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ABSTRACT 

The Evolutionary Interaction of Intraspecific Competition and Genetic Recombination 

 

Sol Ackerman,  Ph.D. 

Concordia University, 2011 

 

The reason for the prevalence of sexual reproduction among multicellular eukaryotes is a 

long-standing unanswered question in evolutionary biology.  It is widely believed that sexual 

reproduction and the resulting genetic recombination provide a selective advantage by increasing 

a population‘s genotypic variance. However, recombination will only do so when the population 

is in negative linkage disequilibrium. It has been proposed that if alleles do not contribute 

multiplicatively to fitness, but instead display a negative epistatic fitness curve, then the 

population will be in such a state following selection, and sex will be advantageous. However, 

there is no a priori reason to believe that fitness values should generally be negatively epistatic, 

as opposed to positive or zero. 

In this study, we explore the relationship between contest competition and the 

maintenance of sexual reproduction. In Chapter 2, we develop a two-locus bi-allelic haploid 

model to examine the relationship between phenotype, competitive selection, and realized 

fitness. We assume that competitive ability is directly proportional to the phenotypic value and 

that the outcome of pairwise competition is dependent on the ratio of competitive abilities of the 

competing individuals. The stronger competitor does not always win, but it wins more frequently 

than the weaker competitor does. Using this very simple model, we find that intraspecies 

competition can lead to frequency dependent changes in genotypic fitness. In addition, 
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competition can result in negative epistasis at the level of realized fitness. This leads to the build-

up of negative linkage disequilibrium among the alleles that affect fitness following selection.  

In Chapter 3, we explore the effects of competition when the selection is repeated over 

several generations. We find that the amount of negative linkage disequilibrium builds up 

continuously in the absence of recombination, and this hinders the progress of selection.  This 

accumulation of negative linkage disequilibrium is alleviated when recombination is present. We 

show, using both a numerical modeling approach and through individual-based simulations, that 

sexual individuals will increase in frequency in a mixed population of sexual and asexual 

individuals. The selective advantage of recombination is strongest when there is a large 

difference in competitive ability between genotypes, and when the selected alleles are initially 

rare.  

Finally in Chapter 4, we consider a different mapping of phenotype onto fitness to ensure 

that our findings are robust. In this case, the outcome of pairwise competition is not determined 

by the ratio of competitive abilities; instead the stronger competitor always wins. In this case, as 

expected, there is even  stronger negative epistasis at the fitness level. As a result, we find that 

advantageous alleles go to fixation at a faster rate when recombining, and sexual individuals 

increase in frequency when competing against asexual individuals in a mixed population. 

Our results indicate that competition can play a significant role in the maintenance of 

sexual reproduction, and that the advantage of sexual reproduction may not lie in fertility 

selection, but in viability selection. In a competitive situation, it is better to produce one winner 

rather than two losers. 
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CHAPTER 1 

Introduction and Literature Review 

 

Genetic recombination is of fundamental importance in Biology and it has been extensively 

studied at all levels of biological organization, from the molecular through the cytological, 

individual, population and evolutionary levels. These studies have spanned the past hundred 

years and significant amounts of new information on recombination continue to be gathered. 

This research has deepened our understanding of both the mechanisms of recombination and its 

biological effects. Significant questions remain, however, regarding the evolutionary origin and 

the maintenance of genetic recombination. 

 

 

1.1  Molecular mechanisms of recombination 

 

The intricacies of genetic recombination at the molecular level are still being elucidated, 

but the general mechanism is well understood. Holliday (1964) proposed that initially, single 

strand breaks occur at adjacent locations from opposite homologous DNA molecules. The DNA 

then unravels to form single strands, the strands cross-over, and each strand anneals to the 

complimentary strand of the other molecule. The resulting X-shaped structure is now referred to 

as a Holliday junction (see Figure 1.1). The junction is resolved by the single stranded breakage 

and rejoining of complementary DNA strands. Depending on which two strands are broken, this 

may, or may not, result in recombinant DNA molecules. If the cleaved strands are also the 

strands that initially crossed over, then there will be no recombination of outside markers; but 
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there will be recombination if the other two strands are cleaved instead. In both cases, the 

expected products should contain heteroduplex DNA (i.e. where complementary strands from 

different parental molecules are base paired) in the regions where the crossover strands have 

annealed. Normal base pairing will occur in the heteroduplex region if the DNA strands are 

homozygous; but if this region is heterozygous, there will be a mispairing of bases. These 

mismatches are detectable by DNA repair mechanisms, and can result in gene conversion: where 

one allele of a pair is replaced by a copy of the other allele. 

Meselson and Radding (1975) contributed a modification to this mechanism in an effort 

to explain why the heteroduplex DNA region is not always present on both molecules, which 

they called asymmetric heteroduplex DNA.  They proposed that a recombination event could 

begin with a single strand break on only one of the two recombining DNA molecules. One of the 

ends of the single strand can then be displaced, and cross over to pair with a complementary 

sequence in another molecule; a process known as strand invasion. This causes a single strand 

break in the displaced strand, followed by ligation to the invading strand on one side of the 

break, and exonuclease activity on the other side of the break (see Figure 1.2). DNA polymerase 

action would then begin at the original single strand break, and continue to the other homologous 

molecule where the nucleotides were excised. The result is a Holliday junction with asymmetric 

heteroduplex DNA on only the one of the two interacting molecules. If the Holliday junction 

were to change locations by ―zipping‖ up or down the DNA molecules, then both molecules 

would have heteroduplex regions. 
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Figure 1.1: The Holliday model of genetic recombination (image taken from Holliday, 

1964). 

Vertical lines represent DNA strands, with arrows to depict their anti-parallel nature. One strand 

is depicted with solid lines, and the other with dashed lines as a way to differentiate between 

parental strands. Short horizontal lines show the positions single strand breaks. 1) Single 

stranded breaks are created at similar loci on DNA molecules from opposite homologous strands. 

2) The DNA molecules then unravel to form single strands. 3) The single strands then cross-

over, and anneal to the complimentary strand of the other DNA molecule. The resulting X-

shaped structure is resolved by the single stranded breakage and rejoining of complementary 

DNA strands. Depending on which two strands are broken, 4a) this can result in no 

recombination, 4b) or this can result in recombinant DNA molecules. 
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Experimental evidence later showed that the initiating strand is likely also to undergo a genetic 

conversion. Thus, the double-strand-break-repair model (Szostak et. al, 1983) was proposed as a 

way of explaining this observation. In this model, recombination is initiated by an endonuclease 

that creates a double-strand-break on one of the DNA molecules. Exonucleases then cut away to 

form a gap, producing 3‘ single stranded termini in the process. One of the 3‘ ends then invades a 

homologous region of the other DNA molecule, displacing the paired strand and producing a ―D 

loop‖ (see Figure 1.3). DNA polymerization occurs along the invading strand, which enlarges the 

D loop. The displaced strand then anneals to the other 3‘ single strand of the endonuclease 

digested molecule, and acts as a template for DNA repair.  In this way, the initiating strand 

becomes the target of a gene conversion. Furthermore, this explanation allows for the existence 

of asymmetric heteroduplex DNA on both strands: in the region of strand invasion on the 

invaded molecule, and in the region where the displaced strand anneals to the initiating molecule. 

DNA repair is completed by ligating the polymerization chains to the 5‘ ends of the initiating 

strands, resulting in a double Holliday junction. Symmetric heteroduplex DNA can be created if 

the Holliday junctions zip away from the site of the double strand break. Each Holliday junction 

is resolved as before, resulting in either crossover or non-crossover products. 

In is now known that recombination is often initiated by the meiosis-specific 

endonuclease Spo11 (Cao et. al., 1990) and its orthologs. Furthermore, there is some evidence to 

suggest that the endonuclease is location specific, and the initiating strand‘s sequence is often 

replaced by the homologous sequence during gene conversion (Nicolas et. al., 1989).  Recent 

studies in humans and other species (Jeffreys et. al., 2001; Winkler et. al. 2005) have inferred 

that recombination rates are not uniform across the genome, but are clustered into regions   
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Figure 1.2: The Meselson-Radding model of recombination (image taken from Szostak et. 

al., 1983). 

Horizontal lines represent DNA strands, with arrows to depict their anti-parallel nature. One 

strand is bold, and the other is normal as a way to differentiate between parental strands. DNA 

replication fragments are depicted with dashed lines. a) A single strand is nicked on one of the 

two involved DNA molecules. One of the ends of the single strand can then be displaced, and 

polymerase action then begins to repair the original single strand break. b) The displaced strand 

crosses over to pair with a complementary sequence on another DNA molecule. c) This causes a 

single strand break on the displaced strand, followed by ligation to the invading strand on one 

side of the break, and exonuclease activity on the other side of the break. d) Polymerase action 

continues to the other DNA strand where the nucleotides were excised, resulting in a Holliday 

junction with heteroduplex DNA only on the top molecule (asymmetric). e) If the Holliday 

junction zips away from the breakage site, there will be heteroduplex DNA on both molecules 

(symmetric). 
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Figure 1.3: The double strand break model of recombination (image taken from Szostak et. 

al., 1983) 

For a description, see Figure 1.2. a) Recombination is initiated with a double-strand-break on one 

of the DNA molecules. Exonucleases then cut away to form a gap, producing 3‘ single stranded 

termini in the process. b) One of the 3‘ ends invades a homologous region of another strand, 

displacing the paired strand and producing a D loop. c) DNA polymerization occurs along the 

invading strand, which enlarges the D loop. The displaced strand anneals to the other 3‘ single 

strand of the endonuclease digested molecule, and acts as a template for DNA repair. d) DNA 

repair is completed by ligating the polymerization chains to the 5‘ ends of the initiating strands, 

resulting in a double Holliday junction. 
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of under 2kb in length, known as recombination hotspots. These observations have led some to 

believe that recombination events are sequence specific, but due to biased gene conversion on 

the initiating strand, the hotspot initiator sequence is likely to be replaced by its ―coldspot‖ 

homologue. Genome sequence analysis has found evidence of a possible sequence motif in 

humans (Myers et. al., 2005; Myers et. al., 2008), but direct evidence of a region from human 

sperm samples seems to contradict this hypothesis (Neumann and Jeffreys, 2006). While human 

and chimpanzee genomic sequences show a 99% sequence identity, their hotspot regions are not 

conserved (Winkler et. al., 2005). Furthermore, it has been shown that if there exists a 

recombination initiating sequence, then gene conversion will remove the hotspot sequences from 

the population very quickly (Boulton et. al., 1997; Pineda-Krch and Redfield 2005). This brings 

forward a paradox as to how recombination rates are maintained over an evolutionary time 

frame, given that recombination selects against itself. To make a long story short, the sequence 

specificity of a recombination site is still being hotly debated. 

 

 

1.2 Recombination at the cytological level 

 

Early on in the 20
th

 century, a parallel was made between the process of chromosomal 

segregation in meiosis, and Mendel‘s theory of allelic segregation (Sutton, 1902). This spawned 

the chromosomal theory of inheritance, which is the theory that chromosomes are the carriers of 

genetic material, and are the basis of genetic inheritance. Morgan noticed that while some traits 

show inheritance patterns of Mendelian segregation, others show a pattern of being coupled. He 

concluded that some traits must be linked, with their genes located on chromosomes, and that 

chiasma formation allows genes on the same chromosome to be uncoupled (Morgan, 1911). For 
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his studies, Morgan calculated the fraction of meiotic products with non-parental allelic 

combinations at two loci, now referred to as the recombinant fraction. 

Soon after, Sturtevant (1913) proposed that with genes located on linear chromosomes, 

the proportion of crossovers could be used as an index of the distance between any two genes. 

Sturtevant used the recombination frequency as a unit of genetic distance, which is the frequency 

that a single chromosomal crossover will take place between two genes during meiosis. He 

named this unit of measurement the Morgan in honour of his supervisor. In his experiment, 

Sturtevant showed that with three genes - A, B and C - located close to each other on the same 

chromosome, the recombinant fraction between A and C is equal to the recombinant fraction 

between A and B, plus the recombinant fraction between B and C. This demonstration of the 

linear arrangement of genes was the first genetic map. This proposal of a linear arrangement of 

genes met with some resistance. A genetic map length greater than 0.5 M (50 cM) is quite 

possible, whereas a recombinant fraction greater than 0.5 is never observed. The reason for this 

is that double crossovers on the same chromatid negate each other, reducing the recombinant 

fraction (Sturtevant et. al., 1919). In short, only an odd number of crossover events between 

allelic markers on a chromatid contribute to the recombinant fraction. Because of the disparity 

between the recombinant fraction and the inferred recombination frequency at larger distances, it 

is more common to refer to mapping distances in centiMorgans as opposed to Morgans.  

Excluding crossovers between sister strands, there are three types of possible double 

crossovers. These are designated two strand, three strand, and four strand (Beadle and Emerson, 

1935). Two strand double exchanges involve the same two strands at both crossover positions. 

Three strand double crossovers have three different strands involved in crossing-over, with one 

strand crossing over twice; and four strand doubles involve two strands at one crossover position, 
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and the two remaining strands at the other position. In diploids, these types are expected to occur 

in the ratio 1:2:1, which results in a recombinant fraction of 0.5 for outside markers (Beadle and 

Emerson, 1935). 

As it turns out, the positions of chiasmata are not independent of each other. Haldane 

(1931) made the point that if the probability of crossing-over was unaffected by events 

elsewhere, then the number of crossovers on a chromosome should follow a Poisson distribution. 

They do not. His study showed that there are far fewer multiple crossovers than would be 

expected if their locations were randomly distributed, and that the variance in the number of 

crossovers is less than the mean. He concluded that the occurrence of a crossover reduces the 

likelihood of another one in its vicinity. This phenomenon is known as genetic interference. 

For almost two decades, a genetic map was the only way to determine the relative 

position of a gene. Its physical location along a chromosome was still unknown. Creighton and 

McClintock (1931) were the first to show evidence of the physical position of a gene along a 

chromosome. By looking at the physical characteristics of a chromosome —such as its length 

after the centromere and the presence of a thumb-like extremity— they were able to show a 

correlation between the phenotype displayed, and a chromosomal feature. This allowed them to 

conclude that ―pairing chromosomes exchange parts at the same time they exchange genes‖ 

(Creighton and McClintock, 1931). The process of constructing a physical map of the 

chromosome was refined by Painter (1933), when he noticed that each Drosophila chromosome 

has a characteristic pattern of chromatic lines or bands. By studying the changes in a 

chromosome‘s banding pattern, one can associate a unique band with a known genetic character. 

In this way, it is possible to give morphological positions to genetic loci. These techniques are 
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obsolete nowadays, as whole genome shotgun sequencing can create a physical map of the entire 

genome down to the base pair (Fleischmann et. al., 1995). 

Recombination takes place during the early stages of meiosis, which is the sexually 

reproductive process of cell division that halves the number of chromosomes in cells. We will 

not go into great details about the meiotic process, but provide a basic description, with an 

emphasis on the stages pertinent to the recombinant process.  

Prior to the onset of meiosis, the chromosomes have completed replication, but sister 

chromatids are still attached at the centromere. Meiosis consists of two cellular divisions, with no 

replication taking place between stages. The first and second meiotic divisions follow a similar 

sequence of events, but with slightly different results. The result of the first meiotic division is 

the production of two daughter cells, each with half the ploidy number of the parent cell. 

Homologous chromosomes are segregated into separate cells, but each chromosome still has two 

copies of itself, and they remain joined at the centromere. Each daughter cell divides again in the 

second meiotic division, but this time, sister chromatids are segregated into separate cells. The 

end result is the production four daughter cells whose chromosomes are single stranded, and 

whose ploidy number is half that of the parent cell. 

Recombination occurs in the first stage of the first cellular division of meiosis, known as 

prophase I. Prophase I is broken down into 5 sub-stages which are listed chronologically as 

follows: leptotene, zygotene, pachytene, diplotene, and diakinesis (Hartl and Jones, 2005). 

During leptotene, chromosomes condense to the point where they become visible under a 

microscope. In zygotene, the chromosomes laterally pair up with their respective homologues 

along their entire length (a.k.a synapsis). Each pair of synapsed homologous chromosomes is 

referred to as a bivalent.  In pachytene, chromatids continue to condense to the point where sister 
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chromatids become distinguishable. It is at this stage that crossing-over occurs. Their strands 

come into close proximity at a given point, then break and rejoin such that the strands switch 

tracks at the junction. Contrary to some textbook diagrams, the chromatids do not physically 

crisscross each other. The junction points are called chiasma (pluralized ―chiasmata‖). Although 

chiasmata occur during pachytene, they only become visible at the onset of diplotene,. This is 

because in diplotene, the synapsed chromosomes begin to separate, except for in the regions with 

a chiasma. All four chromatids are now visible in each bivalent, as well as their cross-

connections.  The final period of prophase I is diakinesis, where homologous chromosomes are 

seen to repel each other, while remaining attached at chiasmata. The first cellular division 

continues on with the chiasmata separating, and the homologous chromosomes segregating into 

separate daughter cells. But at this stage, the recombinant aspect of meiosis is complete. 

There is a strong correspondence between a species‘ genetic map and its physical map, 

which can be explained through the details of meiosis. The genetic map has the same number of 

linkage groups as the physical map has homologous pairs of chromosomes. The meiotic 

explanation is that each bivalent makes up its own linkage group. Genes are both physically and 

genetically linked to each other along a chromosome, with different chromosomes segregating 

independently during meiosis. Within each homologous pair, loci that are close together are 

often inherited together, and those far apart might switch homologues. The linear arrangement of 

genes within a linkage group is the same as their linear arrangement on a chromosome. This can 

be explained as a recombination event along a chromosome dissociates all the genes to the other 

side of the break. Therefore, the recombination frequency can only monotonically increase along 

the length of a chromosome, meaning that the order of loci on both the physical and genetic map 

is identical. Roughly speaking, genetic distances correlate with physical distances. The meiotic 
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reason for this is that generally speaking, the greater the physical distance between loci, the 

greater the likelihood that a recombination event will take place between them. 

As both physical mapping and genetic mapping progressed, it became clear that while a 

monotonic relationship exists among the number of base pairs and centiMorgans between loci, 

the relationship is not a constant one. In other words, physical distance is not equivalent to 

genetic distance. The recombination rate varies between species. For instance, the average 

physical distance represented by 1 cM is approximately 1 Mbp in humans, and 2 Mbp in mice 

(Jensen-Seaman et. al., 2004). The recombination rate can also differ between sexes in the same 

species. A case in point is Drosophila melanogaster, where the females undergo meiotic 

recombination, but the males do not (Hiraizumi, 1971). The recombination rate also varies 

between chromosomes of the same species. In humans, chromosomes 19 and Y both have a 

physical length of 59 Mbp, but while chromosome 19 has a genetic map length over 100 cM, Y 

has a map length of 1 cM (Doniskeller et. al., 1987). The recombination rate is not constant 

across the entire length of the chromosome. There is a significant deficiency of crossing-over 

near the centromere, and often also at the telomeres (Morton et. al., 1976). A small distance on 

the genetic map corresponds to a large distance on the chromosome within these regions. Finally, 

some evidence is suggesting that recombination rates are not even consistent at the sequence 

level.  Inferred recombination rates from sequence data suggest that genetic map lengths increase 

sharply in short regions under 2 kilobases in length, called recombination hotspots, and very 

gradually everywhere else (Myers et. al., 2005). In other words, while there is a good correlation 

between genetic maps and physical maps, it is impossible to determine the genetic map directly 

from the physical map, and vice versa. 
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1.3  Recombination at the population level 

 

Sexual reproduction has an effect on the genotypic make-up of a population. In this 

section, we will explore the effects of genetic shuffling on a population‘s genotype frequencies.  

