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ABSTRACT 

A Study on Gas Evolving Electrodes under Extreme Current Densities 

 

Zahra Ghorbani 

Electrochemical discharges or electrode effects are used in different fields such as micro-

machining, nano-particle production, and surface engineering. Further development and 

improvement of the different applications of electrochemical discharges require a better 

understanding of this process. Beyond the critical voltage, an insulating gas film forms 

around the electrode and discharges take place through the gas film. The stability of the 

gas film affects the quality of the discharges. The gas film formation is therefore 

investigated in the present thesis.  

The main objective of the current project is to attain a better insight into the gas film 

dynamics. This goal is achieved through the following approaches: 1. The current-voltage 

characteristics are studied prior to the gas film formation and then compared with a 

model developed based on the percolation theory. 2. Since the hydrodynamic forces 

define the shape and thickness of the gas film, the effect of the hydrodynamic parameters 

on a gas film are analyzed. Based on the Pi theorem and dimensional analysis, important 

dimensionless parameters are derived to investigate the gas film formation. 3. Different 

system configurations are examined to improve the electrochemical discharge activity. 

Visual observations indicate that stable discharges are obtained by using a covered 

electrode and applying an offset pulsed voltage. 

Key words: Electrochemical discharges, Gas film formation time, Gas film thickness, Gas bubble evolution
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1. INTRODUCTION 

A two-electrode cell consists of two electrodes dipped into an electrolyte (Figure 1). 

Conventional electrolysis occurs as long as the current density is small (typically smaller 

than 1A/mm
2
). When the cell terminal is higher than a critical voltage (such that the 

current density exceeds 1 A/mm
2
), the electrolysis is no longer sustained and the so-

called electrochemical discharges (ECD) phenomenon occurs. This phenomenon takes 

place because the bubbles around the electrode form an insulating film. Consequently, 

electrical discharges with light emission occur through the gas film. The electrochemical 

discharges have been known since the nineteenth century. Different engineering 

applications have been reported for this phenomenon, such as surface engineering [1], 

waste water treatment [2], nano-particle production [3,4], micro machining of non-

conductive materials [5,6,7], reduction of metal salts and high frequency current 

interrupters. 

Several applications would benefit from conducting a thorough investigation of the 

fundamental mechanism governing electrochemical discharges thereby providing 

additional insight to the current knowledge. For example, the interpretation of the current 

signal during the ECD phenomenon presents good potential to provide new insights into 

the gas film dynamics and the resulting discharges. The latter is the aim of the current 

study. 
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1.1. Problem Statement 

Further development of the different practical applications of ECD requires a better 

understanding of this process. The desire to understand ECD has led to many studies in 

the last 150 years [8]. However, there is no generally accepted explanation for the 

physical and chemical mechanisms involved in the ECD process. 

The onset of the ECD is the formation of an insulating gas film [9, 47]. This gas film has 

an unpredictable behavior that makes it challenging to study. The dynamic properties and 

the stability of the gas film have a direct impact on the practical applications. For 

example, in machining applications, the unstable gas film yields fluctuations in the 

electrochemical discharges which result in a low repeatability of the process, 

subsequently deteriorating the machining quality [10]. In nano-particle production by 

ECD an unstable gas film yields unstable discharges and, consequently, inhomogeneous 

nano-particles. The present thesis aims to provide a better understanding of the 

fundamental mechanisms governing ECD and identify the main parameters influencing 

this process. 

1.2. Motivation and Challenges 

Literature review has shown that there are no generally accepted results characterizing 

the fundamental mechanisms governing ECD. Studying the ECD phenomenon is 

challenging because of its complexity and unpredictability. The main objective of this 

project is to get a better insight into the gas film dynamics.  

Due to the complexity and the stochastic nature of ECD, the present thesis relies on 

experimental studies. The experimental visualization of the process is deemed as a most 
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efficient approach to achieve the thesis objective. In effect, it is found that literature lacks 

researches that are based on such an experimental technique.  

This study has been divided into three parts: 

1. The different regions of the current-voltage characteristics were analyzed based on the 

current signal and corresponding video images captured with a high speed camera. The 

experimental results are compared with a model, based on percolation theory, which 

predicts the current-voltage characteristics before the formation of the gas film. 

2. The study of the characteristics of the gas film, such as the gas film thickness and the 

gas film formation time is a necessity to improve the industrial applications of ECD. The 

gas film thickness and the gas film formation time were measured based on the images 

captured. 

3. The effect of the concentration of the electrolyte and capillary forces on the gas film 

characteristics has not yet been reported in literature and is conducted in the present 

study.  

4. A stable gas film is a precondition in order to have repeatable ECD and optimize their 

applications. A new system configuration was designed and consists of covering the 

electrode and applying an offset pulsed voltage to obtain a stable gas film. 

The main challenges in visualizing and analyzing the experimental data are as follows: 

a. The thickness of the gas film is in the range of micrometers and the gas film formation 

time is in the range of milliseconds which implies that a high speed camera is required for 

high quality images. 

b. Effective visualization requires a suitable cell, solution and light.  
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c. The nature of the data obtained from the cell is stochastic which makes the data 

analysis challenging. 

1.3. Contributions 

The main contributions of the current thesis work are the following: 

1. It is found that the properties of the solution have a great influence on the gas film 

parameters. The gas film formation time decreases exponentially as the voltage increases. 

Moreover, the concentration has a great effect on the gas film thickness and the gas film 

formation time. The results obtained can be used to improve the gas film quality and 

consequently the ECD quality. 

2. The theoretical model developed by W  thrich [32] is validated experimentally. 

3. Repeatable electrochemical discharges using a covered electrode and a pulse voltage 

are achieved. 

4. Reynolds and Weber numbers are determined as fundamental dimensionless 

parameters for the analysis of the gas film in ECD.  
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2. ELECTROCHEMICAL DISCHARGES 

2.1.  Fundamentals 

To understand the electrochemical discharges, elementary electrochemistry knowledge is 

necessary. In this section, a brief description of the fundamentals of electrochemistry is 

given. The electrolysis phenomenon happens when an electric potential is applied 

between two electrodes that are immersed in an electrolyte. For example, in alkaline 

solutions at the cathode, the following reactions occur consecutively, and hydrogen is 

produced: 

1 ) Volmer reaction : 

                     (2.1)  

Followed by the 

2)  Heyrovsky reaction 

                           (2.2)  

or 

 Tafel reaction 

                     (2.3)  

where       represents the hydrogen adsorbed on the electrode.  

At the anode, chemical reactions result in oxygen evolution. Reactions at the anode are 

more complicated. In an alkalin solution the overall reaction is: 

                   (2.4)  
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Figure 1- Two electrode cell 

2.2.  Potential Distribution in an Electrochemical Cell 

Thermodynamic equilibrium for an electrode dipped into a solution is represented as: 

                        (2.5)  

where   is the chemical potential of the chemical species i and is given by  

      
           (2.6)  

with R the universal gas constant (8.3145 J/mol K), T the temperature of the system (in 

Kelvin) and    the activity of the chemical species.  

When an electrode is inserted in an electrolyte, at first the system is not in 

thermodynamic equilibrium. It moves toward equilibrium by exchanging electrons 

between the electrode and the electrolyte. 

           (2.7)  

This means that metal from the electrode dissolves to the electrolyte or metal from the 

electrolyte deposits onto the electrode. 

The potential difference that appears between electrode and electrolyte is related to the 

species in the solution and can be represented by the Nernst equation: 
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       (2.8)  

where z is the charge number of species and F is the Faraday constant (the magnitude of 

electric charge per mole of electrons = 96,485.3365(21) (C/mol).      in the above 

equation is defined as: 

      
    

    
 

  
 (2.9)  

where   
 represents the chemical potential of species i under standard conditions.  

Nernst equation also can be derived for other reactions. For example for the general 

redox reaction: 

            (2.10)  

Nernst equation is 

        
  

  
  

    

   
 (2.11)  

according to a fixed standard reference. 

For the hydrogen evolution reaction at the gas evolving electrode  

     
             (2.12)  

Nernst equation can be written as  

        
  

 
  

    
 

    

 (2.13)  

where    
is the partial pressure of   . The reference is fixed by choosing the activity of 

water       . 

In a typical two electrode cell as shown in Figure 1, electron transfer takes place at the 

electrode. The electric equivalent circuit of this cell is shown in Figure 2.    and    are 
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the charge transfer resistances at the electrodes and    is the electrolyte resistance.    

depends on the electrolyte conductivity and the cell geometry. Electrolyte conductivity is 

originated from the ionic conductivity of the charged ions in the electrolyte. The 

electrochemical processes at the electrodes, because of the charge transfers, result in 

nonlinear resistances in function of the current at the electrodes (   and   ). 

 

 

Figure 2- Electric circuit equivalent to cell shown in Figure1 

 

These electrochemical reactions at the electrodes are: 

            (2.14)  

           (2.15)  

Equation 2.14 is called a reduction reaction and equation 2.15 is called an oxidation 

reaction. 

The potential difference between the two electrodes is called terminal voltage and is 

measured as: 

         (2.16)  

As already discussed, this voltage can be measured by the Nernst equation when the cell 

is at thermodynamic equilibrium. Nernst equation for a two-electrode cell is  

       
     

  
  

  
   

     
    

    
  (2.17)  
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When the cell is connected to a power source, electrolysis happens; the electrical current 

drives the system away from equilibrium and the electrode potentials change. This 

system is called electrochemical cell.  

The system can also be driven away from the equilibrium state by connecting it to an 

external charge. This makes the system move towards a new equilibrium in which both 

electrodes have the same potential. This kind of system is called a galvanic cell. The 

evolution of the cell voltage with the current for electrochemical and galvanic cells is 

represented in Figure 3. 

 
Figure 3- Evolution of potential with current, a) galvanic cell b) electrochemical cell  

Note that the potential of an electrode changes when it is connected to an external 

current. The difference between the potential of the electrode and the potential of the 

electrode at thermodynamic equilibrium is called the over-potential, and denoted    

        (2.18)  

The over-potential controls the electrochemical reactions. The terminal voltage of a cell 

can be expressed as: 

               (2.19)  
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where     is the ohmic drop that occurs due to the resistance of the electrolyte. In 

equation 2.19, the potentials are considered to be positive at the anode, where the 

electrons are transferred from the electrolyte to the electrode, and negative at the cathode, 

where the electrons are transferred from the electrode to the electrolyte.  

