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ABSTRACT

Heuristic Results for Ratio Conjectures of Lg(1,x)

Jungbae Nam

Let Lg(s,x) be the Hasse-Weil L-function of an elliptic curve E defined over Q and
twisted by a Dirichlet character x of order & and of conductor f,. Keating and
Snaith [KS00b] and [KS00a] introduced the way to study L-functions through ran-
dom matrix theory of certain topological groups. Conrey, Keating, Rubinstein, and
Snaith [CKRS02] and David, Fearnley, and Kisilevsky [DFK04] developed their ideas
in statistics of families of critical values of Lg(1,y) twisted by Dirichlet characters
of conductors < X and proposed conjectures regarding the number of vanishings in
their families and the ratio conjectures of moments and vanishings which are strongly
supported by numerical experiments.

In this thesis, we review and develop their works and propose the ratio conjectures
of moments and vanishings in the family of Lg(1,y) twisted by Dirichlet characters
of conductors f,, < X and order of some odd primes, especially 3, 5, and 7 inspired
by the connections of L-function theory and random matrix theory. Moreover, we
support our result on the ratio conjectures of moments and vanishings of the families

for some certain elliptic curves by numerical experiments.
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Chapter 1

Introductions and Notations

In this thesis, we review and develop the work of Conrey, Keating, Rubinstein, and
Snaith [CKRS02]| and David, Fearnley, and Kisilevsky [DFKO04] and propose the ratio
conjectures of the ¢-th moments and vanishings in the family of Lg(1,y) twisted by
Dirichlet characters of conductors f,, < X and order of some odd primes, especially 3,
5, and 7 inspired by the connections of L-function theory and random matrix theory.
Moreover, we support our result on the ratio conjectures of moments and vanishings
of the families for some certain elliptic curves by numerical experiments. All the
experiments were conducted using PARI/GP [PAR10)].

Here are some notations used through this paper:

. v(n) - the number of distinct primes dividing an integer n.

. p, k, t, X- globally reserved for the notation for a fixed prime, order of Dirich-
let character which is an odd prime or weight of modular form depending on
context, order of moments, and the maximum conductor respectively.

« B, E/K, Ng - an elliptic curve over Q, over a number field K, and the conductor
of a given elliptic curve E respectively.

« Lg(s,x) - L-function of an elliptic curve E twisted by a Dirichlet character y,
where x is a Dirichlet character of conductor f, and of order &.

o Mi(N):= My (Iy(N)) - the space of modular forms of weight k for I'o(NV).



o Mp(N,¢) :={f e M, (T1(N))]| fIA=1(d)f for A= <CCZ Z) € I'y (N)} where

1 is a Dirichlet character mod N.
e SE(INV) := Sk(T'o(N)) - the space of cusp forms of weight k for I'o(N).
SN ) = 1 € ST A4 = (@) for A= (&) € To ()} where
1 is a Dirichlet character mod N.
« U(N) - the set of N x N unitary matrices over C, i.e. the set of N x N matrices
A over C such that AA* = A*A = Iy where A* is the complex conjugate
transpose of A and Iy is the N x N identity matrix.
« Yi(X) = {x | x is a Dirichlet character of order k and f, < X}.
o Zi(X) ={x € Yi(X) | fy is a prime}.
« Y i(X) ={x] xis a character of order k, f, < X, and (f,, Ng) = 1}.
« Zpp(X)={x € Ygir(X) | fy is a prime}.
e Ver(X) ={x € Yexr(X) | Le(1, x) = 0}.
« Wei(X) ={x € Zpi(X) | Lg(1,x) = 0}.
Note that Vg (X) C Ygi(X) C Yi(X) and Wi, (X) C Zgi(X) C Yeip(X) for any
E.

The Hasse and Weil theorem [Sil09] followed by the modularity theorem [BCDTO01]
and [TWO5] asserts that for a given £ and Re(s) > 3/2,

0o 1 —1
_\N "W _ I _
LE(S)_Zns p}]_VIE( ps+p2s) p|1]_V[E( ps)

n=1

can be extended to an analytic function for all s € C and Lg(s) = L¢(s), which is the
L-series for some normalized eigenform f € Sy(Ng). Similarly, a L-function twisted

by a Dirichlet character of conductor f,

BRI SYatl

also can be extended to an analytic function for all s and Lg(s, x) = Ly, (s), which

is the L-series for some normalized eigenform f, = 3°°° a,x(n)q" € S2(Ng ()%, x?)
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where ¢ = exp(2mi). Note that if f € Sk(N, ), then f, is a cusp form of Sy, (N (f, )%, ¥x?),
see proposition 17 in [Kob93]. In particular Si(N) = Sy (N, x1) where x; is the trivial

Dirichlet character of conductor 1. Furthermore, assume (f,, Ng) = 1 and let

Ap(s,X) = (Fev/Ne/2r) T()La(s, ).

Then, the functional equation [Shi76] for Ag(s, x) is

wex(Ne)7(1, x)?
fx

where 7(1, ) is the Gauss sum of x, defined in 2.2, and wg is the eigenvalue of the

Ag(s,x) = Ag(2 —s,%). (1.1)

Fricke involution acting on the normalized eigenform f € Sy(N) corresponding to E,
see 2.8 in [Cre97]. The Fricke involution is defined by a vector space isomorphism

¢ : Myp(N,v) — M(N, 1)) defined by

0 -1
(v )
where | is the slash operator, defined in 3.2. For a normalized eigenform f € Sy(N)
0 —1
(v o)==

Therefore, we have wgp = +1 [Cre97].

In the following section, we study modular symbols for a f, € So(Ng (f,)°, x?)

and the relation between them and corresponding L-values at s = 1.

The idea of studying number theory, especially L-functions, using random ma-
trix theory was introduced by Montgomery and Dyson who noticed the agreement
between the statistics of some random matrices, more specifically the pair correla-
tion between their eigenvalues, and the zeroes of the Riemann zeta function [Mon73].
Other aspects of the relation between L-functions and random matrix theory are ex-

plained in chapter 4.



Chapter 2

Dirichlet Characters and Gauss
SUMS

Let G be a finite abelian group. Then, we call a group homomorphism y : G — C*
a character of GG. Furthermore, let G be the set of all characters of G and define the
multiplication of two characters x and x’ as (xx')(9) = x(9)x'(g) for all g € G. Then,
G is also a finite abelian group with the identity element which is the trivial group

homomorphism called the trivial character. We have the following isomorphism:

Proposition 2.1. For a finite abelian group G,
G ~G.

Proof. Since G is a finite abelian group, by the decomposition theorem of finite abelian
groups, we can write G = @;",G; where m is a positive integer and G;’s are finite
cyclic abelian groups. Let g; be a generator of G; and |G;| = n; for eachi =1,...,m.
Then, any character x of GG; can be determined by x(g;) and x(g;) can be any n;-th
root of unity. So, |G;| =n; = \é\z\ Furthermore, let ¢ € @ such that ¥(g;) = (,, for
some primitive n;-th root of unity. Then, given y € /G\i, x(g:) = Cf” for some integer (.
So, X(gg) = x(g:) = Cffz = 1(g;)V = w(gf)l for any integer j. Therefore, é’: is cyclic
and a ~ ;.

Now, let A = G; and B = G| for i # j and their orders be n4 and np respectively.



We prove 1 : Ao B — 1@ is a group isomorphism defined by

(x4, x8) (a,b) = xaxs(a,b) == xa(a)xs(b)

for x4 € A, XB € E, a € A, and b € B. Then, it is easy to see ker ¢y = {(xa1,x851)}
where x 41 and xp 1 are the trivial characters of A and B respectively. Furthermore,

let x € 1@ and set
xa(a) = x(a,1p) and xp(b) = x(14,b) foralla € A and b € B.

Then, x4 € A, xp € B and ¢ (x4, x5)) (a,0) = xa(a)x5(b) = x(a,15)x(14,b) =
x(a,b) for all @ € A and b € B. Therefore, ¢ is an isomorphism and the proof is

completed by induction . O]

Now, consider a homomorphism y : (Z/NZ)* — C* for a positive integer N. We

extend it to an arithmetic function called a Dirichlet character x mod N as

Definition 2.1.

0, otherwise

x(nmod N), if(n,N)=1
) = { ( ) if (n,N)
where (n, N) is the greatest common divisor of n and N.

A Dirichlet character y is completely multiplicative on Z. There is the unique
Dirichlet character mod 1 which sends all n to 1. We call it the trivial Dirichlet
character and denote it by y;. Also, for each NN, there exists the Dirichlet character
x mod N such that x(n) = 1if (n, N) =1 and x(n) = 0 otherwise. We denote such
character by xo and call it the principal character. Furthermore, for each N and a
Dirichlet character x mod N, there is a Dirichlet character y’ mod d that induces x

for some d | N. More precisely

x(n) = x'(n mod d)xo(n)

for all integers n and the principal character xyo mod N. In other words, let ¢ be a

natural map (Z/NZ)* — (Z/dZ)™. Then, the following diagram commutes:

5



Thus, we can take the minimum of those d’s for each y mod N and call it the con-
ductor of x mod N and denote it by f,. Furthermore, we call x a primitive Dirichlet
character mod N if f, = N. We can identify a Dirichlet character x (mod N) with
a unique primitive Dirichlet character x’ of conductor f, by x = x'xo. In particular,

x1 induces yo mod N for all V.

It is more convenient to use primitive Dirichlet characters mod f, than Dirichlet

characters y mod N. Consider the set
G~ = {x | x is a primitive character of conductor f, | N}.

Let x',¢" € Gy and M = lem(fy,fy). Then, M|N and x’' and ¢’ induce some
characters y and v € (Z//]\/E)X respectively. Let m(n) = x(n)y(n). Then, we can
find the unique primitive character 7’ which induces 7. Then, clearly 7’ € G and,
in this way, we define the multiplication of x’ and ¢’ as x'¢V' = n’. It is not hard to

prove Gy is an abelian group with the identity y; and we can identify (Z/NZ)* with

a subgroup of Gy

{x | x is a primitive Dirichlet character mod f, for some f, where f, | N}.

We denote the inverse of x by ¥ and x(n) = x(n). More importantly, as a special
case of proposition 3.8 (a) in [Was82], we can view a Dirichlet character mod N as a

homomorphism : Gal(Q({y)/Q) — C* by the following proposition:

Proposition 2.2. Let Q((x) be the cyclotomic field where (n is a primitive N-th



root of unity. Then,
Gal(Q(¢v)/Q) = (Z/NZ)" .

Proof. See theorem 2.5 in [Was82]. O

Let G = Gal(Q(Cn)/Q). Then, proposition 2.2 implies that |@| = ¢(N) where ¢

is the Euler totient function. In summary, we have the following isomorphisms:

—

G ~ G ~ (Z/NZ)* ~ (Z/NZ)".

Define a Gauss sum 7(a, x) of an integer a and a Dirichlet character mod N by

Definition 2.2.

i

T(a,x) = x(n) exp(2mwian/N).

n

Il
=)

We need some properties of Gauss sums of a Dirichlet character mod N.
Lemma 2.1. If x mod N is primitive, then for all integer a,
7(a, x) =X(a)T (L, x).

Proof. Suppose x is a primitive character mod N. First, if (a, N) = 1, then we have

N-1

T(a,x) = Z x(n) exp(2mian/N)

n=0

=

Il
=|

(a) x(an) exp(2mwian/N) since X(a)x(a) =1

(a)7(1,x) by re-arranging the summation over na.

I
=|
[
o

Now, let (a, N) =d > 1. Then, X(a)7(1, x) = 0 since X(a) = x(a) = 0. Furthermore,
there are some integers o’ and N’ such that (a/, N') =1 and a = a’d and N = N'd.
Thus,

-1 N'—1

7(a,x) = x(n) exp(2wian/N) = Z x(1) | exp(2mwia’j/N).  (2.1)
7=0 I=j mod N’
0<ISN-1

=2

N
I
o



Consider a natural homomorphism ¢ : (Z/NZ)* — (Z/N'Z)*. Then, ker¢ = {n €

(Z/NZ)* | n=1mod N'}. So, since y is primitive and N # 1, we have Z x(n) =
neker ¢
0. Then, for each fixed j mod N’, the inner sum in (2.1) is 0. Therefore, 7(a, N) =

0. O
Lemma 2.2. For a primitive Dirichlet character xy mod N,

(1, X)° = x(=1)7(1,x)7(1,X) = N.

Proof. The first equality follows from

T(Lx) = ) X(n) exp(—2min/N)

n=0
N-1N-1
= x(m) exp(2mi(m — 1)n/N)
n=0 m=0
N-1 N-1
= x(m) Y exp(2mi(m —1)n/N) = N,
m=0 n=0
N—1
since Z exp(2mi(m — 1)n/N) = 0 for m # 1.
n=0

[]

For a Dirichlet character y of conductor f, and of odd prime order, x(—1) =1

and lemma 2.2 implies that

7(1,x) = x(=D7(1,x) = 7(L, %) (2.2)

8



Recall Y, (X) is the set of Dirichlet characters of order k£ and conductor < X. It
is useful to get an analytic approximation of |Yj(X)| for the study of vanishings and
moments of families of Lg(1,y) in the chapter 4. First, let’s consider the number
of distinct Dirichlet characters x of order £ and conductor f,. David, Fearnley, and
Kisilevsky [DFK04] showed that there are 2*(") distinct cubic characters of conductor
fy. With the same argument, we can generalize this result for higher odd prime

conductors as follows.

Lemma 2.3. Let k be an odd prime positive integer and x be a Dirichlet character
of order k and conductor f,. Then, there are (k — 1)*"Y) distinct characters of order
k and conductor f,.
v(fx)

Proof. For a Dirichlet character x of order & and conductor f, = H pi* where p;’s
are pairwise distinct primes and a; € Z=!, x can be factorized by -

v(fx)

X = H Xi

i=1
where x; is a character of order k£ and conductor p;* for 1 < i < v (f,). However,
a; should be 2 if p;, = k and 1 if p; # k since, otherwise, there is a character of
order k and conductor p; inducing that y; for each i. Furthermore, each y; is a
character of order k£ and conductor p; # k if and only if p; = 1 mod k. It is due to the
Lagrange theorem of group theory and the fact that the group of Dirichlet characters
of conductor p{* has order ¢(p") = p~' (p; — 1) for an odd prime k and a; > 1.

Therefore, f, = k* H;’S{‘_l) p; where a = 0 or 1, p; are distinct primes other than k,

and p; = 1 mod k. Since for each y; there are £ — 1 distinct characters of order k, the

proof is completed. O
\a
Now we consider the Dirichlet series Ly (s) = E —, where a, is the number of
n
n=1

distinct Dirichlet characters of order k and conductor n. Note that a, = (k — 1),



a; = 1, and a, is a multiplicative function from lemma 2.3. Thus, we have

o= m=(0) I (1)

n=1 p=1 mod k (23)
kE—1 k—1
() 05
p=1 mod k

for Re(s) > ¢ for some positive constant ¢. We need to use a Dedekind zeta function
over a number field K to investigate some analytic properties of Li(s), see [IK04] for
a reference. The Dedekind zeta function (x(s) over K is defined by
Cx(s) :Z# :H (1_#)—1 2.4
2 vy L gy
for Re(s) > 1 and where N(a) is the norm of a non-zero ideal a of the ring of integers
Ok. When K = Q, the Dedekind zeta function (gp(s) is just the Riemann zeta

function ((s). Furthermore, (; has a simple pole at s = 1 with residue

27’1+T271—T2 RKhK

WKV DK

where r; and ry are real and complex embedding respectively into C, wg is the number

(2.5)

Res (x(5) =

of roots of unity, Rk, hx, and Dy are the regulator, class number, and the absolute
discriminant of K respectively.

Let k£ be an odd prime and (; be a primitive root of unity. Then, since Q (¢x) /Q is
a cyclotomic extension, hence a Galois extension, of degree ¢(k), the Euler totient

function, we have the prime decomposition for a rational prime p in Ok as

POk = (P1-+-py)"

satisfying ¢(k) = efg where e is the ramification index, f is the inertia degree, and g
is the decomposition index. We have some remarks regarding cyclotomic extensions

Q(¢x) /Q and an odd prime & ,

. p is totally ramified if and only if p = k.

10



« p=1mod k if and only if p splits completely if and only if g = k& — 1.

X

. the inertia degree f of a rational prime p is the order of p in (Z/kZ)

Based on the above remarks, we can write Euler factors of the Dedekind zeta functions

Ck(s) for K =Q((3),Q(¢5), and Q ({7) by investigating f since

() - (-37)
)

we have

Indeed, when K = Q (

co-(3)' 03 L6

p=1 mod 3

When K = Q((5), we have

cn-(-2)" L0 L0 L0

p=1 mod 5 ngmd5 p=4 mod 5
p=3 mo
(2.6)
When K = Q((;), we have
1\ 1\° 1\
wor=(rx) I () I (55)
p=1mod 7 p=2mod 7
=4 mod 7
, " L\ (2.7)
R
p=3 mo(cil 7 p p=6 mod 7 p
p=5mod 7

We can calculate the residue of (x(s) at s = 1 for K = Q(¢3),Q(¢), and Q (7).
For K = Q(¢x) and an odd prime k, 71 and ry in equation (2.5) satisfy k — 1 =
¢(k) = [K : Q] = r1 + 2r5 and the maximal real subfield of Q (¢x) is Q (¢ + ¢, ') so
that [K :Q (Ck + Ck_l)} = 2 since (}, is a root of X? — (Ck + Ck_l) X + 1. Therefore,
71 = 0 and ry = (k — 1)/2. Furthermore, all roots of unity of K are of form 4] for
7=0,1,...,k—1. Hence, wxg = 2k. The class numbers hx for the above cyclotomic
fields can be found at page 352 and in the table at page 353 in [Was82]. Moreover,

we can find Dy in proposition 2.7 in [Was82] as for an odd prime £k,
oK)
[T PP/

11

Dy = (_1)¢(k)/2 — (k=2)




k T | T RK hK WK DK R685:1 CK(S)
E=3]10]1 1 1 6 3 0.6045998
E=5(21]109624237 | 1 | 10 | 125 0.0688654
k=714 1]1]21018187 | 1 | 14 | 16807 | 0.0370571

Table 2.1: Invariants of K = Q ({y) for k = 3,5, and 7

Therefore, finally by the using PARI/GP [PAR10] to compute R, we obtain table 2.1.

