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This paper studies the asymptotic validity of the Anderson–Rubin (AR) test and the
J test for overidentifying restrictions in linear models with many instruments. When
the number of instruments increases at the same rate as the sample size, we establish
that the conventional AR and J tests are asymptotically incorrect. Some versions of
these tests, which are developed for situations with moderately many instruments,
are also shown to be asymptotically invalid in this framework. We propose modifi-
cations of the AR and J tests that deliver asymptotically correct sizes. Importantly,
the corrected tests are robust to the numerosity of the moment conditions in the
sense that they are valid for both few and many instruments. The simulation results
illustrate the excellent properties of the proposed tests.

1. INTRODUCTION

In the pursuit of improved precision of the instrumental variable (IV) estima-
tor, researchers often face situations in which the number of instruments repre-
sents a nontrivial fraction of the sample observations available for estimation.
For example, a large number of instruments can be constructed by interacting
different variables (Angrist and Krueger, 1991) or using lagged dependent vari-
ables in panel data models (Arellano and Bond, 1991). Although the conventional
asymptotic setup implies that the increased dimensionality of the instrument ma-
trix should lead to efficiency gains, the finite-sample behavior of the IV estimator
and various test statistics is markedly deteriorated (see, among others, Andersen
and Sorensen, 1996; Burnside and Eichenbaum, 1996.)

Despite the voluminous recent literature on estimation in the presence of many
(and possibly weak) instruments (see, among others, Bekker, 1994; Chao and
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Swanson, 2005; Hansen, Hausman, and Newey, 2008), the asymptotic behavior
of the tests for parameter and overidentifying restrictions has not been fully in-
vestigated. Andrews and Stock (2007) and Donald, Imbens, and Newey (2003)
derive the asymptotic distributions of some parameter and specification tests in
models with moderately many instruments, i.e., when the number of instruments
grows asymptotically but slowly relative to the sample size. We argue that to ob-
tain a good asymptotic approximation for some of these tests one has to acknowl-
edge the numerosity of instruments via a many instruments assumption of Bekker
(1994).

It turns out that when the number of moment conditions is proportional to the
sample size, the conventional J test for overidentifying restrictions tends to un-
derreject and the size of the test is practically zero when the ratio of the number
of moment conditions to the sample size is close to one. Interestingly, despite
its similar structure, the asymptotic size of the standard Anderson–Rubin (AR)
test exceeds the nominal level when there are many instruments. Thus, the AR test
tends to overreject, and the size of the test at 10% nominal level is near 50% when
the ratio is close to one. Similar conclusions apply to the asymptotically normal
J and AR tests developed in Donald et al. (2003) and Andrews and Stock (2007).
Intuitively, the asymptotic size distortions arise from the fact that there are a finite
number of observations per moment condition, in contrast to their infinite number
in the standard and moderately many instruments frameworks.

We propose modifications of the conventional J and AR tests that are based
on critical values of a chi-squared distribution and are easy to implement. Impor-
tantly, the proposed “corrected” tests are robust to the numerosity of the moment
conditions, in the sense that they do not require an a priori choice of asymp-
totic framework because they are valid under both fixed and many instrument
asymptotics.

The rest of the paper is structured as follows. Section 2 introduces the model
and the tests. The main theoretical results are established and discussed in
Section 3. Section 4 presents Monte Carlo simulation results for the size proper-
ties of tests under consideration in finite samples. Section 5 concludes. All proofs
are relegated to the Appendix.

2. MODEL, ASSUMPTIONS, AND TESTS

Consider the standard linear IV regression model

yi = x ′
iβ + ei , E[xi ei ] �= 0,

where {yi , xi , zi }n
i=1 is a random sample and zi denotes a vector of valid

instruments.
The model can be written in matrix form as

y = Xβ + e, (1)
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where y = (y1, . . . , yn)
′ is n × 1, X = (x1, . . . , xn)′ is n × k, Z = (z1, . . . , zn)

′ is
n × �, and e = (e1, . . . ,en)′ is n ×1. In this paper, we consider the case when the
dimension of β is small relative to n, but � is large and comparable to n, although
constrained to be smaller than n.

The model and the data are assumed to satisfy the following conditions.

Assumption 1. The errors ei satisfy E[e|Z ] = 0, E
[
ee′|Z] = σ 2 In, and

E
[|ei |4

]
< ∞.

Assumption 2. As n → ∞, �/n = λ, where 0 < λ < 1.