Consider the case of a haploid population with two loci of interest, each locus having two 

alleles. We label the alleles at the first locus A and a, and at the second locus B and b. 

Furthermore, we will assume that the four alleles have frequencies p1, q1, p2, q2, respectively, 

where p+q=1. It follows then that if these alleles were randomly assorted into genotypes, then 

the frequencies of the AB, Ab, aB, and ab genotype would be p1p2, p1q2, q1p2, and q1q2, 

respectively. While it might seem counterintuitive, it is unlikely that the alleles in the A gene are 

in random association with the alleles in the B gene. When genes A and B are not in random 

association with each other, they are said to be in linkage disequilibrium; and when they are in 

random association with each other, they are said to be in linkage equilibrium. Numerically, 

linkage disequilibrium can be expressed as the difference between the observed and expected 

frequency of a genotype (Robbins, 1918).  

In a haploid population with genotype AB whose frequency is         , and where p1 is 

the frequency of the   allele in the population, and p2 is the frequency of the B allele, we can 

write the value of linkage disequilibrium as   

                 (1.1) 

Note that the population is in linkage equilibrium when D=0, and is in linkage disequilibrium 

otherwise. The value of D can also be expressed using only the genotype frequencies as 

variables, provided that each gene has only two alleles (see Appendix 2 for the derivation). 

                                     (1.2) 
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A state of linkage equilibrium is eventually attained with random mating and 

recombination, but it is attained gradually. Bennett (1954) showed that a random-mating 

population that is initially in linkage disequilibrium with value D will decrease to value D’ in the 

next generation as follows: 

           (1.3) 

where r is the recombinant fraction between loci. Therefore, the value of D decays by a factor of 

(1 - r) in every subsequent generation, eventually attaining linkage equilibrium (Bennett, 1954; 

see Appendix 3 for a more detailed analysis). Note that the lower the recombinant fraction, the 

longer it will take to attain linkage equilibrium. 

The conclusion that a sexually recombinant population will eventually reach a state of 

linkage equilibrium is only true in a very restrictive scenario. More often than not, at least one of 

the implicit assumptions will be broken in a natural population. For example, directional 

selection can change the genotype frequencies, resulting in a loss of linkage equilibrium. Not all 

genotypes are equally well adapted to their environments: some are better at surviving to 

adulthood, and some are more adept at producing offspring. These genotypes will have a greater 

contribution to the next generation, and consequently, the alleles that make up such genotypes 

will increase in frequency as well. Unless alleles contribute multiplicatively to the fitness of the 

genotype -for example, if genotypes ab, Ab, aB, and AB have relative fitness values 1, 1 + s, 1 + 

s, (1 + s)
2
, respectively- their frequencies will change to be in linkage disequilibrium 

(Felsenstein, 1965). When allelic contributions to fitness deviate from a multiplicative 

relationship, they are said to show epistatic effects (Cordell, 2002). It should be noted, however, 

that the word ―epistasis‖ has a slightly different meaning at the fitness level than it does at the 

phenotypic level.  
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Epistasis is a measure of interaction between the genetic effects at different loci. In the 

simplest case, if the phenotypic effects of alleles at different loci are additive, we say that there is 

no epistasis. In this case, which comes from physiological genetics, epistasis is a measure of the 

deviation of the phenotypic values from additivity (Cordell, 2002).  In population genetics, the 

emphasis is on the genetic effects on fitness (measured as viability and fertility) rather than the 

effects on a phenotypic value (such height or weight). In population genetics, epistasis is a 

measure of the deviation of the fitness values from multiplicativity (Cordell, 2002), because the 

genetic effects on fitness multiply over successive generations. In practice, the distinction 

between phenotype and fitness is usually overlooked and the phenotypic value is used as a 

convenient proxy for the fitness value. Generally speaking, provided that there is directional 

selection, a negative epistatic fitness curve (i.e. one that is less than multiplicative) will cause 

negative linkage disequilibrium, and a positive epistatic fitness curve will cause positive linkage 

disequilibrium (Felsenstein, 1965). 

A second source of deviation from linkage disequilibrium is the fact that populations are 

finite, and furthermore, not always very large. A very large population generally follows the 

expected trajectory into linkage equilibrium, but a small population does not. In small 

populations (i.e. under 10 000), what often happens is that the genotype frequencies drift away 

from linkage equilibrium. In other words, the mean value of D will be zero, though the variance 

won‘t be (Hill and Robertson, 1968). This process of genetic drift can cause a genotype to be lost 

entirely from the population (Hill and Robertson, 1968; Ohta and Kimura, 1969). In fact, in the 

absence of mutation, all alleles will eventually either become fixed or lost (Kimura, 1968). The 

smaller the population size, the faster this happens (Kimura and Ohta, 1969a; Kimura and Ohta, 

1969b). 
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Mutations can also alter the genotypic composition of a population. Provided that the population 

size is finite and the mutation rate is low enough that new mutations never occur at the same 

locus twice, then there will often be considerable linkage disequilibrium between loci (Ohta and 

Kimura, 1971). The extent of linkage disequilibrium is greater when the population size is small, 

and the recombination rate is low. It should be noted, however, that while each pair of loci will 

often show linkage disequilibrium, the mean value over all pairs of sites is expected to be zero 

(Ohta and Kimura, 1971). 

Mating is not always random. When individuals generally prefer mates that are similar to 

themselves, it is called positive assortative mating; and it is called negative assortative mating 

when individuals prefer dissimilar mates. Generally speaking, the value of linkage 

disequilibrium increases with positive assortative mating, and decreases with negative assortative 

mating (Wilson, 1978). In both cases, introducing non-random mating into a population will 

produce linkage disequilibrium, and the population will remain in linkage disequilibrium upon 

reaching its steady-state (Wilson, 1978). 

Populations are not always panmictic, but are sometimes segregated into smaller breeding 

subpopulations. When the population is very segregated and there is limited migration, random 

genetic drift prevails in each subpopulation. This can cause each subpopulation to show 

significant levels of linkage disequilibrium, as well as the population as a whole (Ohta, 1982). 

Moreover, a higher recombinant fraction between loci acts to reduce the variance in values of 

linkage disequilibrium, but will not eliminate it entirely (Ohta, 1982). 

To summarize, a population will eventually reach a state of linkage equilibrium provided 

that mating is random; the population size is very large; there are insignificantly low levels of 

mutation; the population either shows no segregation, or migration rates are very high; and there 
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is either no selection, or non-epistatic selection. It is unlikely that all of these conditions will be 

met in a natural population. 

It should be noted that the gradual attainment of a random assortment of alleles at two 

loci is a different dynamic than genetic segregation in diploids at a single locus, which attains 

randomness in a single generation. Consider a single gene where alleles A and a, have 

frequencies p1 and q1, respectively. Assuming that individuals are diploid, then an individual can 

have one of three possible genotypes: AA, Aa, or aa. Regardless of the initial genotype 

frequencies, the gametic frequency of A will be p1, and the frequency of a will be q1. With 

random mating, the frequencies the AA, Aa, and aa genotypes among zygotes will be p1
2
, 2p1q1, 

q1
2
, respectively, in the next generation. These frequencies will not change among adults as each 

genotype has an equal likelihood of survival. Furthermore, the genotypes will keep these 

frequencies in all subsequent generations (Hardy, 1908; Weinberg, 1908). Therefore, both the 

allele and genotype frequencies will remain constant from generation to generation, provided 

that there are no other forces acting on the population. A population that is in this state is said to 

be in Hardy-Weinberg equilibrium. 

 

 

1.4  The evolutionary origin of recombination 

 

 There are several theories to explain the evolutionary origin of sex and recombination. 

Some of these theories explain the origin of sex, others explain the origin of recombination, but 

none so far can explain the maintenance of either. 

Perhaps the most cited theory for the evolutionary origin of recombination is that it 

originated as a DNA repair process (Bernstein et. al., 1981).  As was stated in the section 1.1, the 
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recombinant site undergoes a genetic conversion. Therefore, the recombination process can also 

be thought of as a method of DNA repair. This theory proposes that first, haploid cells would 

fuse as a method of repairing their genetic material, with the diploid stage being initially 

transient. Later on, the diploid stage would come to dominate, for its redundancy provides 

protection against deleterious mutations. The masking effect in a diploid genome would make a 

large increase in genome size quite possible, after which a return to haploidy would be lethal, as 

it would expose these acquired deleterious mutations. Soon after this origin of recombination 

theory was published, Bernstein et. al. further  proposed that sex and recombination are 

maintained due to its enhanced abilities of DNA repair (Bernstein et. al., 1985), but this theory 

seems less accepted. Recombination as a DNA repair process can still take place in an asexual 

parthenogenic species, and furthermore, it has been shown that a parthenogenic species would 

have a higher mean fitness if recombination‘s only advantage comes from DNA repair 

(Szathmáry and  Kövér, 1991).     

Perhaps the most cited theory of the origin of outbreeding is that it originated from selfish 

genetic elements (Hickey, 1982). The theory proposes that sex may have emerged from sections 

of DNA similar to a transposon or a conjugative plasmid. The requirements of such elements are 

that it be capable of transposition, self-replication, and that it induce a form of syngamy. Selfish 

DNA can only spread within an individual and its descendants when individuals are asexual, but 

can spread quite easily in a sexual population through horizontal gene transfer. Such elements 

could increase their frequencies even when their presence is detrimental to the host. When such 

elements are close to fixation, their fitness approaches that of the host (Hickey, 1982). Therefore, 

if selfish genetic elements are deleterious, they need not become fixed in the population (Rose, 

1983). When such elements reach high frequencies, there will be selective pressures to reduce 
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their deleterious effects on the host. Consequently, this hypothesis can explain the origin of sex, 

but not its maintenance (Hickey and Rose, 1988). 

It should be noted that these two origin theories (Bernstein et. al. 1981; Hickey, 1982) are 

not mutually exclusive, but somewhat complementary. Recombination could have first evolved 

as a method of DNA repair, and after this process became established, selfish genetic elements 

could have promoted syngamy (Hickey and Rose, 1988).   

Kondrashov (1994) noted that an asexual population will have a lower mutational load if 

alternating between haploid and diploid phases, than if remaining permanently diploid. Some 

asexual species do in fact undergo such ploidy cycles, which acts as evidence for the hypothesis 

that sex may have arisen from such a cycle, immediately following the origin of syngamy.  

A recent theory detailing the origin of meiosis has been put forward by Wilkins and 

Holliday (2009) where they proposed a step-wise process for meiosis to have evolved from 

mitosis. Since synapsis has been observed in the mitotic cells of some species, but terminating in 

either interphase or prophase, they argue that meiosis developed from a synapsis that extended 

into metaphase. Sister chromatids are still attached following a cellular division with synapsis, 

which acts to inhibit a subsequent replication phase. In this way, the evolution to meiosis could 

have occurred as a gradual process, emerging from a species with a ploidy cycle. The initial 

advantage of synapsis would be to prevent non-homologous recombination events, which have 

been observed in mitotic cells, and are often detrimental.  
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1.5  The maintenance of recombination by natural selection 

 

The prevalence of sexual reproduction among multicellular eukaryotes is a long-standing 

unanswered question in evolutionary biology.  Generally speaking, multicellular organisms can 

reproduce in one of two ways: sexually, or asexually. Many species are capable of both, many 

are exclusively sexual, but comparatively few are exclusively asexual. For example, among 

vertebrates there are known to be over 42 000 species (Wilson, 1992), yet less than 100 of these 

are exclusively asexual (Vrijenhoek et al., 1989). Furthermore, the majority of asexual species 

have recently descended from sexual species. The known exceptions are bdelloid rotifers, which 

have been asexual for over 40 million years (Welch et al., 2000); and darwinuloid ostracods 

have been asexual for maybe 200 million years (Martens et al., 2003).  

Sex is not a necessity of life; this is clearly illustrated by the many instances of asexual 

reproduction that exist, especially among microbes. Yet, most biologists believe that sexual 

reproduction and the resulting genetic recombination do provide some selective advantage and, 

based on the broad patterns of distribution of sex among taxa, we can infer that the advantage of 

recombination is more important for large multicellular eukaryotes than it is for small single-

celled prokaryotes: recombination and sexual reproduction are ubiquitous among derived 

eukaryotes (Hadany and Comeron, 2008), whereas bacteria are primarily asexual (Narra and 

Ochman, 2006). 

Perhaps the first biologist to muse about the maintenance of sexual reproduction was 

August Weismann (1891), who wrote that the advantage of sex is that it provides variation for 

natural selection. Fisher (1930) elaborated on this theory, proposing that sex is advantageous 

because it can bring good genes together in a finite population. In the initial stages, descendants 

of a sexual individual might have difficulties increasing their numbers, but if this was to happen, 
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then the advantage of sexual reproduction would be proportional to the number of genes under 

natural selection. In making this argument, Fisher suggested that sex was an adaptation which 

favours the survival of groups instead of individuals. Muller (1932, 1964) then provided a 

counter benefit, in that genetic shuffling can also have the advantage of bringing bad mutations 

together in a single individual, allowing for negative mutations to be better purged from the 

population. He further noted that a deleterious mutation in an asexual individual is passed on to 

all of its descendants. In this way, deleterious mutations can build-up in an asexual lineage, and 

like a ratchet that tightens click-by-click, slowly kill off the lineage (Muller, 1964). This concept 

has since been referred to as Muller‘s ratchet (Felsentstein, 1974).  

 

 

1.5.1 The maintenance of recombination by natural selection: defining the problem 

 

Up until this point in time, the arguments given to explain the maintenance of sex had 

been verbal ones, not quantitative. Crow and Kimura (1965) then gave a mathematical context to 

the question of the maintenance of sex, utilizing a population genetics approach inspired by 

Muller. By comparing mean fitness values between sexual and asexual populations under 

directional selection, they showed that recombination greatly increases the fitness of sexuals by 

bringing good mutations from different lineages together in the same individual. The advantages 

of sexual reproduction are greatest when the mutation rate is high, when the population size is 

large, the mutant effects are small, and a double mutant has a higher fitness than either single 

mutant (a.k.a. directional selection). Furthermore, they demonstrated that two mutations that are 

deleterious on their own, but beneficial when together are initially selected against in a sexually 
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recombinant population. Therefore, it is unlikely that sex is maintained by this kind of allelic 

interaction. 

John Maynard Smith then made some strong devil‘s advocate arguments. First (Maynard 

Smith, 1968), he countered Crow and Kimura‘s contention by showing that if mutations are 

allowed to reoccur with multiplicative allelic effects on fitness, then there would be no benefit to 

sexual reproduction. Later (Maynard Smith, 1978) he went on to illustrate the extent as to which 

sexual reproduction can reduce an individual‘s fertility. All things being equal, if a female were 

to defect to parthogenesis, she would double her genetic contribution to the next generation. This 

argument has since been dubbed the two-fold cost of sex, or more accurately, the two-fold cost 

of males (Hadany and Comeron, 2008). This immediate fitness gain of defecting to asexuality 

makes it clear that sexual reproduction is unlikely to be maintained through group selection (the 

idea that an allele can be selected for due to the benefit it gives to groups, regardless of its fitness 

effect on the individuals within that group), but must also provide a benefit to its offspring at the 

level of the individual. Maynard Smith made a similar argument for the maintenance of 

recombination rates, in that it too would require a short-term individual-based benefit (Maynard 

Smith, 1978). Therefore, an explanation that claims to provide an answer for the maintenance of 

sex must provide both short and long term benefits that allow sexual individuals to increase in 

frequency in a mixed population, and must also provide short and long term benefits that allow 

recombination rates to be maintained. For these reasons, my thesis only looks at selection at the 

individual level, as opposed to higher levels of selection (i.e. selection at the group, population, 

or species level). 
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1.5.2 The maintenance of recombination by natural selection: some solutions to the 

problem 

 

Perhaps the most prominent ecological attempt at explaining the ubiquity of sex is the 

Red Queen Hypothesis (Van Valen, 1973). John Maynard Smith made the point that if selection 

was directional, the population would remain in linkage equilibrium, which neither favors nor 

disfavors sexual reproduction. But if the environment were to change, sexual reproduction would 

accelerate adaptation to a new environment (Maynard Smith, 1968). Spatially complex 

environments, such as described by the Tangled Bank model (Bell 1982), might be expected to 

favor sexual organisms that produce genetically variable offspring, but for this to explain the 

maintenance of sex, the environment would need to be constantly changing. Van Valen (1973) 

proposed the hypothesis that host-parasite interactions could provide continual environmental 

fluctuations.  The theory is that hosts and parasites are in a constant evolutionary arms race: the 

parasite always needing to invade the host, and the host always trying to evade infection. Often, 

it is the case that a parasite with genotype Ap is more capable of infecting hosts with genotype Ah, 

and a parasite with genotype Bp is more capable of infecting hosts with genotype Bh. This can 

result in cyclic frequency changes in the genotypic composition of the host, as well as the 

parasite. It should be noted, however, that Van Valen did not initially apply his theory to the 

maintenance of sex, which was later done by Hamilton (1980). Under these fluctuations in 

fitness, sex can act to increase the rate of adaptation to the new environment, and can provide a 

two-fold advantage to a sexual species (Hamilton 1980). 

While host-parasite interactions can result in a persistent cyclic arms race, they certainly 

don't have to, and in many situations they either converge to a steady state, or one of the 
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genotypes goes extinct (Bell, 1982). Further mathematical analysis has also found that sexual 

reproduction can only fend off parthenogenesis with very high levels of virulence (May and 

Anderson, 1983; Howard and Lively, 1994). Attempts to model the effect of recombination on a 

Red Queen system have found that sex is only beneficial when the cycles have large effects on 

genotypic fitness, and oscillate as quickly as every two-to-four generations (Peters and Lively, 

2000). Most Red Queen interaction models examined so far tend to favor asexuality (Otto and 

Nuismer, 2004; Salathé et al.; 2008), although a recent experiment with C. elegans  as the host 

gave results to the contrary (Morran et. al, 2011). 

Another popular theory is that sex can be maintained in a finite population, but not in an 

infinite one. This theory is a direct descendant of the arguments put forward by Fisher (1930) 

and Muller (1932; 1964), but with the addition of explicitly taking the size of the population into 

account. Maynard Smith (1968) used a deterministic model to show that a population in 

mutation-selection balance will be in linkage equilibrium when reproducing sexually or 

asexually, but this implicitly assumes that the population size is large enough to ignore stochastic 

effects. In small simulated populations, however, Hill and Robertson‘s computer runs (1966) 

showed this to not be the case. Their simulations often showed that randomly-generated linkage 

disequilibrium caused linked loci to interfere with each other's response to selection. Felsenstein 

(1974) then put the pieces together, and used individual-based simulations to demonstrate both 

Fisher‘s and Muller‘s arguments. 