Now using similar arguments of proposition 5.2 for Ls(s) in [DFK04] we investigate

analytic properties of L;(s) and Lr(s).

Lemma 2.4. L5(s) and Lz(s) have simple poles at s = 1.

Proof. First we prove the result for L;(s). Let K = Q((5). Recall the Euler product

of Ls(s) in (2.3) and then

(o) 1L ()
)

L5(S)

p=1mod 5

4 1
1 1——
( +253> ,H ( p°
p=1 mod 5
_ (4 1 . 4 4 1 10 . 20 15 L 4
- 5s 255 1253 it p2s p33 p4s p5s

L)

p=2 mod 5 P
p=3 mod 5

1 4 4 10 20 15 4
f<8) ( 5s + 25s 125s> H < p2s + pSs p45 + p5s)

Set

p=1 mod 5
1 1)?
< I () I 0-5)
p=2 mod 5 p=4 mod 5
p=3 mod 5

Then, by considering terms with smallest power of 1/p® where p # 5 in the factors,

f(s) is analytic at s = 1. Note (x(s) converges for Re(s) > 1. Therefore, Ls(s) has

the constant ¢ = 1 in (2.3) and has a simple pole at s = 1.

12



Now, let K = Q(¢7) and recall the Euler product of L(s) in(2.3). Then,

Lz(s) = (1+ 425) 11 (1+]%)

p=1mod 7
6 1\° 6 1\°°
(o)L 02 (8) 1L (-
( 49 p=1 mod 7 p p p=1mod 7 p
_ (4 1+6 6 H 1_21+70_105+84_35+6
- 7s 49s 343s 3 p25 p3s p4s p55 pﬁs p7s
p=1mod 7
1\° 1 1\°
< 11 (=) 1 (=) I (1-5) w)
p=2mod 7 p p=3 mod 7 p p=6 mod 7 p
p=4 mod 7 p=5 mod 7
Set
1 6 6 21 70 105 84 35 6
=(1-— - [ T
g(S) ( 75 + 495 3435) p:11;[)d - ( p2s pSS p4s p5s p6s p7s>
1)° 1 1)°
AL (o) I (-5) I (-5)
p=2 mod 7 p=3 mod 7 p=6 mod 7
p=4 mod 7 p=5 mod 7

Then, again, we consider the powers in the factors and g(s) is analytic at s = 1.

Therefore, L7(s) has the constant ¢ = 1 in (2.3) and has a simple pole at s = 1. [

David, Fearnley, and Kisilevsky [DFK04] showed that

V3(X)| =) an ~ sX (2.8)
n<X
11 2
where ¢3 = 18—\7/? H (1 _p(p—i-l)) by using Ls(s) = > .7 a,/n® and the

p=1 mod 3
Ikehara-Wiener Tauberian theorem for |Y3(X)|, see [MV07]. Note that for functions

f(x) and g(x),
f(x)

f(x) ~g(z) = Jggom =L

Similarly we apply the Tauberian theorem for Y, (X) for £ =5 and 7.

o0

Proposition 2.3 (Ikehara-Wiener Tauberian Theorem). Let f(s) = Zan/ns for

n=1
Re(s) > 1 such that a,, > 0. Suppose f(s) can be extended to be analytic for Re(s) > 1

13



with a stmple pole at s = 1 with residue c. Then,
Z a, ~ cX.
n<X
Furthermore, if f(s) has a pole of order r with residue ¢ at s = 1, then
Z an ~ cX (logX)"™".
n<X

Theorem 2.1.
V5(X)| ~ X and Y2(X)| ~ X

where c5 and c; are some constants.

Proof. First, note that for an odd prime k, [Yx(X)| = > .y an where Li(s) =
Yo ay/n® and a, is the number of distinct Dirichlet characters of order k and
conductor n. Then, by lemma 2.3, a,, = (k — 1)”(™ for each positive integer n. From
lemma 2.4, Ls(s) and L(s) converge for Re(s) > 1 and have a simple pole at s = 1
with the residue c5 and c¢; respectively. Furthermore, for all n < 1, a,, > 0 for both

Dirichlet series. Therefore, by proposition 2.3, we obtain the result.

]

We can also use the work of Cohen, Diaz, and Olivier [CDO02] to obtain asymp-
totic estimates of |Yj(X)| in theorem 2.1. They computed the asymptotic estimates

for
N(k,X) :=#{L | L/Q is a cyclic field extension of degree k and |D,| < X}.

where |Dy| is the discriminant of a number field L. More specifically, they obtained

for an odd prime £,

N(k,X) ~ ¢XVED

14



for some constant cp. Moreover, they also computed c; as

K24k —1 y 1\
o= T Gt TT (1- )

djk—1 dlk—1

k1 1\ T
< I (5 I (-5)
k-1

p=1mod k

where K is the unique subfield of K = Q ((x) such that [K : K4 = d and u(d) is the
Mobius function.

Let G = Gal (L/Q) where L/Q is a cyclic extension of degree k. Then, G is a cyclic
group of order k. So, we can consider the corresponding group of Dirichlet characters

G. Then, by theorem 3.11 and 4.3 in [Was82] we have

Cu(s) = [ LGs,0)  and  |Dof =[] fv

Xeé XE@’

where L(s, x) is a Dirichlet L-function. The above relation between Dy, and f, implies
that counting cyclic extensions L/Q of degree k with D, < X is same as counting
characters x of order k and f, < X'/(*~1) gince for each f, there are exactly k — 1

distinct characters of conductor f,. More precisely we can see
Vi(X)| = N(k, X" 1) ~ o X.
Corollary 2.1. Fiz an E with conductor Ng. Then,
Yes(X)| ~ 5 X and Yer(X)| ~ X (2.9)

where ¢t and ¢, are some constants.

o
Proof. Consider Lg x(s) = Z I where al, = a, if (n, Ng) = 1 and a/, = 0 otherwise.
nS
n=1
Then,
-1
szl mod k (1 + kp_51> Lk(s) if k T NE
Lpi(s) = PINE B . )
(1 + %) HpEl mod k (1 + kp:1> Lk(S) if k | NE

p|Ng

Since each factor of Lg(s) is analytic at s = 1, with the same argument of theo-

rem 2.1 we complete the proof. O
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David, Fearnley, and Kisilevsky [DFK04] also showed that

> by ~ dsXlog? X

n<X

for some constant ds which is the residue of the L(s) =Y, b,/n® and where

- 6*™ if n is the conductor of a cubic Dirichlet character
"o otherwise.

Let k be odd prime. We define a Dirichlet series By(s) = > - b,/n® where

{(k(k —1))*™ if n is the conductor of a Dirichlet character of order k

0 otherwise

Note that Z b, = Z k") where the right hand side is the sum over all Dirichlet
n<X fr<X
characters x of order k and conductors f, < X. Now, we use the same argument to

show

Proposition 2.4.

> 20" ~ dsXlog' X  and > 42~ dr Xlog® X

n<X n<X

where ds and d; are some constants.

Proof. Set K = Q ((5) and

n

B (20)*™ if n is the conductor of a quintic Dirichlet character
0 otherwise '

Following the Euler products in (2.3), consider the Dirichlet series

Bs(s) = gbn/ns = (1 + 22;) 11 (1 + ;—0) = f(s) (Ck(s))"-

p=1mod 5

Consider (14 20/p*) and (1 — 1/p*)* for p = 1 mod 5 in the above product and the
Euler product of (x(s). Then, in order to make f(s) analytic at s = 1, we can choose

the smallest positive integer power r of the Dedekind zeta function (x(s) to remove
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20/p® terms in the factor of (14 20/p®). By some computations, we choose r = 5.
Then,

Bs(s) = f(s) (Cx(s))”

where

p=1 mod 5
5 10
1 1
I () T (-5
p=2 mod 5 p=4 mod 5
p=3 mod 5

Since f(s) is analytic at s = 1 and ((x(s))° has a pole of order 5 there, Bs(s) has
a pole of order 5 with the residue ds := f(1)Res,—; (Cx(s))’. Therefore, by the
Tauberian theorem 2.3, we obtain anx 20" ~ dsXlog? X.

We use the same argument for 3 42" Set K = Q(¢7) and

n —

{(42)”(”) if n is the conductor of a 7-th Dirichlet character

0 otherwise

Then, we have

5 = onint = (1455) T (1+5) = ot Gt

p=1mod 7

Then, g(s) is analytic at s = 1 and ((x(s))” has a pole of order 7 there. There-
fore, B;(s) has a pole of order 7 and, by the Tauberian theorem 2.3, we obtain

> <X 42"~ d; X1og® X where dr := g(1) Res,—; (Cx(s))". O
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Chapter 3

Discretisation of Critical L-values

3.1 Modular Symbols

This section is composed of a review of the first chapter in the Mazur, Tate, and
Teitelbaum’s article [MTT86] and the introduction of the algebraic parts of Lg(1, x).
We start from the definition of a modular symbol {«, 5} for a f € Sk(Ng, ) by using

modular integral on P*(Q) = Q U {c0}:
Definition 3.1. For r € PY(Q) and f € So(Ng, ), define the modular integral by

r 2 t)dt, i
MI(f,r) ::2m'/ f(z)dz = 7T/o Jr+it) zfr%oo7

100 0’ Zf’/’ = OO
and for o and € Q and > 0, define the modular symbol by

{a, BY(f) == MI(f, —a/B). (3.1)

Note that the integral in the definition of modular symbols has a vertical contour
in the complex plane. Since f is a cusp form, it has a ¢-Fourier expansion and the
terms are exponentially decreasing. That implies that modular integrals converge
absolutely. Furthermore, since modular integrals are C-linear in f, so are modular
symbols. Recall that the slash operator on a modular form f € Sy(Ng, ) is defined
as

_ det(A)k/? a b

o) () = () e a= (1 ) ecri@. 62

18



In particular, for f € Sy(Ng, ) and A = (Z Z) € I'y(Ng),

(f14) (2) = ¥ (d) f(2). (3.3)

We denote 9(A) := ¥ (d). One of the most crucial properties of modular integrals is

that for f € So(Ng,v), A= (CCL z) € GLy (Q), and r € P}(Q),

r

MI(f|A,r) = 2m’/ (flA)(z)dz

o0

o " det(A) N
_2m/oo—(cz+d>2f(A( ))d

=2mi [ f(A(2))dA(2)

: R _alcz+d) —claz+b)  det(A)
since dA(z)/dz = (cz 1 ) =zt dy? (3.4)
A(r)
= 2mi /A(oo) f(z)dz

Now, consider a coset representation of I'o(Ng) C SLo(Z). Then, it is easy to see
[SLy(Z) : Tg(Ng)] is finite. Let’s denote those finite coset representatives of I'g(Ng)
by A; € SLy (Z).

Proposition 3.1. Let a and [ be integers and 8 > 0. Then, for a fixred f €
So(Ng,¥), every modular symbol {c, B}(f) is in a Z[]-module of C generated by

all modular integrals of form of
MI(f, As(00)) — MI(f,Ai(0)) (3.5)

where the A;’s are all of the above coset representatives and where Z[v] is the Z-module

generated by the values of 1. Moreover, {«, 5}(f) depends only on o mod S.
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Proof. Assume that («, 5) = 1. We use induction on . If § = 1, then

(o130 = arr(r.) =1 (£ 1) )

= (o)) e (5o 1) )

In this case, the coset representative is the identity. Now, suppose f > 1. We
can choose ' such that 0 < ' < g and af/ = 1mod 5. Set o = (aff — 1)/
and A = (

—a -«

gp
A = A'A;. Therefore,

{O/v 5/}(f) - {Oéa 6}(]6) = MI<f7A<OO)) - M[(fa A(O))

= MI(f, A'A;(00)) — MI(f, A'A;(0))

= (A) (MI(f, 45(50)) = MI(f, 4;(0))) by (3.3) and (3.4).
(3.6)

) € SLy(Z). Then, there are A" € I'o(Ng) and A; such that

Since by the assumption of the induction {&/, 8'}(f) is in the Z[i)]-module, the first

part of the proof is done. For the second part, write « = mB+a’,0 < o/ < 3. Then,
{a,B}(f) = {mB + o', B}(f) = MI(f,m — o'/B)
a1 (5. 1) es)) = vtwrtr.a

= MI(f,d'/B) ={a', B}(f)-
O

So, in particular, if we take the trivial Dirichlet character mod Ng for 9, i.e
f € S2(Ng), then every modular symbols {«, 5}(f) is in a Z-module of C generated
by all the above modular integrals.

Consider f(z) = Y77, a,q" € Sk(Ng) and suppose that |a,/n°| < oo for some

n=1

constant ¢ as n — oo. Note that for a normalized f(z) € Si(Ng) we have ¢ = 1 since
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a, < n from equation 5.7 in [Iwa97] for k = 2. Then, consider

/0 f(“)tsjt :/0 f(it)f%“r/1 f(z't)ts?Zf

/VNe

/OO f(' 1 ) du _I_/Oo f('t)tsdtb L 1
= i it)t° — —
1/VNG Ngu (NE)SUS+1 1/vNE t Y Ngu

By the Fricke involution for f(z) € Sk (Ng), we have

1 0 -1\, 0 —1\) . '
f <ZNEU> =f ((NE 0 ) (ZU)) = —Ngu? (f‘ (NE 0 )) (iu) = £Ngu® f(iv).
Therefore, the above equation becomes

> du > dt
Zi/ fiU—+/ flit)t—
1/vVNE ( )(NEU)S‘1 LVNE e

© t?—s dt

= fit (ts + ) —

/1/\/N*E ) (Ng)s=' ) ¢

This integral converges for all s € C. Moreover, we have

/0 f(it)ts%:/o (Zanexp(—%mt)) ts%

n=1

8

o dt
/ t* exp(—2mnt)—,
0 t

Il
S
3

G 1\* [ d
= Zan (—) / x® exp(—x)—x where x = 27nt
2mn 0 x

Note that since T'(s) has no zero for all s and simples poles at non-positive integers
s the above integral representation of Ly(s) extends to entire function on C. In
particular, by the definition of modular symbols (3.1) and I'(1) = 1, we have for
f € S:(Ng),

{0,1}(f) =27 /OOO flit)dt = Lg(1). (3.9)

Fix x to be a Dirichlet character of conductor f,. Now, we can find the relation

between the critical L-value Ly (1) and the corresponding modular symbols.
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Lemma 3.1. Suppose f € So(Ng). Then, for fy(z) = Zy(n)anqn,
n=1

Proof.

fe)=——— 3 X+ ).

n=1 a mod fy X

= 0 Z X(a)ZaneXp(Zmn(szfg))

a mod fy n=1 X

1 a
- iy X @)

a mod fy

(3.10)

]

By C-linearity of modular integrals, hence also of modular symbols, for any r» € Q,

MI(fx(2),7) =

g)ar)

> x(@)MI(f(z+

a mod fy

-5 X @mrul(y 1) e

a mod fy

RETRY) > X@MI(f,r+ L), by (3.4).

Fx

a mod fy

(3.11)

From the above relation of the modular integrals of f, and f and that of L;(1) and

the modular symbol {0,1}(f) in (3.9), we can deduce the relation of Ly (1) and the

corresponding modular symbols.

Theorem 3.1. For f € S3(Ng),

Ly(1) = Tﬂ;” S X i) ().

a mod fy

22
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Proof. We prove this for y. First, consider {b, m}(f5) for some integers b and m with

m > 0. Then,

m
1 b a
— =—E a%fx x(a)MI <f, - + E) by (3.11)
B ) __(bfx__,aﬂl)> (3.13)
7(1,x) an%;fx xla)MI <f, mfy
1
- 7_(1’ X) ar%;fx X(a){bfx —am, mfx}(f)
Thus, from (3.9) and by taking b = 0 and m =1 in (3.13), we have
L) = 0.0 = 75— 3 af-af(f)
’ a mod fy
—MERY S @faf)
X a mod fy
=T Y cata i
X a mod fy
= T(;’Y) Z x(a){a,fy}(f) by re-arranging the summation.
X a mod fy
[

The usual Hecke operator acting on f € So(Ng) is f|T, = Z?;&f’ (é i) +

f‘ (g (1)) and the usual U, operator is f|U,, := Z?:_Ol f’ ((1] ?‘7%) Adopting (n) =

{L if 0t Np

) , we extend the definition of Hecke operators T, by
0, ifn|Ng

n—1
_ 1 g n 0
=31 (6 2)+as] (5 9)- (3.14)
j=
The following proposition tells us the action of 7, on modular symbols.
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Proposition 3.2. For f € So(Ng) and a prime p,

{a, 7 3 (IT,) = Z{a — Jho PR3 ) + o), 5y /p}(f)- (3.15)

Proof.
{a, 1 }U1T) = {a. ) (Zf\ (é ‘;) ()| (g ?))
MI <§f‘ ((1) ;) +5(p)f‘ (g ?) ,—a/fx>

0 mr (1] (5 2)=am) +ownar (5] (5 1) -orm)

by C-linearity in f
1

=3 {our (5o 3) o) - (5 5) )}
o (1.(0 1) camo) - ur (25 1) ) bov

— S mr (f, —%) +o(p)MI (f, _<f>jp)) since MI(f,00) = 0

<

= 3o o ) 00 a0} ()
]

The following theorem is the crucial part in the discretisation of critical L-values.
The proof relies on the lattice theory of modular curves and modular parametrization.

We skip the proof.

Theorem 3.2. Let f € So(Ng) and x be a primitive Dirichlet character of conductor

fy. Then, there are two complex numbers QT and Q= such that for a € Z,

A 1)) = g ({0 D) £ {0 £ ()

are integers.
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Proof. See 2.8 in [Cre97]. Note that QF depends only on a given elliptic curve.