The Butler-Volmer equation describes the relation between the over potential   and the 

current density  : 

              
       

  
        

   

  
    (2.20)  

where  
 
 is the exchange current density in [    ]. In applications where the current 

density is high, considering equation 2.20, the over-potential can be expressed as a 

constant value and independent of the current density. Therefore, equation 2.19 can be re-

written as:  

          (2.21)  

            (2.22)  

The definition of   , the so-called water decomposition potential, is illustrated in Figure 

4. 

 
Figure 4- Definition of water decomposition potential  
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2.3. Bubble Formation at a Gas Evolving Electrode 

The surface of an electrode contains nucleation sites such as pits, scratches and cavities 

which hold trapped gas. The trapped gases grow as the interface between the electrode-

electrolyte becomes supersaturated with dissolved gas.  

As an example, during water electrolysis, hydrogen evolves at the electrode in a 

dissolved form.  

                       (2.23)  

At low current densities, the dissolved product is transferred to the bulk by diffusion. At 

high current densities, the concentration of the dissolved gas at the electrode-electrolyte 

interface increases, which results in activating more nucleation sites. The dissolved 

hydrogen in the vicinity of the electrode produces hydrogen in gas phase forming a 

bubble: 

                          (2.24)  

Part of the gaseous hydrogen attaches to the bubbles at the surface of the electrode. Part 

of it diffuses to the electrolyte bulk where it either attaches to the moving bubbles or 

leaves the inter-electrode gap (Figure 5) [11]. The region where the bubbles adhere to the 

electrode surface is called the adherence region. When the bubbles leave the electrode, 

they diffuse into the diffusion region. There exists another region called the bulk region 

that contains a few dispersed bubbles. It is observed that some bubbles jump directly 

from the adherence region to the bulk region [12]. Figure 6 shows the three different 

regions around a gas evolving electrode. 



12 

 

 

 
Figure 5- Flow of dissolved gas NG to bubbles at the electrode surface , NO out of the inter-electrode gap and NF 
to the bubbles in the bulk electrolyte, reprinted from [11] with permission from Springer. 

 

 
Figure 6- Bubble layer structure around a gas evolving electrode, reprinted from [12] with permission from 

Springer 
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When a bubble detaches from the electrode, the nucleation sites become supersaturated 

with the dissolved gas, subsequently forming another bubble, and repeating the same 

cycle. 

The newly formed bubble may either coalesce or slide along the electrode, and then leave 

the surface of the electrode. Two forces act on the bubble, buoyancy and capillary. When 

these forces are equal in magnitude, the bubble detaches from the electrode [7]. The 

departure radius of the bubbles depends on different parameters such as the surface 

roughness and wettability of the electrode and the concentration and pH of the 

electrolyte. The departure radius of the bubble is independent of the current density when 

the latter is high, and dependent on the current density when the latter is low [7].  

The growing bubbles change the inter-electrode resistance. They cover some parts of the 

electrode and reduce the active electrode area. The fraction of the electrode covered by 

the bubbles is represented by  . The current density, I/A increases when the active area 

decreases. The local current density of an electrode of a surface A covered by bubbles is 

given by: 

        
 

   

 

 
 (2.25)  

where I is the current through the electrode of surface A.  

The bubbles in the inter-electrode gap increase the resistance of the electrolyte. Several 

relations are used in the electrochemical literatures to quantify the electrochemical 

conductivity of the electrolyte. The most widely used are Bruggeman relation [13]  

            
 
  

(2.26)  

and Maxwell’s relation [14]: 
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    (2.27)  

In the above relations,   is the gas void fraction which represents the fraction of the 

volume of gas over the total volume of gas and liquid.   is the conductivity of the 

electrolyte without bubbles. These relations give almost the same result as shown in 

Figure 7. 

 

Figure 7- Relative conductivity  
    

 
 of an electrolyte as a function of the gas void fraction   [7] 

The existence of bubbles adds a supplementary potential drop to equation 2.19. [7]: 

                       
     

   
  

(2.28)  

where       is the resistance of the bubble diffusion region and can be calculated using 

the Bruggeman relation. For example, considering a cylindrical electrode of radius b and 

height h surrounded by bubble diffusion region of thickness d, length h, and radius b, 

      for this specific electrode is: 
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  (2.29)  

The schematic potential distribution around a gas evolving electrode is represented in 

Figure 8. The current density is much larger at the working electrode as the latter has a 

smaller surface area. The large fraction of the potential drop at the working electrode is 

due to the bubble layer formed around this electrode as a result of high current density.  

 

 

 
Figure 8- Potential distribution around a gas evolving electrode [55] 

2.4. Bubble Coalescence 

When two bubbles collide, the interface between them becomes thinner. If they are in 

contact for a time longer than the critical coalescence time, the interface ruptures and the 

two bubbles coalesce [17]. The critical coalescence time depends on the bubble size and 
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the properties of the interface between the two bubbles, such as the viscosity of the liquid 

and the surface tension. 

The critical coalescence time is related to the surface tension. It is reported in [15] that 

the bubbles coalesce if the Weber number (   
    

 
) is below 0.18.  Therefore, the 

bubble coalescence rate changes by adding surfactants. The viscosity of the electrolyte 

affects as well the coalescence of the bubbles. It is shown that the higher the viscosity of 

the electrolyte, the easier the bubbles interact with each other and the more likely the 

bubbles coalesce [16]. Furthermore, the average size of the bubbles has a strong effect on 

the coalescence of the bubbles. It is shown [17] for different solutions that as the bubble 

size is increased the rate of coalescence decreases.   

2.5. Current-Voltage Characteristics of an Electrochemical Cell 

Figure 9 shows the typical current-voltage characteristics of an electrochemical cell. Six 

different regimes are identified [18,19] in this plot: 

 
Figure 9- Typical I-U characteristics of an electrochemical cell  

           

      

U 

I 
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 OA, 0 < U <   , thermodynamic region: No electrolysis occurs in this region. No 

current is flowing through the cell. 

 AB,   < U <     , ohmic region: The traditional electrolysis takes place. The 

current increases almost linearly with the voltage. This behavior is due to the 

ohmic resistance of the electrolyte.  

 BC,      < U <      , limiting current region: In this region the bubbles are 

coalescing and the bubble coverage fraction increases. The voltage at which the 

current drops suddenly is called the critical voltage       and the corresponding 

current is the critical current      . In the limiting region, the current reaches its 

maximum and remains constant as the voltage increases.  

 CD,       < U < 1.2      , transition region: A compact gas film covers the 

electrode progressively.  

 DE, 1.2       < U: A gas film blankets the electrode. The discharges are the only 

path allowing the current to flow. Water vapor is also generated in this region 

because of the high temperature of the electrode.  

 Another region is mentioned by Fascio et al. [18] and is located between OA and 

AB. In this region, there is a slight change in the current because of the high over-

potential of hydrogen evolution reaction at the electrode. 

2.6. Gas Film 

Beyond the critical voltage, the growing bubbles around the electrode coalesce and form 

a gas film that insulates the electrode. This phenomenon is known in the electrochemical 

literature as the electrode effect. Although this effect has been known for over 150 years 



18 

 

 

[8], an explanation for the sudden change occurring from the electrolysis to the gas film 

formation remains a controversial topic. Several mechanisms have been considered as 

reasons leading to the gas film formation including local electrolyte evaporation by Joule 

heating, hydrodynamic and wettability effects, as well as electrochemically formed gas 

bubbles. 

Kellogg [20] showed that the gas film formation in ECD is similar to gas film formation 

around a hot wire when inserted in water. He believed that the gas film is primarily a 

water vapor film and it forms when the electrode temperature, due to Joule heating, 

reaches the boiling temperature of the electrolyte. Beside the experiments that he 

conducted to prove his idea, Kellogg calculated the heat dissipated from the electrode in 

ECD and hot wire and showed good agreement between the two approaches. He 

proposed that the high pressure of the electrolyte vapor keeps the electrolyte away from 

the electrode. The gas film tends to break due to the hydrostatic forces that are present as 

the electrolyte approaches the electrode. However, the electrolyte vaporizes and is pushed 

away from the electrode. He discussed the vibration of the gas film as a result of this 

behavior. When the film is in proximity of the electrode surface, gas ionization takes 

place due to the existing high potential gradient. When the latter is intense enough, a 

visible discharge occurs.  

Many other researchers [21,22,23,24] believe that local evaporation is one of the 

mechanisms leading to gas film formation. Klupathy [23] derived an equation, based on 

this hypothesis, for the gas film formation time: 

        
  

    
          (2.30)  
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where   is the electrical conductivity of the electrolyte (measured in 1/ ),   is the 

electrolyte density (in kg/m
3
),   is the specific heat of the electrolyte (in J/kg.K) , R is the 

inter-electrode resistance (in  ), A is the surface of the electrode (in m
2
), U is the cell 

terminal voltage (in V),     is the water decomposition potential (in V),    is the 

evaporation temperature of the electrolyte, and    is the initial temperature of the 

electrolyte (in K). 

W  thrich [7] derived a more precise relation by considering the heat transfer through the 

electrolyte: 

  

 

 

  
  

  

  
  

 

 
  

  

  
  (2.31)  

where   is the normalized distance, 
 

 
 (where   is the electrode radius),   is the 

normalized temperature, 
 

  
 and   is the normalized time, 

 

 
.   is a time constant defined as: 

   
  

 
   (2.32)  

where   is the thermal conductivity of the electrode (in W/m.K). 

K is a constant defined as: 

   
 

  
 

 

   
  

 

  
 (2.33)  

where   is the electrical conductivity of the electrolyte,   is the length of the electrode 

and    is the initial temperature.  

Vogt [25] suggested that the change in the wettability induces the gas film formation. 

This change may occur because of different reasons such as the concentration of the 
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electrolyte in the vicinity of the electrode, the electrical charge of the gas-liquid interface, 

and the electrode material.  

