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Abstract

This article considers smooth density estimation based on length biased
data that involves a random sample X1, . . . , Xn based on a nonnegative random
variable (r.v.) having a continuous probability density function (pdf) g(x), x ∈
R+ = [0,∞), where g(x) is generated by another pdf f(x), x ∈ R+ given by
g(x) = µ−1xf(x), x ∈ R+, where µ = (Eg(X

−1))−1 is the harmonic mean
of X with the pdf g(.). Length-biased distributions (and in general weighted
distributions) naturally occur in many statistical applications (see Patil and
Rao[11]) where estimation of f(x), x ∈ R+ itself is of central importance.

The most commonly used estimator of the density function is the kernel
estimator for the case of i.i.d. data that has been adapted to the length-biased
setup, however, this approach may not be satisfactory as it may assign some
probability to the negative region (see Chaubey, Sen and Li[5]). In order to
avoid these problems, it would be better to adapt smooth density estimation
technique for non-negative random variables. In the present article we inves-
tigate the adaptation of asymmetric kernel estimator proposed and studied in
Chaubey, Sen and Sen[4] through smoothing of the usual empirical distribution
function and the Cox’s estimator. Our simulation study demonstrates that
the asymmetric kernel estimators proposed here are good competitors to other
estimators.

1 Introduction

In many applications the recorded observation may be assumed to have the probability
density function g(x), that is of the form

g(x) = µ−1w w(x)f(x), x ∈ R+, (1.1)
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where f(x) is the original density, w(x) is a non-negative known function called the
weighting function,

µw = 1/Eg(1/w(X)) (1.2)

with X ∼ g(.). Patil and Rao (1978) cite several examples including those generated
by PPS (probability proportional to size) sampling scheme (that is common in sample
surveys), damage models and sub-sampling [see also Rao (1965), Patil and Ord (1975),
Patil and Rao (1977) and Rao (1977)]. Here, we concentrate on the case when w(x) =
x, a situation known as giving length-biased data and where typically the observations
are non-negative. Thus we consider a random sample {X1, . . . , Xn} be n nonnegative
independent and identically distributed (i.i.d.) random variables (r.v.) having a
continuous probability density function (pdf) g(x), x ∈ R+ = [0,∞) given by

g(x) = µ−1xf(x), x ∈ R+ (1.3)

where µ = (Eg(X
−1))−1 is the harmonic mean of X with the pdf g(.), and estimation

of f(x), x ∈ R+ itself is of central importance. Here it is tacitly assumed that (0 <
) < µ < ∞. Note that µ ≤ Eg(X) = µ−1

∫∞
0
x2f(x)dx, or equivalently, µ2 ≤ Ef (Y

2)
where Y has the pdf f. Thus, assuming that Y has a finite 2nd moment insures that
µ <∞ (even finite first moment of Y does so).

Bhattacharyya et al.(1988) studied the kernel density estimator for f(x) obtained
by using the corresponding estimator for g(x) and the relation (1.3), replacing the
unknown value µ by its harmonic mean estimator as proposed by Cox[7]. Cox[7] also
gave a direct estimator of F (x) that has been used in proposing an alternative density
estimator by Jones (1991). In some aspects, Jones estimator performs much better
than Bhattacharyya et al. estimator [ see also Wu and Mao (1996)]. However, in
general the kernels used are symmetric around zero the resulting density estimators
may put a positive mass out side the support of f(.) i.e. R+ = [0,∞).. This may also
produce a large bias in the estimators for x near zero. This problem has long been
recognized in density estimation in the context of i.i.d. data [see Silverman (1986)],
however, it becomes more pertinent for the length-biased data, as the observations
are necessarily non-negative.

In order to overcome this defect, many new methods estimating underlying density
for non-negative random variables have been proposed particularly in recent years.
Bagai and Prakasa Rao (1995) proposed replacing the symmetric kernel k by a pdf k∗

with non-negative support. This certainly avoids the problem of positive mass in the
negative region; however, only the first r order statistics are used for estimating f(x),
where X(r) < x ≤ X(r+1), X(i) denoting the ith order statistic that is an undesirable
feature. Chaubey and Sen (1996) proposed a density estimator as the derivative of a
smooth version of the edf by adapting the so called Hille’s (1948) smoothing lemma,
which, in contrast to the proposal of Bagai and Prakasa Rao (1996), uses the whole
data. This has been adapted to the length-biased set-up by Chaubey, Sen and Li[5].

An interesting class of estimators, based on asymmetric kernels, was proposed by



Chen [6] in the i.i.d. seup, using Gamma kernels. These are of the form

ĝ(x) = n−1
n∑
i=1

Kρb(x),b(Xi) (1.4)

where

Kρb(x),b(t) =
tρb(x)−1e−t/b

bρb(x)Γ(ρb(x))
. (1.5)

In his paper, Chen[6] gave two choices for ρb(x). One is

ρb(x) = x/b+ 1 (1.6)

which leads to density estimator f̂1(x); the other is

ρb(x) =

x/b if x ≥ 2b;
1

4
(x/b)2 + 1 if x ∈ [0, 2b).

(1.7)

which leads to density estimator f̂2(x). This paper also showed demonstrated through
simulation that the MISE of f̂2 is lower than that of f̂1.

Inspired by Chen’s idea and using inverse Gaussian density

KIG(m,λ)(y) =

√
λ√

2πy3
exp

(
− λ

2m

(
y

m
− 2 +

m

y

))
, y > 0 (1.8)

and reciprocal inverse Gaussian density

KRIG(m,λ)(z) =

√
λ√

2πz
exp

(
− λ

2m

(
mz − 2 +

1

mz

))
, z > 0 (1.9)

as kernels, Scaillet [15] proposed the following two density estimators

ĝIG(x) = n−1
n∑
i=1

KIG(x,1/b)(Xi) (1.10)

and

ĝRIG(x) = n−1
n∑
i=1

KRIG(1/(x−b),1/b)(Xi). (1.11)

The Chen estimators do not suffer from boundary bias, but the Scaillet ones are
inconsistent at x = 0. Moreover, there seems to be a problem with computing asymp-
totic mean squared-error (AMSE), and both the authors give two different AMSE
formulae, one for x/b→∞ and the other for x/b→ κ > 0, where b is the bandwidth.
One does not get a clear picture of what happens at a fixed x ≥ 0.



Another class of asymmetric kernel estimators in the i.i.d. context has been pro-
posed recently by Chaubey, Sen and Sen[4] that is motivated by generalization of the
estimator in Chaubey and Sen[3]. This paper adapts the above smoothing estimator
to the length-biased density estimation and proposes two new asymmetric kernel esti-
mators one based on the usual empirical distribution function and the other one based
on the Cox’s estimator. For a comprehensive comparison, we also apply the ideas in
Chen[6] and Scaillet[15] to obtain some other density estimators for length-biased
data.

Along with some preliminary notions, the two proposed smooth estimators of f(.)
are given in Section 2 where their asymptotic properties are studies as well. The
formulation of the density estimators motivated by Chen[6] and Scaillet[15] are also
given in this section. The next section, Section 3 is devoted to numerical simulation
studies and some discussion and the proofs are relegated to an appendix.

2 Preliminary Notions and New Smooth Density Estimators

There are basically two strategies to be used to obtain the smooth estimator of f(x).
One is based on a smooth version Cox’s estimator Fn(x) that is given below:

Fn(x) =

∑n
i=1

1
Xi
I{Xi ≤ x}∑n
i=1

1
Xi

. (2.12)

The other one is to first estimate g(x), that is obtained as the derivative of the smooth
version of the empirical distribution function

Gn(x) =
1

n

n∑
i=1

I{Xi ≤ x}, (2.13)

and then making some adjustments to obtain the estimator of underlying density
f(x). The key ingredient for the proposal is the following generalization of the Hille’s
lemma, in a slight different form of Lemma 1 given in Feller (1965, §VII.1).