By the definition of modular symbols by modular integrals, we have

{a. 13 () £ {=a, 13 (f) = MI(f, —a/fy) £ MI(f,a/fy)
=27 — T )dT T)dT | .
o ([ f-apiinar s [ fafi, - inyar)
The g-expansions of f(—a/f, +i7) and f(a/f, +i7) for eigenform f corresponding to

Lg(s) tells us that they are complex conjugate. Indeed,
¢ = exp(@ri(—a/fy + 7)) = exp(2m(~7 — ia/f,))

= exp(2m(—7 + 1a/fy))

— oxp(Zmi(aff, + i)

which implies

f(_a’/fx + ZT) = Z anqn = Z anq"
n=1 n=1

= Zanq" = Zanqn = f(a/fy +i7) since all a,, € Z.
n=1 n=1

Therefore, for the eigenform f for Lg(s),

2Re ({a.f,}(/) /27, if sign = +

sign _ (
e {Mm({a,fx}(f)) o, it sign =

Let

o
where sign(y) — {f i igji ~ - Then, we have
L) = b Py (Y@ + 2D -a i)
- ﬁmzf (Va1 + X(-DR-DX-a a0 )
_ ﬁ%j(ammm - e
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Let Z[x] be the Z-module generated by the values of x which are k-th root of unity.
Then, integrality of A*(a,f,)(f) implies L(}ig(l) € Z[x|. We let L%g(l, X) = L;ﬁig(l).

Then, by the modularity theorem we have the algebraic part of Lg(1, x):

a 2f
Ly (1,x) = W:O’X)LE(LX)' (3.16)

It is interesting since it gives us the discretisation of some families of Lg(1, ) for fixed
elliptic curves. We next review the work of David, Fearnley, and Kisilevsky [DFKO06]

about the discretisation of Li9(1, y) for odd prime twists.

3.2 Algebraic Parts of Lg(1, )

In [DFKO06] they consider the cyclotomic extension Q((x) for a primitive k-th root
of unity where k is an odd prime and the totally real subfield of Q((x) which is
Q(Ck + ¢;') [Was82]. Then, the extension has the degree -1 since the minimal
polynomial of ¢}, for the extension Q((x) from Q(¢,+ ¢ ") is X2 — (¢ +¢, )X +1 and
QG+ ¢ Y - Q= [Q(¢) : Q/[Q(¢) = Q¢ + ¢ 1)]. Furthermore, we can consider
the ring of integers of Q(¢, + (") is Z[¢, + ¢, '], see proposition 2.16 in [Was82].

Then, we have the following theorem for L%9(1, y).

Theorem 3.3. Let Lg(s, x) is a L-function of an elliptic curve E over Q twisted by

a Dirichlet character of order k for an odd prime k. Then,

Lalg 1’ — |nX| ’ waE 317

where (. is a primitive k-th root of unity and n,, € Z[¢ + ¢ ']

Proof. First, since k is odd, x(—1) =1 and sign(x) = + and we let Q = Q*. Then,
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by the functional equation (1.1) and (3.16) we have
2f
Ly9(1,x) = =—*—Lp(1
E ( 7X) QT(LX) E( 7X)

= QWEX(NS)T(LX) Lg(1,x) since E = E/Q

— wpX(Np) L (1, x) by (2.2) and (3.16)

(3.18)

Since wg = £1 and the value of x(Ng) is a primitive k-th root of unity, we can use
that (Gx — ¢, 1) = — (G — i) and x(Ng)®*+D/2 = x(Np)x(Np) = D/2. 1 wp = 1,
then L%9(1, x) is a real number or a real multiple of x(Ng)*+1/2 more specifically a
multiple of some element n, € Z[(,+(; '], and it satisfies equation (3.18). If wy = —1,
then L9 (1,x) = n, (G — G1) X(NE)*D/2 for some n, € Z[(x + ;'] and satisfies
equation (3.18). Then, the proof can be completed by taking absolute values.

O

The above theorem implies that Lg(1,y) = 0 if and only if L%g (1,x) = 0 if and

only if n, = 0. We show some examples.

. Cubic cases, i.e. k = 3, as shown in [DFK04], (G — ¢') = iv3 and Z[(; +
('] = Z. Therefore,

Ny Jifwg =1

LY%(1,\)| = 3.19

Ll {n\/§ ifwp = -1 (319
where n,, is some non-negative integer.

« Quintic case, i.e. k = 5, as shown in [DFKO06], we have (Cg, — (gl) =i %5

and Z[¢s + (5] = Z[*5%). Thus,

7y | yifwp =1

Lalg LX _
L1 x) {|nx|\/—5+2\/5 Vif wp = —1

1+\/3]
il

where n, € Z]
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David, Fearnley, and Kisilevsky proposed the following conjecture regarding n, of F
over Q with a k-torsion points which is supported by their numerical data [DFK04]

for some cubic twists.

Conjecture 1 (David, Fearnley, and Kisilevsky). If E is isogenous to a curve with

rational 3-torsion and x s a cubic character of conductor f,, then n, is divisible by

3V(fx)—1.
For an odd prime k, we generalize the conjecture for k-th twists.

Conjecture 2. If E is isogenous to a curve with rational k-torsion and x is a char-

acter of order k and conductor f,, then n, is divisible by k-1,

Note when E has a 5-torsion point, the conjecture implies 5*(")~1 divides a and
bforn, =a+0b (%) for some a and b € Z and when E has a 7-torsion point,
7/~ divides a, b, and ¢ for ny = a+b (¢ + 1) + ¢ (¢ + ¢?) for some a, b, and

c € 7.

Fix an elliptic curve E over Q. We can get a bound of |Lg(1,x)| to ensure
vanishing of it by using the geometry of numbers for n,. Let K = Q((x), K+ =
Q¢ + ¢ 1), and Og+ = Z[¢, + ¢.']. Then, n, is an algebraic integer in O+

from theorem 3.3 and there is an embedding 7 : O+ — RE=D/2

by sending o €
O+ to (01(a),...,0k-1)2(c)) where o; € Gal(KT/Q) for 1 < i < (k —1)/2. Let
ai,...,p-1)/2 be an integral basis of Og+. Then, the image of O+ is a lattice in

R*=1D/2 generated by

w1 = W(ai), Ce ,Cx.)(kfl)/Q = ’/T(Oé(kfl)/g).
In other words, wy,...,wk-1)/2 is a basis for the subspace, the image of O+, of the
vector space R*~D/2. Thus, by the discretisation of n, we have
— _ o1 o2 O(k—1)/2
ny =0 <= 7m(n,) = (n,nP, ... ny )ER (3.20)
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where R = {riw; + ...+ rg-1)owr-1y2 | =1 <r; <1for1 <i < (k—1)/2}.

Lemma 3.2. For an odd prime k, a character x of order k and conductor f,, and

any o € Gal(K/Q),

A
Le(1,x7)] = =2= |ng] (3.21)

Vi

where X7 and n, are the character obtained by acting o on x and n,, respectively and

Ap i is a constant depending on E and k.

Proof. Note that x7 is a group homomorphism (Z/f,Z)* — ((.) € C* by sending
g € (Z/§,Z)* to o(x(g)). Thus, x° is a character of order k and conductor f,.

Furthermore, the constant

1€2/2] ifwg =1
Ek = _ , :
/2] |G = G| Hwp=-1
See lemma 3.1 in [DFKO06] for a detailed proof. O

Now we show some bounds of |Lg(1, x)| when n, =0 for k =3 and 5 and k > 7.

For k = 3, since n, is a rational integer and Gal(K*/Q) is trivial,

Ap

Vix

For k =5, n, € Og+ = Z[HQ‘/‘F’] and Gal(K*/Q) =< 1,0 > where ¢ is the automor-

Iny| =0 <= |ny| =|7(n,)| <1 <= |Le(l,x)| < by lemma 3.2.

phism sending v/5 to —v/5. Thus, the image of O+ in R? is the lattice generated
by

o (VA I=VEY (1Y 1V

e 2 2 2T 2 2 '
LetR1:{<7"1,7”2)€R2’—1<T1,7’2<1}andR2:{(T1,T2)ER2’—\/g<7°1,7"2<
\/5} Then, Ry C R C Ry and by lemma 3.2,

Ap

Vix

(ny,n3) € Ry <= |ny|,|n%| < V5 < |Lu(1,0)],|Le(1,x")| <

(ny,ng) € Ry < |ny|,|nf| <1 <= |Le(1,x)|, |[Le(l,x7)| <
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For k > 7, let ay,...,ap-_1)/2 be an integral basis of O+ and o; € Gal(K/Q) be a
restricted automorphism to Gal(K™/Q) for 1 < i < (k — 1)/2. Consider the region

in R(k—l)/Q

R = {(7’17...,T(k_1)/2) | —M<r;<Mforl<i< (k’— 1)/2}
(k—1)/2

where M =  max Z |oi(a;)|. Then, R C R and

1<i<(k-1)/2 4
Jj=1

!

Bk

Vix

where Ahk is a constant depending on E and k. We use those bounds to get the

ny=0=7(ny) € R < |L(1,x7)| < for 1 <i<(k—1)/2 (3.23)

probability that Lg(1,x) = 0 in section 4.3.
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Chapter 4

Random Matrix Theory for
Critical L-values

4.1 Random Matrix Theory for U(NV)

Katz and Sarnak [KS99] showed that the distribution of low lying zeroes, which are
zeroes on the critical line with imaginary part is less than some height, in some fam-
ilies of L-functions fits that of some parameters of eigenvalues of matrices from one
of the classical compact groups. In particular, our family of Lg(1, x)’s over x’s which
are of order k£ and of conductor f, < X has a symmetry type of U(N). Moreover,
Keating and Snaith [KS00b] and [KS00a] proposed that the moments of the values of
((1/2 4 it) can be asympototically approximated to some multiple of the moments
of the values of the characteristic polynomials of random unitary matrices following
GUE(Gaussian unitary ensemble). They extended that the idea for some families
of L-functions. Conrey, Keating, Rubinstein, and Snaith [CKRS02] suggested some
asymptotic conjectures for the moments and the vanishings of critical L-values of
an elliptic curve twisted by some family of quadratic characters inspired by [KS00b]
and [KS00a]. David, Fearnley, and Kisilevsky [DFKO04] proposed similar conjectures

for cubic twists.
In this section, we review the work of Conrey, Keating, Rubinstein, and Snaith [CKRS02]
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and David, Fearnley, and Kisilevsky [DFK04]. First, we introduce some properties of
U(N).

« U(N) is a multiplicative group with identity Iy and the inverse of A € U(N)

is A*. However, it is not abelian for N > 1.

« As linear transformations, A € U(INV) preserves the inner product in the vector
space of C¥ and the norm in particular. It implies that the sequence of eigen-
values of A € U(N) is {e%} for 0 < 0, < 0, < ... <0y < 27. Then, that of

A*is {e7%} and det(A) = vazl e = exp (z Zjvzl 9j>.

« Let A and B € U(N). Then, we say A is conjugate to B, denoted by A ~ B,
if there is D € U(N) such that D*AD = B. For each eigenvalue of B, say i,
D*ADx = Bx = M\ for some eigenvector x. Thus, ADx = A\ Dzx. Letting
2’ = Dz, Ax’ = \a’. Therefore, all eigenvalues of A coincide with those of
B. In particular, A ~ diag (A1, ..., Ax) and, hence, A = Ddiag (\{,...,A\y) D*
for some D € U(N). This property says each conjugacy class can be identified
with a sequence of eigenvalues {¢t, ... e?~} more simply {f1,...,0y} where

0<6, <...<0y<2m.

The topological structure of U(N) provides us the calculus with respect to the Haar

measure.

Definition 4.1. A group G is a topological group if there are continuous maps f :
GXxG— Gandh:G— G by (a,b) — ab and g — g~ respectively. Note that G x G

s a product topological space of G.

Let My(C) be the set of all N x N complex matrices and consider the map
¥ : My(C) — R by {aj; +ibji} — (a1, b;) for 1 < j,l < N and a; and by € R,

. . . 2 . .
Then, 1 is a homeomorphism. Thus, since R?"" is a Euclidean space, an open set of
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My(C) is an open set of R2V* ie. O € My (C) is open if and only if for any image
of {aj; + ib;;} under the map 1) in contained by an open ball of R*" *. Moreover, the
topology of U(N) is inherited by that of My (C), i.e. O C U(N) is open if there is an
open set of O' C My(C) such that O = O' N U(N).

Note that the usual norm of the Euclidean space RN is defined as for (a;)

I(ap)ll =

The distance between A and B € My(C) is defined by ||A — BJ|. This is a metric
of the space My(C). The norm of the image of U(N) is bounded, i.e. for any
{ajl + ibﬂ} S U(N)

[0({au +iba )|l = [[(ar, bus - ann, b

= \/a%1+b%1+"'+a?VN+b?VN

< NV2 since all |aj| and |by| < 1.
Suppose a sequence (U;) where U; € U(N) converges to Uy, € My(C). Then, the
sequence (Ujf") converges to U, € My(C). Since U;U; = Iy for all j, U UL, = Iy.
So, Uy is unitary. So, U(N) is closed in My (C). Therefore, closedness and bound-
edness of U(N) in My(C) imply that U(N) is compact by the Heine-Borel theorem

for Euclidean space.

Consider the set of diagonal representatives, D := {diag (61,...,0y)}, of the con-
jugacy classes of U(N). Let a map f: U(N) — C such that f(A) = f(B)if A~ B
for A and B € U(N). We call such f a class function on U(N). Then, from the
property above, we have for A € U(N)

det(A — My) = det (U diag (¢, ...,e"¥) U* — Xy) for some U € U(N)

= det (U (diag (ewl, ey eiaN) — )\[N) U*)

= 1_[1 (ewf — )\).

(4.1)
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Therefore, det(A—Aly) is a class function. For a measurable set S of U(N), we call a
measure 4 a left(right) Haar measure if for any compact subset C' € U(N), u(C) < oo
and for all g € U(N), u(S) = pu(gS)(u(S) = u(Sg)). Since U(N) is compact, hence

locally compact, by theorem 6.8 and proposition 6.15b in [Kna05], we have

Proposition 4.1. There is a left and right Haar measure, called a Haar measure,

for U(N) which is unique up to a constant.

Furthermore, the following is Weyl’s integration formula, see theorem 8.59 in [Kna96],
with the Haar measure for U(N) which give us the integration of the moments of the

values of |det(A — Iy)|. For a class function f on U(N) and the Haar measure p of

U(N),

1 - 012

f(A)du = —/ f(0,...,0N) | — ™| db; - - - dby.
U(N) N!(2m)N [0,2m)N 1§j1:l[§N
(4.2)

We define t-th moments of |det(A — Iy)| as
Definition 4.2.

My(t, N) = / (det(A — In)[! dp. (4.3)

U(N)

David, Fearnley, and Kisilevsky [DFK04] proposed some moment conjectures for
some families of Lg(1, x) over a Dirichlet character x of order 3 and conductor f, by
using the idea of Conrey, Keating, Rubinstein, and Snaith [CKRS02] that the distri-
bution of the critical L-values for some families of quadratic twists set by a maximal
conductor fits that of values of |det(A — Iy)| for U(N) set by N related to that max-
imal conductor. Thus, here we need to study of statistics of values of |det(A — Iy)],

for examples, moments and probability density function for values of |det(A — Iy)].
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Fix the order of My (t, N) and N. Then, using Weyl’s integration formula for the
class function f = |det(A — Iy)|" on U(N) in (4.1), we can write
i0; t i0; _ 0|2 g9
My (t, N N' 2m) /[02 H‘e H ‘e i—e " do,---don  (4.4)
1<j<I<N

By using the double angle formulae for trigonometric functions, we have

[T le%—eof= [ -cop

1<<I<N 1<j<I<N

= [ 11— cos(6; —6,) —isin(6; — 6,)[

1<j<I<N

— 0 0, — — 0, —0,\ |
- H 1—cos2(9] l)+sin2<]—9l>—2isin(9] el)cos(]—l)

. 2 2 2 2
1<j<I<N

0. — 0 0; — 0 0. —0,\ |
:2N(N_1)1<]1}<N sin2< j2 l> —isin( j2 l)cos( 12 l)

0. — 0\ |?
_ 9N(N-1) : J l

[T | (%

1<j<I<N

Similarly, we have
t

N
(0,
S1n (5)
=1

N
H |€z’9j _ 1|t _ 2tNH
j=1 J

Therefore, the RHS of equation (4.4) can be written as

2N(N 1)2tN 2T 27r
My(t,N) = NIEnY / / sm( ) H

. (0;—0
1 [ (%5%)
1<j<I<N
by replacing 6; — 26; for alll1 <i< N

2N22tN 2
Nl 2m)N / / H|s1n H |sin(6’j —0)|"dby - dby.

1<j<I<N

2

dody - - - dby

Applying the double angle formula to the second product, we have

My (t,N) :]\QNT%N/OW/ H|Sin(9j)|t

X H Isin(6;)]? [sin(8;)| [cot(6;) — cot(6;)|* dby - - - df.

1<j<I<N
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Notice that
N
? |sin(6;)|? H sin(6;)[*N Y
-1

H |sin(6;)

1<j<I<N
Using the above equality, we have
2N22tN ™ r N
My(t.N) = s [ [ TLm @)=
NI2m)N 0 3
7=1 (4.5)
x [ lcot(8;) = cot(6))|* db - - dby.
1<j<I<N
By letting z; = — cot(6;), we have
do; 2
= = 0;).
de; sin?(6;) nd 1+ a7 sin(6;)

Using these, we have

N N
[T 1sin ()P0 doy - - don = T |1+ 27 day - day
7j=1
N=H2 (1 — ixj)_N_t/Q dxy---dry.

j=1
N
H 1+ mJ

j=1

.

Therefore, equation (4.5) becomes

QNN —N—t/2 . N—t/2
My(t,N) = N / / Hl+m1 (1 —ix;)
(4.6)
|z; — :I:l|2 dxy---dry.

1<]<l<N
Now we can evaluate equation (4.5) by using the Selberg’s integration formula, see

equation 17.5.2 in [Meh91], which is

(2m)N
= (a+b) (a+B)N—yN(N—-1)—N i
for Re(a), Re(b), Re(a), and Re(8) > 0, Re(a+ ) > 1, and
-1 . (Re(a) Re(B) Re(a+p+1)
< Rely) <min{ 7 0 2(N 1) }
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/ / —$l|27H(a+imj)fa (b—iz;) P dey - doy
OO1<J<l<N j=1
TT T+ +0a+8—(N+j-1)7-1)
(1 +~)C(a— j7)0(B — jv)




For our equation (4.5), take a = b=~y =1and a = f = N +t/2 for Re(t) > —2.