Assumption 1 imposes homoskedasticity and a finite fourth moment of the er-
rors. Assumption 2 adopts the many instruments asymptotic framework of Bekker
(1994) when the number of instruments is a nontrivial fraction of the sample size
(see also Newey, 2004). If the number of instruments is fixed (conventional frame-
work) or grows more slowly than the sample size (moderately many instruments
framework), the noise that arises from the large dimensionality of Z vanishes
in the limit, which validates the use of conventional asymptotics for inference
(Koenker and Machado, 1999). The advantage of the parameterization in Assump-
tion 2 is that it explicitly recognizes the presence of this source of uncertainty and
eventually leads to a better approximation to the exact distributions of the statis-
tics of interest.

For convenience, the vector of instruments zi will be treated as nonrandom.
Alternatively, the results that follow can be interpreted as being conditional on zi

as suggested in Newey (2004).

Assumption 3. Under the asymptotics of Assumption 2, n−1 ∑n
i=1

∣∣z′
i (Z ′Z)−1

zi −λ
∣∣→ 0.

Assumption 3 requires that (almost) all diagonal elements of the projection ma-
trix P = Z(Z ′Z)−1 Z ′ converge to λ (recall that under the standard or moderately
many instruments asymptotics they converge to zero). When the instruments are
generated in the random sampling framework or under stationarity (i.e., they are
homogeneous across i), the expected value of z′

i (Z ′Z)−1zi is equal to λ. Indeed,

E
[
z′

i (Z ′Z)−1zi

]
= 1

n
E

[
tr

(
(Z ′Z)−1 ∑

i
zi z

′
i

)]
= 1

n
E[tr(I�)] = λ,

where the first equality follows by symmetry over observations and properties of
the trace operator. In addition, Assumption 3 requires that the variance of each
z′

i (Z ′Z)−1zi is zero, which is to be expected because the dimensionality of zi

linearly grows. The validity of Assumption 3 follows from the literature on large-
dimensional covariance matrices (Silverstein, 1995) in case the elements of Z
are independent and identically distributed (i.i.d.) both across rows and columns,
possibly after a rotating transformation, and have finite fourth moments (which,
in particular, includes the case of normality of zi ). The i.i.d. requirement for the
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elements in zi can be relaxed at the expense of existence of higher order moments
(Ledoit and Wolf, 2004). Moreover, a limited amount of time series structure is
allowed; i.e., lagged elements of xi or yi may be present among elements of zi as
long as they occupy only an asymptotically finite number of columns of Z . How-
ever, Assumption 3 will typically fail when the instruments are not homogeneous
across i , as the diagonal elements of P need not be centered at the same value.

Let β̂ be an estimator of β. Later we will impose restrictions on the asymptotic
behavior of β̂. Also, let

ê = y − X β̂ (2)

denote the vector of residuals and

σ̂ 2 = ê′ê
n − k

(3)

be the residual variance. Under Assumption 1, the standard J test for overidenti-
fying restrictions is given by

J = ê′ Pê

σ̂ 2 , (4)

and, under the null of correct moment restrictions H0 : E[ei zi ] = 0, is distributed
as χ2(�− k) in the conventional framework of fixed � asymptotics. Alternatively,
in the framework of moderately many instruments (more precisely, when �2/n →
0 as �,n → ∞), Donald et al. (2003) base their (right-tailed) test on

JDIN = J −�√
2�

d→ N (0,1) .

To construct the J statistic, a consistent estimator β̂ is needed. It turns out that
the choice of β̂ is not important for the asymptotic behavior of J as long as the
following conditions hold. Let ϒ and V denote the matrices of observations and
disturbances of the reduced form X = ϒ + V with E[V ] = 0.

Assumption 4.

(a) The estimator β̂ satisfies
√

n(β̂ −β) = Op(1),

(b) ϒ ′ϒ/n → Q, where Q is a positive definite matrix,

(c) The reduced form errors vi j satisfy E[|vi j |4] < ∞.

In our numerical work, we use the limited information maximum likelihood
(LIML) estimator

β̂L I M L = (X ′(In − kM)X
)−1

X ′(In − kM)y,

where k is the smallest characteristic root of (Y
′
Y )(Y

′
MY )−1, Y = (y, X), and

M = In − P. Note that part (a) of Assumption 4 permits the use of asymptotically
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inefficient and even nonnormal estimators, as long as their rate of convergence
is not slower than

√
n. Also, although part (b) of Assumption 4 rules out lack of

identification (ϒ = 0), it allows for possibly weak instruments as the addition of
new instruments does not provide additional information (Newey, 2004).