Arndt and Probst [26] showed (in the context of the electrolytic aluminum reduction) that 

the concentration of the electrolyte changes near the electrode and results in a change in 

the wettability. The change in concentration is attributed to the existence of different 

active species such as Al
3+

 and Na
+ 

[26].  

The electrical charge of the gas-liquid interface is another explanation for the change in 

wettability (in aluminum electrolysis) [28]. During the normal electrolysis, the electrolyte 

contains sufficient oxygen ions that induce a positive charge on the bubbles and hence get 

repelled by the anode electrode.  As the oxide contents decrease (critical condition in 

aluminum electrolysis), the electric charge on the gas bubble switches from positive to 

negative, and the bubbles become electro-statically attracted by the anode. Furthermore, 

the properties of the electrode material, specially its porosity, have a significant effect on 

wettability [27]. 

Mazza et al. [28] explained the phenomenon based on hydrodynamic instabilities 

described by Helmholtz and Taylor [61,62] which was also considered in the case of 

boiling. They used cine pictures and studied the critical current density to confirm their 

findings. They found that the scattering of the critical current density is less for a 

spherical electrode than a plane electrode [28]. For a spherical electrode, the critical 

current density is relatively well defined due to the absence of disturbing boundaries. 

However, in the case of a plane electrode, the presence of disturbing boundaries results in 

the scattering of the critical current density.  
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Mazza et al. [28] explained the anode effect in horizontal electrodes as follows: first, 

bubbles form on the electrode surface, then as the bubbles move upward they form 

vertical layers of gas with layers of liquid between them. Because of the relative velocity 

difference existent between the gas layer and the liquid layer, Helmholtz instability 

causes the boundary surface to break. As a result, a gas film develops to cover the solid 

surface.  At this point, a layer of liquid (heavier fluid) is on the top of the layer of gas 

(lighter fluid). In this case, the Taylor instability causes the laminar configuration of gas 

covering the solid surface to collapse. 

W  thrich et al. [29] showed that the electrode effect is attributed to the increasing mean 

bubble coverage. This effect depends on the ability of the bubble to leave the electrode or 

coalesce. When the growing bubbles attain a certain size, they cannot leave the electrode 

due to the capillary forces, and the bubble coverage fraction increases. W  thrich also 

presented [9] a model using percolation theory to describe the electrode effect. He 

applied a theoretical approach to analyze this particular phenomenon. He considered the 

bubble growth and bubble departure from the electrode to be a stochastic process. The 

model used the electrolyte concentration and geometrical parameters of the electrode to 

predict the critical condition inducing the electrode effect. This model is independent of 

the mechanism governing the gas film formation.  

According to W  thrich [7], decreasing the rate of bubble release and increasing the rate 

of gas production are additional parameters responsible for the gas film formation. When 

the bubble detachment time is long enough the gas film can be formed. The viscosity and 

density of the electrolyte and the wettability of the electrode are the main parameters 
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affecting the bubble detachment time. The rate of local current density and local joule 

heating constitute the principal parameters governing the gas production rate. 

Basak et al. [30] developed a model that predicts the critical current and voltage. Their 

model suggests that the critical voltage depends only on the electrolyte concentration and 

is independent of the electrode geometry. The model ignores some other mechanisms 

governing the gas film formation; however, it yields results with reasonable accuracy. 

The model employs the critical resistance value as an input. W  thrich [9]  presented a 

model that predicts the critical voltage, current, and resistance based on the electrode 

geometry and the concentration of the electrolyte. This model is described in the 

following section. 

2.7. Gas Film Formation 

In this section, the stochastic model developed by W  thrich [32] to quantify the electrode 

effect is described. This model is based on percolation theory and explains the transition 

from the bubble layer to the gas film.  

Percolation theory was developed to deal with disordered systems. The main concept of 

percolation theory is the existence of a sharp transition that occurs at the percolation 

threshold. The percolation threshold is a critical value at which the connectivity between 

sub-units of a system appears or disappears. 
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Figure 10- A lateral electrode surface  , that presents some sites occupied by the probability  . The neighboring 

bubbles are assumed to coalesce and form a larger bubble. 

Consider a square lattice   that has some sites occupied with probability,   (Figure 10). 

At small values of p, the occupied sites are isolated. If two neighboring sites are 

occupied, they connect to each other. A group of neighboring occupied sites makes a 

cluster. As the occupation probability is increased, the number of clusters increases, and 

some of these clusters may connect to each other. At a critical value of the probability, 

  ,  an infinite size cluster appears. For any   greater than   , the infinite cluster is 

always present, however, some isolated clusters may exist as well. The infinite cluster 

grows until every site is occupied,    . 

Each cluster is characterized by its size, s. The normalized cluster number,   , is defined 

as the number of clusters of size s, per lattice site. Therefore, the probability that an 

arbitrary lattice site belongs to a cluster with size s is     .      is the probability that 

one site belongs to the infinite cluster. The following equations give the probability   that 

an arbitrary site is occupied: 

                     (2.34)  
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                          (2.35)  

To describe the electrode effect based on percolation theory, W  thrich idealized the 

nucleation sites on the electrode. He supposed that Ω is the lateral electrode surface and 

the nucleation sites are the lattice sites that were introduced by the percolation theory. As 

one bubble grows, it occupies one lattice site. The bubbles coalesce if they are attached 

and form a cluster that becomes a new larger bubble. Therefore, in this model, s is the 

size of a bubble and    is the density of the bubbles of size s.   is interpreted as the 

density of the active nucleation sites or  . It is assumed that the critical conditions occur 

when a bubble is not able to leave the electrode.      is defined as the fraction of the 

electrode covered by a bubble that is not able to leave the electrode or in other words the 

gas film. This occurs when the bubble is large enough to prevent the buoyancy force from 

overcoming the adhesion force. 

Therefore, when the bubbles are able to leave the electrode,      

        (2.36)  

and when the bubbles are not able to leave the electrode,      

             (2.37)  

In order to determine the gas film formation time, the mass balance between the amount 

of gas forming on the electrode and the amount of gas leaving the electrode is written. 

The amount of gas bubble produced per unit time can be found from the Faraday’s law: 

        (2.38)  

where   is the faradic gas generation coefficient and is defined as: 



25 

 

 

   
  

 
 
    

 (2.39)  

where R is the universal gas constant, T is the temperature, z is the charge number,   is 

the stoichiometric number, F is Faraday’s constant, and P is the pressure.  

Using equation 2.25, equation 2.38 can be written as:  

                    (2.40)  

The amount of gas leaving the electrode is calculated using the number of bubbles 

leaving the electrode per unit time. The fraction of the electrode surface that is covered 

by these bubbles is            

   , where      is the maximum size of the bubbles that 

can leave the electrode. Then, the amount of gas leaving the electrode can be found by  

     
  

   
      

    

   

     (2.41)  

In equation 2.41,   is the mean volume of a bubble that has not yet coalesced with its 

neighboring bubbles. N is the mean number of nucleation sites per unit area and     is 

the bubble detachment time.  

The mass balance between the produced gas and the leaving gas gives: 

 
 

  
                      

  

   
         

    

   

 (2.42)  

If    is the mean distance between two nucleation sites, a gas bubble that has not yet 

coalesced with its neighboring bubbles presents a height equal to    .   represents the 

degree of flatness of the bubble and is a function of wettability and the electrode 

geometry. The volume of one bubble can be approximated by  
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  (2.43)  

Substituting equation 2.43 into equation 2.42, one can find an equation for the bubble 

coverage fraction: 

 
 

  
    

       

   

      
 

   
       

    

   

 (2.44)  

The stationary solution of the equation above is: 

 
    
   

                   

    

   

 (2.45)  

Considering equations 2.25, 2.36 and 2.45, for      , the stationary bubble coverage 

fraction can be written as: 

   
    
   

 

 
 (2.46)  

  is smaller than   as long as the current is smaller than the critical current. The voltage 

at which the critical current is reached is called the critical voltage. In order to estimate 

the critical voltage, first, the relation between the cell terminal voltage and the stationary 

bubble fraction is determined by considering equations 2.21 and 2.46.  

           
   

    
  (2.47)  

Let     , the critical voltage becomes: 

                
   

    
   (2.48)  

 

By introducing the normalized time 



27 

 

 

    
 

   
   (2.49)  

And the normalized voltage 

    
    

        
  (2.50)  

and the normalized current  

    
 

     
 (2.51)  

and solving equation 2.44 for a step input, the following equation is obtained for a 

normalized current (Figure 11): 

 
       

  

    
   

  

   
    

  

           (2.52)  

where   is  

     
  

    
   (2.53)  

Similarly,   , the time needed to reach   , is estimated by solving equation 2.44 for    

(Figure 12): 

 

    
 

  
  

    
  

    
   

            
  (2.54)  
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Figure 11- Normalized current for a terminal voltage lower than the critical voltage 

 

 
Figure 12- Predicted gas film formation time according to equation 2.55, for the percolation threshold        

[7] 
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2.8. Gas Film Dynamics 

Gas film dynamics has been a topic of great interest to researchers in the study of the gas 

film in the context of ECD. The thickness and gas film formation time are important 

aspects in the study of gas film dynamics. 

The thickness of the gas film for a cylindrical electrode of diameter equal to 1 mm is 

around 50-100    [33]. Different parameters such as the temperature of the electrolyte 

and the concentration of the electrolyte influence the gas film thickness. The effect of 

other parameters like wettability of the electrode, applied voltage and capillary has not 

yet been reported in literature.  

The bulk temperature of the electrolyte has a great effect on the gas film thickness [20]. 

At high temperatures of the electrolyte (around 90 ) the gas film is almost uniform and 

vibrates slowly. At low temperatures (around 40 ), the gas film vibrates very fast. It 

means that the gas film waves, shown in Figure 13, move fast and have large amplitude. 

The gas film is very thin at some parts of the electrode and much thicker at other parts.  

The electrolyte concentration has a strong effect on the gas film thickness.       , which 

is a hydrophilic ion, increases with increasing electrolyte concentration [34] (for alkaline 

solutions). Therefore, the wettability changes, and the gas film becomes thinner.  

 

Figure 13- Gas film around an electrode with a 0.5mm diameter Nickel electrode in NaOH 30% at. Gas film 

waves vibrate slowly at high temperatures and very fast at low temperatures. (See section 5 for details on how 
image was obtained.) 



