 1).

Lemma 1 states that the UDFMs of the system .#(S1, 52, ...,Sy) are eliminated by sampling,
while the structured ones cannot be removed. The questions arise as how to identify the type

of DFMs, and how to design stabilizing controllers for the systems with SDFMs (if possible).
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A procedure is proposed in [3] to determine the type of the DFMs of the systems consisting of
only two single-input single-output (SISO) subsystems (i.e. V=2, m; =my =r  =ry =1).
The notion of quotient fixed mode (QFM) is introduced in [4] to investigate the stabiliz-
ability of interconnected systems under a general decentralized control law (i.e. nonlinear and
time-varying). Since the definition of QFM is essential in the development of the main result

of this chapter, it is explained in the next two definitions.

Definition 3 Define the structural graph of the system . as a digraph with v vertices which
has a directed edge from the i" vertex to the j™® vertex if and only if C;(sI — A)~'B; # O, for

any i, j € V. The structural graph of the system . is denoted by 9.

Partition ¢ into the minimum number of strongly connected subgraphs denoted by
G1,Ga,....,Gy (note that a digraph is called strongly connected iff there exists a directed path
from any vertex to any other vertices of the graph [4, 14]). Define the subsystem S;, i =
1,2,...,1, as the union of all subsystems of . corresponding to the vertices in the subgraph G;

(note that vertex i in the graph ¥ represents the subsystem S;, for any i € V).

Definition 4 A is said to be a QFM of the system # (81,52, ...,Sy), if it is a DFM of the system
Z(81,82,...,8)).

Lemma 2 The system #(S1,S2,...,8y) is stabilizable under a general decentralized con-

troller, if and only if it does not have any QFM in the closed right-half complex plane.

The above Lemma is given in [4], where it is also stated that a candidate stabilizing
decentralized controller can be a time-varying control law, or a vibrational one. In the next

section, it will be shown that the notions of SDFM and QFM are identical.

6.4 Effect of sampling on DFM

Notation 1 Foranyi € v:
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o Denote the (j1, j2) entry of B; with b{"jz, forany 1< j1<n, 1< j<m
e Denote the (1, j2) entry bei with c{"jz, forany 1< ji<r,1<j<n.

Theorem 1 0, i € {1,2,...,n}, isa SDFM of the system #(S1,52,...,8v), V > 2, ifand only if
there exist a permutation of {1,2,..., v} denoted by distinct integers i1, iy, ..., iy and an integer
p between 1 and v — 1 such that b;’la = c?z’i =0 and bﬁ’acﬁ’“ =0, forall ji,jy,0,B and n
given by
J1€ {i17i27"'1ip}a RE {ip+17ip+27"'aiv}a I1<a< mj,
(6.6)
1<B<rj, 1<pu<n, p#i

Proof It is known that o; is a DFM of the system . (81, S, ...,Sy) if and only if there exist a
permutation of {1,2,..., v} denoted by distinct integers i, 3, ..., iy and an integer p between 0

and v such that the rank of the following matrix is less than n [12]:

A— O','In Bi1 Biz s Bip

CipJrl 0O o0 ... O
Cpo O 0 ... 0 ©6.7)

G, 0O 0 ... 0

(note that 0 in the above matrix represents a zero block matrix with proper dimension). In
addition, since it is assumed that the system .% is controllable as well as observable, the rank
of the matrix (6.7) is equal to n for p = 0 and p = v . Therefore, the condition 0 < p <v
given above can be replaced by 1 < p < v — 1. It is clear that the rank of the matrix A — o;I,
is n— 1, and also, the i™ column and the i row of this matrix are both zeros. Hence, if there
exists a nonzero entry either in the i column or in the i row of the matrix given in (6.7), its
rank will be at least n. As a result, the rank of the matrix in (6.7) is less than n, if and only if

both of the following conditions hold:
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i) All of the entries of the i™ column and the i row of the matrix given in (6.7) are zero,
B

ie. b;fla = cjz’i =0 for any @, 3, j1, and j, satisfying (6.6).

ii) The rank of the following matrix (which is a sub-matrix of the one given by (6.7)) is

less than n: } _
i l,a
op ... O o ... 0 by
. ~_1,
o ... O'i’_] 0 ... 0 blj1 o
j n,0
0o ... 0 0 ... O bj1
B71 ﬁai—l ﬁal+1 ﬁ1n
I P X ;) e 0

for any a, 3, j1, and j; satisfying (6.6), where 0'; = 0;— 0y, I,j € {1,2,...,n}. Partition

the matrix given by (6.8) into four sub-matrices, and denote it with:

4 d (6.9)
D, 0

where A; € R-Dx(-1) @, € Rv-Dx1 and @, € R1*"-1)_ Since the matrix A; is

nonsingular (because it is assumed that o7, ..., 6, are distinct), one can write:

A O 1
det = —det(A;) x det(PrA;] @) 6.10)

®, O

Thus, the rank of the matrix given in (6.8) is less than n, if and only if the scalar

<I>2Ai‘1(I>1 is equal to 0.

It can be concluded from the above discussion, that o; is a SDFM, if and only if the condi-

tion (i) and the equality

n I;u,aéﬁ,u
3 _h_l_f_z_._ =0 (6.11)
p=1, uti  On
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both hold, where I_J’j‘l % and 6?2’“ represent any arbitrary nonzero multiples of b?‘l % and C%# ,
respectively, for 4 = 1,2,...,n. This condition is equivalent to the equality b;‘l ,ac%u =0 for

w=12..n u+#i |

Corollary 1 Assume that 6, i € {1,2,...,n}, is a SDFM of the system # (81,83, ...,Sv). There
exist a permutation of {1,2,...,v} denoted by distinct integers iy, iz,...,iy and an integer p

between 1 and v — 1, such that

i) The following two matrices are not full-rank:

T
[A—oiln B, B, ... B,-p], [A—O',J,, ., Cl, Cl{] (6.12)

Ip+2

ii) The following equality holds for any complex number s # 6, j=1,2,...,n:

T
—1 _
[ a,. ¢, - G ] (A—sly) [ By B, ... B ] =0 (6.13)
Proof The proof is straightforward and follows directly from Theorem 1. n

Theorem 2 The SDFMs of the system #(81,S2,...,Sy) are identical to its QF Ms.

Proof Assume that o; is a SDFM of the system (51,53, ...,Sv), and consider the integers
i1,12,...,iy in Corollary 1. Define now two new composite subsystems S; and S;, where
S| is composed of p subsystems Si,S7,...,5,, and S is composed of v — p subsystems
Sp+1,8p+2,.-.,Sv. One can easily conclude from (6.7) and the characteristics of DFM given in
[12], that o; is a DEM of the system .#(S1,S;).

On the other hand, condition (ii) of Corollary 1 implies that the transfer function matrix
form S; to S, is zero, i.e., the system .¥ consisting of the two subsystems S; and S is not
strongly connected (note that a system consisting of two subsystems is strongly connected if
and only if the transfer function from each of its subsystems to the other one is nonzero). Fur-

thermore, since the system .% has already been broken down into the subsystems S;, 5, ...,5;
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(where [ denotes the minimum number of strongly connected subgraphs of ¢, as discussed
earlier), which are not strongly connected to each other, it can be easily verified that there
exist a permutation of {1,2,...,/} denoted by distinct integers ji, j2, ..., j;, and a number §
such that S| = S‘jl U§j2 U-~-U§j§ and Sy = SJ'§+1 U§j¢+2 U‘~-US~jl. This implies that any
DFM of the system .#(S1,8S;) is also a DFM of the system .#(S1,55,...,8;) (because the
decentralized control structure for S(S;,S;) includes the decentralized control structure for
&(81,83,...,8;)). Thus, since it is proved that o; is a DFM of the system .#(S1,S;), it is a
DFM of the system & (§1 , 82, ...,Sl) as well. On the other hand, it is known from Definition
4, that the DFMs of the system .#(51,5,...,5;) are equivalent to the QFMs of the system
(81,52, ...,8v). Therefore, 0; is a QFM of the system . (81,5, ..., Sy).

Assume now that A is a QFM of the system .%#(S1,S5,...,5y). Hence, A is either a
SDFM or an UDFM. If it is an UDFM, then it follows from Lemma 1 that A is not fixed
with respect to a discrete-time controller and a ZOH. A well-known property of QFM [3],
however, is that A is fixed with respect to aﬁy type of control law [4], which contradicts the
original assumption. This implies that A is a SDFM of the system .%(S1, 5>, ...,Sy), and this

completes the proof. |

Remark 2 It can be concluded from conditions (i) and (ii) in Corollary 1 and the discussion
in the proof of Theorem 2, that if o; is a SDFM of the system .#(81, 52, ...,Sy) (or equivalently
a QFM), then the system can be partitioned into two subsystems S| and S, such that o; is an
uncontrollable mode of the system . from the input of the subsystem S, and an unobservable
mode of ¥ from the output of the subsystem Sy. Furthermore, the transfer function matrix

from the input of S| to the output of S is zero.

Remark 3 Assume that the system .#(S1,53,...,Sy) contains the DFMs A;, i = 1,2,...,P,
which are also QFMs, and the DFMs A;, i = 1,2,..., P,, which are not QFMs. It follows from
Theorem 2 and Lemma 6.1, that the discrete-time equivalent model Zy( Sy, , Sy, ..., 7a,) has

only the DFMs e*", i = 1,2, ..., P, which corresponds to the QFMs of #(S1,52,...,8y), for
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almost all values of h. In other words, the DFMs 2;, i = 1,2, ..., P, of 5(81,82,...,Sy) will

be eliminated by sampling.

This means that if the system .#(S1,52,...,Sy) is decentrally stabilizable, then there
exists a sampled-data decentralized controller to stabilize it. It is shown in [4] and [14], that
a system with no unstable QFMs can be stabilized by an appropriate time-varying control
law. However, the implementation of a sampled-data controller is simpler in general, and has
its unique advantages. Structurally constrained control of systems with stable QFMs using

sampled-data hold functions will be spelled out in the next section.

6.5 Constrained generalized sampled-data hold controller

In this section, a new compelling reason for the effectiveness of GSHF will be presented and
some of its properties will be studied.

Assume that the structure of the overall controller for the system . has some prespec-
ified constraints [7]. These constraints determine which outputs y; (i € V) are available to
construct any specific input u; (j € V) of the system. In order to simplify the problem formu-
lation for the control constraint, a v x v block matrix £ with binary entries is defined, where
its (i, j) block entry, i, j € ¥, is a m; X r; matrix with all entries equal to 1 if the output of the ji
subsystem can contribute to the construction of the input of the i subsystem, and is a m; x r |
zero matrix otherwise. The matrix % represents the control constraint, and will be referred
to as the information flow matrix. In the special case, when the entries of the matrix J£~ are
all equal to 1, the corresponding controller is centralized, and when % is block diagonal, the
corresponding controller is decentralized.

Consider the following discrete-time compensator K for the system .
z[k + 1] = Ez[k] + Fy[x]
(6.14)
¢[x] = Gz[x] + Hy[«]
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and also, the hold controller Kj,:
ut)=F(t)o[x], xh<t<(xk+1)h, x=0,1,2.. (6.15)

where F(t) = F(t +h), V¢t > 0. Note that the matrices E, F, G, H, and the function F(¢) are
desired to be designed such that the overall controller consisting of K. and K meet the design
specifications. Assume now that an information flow matrix /¢ is given for the system ..
In order to design the compensator K, and the hold controller K}, such that the overall con-
trol structure complies with the information flow matrix %", a block-diagonal (decentralized)
structure is assumed for the compensator K in [7], while the structure of the hold controller
K}, is assumed to meet the control constraint inferred from 2. It is evident that this assump-
tion is ill-posed, because the number of the parameters of Kj, to be designed is often much less
than that of K, and also K, has a significant role in stabilizing the system . (see the proof
of Theorem 4). Hence, it is hereafter assumed that Kj is desired to be decentralized, while
the structure of K, complies with the constraint given by the information flow matrix J#". The
following procedure is used to form the transfer function matrix K.(z) := G(zl, —E)"'F+H

of the compensator K, in order to comply with the information flow matrix J¢ .

Procedure 1 Replace the (i, j) block entry of X, i,j € V, with K;;(z) € R™*"J (whose pa-
rameters are yet to be designed) if it is not a zero matrix, i.e., if the output of the j™ subsystem
can contribute to the construction of the input of the i subsystem. Denote the resultant matrix
with K;(z). Note that the nonzero block entries of K.(z) are unknown so far, and are desired

to be found so that the closed-loop system satisfies the design specifications.

The following procedure is used to construct a decentralized LTI compensator K, with
the block-diagonal transfer function matrix K.(z). It will be shown how the entries of the

desired constrained compensator K, can be mapped into K.

Procedure 2 Form K.(z) € R™* as a block diagonal matrix, whose (i, i) block entry, i € V,

is a m; X F; matrix which is obtained from the i™ block row of the matrix K.(z) by contracting
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it, i.e. by eliminating all of its zero block entries and placing the remaining block entries next

to each other, and in the same order that they appear in the corresponding block row of K.(z).

As an example, assume that the matrix K.(z) is as follows:

Kiu(z) 0 K3z 0
K(@=| 0 Kpk 0 0 (6.16)
0 0 Ks33(z) O
The corresponding matrix K, (z) is obtained to be:
K 11 (Z) K 13 (Z) O 0
K (z) = 0 0 Kn() 0 (6.17)
0 0 0 K33(2)

Let the state-space representation of the decentralized compensator K., whose transfer

function matrix is formed in Procedure 2, be denoted by:

Z[k + 1] = EZ[k] + Fy[x]
(6.18)
¢[x] = GZ[x] + Hy[x]
Assume throughout the chapter, zero initial states for the compensators, i.e., z[0] = Z[0] = 0.

Note that since the parameters of the compensator K, are still unknown at this point, and since

K. is formed based on K_, the parameters E, F, G and A are unknown too.

Remark 4 It can be easily verified that there exists an onto mapping between the nonzero

block entries of the matrix K.(z) obtained in Procedure 2, and those of the matrix K.(z).

Lemma 3 For any given K.(z), there exists a constant matrix T such that K.(z) = K:(z)T,

where T is obtained from the matrix X .

Proof The proof is omitted and may be found in [15]. A procedure is also given in [15] to

obtain the transformation matrix 7. |
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Define .# as an interconnected system consisting of the subsystems A, %, ...,.%, with

the following state-space representation:

x(t) = Ax(t) + éBiﬂi(t)

(6.19)
yi(t) =Cix(t), i€V
where C; € R*", i € ¥, and:
T
{C{ ar .. @5} ~TC (6.20)
and i#;(r) and y;(¢) are the input and the output of the subsystem ... Define now,
T
)= | )" )" - a7 |
. 6.21)
() = [ 0" Ot o 3" ]
Define also the hold controller K, as:
a(t) =F()f[x], xh<t<(x+1h x=0,1,2,.. (6.22)

Theorem 3 For any given compensator K (z) (or equivalently, any given matrices E,F,G,
and H ) corresponding to the information flow matrix ¢, and the hold function F (t), construct
the matrix K.(z) by using Procedure 2. The state and the input of the system .# under the
compensator K.(z) and the hold controller K;, are equivalent to those of the system . under

the compensator K.(z) and the hold controller K;, provided x(0) = x(0).

Proof It is desired first to show that x(r) = %(r) and u(¢) = i(¢) for any 0 <t < h. Since
x(0) = x(0), one can easily conclude that 3[0] = Ty[0]. On the other hand, it follows from
Lemma 3, that the transfer functions of the compensators K, and K, satisfy the equation K(z) =
K(z)T. Note that the inputs of these compensators are y[k| and y[k], respectively. Hence, it
can be easily concluded that the outputs of these compensators at time k = 0 are equal, i.e.

¢[0] = ¢[0] (note that z[0] = z[0] = 0). Thus, the equations (6.15) and (6.22) result in the
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equality u(¢) = a(¢) for all ¢t € [0,h). Consequently, one can conclude from the state-space
equations of the systems .% and ., and the equality x(0) = %(0), that x(z) = x(¢) for all
t € [0,h). Since the states x(¢) and x(¢) are continuous functions of time, x(h) = %(h) or
equivalently x[1] = x[1]. Now, one can start from the equality x[1] = %[1], and use a similar
argument to conclude that x(¢) = %(¢) and u(r) = () for all # € [h,2h). Continuing this
argument will lead to the equalities x(¢) = x(¢) and u(t) = i(z), for all ¢ € [ih, (i+1)h), Vi > 0.
n

Remark S Theorem 3 states that instead of designing a structurally constrained compensator
K. and a decentralized hold controller Ky, for the system . to achieve any desired objective
(stability, pole placement, etc.), one can equivalently design a decentralized compensator K,
and a decentralized hold controller Ky, for the system . Then, the original compensator K,
can be obtained by using the equation K.(z) = K.(z)T. In addition, the hold function F(t)
designed for Z can be equivalently considered for % (because of the relations (6.15) and
(6.22)). However; the advantage of this indirect design procedure is that the compensator K,
is decentralized (i.e. it has a block diagonal information flow structure). It is to be noted that
the decentralized control design problem has been investigated in the literature intensively,

and a number of methods are available [7, 12, 10].

Theorem 4 If there exist no decentralized compensator K. and decentralized hold controller
Ry, to stabilize the system P (A, F3, ..., Py), then P (A, Ss,...,Py) is not stabilizable un-

der any type of decentralized control law (i.e. nonlinear, time-varying, etc.).

Proof If the system .7 (.A,.%, ...,-#y) has an unstable QFM, it is not decentrally stabilizable
according to Lemma 2. If, however, it has no unstable QFM, one can conclude from Remark 3
that there exists a discrete-time decentralized controller to stabilize the discrete-time equiva-
lent model of the system (A ,.%, ...,.#,) for almost all sampling periods # > 0. Let this

discrete-time controller be denoted by K, and the hold function be equal to I, where I € R™*™
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is a block diagonal matrix whose (i, i) block entry is a m; x m; matrix with the entries all equal
to 1 for any i € V. In this case, the compensator K. is, in fact, the stabilizing discrete-time

controller and the hold function F(z) is a simple ZOH. [ |

It can be concluded from Theorem 4 that in the special case, when £ is block diagonal,
or equivalently . = ., then a stabilizing compensator K, is guaranteed to exist for the system
&, if and only if the system is decentrally stabilizable. This discussion and the result of
Theorem 4 demonstrate the significance of using a compensator in the system to be controlled.
The question may arise as why a hold controller is added to the system when the compensator
by itself can stabilize it. To answer this question, assume that the non-quotient DFMs of the
system .# are aimed to be placed at some arbitrary locations. It is pointed out in [7] that
there exist infinite candidates for K}, to achieve this (because K, by itself can carry out the pole
placement). This implies that K}, can be designed in such a way that it not only results in the
desired pole placement (along with K.), but also minimizes a continuous-time performance
index to reduce the intersample effect, or even simultaneously stabilize a set of systems. In
other words, K} introduces a new set of parameters to the design problem, which can be

significantly beneficial to solve a multi-faceted problem.

Remark 6 Assume that it is desired now to design a decentralized hold controller K; and
a structurally constrained compensator K. for the system ., such that the following LOR

performance index is minimized:

J= /O B ()T Ox(r) +u(t)" Ru(t)) dt (6.23)

where R € R™™ and Q € R"™" are positive definite and positive semi-definite matrices, re-
spectively. For simplicity and without loss of generality, assume that Q and R are symmetric.
It can be concluded from Theorem 3 and Remark 5 that this problem is equivalent to the prob-

lem of designing a decentralized compensator K, and a decentralized hold controller K;, for
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the system .7, such that the following LQR performance index is minimized:

J= / (x(1)" Qx(t) +a(r)" Ra(t)) dt (6.24)

6.5.1 High-performance structurally constrained controller

According to Theorem 4, if the system #(F],.%, ...,%) is decentrally stabilizable, then
there exists a decentralized discrete-time compensator K, to stabilize the system with the hold
function F () = I. Note that the stabilizing compensator K, can be obtained by using any
existing method such as pole placement, to achieve any given design specifications. It is
desired now to replace the ZOH (i.e., F(¢) = I) with a more advanced hold function, such that
the performance of the composite system consisting of . and the stabilizing compensator K,
is improved.

On the other hand, it is often advantageous to design a hold function which has a pre-
specified form, such as piecewise constant, polynomial, etc. [10, 11]. Therefore, assume that

the following set of basis functions is considered for the hold function F(z):

f:= {Fl(t),Fz(l‘),...Fk(t)} (6.25)

where F(t) € R™*Yi| i = 2,...,k, are arbitrary matrix functions and F; (¢) = I. Thus, F(¢) can

be written as a linear combination of the basis functions in f in the following form:
Ft)=F(t)oy+F(t)op+- -+ F(t)oy (6.26)

where o € RV*™ i =1,2,...,k, are matrices with certain zero elements, which reflect the
structural constraint of F(¢). The objective here is to obtain the matrices a;, i = 1,2,...,k,
to minimize the performance index (6.24) (this will be clarified in Example 2). Note that
the first basis F(z) is assumed to be equal to I, because in that case there exists at least one
hold function of the form given in (6.26), which along with the compensator K, stabilize the

system % (i.e., when oy =1, o =0, i = 2,3,...,k). It is to be noted that since (6.24) is a
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continuous-time performance index, it takes the intersample ripple effect into account [11].

The equation (6.26) can be written as F(¢) = W(¢) a, where:
T
o:=[af,0f,..,0] , W(t):=[F(t),F(t),.... Fi(t)] (6.27)

Since some of the entries of the unknown matrices ¢, ..., 0 are set to zero, the matrix o has
a spacial structure. To formulate the structure of ¢, define a set E which contains all of the
indices of the zero entries of ¢; for any i € {1,2,...,k}.

It is known that:
t
£(1) = A (1) + / U =DABg(1)dt (6.28)
Kxh

for any kh <t < (x+ 1)h, ¥ > 0. Now, let the following matrices be defined:

M(t)=é, M) = /0 t e=DABW (1)dtT (6.29)
Therefore,
%(t) = M(t — xh)x[x] + M (t — kh)ad[k] (6.30)

for any xh <1 < (x+ 1)h. It can be easily concluded from (6.19), (6.20), (6.18), and (6.30)
by substituting t = (x + 1)A, that

x[k+ 1] = M(h, 00)x[x] (6.31)
T
for any x > 0, where x[x| = [ k)T zx]T } , and

i M(h)+M(R)oeATC M(h)aG
M(h, ) := e - (6.32)

It is straightforward to show that (by using the equation (6.31)):
x[x] = (M(h,a))“x[0], x=0,1,2,... (6.33)
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Define now the following matrices:

Pyi= /0 " (M) om()) dr (6.342)
P = /O " (M(1)T QM (1)) dt (6.34b)
Py = /0 " (M(0)TOM(t) + W ()T RW (r)) dt (6.34c)
go(@) := P+ PLaHATC+ (Pl aHTC)T + (0HTC) Py (aHTC) (6.34d)
q1(@) := PaG + (aHTC) P0G (6.34¢)

qol 1o
Play=| © @) (6.340)
gi(a)T GTal oG
Lemma 4 For a given Q. suppose that the system . is stable under the pair K. and Ky,. The
performance index J defined in (6.24) can be written as J = x” (0)Kx(0), where K satisfies

the following discrete Lyapunov equation:

MY (h,0)KM(h, o) —K+P(0r) =0 (6.35)

Proof Substituting (6.22) and (6.30) into (6.24) and using (6.31), the performance index can

be written as follows:

J= 20 ( /K :CH)h (£" (1) Qx(r) + a” (t)Ra(z)) dt)
-3 (x{x]" Pos +5{x)7 Prot (] + Gk o P x{x] + 6] o Prarf[x])
< (6.36)
=Y x[x]TP(a)x[K]

k=0

oo

=x(0)" Y (M" (h, )*P(a)M(h,)*) %(0)

k=0

As pointed out in the proof of Lemma 1 in [10], since the closed-loop system is stable, all of
the eigenvalues of the matrix M(h, o) are located inside the unit circle in the complex plane.

Thus, the infinite series

o0

S (M (h, o) P(a)M(h, )¥) (6.37)
k=0
converges to K, the solution of the discrete Lyapunov equation (6.35). [ ]
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Remark 7 The optimization problem is now converted to the problem of minimizing x* (0)Kx(0)

for the variable , subject to the following constraints:
1. Any entry of o whose index belongs to the set E, must be equal to zero,
2. K satisfies the discrete Lyapunov equation (6.35).

