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ABSTRACT 

Mining Hidden Knowledge from Measured Data for Improving Building 

Energy Performance 

 
Zhun Yu, Ph.D. 

Concordia University, 2012 

 

Nowadays, building automation and energy management systems provide an 

opportunity to collect vast amounts of building-related data (e.g., climatic data, building 

operational data, etc.). The data can provide abundant useful knowledge about the 

interactions between building energy consumption and its influencing factors. Such 

interactions play a crucial role in developing and implementing control strategies to 

improve building energy performance. However, the data is rarely analyzed and this useful 

knowledge is seldom extracted due to a lack of effective data analysis techniques. 

In this research, data mining (classification analysis, cluster analysis, and association 

rule mining) is proposed to extract hidden useful knowledge from building-related data. 

Moreover, a data analysis process and a data mining framework are proposed, enabling 

building-related data to be analyzed more efficiently. The applications of the process and 

framework to two sets of collected data demonstrate their applicability. Based on the 

process and framework, four data analysis methodologies were developed and applied to 

the collected data. 

Classification analysis was applied to develop a methodology for establishing 

building energy demand predictive models. To demonstrate its applicability, the 
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methodology was applied to estimate residential building energy performance indexes by 

modeling building energy use intensity (EUI) levels (either high or low). The results 

demonstrate that the methodology can classify and predict the building energy demand 

levels with an accuracy of 93% for training data and 92% for test data, and identify and 

rank significant factors of building EUI automatically.  

Cluster analysis was used to develop a methodology for examining the influences of 

occupant behavior on building energy consumption. The results show that the 

methodology facilitates the evaluation of building energy-saving potential by improving 

the behavior of building occupants, and provides multifaceted insights into building 

energy end-use patterns associated with the occupant behavior.  

Association rule mining was employed to develop a methodology for examining all 

associations and correlations between building operational data, thereby discovering 

useful knowledge about energy conservation. The results show there are possibilities for 

saving energy by modifying the operation of mechanical ventilation systems and by 

repairing equipment.  

Cluster analysis, classification analysis, and association rule mining were combined 

to formulate a methodology for identifying and improving occupant behavior in buildings. 

The results show that the methodology was able to identify the behavior which needs to 

be modified, and provide occupants with feasible recommendations so that they can make 

required decisions to modify their behavior.
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1. INTRODUCTION 

1.1 Background and Motivation 

Energy consumed in the building sector is of growing concern. With rising living 

standards, building energy consumption has significantly increased over the past few 

decades. For example, from 1994 to 2004, building energy consumption in Europe and 

North America increased at a rate of 1.5% and 1.9% per annum, respectively (Hein, 2005; 

Pérez-Lombard et al., 2008). Building energy consumption in China has increased more 

than 10% per annum for the past 20 years (Cai, 2009). The high and steady increase in 

demand for energy necessitate a thorough understanding of the major influencing factors 

to assist in developing effective approaches to reducing building energy consumption. 

Factors influencing building energy consumption can be divided into seven categories (Yu 

et al., 2011):  

(1) Climate (e.g., outdoor air temperature, solar radiation, wind velocity, etc.); 

(2) Building-related characteristics (e.g., type, area, orientation, etc.); 

(3) User-related characteristics, except for social and economic factors (e.g., user presence, 

etc.); 

(4) Building services systems and operation (e.g., space cooling/heating, hot water 

supplying, etc.); 

(5) Building occupants’ behavior and activities; 



 

2 

 

(6) Social and economic factors (e.g., degree of education,  energy cost, etc.); and  

(7) Indoor environmental quality required.  

These seven factors play an essential role in reducing energy consumption and should 

be clearly understood. However, there still are significant barriers that prevent researchers 

and architects from achieving the goal of completely understanding these factors. For 

example, researchers and architects often observe a large discrepancy between the 

designed/simulated and actual building energy consumption, and they are unable to give a 

clear explanation for this discrepancy. Another challenge is to clearly identify the effects 

of these influencing factors, especially occupant behavior, on building energy 

consumption. These barriers can lead to misunderstandings of how the influencing factors 

will affect building energy performance, and thus add difficulties to energy consumption 

reduction. Therefore, it is vital that these barriers are removed so that building energy 

performance can be improved efficiently.   

To overcome these barriers, one effective method is to analyze measured 

building-related data and acquire relevant useful knowledge, considering that such data 

contains actual knowledge about these influencing factors. In general, building-related 

data includes (Yu et al., 2011):  

(1) Climatic data (e.g., outdoor air temperature, outdoor relative humidity, etc.); 

(2) Building operational data, mainly operational data of HVAC systems (e.g., supply air 

temperature, fresh air flow rates, etc.), IEQ data (e.g., indoor air temperature, human 
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thermal comfort, etc.), and energy data (e.g., monthly electricity consumption, 

end-use loads of household appliances, etc.); and 

(3) Building physical parameters (e.g., floor area, window-to-wall-ratio, etc.);  

Currently, vast amounts of building-related data have been collected and stored, since 

building automation systems (BAS) are extensively employed. Moreover, for an existing 

building, building-related data can be surveyed through different methods (e.g., analysis 

of design documentation, questionnaires, and interviews). This data contains abundant 

knowledge of building design, operation, and maintenance that can be extracted to help 

reduce building energy consumption. However, the data is rarely analyzed and translated 

into useful knowledge, mainly due to its complexity (especially large volumes and poor 

quality) and a lack of effective data analysis techniques. Consequently, this motivated this 

study with the purpose of establishing a data analysis process and a systematic data 

analysis framework, to deal with the challenges caused by the complexity of measured 

building-related data. Note that the data analysis process refers to a series of sequential 

steps in analyzing measured building-related data. The data analysis framework mainly 

includes different data analysis algorithms, from which a set of efficient data analysis 

methodologies can be developed. Both the process and the framework are aimed at 

successfully mining hidden and useful knowledge from measured building-related data in 

order to improve building energy performance. 
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1.2 Problem Statement  

Various data analysis techniques, especially traditional statistical analysis and 

building simulation, have been widely used in building-related studies. One main goal is 

to analyze the complex interactions between building energy consumption and its 

influencing factors, thereby improving building energy performance. However, 

considering the increased size of building historical databases and the diversity of the 

influencing factors, these commonly-used data analysis methods are insufficient to take 

full advantage of measured building-related data to account for the interactions and help 

improve performance. In particular, a number of problems of building energy 

performance improvement remain significant barriers to researchers and architects; and 

these problems are difficult to completely solve by using these commonly-used data 

analysis methods. Four fundamental problems can be listed as follows: 

(1) How can we develop reliable building energy–demand models that are interpretable 

and that can be easily used by people without advanced mathematical knowledge? 