Lemma 2.1 Let u be any bounded and continuous function and Ψx,n, n = 1, 2, ... be
a family of distributions with mean µn(x) and variance vn(x) such that µn(x) → x
and h2n(x)→ 0. Then

ũ(x) =

∫ ∞
−∞

u(t)dΨx,n(t)→ u(x). (2.14)

The convergence is uniform in every subinterval in which hn(x) → 0 uniformly and
u is uniformly continuous.

The smooth estimators of F (x) and G(x) are motivated by substituting Fn(.) and
Gn(.), respectively for u(.) in the above lemma. Here, we will also find alternative
estimators using the ideas of Chen[6] and Scaillet[15].



2.1 Density Estimator Using Asymmetric Kernels Based on Cox’s Esti-
mator

Chaubey, Sen and Sen[4] suggested the choice of Ψx,n through a family Q(.) of dis-
tributions with mean 1 and variance vn. Thus, substituting Qvn(t/x) for Ψx,n(t) and
Fn(t) for u(t) and in Lemma 2.1, we have the following smooth estimator of F (x):

F̃+
n (x) =

∫ ∞
0

Fn(t)dQvn(t/x). (2.15)

This can be simplified (as in [4] to be,

F̃+
n (x) = 1−

∑n
i=1

1
Xi
Qvn(Xi

x
)∑n

i=1
1
Xi

, (2.16)

Thus a smooth estimator of f obtained by differentiating the above function is
given by

f̃n(x) =
1
x2

∑n
i=1 qvn(Xi

x
)∑n

i=1
1
Xi

(2.17)

where qvn(t) = d
dt
Qvn(t).

However, (2.17) may not be defined at x = 0, except in cases where limx→0 f̃n(x)
exists. For example taking the Qv(.) to be the distribution function a Gamma distri-
bution with appropriate parameters, this limit is zero, that is acceptable only if we
are estimating f(x) with f(0) = 0. This situation also occurs in estimating density
with direct data [see Chaubey, Sen and Sen (2007)]. In their paper, they considered
a perturbed version of the density estimator, replacing Qvn(./x) by Qvn(./(x + ε)),
εn ↓ 0 as n → ∞. This is equivalent to choosing Ψx,n such that the corresponding
mean is x+ εn → x and the variance is (x+ εn)2v2n → 0. Motivated by this idea, the
perturbed version of (2.17) is given by

f̃+
n (x) =

1
(x+εn)2

∑n
i=1 qvn( Xi

x+εn
)∑n

i=1
1
Xi

. (2.18)

The following theorems provide the asymptotic properties of f̃+
n (x) parallel to the

i.i.d. case studied in [4]. The strong consistency of f̃+
n (x) is given by the following

theorem.

Thoerem 2.1 If
A. f(·) is Lipschitz continuous on [0,∞) and E(X−11 ) <∞;
B. supx≥0

∫∞
0
| d
dx

[ 1
x+εn

qvn( t
x+εn

)]|dt = o(( log logn
n1/2 )−1);

C. supu>0,v>0 uqv(u) <∞;
D. vn → 0, εn → 0 as n→∞;

then we have
sup
x≥0
|f̃+
n (x)− f(x)| a.s.−→ 0

as n→∞.



Regarding the asymptotic normality of f̃+
n (x), we have the following theorem.

Thoerem 2.2 If
E. f(x) is Lipschtiz continuous on [0,∞) and E(X−21 ) <∞;
F. I2(q) , lim

vn→0
vn
∫∞
0

(qvn(t))2dt exists;

G1. for 1 ≤ m ≤ 3,
∫∞
0

(qvn(t))mdt = O(v1−m) as v → 0;

G2. with q∗m,vn(t) = (qvn (t))
m∫∞

0 (qvn (w))
mdw

, 1 ≤ m ≤ 3, and as vn → 0,

(i) µm,vn =

∫ ∞
0

tq∗m,vn(t)dt = 1 +O(vn),

(ii) σ2
m,vn =

∫ ∞
0

(t− µm,vn)2q∗m,vn(t)dt = O(v2n)

(iii) sup
0<vn<ε

∫ ∞
0

t4+δq∗m,vn(t)dt <∞, for some δ > 0, ε > 0;

Then
(a) If nvn →∞, nv3n → 0, nvnε

2
n → 0 as n→∞, we have

√
nvn(f+

n (x)− f(x))→ N
(
0, I2(q)

µf(x)

x2
)
, for x > 0.

(b) If nvnε
2
n →∞ and nvnε

4
n → 0 as n→∞, we have√

nvnε2n(f+
n (0)− f(0))→ N

(
0, I2(q)f(0)

)
.

The proof of the two theorems are deferred to appendix.

Remark 1: It has been found appropriate in [4] to consider qvn(x) being generated
from a Gamma distribution, thus

qvn(x) =
1

βαΓ(α)
xα−1e−x/β

where α = 1
v2n

and β = 1/v2n. This choice will be used in the simulation studies.

Remark 2: We can show that

Bias[f̃+
n (x)] = (xv2n + εn)f ′(x) +

x2

2
f ′′(x)v2n + o(v2n + εn). (2.19)

By the proof of Theorem 2.2, it is easy to show that

V ar[f̃+
n (x)] =

I2(q)µf(x)

nvn(x+ εn)2
+ o((nvn)−1). (2.20)

By (2.19) and (2.20), we have



MSE[f̃+
n (x)] = [(xv2n + εn)f ′(x) +

x2

2
f ′′(x)v2n]2 +

I2(q)µ

nvn

f(x)

(x+ εn)2
.

So

AMISE[f̃+
n ] =

∫ ∞
0

[(xv2n + εn)f ′(x) +
x2

2
f ′′(x)v2n]2dx+

I2(q)µ

nvn

∫ ∞
0

f(x)

(x+ εn)2
dx.

(2.21)

Remark 3: Note that if we integrate (2.18) from 0 to ∞, we will obtain∫ ∞
0

f̃+
n (x)dx =

∑n
i=1

Qvn (Xi/εn)
Xi∑n

i=1
1
Xi

. (2.22)

If εn 6= 0, (2.22) is not equal to 1. In this case, f+
n is not a real density estimator

which is integrated to unity. In order to overcome this defect, we divide f+
n (x) by∫∞

0
f+
n (x)dx, which leads to a corrected estimator

f̃ ∗n(x) =

1
(x+εn)2

∑n
i=1 qvn( Xi

x+εn
)∑n

i=1
Qvn (Xi/εn)

Xi

. (2.23)

Since
∑n

i=1
Qvn (Xi/ε)

Xi
→
∑n

i=1
1
Xi

for a given sample, as εn → 0, most of the asymptotic

properties of f̃+
n still hold for f̃ ∗n. We can establish the same theorems as Theorem

2.1 and 2.2 for f̃ ∗n. But the biases of the two estimator are slightly different. Note

thatf̃ ∗n(x) = f̃+n
1−F̃+

n (εn)
≈ f̃+n

1−F (εn)
, then it is easy to show that

Bias(f̃ ∗n(x)) = Bias(f̃+
n (x)) + εnf(0)f(x) + o(ε), (2.24)

which will be used to find out the AMISE of f̃ ∗n(x).

2.2 Smooth Density Estimators Based on Empirical Distribution Func-
tion

An alternative estimator of f(x) is obtained by using Eq. (1.3) using a smooth
estimator
hatg(x) of g(x) given by

f̂(x) =
ĝ(x)/x∫

R+(ĝ(x)/x)dx
. (2.25)

Note that for the above estimator to be meaningful, ĝ(x) must satisfy the following
conditions:



(i) ĝ(x) = 0 for x ≤ 0 ;
(ii) ĝ(x)/x is integrable on [0,∞).