It is important to note that under the many instrument asymptotics, the popu-
lar two-stage least squares (2SLS) estimator is inconsistent and does not satisfy
part (a) of Assumption 4 (Bekker, 1994). Another possibility is to use the bias-
corrected 2SLS estimator (Newey, 2004), but we found by simulations that the test
statistics based on the LIML estimator tend to perform better than those based on
the bias-corrected 2SLS estimator.

A popular test for H0 : β = β0 and the validity of the overidentifying restric-
tions, evaluated at β = β0, employs the AR statistic

AR = (T −�)
e′

0 Pe0

e′
0 Me0

, (5)

where e0 = y − Xβ0 is a vector of restricted errors. The Anderson–Rubin statistic
possesses some appealing robustness properties (Dufour and Taamouti, 2007) and
is χ2(�) distributed under fixed � asymptotics. Alternatively, in the framework of
moderately many instruments (more precisely, when �3/n → 0 as �,n → ∞),
Andrews and Stock (2007) show that

ARAS = √
�

(
AR

�
−1

)
d→ N (0,2) .

3. ASYMPTOTIC RESULTS

We first investigate the behavior of the conventional J and AR tests when one
neglects the presence of many instruments and carries out testing in the standard

way, i.e., rejects when J > qχ2(�−k)
α and AR > qχ2(�)

α . The following theorem
describes the size of the conventional J and AR tests, along with the JDI N and
ARAS tests, when the number of instruments grows at the same rate as the sample
size.

Let 	(x) be the standard normal cumulative distribution function, 	−1 (x) be
its quantile function, and α < 0.5 be the target test size.

THEOREM 1.

(i) Suppose Assumptions 1–4 hold. Then, the asymptotic size of the conven-
tional and Donald et al. (2003) J tests equals

	

(
	−1 (α)√

1−λ

)
.
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(ii) Suppose Assumptions 1–3 hold. Then, the asymptotic size of the conven-
tional and Andrews and Stock (2007) AR tests equals

	
(√

1−λ	−1 (α)
)

.

Theorem 1 establishes that, under Bekker’s asymptotics, the asymptotic size of
the conventional J test is smaller than α and the asymptotic size of the conven-
tional AR test exceeds α for all λ > 0. Consequently, the J test will underreject
and the AR test will overreject in large samples. The same applies to the JDI N

and ARAS tests. It turns out that the moderately many instruments framework
cannot fully acknowledge the presence of many instruments, whereas Bekker’s
asymptotics can.

To visualize the effect of λ on the asymptotic behavior of the tests, Figure 1
plots the asymptotic size of the AR test at 1%, 5%, and 10% nominal levels for
different values of λ in the interval (0,1). Figure 1 shows that the overrejection
rates of the AR test are not very large for λ ≤ 0.5 but increase substantially as
λ approaches one. The asymptotic size of the AR test presented in Figure 1 also
coincides with the asymptotic p-value function of the J test, which allows us

FIGURE 1. Asymptotic size (p-value) of the conventional AR (J ) test as a function of
λ ∈ (0,1).
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to present the asymptotic behavior of both tests on the same graph. For example,
Figure 1 suggests that to keep the size of the J test at 5%, one has to use the 7.06%,
12.24% and 30.15% critical values for λ = 0.2, 0.5 and 0.9, respectively. These
decreasing critical values as λ gets larger reflect the asymptotic underrejection of
the J test.

Note that, aside from α, only λ enters the asymptotic size formulas. Interest-
ingly, some characteristics of the data generating process that may potentially
affect asymptotic sizes of the conventional tests are asymptotically negligible. In
particular, the estimation uncertainty contained in

√
n(β̂ −β) does participate in

various parts of the stochastic expansion of the J statistic but eventually cancels
out, and so the estimation uncertainty does not affect the asymptotic size. Another
interesting feature of the asymptotic analysis is that the fourth moments of errors
do not enter the asymptotic sizes, even though the formulas for the J and AR
statistics do contain second powers of regression errors.