(2) How can we investigate building occupant behavior and quantitatively identify its 

effect on building energy consumption without including the impact of other 

influencing factors such as weather conditions?  

(3) How can we examine all the associations and correlations among building 

operational data (e.g., various operational parameters of HVAC systems), and 

acquire useful knowledge from them to better understand building operation and 



 

5 

 

reduce energy consumption? 

(4) How can we identify energy-related occupant behavior that needs to be modified for 

energy conservation, and how can we make recommendations for behavior 

modification? 

Clearly, in order to take advantage of measured building-related data and address 

these problems, it is necessary to propose more effective data analysis techniques and 

extract relevant useful knowledge from the data. Furthermore, it is highly desirable to 

provide an avenue for standardizing the process of data analysis within the building 

engineering domain. Researchers and architects will greatly benefit from a standardized 

process that enables them to efficiently analyze measured building-related data and obtain 

useful knowledge about improving building energy performance. Accordingly, a data 

analysis process and a systematic data analysis framework need to be established based on 

the proposed data analysis techniques.  

1.3 Proposed Data Analysis Techniques 

In this research, data mining is proposed as a primary tool to analyze measured 

building-related data. Data mining techniques excel at automatically analyzing huge 

amounts of data for useful information and fit well with the purpose of this research.  

In the past decade, different definitions of data mining have been given by various 

researchers. For example, Hand et al. (2001) define data mining as “the analysis of large 

observational data sets to find unsuspected relationships and to summarize the data in 
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novel ways so that data owners can fully understand and make use of the data.” As defined 

by Cabena et al. (1998), data mining is “an interdisciplinary field bringing together 

techniques from machine learning, pattern recognition, statistics, databases, and 

visualization to address the issue of information extraction from large databases.” Based on 

these statements, it can be concluded that data mining is essentially a combination of 

multi-disciplinary approaches. It is often used to extract hidden but useful patterns from a 

large volume of data and to transform the data into knowledge that could benefit further 

work. Data mining has been successfully applied in many scientific, medical, and 

application domains (e.g., banking, bioinformatics, new materials identification, fraud 

detection, and telecommunications). It was also identified by the MIT Technology Review 

(MIT Technology Review, 2001) as one of the ten emerging technologies that may change 

the world. In this study, three widely accepted and implemented data mining techniques 

were employed: data classification, clustering analysis, and association rule mining. Each 

of these techniques will be further discussed in the following chapters. 

1.4 Purpose and Objectives 

The purpose of this research is to construct a data analysis process and a systematic 

data mining framework within the building engineering domain and then validate them. 

The proposed process and framework can help to analyze measured building-related data 

and discover useful knowledge for evaluating and improving building energy performance. 

The process describes knowledge extraction from measured data step by step. As one 
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major step in the process, the framework helps to develop different data analysis 

methodologies based on selected data mining techniques and algorithms. These 

methodologies can be applied to deal with various ranges of problems within the building 

engineering domain. To demonstrate the applicability of the proposed process and 

framework, measured data from selected buildings is collected and analyzed; a set of data 

analysis methodologies are developed to address the four fundamental problems outlined 

in Section 1.2. 

The main objectives of this thesis are:  

(1) To develop a data analysis methodology that establishes reliable building 

energy-demand models that are interpretable and that can be easily used by people 

without training in advanced mathematics and statistics; 

(2) To develop data analysis methodologies for studying building occupant behavior, 

such as quantitatively identifying the effect of occupant behavior on building energy 

consumption, and identifying the occupant behavior that can be modified to save 

energy; and 

(3) To develop a data analysis methodology that examines all the associations and 

correlations among building operational data, and extracts useful knowledge from 

them to better understand system operation and reduce energy consumption. 

1.5 Organization of the Thesis 

This chapter has introduced the research background and motivation, the problem 
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statements, the proposed data analysis techniques, and the purpose/objectives of this 

research.  

Chapter 2 reviews existing data analysis methods for extracting useful knowledge 

from measured building-related data and the application of three data mining techniques 

within the domain of building engineering. Also, the literature review of the data analysis 

methods for addressing the four abovementioned problems is conducted. 

Chapter 3 introduces the proposed data analysis process and framework, as well as 

the three data mining techniques. Then, collected data  for the case studies in this 

research is described. 

In Chapter 4, the application of a basic data mining technique (i.e., data classification) 

to establish building energy-demand models is presented and discussed.  

In Chapter 5, the development of a methodology for examining the influences of 

occupant behavior on building energy consumption is reported. The method is based on a 

basic data mining technique: cluster analysis. 

In Chapter 6, a methodology for examining all the associations and correlations 

between building operational data is proposed for discovering useful knowledge about 

energy conservation. The method is based on a basic data mining technique (association 

rule mining). 

In Chapter 7, a methodology is developed for identifying the occupant behavior that 

needs to be modified in existing residential buildings. The method is based on the three 
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data mining techniques: data classification, cluster analysis, and association rule mining. 

Chapter 8 concludes the thesis and proposes future work. 
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2. LITERATURE REVIEW 

This chapter evaluates the data analysis methods for extracting useful knowledge 

from building-related data and reviews the applications in the domain of building 

engineering of the three main data mining techniques: data classification, clustering 

analysis, and association rule mining. The methods used by previous researchers who 

attempted to solve the four problems outlined in Chapter 1 are then summarized and 

assessed.  

2.1 Data Analysis Methods for Improving Building Energy Performance  

MacDonald and Wasserman (1989) summarized five general categories of data 

analysis methods employed for evaluating and improving building energy performance 

based on measured building-related data as follows: 

(1) Annual total energy use and energy use intensity (EUI) comparison, 

(2) Linear regression and component models, 

(3) Multiple linear regression models, 

(4) Building simulation programs (also termed microdynamic modeling), and  

(5) Dynamic thermal performance models (also termed macrodynamic modeling). 

In the first analysis method, both annual total energy use and the EUI are typical 

energy performance indicators. Accordingly, the method can be categorized as the typical 
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indicators method, given that other indicators (e.g., coefficient of performance) may also 

be used.  

The second and third methods relate to regression analysis, a statistical technique. 

Hence, they are merged into the same category for simplicity and categorized as the 

statistical analysis method, given that other statistical techniques such as correlation 

analysis) may also be used. Similarly, the fourth and fifth methods can be merged and 

categorized as the building simulation method. 