This theory works best to explain the maintenance of recombination when selection is 

weak, and linkage is tight (Otto and Barton, 1997; Otto and Lenormand, 2002). The difficulty 

with the Fisher-Muller model is that recombination doesn't bring good mutations together any 

faster, or select for increased levels of recombination unless the effective population size is very 
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small (i.e. ~1000) (Christiansen et al. 1998; Otto and Barton, 2001). Attempts have been made to 

account for larger population sizes by either having many linked loci under selection (Keightley 

and Otto, 2006), or assuming population subdivision (Martin et. al., 2006). Both methods are 

effective, but it is questionable whether they are effective enough, as the rate of species-wide 

substitutions is typically far too low to generate appreciable selection for recombination, and the 

amount of required subdivision is very high (Barton, 2009). 

It has been proposed that if alleles do not generally contribute multiplicatively to fitness, 

but display a negative epistatic fitness curve, sex will act to increase the mean fitness of the 

population (Kondrashov, 1982). A negative epistatic fitness curve is one where each additional 

deleterious mutation has an increasingly negative effect on the fitness of the organism, or each 

additional positive mutation has a decreasingly positive effect (see Figure 1.4). Such a fitness 

curve changes the genotypic frequencies to be in negative linkage disequilibrium immediately 

following selection. Kondroshov (1982) showed that with genome-wide negative epistasis, a 

sexual population‘s mean fitness could easily overcome the two-fold cost of sex.  

The negative epistatic fitness hypothesis has two main theoretical criticisms. The first is 

that it has been difficult to explain a priori why epistatic values should be generally negative, 

rather than positive or zero.  Laboratory experiments attempting to determine the mean level of 

epistasis within a species have varied greatly in their results (de Visser et al. 2007; Kouyos et. 

al., 2007), but recent direct measurements of the value of epistasis suggest that this could in fact 

be the case (Chou et. al., 2011; Khan et. al., 2011). The second criticism is that modifier alleles 

that select for increased rates of recombination will only increase in frequency provided the 

effects are weakly negative (Barton, 1995). In other words, this theory can only explain the 
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Figure 1.4: The relationship between the shape of a genotypic fitness curve and the value of 

epistasis. 

The genotype of an individual is shown on the x-axis with ―+‖ symbols representing an 

advantageous allele, and ―–‖ symbols representing a deleterious allele. The log fitness of each 

genotype is shown on the y-axis. a) A non-epistatic fitness curve is one where each additional 

positive/negative mutation linearly adds to/subtracts from the log fitness of the genotype. It 

shows as a linear curve when plotted as above. b) A negative epistatic fitness curve is one where 

each additional deleterious mutation has an increasingly negative effect on the fitness of the 

organism, or each additional positive mutation has a decreasingly positive effect. In other words, 

it has a shape that is concave downwards when plotted as above. c) Finally, a positive epistatic 

fitness curve is the opposite of a negative one, and has a shape that is concave upwards.  
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maintenance of recombination if allelic interactions are generally weakly negative, and a reason 

to believe this is somewhat absent. 

Provided that the genomic rate of deleterious mutations within a species, U, is greater 

than 1, then it is likely that allelic interactions are generally negatively epistatic. Otherwise, the 

species will inevitably go extinct by accumulating an unbearable load of deleterious mutations 

(Kondrashov 1988). Unfortunately, laboratory experiments attempting to determine the rate U 

within a species have given values that are not consistently greater than 1 (de Visser et al. 2007). 

The results have been all over the map. This doesn‘t mean that this theory cannot explain the 

ubiquity of sex, but that it can‘t be extrapolated as correct using this approach. 

Most attempts to model the maintenance of sex have their roots in population genetics, 

and assume that the genotypes are either advantageous and neutral, or neutral and deleterious. 

Genotypes therefore affect selection as a whole, making no distinction between fertility and 

viablility. Each genotype's fitness is absolute, and unaffected by the frequency of other 

genotypes within the population. Another method is to use a more ecological approach, as in the 

case of the Red Queen hypothesis, where fitness values are not absolute but are frequency-

dependent in some way. The Red Queen hypothesis is a model of interspecies frequency-

dependent selection, but there are also models of within-species (aka intraspecies) frequency-

dependent selection. As noted by Lewontin (1955), ‗‗it would be strange if what applied to 

different species did not apply to some extent to different genotypes within the same species.‘‘ 

Case and Taper (1986) looked at one such example where they showed an advantage to sexual 

reproduction in that it provides a greater ability to compete for a wide spectrum of resources. 

They found that a sexual species can coexist and even supplant an asexual species  provided that 

there is relatively high between-genotype niche differentiation, low environmental variance, and 
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severe exploitation of resources. Under these conditions, common genotypes heavily deplete 

their resources creating an environment where a rare genotype has the advantage, and genetic 

shuffling helps to produce such rare genotypes. It should be noted that this model depends on the 

existence of different environmental niches (i.e. environmental heterogeneity) in order to explain 

the maintenance of sex. It has also been shown that the ―two-fold cost of sex‖ is almost never 

two-fold when the ecological dynamics of growth and competition are taken into account 

(Doncaster et. al., 2000).  Doncaster et. al. showed that – provided the population was initially 

sexual – an individual that defected to parthenogenesis would almost never realize anything 

close to a two-fold advantage. If the sexual population‘s intrinsic growth rate is sufficiently high, 

an asexual defector cannot successfully invade the sexual population. The result is a stable 

coexistence of both reproductive methods.  

A simpler approach to that taken by Case and Taper (1986) is to observe the effects of 

competition on the maintenance of sex without the need for a resource spectrum. Generally 

speaking, intraspecies competition can be divided into two different types: scramble competition, 

and contest competition. In scramble competition, resources are somewhat equally distributed 

among competitors; whereas in contest competition, the ―winner takes all‖ (Brännström and 

Sumpter, 2005). This way of classifying competition is based on how individuals consume 

resources. There are other ways of classifying competition, such as by how individuals are 

competing (examples include interference competition, and exploitation competition), but the 

scramble/contest dichotomy is the most relevant for our modeling purposes.  

Peck and Waxman (2000) showed that if an individual‘s genotype affects its competitive 

ability, scramble competition when competing in small groups will result in negative epistasis. In 

such a case, the mean fitness of the sexual population is significantly higher, and able to resist 
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invasion from asexuals. They did not, however, consider the effects on a modifier allele. More 

importantly, their paper provides an intrinsic reason to believe that genotypic interactions should 

generally follow a negative epistatic fitness curve. My thesis builds on these results by looking at 

the effects of contest competition on the maintenance of sex. As an overarching goal, we are not 

so focused on the exact mechanism of competition, but on the fact that competition can happen 

at the individual level within a species. We wish to know if this fact can be used to explain the 

maintenance of sex. 

 

 

1.6 Mathematical population genetics 

 

The study of population genetics has incorporated a wide variety of math techniques over 

the course of the last 100 years. At the beginning of the 20
th

 century, two main schools of 

thought on the laws of inheritance were caught in a heated debate. On one side, the biometricians 

(who were most influenced by Darwin) saw natural selection as a gradual process that acts on 

traits displaying a continuous spectrum of values. On the other side, the Mendelians saw natural 

selection as a discrete process that acts on genetic loci, each allele carrying its own distinct value.  

Fisher (1918) began a reconciliation between these two schools, by showing that a continuous 

trait such as male human height can be explained using Mendelian genetics when many loci 

affect the character. Fisher then went on to publish The Genetical Theory of Natural Selection 

(1930) in which he used Mendelian genetics as the underlying model of evolution by natural 

selection. This reconciliation between genetics, cytology, and evolutionary biology is referred to 

as the modern synthesis (Huxley, 1942). 
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Sewall Wright then contributed a ―top-down‖ approach known as quantitative genetics 

(1920), by taking a continuous trait and breaking the phenotypic variance down into its 

environmental component and its genetic component. The fraction of the total phenotypic 

variance that is attributable to genetics is known as heredity. Wright also advanced the ideas of 

genetic drift, migration, and population subdivision (1931) as factors affecting the genotypic 

make-up of a population. His general modeling assumptions are now referred to as the Wright-

Fisher model. The features of this model are a constant population size, discrete non-overlapping 

generations, and a diploid organism. 

Moran (1962) devised a similar model, but with a haploid organism and overlapping 

generations. In each time step, one individual dies and one reproduces, thus ensuring that the 

population size remains constant. 

Kimura continued work on the Wright-Fisher model by looking at the change in allele 

frequencies as a stochastic process using diffusion equations (1964). With these techniques, 

Kimura was able to calculate the probability of fixation or extinction of an allele for a given 

population size and selection coefficient (Kimura and Ohta, 1969a; Kimura and Ohta, 1969b).  

 

 

1.7 Computer-based studies of population genetics 

 

The variety of computer-based techniques used in the study of population genetics has 

grown significantly as computers have become more powerful. Generally speaking, these 

techniques can be divided into two categories: equation-based modeling, and individual-based 

modeling. 
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  Equation-based modeling is where one represents the population as a set of equations, 

and numerically evaluates the solutions to these equations (Parunak et al., 1998). This is done by 

substituting biologically relevant parameter values into the set of equations to output an answer.  

Since population genetic studies often involve observing changes in allele frequencies over 

successive generations, a popular technique is to iterate a set of equations where each iteration is 

analogous to a generation. A specific version of such iterative methods is a Markov chain. In a 

Markov chain, the state of the population in the next generation only depends on its state in the 

current generation, and that the population transitions from one state to another with a given 

probability. Markov chains are commonly used to observe stochastic effects, such as when the 

population size is small and the effects of drift are important, but are irrelevant when observing 

deterministic effects. 

Individual-based modeling (i.e. individual-based simulations) is where one explicitly 

―creates‖ every individual in order to observe the dynamics of the system as a whole (Judson, 

1994). In this technique, individuals follow certain behavioral rules and interactions, with a built-

in element of randomness. Because of this element of randomness, the population needs to be 

simulated several times before coming to any conclusions. For this reason, individual-based 

modeling is more computationally intensive than equation-based modeling. On the other hand, 

this technique has the advantage of being easier to construct without making simplifying 

assumptions, and can be validated both at the individual level as well as the population level 

(Parunak et al., 1998). 

 

 

1.8 Thesis Objectives and Hypotheses 
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Three key points were made in the literature review: 

1. there is an evolutionary advantage to recombination when the population is in negative 

linkage disequilibrium, 

2. a negative epistatic fitness curve can create such negative linkage disequilibrium, and 

3. we do not have an explanation, a priori, as to why genotypic fitnesses should generally 

be negatively epistatic. 

Peck and Waxman (2000) showed that scramble competition, coupled with resource 

fragmentation, can provide a negative epistatic fitness curve, as well as an advantage to sex and 

recombination, but the effects of contest competition have yet to be determined.  

The objective of this thesis is to explore the relationship between contest competition and 

the maintenance of recombination. Specifically, the questions we are interested in are the 

following: 

 When does contest competition create a negative epistatic fitness curve? 

 Does contest competition create an environment that is beneficial to sexual 

reproduction? 

 Is contest competition part of a plausible explanation for the maintenance of sex? 

The null hypothesis is that intraspecies contest competition will not result in a negative epistatic 

fitness curve. We ask if contest competition could create an environment that is beneficial to 

sexual reproduction which would allow sexual individuals to out-compete asexual individuals.  

We constructed mathematical models and individual-based simulations as a means to 

answering these questions. In chapter 2, we explore the relationship between phenotype, 

competitive selection, and realized fitness in order to discover under what conditions competitive 

selection will result in negative epistasis. Next in chapter 3 we explore the effects of competition 
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over repeated generations to see if selection proceeds more rapidly in a sexual population, and 

we analyze the change in frequency of sexuals when competing with asexuals in a mixed 

population. Finally in chapter 4, we consider different mappings of phenotype onto fitness to 

ensure that our findings are robust.  
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CHAPTER 2 

Here we explore the relationship between phenotype, competitive selection, and realized 

fitness. Specifically, we wish to discover under what conditions competitive selection will result 

in negative epistasis, thus providing an evolutionary advantage to genetic recombination.  

 

 

Quantifying the relationships between genotype, phenotypic value, realized fitness and 

genotype frequencies. 

 

In the classic case of non-competitive selection, the relationship between phenotype and 

fitness is very simple and indeed it is often assumed that the fitness is simply equal to the 

phenotypic value. In a competitive situation, however, an individual‘s fitness is dependent both 

on its own phenotypic value and also on that of its competitor. Thus the fitness of each type 

within the competing population is based on its own phenotypic value, along with the phenotypic 

values of the other types. Since the frequencies of the various types change during the course of 

selection, the fitnesses are frequency dependent in this case.  

 

 

2.1 The relationship between genotype and phenotypic value. 

 

Our first goal was to define the relationship between genotype and phenotype. The 

analysis is limited to two bi-allelic loci, A and B in a haploid population. The two alleles at the 

first locus are labeled a and A, and the two alleles at the second locus are b and B. The frequency 
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of the A allele is p1 and the frequency of the B allele is p2. Assuming initial linkage equilibrium, 

the genotypic frequencies for the four possible genotypes are as follows: 

Genotype             

Frequency                                     

 

For simplicity, we can write:  

           

          
(2.1) 

 

Assuming that the effect of allele A on the phenotype is x and the effect of allele B is y, 

where both x and y > 0, and that the effects are multiplicative between loci, we can write the 

phenotypic values for the four genotypes. 

Genotype             

Phenotypic Value ( )                      

 

The average phenotypic value of a population can be obtained by summing the individual 

phenotypic values, weighted by their frequencies within the population. 

                                                      (2.2) 

As expected, the average phenotypic value increases as the frequency of the   and   

alleles increase in the population (see Figure 2.1.1). From the figure we see, however, that the 

increase is not a linear one. This is because the phenotypic values are multiplicative rather than 

additive. If we plot the values on a multiplicative scale (by the taking the natural logarithm of 

each value, then we see a linear increase (see Figure 2.1.2). On this scale, we also notice that the 

intermediate phenotypic value falls midway between the high and low values.  



36 
 

 

Figure 2.1.1: The relationship between phenotypic value and allele frequency.  

The phenotypic value of each genotype is shown, along with the average phenotypic value. In 

this case, the phenotypic values (V) of each of the four genotypes, ab, Ab, aB and AB are 1, 2, 2 

and 4, respectively. The frequencies of the A and B alleles are shown on the horizontal axis. For 

simplicity, the frequencies of the two high-value alleles, A and B, are equal. Note that although 

the phenotypic values of each genotype are constant, the average phenotypic value increases as 

the frequencies of the A and B alleles increase.   
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Figure 2.1.2: The relationship between phenotypic value (log scale) and allele frequency.  

For a description, see Figure 2.1.1. Note that in this case the horizontal lines representing the 

individual phenotypic values are equidistant and that the average phenotypic value increases 

linearly. 
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2.2 The relationship between phenotypic value and realized fitness. 

 

 Our second goal was to ask specifically if phenotypic values that follow a simple 

multiplicative pattern result in realized fitnesses that are also multiplicative. In this case the 

fitness is based on the outcome of competition between conspecific pairs of individuals. The 

question of whether fitnesses are multiplicative or not is important for our understanding of the 

adaptive role of genetic recombination. 

In our model, individuals compete in pairs, at random. Competitive success is directly 

proportional to the phenotypic value of an individual compared to the phenotypic value of its 

competitor. For example, the probability of success for an individual with a phenotypic value of 

V1 in competition with an individual that has a phenotypic value of V2 is equal to   
  

     
. 

Although the probability of competitive success of an individual is dependent on its 

phenotypic value, it is not equal to it because it also depends on the frequency of the competing 

types.  The competition matrix is shown in Table 2.1.3 and the expected frequencies of the 

various competitive interactions are shown in Table 2.2. By multiplying the values in these two 

Tables, we can estimate the realized fitness of each genotype. 
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Table 2.1.1  Expected outcome of various pairwise competitive interactions. 

 Genotype of competitor 

Genotype             

      

       
 

   

       
 

   

       
 

   

       
 

   
   

       
 

   

       
 

   

       
 

   

       
 

   
   

       
 

   

       
 

   

       
 

   

       
 

   
   

       
 

   

       
 

   

       
 

   

       
 

 

The table shows the probability that an individual with the genotype listed on the left will win in 

competition with a genotype listed across the top.  
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Table 2.1.2  Expected outcome of competitive interactions, expressed in terms of the allelic 

effects,   and  . 

 Genotype of competitor 

Genotype             

    

   
 

 

       
  

 

       
  

 

            
 

   
     

       
  

     

           
 

     

           
   

     

                
 

   
     

       
 

     

           
     

     

           
       

     

                
 

   
          

            
   

          

                
  

          

                
 

          

                     
 

 

In this Table, the phenotypic values are written in terms of the individual allelic effects. 
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Table 2.1.3  Competition Matrix expressed in terms of x and y, gathering some terms. 

 Genotype of competitor 

Genotype             

    

 
 

 

   
 

 

   
 

 

        
 

   
   

   
 

 

 
 

   

     
 

 

   
 

   
   

   
 

   

     
 

 

 
 

 

   
 

   
          

        
 

   

   
 

   

   
 

 

 
 

 

 

 

We can see that the diagonal values are equal to 0.5. This makes sense because an 

individual competing with another individual of the same genotype and phenotype has a 50% of 

winning the competition. If we now add the off-diagonal values in corresponding pairs, we see 

that they all add to 1.0. This also makes sense because an individual‘s chance of winning a 

competition equals the opponent‘s chance of losing. Since these paired values add to 1.0, the 

average value for each off-diagonal pair is 0.5. This means that the average value of all entries in 

the matrix is 0.5. This reflects the fact that if    individuals compete in pairs, there is a total of 

  survivors. 
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Table 2.2  Expected frequency of competitive interactions. 

 Genotype of competitor 

Genotype             

                                                       

                                                       

                                                       

                                                       

 

 

 

 

The competitive success of each genotype is determined by a combination of two factors:  

1. the outcome of specific pairwise competitive interactions, based on the 

genotypically-determined phenotypic values of the pair of competing individuals 

and, 

2. the frequency of each type of interaction. 

Thus we can calculate the genotype proportions after competition by multiplying the competitive 

outcomes shown in Table 2.1.1 by their expected frequencies, shown in Table 2.2 and summing 

for each genotype. This gives the following results. 
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In order to convert these four proportions into genotypic frequencies, they must be 

normalized by dividing by the average survival rate. This equals       where   is the culling 

rate. The culling rate for one full round of pairwise competition is 0.5 because there is only one 

survivor from each competing pair. Thus,           in this case. In general, if the population 

size remains constant, over several generations, the survival rate is necessarily equal to   ⁄ , 

where n is the average number of offspring produced per parent (in this case, the culling rate is 

(1 – 1/n) ).  

Once we have the genotypic frequencies after competition, we can calculate the realized 

fitness of each genotype. The realized fitness of an individual is defined as the number of 

offspring that survive to maturity. Consequently, in the absence of an intervening round of 
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recombination, the realized fitness of a genotypic class of individuals can be calculated as the 

frequency of that genotype after competition, divided by its frequency before competition. 