Given the results in Theorem 1, one approach to achieving asymptotically cor-
rect size in the presence of many instruments is to divide the JDI N statistic and
multiply the ARAS statistic by

√
1−λ (see Lemma 1 in the Appendix). However,

we prefer, for a reason to be explained shortly, to correct the critical values of the
conventional J and AR tests in such a way that their asymptotic size matches the
target size. The corrected J test rejects when

J > qχ2(�−k)

	
(√

1−λ	−1(α)
). (6)

Similarly, the corrected AR test rejects when

AR > qχ2(�)

	
(
	−1(α)/

√
1−λ

). (7)

Next we state the asymptotic validity of the corrected J and AR tests under
Bekker’s asymptotics.

THEOREM 2.

(i) Suppose Assumptions 1–4 hold. Then, the asymptotic size of the corrected
J test equals α.

(ii) Suppose Assumptions 1–3 hold. Then, the asymptotic size of the corrected
AR test equals α.

One appealing property of the corrected J and AR tests is that they are robust to
numerosity of instruments. This follows from noticing that when � is fixed, λ = 0,
and the corrected J and AR tests reduce to their conventional forms. By contrast,
the corrected versions of the JDI N and ARAS tests based on asymptotic normality
are not robust to numerosity of instruments and are invalid when � is fixed. Note
that we do not explicitly include in Assumption 2 the case λ = 0 that can arise
either when � is fixed or when � increases to infinity but at a slower rate than n.
These are two fundamentally different asymptotic frameworks, and merging them
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together into the case λ = 0 would be misleading without specifying if � is fixed
or its growth rate.

Another important advantage of the corrected tests is their straightforward com-
putation. The corrected tests are based on the J and AR statistics that are rou-
tinely produced by the standard statistical software packages and the χ2 critical
values. The only new input for the J test is 	

(√
1−λ	−1 (α)

)
instead of α,

which can be computed easily (i.e., cdfn(sqrt(1-lambda)*cdfni(alpha)) in GAUSS
and norm(sqrt(1-lambda)*invnorm(alpha)) in STATA for prespecified values of
lambda and alpha). Similar computation is required for 	

(
	−1 (α)/

√
1−λ

)
to

construct the corrected AR test.

4. SIMULATION STUDY

To evaluate the finite-sample performance of the proposed tests, we conduct a
small simulation study. The data for the Monte Carlo experiment are generated
from the model

yi = β0 +β1xi + ei , (8)

xi = γ0 +
�−1

∑
j=1

γj zi j + vi ,

where

(
ei

vi

)
= chol(�)ξi ,

(
ξi

zi

)
∼ i id N (0, I�+1) , � =

(
0.25 0.20
0.20 0.25

)
,

β0 = 0, β1 = 1, γ0 = 0, and γj = 1/
√

� for j = 1, ...,�−1. The local-to-zero γj ’s
allow for a drifting strength of each individual instrument but keep the informa-
tion contained in all instruments fixed (see Assumption 4). The J statistic is used
to test the validity of the �−2 overidentifying restrictions, and the AR statistic is
used to test the joint hypothesis of (β0,β1) = (0,1) and validity of overidentifying
restrictions.

Tables 1 and 2 present the empirical size at 5% and 10% nominal level of
the conventional and corrected versions of the J and AR tests based on 5,000
Monte Carlo replications. We also include the tests proposed by Andrews and
Stock (2007) and Donald et al. (2003) that are obtained under moderately many
instruments. The purpose is to compare the quality of the three approximations
corresponding to three different asymptotic frameworks (fixed, moderately large,
and large �).

To assess the robustness of the tests to different degrees of overidentification,
we consider values of λ = �/n equal to 0.04, 0.2, 0.5, and 0.8. Although λ = 0.8
may seem excessive, it bears some relevance to empirical applications because
situations with similar ratios of number of moment conditions to sample size often
arise in evaluating linear asset pricing models of large portfolios and estimating
structural macroeconomic models by matching impulse response functions. The
values of λ are used in combination with sample sizes of 100, 200, and 500.
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TABLE 1. Empirical rejection rates at 5% and 10% nominal level of the J tests

5% 10%

λ = 0.04 λ = 0.2 λ = 0.5 λ = 0.8 λ = 0.04 λ = 0.2 λ = 0.5 λ = 0.8

n = 100
J 5.06% 2.66% 0.52% 0.00% 10.38% 7.40% 3.08% 0.02%
JDIN 7.12% 4.08% 0.92% 0.00% 10.66% 8.08% 3.52% 0.02%
Jcorr 5.50% 4.54% 4.76% 4.52% 10.88% 9.96% 10.30% 10.54%

n = 200
J 4.92% 3.00% 0.84% 0.00% 10.14% 7.40% 3.02% 0.02%
JDIN 7.00% 3.84% 1.02% 0.00% 10.84% 7.92% 3.22% 0.02%
Jcorr 5.24% 4.94% 4.44% 4.96% 10.56% 9.98% 10.00% 10.54%

n = 500
J 5.44% 3.28% 0.62% 0.00% 10.50% 8.02% 2.82% 0.01%
JDIN 6.90% 4.04% 0.82% 0.00% 11.14% 8.42% 2.92% 0.01%
Jcorr 5.94% 5.20% 4.20% 4.62% 10.98% 10.44% 9.54% 10.44%