Consequently, the five categories are merged into three to better describe the data 

analysis methods for extracting useful knowledge from measured building-related data:  

(1) Typical indicators,  

(2) Statistical analysis, and 

(3) Building simulation. 

In the following section, each method is reviewed and evaluated. 

2.1.1 Typical Indicators Method 

Typical indicators, such as annual total energy use and the EUI, are a simple method of 

analyzing measured building-related data and evaluating building energy performance. 

Annual total energy use refers to the building energy consumption in one year. The EUI is a 

measure of energy efficiency and is calculated as the ratio of annual total energy use to an 

total floor area. These two indicators were mainly utilized to survey building energy-use 



 

12 

 

patterns and investigate the impact of the influencing factors of building energy 

consumption (Deng and Burnett, 2000; AboulNaga and Elsheshtawy, 2001; Deng 2003; 

Balaras et al., 2007; Chen et al., 2009; Filippín et al., 2009; Chung and Hui, 2009; 

Priyadarsini et al., 2009). Also, these indicators could be utilized to compare the building 

energy consumption before and after retrofitting, thereby evaluating the energy-saving 

potential of various energy-saving techniques and energy efficiency improvements 

(Santamouris et al., 1996; Balaras et al., 2002; Balaras et al., 2003). Other similar 

indicators, such as annual total heating/cooling energy consumption and annual total 

energy supply cost, were also utilized for data analysis. For example, Long and Zhou (2005) 

studied the influence of shading measures on building energy consumption using both 

annual heating energy consumption and annual cooling energy consumption. Li et al. 

(2006) designed a distributed combined heating, cooling, and power generation system in 

Beijing, with thermal performance, economics, and environment factors being considered 

simultaneously based on annual total energy supply cost. 

The major advantage of the typical indicators method is its simplicity. Moreover, the 

use of these typical indicators makes it possible to compare different designs. However, 

typical indicators alone are insufficient to analyze measured building-related data and 

evaluate building energy performance. Particularly, they cannot provide insights into 

building energy-use patterns.  
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2.1.2 Statistical Analysis Method 

Statistical analysis techniques, particularly regression analysis (including both linear 

regression and non-linear regression), were extensively used within the building 

engineering domain. Regression analysis was utilized to identify the correlation between 

building energy consumption and its influencing factors (e.g., climate, occupancy patterns, 

HVAC system design and operation, and building physical parameters), and then to 

analyze overall building energy-use patterns and how these influencing factors affect 

energy consumption (Hammarsten, 1979; Monts, and Blissett, 1982; Gaunt, 1985; 

Zmeureanu and Fazio, 1991; Deng and Burnett, 2000; Yu and Chow, 2001; Deng 2003; 

Tonooka et al., 2006; De la Flor et al., 2006; Chung and Hui, 2009; Priyadarsini et al., 

2009; Chen et al., 2009). An additional application of regression analysis was to predict 

building energy demand based on environmental data or building physical parameters 

(Sullivan and Nozaki, 1984; Sullivan et al., 1985; O’Neill et al., 1991; Lam et al., 1997; 

Dong et al., 2005; Chung and Hui, 2009). Also, regression analysis was used to predict 

other parameters, such as indoor air temperature and relative humidity (Givoni and Krüger, 

2003; Krüger and Givoni, 2004; Freire et al., 2008), the overall heat transfer coefficient 

(the U-value) (Jiménez and Heras, 2005), and the energy consumption of different types of 

cooling plants (e.g., centrifugal chillers and ice storage systems (Kim and Kim 2007)). 

Additionally, some researchers compared building energy performance in different 

countries or cities by using statistical techniques. For example, Zhang (2004) compared 
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residential energy-use patterns in China with those in Japan, Canada, and the United States 

by using relationships between energy consumption and heating degree-days. 

The strength of statistical techniques is their simplicity and widespread familiarity. 

However, most statistical techniques are utilized with the premise that data analysts, 

based on their expertise, “believe” that strong associations and correlations exist among 

two or more parameters. For example, researchers perform regression/correlation analysis 

between building energy consumption and outdoor air temperature because they “believe” 

that outdoor air temperature may have a significant influence on building energy 

consumption. Such analysis depends mainly on the prior expertise of analysts and 

adopted statistical techniques. As a result, useful knowledge could be lost, particularly 

indirect associations and correlations between data (e.g., parameters A and B do not have 

a direct impact on C, but they may have an indirect impact through parameters D and E) 

(Yu et al., 2011).  

2.1.3 Building Simulation Method 

Building simulation is another method widely employed to analyze measured 

building-related data. Various simulation programs, such as EnergyPlus (Crawley et al., 

2001) and TRNSYS (Al-ajmi and Hanby, 2008), were commonly utilized when using this 

method. In some cases this method was used to conduct building energy consumption 

calculations in order to identify the correlations between building energy consumption and 



 

15 

 

different influencing factors (e.g., total building energy consumption and building relative 

compactness (Ourghi et al., 2007), heating/cooling loads and building control strategies 

(Eskin and Türkmen, 2008), and annual electricity consumption and the overall 

heat-transfer coefficient U (Lam, 2000)). In other cases, the energy-saving potential of 

various energy conservation techniques, such as green building design options (Pan et al., 

2008), building-integrated photovoltaic (PV) technologies (Ordenes et al., 2007), and PV 

ventilated window systems (Chow et al, 2007), were evaluated using this method. 

Additionally, some researchers used simulation programs to model the energy 

consumption of various building services systems, and then compared the actual energy 

consumption with simulated results to evaluate the performance of those systems (Lazzarin 

et al., 2005; Zhou et al., 2008; Tian and Love, 2009; Li et al., 2010). 

Building simulation allows for the prediction of building energy performance under 

various conditions. However, this method does not perform well in simulating energy 

performance for occupied buildings as compared to non-occupied buildings, due to a lack 

of sufficient knowledge about occupant behavior patterns, which are normally very 

complicated. Additionally, the application of building simulation programs is normally 

complicated and the learning process is time-consuming (Yu et al., 2011).  

2.2 Application of the Three Data Mining Techniques in Building 

Engineering 

In this study, three data mining techniques—data classification, cluster analysis, and 
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association rule mining—are proposed as primary methods for mining hidden and useful 

knowledge from measured building-related data. These techniques have been extensively 

applied in various fields such as industrial and medical studies (Delgado et al., 2001; Jiao 

and Zhang, 2005; Georgilakis et al., 2007; Pan et al., 2007; Hsu, 2009). However, their 

utilization within the domain of building engineering is still sparse. It should be 

mentioned that, due to the fact that several classification methods (e.g., ANN method, 

Genetic Algorithm, Rough Set approach, and Fuzzy Set approach) were less commonly 

used for data classification in commercial data mining systems, in this research these 

methods were not assigned to data classification (but were still included in the data 

mining system). 