Then, we have
(a4 b)EHANANIN-D=N _ oN*+IN and o+ - (N4+j—1)y—1=N+t—j.

Note that the functional equation of I'(z) implies that

N-1 N—-1
[[re+i)=]]G+Dre+,) N'HF I(1) =1,
7=0 Jj=0
N— N N-1 y N ;
(N _ : o Y
H +t— ) HF(]—H), and HF(N+2 7) Hr(ﬁz)
j=0 j=1 j=0 j=1
These give us
N1, N
1 N+t—j I( j j —i—t
j=0 7j=1

Note that this formula (4.7) for ¢-th moments holds for Re(¢) > —2 and any positive

integer N and is analytic for Re(t) > —1.

Recall the definition 4.2 of ¢-th moments of |det(A — Iy)|. Let Py(z, N) be the
probability density function for x = |det(A — Ix)|. Then, we can consider the prob-

ability theoretic relation between My (t, N) and Py(z, N) by
My(t,N) = / z' Py (x, N)dz.
0

Then, we can apply the Mellin transform to get Py(z, N), i.e.

1 c+100
Py(x,N) = — / My(t, N)z~'dt for some ¢ > —1.

2MT Jolino
. 4.8
Lo PTG +1) 45
~om et
2mix c—100 1 F(] + 5)

J
Moreover, we can evaluate Py(x, N) by considering the behaviour of the integrand

n (4.8) as in [DFKO04].
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Proposition 4.2. The probability density function Py(x, N) of values of |det(A — Iy)|
for A € U(N) and the identity I in U(N) can be approximated as for x — 0 and N
fixed,

Py(z,N) ~ ! )HPF@ . (4.9)

Proof. In (4.8) let t = o + i1 and ¢ = 0. Then, the controlling behaviour of the

integrand, for a fixed N, is given by Stirling’s formula as |7| — oo and for —7 <

I(t) = 27” <£)t <1 +0 (%)) | (4.10)

which gives us some bounds for |I'(¢)| as

argt < m:

|7']“ 1/2 _”|T|/2) f 7| = o0

I'(t (0 +iT) 4.11
OIS e il st D
Indeed, let S,, € R such that —(n+1) < S, < —n forn =1,2,... and
N
r'Gr j —i—t
—t
= gy
7=1
Note that f(¢) has poles at ¢ = —n for positive integers n. Now, we consider the

rectangular contours C,, with vertices —S,,+¢T', —S,, . 1+i1, —S,+1—¢1T, and —S,, —iT
oriented in the counterclockwise and check the asymptotes of the horizontal lines and

the left vertical line of the contour integral

273@,1: 7€~ Sty (4.12)

Some bounds of |f(¢)| on the horizontal lines as ' — oo and the left vertical lines as

n — oo can be obtained by the Stirling’s formula (4.11):

lN—[ T(j+ o +iT)

[flo+iT)] = LT(j+o/2+T/2)
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and

N [(j—S,+ir)
H L(j—S./2+i1/2)

F(=8u )| = o

N

I1rG)

i1 =
N 1 N2

"0 (H S,:J+2> = 20 (S;Q) as n — 0o.
j=1

It implies that for x — 0, we have an exponential decay, =7, as ¢ — —oo in f(o+i7),

i.e. the horizontal lines integrals of each (4.12) go to 0 and as n — oo, the left vertical

integral
1 Sn+iT 1 —Sn
t)dt| < — )| do — 0
oo [ wd| <o [ i vimias
This allows us to move the vertical lines to left and to pick the poles at t = —n for the

contributions of the contour integral (4.8) by applying the Cauchy’s theorem. More

specifically,

1 ioo

where

1 1 PTG+ o I'(j) .
It@?if(t) = xtf_{ﬁijl T(j+ 1)? r =z H 2 tf_{giHF(]—i_t)‘

Note that Py(z, N) can be regarded as a power series of x and for x — 0, the residue of

f(t) at t = —1 is the main contribution for the series. Therefore, noting Reos I'it)y=1

we have, as © — 0,

ot ) ~ 2 Res (0 = T 2 TG - 1 = s I P = ROV

rt=—1

I\DI)—I

Jj=2 J:1
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4.2 Barne’s (G-function

We define the complex function G(z) called the Barne’s G-function as

G(1+z):(27r)z/2exp(— (v+1)2*+2) /2) H (14 z/n)"exp (—z + 2%/(2n))

n—00
m=1

=1
where 7 is the Euler constant, i.e. v = lim (Z — — log n)
m

The following properties of G(z) are given in [HKOO01]. The G(z) is analytic on
C, G(1) = 1, and has the functional equation G(1 + z) = I'(2)G(z) for any z € C.
Furthermore, log G(1 + z) has the following asymptotic formula:

for |z|] — oo and —7 < argz < T,

2?logz 32>  zlog2m logz 1
_ 2% _ 1) O(—
2 R 2 o0

where ((z) is the Riemann zeta function. Then, we can represent R(N) in (4.13) by

logG(1+ 2) = )s (4.14)

G(N) using the functional equation of G(z) and the asymptotic formula (4.14).

Proposition 4.3. For N — oo,

R(N) ~ NiG> (%) .

Proof. Using the functional equation of the G(z), we can write
e
: 1
3:1 F(J - 5
_ GIN) ppGOtd) 66— 1/2)
aur e e

_ G(N)G(1+N)
 GAN+1/2)

l\')

G (1/2).
So, we need to show

log G(N) + log G(1 + N) — 2log G(N +1/2) ~ 128V

(4.15)
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By the above asymptotic formula, we write the LHS of (4.15) as
log G(N) +logG(1+ N) — 2log G(N + 1/2)
(N —1)%log(N —1)

_3(N—1)2+(N—l)logQW_log(N—l)
2 4 12
+]\72logN 3N2+N10g27r log N
2 4 2 12
[Vl — ) BN-BP (N Dlog2r logN =] (1
2 4 2 12 N
N2 [(N-1)N N-1\ 1
= —1 —— | — Nl 2 — |5log(N —1) —log N —1 N+ - O(1).
5 ogLN_%)g] og<N_1 + 15 [ los( ) —log og (N+5 || +0@)
(4.16)
Note that for € R such that |z| < 1, the Taylor series for log(1 + x) is
log(1 + ) i( Pt zLE
o) T) = — —=r———4+ =4 ....
5 2 n 2 "3
Thus, we have for N — oo
N2 [(N—1N]  N? 1
Do [T Y e (1 - — O(1
2 Og[(N_%f] 2 Og( 4N2—4N+1> (1)
and
N-—3 1
N1 2 ) =N1 1 =0(1).
Og(N—1> Og( +2N—2> o)
Furthermore, as N — oo,

5 [5 log(N — 1) —log N — log (

1 log N
N+ — )
+2)] Ty

Therefore, we obtained all asymptotic behaviours of all terms in the RHS of (4.16)

This completes the proof.

0
4.3 Vanishings of Families of Ly(1, x) via Random

Matrix Theory

Definition 4.3. The t-th Moments of Lg(1,x) over x € Yg,(X) is

1
Mpg(t, X) = Vo E }LE(LX)F-
| E’k( )|X€YE,k(X)

(4.17)
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Now we study distributions of critical L-values for the family Yz 3(X), in particu-
lar Mg(t, X), via some conjectures about the connection of Mg(t, X) and My(t, N)

proposed by David, Fearnley, and Kisilevsky [DFKO04].

Conjecture 3.

Mp(t,X) ~ ap(t/2)My(t, N) (4.18)

where ag(t/2) is a function of t and depends only on E. Furthermore, we have

N ~ 2log X.

David, Fearnley, and Kisilevsky [DFK04] also compute the arithmetic factor ag(t/2)
depending on E in the conjecture 3 by using number theory and support it by nu-
merical results. More precisely, they find a main contribution of

b > |Lets )| (4.19)
Yer(Ol =,
can be written as Ct2(3)f(s, t) where f(s,t) is analytic at s = 1 for each t. Then, they

conclude ag(t/2) = f(1,t) and agr(t/2) converges at t = —1.

Moreover, we can evaluate the relation of N and X in the above conjecture by
Keating and Snaith’s idea that the mean eigenvalue density is asymptotically same as
the mean non-trivial zero density of the Riemann zeta function ((s) at a fixed height
T > 0 in the upper half critical strip such that such zeroes all have 0 < Im(s) < T.

We adapt the same idea for Lg(s, x). In other words, let
N (T):=#{s € C|0<Re(s) <2,0<Im(s) <T, and Lg(s,x) = 0}.

Then, the mean non-trivial zero density at a fixed 7" is given by N, (7')/T. Meanwhile,
the mean eigenvalue density is the mean density of the conjugacy class representation
diag (01, ...,0n) € U(N) which is given by N/2r since each §; for j = 1,..., N has

mean density 1/27.
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Let f(z) be an entire function on C. Then, we say that f(z) has the order r > 0

if fore>r

f(z) = O(exp (|2[)) as |z] = o0.
Lemma 4.1. Ap(s,x) = (fov/Ng/2m)" T(s)Lg(s, x) is of order 1.

Proof. By (3.7) and using |a,x(n)| = |a,| < n from equation 5.7 in [Iwa97],

et = (222) ro)zsto.0 = (ML) w0

— (1/Ne)" [ e

is entire on C where f(s) is an eigenform in Sy(Ng) and f,(s) = > o0 a,x(n)qg"
where ¢ = exp(2mis). Furthermore, equation (3.7) implies that the integral converges
for all s € C since f, is also a cusp form. We check the asymptotic behaviours of the

factors of Ag(s,x):

(fx\/N_E>s =0 (exp (|s| log <%F))) = O (exp (c1s]))

21

and

(s) = O (exp (co|s|log|s]))
for some constant ¢; and co. Corollary 5.2 in [Iwa97] gives us the bound

> an < X for X > 1. (4.20)

n<X
For |Ly, (s)|, we denote s = o +i7 where o and 7 € R. Then, by equation (4.20) and

the partial summation formula, we have for o > 3/2
X X X
apx(n an 3_ 1
E ﬁ S E u < Xg 7+ o'/ u; 9du
n n=1 ne 1

n=1
:X2—0+g<g—g) (1—Xg_”>—>a<a—;) as X — o0.

For 1 < ¢ < 3/2, by theorem 5.37 in [IK04] and the functional equation of Ly (s),

w

we have for any ¢ > 0

L) < (VNellsl+2)
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Therefore, we have
|AE(s, x)| = O (exp (c|s|log|s|)) for some constant c.

Fix 7. Then, as ¢ — 0o, we have Ag(s, x) = O (exp (csolog o)) for some constant c3

by equation (4.11) and completes the proof.

Therefore, we can apply the Hadamard product for Ag(s, x)

Na(s.0 = (1o/Fef27) T6)Li(s. 0 =TT (1= 1) e
p
P
for some constant @ and b € C and the product runs over all non-trivial zeroes of

Lg(s,x). If we consider the logarithmic derivative of Ag(s,x), then

A (/) 9 L)y 5 (]

AE(Sa X) 2m
We can easily find the constants a and b as

N A(2. %
a=1logAg(0,x) and b= £0.x) _ Ap(2,%)

Denote s = o + i7 and a non-trivial zero of Lg(s,x) by p =+ iy.

Lemma 4.2. Suppose 2 < o < 7/2 and |t| > 0. Then,

1
Z —— 5 < clog]|7| for some constant c

1+ (T =)

where the sum is over all non-trivial zeroes of Lg(s,X).

Proof. From equation (4.21), we have

L L (B L T (L1,

" (s)
['(s)

O (log |7]) for such s,
Ly(s X)) ( 1 1)
—Re | £222) < ¢ loglr|— ) Re +-.
(LE(57X) log |7 ; S=p P
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L (7/2+i
5(7/ +Z,T’ X) is bounded, we
Lg(7/2 41T, %)

Put s = 7/2 4 it into the above inequality. Since

have
1 1
Re|l ———+ - 1
zp: e(7/2+Z'T—p+p><c1 o&l7]

Furthermore,

1 _ 7/2 - 1
Re(7/2+i7—_p> (72 B) 4 (1 —)? = 124 (1 —7)?

and by lemma 5.5 in [IK04],
1
Re (—) = % < 0.
p) ol

Therefore, for some constant cs,

Z (s Z e < g log|T].

p

By letting ¢ = 12¢,, we complete the proof. O

Lemma 4.3. For —3/2 < o < 7/2 and some large |T]|
290§V 1L 0 (1ogrl)
ZE\SX) N & -
s—p s
where the sum runs over p such that |7 — | < 1.

Proof. From equation (4.21),

Lp(s,x) Ly(f+ir,x) TG +ir) T'(s) I 1
LE(SaX)iLE(%‘f'@'TaX)—FF( +17) F<5)+Z(5_P %+iT—P>

1 1
= O (log|7|) + ( - , )
Ep: s—p 54

Thus, if |7 — | > 1, then

NI~
|

Z( 1 1 ><Z 1 ' Z I-o
\s—p %—l—iT—p - ls—r —+ZT— |s—p||%—|—z‘7—p|
~ 5 10
< < — 5 < ¢ log|T|.
;\T—’HQ ;1—1—\7—7]2 1log 7]



*

by lemma 4.2 and where Z sums over p such that |7 —~| > 1 and ¢; is a constant.

p
If |7 — 7| < 1, then

! 1 ! 1 !
'Zm 52m§21§21§@10g|ﬂ
P P p o

for some constant ¢;. We complete the proof.

]

Proposition 4.4 (Argument Principle). Let f on C is a meromorphic function inside

and on a closed contour C' such that there are neither zeroes nor poles on C', then

LG,
i b j N T

where N and P are the number of zeroes and poles of f counting multiplicities and
orders respectively. In particular, if f is analytic in C' and there is no zero on C,
then

1
N = —Acarg f(2)
2m

where Ac arg f(z) is the variation of arguments of f(z) around C.

The second argument of the above proposition follows from the fact that for an

analytic function f and a contour C' on C such that there are neither zeroes nor poles

on C,
L),
N = %fc 72) dz = %Aclogf(Z)
— % (Aclog|f(z)| +iAcarg f(2))
— %Acargf(z)

since log | f(2)] is single valued and, hence, A¢log | f(z)| around the closed contour C'
is 0.

The following proposition can be deduced from theorem 5.8 in [IK04].
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Proposition 4.5. For a fived height T' > 2, a E of conductor Ng, a Dirichlet char-

acter x of conductor fy,
T VNgT T
N (T) = —log (fXQ—E) — —+0(logT).
T 7 T

Proof. First, let
M, (T):=#{s € C|0<Re(s) <2,-T <Im(s) <T, and Lg(s,x) = 0}.

Then, by the fact that Lg(s,x) = 0 if and only if Lg(s,%) = 0 and by the functional
equation (1.1),

(T) =2N,(T). (4.22)
Let s = o + 7 and the rectangular contour C' be composed of the line segments

L ={1—il - I —iT}, lh = {I —iT — I 4+iT}, I3 = {I +iT — 1+T},
ly={1+iT = =24+iT}, I ={-2+iT — -2 —iT}, and lg = {—2 —iT — 1—iT}.
Then, considering possible trivial zeroes of Lg(s,x) at either s = 0 or s = 2 and

either s = —1 or s = 3 and the variance of arguments through C' counter-clockwise,

by the argument principle
2m (M (T) +2) = Acarg Ag (s, x). (4.23)

Note that Ag (s, x) is entire on C. Furthermore, by the functional equation (1.1), we
have
arg Ap (o +i1,x) = arg Ap (2 — o —it,X) +arg 7(1, )2

It implies that Aj, argAg (s,x) = Ay, ,argAg(s,x) for i = 1,2, and 3. So, it is

i+3
enough to compute the variances through [y, ls, and l3, say this right half contour D,

and double them. Note that
Aparg Ag(s,x) = Ap arg <fX\/NE/27r) + Apargl'(s) + Aparg Lg(s, x).

Then, we have

Ap arg (fx\/N_E/27T>S = ApIm (slog (fx\/N_E/27r)> = 2T log (fx\/N_E/Qﬂ') :

(4.24)
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and by the Stirling’s formula for log I'(s),
Apargl'(s) = ApImlog (I'(s)) = 2T log T — 2T + O(1). (4.25)

Let non-trivial zero p = 5 4 iy. We compute Ap arg Lg(s,x) = ApImlog Lg(s, x).
Note that since log Lg (s,x) is bounded at every s € Iy, Ay, arg Lg(s,x) is also
bounded and we only need to investigate the variances of arguments of Lg(s, x)

on [y and l3. More specifically,

o I (S )
Ay, Imlog Lg(s,x) = / Im (E—’X) ds
: & E( X> 1—iT LE(S7X)

-
1
_ / Im ( ) ds+ O (logT) by lemma 4.3
1—iT S§—p

T
:/ Im ((logs — p)')ds + O (log T')
1-iT
= Ay (s —p)+O0(loglr]) < O(logT)
since Ay, (s — p) < 7. We have the same result for A, Imlog Lg(s,x) = O (logT).

Therefore, we have
Aparg Lg(s,x) =0 (logT). (4.26)
Use Acarg Ag(s,x) = Aparg Ag(s, x) and by equation (4.22), (4.23), (4.24), (4.25),

and (4.26), we complete the proof. ]

Note that our family of Lg(s, x) is the set of Dirichlet characters x of order k and
conductor f, < X. So, it seems natural to take the maximum conductor among such

fy call it X. Therefore, we obtain the relation between N and X as
N ~ 2log X (4.27)

since Ng and T are fixed and

N 1 1
— = —=N_(T) ~ —logX.
21 T X( ) Wog

Following conjecture 3, we can deduce the probability density function Pg(x, X) for

the values of |Lg(1, x)| for x € Ygi(X).
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Proposition 4.6. Assume the conjecture 3. Then, for x small and N — oo,
Pg(x,X) ~ ag(—1/2)NY*G*(1/2).