Note: J , JDIN, and Jcorr denote the conventional J test, the J statistic of Donald et al. (2003), and the corrected J
test proposed in this paper, respectively.

TABLE 2. Empirical rejection rates at 5% and 10% nominal level of the AR tests

5% 10%

λ = 0.04 λ = 0.2 λ = 0.5 λ = 0.8 λ = 0.04 λ = 0.2 λ = 0.5 λ = 0.8

n = 100
AR 6.28% 7.40% 14.52% 29.04% 11.58% 12.96% 20.40% 33.97%
ARAS 8.58% 8.80% 15.68% 29.97% 12.22% 13.94% 20.86% 34.36%
ARcorr 5.94% 5.22% 6.96% 9.36% 11.08% 10.10% 12.28% 14.86%

n = 200
AR 5.26% 7.90% 13.34% 27.03% 10.80% 13.56% 19.46% 31.95%
ARAS 7.32% 9.12% 14.46% 27.79% 11.52% 14.06% 19.76% 32.29%
ARcorr 4.96% 5.78% 5.98% 8.40% 10.36% 10.78% 11.34% 13.52%

n = 500
AR 6.12% 8.00% 13.34% 25.15% 11.46% 13.94% 19.26% 29.67%
ARAS 7.36% 8.94% 13.92% 25.67% 12.16% 14.44% 19.68% 29.90%
ARcorr 5.78% 5.86% 4.98% 6.80% 10.76% 11.10% 10.52% 12.34%

Note: AR, ARAS , and ARcorr denote the conventional Anderson–Rubin test, the AR statistic of Andrews and Stock
(2007), and the corrected AR test proposed in this paper, respectively.

Table 1 reports the results for the J test. For λ = 0.04 and 0.2, the size dis-
tortions of the standard J test are relatively small but the empirical rejection rate
of this test quickly approaches zero as λ increases. The JDI N test performs only
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slightly better than the conventional test for λ ≥ 0.2 but it tends to overreject for
λ = 0.04 because the asymptotic normality appears to require much larger values
of �. Our corrected J test has coverage very close to the nominal level for all
values of λ and sample sizes.

The results for the AR tests are presented in Table 2. As part (ii) of Theorem 1
suggests, the standard AR and ARAS tests overreject, and the rejection rates in-
crease to 25–30% at 5% nominal level for λ = 0.8. Our corrected AR test performs
much better although it slightly overrejects for large values of λ. As the sample
size increases, the rejection rates approach the nominal level, but this appears to
be slower than in the case of testing for overidentifying restrictions.

5. CONCLUSIONS

This paper shows the asymptotic invalidity of the standard AR and J tests of pa-
rameter and overidentifying restrictions in the presence of many instruments. If
the number of moment conditions is a nontrivial fraction of the sample size, the
J test tends to underreject, whereas the AR test tends to overreject even in large
samples. The versions of the tests by Donald et al. (2003) and Andrews and Stock
(2007), obtained under the assumption of moderately many instruments, exhibit
an asymptotically equivalent behavior. By allowing the number of instruments to
grow at the same rate as the sample size, we propose “corrected” J and AR tests
that are chi-square distributed and are asymptotically valid for any number of mo-
ment conditions. Because of their simplicity and robustness, we recommend the
use of these modified statistics in applied work. A future research agenda includes
an extension to non-i.i.d. environments that accommodate heteroskedasticity, se-
rial correlation, and nonhomogeneity of instruments.
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APPENDIX: Proofs

LEMMA 1. Under the conditions of Theorem 1,

√
�

(
J

�
−1

)
d→ N (0,2(1−λ)), JDI N

d→ N (0,1−λ)

and

√
�

(
AR

�
−1

)
d→ N (0,2/(1−λ)) , ARAS

d→ N (0,2/(1−λ)) .