In particular, previous work seldom studied how to utilize these three data mining 

techniques to process building-related data and extract useful knowledge. With regard to 

the association rule mining technique, no literature was found, to the best of our 

knowledge. With regard to the data classification technique, Tso and Yau (2007) 

compared the accuracy of regression analysis, the ANN method, and the decision tree 

method (i.e., one typical data classification method) in predicting the average weekly 

electricity consumption for both summer and winter in Hong Kong. With regard to the 

cluster analysis technique, Santamouris et al. (2007) applied the technique to classify and 

rate the energy performance of school buildings. Based on the cluster analysis and 

Principal Component Analysis (PCA) techniques, Gaitani et al. (2010) proposed an 
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approach to rating the energy performance for space heating and evaluating potential 

energy savings in the school sector in Greece. Also, Lam et al. (2009) combined the 

cluster analysis and the PCA to identify climatic influences on chiller plant electricity 

consumption. Wu and Clements-Croome (2007) applied the cluster analysis technique to 

analyze indoor environmental data measured from wireless sensor networks which was 

heavily noisy. In their study, cluster analysis was used first to discover outliers and then to 

estimate the distribution of indoor temperature.  

In summary, data mining, especially the three data mining techniques, is relatively a 

new concept/tool applicable to the building engineering domain. Hence, our study may 

bring a new inspiration for architects and researchers to find approaches to reducing 

building energy consumption and realizing the goal of ultra-low energy consumption in 

buildings. Furthermore, if a process and a systematic framework of data mining application 

can be established, they will greatly benefit building practice and future analysis.   

2.3 Building Energy Prediction Models 

In recent years, different models have been developed to predict building energy 

demand. Generally, these models can be divided into two main categories: regression 

models and ANN models. 

Regression models 

Regression models correlate building energy demand with relevant variables such as 

climatic variables (e.g., outdoor/indoor temperature and relative humidity) and physical 
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variables (e.g., wall type, building geometry, and window-to-wall-ratio) (Sullivan and 

Nozaki, 1984; Sullivan and Nozaki, 1985; O’Neill et al., 1991; Lam et al., 1997; 

Westergren et al., 1999; Dong et al., 2005; Caldera et al., 2008; Chung and Hui, 2009). For 

example, Catalina et al. (2008) used regression models to predict the monthly heating 

demand for single-family residential buildings in temperate climates (16 major cities in 

France). Ghiaus (2006) used a regression technique to study whether the heating losses and 

the outdoor temperature have the same distribution, and then developed a regression model 

for predicting the heat losses.  

The main advantage of regression models lies in their computational simplicity. 

However, this method has a severe limitation: building operational data (e.g., operational 

data of HVAC systems) is usually recorded at short time intervals, which can be considered 

instantaneous. As a result, various random disturbances that do not usually follow a normal 

(Gaussian) distribution, such as occupancy, ventilation rates, and solar gains, can add bias 

and noise to the data, reducing the correlation and prediction accuracy (Ghiaus, 2006).  

ANN models 

Previous studies showed that ANN models have also been widely applied to correlate 

building energy demand with climatic/physical variables (Kreider and Wang, 1992; Anstett 

and Kreider, 1993; Kawashima, 1994; Stevenson, 1994; Kreider et al., 1995; Andersson et 

al., 1996; Kreider and Wang, 1997; Aydinalp et al., 2002; Yang et al., 2005; Dong et al., 

2005; Ekici and Aksoy, 2009; Li et al., 2009). For example, Olofsson et al. (2001) 
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investigated the potential of a neural network to predict the annual space heating demand 

of a building, based on the measured average daily outdoor and indoor temperatures and 

space heating demand for a limited time period. Also,  PCA was applied to the measured 

data for choosing model parameters. The results showed that an ANN was able to produce 

good predictions except for certain periods when the space heating demand was very low.  

The most important advantage of ANN models, over other models, is the ability to 

provide predictions even for a multivariable mixed-integer problem, which involves both 

integers (e.g., binary values) and continuous variables (Yao et al., 2006).  However, the 

major limitation of this method is that the network is considered a black-box model—a 

relationship between the individual influencing factor and output cannot be observed 

directly.  

In summary, a review of the two main energy demand modeling methods was 

conducted. These two modeling methods have been successfully applied to predict 

building energy demand. However, regression models involve complicated equations and 

ANN models operate like a “black box”; therefore, the models developed using these 

methods are not understandable and interpretable especially for common users without 

advanced mathematical knowledge. This makes it difficult for these methods to be used as 

common predictive tools. In order to overcome such limitations, decision tree–based 

predictive models based on a typical data mining technique (i.e., data classification) are 

proposed. Generally, the establishment of decision tree–based models does not consider 
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the correlation among input parameters. Also, decision tree–based models use an 

interpretable tree structure to provide insights into the relationship between various 

influencing factors and output. The decision tree method will be introduced in more detail 

in Chapter 3.  

2.4 The Effects of Occupant Behavior on Building Energy Consumption 

The identification of major determinants of building energy consumption, together 

with a thorough understanding of the impacts of the identified determinants on energy 

consumption patterns, could assist in achieving the goal of improving building energy 

performance and reducing greenhouse gas emissions due to the building energy 

consumption. As mentioned previously, factors influencing the total building energy 

consumption can be divided into seven categories: 

(1) Climate. (2) Building-related characteristics. (3) User-related characteristics, 

except for social and economic factors. (4) Building services systems and operation. (5) 

Building occupants’ behavior and activities. (6) Social and economic factors. (7) Indoor 

environmental quality required.  

Among these seven factors, social and economic factors will partly determine 

occupants’ attitudes toward energy consumption, and building occupants will embody such 

impact in their daily activities and behavior, thereby influencing building energy 

consumption. At the same time, indoor environment quality could be regarded as being 

basically decided by the occupants, thereby influencing building energy consumption. In 
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essence, these two categories of factors which represent occupants’ influences affect 

building energy consumption indirectly. Therefore, their influences on building energy 

consumption are already contained within the effects of occupant behavior, and there is no 

need to take them into consideration when identifying the effects of influencing factors. 