Proof. Since = |Lg(1, x)| and Mg(t,X) = / 2" Pg(x, X)dz, by the Mellin trans-
0

form, we have

1 c+i0o dt
Pg(z, X) = —/ Mp(t, X)x~"'— for some ¢ > —1
270 Jeino x (4.28)
1ot dt .
~ 5 ap(t/2)My(t, N)a:_t; by the conjecture 3

c—100

We know that ag(t/2) converges at t = —1 from the above argument about ag(t/2)
derived by study of (4.19). Furthermore, a main contribution of Pg(x,X) can be
obtained by taking the residue of the integrand of the above line integral in (4.28) at

t = —1 as shown in the proof of proposition 4.2. So, equation (4.28) becomes

~ag(—1/2)Py(z, N)

~ ag(—1/2)NY*G?(1/2) by equation (4.13) and proposition 4.3.
[

For large enough f,, consider x such that z < ¢/ \/g where c is a positive constant.

Then, from proposition 4.6 and equation (4.27) we have
Pp(z,X) ~ ap(—1/2)NY4G*(1/2) ~ Cglog’* X ~ Cglog'/*§, (4.29)

where O = 2%a5(—1/2)G?(1/2).

Conrey, Keating, Rubinstein, and Snaith [CKRS02] proposed the conjecture for
the number of vanishings for some family of quadratic twists Lg(s, x4) where d is the

conductor of a quadratic Dirichlet character. More precisely, let
Vi+ o = #{Lr(s,xd) | wxa(—Ng) =1 and d < X and Lg (1/2, xq) = 0}.
Then, for some constant cg depending on FE,
Vet ~ cEX% log_g X.
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David, Fearnley, and Kisilevsky [DFKO04] derived and numerically supported the
asymptotes of |Vg3(X)| about X for a fixed elliptic curve E using Pg(z, X), the-
orem 3.3, and conjecture 1 as

bpX1/? logl/4 X if F has no 3-torsion
bpX'2log”* X if F has a 3-torsion

[Ves(X)| ~ {
for some constant by and by which depend only on E.
We use the same arguments in [DFKO06] and derive the asymptotes of Vg 5(X) and
Vi 7(X) by using the probability density function Pg(z, X) in the rest of this section.
Recall equations (3.22) and (3.23) in section 3.2. Consider the probability that
ILe(1,x)| < ¢//Fy for some positive constant ¢ and f, large enough. Then, by

equation (4.29)
C/\/E
Prob(|Lg(1,X)| < ¢//fx) :/ Pg(x, X)dx
0

c/v/Ix
~ / Cp log"*§, dx (4.30)
0

10g1/4 fx

Vix

~ CCE

Then, we can obtain the asymptotes of Vg 5(X) and Vg 7(X) by computing the prob-

ability that Prob(|Lg(1, x)| = 0) and the partial summation.

From equation (3.20) we know

Lp(l,x)=0 <= n, =0 < 7w(ny) = (nJ,nP,....n"*?*) € R.

For k = 5, we use equation (3.22) to get

Prob <|LE(17X>| < %) Prob (|LE<LXU)| < 1?;5)

< Prob ( Lu(1,x)| = 0)

V5AgL
Vx

< Prob <|LE(1,X)| <

) Prob (|LE(1,X”)| < ﬁAEk) .

Vi
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10g1/2 fX

Vix

Thus, by equation (4.30), Prob (|Lg(1, x)| =0) ~ Cs where Cj is a constant.

Summing it over f, up to X we have

10 1/2
Ves(X)| ~ G5 Y =5 13 (4.31)
= Vi
logl/ 2z ) )
Let f(x) = . Then, by the partial summation formula and corollary 2.1, we

NZ

have

1<h <X 1 1< <u

X 1/2
1 log™/“u
Nclol/QX—c/ — du
5108 5 ! 2ulog1/2u U

X 1..1/2
~ Cy / log Cdu + O(log'/? X)
1

u

265, 379

N?log X as X — o0.

Therefore, equation (4.31) becomes
Ves(X)| ~ bpslog®? X

where bg 5 is a constant depending on F.

For k = 7, we use equation (3.23) to get

A/
Prob (|Lg(1,x)| =0) < H Prob <|LE(1,X‘”) < \/Ef_;> :

1<i<3
, 10g3/4 fx :
Thus, by equation (4.30), Prob (|Lg(1, x)| = 0) ~ C7T where C7 is a constant.
X
Summing it over f, up to X we have
log3/4f
Ver(X)| ~ Cr Y —5 (4.32)
frsX X

Note since log®* fy < logf, < (fy)° for any € > 0 the sum in (4.32) converges.

Therefore, equation (4.32) becomes
Ve (X)] ~ O(1).
We summarize the above arguments by the following conjecture.
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Conjecture 4 (David, Fearnley, and Kisilevsky). Let k = 5 or 7. Fiz an elliptic curve
E over Q without a k-torsion point. Let K = Q(¢) and K™ = Q((, + ¢, '). Assume
that conjecture 3 is true and random variables |Lg(1,x7)| for all o € Gal (K/Q)
restricted to Gal (Kt/Q) are independent identically distributed.
Then,

Vies(X)| ~ bislog®? X

for some constant bg 5 depending on E and
Ve (X)| ~ O(1).

The above conjecture is also heuristically supported in [DFK06]. When E has a
k-torsion point, powers of log X can be derived by using proposition 2.4 in partial

summation.

Conrey, Keating, Rubinstein, and Snaith [CKRS02] introduced and empirically
supported the ratio conjecture of the t-th moments of the family

Fep+(X) ={Lg(s,xq) | wxa(—Ng) =1 and |d| < X} (4.33)

where d is the conductor of a quadratic Dirichlet character. More precisely, for a

prime p,
. t
Q) =lm > Lp2x) /Y Le(/2x)
Lg(sxa)€F g+ (X) Lp(s;xa)€F g+ (X)
xa(p)=1 xa(p)=-1
(p+1+a,)
(p+1—ap)

where a, = p+ 1 — N, for N, being the number of points of the reduction E of
FE mod p and also the coefficient of term x4(p)/p® of Lg(s, xa). We propose the ratio
conjectures of the ¢-th moments of some family of critical values of Lg(s, ) twisted

by Dirichlet characters of order of odd prime £ in the next chapter.

52



Chapter 5

Conjectural Formulae

Choose an elliptic curve £ and a prime p { Ng, and consider Yg (X). We make the
following conjectural formula for the asymptotic ratio of ¢-th moments for Lg(1, x)

of x of f, < X of order k for such p:
Conjecture 5.

R,(t,k) := lim Z |LE(1,X)’t/ Z ‘LE<1?X)V

X—o00

Xil(/g),k:(ff) XEYE,(X) (51)
~1
where
(k—1)/2 ) L (2 o 2 o i
F(k,t) = ; (p + 2p (2005 (T) — a, cos (T) — 1) + a, — 2a, cos (T) + 1) )

Following the argument for the ratio conjecture in [CKRS02] we observe for each
fixed value of x(p), say ¢ for some n € {0,1,...,k— 1},

S [Le(t)] ~ '(1 . %% (1 ) BXT@>

XEYE K(X)
x(p)=¢;

—t
x Las X — oo

where a, + 8, = a,, || = |8, = p,a, = B,, and L is a factor depending on
E p,t, and k but not on x € Ygi(X). Therefore, R,(t,k) in conjecture 5 has the

cancellation of the common factor L.
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Furthermore, for a fixed x(p) = ¢ for some n € {0,1,..

(122 (552

(-8 (-29) (-5 (-39
(=) (p-56) (p-wa") (1-BG")|

2T 2 -
=9 (p2 + 2p (2 cos” (T) a, COs ( ) — 1) + 072) — 2a,, cos (%n) + 1) .

In particular, when x(p) = 1, we have
-3 -2
p p

For the ratio conjecture of vanishings, Conrey, Keating, Rubinstein, and Snaith take

.,k — 1} we have

—t

&

2

—

N+

pt (p+1-— ap)it

t= —% where there is a pole of the t-th moment function, See [CKRS02]. However,
by the normalizing issue of L-functions, here we take ¢ = —1 where there is a pole of
My (t,N) in (4.7), See [DFKO04]. Therefore, the conjectural formula for the ratio of

vanishings of Lg(1,x) is

Conjecture 6.

Ry(k)i= Jim Y 1/ Yo

XEVE,k(X) XEVE,K(X)
x(p)=1 (5.2)
2F(k,—1)\ "
1= (14 27)
p+1—a,
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Appendix A

Numerical Data

In this section, We compute the empirical and conjectural ratios of some t-th mo-
ments (5.1) and vanishings (5.2) of critical L-values of twists of order 3, 5, and 7 of
prime conductors for various elliptic curves. We used the critical L-values already

calculated by Fearnley and Kisilevsky.

The program code for this experiment is based mainly on the script library written
by Fearnley and Kisilevsky in PARI/GP [PAR10] and the central L-values of twists
of order 3, 5, and 7 they already produced. Furthermore, the elliptic curves used in

this experiment are E11A, E14A, E37A, and E37B with Cremona’s notations.

Definition A.1.

Bty = Jim S [Le)| /> [Es(t)] (1.1)
X€ZEg,k(X) Zpk(X)

x(p)=1

By(k)i= lim 3" 1 / Yy oL (1.2)
XEWE (X) Wg k(X)
x(p)=1
In order to save computational time and memory space, we compute Ep(t, k) and
R, (k) instead of R,(, k) and R,(k) by using the PARI/GP function to check whether,

given an odd prime k and a prime conductor f,, x(p) = 1 or not. This function is

based on the algebraic number theoretic fact: For odd primes f, and k& such that
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fy = 1 mod k, consider the sub-abelian extension field of degree k of the cyclotomic
field Q(¢;, ) where ¢ is a f,-th root of unity. Then, x(p) = 1 if and only if p com-

pletely splits in this field.

The sample sizes for all experiments conducted are shown in table A.1. Recall

« Yeir(X)={x| x is a character of order £k, f, < X, and (f,, Ng) = 1},
« Zpi(X) ={x € Yer(X)|fy is a prime}
« Wgip(X) ={x € Zpx(X) | Lg(1,x) = 0}.

Note that the sample sizes of vanishings of twists of order 5 and 7, |Wgs(X)| and
|Wg7(X)| respectively for some elliptic curves, are so small, even though their size
follow theorem 4, in the our maximum conductors X that there is no valuable statis-
tical information that can be seen for asymptotic conjectural formula C,(k) in (5.2)
for k = 5 and 7. Therefore, we show the numerical data for the ratio of vanishings
only for cubic twists. Furthermore, In our families, we only consider y of conductor
f, such that x(p) # 0, i.e. p{f,. Hence, for a given prime p, central L-values data
with the Dirichlet characters x of order k and conductor f, divisible by p are excluded

from the samples.

We compare the accuracy of the data for quadratic twists obtained by Conrey,
Keating, Rubinstein, and Snaith [CKRS02] and cubic twists in the following table A.2.
They considered the family of Lg(s, x4) twisted by a quadratic character x4 of con-
ductor |d|, Fg+(X) defined in (4.33), such that wgpx(—Ng) = 1 where wg is the sign
of the functional equation for Lg(s, x4), and conjectured the ratio of vanishings, for

a fixed prime p,

T p+1—a,
Rp=fim X 1) 3t~y fEar 03
LE(s,xa)€Fg+(X) Le(s,xd)€Fp+(X)

Lg(1/2,x4)=0 Lge(1/2,x4)=0
|dI<X |d|<X
x(p)=1 x(p)=-1
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F T E [ X [ Vel [ ZualX)] [ [WealX)
E11A | 999997 | 317084 78462 420
=3 E14A | 999997 | 246610 78460 690
E37A | 279211 83982 24308 274
E37B | 364723 109660 31050 306
E11A | 377371 72464 31996 8
k=5 E14A | 334511 87784 28628 20
E37A | 205775 54140 18392 12
E37B | 205775 54140 18392 0
E11A | 199921 39390 17892 12
b= E14A | 334643 59034 28692 0
E37A | 205759 40446 18408 0
E37B | 205759 40446 18408 6

Table A.1: Sample Sizes

-1 -1
In the table A.2, we compute (1 + R%;) and (1 + 4/ ﬁi—tgi) instead of R, and

p+l—ay
p+1l+ap

respectively to make the form of the vanishing conjecture for quadratic
consistent with that for higher order twists. The average and standard deviation of
absolute difference between experimental and conjectural values at p for the quadratic
and cubic twists show that the accuracy in the quadratic case is better than that in
the cubic case, see the caption in table A.2. This is presumably because the size of
the quadradic samples is about 300 times larger than that of cubic samples, i.e. For
quadratic twists, f, < 333605031 are experimented while f,, < 1000000 are experi-

mented for cubic twists.

Tables A.3 and A.5 show the ratio of vanishings for prime conductors, Rp(?)),
for E11A and E14A and for E37A and E37B, and compare them with those for all
conductors, R,(3), for E11A and E14A in table A.3. Furthermore, we also compare
the ratio of the 1st moments for prime conductors, Ep(l, 3), with those for all con-
ductors, R,(1,3), in table A.4. For a summary, figure A.1 allows us to use R,(k) and

R,(t, k) for the support of the ratio conjectures. Note that E37A is the first elliptic

curve with rank 1, and E11A, E14A, and E37B have the torsion group of order 5,
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6, and 3 respectively. Furthermore, tables A.6 to A.17 are supporting the our ratio

conjectures for R, (¢, k) for t = 1,2, and 6 and k = 3,5, and 7.
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El1A, k=3

EI4A, k=3

E11A, k=3, =1

El4A, k=3, t=1

Figure A.1: Line chart for comparison of A,(3) := R,(3) — C,(3), Ay(3) := R,(3) —
C,y(3), Ap(1,3) := R,(1,3) — C,(1,3), and A,(1,3) := R,(1,3) — C,(1,3) for E11A
and E14A. Each horizontal axis denotes primes p < 541. Note that the errors are
bounded by 0.080 for |A,(3)] and |A¢(3)| and 0.013 for |A,(1,3)| and |A.(1,3)]| for
E11A and E14A.
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Quadratic Twists Cubic Twists
-1 =T —

p | (1+%) (1+ /=52 R,(3) Cy(3)

3 0.5609196 0.5635083 0.6047619 0.5555556
5 0.4592806 0.4580399 0.3761905 0.3208624
7 0.5630551 0.5635083 0.4761905 0.4731370
13 0.4228537 0.4270510 0.2190476 0.2483516
17 0.5301209 0.5278640 0.4142857 0.3917854
19 0.5002159 0.5000000 0.3333333 0.3506279
23 0.5114825 0.5104212 0.4190476 0.3623188
29 0.4994228 0.5000000 0.3428571 0.3447233
31 0.4392511 0.4446421 0.2809524 0.2648378
37 0.4788075 0.4802323 0.3190476 0.3144226
41 0.5535731 0.5480590 0.4142857 0.4032258
43 0.5379498 0.5342509 0.3714286 0.3861801
47 0.4530124 0.4580399 0.2619048 0.2813021
53 0.5312276 0.5278640 0.3666667 0.3764633
59 0.4773404 0.4791304 0.3238095 0.3099607
61 0.4440276 0.4511511 0.2238095 0.2704273
67 0.5286749 0.5258038 0.3952381 0.3723418
71 0.5121421 0.5104212 0.3380952 0.3520408
73 0.4854512 0.4864766 0.3190476 0.3192681
79 0.5362262 0.5313730 0.3238095 0.3784308
83 0.5204884 0.5178800 0.3809524 0.3611040
89 0.4517865 0.4580399 0.2714286 0.2788211
97 0.5210106 0.5178800 0.3523810 0.3604654
101 0.4945570 0.4950976 0.3190476 0.3299606
103 0.5449674 0.5386919 0.3428571 0.3861285
107 0.4511117 0.4580399 0.2809524 0.2783513
109 0.4734995 0.4772256 0.2619048 0.3050658
113 0.4777122 0.4802323 0.3333333 0.3091507
127 0.4820064 0.4843597 0.3238095 0.3145766
131 0.5394984 0.5342509 0.4000000 0.3799609
137 0.5146421 0.5126893 0.3285714 0.3526239
139 0.4778943 0.4821200 0.3190476 0.3112790
149 0.5200115 0.5166852 0.3095238 0.3576034

Table A.2: Accuracy comparison between the ratio of vanishings for quadratic of
negative and odd conductors |f,| < 333605031 and cubic twists of prime conductors
f, < 1000000. The elliptic curve E11A is used and the data for quadratic twists are
from [CKRSO02].For the data in this table, the average of errors for the quadratic
and cubic cases are 0.003196468 and 0.02217588 respectively, and the corresponding

standard deviations are 0.003748201 and 0.02803420.
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E11A E14A

p Gp R,y(3) 1,y(3) Cp(3) Gp 12,(3) R,y(3) G(3)

2 -2 1 0.7476190 | 0.7470665 | 0.7142857

3 -1 ] 0.6047619 | 0.5988024 | 0.5555556 | -2 | 0.6115942 | 0.6317808 | 0.6339746
5 1| 0.3761905 | 0.3520209 | 0.3208624 0| 0.4173913 | 0.3958724 | 0.3956439
7 -2 0.4761905 | 0.5088853 | 0.4731370