Since the matrix function M(h, ) is linear and the matrix function P(«) is quadratic with
respect to the variable o, this optimization problem is the same as the ones solved in [10, 11].
Hence, one can exploit a slight variation of the approach given in [10] to reformulate the
problem in the linear matrix inequality (LMI) framework. Note that both of the algorithms pre-
sented in [10, 11] require an initial point for o, such that the corresponding closed-loop system
is stable. Therefore, as discussed earlier, one can consider the initial point [ ] 0 ... 0 |

for o

6.6 Illustrative examples

Example 1 consider the system . consisting of three SISO subsystems with the following

state-space matrices:

1 0 0 0 1 2
A=10 -2 0 Bi=| 0 |, Bo={1]|, Bi=|1],
(6.38)
0 0 -3 -1 2 5

Gi=|53 2], C2=[0 -1 0}, C3=[0 -2 0}

It can be easily concluded from Theorem 1 (by considering i; = j, j=1,2,3),thatA =1
is a SDFM of the system .%(S],52,53). In other words, if the nonzero entries of the vectors
B;,C;, i =1,2,3 are replaced by any arbitrary numbers, then A = 1 still remains a DFM of the

resultant system.
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It is desired now to obtain the QFM of .#(S),S52,53). One can easily verify that the
structural graph of the system . is composed of two strongly connected subgraphs corre-
sponding to vertex 1 (as the first subgraph), and vertices 2, 3 (as the second subgraph). Hence,
the new subsystem S; is defined to be the subsystem Sy, and S, is defined to be the union
of S, and S3. Moreover, it can be easily verified that the system .#(S1,3,) has a DFM at
A = 1. Thus, Definition 4 yields that A = 1 is a QFM of the system .¥(S1,52,53). In other
words, A = 1 is a SDFM as well as a QFM of the system .7 (81,57, 53). This is in accordance
with the result of Theorem 2. It is to be noted that —2 and —3 are not DFMs of the system
(81,82,83).

Now, let the vectors By, (5, and C3 in (6.38) be replaced by the following:

T T
0 0 0
Bi=| 3 |, G=|-1}, =] =2 (6.39)
—4 -1 -2

One can easily verify that, in this case, A = 1 is a DFM of the system .#(S1,5>,53), but
it is not a QFM; hence, it can be eliminated by means of sampling according to Remark 3.
For instance, assume that h = 1sec. It is straightforward to show that the modes of the open-
loop discrete-time equivalent model are 0.0498,0.1353,2.7183, while those of the closed-loop
discrete-time model corresponding to a decentralized feedback with unity gains are 2.0685 +
0.7942i,—4.9743. Since these two sets of modes are disjoint, it can be concluded that the

discrete-time equivalent model does not have any DFM, as expected from Remark 3.

Example 2 Consider the system .# consisting of two SISO subsystems with the following

state-space matrices:

1 0 12 1 -2
A=  B= C= (6.40)
0 -3 11 1 1
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01
It is desired to design a stabilizing controller with the information flow matrix 2" =

10
for the system .#. To achieve this, a compensator K, and a hold controller K, will be employed

with the sampling period equal to 0.1sec. The transfer functions K.(z) and K.(z) have the

following structures (by using Procedures 1 and 2):

0 Ki(z) _ Kia(z) O
K.(z) = , K(z)= 641
Ky(z) O 0 Kxz)
01
In this simple case, the matrix T introduced in Lemma 3 is found to be T = . Ac-
10

cordingly, the system .#(.#,.%3) can be obtained from the equation (6.19). It is straight-
forward to show that the system .%(#,.%) does not have any QFM. Thus, it follows from
Theorem 4 that there exists a discrete-time decentralized compensator K. to stabilize the sys-

tem .¥(.S,.%) along with a simple ZOH. It can be easily verified that the static controller

_ 1 0
K.(z) = will achieve this. Note that this translates to the following static gain for
0 -1
the original system:
_ 0 1
Ke(z) =Kc(2)T = (6.42)
-1 0

Now, a decentralized hold controller Kj, is to be designed for the composite system consisting
of the system .#(5,.%,) and the decentralized compensator K, given above. Consider the
performance index (6.24), and assume that Q = R = I. Assume also that x(0) = { 1 1 ]T.
If the hold controller K}, is a simple ZOH, this performance index will be equal to 0.9390.
Suppose now that instead of a simple ZOH, the following basis functions for the hold function

F(t) are given:

sin(¢) 0
F(t)=5hL, BR@)= (6.43)
0 0
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The decentralized constraint of the hold controller requires that the coefficients ¢y and o in

(6.26) have the following structures:

* 0 x 0
oy = , = (6.44)

0 x 00
where * represents the nonzero entries to be determined. The problem of finding the con-
strained coefficients oq and o such that the performance index (6.24) is minimized is dis-
cussed in Remark 7. As pointed out there, the optimization problem can be solved by using
the LMI approach presented in [10] with the starting point [ L 01y } for the variable o

(note that 07, represents a 2 X 2 zero matrix). This approach results in the following optimal

hold function F(r):

0.5594 — 1.7508sin(f) 0
F(t)= (6.45)
0 0.8297

The corresponding performance index will be equal to 0.8450. This implies that the hold
function given above will improve the performance of the control system by about 12%. Note
that for this example, the minimum achievable performance index resulted by using a central-
ized LQR controller (assuming that all state variables are available in the output) is equal to

0.7818.

6.7 Conclusions

This chapter deals with a broad class of interconnected systems with a constrained control
structure. It is proved that the two notions of structured decentralized fixed mode and quotient
fixed mode in the literature are identical for linear time-invariant, controllable and observable
systems with distinct and nonzero eigenvalues. Furthermore, it is shown that if there exists a
decentralized controller with a general structure (e.g. nonlinear, time-varying) to stabilize a
system belonging to the aforementioned class, then there exists a decentralized LTI discrete-

time compensator (with a zero-order hold), which stabilizes the system. Moreover, it is shown
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that the problem of designing a structurally constrained controller for an interconnected sys-
tem in order to achieve some design objectives, such as desired pole locations, is equivalent
to the problem of designing a decentralized compensator and a decentralized hold controller
for the expanded system, to attain the same objectives. In addition, the problem of design-
ing a stabilizing high-performance controller consisting of a decentralized compensator and
a decentralized hold controller, where the hold controller is desired to have a special form,
e.g. piecewise constant, polynomial, etc., is investigated. The numerical results obtained,

demonstrate the effectiveness of the proposed work.
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Chapter 7

Characterization of Decentralized and

Quotient Fixed Modes Via Graph Theory

7.1 Abstract

This chapter deals with the decentralized control of systems with distinct modes. A simple
graph-theoretic approach is first proposed to identify those modes of the system which can-
not be moved by means of a linear time-invariant decentralized controller. To this end, the
system is transformed into its Jordan state-space representation. Then, a matrix is computed,
which has the same order as the transfer function matrix of the system. A bipartite graph is
constructed from the computed matrix. Now, the problem of characterizing the decentralized
fixed modes of the system reduces to verifying if this graph has a complete bipartite subgraph
with a certain property. Analogously, a graph-theoretic method is presented to compute the
modes of the system which are fixed with respect to any general (nonlinear and time-varying)

decentralized controller. The proposed approaches are quite simpler than the existing ones.
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7.2 Introduction

Many real-world systems can be envisaged as the interconnected systems consisting of a num-
ber of subsystems. Normally, the desirable control structure for this class of systems is de-
centralized, which comprises a set of local controllers for the subsystems [1, 2, 3, 4, 5, 6].
Decentralized control theory has found applications in large space structure, communication
networks, power systems, etc. [7, 8, 9, 10]. More recently, simultaneous stabilization of a set
of decentralized systems and decentralized periodic control design are investigated in [11, 12].

The notion of decentralized fixed mode (DFM) was introduced in [1], where it was
shown that any mode of a system which is not a DFM can be placed freely in the complex
plane by means of an appropriate linear time-invariant (LTI) controller. An algebraic charac-
terization of DFMs was presented in [13]. A method was then proposed in [14] to characterize
the DFMs of a system in terms of its transfer function. It was shown in [15] that the DFMs
of any system can be attained by computing the transmission zeros of a set of systems de-
rived from the original system. In [2], an algorithm was presented to identify the DFMs of
the system by checking the rank of a set of matrices. It is worth noting that the number of
the systems whose transmission zeros need to be checked in [15] and the number of matrices
whose ranks are to be computed in [2] depend exponentially on the number of the subsystems
of the original system. This means that while these methods are theoretically developed for
any multi-input multi-output (MIMO) system, they are computationally ill-conditioned. The
method introduced in [16] addresses this shortcoming by partitioning the system into a num-
ber of modified subsystems, obtained based on the strong connectivity of the system’s graph.
Then, instead of finding the DFMs of the original system, one can compute the DFMs of the
modified subsystems to reduce the corresponding computational complexity. However, the
computational burden can still be high when the system consists of several strongly connected
subsystems. In general, the method given in [16] is more effective for medium-sized systems,

while the one in [2] is only appropriate for small-sized systems. It is to be noted that the
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method introduced in [2] is widely used in the literature for the characterization of the DFMs.

On the other hand, the notion of quotient fixed mode (QFM) is introduced in [17] to
identify those modes of the system which are fixed with respect to general (nonlinear and
time-varying) decentralized controllers. The properties of QFM is further investigated in [3],
where it is asserted that the non-quotient DFMs of a broad class of systems can by eliminated
by means of sampling.

This chapter aims to present simple approaches to find the DFMs and the QFMs of a
system with distinct modes. To this end, a matrix is obtained first, which resembles the transfer
function matrix of the system at one point. Then, a bipartite graph is constructed in terms of
this matrix. It is shown that having a complete bipartite subgraph with a certain property is
equivalent to having a DFM. A similar method is pursued to obtain the QFMs of the system.
The combinatorial approaches proposed in the present chapter are substantially simpler than
the conventional methods for finding the DFMs and QFMs. The efficacy of the proposed

methods is demonstrated in two numerical examples.

7.3 Preliminaries

Consider a LTI interconnected system .# consisting of v subsystems S, 5>, ..., Sy, represented

by:
i(t) =Ax(r) + ZBjuj(l‘)
= @.1)
y,‘(l‘) = Cix(t) + Z D,-juj(t), i€ v.= {1,2, ...,V}
j=1

where x(t) € R" is the state, and u;(¢) € R™ and y;(¢t) € R", i € ¥, are the input and the output

of the /M subsystem, respectively. Suppose the eigenvalues of A are distinct. Write the matrix
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Aas TAT ™!, where T is the eigenvector matrix of A. Denote the matrix A as follows:

o1 0O --. 0
0 oy - 0

A= 1.2)
0 o ... O

where 0;, i € {1,2,...,n} denote the modes of the system .&. Therefore, the system . can be

represented in the decoupled form as:

\4

X(t) = AX(t) + 2 Bjuj(t)
=1 (13)

yi(t) = Cix(t) + i Djju;(t), i€V

j=1

where D;; = Dj;, i,j € V and

[Bl Bv]:T‘l{Bl BV}, [Cl cv] :[Cl CV]T

(7.4)
Throughout this chapter, the term “decentralized controller” is referred to the union of all local
controllers. In order to specify the local subsystems associated with the local controllers, the
subsystems are enclosed within parentheses throughout the chapter, if necessary. For instance,
a decentralized controller for the system .#(S1,S,,53) is the union of the local controllers
ui(t) = gi(yi(r),1), i € {1,2,3}, corresponding to the subsystems S1,5,,53. Some of the im-
portant notions for different types of fixed modes will be given next, which are essential for

the main results of the chapter.

Definition 1 [1] A € sp(A) is said to be a decentralized fixed mode (DFM) of the system ., if
it remains a mode of the closed-loop system under any arbitrary decentralized static feedback.

In other words, A € sp(A) is a DFM of the system & if:

i=1

\4
Aesp <A+ 23,1(@-) , VK, eR™ i iev (7.5)
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It can be shown that a DFM is fixed with respect to any arbitrary dynamic LTI decentral-
ized controller. Howeyver, it is interesting to note that a proper non-LTT controller can eliminate
certain types of DFMs [3]. In other words, a DFM is not necessarily fixed with respect to a

time-varying or nonlinear control structure.

Definition 2 Define the structural graph of the system . as a digraph with v vertices which
has a directed edge from the i* vertex to the j* vertex if C (81 —A)7IB; # 0, foranyi,j€ V.

The structural graph of the system . is denoted by 4.

Partition ¢ into the minimum number of strongly connected subgraphs denoted by
G1,Ga,...., Gy (note that a digraph is called strongly connected iff there exists a directed path
from any vertex to any other vertices of the graph [16, 3]). Define the subsystem S;, i =
1,2,...,1, as the union of all subsystems of .# corresponding to the vertices in the subgraph G;

(note that vertex j in the graph ¢ represents the subsystem S ;, for any j € V).

Definition 3 [16] Assume that the system & is strictly proper, i.e. D = 0. The mode A is said
10 be a QFM of the system #(81,S2,...,Sy), if it is a DFM of the system % (8,55, ...,8)).

It can be shown in [16] that a QFM is fixed with respect to any arbitrary (nonlinear or
time-varying) decentralized controller.
In order to clarify the notion of QFM, consider the system . with the parameters given

below:
A = diag([1, -2, -3)]),

B =[00-17,B=[112T,B3=]215], (7.6)

C1=1[532,Co=[0-10], C3=[0—2 0]

The transfer function matrix of this system will be equal to:

—25s—6 12s+13 235426
C(sI—-A)"'B= 0 —s—2  —5—2 (1.7

0 —~2s—4 —25—4
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Hence, the structural graph of the system .# is composed of two strongly connected subgraphs
corresponding to vertex 1 (as the first subgraph), and vertices 2, 3 (as the second subgraph).
Therefore, the new subsystem Si is defined to be the subsystem Sy, and S, is defined to be
the union of S, and S3. The union of the subsystems S| and S, is sometimes referred to as a

quotient system [16]. It is important to note that:

e The DFMs of the system #(S1,52,53) are also the modes of the closed-loop system
in Figure 7.1, for any arbitrary dynamic LTI controllers K1, K> and K3. It can be easily

verified that A = 1 is the only DFM of the system . given by (7.6).

e The QFMs of the system .%(Si,S2,53) are defined to be the DFMs of the system
Z(81,85,), ie., the fixed modes of the closed-loop system shown in Figure 7.2, for
any arbitrary LTI controllers K; and K. For instance, it is easy to show that A = 1l is a

QFM of the system . given by (7.6).

Figure 7.1: The schematic of the decentralized control system . used for obtaining the DFMs.

7.4 Characterization of decentralized fixed modes
It is desired in this section to present a simple procedure to obtain the DFMs of the system .7

Notation 1 Foranyi,j € V:
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! e £

(1) »nt) (210 ya() 1y (1) 0
A4 Y

K, K,

Figure 7.2: The schematic of the decentralized control system .# used for obtaining the QFMs.

o Denote the (U1, lt2) entry of B; with bf“’“z, forany 1< p1 <n, 1 <up<m,.

o Denote the (141, l12) entry of C; with i, forany 1< 3 <r;, 1< p <n.

o Denote the (L1, lip) entry of D;; with dﬁj-"”z, forany 1< yuy <r, 1 <pp <my.
The following theorem formulates the DFMs of the system ..

Theorem 1 Assume that the mode 0;, i € {1,2,...,n}, is controllable as well as observable.
0; is a DFM of the system #, v > 2, if and only if there exist a permutation of {1,2,...,v}

denoted by distinct integers i1,iy,...,iy and an integer p € [1,v — 1] such that b%a = cg’i =0,

and.:
n b#7acgvu _dﬁ’a 7 8
o —o Ym (7.8)
u=1, p#i On =i
forall m,y, 0 and B given by:
77 € {i17i27"'aip}7 76 {ip+17ip+2a"'7iv}7 1 S o S mT]’ 1 S B S r’y (7'9)

Proof It is known that o; is a DFM of the system .#(S1, S5, ...,Sy) if and only if there exist

a permutation of {1,2,..., v} denoted by distinct integers i1, iz, ..., iy and an integer p € [0, V]
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such that the rank of the following matrix is less than n [2}:

A— Giln Bi] Biz N Bip
Cip+1 Dip+1i1 Dip+1i2 e Dip+1ip
Ci,i. Diniy Dijnin - Dijy, (7.10)
| G, Dy Dy .o Dy,

In addition, since it is assumed that the mode o; is controllable and observable, the rank of the
matrix (7.10) is equal to n for p = 0 and p = v . Therefore, the condition 0 < p < v given
above can be reduced to 1 < p < v — 1. Itis clear that the rank of the matrix A — o, isn—1,
and also, the i column and the i row of this matrix are both zeros. Hence, if there exists a
nonzero entry either in the i™ column or in the iM row of the matrix given in (7.10), its rank
will be at least n. As a result, the rank of the matrix in (7.10) is less than #, if and only if both

of the following conditions hold:

i) All of the entries of the i" column and the i® row of the matrix given in (7.10) are zero,
ie., by® = cg’i =0 for any «, 8,7, and v satisfying (7.9).

ii) The rank of the following matrix:

- -

i ... 0 0 .. 0 b"®
. -_1’
0 ... ¢, 0 .. 0 byh®
0 0 o, 0 bihe (7.11)
0 ... 0 0 ... o by”
ce’l .. cg’i_l cg’iﬂ - cg’" de,’?a

(which is a sub-matrix of the one given by (7.10)) is less than » for any «, 3, 17, and  sat-

isfying (7.9), where O'J"- i=0;—0j, i, j €{1,2,...,n}. Partition the matrix given by (7.11)
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. . . Ai @
into four sub-matrices, and denote it with , where A; € RO-Dx(n=1)
@,

@, € RO-DX1 and @, € R1*(-1) | Since the matrix A; is nonsingular (because it is

assumed that o7, ..., 0, are distinct), one can write:

A @
det | = det(A;) x det (" - @471 ) (7.12)
@, dh
Thus, the rank of the matrix given in (7.11) is less than n, if and only if the scalar

(I>2Ai”1d)1 is equal to de,’f‘, ie.:

n b“:acﬁau
Yy T g (7.13)
p=1, uzi O
[ ]
Define now the matrix M; as:
. 1 1 1
M; := C x diag e , 0, Y e B-D (7.14)
01 — O; Ci-1—0; Oi+1— 0; Oy — O

and denote its (i, i) block entry with MI'H2 € R7m ™ for any wy, i, € V. Note that the
expression of M; resembles that of the transfer function matrix of the system .#, while the

sign of D is different in M;.

Theorem 2 The mode o;, i € {1,2,...,n}, is a DFM of the system %, v > 2, if and only if any

of the following conditions holds:

(i) The i row of the matrices By, By, ....,By are zero.
ii) The " column of the matrices Cy1,Ca, ....,Cy are zero.

iii) There exist a permutation of {1,2,...,v} denoted by distinct integers i,iy,...,iy and
an integer p € [1,v — 1| such that Miw1 is a zero matrix for any 1 € {iy,i,...,ip} and
Y € {ip+1,ip+2;s...,iv}, and moreover the i row of the matrices By, By, ...y By, and the
C

i" column of C ..,C;, are all zero.

ipt1> Cipias -
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Proof Criteria (i) and (ii) are equivalent to the uncontrollability and the unobservability, re-
spectively. Furthermore, Criterion (ii1) is resulted from Theorem 1, on noting that M ,7 Misa

ry X my matrix whose (8, o) entry is equal to:

n b“1acﬂ»“’
y AL _dy (7.15)
u=1, pu#i Op — O
forany B € [1,7y], ot € [1,my). ]

It is desired now to construct a graph based on the matrix M;. Consider a bipartite graph
¢, with v vertices 1,2, ..., vin each of its vertex sets, namely set 1 and set 2. For any u1, tp € v,
connect vertex U of set 1 to vertex Ly of set 2 if the matrix Ml-” 12 s a zero matrix. Then,
mark vertex gy of set 1 if the i column of the matrix Cy, is a zero vector, for any U; € V.
Likewise, mark vertex pp of set 2 if the i row of the matrix By, is a zero vector, for any
W EV.

The following algorithm results from Theorem 2 for verifying whether or not the mode

o; is a DFM of the system ..
Algorithm 1

Step 1) Compute the matrix M;, and construct the graph 9; in terms of it, as pointed out

earlier.

Step 2) Verify if all of the vertices in set 1 of the graph ¥; are marked. If yes, go to
Step 6.

Step 3) Verify if all of the vertices in set 2 of the graph ¥; are marked. If yes, go to
Step 6.

Step 4) Check whether the graph ¥; includes a complete bipartite subgraph such that
all of its vertices are marked and moreover the set of the indices of its vertices is equal

to the set V. If yes, go to Step 6.
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Step 5) The mode ©; is not a DFM of the system .. Stop the algorithm.

Step 6) The mode ©; is a DFM of the system .. Stop the algorithm.

Algorithm 1 proposes a simple graph-theoretic approach to find the DFMs of the system
. This method requires deriving a certain matrix, and then checking the existence of a com-
plete subgraph in a graph, which can be accomplished using numerous efficient algorithms.
In contrast, the existing methods require the rank of several matrices (say 2V) to be checked,
which can be cumbersome when the matrix is of high dimension. In fact, the above algorithm
presents a simple combinatorial procedure as a more efficient alternative to find the DFMs of

a system (with distinct modes).

th

Corollary 1 Denote the number of matrices B1,B»,...,B, whose i"* row are zero with T';.

Furthermore, denote the number of matrices C1,Ca, ..., Cy whose ' column are zero with T';.

IfT;+T; is less than v, then ©; is not a DFM of the system ..

Proof It is straightforward to show that if T'; + T is less than v, none of Steps 1, 2 or 3 of

Algorithm 1 is fulfilled. ||

Corollary 1 presents a quite simple test as a sufficient condition to verify whether o; can

be a DFM of the system or not.

7.5 Characterization of quotient fixed modes

It is desired now to present a graph-theoretic approach to obtain the QFMs of the system .7,
similar to the one introduced for the DFMs in the preceding section. Since QFM is merely

defined for the strictly proper systems, it will be assumed hereafter that D =D = 0.

Theorem 3 The mode o; is a QFM of the system %, v > 2 if and only if either condition (a)

or condition (b) given below holds:
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a) o; is an uncontrollable or unobservable mode.

b) There exist a permutation of {1,2,...,v} denoted by distinct integers i1, iz, ..., iy and an

integer p € [1,v — 1] such that for all | and 7y given by:

ne {i17i27---7ip}7 Ye {ip+l)ip+27 "')iv} (7.16)
both of the conditions given below hold:

i) The i column of the matrix Cy and the i row of the matrix By, are both zero

vectors.

ii) Consider the j™ column of the matrix Cy and the j™ row of the matrix By; at least

one of these two vectors is zero, for any j € {1,2,...,n}.

Proof It is trivial to show that if condition (a) in Theorem 3 holds, the mode o¢; will be a QFM
of the system .. If it does not hold, then it follows directly from Theorems 1 and 2 given in
[3], that o; is a QFM if and only if there exist a permutation of {1, 2, ..., v} denoted by distinct
integers iy, i, ..., iy and an integer p € [1,v — 1] such that b%a = cg’i =0, and b#’“c‘y”“=0 for
all ,7,a and B given by (7.9) and u € {1,2...,n}. It is straightforward to show that this

requirement is identical to condition (b) in the theorem. |

Consider a bipartite graph &; with v vertices 1,2, ..., v in each of its vertex sets, namely
set 1 and set 2. For any up, ly € v, connect vertex u; of set 1 to vertex u, of set 2 if either
the j® column of Cy, or the j* row of By, is a zero vector for all j € {1,2,...,n}. Then, mark
vertex y; of set 1 if the i column of the matrix C,, is a zero vector, for any u; € V. Likewise,
mark vertex p, of set 2 if the i row of the matrix By, is a zero vector, for any (i € V. Itis
worth noting that the graphs 41,%, ..., %, have the same edges, although the marking of their
vertices might be different.

The following algorithm results from Theorem 3 for verifying whether or not the mode

0; is a QFM of the system ..
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Algorithm 2
Step 1) Construct the graph 9, as discussed above.

Step 2) Verify if all of the vertices in set 1 of the graph ¥; are marked. If yes, go to Step
6.

Step 3) Verify if all of the vertices in set 2 of the graph ¥; are marked. If yes, go to Step
6.