The separate and combined influences of the first four factors on building energy 

consumption can be identified via simulation. With a variety of parameter settings, current 

simulation software is robust in respect to simulating different situations based upon these 

four factors. However, it is difficult to completely identify the influences of occupant 

behavior and activities through simulation due to users’ behavior diversity and complexity; 

current simulation tools can only imitate behavior patterns in a rigid way. In recent years 

several models have been established to integrate the influence of building occupant 

behavior into building simulation programs (Reinhart, 2004; Bourgeois, 2005; Rijal et al., 

2007; Hoes et al., 2009). However, these models focus only on typical activities such as the 

control of sun-shading devices, while realistic building user-behavior patterns are more 

complicated.  

A number of studies (Nakagami, 1996; Lopes et al., 2005; Yu et al., 2010) suggest that, 

to estimate the effects of user behavior, one possible approach is to extract corresponding 

useful information from measured building-related data. Generally, the previous studies on 

the effects of occupant behavior can be divided into two categories. The first category 

focuses on the effects of building user presence on building energy consumption. For 
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example, Emery and Kippenhan (2006) reported a survey on the effects of occupant 

presence on home energy usage in four nearly identical houses. The four houses were 

divided into two pairs, and the building envelope of one pair was constructed with 

improved thermal resistance. One of each pair of houses was left unoccupied, while the 

other was occupied. Researchers compared the first heating season’s (1987–88) total 

energy consumption of the occupied and unoccupied houses (i.e., the sum of heating, 

lighting, and appliances). They found that the presence of occupants increased the total 

energy consumption of both occupied houses, and the house with the improved building 

envelope had a smaller increase.  

The second category of studies focuses on the effects of actions occupants took to 

influence energy consumption. For example, Ouyang and Hokao (2009) investigated 

energy-saving potential by improving user behavior in 124 households in China. These 

houses were divided into two groups: one group was educated to promote 

energy-conscious behavior and put corresponding energy-saving measures into effect in 

July 2008, while the other group was not informed. Comparisons were made between 

monthly household electricity uses in July 2007 and July 2008 for both groups. 

Researchers found that the effective promotion of energy-conscious behavior could reduce 

household electricity consumption by more than 10%.  

Evidently, comparative analyses on measured data were conducted in these studies to 

identify the effects of user behavior. However, the limitations of this method are 
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significant. 

First, apart from user behavior, the other four influencing factors also simultaneously 

contribute to the variation in building energy consumption, while this method is unable to 

adequately remove the effects of those four factors and identify the influences of occupant 

behavior. Although in these studies some measures were implemented to remove the 

impact of those factors, such as by using nearly identical housing characteristics and by 

taking energy data in other years with similar climatic conditions as a reference, the effects 

of these measures are questionable since even a slight difference in some building 

parameters (e.g., heat loss coefficient) and weather parameters (e.g., annual average 

outdoor air temperature) would result in remarkable fluctuations in the building energy 

consumption.  

Second, in building databases, buildings are usually described by a mixture of variable 

types such as numerical variable, categorical variable (e.g., residential building types 

divided into detached and apartment), and ordinal variable (e.g., buildings rated as 

platinum, gold, or silver). Such data of mixed variable types is difficult to process by 

statistical methods that are normally utilized in comparative analyses. This also adds the 

difficulty of distinguishing between building-related effects and user-related effects.  

Third, with regard to comparative analyses, buildings are usually classified into 

different groups to simplify research. Such classification is commonly based on 

building-related parameters such as floor area. For example, if building floor area ranges 
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from 100 m
2
 to 400 m

2
, it can be classified as small, medium, and large corresponding to 

the intervals [100, 200), [200, 300), and [300, 400], respectively. The partitioning of 

building-related parameters is normally decided by considerations of convenience and 

intuition. Why should 200 m
2
 and 300 m

2
 be the interval between each group? Hence, a 

more rational classification method is required for grouping buildings.  

Moreover, buildings are commonly represented by various typical parameters at the 

same time, such as building age and floor area. These parameters may be divided into 

different levels for simplicity, such as low and high. In order to perform a comprehensive 

investigation, the sample size (i.e., number of buildings) necessary for research should be 

determined by the combination of different levels of all parameters. For example, suppose 

seven typical parameters are selected for representation and each are stratified into 3 levels 

(e.g., small, medium, and large). Combinatorial theory shows that at least 3
7 

= 2187 

buildings should be investigated for comparison, which may be impractical.  

In summary, it is difficult to identify the effects of occupant behavior on building 

energy consumption, since the influence of other energy use determinants cannot be 

removed. In this research, we propose one of the typical data mining techniques, 

clustering analysis, for examining the individual effects of occupant behavior. Clustering 

is an unsupervised learning algorithm. Its goal is to identify a set of previously undefined 

clusters among data by using special mathematical techniques based on the similarity of 

the data features. This technique will be introduced in more detail in Chapter 3.  
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2.5 Discovering Associations and Correlations among Measured Data 

Building-related data may have a direct/indirect influence on each other, considering 

that they are closely related to the same buildings. Specifically, there may be strong 

associations (i.e., connections or relationships) and correlations between them. Both these 

associations and correlations should be examined to understand building operation, 

determine rules of conserving energy, and develop appropriate strategies to design 

buildings.  

A number of studies have been conducted to identify associations and correlations 

between measured building-related data. Researchers utilized statistical analysis 

techniques, particularly regression analysis, and focused mainly on the relationships 

between building energy consumption and its influencing factors, such as building 

physical parameters (Yu and Chow, 2001; Deng, 2003; Yu et al., 2010), occupancy 

patterns (Priyadarsini et al., 2009; Yu et al., 2011), building operation and management 

(Chung and Hui, 2009), social and economic factors (Tonooka et al., 2006), indoor air 

quality requirements (Chen et al., 2010), and weather conditions (De la Flor et al., 2006). 

However, few researchers examined associations and correlations between building 

operational data, especially operational data of HVAC systems, to better understand 

building operation in order to improve building performance. This is mainly due to the 

complexity of such data and a lack of effective data analysis techniques. Note that the 

energy consumption of HVAC systems can account for a large portion of total building 
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energy consumption (Pérez-Lombard et al., 2011). 

The main data analysis methods used to discover associations and correlations among 

measured data within the building engineering domain (i.e., statistical analysis techniques) 

were reviewed in Section 2.1.2. The limitation of these techniques was also addressed. 

Moreover, many parameters are usually monitored and huge amounts of operational data 

are collected on HVAC systems. Consequently, it is difficult, and often infeasible, for 

data analysts to conduct statistical analyses, correlation analyses for example, on every 

combination of parameters in order to discover all of the associations and correlations 

that are crucial for achieving optimum building performance.  