Thus the realized fitnesses of the four genotypes is as follows: 

   = (Freq.of    genotype after competition) / (Freq.of    genotype before competition) 

   = (Freq.of    genotype after competition) / (Freq.of    genotype before competition) 

   = (Freq.of    genotype after competition) / (Freq.of    genotype before competition) 

    = (Freq.of    genotype after competition) / (Freq.of    genotype before competition) 

Note that the expression for the genotypic proportions after competition contains the 

frequency of that genotype before competition as a common factor. This factor cancels out 

during the calculation of the realized fitness. Therefore, the realized fitness of each of the four 

genotypes is: 
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(2.3) 

 

Substituting with the values shown in Table 2.1.3, we get  
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(2.4) 

 We can now plot the relationship between realized fitness and allele frequency, and 

compare it to the result based on phenotypic values shown in Figure 2.1.1 (see Figure 2.2.1 and 

Figure 2.2.2).  
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Figure 2.2.1: The relationship between realized fitness and allele frequency. 

The realized fitnesses of each genotype (wab, wAb, waB and wAB) are shown, along with the 

average value. The fitnesses were calculated based on the phenotypic values shown in Figure 

2.1.1. The frequency of the A and B alleles is shown on the horizontal axis. Note that the 

genotypic fitness values are frequency dependent, and have higher values when the frequency of 

the A and B alleles is low, and decreases in value as the frequency of the A and B alleles 

increases.  The mean fitness of the population on the other hand (shown by the red line) remains 

constant. 
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Figure 2.2.2: The relationship between the natural log of the realized fitness (ln w) and 

allele frequency. 

For a description, see Figure 2.2.1. Note that, when plotted on a log scale, the fitness values of 

the intermediate genotypes (shown by the green line) are closer in value to the highest fitness 

genotype (shown by the yellow line) than they are to the fitness of the lowest fitness genotype 

(shown by the blue line). The average fitness is shown by the red line. 
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2.3 Calculating the value of epistasis from the realized fitnesses. 

 

Epistasis is a measure of interaction between the genetic effects at different loci. In the 

simplest case, if the effects of alleles at different loci are additive, we say that there is no 

epistasis. In that case, epistasis is a measure of the deviation of the phenotypic values from 

additivity. This is the definition that is usually used in physiological genetics.  

In population genetics, the emphasis is on the genetic effects on fitness rather than the 

effects on a phenotypic value (such height or weight). In practice, the distinction between 

phenotype and fitness is usually overlooked and the phenotypic value is used as a convenient 

proxy for the fitness value. As we show here, however, in the case of competition, phenotype and 

fitness are related, but not identical, measures. 

Epistatic values can be expressed in either an additive or a multiplicative scale. The 

additive scale is normally used for biomedical applications, whereas the multiplicative scale is 

more appropriate in population genetics. This is because the genetic effects on fitness multiply 

over successive generations. 

For the two-locus, two-allele case considered here, the additive measure of epistasis is: 

                   (2.5) 

The multiplicative measure is : 

                           (2.6) 

This is often written as follows. 

     
      

      
 (2.7) 

The value of multiplicative epistasis in the case of competitive selection can be obtained 

by substituting the fitness values from equations (2.4) into this equation. 
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 (2.8) 

Note that the normalizing factor, (1 – c) cancels out. 

The key question for this study is whether the value of   given by this equation is 

negative for all values of    and    between 0 and 1, and for all positive values of   and  . The 

condition of negativity is satisfied if the numerator is less than the denominator. In order to 

evaluate the sign of  , we can simplify and compare the terms in the numerator (     and 

    ) and the denominator (     and     ). First, we write out the four main terms 

separately. 

     
 

 
     

 

   
     

 

   
     

 

        
     

              
            

 
 

        

   
 

        

   
 

    

        
 

     
          

        
     

   

   
     

   

   
     

 

 
     

              
          

        
             

   

   
         

   

   
         

    

 
 

     
   

   
     

 

 
     

   

     
     

 

   
     

             
   

   
             

        

 
 

   

     
         

    

   
 

     
   

   
     

   

     
     

 

 
     

 

   
     

             
   

   
             

   

     
         

        

 
 

    

   
 

(2.9) 

Essentially, we want to show that:                     , or put another way, that 

                   . 

Using Mathematica, we can simplify                   down to the form: 

 
  {                                     

           
 }

                            
 

                              

                             
 

(2.10) 
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We are assuming that   and   are both greater than zero, and that    and    are both 

positive with values between zero and one.  It should be clear that the second term in this 

equation is always positive and the denominator of the first term is also positive. In the 

numerator of the first term, the factor    is also positive. This leaves us to evaluate whether the 

second factor in the numerator of the first term,                             

         
           

 , which we will label  , is also positive. We will prove this by 

breaking it down into four cases. 

1. First, note that   if       and      , then the term                 

would be always non-negative in this case, because neither    nor    can exceed a value of 1. 

Since the other terms are positive,   will also be positive in this case. 

2. Next, let‘s consider the case where      .  

Since         
           

   , 

hence           
  . 

Similarly          
 .  

Then since      , and rearranging the formula above for   as follows,  

            (                   )           
           

  

                         
      

  

      
     

      
      

  

      
             

         

      (because all of the terms are positive given that   and     in this case). 

3. In the case where       and     , 
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    (             
  )      

         

      (because the first term is positive given that       , and the second term is 

positive given that    ). 

4. Finally, in the case where     and      , it can be shown that     similarly to    

3, as    is symmetric with respect to      and     . 

With the value of   being positive, as well as every other factor in the equation of 

                 , we have now proven that the value of   

                    

which means that                    , and that the value of epistasis is negative, that 

is 

    
      

      
    

 

2.4 Calculating epistasis: some numerical solutions. 

 

 Although we have shown that the value of epistasis is negative for all positive values of 

  ,   ,   and  , we still need to estimate the value of epistasis over the parameter space. These 

values are not obvious from the formula itself but we calculate them for given parameter values.  

For example, in the simple case where the allele frequencies at both loci are 0.5 and the 

phenotypic effects of both the A and B alleles are equal to 1, then: 
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In this case,  

    
              

          
 

           

Figures 2.3-2.6 show the value of epistasis over a wide range of the parameter space. We 

find that the degree of epistasis is more pronounced when the selected alleles have larger 

phenotypic effects (see Figure 2.5). We also find that for any given effect of allele A, increasing 

the effect of allele B produces more negative epistasis, and vice-versa. Figure 2.6 shows that the 

value of epistasis is highest when the frequencies of both alleles are equal to each other, and 

lowest when their frequencies are at their most divergent (i.e. when one allele‘s frequency 

approaches 1, and the other‘s frequency approaches 0). Finally, it can be seen from Figures 2.3 

and 2.4 that the phenotypic effects of the A and B alleles are a major factor in determining the 

value of epistasis, while the frequencies of these alleles are a relatively minor factor.  This is 

especially the case when the phenotypic effects of the A and B alleles are small (i.e. less than 1). 

In this case, the value of epistasis is essentially frequency independent.    
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Figure 2.3: The relationship between the value of epistasis (multiplicative) and allele 

frequency. 

The value of epistasis is shown on the vertical axis, and the frequency of the A and B alleles is 

shown on the horizontal axis.  For simplicity, the frequencies of the high-value alleles, A and B, 

are equal; the effect of these alleles on the phenotype, x and y (respectively), are also equal; and 

the genotypic frequencies are in linkage equilibrium.  Three lines are drawn: where the effects on 

the phenotype are equal to 0.5, 1, and 2. Note that the value of epistasis is less than zero in all 

cases. For small phenotypic effects, the value of epistasis is not frequency dependent.   
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Figure 2.4:  The relationship between the value of epistasis (multiplicative scale), 

phenotypic effect, and allele frequency. 

The value of epistasis is shown on the vertical axis, while the frequency of the A and B alleles 

(Allele Frequency) and the effect of these alleles on the phenotype (Phenotypic Effect) are 

shown on the other two axes. For simplicity, the frequencies of the selected alleles, A and B, are 

equal; the effects of these alleles on the phenotype, x and y (respectively), are also equal; and the 

genotypic frequencies are in linkage equilibrium. Note that the value of epistasis is always 

negative, and the absolute value of epistasis increases with increasing phenotypic effect. 
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Figure 2.5:  The relationship between the value of epistasis (multiplicative), and phenotypic 

effects. 

The value of epistasis is shown on the vertical axis, and the phenotypic effects of the A allele (x) 

and the B allele (y) are shown on the other axes.  For simplicity, the frequencies of all four alleles 

are equal to 0.5, and the population is in linkage equilibrium. The graph shows how the value of 

epistasis changes when the phenotypic effects of the A allele and the B allele are not necessarily 

equal to each other. 
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Figure 2.6:  The relationship between the value of epistasis (multiplicative scale), and the 

frequencies of the A and B alleles. 

The value of epistasis is shown on the vertical axis, and the frequencies of the A allele and the B 

allele are shown on the other axes.  For simplicity, the phenotypic effects of the A and B alleles 

are both equal to 1; and the population is in linkage equilibrium.  The graph illustrates the change 

in the value of epistasis when the frequencies of the A and B alleles are not necessarily equal to 

each other.  
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2.5 The effect of initial linkage disequilibrium on the value of epistasis. 

 

So far we have looked at the value of epistasis when the population is initially in linkage 

equilibrium. We will now examine the change in the value of epistasis when the population is 

initially in linkage disequilibrium. 

Numerically, the extent of linkage disequilibrium is often given a value, D, which is the 

difference between the observed and expected frequency of a genotype (Robbins 1918). 

                 (2.14) 

 In the two-locus bi-allelic system described above, the value of D can also be expressed with the 

following equation (see Appendix 1 for the derivation).  

                                     (2.15) 

An alternate equation used to express the value of linkage disequilibrium is known as Z 

(Felsenstein, 1965). 

 
    

                

                
 

(2.16) 

Note that D and Z always have the same sign, and both are equal to zero when there is 

linkage equilibrium. The two statistics differ in their range of values. D has a maximum range of 

-0.25 to 0.25, but its range decreases as the frequencies of the A and B alleles deviate from 0.5. In 

contrast, Z always has a range of -∞ to +∞. See Appendix 3 for more information on the 

relationship between D and Z. We use both measures of linkage disequilibrium for the analysis in 

this section. 

Equations (2.4) give the realized fitnesses of each genotype when the population is 

initially in linkage equilibrium. Note that equations (2.4) express the frequency of each genotype 
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in terms of its allelic frequencies. If we substitute the genotype frequencies into the fitness 

equations, they become 
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(2.17) 

From Appendix 1, we know that the frequencies of each genotype can be expressed in terms of 

the population‘s allelic frequencies, and the value of D. 

                 

                

                

                

(2.18) 

Substituting these values into (2.17) gives the following fitness equations. 
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(2.19) 
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Here we estimate the value of epistasis over the parameter space   ,   ,  ,   and  . We 

have already proven that when D=0, the value of epistasis is always negative. The question is 

whether the value of epistasis will remain negative when the population is not in linkage 

equilibrium.  

Our approach was to analyze the resulting value of epistasis over a wide range of fixed values of 

  ,   ,   and  ; while changing the value of D. In other words, we fixed the frequencies of the A 

and B alleles and their respective allelic effects, and varied the value of the initial linkage 

disequilibrium over its entire range. This was done repeatedly at different fixed values to provide 

an extensive coverage of the parameter space. 

We also analyzed the results in terms of Z as our metric of linkage disequilibrium. By 

knowing the frequencies of the A and B alleles and the value of D, we can obtain the genotypic 

frequencies using equations (2.18). And by knowing the genotypic frequencies, we can obtain 

the value of Z using equation (2.15). We find that the results are easier to obtain in terms of D, 

but the trends are more apparent in terms of Z. 

For all the parameter values we tested, the result was always negatively epistatic. The 

results clearly show that a higher value of initial linkage disequilibrium results in a value of 

epistasis closer to zero (see Figures 2.7-2.10). In can also be seen that phenotypic effects play a 

greater role in determining the value of epistasis than initial linkage disequilibrium does (see 

Figure 2.7 and 2.9). When the phenotypic effects of the A and B alleles are small (i.e. less than 

1), initial linkage disequilibrium does little to change the value of epistasis.  Finally, we observe 

that initial linkage disequilibrium has a greater power to change the value of epistasis when the 

allelic frequencies of A and B are close 0.5 (See Figures 2.8 and 2.10). 
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Figure 2.7:  The relationship between the initial value of linkage disequilibrium (D), and 

the value of epistasis with different phenotypic effects. 

The value of epistasis is shown on the vertical axis, and the initial value of linkage 

disequilibrium is shown on the horizontal axis. For simplicity, we assume that the frequencies of 

all four alleles are initially 0.5; and that the effects of the A and B alleles on the phenotype, x and 

y, are equal. Three lines are drawn to show the change in the value of epistasis with different 

values of the phenotypic effects, x and y: where they are both equal to 0.5, where they are both 

equal to 1, and where they both equal 2.  Note that an increase in initial linkage disequilibrium 

increases the value of epistasis, but that the value of epistasis is always negative.  Also note that 

increasing the phenotypic effects decreases the value of epistasis.  
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Figure 2.8: The relationship between the initial value of linkage disequilibrium (D), and the 

value of epistasis with different frequencies of the A and B alleles. 

The value of epistasis is shown on the vertical axis, and initial value of linkage disequilibrium is 

shown on the horizontal axis. For simplicity, we assume that the frequencies the A and B alleles 

are initially equal; and that their respective effects on the phenotype, x and y, are equal to 1. 
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Figure 2.9:  The relationship between the initial value of linkage disequilibrium (Z), and 

the value of epistasis with different phenotypic effects. 

For a description, see Figure 2.8. Z is used to quantify linkage disequilibrium in this case instead 

of D. 
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Figure 2.10:  The relationship between the initial value of linkage disequilibrium (Z), and 

the value of epistasis with different frequencies of the A and B alleles. 

For a description, see Figure 2.9. Z is used to quantify linkage disequilibrium in this case instead 

of D. Note that the value of epistasis has a greater range when the allele frequencies are close to 

0.5. 
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2.6 The effect of negatively-epistatic fitnesses on genotype frequencies. 

 

Now that we have shown that intraspecies competition results in negatively-epistatic 

fitnesses, our next goal was to determine how these fitnesses affect genotype frequencies. 

Specifically, we want to know if the resulting genotype frequencies after selection are in 

negative linkage disequilibrium, and how their frequencies will be altered through random 

mating and free recombination.  

As stated in section 2.2, the frequency of each genotype post-competition can be 

expressed as follows: 
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(2.20) 

where           is the frequency of the ab genotype after competition, and similarly for the 

other genotypes 

We observed the value of linkage disequilibrium both after competition and after random 

mating with free recombination over a wide range of parameter values. When beginning in 

linkage equilibrium, we found that competition always caused the genotype frequencies to 

become in negative linkage disequilibrium (see Figures 2.11 and 2.12). The values of linkage 

disequilibrium (D and Z) are most negative with strong phenotypic effects of the A and B alleles, 

with Z being more resilient to changes in allele frequencies. It is also worth noting that the value 

of Z after selection is equal to the value of ɛ when the population begins in linkage equilibrium 

(Felsenstein, 1965). 
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By knowing the frequencies of each genotype post-competition, we can determine the value of D 

using equation (2.15), and we can determine the value of Z using equation (2.16). 

 With random mating and free recombination following competition, the genotype 

frequencies change as follows (see Appendix 2 for the derivation):  

                         

                        

                        

                        

(2.21) 

where            is the frequency of the ab genotype after recombination, and           is the 

frequency of the ab genotype before recombination, and similarly for the other genotypes. We 

can determine the values of D and Z after recombination by once again plugging the genotype 

frequencies into equations (2.15) and (2.16), respectively.  

From Figures 2.11 and 2.12, we can see that the value of D is halved after random mating 

with free recombination (see Appendix 2), while Z is approximately halved. Because the 

population is in negative linkage disequilibrium after selection, recombination has the effect of 

bringing the population closer to linkage equilibrium. This increase in the value of linkage 

disequilibrium, indirectly, means that phenotypic and fitness variances are increased when 

individuals freely recombine. 
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Figure 2.11:  The relationship between the value of linkage disequilibrium (D) after 

selection, and allele frequency. 

The value of D is shown on the vertical axis, while the frequencies of the A and B alleles after 

selection (Allele Frequency) are shown on the horizontal axes. For simplicity, the frequencies of 

the A and B alleles are assumed to be equal, and the population is initially in linkage equilibrium. 

Two lines are plotted: the blue line describes the change in the value of D at different allele 

frequencies of A and B when there is no recombination (r=0), while the red line describes the 

change in the value of D if individuals can recombine freely (r=0.5). Note that the value of D is 

always negative, and has a minimum value when the allele frequencies are equal to 0.5. 
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Figure 2.12:  The relationship between the value of linkage disequilibrium (Z) after 

selection, and allele frequency. 

For a description, see Figure 2.11.  Z is used to quantify linkage disequilibrium in this case 

instead of D.  Note that the value of Z is far less frequency dependent than the value of D, and 

that when there is no recombination (r=0), the value of Z is equal to the value of epistasis (see 

Figure 2.3 where x=y=1). 
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2.7 The effect of genetic recombination on the phenotypic mean and variance. 

 

We have shown that a population initially in linkage equilibrium will be in negative 

linkage disequilibrium after competition. The value of negative linkage disequilibrium will be 

halved following a round of random mating with free recombination. Here we discuss how this 

change in the genotype frequencies affects the mean and variance of the phenotypic values.  

We obtain the genotype frequencies after competition with equations (2.20), and their 

frequencies following a round of random mating with free recombination using equations (2.21). 

At each of point in time we can compute the mean by summing the individual phenotype values, 

weighted by their frequencies within the population. 

                                                      (2.22) 

Similarly, we can obtain the variance of the phenotypic values by summing the squared 

difference between the each genotype‘s phenotypic value and the phenotypic mean, weighted by 

its frequency within the population. 

                          
                    

  

                                      
                    

  
(2.23) 

 We computed the phenotypic mean and variance following both competition and random 

mating over a large region of the parameter space. In all cases tested, we found that the mean is 

slightly increased following a round of random mating, and the increase is greatest when the 

frequencies of the A and B alleles are close to 0.5 (see Figures 2.13 and 2.14). As might be 

expected, given that the population is in negative linkage disequilibrium, the phenotypic variance 

is increased after free recombination (see Figure 2.15). This increase is greatest at intermediate 

frequencies of the A and B alleles.  
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Figure 2.13:  The relationship between the phenotypic mean after selection and mating, 

and allele frequency. 

The phenotypic value of each genotype is the same as shown in Figure 2.1.1, and the frequency 

of the A and B alleles is shown on the horizontal axis. Two lines are plotted: when there is no 

recombination after selection (r=0), and when there is free recombination (r=0.5). Note that the 

mean phenotype after recombination is slightly higher than when there is no recombination. 
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Figure 2.14:  The relationship between the difference in the phenotypic mean between free 

recombinants and non-recombinants, and allele frequency. 