11 0 | 0.3681159 | 0.3696060 | 0.3628523
13 41 0.2190476 | 0.2638484 | 0.2483516 || -4 | 0.4405797 | 0.4628713 | 0.4541635
17 -2 | 0.4142857 | 0.4002608 | 0.3917854 6 | 0.2057971 | 0.2285178 | 0.2270957
19 0| 0.3333333 | 0.3451202 | 0.3506279 2| 0.3043478 | 0.3138226 | 0.3138916
23 -1 ] 0.4190476 | 0.3767927 | 0.3623188 0 | 0.3275362 | 0.3512195 | 0.3476582
29 0 | 0.3428571 | 0.3494133 | 0.3447233 || -6 | 0.3884058 | 0.4108818 | 0.4103496
31 71 0.2809524 | 0.2693878 | 0.2648378 || -4 | 0.3691860 | 0.4079665 | 0.3861155
37 3 | 0.3190476 | 0.3266399 | 0.3144226 2| 0.3014493 | 0.3229508 | 0.3237999
41 -8 | 0.4142857 | 0.3963494 | 0.4032258 6 | 0.2724638 | 0.2863039 | 0.2906959
43 -6 | 0.3714286 | 0.3897849 | 0.3861801 8 | 0.2608696 | 0.2662866 | 0.2762910
47 81 0.2619048 | 0.2711864 | 0.2813021 || -12 | 0.4115942 | 0.4288931 | 0.4189635
53 -6 | 0.3666667 | 0.3663625 | 0.3764633 6 | 0.2695652 | 0.3230769 | 0.3006385
59 5| 0.3238095 | 0.3181226 | 0.3099607 || -6 | 0.3681159 | 0.3774859 | 0.3721721
61 12 | 0.2238095 | 0.2686170 | 0.2704273 8 | 0.2956522 | 0.2874156 | 0.2935765
67 -7 1 0.3952381 | 0.4053296 | 0.3723418 || -4 | 0.4028986 | 0.3519465 | 0.3580226
71 -3 | 0.3380952 | 0.3676662 | 0.3520408 0 | 0.3333333 | 0.3459662 | 0.3380113
73 41 0.3190476 | 0.3080000 | 0.3192681 2| 0.3362319 | 0.3203922 | 0.3286294
79 || -10 | 0.3238095 | 0.3504868 | 0.3784308 8 | 0.3420290 | 0.3158513 | 0.3028586
83 -6 | 0.3809524 | 0.3741851 | 0.3611040 || -6 | 0.3275362 | 0.3651032 | 0.3611040
89 || 15| 0.2714286 | 0.2868318 | 0.2788211 || -6 | 0.3420290 | 0.3624765 | 0.3592557
97 -7 1 0.3523810 | 0.3506139 | 0.3604654 || -10 | 0.3855072 | 0.3764199 | 0.3702907
101 2| 0.3190476 | 0.3194263 | 0.3299606 0 | 0.3478261 | 0.3410882 | 0.3366254
103 || -16 | 0.3428571 | 0.3948787 | 0.3861285 || -4 | 0.3652174 | 0.3479102 | 0.3494386
107 || 18 | 0.2809524 | 0.2724902 | 0.2783513 || 12 | 0.2898551 | 0.3050657 | 0.2980220
109 || 10 | 0.2619048 | 0.2939633 | 0.3050658 2| 0.3275362 | 0.3418704 | 0.3302130
113 91 0.3333333 | 0.3076923 | 0.3091507 6 | 0.2579710 | 0.3309568 | 0.3182855
127 8 1 0.3238095 | 0.3427800 | 0.3145766 || -16 | 0.3710145 | 0.3847340 | 0.3765495
131 || -18 | 0.4000000 | 0.4041721 | 0.3799609 || 18 | 0.2840580 | 0.2979362 | 0.2886557
137 || -7 0.3285714 | 0.3950456 | 0.3526239 || 18 | 0.2869565 | 0.2923077 | 0.2906590
139 || 10 | 0.3190476 | 0.3122530 | 0.3112790 || 14 | 0.2840580 | 0.3002681 | 0.3013219
149 || -10 | 0.3095238 | 0.3754889 | 0.3576034 | -18 | 0.4115942 | 0.3947467 | 0.3745406
151 2| 0.3014354 | 0.3074866 | 0.3310933 8 | 0.3420290 | 0.3236641 | 0.3176053
157 || -7 0.3349282 | 0.3459459 | 0.3501873 || -4 | 0.3246377 | 0.3435231 | 0.3439171

Table A.3: Ratio of vanishings ﬁp(?)) for cubic twists of the case f, is prime and
< X to the case f, < X for E11A and E14A. The primes dividing Ng are left
as blank. The statistics for the first 100 primes p excluding p|Ng: For E11A, the
average of | R, (3) —C,(3)| and | R,(3) — C,(3)| are 0.02630768 and 0.01448274 with the

standard deviations 0.03242929 and 0.01792755 respectively. For E14A, the average of

|R,(3)—C,(3)| and |R,(3) —C,(3)] are 0.01873202 and 0.007887033 with the standard

deviations 0.02290864 and 0.01002376 respectively.
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E11A E14A

p Ry(1,3) Ry(1,3) Cy(1,3) Ry(1,3) Ry(1,3) Cp(1,3)
2 || 0.09386460 | 0.09294287 | 0.09090909

3 0.1693487 | 0.1698208 | 0.1666667 | 0.1304314 | 0.1312307 | 0.1261320
5 0.3439487 | 0.3466059 | 0.3460420 || 0.2810544 | 0.2771475 | 0.2763488
7 0.2196823 | 0.2205287 | 0.2177650

11 0.3061007 | 0.3086978 | 0.3050660
13 0.4262546 | 0.4262275 | 0.4307305 || 0.2342846 | 0.2350774 | 0.2310429
17 || 0.2793002 | 0.2830551 | 0.2795931 || 0.4471545 | 0.4506205 | 0.4597099
19 || 0.3166852 | 0.3194521 | 0.3164760 || 0.3571066 | 0.3543621 | 0.3533590
23 0.3092655 | 0.3073771 | 0.3055556 || 0.3261298 | 0.3218110 | 0.3193098
29 || 0.3232081 | 0.3235229 | 0.3221347 || 0.2716994 | 0.2704904 | 0.2642929
31 0.4033961 | 0.4030852 | 0.4096722 | 0.2850558 | 0.2885248 | 0.2844235
37 0.3501137 | 0.3494443 | 0.3527961 || 0.3474976 | 0.3452887 | 0.3430051
41 0.2713446 | 0.2725176 | 0.2700730 || 0.3761420 | 0.3774466 | 0.3788840
43 || 0.2869762 | 0.2862071 | 0.2843680 || 0.3948289 | 0.3938901 | 0.3957131
47 0.3854371 | 0.3867518 | 0.3897692 || 0.2618438 | 0.2638169 | 0.2574500
53 || 0.2924508 | 0.2949303 | 0.2928241 | 0.3664180 | 0.3652107 | 0.3677143
59 || 0.3550961 | 0.3547193 | 0.3575551 || 0.2969551 | 0.2982084 | 0.2966327
61 0.3937564 | 0.3980339 | 0.4027935 || 0.3700689 | 0.3713823 | 0.3756115
67 || 0.3018702 | 0.2999288 | 0.2964812 | 0.3077718 | 0.3098596 | 0.3095257
71 0.3173034 | 0.3186352 | 0.3151365 || 0.3289162 | 0.3303811 | 0.3286880
73 0.3487922 | 0.3467376 | 0.3477017 || 0.3393684 | 0.3378474 | 0.3380707
79 || 0.2936710 | 0.2940508 | 0.2910933 | 0.3625742 | 0.3626657 | 0.3652679
83 || 0.3057806 | 0.3099059 | 0.3066732 | 0.3103864 | 0.3093102 | 0.3066732
89 0.3858922 | 0.3874449 | 0.3926999 || 0.3086220 | 0.3090684 | 0.3083812
97 || 0.3105005 | 0.3091567 | 0.3072623 | 0.3004950 | 0.3016018 | 0.2983171
101 || 0.3350107 | 0.3376881 | 0.3367232 | 0.3279672 | 0.3292893 | 0.3300575
103 || 0.2928706 | 0.2897919 | 0.2844123 || 0.3264863 | 0.3201832 | 0.3176079
107 || 0.3895009 | 0.3903730 | 0.3932575 || 0.3641238 | 0.3664830 | 0.3706196
109 || 0.3613249 | 0.3616601 | 0.3628525 | 0.3365314 | 0.3378585 | 0.3364684
113 || 0.3594699 | 0.3579544 | 0.3584262 || 0.3460388 | 0.3484346 | 0.3487286
127 || 0.3549640 | 0.3522275 | 0.3526331 || 0.2994457 | 0.2985689 | 0.2927480
131 || 0.2976498 | 0.2939060 | 0.2897538 | 0.3801640 | 0.3755222 | 0.3812202
137 || 0.3173663 | 0.3189231 | 0.3145852 || 0.3696290 | 0.3711556 | 0.3789261
139 || 0.3582954 | 0.3572489 | 0.3561422 || 0.3664538 | 0.3670636 | 0.3669594
149 || 0.3135628 | 0.3162845 | 0.3099158 | 0.2928628 | 0.2971797 | 0.2945248
151 || 0.3398065 | 0.3366882 | 0.3355810 || 0.3483512 | 0.3485709 | 0.3494414
157 || 0.3194115 | 0.3180098 | 0.3168949 || 0.3262073 | 0.3272658 | 0.3229149

Table A.4: Comparison between R,(1,3) and R,(1,3) for cubic twists of the case

fy, < X for E11A and E14A. The primes dividing Ng are left as blank. The
statistics for the first 100 primes p excluding p|Ng: For E11A, the average of

|Ry(1,3) —

C,(1,3)] and |R,(1,3) — C,(1,3)| are 0.003165847 and 0.002452302 with

the standgrd deviations 0.003874501 and 0.002980515 respectively. For E14A, the av-
erage of |R,(1,3)—C,(1,3)| and |R,(1,3) —C,(1, 3)| are 0.003506034 and 0.002705255
with the standard deviations 0.004398328 and 0.003363725 respectively.

62



E37A E37B

p Ap R, (3) Gp(3) ap 1,(3) Cp(3)

2 -2 0.6350365 0.7142857 0 0.4444444 0.4641016
3 -3 0.6642336 0.6363636 1 0.2875817 0.3021695
5 -2 0.5109489 0.5259316 0 0.4509804 0.3956439
7 -1 0.4306569 0.4285714 -1 0.4144737 0.4285714
11 -5 0.4817518 0.4936752 3 0.2679739 0.2648617
13 -2 0.4452555 0.4095725 -4 0.5065789 0.4541635
17 0 0.3065693 0.3526271 6 0.2549020 0.2270957
19 0 0.2773723 0.3506279 2 0.3398693 0.3138916
23 2 0.2846715 0.3175228 6 0.2222222 0.2556042
29 6 0.2262774 0.2722445 -6 0.4313725 0.4103496
31 -4 0.4160584 0.3861155 -4 0.3137255 0.3861155
41 -9 0.3138686 0.4102277 -9 0.3986928 0.4102277
43 2 0.3014706 0.3251906 8 0.3006536 0.2762910
47 1 -9 0.3868613 0.4010267 3 0.2549020 0.3185848
53 1 0.3430657 0.3332147 -3 0.3464052 0.3583580
59 8 0.2481752 0.2921869 12 0.2287582 0.2682308
61 -8 0.3455882 0.3811628 8 0.3006536 0.2935765
67 8 0.2919708 0.2972371 -4 0.4313725 0.3580226
71 9 0.2992701 0.2943971 -15 0.3725490 0.4040646
73 -1 0.2627737 0.3424658 11 0.3594771 0.2858718
79 4 0.2627737 0.3203605 -10 0.4444444 0.3784308
83 || -15 0.3576642 0.3945050 9 0.3137255 0.3001682
89 4 0.3211679 0.3218478 6 0.3006536 0.3141347
97 4 0.2627737 0.3228130 8 0.3202614 0.3086382
101 3 0.3284672 0.3266059 3 0.3071895 0.3266059
103 || 18 0.2279412 0.2761587 -4 0.3137255 0.3494386
107 || -12 0.3941606 0.3727855 12 0.2941176 0.2980220
109 || -16 0.3065693 0.3833607 2 0.3398693 0.3302130
113 || -18 0.3722628 0.3870018 -6 0.2941176 0.3538037
127 1 0.3382353 0.3333127 -7 0.3464052 0.3541268
131 || -12 0.4233577 0.3657349 -6 0.3856209 0.3510137
137 || -6 0.3868613 0.3502453 -6 0.3986928 0.3502453
139 4 0.2408759 0.3260348 -4 0.4379085 0.3452828
149 || -5 0.2992701 0.3466924 15 0.3071895 0.3011858
151 || 16 0.3284672 0.2993191 8 0.3594771 0.3176053
157 || 23 0.2992701 0.2850738 -13 0.3355263 0.3625038
163 || -18 0.3795620 0.3711189 -16 0.3267974 0.3672792
167 || -12 0.3430657 0.3588768 18 0.2614379 0.2984841
173 9 0.3138686 0.3176599 9 0.2810458 0.3176599
179 || 18 0.2481752 0.3008685 18 0.3006536 0.3008685
181 5 0.3138686 0.3258783 -7 0.3750000 0.3479686
191 || -4 0.3649635 0.3420380 -24 0.4248366 0.3755112
193 || -26 0.3722628 0.3782656 -4 0.3137255 0.3419480

Table A.5: Ratio of vanishings R,(3) for E37A and E37B. The error of C,(3) when
p = 2 should be interesting.
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D ap I,(1,3) Cy(1,3) 1,(2,3) Cp(2,3) R,(6,3) Cy(6,3)
2 -2 || 0.09386460 | 0.09090909 | 0.02201568 | 0.01960784 | 6.624101 E-5 | 3.199898 E-5
3 -1 {] 0.1693487 | 0.1666667 | 0.08148780 | 0.07407407 | 0.004426514 | 0.002043814
) 1] 0.3439487 | 0.3460420 | 0.3564464 | 0.3589744 0.4427762 0.4126161
7 -2 || 0.2196823 | 0.2177650 | 0.1424398 | 0.1341991 0.02145361 0.01467688
13 41 0.4262546 | 0.4307305 | 0.5192355 | 0.5337995 0.7997619 0.8572345
17 | -2 0.2793002 | 0.2795931 | 0.2359809 | 0.2315082 0.1682742 0.09857581
19 0 || 0.3166852 | 0.3164760 | 0.3059302 | 0.3000875 0.3353424 0.2396955
23 -1 || 0.3092655 | 0.3055556 | 0.2845829 | 0.2791234 0.2153533 0.1884448
29 0] 0.3232081 | 0.3221347 | 0.3156324 | 0.3111366 0.3279380 0.2693076
31 7| 0.4033961 | 0.4096722 | 0.4674089 | 0.4906275 0.6823854 0.7813946
37 31 0.3501137 | 0.3527961 | 0.3734236 | 0.3727599 0.4715555 0.4563884
41 -8 || 0.2713446 | 0.2700730 | 0.2255424 | 0.2149474 0.1280076 0.07587376
43 -6 || 0.2869762 | 0.2843680 | 0.2516242 | 0.2400061 0.1849097 0.1118836
47 8 1| 0.3854371 | 0.3897692 | 0.4348643 | 0.4493203 0.6095199 0.6848264
93 -6 || 0.2924508 | 0.2928241 | 0.2615605 | 0.2553522 0.1698878 0.1388937
59 5 || 0.3550961 | 0.3575551 | 0.3724268 | 0.3825270 0.3891642 0.4874493
61 | 12 || 0.3937564 | 0.4027935 | 0.4475126 | 0.4763850 0.6026654 0.7507662
67 | -7 0.3018702 | 0.2964812 | 0.2783081 | 0.2621015 0.2225088 0.1520092
71 -3 || 0.3173034 | 0.3151365 | 0.3041265 | 0.2974897 0.2771118 0.2329824
73 4| 0.3487922 | 0.3477017 | 0.3612615 | 0.3623528 0.4189200 0.4233085
79 | -10 || 0.2936710 | 0.2910933 | 0.2590448 | 0.2521811 0.1640704 0.1329936
83 -6 || 0.3057806 | 0.3066732 | 0.2856482 | 0.2812458 0.2602785 0.1933206
89 | 15 || 0.3858922 | 0.3926999 | 0.4358300 | 0.4554168 0.5590076 0.7005401
97 | -7 0.3105005 | 0.3072623 | 0.2935317 | 0.2823667 0.2780311 0.1959248
101 2 || 0.3350107 | 0.3367232 | 0.3400885 | 0.3401300 0.3768659 0.3539204
103 | -16 || 0.2928706 | 0.2844123 | 0.2618799 | 0.2400855 0.2199135 0.1120134
107 | 18 || 0.3895009 | 0.3932575 | 0.4406304 | 0.4565764 0.5988933 0.7034739
109 | 10 || 0.3613249 | 0.3628525 | 0.3844576 | 0.3934431 0.4338133 0.5219130
113 91 0.3594699 | 0.3584262 | 0.3863285 | 0.3843190 0.4394757 0.4931319
127 8 1| 0.3549640 | 0.3526331 | 0.3808222 | 0.3724260 0.5068188 0.4553255
131 | -18 || 0.2976498 | 0.2897538 | 0.2694342 | 0.2497374 0.1653054 0.1285607
137 | -7 0.3173663 | 0.3145852 | 0.3106325 | 0.2964227 0.3090944 0.2302537
139 | 10 || 0.3582954 | 0.3561422 | 0.3813037 | 0.3796230 0.4009005 0.4782258
149 | -10 || 0.3135628 | 0.3099158 | 0.3032984 | 0.2874341 0.3205116 0.2079474
151 21| 0.3398065 | 0.3355810 | 0.3459263 | 0.3378360 0.3997413 0.3469296
157 | -7 0.3194115 | 0.3168949 | 0.3130163 | 0.3009013 0.3139450 0.2418187
163 41 0.3413825 | 0.3396030 | 0.3470590 | 0.3459293 0.4186498 0.3717659
167 | -12 || 0.3140971 | 0.3087325 | 0.3059590 | 0.2851706 0.3050954 0.2025270
173 | -6 | 0.3214256 | 0.3201843 | 0.3116385 | 0.3073149 0.2446804 0.2588770
179 | -15 || 0.3096439 | 0.3053444 | 0.2945995 | 0.2787230 0.2260483 0.1875332
181 71 0.3444990 | 0.3447293 | 0.3568924 | 0.3563066 0.3840161 0.4041993
191 | 17 || 0.3548997 | 0.3631844 | 0.3768748 | 0.3941282 0.5023090 0.5240610
Table A.6: Ratios of t-th moments R,(Z,3) and conjectural values C,(t,3), t =