30 

 

 

The mean time needed to form a gas film or gas film formation time is one of the most 

critical values characterizing gas film dynamics. The gas film formation time, (time    

that is shown in Figure 14), is about 20 ms [6]. Fascio [35] developed a model that 

predicts gas film formation time based on the Joule heating effect. The gas film formation 

time that she obtained was higher than the experimental values. She attributed this 

discrepancy to the fact that the model underestimates the current density and 

consequently the heat from the Joule heating effect.  

 

Figure 14- Current signal for a step input of 25 V (higher than the critical voltage). The gas film is formed after 

a time           

 

Allagui et al. [36] proposed an algorithm to measure the gas film life time and gas film 

formation time during ECD by analyzing the current-time signal. Moreover, Allagui et al. 

[36] studied the gas film properties experimentally. They found that the gas film is more 

stable at higher voltages because of the high temperature of the electrode. Figure 15 is 

based on their experiments and shows that the gas film formation time decreases and the 

gas film life time increases as the applied voltage decreases.  
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At high voltages the production of bubbles is intense. Small and dense bubbles cover the 

electrode. These bubbles do not coalesce or grow [34]. As a result a dense and thin gas 

film covers the electrode.  

 
 

 

Figure 15- Gas film formation time and gas film life time as a function of applied voltage in NaOH 30 wt.% [36] 

 

2.9. Electrochemical Discharges 

If the terminal voltage is higher than the critical voltage (typically about 25V), the 

growing bubbles coalesce and form an insulating gas film around the electrode. Hence, 

the electrolysis cease to occur and the current drops suddenly. Consequently, electrical 

discharges accompanied with light emissions occur across the gas film. Various 

terminologies are used in the literature: electrode effects, anode effects, electrochemical 

discharge phenomenon, and contact glow discharge electrolysis. In this thesis the term 

electrochemical discharge (ECD) is employed.  
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ECD has been known since the nineteenth century with the work of Fizeau and Foucault 

[36]. They were the first who observed light emissions during electrolysis and mentioned 

the analogy with the electrical discharges.  

In 1889, two French scientists, Violle and Chassagny [53], studied the phenomenon 

quantitatively. They dipped two thin platinum electrodes into sulfuric acid 10%. They 

found that as they apply voltages higher than 32V, a gas film layer covers the thinner 

electrode and discharge takes place. They also observed that if the anode is the thinner 

electrode, terminal voltages that are higher than 50V must be applied in order to induce 

ECD.  

During the 19th century, many studies were conducted to investigate the spectrum of the 

emitted light and the heat produced in ECD. It was found that the chemical composition 

of the gas formed around the thinner electrode (active electrode) is a mixture of hydrogen 

and components of electrolyte and electrode.  

 In 1894, Hoho and Lagrange [19] used the ECD process to harden aluminum. They 

employed an aluminum electrode as the cathode. They observed that an outer layer of the 

electrode is hardened while the inside remains unchanged. They also studied the effect of 

the voltage on the gas film formation. They found that at voltages higher than the water 

decomposition voltage and smaller than the critical voltage the normal electrolysis 

occurs. As the voltage is increased farther than the critical voltage, the electrolysis 

becomes unstable and some discharges happen. When the voltage is increased even 

further, the gas film becomes more stable. 

In 1899, The German physicist, Wehnelt, observed [63] that the current is interrupted 

periodically during ECD. He used this effect in the first electrolyte interrupter, known as 
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the Wehnelt interrupter. Robert Bunsen was the first to observe the ECD effect in a 

molten salt electrolyte (during alumina electrolysis) [25]. The physics and fundamentals 

of electrical discharge through the gas film, described in the literatures, are presented in 

this chapter.  

2.10. Nature of the Electrochemical Discharge 

Electrical discharge consists of a current flowing through gases. There are three types of 

gas discharges [54]: 

1. Townsend discharge 

2. Glow discharge 

3. Arc discharge 

Typical current-voltage characteristics of gas discharges are shown in Figure 16. 

Townsend discharges occur when a free electron has enough energy to ionize a gas 

molecule. The produced electron may itself ionize another molecule. This process 

continues and an avalanche is formed. Low currents and high voltages are characteristics 

of the Townsend discharges. In glow discharges the electron production is due to heavy 

ion impacts. 

During the arc discharges electrons are produced by thermo and (or) field emissions. Low 

voltages and high currents are characteristics of the arc discharge (See Figure 16). 
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Figure 16- U-I characteristics of gas discharges [32]  

W  thrich [32]  proposed that the electrical discharges happening in the electrochemical 

discharge phenomenon are thermo-initiated arc discharges. He mentioned the following 

reasons: 

1. The characteristics (such as temperature, size and current density) of the discharges in 

the ECD process are all typical values of arc discharges. 

2. The current-voltage characteristics of the ECD obey the Ayrton equation of arc 

discharges. 

3. The temperature of the electrode is a few 100  which is the temperature necessary for 

thermo initiation. 

2.11. Current Signal during ECD 

The current-time signal gives valuable information about the electrochemical discharges. 

The current signal can be used to determine the gas film formation time, the electrode 

surface, and the discharge activity [10]. 
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The gas film formation time is the time required for the electrolyte to heat up. This time 

depends on the local temperature of the electrolyte. The gas film formation time may be 

representative of the temperature of the electrolyte [10]. Moreover, the magnitude of the 

current during the formation of the gas film represents the portion of the electrode length 

that is dipped into the electrolyte [32].  

The discharge activity of the electrode can be monitored using the current signal obtained 

from the system. Figure 17 illustrates the current signal generated by an electrode in 

KOH 35 wt% solution. High values of the current (about 1 A/mm
2
) show that no gas film 

exists. Current values of around 0.2-0.4 A/mm
2
 indicate that the gas film is formed and 

discharges occur [37]. Furthermore, as mentioned in [32] discharges represent short 

pulses of a few 100   . Therefore, pulses of a few 100    with amplitude of around 0.2-

0.4, in the current signal plot, correspond to discharges.  

  

Figure 17- Current signal versus time at 50V for a 0.5mm diameter electrode in KOH 35 wt% 

Gas film 
formation Gas film and discharges 
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To describe the discharge activity, the probability of gas discharges per unit time and 

active surface area,   , is introduced.   , follows two different behaviors [38]. For the 

critical voltage increasing from       to about 1.2      ,    decreases according to: 

                (2.55)  

and beyond 1.2     ,    increases with increasing applied voltage according to the 

following law: 

              
 

 
  (2.56)  

Figure 18 shows the probability of discharge as a function of applied voltage for NaOH 

30 wt%. 

 

Figure 18- Probability of gas discharges in NaOH 30 wt% as a function of applied voltage [7] 
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The current signal also shows two different behaviors. In the first region, pulses of a few 

100   and 10   are observed simultaneously. In the second region, only pulses of about 

10    are detected. The current signals for applied voltages of 25 V and 32 V are shown 

in Figure 19. This behavior is described by W  thrich [7] as follows. For the region where 

   is decreasing, the gas film covers only a part of the active electrode surface, and 

electrolysis takes place at the remaining parts. The current that is observed in this region 

may be the product of the combination of pulses from the electrolyte and pulses from the 

gas discharges. As the voltage increases, the gas film grows on the electrode until it 

blankets the electrode. From this point forward only arc discharges are detected.  

a) 

 

b) 

 

Figure 19- Typical current signal for applied voltage of a) 25 V and b) 32 V [7]  
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3. VISUAL OBSERVATIONS of ECD  

Some characteristics information about the geometry and dynamic of gas film can be 

achieved by visual observation. In 1950 Kellogg [20] observed the gas evolution at the 

electrode. He used images to explain the anodic effect and compared the behavior of the 

gas evolving electrode at three different regions that he identified in his observations: 

Normal operation region, transition region, and anode effect region. In the normal 

operation region, bubbles evolve and leave the electrode. This region does not contain 

any noise. In the transition region, hissing noises arise and some of the gas bubbles are 

ejected downward. Condensed water vapor is observed indicating the high temperature of 

the electrode in this region. The hissing and ejection of bubbles stop at the anode effect 

region. A gas film blankets the electrode and a small spark is detected in the gas film. 

Kellogg used a camera with a 42-mm Micro-summer lens. The intensity of the light 

source was eleven times that of the sun and the duration of it was about 1/10000 second. 

In 2005, Mena et al. [57] used image analysis to determine bubble size and shape in a 

bubble column. It was found that the most appropriate type of lighting for the effective 

observation of bubbles is the backlighting along with a diffuser screen between the 

camera and the bubble column.  

Fascio [35], following her detailed description of the five phases of the current-voltage 

characteristics of a two-electrode cell as presented in chapter 2-4 of this thesis, proposed 

a model for the behavior of the current in each phase. She captured some images at each 

phase to support her model (Figure 20). She used a Nikon digital camera with exposure 

time of 1 ms and focal length of 2m. Fascio et.al [38] visualized the electrode to observe 

the gas film formation and the discharge activity. 
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Figure 20- Typical current-voltage plot and corresponding behavior of the gas bubble at the working electrode 

[35]  

The light emission from an electrode was investigated by observing the cathode [21]. For 

this purpose, a voltage cycle with a scan rate of 4.5 V/s was applied to a two-electrode 

cell. Three different regions, characterized with their type of discharges, were identified 

by referring to the images. Kazuhisa et al. [21] named the first region the permission 

region in which the hydrogen bubbles evolve. As the applied voltage increases, the 

temperature decreases and the glow discharges take place. The electrode surface emits a 

weak light in this region. At higher voltages, spark discharges are observed at the 

electrode surface. The Pt electrode melts during the spark discharges due to the high 

temperature. Furthermore, a glow discharge is not observed when the Pt electrode is 

employed as an anode. 

In 1995, Raghuram et al. [39] investigated the effect of the circuit parameters on the 

electrochemical discharges by observing the behavior of the gas film. They studied the 

behavior of the current-voltage and the gas bubbles around the electrode for 4 different 
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voltages: Smooth DC, full wave rectified DC, smooth DC with a series inductor, full 

wave rectified DC with a serried inductor. It was observed that the drop in the level of 

current in the transition region is lower for the circuit containing an inductor. Moreover, 

discharges are intermittent for the circuit with inductor due to the back EMF. 

