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All the groups of signal analysis from the (1 + 1)-affine
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We study the relationship between the (1 + 1)-affine Galilei group and four groups
of interest in signal analysis and image processing, viz., the wavelet or the affine
group of the line, the Weyl-Heisenberg, the shearlet, and the Stockwell groups. We
show how all these groups can be obtained either directly as subgroups of the affine
Galilei group, or as subgroups of central extensions of a subgroup of the affine
Galilei group, namely, the Galilei-Schrödinger group. We also study this at the level
of unitary representations of the groups on Hilbert spaces. C© 2011 American Institute
of Physics. [doi:10.1063/1.3652697]

I. INTRODUCTION

There are a number of groups that are used in the current literature, on signal analysis, and image
processing, to construct signal transforms, as functions representing the signals over convenient
parameter spaces. Of these, the most commonly used are the wavelet group, i.e., the affine group of
the real line R, the Heisenberg, and the Weyl-Heisenberg groups and the more recently introduced
Stockwell and shearlet groups. Another set of groups, which are extensions of the Heisenberg
group by one-parameter dilations, were introduced in Ref. 13. These include the shearlet group as a
special case and hence are also relevant for constructing signal transforms. As the name suggests,
the wavelet group1, 7, 15 is used to build the well-known continuous wavelet transform, while the
shearlet transform, using the shearlet group,6 is applicable to situations where the signal to be
analyzed has undergone shearing transformations. The Weyl, or equivalently, the Weyl-Heisenberg
group leads to the windowed Fourier transform, useful in time-frequency analysis,1, 3, 7 while the
Stockwell transform5, 12, 14 combines features of both the wavelet and time-frequency transforms.
The Stockwell group is closely related to the wavelet group and indeed, as an interesting result, we
show here that it is just a trivial central extension of the wavelet group. (Of course, the wavelet group
has no nontrivial central extensions.) This fact also has the implication that the unitary irreducible
representations (UIRs) of the Stockwell group are square-integrable over a homogeneous space (the
space consisting of the affine group parameters), a fact studied in Ref. 12.

The matrix representations of these various groups are as follows. A generic element of the
Heisenberg group is given by a 3 × 3 matrix,

g =

⎛
⎜⎝

1 x y

0 1 z

0 0 1

⎞
⎟⎠, x, y, z ∈ R, (1)
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while its one-parameter family of extensions obtained in Ref. 13 have the form

g =

⎡
⎢⎣

eσ ve
σ

p+1 a

0 e
σ

p+1 b

0 0 1

⎤
⎥⎦, −1 < p ≤ 1, a, b, v, σ ∈ R, (2)

with the shearlet group, which is a special case (p = 1), being of the type,

g =

⎡
⎢⎣

μ ν
√

μ α

0
√

μ β

0 0 1

⎤
⎥⎦, μ > 0, ν, α, β ∈ R. (3)

The connected affine or wavelet group is given by 2 × 2 matrices of the form

g =
[

d t

0 1

]
, d > 0, t ∈ R, (4)

and finally, the Stockwell group can be represented by a 4 × 4 matrix,

g =

⎡
⎢⎢⎢⎢⎣

1 γ δ 0 θ

0 γ 0 1 − γ

0 0 1
γ

0

0 0 0 1

⎤
⎥⎥⎥⎥⎦, γ > 0, δ, θ ∈ R. (5)

The question naturally arises as to whether there exists a matrix group which contains all the above
groups as subgroups. It is also noteworthy that all these groups consist of upper triangular matrices.

The purpose of this paper is first, to answer the above question, i.e., we show how all these groups
can be obtained as subgroups of various extensions of the Galilei group in (1 + 1)-dimensions. This
group is a physical kinematical group, which incorporates the symmetry of non-relativistic motion in
a (1 + 1)-dimensional space-time. More precisely, we shall first extend this group by space and time
dilations to obtain the (1 + 1)-affine Galilei group, which will then be shown to contain all the above
groups as subgroups, except the Stockwell group. This last group which, as we mentioned earlier,
is a trivial central extension of the wavelet group, will be obtained as a subgroup of a trivial central
extension of the Galilei-Schrödinger group, which itself is a subgroup of the affine Galilei group.
As a second and related problem, we study how unitary irreducible representations of the affine
Galilei and the various centrally extended Galilei-Schrödinger group decompose when restricted to
the above subgroups. This would shed light on how signal transforms related to the bigger groups
decompose into linear combinations of transforms based on the smaller subgroups. Physically, this
could correspond to situations where certain parameters of a more detailed transform are averaged
over or ignored.

Before closing this section we might mention that extensions of the Galilei group and its Lie
algebra have been studied in many other physical contexts, see, for example, Ref. 8 and references
cited therein.

II. EXTENSION TO THE AFFINE GALILEI GROUP

We start with the (1 + 1)-Galilei group G0 which, as we said, is the kinematical group of a non-
relativistic space-time of (1 + 1)-dimensions. This is a three parameter group, an element of which
we shall denote by (b, a, v). The parameters b, a, and v stand for time translation, space translation,
and the Galilean or velocity boost, respectively. Under the action of this group, a space-time point
(x, t) transforms in the following manner:

x �→ x + vt + a,

t �→ t + b.
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The group element g = (b, a, v) can be faithfully represented by a 3 × 3 upper triangular matrix,

g =

⎛
⎜⎝

1 v a

0 1 b

0 0 1

⎞
⎟⎠, (6)

so that matrix multiplication captures the group composition law. This group, also known as the
Heisenberg group in the mathematical and signal analysis literature, is a central extension of the
group of translations of R2 (translations in time and velocity). The exponent giving this extension is

ξH(x, x′) = bv′, (7)

where, x = (b, v), x′ = (b′, v′). In the physical literature, one usually works with another central
extension of R2, the resulting group being referred to as the Weyl-Heisenberg group. This latter
group is constructed using an exponent which is projectively equivalent to (7). We shall come back
to this point later.