In this research, we propose one of the most widely applied techniques in data mining 

(i.e., association rule mining) for discovering all the useful and important associations and 

correlations between building operational data. This technique will be introduced in more 

detail in Chapter 3.  

2.6 Approaches to Modifying Occupant Behavior in Residential 

Buildings 

Recently there has been mounting interest in studying occupant behavior in buildings 

and in developing methodologies for identifying the corresponding energy-saving potential. 

As reviewed in Section 2.4, Ouyang and Hokao (2009) investigated the energy-saving 

potential by improving user behavior in 124 households in China. Al-Mumin et al. (2003) 

simulated occupant behavior improvement (i.e., occupant behavior before and after 
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modification) and the corresponding annual electricity consumption reduction by using the 

energy simulation program ENERWIN. They first collected data and information on 

occupancy patterns and operation schedules of electrical appliances in 30 selected 

residences in Kuwait. This data and information were then used in ENERWIN to replace 

the default value. A house was then selected as a case study, and the simulation results 

showed that the annual electricity consumption in this house was increased by 21%. The 

results also indicated that the ENERWIN’s default parameters (i.e., parameters taken from 

the software manual) are probably more appropriate for the Western lifestyle. Moreover, it 

was found that a 39% reduction in energy consumption can be achieved by improving 

occupant behavior such as turning off lights when rooms are empty and setting the air 

conditioner thermostat to a higher temperature (but still within the comfort level).  

Two approaches (i.e., energy-saving education and building simulation) were used to 

modify occupant behavior in residential buildings and identify the corresponding 

energy-saving potential. These approaches can help to modify occupant behavior and have 

an immediate effect on the building energy consumption reduction. However, both 

approaches have certain limitations (Yu et al., 2011).  

Regarding the energy-saving education approach, commonly detailed energy-saving 

measures and tips on the efficient use of various household appliances should be provided 

for occupants. Considering that a family normally has a number of appliances, and that 

each appliance may have various tips (e.g., for refrigerators: reduce the number of door 
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open times and its duration, keep coils and filters clean, position it away from heat sources, 

etc.), there could be a large number of energy-saving measures and tips for an individual 

family. For example, one family may have 30 household appliances, with each appliance 

having an average of 8 energy-saving tips. Accordingly, the occupants need to follow and 

implement 240 tips, which is impractical. Although a booklet of these tips can be prepared 

for building occupants, it is very difficult for occupants to remember them all distinctly and 

implement them for a long time in practice. Furthermore, occupants may not fully 

understand and have confidence in these tips’ effectiveness because they only provide 

qualitative information. In addition, some energy-saving opportunities can only be initiated 

by building occupants. For example, when occupants realize they have consumed too much 

energy on both computers and TVs, they can avoid using both devices simultaneously 

when they can really only focus on one of them, or make a conscious effort to reduce usage 

time. Therefore, instead of simply providing occupants with a number of general 

energy-saving recommendations, it is more rational and efficient to help them modify their 

behavior in two steps. First, it is necessary to identify the behavior that needs to be 

modified. This can be achieved by analyzing measured building-related data. Second, 

feasible recommendations to mitigate the identified behavior can be presented with the 

goal of reducing energy consumption in the home.  

With regard to the building simulation approach, current simulation tools can only 

imitate some typical activities in a rigid way, such as the control of sun-shading devices, 
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while realistic building occupant behavior patterns are more complicated. 

In summary, a methodology is needed for evaluating occupant behavior in existing 

residential buildings and for helping occupants modify their activities efficiently through 

analyzing measured building-related data. In this research, a methodology is proposed 

based on the three data mining techniques: clustering analysis, data classification, and 

association rule mining. 
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3. DATA MINING PROCESS AND FRAMEWORK FOR 

KNOWLEDGE DISCOVERY  

In this chapter, a data analysis process and a systematic data mining framework aimed 

at mining hidden and useful knowledge from measured building-related data are 

proposed. Three data mining techniques are introduced: data classification, cluster 

analysis, and association rule mining. Finally, measured building-related data collected 

for the case studies in this research is described. 

3.1 Proposed Data Analysis Process  

The adopted data analysis process is depicted in Figure 3-1.  
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Figure 3-1 Process for data analysis within the building engineering domain 

 

The process consists of the following steps: 
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(1) Problem definition and objective setting; 

(2) Data source selection: select buildings available to collect measured building-related 

data;  

(3) Data collection: collect building-related data through building automation systems, 

field survey, etc., and then construct a database; 

(4) Data preprocessing/preparation: detect and remove outliers and noise, handle missing 

values, deal with inconsistencies and complexity through data transformation and 

integration, etc.; 

(5) Data warehouses (DWs) or data marts construction: construct DWs or data marts so 

as to provide on-line analytical processing. The gray block in Figure 3-1 denotes that the 

step was unnecessary in this study. First, the measured building-related data were 

collected and processed while on-line analytical processing was not necessary. Second, 

the database is relatively small and there is no need to build a high-dimensional DW; 

(6) Data mining and model construction: perform data mining based on the proposed data 

mining framework. In particular, three data mining techniques are utilized: data 

classification, cluster analysis, and association rule mining. Traditional statistical analysis 

is also employed as a supplementary tool, such as the verification of data mining results; 

(7) Results analysis and evaluation: identify the most useful rules and patterns from the 

data mining results; 

(8) Knowledge discovery and presentation: discover useful knowledge based on both 
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expertise and obtained rules/patterns. 

3.2 Proposed Data Mining Framework 

Figure 3-2 shows the data mining framework proposed in this study. The framework is 

composed of measured building-related data, selected data mining techniques and 

algorithms, and output of useful knowledge about building energy performance 

evaluation and improvement.  

In this framework, three data mining techniques are employed as a primary tool. Note 

that each data mining technique can be achieved by different algorithms. For example, 

data classification can be conducted by using the decision/regression tree algorithm; 

cluster analysis can be conducted by using the K-Means/K-Modes algorithm; association 

rule mining can be conducted by using the Apriori/FP-growth algorithm. Furthermore, 

different data mining techniques can be combined to mine building-related data, such as 

the cluster analysis and data classification (e.g. clustering-then-classification, see Chapter 

7), the cluster analysis and association rule mining (e.g. association rule clustering system 

and frequent pattern-based clustering analysis). For demonstration purposes, some 

algorithms (e.g. decision tree, K-means clustering, and FP-tree) were used in this study to 

address the four problems outlined in Chapter 1. An overview of these data mining 

algorithms is presented in the following sections. The reader can refer to the data mining 

textbooks (Cios, et al., 2007; Rokach and Maimon, 2008; Cao et al., 2009) for more 

detailed descriptions and mathematic formula of the algorithms.  
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Based on the proposed process and framework, architects and researchers could 

analyze measured building-related data efficiently and extract useful hidden knowledge 

which could help to account for interactions between building energy consumption and 

its influencing factors. Note that a clear and thorough understanding of such interactions 

could provide essential guidance in presenting energy-saving opportunities. 