Step 4) Check whether the graph %; includes a complete bipartite subgraph such that
all of its vertices are marked and the set of the indices of its vertices is equal to the set

v. If yes, go to Step 6.
Step 5) The mode o; is not a QFM of the system .. Stop the algorithm.

Step 6) The mode o; is a QFM of the system .. Stop the algorithm.
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7.6 lllustrative examples

Example 1 Consider a system . consisting of five single-input single-output (SISO) subsys-

tems with the following state-space matrices:

10000 000 1 2
02000 213 1 4

A=100300|, B=j024 -1 5 ],
00040 003 0 -3
00005 000 3 -1
- - L _ - . (7.17)
0 3 2 1 4 6 5 14 3 2
0 3 4 2 -1 6 7 19 4 2

C=4{5 4 3 2 4}, D=| 8 7 16 -2 -4
0 2 3 1 3 4 5 13 0 1
0 -2 -3 -2 —4 —4 -5 —14 -1 2

It is desired to verify which of the modes o; =i, i € V = {1,2,3,4,5}, are DFMs of the
system .. First, let the test given in Corollary 1 be carried out. Since the first entries of
B{,B,,B3,C;,C,,C4 and Cs are all zero, I'; + 1T is equal to 7. Similarly, one can conclude
that:

F2+f2=0, F3+f3:1, F4+f4=3, F5+F5=3 (7.18)

Due to the fact that I'; + T < 5 for i = 2,3,4,5, it follows from Corollary 1 that none of the

modes 2,3,4 and 5 is a DFM of the system .. Algorithm 1 will now be used to find out
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whether ¢; = 1 is a DFM. The matrix M; will be obtained as:

000 2 13

0 0 0 —-375 1825
M1=deiag<[0,1,%,%,3—;})B—D= 000 75 28.5 (7.19)

0 00 275 1275

000 —-25 -145

The graph ¥ corresponding to the matrix M is sketched in Figure 7.3. Since the first entries
of By,B;,B3,C;,C;,,C4 and Cs are all zero, vertices 1, 2 and 3 from set 2, and vertices 1, 2,
4 and 5 from set 1 of the graph ¢ are marked by filled circles, as shown in the figure. It can
be easily observed that vertices 4, 5 of set 1 and vertices 1, 2, 3 of set 2 fulfill the following

criteria:
o All of them are marked.
o They constitute a complete bipartite graph.
o The set of their labels is equal to V.

Therefore, 01 = 1 is a DFM of the system (from Step 4 of Algorithm 2).

Figure 7.3: The graph ¥ corresponding to the matrix M given in (7.19).
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Regarding the mode 03 = 3, let Algorithm 2 be pursued for this mode regardless of the

observation that it failed the test given in Corollary 1. The matrix M3 is equal to:

-12 -8 -20 0O -19

-12 -10 -22 -85 -19
. 1 1

M3=C><d1ag({—1,0,1,—,§]>B—D= —16 —-11 -34 15 -13

-8 -7 -16 25 -13

[\

8 7 14 -3 14

(7.20)
The corresponding graph ¥ is depicted in Figure 7.4. Since there are not enough edges in the
graph to create a complete bipartite subgraph which spans all the indices, thus 03 = 3 isnot a
DFM of the system (which also confirms the result obtained from Corollary 1).

! 2 3 4 s
[ 3 O o] ]

w0

Figure 7.4: The graph % corresponding to the matrix M3 given in (7.20).

Consequently, the system has only one DFM at 1. This result could also be obtained
by using the method given in [2] or [15], which require the rank of 5 x 2° matrices with the
dimensions between 5 and 10 be checked. The sizable difference between the computational
requirements of the method presented in this chapter and the ones given in [2, 15] demonstrates
the efficacy of this work. It is worth mentioning that the results obtained here by using the
proposed method are attained by hand, while the methods given in [2, 15] require a proper

software (such as MATLAB).

Example 2 Consider a strictly proper system % consisting of three two-input two-output
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(SISO) subsystems with the following parameters:

- —_ - - - - - —

10000 0 0 00 1 1
02000 0 0 21 -1 -1
A=100300¢{,Bi=|0 0 [-B=|00]|,B=|1 -1],
00040 2 -1 12 -1 1
0000S5 [0 0 00 -1 -1

T T ¢ 4T i i
1 -1 2 3 5 6
-1 1 00 0 0
Ci=|1 =1 ,CG=100] .CG=] 0 o0
-1 1 00 0 0
1 -1 11 -1 -1
L .J . i L .
(7.21)

The graphs ¢4, i € {1,2,3,4,5} and %, are depicted in Figures 7.5, 7.6 and 7.7. Using Algo-
rithm 2, it can be concluded that A = 2 is a QFM of the system, as step 4 will be satisfied by
considering vertices 2 and 3 from set 1, and vertex 1 from set 2. Likewise, the mode A = 3 is
a QFM by considering either vertices 2 and 3 from set 1, and vertex 1 from set 2 or vertex 3
from set 1, and vertices 1 and 2 from set 2. It can be easily verified that none of the remaining

modes are QFMs of the system ..

w3

@ {b)

Figure 7.5: The graphs &) and %, are sketched in (a) and (b), respectively.
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3
w

{a) )

w0

Figure 7.7: The graphs %.

7.7 Conclusions

This chapter aims to characterize the fixed modes of a decentralized system with distinct
modes. First, decentralized fixed modes (DFM) are described using graph-theoretic tech-
niques. Then, quotient fixed modes (QFM), which are immovable with respect to any type
of decentralized control law, are characterized. Unlike the existing methods which require
the computation of the rank of several matrices, the approaches proposed here transform the
knowledge of the system into bipartite graphs. Then, it is asserted that finding a complete
bipartite subgraph with a certain property is equivalent to the existence of a DFM. A similar
result is attained for the QFMs. The efficacy of the proposed method is demonstrated through

numerical examples.
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Chapter 8

Decentralized Overlapping Control:

Stabilizability and Pole-Placement

8.1 Abstract

This chapter deals with the control of the large-scale interconnected systems with a constrained
control structure. It is shown that ceratin modes of the system can be freely placed anywhere
on the complex plane, by using a linear time-invariant (L’TT) structurally constrained controller.
These modes have been identified by introducing the notion of decentralized overlapping fixed
mode (DOFM). This implies that the system is stabilizable by a LTI structurally constrained
controller, if and only if it does not have any unstable DOFM. Furthermore, a design procedure
is proposed for obtaining a stabilizing controller to achieve the desired pole placement for the
systems with no DOFM. In addition, the problem of designing a structurally constrained opti-
mal LTI controller with respect to a quadratic performance index is studied. Designing various
types of structurally constrained controllers, such as periodic feedback, is then investigated.
The notion of quotient overlapping fixed mode (QOFM) is also introduced, and it is shown that

a system is stabilizable by mean of a general controller, i.e. nonlinear and time-varying, if and
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only if it does not have any unstable QOFM . In the case of no unstable QOFM, it is proved
that there exists a finite-dimensional linear time-varying structurally constrained controller to

stabilize the system.

8.2 Introduction

In the past three decades, the problem of decentralized control has been thoroughly investi-
gated in the literature, and a variety of its aspects are studied [1, 2, 3]. More recently, the
problem of decentralized overlapping control has attracted several researchers [4, 5]. The

decentralized overlapping control is fundamentally used in two cases:

i) when the subsystems of a system (referred to as overlapping subsystems) share some
states [6, 7, 8]. In this case, it is usually desired that the structure of the controller

matches the overlapping structure of the system [8];

i1} when there are some limitations on the availability of the states. In this case, only certain

outputs of the system are available for constructing each control signal.

The control constraint in both cases discussed above can be represented by a binary
information flow matrix. For instance, when this matrix is block diagonal with the entries of
the main diagonal blocks all equal to 1, the control structure is decentralized, and when all
of its entries are 1, the controller is centralized. One particular structural constraint for the
controller, which is investigated intensively in the literature, corresponds to an information
flow matrix whose entries on the main diagonal blocks, as well as the last block column and
the last block row are all equal to 1. This is often referred to as bordered block-diagonal
structure (BBD) or block array structure (BAS), and has found several practical applications
[8, 9, 10]. In general, for an interconnected system with a given information flow matrix, the

following open questions are of main interest in the literature:
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1. Does there exist a stabilizing static output feedback controller for the system?

2. Does there exist a linear time-invariant (LTI) controller to stabilize the system, if there

is no static one?

3. How can a static or dynamic LTI controller be found such that a predefined quadratic

performance index is minimized?

4. Can the poles of the system be placed at any arbitrary locations, when there exists a LTI

stabilizing controller for the system?

5. Can the system be stabilized by a non-LTI controller when a LTI stabilizing controller

does not exist?

The first three questions have been addressed in the literature in the decentralized overlap-
ping control framework. This is accomplished by using a transformation which expands the
structure of the system such that the resultant control configuration is decentralized. Then, by
using the existing design techniques, the desired decentralized controller is obtained for the
expanded system. The last step of the design is to contract the controller obtained in order
to make it suitable for the original system. This approach is substantially useful, when the
structure of the system itself is overlapping as well because in that case, the subsystems of
the expanded system are disjoint [11]. Nevertheless, one of the shortcomings of this method
is that the expanded system is inherently uncontrollable, and thus, this design approach may
not be useful in general. This problem has been addressed in several papers, e.g. see [8],
[4]. Furthermore, the contraction of the designed controller can cause some problems in gen-
eral. Although a large number of conditions for contraction are presented, finding a proper
contraction is still an open problem [8]. In addition, it is often assumed that a static state
feedback controller (as opposed to a general output feedback controller) is to be designed,
which may not be suitable in practical applications. In the special case of a BAS control de-

sign, a number of methods have been proposed in the literature, including an optimal control
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design technique [9, 10]. The other existing methods for designing a BAS or an overlapping
(or structurally constrained) controller often present some sufficient conditions in the form of
LMI, and fail to address some of the important questions discussed above [8, 12, 13]. Fur-
thermore, these methods assume that the system is strictly proper, while the generalization of
the methods to general proper systems is not straightforward. The present work addresses the
problem of designing a structurally constrained controller, and is aimed to answer the open

questions discussed above, for any LTI system with any arbitrary information flow structure.

8.3 Problem formulation

Consider a LTI interconnected system .# consisting of v subsystems with the following state-

space representation:

x(t) = Ax(t) + i Bju;(t)
= @.1)

v
yi(t) = Cix(t) + zDijuj(l‘), iev:={1,2,..,v}
j=1

where x(¢) € R" is the state, and u;(r) € R™ and y;(r) € R'%, i € v, are the input and the output

of the i™ subsystem S;, respectively. Define the following matrices:

G
Dy Dyy
G .
B:=|B By, --- B, |, C:= . , D:= : : 8.2)
Dvl va
&

Define also:
v \%
mi=y m, r= 37 (8.3)

It is desired to stabilize the system .% by using a structurally constrained controller. These
constraints determine which outputs y; (j € V) are available to construct any specific input

u; (i € V) of the system. In order to simplify the formulation of the control constraint, a matrix
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2 with binary elements is defined, where its (i, j) block entry, i, j € V, is a m; x r; matrix
whose elements are all equal to 1 if the output y; can contribute to the construction of the input
u;, and is a m; X r; zero matrix otherwise. The matrix ¢ represents the control constraint, and
will be referred to as the information flow matrix.

To represent the structural constraint of the system, the corresponding information flow
matrix is enclosed in parentheses throughout the chapter, if necessary. For instance, .7 (%)
indicates that the structure of the controller to be designed for the system .# is to comply with
the information flow matrix 2.

In the special case, when the entries of the matrix £ are all equal to 1, the correspond-
ing controller is centralized, and when £ is block diagonal, the corresponding controller is
decentralized. Throughout this chapter, the term “decentralized controller” is referred to the
set of local controllers for an interconnected system with a block diagonal information flow
matrix.

It is to be noted that in the case of a block diagonal matrix JZ*, one can use the existing
methods, e.g. [2], to find the decentralized fixed modes (DFM) of the system, if any. Then,
if the system does not have any DFM in the closed right-half plane (RHP), one can use a
LTI decentralized controller to stabilize it and place those modes which are not fixed, in any
arbitrary location in the complex plane. Furthermore, the system can still be stabilized in the
presence of unstable DFMs, as long as they are not quotient fixed modes (QFM) [3]. A system
with unstable QFMs cannot be stabilized by using any type of controller, i.e., nonlinear and
time-varying. However, there is no necessary and sufficient condition for the existence of a
general stabilizing controller, when J# is not block diagonal. This problem will be addressed
in the following sections. It is to be noted that to avoid trivial cases (i.e., standard decentralized
and centralized systems), the matrix £ will hereafter be assumed not to be block diagonal,

and to have at least one zero block.
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8.4 Computing the transformation matrices

Definition 1 Consider two arbitrary systems %y, and Sy, associated with the information
flow matrices y, and Hy,, where 4, and Zy, are of the same order and have the same ini-
tial state. Let M denote a given set of controllers. The systems Sy (Ky, ) and Sy, (Hy,) are
called analogous with respect to M if for any controller Kg, in M complying with the informa-
tion flow matrix Jty,, there also exists a controller K, in M complying with the information
flow matrix g, (and vice versa), such that the state of the system g, under the controller

Ky, is equivalent to the state of 4, under Kg,.

The motivation for introducing the notion of analogous systems is that given a system
S (X) with any general information flow structure %, it is desired to find an analogous
system with a decentralized (i.e. block diagonal) information flow structure. It is to be noted
there are several efficient methods for design of decentralized controllers. Thus, the problem
reduces to designing a proper decentralized controller, and finding a transformation to change
the block-diagonal structure of the controller to the desired structure for the original system
& (A). This is an indirect method of design, which unlike the existing indirect approaches
aims to identify the fixed modes with respect to a structurally constrained controller. This
section presents some transformation matrices which will later be used to construct systems
analogous to the system #(¢).

Define the control interaction structure K as a matrix whose (i, j) block entry, i,j €
V, is a m; X rj matrix denote by k;; if the output of the 7™ subsystem can contribute to the
construction of the input of the it subsystem, and is a m; X r; zero matrix otherwise. Note that
ki; represents a component of the controller, which transforms the output of the j™ subsystem
to the input of the i subsystem. Note also that the interaction structure matrix K not only

conveys the information of the matrix J¢°, but also labels the control components.

Procedure 1 Construct the graph ¢ as follows:
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1. Define two sets of v vertices. Label the sets as set 1 and set 2, and the vertices in each

set as vertex 1 to vertex v.

2. Foranyi,j € V, connect the i vertex of set 1 to the j™ vertex of set 2 with an edge, if
the (i, j) block entry of X is not a zero matrix, i.e., if the output of the j™ subsystem
can contribute to the construction of the input of the i™ subsystem. Label this edge with

kij.

As an example, consider a system consisting of four subsystems with the following control

interaction structure matrix:

ki O 0 O
ky k 0 %
Ko | fr k2 24 8.4)
ksi 0 k3 O
0 ko O kg

The graph ¢ corresponding to the matrix K given above is depicted in Figure 8.1.

Figure 8.1: The graph ¢ corresponding to the matrix K given by (8.4).

Procedure 2 Partition the graph & into a set of complete bipartite subgraphs such that each
edge of the graph & appears in only one of the subgraphs. It is to be noted that this partition

may require some of the vertices of the graph & to appear in several subgraphs.

It can be easily verified that Procedure 2 does not necessarily lead to a unique graph. De-
note all the graphs which can be obtained through this procedure, with ¢4),%, ...,%;. Without

loss of generality, assume that ¢; and ¢ are the ones with the following properties:
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e 4 is obtained by considering any vertex in set 1 of the graph & along with all of the

vertices in set 2 connected to that vertex as a complete bipartite graph.

e ¥ is obtained by considering any edge in the graph ¢ as a complete bipartite graph.

As an example, consider again the graph ¢ sketched in Figure 8.1. The graph %, for this
graph can be considered as the one depicted in Figure 8.2 (note that this graph is denoted by
% instead of ¢, because it does not satisfy the property of ¢ described above). It is obvious
from Figure 8.2 that, in this particular example, vertices 2 and 3 of the first set of vertices of

& are repeated twice in %.

Figure 8.2: A decentralized graph %, obtained from the graph ¢ in Figure 8.1.

The following procedure can be used to construct the matrix K, corresponding to the

graph @, forany p € I:={1,2,...,1}.

Procedure 3 Label the complete bipartite subgraphs of %, (U € I) as subgraphs 1 to v,,.
Consider subgraph number ¢ (V ¢ € {1,2,...,vy}). Label those vertices of this subgraph
which belong to set 1 as vertex 1,....nk. This group of vertices will be referred to as subset
1 (corresponding to subgraph number o). Similarly, label those vertices which belong to set
2 of this subgraph as vertex 1, ..., ik, and define subset 2 accordingly. Define K, as a block
diagonal matrix, where its (G,0) block entry, 6 = 1,...,vy, is a matrix itself, whose (i, j)
block entry is equal to the gain of the edge connecting vertex i of subset 1 to vertex j of subset
2 in subgraph number & of 9, for any i € {1, ..., nkY, j€{1,...,ik}. Denote the dimension
of the (0,0) block entry of K, with mh x rs, foro =1,2,..., Vy, and the dimension of K,

with m* x r#,
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Using Procedure 3 and for a particular numbering of vertices in each subgraph of %, in Figure

8.2, the following block diagonal matrix K, is obtained:
ki 0 O

kpy 0 O

8.5)

0
0
kst 0 0 O
0 kp ky O
0

0 ki kaa

\ 0 0 0 ks

Remark 1 Ir can be easily concluded from Procedures 1, 2 and 3, that there exists an onto
mapping between the nonzero block entries of the matrix K, and those of the matrix K for any

pnel
Theorem 1 There exist constant matrices ®y, and &)u satisfying the following relation:

K = ©,K,®, (8.6)
for any pu € I.

Proof It is straightforward to show (by using Procedures 1, 2 and 3) that the matrix K, can
alternatively be constructed from K through a sequence of L, — 1 operations (where L, is a
finite number), such that the matrix Kﬁ‘ 1 is formed in terms of Kf in the j® operation, for

any j € {1,2,...,.L, — 1}, where K = K‘IL and K, = Kﬁ#. Moreover, K*

i+ is obtained from

Kﬁ‘ for any j € {1,2,...,L, — 1}, by one of the following two operations:
1. Swapping either two columns or two rows of the matrix Ké‘ .

2. Splitting one of the rows (or columns) of K? denoted by v, into two row vectors v; and
vy, i.€., v=[v] wy] (or v=[v; v]'). Then, replacing that row (or column) with [v; 0]
(or [v; 0]"), where O represents a zero row vector, and inserting another row (or column)

equal tov = [0 vp] (or v=[0 v,]’) into the matrix.
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It is desired now to prove for any j € {1,...,L, — 1}, that there exist matrices (D;L and CTJG‘ such

U mbch G
that K¥ = 4K%, | &/

1. Assume that Kt‘ 1 18 derived from Kﬁ‘ by swapping its g™ and ¢ columns. It is straight-

forward to show in this case, that the matrices (I)? and CTD? will be as follows:

(a) CID’}-L is an identity matrix, whose dimension is equal to the number of rows of Kt‘ .

(b) (TD? is derived from an identity matrix, whose dimension is equal to the number
of columns of K? , by setting the (g,g) and (g, q) entries of this identity matrix to

zero, and setting its (g,q) and (g, g) entries to one.

It is to be noted that if two rows of Ki‘ instead of two columns are swapped, then the

procedures to obtain the matrices (I>’J“.L and CI)? should also be swapped.

2. Assume that one of the columns of the matrix K7 is split into two columns as described
before (note that the case of row split can be carried out in a similar manner). For

instance, suppose that K is as follows:

My my Ms
K/ = (8.7)
M4 ms M6
where:
My € REXN my € REXL My € R
(8.8)
My € REXN | g € R8XL M € REXD
In addition, consider:
My my Ogx1 M
K | = ! 8.9)

My Ogx1 ms Mg
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It can be easily verified that CD;‘ = I¢, 4, and:

Iql 0q1 x1 0q1 xXqp

_ 0 1 0
G | o Ixa (8.10)

O1xqy 1 O1xq

Loqzxm Oqle qu ]

Note that Oyx, and I, represent the g X g zero matrix and the g X g identity matrix,

respectively, for any g,q > 1.

Hence, it is shown that for each of the two operations discussed earlier, there exist the matrices
CD? and (TD? , which satisfy the aforementioned property. The matrices ®,, and @, can now be

obtained from the following equations:

Oy =RfOy @y, Pu= B P (8.11)

Theorem 1 states that there exist matrices @, and @, for the matrix K, (1 € I) derived
from K using Procedures 1, 2 and 3, such that they satisfy the equation (8.6). However, since
the proof of Theorem 1 relies on a sequence of matrices, the proposed procedure may not be
efficient to compute ®,, and @, for an information flow matrix with a large number of block

entries. The following theorem presents a more efficient approach to obtain @, and ®j,.

Theorem 2 Choose at least one nonzero block entry from each block column and each block

row of Ky, U € I, and let them be denoted by kijrs kizjys ook

ipJp*

Suppose that ki j,, q =
1,2,...,p, is the (ig, j;) block entry of the matrix Ky,. Denote the il block column of ®, and

the W block row of ®,, with I1,, and I, respectively, for by = 1,2,...,m*, hp =1,2,...,r#
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(note that m* and r* are defined in procedure 3) . Then:

" - _ -T
Oml XMig Orjq Xr1
0m2 Xm,'q Orjq Xrp
i,—1) XM, - FigXT(i 1
L B B PR B (8.12)
I, L,
Om(fqﬂ) X Mig O’J‘q XT(jg+1)
Omv Xmiq ] X Orjq Xty

forany q € {1,2,...,p}.

Proof Itis shown in Theorem 1 that the matrices @, and @y, exist to satisfy the equation (8.6).
As aresult, this equation holds for any arbitrary values for the block entries kg, 5,, 01,02 € V.
Replace all block entries kg, ,’s in the equation (8.6), except k;j,, with zero matrices. It can
be concluded from (8.6) that:

K, =TIk

iqlq A iqqu——ljt/l (813)
where Kiq j, 1s obtained from K by replacing all of its block entries with zero matrices, except

for its (i4, j4) block entry k;, ;.. The proof follows immediately from the equation (8.13). W

It is to be noted that the matrices @, and @, are uniquely determined. To illustrate
the method proposed in Theorem 2, consider again the matrix K given by (8.5), which is
obtained from K in (8.4), and assume that the subsystems of the original system are all single-
input single-output (SISO). As the first step in computing @, and ®,, choose some of the
nonzero entries of Ko, such that at least one entry from each column and each row of K is
included. Let these entries be ky1,k21, k31, k22, k44, and k33. The position of these entries in the

matrix K are (1,1),(2,1),(3,1),(4,2),(5,3),(6,4), respectively. Using Theorem 2, one can
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obtain the matrices ®, and ®, for this example, as follows:

- - - -
100000 1 000
010100 - 0100

Dy = , Py= (8.14)
001001 0001
000010 i 0010

It is very easy to verify that these matrices satisfy the relation (8.6).

8.5 Linear time-invariant control law

In this section, it is desired to find conditions for the existence of a stabilizing LTT controller
for the system .#(.%"). Furthermore, a procedure is given to achieve pole placement using
a LTI control law. Design of a structurally constrained linear-quadratic optimal controller is

then studied.

8.5.1 Pole placement

Definition 2 Define ., U € I, as an interconnected system with the following state-space

representation:

X (1) = Axu (1) + Bhuy (1) (8.15)

yu(?) = CHxy (1) + DHuy (2)

where the system parameters are related to the state-space matrices of the system .# given by

(8.1), as shown below:

u,(r) € R and yu(t) e R” * are the input and the output of w> respectively, and x,,(0) =
x(0). For any u € I, define the information flow matrix ), for the system %, as a matrix
obtained from K, by replacing its nonzero block entry k;j, with a m; X rj matrix whose entries

are all equal to one, foranyi,j € V.
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Theorem 3 For any [ € I, the systems &, (%y) and () are analogous with respect to

the set of all LTI controllers.