In discussing and constructing central extensions, we shall follow Bargmann’s treatment in
Ref. 4. Given a connected and simply connected Lie group G, the local exponents ξ giving its central
extensions are functions ξ : G × G → R, obeying the following properties:

ξ (g′′, g′) + ξ (g′′g′, g) = ξ (g′′, g′g) + ξ (g′, g)

ξ (g, e) = 0 = ξ (e, g), ξ (g, g−1) = ξ (g−1, g).

We call the central extension trivial when the corresponding local exponent is simply a coboundary
term, in other words, when there exists a continuous function ζ : G → R such that the following
holds

ξ (g′, g) = ξcob(g′, g) := ζ (g′) + ζ (g) − ζ (g′g).

Two local exponents ξ and ξ ′ are equivalent if they differ by a coboundary term, i.e., ξ ′(g′, g)
= ξ (g′, g) + ξ cob(g′, g). A local exponent which is itself a coboundary is said to be trivial and the
corresponding extension of the group is called a trivial extension. Such an extension is isomorphic
to the direct product group U (1) × G. Exponentiating the inequivalent local exponents yields the
U (1) local factors or the familiar group multipliers, and the set of all such inequivalent multipliers
form the well-known second cohomology group H 2(G,U (1)) of G.

Next, we construct a different kind of an extension of the Galilei group G0 itself, by forming its
semidirect product with D2, the two-dimensional dilation group, i.e., we introduce two dilations (of
space and time). The resulting group G0 � D2 will be denoted Gaff . If the space and time dilations
are given by σ and τ , respectively, and a generic group element of Gaff is written (b, a, v, σ , τ ), then
the corresponding group composition law reads

(b, a, v, σ, τ )(b′, a′, v′, σ ′, τ ′)

= (b + eτ b′, a + eτ b′v + eσ a′, v + eσ−τ v′, σ + σ ′, τ + τ ′). (8)

We shall refer to Gaff as the affine Galilei group. It has the matrix representation

(b, a, v, σ, τ )aff =

⎡
⎢⎣

eσ veτ a

0 eτ b

0 0 1

⎤
⎥⎦. (9)

III. FROM AFFINE GALILEI TO EXTENDED HEISENBERG, SHEARLET, AND WAVELET
GROUPS

In this section, starting from the affine Galilei group Gaff , we first derive the family of extensions
G p

H of the Heisenberg group, originally obtained in Ref. 13. Following this, we shall show how the
reduced shearlet group, constructed in Ref. 6 is in fact one of the above groups. Finally, we shall
obtain the wavelet group as another subgroup of the affine Galilei group.
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In subsequent sections, using the matrix representations of two central extensions (one of them
being a trivial extension) of the Galilei-Schrödinger group Gs , we shall demonstrate that the Weyl-
Heisenberg group and the connected Stockwell group are subgroups of these centrally extended
groups. In other words, we shall have shown that all the groups of interest in time-frequency analysis
and signal processing are obtainable from a single group, the affine Galilei Gaff .

A. Extended Heisenberg group Gp
H as subgroup of affine Galilei group Gaff

Let us construct a family of subgroups of theaffine Galilei group Gaff = G0 � D2 by restricting
the two dilations σ and τ to lie on a line τ = mσ , where m is a constant. The special case where m
= 2 is called the Galilei-Schrödinger group.2 We shall come back to this group later.

Consider first thefamily of (non-isomorphic) extensions G p
H of the Heisenberg group, worked

out in Ref. 13. This family of groups is parametrized by a real number p, where − 1 < p ≤ 1. The
corresponding group law reads

(b, a, v, σ )(b′, a′, v′, σ ′) = (b + e
σ

p+1 b′, a + eσ a′ + e
σ

p+1 vb′, e
pσ

p+1 v′ + v, σ + σ ′). (10)

The matrix representation of the above family of Lie groups, referred to in Ref. 13 as the extended
Heisenberg groups, is easily seen to be

(b, a, v, σ )p
H =

⎡
⎢⎣

eσ ve
σ

p+1 a

0 e
σ

p+1 b

0 0 1

⎤
⎥⎦, −1 < p ≤ 1. (11)

Comparing with (9), we immediately see that the groups G p
H are subgroups of the (1 + 1) affine

Galilei groupGaff of the type, where the two dilations are restricted to the line τ = mσ , with m = 1
p+1 .

B. Reduced shearlet group as subgroup of the affine Galilei group Gaff

The reduced shearlet group S, as described in Ref. 6, has a generic element,

s = (μ, ν, α, β), μ ∈ R+, ν ∈ R, and (α, β) ∈ R2,

with the multiplication law

(μ1, ν1, α1, β1)(μ2, ν2, α2, β2)

= (μ1μ2, ν1 + ν2
√

μ1, α1 + μ1α2 + ν1
√

μ1β2, β1 + √
μ1β2). (12)

The matrix representation for the group S is as follows:

(μ, ν, α, β) =

⎡
⎢⎣

μ ν
√

μ α

0
√

μ β

0 0 1

⎤
⎥⎦. (13)

Comparing with (11), we see that this group corresponds to the special case p = 1, i.e., m = 1

2
,

(b, a, v, σ )S := (b, a, v, σ )p=1
H =

⎡
⎢⎣

eσ ve
σ
2 a

0 e
σ
2 b

0 0 1

⎤
⎥⎦, (14)
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and the explicit identification

eσ −→ μ,

v −→ ν,

a −→ α,

b −→ β.

Thus, the reduced shearlet group S is a member of the family of extensions G p
H of Heisenberg group

(with p = 1) and hence also a subgroup of the (1 + 1)-affine Galilei group Gaff .