Proof. Note for use throughout the proof that 0 ≤ z′
i

(
Z ′Z
)−1 zi ≤ 1 for each i, that

1

n

n

∑
i=1

z′
i
(

Z ′Z
)−1 zi = 1

n

n

∑
i=1

tr
((

Z ′Z
)−1 zi z′

i

)
= 1

n
tr

((
Z ′Z
)−1

n

∑
i=1

zi z′
i

)

= 1

n
tr(I�) = λ,

and that

1

n

n

∑
i=1

(
z′

i
(

Z ′Z
)−1 zi −λ

)2 ≤ 1

n

n

∑
i=1

∣∣∣z′
i
(

Z ′Z
)−1 zi −λ

∣∣∣
because 0 ≤

∣∣∣z′
i

(
Z ′Z
)−1 zi −λ

∣∣∣≤ 1 and u2 ≤ |u| when 0 ≤ u ≤ 1.

First, consider

J0

�
≡ e′ Pe

�σ 2 = e′Z
(

Z ′Z
)−1 Z ′e

�σ 2 .

Now,

E

[
J0

�
−1

]
= 1

�σ 2 E
[
tr
(

e′Z
(

Z ′Z
)−1 Z ′e

)]
−1

= 1

�σ 2 tr
((

Z ′Z
)−1 Z ′E

[
ee′] Z

)
−1 = 1

�
tr(I�)−1 = 0,
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and

J0

�
−1 = 1

�

n

∑
i=1

n

∑
j=1

z′
i
(

Z ′Z
)−1 zj

ei ej

σ 2 −1

= 1

�

n

∑
i=1

z′
i
(

Z ′Z
)−1 zi

(
e2

i
σ 2 −1

)
+ 1

�
∑
i �= j

z′
i
(

Z ′Z
)−1 zj

ei ej

σ 2

= A1 + A2.

By the i.i.d. and moment condition assumptions, A1 and A2 are uncorrelated. Let κ =
E
[
e4

i

]
. The variances of A1 and A2 are
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(
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Thus, the variance of A1 + A2 is of order O (1/�), therefore

J0

�
−1 = Op

(
1√
�

)
. (A.1)

Second,

ê′ Pê

�σ 2 =
(

e − X (β̂ −β)
)′

Z
(
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)
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Analogously,

σ̂ 2

σ 2 −1 = n
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)
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(
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by (A.1) and (A.2) and because σ̂ 2 = σ 2 + Op

(
1/

√
�
)

. Consider the third term

X ′ (P −λI )e

n
= ϒ ′ (P −λI )e

n
+ V ′ (P −λI )e

n
. (A.4)

The first term has mean zero and variance

ϒ ′ (P −λI )(P −λI )ϒ

n2 = (1−2λ)
ϒ ′ Pϒ

n2 +λ2 ϒ ′ϒ
n2 → 0

because of Assumption 4 and the Cauchy–Schwarz inequality, ϒ ′Z
(

Z ′Z
)−1 Z ′ϒ ≤

ϒ ′ϒ. Therefore, the first term in (A.4) is op (1) . Along the lines of Newey (2004, proof of
Lem. 1) one can see that the second term in (A.4) has expected value
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and variance that is O (1/n). Therefore, the whole term (A.4) is op (1). Thus, up to an
op (1) remainder,
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Exactly as before, we compute the variance of the zero-mean term B1, which yields
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using Assumption 3. Therefore, B1 = op(1). To derive the asymptotics for B2, we check
the conditions for the central limit theorem (CLT) by Kelejian and Prucha (2001, Thm. 1)
for linear quadratic forms where bi,n ≡ 0. Assumption 1 of this CLT is satisfied for εi,n ≡
ei /σ . Next, we verify Assumption 2 of this CLT for
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First, ai j,n is clearly symmetric. Second,
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Consequently, sup1≤ j≤n,n≥1 ∑n
i=1

∣∣ai j,n
∣∣ < ∞ in Assumption 2 of the CLT of Kelejian

and Prucha (2001, Thm. 1) is satisfied. Finally, in their assumption 3(a), sup1≤i≤n,n≥1
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E
[∣∣εi,n
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< ∞ holds by Assumption 1. Hence, the variance of B2 is
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For the AR test, note that
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and, proceeding as before with (A.3), we get
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Proof of Theorem 1. From Peiser (1943) it follows that
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Using Lemma 1, the size of the Donald et al. (2003) J test is
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Similarly, the size of the conventional AR test is
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Proof of Theorem 2. Using expansion (A.5), the actual size of the corrected J test (6)
is
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