In summary, the visual observations conducted so far were essentially of a qualitative 

nature and covered a limited range of parameters.   
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4. SOME APPLICATIONS OF ELECTROCHEMICAL 

DISCHARGES  

ECD can be applied in different fields, such as surface engineering [1], waste water 

treatment [2], nano-particle production [3,4], micro machining of non-conductive 

materials [5,6,7], and reduction of metal salts.  

4.1. Nanoparticles Synthesis Using Electrochemical Discharges 

The fabrication of nano-particles is briefly reviewed by analyzing the synthesis process of 

nickel nano-particles. A nickel rod of 0.5mm diameter acting as the cathode and 20cm
2
 of 

nickel acting as the anode are immersed in a sulfuric acid solution. By applying a cell 

terminal voltage of 32V, metal ions are produced and leave the anode due to the existence 

of the gas film.    
  or H

.
 radical contribute to the reduction of metal cation     and the 

production of nano-particles. The following reactions show the process of the nano-

particle production involving    
  [40]: 

       
                    

  

   
              

   
        

                   

Similarly, with the H
.
 atoms: 
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Figure 21-Reaction zones in electrochemical discharges [40] 

The Ni nano-particles are obtained by pouring the solution containing nano-particles on 

an appropriate surface like a carbon mesh; after drying the mesh, the nano-particles 

remain. Also one can produce Ni nano-particles by adding Ni salts to the electrolyte.  

It is believed [40] that there are other processes involved in the production of nano-

particles, such as mechanical expulsion of nano-clusters from the cathode electrode and 

local melting of the cathode using high temperature discharges. 

The synthesis of nano-particles using electrochemical discharges presents several 

advantages such as:  

• Low cost 

• Simplicity 

• Great potential for industrial scale up 
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• Possibility to synthesize a large variety of metallic nano-particles  

The most important advantage of this process is the low cost aspect. Chemical reactions, 

involving often expensive chemicals, are replaced by electrochemical reactions. For a 

given metal, the nano-particles, either in their bulk form of metal, or, what is often much 

cheaper, in its salts form, can be selected as precursor. 

 

Figure 22- TEM micrograph of Nickel nano-particles synthesized by electrochemical discharges [40]  

4.2. Micro-Machining Using Electrochemical Discharges 

Non-conductive materials such as ceramic and glass have been of great interest in 

modern industry. Ceramics are characterized by their light weight, improved strength, 

low thermal expansion coefficient and corrosion resistance, and glass is distinguished by 

its chemical resistance, biocompatibility and transparency. However, the main limitation 

in using these materials is the structuring process. In effect, machining of these materials 

is not possible using traditional methods.  

Several types of material processing like chemical etching, photo-forming, ultrasonic 

machining, powder blasting and laser machining, and machining with diamond tools are 

used. The limitations of these techniques include cost, machining time, and machining 

surface quality. Spark Assisted Chemical Engraving (SACE) is a viable alternative for 

these techniques. 
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Machining glass can be accomplished using a diamond tool. The limitation of this 

method is the cost of machining, since the diamond is expensive and is worn easily [42] 

Moreover, the 3D micro-structuring is not possible with such method [32]. Furthermore, 

laser machining is expensive. The surface quality is often not acceptable [32]. Ultrasonic 

machining can be used for cutting, grinding and finishing but the material removal rate in 

drilling is low [42]. Chemical etching and photo-forming have slow machining rates. 

Machining of high aspect ratio structures is difficult using this method [32]. 

The erosive effect resulting from the discharges was first observed by Joseph Priestly 

[46]  in 1770. SACE was proposed in 1968 by Kurafuji [5]. Several names are given to 

SACE such as chemical discharge machining [30], spark assisted etching [43], electrical 

discharge drilling [5] or electrochemical spark machining [44]. The term SACE was first 

used by Langen et al. in [45]. 

SACE is a cheap process as the cost of the equipments involved is low. The tools used in 

SACE are inexpensive either; they may be manufactured of stainless steel. An additional 

interesting feature of SACE is its flexibility. The SACE tool electrode does not come into 

contact with the sample, therefore vibration, chatter and mechanical stresses are 

eliminated [46] .A mechanical prototype is designed by Langen et al.[45] to use SACE 

machining. No active control has been reported so far, however, several passive control 

strategies are developed recently by W  thrich [32].  

Although the process of SACE has not been mastered completely yet, however, the basic 

fundamentals of this procedure are described. During ECD, if the sample is located at a 

distance less than 25   [47] from the electrode then the machining process is possible.  

A schematic of the experimental setup is shown in Figure 23. 
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Figure 23- Experimental set up for SACE machining 

Yonghong et al. introduced a new type of ECD machining, gas-filled electro-discharge 

and electrochemical compound machining in [42]. They filled the area surrounding the 

electrode with a particular gas using a gas-filled system to allow the electrical discharges 

to take place. This replaces the gas film formed by the electrochemical reactions. Such 

method, however, is not efficient for holes with a depth higher than 1.5mm and a 

diameter greater than 2mm.   

There are some limitations for this procedure. In fact, the gas film created around the 

electrode is not stable and the machined surface may be damaged because of the 

occurrence of micro-explosions. The local temperature increases as well which may 

result in cracks on the surface of the sample [32]. 

4.3. Surface Engineering Using Electrochemical Discharges 

ECD can be applied for surface modification and coating. Lazarenko et al. [1] used 

discharges for heat treatment of the surface. There are other applications of this 

phenomenon in surface engineering, such as cleaning, etching and polishing. Surface 
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coating using this particular technique yields a surface with wear, friction, corrosion and 

thermal properties mainly required in aerospace applications, textile and gas and oil 

industries. [1]. 

There exists a wide range of setup in this application depending on the purpose of the 

application. It is obvious that the choice of electrode material and electrolyte is different 

when the setup is required for cleaning surfaces and surface coating. In the anodic 

configuration, oxidation may result in corrosion or oxide based coating of the surface 

depending on the type and chemical composition of the solution [1]. 

One of the advantages of this technique is its flexibility. When coating using the ECD 

technique, the morphology and crystal structure of the coating layer is possible by 

changing the applied voltage and temperature [48]. 

As an example, the work conducted by Paulmier e al. [49], which consisted in the 

deposition of diamond-like carbon, is described in the present section. A cathodic 

configuration (cathode is smaller than anode) in a two-electrode cell is used. The 

electrolyte is composed of ethanol, water, potassium chloride and phosphate buffer. By 

applying a voltage, oxygen bubbles form around the working electrode (cathode). Then, 

by increasing the voltage, a gas film covers the electrode and ECD happens. The analysis 

of the components of the solution [49] shows that different chemical processes occur 

during ECD. Nano-crystalline graphite and oxide components are generated as a result of 

ECD. The surface is prepared for deposition using the thermal effect of ECD. Ionized 

species in the plasma are propelled toward the surface and implemented on the surface. 
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5. EXPERIMENTAL SETUP 

5.1. Materials 

  NaOH and KOH were purchased from Fischer Scientist. They were used as 

received and no further purification was performed. 

 0.5 mm diameter Nickel rod at 99.98% purity and 5 5     Nickle sheet at 

99.98% purity were purchased from Alfa Aesar. 

 Clear cast acrylic sheets with 3mm thickness were purchased from McMaster-

Carr. 

 Deionised (DI) water 

5.2. Set Up 

 Figure 1 shows a layout of the experimental setup. A conventional two-electrode 

electrochemical cell that is 10cm long and 10cm width and of 5cm height was 

used. The cell was made of a clear cast acrylic sheet that provides a clear view of 

the electrode. The cathode, active electrode, was a Nickel rod, and the anode, 

counter electrode, was a nickel sheet. Typically, the active electrode has a much 

smaller surface area than the counter electrode (in the order of 1/100). The active 

electrode was attached to a holder in such a way that it can move vertically to 

adjust the immersion depth into the solution. 

 The DC power supply used was the ZUP60-3.5 model from TDK Lambda. A 

function generator, 33220A model from Agilent, was used to apply a pulsed 

voltage. The maximum output voltage from this function generator is 10 Vpp. An 
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amplifier from AVTECH was employed to increase the voltage output of the 

function generator.  

 Current signals were collected by an Agilent current probe model N2774A-50 

MHz which was connected to an Agilent DSO 3102A-100 MHz digital 

oscilloscope.  

 A Phantom V 9.1 camera was used to observe the working electrode.  

 The software used to control the camera and analyze the images was a Phantom 

camera control V660-0-0. 

 Videos from the camera were collected by a desktop computer. 

 3 LED lamps were used to illuminate the electrode. Two lamps were located on 

both sides of the cell at a distance of 10cm. One lamp was installed on top of the 

camera to illuminate the electrode from the front. 

 A pulse coming from the function generator was used to synchronize the camera 

and the oscilloscope. A transistor was used to adjust the voltage output from the 

power supply to the voltage required by the camera to be triggered 

5.3. Experiment 

The work was carried out by the study of the current signals and video images. 

 The electrolyte solutions were prepared by dissolving NaOH or KOH in DI water. 

300 mg DI water was placed in a plastic bottle. Depending on the concentration, 

NaOH or KOH was measured and added to the water. A concentration of 10 %, 

20 % and 30 % wt NaOH and 7%, 15% and 35% wt. KOH were used. NaOH and 
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KOH are exothermic materials, therefore, they must be added slowly to the water 

and the liquid must be swirled while preparing the solution. 

 Observation of the electrode and analysis of the flow around it were conducted 

using a high resolution high speed camera. The depth of the focus was optimized 

such as to achieve clear visualization of the bubbles and the gas film around the 

electrode. The sample rate was set to 1000 frames per second to allow 

visualization of the gas film formation. Exposure time was 997  . Image capture 

was triggered by the signal coming from the function generator. The quality of the 

recorded video images was improved using the Phantom camera software. Each 

video was converted to PNG images using MATLAB software.  

 The electrode diameter was used to calibrate the size scale. Three random images 

were selected, and the gas film thickness was measured at six different locations 

on each image. It was not possible to determine directly the gas film thickness 

from the images. The electrode diameter was subtracted from the gas film 

diameter and then divided by two.  