C. Wavelet group as subgroup of the affine Galilei group Gaff

The connected affine group or the wavelet group is a two-parameter group Gaff
+ which consists

of transformations on R given by

x �→ dx + t, (15)

where x ∈ R, d > 0, and t ∈ R. Here, d and t can be regarded as the dilation and translation
parameters, respectively. The group law for this group is given by

(d1, t1)(d2, t2) = (d1d2, d1t2 + t1). (16)

The matrix representation of Gaff
+ , compatible with the above group law, is given by

(d, t) =
[

d t

0 1

]
. (17)

In the matrix (14) of the reduced shearlet group if we set b = v = 0, we are left with

s |Wavelet=

⎡
⎢⎣

eσ 0 a

0 e
σ
2 0

0 0 1

⎤
⎥⎦, (18)

which is a 3 × 3 faithful matrix representation of Gaff
+ with the following identification:

d −→ eσ ,

t −→ a,

i.e., we have obtained the wavelet group as a subgroup of the reduced shearlet group S and hence of
the affine Galilei group Gaff .

Thus, so far we have obtained all the groups mentioned in Sec. I, except for the Stockwell group,
as subgroups of the affine Galilei group. Although we shall later obtain the Stockwell group as a
subgroup of a trivial central extension of the Galilei-Schrödinger group, which is itself a subgroup
of the affine Galilei group, we might mention already here that we could obtain the Stockwell group
also as a trivial central extension of the wavelet group. In this sense, we could have started with a
trivial extension of the affine Galilei group and obtained all the groups mentioned in Sec. I essentially
as subgroups of it.

IV. EXTENSIONS OF THE AFFINE GALILEI AND RELATED GROUPS

The Galilei group G0 has a nontrivial central extension9 and, in fact, there is only one such
extension, up to projective equivalence. This extension, which we describe below, incorporates the
quantum kinematics of a physical system in a space-time of (1 + 1)-dimensions.
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Let M be a non-zero, positive real number; the local exponent ξ : G0 × G0 → R, giving the
extension in question is

ξ (g, g′) = M[va′ + 1

2
b′v2], (19)

where g ≡ (b, a, v) and g′ ≡ (b′, a′, v′) are elements of G0. We denote this extended group by GM ;
writing a generic element of GM as (θ , b, a, v), the group multiplication law reads

(θ, b, a, v)(θ ′, b′, a′, v′)

= (θ + θ ′ + M[va′ + 1

2
b′v2], b + b′, a + a′ + vb′, v + v′). (20)

We shall refer to GM as the quantum Galilei group.

A. Non-central extension of affine Galilei group

The group Gaff does not have nontrivial central extensions. Consequently, it cannot be used in
quantum mechanics, since a trivial extension fails to generate mass.2 From a physical point of view,
it is, therefore, more meaningful to take the quantum Galilei group GM and to form its semidirect
product with D2. This way, we arrive at GM

aff = GM
� D2, which is a non-central extension of the

affine Galilei group. For simplicity, we will call this group the extended affine Galilei group. Denoting
a generic group element of this group by (θ , b, a, v, σ , τ ), the group multiplication law reads

(θ, b, a, v, σ, τ )(θ ′, b′, a′, v′, σ ′, τ ′)

= (θ + e2σ−τ θ ′ + M[eσ va′ + 1

2
eτ v2b′], b + eτ b′, a + eτ b′v + eσ a′, v + eσ−τ v′,

σ + σ ′, τ + τ ′). (21)

The matrix representation of an element of GM
aff , consistent with the above multiplication rule is

(θ, b, a, v, σ, τ )M
aff =

⎡
⎢⎢⎢⎢⎣

eσ veτ 0 a

0 eτ 0 b

Mveσ 1
2 Mv2eτ e2σ−τ θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (22)

As mentioned in Ref. 9, all the multipliers for the (1 + 1) dimensional quantum Galilei group
GM are equivalent, i.e., there is only one equivalence class in the multiplier group of the (1 + 1)-
dimensional Galilei group G0. In other words, H 2(G0,U (1)) is just one dimensional. It is noteworthy
in this context that Eq. (22) is a matrix representation of GM

aff provided that the multiplier we choose,
from the one-dimensional group H 2(G0,U (1)) to obtain GM during the two step construction of GM

aff ,
has the form eiξ (g1,g2), with ξ given by Eq. (19). Choosing another, though equivalent, multiplier will
alter the form of the matrix (22).

B. Galilei-Schrödinger group: central extensions

Let us consider the particular case of the subgroup of Gaff when τ = 2σ , i.e., m = 2 (or p = −1

2
in (11)). We denote the resulting one-dimensional dilation group by Ds and the corresponding
subgroup of Gaff by Gs , so that Gs = G0 � Ds . In the literature, this group is known as the Galilei-
Schrödinger group.2 It is easy to construct a central extension, denoted GM

s , of Gs by U (1), using
a local exponent ξ : Gs × Gs → R, or equivalently, using the multiplier exp iξ : Gs × Gs → U (1).
We mention in this context that since we prefer working with addition rather than multiplication, we
shall henceforth talk in terms of exponents rather than multipliers.

We proceed to construct two extensions of the Galilei-Schrödinger group, using two equivalent
multipliers, and a third extension using a trivial or exact multiplier. To do that we first note that the
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group multiplication law for Gs is given by

(b, a, v, σ )(b′, a′, v′, σ ′) = (b + e2σ b′, a + eσ a′ + e2σ vb′, v + e−σ v′, σ + σ ′), (23)

where a generic element of the group is denoted as (b, a, v, σ ). Now using the exponent

ξ ((b, a, v, σ ); (b′, a′, v′, σ ′)) = M[veσ a′ + 1

2
v2e2σ b′], (24)

we obtain a central extension GM
s of Gs by U (1). The group law for the centrally extended group GM

s
therefore reads

(θ, b, a, v, σ )(θ ′, b′, a′, v′, σ ′)

= (θ + θ ′ + M[veσ a′ + 1

2
v2e2σ b′], b + e2σ b′, a + e2σ vb′ + eσ a′, v + e−σ v′, σ + σ ′), (25)

which is consistent with the matrix representation,

(θ, b, a, v, σ )M
s =

⎡
⎢⎢⎢⎢⎣

eσ ve2σ 0 a

0 e2σ 0 b

Mveσ 1
2 Mv2e2σ 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (26)

Comparing (22) and (26), we easily see that GM
s ⊂ GM

aff , which is clear since we have just set
τ = 2σ . It ought to be noted here, that in going from G0 to GM

s , two extensions were involved: first
we extended G0 to the Galilei-Schrödinger group Gs , by taking the semidirect product of the former
with the dilation group Ds , and then doing a central extension of this enlarged group. We could
equivalently have reversed the process, i.e., first done a central extension of G0 to obtain the quantum
Galilei group GM and then taken a semidirect product of this group with Ds to again arrive at GM

s .
In other words, in this case the two procedures commute.