3.3 Data Mining Techniques  

This section first present basic terms and concepts in relation to data mining, and then 

introduces the three data mining techniques, as well as the data mining algorithms 

employed in this study. Useful terminologies are:  

 Dataset, Attribute, and Instance: a dataset is a set of data items. It is roughly 

equivalent to a two-dimensional (i.e. column and row) spreadsheet or database table, 

as shown in Figure 3-3. Each database table consists of a set of attributes (usually in 

different columns or fields) and stores a large set of instances (usually in rows or 

records). Consider an HVAC system with 100 monitored parameters. Each parameter 

can be considered an attribute, and a record of all these parameters in a specific time 

point can be considered an instance. 
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Figure 3-2 Overview of the proposed data mining framework 
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Figure 3-3 A schematic diagram of dataset, attribute and instance 

 

 Target attribute, Predictor attribute: Target attribute is the attribute predicted as a 

function of other attributes (i.e. predictor attributes). For example, the building energy 

consumption is the target attribute, and could be predicted as a function of 

building-related parameters such as floor area and number of occupants (i.e. 

predictor attributes).  

Based on the above explanation of the data mining terms, data classification, cluster 

analysis, and association rule mining, are described as follows.  

3.3.1 Data Classification and Decision Tree  

Overview of Decision Tree 

The decision tree method is one of the most commonly used data mining methods 

(Quinlan, 1986; Han et al., 2006). It uses a flowchart-like tree structure to segregate a set of 

data into various predefined classes, thereby providing the description, categorization, and 
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generalization of given datasets. As a logical model, decision tree shows how the value of a 

target variable can be predicted by using the values of a set of predictor variables. Figure 

3-4 presents a decision tree indicating whether residents turn room air conditioners (RAC) 

on or off in their rooms in the cooling season. For this example, assume 100 instances are 

used to build this decision tree, and that each instance has three attributes: outdoor air 

temperature, room occupancy, and the operating state of RAC. 

 

Root node

Outdoor air temperature ≤ 26 °C ?

Leaf node

RAC is turned off

(60/5) 

Internal node

Empty room?

Yes No

Yes No

Leaf node

RAC is turned off

(10)

Leaf node

RAC is turned on

(30) 

Figure 3-4 Schematic illustration of a simple hypothetical decision tree 

 

The target variable for the above decision tree is RAC operating states, with potential 

states being classified as either turning on or off. The predictor variables are outdoor air 

temperature (≤ 26 °C or > 26°C) and room occupancy (empty or not). As shown in Figure 

3-4, a decision tree consists of three kinds of nodes: root node, internal node, and leaf node. 

Root nodes and internal nodes denote a binary split test on an attribute while leaf nodes 

represent an outcome of the classification (i.e., a categorical target label). Moreover, the 
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numbers in the parentheses at the end of each leaf node depicts the number of instances in 

this leaf. If some leaf nodes are impure (i.e., some records are misclassified into this node), 

the number of misclassified instances will be given after a slash. For example, (60/5) in the 

left most leaf in Figure 3-4 means that, among the 60 instances having outdoor temperature 

is lower than or equal to 26 °C that have been classified to turned off, 5 of them actually 

have the value turned on. By using this decision tree, the RAC operating state 

classification (i.e. turn on or turn off) can be predicted. For example, if the outdoor air 

temperature is higher than 26 °C and the room is not empty, occupants will turn RAC on; 

otherwise, they will turn it off.  

Decision tree generation is in general a two-step process, namely learning and 

classification, as shown in Figure 3-5. In the learning process, the collected data is split into 

two subsets, a training set and a testing set. Creation of the training and testing sets is an 

important part of evaluating data mining models. Usually, most of the instances in the 

database are arbitrarily selected for training and the remained instances are used for testing. 

Note that the training and testing sets should come from the same population but should be 

disjoint. Then, a decision tree generation algorithm takes the training data as an input, with 

the corresponding output being a decision tree. Commonly used decision tree generation 

algorithms include ID3 (Quinlan, 1986), classification and regression trees (CART) 

(Breiman et al., 1984), and C4.5 (Quinlan, 1993). In the classification process, the 

accuracy of the obtained decision tree is first evaluated by making predictions against test 



 

38 

 

data. The accuracy of a decision tree is measured by comparing the predicted target values 

with the true target values of the test data. If the accuracy is considered acceptable, the 

decision tree can be applied to new dataset for classification and prediction; otherwise, the 

reason for any inaccuracies should be identified and corresponding solutions should be 

adopted to address these problems.  

 

Decision Tree Generation 

Accuracy is considered acceptable ?

Analyzing training data by a decision tree 

algorithm and generating decision tree

Estimating the accuracy of obtained 

decision tree using test data

Splitting dataset into 

training data and test data

Applying decision tree to future data

Y

N
Identifying  reasons

 and finding  solutions

Learning

Classfication

 Figure 3-5 Procedure of decision tree generation 
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The procedure for generating a decision tree from the training data is explained as 

follows. Initially, all instances in the training data are grouped together into a single 

partition. At each iteration the algorithm chooses a predictor attribute that can “best” 

separate the target class values in the partition. The ability of a predictor attribute to 

separate the target class values is measured based on an attribute selection criterion, which 

will be discussed in the following section. After a predictor attribute is chosen, the 

algorithm splits the partition into child partitions such that each child partition contains the 

same value of the chosen selected attribute. The decision tree algorithm iteratively splits a 

partition and stops when any one of the following terminating conditions is met: 

(1) All instances in a partition share the same target class value. Thus, the class label of the 

leaf node is the target class value. 

(2) There are no remaining predictor attributes that can be used to further split a partition. 

In this case, the majority target class values becomes the label of the leaf node. 

(3) There are no more instances for a particular value of a predictor variable. In this case, a 

lead node is created with the majority class value in the parent partition. 