Proof Denote the transfer function matrix of any nonzero control component k;; with K;;(s),
i, j € V (the dimension of K;;(s) is the same as k;; but the function itself is yet to be designed).
Replace the block k;; with K;;(s) in the matrices K and K, for any i, j € ¥, and denote the
resultant control transfer function matrices with K(s) and K, (s), respectively. It can be easily

concluded from Theorem 1 that:
K(s)= DKy (s)i)u 8.17)

Assume the control transfer function matrix K(s) is such that the matrix I, — DK(s) is non-
singular. It is known that the state of the system .% under the controller K(s) satisfies the

following equation:
X(s) = (sha ~ A~ BK(s) (1, = DK(5))™'C)  x(0) .18)

On the other hand, it can be easily verified that /,u —®,D®, K, (s) is nonsingular due to the
assumption det(l, — DK (s)) # 0. Similarly, the state of the system %, under the controller

K (s) can be obtained as follows:
Xu(s) = (55— A~ BFKy(s) (b — DKy () ™' C¥) ' (0) (8.19)
Furthermore, using the equations (8.16) and (8.17), one can write:
BK(s)(I, — DK(s))™'C = B®y Ky (5)®y (I — DDuK,(s)®y) ™' C
— BOYK,(s) (In — DuDDKy(s)) ' ®uC (8.20)
= B*K, (s) (Iu — D*Ky(s)) ™' CH

The proof follows from the relations (8.18), (8.19), and (8.20). |

Corollary 1 For any it € [, the systems () and #(X’) are analogous with respect to

the set of all continuous-time static controllers.
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Proof The proof is omitted due to its similarity to the proof of Theorem 3. [

Remark 2 Ir can be easily concluded from Theorem 3 and Corollary 1 that all of the systems
LK), L1(H4), S 2(H), ..., L 1(H) are analogous with respect to the set of continuous-
time dynamic LTI controllers, as well as the set of continuous-time static controllers. As a
result, in order to design a continuous-time dynamic (or static) LTI controller for the system
& with respect to the information flow structure ¥ to achieve any design objective (such as
pole placement), one can equivalently design a continuous-time LTI controller for the system
L U E I, with respect to the information flow structure Ky, to attain the same objective.
The mapping between the components of K and K, (derived from the equation (8.6)) can then
be used to find the corresponding controller for the system #(X). The important advantage
of this indirect design procedure is that the information flow structure ), is block diagonal,
and hence the problem is converted to the conventional decentralized control design problem,

which can be handled by the existing methods [2, 14].

The question arises now as which of the systems #1,.%5,...,#; is more appropriate
to be employed for the aforementioned control design procedure. It is to be noted that all
of these systems are analogous, and hence possess similar characteristics in terms of output
performance. However, a smart choice of system here is of crucial importance in terms of
simplifying the control design problem. This will be discussed in detail later.

Partition now the matrices B¥, C* and D, u € [, as follows:

1
¢ p* pH
v Lt 1,vu
2 .
B =B BY ... B‘v‘#}, CH = , DH= :
u
cH 77 Deﬂ»"#
Yu
) } (8.21)
where:
B! e, Cledtl, DEeRx™ (8.22)
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for any i,j € {1,2,...,vu}. Itis to be noted that mf‘ and rf‘ are defined in Procedure 3.

Theorem 4 Consider an arbitrary region % in the complex plane. There exists a LTI con-
troller for the system #(J¢) to place all modes of the resultant closed-loop system inside
the region %, except for those modes which are DFMs of the system ., with respect to %},
pel

Proof As pointed out in Remark 2, the systems .#(%") and &, (¢, ) are equivalent in terms
of pole placement capabilities. On the other hand, it results from the definition of DFM [1]

that all of the modes of the system &, (%)) except for its DFMs can be placed arbitrarily by

using a proper LTI controller. This completes the proof. ]

Definition 3 Define decentralized overlapping fixed modes (DOFM) of &/ (¥") as those modes
of the system . which are fixed with respect to any dynamic LTI controller with the informa-

tion flow structure % .

Theorem 4 states that the DOFMs of #(.¢") and the DFMs of . (), V u € 1
are the same. Hence, the DOFMs of (%) can be obtained from any of the systems
ZL1(4), ..., L 1(). The following procedure is used to determines the DOFMs of the sys-
tem (%) from the DFMs of the system .% , (J¢},), 1 € .

Procedure 4 Consider any arbitrary g belonging to I. Let sp(A) denote the set of eigenvalues
of A. A € sp(A) is a DOFM of the system . with respect to the information flow matrix X,
if there exists a permutation of {1,2,..., vy} denoted by the distinct integers i1,1y, ..., iy,, such

that the rank of the matrix:

o u H
A . A{In Bll Bi2 " Biq
i B B D* .
lg+1 ig+1,i1 grlsia 777 Vlgitlg
H i B B 8.23
Clq+2 Ig+2:11 th+2,lz e qu+27lq ( )
CcH B B B
L qu qu sl le, 22 e tVu g
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is less than n for some p € {0,1,...,v,}.

Remark 3 According to Procedure 4, the rank of a set of matrices given in (8.23) should be
checked to find out if any of the eigenvalues of the matrix A is a DOFM of the system &/ (X¥).
It can be easily verified that the number of these matrices grows exponentially by v, (the
number of complete bipartite subgraphs of 9,,). Therefore, in order to reduce the required
computations, it is rather desirable to choose the graph 4, from the set of graphs {4,...,%},
such that it has the minimum number of complete bipartite subgraphs. Moreover, if there is

more than one such candidate, the one with fewer number of vertices is more preferable.

Corollary 2 The system ¥ () is stabilizable by means of a dynamic LTI controller if and
only if it does not have any DOFM in the closed right-half plane with respect to the information

Sflow matrix % .
Proof The proof follows immediately from Theorem 4. |

The following theorem presents a method to characterize the DOFMs of the system

& (X) in terms of the transmission zeros of a set of systems.

Theorem 5 A € sp(A) is a DOFM of the system ./ (X) if and only if it is a transmission zero

of the following system:

x(t) = Ax(r) + Bgl Bgz ng }u(t)
= “ I =
Cg] 0 Dﬁ]iz Dgliq
Cl D! . 0o ... D!, (8.24)
yo)=| " [x@0+] ™ 2 ()
! ! !
i Ciq | i Diqh Diqiz - 0 |

forany q € {1,...,v;} and any arbitrary subset {i1,is,...,ig} of {1,2,...,vi}.
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Proof It was shown earlier that the DOFMs of the system .#(.£") are the same as the DFMs
of the system .%#;(#]). Furthermore, since the matrix .’#] is diagonal (because the graph ¥; is
composed of some disjoint edges), it results from [2] that the DFMs of the system .%;( %) are
the same as the common transmission zeros of the systems given by (8.24). This completes

the proof. |

Remark 4 The results of Theorem 5 are obtained in [2] for the particular case when the
information flow matrix & is block diagonal. Furthermore, the system given by (8.24) is
constructed by using Kronecker product in [2], while it is formed by means of graph theory in
this chapter. Therefore, Theorem 5 presents the results for the most general information flow

structure compared to the ones given in [2].

8.5.2 Optimal LTT controller

Assume that the system . is stabilizable with respect to the information flow matrix 2 by
means of a dynamic LTI controller. It is desired to find a LTI controller with the zero initial
state and the transfer function matrix K (s) corresponding to the information flow structure J¢’,

such that it minimizes the following LQR performance index:

J:= /0 ) (x(6)" Qx(¢) + u(t) Ru(z)) dt (8.25)

where R € R™*™ and Q € R™*” are positive definite and positive semi-definite matrices, re-
p p

spectively, and where:
T
u(l) = [ u (t)T uz(t)T cee Uy (t)T } (826)
Lemma 1 The matrix ®, corresponding to the information flow matrix X is equal to I,,,.

Proof : The proof follows directly from the procedure of constructing the graph ¢; and The-

orem 2. B
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The transfer function matrix K| (s) constructed in terms of K(s) in the proof of Theorem

3 (for 4 = 1) will be used in the next Theorem.

Theorem 6 Consider the systems . and .| under the controllers K(s) and K (s), respec-

tively. Assume that the matrix I, — DK(s) is nonsingular. Then J = J,, where:
e T T
Io= /0 (x1 ()7 Q1 () + wi (1) TRy (¢)) dt (827)

Proof It follows from the proof of Theorem 3 (with u = 1) that x(¢) = x;(¢) for all > 0.
Besides, it results from this equality and ®| = I, (Lemma 1), that u(t) = u;(¢) for all £ > 0.

This completes the proof. ]

Theorem 6 states that in order to find a controller K (s) which minimizes the performance
index (8.25) for the system . while it meets the information flow constraint given by ¢, one

can equivalently pursue the following two steps:
1. Design the decentralized LTI controller K(s) in such a way that it minimizes the per-
formance index (8.27) for the system .} (1 ).
2. Find the controller K(s) from the relation K (s) = @K (s)®;.

It is to be noted that the decentralized optimal control design problem has been studied inten-
sively in the literature, and a number of approaches for obtaining an optimal or a near-optimal

decentralized controller are given accordingly, e.g., see [15, 16, 17].

8.6 Non-LTI control law

In this section, the procedure of designing different types of controllers, such as periodic or
sampled-data control laws, for the system (") is investigated. Moreover, a necessary
and sufficient condition for the stabilizability of the system (%) is given. To develop the
remaining results of this work, it is hereafter assumed that the system . is strictly proper, i.e.

D=0.
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8.6.1 Generalized sampled-data hold function

Periodic control design using generalized sampled-data hold function (GSHF) and its advan-
tages have been studied intensively in the literature {18, 19, 20]. Assume that it is desired to
design a GSHF for the system ., which complies with the information flow structure J¢". Let

this GSHF be denoted by F(¢). Hence, the hold controller will be as follows:
u(t)=F(t)ylx], xh<t<(k+1)h, k>0 (8.28)

where h represents the sampling periodic. Note that the discrete argument corresponding to

the samples of any signal is enclosed in brackets (e.g., y[x] := y(xh)).

Theorem 7 The systems (X ), L1(H1),...,L1(H]) are all analogous with respect to the
set of all hold controllers (GSHFs).

Proof To prove the theorem, it suffices to show that #(¥") and ., (#,) are analogous
with respect to all hold controllers, for any y € I. Consider a GSHF F(¢) which complies with
the information flow structure J¢". Utilize the proper transformation on F(¢) to obtain the
equivalent hold function F, (¢) for the system ., (%}, ). Note that F,,(¢) can be attained using
the mapping between the components of K and K, (see Remark 1). Since F(¢) and Fy(r)
comply with the information flow matrices ¢ and J#),, respectively, it is straightforward to

show that F(z) = ®,F,,(¢)®,. On the other hand, it follows from (8.28) that:
(t) = Ax(t) + BF (1)Cx[k] (8.29)
and consequently:
X (1) = Axp(f) + BEF, (£)CHxy K]

= Axy (1) + BF(1)Cxy[x]
forallz € [kh, (x+1)h), k > 0. The equations (8.29) and (8.30), and the equality x(0) = x,(0)

result in the relation x(¢) = x,(¢) for all # > 0. Conversely, for any GSHF F,(¢) complying
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with the information flow matrix J¢},, it is straightforward to show that the state of the system

& under the GSHF F (¢) = @, F,, (t)®,, is identical to that of the system ., under F,,(z). B

Theorem 7 states that the problem of designing a GSHF for the system .#(.#") can be
formulated as the problem of designing a GSHF for the system .% ,(.%},) for any u € I. How-
ever, due to the decentralized structure of the control for &, (Jifu), [INS I, the corresponding

GSHF design can be accomplished by using the existing methods [21, 22].

8.6.2 Sampled-data controller

A typical sampled-data controller consists of a sampler, a zero-order hold (ZOH) and a discrete-
time controller. It is to be noted that a sampled-data controller acts as a time-varying control
law for the continuous-time system. It is desired in this subsection to present a method for
designing a sampled-data controller for the system ., whose structure complies with a given
information flow matrix J¢". Throughout the remainder of this chapter, the term linear shift-

invariant (LSI) will be used instead of LTI, for discrete-time systems.

Theorem 8 The systems # (%), #1(H1),....,71(H) are all analogous with respect to the

set of all LSI sampled-data controllers.

Proof Denote the sampling period with %, and the discrete-time equivalent models of the

systems %, % 1,...,.7; with .2, 1, ...,.}, respectively. Assume that the system S is rep-

resented by:
x[k + 1] = Ax[K] + Bu[x]
(8.31)
ylx] = Cx[x]
Similarly, let the system %, be represented by:
xy [k + 1] = Axy [x] + BHuy, [x]
* 8 g (8.32)

Yulk] = CHxy[x], uel
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It can be easily verified that:
B = [ "Bt dr = / B dtx , = BO, (8.33)
0 0

It results from (8.31), (8.32), and (8.33) that the state-space matrices of 52 are related to those
of & u» exactly the same way the state-space matrices of . and ., are related. Hence,
the systems . and .#, are analogous with respect to the LSI controllers. Consider now a
discrete-time LSI controller with the transfer function matrix K(z) for the system .#(.¢).
Construct a discrete-time LSI controller with the transfer function matrix K, (z) for the system
& u(4,), such that it corresponds to the controller K(z) for .#(J¢"). This controller can
be obtained from the mapping between the components of K and K. It is straightforward
to show that K(z) = ®,K,(z)®,. Applying the controller K(z) to the system . and the
controller Ky, (z) to .}, one can conclude (using an approach similar to the one given in the

proof of Theorem 3) that x[x] = x [x] and u[k] = ®,u,[«] for any x > 0. Therefore,

i3
x(t) = e WAk + [ T MABY[K] dt
Kh

t
= el M)Ay [x] + / *KMAB® (k] dT
h (8.34)
= e(’“"h)AX“[K] —I—/ e(f_"h)AB”uy[K] dt
xh
=Xu()
for any ¢ € [kh, (x + 1)h), k > 0. Similarly, it can be easily verified that given any controller
K, (2) for the system %, (¢'), the controller K(z) := @Ky (z)®, corresponds to the infor-
mation flow matrix J#. Moreover, the state of the system .# under the controller K(z) is the

same as that of ., under K}, (z). [ ]

It is assumed in the proof of Theorem 8 that D = 0. However, its results can be easily
extended to the case when D # 0. Note that finding a sampled-data decentralized control law

to achieve certain design objectives has been investigated in the literature, e.g, see [23].
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8.6.3 Finite-dimensional linear time-varying controller

It is well-known that finite-dimensional linear time-varying (LTV) controllers are superior
to their LTI counterparts in many control applications [21]. It is desired in this subsection
to present a procedure for designing a finite-dimensional LTV controller complying with the
information flow matrix J¢, for the system .. Note that throughout this work, the term
’finite-dimensional LTV controller” refers to a control law which can be represented by the

following state-space model:

() =A@)%(t) + B(t)a(r)
(8.35)
() = C(2)x(2) + D(2)a(z)
Theorem 9 The systems S (X), L 1(1),...,Z1(H]) are all analogous with respect to the

set of all finite-dimensional LTV controllers.

The foregoing theorem extends the results of Theorem 3 to the case when the controllers
are finite-dimensional LTV (as opposed to LTI). The proof of Theorem 9 is similar to that of
Theorem 3 (but should be carried out in the time-domain). The details of the proof are omitted
here. However, the statement that .%(.#) and ., (#},), 1 € I, are analogous with respect to
all finite-dimensional LTV controllers can be intuitively justified as follows:

One can easily verify by using the comments given in the proofs of Theorems 1 and 2,
that B* is derived from B by rearranging its columns and repeating some of them (repetition
results from the fact that some of the vertices in set 1 of the graph Y have recurred to construct
the graph 9, ). Analogously, C* is derived from C by rearranging its rows and repeating some

of them. These repetitions and rearrangements and their interpretations are described below:

1. Repetition of the rows of C indicates that some of the outputs of % are duplicated to
construct the system . To justify the necessity of this recurrence, assume that one
output of the system .# contributes to two different control inputs. This means that the

corresponding control agent is not localized, and hence the corresponding information
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flow structure is not decentralized. However, by duplicating this output of the system to
create a redundant output, and by applying the two resulting outputs to the two above-
mentioned control inputs, the resultant control structure will be decentralized, while its

functionality is essentially equivalent to the original control system.

2. Regarding the repetition in the columns of B¥, assume that two outputs of the system
contribute to one control agent. Since the controller is linear, one can split the control
agent to two sub-agents such that each of the two outputs of the system goes to one of
these sub-agents. The control signal of the original control agent is, in fact, equal to the
summation of the control signals of these two sub-agents (this results from the principle
of superposition). Again, the functionality of the resultant control system is equivalent

to the original one, while its structure is decentralized.

3. The rearrangement of the rows and the columns of C and B is equivalent to the reorder-
ing of the inputs and the outputs of ., and has no impact on the operation of the overall

control system.

Taking the aforementioned interpretations into consideration, the system ., is indeed con-
structed from . in such a way that the control structure J is converted to a decentralized
structure Xy, while essentially both control systems perform identically.

Theorem 9 implies that to design a finite-dimensional LTV controller for the system
L (AX), one can first design a LTV controller for one of the systems .7 1(#7), ..., Z ().
This result will be exploited in the following section to present one of the main contributions

of the present work.

8.6.4 General controller

The objective of this subsection is to find out under what conditions the system .#(¢) is

stabilizable by means of a general control law (i.e. nonlinear and time-varying), when there
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exists no stabilizing LTI controller.

Theorem 10 The systems #(¢") and #|(#]) are analogous with respect to any type of

controller (i.e. nonlinear or time-varying).

Proof As pointed out in the discussion following Theorem 9, the configurations of the systems
& and #| are essentially equivalent. In other words, the system .¥’ is obtained from .% by
introducing some redundant outputs or control agents and reordering them, in such a way
that the information flow structure ¢ is converted to .#]. Note that according to Lemma 1,
B = B!. Hence, the state of the closed-loop system corresponding to the pair (.%,.%) is

identical to that of the pair (%1, .#] ), regardless of the type of the control law. [

It is to be noted that unlike &#(.%") and .1(#), the systems .# (%) and & (#},),
i € {2,3,...,1}, are not analogous with respect to any type of controller, in general. This
results from the fact that the superposition principle presented in item 2 of the discussion

following Theorem 9 does not apply here, as the controllers are nonlinear.

Remark 5 It follows immediately from Theorem 10 that the system . (J¢) is stabilizable if
and only if the system | (J4]) is stabilizable.

It is shown in [3] that a system is stabilizable with respect to a block-diagonal informa-
tion flow matrix (i.e. decentralized control structure) if and only if the system does not any
unstable quotient fixed mode (QFM). However, QFM is only defined for decentralized control
structures. In the following, this notion is extended to the general information flow structure

and its property is investigated accordingly.

Definition 4 A € sp(A) is a quotient overlapping fixed mode (QOFM) of the system . with
respect to the information flow matrix ¥, if A cannot be eliminated by using any type of

controller complying with the structure of & .
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Theorem 11 The QOFMs of the system #(X') are the same as the QFMs of the system
y#(%)a Vu e L

Proof It follows from Theorem 10 that the QOFMs of the system . (.£") are the same as the
QFM s of the system .1 (#7 ). To complete the proof, it suffices to show that the QFMs of the
system .71 (.%7) are the same as those of the system .%, (), for p =2,3,...,1. This can be

deduced from the following argument:

o The systems .#1(4]),...,.# (%) all have the same A-matrix, and hence the same

modes.

e Itis shown in [3, 24] that all of the non-QFMs of any system can be eliminated by using

a proper finite-dimensional LTV controller.

e Theorem 9 states that the systems .| (4]), ..., () are all analogous to each other

with respect to finite-dimensional LTV controllers.

Corollary 3 The system (%) is stabilizable if and only if it does not have any unstable
QOFM.

Proof The proof follows immediately from Remark 5 and Theorem 11. |

8.7 Comparison with existing methods

8.7.1 Comparison with the work presented in [8]

Consider the system . with the following state-space representation:

#(t) = Ax+ Byuj (t) + Baup (1) (8.36)
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where A € R3¢*3¢ and

B OCXCZ X1 (t)
B = Oexey | By = Orxe, |0 x(t) = x(1) (8.37)
O¢x¢, B, x3(t)

and x;(r) € R, i =1,2,3. The outputs of this system are assumed to be the same as its state
variables. It is desired now to design a stabilizing structurally constrained static controller for

& with the information flow matrix :

110
H = (8.38)
011

This decentralized overlapping problem is investigated in [8], where the expansion approach
is used to solve the problem (see [4] for a numerical version of this example). In this method,
the system .7 is converted to another system, which is referred to as the expanded system.
Subsequently, it is stated that if the expanded system can be stabilized, then the system .
is stabilizable as well. However, since the expanded system is inherently uncontrollable, this
approach might be inefficient. It is desired now to demonstrate the effectiveness of the method
proposed in this chapter for this example. Using the proposed method, one can easily conclude
that the DOFMs of the system .# consist of unobservable modes, uncontrollable modes, and

any mode A for which at least one of the following two matrices:

A—Al, B A-AlL, B,
, (8.39)

H 020 x ¢ H, 024 x5

loses rank, where H; = [ Ly oy } and H, = [ osrxe b } Assume now that the

system does not have any unstable DOFM. One can use Procedures 1, 2 and 3 to obtain the
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matrix K, as follows:

kit Ogxg Ogxg
0 k 0
Opxg k22 Ogxg

| Opxg Ogxg ks

o

which corresponds to the system ., with the following state-space representation:

X5 (1) = AXa(t) +B2u? (1) + B3u3 (1) + B3ud(r) (8.41)
where:
x{(1)
x2()= | x2¢) |, Bi=Bi, B%=[B1 BZ}, B} =B, (8.42)
x3(1)

and x%(t) € SKC, i=1,2,3. It can be concluded from Corollary 1 that designing a static struc-
turally constrained controller for the system .% is identical to designing a static decentralized
controller for the system .#; (i.e., u?(¢) is constructed in terms of x?(¢) for i = 1,2,3). The lat-
ter problem can be solved by using either the LMI method proposed in [8] (where this example

is presented), or other existing methods, e.g. [15].

8.7.2 Comparison with the work presented in [25]

A method is proposed in [25] for strictly proper systems to determine whether the system
is stabilizable with respect to a given information flow matrix by means of LTI controllers.

However, this method has the following deficiencies compared to the present work:
1. It cannot be extended to the general proper systems.

2. It translates the stabilizability of a system by means of LTI controllers to that of another
system which is, in fact, .#;. However, this may require that the ranks of a huge number

of matrices to be checked in order to find out whether the system is stabilizable. For

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



instance, assume that the system . is composed of 100 SISO subsystems, and that the
corresponding information flow matrix /£ is a 100 x 100 matrix, with the first entries
of the odd rows and the last entries of the even rows all equal to zero, and the remaining
entries all equal to 1. It is straightforward to show that the number of matrices whose
ranks need to be checked by using the method given in [25] is equal to 219, while the
system .%, can be constructed in such a way that the number of matrices whose ranks
need to be checked is equal to 22. This sizable difference demonstrates the efficiency of

the present work.

8.8 Numerical examples

Example 1 Consider the system . consisting of three SISO subsystems with the following

state-space matrices:

1 01 010 1 00
A=1012|, B={0oo0 1}, C=100 1], D=0 (8.43)
1 23 1 01 1 22
1 01
Consider the information flow matrix £ = | 9 1 1 |, which corresponds to the following
111
control structure:
kin 0 ki3
K=1 0 kp k3 (8.44)
ka1 ks k33
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This is, in fact, a BAS (or BBD) controller [8, 9]. The following matrix K; can be obtained
using Procedures 1, 2 and 3:

’_ -1
koo kyz O

(8.45)

0
kaz k33 0 0
K= 0 0 k; 0

0

0 0 ky

0 0 O ki

Note that for this particular example, %, is the best candidate in terms of the subsequent

computational complexity. The matrices ®, and @, can be obtained from Theorem 2 as

follows: _ _
010
00101
0 01
®=110000}, O2= (8.46)
1 00
01010
001

Now, the system . can be easily constructed by using the_equations (-8.15), (8.16) and (8.46).
It is desired now to design a structurally constrained controller K(s) for the system .# to
achieve a settling time of 4 seconds. and an overshoot of less than 4.5%. It can be easily
verified that these design specifications will be met by placing the dominant poles of the
closed-loop system at —1 & 1i. From Procedure 4, it is known that the system .& does not have
any DOFMs with respect to the information flow matrix 2. Now, using any decentralized
pole placement method, e.g., the one proposed in [2] or [14], one can place the dominant poles

of the closed-loop system ., at —1 =+ 14, as discussed in Remark 2. For instance, using the
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method given in [2], the following control transfer functions are obtained:
Kii1(s) =Kiz(s) =Kz (s) =1
K»(s) = (—89900 — 961005 — 341005 — 54805 — 409s* — 11.55°) /Den(s)
K3(s) = ( — 15700 — 205005 — 8810s> — 1730s> — 160s* — 5.695°) /Den(s) (8.47)
Ksa(s) = (— 64500 — 525005 — 16900s* — 2740s> — 220s* — 7.055°) /Den(s)
)= (

Ks3(s) = (— 88000 — 645005 — 19200s> — 2880s” — 219s* — 6.75°) /Den(s)

where:

Den(s) = 0.18s° +-9.955° + 210.44s* +2269.35> + 133965% + 41488s' +53000  (8.48)

(the transfer function of the control component k;; is represented by K;;(s)). It is to be noted
that using the above control law, the other poles of the closed-loop system will be located at

—4,-6,—7 and 8.