1,2, and 6, for E11A.
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b ap || Ry(1,3) Cp(1,3) 1,y(2,3) Cp(2,3) 1,(6,3) Cp(6,3)
3 -2 {] 0.1304314 | 0.1261320 | 0.04602524 | 0.04000000 | 0.0005231723 | 0.0002892682
5 0 || 0.2810544 | 0.2763488 | 0.2414617 | 0.2258065 0.09989485 0.09028692
11 0 || 0.3061007 | 0.3050660 | 0.2826947 | 0.2781955 0.1488009 0.1863359
13 -4 1] 0.2342846 | 0.2310429 | 0.1637913 | 0.1529412 0.02270937 0.02300307
17 6 || 0.4471545 | 0.4597099 | 0.5525699 | 0.5914894 0.8791886 0.9239082
19 2 || 0.3571066 | 0.3533590 | 0.3768521 | 0.3739130 0.5748179 0.4600594
23 0| 0.3261298 | 0.3193098 | 0.3200651 | 0.3056058 0.2482329 0.2542756
29 | -6 || 0.2716994 | 0.2642929 | 0.2251906 | 0.2051518 0.06779255 0.06434975
31 -4 || 0.2850558 | 0.2844235 | 0.2444513 | 0.2401055 0.1104665 0.1120462
37 2 1] 0.3474976 | 0.3430051 | 0.3601817 | 0.3528090 0.5840301 0.3932074
41 6 || 0.3761420 | 0.3788840 | 0.4177778 | 0.4266755 0.6999680 0.6224617
43 8 || 0.3948289 | 0.3957131 | 0.4510925 | 0.4616822 0.7073018 0.7161773
47 | -12 ]| 0.2618438 | 0.2574500 | 0.2117846 | 0.1938193 0.07977798 0.05265756
53 6 || 0.3664180 | 0.3677143 | 0.3972248 | 0.4034951 0.6298010 0.5531795
59 | -6 || 0.2969551 | 0.2966327 | 0.2679165 | 0.2623825 0.1449893 0.1525717
61 8 1| 0.3700689 | 0.3756115 | 0.4099510 | 0.4198747 0.6992534 0.6026288
67 | -4 | 0.3077718 | 0.3095257 | 0.2883247 | 0.2866873 0.1873323 0.2061502
71 0 || 0.3289162 | 0.3286880 | 0.3276231 | 0.3240759 0.2626655 0.3059728
73 2 1| 0.3393684 | 0.3380707 | 0.3520700 | 0.3428408 0.6047193 0.3622330
79 8 1| 0.3625742 | 0.3652679 | 0.3923585 | 0.3984334 0.6058939 0.5375054
83 | -6 || 0.3103864 | 0.3066732 | 0.2920377 | 0.2812458 0.1833251 0.1933206
89 -6 || 0.3086220 | 0.3083812 | 0.2885726 | 0.2844998 0.1736096 0.2009362
97 | -10 || 0.3004950 | 0.2983171 | 0.2802431 | 0.2655143 0.4356826 0.1589300
101 0 || 0.3279672 | 0.3300575 | 0.3176546 | 0.3267980 0.1904977 0.3139289
103 | -4 || 0.3264863 | 0.3176079 | 0.3211828 | 0.3022880 0.2249588 0.2454582
107 | 12 || 0.3641238 | 0.3706196 | 0.3898235 | 0.4095147 0.6546922 0.5715990
109 2 || 0.3365314 | 0.3364684 | 0.3430660 | 0.3396178 0.2696104 0.3523561
113 6 || 0.3460388 | 0.3487286 | 0.3562492 | 0.3644463 0.2999492 0.4299492
127 | -16 || 0.2994457 | 0.2927480 | 0.2725474 | 0.2552125 0.1413786 0.1386304
131 | 18 || 0.3801640 | 0.3812202 | 0.4194867 | 0.4315334 0.3552459 0.6363371
137 | 18 || 0.3696290 | 0.3789261 | 0.3983496 | 0.4267630 0.3609211 0.6227138
139 | 14 || 0.3664538 | 0.3669594 | 0.3978573 | 0.4019325 0.7142897 0.5483575
149 | -18 || 0.2928628 | 0.2945248 | 0.2622022 | 0.2584828 0.1440634 0.1448827
151 8 1| 0.3483512 | 0.3494414 | 0.3613370 | 0.3659006 0.5848711 0.4345681
157 | -4 ] 0.3262073 | 0.3229149 | 0.3254101 | 0.3126694 0.2558357 0.2735446
163 | -16 || 0.3036369 | 0.3010322 | 0.2801309 | 0.2705906 0.1415613 0.1695824
167 | -12 || 0.3119538 | 0.3087325 | 0.2985526 | 0.2851706 0.4821850 0.2025270
173 | -12 || 0.3097688 | 0.3095413 | 0.2880726 | 0.2867172 0.1739063 0.2062220
179 | -12 || 0.3104978 | 0.3102988 | 0.2932967 | 0.2881680 0.1789478 0.2097222
181 | 20 || 0.3650846 | 0.3713207 | 0.3910248 | 0.4109686 0.6121355 0.5760078
191 | 24 || 0.3702825 | 0.3773790 | 0.4075885 | 0.4235471 0.4371739 0.6133954
Table A.7: Ratios of ¢-th moments R,(t,3) and conjectural values C,(t,3), t =

1,2, and 6, for E14A.
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D ap I,(1,3) Cy(1,3) 1,(2,3) Cp(2,3) 1%,(6,3) Cy(6,3)
2 -2 || 0.09042620 | 0.09090909 | 0.01970293 | 0.01960784 | 3.691170 E-5 | 3.199898 E-5
3 -3 || 0.1263066 | 0.1250000 | 0.04160156 | 0.03921569 | 0.0004235209 | 0.0002719216
) -2 || 0.1893701 | 0.1839046 | 0.1034252 | 0.09219858 | 0.01265852 0.004172958
7 -1 || 0.2515622 | 0.2500000 | 0.1891360 | 0.1818182 0.06945842 0.04204993
11 -5 || 0.2140761 | 0.2040788 | 0.1385491 | 0.1162080 0.02910031 0.009011269
13 -2 || 0.2711888 | 0.2649181 | 0.2188025 | 0.2062016 0.1061912 0.06552016
17 0 || 0.3160003 | 0.3145822 | 0.2967071 | 0.2964169 0.2518826 0.2302390
19 0] 0.3149676 | 0.3164760 | 0.2934817 | 0.3000875 0.2383264 0.2396955
23 21 0.3571909 | 0.3495279 | 0.3768999 | 0.3660773 0.3635321 0.4351293
29 6 || 0.4032716 | 0.4005847 | 0.4698142 | 0.4718019 0.6830517 0.7403057
31 -4 || 0.2805610 | 0.2844235 | 0.2373505 | 0.2401055 0.1375861 0.1120462
41 -9 || 0.2711228 | 0.2643909 | 0.2225754 | 0.2053162 0.1201022 0.06453208
43 2 || 0.3446860 | 0.3415768 | 0.3552376 | 0.3499171 0.3714129 0.3841627
47 | -9 || 0.2820069 | 0.2718800 | 0.2488543 | 0.2180505 0.1553021 0.07981265
93 1] 0.3313198 | 0.3334519 | 0.3216609 | 0.3335706 0.2741414 0.3340453
59 0.3772358 | 0.3771863 | 0.4148781 | 0.4231467 0.4833564 0.6122279
61 -8 || 0.2923600 | 0.2887057 | 0.2717426 | 0.2478318 0.2806855 0.1251723
67 8 1| 0.3623829 | 0.3714959 | 0.3938212 | 0.4113319 0.4890638 0.5771068
71 9 || 0.3710380 | 0.3746847 | 0.4042023 | 0.4179498 0.4889686 0.5969346
73 -1 || 0.3342541 | 0.3243243 | 0.3429258 | 0.3154436 0.3834601 0.2812885
79 4| 0.3426894 | 0.3465636 | 0.3432370 | 0.3600355 0.2916238 0.4159707
83 | -15 || 0.2770916 | 0.2773028 | 0.2270135 | 0.2274769 0.09464883 0.09266301
89 41| 0.3500633 | 0.3450202 | 0.3621867 | 0.3568975 0.3735983 0.4060613
97 4| 0.3454859 | 0.3440224 | 0.3488767 | 0.3548717 0.2515407 0.3996834
101 3 || 0.3396682 | 0.3401293 | 0.3485361 | 0.3469918 0.3879080 0.3750596
103 | 18 || 0.3993773 | 0.3958714 | 0.4407449 | 0.4620113 0.5777005 0.7169839
107 | -12 || 0.3059057 | 0.2960855 | 0.2925750 | 0.2613680 0.2790093 0.1505471
109 | -16 || 0.2907674 | 0.2867980 | 0.2597577 | 0.2443778 0.1992951 0.1191836
113 | -18 || 0.2874169 | 0.2836635 | 0.2572486 | 0.2387443 0.2515398 0.1098344
127 1] 0.3373957 | 0.3333540 | 0.3535695 | 0.3333747 0.4052645 0.3334573
131 | -12 || 0.3133171 | 0.3024336 | 0.3143956 | 0.2732243 0.3279362 0.1752770
137 | -6 || 0.3236502 | 0.3168398 | 0.3215093 | 0.3007941 0.3148399 0.2415384
139 4| 0.3430578 | 0.3407127 | 0.3556960 | 0.3481701 0.3813956 0.3787203
149 | -5 || 0.3169403 | 0.3202367 | 0.3055089 | 0.3074173 0.3529516 0.2591541
151 | 16 || 0.3748768 | 0.3691763 | 0.4051992 | 0.4065232 0.4401432 0.5624776
157 | 23 || 0.3832892 | 0.3853590 | 0.4320064 | 0.4401438 0.5665574 0.6602837
163 | -18 || 0.3058369 | 0.2975745 | 0.2862247 | 0.2641319 0.2056849 0.1561032
167 | -12 || 0.3074339 | 0.3087325 | 0.2898683 | 0.2851706 0.2102813 0.2025270
173 9 1 0.3440846 | 0.3493841 | 0.3531275 | 0.3657838 0.3689042 0.4341968
179 | 18 || 0.3752621 | 0.3674601 | 0.4098103 | 0.4029688 0.5343709 0.5515569
181 5 1| 0.3435305 | 0.3408727 | 0.3540524 | 0.3484934 0.3902995 0.3797261
191 | -4 ] 0.3269976 | 0.3247409 | 0.3287364 | 0.3162649 0.3879614 0.2835993
Table A.8: Ratios of t-th moments R,(t,3) and conjectural values C,(t,3), t =

1,2, and 6, for E37A.
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b ap | Ry(1,3) Cp(1,3) 1,(2,3) Cp(2,3) 1,(6,3) Cy(6,3)
2 0 || 0.2292885 | 0.2240092 | 0.1535844 | 0.1428571 | 0.01913599 | 0.01818182
3 1] 0.3667964 | 0.3660254 | 0.4027885 | 0.4000000 | 0.4858855 | 0.5423729
5 0 || 0.2704294 | 0.2763488 | 0.2238061 | 0.2258065 | 0.1007520 | 0.09028692
7 -1 || 0.2505167 | 0.2500000 | 0.1884945 | 0.1818182 | 0.05919499 | 0.04204993
11 3 || 0.4039068 | 0.4096424 | 0.4815684 | 0.4905660 | 0.7982570 | 0.7812684
13 | -4 0.2341373 | 0.2310429 | 0.1625325 | 0.1529412 | 0.03289805 | 0.02300307
17 6 || 0.4563635 | 0.4597099 | 0.5768667 | 0.5914894 | 0.8902237 | 0.9239082
19 2 || 0.3547700 | 0.3533590 | 0.3766602 | 0.3739130 | 0.4603863 | 0.4600594
23 6 || 0.4173965 | 0.4213213 | 0.4955843 | 0.5146067 | 0.7875738 | 0.8265864
29 | -6 || 0.2662265 | 0.2642929 | 0.2173469 | 0.2051518 | 0.1143403 | 0.06434975
31 | -4 0.2851673 | 0.2844235 | 0.2508179 | 0.2401055 | 0.2051618 | 0.1120462
41 | -9 || 0.2701425 | 0.2643909 | 0.2186738 | 0.2053162 | 0.06357244 | 0.06453208
43 8 || 0.3933797 | 0.3957131 | 0.4406108 | 0.4616822 | 0.4499224 | 0.7161773
47 3 || 0.3539795 | 0.3484155 | 0.3721570 | 0.3638077 | 0.4133244 | 0.4279227
53 | -3 | 0.3082147 | 0.3092140 | 0.2873109 | 0.2860910 | 0.2102183 | 0.2047213
59 | 12 || 0.4083136 | 0.4054814 | 0.4877426 | 0.4819562 | 0.7952885 | 0.7630861
61 8 || 0.3636543 | 0.3756115 | 0.3926857 | 0.4198747 | 0.3132320 | 0.6026288
67 | -4 0.3078862 | 0.3095257 | 0.2881889 | 0.2866873 | 0.2984525 | 0.2061502
71 | -15 || 0.2758590 | 0.2693866 | 0.2300192 | 0.2137738 | 0.1151865 | 0.07442077
73 | 11 || 0.3776090 | 0.3844328 | 0.4135224 | 0.4382166 | 0.5662022 | 0.6549986
79 | -10 || 0.2869151 | 0.2910933 | 0.2633960 | 0.2521811 | 0.3052795 | 0.1329936
83 9 || 0.3672499 | 0.3682348 | 0.4015395 | 0.4045729 | 0.5347872 | 0.5564960
89 6 || 0.3441170 | 0.3531012 | 0.3532933 | 0.3733848 | 0.3990633 | 0.4583779
97 8 || 0.3535775 | 0.3589784 | 0.3691945 | 0.3854558 | 0.3747469 | 0.4967329
101 3 || 0.3343152 | 0.3401293 | 0.3388454 | 0.3469918 | 0.3486965 | 0.3750596
103 | -4 | 0.3232624 | 0.3176079 | 0.3182594 | 0.3022880 | 0.3653410 | 0.2454582
107 | 12 || 0.3691734 | 0.3706196 | 0.3964972 | 0.4095147 | 0.4663974 | 0.5715990
109 2|1 0.3292101 | 0.3364684 | 0.3303585 | 0.3396178 | 0.2645446 | 0.3523561
113 | -6 || 0.3190727 | 0.3134728 | 0.3062971 | 0.2942733 | 0.2608355 | 0.2248082
127 -7 || 0.3226832 | 0.3131688 | 0.3078243 | 0.2936868 | 0.1783739 | 0.2233343
131 -6 || 0.3143699 | 0.3161097 | 0.2946678 | 0.2993764 | 0.1897707 | 0.2378482
137 | -6 || 0.3134861 | 0.3168398 | 0.3056970 | 0.3007941 | 0.1881528 | 0.2415384
139 | -4 || 0.3246224 | 0.3215943 | 0.3185769 | 0.3100764 | 0.3303446 | 0.2663946
149 | 15 || 0.3646573 | 0.3671096 | 0.4106335 | 0.4022434 | 0.5285992 | 0.5493181
151 8 || 0.3565417 | 0.3494414 | 0.3790048 | 0.3659006 | 0.4234731 | 0.4345681
157 | -13 || 0.3051319 | 0.3053857 | 0.2873938 | 0.2788013 | 0.2237564 | 0.1877112
163 | -16 || 0.3031936 | 0.3010322 | 0.2740339 | 0.2705906 | 0.1429760 | 0.1695824
167 | 18 || 0.3602830 | 0.3701048 | 0.3820466 | 0.4084474 | 0.3733253 | 0.5683523
173 9 || 0.3545170 | 0.3493841 | 0.3714830 | 0.3657838 | 0.5138845 | 0.4341968
179 | 18 || 0.3667798 | 0.3674601 | 0.3967357 | 0.4029688 | 0.5050972 | 0.5515569
181 | -7 | 0.3242736 | 0.3190125 | 0.3212977 | 0.3050254 | 0.4073444 | 0.2527221
191 | -24 || 0.2994137 | 0.2936651 | 0.2811504 | 0.2568985 | 0.3715866 | 0.1418315

Table A.9: Ratios of t-th moments R,(t,3) and conjectural values C,(t,3), t

1,2, and 6, for E37B.
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P |4 R,(1,5) Gp(1,5) R,y(2,5) Cy(2,5) 1,(6,5) Cy(6,5)

2 | -2 | 0.05753610 | 0.05551541 | 0.01129648 | 0.009900990 | 8.319979 E-6 | 4.705860 E-6
3 | -1 0.1254908 | 0.1195482 | 0.07633639 | 0.06832298 | 0.01159485 | 0.005880768
5 1 0.1963133 | 0.1941767 | 0.1969122 | 0.1803279 0.1521302 0.09623310
7| -2| 0.1460728 | 0.1375473 | 0.1092655 | 0.09115210 | 0.02554812 0.01362956
13| 4 0.2500794 | 0.2539902 | 0.2963060 | 0.3089380 0.3435367 0.5026080
17| -2|| 0.1641063 | 0.1694064 | 0.1371118 | 0.1424650 0.04723962 0.06716664
19| 0 0.1902358 | 0.1898683 | 0.1928153 | 0.1800001 0.2303949 0.1434057
23 | -1 || 0.1851503 | 0.1838581 | 0.1807041 0.1687441 0.1157220 0.1180436
29 | 0 0.1956090 | 0.1932758 | 0.1918654 | 0.1866667 0.2226235 0.1614531
31| 7 0.2442480 | 0.2448953 | 0.2869192 | 0.2926080 0.4317560 0.4857566
37| 3| 0.2040001 | 0.2110383 | 0.2136748 | 0.2219003 0.2517157 0.2625098
41 | -8 || 0.1645818 | 0.1624465 | 0.1435822 | 0.1295004 0.08910862 0.04437120
43| -6 || 0.1774004 | 0.1711683 | 0.1631838 | 0.1450990 0.1391303 0.06866693
47| 8 ]| 0.2285092 | 0.2333131 | 0.2595763 | 0.2683568 0.4545376 0.4141646
53 | -6 || 0.1809806 | 0.1761028 | 0.1630362 | 0.1540835 0.08087317 0.08514223
59 | 5 || 0.2206937 | 0.2141482 | 0.2347618 | 0.2284683 0.2132160 0.2860958
61 | 12 || 0.2275673 | 0.2416594 | 0.2526024 | 0.2864777 0.3597798 0.4765920
67 | -7 || 0.1709567 | 0.1781805 | 0.1533362 | 0.1578869 0.09530242 0.09250858
71| -3 || 0.1888658 | 0.1892437 | 0.1823561 0.1788964 0.2078968 0.1415826

Table A.10: Ratios of ¢-th moments R,(¢,5) and conjectural values C,(t,5), t =

1,2, and 6, for E11A.