For a description, see Figure 2.13. The difference is calculated as the mean phenotype following 

random mating with free recombination minus the mean phenotype without recombination. Note 

that the difference is greater than zero over all allele frequencies. 
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Figure 2.15:  The relationship between phenotypic variance and allele frequency. 

The phenotypic value of each genotype is the same as in Figure 2.1.1, and the frequency of the A 

and B alleles is shown on the horizontal axis. Two lines are plotted: when there is no 

recombination after selection (r=0), and when there is free recombination (r=0.5). Note that the 

variance is greater with free recombination. 
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2.8 The effect of genetic recombination on fitness. 

 

With both the phenotypic mean and variance being increased when individuals randomly 

mate and freely recombine, we next studied how these changes affect the mean and variance of 

fitness in the following generation. 

We have previously derived the genotypic fitness values when beginning in linkage 

equilibrium in equations (2.4). We then determined the genotype frequencies following 

competition using equations (2.20). These frequencies will not change when individuals 

reproduce in the absence of recombination, as each genotype has the same mean family size. 

When randomly mating with free recombination, however, the genotype frequencies change 

according to equations (2.21). Therefore, the genotype frequencies before competing in the next 

generation are known both in the presence and absence of free recombination. We then 

determine the genotype fitnesses, now that their frequencies are out of linkage equilibrium, using 

equations (2.17).  

Whether freely recombinant or non-recombinant, we can compute the mean fitness by 

summing the individual fitness values, weighted by their frequencies within the population. This 

gives 

                                                      (2.24) 

Similarly, the variance of fitness is calculated by summing the squared difference between each 

genotype‘s fitness and the mean fitness, weighted by its frequency within the population, that is 

                          
                    

  

                                      
                    

  
(2.25) 

As expected, given that the population size is held constant before and after selection, the 

mean fitness both with and without free recombination is equal to 1 (see Figure 2.16). However, 
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the variance of fitness is slightly higher when individuals freely recombine (see Figures 2.17 and 

2.18). The variance of fitness increases with increasing phenotypic effects of the A and B alleles, 

and when the frequencies of these alleles are close to 0.5. 
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Figure 2.16:  The relationship between the mean fitness and allele frequency. 

The mean fitness of the population is shown when individuals either do not recombine (r=0), or 

recombine freely (r=0.5). The frequency of the A and B alleles is shown on the horizontal axis. 

In all cases, whether freely-recombinant of non-recombinant, the mean fitness of the population 

is equal to 1. 
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Figure 2.17:  The relationship between the variance of fitness and allele frequency. 

The variance in fitness is shown when individuals are either non-recombinant (r=0), or 

recombine freely (r=0.5). The genotypic fitnesses were calculated based on the phenotypic 

values in Figure 2.1.1. The frequency of the A and B alleles is shown on the horizontal axis. Note 

that the variance in fitness is higher with recombination. 
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Figure 2.18:  The relationship between the variance of fitness and allele frequency when the 

allele frequencies are close to being equal. 

For a description, see Figure 2.17. This Figure highlights the region where the allele frequencies 

are close to 0.5. The increase in the variance of fitness with free recombination is clearly visible. 
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2.9 Epistasis at the phenotypic level. 

 

We have shown that multiplicative effects (a.k.a. non-epistatic) on the phenotype result in 

negative epistasis at the level of fitness. However, phenotypic effects are not always 

multiplicative. When phenotypic effects are less than multiplicative, we say that there is negative 

epistasis at the phenotype level; and when the effects are more than multiplicative, we say that 

there is positive epistasis at the phenotype level. In this section, we study how epistatic effects at 

the phenotype level affect the value of epistasis at the fitness level.  

To show this relationship, we extend our previous model to allow for a deviation from 

multiplicative effects on the phenotype. We introduce a variable,  , that only affects the 

phenotypic value of the AB genotype.  

Genotype             

Phenotypic Value ( )                        

 

Note that when   is equal to 0, there is no epistasis at the phenotype level; when   is negative, 

there is negative epistasis; and when   is positive, there is positive epistasis. 

 To illustrate how epistasis at the phenotype level affects epistasis at the fitness level, we 

will assume that both x and y are equal to 1, and that   equals either -1, 0, 0.5, or 1. The possible 

phenotypic values of the four genotypes are summarized in the table below. 
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Table 2.3  The possible phenotypic values of the four genotypes. 

Genotype             

Phenotypic Value ( ) 1 2 2 3 

 1 2 2 4 

 1 2 2 4.5 

 1 2 2 5 

 

Note that the phenotypic effects are additive in the first row of the table where VAB equals 3. 

We insert these phenotypic values into equations (2.3) to obtain the fitness values when 

beginning with a population in linkage equilibrium. By knowing these values, we can determine 

the value of fitness level epistasis. 

 Figure 2.19 shows the results in all four cases of the table above. Overall, we generally 

find that there is negative epistasis at the fitness level. This result is robust to a wide array of 

phenotypic effects. In order for intraspecies competition to cause positive epistasis, there needs 

to be strong positive epistasis at the phenotype level, coupled with the A and B alleles occurring 

at high frequencies. Compared to when phenotypic effects are multiplicative, the value of fitness 

level epistasis is increased when there is positive phenotype level epistasis; and the value of 

fitness level epistasis is decreased when there is negative phenotype level epistasis. These 

changes are most pronounced when the frequencies of the A and B alleles are close to fixation. 
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Figure 2.19: The relationship between the value of epistasis (fitness level), allele frequency, 

and phenotypic epistasis. 

The frequency of the A and B alleles is shown on the horizontal axis, and the value of epistasis at 

the fitness level is shown on the vertical axis. For simplicity, we assume that Vab=1, VAb and VaB 

are equal to 2, and the population is initially in linkage equilibrium. When VAB=3, there is 

negative epistasis at the phenotype level (and additive phenotypic effects); when VAB=4, there is 

no epistasis at the phenotype level; and when VAB =4.5 or 5, there is positive epistasis at the 

phenotype level. Note that the value of epistasis at the fitness level is almost always negative. 
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2.10 Discussion 

 

Together, the results presented here show that intraspecific pairwise competition 

generates negative epistasis at the level of realized fitness. Intraspecies competition generates 

negative epistasis regardless of the phenotypic effects and frequencies of the selected alleles 

(provided that their effects are multiplicative), and regardless of the initial genotype frequencies. 

This result also holds true when the phenotypic values on which the competition is based are 

themselves multiplicative; less than multiplicative; and to an extent, more than multiplicative. It 

is especially interesting to note that positive epistasis at the phenotypic level can translate into 

negative epistasis at the fitness level. 

We have mainly focused on the case where the population is initially in linkage 

equilibrium, as this is the expected state of a population having undergone random mutations in 

the absence of selection. The only times we noticed that the population may not be in negative 

linkage disequilibrium following selection is when beginning in strongly positive linkage 

disequilibrium, or when phenotypic effects are strongly positively epistatic. In all other cases, 

recombination acts to reduce the negative linkage disequilibrium that results from the negatively 

epistatic fitnesses which are generated by competition. Recombination increases the phenotypic 

mean and variance, increases the variance of fitness, but does not affect the mean fitness of the 

population. An increase in the genetic variance of fitness, as stated by Fisher (1930), increases 

the efficiency of natural selection. Therefore, recombination can be advantageous when 

individuals compete, as it accelerates the rate of evolution. 

A key feature of our model is that although the probability of competitive success is 

dependent on the competitive ability of an individual it is not equal to it. Rather, it is determined 

by the relationship between the competitive ability of the individual itself and that of its 
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competitor. And since the frequency of the genotypes changes during the course of the selection 

process, the average competitive success of a given type also changes in a frequency dependent 

manner. As pointed out by Milkman (1973), in a competitive selection situation, the phenotype 

represents the fitness potential rather than the fitness itself. In addition, although the phenotypic 

values are unconstrained, the realized fitnesses that arise from them as a result of intraspecific 

competition are constrained. For example, in a population of fixed size living at the carrying 

capacity, the average realized fitness is by definition equal to 1. This reflects the fact that, 

overall, in a closed system competitive gains by one type must be offset by competitive losses by 

other types. As stated by Darwin ―a plant which annually produces a thousand seeds, of which on 

an average only one comes to maturity, may be more truly said to struggle with the plants of the 

same and other kinds which already clothe the ground‖. In other words, Darwin saw natural 

selection as a zero sum game where the number of surviving offspring is no greater than the 

number of parental individuals, and where competition between conspecific individuals plays a 

crucial role. This is in contrast to many population genetics models that assign fixed fitnesses to 

genotypes which then implicitly engage in replication races during which less fit types are 

diluted out by fitter types rather than being selectively culled from the population.  

We have shown that competitive selection creates a situation that could be beneficial to 

individuals that recombine their genotypes. It should be noted, however, that this conclusion is 

based on an analysis that is limited to a single generation. While we have shown that intraspecies 

competition will most often cause negative epistasis, it remains to be seen to what extent this 

might affect the evolution of sexually recombinants over many generations.   
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CHAPTER 3 

 

In the previous chapter, we explored the effects of intraspecies competition in an 

evolutionary context, but limited our analysis to a single generation. By varying the initial 

conditions, we have shown that intraspecies competition generally results in negative epistasis at 

the fitness level. This provides a potential evolutionary advantage to sex and recombination. In 

should be noted, however, that natural selection is not a single generation process.  

In this chapter, we explore the effects of competition over repeated generations to see 

how this might affect the evolution of sexual reproduction. Specifically, we wish to know if 

recombination allows the selected alleles to increase in frequency at a faster rate. If this is the 

case, then there is a clear advantage to sexual reproduction, as it would mean that sexuals can 

evolve at a faster rate than asexuals when under competitive selection.  

 

 

Iterating competitive selection over several generations. 

 

In this chapter, we explore the effects of intraspecies contest competition over repeated 

generations. Specifically, we wish to find an answer to the following questions: 

1. Does negative epistatic fitness persist generation-over-generation? 

2. Do the selected alleles increase in frequency at a faster rate in a sexual population? 

3. Does intraspecies competition allow sexual individuals to increase in frequency when 

competing in a mixed population? 
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We begin by assuming that the selected alleles have an initially low frequency, and over 

several generations, they rise to become fixed in the population. We model a population that is 

either entirely asexual, or entirely sexual and freely recombinant. In both cases, we examine the 

changes in the value of epistasis generation-by-generation, and observe how this affects the 

genotype frequencies. We then investigate how these factors influence the rate at which the 

selected alleles increase in frequency. Finally, we analyze the change in the frequency of sexuals 

when competing with asexuals in a mixed population. 

 

 

3.1 Modeling an asexual or sexual population over several generations. 

 

Our first goal was to model the changes in genotypic frequencies generation-over-

generation as the frequencies of the A and B alleles increase in the population. In chapter 2, we 

derived the change in the frequencies of each genotype under competition (with multiplicative 

effects on the phenotype), as follows: 
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(3.1) 

where Freq(ab) is the frequency of the ab genotype before competition, x is the effect of allele A 

on the phenotype, y is the effect of allele B on the phenotype, c is the cull rate, and Freq(ab)’ is 

the frequency of the ab genotype after competition, and similarly for the frequencies of the other 

genotypes. 
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 In this section, we consider the cases where either the entire population is asexual, or the 

entire population is sexual and recombines freely. We assume that the reproductive method has 

no effect on an individual‘s family size, or competitive ability. We have also assumed, as in 

chapter 2, that genotype has no effect on family size. In an asexual population, the offspring of a 

parent are genetic clones of that parent. Therefore, the genotypic frequencies of the offspring are 

expected to have the same frequencies as their parents. 

 In a sexually recombinant population, however, this will not often be the case. As stated 

in Appendix 2, the genotypic frequencies of the offspring are expected to change as follows with 

random mating and free recombination:  

                         

                        

                        

                        

(3.2) 

where Freq(ab)’ is the frequency of the ab genotype among the parents, D is the value of linkage 

disequilibrium among the parents, and Freq(ab)’’ is the frequency of the ab genotype among the 

offspring, and similarly for the frequencies of the other genotypes. 

Putting the pieces together, we can determine the genotypic frequencies at each point in 

time in an asexual population by iterating equation (3.1) once per generation, and we can 

determine the frequencies in a sexual population by iterating equation (3.1) followed by equation 

(3.2). Therefore, we can determine the frequencies at any point in time provided that we know 

the genotypic frequencies at time 0, and their phenotypic values. 

 

 

 



85 
 

3.2 The change in fitness epistasis, and linkage disequilibrium over several generations. 

 

In this section, we examine the changes in the value of epistasis and linkage 

disequilibrium generation-over-generation in both sexual and asexual populations. The key 

questions for this study are whether the values of epistasis and linkage disequilibrium generally 

remain negative in each generation.  

We begin by assuming that the A and B alleles have initially low frequencies within the 

population. We further assume that the population is initially in linkage equilibrium as this is the 

expected state of the population when exposed to random mutations in the absence of selection. 

The populations were modeled until the frequencies of the A and B alleles had become fixed, 

with the values of epistasis, D, and Z being computed in each generation.   

We computed these values over a large range of the parameter space, with the initial 

frequencies of the A and B alleles beginning below 0.5. In all cases, we found that the value of 

epistasis remains negative over every generation. The value of epistasis changes very little as the 

frequencies of the selected alleles increase in the population (see Figure 3.1), likely because 

allelic frequencies are a small factor in determining the value of epistasis (see Figure 2.4). 

Because the fitness values are negatively epistatic in each generation, the genotypic 

frequencies change to build up large amounts of negative linkage disequilibrium in an asexual 

population (see Figures 3.2 and 3.3). In a sexually recombining population however, 

recombination acts to increase the value of linkage disequilibrium, bringing its value closer to 

zero. The value of D is most negative when the frequencies of the A and B alleles are close to 

0.5, as this is when D has the largest value range (see Figure 3.2). The range in values of Z, on 

the other hand, is less frequency dependent. Figure 3.3 shows that the value of Z in an asexual 

population continually builds up negative linkage disequilibrium. Z decreases by the value of 
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epistasis in every generation (see Figure 3.3). When individuals recombine freely, however, the 

value of Z quickly levels off to a constant periodic fluctuation (see Figure 3.4). This is because 

the value of Z decreases following competition by the value of epistasis in that generation. 

Following random mating with free recombination, however, the value of Z is approximately 

halved. These two values are of equal and opposite sign when the value of Z after competition is 

equal to -2 . Regardless of the type of measurement, there is a far greater build-up of negative 

linkage disequilibrium in an asexual population than in a sexual population. 
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Figure 3.1: The change in the value of epistasis over successive generations. 

The change in the value of epistasis is shown when either the population does not recombine 

(r=0) or recombines freely (r=0.5). In this case, the frequencies of the A and B alleles have 

initial values of 0.01, the population is beginning in linkage equilibrium, and the phenotypic 

values are the same as in Figure 2.1.1. Generations are shown on the horizontal axis, and are 

counted until the frequencies of the A and B alleles have risen to fixation. The value of epistasis 

is relatively constant when individuals are sexual and recombine freely. When individuals do not 

recombine, the value of epistasis lowers slightly when the genotype frequencies are in strong 

negative linkage disequilibrium (D) (see Figure 3.2). Note that in both cases, there is negative 

epistasis in every generation.  
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Figure 3.2: The change in the value of linkage disequilibrium (D) over successive 

generations. 

The initial genotype frequencies and phenotypic values are the same as described in Figure 3.1. 

Generations are shown on the horizontal axis, and are counted until the frequencies of the A and 

B alleles have risen to fixation. The change in the value of D is shown when either the population 

does not recombine (r=0) or recombines freely (r=0.5). Linkage disequilibrium remains negative 

as the selected alleles rise to become fixed in the population.  The value of D is most negative 

when the allele frequencies are close to 0.5.  Note that the value of D accumulates less linkage 

disequilibrium when individuals freely recombine. 
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Figure 3.3: The change in the value of linkage disequilibrium (Z) over successive 

generations. 

For a description, see Figure 3.2. In this case, linkage disequilibrium is plotted using the value of 

Z instead of D. The value of Z is plotted twice per generation: after competition, and after 

random mating. Linkage disequilibrium remains negative as the selected alleles rise to become 

fixed in the population. Note that when individuals cannot recombine, the value of Z decreases in 

every generation by the value of epistasis. When individuals recombine freely, however, the 

value of Z quickly levels off to a constant periodic fluctuation. 
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Figure 3.4: The change in the value of linkage disequilibrium (Z) over successive 

generations in a population that recombines freely. 

For a description, see Figure 3.3. Here we plot the value of Z twice per generation in a sexually 

recombinant (r=0.5) population: once after selection, and again after recombination. The value of 

Z decreases after selection by the value of epistasis in that generation, and is then halved through 

the action of recombination. This results in a periodic fluctuation in the value of Z. 
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3.3 Comparing the increase in frequencies of the selected alleles in recombinant and non-

recombinant populations. 

 

We have shown that the genotypic fitnesses will be negatively epistatic in each 

generation as the selected alleles increase in frequency in the population. This results in an 

asexual population that is increasingly in negative linkage disequilibrium. In a sexually 

recombinant population, however, there is far less buildup of negative linkage disequilibrium. 

Here we discuss how these changes in the genotype frequencies affect the increase in frequencies 

of the A and B alleles in both sexual and asexual populations.  

We begin by assuming, as in section 3.2, that the A and B alleles have frequencies that are 

initially below 0.5, and that the population is initially in linkage equilibrium. The sexual and 

asexual populations were modeled until the frequencies of the selected alleles became fixed. We 

track the frequencies of the A and B alleles, and the frequency of the AB genotype, comparatively 

between sexual and asexual populations. We then ran individual-based simulations with the same 

initial parameters to validate the results. Simulations were run with a population size of 100 000 

individuals. 

Both in the numerically expected results, and in the individual-based simulations we find 

that the frequencies of the A and B alleles increase at a faster rate in a sexual population than in 

an asexual population (see Figure 3.5). The difference in frequencies is most pronounced when 

the A and B alleles begin at very low frequencies, and have strong effects on the phenotype.  In 

both the numerically expected results, and the individual-based simulations we also find that the 

frequency of the AB genotype (i.e. the strongest competitor) increases at a faster rate in the 

sexual population (see Figure 3.6). When comparing sexuals and asexuals, it is worth noting that 
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there is a greater disparity between the increase in frequency of the AB genotype than between 

the increase in frequencies of the A and B alleles (see Figures 3.5 and 3.6). 

Taken together with the results in section 3.2, we find that competition creates a negative 

epistatic fitness curve that persists generation-over-generation. This results in a build-up of 

negative linkage disequilibrium in an asexual population. There is a reduced build-up in a sexual 

population with random mating and free recombination. Thus, recombination increases the 

phenotypic and fitness variance generation-over-generation, as can be noticed by the greater 

frequency of the AB genotype in the sexual population. This increases the action of selection, 

allowing for the A and B alleles to increase in frequency at a faster rate in a sexual population.  
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Figure 3.5: The change in the frequency of the selected alleles over successive generations. 