Using the smooth density estimator given in [4] with εn = 0, the above conditions
may be satisfied. Hence we consider in place of ĝ(x), the following estimator,

gn(x) =
1

nx2

n∑
i=1

Xiqvn
(Xi

x

)
. (2.26)

Note that
∫∞
0

gn(x)
x
dx = 1

n

∑n
i=1

1
Xi

, which is the Cox estimator of 1/µ and using Eq.
(2.25), a smooth estimator of f(x) can be considered as

fn(x) =
1
x3

∑n
i=1Xiqvn

(
Xi

x

)∑n
i=1

1
Xi

. (2.27)

Note that the above estimator may be reasonable for a density f(x) with f(0) = 0,
but may need a modification general density functions. We use the idea perturbation
as before to arrive at an acceptable estimator through this approach as given by

f̂+
n (x) =

1
(x+εn)3

∑n
i=1Xiqvn

(
Xi

x+εn

)∑n
i=1

1
Xi

(2.28)

The asymptotic properties of f̂+
n (x) are presented in the following two theorems.

Thoerem 2.3 If
A. vn → 0, εn → 0 as n→∞ and E(X−11 ) <∞;
B. supx≥0

∫∞
0
| d
dx

[ 1
x+εn

qvn( t
x+εn

)]|dt = o(( log logn
n1/2 )−1);

C. supu>0,v>0 uqv(u) <∞;
D. g(·) is Lipschitz continuous on [0,∞);

then we have, as n→∞,
sup
x>0
|f̂+
n (x)− f(x)| a.s.−→ 0 (2.29)

Thoerem 2.4 Assume the following regularity conditions as used in [4]:
E. g(·) is Lipschitz continuous on [0,∞) and E(X−21 ) <∞;
F. I2(q) , lim

v→0
v
∫∞
0

(qvn(t))2dt exists;

G1. for 1 ≤ m ≤ 3,
∫∞
0

(qvn(t))mdt = O(v1−m) as v → 0;

G2. with q∗m,vn(t) = (qvn (t))
m∫∞

0 (qvn (w))
mdw

, 1 ≤ m ≤ 3, and as vn → 0,

(i) µm,vn =

∫ ∞
0

tq∗m,vn(t)dt = 1 +O(vn),

(ii) σ2
m,vn =

∫ ∞
0

(t− µm,vn)2q∗m,vn(t)dt = O(v2n)

(iii) sup
0<vn<ε

∫ ∞
0

t4+δq∗m,vn(t)dt <∞, for some δ > 0, ε > 0.



Then
(a) If nvn →∞, nvnεn →∞, nv3n → 0, nvnε

2
n → 0 as n→∞, we have

√
nvn(f̂+

n (x)− f(x))→ N
(
0, I2(q)

µf(x)

x2
)
, for x > 0.

(b) If nvnε
2
n →∞ and nvnε

4
n → 0 as n→∞, we have√

nvnε2n(f+
n (0)− f(0))→ N

(
0, I2(q)f(0)

)
.

Remark 4: Note that we have

Bias[f̂+
n (x)] = v2nf(x) + (2v2nx+ εn)f ′(x)

+v2n
x2

2
f ′′(x) + o(v2n + εn) (2.30)

and

V ar[f̂+
n (x)] =

I2(q)µf(x)

nvn(x+ εn)2
+ o
(
(nvn)−1

)
. (2.31)

So we have

MSE[f̂+
n (x)] ≈ I2(q)µf(x)

nvnx2
+ [v2nf(x) + (2v2nx+ εn)f ′(x) + v2n

x2

2
f ′′(x)]2. (2.32)

Furthermore, we have

AMISE[f̂+
n (x)] =

I2(q)µ

nvn

∫ ∞
0

f(x)

(x+ εn)2
dx

+

∫ ∞
0

[v2nf(x) + (2v2nx+ εn)f ′(x) + v2n
x2

2
f ′′(x)]2dx

(2.33)

Note the fact that if εn > 0 the integral of (2.28) is less than 1. In this case, the
density estimator seems a little left-shifted and slightly “ lose ” some weights. In
order to get the “ lost ” weights back, we divide (2.28) by its integral

∫∞
0
f̂+
n (x)dx

and obtain the following corrected density estimator

f̂ ∗n(x) =

1
(x+εn)3

∑n
i=1Xiqvn

(
Xi

x+εn

)∫∞
0

1
(x+εn)3

∑n
i=1Xiqvn

(
Xi

x+εn

)
dx
. (2.34)

Since, as εn → 0,
∫∞
0

1
(x+εn)3

∑n
i=1Xiqvn

(
Xi

x+εn

)
dx →

∑n
i=1

1
Xi

, we can have the same

theorem as Theorem 2.3 and 2.4 for f̂ ∗n(x). Furthermore, it is easy to show that

Bias(f̂ ∗n) = Bias(f̂+
n ) + εnf(0)f(x) + o(εn). (2.35)



2.3 Chen Density Estimators for Length Biased Data

An alternative form of (1.4) is

f̂(x) =

∫ ∞
0

Kρb(x),b(t)dGn(t). (2.36)

Recall that the empirical distribution for LB data is Fn(x) =
∑n

i=1
1
Xi
I{Xi≤x}∑n

i=1
1
Xi

. Substi-

tuting Fn(x) in place of Gn(x) in (2.36) will give us Chen density estimators for LB
data as follows.

f̂C(x) =

∫ ∞
0

Kρb(x),b(t)dFn(t), (2.37)

which can also be written as

f̂C(x) =

∑n
i=1

1
Xi
Kρb(x),b(Xi)∑n
i=1

1
Xi

. (2.38)

Furthermore, since 1
n

∑n
i=1

1
Xi

a.s.−→ 1
µ
, we can have

E
(
f̂C(x)

)
≈

∫ ∞
0

µ

y
Kρb(x),b(y)g(y)dy

=

∫ ∞
0

Kρb(x),b(y)f(y)dy

= E (f(ξx)) (2.39)

where ξx is a Γ(ρb(x), b) random variable. Similar to Chen estimator for direct data,

it is easy to show that E
(
f̂C(x)

)
→ f(x) as b→ 0.

We use f̂C1(x) and f̂C2(x) to denote the density estimator under the ρb(x)’s choices
(1.6) and (1.7) respectively.

2.4 Scaillet Density Estimators for Length Biased Data

Replacing Gamma kernels Kρ(x),b by inverse or reciprocal inverse Gaussian kernels as
in [15] we can derive Scaillet density estimators for length-biased data as

f̃IG(x) =

∑n
i=1

1
Xi
KIG(x,1/b)(Xi)∑n
i=1

1
Xi

, (2.40)

and

f̃RIG(x) =

∑n
i=1

1
Xi
KRIG(1/(x−b),1/b)(Xi)∑n

i=1
1
Xi

. (2.41)

Remark 5: The other strategy based on regular empirical function might not be
applicable to their method because they might cause the same problem as in Bhat-
tacharyya et al.[2] estimator which has a large bias at the lower boundary.



3 Simulation Studies

In this section, we propose to compare various density estimators described in the
previous sections through extensive simulation. First, we discuss the methods behind
data-driven selection of smoothing parameters. Based on the selected parameters, a
numerical comparison of estimators’ local and global performances are carried out.
For comparing different density estimators, first we generate the length biased sample.
Based on the generated data, we obtain the optimum data dependent values of the
smoothing parameters as described later. For our proposed estimators, we use Biased
Cross Validation method and minimize the required BCV functions by optimise or
optim in R to obtain the optimal solutions. For density estimators motivated by Chen
and Scaillet’s idea, we use UCV criterion to select parameters. With these chosen
parameters, we compute ISE(fn, f) =

∫∞
0

[fn(x) − f(x)]2dx and SE (fn(x), f(x)) =
[fn(x)− f(x)]2 at some chosen points. We obtain 1000 samples of ISE and SE and
use the averages of them as approximations of MISE and MSE, that are displayed
in various tables.