Next consider a second local exponent, ξ1 : Gs × Gs → R given by

ξ1((b, a, v, σ ); (b′, a′, v′, σ ′)) = M

2
[−vv′b′eσ + va′eσ − av′e−σ ]. (27)

This exponent is easily seen to be equivalent to ξ , given in (24). Indeed, the difference of the above
two exponents

ξ − ξ1 = M

2
[v2e2σ b′ + vv′b′eσ + va′eσ + v′ae−σ ]

= M

2
(a + e2σ vb′ + eσ a′)(v + e−σ v′) − M

2
av − M

2
a′v′ (28)

is a trivial exponent. In other words (28) can be rewritten in terms of the continuous function
ζM : Gs → R,

ξ − ξ1 = ζM ((b, a, v, σ )(b′, a′, v′, σ ′)) − ζM (b, a, v, σ ) − ζM (b′, a′, v′, σ ′), (29)

where ζM (b, a, v, σ ) = M
2 av.

Let GM ′
s denote the central extension of Gs by U (1) with respect to the exponent ξ 1 given by

Eq. (27). The group multiplication law for GM ′
s reads

(θ, b, a, v, σ )(θ ′, b′, a′, v′, σ ′)

= (θ + θ ′ + M

2
[−vv′b′eσ + va′eσ − av′e−σ ], b + e2σ b′, a + eσ a′ + e2σ vb′,

v + e−σ v′, σ + σ ′). (30)
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The matrix representation for GM ′
s , compatible with the group law, (30) is

(θ, b, a, v, σ )M ′
s =

⎡
⎢⎢⎢⎢⎣

eσ −e−σ b 0 a − vb

0 e−σ 0 −v

1
2 Mveσ 1

2 Mae−σ 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (31)

Finally, we extend the Galilei-Schrodinger group Gs centrally by U (1) with respect to the trivial
exponent ξ2 : Gs × Gs → R given by

ξ2((b, a, v, σ ); (b′, a′, v′, σ ′)) = ae−σ (1 − e−σ ′
) − eσ−σ ′

vb′. (32)

We call this extension GT
s . Again, it is straightforward to verify that the exponent given in (32) is

indeed trivial, since it can be rewritten in terms of the continuous function ζT : Gs → R,

ξ2((b, a, v, σ ); (b′, a′, v′, σ ′))

= ζT (b, a, v, σ ) + ζT (b′, a′, v′, σ ′) − ζT ((b, a, v, σ )(b′, a′, v′, σ ′)),

where ζ T(b, a, v, σ ) = ae− σ . Thus, the group law for the trivially extended Galilei-Schrodinger
group GT

s reads

(θ, b, a, v, σ )(θ ′, b′, a′, v′, σ ′)

= (θ + θ ′ + [ae−σ (1 − e−σ ′
) − eσ−σ ′

vb′], b + e2σ b′, a + eσ a′ + e2σ vb′,

v + e−σ v′, σ + σ ′). (33)

The matrix representation of GT
s compatible with the above group law is given by

(θ, b, a, v, σ )T
s =

⎡
⎢⎢⎢⎢⎣

1 ae−σ −eσ v θ

0 e−σ 0 1 − e−σ

0 −e−σ b eσ e−σ b

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (34)

V. FROM GALILEI-SCHRÖDINGER TO WEYL-HEISENBERG AND STOCKWELL GROUPS

In this section, we obtain the Weyl-Heisenberg and Stockwell groups as subgroups of the
centrally extended Galilei-Schrödinger groups. We shall also re-derive the Heisenberg group, which
by construction was a subgroup of the affine Galilei group Gaff , this time as a subgroup of one of the
central extensions of the Galilei-Schrödinger group.

A. Heisenberg and Weyl-Heisenberg groups as subgroups of centrally extended
Galilei-Schrödinger groups

As mentioned in Sec. II, the Heisenberg group is identical to the (1 + 1)-Galilei group G0,
which means that it is trivially a subgroup of the affine Galilei group Gaff . Moreover, the Heisenberg
group is a central extension of the two-dimensional translation group of the plane, via the local
exponent ξH in (7). As also indicated earlier, in the physical literature one uses a different, but
projectively equivalent, exponent ξWH (see (41) below) to do this extension, the resulting group
being called the Weyl-Heisenberg group. Thus, although the Heisenberg and the Weyl-Heisenberg
groups are projectively equivalent, we shall continue to differentiate between them in this paper. We
now proceed to obtain these groups as subgroups of central extensions of the Galilei-Schrödinger
group. Changing notations a bit let (q, p) denote a point in the plane R2.

In constructing the Heisenberg group GH, one uses the local exponent,

ξH((q, p); (q ′, p′)) = pq ′. (35)
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Writing a general element of this group as

g = (θ, q, p), θ ∈ R, (q, p) ∈ R2,

the group multiplication law reads

(θ, q, p)(θ ′, q ′, p′) = (θ + θ ′ + pq ′, q + q ′, p + p′), (36)

with the matrix representation being

(θ, q, p)H =

⎡
⎢⎣

1 p θ

0 1 q

0 0 1

⎤
⎥⎦. (37)

Now, we form the subgroup GM
s |H of the centrally extended Galilei-Schrodinger group GM

s by
setting b = σ = 0, θ ∈ R, and (a, v) ∈ R2. The matrix representation of GM

s |H then has the form
(see (26)),

(θ, 0, a, v, 0)M
s := (θ, a, v)M

s |H=

⎡
⎢⎢⎢⎢⎣

1 v 0 a

0 1 0 0

Mv 1
2 Mv2 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦, (38)

which under the identification

Mv −→ p,

a −→ q,

θ −→ θ, (39)

reduces to

(θ, q, p)M
s |H=

⎡
⎢⎢⎢⎢⎣

1 p
M 0 q

0 1 0 0

p p2

2M 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (40)

Here, we assume that the mass term M is never zero. The above 4 × 4 matrix is a faithful rep-
resentation of the Heisenberg group GH, compatible with the group law (36).