The frequencies of the A and B alleles are shown on the vertical axis in two different scenarios: 

when all individuals do not recombine (r=0), or recombine freely (r=0.5). The initial parameters 

are the same as in Figure 3.1, and generations are counted until the frequencies of the A and B 

alleles are fixed in the population. The numerically expected changes of frequency - in both 

cases - is shown with a solid line, and were validated by running 10 simulation runs under the 

same initial parameters. The dots and whiskers show the mean  1 standard error from the 

simulation runs, respectively. Note that the frequency of the selected alleles increases at a faster 

rate with recombination.  
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Figure 3.6: The change in the frequency of the AB genotype over successive generations. 

For a description, see Figure 3.4. In this case, the frequency of the AB genotype is plotted instead 

of the frequency of the selected alleles. Both the numerical and simulated results show that the 

frequency of the AB genotype increases at a faster rate with recombination. When comparing 

recombinant and non-recombinant cases, note that there is a greater disparity between the 

frequencies of the AB genotypes than between the frequencies of the selected alleles (see Figure 

3.5). 
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3.4 Competing sexuals and asexuals. 

 

In the last section, we showed that the frequency of the selected alleles will increase in 

frequency at a faster rate in a sexually recombinant population than in an asexual population. In 

this section, we explore how this might affect the frequency of sexual individuals when 

competing with asexuals in a mixed population. Specifically, we wish to know if the frequency 

of sexuals will increase as the frequency of the selected alleles rises to become fixed in the 

population. 

Competition is modeled as before, with reproductive method having no effect on 

competitive ability. This means that the competitive ability of an AB genotyped individual, for 

example, is the same whether reproducing sexually or asexually. Let Freq(AB,s) denote the 

frequency of AB genotyped individuals that reproduce sexually, and Freq(AB,a) denote the 

frequency of AB genotyped individuals that reproduce asexually. The frequency of all 

individuals with the AB genotype is therefore Freq(AB,a)+ Freq(AB,s). We can express the total 

frequencies of all four genotypes as follows:  

                                

                               

                               

                               

(3.3) 

These equations simplify how to express the frequencies of each type of interaction since all 

individuals with the same genotype have the same competitive ability. The frequency of each 

genotype post-competition can be expressed as follows: 
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where             and              denote the frequency of ab genotyped individuals after 

competition that are asexual and sexual, respectively, and similarly for the other genotypes. Note 

that the fitnesses of sexuals and asexuals with the same genotype are equal.  

 The survivors from competition then go on to reproduce. The sexual individuals mate 

randomly with each other and freely recombine, and the asexual individuals clone themselves. 

The frequencies of sexuals and asexuals do not change from parents to offspring as the mean 

family size of both reproductive methods is the same. The frequencies of the asexual genotypes 

also do not change among the offspring, but the sexual genotypes can. As stated in Appendix 2, 

the genotypic frequencies change from parent to offspring in a purely sexual population as 

follows: 

                         

                        

                        

                        

(3.5) 

where Freq(ab)’ and Freq(ab)’’ are the frequencies of the ab genotype among parents and 

offspring, respectively, and similarly for the other genotypes; and D is the value of linkage 

disequilibrium among the parents. In a mixed population, however, not all individuals are sexual. 
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We multiply these values by the frequency of sexuals in the total population to get the 

frequencies of each sexual genotype. After some simplification, they can be expressed as 

follows: 

 
                         

  

         
 

                         
  

         
 

                         
  

         
 

                         
  

         
 

(3.6) 

where Freq(s)’ is the frequency of all sexual parents; Freq(ab,s)’ and Freq(ab,s)’’ are the 

frequencies of sexual parents and offspring with the ab genotype, respectively, and similarly for 

the other genotypes; and  

Ds=Freq(ab,s)’Freq(AB,s)’-Freq(Ab,s)’Freq(aB,s)’.  

We calculated the expected frequency change of sexual individuals in a mixed population 

-when beginning in linkage equilibrium- over a wide range of the parameter space, and validated 

the results with individual-based simulations with a total population size of 100 000. We 

considered cases where phenotypic effects are multiplicative, negatively epistatic, as well as 

positively epistatic. We find that the frequency of sexuals generally increases as the selected 

alleles rise to become fixed in the population (see Figures 3.7 and 3.8). The increase is most 

pronounced when the frequencies of the selected alleles are initially low, and phenotypic effects 

are strong. Even when there is positive epistasis at the phenotype level, the frequency of sexuals 

will still often increase (see Figure 3.8). There needs to be very strong positive epistasis at the 

phenotype level (i.e.          ) for the frequency of sexuals to decrease over the course of 

selection.   
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Figure 3.7: The change in frequency of sexuals in a mixed population with multiplicative 

phenotypic effects. 

The initial parameters are the same as in Figure 3.1 with one exception: the population is initially 

half sexually recombinant (r=0.5), and half asexual. Reproductive method has no effect on 

competitive ability. Generations are shown on the horizontal axis, and are counted until the 

frequencies of the A and B alleles have risen to fixation. The numerically expected frequency of 

sexuals is shown with a solid line, and was validated by running 10 simulation runs under the 

same initial parameters. The results are plotted showing the mean  1 standard error. Note that 

both the expected and simulated results show that the sexuals increase in frequency. 
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Figure 3.8: The change in frequency of sexuals in a mixed population with positive 

phenotypic epistasis. 

For a description, see Figure 3.7. In this case, the phenotypic values of the four genotypes Vab, 

VAb, VaB, VAB, are 1, 2, 2 and 5, respectively. The numerically expected frequency of sexuals is 

shown with a solid line, and was validated by running 10 simulation runs under the same initial 

parameters. The results are plotted showing the mean  1 standard error. Note that both the 

expected and simulated results show that the sexuals increase in frequency, but the increase is 

expected to be less than with multiplicative effects on the phenotype (see Figure 3.7). 
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3.5 Discussion 

 

We have found that intraspecies competition creates a negative epistatic fitness curve that 

persists generation-over-generation. This results in a build-up of negative linkage disequilibrium 

in an asexual population, which is alleviated in a sexual population through random mating and 

free recombination. There is a greater frequency of AB genotyped individuals among sexual 

offspring, which subsequently, are more likely to survive competition. Therefore, the frequencies 

of the selected alleles increase at a faster rate among sexuals than among asexuals. Sexual 

individuals increase in frequency at the expense of asexuals when competing in a mixed 

population. The increase is greatest when the frequencies of the selected alleles are initially low, 

and their phenotypic effects are strong. We found this to be the case when phenotypic effects are 

negatively epistatic, non-epistatic, and even somewhat positively epistatic.  

While most previous models have focused on selection at the level of fertility and 

fecundity, our model focuses explicitly on viability selection. Although there is relatively little 

experimental information available on the relative importance of viability and fertility in 

determining fitness in nature, a study by Fincke and Hadrys (2001) indicated that fertility can be 

a poor predictor of overall fitness in insects, suggesting instead that larval survival was the major 

component. 

Taken together, the results suggest that intraspecies competition may help explain the 

maintenance of sex. Most studies that have attempted to determine the mean level of epistasis 

within a species have done so using fitness values when raised in the absence of competition 

(Peck and Waxman, 2000; de Visser et al. 2007; Kouyos et. al., 2007). Our results suggest that 

including competitive interactions into such experiments will alter the results, enough to have a 

significant impact on their conclusions related to the advantages of sexual reproduction. We have 
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shown that a sexual population‘s competitive ability increases at a faster rate, allowing it to 

increase over generations in a mixed population. In should be noted however, that competitively 

advantageous alleles need to be continually under selection in order for sex to be maintained. 

Therefore, one might predict that the levels of sex would be higher among K-strategist species 

than they are among r-strategists. We would further predict that the levels of sex should increase 

among facultative sexual reproducers when forced to compete with one another, as this would 

constitute an advantageous evolutionary strategy.  

We have shown that there is an advantage to sexual reproduction, and we have done so 

by mapping phenotype onto competitive ability onto fitness. Other mappings are quite possible, 

however, and it can be argued that a different mapping of phenotype onto fitness may give 

results that favour asexual reproduction. Therefore, it should be shown that these results are 

robust before going any further.   
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CHAPTER 4 

So far, we have shown that contest competition favours the maintenance of sex when the 

phenotypically stronger competitor has odds of winning that are directly proportional to 

phenotypic values. However, this is not the only mapping that can be made of phenotype onto 

fitness.  

In this chapter, we look into a different mapping of phenotype on fitness, specifically, 

where the stronger individual always wins. Our objective in this section is to provide robustness 

to our claim that contest competition favours the maintenance of sex. 

 

 

The maintenance of sex when competitive ability is not proportional to phenotypic value 

 

There are many different ways of mapping phenotype onto competitive ability. Having 

competitive ability proportional to phenotypic value is only one of them. For this reason, we 

wish to show that other mappings can also generate negative epistasis and allow for the 

maintenance of sex. It seems intuitive to believe that either individual has a chance of winning 

when the two competitors have closely matched phenotypes. But when they are not so closely 

matched, one can predict the winner with certainty. Therefore, we will now explore a 

relationship between phenotype and competitive ability that is not proportional, in that the 

stronger competitor always wins.   

First, we develop a genotypic model where the stronger competitor always wins. Next, 

we show that the values of epistasis and linkage disequilibrium are negative and frequency 

dependent. We then compare the frequency increases of competitively advantageous alleles in 
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both sexual and asexual populations to show that the advantageous alleles increase at a faster rate 

in the sexual population. Finally, we observe a mixed population of sexual and asexual 

individuals under competitive selection to show how the sexual individuals increase in 

frequency. These results have been published in the Journal of Heredity (Ackerman et al., 2010). 

As in the previous chapters, an individual‘s competitive ability is dependent both on its 

own phenotypic value and also on that of its competitor. An individual is guaranteed to win if its 

competitor has a weaker phenotype, and guaranteed to lose if its competitor has a stronger 

phenotype.  Since the frequencies of the various types change in the course of selection, the 

fitnesses are still frequency dependent in this model.  

 

 

4.1 Modeling an asexual or sexual population when the stronger competitor always wins. 

 

We assume a 2-locus, diallelic, haploid population of competing individuals with 

genotypes ab, Ab, aB, and AB. We further assume that the A and B alleles both equally increase 

the value of the phenotype (V), and that the AB genotype has the highest phenotypic value of the 

four genotypes. Therefore  

                       (4.1) 

Generations are discrete and non-overlapping. At the beginning of a generation, each 

individual (N total) produces excess offspring, after which the population is halved through 

random pairwise competition. We assume that each genotype has the same fecundity, meaning 

that the genotypic frequencies of the offspring are expected to equal that of their parents. When 

competing, the individual with the higher phenotypic value always wins the competition, while 

the loser is removed from the population. When both individuals have equal phenotypic values, 
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they both have equal probabilities of winning. The table below summarizes the outcome of every 

possible type of pairwise competition. 

 

 

 

Table 4.1  Expected outcome of competitive interactions. 

 Genotype of competitor 

Genotype             

   0.5 0 0 0 

   1 0.5 0.5 0 

   1 0.5 0.5 0 

   1 1 1 0.5 

The table shows the probability that an individual with the genotype listed on the left will win in 

competition with a genotype listed across the top. 

 

 

The competitive success of each genotype is once again determined by both the outcome 

of specific competitive interactions (which are genotypically-determined by the phenotypes of 

the competitors), and the frequency of each type of interaction. Thus, we can calculate the 

genotype proportions after competition by multiplying the competitive outcomes shown in Table 

4.1 by their expected frequencies, and then summing for each genotype. In order to convert these 

four proportions into genotypic frequencies, they must be normalized by dividing by the average 
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survival rate, which is equal to 0.5 as there is only one survivor per competing pair. Therefore, 

the genotypic frequencies following competition can be expressed as follows: 
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(4.2) 

where Freq(ab) is the frequency of the ab genotype among the parents, and Freq(ab)’ is the 

frequency of their surviving offspring. The frequencies of the other genotypes are similarly 

defined. Note that many of the terms in equations (4.2) are equal to zero, and that the sum of the 

genotypic frequencies among the parents is equal to 1. By removing the null terms and 

simplifying, we get  
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(4.3) 

Once we have the genotypic frequencies after competition, we can calculate the realized 

fitness of each genotype. As we did in chapter 2, the realized fitness of a genotypic class of 

individuals is calculated as the frequency of that genotype after competition, divided by its 

frequency before competition. Thus, the realized fitnesses of the four genotypes are as follows: 
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(4.4) 
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After canceling out common factors, the equations simplify to 

             

                        

                        

               

(4.5) 

As in the previous chapters, we will let p1, q1, p2 and q2 represent the allelic frequencies of A, a, 

B, and b, respectively. When the population is initially in linkage equilibrium, the fitness 

equations (4.5) can be expressed in terms of their allele frequencies as follows  

         

                

                

           

(4.6) 

We can now plot the relationship between the realized fitness and allele frequency when 

the population is initially in linkage equilibrium. As can be seen in Figure 4.1, the genotypic 

fitnesses are heavily frequency dependent. Note that the fitnesses of the AB and ab genotypes are 

only dependent on their own frequencies. This makes sense as AB genotyped individuals can 

only lose a competition against their own genotype, while ab genotyped individuals can only win 

against their own genotype. Furthermore, the middle types (Ab and aB) are more likely to win 

their competitions and have higher fitness values when mainly competing against weaker 

individuals (i.e. with the ab genotype), and have lower fitness values when mainly competing 

against stronger individuals (i.e. with the AB genotype). 
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Figure 4.1: The correlation between realized fitness and allele frequency when the total 

number of surviving offspring is constrained to equal the total number of parents.  

The expected realized fitnesses of the individual genotypes were calculated as a function of their 

own frequency and that of other genotypes in the population of competing offspring using 

equations (4.6), where wAB represents the fitness of the AB genotype, etc. among the competing 

offspring. See text for an explanation of the formulas. 
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4.2 Frequency-dependent changes in epistasis and linkage disequilibrium. 

 

We will now examine the values of epistasis and linkage disequilibrium at different allele 

frequencies when initially in linkage equilibrium. The key question for this study is whether the 

value of epistasis is negative for all values of    and    between 0 and 1, that is 

     
      

      
   (4.7) 

The condition of negativity is satisfied if the numerator is less than the denominator. In order to 

evaluate the sign of  , we will begin by substituting the fitness equations (4.6) into the above 

formula for the value of epistasis. Therefore, we have to show that 

 
  

            

              
   (4.8) 

This can be re-written as 

                           
    (4.9) 

If we substitute the fact that q1  = 1 - p1, and q2 = 1 - p2 into the above equation, and then 

simplify, we get that 

        
        

                     (4.10) 

It should be clear that every factor in the above equation has a positive value for values of 

p1 and p2 between 0 and 1, meaning that every term has a negative value. Therefore, the value of 

epistasis will always be negative. Figure 4.2 shows the value of epistasis when the frequencies of 

the A and B alleles are equal to each other. As with when the stronger competitor has better odds 

of winning, epistatic effects at the fitness level were caused by competitive selection itself, 

despite the lack of epistasis at the phenotypic level. The resulting realized fitness of each 

genotype is the result of an interaction between the fitness potential and the frequency of other 



109 
 

competing genotypes in the population. It is the nonlinear mapping of fitness potential onto 

realized fitness that produces negative epistasis. This is why it is possible to have non-epistatic 

effects at the phenotypic level, but epistasis at the realized fitness level.  

Now that we have shown that intraspecies competition results in negatively epistatic 

fitness when the strongest competitor always wins, our next goal was to determine if the 

resulting genotype frequencies after selection are in negative linkage disequilibrium. 

Furthermore, we would like to know how their frequencies will be altered through random 

mating and free recombination.  

As stated in section 4.1, the frequency of each genotype post-competition can be 

expressed as follows: 

                    

                  (                   ) 

                  (                   ) 

                  (          ) 

(4.11) 

With random mating and free recombination following competition, the genotype frequencies are 

expected to change as re-stated below:  

                         

                        

                        

                        

(4.12) 

where            is the frequency of the ab genotype after recombination, and           is the 

frequency of the ab genotype before recombination, and similarly for the other genotypes. We 

can determine the values of D and Z after recombination by once again plugging the genotype 

frequencies into equations (2.15) and (2.16), respectively.  
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Figure 4.2: The correlation between epistasis and allele frequency, based on the realized 

fitness values shown in Figure 4.1. 

The value of epistasis was calculated using equation (4.7), with the frequency of the A and B 

alleles plotted on the x-axis. Note that the fitness values that go into the calculation of epistasis 

are themselves changing in a frequency-dependent manner as shown in Figure 4.1. 
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From Figures 4.3 and 4.4, we can see that linkage disequilibrium is increased following 

random mating and free recombination, regardless of how it is measured. This increase in the 

value of linkage disequilibrium, indirectly, means that phenotypic and fitness variances are 

increased when individuals freely recombine. 
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Figure 4.3:  The relationship between the value of linkage disequilibrium (D) after selection 

and random mating, and allele frequency. 

The value of D is shown on the vertical axis, while the frequency of the A and B alleles after 

selection is shown on the horizontal axis. For simplicity, the frequencies of the A and B alleles 

are assumed to be equal, and the population is initially in linkage equilibrium. Two lines are 

plotted: the blue line describes the change in the value of D when there is no recombination 

(r=0), while the red line describes the change in the value of D if individuals can recombine 

freely (r=0.5). Note that the value of D is always negative, and has a minimum value when the 

allele frequencies are equal to 0.5. 
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Figure 4.4: The relationship between the value of linkage disequilibrium (Z) after selection, 

and allele frequency. 

For a description, see Figure 4.3.  Z is used to quantify linkage disequilibrium in this case instead 

of D.  Note that the value of Z increases with free recombination, and is correlated to frequency-

dependent epistasis (see Figure 4.2). 
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4.3 Comparing the increase in frequencies of the selected alleles in recombinant and non-

recombinant populations. 

 

Our next goal was to determine whether or not competitively advantageous alleles 

increase at a faster rate in a sexual population than in an asexual population, provided that the 

stronger phenotype always wins their competition.  

The sexual and asexual populations were modeled with the frequencies of the A and B 

alleles being initially equal in both populations, and the genotype frequencies in linkage 

equilibrium. Generations were computed by iterating equations (4.11) when the population is 

asexual, and (4.11) followed by (4.12) when the population is sexual. We track of the 

frequencies of the A and B alleles, and the frequency of the AB genotype, comparatively between 

sexual and asexual populations until the selected alleles became fixed. We then ran individual-

based simulations with the same initial parameters to validate the results. Simulations were run 

with a population size of 10 000 individuals. 

The individual-based simulations gave results that were in strong agreement with the 

expected frequencies. Compared to when the stronger competitor has better odds of winning (see 

Figures 4.6 and 3.6), these results show the same trend but with less variance between runs. The 

simulations that included a round of recombination resulted in a more rapid fixation of the 

selected alleles, A and B; as well as of the doubly favored genotype, AB (see Figures 4.5 and 

4.6). The advantage of recombination is that it reduces the negative linkage disequilibrium that 

builds up in response to the negatively epistatic competitive selection (see Figure 4.2). 
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Figure 4.5: The change in the frequency of the selected alleles over successive generations. 