3.1 Smoothing Parameter Selection

We basically use the Biased Cross Validation (BCV) criterion to select parameters
εn and vn involved for the new estimators as recommended in [4]. However, for the
Chen and Scaillet estimators, this criterion is not feasible as it requires complicated
derivatives the density estimators, that are not easily available. Chen[6] suggested
using the Unbiased Cross Validation (UCV) function for an estimator fn(x; b,D) of
f(x) that involves data D and smoothing parameter b, that is given by

UCV (b) =

∫ ∞
0

f 2
n(x; b,D)d§ − ∈

\∑
〉=∞

{\−∞(X〉; b,D〉)/Z〉,

where Zi =
∑
j 6=i

Xi

Xj
.

Plugging in the corresponding Chen or Scaillet estimators for fn(x) in the above
and minimizing with respect to b will give us the optimal solution for the parameter
b in Chen and Scaillet estimators.

The Biased Cross-Validation function for f̃+
n (x) is given by

BCV (vn, εn) =

∫ ∞
0

[(xv2n + εn)f̃+′

n (x) +
x2v2n

2
f̃+′′

n (x)]2dx+
I2(q)µ̂

nvn

∫ ∞
0

f̃+
n (x)

(x+ εn)2
dx.

(3.42)

where µ̂ =
(

1
n

∑n
i=1

1
Xi

)−1
, being an estimator of µ. We can minimize (3.42) with

respect to (vn, εn) to find a choice of (vn, εn).



Note that f̃ ∗n have the same asymptotic normality as f̃+
n (x) and slightly different

bias. Therefore, according to (2.24), the BCV function for f̃ ∗n seems to be

BCV ∗(vn, εn) =
I2(q)µ̂

nvn

∫ ∞
0

f̃+
n (x)

(x+ εn)2
dx

+

∫ ∞
0

[(xv2n + εn)f̃+′

n (x) +
x2v2n

2
f̃+′′

n (x) + εnf̃
+
n (0)f̃+

n (x)]2dx.

(3.43)

Using the expression for AMISE of f̂+
n (x), we can obtain the following BCV for

f̂+
n (x)

BCV (vn, εn) =
I2(q)µ̂

nvn

∫ ∞
0

f̂+
n (x)

(x+ εn)2
dx

+

∫ ∞
0

[v2nf̂
+
n (x) + (2v2nx+ εn)f̂+′

n (x) + v2n
x2

2
f̂+′′

n (x)]2dx.

(3.44)

Furthermore, using the relation of bias between f̂+
n (x) and f̂ ∗n(x) , we can establish

the following BCV function for f̂ ∗n(x)

BCV ∗(vn, εn) =
I2(q)µ̂

nvn

∫ ∞
0

f̂+
n (x)

(x+ εn)2
dx+

∫ ∞
0

[
v2nf̂

+
n (x)

+(2v2nx+ εn)f̂+′

n (x) + v2n
x2

2
f̂+′′

n (x) + εnf̂
+
n (0)f̂+

n (x)
]2
dx.

(3.45)

3.1.1 Simulation for χ2
2 and χ2

6

These distributions have been studied elsewhere and would work as benchmark for
our studies. The resulting length biased densities are those for χ2

4 and χ2
8 random

variables, respectively. Simulation of these densities is done by simulating a Gamma
density

f(x) =
1

2α/2Γ(2)
xα/2−1 exp{−x/2}I{x > 0}

with parameters α = 2 and α = 6. respectively. Note that estimator with inverse
Gaussian kernel does not perform very well for direct data [see Kulasekera and Padgett
(2006)]. Our computations showed similar findings for the length biased case and as
a result the simulation based on the IG kernel is omitted.



Table 1: Simulated MISE for χ2
2

Distribution Estimator
Sample Size

30 50 100 200 300 500

χ2
2

Chen-1 0.13358 0.08336 0.07671 0.03900 0.03056 0.02554
Chen-2 0.11195 0.08592 0.05642 0.03990 0.03301 0.02298

RIG 0.14392 0.11268 0.07762 0.06588 0.05466 0.04734
Gamma(F) 0.06791 0.05863 0.03989 0.03135 0.02323 0.01589
Gamma*(F) 0.02821 0.01964 0.01224 0.00796 0.00609 0.00440
Gamma(G) 0.09861 0.07663 0.05168 0.03000 0.02007 0.01317
Gamma*(G) 0.02370 0.01244 0.00782 0.00537 0.00465 0.00356

Table 2: Simulated MISE for χ2
6

Distribution Estimator
Sample Size

30 50 100 200 300 500

χ2
6

Chen-1 0.01592 0.01038 0.00578 0.00338 0.00246 0.00165
Chen-2 0.01419 0.00973 0.00528 0.00303 0.00224 0.00153

RIG 0.01438 0.00871 0.00482 0.00281 0.00208 0.00148
Gamma(F) 0.01109 0.00805 0.00542 0.00327 0.00249 0.00181
Gamma*(F) 0.01141 0.00844 0.00578 0.00345 0.00264 0.00193
Gamma(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213
Gamma*(G) 0.01536 0.01063 0.00688 0.00398 0.00303 0.00213