D | a4 Ry(1,5) Cp(1,5) Ry(2,5) Cp(2,5) R,(6,5) Cy(6,5)
3 | -2 0.09017803 | 0.08903462 | 0.03606234 | 0.03241107 | 0.0005579618 | 0.0002616637
5 0| 0.1696182 | 0.1650049 | 0.1412784 | 0.1334187 | 0.06816410 0.04754343
11 0|l 0.1846127 | 0.1829541 | 0.1691642 | 0.1666687 0.1150391 0.1102131
13| -4 0.1424789 | 0.1410798 | 0.1095687 | 0.09512639 | 0.1133752 0.01407539
171 6] 0.2563366 | 0.2748782 | 0.3020466 | 0.3563713 0.2535983 0.6559468
19| 2 0.2105271 | 0.2103339 | 0.2240221 | 0.2197203 0.2803272 0.2464950
23| 0| 0.1890750 | 0.1915760 | 0.1897354 | 0.1833334 0.2003414 0.1523178
29 | -6 || 0.1675490 | 0.1594011 | 0.1449578 | 0.1244209 0.1564820 0.03861865
31| -4 0.1741439 | 0.1715109 | 0.1446353 | 0.1458808 | 0.05999775 0.07096018
37| 2| 0.1960646 | 0.2053603 | 0.1969739 | 0.2104837 0.1341041 0.2283226
41 6 | 0.2183536 | 0.2265535 | 0.2317091 | 0.2539559 0.2847039 0.3652390
43 | 8 || 0.2278089 | 0.2368454 | 0.2596761 | 0.2757970 0.3080570 0.4373802
47 | -12 || 0.1593958 | 0.1541216 | 0.1339064 | 0.1150028 | 0.05185458 0.02728712
53 | 6 0.2234441 | 0.2201176 | 0.2420396 | 0.2407261 0.3008623 0.3248111
59 | -6 || 0.1803012 | 0.1783267 | 0.1615773 | 0.1581905 0.1215600 0.09336367
61 8| 0.2133355 | 0.2249568 | 0.2268477 | 0.2508975 0.2633101 0.3591673
67 | -4 | 0.1877352 | 0.1859418 | 0.1911231 | 0.1725586 0.2599463 0.1258061
71 0| 0.1999966 | 0.1972124 | 0.1947948 | 0.1944444 0.1110958 0.1835734

Table A.11: Ratios of ¢-th moments R,(¢,5) and conjectural values C,(,5), t =

1,2, and 6, for E14A.
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D | ap R,y(1,5) Cp(1,5) R,(2,5) Cy(2,5) 1,(6,5) Cy(6,5)

2 | -2 || 0.05463435 | 0.05551541 | 0.01022745 | 0.009900990 | 6.268497 E-6 | 4.705860 E-6
3 | -3 || 0.06557007 | 0.06373092 | 0.01459621 | 0.01356674 | 1.952732 E-5 | 1.262545 E-5
5 | -2 || 0.1223415 | 0.1207519 | 0.07582518 | 0.06790855 | 0.01136526 | 0.004408021
7 | -1 0.1649374 | 0.1548069 | 0.1442416 | 0.1182984 0.08525058 0.03713615
11 ] -5 || 0.1156211 | 0.1226796 | 0.06300108 | 0.06818001 | 0.003336572 | 0.003621807
13| -2 || 0.1489676 | 0.1615774 | 0.1245767 | 0.1290056 0.1849199 0.04779165
171 0] 0.1887714 | 0.1887254 | 0.1727293 | 0.1777780 0.08749336 0.1375940
19| 0] 0.1988296 | 0.1898683 | 0.2024925 | 0(.1800001 0.2324326 0.1434057
23 | 2] 0.2012919 | 0.2085689 | 0.2040170 | 0.2165020 0.2050416 0.2409843
29 | 6 0.2463278 | 0.2391101 | 0.2849307 | 0.2800531 0.3047748 0.4438220
31| -4 0.1807964 | 0.1715109 | 0.1684810 | 0.1458808 0.1425174 0.07096018
411 -9 || 0.1517468 | 0.1588542 | 0.1132015 | 0.1232179 0.04095121 0.03637429
43 | 2| 0.2010408 | 0.2046186 | 0.1959875 | 0.2090634 0.2028240 0.2249126
47 | -9 || 0.1628436 | 0.1634065 | 0.1432352 | 0.1311199 0.09132413 0.04632069
53 | 1] 0.2044057 | 0.1999624 | 0.2132508 | 0.1998524 0.2715027 0.1986937
59 | 8| 0.2195344 | 0.2258833 | 0.2301801 | 0.2528234 0.2569079 0.3652586
61 | -8 || 0.1651462 | 0.1735396 | 0.1406141 | 0.1493079 0.09122098 0.07560577
67 | 8| 0.2232620 | 0.2225376 | 0.2499017 | 0.2458810 0.4638391 0.3432857
71| 9| 0.2325998 | 0.2244945 | 0.2594324 | 0.2500031 0.2589515 0.3572548

Table A.12: Ratios of ¢-th moments R,(¢,5) and conjectural values C,(t,5), ¢
1,2, and 6, for E37A.

p ap Ry(1,5) Cp(1,5) R,(2,5) Cp(2,5) R,(6,5) Cp(6,5)
2 0 | 0.1264809 | 0.1262577 | 0.07346294 | 0.07096774 | 0.004735500 | 0.003667525
3 1] 0.1823877 | 0.1819771 | 0.1480553 | 0.1463918 | 0.04396169 | 0.03267205
5 0 || 0.1700676 | 0.1650049 | 0.1442396 | 0.1334187 0.1187393 0.04754343
7 -1 | 0.1550852 | 0.1548069 | 0.1187926 | 0.1182984 | 0.03958193 | 0.03713615
11 3 1] 0.2240443 | 0.2396378 | 0.2561338 | 0.2772017 0.4988330 0.3915833
13| -4 0.1310228 | 0.1410798 | 0.08660382 | 0.09512639 | 0.01392766 | 0.01407539
17 6 || 0.2742178 | 0.2748782 | 0.3436815 | 0.3563713 0.5257650 0.6559468
19 2 1| 0.2108410 | 0.2103339 | 0.2157985 | 0.2197203 0.2215943 0.2464950
23 6 || 0.2416072 | 0.2513159 | 0.2829995 | 0.3057845 0.4087061 0.5191563
29 | -6 || 0.1645495 | 0.1594011 | 0.1289777 | 0.1244209 | 0.05410465 | 0.03861865
31| -4 0.1782438 | 0.1715109 | 0.1547804 | 0.1458808 | 0.08419170 | 0.07096018
41 | -9 | 0.1569974 | 0.1588542 | 0.1220519 | 0.1232179 | 0.03410827 | 0.03637429
43 8 || 0.2330952 | 0.2368454 | 0.2562163 | 0.2757970 0.2290469 0.4373802
47 3 1] 0.1960803 | 0.2086500 | 0.1928195 | 0.2171938 0.1191786 0.2497482
53 | -3 || 0.1859200 | 0.1858091 | 0.1713946 | 0.1723359 0.1052931 0.1255449
59 | 12 || 0.2352567 | 0.2433126 | 0.2764578 | 0.2900271 0.4101452 0.4877777
61 8 1| 0.2226974 | 0.2249568 | 0.2549369 | 0.2508975 0.3648650 0.3591673
67 | -4 0.1910745 | 0.1859418 | 0.1861348 | 0.1725586 0.1621258 0.1258061
71 | -15 || 0.1691572 | 0.1614013 | 0.1403683 | 0.1273983 | 0.08607410 | 0.04070504

Table A.13: Ratios of ¢-th moments R,(t,5) and conjectural values C,(t,5), t
1,2, and 6, for E37B.
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P |4 Ry(1,7) Gp(1,7) Ry(2,7) Cp(2,7) 1,(6,7) Cp(6,7)

2 | -2 | 0.04913110 | 0.04609271 | 0.01200305 | 0.01043541 | 1.237683 E-5 | 1.000782 E-5
3 | -1 0.08463728 | 0.08079968 | 0.04818549 | 0.04139219 | 0.003805425 | 0.001544920
) 1] 0.1484997 | 0.1406169 | 0.1667414 | 0.1342896 0.4187349 0.09130734
7| -2 0.1021764 | 0.09777003 | 0.06576331 | 0.06426646 | 0.007578723 | 0.009286417
13| 4] 0.1784010 | 0.1813908 | 0.2114344 | 0.2203443 0.2670335 0.3493754
17 ] -2 || 0.1151408 | 0.1209330 | 0.1054121 | 0.1015777 | 0.08830989 0.04730918
19| 0] 0.1316721 | 0.1356202 | 0.1220740 | 0.1285714 | 0.08140347 0.1024309
23 | -1 || 0.1385726 | 0.1313072 | 0.1338864 | 0.1204731 0.1025456 0.08392626
29 | 0| 0.1486957 | 0.1380542 | 0.1542821 | 0.1333333 0.3621129 0.1153234
31| 7 0.1730110 | 0.1749104 | 0.1912029 | 0.2089261 0.2041953 0.3454320
37| 3| 0.1511551 | 0.1507542 | 0.1541723 | 0.1585402 0.1112527 0.1878774
41 | -8 || 0.1124083 | 0.1160379 | 0.08541260 | 0.09251742 | 0.01365968 0.03176805
43 | -6 || 0.1219280 | 0.1222595 | 0.1093683 | 0.1036366 | 0.06801911 0.04908161
471 8] 0.1699713 | 0.1666497 | 0.1960684 | 0.1916660 0.4559027 0.2953437
53 | -6 || 0.1329574 | 0.1257846 | 0.1299008 | 0.1100530 0.3647775 0.06081902
59 | 5 || 0.1468927 | 0.1529669 | 0.1643237 | 0.1632036 0.3750744 0.2044374
61 | 12 || 0.1680037 | 0.1726089 | 0.1974791 | 0.2046085 0.2171306 0.3405553
67 | -7 || 0.1285133 | 0.1272702 | 0.1141616 | 0.1127731 0.2903084 0.06608437
71| -3 || 0.1461444 | 0.1351722 | 0.1422086 | 0.1277777 | 0.09974393 0.1010917

Table A.14: Ratios of t-th moments R,(¢,7) and conjectural values C,(t,7), t =

1,2, and 6, for E11A.

D | a4 Ry(1,7) Cp(1,7) Ry(2,7) Cp(2,7) R,(6,7) Cp(6,7)
3 | -2 0.06628917 | 0.06472112 | 0.02789337 | 0.02491618 | 0.0004035197 | 0.0003050649
5 0 0.1163822 | 0.1178426 | 0.09251104 | 0.09524053 | 0.02855121 0.03360793
11 0| 0.1381275 | 0.1306811 | 0.1325231 | 0.1190476 | 0.08045956 0.07870424
13 | -4 ] 0.09969597 | 0.1007881 | 0.06811637 | 0.06804694 | 0.01012804 0.01032352
171 6] 0.1851287 | 0.1962096 | 0.2328267 | 0.2539743 0.3559521 0.4656809
19 | 2] 0.1463977 | 0.1503042 | 0.1525735 | 0.1571532 0.1337356 0.1779633
23| 0 0.1349744 | 0.1368400 | 0.1262765 | 0.1309524 | 0.04992191 0.1087977
29 | -6 || 0.1181690 | 0.1138605 | 0.09481174 | 0.08889049 | 0.03984615 0.02771194
31| -4 0.1160061 | 0.1224931 | 0.09320674 | 0.1041664 | 0.03375662 0.05061976
37| 2| 0.1424398 | 0.1466957 | 0.1450649 | 0.1503769 | 0.08411887 0.1633973
41 6 | 0.1602345 | 0.1618286 | 0.1672864 | 0.1814053 0.1167488 0.2606403
43 | 8| 0.1630341 | 0.1691703 | 0.1784936 | 0.1969689 0.1752733 0.3117558
47 | -12 || 0.1125561 | 0.1100894 | 0.08354280 | 0.08214249 | 0.01148579 0.01936360
53 | 6| 0.1570047 | 0.1572308 | 0.1656038 | 0.1719576 0.2074344 0.2319959
59 | -6 || 0.1255500 | 0.1273735 | 0.1105774 | 0.1129870 | 0.04976207 0.06668262
61 8| 0.1614936 | 0.1606841 | 0.1787722 | 0.1792113 0.1958162 0.2563910
67 | -4 0.1347899 | 0.1328131 | 0.1211511 | 0.1232492 | 0.07926217 0.08982119
71 0| 0.1502588 | 0.1408660 | 0.1535452 | 0.1388889 0.2247749 0.1311239

Table A.15: Ratios of t-th moments R,(¢,7) and conjectural values C,(t,7), t =

1,2, and 6, for E14A.
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D | ap R, Gp(1,7) Ry(2,7) Cp(2,7) 1,(6,7) Cp(6,7)

2 | -2 || 0.05006155 | 0.04609271 | 0.01291882 | 0.01043541 | 2.641661 E-5 | 1.000782 E-5
3 | -3 || 0.04846034 | 0.04636832 | 0.01156861 | 0.009656411 | 1.141031 E-5 | 5.918942 E-6
5 | -2 || 0.08884075 | 0.08563361 | 0.05844347 | 0.04776894 | 0.008042595 | 0.003199329
7 | -1 0.1137898 | 0.1100050 | 0.08745650 | 0.08314885 | 0.02940149 0.02321576
11| -5 || 0.09077078 | 0.08780886 | 0.05315622 | 0.04900608 | 0.003439032 | 0.002597216
13| -2 || 0.1186768 | 0.1152739 | 0.09673843 | 0.09181756 | 0.01334054 0.03329789
171 0 0.1276490 | 0.1348038 | 0.1157465 | 0.1269841 0.09469112 0.09827858
191 0] 0.1363597 | 0.1356202 | 0.1426645 | 0.1285714 0.09290718 0.1024309
23 | 2| 0.1624662 | 0.1490162 | 0.1856160 | 0.1547673 0.3850514 0.1732868
29 | 6 0.1792497 | 0.1707891 | 0.2087592 | 0.1999964 0.3915469 0.3155538
31| -4 | 0.1245198 | 0.1224931 | 0.1046868 | 0.1041664 0.03127698 0.05061976
41 | -9 || 0.1082864 | 0.1134751 | 0.08924154 | 0.08803525 0.1414353 0.02601832
43 | 2 || 0.1456202 | 0.1461624 | 0.1381384 | 0.1493512 0.06592424 0.1608531
47 | -9 || 0.1197479 | 0.1167233 | 0.1076341 | 0.09367187 | 0.03865340 0.03313833
53 | 1] 0.1528981 | 0.1428321 | 0.1618207 | 0.1427574 0.3539702 0.1419800
59 | 8| 0.1457163 | 0.1613457 | 0.1578679 | 0.1805858 0.1810486 0.2607136
61 | -8 || 0.1172275 | 0.1239563 | 0.1115960 | 0.1066492 0.3284859 0.05403718
67 | 8| 0.1729943 | 0.1589564 | 0.2192329 | 0.1756301 0.4179421 0.2451091
71| 9| 0.1668626 | 0.1603533 | 0.1664881 | 0.1785713 0.1410623 0.2550542

Table A.16: Ratios of ¢-th moments R,(t,7)
1,2, and 6, for E37A.

and conjectural values C,(t,7), t =

p ap Ry(1,7) Cp(1,7) Ry(2,7) Cp(2,7) R,(6,7) Cy(6,7)
2 0 || 0.08949890 | 0.08905240 | 0.05195172 | 0.04836895 | 0.005687344 | 0.001781755
3 1] 0.1364418 | 0.1376542 | 0.1215375 | 0.1233100 | 0.05504109 | 0.05256158
) 0| 0.1150201 | 0.1178426 | 0.1068988 | 0.09524053 | 0.1127090 0.03360793
7 -1 | 0.1178994 | 0.1100050 | 0.09284228 | 0.08314885 | 0.02406449 | 0.02321576
11 31 0.1674157 | 0.1713297 | 0.1774383 | 0.1983623 0.1494568 0.2765351
13| -4 0.1072454 | 0.1007881 | 0.08439221 | 0.06804694 | 0.03861964 | 0.01032352
17 6 || 0.1838215 | 0.1962096 | 0.2264205 | 0.2539743 0.2298914 0.4656809
19 2 1| 0.1509049 | 0.1503042 | 0.1541333 | 0.1571532 0.1110045 0.1779633
23 6 || 0.1750627 | 0.1794800 | 0.2059447 | 0.2182466 0.3727368 0.3676038
29 | -6 || 0.1194192 | 0.1138605 | 0.09502093 | 0.08889049 | 0.05384385 | 0.02771194
31 -4 0.1256722 | 0.1224931 | 0.1112572 | 0.1041664 | 0.05827943 | 0.05061976
41 | -9 | 0.1162392 | 0.1134751 | 0.09705033 | 0.08803525 | 0.06322664 | 0.02601832
43 8 || 0.1601511 | 0.1691703 | 0.1723761 | 0.1969689 0.1723623 0.3117558
47 3| 0.1500661 | 0.1490422 | 0.1541436 | 0.1551592 0.3071541 0.1785911
53 | -3 || 0.1424761 | 0.1327166 | 0.1401822 | 0.1230853 0.2018547 0.08960079
59 | 12 || 0.1609705 | 0.1737894 | 0.1833572 | 0.2071432 0.2064015 0.3486604
61 8 || 0.1570687 | 0.1606841 | 0.1686330 | 0.1792113 0.1986809 0.2563910
67 | -4 0.1435695 | 0.1328131 | 0.1522614 | 0.1232492 0.2680308 0.08982119
71| -15 || 0.1262625 | 0.1152872 | 0.1079043 | 0.09099609 | 0.08836729 | 0.02898342

Table A.17: Ratios of ¢-th moments R,(t,7)
1,2, and 6, for E37B.

and conjectural values C,(t,7), t =
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