Example 2 Consider the system .# consisting of four SISO subsystems with the following

state-space matrices:

_ - - - T
T
1 0 0 0 0 O 1000 01 0 O
0 -2 0 0 0 O 0300 00 1 O
0O 0 =30 0 0O 0100 01 -4 0O
A: ,B: ’C:
1 1 1 1 0 O 0010 10 0 O
1 1 1 0 =2 0 0003 00 0 1
_11100—3_ _0001_ L100—4_
(8.49)
and D = 044. Assume that the information flow matrix for this system is given as follows:
0010
0101
H = (8.50)
0 001
1000
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One can find the matrices ®; and ®; (using Procedures 1, 2 and 3, and Theorem 2), from
which one yields that the system . has two identical DOFMs at A = +1 with respect to
the information flow matrix £~ given by (8.50). Therefore, this system cannot be stabilized
by means of a structurally constrained LTI controller. On the other hand, it can be easily
verified by using the system .%; that . does not have any QOFMs. Hence, this system can
be stabilized by means of a constrained LTV controller. Using the method given in [23], one
can design a constrained stabilizing sampled-data controller for the system . (.£"). Consider

a sampling period % equal to 1. The components of the controller will be as follows:

Ky (2) = K3(z) =0, Ki3(z) = Ku(z) =1,
Rui(z) = (39452 — 8674z* + 13882 + 116.27% — 12.87— 1.139) (8.51)

x (£ +2.7582° + 877.17% — 18222° 4+ 87.7822 + 24.717+0.1927) "

where K;j(z) represents the transfer function of the discrete-time LSI controller corresponding

to ki}'.

8.9 Conclusions

This work tackles the control design problem for systems with constrained control structure.
It is shown that certain modes of the system can be placed freely by means of a linear time-
invariant (LTT) structurally constrained controller. The notion of decentralized overlapping
fixed mode (DOFM) is introduced to classify such modes, and an analytical method is given
to identify them. In addition, it is shown that the system is stabilizable by means of a LTI struc-
turally constrained controller, if and only if it does not have any unstable DOFM. Furthermore,
a graph-theoretic algorithm is proposed to convert the structurally constrained control design
problem (e.g. pole placement, optimal feedback, etc.) to the conventional decentralized con-
trol design problem. Design procedures for different types of controllers, such as periodic

and sampled-data control laws, are also investigated. The notion of quotient overlapping fixed
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mode (QOFM) is then introduced to determine whether the system can be stabilized by means
of general (nonlinear and time-varying) structurally constrained controllers. It is shown that
a system with no unstable QOFM can be stabilized by utilizing a finite-dimensional linear

time-varying control law.
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Chapter 9

Robust Stability Verification using

Sum-of-Squares

9.1 Abstract

This chapter deals with the robust stability of discrete-time LTI systems with uncertainties
belonging to a compact semi-algebraic set, particularly a polytope. A bound on the degree of
the Lyapunov function, which can be considered as a homogeneous polynomial, is computed.
It is then shown that the robust stability of any system over the polytope is equivalent to the
existence of two matrix polynomials with some bounds on their degrees which satisfy a spe-
cific relation along with the Lyapunov function. This relation is translated into a set of linear
matrix inequalities and equalities, which is referred to as Semidefinite Programming (SDP).
One of the capabilities of the proposed method is that the bounds on the degrees of the related
polynomials can be replaced by any smaller numbers in order to simplify the computations, at
the cost of a more conservative result. Moreover, in order to solve the robust stability problem
accurately when the degrees of the related polynomials are large, a computationally efficient

method is proposed to convert the problem to the SDP with a reduced number of variables.
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Furthermore, for the case when uncertainties belong to a specific semi-algebraic set which sat-
isfies a mild restriction, a necessary and sufficient condition, also in the form of nonparametric
SDP, is presented. A comprehensive comparison with the existing methods is also given to
further clarify the superiority of the present work. It is to be noted that this chapter presents
the first necessary and sufficient condition for robust stability in the form of nonparametric
SDP or LMI. The results obtained can be extended to the robust stability of continuous-time

systems.

9.2 Introduction

Robust stability verification of a system subject to the parametric uncertainty has attracted
many researchers in recent years [1-14]. The uncertainty is often assumed to belong to a
polytope. So far, the most efficient technique in the literature to tackle this problem has been
to check the existence of a proper Lyapunov function. The early works have sought a con-
stant Lyapunov function, which are appealing as far as computation is concerned, while they
may arrive at very conservative solutions in general. The corresponding method is referred
to as quadratic stability. It is shown in [15] that among numerous sorts of relations which
can be considered for the Lyapunov function, it suffices to only consider polynomials. Most
of the recent works implicitly or explicitly assume that the Lyapunov function is a first-order
polynomial with respect to the uncertain parameters [3-8]. These works then make additional
assumptions in order to simplify the problem, which may result in a very conservative solu-
tion, e.g. see [4]. Furthermore, they usually present a linear matrix inequality (LMI) problem
defined at the vertices of the polytope with several inequalities whose structures are compli-
cated, in general [16]. One of the recent works which leads to a simple condition is {4], where
the Lyapunov function is implicitly assumed to be a polynomial of degree one. Moreover, an

inequality is used in [4] to obtain the LMI conditions, which turns to an equality only when
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a parameter-dependent function is constant over the polytope. Therefore, this method proves
to be very conservative in general, due to its restrictive formulation. Another approach is
presented in [3], which yields approximately n> inequalities obtained through a conservative
procedure as discussed earlier. A thorough literature survey is also given in [3], comparing the
advantages and drawbacks of the existing methods.

In [14], a number of LMI conditions are attained which assure the robust stability of a
system over an affine space. The Lyapunov function is assumed to belong to a class of matrix
polynomials with any arbitrary degrees and it is shown that by increasing the degree of the
Lyapunov function, the conditions obtained become less conservative. However, no bound on
the degree of the corresponding Lyapunov function is attained. This implies that the degree of
the Lyapunov function is required to be incremented iteratively, each time the LMI problem
is infeasible, until the exact solution is attained. This involves a huge computational effort as
pointed out in [1], and there is no guarantee at any point that the solution is precise.

It is shown in [2] that a continuous-time system is robustlyv stable over a polytope, if and
only if there exists a Lyapunov function in the form of a homogeneous polynomial with a spe-
cific bound on its degree, such that it is positive definite over the polytope. It is also stated that
this result can be extended to discrete-time systems. The positive definiteness of the Lyapunov
polynomial over the polytope is then converted to the positive definiteness of another matrix
polynomial over the whole space by using a scaling technique. In other words, the constraint
of the polytope is eliminated by applying this technique. A sufficient condition is obtained
subsequently, by writing a nonnegative homogeneous matrix polynomial as a summation of
some square matrix polynomials. It is claimed that if such polynomial can always be repre-
sentable in this form, then the condition obtained turns to be both necessary and sufficient.
Nevertheless, it is known from Hilbert’s 17th problem [17], that this representation is not pos-
sible in general, even in the case of scalar polynomials. Note that the homogeneousness of

the matrix polynomial is not a main concern, as any polynomial can become homogeneous
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by introducing a redundant variable. As a result, the method proposed in [2] may arrive at a
very conservative solution. It is to be noted that for the special case of scalar polynomials, the
unconstrained positiveness of a polynomial is often converted to the constrained positiveness
of the polynomial in order to take advantage of Putinar’s theorem [18]. A similar technique
(in the reverse direction) is developed in [2].

In [1], the problem of robust stability of a system over the polytope is addressed for both
continuous-time and discrete-time systems. Basically, the method seeks a Lyapunov function
in the form of a homogeneous polynomial as pointed out earlier. It is shown that as the de-
gree of the Lyapunov function increases, the conservativeness of the resultant LMI conditions
reduces. However, no convergence proof is provided, and it is only shown by simulation that
the method works for a number of systems generated, and requires less computational effort
compared to some of the previous works.

In general, any approach that considers a Lyapunov function of the polynomial form,
suffers from lack of a procedure (theoretical or numerical) to convert the constrained positive
definiteness of a matrix polynomial to an equivalent set of LMI conditions.

The present work deals with the robust stability of discrete-time systems over a compact
semi-algebraic domain, particularly a polytope, which can simply be extended to continuous-
time systems in the same line with [2]. This chapter aims to complement the previous works
by using the latest developments in sum-of-squares matrix polynomials. First, a bound on
the degree of the Lyapunov function, which can be considered as a homogeneous polyno-
mial, is obtained. By using the matrix version of Putinar’s Theorem, it is then shown that the
system is robustly stable over the polytope if and only if there exist two matrix polynomials
with certain bounds on their degrees, such that they satisfy a specific relation along with the
Lyapunov function. This relation is converted to a semidefinite programming (SDP) problem
[19], which presents the first necessary and sufficient condition for robust stability in the form

of nonparametric SDP or LMI. Assuming small values for the degrees of the two polynomials
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and the Lyapunov function, one can obtain a conservative solution, while the exact one can
be attained by considering sufficiently large degrees for the polynomials (or more precisely,
by setting the degrees of the polynomials to be equal to the bounds obtained for them), which
undesirably increases the number of variables and the computational effort. Hence, an alter-
native approach is given to convert the relation into a SDP, when the bounds on the degrees
are large. This technique reduces the number of LMI variables considerably. Moreover, it
is proved that the robust stability of a system can analogously be checked over any compact
semi-algebraic domain satisfying a mild condition, instead of a simple polytope. It turns out
that this method addresses a much more general problem, while the previous approaches do
not solve the problem completely even in the special case of a polytope. It is to be noted
that by making proper assumptions on the degrees of the relevant polynomials, the conditions
obtained comprise the conditions given in some of the existing works. Simulation results and
comparison with existing methods demonstrate the effectiveness and superiority of the present

work.

9.3 Problem formulation

Consider a discrete-time system . of order v subject to time-invariant uncertainties, and

assume that it can be represented by the following state equation:
x(x+1)=A(a)x(x), x=0,1,2,... 9.1)

where the vector o = [ o Oy - Oy } is used to denote the perturbation of the system
matrix A(o) € RY*Y. Suppose that A(a) can be represented as a linear combination of the

known matrices Ay, ...,A, as follows:

Ala) = oA+ AL+ -+ 04, (9.2)
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It is desired first to find out whether the system . is robustly stable for any o belonging to

the polytope &7 defined below:

i=1

n
33:.—:{05’Ogal,...,angl,z:ai:l} (9.3)

In other words, the objective is to determine whether or not the matrix A(¢) is Schur over the
polytope Z. The following definitions and notations will be used to develop the main results

of the chapter.

Definition 1 A matrix polynomial E(®), where ® = [ O o o }, is defined to be
a polynomial with matrix coefficients (as opposed to scalar coefficients). It is to be noted
that the variables of any matrix polynomial are scalar. The term ”scalar polynomial” is used

hereafter for a polynomial with scalar coefficients.

Notation 1 Bold symbols are used throughout this chapter to denote vectors of scalar vari-

ables corresponding to the matrix polynomials.

Definition 2 Each product term of a scalar polynomial (or a matrix polynomial) c(®), where
o=@ @ - « | isdefinedtobeamonomial of c(w). In general, a monomial has
the form w{l w;z...a)lil, where i1,iy, ...,1 are nonnegative integers, whose sum iy +iy+--- +1i
determines the degree of the corresponding monomial. For instance, the monomials of 3w, —

cola)f -+ 5 are @y, a)zz, and 1, with degrees 1, 3 and 0, respectively.

Notation 2 Consider two scalar polynomials c1(®) and c2(®). The notation c2(w)|ci(w)

indicates that ¢ (®) is divisible by cy(®). Note that c1(®@) can be a matrix polynomial.

Notation 3 For any vector ® = [ W oWy o } define @, ® and ? as Sfollows:
a):‘_‘:wl wm o ey -0 —;y— - (9.4a)
@ = W o W ] (9.4b)
o= | 0 0 - @ } (9.4¢)
218
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Note that ® is, in fact, the Hadamard product of o by itself.

Definition 3 A matrix polynomial C(®) with the scalar variables ®y, ..., 0, is defined to be a

sum-of-squares (SOS) if there exists a matrix polynomial E(®) such that:
C(w) =ET(0)E(w) ©.5)

Note that E(®) can be expressed as R x Q(®), where R is a constant matrix and Q(®)
is a block vector whose block entries are the monomials of E(®) times an identity matrix with
a proper dimension. As a result, C(®) in (9.5) can be expressed as Q(w)"RTRQ(w) [20].
Hence, the function C(®) can be written in the quadratic form and is positive semidefinite due

to the constant matrix RTR.

Definition 4 A matrix polynomial is said to be homogeneous if the degrees of its monomials

are all the same.

9.4 A necessary and sufficient condition in the form of SDP
The following lemma parameterizes the Lyapunov function to be sought.

Lemma 1 The system . is robustly stable in the domain & if and only if there exists a
symmetric homogeneous matrix polynomial P(a) with a maximum degree of 2v? — 2, such

that:

o(a) = P(a) AT(a)P(a) ©6)
P(a)A(or) P(a)

is positive definite for any o belonging to the polytope 2.

A lemma similar to Lemma 1 is presented in [2] for continuous-time systems. Hence, its
proof follows by employing an approach similar to the one given in [2], and is omitted here.

The following lemma is borrowed from [20].
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Lemma 2 (Theorem 2 in [20]) Consider a symmetric matrix polynomial H(®) and scalar
polynomials g1(®),g2(®), ..., gx(®), where @ € R, and assume that there exist a scalar r
and scalar SOS polynomials ho(®), h1 (@), ..., he( @), such that:
k
r?— oo’ = hy(w) +i_21hi(w)gi(w) 9.7)

The matrix polynomial H(®) is positive definite for any value of ® belonging to the set:
{0 € R'|g1(0) > 0,g2(0) > 0,...,8¢(w) > 0} 9.8)

if and only if there exist SOS matrix polynomials Yo(®),Y1(®), ..., Yx(®) and a positive scalar €,

such that:
k

H(o) =Yo(0)+ Y, gi(w)Yi(w) + €I 9.9)
i=1
Theorem 1 The system & is robustly stable in the domain &, if and only if there exist a

scalar € > 0, a homogeneous matrix polynomial P(a), a matrix polynomial Q1{(w), and a

SOS matrix polynomial Q>(®), where @ = { O @ Oy } such that:

@ (0?) = (1-0o”) 0i1(0) + 02(0) +ehy (9.10)
forall w; e R, i=1,2,...,n(Ly denotes the 2v x 2v identity matrix).

Proof Proof of necessity: Assume that the system .# is robustly stable in the domain 2. It
results from Lemma 1 that there exists a matrix polynomial P(c) such that ®(o) given in
(9.6) is positive definite over the polytope 2. Denote the (i, j) entry of ®(a) with ¢;;(o) for

any i, j € {1,2,...,2v}. Note that ¢;;(c) is a scalar polynomial. It is obvious that:

1= (0o +- -+ Oy + o) | iy (0r) — 6 (&) -1

for any i, j € {1,2,...,2v} (the notation & is introduced in (9.4a)). Therefore:

1—(061+"‘+06n_1+06n)

O(0) — D (&) 9.12)
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Consider now the arbitrary scalars w;, @, ..., ®,. Substituting o; = a)iz, i=1,2,...,n into
(9.12) yields:

1— (0 + -+ 0l + o)

(%) - (o?) (9.13)
Note that:
0= @ . 2 1_(w12+...+w3_1)} (9.14)
as defined in (9.4a) and (9.4c). It results from (9.13) that there exists a matrix polynomial
G1(®) such that:
() = (1- waT) Gi(0) + @ (0?) 9.15)
It is to be noted that since ®(ot) is symmetric, so is G;(@). On the other hand, since ®()
is positive definite for any « belonging to &2, ® (a,)\é) is positive definite for any @y, ..., Wy—1
satisfying the inequality 0 <1 — (a)l2 +o a);f*_l) (note that the summation of the entries of
w? is equal to 1). Thus, by considering g1(@) =1—@? — -+ — @?_;, ho(®) =0, l1 (®) =1,
and r = 1, it can be concluded from Lemma 2 that there exist a scalar € > 0 and two SOS

matrix polynomials G, (@) and G3 (@) such that:

®(02) = (1 (@F +++02,)) Ga(®) + Ga(®) + by 9.16)
Substituting (9.16) into (9.15) yields:
®(0®) = (1-wo”)Gi(0)+ (1- (0f ++ -+ 0l_))) G2(®) + G3(®) + ehy

©9.17)
= (1-w0") [Gi(w)+ Gz(w)] + [w,%Gz(a) +G3(5)] +eb,

Define now:
01(0) = G1(0) + G2(®), 02(0) = 0;G2(®) + G3(®) (9.18)

It is evident that Q; (@) and Q> (®) satisfy (9.10) (according to (9.17)). However, it is required
to show that O, () defined above is SOS. Since G»(®) and G3(®) are SOS, as discussed

earlier there exist two constant positive semidefinite matrices A1 and A, such that:

G2 (@) = Q@) MQ®), G3(B) = Q1) AQ(®) (9.19)
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where Q(w) is a block vector whose block entries are all monomials of G»(®) and G3(®@)

times an identity matrix with a proper dimension. Therefore:

Ay 0 Q@
R(0)=| Q@) 0.Q@)7 : @) (9.20)
0 A || 0Q®)

Since Ay and A are positive semidefinite, it can be concluded from the above relation (by
writing the semidefinite matrix in the above expression as the square of another matrix), that
Q2(w) is SOS. Tt is to be noted that since G,(®) and G3(®) are SOS, they are symmetric as
well. On the other hand, it is shown that G (@) is also symmetric. As a result, Q1(®) and
Q2 (w) are both symmetric.

Proof of sufficiency: Suppose that there exist a scalar € > 0, two symmetric matrix
polynomials P(c) and Q;(®), and a SOS matrix polynomial Q2(®) such that the equality
(9.10) holds for any real values @, @3, ..., @,. Consider now an arbitrary a belonging to .
It is obvious that there exists a vector @ such that o = w?. Thus, @@’ = 1, and consequently

(using the equation (9.10)):

®(0) = @ (0?) = Or(w) + by 9.21)

Since ¢ is positive and Q2 (@) is assumed to be SOS and hence positive semidefinite, it can be
concluded from the above equation that ®( ) is positive definite. The proof follows directly

from Lemma 1. [ |

Theorem 1 presents a necessary and sufficient condition for the robust stability of the
system . over the polytope &?. However, the obtained condition can be further simplified by

eliminating the variable €. This is carried out in the next Corollary.

Corollary 1 The system . is robustly stable in the polytope &, if and only if there exist

a homogenous matrix polynomial P(w) and matrix polynomials O1(®) and Q»(w), where
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0= w - ,suchthatéz((o) is SOS, and:

P(w?) AT (0?) P(0?)

X = (1-0o”) 01(0) + 02(w) + Ly (9.22)
P(w?)A(0?) P(0?)

forallw; e R, i=1,2,...,n

Proof Proof of necessity: Consider the matrix polynomials P(a), Q1 (w) and Q»(w), and the

positive scalar € in Theorem 1. Define the following matrix polynomials:

P(a), O1(w) := Qulo) 02(w) := (o)

P(a) = ——8— e : s 9.23)

It is straightforward to verify (by using the result of Theorem 1) that Q»(®) is SOS, and that
the matrix polynomials P(®), Q1 () and Q> () satisfy the relation (9.22).

The proof of sufficiency is omitted due to its similarity to that of Theorem 1. ]

Remark 1 The bounds on the degrees of the polynomials Y;(®), i =0, 1,....k, introduced in
Lemma 2, are presented in [20] in terms of the structure of the matrix polynomial H(®). On
the other hand, a bound for the degree of the polynomial P() is obtained in Lemma 1. Putting
these bounds together in the proof of Theorem 1, one can easily obtain bounds on the degrees

of the polynomials O () and Qx() in (9.22) along with the bound on the degree of P(ar).

Assuming arbitrary degrees and structures for the polynomials P(ct), 01(w) and O2(®),
one can consider the unknown coefficients of these polynomials as some variables, expand
both sides of the equation (9.22), and equate the corresponding terms in order to obtain a set
of equality constraints in terms of the relevant variables (the coefficients). These constraints
along with the property Q2(®) > 0 establish a SDP problem [19]. Note that SDP problems
can be solved by using a number of available softwares [21, 22]. This methodology will be

clarified in the following corollary.
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Corollary 2 The system .7 is robustly stable in the polytope P, if there exist symmetric
matrices Py, Py, ..., P, and symmetric positive definite matrices Z;j, i,j € {1,2,...,n}, i < j,

such that the symmetric matrix U given by the following diagonal block entries:

P AP,
U = , Vied{l,2,..,n} (9.24)
PA; B
and off-diagonal block entries:

1 P+ P; Ang-f-AjPi
Uj== - Zij, Vi,jG{l,Z,...,n}, i<j (9.25)
Pz'Aj-l-Pin Pi+Pj

is positive definite.

Proof Let the solvability of the equation (9.22) be verified under the following constraints for
the polynomials P(a), Q1(w) and O (w):
5 < A . 2 A < 2.2
Pla)=Y Poy, Qi(0)=—hy+ Y Fo}, Qo)=Y Folo; (9.26)
=1 i=1 i,j=1
Substituting (9.26) into (9.22), and equating the corresponding coefficients in both sides of the

resulting equation yield:

P 0
=F+5hL,, i€{l,2,..n}
0 P
J 9.27)
0 ATP;+ATP . .
F,-l—Fj-i- = ij“*'Fjiy 11]6{1127'“an}7 l#]
PAj+piA; 0
Therefore,

P+P;  ATP+AlP,

S ORI on, =R+ Fy, e {1,2,.,n}, i#j  (9.28)
PAj+pjAi  FR+P;

On the other hand, it is straightforward to show that O»() given in (9.26) is SOS if there

exist symmetric positive definite matrices Z;;, i, j € {1,2,...,n}, i < j, such that the symmetric
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matrix U given by the following diagonal and off-diagonal block entries:

Uii:Fiia Vi€{1,2,...,n},

(9.29)
ﬁi]‘ZFij—Zij, Vi,j€{1,2,...,n}, i<j
is positive semidefinite. It can be concluded from (9.28) and (9.29) that:
i} P AP | P,+P; APj+AjP,
Ui = “ | By, Uy=3 ’ ~Zij~hy  (9:30)
PA; P, PAj+PAj P+P

for any i,j € {1,2,...,n}, i < j. Now, one can easily verify that if there exist symmetric
matrices Py, P, ..., P, and symmetric positive definite matrices Z;;, i,j € {1,2,...,n}, i < j,
such that the matrix U (with block entries given in (9.24) and (9.25)) is positive definite, then
there exist symmetric matrices Py, P, ..., P, and symmetric positive definite matrices Z;;, i, j €
{1,2,...,n}, i < j, such that the symmetric matrix U is positive semi-definite (note that if U is
positive definite for a special set of Py, P, ..., B, and symmetric positive definite matrices Z;;,
i,j€{1,2,...,n}, then by replacing the variables with a fixed multiple of them, the new matrix

U will also be positive definite). This completes the proof. |

It is to be noted that the LMI problem presented in Corollary 2 has been obtained by
making very simple assumptions on the degrees and the structures of the corresponding poly-
nomials, which lead to the form Pyoy + P + - - + P, 0, for P(a). Nevertheless, one can
consider some degrees larger than the ones assumed in Corollary 2 for the polynomials, and
follow a similar approach in order to attain a less conservative SDP (or LMI) problem.