Table 3: Simulated MSE for χ2
2

Size Estimator
x

0 0.1 1 2 5 10

n=30

I 0.1307 0.2040 0.0181 0.0044 0.0003 1.6× 10−5

II 0.1187 0.2499 0.0173 0.0045 0.0012 8.7× 10−5

III 0.2222 0.1823 0.0250 0.0074 0.0022 3.2× 10−5

IV 0.1936 0.1447 0.0117 0.0042 0.0002 7.2× 10−5

IV* 0.0329 0.0286 0.0090 0.0030 9.8× 10−5 1.5× 10−4

V 0.1893 0.1720 0.0209 0.0066 0.0003 6.1× 10−6

V* 0.0528 0.0410 0.0032 0.0020 8.4× 10−5 1.9× 10−5

n=50

I 0.1370 0.1493 0.0121 0.0030 0.0002 9.0× 10−6

II 0.1279 0.1894 0.0112 0.0032 0.0008 4.6× 10−5

III 0.2193 0.1774 0.0161 0.0046 0.0046 1.6× 10−5

IV 0.1808 0.1365 0.0101 0.0036 0.0001 5.7× 10−5

IV* 0.0196 0.0172 0.0070 0.0024 6.8× 10−5 1.4× 10−4

V 0.1584 0.1440 0.0168 0.0060 0.0002 3.6× 10−6

V* 0.0322 0.0236 0.0014 0.0012 4.8× 10−5 1.5× 10−5

n=100

I 0.1442 0.8201 0.0070 0.0017 0.0001 4.5× 10−6

II 0.1142 0.1391 0.0054 0.0019 0.0005 2.3× 10−5

III 0.2151 0.1631 0.0091 0.0030 0.0020 7.8× 10−6

IV 0.1332 0.0823 0.0090 0.0032 0.0001 3.6× 10−5

IV* 0.0105 0.0094 0.0047 0.0015 5.9× 10−5 1.0× 10−4

V 0.1078 0.0980 0.0121 0.0051 0.0002 1.9× 10−6

V* 0.0280 0.0184 0.0006 0.0007 3.8× 10−5 9.4× 10−6

n=200

I 0.3327 0.0901 0.0046 0.0012 6.6× 10−5 2.5× 10−6

II 0.2111 0.0943 0.0027 0.0012 0.0003 1.3× 10−5

III 0.2127 0.1896 0.0067 0.0019 0.0080 5.9× 10−6

IV 0.0995 0.0782 0.0065 0.0024 7.4× 10−5 2.9× 10−5

IV* 0.0137 0.0125 0.0031 0.0010 5.8× 10−5 8.2× 10−5

V 0.0636 0.0560 0.0072 0.0038 0.0002 1.3× 10−6

V* 0.0217 0.0134 0.0002 0.0005 2.9× 10−5 6.7× 10−6

n=300

I 0.2607 0.0690 0.0033 0.0009 4.9× 10−5 1.9× 10−6

II 0.1565 0.0897 0.0018 0.0010 0.0002 1.0× 10−5

III 0.2101 0.1643 0.0051 0.0026 0.0020 5.1× 10−6

IV 0.0737 0.0577 0.0050 0.0019 4.8× 10−5 2.6× 10−5

IV* 0.0194 0.0118 0.0001 0.0004 2.5× 10−5 5.5× 10−6

V 0.0449 0.0363 0.0049 0.0030 0.0001 1.2× 10−6

V* 0.0420 0.0167 0.0006 0.0003 1.5× 10−5 6.1× 10−6

n=500

I 0.2320 0.0732 0.0024 0.0006 3.1× 10−5 1.2× 10−6

II 0.1124 0.0723 0.0012 0.0007 0.0001 6.7× 10−6

III 0.2087 0.1681 0.0039 0.0040 6.4× 10−5 1.8× 10−6

IV 0.0507 0.0365 0.0038 0.0015 2.9× 10−5 2.4× 10−5

IV* 0.0038 0.0034 0.0016 0.0005 4.7× 10−5 5.1× 10−5

V 0.0310 0.0205 0.0033 0.0023 0.0001 1.1× 10−6

V* 0.0146 0.0088 0.0001 0.0003 2.0× 10−5 4.4× 10−6

I-Chen-1, II-Chen-2, III-RIG, IV-Gamma(F),
IV*-Corrected Gamma(F), V-Gamma(G), V*-Corrected Gamma(G)



Table 4: Simulated MSE for χ2
6

Size Estimator
x

0 0.1 1 4 10 20

n=30

I 0.0017 0.0018 0.0018 0.0019 0.0001 5.6× 10−6

II 0.0018 0.0017 0.0011 0.0017 0.0002 2.6× 10−6

III 5.6× 10−5 6.7× 10−5 0.0006 0.0017 0.0002 1.1× 10−5

IV 0.0011 0.0010 0.0019 0.0012 8.5× 10−5 4.9× 10−5

IV* 0.0015 0.0021 0.0020 0.0012 7.9× 10−5 4.2× 10−5

V 0.0000 3.6× 10−7 0.0058 0.0008 0.0001 4.1× 10−6

V* 0.0000 3.6× 10−7 0.0058 0.0008 0.0001 4.1× 10−6

n=50

I 0.0012 0.0013 0.0015 0.0012 0.0001 3.2× 10−6

II 0.0013 0.0012 0.0008 0.0011 0.0001 1.3× 10−5

III 4.6× 10−5 5.7× 10−5 0.0006 0.0011 0.0001 6.2× 10−6

IV 0.0005 0.0005 0.0016 0.0008 5.5× 10−5 3.1× 10−5

IV* 0.0006 0.0015 0.0016 0.0008 5.3× 10−5 3.2× 10−5

V 0.0000 4.3× 10−6 0.0037 0.0004 7.9× 10−5 3.0× 10−5

V* 0.0000 4.3× 10−6 0.0037 0.0004 7.9× 10−5 3.0× 10−5

n=100

I 0.0008 0.0009 0.0012 0.0006 4.8× 10−5 1.4× 10−6

II 0.0008 0.0008 0.0007 0.0006 9.3× 10−5 5.5× 10−6

III 3.4× 10−5 4.5× 10−5 0.0006 0.0006 9.9× 10−5 2.8× 10−6

IV 0.0001 0.0001 0.0012 0.0006 2.8× 10−5 2.2× 10−5

IV* 0.0001 0.0014 0.0012 0.0006 2.8× 10−5 2.2× 10−5

V 0.0000 0.0022 0.0023 0.0002 4.9× 10−5 2.0× 10−6

V* 0.0000 0.0022 0.0023 0.0002 4.9× 10−5 2.0× 10−6

n=200

I 0.0003 0.0004 0.0007 0.0003 2.7× 10−5 6.5× 10−7

II 0.0003 0.0003 0.0004 0.0003 5.3× 10−5 1.9× 10−6

III 2.0× 10−5 2.9× 10−5 0.0003 0.0003 5.6× 10−5 1.2× 10−6

IV 3.0× 10−5 7.0× 10−5 0.0007 0.0003 1.4× 10−5 1.2× 10−5

IV* 2.0× 10−5 0.0005 0.0007 0.0003 1.5× 10−5 1.2× 10−5

V 0.0000 0.0007 0.0012 0.0001 3.0× 10−5 1.4× 10−6

V* 0.0000 0.0007 0.0012 0.0001 3.0× 10−5 1.4× 10−6

n=300

I 0.0002 0.0003 0.0006 0.0002 1.9× 10−5 4.0× 10−7

II 0.0002 0.0002 0.0004 0.0002 3.8× 10−5 1.0× 10−6

III 1.4× 10−5 2.2× 10−5 0.0003 0.0003 4.0× 10−5 8.1× 10−7

IV 1.4× 10−5 0.0001 0.0005 0.0002 1.0× 10−5 8.4× 10−6

IV* 1.3× 10−5 0.0004 0.0005 0.0002 1.1× 10−5 8.8× 10−6

V 0.0000 0.0011 0.0008 0.0001 2.3× 10−5 1.0× 10−6

V* 0.0000 0.0011 0.0008 0.0001 2.3× 10−5 1.0× 10−6

n=500

I 0.0001 0.0002 0.0004 0.0001 1.3× 10−5 2.3× 10−6

II 0.0001 0.0001 0.0003 0.0001 2.5× 10−5 4.7× 10−7

III 9.4× 10−6 1.8× 10−5 0.0003 0.0001 2.6× 10−5 4.5× 10−7

IV 9.2× 10−6 0.0001 0.0004 0.0001 6.8× 10−6 5.2× 10−6

IV* 3.9× 10−5 0.0002 0.0004 0.0001 7.5× 10−6 5.9× 10−6

V 0.0000 0.0006 0.0006 8.1× 10−5 1.6× 10−5 7.7× 10−7

V* 0.0000 0.0006 0.0006 8.1× 10−5 1.6× 10−5 7.7× 10−7

I-Chen-1, II-Chen-2, III-RIG, IV-Gamma(F),
IV*-Corrected Gamma(F), V-Gamma(G), V*-Corrected Gamma(G)



Through the simulation results, we can see that, for χ2
2 density, f̂C2 has smaller

MSEs at the boundary and MISEs than f̂C1. This means f̂C2 performs better locally
and globally than f̂C1, which adapts to the results of Chen (2000) in direct data case
shows that f̂2 should have smaller MISE than f̂1. Overall, the density estimators
motivated by Chen or Scaillet’s idea do not perform very well either globally or locally
near lower boundary. Scaillet estimator has huge MSEs at the boundary and the
largest MISEs. Therefore, they might not be suitable for estimating the density
whose value does not equal to zero at the boundary. Two original gamma estimator
even though they have two parameters, their behaviors quite differ from what are
expected. This is due to the fact that, in this case the parameter εns are usually
not zero, which causes the estimators to “ lose ” some weights and not to be a valid
density estimators [Their integrals from 0 to ∞ is less than 1]. In this example,
two “stars ” are two corrected gamma estimators, which perform best locally and
globally. The boundary corrections are very necessary and effective. They reduce
dramatically estimators’ MSEs near the boundary and relatively slightly at the rest
points. Therefore, two estimators have the smallest MISEs. The corrected gamma
estimator based on Fn behave better near the boundary than the corrected gamma
estimator based on Gn. However, at the points being far away from the origin, it is
just the opposite. The estimator based Gn is better than the estimator based on Fn.
Overall, estimator based on Gn has slightly smaller MISEs.