 The gas film formation time was measured by counting the number of images 

from t = 0 to the time at which the gas film was formed. The time interval 

between the two images was set to1 ms.  

 The velocity of the gas film was measured by displacement of the gas film waves 

over the time interval. For each solution, the average velocity of four different 

waves was considered as the velocity of the gas film.  

 The experiments were performed at room pressure and temperature. 
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6. RESULTS AND DISCUSSION 

6.1. I-U Characteristics of the System 

The voltage scan technique is employed in the present research to better understand the 

ECD phenomenon. This technique consists in applying a triangular shaped voltage 

(Figure 24), then measuring the current response and coupling it with the photographs of 

the electrode.  

 

Figure 24- A triangular shaped voltage applied to a two-electrode cell 

As discussed in section 2.5, the mean stationary I-U characteristics can be separated into 

five different regions [18,20]: thermodynamic region, ohmic region, limiting current 

region, instability region and arc region. Based on the observations, the arc region is 

further divided into two regions: invisible arc region and visible arc region. Figure 25 

presents a plot of the current as a function of the voltage for KOH 35 wt.% at     . The 

plot is obtained from the average of ten voltage scans between 0 to 45V with a scan rate 

of 45 V/s. The numbers on the graph indicate the different regions. The behavior of the 
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bubbles and the flow around the electrode in each region is described next. In Figure 27, 

the typical time-series of the current density and the corresponding images are reported. 

The nominal current density 
 

 
 , where the electrode surface area, A, is calculated based 

on the images (Figure 26.a).  

 
Figure 25 – Average current signal obtained from ten voltage scans between 0 to 45 at a rate of 45 V/s. and 

illustration of six different regimes ( See text for explanation ). The electrode is a 0.5mm diameter Ni rod and the 

electrolyte KOH 35%. 

For each region, described in section 2.5, a sequence of images are taken and analyzed. 

The cell terminal voltage V is set to a voltage belonging to a region in the I-U 

characteristics of KOH 35% as shown in Figure 25. A 100 ms step input of voltage V is 

applied to the setup comprised of a 0.5mm diameter nickel as the working electrode, a 

nickel sheet is used as the counter electrolyte and KOH 35 wt% as the electrolyte. The 

cell terminal voltage is used as well to trigger the camera and the oscilloscope that 

collects the current signal. Image analysis is employed to study each region by direct 

observation of the electrode.  
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0 < V < 2.2: thermodynamic and over-potential region; in this region no electrolysis 

happens and no bubble is observed around the electrode.  

2.2 < V < 14: ohmic region; this region is initiated when the applied voltage exceeds the 

water decomposition voltage   . The electrolysis of water takes place and bubbles form 

at the nucleation sites on the electrode surface. When a bubble leaves the surface of the 

electrode, another one forms in its nucleation site. Bubbles leave the electrode surface, 

move upward and accumulate at the electrolyte-air interface. They create a conical 

envelope around the electrode. All the bubbles around the electrode have almost the same 

diameter (about 150   ), except the ones located outside the envelope which have a 

larger diameter (about 350   ) . The volume of this conical envelop does not change 

with time. Figure 26.I depicts the current signal and images of an electrode at 10V. The 

signal follows an exponential trend. This behavior is explained later in section 4.2.   

14 < V < 22: limiting current region; the number of active nucleation sites increases with 

increasing current density. Therefore, more bubbles form on the electrode surface. In this 

limiting region, the number of active nucleation sites reaches its maximum. This region 

can hence be characterized by the coalescence of bubbles and turbulent flow. 

Furthermore, increasing the voltage increases the size of the bubbles. Figure 27 presents 

the growing bubbles after 3m  at 10V and 20V in KOH 35 wt%. As mentioned 

previously in section 2.5, the coalescence critical time is dependent on the size of the 

growing bubbles. In fact, increasing the size of the bubbles decreases the coalescence 

critical time and hence the bubbles coalesce at a smaller contact time. When the applied 

voltage is 20V, the bubbles are much larger than those produced at 10V. Consequently, 

the coalescence critical time is smaller. This indicates that at 10V, the coalescence time is 
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greater than the contact time whereas at 20V, the opposite is true. This means that at 20V, 

the contact time is enough for the bubbles to coalesce.  

22 < V < 25: instability region; in the instability region (or transition region) a gas film is 

formed around the electrode. However, as shown in the images, the system is highly 

unstable and may be sometimes in the limiting region. This instability can also be seen in 

the current signal. Figure 26.III presents the current signal and the corresponding images 

at 23V. Two different behaviors are observed around the electrode:
 

1- Turbulent flow similarly to the limiting region. 

2- Gas film formation 

25 < V < 35: invisible arc region; a thin stable gas film covers the electrode. This region 

has not been mentioned in the literature. It was believed that when the gas film forms, 

discharges occur between the electrode and the electrolyte. However, it is observed that a 

gas film can be present for a long time without or with only a few discharges occurring. 

Although the discharges are not present in the images, peaks in the current signal indicate 

their existence. This region is therefore called the invisible arc region. Figure 26.IV 

exhibits the current signal and the corresponding images of KOH 35 wt% at 30V. This 

region is also observed for NaOH 30 wt%. 

35 < V : visible arc region; the temperature of the electrode is high enough to induce 

thermo-initiated arc discharges  [7]. As a result, sparks accompanied with light emissions 

are observed. At lower voltages, the sparking takes place at the tip of the electrode 

(Figure 26.V). As the voltage is increased, the sparks begin to take place all over the 

surface of the electrode and their number increases.  
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V.  

 

 
Figure 26- Current signal and video images for KOH 35 wt%, the electrode is a 0.5mm diameter nickel rod 
dipped in 3mm of electrolyte, the applied voltage is a step input of I)10 V II) 20V III) 23V IV) 30V V) 40V 

a)  b) 

  

Figure 27-Comparison of the bubble size around the electrode in KOH 35 wt%, a) 10V, b) 20V, growing bubbles 

are larger at 20V 
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6.2. Bubble Formation 

In the engineering applications of ECD, there is a great interest in understanding the 

evolution of bubbles around the electrode or in other word the characteristics of the 

system prior to the formation of the gas film. The behavior of the system before the gas 

film formation is investigated in the present section.  

6.2.1. The resistance of the electrolyte 

As mentioned in section 2.3, the formation of the bubbles increases the inter-electrode 

resistance. The inter-electrode resistance before and after the formation of the bubbles as 

well as the bubble coverage fraction is experimentally measured.  

Figure 28 shows a typical current time-series at a step input of a voltage lower than the 

critical voltage.    is the initial current, when the bubbles are not formed yet (see Figure 

26.I.a).    is the current at the end of the step input, when the bubbles are around the 

electrode (see Figure 26.I.f).  

 
Figure 28- Typical current-timeseries at a voltage lower than a critical voltage.    is the initial current and   is 

the current when bubbles are formed at the electrode 
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The resistance of the electrolyte, prior to the formation of bubbles, is measured using the 

  -U graph. Since, no bubble is present at    , the slope of the graph represents the 

conductivity (1/resistance) of the electrolyte. Figure 29, shows the change in the initial 

current,    in the function of the cell terminal voltage. As expected, the current increases 

linearly as the voltage increases. The reason the current fluctuates at the end of the graph 

is that the system reaches the power limit of the used power supply. By measuring the 

slope of this graph, one can find the resistance of the electrolyte   , which in the case of 

KOH 35% is about 3.33 . 

 
Figure 29- The initial current    in function of cell terminal voltage. The electrolyte was KOH 35% and the 

electrode was a 0.5 mm diameter nickel dipped 3mm in electrolyte. 

 

The increase in the resistance due to the formation of bubbles can be estimated using 

equation 2.29. The bubbles form a random close packing structure. The volume void 

fraction for a random close packing of sphere is about 0.36 (       ). The radius r and 

the length h of the electrode are 0.25mm and 3mm, respectively. The thickness of the 
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bubble layer, d, for KOH 35% is found to be 0.375mm, using Figure 30. The conductivity 

of KOH 35% is 0.65 s/cm. Substituting these values in the equation 2.29 yields 1.4  for 

the resistance of the bubble layer (     ).  

 

 
Figure 30- Bubble layer around an electrode. d is the thickness of the bubble layer. 

Note that in the equation 2.29, the shadowing of the surface by bubbles is not considered. 

By increasing the bubble coverage fraction   the resistance of the bubble layer increases. 

This equation can be modified as:  

   
     

   
    (6.1)  

The total resistance of the system after the formation of bubbles is 

       
     

   
 (6.2)  

Considering equation 6.2, one can find the bubble coverage fraction   as 

     
     

     
 (6.3)  

In the above equation,       can be found using equation 2.29,    using the I-U graph, as 

described earlier and   can be found using 

 
  
  

 
  

  
 (6.4)  

d 
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As an example, the bubble coverage fraction at three different voltages is given in Table 

1. As can be seen, the resistance of the electrolyte as well as the bubble coverage fraction 

increases with increasing cell terminal voltage. As mentioned previously, when the 

voltage increases, more nucleation sites are activated and hence more bubbles are formed. 

The formation of bubbles increases the inter-electrode resistance.  

Table 1- Summary of the process of finding the bubble coverage fraction in KOH 35% 

Voltage (V)   (A)   (A) 
  
  

 
  

  
   ( )   

10 2.56 1.32 1.9 6.27 0.54 

15 4.64 2.08 2.2 7.26 0.65 

20 5.84 2 2.9 9.57 0.77 

 

 
Figure 31- The bubble coverage fraction in function of the cell terminal voltage for a 0.5 mm diameter and 3mm 
length electrode in KOH 35% 

 

The bubble coverage fraction in function of the cell terminal voltage is shown in Figure 

31. By increasing the voltage more nucleation sites are activated. Therefore, the rate of 
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bubble production and consequently the bubble coverage fraction increases. At a certain 

voltage (5V for KOH 35%) the bubble layer forms a conical shape and by increasing 

voltage (up to 15V) it keeps the same shape. As it can be seen from the graph in this 

range the bubble coverage fraction remains constant. By increasing the cell voltage, over 

15V, the bubble coverage fraction increases until it reaches to its maximum and the gas 

film forms.  