It can be easily concluded from Remark 1 that in order to solve the robust stability prob-
lem accurately, the degrees of the polynomials 01 (®), Q2(®) and P() should be considered
equal to their bounds, which are typically large. This can result in a high-order SDP problem
which is difficult to solve, in general. This introduces a trade-off between the conservativeness

of the solution and the computational complexity.
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9.5 Simplification of the robust stability condition

It is shown in the previous section that the problem of robust stability can be formulated as
a SDP problem, by assuming some values for the degrees of the polynomials P(a),Q; ()
and Qp(®). However, as discussed earlier, by choosing large values for the degrees of these
polynomials, the procedure proposed to obtain the corresponding SDP problem can be sophis-
ticated. An alternative method will be presented in this section, which aims to convert the
problem of robust stability to a SDP problem in a more efficient manner. The advantages of
this alternative method will be discussed later.

It is important to note that from the two matrix polynomials in (9.22), only Q»(®)
is required to be SOS, and there is no constraint on Q;(®). This implies that the matrix
polynomial Q;(w) does not have any significant role in the SDP, and it undesirably increases
the number of the SDP variables. It is desired now to eliminate this redundant matrix variable

from the SDP formulation.

Definition 5 A subset V of R™ is called a hypersurface [23] if there exists a scalar polynomial

W), where ® = | @ . , such that the set of its roots is the same as V.
1 an Wy

Consider a hypersurface V in the m-dimensional space. Since the dimension of V is less
than m, if a point is chosen in the m-dimensional space, it almost always does not lie on V.
Moreover, any point in the m-dimensional space, which is not located on the hypersurface V,
is referred to as a generic point. Note that generic points can be provided by using a random

number generator.
Theorem 2 Consider a scalar polynomial f(®1, @3, ..., ®n), where:
Wi = [ o @, - @ | i=12.m k22 9.31)

Assume that there exist vectors Yy,Yy, ..., Ym € R~ on the unit sphere, such that f(vy,7, ..,

Ym) 7 0. Choose m arbitrary points in the closed unit ball in the k — 1 dimensional space and
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denote their coordinates with [ Ay Ay o i ] , i=1,2,...,m. Define:
Ai, =

JI-R =22 = =22 9.32)

-1
and also A; = [ Mip Ay o Ay | i=12,..,m Then f(A1,A2,...,Am) # O, unless the

vector [ A Ay o Am ] € RIE=1)m ligs on a hypersurface in the (k—1).m dimensional

space.

Proof Suppose that f(A1,42,...,Ap) = 0. Itis to be proved that | 4, A, .- A, ] is
located on a hypersurface. Fix all of the variables of f(w1,..., Wp,—1,®©m), €Xcept Wy, and
divide the polynomial by (1),%11 4+ a),%k — 1. It is obvious that the remainder of this division
is of degree at most 1 with respect to @,,,. Moreover, since the polynomial co,%” +- 4 a),%k -1
is monic with respect to @y, the remainder and the quotient of the division can both be
expressed polynomially in terms of the other variables which have been set to be fixed so
far. Denote the quotient of this division with the polynomial f{(®1,...,Opn—1,®y), and its
remainder with f2(@1,...,Om—1,0p) + On, f3(®1, ..., Om-1, Bp). It is to be noted that the
polynomials f2(®1, ..., Om—1, @m) and f3(1, ..., Om—1, Bp) do not include the variable @y,
and as long as all of the variables except @,,, are fixed, they act as two constant numbers.

Hence, one can write:

f(wla -‘-awm—lvwm) = ((me; - 1)f1 (wla--~7wm~laa)m) +f2(w1a---7wm—17—a_)m)

(9.33)
+ wmkf3(wla ey wm—l,—(ﬁm)
It results from (9.33) that:
f2(717 ey Ym—177m) + Ymkf3(Y1a <o Ym—1 77m) 7é 0 (934)
and:
LAy Aty Am) + A 5(At oo A1, Am) = 0 (9.35)

(note that A mlz;, = 7,,v} = 1). It can be concluded from (9.34) that the following polynomial:

fZ(wl, -~-awm—la5m) +wmkf3(w17 -~-7wm—laa)—m) (9'36)
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is not divisible by @@L — 1. Therefore, changing the variable Oy, 1O —~ Wy, in (9.36), the

resultant polynomial:

(o1, ..., 0n-1,0n) — O, f3(01, ..., Op—1, Dm) (9.37)

will not be divisible by @7, — 1 either. On the other hand, 0, 0], — 1 = 02 + @3 +---+
a),%k — 1 is irreducible due to the assumption k£ > 2. Since the polynomials (9.36) and (9.37)

are not divisible by the irreducible polynomial @, @, — 1, neither is their product given by:

f4(01,02, ... Om) = fo(O1, ..., O, B)? — OF, 3(O1, .., Om—1, ) (9.38)

As a result, there exists a vector ¥/, on the unit sphere in the k dimensional space, such that
Fa(Y1,Y2 -+ Y1 Vi) # 0. Since the polynomial f4(w@;1,®2,...,®,) is of degree 2 with re-
spect to the variable wy,,, and also it does not contain any odd-order term (or more specif-
ically, any first-order term) in @y, its division by the polynomial ®,®I, — 1 results in a
remainder of degree zero with respect to wn,. Consequently, there exist two polynomials

fs(@1,...,0n—1, ) and fo(®1, ..., Om-1,Op) With the property that:
[4(01,02, ..., 0n) = (On®f, — 1) f5(O1, ..., Om—1,Om) + f6(O1, ..., Om—1,Bm)  (9.39)

Note that @, does not appear in fs(®1, ..., Om—1, Bp). It is now straightforward to show that:

Fo(r oo Y1 ¥m) 20, fo(Atsees Amet1,Am) =0 (9.40)

It is important to note that the polynomial fg(®,...,®pn—1,®y) is also equal to zero at m
points on the unit sphere and at the same time is nonzero at m other points on the unit sphere,
just like the polynomial f(®y, ..., ®p_1, ®p). Thus, one can eliminate the dependent variable
(1), in the polynomial fe(@1,..., Om—1,®n), using the same procedure used to eliminate
@, in the polynomial f(®1,...,®Wm-1,®p). Continuing this procedure and eliminating the

variables Wy, O(y—1),; ---, O1, one by one, will lead to the following result:
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There exist a polynomial fi(®1, ..., ®pm—1, Opm) and vectors Y|, Yy, ..., Y}, on the unit sphere in

the k dimensional space, such that:

fl(’yllv'"v}/m—l”ylm) 750, (9-413)

Fi 1, e Aty Am) =0 (9.41b)

According to (9.41a), f;(®1, ..., Bm-1, ®n) is a nonzero polynomial (i.e., it is not identical to

zero) satisfying the equation (9.41b) for A1 , ...,Im_l,Im. This completes the proof. |
The result of Theorem 2 will be used in the following theorem.

Theorem 3 Consider a scalar polynomial z(®), where 0 = | @; @, --- wg |92 As-
sume that the coefficients of z(@) are unknown, while its structure is known in terms of mono-
mials. In other words, z(®) = MN(w), where M is the nonzero row vector of the unknown
coefficients and N(w) is the column vector of the given monomials of z(®) with m entries.

Choose m points in the closed unit ball in the q — 1 dimensional space, and denote their coor-

: : L _ 2 2 2
dinates with { Mip Ay e A ] , i=1,2,...,m. Define A;, = \/1 —AL—AL— —liq_l
and also A; = [ iy iy e )w.q , i=1,2,...,m. There exists a nonzero row vector M such

that the polynomial z(®) = MN(®) has the following property:
1—&—@~m—¢PM) 9.42)
“almost always if” and only if the matrix T = [ N(A1) N(A) - N(Am) ] is singular.

Proof Proof of sufficiency: Suppose that the matrix T is singular, and that there exists no
M such that the relation (9.42) holds. It is desired to prove that [ A Ay o A } lies
on a hypersurface in the (g — 1).m dimensional space. Among the vectors N(A1),...,N(An),
identify the ones which can be written as linear combinations of the others and ignore them.
Hence, without loss of generality, assume that N(A41), ..., N(A;) are linearly independent and

each of the remaining vectors can be expressed as a linear combination of them, where 1 <
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k < m—1 (note that the assumption of T being singular implies that k # m). Consider now the

following matrix:

(@1, 0k41) = | N(@1) N(w2) -+ N(opy1) (9.43)

It is evident that there exists a vector ¥ on the unit sphere in the g-dimensional space, such
that the columns of the matrix I1(A1,A,,...,Ag,¥) are linearly independent, because other-
wise for any vector @ on the unit sphere, N(®) can be written as a linear combination of
N(A1),N(A2),...,N(Ag) (this results from the fact that N(A1),...,N(A) are linearly inde-

pendent). On the other hand, there exists a vector M such that:

M| N(A1) - N(/lk)]=0 (9.44)

due to the inequality k¥ < m. Hence, MN (@) = 0, which means that the relation (9.42) holds.
This contradicts the initial assumption, which in turn proves the existence of such vector 7.
Select any arbitrary k+ 1 different rows of I1(®;, ..., W+ 1), put them together to create
a matrix, and denote the determinant of the resultant matrix with z;(c1, ..., @x+1). Repeat
this procedure s = (k:'_’l) times (each time use different combination of k4 1 rows) to obtain
the determinants z;( @y, ..., W1 1), i = 1,2,...,s. Since the columns of IT(A, A5, ..., Ak, 7) are
linearly independent, the polynomials z;(®1, ..., @k+1), i = 1,2,..., 5, are not all zero (i.e., at
least one of the set of k+ 1 rows is linearly independent). On the other hand, since the columns
of TI(A1,A2,...,A,A;) are linearly dependent for any i € {k+ 1,...,m}, the polynomials
20(A, e A Ai), 22(A 1, ooy Agy Ay ooy Z6(A 14 -0y A, Ag) are all zero for any i € {k+1,...,m}.

Define now f(®y, ..., W41) as the polynomial z; (@1, ..., Wg4 )%+ - +25(@1, ..., Ogy1 ). There-

fore:
fAL, A Y) #0 (9.45)
and:
FAr, . ArA) =0, i=k+1,k+2,....m (9.46)
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It follows from (9.45), (9.46) and Theorem 2 that | 2, A, ... A, |liesonahypersurface
in the (g — 1).m dimensional space.

Proof of necessity: Assume that the relation (9.42) holds for a specific vector M. It can
be concluded from the equality A;4] = 1 that z(A;) = O for any i € {1,...,m}. As a result,

MT = 0, which implies that the matrix T is singular. [ |

To further clarify the results of Theorems 2 and 3 (which will be utilized to obtain an
alternative SDP problem), consider the following simple example. Suppose that w; and @,

are two real variables. It is desired to find out if there exist two constants ¢ and b such that

- ?— wzz‘ act + bew? (9.47)
of

Define M = [ a b ] and N(wy, ) = , as stated in Theorem 3. Choose two numbers
2
2

A1, and Ay, in the interval [0, 1], and define A}, = /1 — 1121 and Ay, = /1 — 1221. Then, check
the rank of the matrix [ N(A,A,) N(Ag,,Az,) ] . If it is not full rank, then the desired

vector M does not exist. Otherwise, for any vector M satisfying:

M [ N(Ai,A,) N(Agy,A,) ] =0 (548)

the relation (9.47) holds, unless [A;, A,,] lies on a hypersurface. For instance, consider Ay,

and Ay, as 1 and 0, respectively. Then,

10
[N(lu,llz) N(/lm,)m)]= 0 (9.49)

which is full-rank. Therefore, there are no scalars a and b such that the relation (9.47) holds.
However, pursuing the procedure presented in the proof of Theorem 3, one can conclude that

if A1, and A, are chosen in such a way that:

AL +A3 —ALAZ =0 (9.50)
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then [ N(X,,A1,) N(Ay,Ap,) | may not be full-rank. Note that by choosing A1, and Ay,

randomly in the interval [0, 1], the relation (9.50) will never hold.

Remark 2 The result of Theorem 3 can be easily extended to the case when z(®) is a matrix

polynomial as opposed to a scalar one.

Remark 3 The statement ”T is singular” in Theorem 3 can be replaced by “the set of the
linear equations z(A;) =0, i = 1,2,...,m is solvable for the coefficients of z(®)”, as both

statements are equivalent in general.
Represent now the matrices P(ct) and Q2( ) in terms of their monomials as follows:
Pla)=P&i(a), 0:(0)=&(0) 0&(w) (9.51)

where the block vectors of monomials &1 () € R™Y*Y and & (w) € R” 2:2vX2Y have r; and ry
block entries, respectively, and each of their block entries is equal to the product of a monomial

and either I, or I, (this will be illustrated in Example 1). Define now:

A:——-[A1 Ay - An}, (9.52a)

T
&(a) i=[a11\, ol, - anlv] , (9.52b)
Ci=ri+nr+r3+1 (9.52¢)

Proposition 1 Choose { generic points in the closed unit ball in the n— 1 dimensional space,

and denote their coordinates with [ My Ay o A } fori=1,2,....,8. Define A;, =

,/ll%—l—m—i—?ol%_l and A; = [ Ay Ay o A, ],forizl,Z,...,C. The system . is robustly

stable in the domain P, if and only if there exist matrices O > 0 and P, and two block vectors

&1 (a) and & (@) of monomials, such that:

P& (A} & (22) aTP& (22 )
& (A?)Tlﬁ(TAtz% (27) ! 1’)551 (ﬁ)l( ) ~ &) 06 (Ai) by =0
(9.53)
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foranyi=1,2,....{, where P = P P - P, ,and P, e RYV*V, i=1,2,....r, is sym-

metric.

Proof Consider the equation (9.22). Since there is not any explicit constraint on Q1((D), one
can eliminate this term from (9.22) to deduce that the system . is robustly stable over the
polytope Z2, if and only if there exist a symmetric matrix polynomial P(¢) and a SOS matrix
polynomial Q»(®), such that the polynomial:
P(w?)  AT(0%)P(0?)
P(o?)A(e?)  P(0?)

— 0x(0) — by (9.54)

is divisible by 1 — ww’. The proof follows from Remark 2. ]

{ defined in (9.52c) is a number which is desired to be equal to (or greater than) the
number of monomials of the matrix given in (9.54), and can be obtained by counting the
distinct monomials of the polynomials &) (1,2) & (l?)T & (A,Z) & (l,-z)T %) (l?), and
by. However, it can be easily verified that the number of these monomials is at most equal to

ry+n.rq +r%+1.

Remark 4 As discussed earlier, the approach presented in Section 9.4 for formulating the
problem of robust stability as a SDP (or LMI) problem is based on choosing arbitrary degrees
for the polynomials P(at), 01(w) and O»(®), expanding both sides of the equation (9.22),
and equating the corresponding coefficients in both sides of the equality in order to obtain a
set of constraints in the form of linear equalities. However, if the degrees chosen are large,
this approach will not be efficient. Another alternative which is presented in this section, is
10 consider two vectors of monomials for P(a) and Q»(®), and then to choose some generic
points in the closed unit ball, which lead to a set of linear equality constraints as given in
Proposition 1. The fundamental issue concerning this method is that no manipulations, such
as expanding the equation or equating the coefficients, are required to be performed. Further-

more, the variable O, (w) is cancelled out in this approach, which simplifies the procedure. In
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addition, instead of defining several matrix variables for the corresponding unknown coeffi-

cients, only two matrix variables are needed to be defined.

Remark 5 Since there exist bounds on the degrees of the polynomials P(w) and Q,(®) in
(9.22) as pointed out earlier, one can choose the block vectors & (o) and &,(®) of monomials

in such a way that the result obtained for robust stability in Proposition 1 is not conservative.

9.6 Robust stability over semi-algebraic sets

Given the scalar polynomials g (), ..., gn(c), define the semi-algebraic set .# as follows:
M = {a’gl(a)zo,...,gn(a)ZO} (9.55)
Assume that the following mild assumption is satisfied for the semi-algebraic set ./ .

Assumption 1 ./ is compact, and there exists SOS scalar polynomials yo(ot),y1 (@), ..., yq ()

such that the set of all vectors a satisfying the inequality:

yo(o) +y1(e)g1(a) + -+ +yn(a)gn(a) > 0 (9.56)
is compact.

It is to be noted that Assumption 1 is required here in order to use Putinar’s theorem. The
objective is now to find out whether or not the system .% is robustly stable (or equivalently,

the matrix A(o) is Schur) over the semi-algebraic set .# .

Theorem 4 The system . is robustly stable in the domain #, if and only if there exist a

matrix polynomial P(a) and SOS matrix polynomials Qo(ct), Q1(0t), ..., On () such that:

P() AT ()P (&)
= Qo(a) + Q1(a)g1(a) ++ -+ Qn(a)gn(a) + Loy
P(a)A(a) P(a)

9.57)
foralloy e R, i=1,2,...,n
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Proof Since ./ is compact, there exists a ball which contains .. Let the radius of this ball be
denoted by r. It is obvious that for any o belonging to the semi-algebraic set ./, the function
?—aal is positive. Therefore, it can be concluded from Assumption 1 and Putinar’s theorem

that there exist SOS scalar polynomials Ag(a), h1(ct), ..., ip () such that:
r* — oo’ =ho(a) +hi(a)gi(0) + -+ hy (o) (@) (9.58)

The above relation implies that the condition of Lemma 2 holds. The proof follows by using
the results of Lemmas 1 and 2 and employing the technique exploited in the proof of Corollary

1 for eliminating the scalar €. ]

4 presents a necessary and sufficient condition for the robust stability of the system . over
the semi-algebraic set ./ satisfying Assumption 1. This condition can simply be converted
to a SDP problem, as discussed earlier. It is to be noted that the bound on the degree of the
polynomial P(¢) is given in Lemma 1. Moreover, the bound on the degree of the polynomial
Qi(a),i=0,1,...,n can be computed using the method proposed in [20], provided the bounds
on the degrees of the polynomials ho(ct), h1(ct), ..., Ay (o) are known as a priori.

It is worth noting that P(ar) in Corollary 1 is a homogeneous polynomial, whereas P(a)

in Theorem 4 is not necessarily homogeneous.

Remark 6 The semi-algebraic set .4 has a more general definition compared to the polytope
P. Thus, as a special case, M can be assumed to be the polytope . This means that
Theorem 4 presents a necessary and sufficient condition for the robust stability of . over the
polytope P, which has n+ 2 matrix variables. However, it is not surprising that the number of
matrix variables is reduced to 3 in Corollary 1, because a polytope is a special semi-algebraic

set with certain properties which are used to obtain this simplified result.

Remark 7 It is shown in [20] that when the polynomials g;(a), i = 1,2, ...,m are affine, there

exist polynomials ho(a),h1(0), ...,y () of degrees at most 2 to satisfy the equation (9.58).
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This can be used to find bounds on the degrees of the polynomials Qo(at), Q1(¢), ..., Qn ().
It is interesting to note that a similar problem (affine uncertainty) is studied in [14], but no
bound on the degree of the corresponding polynomial is obtained. Instead, it is shown in [14]
that as the degree of the polynomial increases, the obtained conditions become closer to being

necessary and sufficient.

9.7 Comparison with existing works

9.7.1 Comparison with [2]

Assume that the matrix polynomials P(®),01(®) and Q»(®) in the equation (9.22) are of

degrees 0, 0 and 2, respectively. Let these polynomials be represented as follows:
P(o)=P, Qi(0)=F, Ow)=) Fa (9.59)
i=1

By substituting these polynomials in (9.22) and noting that O>(w) is SOS if and only if
Fi,...,F, 2 0, one can conclude that the system .% is robustly stable over the polytope &
with a common Lyapunov function, if there exists a matrix P such that the following inequal-

ities hold:
P AfP
—bLy >0, i=1,2,..,n (9.60)
PA; P
It is straightforward to show that the above SDP problem is feasible if and only if the following

LMI problem is feasible:

P ATP
>0, i=1,2,..,n (9.61)
PA; P

(note that if the inequality (9.61) has a solution, a multiple of it which causes the matrix given
in (9.61) to have eigenvalues with real parts greater than 1, is a solution of (9.60)). The LMI

given in (9.61) is the same as the condition of quadratic stability. In other words, a system
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is robustly quadratically stable over the polytope &7 if and only if the LMI given above is
feasible. It is desired now to find out whether the method given in [2] is able to provide the
quadratic stability condition or not. According to [2], the system .¥ is robustly stable over
the polytope & with a common Lyapunov function if there exist a positive definite matrix

P, symmetric matrices G;;, i,j € {1,2,...,n}, i < j and a matrix Z, satisfying the following

constraints:
u T T T
>0, Z+Z'=0, U=U", U;=P-APA;, ic€{l,2,..,n}
7T F (9.62)
ATPA; +ATPA; — G;;
Uj=pP— " 2’ LY je{1,2,.n), i<

where F is a block diagonal matrix with block diagonal entries Gy, i,j € {1,2,...,n}, i < J,
and U;; denotes the (i, j) block entry of U for any i, j € {1,2,...,n}. It is obvious that this LMI
problem has numerous free variables, and is much more sophisticated than the LMI problem
obtained above. Moreover, it is not easily deducible how much more conservative the LMI
condition of [2] (which leads to (9.62)) is, compared to the condition obtained in the present
work which is necessary and sufficient for quadratic stability over the polytope.

By pursuing a procedure similar to the one carried out above for a common Lyapunov
function, it can be easily shown that the method proposed in this chapter is superior to [2]
for any arbitrary degree of Lyapunov function in terms of complexity as well as feasibility
of the LMI problem. Furthermore, as pointed out earlier, if the degrees of the polynomials
P(w),01(w) and Q»(w) are chosen sufficiently large, i.e. equal to their bounds obtained
from Lemma 1 and [20], the feasibility of the resultant LMI (or SDP) problem obtained by
the method proposed in this chapter turns out to be equivalent to a necessary and sufficient
condition for the robust stability of the system .. On the contrary, no matter how large
the degree of the Lyapunov function in [2] is chosen, the corresponding LMI problem might
only give a sufficient condition. This is a consequence of representing a positive definite

homogeneous matrix polynomial as SOS, which is not possible in general, even for the case
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of scalar polynomials as explained in the introduction (see [17] for a more detailed discussion).

9.7.2 Comparison with [1]

The method given in [1] (like the one in [2]) seeks Lyapunov functions in the form of homo-
geneous polynomials with any arbitrary degree. However, since it imposes the constraint of
positivity on all the coefficients of a polynomial which is positive for nonnegative values, its
solution can potentially be very conservative. This constraint is, in fact, even more restrictive
than the one in [2], i.e., representing a positive polynomial as a sum of squares of some other
polynomials. Therefore, as shown in several simulations in [1], this work cannot outperform
[2] in general, when the degrees of the Lyapunov functions are set to be the same in both
works. However, the method proposed in [1] introduces a simpler LMI problem (compared to
the one in [2]) at the cost of imposing the aforementioned strong constraint. It can be easily
deduced from the description above and the comparison made in the previous subsection, that
the present work far outperforms the results obtained in [1], while the problem formulation in
[1] is slightly simpler than the one provided in this chapter. It is to be noted that no conver-
gence proof is given in [1] (i.e., there is no guarantee that the solution converges to the exact
value, by unboundedly increasing the degree of the Lyapunov function). Some of these issues

are illustrated in Example 2.

9.7.3 Comparison with [4, 3]

There are several works which consider first-order polynomial Lyapunov functions, whose
results cannot be extended to the case with higher-order Lyapunov polynomials. Moreover,
none of these methods provides a necessary and sufficient condition for the existence of a first-
order polynomial Lyapunov function. In other words, they cannot guarantee that once their
LMI conditions are infeasible for a given system, then by using any first-order polynomial

Lyapunov function it is known that the system is not robustly stable. Nevertheless the present
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work leads to a necessary and sufficient condition for the existence of a Lyapunov function
with any fixed order (including first order). It is to be noted that the robust stability of systems,
in general case, cannot be detected by means of first-order polynomial Lyapunov functions.
However, the methods which seek only first-order polynomial Lyapunov functions, require
less computational effort compared to the methods which use higher-order ones. For instance,
the work [4] presents a very simple condition, at the price of a very conservative result. For
instance, a system is given in Example 3 whose robust stability can be determined by using a
first-order polynomial Lyapunov function (using the method proposed in this chapter), while
the method in [4] fails to detect this property, even when the parameters of the system are
scaled down to improve the detectability of the robust stability. Moreover, the method pro-
posed in [3] which has proved to be more powerful than the previous works with first-order
polynomial Lyapunov functions, presents a SDP problem with several free variables and LMI
conditions. It is straightforward to verify that the present work (when constrained to first-order
polynomial Lyapunov functions) performs as good as the method in [3] but with fewer number

of variables, and thus a simpler LMI problem, as illustrated in Example 4.