For χ2
6, all estimators have comparable global results. At the lower boundary,

RIG estimator, gamma estimators have similar results. In this case, original gamma
estimators are almost as same as the corrected gamma estimators.

In the first example with density such that f(0) > 0, the corrected gamma estima-
tors perform much better than the original estimators. In the second example with
density such that f(0) = 0, the corrected estimators have similar local and global
behaviors to the original ones. So we can use the corrected estimators to replace the
original estimators without hesitation.

3.2 Simulation for Some Other Standard Distributions

We have simulated for the following standard distribution as well.
(i). Lognormal Distribution

f(x) =
1√
2πx

exp{−(log x− µ)2/2}I{x > 0};

(ii). Weibull Distribution

f(x) = αxα−1 exp(−xα)I{x > 0};

(iii). Mixtures of Two Exponential Distribution

f(x) = [π
1

θ1
exp(−x/θ1) + (1− π)

1

θ2
exp(−x/θ2]I{x > 0}.



Table 5: Simulated MISE for Lognormal with µ = 0

Distribution Estimator
Sample Size

30 50 100 200 300 500

Lognormal

Chen-1 0.12513 0.08416 0.05109 0.03450 0.02514 0.01727
Chen-2 0.12327 0.08886 0.05200 0.03545 0.02488 0.01717

RIG 0.14371 0.09733 0.05551 0.03308 0.02330 0.01497
Gamma*(F) 0.06846 0.05614 0.03963 0.02640 0.01998 0.01470
Gamma*(G) 0.16365 0.12277 0.07568 0.04083 0.029913 0.02035

Table 6: Simulated MISE for Weibull with α = 2

Distribution Estimator
Sample Size

30 50 100 200 300 500

Weibull

Chen-1 0.10495 0.06636 0.03884 0.02312 0.01700 0.01167
Chen-2 0.08651 0.05719 0.03595 0.02225 0.01611 0.01111

RIG 0.08530 0.05532 0.03227 0.01984 0.01470 0.01045
Gamma*(F) 0.08358 0.06671 0.04935 0.03169 0.02652 0.01694
Gamma*(G) 0.12482 0.08526 0.05545 0.03402 0.02731 0.02188

Table 7: Simulated MSE for Mixture of Two Exponential Distributions with π = 0.4,
θ1 = 2 and θ2 = 1

Distribution Estimator
Sample Size

30 50 100 200 300 500

Mixture

Chen-1 0.22876 0.17045 0.08578 0.06718 0.05523 0.03811
Chen-2 0.17564 0.15083 0.07331 0.08029 0.04931 0.03808

RIG 0.25284 0.20900 0.13843 0.10879 0.09344 0.07776
Gamma*(F) 0.04147 0.02645 0.01375 0.00758 0.00532 0.00361
Gamma*(G) 0.02534 0.01437 0.01091 0.01223 0.01132 0.00994



Table 8: Simulated MSE for Lognormal with µ = 0

Size Estimator
x

0 0.1 e−1 1 5 8

n=30

I 0.1108 0.0618 0.1682 0.0211 2.0× 10−4 2.8× 10−5

II 0.1045 0.0441 0.1616 0.0196 6.0× 10−4 6.4× 10−5

III 0.0026 0.0494 0.2555 0.0207 3.0× 10−4 3.2× 10−5

IV* 0.0090 0.1546 0.0607 0.0133 2.0× 10−4 9.1× 10−5

V* 0.0007 0.7321 0.1230 0.0121 8.2× 10−5 9.4× 10−6

n=50

I 0.1123 0.0535 0.1199 0.0158 1.4× 10−4 1.1× 10−5

II 0.1056 0.0442 0.1391 0.0110 3.7× 10−4 2.7× 10−5

III 0.0027 0.0436 0.1719 0.0133 2.0× 10−4 1.5× 10−5

IV* 0.0035 0.1349 0.0446 0.0111 1.7× 10−4 6.6× 10−5

V* 0.0000 0.5482 0.0810 0.0080 4.7× 10−5 4.9× 10−6

n=100

I 0.1044 0.0486 0.1122 0.0086 5.1× 10−5 8.2× 10−6

II 0.1038 0.0412 0.1248 0.0059 1.5× 10−4 1.3× 10−5

III 0.0028 0.0383 0.0917 0.0064 7.2× 10−5 7.2× 10−6

IV* 0.0033 0.1011 0.0261 0.0086 1.1× 10−4 4.7× 10−5

V* 0.0000 0.3237 0.0417 0.0044 1.9× 10−5 2.1× 10−6

n=200

I 0.0854 0.0422 0.0310 0.0054 2.7× 10−5 2.9× 10−6

II 0.0871 0.0387 0.0367 0.0036 6.5× 10−5 4.6× 10−6

III 0.0024 0.0318 0.0385 0.0042 3.5× 10−5 3.3× 10−6

IV* 0.0058 0.0717 0.0167 0.0058 9.2× 10−5 3.3× 10−5

V* 0.0015 0.1780 0.0210 0.0026 1.0× 10−5 1.1× 10−6

n=300

I 0.0670 0.0394 0.0230 0.0034 1.7× 10−5 2.0× 10−6

II 0.0739 0.0328 0.0256 0.0023 4.0× 10−5 3.0× 10−6

III 0.0021 0.0295 0.0243 0.0027 2.2× 10−5 2.2× 10−6

IV* 0.0033 0.1011 0.0261 0.0086 1.1× 10−4 4.7× 10−5

V* 0.0013 0.1330 0.0152 0.0019 6.4× 10−5 8.2× 10−6

n=500

I 0.0519 0.0359 0.0158 0.0021 1.1× 10−5 1.3× 10−6

II 0.0561 0.0277 0.0169 0.0017 2.1× 10−5 1.6× 10−6

III 0.0018 0.0262 0.0167 0.0019 1.4× 10−5 1.3× 10−6

IV* 0.0054 0.0577 0.0125 0.0042 7.5× 10−5 2.4× 10−5

V* 0.0018 0.0902 0.0098 0.0012 4.5× 10−6 6.2× 10−7

I-Chen-1, II-Chen-2, III-RIG, IV*-Corrected Gamma(F), V*-Corrected Gamma(G)