6.2.2. Normalized current 

The normalized characteristics are of great interest in the theoretical and practical 

analysis of a system. The normalized current and voltage as defined by W  thrich [7,32] 

describes the behavior of the system independently of the electrode and electrolyte 

properties. The experimental data is used to validate the model introduced by W  thrich 

[7,32].  

The current time-series can be described as well in a form that is independent of the 

electrode geometry and the electrolyte properties as mentioned in [7]. The normalized 

current is defined as: 

    
 

     
 (6.5)  

The normalized current time-series obtained with a 0.5mm diameter Nickel rod electrode 

in KOH 35% for a step input of 10V and 20V is shown in Figure 32. The solid line is the 

normalized current predicted according to equation 2.53. This equation yields the current 

through the electrode before the formation of the gas film. The critical voltage,      , 

critical current      , and water decomposition potential    were measured from the mean 

I-U plot of KOH 35% (Figure 25). The voltage at which the instability region begins (the 
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current drops suddenly) is the critical voltage and the corresponding current is the critical 

current.       is determined to be 22V, the water decomposition potential    is 2.2V, and 

the critical current       is 2.4A The results obtained with equation 2.53 agree well with 

the experimental data for the percolation threshold of 0.5 (Figure 32). 

 

a) U = 10V,    = 0.35 b) U = 20V,    = 0.85 

 
 

Figure 32- Comparison between the predicted normalized current timeseries using the percolation method 

(equation 2.53) and the experimental measurements at a) 10Vand b) 20V.       ,   ,      and    are 22V, 2.2V, 

2.4A and 0.5 respectively. 
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6.3. Gas Film Formation  

6.3.1. Gas film formation time 

In this section, the effect of the cell terminal voltage on the gas film formation time is 

investigated. The current signal is recorded for each solution at voltages ranging from 25 

to 60V. A 100 ms step input of voltage V is applied to the setup described in section 3. 

The electrolytes that were employed are NaOH with the concentration of wt.10%, 

wt.20% and wt .30 and KOH with the concentration of wt. 7%, wt. 15% and wt. 35%. 

The gas film formation time,   , is estimated for each case, based on the obtained current 

signals, as shown in Figure 33. The change in the gas film formation time with respect to 

the voltage is illustrated in Figure 34. As observed in Figure 34, the cell terminal voltage 

presents a significant impact on the gas film formation time. In effect, the gas film 

formation time decreases asymptotically with increasing voltage. 

 
Figure 33- A typical current timeseries of ECD in 30 wt% NaOH solution at 25V. One pulse with a period of 

100ms is applied. The active electrode is a 0.5mm diameter Nickel rod dipped in 3mm of an electrolyte solution. 

The gas film is formed after a time   = 18ms.  
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Figure 34- Gas film formation time vs. applied voltage. Results obtained with six different solutions are 

presented.   

The voltage can be expressed in a form independent of the electrode geometry and the 

electrolyte properties. The normalized voltage is defined as: 

    
    

        
 (6.6)  

Figure 34 shows that the gas film formation time is strongly dependent on the electrolyte. 

It is difficult to determine a relation between    and the electrolyte properties. However, 

Figure 35 indicates that the gas film formation time can be described using the 

normalized   . 

The critical voltage,      , for the experimental configuration used in the present study, 

for each solution, is estimated from the mean I-U characteristics and is tabulated in Table 

2. The water decomposition potential,   , is obtained experimentally and its value was 

found to be 2.7.  
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The gas film formation time can be estimated using Equation 2.55. This equation fits well 

with the experimental measurements for the percolation threshold,   =0.5 and the bubble 

detachment time,            (Figure 35). This validates the model developed [7] by 

W  thrich based on the percolation theory. This model considers the electrochemical gas 

evolution as a mechanism involved in the gas film formation. 

Table 2- The critical voltage of six different solutions for the used experimental configuration 

Solution 
NaOH 
10% 

NaOH 
20% 

NaOH 
30% 

KOH 7% KOH 15% 
KOH 
35% 

Critical voltage 

(V) 
29 26 25 35 26 22 

 

 
Figure 35- Gas film formation time for six different solutions vs. normalized U. The solid line is plotted 
according to equation 2.55 for the percolation threshold of 0.5. 

In this model the time is normalized as: 
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However, Figure 35 is a normalized graph representing    as a function of the normalized 

voltage   . This implies that     is a constant value for the electrolytes and the 

experimental condition used in this study.  

Klupthy estimated as well the change in the gas film formation time with the cell terminal 

voltage. In his model, equation 2.30, Klupthy considered that the change in the gas film 

formation time is due to the evaporation of the electrolyte by the local joule heating. 

Figure 36 shows the experimental results and the estimated gas film formation time using 

the thermal model developed by Klupthy. As shown in the figure, this model does not 

explain the experimental results. Comparing Figure 35 and Figure 36 indicates that for 

the configuration used in the present study, the percolation model provides a better 

prediction model of the gas film formation time. 

Table 3- Solution properties at room temperature [58,59,60] 

Solution 
NaOH 

10% 
NaOH 

20% 
NaOH 

30% 
KOH 7% KOH 15% KOH 35% 

Density 

(kg/m
3
) 

1098 1210 1333 1068 1145 1337 

Surface 

tension 

(mN/m) 

      

8.184 8.877 9.655 7.906 8.348 9.776 

Electrical 

conductivity 

(S/m) 

30 32 20 15 45 65 

Specific 

heat 

(J/kg.K) 

3782.5 3627.5 3535.5 3717 3378 2880 

Evaporation 

temperature 

(K) 

475 481 490 474 477 492 
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Figure 36- Gas film formation time in function of the cell terminal voltage. Comparison of the experimental 

results and the model developed based on the local joule heating using       ,       ,        and the 

electrolyte properties shown in .Table 3.  

 

6.3.2. Gas film thickness 

The gas film thickness significantly affects the quality of discharges [10]. In order to 

study the gas film thickness, voltages in a range from 20V to 50V is applied to the cell. 

Figure 37 shows the gas film thickness in four different solutions as a function of the cell 

terminal voltage.  

The variation in the film thickness can be described by Figure 38. Sometimes a very thin 

gas film lies on the electrode surface (Figure 38-a and b) and sometimes a bubble shape 

forms at some places (Figure 38-c). As a result the mean gas film thickness increases. 

To compare the gas film thickness in different solutions, it is measured at the invisible arc 

region for KOH 7 wt.%, 15 wt.%, 35 wt.% and NaOH 10 wt.%, 20 wt.% and 30 wt.%. 

Discharges are not visible in the invisible arc region (see Figure 26.IV). This allows 

measuring the gas film thickness based on the images captured. From the mean stationary 
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I-U characteristic, a voltage corresponding to the invisible arc region is selected. The 

selected voltages are tabulated in Table 4. Since the gas film is not uniform, it is 

measured at three different points on the electrode surface using six different images. 

Then, the average of all values is considered as the gas film thickness. The reported 

thickness for the gas film for a typical cylindrical electrode with a diameter of 1mm is 50-

100  m and a few millimeters in [20]. The gas film thickness that was determined in the 

present study ranges between 50 to 100  m (Table 4). The reported variation in the 

parameters is primarily due to measurement errors. 

 
Figure 37- Gas film thickness in different solutions in function of the cell terminal voltage with a cylindrical 
electrode of 0.5 mm diameter and the length of 3mm. 

 

In [10] the film thickness,   , is evaluated using 

  
 

 
          

     (6.1)  
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where   is the electrode radius and     is the mean bubble diameter. Some typical results 

are listed in Table 5. Comparing Table 4 and Table 5 indicates that equation 6.8 

overestimates the value of the film thickness.  

a) b) c) d) 

    

Figure 38- Different configurations of the gas film 

Table 4- Measured gas film thickness based on the images at the selected voltages 

Solution NaOH 10% NaOH 20% NaOH 30% KOH 7% KOH 15% KOH 35% 

Selected 

voltage (V) 
40 35 35 40 35 30 

Gas film 

thickness 

(    
83 2 74 2 70 2 84 2 76 2 72 2 

Table 5- Estimated gas film thickness using equation 6.8[10] 

Solution NaOH 10% NaOH 20% NaOH 30% 

Gas film thickness 

(  ) 
220 103 172 

6.4. Hydrodynamic Effects on a Gas Film 

Understanding the hydrodynamic effects on the gas film is important since the 

hydrodynamic forces define the shape and the thickness of the gas film. In the present 

section, the effects of the hydrodynamic parameters on a gas film are investigated. The 

Weber and Reynolds numbers are identified as two important dimensionless parameters, 

based on the Pi theorem and dimensional analysis, in the study of the gas film formation. 



70 

 

 

The Pi theorem is used to analyze fluid mechanic problems. It states that “If an equation 

involving k variables is dimensionally homogeneous, it can be reduced to a relationship 

among k-r independent dimensionless products, where r is the minimum number of 

reference dimensions required to describe the variables [50].” 

According to the Pi theorem, any meaningful equation with k variables denoted by   , 

such as 

                 (6.2)  

can be re-written as 

                      (6.3)  

where    are dimensionless terms (Pi terms) and are independent of each other. These 

terms are composed using the variables   . The number of Pi terms required to define a 

system is k-r, where r is the minimum number of reference dimensions. Therefore, the 

number of variables in a fluid mechanics problem is reduced from k to k-r.  

Several variables    are selectively recurrent in all Pi terms. In effect, the number of 

repeating variables equals to the number of the reference dimensions. These repeating 

variables are combined with the remaining variables to create a Pi term. All of the 

reference dimensions must be included in the repeating variables. Furthermore, the 

dimensions of each repeating variable cannot be a combination of the dimensions of other 

variables.  

The variables that are involved in the present problem consist of the length L, density  , 

viscosity  , velocity V and surface tension  . In terms of the basic dimensions (reference 

dimensions), they are expressed as [  , [    ], [        , [      and [      

respectively. The density  , viscosity   are the properties of hydrogen (the fluid inside 
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the gas film) which are shown in Table 6. Surface tension   is the property of the 

interface of the solution and air (shown in Table 3). L is considered as the mean thickness 

of the gas film which is shown in Table 4. The velocity of the gas in the gas film is 

considered as velocity V. 