The frequency of the A and B alleles is shown on the vertical axis in two different scenarios: 

when all individuals do not recombine (r=0), or recombine freely (r=0.5). The frequency of the A 

and B alleles is initially 0.1, and the population is in linkage equilibrium. Generations are 

counted until the frequencies of the A and B alleles are fixed in the population. The numerically 

expected change of frequency - in both cases - is shown with a solid line. Both results were 

validated by running 5 simulations under the same initial parameters, and are shown using dotted 

lines. Note that the frequency of the selected alleles increases at a faster rate with recombination. 
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Figure 4.6: The change in the frequency of the AB genotype over successive generations. 

For a description, see Figure 4.5. In this case, the frequency of the AB genotype is plotted instead 

of the frequency of the selected alleles. Both the numerical and simulated results show that the 

frequency of the AB genotype increases at a faster rate with recombination. 

  



117 
 

4.4 Competing sexuals and asexuals. 

 

The fact that fixation of the selected alleles occurs faster in the recombining population 

suggests that sexual strains would be at an advantage in a mixed population. We tested this 

prediction directly by simulating mixtures of sexual and asexual individuals within a single 

population, provided that the stronger phenotype always wins. Specifically, we want to know if 

the frequency of sexuals will increase as the frequency of the selected alleles rise to become 

fixed in the population. 

Competition is modeled as before, with reproductive method having no effect on 

competitive ability. Let Freq(AB,s) denote the frequency of AB genotyped individuals that 

reproduce sexually, and Freq(AB,a) denote the frequency of AB genotyped individuals that 

reproduce asexually. The frequency of all individuals with the AB genotype is therefore 

Freq(AB,a)+ Freq(AB,s). Continuing this for all four genotypes, we get that:  

                                

                               

                               

                               

(4.13) 

These equations simplify how to express the frequencies of each type of interaction since 

all individuals with the same genotype have the same competitive ability. The frequency of each 

genotype post-competition can be expressed as follows: 
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(4.14) 
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                      (                   ) 

                      (                   ) 

                      (          ) 

where Freq(ab,a)' and Freq(ab,s)' denote the frequency of asexual and sexual ab genotyped 

individuals after competition, respectively, and similarly for the other genotypes. Note that the 

fitnesses of sexuals and asexuals with the same genotype are equal.  

 The survivors from competition then go on to reproduce. The sexual individuals mate 

randomly with each other and freely recombine, and the asexual individuals clone themselves. 

We assume that reproductive method has no effect on the mean family size. Therefore, the 

frequencies of the asexual genotypes are not expected to change among the offspring. The sexual 

genotypes, on the other hand, are expected to change frequencies as follows (see section 3.4 for 

the derivation): 

 
                         

  

         
 

                         
  

         
 

                         
  

         
 

                         
  

         
 

(4.15) 
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where Freq(s)’ is the frequency of all sexual parents post-competition; Freq(ab,s)’ and 

Freq(ab,s)’’ are the frequencies of sexual parents and offspring with the ab genotype, 

respectively, and similarly for the other genotypes; and Ds=Freq(ab,s)’Freq(AB,s)’-

Freq(Ab,s)’Freq(aB,s)’.  

We calculated the expected frequency change of sexual individuals in a mixed population 

-when beginning in linkage equilibrium- over a wide range of the parameter space, and validated 

the results with individual-based simulations with a total population size of 10 000. We find that 

the frequency of the sexual type does indeed increase during the course of competitive selection 

(see Figure 4.7). Compared to when the stronger competitor has better odds of winning (see 

Figure 3.7), the increase in the frequency of sexuals is greater, especially when phenotypic 

effects are small. 
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Figuer 4.7: The increase in the frequency of sexual individuals in a mixed population.  

See Figure 4.5 for a description. Rather than simulating either entirely sexual or entirely asexual 

populations, here we initiated the simulation with a mixture of types: 10% sexuals and 90% 

asexuals. The Figure shows that the frequency of the sexuals increased during the course of the 

simulation. The results for 5 replicate simulations are shown with red lines, and the numerically 

expected result is shown with a black dashed line. The population size for each replicate was    

10 000 individuals which produced 20 000 competing offspring each generation.  
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4.5 Discussion 

 

We have found that both when the stronger phenotype has better odds of winning, or 

wins outright, intraspecies competition creates a negative epistatic fitness curve. This changes 

the genotype frequencies to build-up negative linkage disequilibrium, which is alleviated in a 

sexual population through random mating and free recombination. In both mappings of 

phenotype onto competitive ability, the frequencies of the selected alleles increase at a faster rate 

among sexuals than among asexuals. This allows the sexual individuals to increase in frequency 

when competing in a mixed population. 

Compared to when competitive success is directly proportional to phenotypic value, these 

results show the same trends, but are more extreme: genotypic fitnesses are more frequency-

dependent (especially for the intermediate genotypes, compare Figure 4.1 to Figure 2.2.1), 

epistatic values are more negative, there is even stronger negative linkage disequilibrium, and 

sexual individuals show a greater increase in frequency under the same initial parameters. There 

is a mathematical reason for this, as when phenotypic advantages become very large, the 

proportional model asymptotically converges towards having the stronger competitor always win 

(Compare Table 4.1 to Table 2.1.3 where x=y  ∞ ). Thus these results  show frequency-

dependent epistatic effects, as is the case when phenotypic advantages are strong and the 

stronger competitor has better odds of winning.  

We have shown that sexually recombinant individuals will be selected for under contest 

competition under a variety of mappings of phenotype onto fitness. Other mappings are still 

plausible, however, and it can be argued that perhaps not all mappings will give negative 

epistatic results and favour sexual reproduction. That being said, it is promising that these two 

intuitive mappings do give negative epistatic results. Our findings strengthen the argument that 
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competitive selection‘s ability to generate a negative epistatic fitness curve is more likely the rule 

as opposed to the exception. These results combined with those from the previous chapters help 

strengthen the argument that competition can explain the maintenance of sex. Under a variety of 

mappings of phenotype onto fitness, sexual reproduction allows a species to evolve at a faster 

rate.  
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CHAPTER 5 

 

General Discussion 

 

Kondrashov (1982) proposed that if alleles do not contribute multiplicatively to fitness, 

but instead display a negative epistatic fitness curve, then sex will be advantageous because it 

increases the mean fitness of the population. However, there is no a priori reason to believe that 

fitness values should generally be negatively epistatic, as opposed to positive or zero. 

Furthermore, the experimental evidence has not been very supportive. A recent database analysis 

of functional interactions in Saccharomyces cerevisiae found that a deviation from multiplicative 

effects on the phenotype acts as the best predictor of an underlying functional relationship (Mani 

et al., 2008). Therefore, if we assume a direct relationship between phenotype and fitness (a 

frequent assumption, see Lewontin, 1974), this suggests that zero epistasis is the ideal null 

hypothesis. Some authors have recently published encouraging results for the presence of 

negative epistatic fitness by directly measuring the relative fitness of a small set of genotypes 

(Chou et al., 2011; Khan et al., 2011). However in general, current reviews suggest that there is 

no strong experimental support to back up this claim (de Visser et al. 2007, Kouyos et al., 2007).  

Kondrashov (1988) later argued that if the genomic rate of deleterious mutations, U, is 

greater than 1 in most species, then we can extrapolate that most allelic interactions must be 

negatively epistatic or the mutation load will be too large. Experimental results have not 

consistently supported the assumption that U is generally greater than 1 (de Visser et al. 2007). 

Furthermore, long term experiments in Chlamydomonas reinhardtii in a benign environment 
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have found that sexual populations do not evolve to have a greater mean fitness (Renaut et. al., 

2006).    

This lack of evidence in support of ubiquitous negatively epistatic fitness has led some 

researchers to propose alternative methods of how fitness interactions can promote the 

maintenance of sex. One approach has been to embrace the variance in types of fitness 

interactions in the hopes that the negatively epistatic ones will have a greater impact on the 

maintenance of sex than the positively epistatic ones. This approach has given results that 

generally favour an asexual mode of reproduction (Otto and Feldman, 1997). Another tactic has 

been to look at genotypic fitness interactions at multiple loci, and hope that the evolutionary path 

that is taken on such a rugged fitness landscape will favour the maintenance of sex. This 

approach might be considered more promising than the former, but so far the theoretical results 

have been mixed. Otto et al. (1994) found that recombination slows the crossing of a fitness 

valley, but accelerates the ascent to the peak once that valley is crossed. Kondrashov and 

Kondrashov (2001) found a general disadvantage of sex using individual-based simulations on a 

fitness landscape allowing for two-dimensional epistasis and no local fitness maxima. Later, 

Watson and Wakeley (2005) modified this landscape to allow for multi-dimensional epistasis and 

found conditions where sex does provide an advantage. However, simulations of the specific 

fitness landscapes found in Aspergillus niger favour asexual reproduction (Arjan et al., 2009).  

Experimental attempts to determine fitness have –generally speaking– not been done in a 

competitive scenario (Peck and Waxman, 2000). Fitness assays are often accomplished by 

growing each strain against an identifiable reference strain in a replication-race (Chou et al., 

2011; Khan et al., 2011). This methodology allows for the direct measurement of relative fitness 

under ideal conditions, but the focus is on fertility selection as opposed to viability selection. In 
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this study, we argue that the observed level of epistasis will change depending on the growth 

conditions, with negative epistasis being more likely to be found in competitive environments.   

We have developed a model to look exclusively at the effects of viability selection when 

competing for limited resources. Assuming contest competition in Chapter 2, we showed that 

multiplicative phenotypic effects give genetic fitness values that are frequency-dependent.  In 

spite of these changes in the fitnesses of individual genotypes, the mean fitness of the population 

remains constant and equal to 1. During competitive selection, the lowest fitness genotype was 

more adversely affected than its phenotype might suggest. Consequently, there will be negative 

epistasis at the fitness level even though there is no epistasis at the phenotype level. We have 

shown that, when beginning in linkage equilibrium, there will always be negative epistasis at the 

level of fitness for all phenotypic values; and we showed numerically that this is also true when 

the population is initially in linkage disequilibrium: be it positive, or negative.  

Table 5.1 summarizes various views of the relationship between phenotypic value, 

absolute fitness (usually assumed to be simply equal to the phenotypic value), relative fitness 

(where all genotypic fitnesses are normalized relative to the genotype with the maximum 

fitness), and realized fitness due to pairwise competition (which is used in this study). The Table 

shows how the absence of epistasis at the phenotypic level results in a corresponding lack of  

epistasis at the fitness level when fitness is measured either as absolute fitness or relative fitness. 

But a lack of epistasis at the phenotypic level still results in  negative epistasis at the level of 

realized fitness when  we consider pairwise competition.   
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Table 5.1: The relationship between different measures of fitness, assuming equal 

genotypic frequencies. 

Genotype Phenotypic value Absolute fitness Relative fitness Realized Fitness 

   2 2 0.25 0.683 

   4 4 0.50 1 

   4 4 0.50 1 

   8 8 1.00 1.317 

Average fitness 4.5 0.5625 1 

Multiplicative epistasis 0 0 -0.106 

 

In this Table, the frequencies of the four genotypes are assumed to be equal to ¼. 

 

Not only did we find there to be a negative epistatic fitness curve with multiplicative 

effects at the phenotype level, but we also found this to be true when phenotypic effects are 

additive, when there is negative epistasis at the phenotype level, and to an extent, when there is 

positive phenotypic epistasis. In general, we found that the population will almost always be in 

negative linkage disequilibrium after selection, over all allele frequencies. 

Tables 5.2.1-5.2.3 summarize how these fitness values change when phenotypic values 

are not multiplicative. Positive epistasis at the phenotype level has the effect of increasing the 

mean absolute fitness, while at the same time decreasing the mean relative fitness (compare 

Tables 5.2.1 and 5.2.2to 5.1). When there is negative phenotypic epistasis, the effects are the 

opposite: the mean absolute fitness decreases while the mean relative fitness increases (see Table 

5.2.3). However, the mean fitness is always equal to 1 with pairwise competition. Furthermore, 

we can see that the value of epistasis at the fitness level is the same in both absolute and relative 

terms. But this is not the case with pairwise competition. The range of epistatic values is 
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dampened, and more importantly, is slightly depressed (see Table 5.2.2 and 5.2.3). 

Consequently, there is almost always negative epistasis at the fitness level when individuals 

compete. Very strong positive epistasis at the phenotype level is required for there to be positive 

epistasis at the fitness level. 

 

Table 5.2.1: The relationship between different measures of fitness, assuming equal 

genotypic frequencies, and positive epistasis 

Genotype Phenotypic value Absolute fitness Relative fitness Realized Fitness 

   2 2 0.2 0.667 

   4 4 0.4 0.976 

   4 4 0.4 0.976 

   10 10 1.0 1.381 

Average fitness 5 0.5 1 

Multiplicative epistasis 0.223 0.223 -0.034 

 

 

 

Table 5.2.2: The relationship between different measures of fitness, assuming equal 

genotypic frequencies, and strong positive epistasis 

Genotype Phenotypic value Absolute fitness Relative fitness Realized Fitness 

   2 2 0.167 0.655 

   4 4 0.333 0.958 

   4 4 0.333 0.958 

   12 12 1.0 1.429 

Average fitness 5.5 0.458 1 

Multiplicative epistasis 0.405 0.405 0.018 
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Table 5.2.3: The relationship between different measures of fitness, assuming equal 

genotypic frequencies, and negative epistasis 

Genotype Phenotypic value Absolute fitness Relative fitness Realized Fitness 

   2 2 0.333 0.708 

   4 4 0.667 1.033 

   4 4 0.667 1.033 

   6 6 1.000 1.225 

Average fitness 4 0.667 1 

Multiplicative epistasis -0.288 -0.288 -0.207 

 

 

In the presence of recombination following contest competition, the amount of linkage 

disequilibrium among loci is reduced, bringing the population closer to linkage equilibrium. This 

has the effect of increasing the mean phenotype, as well as the phenotypic variance. More 

importantly, recombination increases the variance of genotypic fitness in the population, which 

strengthens the action of natural selection.  

In Chapter 3, we showed that negative epistatic fitness persists generation-over-

generation when competing, regardless of the rate of recombination within the population. We 

focused primarily on a population that is initially in linkage equilibrium, as this is the expected 

state of a population exposed to random mutations in the absence of selection. Over successive 

generations, the amount of negative linkage disequilibrium builds up when not recombining.  

However, this accumulation is alleviated when recombination is present. The build-up of 

negative linkage disequilibrium reduces the genotypic variance in the population, which hinders 

selection. We have shown that the frequencies of the selected alleles increase at a faster rate 

when recombining, and consequently, so does the frequency of the strongest phenotype. 
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Therefore, sexual individuals will increase in frequency when competing with asexuals. The only 

cases where sex is not advantageous are when 1) the population is initially in strong positive 

linkage disequilibrium, and the selected alleles are close to fixation, or 2) when phenotypic 

effects show considerable positive epistasis. Both of these cases are more likely the exception 

than the rule in nature. The selective advantage of recombination is strongest when there is a 

large difference in competitive ability between genotypes, and when the selected alleles are 

initially rare. 

In Chapter 4, we showed that these results are not specific to a single mapping of 

phenotype onto competitive ability. When the stronger phenotype always wins, we find that there 

is always negative epistasis at the fitness level, and we find that this causes negative linkage 

disequilibrium in the population following selection. Consequently, the stronger phenotypes go 

to fixation at a faster rate when recombining than without, and allows sexual individuals to 

increase in frequency when competing against asexual individuals in a mixed population. 

This model is a form of rank order selection: where fitness is determined by the ranking 

of the organism‘s phenotype relative to those of the rest of the population (Milkman, 1973). The 

results of these localized competitions give rise to a form of truncation selection: where the 

individuals that fail to make a certain phenotypic cutoff are culled from the population. The 

weakest individuals are unable to compete, and consequently have very low fitness values. 

Meanwhile, individuals with phenotypes that do make the cutoff win their competitions, and 

have high fitness values. Therefore, as is the case with a direct analysis of truncation selection, 

we expect to find negative epistatic fitness (Crow and Kimura, 1978). 

Taken together, the results suggest that contest competition should create a negative 

epistatic fitness curve, even if there isn‘t negative epistasis at the phenotype level. Under a 
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variety of competitive mappings of phenotype onto fitness, it is expected that individual 

competition causes negative epistasis at the fitness level. These results provide an a priori reason 

why allelic interactions at the fitness level should generally follow a negative epistatic fitness 

curve, which is considered to be a missing link in the negative epistatic fitness hypothesis for the 

maintenance of sex. Our models show that the majority of phenotypic interactions should 

produce fitness level epistasis for a variety of mappings of phenotype onto fitness, regardless of 

the frequencies of the selected alleles, and regardless of the initial genotype frequencies. It is 

especially worth noting that positive epistasis at the phenotype level can translate into negative 

epistasis at the fitness level. 

In the classical Wright-Fisher model of natural selection, it is assumed that an 

individual‘s fitness is completely determined by its genotype. While this is an important element 

of natural selection, in the words of Richard Lewontin (1974) ―population genetics, is an 

essential ingredient, but it is not the entire soup‖ of evolutionary theory. In practice, it has long 

been understood that selection is affected by a multitude of factors. For example, modelers of 

population growth often see selection as being composed of the Malthusian growth rate, which 

has a genetic component; and the carrying capacity of the environment, for which the genetic 

component is less clear (Verhulst, 1838). Modelers of intraspecies selection further differentiate 

the type of selection, as it can be dependent on either the population density, or the current 

frequencies of other genotypes in the population (Wallace, 1975).  To complicate things more, 

ecologists also find causes of selection in host-parasite interactions, external environmental 

changes (Benton, 2009), levels of predation, etc.  

Our model focuses on a type of frequency-dependent selection, which is implicitly 

density-dependent as there are assumed to be more offspring than there are resources to 
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accommodate them. Our model is similar to the frequency-dependent matrix-game model 

described by Yi and Lessard (2000); with the distinction that we are dealing with a 2-locus 

haploid organism instead of a 1-locus diploid organism. Wallace (1975) has referred to this 

particular kind of selection as soft selection: where the most competitive genotypes tend to 

survive, while other comparatively weaker genotypes are eliminated from the population. 

Interestingly, the value of epistasis should then be expected to change depending on the 

dominant form of selection: with no epistasis being favoured when selection is mainly hard, and 

negative epistasis when selection is mainly soft. 

Our hypothesis that sex can be maintained during contest competition was shown to be 

theoretically plausible. We expect that competitively advantageous alleles will increase in 

frequency at a faster rate within a sexual population than within an asexual population.  This 

allows the frequency of sexual individuals to increase generation-over-generation when 

competing in a mixed population.   

This being said, there is still work to be done to solidify the theory. While we have shown 

that there is an evolutionary advantage to sexual reproduction during contest competition, so far, 

we have only shown the case where the contest is a one-on-one. While this is likely to be the 

most frequent form of contest competition, it is not the only form. One can imagine an 

individual-based ―soup model‖ similar to the one presented here where in each contest, three 

individuals are randomly chosen from the population to compete, or four individuals, or some 

other number.   