Table 9: Simulated MSE for Weibull with α = 2

Size Estimator
x

0 0.1 1/
√

2 1 2 3

n=30

I 0.0856 0.1343 0.0720 0.0588 0.0030 1.9× 10−4

II 0.0949 0.0555 0.0571 0.0398 0.0116 1.4× 10−4

III 0.0025 0.0802 0.0549 0.0394 0.0095 4.6× 10−4

IV* 0.0019 0.1049 0.0600 0.0682 0.0053 0.0022
V* 0.0000 0.2852 0.0293 0.0336 0.0011 1.8× 10−4

n=50

I 0.0644 0.0576 0.0514 0.0349 0.0020 1.0× 10−4

II 0.0679 0.0431 0.0382 0.0223 0.0077 7.1× 10−4

III 0.0021 0.0208 0.0391 0.0218 0.0063 2.2× 10−4

IV* 1.1× 10−6 0.0763 0.0475 0.0560 0.0048 0.0018
V* 0.0000 0.1865 0.0194 0.0251 0.0008 1.4× 10−4

n=100

I 0.0468 0.0500 0.0261 0.0204 0.0012 4.3× 10−5

II 0.0477 0.0332 0.0233 0.0129 0.0045 3.2× 10−4

III 0.0017 0.0154 0.0238 0.0121 0.0039 1.0× 10−4

IV* 0.0003 0.0577 0.0338 0.0425 0.0041 0.0013
V* 0.0033 0.1282 0.0107 0.0180 0.0005 1.0× 10−4

n=200

I 0.0281 0.0349 0.0144 0.0109 0.0007 1.6× 10−5

II 0.0287 0.0273 0.0140 0.0072 0.0024 1.1× 10−4

III 0.0011 0.0161 0.0142 0.0067 0.0022 3.8× 10−5

IV* 0.0004 0.0460 0.0181 0.0246 0.0032 7.5× 10−4

V* 0.0106 0.0845 0.0070 0.0121 0.0004 7.5× 10−5

n=300

I 0.0228 0.0303 0.0099 0.0077 0.0004 8.8× 10−6

II 0.0233 0.0237 0.0098 0.0050 0.0017 5.6× 10−5

III 0.0009 0.0164 0.0101 0.0048 0.0016 2.6× 10−5

IV* 3.3× 10−7 0.0400 0.0144 0.0197 0.0026 5.7× 10−4

V* 0.0158 0.0668 0.0061 0.0102 0.0003 6.6× 10−5

n=500

I 0.0160 0.0218 0.0065 0.0050 0.0003 4.5× 10−6

II 0.0156 0.0189 0.0067 0.0033 0.0010 2.5× 10−5

III 0.0006 0.0148 0.0071 0.0033 0.0011 1.6× 10−5

IV* 1.6× 10−9 0.0311 0.0068 0.0101 0.0019 2.3× 10−4

V* 0.0283 0.0552 0.0059 0.0089 0.0002 6.5× 10−5

I-Chen-1, II-Chen-2, III-RIG, IV*-Corrected Gamma(F), V*-Corrected Gamma(G)



Table 10: Simulated MSE for Mixtures of Two Exponential Distributions with π =
0.4, θ1 = 2 and θ2 = 1

Size Estimator
x

0 0.1 0.5 1 5 10

n=30

I 0.3499 0.3075 0.1033 0.0249 1.1× 10−4 2.6× 10−6

II 0.3190 0.3181 0.0825 0.0245 4.5× 10−4 1.3× 10−5

III 0.5610 0.4423 0.1245 0.0564 1.9× 10−4 2.9× 10−6

IV* 0.0652 0.0549 0.0271 0.0098 3.4× 10−4 1.1× 10−4

V* 0.0696 0.0539 0.0070 0.0065 5.4× 10−5 1.4× 10−5

n=50

I 0.3158 0.7921 0.0511 0.0128 6.4× 10−5 1.1× 10−6

II 0.2848 0.7600 0.0551 0.0143 2.3× 10−4 2.3× 10−6

III 0.5582 0.8473 0.0797 0.0364 9.1× 10−5 1.3× 10−6

IV* 0.0489 0.0414 0.0187 0.0066 2.9× 10−4 7.7× 10−5

V* 0.0500 0.0336 0.0032 0.0030 3.4× 10−5 9.2× 10−6

n=100

I 0.3253 0.2465 0.0257 0.0072 4.0× 10−5 5.0× 10−7

II 0.2581 0.1926 0.0235 0.0082 1.1× 10−4 8.3× 10−7

III 0.5433 0.4810 0.0505 0.0633 4.8× 10−5 5.8× 10−7

IV* 0.0238 0.0200 0.0101 0.0036 2.0× 10−4 4.4× 10−5

V* 0.0647 0.0317 0.0016 0.0014 1.4× 10−5 4.4× 10−6

n=200

I 0.8107 0.1730 0.0149 0.0040 2.6× 10−5 3.2× 10−7

II 0.6067 0.1642 0.0158 0.0052 4.8× 10−5 3.5× 10−7

III 0.5376 0.3734 0.0269 0.0589 2.7× 10−5 3.4× 10−7

IV* 0.0125 0.0105 0.0055 0.0020 1.3× 10−4 2.4× 10−5

V* 0.0870 0.0380 0.0011 0.0010 7.1× 10−6 1.7× 10−6

n=300

I 0.5566 0.0958 0.0110 0.0033 2.1× 10−5 2.8× 10−7

II 0.3110 0.1213 0.0107 0.0044 3.3× 10−5 2.6× 10−7

III 0.3110 0.1213 0.0107 0.0044 3.3× 10−5 2.6× 10−7

VI* 0.0092 0.0075 0.0038 7.6× 10−5 0.0001 1.5× 10−5

VII* 0.0806 0.0353 0.0011 0.0007 6.2× 10−6 1.0× 10−6

n=500

I 0.4798 0.0723 0.0075 0.0024 2.0× 10−5 2.3× 10−7

II 0.2553 0.0950 0.0077 0.0034 1.8× 10−5 1.7× 10−7

III 0.5273 0.2300 0.0176 0.0045 3.0× 10−5 3.9× 10−7

IV* 0.0074 0.0047 0.0025 0.0010 7.1× 10−5 1.0× 10−5

V* 0.0698 0.0311 0.0010 0.0006 6.1× 10−6 7.0× 10−7

I-Chen-1, II-Chen-2, III-RIG, IV-Gamma(F),
IV*-Corrected Gamma(F), V-Gamma(G), V*-Corrected Gamma(G)



Through the simulation results given in tables, we may draw the following conclu-
sions. Two Chen estimators have similar performances at the edge. Usually f̂C2 have
smaller MISE than f̂C1. For direct data, Chen (2000) show that density estimator
under parameter choice (1.7) has a better global performance than that under choice
(1.6). This property might be adapted to LB data. The simulated MSEs show that
the f̂C2 preform better than f̂C1 in the neighborhood of origin, so MISE of f̂C2 is
lower. However, the two Chen density estimators do not perform very well globally
and locally near the origin comparing with other density estimators. They have rela-
tively great MISEs and MSEs near the lower edge. Judged by the simulated MSEs
at the boundary, the two estimators can not completely remove the bias at the edge,
even in the case that underlying density such that f(0) = 0 [see simulation for χ2

6,
Lognormal].

Replacing gamma kernels with RIG kernels, Scaillet estimator have a great advan-
tange in reducing MSEs at the origin for underlying density such that f(0) = 0 [see
simulation for χ2

6, Lognormal and Weibull distributions]. In some cases, the estimator
even has zero error at the origin. So, under this circumstance, Scaillet estimator gives
smaller MISEs than Chen estimators. It seems that RIG density is more suitable
as kernels than gamma density in these cases. However, this advantage lost when
estimating an underlying density where f(0) 6= 0. In such cases, Scaillet estimator
has huge MSEs at the origin [see simulation for χ2

2 and mixture of two exponential
distributions]. According to the cases considered here, it seems reasonable to conclude
that Scaillet estimator might be just suitable to estimate density with zero value at
the lower boundary.

The corrected gamma estimator based on Fn performs very well locally and globally
in the simulation for χ2

2 and mixtures distributions. The parameter εn and boundary
correction effectively reduce the bias at the boundary and result in the dramatic
decrease of MISEs. For the rest distributions, this estimator has comparable MISEs
to other estimators and satisfactory MSEs at the boundary. The BCV method
is valid to decide whether the optimal solution of εn is zero or not. So that this
estimator can accurately explore the characters of underly density at the boundary
behind the data. Inspired by Scaillet estimator, in order to further reduce MISE, we
can substitute gamma kernels with RIG or IG kernels. Actually, RIG or IG kernels
are completely adapted to our estimator.