9.8 Numerical examples

Example 1 illustrates the effectiveness of the present work, while Examples 2, 3 and 4 aim to

compare the results of this work with the existing methods.

Example 1 Suppose that n = 2, and that &(®) has the monomials ®?, ©7 and @;@,. It is

desired to check the robust stability of the system . by choosing Lyapunov functions of the
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form *q1 + x0p, where the symbols * represent two arbitrary matrices. Choose:

I2v
ol ol
S)=&)=| |, &= (9.63)
only w22[2v
L601(0212v

One can consider { =2+2x3+4+3x3+1 = 18 or find the monomials of the relation (9.54)
as follows:

0?, &3, of, ©, 0?03, Oy, O}w, 003, 1 (9.64)
and set { to be equal to 9 (the exact number of monomials in (9.64)). Choose 9 generic points
Ai;, i=1,2,...,9 in the interval [0 1] (e.g., by using a random number generator). Define
Aiy == \/ITAE and A; = [ iy A } , i=1,2,...,9. It can be concluded from Propositionl
that the system .# is robustly stable in the domain &7, if and only if there exist a matrix
P € RV*?Y and a positive semidefinite matrix O € R8>8V such that:

pe (1?) & (1) arps (12) )

T ~&A)T0&A) — Ly =0

& (A1) Prag (22 P& (27)

(9.65)

fori=1,2,...,{, where A := [ Al Ay ] , P= [ P P ], and P, € R¥*V is symmetric for

i = 1,2. This SDP problem is quite systematic, because there is only one relation given by

(9.65) which is required to hold for several vectors. Furthermore, the relation (9.65) can be

obtained by using any relevant software. Note that there are v(v +1) + §X(8—2V+—1~) =33v2 +

Sv free scalar variables in this case. Now, it is desired to formulate this problem by using

Corollarl directly. The assumption (9.63) and the equation (9.22) result in the following
monomials for the matrix polynomial Q1 (®):

1, o1, ©F, 03 (9.66)

Therefore, one can write Q1 (@) in terms of these monomials as follows:
01(0) = Fo+ Foyap + Bol + Boj (9.67)
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where F; € R2V*2V, i =0,1,2,3. Using the equations (9.51), (9.63), (9.67) and (9.22), along
with the methodology presented in Corollary 1, one will obtain 9 matrix equations with the
order of 2v, in terms of the variables Fp, ..., F3 and the block entries of P and Q. Furthermore,
there are 33v2 +5v + 43"—@23+—1) = 41v2 4+ 9v free scalar variables in this case, which is about
1.25 times greater than the number of variables obtained by using Propositionl. To compare

the methods given in Corollary 1 and Proposition 1 for this particular example, it should be

pointed out that:
1. Both approaches have 9 matrix equations, any of which is of order 2v.

2. The nine equations resulted by using Propositionl have the same form, and can be
obtained by using many simple softwares, while the equations resulted by using Corol-

lary 1 are obtained through manipulation.

3. There are much fewer variables in Proposition 1 compared to Corollary 1. This is of

great importance when v is large.

Example 2 Assume that n = 2, and that A; and A, are given by:

0.2 0.5 05 0
A] bl A2

0 03 1.5 05

Il
Il

(9.68)

It is desirable to determine the maximum value of p, for which the matrix u(0141 + 02Az),
Y ay,0p € & is Schur. Three different methods are employed in the following to solve this

problem.

1. The work given in [2] states that the system .7 is robustly stable over the polytope
2 with a first-order Lyapunov polynomial Pj ¢ + Py, if there exist three symmetric

positive definite matrices Py, P> and U, and two symmetric matrices Z; and Zj, satisfying
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the following constraints:

Uit =P —A1PA;

)

Up =P —~APA;,

Us =21, Uy=12,

Uiz =

Uz =

2P — A’2P2A1 — A’2P1A2 — All P,A> — 74

— All PlA; — A/2P1A1 - All PA -7,

2 (9.69)

2

U12+U1T2+U34+U3T4=07 U14+U17;1207 U23+U2€=0

where U;; denotes the (i, j) block entry of the matrix U for any i, j € {1,2,3,4}. Solving

this LMI problem results in = 1.07.

2. The work presented in [1] states that the system . is robustly stable over the polytope

& with a first-order Lyapunov polynomial Pja; + Poop, if there exist two symmetric

matrices P; and P, such that the following inequalities hold:

P

PAy P

P

PA, P

A'l P,

AéPz

Pi+P AP +ArP
>0, >0,
PiAy+ PAy Pi+P
(9.70)

>0

The value of 1t obtained by solving the above LMI problem is 1.11.

3. It can be concluded from Corollary?2 of the present chapter that the system . is robustly

stable over the polytope & with a first-order Lyapunov polynomial P; &) + P>y, if there

exist two symmetric matrices P and P, and a symmetric positive definite matrix Z, such

that the matrix U is positive definite, where

P AP
Un =
PIAT P
P, A/2P2
Uxp =
PA, P

7

1 P+ P AIIPZ + AP
U12 == _Za
P1A> + P Ay P+P
9.71)
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and where U;; denotes the (i, j) block entry of the matrix U for any i, j € {1,2}. The

solution of this LMI problem is 4 = 1.19.

It can be easily verified in this simple example that the exact value of u is equal to 1.20. It
is worth noticing that while the above three LMI problems are obtained by making the same
assumption, i.e. considering Lyapunov functions in the form of first-order polynomials, the
LMI given by the present work leads to an almost exact solution and outperforms the results
obtained by the LMIs given in [1] and [2]. Note also that the LMI presented in [2] is more
complicated than the one provided in this chapter. Moreover, although the LMI obtained in
[1] is slightly simpler than the one in this work, its solution is far from the exact value. On
the other hand, in order to obtain a result closer to the exact value using the approach given in
[1], the degree of the corresponding Lyapunov function should be at least 2, which leads to a

much more complex LMI problem compared to the one obtained in this chapter.

Example 3 Assume that n = 2, and consider the system . with the following matrices:

0 1.44 0 0 144 0
A= 0 0 144 |, Ax= 0 0 1.44 (9.72)
-0.044 —043 —1.18 0.044 —0.43 1.18

Using the result of Corollary2, one can conclude the robust stability of the system . over
the polytope &, by employing a first-order Lyapunov function. However, this observation
cannot be made by using the method presented in [4], which examines a certain class of first-
order Lyapunov functions only, and the corresponding LMI problem is infeasible. Using the
method given in [4], one can easily verify that the maximum value of y such that the matrix
(oA + opAz) is Schur for any oy and op belonging to the polytope & is equal to 0.84
(note that the value of i obtained by using the method proposed in this chapter is greater than
or equal to 1). This inferior result is due to the fact that the condition given in [4] is obtained

by imposing some additional constraints on the Lyapunov function.
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Example 4 Assume that n = 2, and consider the system . with the following matrices:

0 0.3 0.45 0 03 -045
A= 0 0 0.3 , A= 0 0 0.3 (9.73)
-0.03 —-0.15 -0.18 0.03 -0.15 0.18

The objective is to determine the maximum value of u, such that the matrix u(oA; + A7)
is Schur over the polytope &?. The method given in [4] results in it = 4.30. The LMI given
in Corollary 2 of the present chapter arrives at 4 = 4.39. On the other hand, according to [3]
(which considers first-order Lyapunov functions only) the system . is robustly stable over
the polytope &7, if there exist six symmetric matrices Py, Py, Z;,Z5,Z3,Z4 and two matrices Zs

and Zg such that:

ATPA —P <2, ATPA,—P, <2y,

ATPAy+ASPAV+ATPA — 2P - P, < Z3 + Z5s + ZF

ATPA L +ATPA+ATPA) - 2P — P < 2y + Zs + ZF 9.74)
7 Zs Zy Zs
<9,
zr 7, zr' 74

Solving the above LMI leads to u = 4.39. As a result, the present work and [3] both arrive at
the same value for 1. However, the LMI of this chapter has fewer variables and fewer LMI
constraints compared to that of [3], and thus the proposed LMI is simpler than the one given

in [3]. It is to be noted that the exact value of u for this example is indeed 4.39.

9.9 Conclusions

In this chapter, the robust stability of discrete-time LTI systems with uncertainties belong-
ing to a compact semi-algebraic set is investigated. It is shown that the robust stability of a

system over a polytope is equivalent to the existence of three matrix polynomials with some
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bounds on their degrees, which satisfy a specific relation. A method is also presented to con-
vert the problem to a semidefinite programming (SDP) framework. Furthermore, using the
proposed method, one can choose smaller bounds for the degrees of the three matrix polyno-
mials (instead of the exact bounds which may be very large), to simplify the SDP problem.
This introduces a trade-off between the simplicity of the resultant equations, and their conser-
vativeness. In addition, if the bounds on the degrees are large, another method is presented to
obtain a SDP problem with fewer number of variables, which reduces the computational com-
plexity. The case when uncertainties belong to a semi-algebraic set satisfying a mild condition
is then studied, and a necessary and sufficient condition in the form of nonparametric SDP is
presented accordingly. It is to be noted that the results obtained in this chapter, unlike earlier
works, present a necessary and sufficient condition in the form of nonparametric LMI or SDP.
The examples given demonstrate the efficacy of the present work, compared to the existing

methods.
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Chapter 10

Global Optimization of a Rational

Function Subject to Rational Inequalities

10.1 Abstract

Motivated by many control applications, this chapter deals with the optimization of a rational
function subject to a number of rational inequalities. First, the problem of finding the infimum
of a given polynomial function is formulated as a sum-of-squares (SOS) problem, which can
be handled efficiently by existing software tools. The results obtained are then extended to
the rational functions. The problem of finding the infimum of a rational function subject to
some inequalities in the form of some other rational functions is then investigated. To this end,
the infimum of the rational objective function is computed to determine whether it is finite or
not. If it is finite, a simple SOS formulation is presented in a way similar to the polynomial
case. In the case when the infimum is not finite but some mild a priori knowledge is available
about either the constraints or the solution, the problem is formulated completely as SOS. The

efficacy of the proposed methods are demonstrated in three numerical examples.
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10.2 Introduction

Optimization often appears in many practical problems, and has attracted many researchers
in the area of control systems. Optimization problems can be categorized as constrained and
unconstrained, where the constraints can be in the forms of equalities and inequalities. An
important class of optimization problems involves minimization of a rational function, and
in some cases subject to certain rational inequalities. Problems of this kind arise in several

practical applications, some of which are listed below:

o The high-performance decentralized control design problem, where a set of local con-
trollers is desired to be obtained for the minimum achievable performance index, can
be formulated as the computation of the global optimum of a polynomially constrained

optimization problem [1].

¢ The problem of identifying the state-space model of a structural dynamic system satisfy-
ing some constraints can be translated to the minimization of a rational function subject
to some rational constraints [2]. The main concern in this problem is how to find the

global solution as opposed to a local one.

¢ In constrained model predictive control, where it is desired to predict the controlled
variables over a future horizon, the minimization of a polynomial subject to some poly-

nomial constraints is to be carried out in order to treat the problem [3, 4].

o Certain robust control problems such as parametric stability margin computation, can be
formulated as checking the positiveness of a polynomial on a hyperrectangle, as pointed

outin [5].

¢ The minimum norm problem which is investigated in the literature intensively, turns out
to be equivalent to finding the global optimum of a polynomially constrained optimiza-

tion problem [6].
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¢ Minimization of a rational function is inevitably required in the problem of optimal

model reduction [7].

The above practical applications point to the viable role of the aforementioned optimiza-
tion problem in the real-world systems. This chapter deals with the optimization of a rational
function subject to a number of constraints by means of sum-of-squares (SOS) techniques
[8, 9, 10]. The problem of finding the infimum of a polynomial is first considered, and SOS
formulations are presented accordingly. The obtained SOS problems can be solved by using a
number of softwares quite efficiently. The proposed approach is then extended to the case of
finding the infimum of a rational function. Finally, the problem of obtaining the infimum of
a rational function over a region defined by some other rational functions is investigated. As
the first step, it is checked whether the objective function has a lower bound or not, and in the
case of boundedness, a simple SOS formulation is presented. For the case when the objective
function is unbounded from below, it is shown that if some a priori knowledge is available, the
problem can be solved efficiently. This a priori knowledge can be the radius of a ball which
contains the region defined by the rational functions, if exists. However, the knowledge on
the lower bound of the infimum to be found suffices to solve the aforementioned problem, in

general.

10.3 Preliminaries

Consider a polynomial f(x), where x = [ Xl Xy o Xy ] , and denote its infimum with o,.
In the recent years, the problem of finding o, has been investigated in the literature intensively
from the viewpoint of semidefinite programming (SDP). These works will be surveyed below,
and their drawbacks will be highlighted.

The work [11] states that . is equal to the maximum value of ¢, such that the poly-

nomial f(x) — a is nonnegative. Then, in order to alleviate the complexity of the problem,
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it relaxes the condition of nonnegativity of f(x) — o to being SOS. This relaxation is made
based on the obvious fact that any SOS polynomial is nonnegative, however its converse is not
necessarily true. Hence, the work [11] proposes the new problem of maximization of & such
that f(x) — o is SOS, which can be handled by the relevant softwares. Note that the obtained
solution is a lower bound for a... Although this approach works satisfactorily to some degree,
it can be very conservative in general, due to the aforementioned relaxation. As an example,

the infimum obtained for the polynomial:
X3+ 3G +1-3x343 (10.1)

by utilizing this method is equal to —eo, while the exact infimum is 0. It is shown in [12]
that for any integer d > 2, the ratio of the volume of the nonnegative non-SOS homogeneous
polynomials of degree 2d and that of the SOS homogeneous polynomials with the same degree
rapidly grows towards infinity, as n goes to infinity. This implies that the relaxation used in
[11] and some other relevant papers is not always well-established.

As aremedy for the drawback associated with [11], the technique of using some a priori
knowledge of the minimizer of f(x) is exploited in [13]. Assume that x, is known to be inside
a ball of radius r centered at the origin. It is a direct consequence of Putinar’s theorem [14]
that o is equal to the maximum value of ¢, for which there exist two SOS polynomials ¢ (x)

and ¢»(x) with the following property:

fx)—a= (P —xx") ¢1(x) + d2(x) (10.2)

Note that the coefficients of the polynomials ¢1(x) and ¢, (x) are in terms of a. The advantage
of this formulation is that it is a SOS problem. Nevertheless, this method cannot address the

following questions systematically:

e Does f(x) have a infimum?

e can f(x) attain its infimum, if it exists (i.e. does there exist a finite point corresponding

to that infimum)?
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o If the infimum is attainable, how can the radius r be determined?

The open questions given above (specially the last one) make this approach ad-hoc in general.
This technique is also utilized in [15].

The method proposed in [16] attempts to eliminate the gap between SOS polynomials
and nonnegative polynomials, which is useful in resolving the deficiency of the work [11].
Consider a nonnegative polynomial p(x). It is shown in [16] that for any £ > 0, there exists a
number r(p, €) such that the polynomial:
r(p€) n ,&21

p(x)+¢& Y,

i=1 j=

0 (10.3)
1!

is SOS. Note that r(p, €) depends on p(x) and €. This nice result incorporates the nonnegative
polynomials into the SOS ones.
The work [17] considers the problem of minimizing a polynomial f(x). It perturbs f(x)

by a penalty function as:

x20+2 (10.4)

14

fx)+e

e

i=1

where 20 denotes the degree of f(x). The method proposed in [17] asserts the following

advantages of the perturbed f(x) given by (10.4):
e The infimum of the perturbed f(x) approaches that of f(x), as € goes to zero.

e Although f(x) may not attain its infimum, the perturbed f(x) always attains the corre-

sponding infimum.

An algorithm is then proposed in [17] to obtain the infimum of the perturbed f(x). However,
as pointed out in [18], the required computational cost is huge, which restricts its applications
to small-sized problems. Besides, it may have the problem of ill-conditioning like many other
penalty-based approaches.

The results of [17] have further been developed in [18]. It is shown that the infimum

of the perturbed f(x) given by (10.4) is inside a ball. The radius of this ball is also obtained
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in [18]. Next, the ball technique mentioned earlier is employed to find the infimum of the

perturbed f(x). Nonetheless, there are some shortcomings with regard to this approach. First

n°
£

of all, the radius of that ball is proportional to 2-, which is usually very large. Moreover,
some of the values used in the formulation are in terms of —é— These result in an ill-conditioned
optimization problem, for which € should be considered neither small (due to the mentioned
difficulties) nor large (due to the required accuracy). However, unlike the other existing meth-
ods which seek a lower bound for «., the work in [18] presents an upper bound for it.

It is shown in [10] that if the infimum of f(x) is attainable, then it is equal to the maxi-
mum value of o for which there exist a SOS polynomial ¢y (x) and polynomials ¢1(X), ..., ¢,(X)

'such that:

of (x)

f(x) —a = ¢o(x) + ¢1(x) s 4o () df(x)

0xy,

It is stated in [10] that if a certain condition does not hold, the degrees of the polynomials

(10.5)

$o(x), ..., o,(x) should ideally be assumed infinity. In other words, in that case the infimum
will be obtained asymptotically (in infinite iterations).

The work [19] deals with the global optimization of a polynomial f(x). One of the
requirements of the approach in [19] is that f(x) should be bounded from below. This has
tried to improve the approach in [10] which is unable to deal with the polynomials whose
infimums are unattainable. Indeed, it has introduced the notion of principal gradient tentacle,
as opposed to the gradient variety used in [10]. For the polynomial f(x), its gradient tentacle
is defined to be:

S(VE(x)) = {x: VA [Ix]} < 1} (10.6)

where

i = (S0) 4 (420 107)

It is then stated that if f(x) has isolated singularities only at infinity, or alternatively if S(V f(x))
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is compact, then o is equal to the maximum value of o for which there exist two SOS poly-

nomials ¢ (x) and ¢,(x) such that:

fx)—a=o1(x)+ (1— V) IIx[*) ¢2(x) (10.8)

However, the degrees of the polynomials ¢;(x) and ¢,(x) are sometimes infinity, i.e., o, will
be obtained through an asymptotical convergence. Some other drawbacks are pointed out in
[19]. First of all, if the infimum does not exist, this method will not detect it, and will lead to
a wrong solution. Furthermore, in the case when the infimum is not attainable, this method
can be very time-consuming. In comparison with other existing methods, one can easily infer
that the term ||V £(x)||? ||x||* will increase the numerical complexity of the problem noticeably
(because of its degree).

Consider now the problem of computing the infimum of a given rational function %

over the region & defined by:
2 ={x: gi1(x) >0,...,8:(x) >0} (10.9)

One of the most important results presented in the literature concerning this problem is Puti-

nar’s theorem. This theorem requires that the following qualification be satisfied:

Qualification 1 There exist SOS polynomials zo(X),z1(X), ..., 2(X), such that the set of all

vectors X satisfying the inequality:
20(x) +21(x)g1(x) + - + 2 (x)gk(x) = 0 (10.10)
is compact.
Since Putinar’s theorem will essentially be required in this chapter, it is given below.

Theorem 1 [14] Assume that Qualification 1 holds for the polynomials g1(x),...,gx(x). If a
function p(x) is strictly positive over the region 2, then there exist SOS polynomials 7p(X),

Z1(X), ..., Zk(X) with the following property:
p(x) = Zo(x) +21(x)g1(x) + - + Ze(x)gx(x) (10.11)
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The problem of finding the infimum of L E g over ¥ is tackled in [15], by assuming that:
i) 2 is the closure of some compact open connected set.
ii) Qualification 1 holds.
iii) f(x) and A(x) have no common real roots in 2.

It then exploits Putinar’s theorem to conclude that the infimum of £ 7—5 over the region Z is
equal to the supremum of a for which there exist SOS polynomials ¢o(x), ¢1(x), ..., 9x(X) such
that:

f(x) — ah(x) = ¢o(x) + ¢1(x)g1(x) +- -~ + Pe(x)ge(x) (10.12)

The above assumptions confine the application of this approach. In fact, they can be very
restrictive, and their verification (specially the requirement (iii)) is not straightforward in the
case of a rational function (as opposed to a polynomial). For the unconstrained optimization
(i.e., when Z spans the whole space), this method utilizes the technique of the big ball. As
pointed out earlier, this method is problematic, as it is unknown whether the infimum is attain-
able, or how to find its radius, if exists. Similar techniques are used in [20], but the problem is
converted to a dual SDP in order to compute the minimizers, in addition to the infimum.

The work [21] considers the problem of minimizing a polynomial f(x) over the region
2. While the works [15, 20] require the compactness of &, the method proposed in [21] elim-
inates this restrictive assumption. It is shown that if the minimum occurs at a Karush-Kuhn-

Tucker (KKT) point, then o, is equal to the maximum of ¢ for which there exist SOS poly-

nomials ¢;(x), 2(x), ..., ¢ (x) and polynomials y;(X),..., Wk(X), x1(X), ..., Xk(X) such that:

z - L F F
fx)me= ( Z) (i-1) ¢i(x)gl(x)“"'8k(xyk+21%()‘) ( gix Z’l %])EX)>
=1, J1--Jik)= i—1 2 i= 2 '= i
k
+ 2 xi(x) digi(x)
i=1
(10.13)
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Note that the term (j;...j¢) = (i — 1) in the above relation implies that jy, ..., ji are the digits
of the number i — 1 in the base 2. Furthermore, A;’s play the role of Lagrangian multipliers.
Aside from the complexity of the above formulation, as indicated in [21], the assumption
that the minimum occurs at a KKT point is not trivial and cannot be relaxed, in general. For
instance, this method is not able to find the minimum of x% subject to the constraint x% > 0.

It is evident that the above-mentioned methods require to make certain assumptions,
which can be very restrictive, in general. Furthermore, they either present complicated for-
mulas or lead to very conservative results. In this chapter, novel approaches will be presented
to find the infimum of a rational function, and also the infimum of a rational function over a

region. The proposed approaches are SOS-based and far simpler than the existing methods.

10.4 The global solution of an unconstrained optimization
problem

In this section, it is desired first to present a simple methodology for finding the infimum of
a polynomial, without making any assumption. Then, the procedure will be extended to the

case of finding the infimum of a rational function.

10.4.1 The infimum of a polynomial

Consider a polynomial f(x). It is obvious that the infimum of this polynomial, denoted by ¢,

can be obtained from the following relation:
o = {sup(@): f(x)—a>0,VxeR"} (10.14)

When f(x) is of odd degree, o is equal to —oo. Thus, assume that its degree is 20, where

O is a positive integer. Let y represent a slack variable. Rewrite the function f (ﬁ—) as
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L2 f(x, 1), where f(x,u) is a polynomial. A tight lower bound for a, will be given in the

next theorem.

Theorem 2 Let ¢, denote the maximum value of & for which there exist a polynomial ¢1(x, 1)

and a SOS polynomial ¢1(x, ) such that:
Fx,p) —ap?® = (1= xx" —p®) 41 (x,1) + 92(%, 1) (10.15)
Then, o, is a lower bound for Q...
Proof It is straightforward to show that:
Ol :’{sup(a) D fx,p) —ap®® >0, VYxeR", ueR} (10.16)

On the other hand, one can easily conclude that f(x, i) — o, 2° is a homogeneous polynomial

of degree 26. Therefore, the relation:

FOX,Ap) — 0o (Ap)*7 = 229 (F(x, 1) — 0ou>°) (10.17)

holds for any real number A. It results from the equation (10.15) that f(x, ) — o,u?° is
nonnegative for any x and u satisfying the equality xx” + u? = 1. Using the scaling prop-
erty (10.17), one can deduce that f(x, i) — c,?® is nonnegative for x and y, as long as the
inequality xx” + u? = 0 holds. As a consequence of this result and by noting that the homo-
geneous polynomial f(x, ) — o, 12° is equal to zero at the origin, it can be concluded that

f(x, 1) — 0, 1%9 is always nonnegative. The proof follows now from the relation (10.16). B

Theorem 2 presents a simple SOS formulation for calculating the infimum of a polyno-
mial, and can be easily solved by using a number of softwares, e.g. YALMIP or SOSTOOLS
[22, 23]. Note that the discrepancy between ¢, and o depends on the possibility of represent-
ing the polynomial f(x,u)— ou®® (which is nonnegative inside the closed unit ball) as the

one given in (10.15). In fact, Putinar’s theorem states that if f(x,u) — out®C is positive, such
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representation is possible. However, in the case when it is nonnegative, Putinar’s theorem can-
not be used (see the counterexamples in [24]). It is worth mentioning that the proposed method
has been applied to several problematic examples, and it could solve all of them accurately

(i.e., 0, = 0,), as shown in Section 10.6.