Thus, the Heisenberg group constructed using the ξH in (35) can also be obtained as a subgroup
of the nontrivial central extension GM

s of the Galilei-Schrödinger group.
To obtain the Weyl-Heisenberg group in a similar manner, consider the local exponent

ξWH((q, p); (q ′, p′)) = 1

2
(pq ′ − p′q). (41)

It is straightforward to verify that this exponent is equivalent to ξH in (35). Indeed,

ξH − ξWH = pq ′ − 1

2
(pq ′ − p′q)

= 1

2
pq ′ + 1

2
p′q

= 1

2
(p + p′)(q + q ′) − 1

2
pq − 1

2
p′q ′

= ζ ((q, p); (q ′, p′)) − ζ (q, p) − ζ (q ′, p′),

where ζ is a real valued continuous function defined on the group of translations of R2, and hence
ξH − ξWH is a trivial exponent. Using the exponent ξWH, we extend the group of translations of R2
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to form the Weyl-Heisenberg group GWH, which then obeys the following group law:

(θ, q, p)(θ ′, q ′, p′) = (θ + θ ′ + 1

2
(pq ′ − p′q), q + q ′, p + p′). (42)

The matrix representation compatible with the above group law can be written as

(θ, q, p)WH =

⎡
⎢⎢⎢⎢⎣

1 0 0 q

0 1 0 −p
1
2 p 1

2 q 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (43)

Forming now the subgroupGM ′
s |WH of the centrally extended Galilei-Schrödinger groupGM ′

s obtained
by setting b = σ = 0, θ ∈ R, and (a, v) ∈ R2 (see (31)), we get for its matrix representation

(θ, 0, a, v, 0)M ′
s := (θ, a, v)M ′

s |WH =

⎡
⎢⎢⎢⎢⎣

1 0 0 a

0 1 0 −v

1
2 Mv 1

2 Ma 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (44)

Making again the identification (39), this becomes

(θ, q, p)M ′
s |WH =

⎡
⎢⎢⎢⎢⎣

1 0 0 q

0 1 0 − p
M

1
2 p 1

2 Mq 1 θ

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (45)

Here, we assume once more that the mass term M is not zero. While the above matrix is not exactly
of the same form as the one given in (43), it does reproduce the group multiplication rule (42).
Moreover, the two matrix representations are equivalent, via the intertwining matrix

S =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1
M 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦,

i.e., we have

S (θ, q, p)WHS−1 = (θ, q, p)M ′
s |WH .

In this way, we have shown that the Weyl-Heisenberg group GWH is a subgroup of the nontrivial
central extension GM ′

s of Galilei-Schrödinger group.

B. Connected Stockwell group as subgroup of the trivial central extension GT
s of the

Galilei-Schródinger group

The connected Stockwell group GSW (see Refs. 5 and 12 for definition and properties) can be
seen as a trivial central extension of a group G ′

aff , isomorphic to the connected affine group Gaff
+ (see

(17)). Given a group element (γ, δ) ∈ R>0 × R, we define the group law for G ′
aff by

(γ1, δ1)(γ2, δ2) = (γ1γ2, δ1 + 1

γ1
δ2). (46)

Comparing with (16), we identify the group homomorphism f : Gaff
+ −→ G ′

aff ,

f (γ, δ) = (
1

γ
, δ). (47)
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Let us extend the group G ′
aff centrally using the exponent

ξs((γ1, δ1); (γ2, δ2)) = γ1δ1(1 − γ2)

= γ1δ1 + γ2δ2 − (γ1γ2)(δ1 + δ2

γ1
). (48)

This is in fact a trivial exponent since it can be written in terms of the continuous function ζs :
G ′

aff → R,

ξs((γ1, δ1); (γ2, δ2)) = ζs(γ1, δ1) + ζs(γ2, δ2) − ζs((γ1, δ1)(γ2, δ2)), (49)

where ζ s(γ , δ) = γ δ. The group so extended obeys the multiplication rule

(θ1, γ1, δ1)(θ2, γ2, δ2) = (θ1 + θ2 + [γ1δ1(1 − γ2)], γ1γ2, δ1 + 1

γ1
δ2), (50)

which is the product rule for elements of the Stockwell group GSW.5 This proves that the Stockwell
group is a trivial central extension of the wavelet or affine group. The matrix representation of a
group element of GSW is seen to be

(θ, γ, δ)SW =

⎡
⎢⎣

1 γ δ θ

0 γ 1 − γ

0 0 1

⎤
⎥⎦. (51)

We now show that this group can also be obtained as a subgroup of the trivially extended
Galilei-Schrödinger group GT

s (see ((32)–(34)). Indeed, comparing (32) to (48) it is clear that the
former exponent reduces to he latter if v is set equal to zero. Next, setting v = b = 0 in GT

s we see
that (34) reduces to

(θ, 0, a, 0, σ )T
s := (θ, a, σ )T

s |SW=

⎡
⎢⎢⎢⎢⎣

1 ae−σ 0 θ

0 e−σ 0 1 − e−σ

0 0 eσ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (52)

The identification

e−σ −→ γ,

a −→ δ,

θ −→ θ

and subsequent elimination of the redundant third row and column is then seen to yield the
matrix (51).

We can conveniently depict all these various extensions and reductions to subgroups by means
of Fig. 1 below.