The corrected gamma estimator based on Gn has the smallest MISEs in the
simulation for χ2

2. However, the MSEs at the boundary are little worse than those
for corrected gamma estimator based on Fn. Further simulation shows that, although
this estimator has zero error at the boundary in some cases, it has relatively great
MSEs in the neighborhood of origin. Thus this estimator may not be very stable in
the neighborhood closer to the lower boundary. We may conjecture that, using the
same smooth technique, the density estimator obtained by smoothing Fn performs
better than that obtained by smoothing Gn. This seems to be true for kernel method
as well, as concluded by Jones[9].



4 Appendix

4.1 Proof of Theorem 2.1

Proof: The proof involves the following representation of f̃+
n (x) :

f̃+
n (x) =

d

dx

∫
Fn(t)[

1

x+ εn
qvn(

t

x+ εn
)]dt

=

∫
Fn(t)

d

dx
[

1

x+ εn
qvn(

t

x+ εn
)]dt. (4.46)

Next we use the uniform strong convergence of Fn(x), namely,

sup
x≥0
|Fn(x)− F (x)| a.s.−→ 0, (4.47)

and rest of the proof follows along the lines of the proof of Theorem 3 of Chaubey,
Sen and Sen (2007).

4.2 Proof of Theorem 2.2

Proof: (a) Using Taylor’s expansion, we can write

f̃+
n (x) =

1

n

n∑
i=1

Yin − f(x)
( 1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o(

1

n

n∑
i=1

1

Xi

− 1

µ
) (4.48)

where

Yin =
µ

(x+ εn)2
qvn(

Xi

x+ εn
). (4.49)

For x > 0, by the Law of the Iterated Logarithm,

lim sup
n→∞

[
√
nvn(

1

n

n∑
i=1

1

Xi

− 1

µ
)]

a.s.
= O(

√
vn log log n)

a.s.→ 0.

Hence, it is sufficient to consider the first term in (4.48). Under the conditions of the
theorem, we can show that, as vn → 0 and εn → 0,

E(Y 3
1n) = O(v−2n ) (4.50)

and

vnE(Y 2
1n)→ I2(q)

µf(x)

x2
. (4.51)

Since Yin is nonnegative, we have∑n
i=1E|Zin|3

[
∑n

i=1E(Z2
in)]3/2

≤ E[Y1n + E(Y1n)]3√
n[var(Y1n)]3/2

=
E(Y 3

1n) + 3E(Y 2
1n)E(Y1n) + 4(E(Y1n))3√

n[E(Y 2
1n)− (E(Y1n))2]3/2

. (4.52)



By (4.50), (4.51) and (4.52), we have∑n
i=1E|Zin|3

[
∑n

i=1E(Z2
in)]3/2

= O(
1
√
nvn

)→ 0. (4.53)

Then by the Theorem 7.1.2 of Chung (1974), we have∑n
i=1 Zin

(
∑n

i=1 Z
2
in)
→ N(0, 1).

This implies
√
nvn
[ 1

n

n∑
i=1

Yin − E(Y1n)
]
→ N

(
0, I2(q)

µf(x)

x2
)
. (4.54)

Further,

√
nvn|E(Y1n)− f(x)| =

√
nvn

∣∣∣ ∫ ∞
0

[f(t(x+ εn))− f(x)]tqvn(t)dt
∣∣∣

≤
√
nvnL

∫ ∞
0

|(t− 1)x+ tεn|tqvn(t)dt

≤
√
nvnxL

∫ ∞
0

|t− 1|tqvn(t)dt+
√
nvnε2nL

∫ ∞
0

t2qvn(t)dt

≤
√
nvnxL[

∫ ∞
0

(t− 1)2qvn(t)dt]1/2[

∫ ∞
0

t2qvn(t)dt]1/2

+O(
√
nvnε2n)

= O(
√
nv3n) +O(

√
nvnε2n). (4.55)

Using (4.48), (4.54) and (4.55), we can establish the part (a) of the theorem.

(b) For this part of the proof, we decompose f̃+
n (0) similar to (4.48) as,

f̃+
n (0) =

1

n

n∑
i=1

Y ′in − f(0)
( 1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o(

1

n

n∑
i=1

1

Xi

− 1

µ
) (4.56)

where

Y ′in =
µ

(εn)2
qvn(

Xi

εn
). (4.57)

We can show that
E(Y

′3
1n) = O(ε4nv

−2
n ) (4.58)

and
ε2nvnE(Y

′2
1n)→ I2(q)f(0). (4.59)



Letting

Z ′in =

√
vnε2n
n

[Y ′in − E(Y ′in)] (4.60)

and using (4.58), (4.59) and a similar inequality as in (4.52), we find∑n
i=1E|Z ′in|3

[
∑n

i=1E(Z
′2
in)]3/2

≤ O(
1√
nvnε2n

)→ 0. (4.61)

Then by Theorem 7.1.2 of Chung (1974), we have∑n
i=1 Z

′
in

(
∑n

i=1 Z
′2
in)
→ N(0, 1),

that implies √
nvnε2n

[ 1

n

n∑
i=1

Y ′in − E(Y ′1n)
]
→ N

(
0, I2(q)f(0)

)
. (4.62)

Furthermore,√
nvnε2n|E(Y ′1n)− f(0)| =

√
nvnε2n

∣∣∣ ∫ ∞
0

[f(tεn)− f(0)]tqvn(t)dt
∣∣∣

≤
√
nvnε2nL

∫ ∞
0

|εn|t2qvn(t)dt

=
√
nvnε2nL[εn(v2n + 1)]

= O(
√
nvnε4n). (4.63)

Next using (4.56), (4.62) and (4.63)establishes part (b) of the theorem.

4.3 Proof of Theorem 2.3

Proof: By Theorem 3 of Chaubey, Sen and Sen (2007), under the conditions of
Theorem 2.3, we have

sup
x>0
|g+n (x)− g(x)| a.s.−→ 0 (4.64)

where

g+n (x) =
1

n(x+ εn)2

n∑
i=1

Xiqvn
( Xi

x+ εn

)
.

On the other hand, by the strong law of large numbers, we have

1

n

n∑
i=1

1

Xi

a.s.−→ 1

µ
., (4.65)

Hence, by (2.28), (4.64) and (4.65), we complete the proof.



4.4 Proof of Theorem 2.4

Proof: (a) Using Theorem in Chaubey, Sen and Sen (2007 we have

√
nvn(g+n (x)− g(x))→ N

(
0, I2(q)

g(x)

x

)
, for x > 0. (4.66)

Further since
√
n
(

1
n

∑n
i=1

1
Xi
− 1

µ

)
converges to a normal distribution, the asymptotic

normality of

f̂+
n (x) =

g+n (x)

(x+ εn) 1
n

∑n
i=1

1
Xi

(4.67)

is equivalent to that of
µg+n (x)

(x+ εn)
. (4.68)

Thus using (4.66), it is easy to show that

√
nvn

(
µg+n (x)

(x+ εn)
− µg(x)

x

)
→ N

(
0, I2(q)

µf(x)

x2

)
, for x > 0, (4.69)

that completes the proof of part (a).

(b) To prove part (b) of the theorem, we write

f̂+
n (0) =

1

n

n∑
i=1

Y ′′in − f(0)
( 1

n

n∑
i=1

1

Xi

− 1

µ

)
+ o(

1

n

n∑
i=1

1

Xi

− 1

µ
) (4.70)

where

Y ′′in =
µXi

(εn)3
qvn(

Xi

εn
). (4.71)

We can show that
E(Y ′′31n ) = O(ε4nv

−2
n ) (4.72)

and
ε2nvnE(Y ′′21n )→ I2(q)f(0). (4.73)

Then the proof of part (b) follows from (4.72) and (4.73) along the lines of proof of
part (b) of Theorem 2.1.
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