Table 6- Properties of air at room temperature 

Density ρ (kg/m
3
) 0.08376  

Dynamic Viscosity   (N.s/m
2
) 8.909   10

-6
 

The Froude number  

    
 

 
 (6.4)  

is the ratio of inertia force to the weight of a fluid. It is an important dimensionless 

number in the problems involving with the free surface and represents the velocity of the 

fluid to the velocity of the waves on the fluid surface. Froude number is assumed to be 

equal one. Therefore, the gas velocity will be the same as the velocity of the waves.  

The velocity of the gas is estimated by measuring the velocity of the wave peaks (see 

Figure 39). The waves move along the electrode. The distance that each peak wave 

travels over a period of time gives the velocity of each wave. The average of all wave 

peaks velocities yields the velocity of the gas film. The estimated velocities of six 

different solutions are shown in Table 7.  
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Figure 39- Gas film waves of a 0.5mm diameter electrode, dipped in 3mm of NaOH 30%. Characteristic velocity 

is estimated using the average of the velocity of the wave peaks.  

 

Table 7- Estimated gas film velocity in each solution 

Solution NaOH 10% NaOH 20% NaOH 30% KOH 7% KOH 15% KOH 35% 

Gas film 

velocity 

( m/s) 
139 2 126 2 136 2 169 2 175 2 149 2 

Since there are five variables (   ) and three basic dimensions (   ), the required 

number of Pi terms, based on the Pi theorem, is equal to two. The length L, density   and 

velocity V are selected as repeating variables seen that the dimensions of these variables 

are independent. As mentioned previously, the dimensions of each variable cannot be 

produced by the combination of the dimensions of the other variables. The repeating 

variables are combined with the non-repeating variables   and   to form non dimensional 

terms. The two Pi terms that are created are the Weber and Reynolds numbers: 

    
    

 
 (6.5)  

    
   

 
 (6.6)  

Finally, the result of the dimensional analysis can be expressed as: 
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  (6.7)  

This indicates that the current problem can be investigated using these two dimensionless 

terms.  

The Reynolds number is a dimensionless parameter that represents a measure of the ratio 

of the inertial forces to the viscous forces. The Reynolds numbers that are calculated in 

the present problem are smaller than 1 (Figure 40) which indicates that the viscous forces 

are dominant. 

The Weber number is an important dimensionless number for the analysis of fluid flow 

problems that present an interface between two different fluids. It is a measure of the 

ratio of the inertial force to the surface tension force. This number is useful in the study 

of thin film flows and the formation of bubbles and droplets. 

The form of the function   can be derived from the experimental data. As shown in 

Figure 40, there exists a linear relationship between Reynolds and Weber number. 

 
Figure 40- Weber number vs. Re number 
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6.5. Controlling ECD 

In the previous sections, the parameters influencing the gas film were investigated to 

allow a better control of the ECD. The current section aims to determine experimentally, 

a way to control the gas film. Since the gas film is the medium required for arc 

discharges, its quality significantly impacts the various applications of ECD. For 

example, in machining applications, the unstable gas film induces fluctuations in the 

electrochemical discharges and leads to a low repeatability of the machining process, 

therefore deteriorating the machining quality [10].In nanoparticle production using ECD 

an unstable gas film results in unstable discharges and, consequently, inhomogeneous 

nanoparticles. The purpose of the present work is to derive a way to control the gas film. 

Based on visual observations, it is found that the combination of the partially covered 

electrode and offset pulsed voltage yields a stable gas film and consequently stable 

discharges.  

The electrode is partially covered with a glass (Figure 41.a). A partially covered electrode 

exhibits a different behavior from a conventional electrode. A spherical gas film (a large 

bubble) forms around the covered electrode rather than a cylindrical one (Figure 41.c). 

This observation is in agreement with the finding in [51].  

A bubble forms around the electrode when a voltage is applied to a covered electrode. 

The bubble grows until it reaches a maximum diameter and then breaks. As soon as it 

breaks, another bubble forms there, grows and breaks. This cycle repeats as long as a cell 

terminal voltage is applied.  

A different gas film shape indicates a different behaviour in the discharges. When the 

new growing bubble is still small (the film is thin enough), a discharge is observed at the 
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tip of the electrode (Figure 41.d). However, as the bubble becomes larger the discharge is 

no longer possible.  

The lifetimes of the different growing bubbles are equal. This implies that the time 

intervals between two discharges are equal. Thus, a regular discharge is achieved by 

covering the electrode. 

Not only discharges occur regularly by covering the electrode, but also undesirable 

discharges are prevented and the ECD is localized. Nevertheless, discharges are not 

continuous (they occur periodically) which decreases the efficiency of the ECD. It is 

possible to induce continuous discharges with a covered electrode by applying an offset 

pulsed voltage. 

Applying a pulsed voltage consists of interrupting the current and the supply of the gas 

products. This prevents the bubble from growing during the off-time of the voltage 

(Figure 42). Hence, the gas film bursts before it transforms into a large bubble. However, 

the gas film and the discharges remain unstable since the gas film breaks and forms. 

To overcome this problem a small constant voltage (offset) is applied during the off-time 

(Figure 43). Recently, the offset pulse voltage is used to improve machining with 

electrochemical discharges [52]. Applying the offset voltage prevents the gas film from 

bursting during the off-time; however, as the current is still not strong enough, the gas 

film cannot grow and form a large bubble. Therefore, a stable gas film with continuous 

discharges is created (Figure 43).  
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a) 0 ms b) 60 ms c) 120 ms  

  

 

d) 300 ms e) 360 ms f) 420 ms 

 

 

 

Figure 41- A series of images of a partially covered electrode. A large bubble forms around the electrode rather 
than a gas film. The electrode is a 0.5 mm diameter Nickel rod covered with glass  

  

a) 100 ms b) 200 ms c) 300 ms d) 400 ms 

   

 

e) 500 ms f) 600 ms g) 700 ms h) 800 ms 

    

Figure 42- Pulsed voltage applied to a covered electrode (top), a gas film forms during on-time and breaks 
during off-time before transforming into a large bubble, on-time: 200 ms off-time:600ms at 50V(bottom) 
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a) 100 ms b) 200 ms c) 300 ms  d) 400 ms 

  

 

 

e) 500 ms f) 600 ms g) 700 ms h) 800 ms 

 

 

 

 

Figure 43- Offset pulsed voltage applied to an electrode (top). The gas film formed during on-time does not 

break during off-time because of the offset voltage, however, the current is too small and the gas products are 
not enough to form a large bubble. On-time: 10 ms, off-time: 10ms at 50v, offset: 12V (bottom)  
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7. CONCLUSION 

The gas film properties as well as the factor affecting these properties are studied. 

Moreover, to better understand the ECD phenomenon the behavior of the system prior to 

the formation of the gas film is investigated. The contributions of the present study are 

explained in the following section. Then, the possible applications are discussed and 

some suggestions for future works are provided. 

7.1. Conclusions 

The following conclusions can be drawn from the present study: 

 The experimental data that was obtained in the present study validates the model 

developed by W  thrich. The latter is characterized by the fact that the electrode 

effect is modeled based on the percolation theory. The experimental data confirms 

that the normalized current and voltage introduced by W  thrich define the 

behavior of the system independently of the electrolyte properties and the 

electrode geometry.  

 The I-U characteristics plot is interpreted through the images of the electrode that 

were captured during the experiment. There exists an extra region in addition to 

the five that are mentioned by other researchers. In this region, the gas film is 

present for a long period of time without (or with a few) discharges.  

 The coalescence of the bubbles in the limiting current region is attributed to their 

large size. As the current increases the bubble size increases. Consequently, the 

critical coalescence time decreases and becomes smaller than the contact time. 

Therefore, the rate of coalescence grows by increasing the voltage.  
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 ECD is controlled using a covered electrode and applying an offset pulsed 

voltage. 

 The Weber and Reynolds numbers are two important dimensionless parameters 

that are employed in the analysis of gas film formation. There exists a linear 

relation between the Weber and the Reynolds numbers of the gas film. 

7.2. Discussion and Future works 

A number of problems need to be solved for further development and improvement of the 

ECD applications. Based on the results obtained in the present thesis, the following 

recommendations are made for future works: 

 Using a covered electrode and simultaneously applying an offset pulsed voltage 

may improve the surface quality of machining with SACE (Spark Assisted 

Chemical Engraving) technique. Covering the electrode prevents the undesired 

discharges from occurring on the electrode surface. The offset pulse voltage 

combined with a covered electrode results in stable discharges. This method can 

be applied as well in nanoparticle production with ECD. Since the discharges are 

stable, the nanoparticles produced are homogenous. However, the effectiveness of 

the proposed methodology needs to be experimentally verified. 

 Decreasing the gas film thickness yields a higher reproducibility of the machining 

with SACE [10]. The Weber and Reynolds numbers define the shape and the 

thickness of the gas film. This implies that the film thickness can be modified by 

varying Reynolds and Weber numbers. However, further investigation is required 

to determine the quality of the effect of these parameters on the gas film.  
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 A thinner gas film can also be obtained if the critical voltage decreases [10]. The 

size of the bubbles is determined to be an effective factor in coalescing bubbles 

during the ECD process and the critical conditions are reached as the bubbles 

coalesce. If the bubbles coalesce at lower voltages the critical voltage is lower as 

well. Therefore, the possibility of modifying the bubble size requires further 

investigations. Moreover, additional parameters, such as the change in the 

concentration of the electrolyte at the electrode-electrolyte interface, which may 

affect the coalescence of the bubbles, need to be further examined.  

 It is observed in the arc region that there exists a difference between the current 

signals for KOH 35 wt% and that for NaOH 30wt% (Figure 44). The high current 

signal depicted for the case of NaOH 30% indicates that there are more discharges 

when the solution is NaOH 30. Further work is required to identify the causes of 

the difference in the discharge behavior for the different solutions. 

a) KOH 35 wt% b) NaOH 30% 

  

Figure 44- Comparison of the current signal at 40V a) KOH 35% and b) NaOH 30%. The electrode is a 0.5 mm 
diameter nickel rod dipped 3mm in the electrolyte. 
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