VI. DECOMPOSITION OF UIRS OF THE AFFINE GALILEI GROUP AND CENTRAL
EXTENSIONS OF THE GALILEI-SCHRÖDINGER GROUP RESTRICTED TO VARIOUS
SUBGROUPS

The general procedure for building signal transforms, starting from a group G is first to define
functions over the group using matrix elements of unitary irreducible representations. Provided these
functions possess certain desirable properties which, among others, enable one to reconstruct the
signal, they can be used as transforms describing the signal. In other words, the signal transforms
are functions which encode the properties of the signal in terms of the group parameters. It is
therefore of interest to construct unitary irreducible representations of the various groups discussed in
Secs. I–V and to see how representations of the smaller subgroups, relevant to signal analysis, sit
inside representations of the bigger groups.
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FIG. 1. Flowchart showing the passage from the (1 + 1)-affine Galilei group to the various groups of signal analysis.

The affine Galilei group Gaff was defined in Sec. II, following which in Sec. III we studied its
restriction to various subgroups of interest. In this section, we shall first construct unitary irreducible
representations of the affine Galilei group and then study their restrictions to the reduced shearlet
and wavelet subgroups.

In later subsections, we will find the UIRs of the two central extensions of the Galilei-
Schrödinger and look at their restrictions to the Heisenberg group GH and the connected Stockwell
group GSW.

A. UIRs of affine Galilei group restricted to the reduced shearlet group

The group law and matrix representation of the affine Galilei group Gaff was given in (8) and
(9). From the matrix representation, we easily infer the semidirect product structure, Gaff = T � V ,
where T is an abelian subgroup, with generic element (b, a) and V is the subgroup generated by
the elements (v, σ , τ ). Now, the action of (v, σ , τ ) on the element (b, a) as determined by (8) is
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seen to be

(v, σ, τ )(b, a) = (eτ b, eτ vb + eσ a). (53)

We also have

(v, σ, τ )−1(b, a) = (e−τ b, e−σ (a − vb)). (54)

Now let (E, p) denote a generic element of T ∗, the dual of T , and the corresponding character by

〈(E, p) | (b, a)〉 = ei(Eb+pa).

The action of (v, σ, τ ) ∈ V on (E, p) ∈ T ∗ is then defined by

〈(v, σ, τ )(E, p) | (b, a)〉
= 〈(E, p) | (v, σ, τ )−1(b, a)〉
= 〈(E, p) | (e−τ b, e−σ (a − vb))〉
= ei[(e−τ E−e−σ pv)b+e−σ pa], (55)

from which we easily find the dual action (E, p) −→ (Ē, p̄),

Ē = e−τ E − e−σ pv,

p̄ = e−σ p, (56)

which we can now use to compute the dual orbits. We see that the sign of p is an invariant for the
same orbit, while E takes on all real values independently. In other words, the orbits are (i) the two
open half planes R × R≷ 0, one corresponding to all positive values of p and the other corresponding
to negative values, (ii) the two half lines R≷ 0, with p = 0, E ≷ 0, and (iii) the degenerate orbit E =
p = 0. Note that none of these orbits are open-free. Now using (54) and (56), we obtain

(v, σ, τ )−1(E, p) = (E ′, p′) = (eτ (E + pv), eσ p). (57)

From this it follows that

d E ′ dp′ = eσ+τ d E dp, on R × R≷0, (58)

and

d E ′ = eτ d E, on R≷0. (59)

Using the Mackey’s theory of induced representations,10, 11 we obtain four unitary irreducible
representations of Gaff , corresponding to the above four orbits. We denote the representations cor-
responding to the two half-planar orbits R × R≷ 0 by U±

aff , defined on L2(R × R±, d E dp), and
the representations on the half lines R≷ 0, on L2(R±, d E), by V ±

aff . The representations are easily
computed to be

(U±
aff(b, a, v, σ, τ )ψ̂)(E, p) = e

σ+τ
2 ei(Eb+pa)ψ̂(eτ (E + pv), eσ p), p ≷ 0, (60)

and

(V ±
aff(b, a, v, σ, τ )ψ̂)(E) = e

τ
2 ei Ebψ̂(eτ E), E ≷ 0. (61)

Note that the last two representations are nontrivial only on the subgroup of Gaff with a = v = σ

= 0, i.e., the affine or wavelet group defined by the two remaining parameters b, τ , and in fact,
constitute the two unitary irreducible representations of that group. As is well known, these two
representations of the affine group are square integrable and give rise to wavelet transforms.

We saw in Sec. III B that the (reduced) shearlet group S is the subgroup of Gaff corresponding

to τ = 1

2
σ . Restricting U±

aff in (60) to this subgroup, we get

(U±
aff |S (b, a, v, σ )ψ̂)(E, p) = e

3σ
4 ei(Eb+pa)ψ̂(e

σ
2 (E + pv), eσ p), p ≷ 0. (62)
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A quick examination of (56) shows that R × R≷ 0 are both open-free orbits of S. Also, as repre-
sentations of the (reduced) shearlet group the two representations (60) are irreducible and hence
square-integrable. Indeed, these are the representations used to build the shearlet transforms.

B. UIRs of affine Galilei group Gaff restricted to the wavelet group

We saw in Sec. III C that the wavelet or affine group Gaff
+ could be obtained from the shearlet

group as the subgroup with b = v = 0 or directly from the affine galilei group Gaff as the subgroup
with b = v = τ = 0.