The full power of this theory‘s ability to explain the maintenance of sex has yet to be 

shown, as it remains to be seen how much more sexuals will be favoured when selection is 

taking place at many loci. Most recombination-oriented hypotheses require that many loci to be 
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under selection in order to overcome the so-called ―two-fold cost of sex‖, or selection needs to 

be very strong (Kondrashov, 1982; West et al., 2001; Keightley and Otto, 2006).  

If we extend our analysis to three loci (see Appendix 4 for the derivation of pairwise 

fitness values, and epistasis with three loci), we can see that there is a greater range of genotypic 

fitness values. The value of pairwise epistasis is slightly dampened, but the difference is equal to 

the value of 3-loci epistasis (compare Table 5.1 to Table 5.3).  Therefore, when many loci are 

under selection, we can expect to find pairwise negative epistasis, as well as higher-order 

negative epistasis. 

 

Table 5.3: The relationship between different measures of fitness, assuming equal 

genotypic frequencies, with three loci. 

Genotype Phenotypic value Absolute fitness Relative fitness Pairwise competition 

    2 2 0.125 0.553 

    4 4 0.25 0.842 

    4 4 0.25 0.842 

    4 4 0.25 0.842 

    8 8 0.5 1.158 

    8 8 0.5 1.158 

    8 8 0.5 1.158 

    16 16 1.00 1.447 

Average fitness 6.75 0.422 1 

Pairwise  epistasis between A and B 0 0 -0.096 

Pairwise  epistasis between B and C 0 0 -0.096 

Pairwise  epistasis between A and C 0 0 -0.096 

Higher-order epistasis between A, B and C 0 0 -0.010 
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Doncaster et al. (2000) showed that under ecological conditions of population growth and 

competition, the two-fold cost of sex is almost never two-fold. Sexuals can resist invasion from 

an asexual defector, provided that their intrinsic growth rate is sufficiently high. Interestingly, it 

would appear that ecological conditions both reduce cost of sex, while at the same time increase 

the advantages of sexual reproduction. It would be interesting to determine the minimum amount 

of selection required to overcome the two-fold fertility cost when multiple loci are under 

selection. 

Finally, the complete analysis of a theory that attempts to explain the maintenance of sex 

should address two issues: first is to show that sexuals are favoured over asexuals, and second is 

to show that a modifier allele that increases the recombination rate is favoured within a sexual 

population (Otto and Lenormand, 2002). So far we have shown the former, but not the latter.  

Sexual reproduction can occur with a variety of different recombination rates per chromosome, 

but the advantage we have shown only exists when the two processes are coupled. 

Recombination is not always selected for within a sexual population. For instance, Barton‘s 

(1995) analysis of an infinite population found that recombination will only be favoured if the 

value of epistasis fluctuates in sign every few generations, or if there is weak negative epistasis. 

In a finite population, Barton and Otto (2005) found that recombination will be selected for when 

the population size is small (i.e. less than 10 000) and there is tight linkage between the 

recombinant modifier locus and the selected locus (i.e. a recombination rate less than 10 cM). 

But with larger population sizes and looser linkage, as is the case in humans and many other 

species, the advantage quickly goes to zero.   It remains to be seen under what conditions 

recombination rates will tend to increase when sexuals compete.  
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Our results are consistent with those of Peck and Waxman (2000) who found that 

scramble competition (i.e. when a resource is equally or unequally shared between competitors) 

can also cause a negative epistatic fitness curve when competing in small groups. They further 

showed that this allows sexuals to be selected for when competing with asexuals in a mixed 

population. Taken together, these results suggest that intraspecies competition of any kind will 

allow for the maintenance of sex, as scramble and contest competition make up the whole of 

intraspecies competition. However, the fate of a modifier allele is still unclear when individuals 

compete.  

The theory that intraspecies competition causes negatively epistatic fitness is not the only 

ecological theory that attempts to explain the maintenance of sex. The Tangled Bank hypothesis 

(Bell, 1982) proposes that sex is advantageous when the environment is constantly changing, and 

the Red Queen hypothesis (Hamilton, 1980) proposes an advantage when hosts and parasites are 

caught in a cyclic arms race. Unlike the Tangled Bank, this theory does not require for there to 

be spatial heterogeneity (Becks and Agrawal, 2010) or a spectrum of resources (Case and Taper, 

1986); and unlike the Red Queen hypothesis, it does not require the presence of host-parasite 

interactions (Hamilton, 1980). But it does require that soft selection be prevalent in nature. These 

ecological hypotheses propose different causes for the maintenance of sex, but share the 

commonality that they all require some form of frequency-dependent selection in order for sex to 

be advantageous. The form of frequency-dependent selection in our model is somewhat different 

in the sense that the fitness of a genotype is not negatively correlated with its frequency. 

Specifically, the fittest genotype in the Red Queen and Tangled Bank models is the one with the 

lowest frequency; but in our model, it is the one with the strongest phenotype. Peck (1993) 

looked directly at negative frequency-dependent selection where the fertility of an individual is a 
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decreasing function of its genotype frequency, and came to similar results as both the Tangled 

Bank and the Red Queen models. Of these two theories, the Tangled Bank models gives results 

that are more similar to ours in that some form of sex is advantageous when there are more 

individuals than there are resources to sustain them (Taper and Case, 1986; Sheu and Drossel, 

2007). The Tangled Bank model, however, further requires that some resources are 

overexploited while others are underexploited, but in our model this additional assumption is 

unnecessary. 

Ideally, a theory that fully explains the ubiquity of sex should be applicable wherever 

sexual reproduction is found in nature. It is possible that intraspecies competition meets this 

criterion as it is a ubiquitous part of the natural world, and may be found anywhere there is a 

reproductive excess for the amount of available resources. As noted by Lewontin (1955), ‗‗it 

would be strange if what applied to different species did not apply to some extent to different 

genotypes within the same species.‘‘ A meta-analysis covering 527 field experiments found that 

when competition was demonstrated and the two forms of competition were differentiated, 

intraspecific competition was as strong as or stronger than interspecific competition in three-

quarters of the experiments (Connell, 1983). Excess fertility increases the likelihood of 

intraspecific competition and is required for genetic substitutions (Nei, 1971). We have shown 

that genetic substitutions can occur at a faster rate when the organisms reproduce sexually. 

Also, a theory that fully explains the maintenance of sex should not apply for the cases of 

rare asexually-reproducing species. Therefore, we should expect to find asexual species in areas 

of low competition: where either the environment is very harsh; or where resources are so 

plentiful that competing for them is unnecessary (such as in a replication race). In this respect, 

the relationship between intraspecific competition and recombination may help to explain the 
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existence of such species. Many of the well-known asexual species live in low competition 

environments, or have evolved ways of avoiding competition for shared resources. For example, 

there are several asexual lizards and plants that inhabit desert areas (Kearney, 2003), where 

conditions are harsh and consequently, have reduced levels of biotic interactions. Dandelions are 

considered an exemplary r-strategist (Gadgil and Solbrig, 1972); they thrive in areas with low 

competition for sunlight, flowering in the early spring when resources are in high supply, yet 

demand is relatively low. The Bdelloid rotifer‘s ability to survive desiccation and remain 

dormant for extended periods can be seen as an evolved strategy to avoid intense competition 

when conditions for active life are unfavourable (Ricci, 2001).   

In such r-selected species, the main component of selection is on fertility and we 

expected relatively little build-up of negative linkage disequilibrium in response to competitive 

interactions between conspecific individuals. In the case of K-selected species however, such as 

the plants which ―clothe the ground‖, competition can cause the build-up of negative linkage 

disequilibrium, thus providing a selective advantage for genetic recombination. Therefore, if sex 

is maintained through intraspecies competition, then we should expect to find a correlation 

between the frequency of sexual reproduction and competition. Such a broad experiment may not 

yet be possible. On a smaller scale, such as a species that is capable of both sexual and asexual 

reproduction, we might expect to find a correlation between the environment of an organism and 

the frequency with which it prefers one reproductive method over the other. This is indeed the 

case in many organisms: many facultative sexual model organisms prefer asexual reproduction 

when resources are in high supply, and switch to sexual reproduction when starved; and some 

species like the rotifer Brachionus calyciflorus switch to sexual reproduction when living in high 

densities. If sex is advantageous when individuals compete, then these adaptations are 
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evolutionarily advantageous, as they maximize the fitness of the individual.  That being said, 

Brachionus calyciflorus has been shown to evolve greater sensitivity to a density stimulus when 

growing in a heterogeneous environment than when growing on either homogeneous high or low 

quality food sources (Becks and Agrawal, 2010).  

This is not to say that intraspecies competition is the definitive answer for maintenance of 

sex, but that the theory is theoretically and naturally plausible. It is by no means the only 

reasonable explanation. Like most other genetic variation-centred theories for the evolution of 

sex, intraspecies competition has the capacity to explain the maintenance of sex, but not its 

origin. 

Our results suggest that epistatic fitness values might change depending on the conditions 

of the experiment. We hypothesize that experimental results attempting to determine epistasis 

might find different results when genotypes are grown separately (hard selection) than when 

grown together (soft selection). Specifically, there might be no epistasis when resources are 

plentiful, and negative epistasis when resources are scarce. 

To our knowledge there is very little experimental work that has been done on 

intraspecies competition and either fitness level epistasis, or the maintenance of sex. A study 

focusing on deleterious mutations in the parasitic wasp Nasonia vitripennis when grown under 

competitive conditions found negative epistatic fitness effects for longevity, but not for egg 

production (Rivero et. al., 2003). Another in silico experiment was done on the intracellular 

growth of bacteriophage T7 under a variety of environmental conditions (You and Yin, 2002). 

They found that mildly deleterious mutations interacted in a negative epistatic fashion in poor-

resource environments but showed positive epistasis when grown in rich-resource environments. 

These results are generally in agreement with our model, as well as our assumptions about the 
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effects of viability versus fertility selection. The results of Wang et al. (2009) are in 

disagreement at the surface level, as they found that the value of epistasis slightly increases when 

Drosophila melanogaster are grown in a low quality environment as opposed to a high quality 

environment. However, the same lab also found that selection was harder when Drosophila were 

grown in the low quality environment, not softer (Laffafian et al., 2010). 

We conclude that intraspecies competition is a plausible explanation for the maintenance 

of sex. We believe the theory is worth further theoretical and experimental analysis, and that 

much work still needs to be done before coming to a definitive answer for the enigma of sex. Our 

simulations suggest that perhaps the advantage of sexual reproduction doesn‘t lie in fertility 

selection, but in viability selection. Evolution would be nothing more than a replication race if 

there was no shortage of resources, which would favour asexual reproduction. But in a 

competitive situation, it may be better to produce one winner rather than two losers. 
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APPENDICES 

 

Appendix 1 

 

Linkage Disequilibrium 

Linkage disequilibrium ( ) is defined as the extent to which the frequency of a genotype differs 

from its expected frequency had the alleles at each locus been combined at random (Robbins, 

1918).  It describes a situation in which some combinations of alleles occur together more 

frequently in a population than would be expected had the alleles randomly formed into 

genotypes.  Numerically, it is the difference between the observed and expected frequency of a 

genotype. 

We will assume the same two-locus, two-allele model as we did in chapter 3.   Assuming that we 

have a genotype    whose frequency is         , and where    is the frequency of the   allele 

in the population, and    is the frequency if the   allele, then we can write the value of linkage 

disequilibrium as   

                 (A1.1) 

If we already know the value of  , as well as the frequency of each allele, then we can determine 

the frequency of every genotype in the population.  For instance, we can deduce the frequency of 

   genotype by rearranging equation (A1.1), that is 

                 (A1.2) 

We can then express the frequency of    in terms of   and its allele frequencies as follows: 
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The same reasoning can be applied to the other two genotypes to determine their values.  

Therefore, the frequency of each genotype, expressed in terms of its allelic frequencies and the 

value of  , is as follows: 

                         

                    

                    

                

(A1.3) 

The value of   can also be expressed using only genotype frequencies as variables. We have 

                                     (A1.4) 

This statement can be proven by substituting each genotype frequency with its equivalent from 

equations (6.3): 

                                 

                                      (          ) 

                                           

                                        

                                          

     

This alternate equation for the value of   is useful when we look at the effects of recombination 

on the frequencies of each genotype. 
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Appendix 2 

 

Estimating the decrease in Linkage Disequilibrium after one round of random mating 

In this section, we will explore how the frequency of each genotype changes as a result of 

random mating.  We start by assuming that there are no other forces acting to change the 

frequencies of each genotype: no selection, no mutations, and no genetic drift.  We will further 

assume that mating is random across the entire population. 

We start by determining the frequency of each mating combination.  Under random 

mating, this is equivalent to fully writing out the expression 

 (                                   ) 

  (                                   ) 

(A2.5) 

Table 1 exhaustively displays a matrix of every possible mate pairing, and the frequency of that 

pairing. 

Table 1 Complete matrix of the frequencies of every mating pairing. 

 Frequency of mating type 
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It should be noted that the off-diagonal entries in this table are equivalent.  For instance, the 

entry in the first row and the second column is the same as the entry in second row and the first 

column.  The off-diagonal entries can be added together to get the total frequency of every 

mating type.  There are 10 different mating types in total. 

 

Table 1: The frequency of each mating type when mating is random. 

Mating 

Frequency of mating 

(parents) 

   x              

   x                      

   x                      

   x                      

   x              

   x                      

   x                      

   x              

   x                      

   x              

 

Next, we will determine the frequency of the progeny produced in each case.  We can 

classify each mating type in the following way, where either 

1. both loci are homozygous (for example,        ), 
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2. one locus is heterozygous (ex.        ), or 

3. both loci are heterozygous (ex.        ). 

Both parents must have the same genotype in the first case where both loci are homozygous.  

All of their offspring will also have this genotype.  In the second case, the parents differ in their 

genotypes at a single locus.  With this kind of mating type, recombination has an effect, but its 

effect is to change the genotype into that of the other parent.  The end result is that 

recombination does not change the genotypic frequencies of their progeny: half will have the 

genotype of one parent, and half will have the genotype of the other parent.  It is only in the third 

case, where both loci are heterozygous, that recombination will have any effect of the genotypic 

frequencies of their progeny.  In our example mating type, where    mates with   , we can see 

that the gametic genotypes do not change in the absence of a recombination event.  When there is 

a recombination event, the genotypes of the gametes change to    and   .  Half of the time 

there will be a recombination event, and half of the time there won‘t be when recombination is 

free.  All four genotypes are then equally likely, each one having an expected frequency of ¼.   

Table 2 summarizes the expected frequency of the progeny produced from each mating type. 
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Table 2: The expected genotype frequencies among the progeny from each mating type 

with free recombination. 

Mating 

Frequency of mating 

(parents) 

Frequency of progeny 

            

   x              1 0 0 0 

   x                        ⁄    ⁄  0 0 

   x                        ⁄  0   ⁄  0 

   x                        ⁄    ⁄    ⁄    ⁄  

   x              0 1 0 0 

   x                        ⁄    ⁄    ⁄    ⁄  

   x                      0   ⁄  0   ⁄  

   x              0 0 1 0 

   x                      0 0   ⁄    ⁄  

   x               0   0   0   1  

Totals (next generation)                                         

 

We can determine the expected genotype frequencies of the progeny by summing over the 

columns in this table.  For example: 
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where                                     

When we perform this summation and simplify for all four genotypes, we get the following as 

the frequency of each genotype after free recombination:  

                       

                      

                      

                      

(A2.4) 

Previously, we showed that                .  When we substitute the right hand side into 

our equation for the value of          , we get that 

                      

         

To summarize, the frequency of the    genotype was        before recombining, and 

changed to         after recombining.  Therefore, the value of   decreases by a factor of 0.5 

in every generation with free recombination.    
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Appendix 3 

 

Expressing Z in terms of D 

We can show the relationship between D and Z as follows. 

                                     (A3.1) 

Dividing across by                 , we get 

  

                
 

                                 

                
 

     
                

                
   

 

Then rearranging, 

                 

                
 

 

                
   

 

And taking the log of both sides, 

 
  

                

                
   (

 

                
  ) 

 

we find that  

 
    (

 

                
  ) (A3.2) 

 

For example, when D = 0.2, and   p1  =  p2  =  0.5 

 
    (

 

                
  ) 

   (
   

      
  )                     
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Expressing D in terms of Z 

We can also express the value of   in terms of the value of   in the following way: 

 
    (

                

                
) (A3.3) 

therefore 

 
   

                

                
  

 

Multiplying across by                 , yields 

                                      

subtracting                      from both sides, gives 

                                                                      

                                                                                        

Therefore, 

                             

or 

                           (A3.4) 

 

Figures A3.1 and A3.2 graphically show the relationship between D and Z. It should be noted 

that the value of D has a maximum range of -0.25 to 0.25, but it is dependent the frequencies of 

the A and B alleles. The value of Z, on the other hand, always has a range from -∞ to +∞. D and 

Z always have the same sign, and both are equal to zero when the population is in linkage 

equilibrium (see Figure A3.1). Furthermore, there is a linear relationship between the two 

statistics when the population is close to linkage equilibrium (see Figure A3.2).   
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Figure A3.1:  The relationship between the value of D, and the value of Z. 

The value of Z is shown on the vertical axis, and the value of D is shown on the horizontal axis. 

In this case, the frequencies of all four alleles are equal to 0.5.  Note that with these allele 

frequencies, the range of D is between -0.25 and 0.25, and that the range of Z is between -∞ and 

+∞. 
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Figure A3.2:  The relationship between the value of D, and the value of Z when the 

population is close to linkage equilibrium. 

For a description, see Figure 3.14.  The values of D and Z are linearly related when the 

population is close to linkage equilibrium.  
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Appendix 4 

 

Derivation of fitness values when three loci are under selection 

In Chapter 2, we developed a model where the fitness of a genotype can be calculated as 

the summation of the frequency that this genotype will compete against another genotype, 

multiplied by the probability that it will win that competition, normalized by the cull rate. 

Therefore, the only difference between how fitness is calculated when three loci are under 

selection instead of two loci, is that now there are 8 genotypes instead of 4. 

 

   
 

   
(∑

  

     
       

 

   

) (A4.1) 

  is the genotype of interest,    is the phenotypic value of this genotype,    is the phenotypic 

value of the competing genotype (itself included),         is the frequency of some genotype, 

and the    is the cull rate.  

 

Derivation of 3 loci epistasis for fitness 

The equation to calculate the value of pairwise epistasis for fitness can be expressed as a 

deviation from multiplicativity, which is linear on a log scale: 

                             (A4.2) 

In order to derive an equation for epistasis at 3 loci, we will begin with the equation 

above, and extend the model as explained by Hansen and Wagner (2001). We can re-arrange 

equation (A4.2) to express the fitness of the AB genotype as the fitness of the ab genotype, plus 



159 
 

the fitness gained by substituting an a allele for an A allele, plus the fitness gained by substituting 

a b allele for a B allele, plus the deviation from linearity known as epistasis. 

                                            

The equation above simplifies to  

               
   

   
   

   

   
     (A4.3) 

This framework can be extended to one where 3 loci are under selection as follows: 

                 
    

    
   

    

    
   

    

    
                  (A4.4) 

Therefore, the value of epistasis at 3 loci can be calculated with the following equation: 

 
            (         

    

    
   

    

    
   

    

    
            ) (A4.5) 

 

 