Remark 1 One can follow the procedures proposed in [25] and [26] to find bounds on the
degrees of the polynomials ¢1(x, 1) and ¢2(x, 1) given in Theorem 2 (for obtaining o). Note
that if the degrees of ¢1(x, ) and ¢,(X, L) are not chosen sufficiently large, the solution of
the SOS problem presented in Theorem 2 may be visibly different from the exact value of 0.
However, any value obtained, no matter how far from the exact value is, can be considered as

a lower bound for o, and consequently, 0.

The result of Theorem 2 presents a lower bound for the infimum, rather that an ex-
act value for it. The following theorem presents an efficient method to find the infimum o«

precisely.

Theorem 3 For any € > 0, let af denote the maximum value of o for which there exist two

SOS polynomials ¢7 (x, ) and ¢35 (X, ) such that:
Fxou)+e—o(u*+€%) = (1—xx" — u?) of (x, 1) + 95 (x, 1) (10.18)
Then of either equals «,, or converges to 0, as € — 0.

Proof Denote the infimum of the rational function % in the unit ball with &Z. It can be

easily verified that & satisfies the following relation:
68 = {sup(a) : F(x, ) +e— o (U0 +€%) >0,V (x,u) € B} (10.19)

where % denotes the unit ball. Since 12° + €2 is always positive, Lemma 1 in [15] along with

the above equation yield that:

0f = {sup(a) : f(x,u) +&— 0o (u*°+€?) >0,V (x,u) € B} (10.20)
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(note that the difference between (10.19) and (10.20) is the inclusion of zero in the inequality
in (10.19)). Thus, it follows from Putinar’s theorem that & is the same as the maximum value

of a for which there exist two SOS polynomials ¢f (x, 1) and ¢5(x, i) such that:

Fxop)+e—a(p +€%) = (1-xx" — u?) ¢f (x, 1) + 05 (x, 1) (10.21)

It can be concluded from (10.18) and (10.21) that &F is equal to o, i.e., the infimum of the
rational function % in the unit ball. On the other hand, it can be shown that o is the
same as the infimum of the rational function %2—) Since the numerator and denominator
of this rational function are homogeneous of the same degree, the infimum corresponds to
infinitely many points which can lie anywhere in the n 4+ 1 dimensional space, unless it is
exactly the origin. Therefore, the infimum of the rational function f—g‘%ﬂ in the unit ball is
o,. Let (R4, fl«) denote one of the minimizers corresponding to the infimum of the rational

function fé’;g‘ﬂz:f in the unit ball. One can write:

€ f(ﬁ*aﬂ*)+8<f(0,0)+8_l

= = 10.22
% Q20 +e2 — 0+4¢2 £ ( )

Therefore f_(—’:‘%") < % Consequently:
ot = T &) He RGBS (10.23)

0 T A fotiy ~
304_82 30

On the other hand, it can be easily shown that the value of =5 f ( ) at any arbitrary point can

be attained asymptotically by the function %’%—2—:&5 (by virtue of € — 0). This completes the

proof. ]

It is to be noted that part of the proof of Theorem 3 relies on the fact that the infimums of

fl(ixa(/;l') and f,_S)ZK(’)"fZ:ZE

can become arbitrarily close to each other by choosing a sufficiently small
€. However, a question may arise why the function Tf% (which has a simpler form) was not
considered instead of ﬂ% It is interesting to note that the statement is not valid for the

2 .2\2
above-mentioned function. For instance, consider the rational function %%% The infimum
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of this rational function is equal to 4. In contrast, the (attainable) infimum of (%‘i%ﬁ—zf is equal
to 0, no matter how small € is.

Theorem 3 presents a SOS problem, which leads to finding o. It is to be noted that
there are bounds on the degrees of the polynomials ¢ (x, 1) and ¢5(x, i) (see Remark 1). In
addition, one can obtain some bounds on the relative error between a:f and .. For instance,
it is straightforward to show that in the case when the infimum @, is attainable, there exists a

positive number &g such that o is always between @, and o + /€, for any € € (0, &).

10.4.2 The infimum of a rational function

It is desired now to find the infimum of the rational function %g—g Without loss of generality,

suppose that f(x) and h(x) are coprime, otherwise one can pursue the existing methods to

eliminate their greatest common divisor (GCD). The following lemma is borrowed from [15].

Lemma 1 If the value of the function h(X) is negative at one point and positive at another

point, then the infimum of {:—g% is —oo,

At this point, it is required to check whether or not 2(x) changes sign. This can sometimes
be inferred from the nature of the polynomial #(x). For example, when h(x) is the square
of another function, it is always nonnegative. However, the negativeness or nonnegativeness
of h(x) can be verified, in general, by using the method proposed in the previous subsection.
More precisely, Theorems 2 and 3 can be employed to find the infimum of A(x), leading to

one of the following possibilities:
¢ The infimum of h(x) is nonnegative.
¢ The infimum of A(x) is negative and finite. In this case, the infimum of % is —oo,

e The infimum of A(x) is —eo. Compute now the infimum of —A(x). If it is negative (finite

or infinite), it means that A(x) takes both negative and positive values, which implies
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that the infimum of ;é g is —oo, Otherwise, the infimum of {ﬁ(i—)) is finite. In this case,
negate both the numerator and the denominator of fT(_)Y in order to make the infimum of

its denominator nonnegative.

Without loss of generality, assume that A(x) is always nonnegative. It is evident that the
infimum of the function hE ;, denoted by «,, can alternatively be obtained from the following

relation (e.g., see [20]):
o = {sup(a): f(x)~ah(x)>0,VxeR"} (10.24)

Now, pursuing approaches similar to the previous subsection, the following two theorems
will be obtained, which represent extension of the results of Theorems 2 and 3 to the case of

rational functions.

Theorem 4 Consider a slack variable |. Rewrite the rational function %—% as hE L ; where
m
F(x,1t) and h(x,t) are two polynomials. Let O, denote the maximum value of « for which

there exist a polynomial ¢(x, 1) and a SOS polynomial ¢p(x, ) such that:
FOx ) — oh(x, 1) = (1—xx" = p?) 91 (x, 1) + 92 (x, 1) (10.25)
Then o, is a lower bound for O.,.

Theorem 5 For any € > 0, let af denote the maximum value of o for which there exist two

SOS polynomials ¢ (x, 1) and ¢5(x, L) such that:
Fx, 1) + & — 0 (R(x, 1) + €2) = (1~ xx? — pu2) ¢ (x, 1) + 05 (x, 1) (10.26)
Then af equals a.,, or converges to 0 as € — 0.

Remark 2 In the case when f(X) and h(x) are homogeneous of the same degree, one can

consider the following equation, instead of the one given in (10.25):

F(x) — ath(x) = (1 —xx") ¢1(x) -+ P2(x) (10.27)
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and the one given below, instead of (10.26):

f(x) +e—a(h(x)+€*) = (1-xx") ¢f (x) + ¢5(x) (10.28)

In other words, introducing a redundant variable |l is unnecessary in this case.

10.5 The global solution of a constrained optimization prob-

lem

&N

(x

= and assume that it is desired to find the infimum of this

Consider a rational function

=
—
Bo¥

g1(x) gax) g (x)

function over the region & described by a given set of rational functions (X)) mX) " e (x)

as follows:

_{,. 8k 8(x)
9= {x. ) 2% 20} (10.29)

This problem will be investigated next.

10.5.1 An objective function bounded from below

As the first step to find o, one should verify whether ! g g is bounded from below or not. This
can sometimes be inferred from the nature of % However, in general one should compute
the infimum of {:—83 by exploiting the method proposed in the previous section. Assume that
%(5% is bounded from below, and denote a lower bound on it with Ly (L; can be considered
as the infimum of £ g ; obtained using the approach given in Section 10.4). Note that it is not
important how tight the lower bound L is. Find an arbitrary point Xy belonging to the region

2. Define L as i(( O; Consider now the following objective function:

fx) L—Li & < 2 &i(x) ui(X)>2
@ (x, 1) =~ + 2_ o7 (10.30)
K=t 7 ,=21 B7u ~ a)
where it = | 1y py --- py |- The following theorem presents one of the important prop-
erties of @1 (x, ).
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Theorem 6 Assume that (Xo,lL,) is a local minimum point of the function ® (X, L) given in

(10.30). If ®1(x0,1t,) < Ly, then X, is a local minimizer of the function % over the region

9, and moreover ®1(X,, L,) is equal to %.

Proof It is obvious that Zig ;, i=1,2,...,k, 1s nonnegative, because otherwise:

q)l (Xoauo) 2

(%) | La—L ( 2 8i(Xo) ui(Xo))2 ST +L2—L1

* T w(Xa)  8i%) z

(o) y X (O+2)2 =Iy

(10.31)
where (1, represents the i" element of p . This contradicts the assumption of @1 (X,, i o) <Lo.
Note that the above inequality is attained based on the fact that the summation of any positive
number and its inverse is at least equal to 2. Hence, % is nonnegative forany i € {1,2,...,k}.
Assume for now that the first-order and the second-order necessary conditions hold at x = x,,.

One can write:

0P (x, 1) ( 2 8i(Xo) u,-(xo))
0= ———~—7 = U, (Lp—L = — 10.32
a'ui (Xm#o) u l ( ? : ) ‘uOI Ui (XO) 8i (Xo) ( )
The above relation is met for either i, = 0 or ptp,> ~ & (Z; - ——:ﬁz; = 0. Nevertheless, iy, =0

is infeasible, because otherwise:

92¢1(X, uw)
o’

= (L~ L) (uoiz _8il%) f‘——(L)) +2U,2 (L~ L) SO (1033)

(xmﬂo) ui(XO) gi(xo)

This contradicts the assumption that (X,, it,) is a local minimizer of the function ®(x, it). As

aresult:
2_ 8i(Xo) _ ui(Xo)
ui(xo) gi(xo)

Lo, =0, ie{l,2,..k} (10.34)

On using the equation (10.34) and the first-order necessary condition V(x, i) (%ouft,)
f(x)

is straightforward to show that Vh_(x7 |Xo = (. Therefore, the first-order necessary condition is

=0, it

satisfied for the point x,, to be a minimizer of the function % over the domain &. Regarding

the second-order necessary condition, the Hessian of the function ®@(x, tt) is required to be
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obtained. One can write:

2 f(x) 8i( (%)
Foxy)| T Lz- i Yuty , Taw) T
0x;0x; (%ostty) 8x,8x, S\ odx ax, ox; 8x]
(10 35)
forany i,j € {1,2,...,n}. Moreover:
(x) u (x)
920, (x, 1) du® o5
BT (La=Li) | 5 =+ (10.36)
forany i € {1,2,...,n}, I € {1,2,...,k}, and it can be concluded from the equation (10.34)
that:
2
aq)l—(’é’“) =22 (Lo~ L1), i€{1,2,...k} (10.37)
a‘ui (XosH )
and
82d>1(x u)
g 1nE) =0, ije{l1,2,..k}, i#j (10.38)
8#,8/1, (%X0,t4) ! { } 7& !

Hence, using the equations (10.35), (10.36), (10.37) and (10.38), and noting that the second-

order condition holds for the function @ (x, 1) at the point (x,, i,), one can deduce that:

V2L LSBT (x)T(x,)T —(Lo— Li)T (%) T (1,)

qu)l(xa/vl)l(xo o) — " N - >0
~(L2 = L1)T (1) T (x0)" 2T (po)*(L2 — L1)
(10.39)
where T'(x) is a n X k matrix, whose (i,!) element is equal to:
9&x) auz x)
uo | sl (10.40)
ox; ox;

and T (u) is a k x k block diagonal matrix with the (i, i) entry equal to l,,. The Schur comple-

ment formula can be applied to the matrix given in (10.39) to arrive at the following inequality:

f(x)
< Vzﬁ

So far, the theorem is proved for the case when (x,, 1t,) satisfies the optimality conditions for

(10.41)

X0

the function @ (x, it ). Using a similar approach, it can be proved in general. ]
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The application of Theorem 6 is twofold. Firstly, the terms (uf - %g—; — Zi (g ) 2, i =
1,2,...,k, act as barrier functions. In other words, as soon as 5—:1% becomes negative, this bar-
rier term increases the value of the objective function ®;(x, ) at least by 4. Thus, one can
start from the interior point X = %o and an arbitrary g, and employ a proper numerical algo-
rithm for minimizing the function ®; (x, tt), in order to find a local minimum of the function
;:—E;‘% over the region 2. This method can be envisaged as an exact penalty approach, as it
is not a sequential optimization [28, 29]. This penalty function approach can be superior to
many of the existing methods, such as the improved versions of the inverse barrier method

[28]. Secondly, one can determine the global solution of the problem using SOS. This will be

explained below.

Corollary 1 The infimum of the function ®1(x, i) is identical to that of the rational function

% over the region defined by 9.

Proof The proof follows from Theorem 6 and on noting that Theorem 6 can be similarly

applied to the case when the infimum of £ 7— is unattainable. ]

Remark 3 Using the SOS-based method proposed in the previous section for finding the in-
fimum of an unconstrained rational function, one can determine the infimum of the function
@ (x, 1), which is, in fact, the infimum of the rational function f E ; over 2 (according to

Corollary 1).

10.5.2 An unbounded objective function over a compact region 2

\

()

is regarded here as a function unbounded from below, for which the method explained

=
)
R

in the previous subsection is inapplicable. Nevertheless, a few assumptions are required to be
made in order to develop the relevant results. First, the region Z is required to be compact.
Next, it is assumed that there exist two nonidentical balls of the known radiuses 1 and r» such

that igxg is bounded from below inside these two balls, and also both of the balls contain the
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region 7. Without loss of generality, assume that the center of both balls is the origin, and that
r1 > ry. At this point, a lower bound for the rational function Q inside the ball of radius 4
should be provided. Denote this lower bound to be found with L;. Note that L; can sometimes
be inferred from the structure of £ é g However, one can find the infimum of £ g g in the ball,
and consider it as L;. In order to compute infimum of ! E ; in the ball (or a lower bound on
it), one can combine Putinar’s theorem and the technique used in the proof of Theorem 5 to
conclude that a lower bound on this infimum is equal to the maximum value of ¢ for which

there exist two SOS polynomials ¢ (x, 1) and ¢§(x, ) such that:

Fx ) +€— o (h(x, 1) +€2) = (r} —xx” — pu?) ¢F (x, 1) + @5 (x, 1t) (10.42)

where € is chosen sufficiently small (it is assumed that f(x) and h(x) are coprime). Define

now the following objective function:

19 L=l (2= a0 _wm\’
P01 =0 21<< ) - g,-<x>> (1049

2_.2 .
where ¢ = 4/ ﬁT’;, and L, was defined earlier.

Theorem 7 The infimum of the function ®(X, L) inside the ball of radius ry (i.e., xx! +

uu® < ry) is the same as the infimum of the rational function A E g over 9.

Proof The proof for the case when the infimum of the rational function L g g over & is attain-
able will be given here, and can be simply extended to the general case. Denote the global
minimizer of the function ®»(x, ) inside the ball of radius r; with (x.,u,). It suffices to
show that x, is the infimum of the rational function £E )) over 9. This will be carried out by

pursuing the proof of of Corollary 1 and taking the following facts into consideration:

1) The conditions given below are fulfilled:

2
i(X4) >0, cz_u,%i g,(x*) ui(x*) _o i L2 . 10.44
ul(x*) ( Hs; ut(X*) gi(X*) ’ IE{ N } (10.44)

o0

where L1, represents the M entry of y. Thus, x, lies inside the region 2.
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2) Since the ball of radius r, contains the region ¥, X, is located inside this ball, i.e.,

X«XL < 72,

3) For any arbitrary x, if i;g—zg is nonnegative, the equation:

22\ 2
¢ — ) gi(x) _w(x) o
—L ] - - =0, ie{l,2,..,k (10.45)
< Wi ui(x)  gi(x) ¢ J
has a solution between 0 and ¢ for y;. This is a consequence of the fact that the function
2 2
%"— can take any nonnegative value, when ; changes from O to c.

4) Since x, is inside a ball with the radius r,, and all of the entries of i, are between 0 and

c, thus x,x? + 17 is at most equal to 72.

Write the function ®,(x, tt) introduced in (10.43) as Z ;g’ﬁg, where py (x, i) and pa(x, 1t)
are two coprime polynomials, and also p,(x,u) is always nonnegative. Note that if such
representation is not possible, it implies that the infimum is found to be —oo, as pointed out

earlier in Section 10.4. The following theorems can be concluded from the results of Theorem

7 and Putinar’s theorem by employing an approach similar to the proofs of Theorems 4 and 5.

Theorem 8 Let the infimum of %—3 over 9 be denoted by 0. A lower bound for o, is the max-
imum value of o for which there exist a polynomial ¢1(x, ) and a SOS polynomial ¢»(x, 1)

such that:

pr(x, 1) — apa(x, 1) = (rf —xx” —pu") ¢1(x, 1) + 92 (x, 1) (10.46)

Theorem 9 For any € > 0, let o denote the maximum value of o for which there exist two

SOS polynomials ¢f(x, ) and ¢5 (X, L) such that:

pi(x, 1) +e—a(pa(x,pu)+€%) = (rf —xx" —puT) of(x, 1) + 05 (x, 1) (10.47)
Then of either equals o, or converges to ., as € — Q.
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It is observed in many examples that the SOS problem given in Theorem 8 works very well,

with no necessity of using Theorem 9.

10.5.3 An unbounded objective function over a non-compact region 2

Assume that a lower bound on the infimum o, is available. Denote this lower bound with ;.
It is to be noted that various simple approaches can be used to find a value for Z;. For instance,
there are several algorithms which find o, from below by infinite iterations. One can pursue
these algorithms in order to obtain a lower bound on L; using a finite number of iterations. As
an alternative, L; can manually be obtained by using some well-known inequalities in small-
sized problems. Note that the value of L; is not of great importance, as long as it is a lower
bound for o, (i.e., it may be much smaller than o). Denote the infimum of ( % - Z1)2 over

the region & with B. It can be easily verified that o, = \/E +L; (note that % —L; >0over

2). Define now the following objective function:

x) .\ I k (x) wi(x)\?
Ds(x, 1) = (%%—Ll) +sz1 )y (”iz_%%(%_giw (10.48)

where Ly = (%(% -Z1>2. It is to be noted that ®3(x, 1) is constructed for the function
(% — il)z in the same way that ®(x, ) is formed for % Note also that the term I_‘%’r—l
in the above expression for @3(x, 1) is due to the fact that ( {:g:) - Z1>2 is always greater than
—1. Similar to the previous case, the infimum of ®3(x, ) is the same as 3. Therefore, one
can pursue the methods given in Section 10.4 (for finding the infimum of a rational function)

to obtain the infimum of ®3(x, i), and accordingly, use the equation o, = \/B + L to find

Oly.

Remark 4 In this chapter, some simple SOS formulations are presented to find the infimum of
both constrained and unconstrained rational functions. However, they are only able to deter-

mine the infimum as opposed to the minimizer(s), like many other approaches. Nevertheless,
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the dual of any SOS problem given here can simply be attained, by using the Lagrangian tech-
nique and following the existing methodologies such as the one introduced in [20, 16]. The
dual problem, which also has a SOS formulation, is capable of computing the minimizers. The

corresponding computations are systematic, and the formulas are skipped here.

Remark S5 The problem of minimization of a rational function subject to some rational in-
equalities is investigated in this section. However, the existing SOS-based works consider
only polynomial inequalities. As a simple remedy for this restriction, one may consider the

following set instead of & given in (10.29):
2 ={x: gi®)u1(x) >0,...,gx(x)ux(x) > 0} (10.49)

It is to be noted that no matter if 9 and 9 are equivalent or not, the expression for 9D is
more suitable for the proposed formulations. More precisely, the degree of the rational func-
tion ii—g—% + gﬁ(—% corresponding to 9 can be much smaller than that of g;(X)u;(x) + m

corresponding to 9.

10.6 Numerical examples

Example 1 Consider the polynomial xff -|-x§ —|—x§ +x‘1‘x% +x%x‘2‘ —|—x§ — 3x%x%x§. The infimum
of this polynomial is equal to 0, which cannot be attained in a finite number of iterations by
using the method given in [10], as pointed out there. Now, it is desired to apply the method
proposed in this chapter to this example. According to Theorem 2, a lower bound for the
infimum of this polynomial can be considered as the maximum value of o for which there

exists a polynomial ¢; (x, i), where x = [ Xl X2 X3 ] , such that the polynomial:

A b e 8 3R~ (1~ G )01 () — o
(10.50)
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is SOS. Using a 9-order polynomial ¢, (x, 1), one can then solve the above SDP problem by
using an appropriate software such as YALMIP or SOSTOOLS, to obtain ¢, = 0. On the other
hand, the exact value of ¢, as pointed out before, is equal to 0 as well. Thus, the proposed

relaxation let to the exact solution in a finite number of iterations (indeed, in a few seconds).

Example 2 It is desired to find the infimum of the following rational function:

x‘fx% -!—x%x‘z‘—I—xg
T35 (10.51)
XXX

It can be observed that the denominator of this rational function is nonnegative, and that its
numerator and denominator are both homogeneous of the same degree. Therefore, it can be
concluded from Theorem 5 and Remark 2 that a lower bound on the infimum of this rational
function is equal to the maximum value of ¢ for which there exists a polynomial ¢ (x), where

X= [ Xl X3 X3 } , such that the following polynomial is SOS:
23 + a0 +8 — oxddad — (1 -5t — 3 —13) 1 (x) (10.52)

The value o, = 3 is obtained by using YALMIP with a 9"-order ¢; (x). According to Motzkin
polynomial [20, 27], the exact solution is also o, = 3. However, using the technique given in

[11], the lower bound 0 will be obtained.

Example 3 Consider the problem of minimizing the polynomial x% + (x122 — 1)? under the
constraint x;xp > 2. It is straightforward to show that the infimum of this constrained op-
timization problem is equal to 1, which is unattainable because it occurs as x; approaches
zero, with xp = % Since the infimum is not attainable, the method [Jch7gradient, which is a
combination of the SOS and gradient techniques, cannot treat this optimization problem. For
the same reason, most of the rudimentary optimization algorithms fail to solve this problem.
On the other hand, since the region defined by the constraint x1x3 > 2 is not compact, the

approach given in [20, 15] is ineffective. Besides, the technique of presuming a large ball for

the solution is not applicable, as there is no ball to include the minimum point. In addition, the
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penalty-based methods cannot efficiently handle this constrained optimization problem due
to the aforementioned difficulties, and more importantly, due to the fact that the infimum oc-
curs on the boundary of the feasible region (i.e., x;x2 = 2), which results in an ill-conditioned
Hessian matrix [29].

Now, let the method proposed in the present chapter be applied to this example. It is
obvious that x% + (x1x2 — 1)? is nonnegative. Hence, one can choose any negative value for
Ly, say L; = —3. Moreover, it is known that the point (x1,x;) = (2,2) satisfies the constraint
and results in the value 13 for the objective function. Consider now the following objective

function:

1 2
(I)l(X,‘LL) = x% -+ (xle — 1)2 +4 (uz —_ (xlxz - 2) - ity 2) (10.53)

where x = [ X1 xp } . As pointed out earlier, the infimum of ®;(x, i) in the whole space
is the same as that of x:f + (x1x2 — 1)? over the noncompact region defined by the inequality
x1x2 > 2. Using the SOS method proposed in Theorem 3 with € = 10719, and employing

YALMIP software, one will arrive at the infimum o, = 1 very rapidly.

10.7 Conclusions

In this chapter, the problem of computing the infimum of a rational function subject to some
rational inequalities is investigated. This problem plays a key role in control design and perfor-
mance analysis for many real-world systems. It is first shown that the infimum of a polynomial
function can be obtained by solving a simple SOS problem. The result is then extended to the
case of a rational function. Finally, the problem of finding the infimum of a rational function
over a region defined by some other rational functions (in the form of inequalities) is con-
sidered, and in the case when the objective function is bounded from below, a simple SOS
formulation is presented similar to the one obtained for polynomial functions. In the case of

an objective function unbounded from below, the problem is treated by assuming that certain

272

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a priori knowledge is available. Three illustrative examples are given to clarify the proposed

approaches and demonstrate their effectiveness.
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