Setting b = v = τ = 0 in the representations U±
aff in (60), we obtain

(U±
aff |Wavelet (0, a, 0, σ, 0)ψ̂)(E, p) = e

σ
2 eipaψ̂(E, eσ p) (63)

as representations of the wavelet group Gaff
+ on L2(R × R±, d E dp). However, these representations

are not irreducible. Indeed, noting that

L2(R × R±, d E dp) 
 L2(R, d E) ⊗ L2(R±, dp),

the representations (63) are immediately seen to be of the form

U±
aff |Wavelet= I ⊗ U±

Wavelet, (64)

where I is the identity operator on L2(R, d E) and U±
Wavelet are the two unitary irreducible represen-

tations of Gaff
+ on L2(R±, dp), given by

(U±
Wavelet(a, σ )ψ̂)(p) = e

σ
2 eipaψ̂(eσ p). (65)

A decomposition of (64) into irreducibles is easily done. Indeed, let {φ̂n}∞n=0 be an orthonormal basis
of L2(R, d E) and Hn the one-dimensional subspaces spanned by φ̂n, n = 0, 1, 2, . . . ,∞, so that
L2(R, d E) = ⊕∞

n=0Hn . It is then immediately clear that

U±
aff |Wavelet (0, a, 0, σ, 0) = ⊕∞

n=0 U±, n
Wavelet(a, σ ), (66)

where U±, n
Wavelet is an irreducible representation of Gaff

+ which is simply a direct product of the trivial
representation of the wavelet group on Hn with the irreducible representation U±

Wavelet on L2(R±, dp)
given in (65). This decomposition also implies, that the shearlet transform, when restricted to the
parameters of the wavelet group, decomposes into an infinite sum of wavelet transforms.

C. UIRs of centrally extended Galilei-Schrödinger group GM
s restricted to the

Heisenberg group GH

The group law for the centrally extended Galilei-Schrödinger group GM
s , formed using the

exponent ξ in (24), is given by (25) and the corresponding matrix representation by (26). From the
matrix representation, one can deduce the semidirect product structure GM

s = T � V where T is
an abelian subgroup with generic element (θ , b, a) and V a semi-simple group consisting of the
elements (v, σ ). Note that V is just the affine or wavelet group which also has a semidirect product
structure, since

(v1, σ1)(v2, σ2) = (v1 + e−σ1v2, σ1 + σ2).

Now let (q, E, p) denote a generic element of T ∗, the dual of T , and consider the character

〈(q, E, p) | (θ, b, a)〉 = ei(qθ+Eb+pa).

The action of the subgroup V on the abelian subgroup T follows from (25),

(v, σ )(θ, b, a) = (θ + M[veσ a + 1

2
e2σ v2b], be2σ , eσ a + e2σ vb). (67)
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Now the action of (v, σ ) ∈ V on (q, E, p) ∈ T ∗ is defined by

〈(v, σ )(q, E, p) | (θ, b, a)〉
= 〈(q, E, p) | (v, σ )−1(θ, b, a)〉

= 〈(q, E, p) | (θ + M[−va + 1

2
v2b], e−2σ b, e−σ (a − vb))〉

= ei[qθ+(e−2σ E−e−σ pv+ 1
2 q Mv2)b+(e−σ p−q Mv)a]. (68)

Thus dual orbit elements (q̄, Ē, p̄) corresponding to a fixed value of (q, E, p) are given by

q̄ = q,

Ē = e−2σ E − e−σ pv + 1

2
q Mv2,

p̄ = e−σ p − q Mv, (69)

so that,

Ē − p̄2

2q̄ M
= e−2σ (E − p2

2q M
), (70)

where we assume that q �= 0. Since q remains invariant under the transformation (69), we take
q̄ = q = κ . We thus get two dual orbits, the interior and exterior of the parabola given by E − p2

2κM= 0, lying on the two-dimensional plane determined by q = κ in the q̄-Ē- p̄ space. The parabola
E − p2

2κM = 0 itself determines an orbit, and there are additional orbits when q = 0. Here, we shall
only consider the first two orbits, i.e., the interior and exterior of the parabola, for each non-zero
κ ∈ R. Let us introduce the new variables

p = k1,

E − p2

2κ M
= k2. (71)

Then, for fixed value of q = κ , the coordinates (k1, k2) are easily seen to transform as

k̄1 = e−σ k1 − κ Mv,

k̄2 = e−2σ k2. (72)

In these new coordinates

(v, σ )(q, k1, k2) = (q, e−σ k1 − q Mv, e−2σ k2)

and

(v, σ )−1(k1, k2) = (eσ (k1 + κ Mv), e2σ k2) := (k ′
1, k ′

2), (73)

so that,

k ′
1 = eσ (k1 + κ Mv),

k ′
2 = e2σ k2.

Therefore, we obtain

dk ′
1 dk ′

2 = e3σ dk1 dk2. (74)

Using again the method of induced representations, we arrive at the two UIRs of GM
s defined on the

two Hilbert spaces L2(R × R±, dk1 dk2), for each non-zero value of q = κ ,

(U κ
±(θ, b, a, v, σ )ψ̂)(k1, k2) = e

3σ
2 ei(κθ+k1a+{k2+ (k1)2

2κM }b)ψ̂(eσ (k1 + κ Mv), e2σ k2). (75)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



103504-16 S. H. H. Chowdhury and S. T. Ali J. Math. Phys. 52, 103504 (2011)

Let us now go back to the Heisenberg group GH, as discussed in Sec. V A and construct its
unitary irreducible representations, following similar techniques. From the matrix representation in
(37), we infer the semidirect product structure,

GH = T � A,

where (θ , q) constitute elements of the abelian subgroup T and p is an element of the subgroup A.
Now p ∈ A acts on (θ, q) ∈ T in the following manner:

p(θ, q) = (θ + pq, q). (76)

We now denote by (s, t) a generic element of T ∗, the dual of the abelian subgroup T . Let us
take the character

〈(s, t) | (θ, q)〉 = ei(sθ+tq);

then

〈p(s, t) | (θ, q)〉 = 〈(s̄, t̄) | (θ, q)〉
= ei(s̄θ+t̄q)

= 〈(s, t) | p−1(θ, q)〉
= 〈(s, t) | (θ − pq, q)〉
= ei[sθ+(t−sp)q]. (77)

For fixed (s, t), the coordinates of its orbit under the action of A are

s̄ = s,

t̄ = t − sp. (78)

Thus, the dual orbits are a family of parallel straight lines, one for each value of s and dt is the
invariant measure on the orbit. Once again, using Mackey’s theory of induced representation we
obtain the UIR, corresponding to each dual orbit, i.e., for each fixed value of s,

(U s
H(θ, q, p)ψ̂)(t) = eisθ eitqψ̂(t + sp), (79)

on the Hilbert space L2(R, dt).
Now the restriction of the UIR (75) of the centrally extended Galilei-Schrödinger group GM

s to
the Heisenberg group GH is seen to be

(U κ
± |H (θ, 0, a, v, 0)ψ̂)(k1, k2) = ei(κθ+k1a)ψ̂(k1 + κ Mv, k2). (80)

Thus,

U κ
± |H= U κ

H ⊗ I±, (81)

where U κ
H is the unitary irreducible representation of the Heisenberg group on L2(R, dk1) and I±

are the identity operators on L2(R±, dk2). Once again, we can decompose this representation as an
infinite direct sum of irreducibles,

U κ
± |H= ⊕∞

n=0U±, n
κ ,

just as in (66). Here, each U±, n
κ is a copy of the UIR (79) with s = κ on the Hilbert space L2(R, dk1)

times a trivial representation on a one-dimensional subspace of L2(R±, dk2).
We also recall that in Sec. V A, we obtained the Weyl-Heisenberg group GWH as a subgroup of

the centrally extended Galilei-Schrödinger group GM ′
s . We could just as well have obtained similar

representations of GWH and their decomposition into irreducibles from the UIRs of GM ′
s .
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D. UIRs of centrally extended (trivial) Galilei-Schrödinger group GT
s restricted to

connected Stockwell group

In Sec. IV B, we had introduced the Galilei-Schrödinger group Gs , by setting τ = 2σ in the affine
Galilei group (see (9)). Later we obtained a central extension of it using the trivial exponent ξ 2 in
(32). Here, we shall obtain UIRs of this centrally extended group by first finding unitary irreducible
representations of Gs itself. The matrix representation of Gs is found by substituting τ = 2σ in (9),

(b, a, v, σ )s =

⎡
⎢⎣

eσ ve2σ a

0 e2σ b

0 0 1

⎤
⎥⎦. (82)

From this follows the semidirect product structure, Gs = T � V , where the abelian subgroup T
consists of elements (b, a) and the subgroup V consists of the elements (v, σ ).

Now let (E, p) denote a generic element of T ∗, the dual to T , and consider the corresponding
character

〈(E, p); (b, a)〉 = ei(Eb+pa).

The action of the subgroup V on the abelian subgroup T can be immediately read off. We find

(v, σ )−1(b, a) = (e−2σ b, e−σ (a + vb))

and the action of (v, σ ) ∈ V on (E, p) ∈ T ∗,

〈(v, σ )(E, p); (b, a)〉 = ei[(e−2σ E+e−σ pv)b+e−σ pa].

Thus, writing

(v, σ )−1(E, p) = (E ′, p′),

we get the equations for the dual orbit, corresponding to (E, p),

E ′ = e2σ (E + pv),
(83)

p′ = peσ .

We shall only consider orbits for which p �= 0. Making a change of variables (E, p) �→ (t = E
p2 , p),

the orbit equations become

t ′ = t + v

p
,

(84)
p′ = peσ .

Thus we get two orbits in the t-p space, namely, the two disjoint open half planes (p ≷ 0). Also,

dt ′ dp′ = eσ dt dp. (85)

Again, following the standard Mackey construction we get the following two unitary irreducible
representations of the ordinary Galilei-Schrödinger group, corresponding to these two orbitsR × R±

in the t-p space,

(U±(b, a, v, σ )ψ̂)(t, p) = ei(tp2b+pa)e
σ
2 ψ̂(t + v

p
, eσ p). (86)

The representations are carried by the Hilbert spaces L2(R × R±, dt dp), respectively.
In Sec. IV B, the trivial exponent ξ 2 was shown to arise from the continuous function ζT : Gs

→ R given by

ζT (g) = ae−σ , (87)

where g ≡ (b, a, v, σ ) is a generic element of Gs . In terms of this continuous function it follows imme-
diately that Ũ±(g) = eiζT (g)U±(g) are projective representations of the Galilei-Schrodinger group
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Gs . In other words, U T,±
s (θ, b, a, v, σ ) := eiθŨ±(b, a, v, σ ) are unitary irreducible representations

of the trivial central extension GT
s of the Galilei-Schrödinger group.

Next the UIRs U T,±
s restricted to the connected Stockwell group have the form

(U T,±
s |SW (θ, 0, a, 0, σ )ψ̂)(t, p) = ei(θ+ae−σ )eipae

σ
2 ψ̂(t, eσ p). (88)

Thus,

U T,±
s |SW= I ⊗ U±

SW, (89)

where I is the identity operator on L2(R, dt) and U±
SW are UIRs of the connected Stockwell group on

L2(R±, dt). The representation (89) again decomposes in the usual manner into an infinite direct
sum of irreducibles.

We remark here that the UIRs of the Stockwell group GSW are not square-integrable (over
the whole group). However, since taking θ = 0 in (88) yields a projective representation of the
affine group, the two nontrivial representations of which are both square-integrable, this fact can be
exploited to arrive at square-integrability over the homogeneous space GSW/�, where � is the phase
subgroup. This is exactly the sense in which square-integrability for representations of the Stockwell
group has been defined in Ref. 12 and is in accordance with the theory of square-integrability modulo
subgroups (see, for example, Ref. 1).

VII. CONCLUSION

The fact that the various groups of signal analysis enumerated in Sec. I are all obtainable from
the affine Galilei group shows a remarkable unity in their structures and consequently of their unitary
irreducible representations. In later publications, we propose to make a comparative study of the
structures of their co-adjoint orbits and Wigner functions built on them. From the point of view of
signal transforms, all this could lead to a deeper understanding of how signal transforms, defined
over a larger set of parameters, reduce when a smaller set of parameters is used, with the original
signal still being reconstructible from the smaller set.
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