Attribute Selection Criterion 

The decision tree generation algorithm is a greedy algorithm. It iteratively splits a 

partition by choosing a split attribute that can best separate the target class values. The 

choice of split attribute determines the quality of the decision tree model and, therefore, the 

classification accuracy on the future data. The concept of entropy (Han et al., 2006) in 
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information theory is a widely used criterion measure for decision tree to characterize the 

purity of a partition in decision tree nodes. Assume a decision tree containing only binary 

target variables (e.g. HIGH and LOW), the entropy of the data subset, Di, of the ith tree 

node is defined as 

                          
     

   
    

     

   
 

    

   
    

    

   
               [3.1]            

where 

nHIGH: the number of HIGH EUI records in Di 

nLOW: the number of LOW EUI records in Di 

T_N: the total number of records in Di and T_N = nHIGH + nLOW 

The entropy varies between 0 and 1. Notice that the entropy equals to 0 if Di is pure and 

it is 1 when nHIGH equals to nLOW. At each node of a decision tree, candidate splitting test is 

used to evaluate all available attributes to select the most suitable attribute to split data. 

Suppose the jth attribute has been selected as node attribute. A candidate split test, ST, at 

the ith tree node is defined as 

                                                                                 [3.2] 

                                                                              [3.3] 

where  

Valj(r): the value of the jth attribute of record r 

T_h: threshold value  

v1, v2: two values of the jth attribute 



 

41 

 

Next, the algorithm applies ST to Di and partitions it into two subsets, DS1 and DS2. Let 

r be a record in Di. If the jth attribute is a numerical attribute, then 

                              and                             [3.4] 

If the jth attribute is a categorical attribute, then 

                              and                               [3.5] 

Let m and n be the numbers of instances in DS1 and DS2, respectively. The entropy after 

the split test can then be calculated as the weighted sum of the entropies for the individual 

subsets 

                        
 

   
            + 

 

   
                    [3.6] 

The selection of node attributes used to split data is important and a rational selection 

can improve the purity of tree nodes. A widely used attribute selection measure is 

information gain (Shannon, 1948), which is defined as the entropy reduction before and 

after a candidate splitting test. Therefore, information gain can be calculated as 

                                                                   [3.7] 

For each tree node, the attribute with the maximum information gain will be chosen as 

the splitting attribute at this node. The information gain measure, however, has a bias to 

attributes with larger number of domain values. One way to avoid such a bias is to 

normalize the information gain by a split information value defined analogously with 

information gain. C4.5 algorithm employs this improved measure, gain ratio (Han et al., 

2006): 
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                                  [3.8]                                  

where 

                           
 

   
    

 

   
 

 

   
    

 

   
                    [3.9]          

The attribute with the highest gain ratio is selected as the splitting attribute.  

Additionally, in order to detect leaf nodes, a minimum threshold value of entropy 

(ENmin)is predefined and compared with node classification entropy (           ), if 

            is lower than ENmin, then this node is a leaf and will be labeled LEAF. 

Otherwise a further splitting test should be performed. However, if no significant effects 

are observed on information gain or gain ratio in further candidate splitting tests, the test 

will be also stopped and the node will be labeled STOP.   

3.3.2 Cluster Analysis and the K-means Algorithm 

Cluster analysis is the process of grouping the observations into classes or clusters so 

that objects in the same cluster have a high similarity, while objects in different clusters 

have a low similarity. Figure 3-6 shows a clustering schema based on a hypothetical 

building data table. It contains various energy-related variables such as outdoor air 

temperature (T) and building heat loss coefficient (HLC).  

The data table consists of m attributes and n instances. Each attribute represents a 

variable and each instance denotes a building. All the instances are grouped into w clusters. 

These w clusters are homogeneous internally and heterogeneous between different clusters 
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(Han et al., 2006). Such internal cohesion and external separation are based upon the m 

attributes; it implies that these attributes have the most similar holistic effects on the 

building energy performance of the same cluster buildings, while the effects are 

significantly distinct for the buildings in different clusters.  
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(T)
...

Attribute m

(HLC)

Instance 1

…

Instance i

Instance j

...

Instance n

x x x

x x x

x x x

x x x

x x x

x x x

Cluster 1

Cluster w

... x x x

Instance

.
.
.

 

Figure 3-6 Clustering schema  

 

The dissimilarity between observations in the database is calculated using the distance 

between them in the cluster analysis. In this study, the most commonly used distance 

measure, Euclidean distance, was used (Han et al., 2006): 

                          
           

                        [3.10] 

where k = (xk1, xk2, …, xkn) and l = (xl1, xl2, …, xln) are buildings. xk1, …, xkn are n 

parameters of k and xl1, …, xln are n parameters of l.  

Commonly used clustering algorithms include K-means, K-medoids, and CLARANS 

(Han et al., 2006). In this study, we employed the K-means, along with the open-source 
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data mining program RapidMiner (Rapid-I 2001), to perform cluster analysis due to its 

high efficiency and wide applicability.  

The K-means algorithm is one of the simplest partition methods to solve clustering 

problem. Given a dataset (D) containing w objects, the K-means algorithm aims to partition 

these w objects into k clusters with two restraints: 1) the center of each cluster is the mean 

position of all objects in that cluster, 2) each object has been assigned to the cluster with the 

closest center. This algorithm consists of given steps: 1) Randomly select k observations 

from D as the initial cluster centers, 2) Calculate the distance between each remaining 

observation and each initially chosen center, 3) Assign each remaining observation to the 

cluster with the closest center, 4) Recalculate the mean values, i.e., the cluster centers, of 

the new clusters, and 5) Repeat Steps 2 to 4 until the algorithm converges, meaning that the 

cluster centers do not change.  

In RapidMiner, the performance of a clustering algorithm is evaluated by the Davies 

Bouldin index (DBI) (Davies and Bouldin, 1979). This index is defined as the ratio of the 

sum of average distance inside clusters to distance between clusters. 

                          
 

 
        

     

    
 

 

   

                          [3.11] 

where  

n: number of clusters  
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Ri, Rj: average distance inside cluster i and cluster j by averaging the distance between 

each cluster object and the cluster center  

Mi,j: distance between cluster centers  

The DBI is small if each cluster is comparatively dense; while different clusters are far 

from each other. Consequently, a smaller DBI indicates better performance. 

It should be mentioned that the K-means is sensitive to initial cluster centers. Therefore, 

different values should be tried so as to obtain the minimum sum of the distances within a 

cluster. At the same time, the number of clusters should be specified in advance.  

3.3.3 Association Rule Mining 

In data mining, association rules are often used to represent patterns of parameters that 

are frequently associated together. An example is given to illustrate the concept of 

association rules. Assume that 100 occupants live in 100 different rooms in the same 

building and each room has both a window and a door. Moreover, 40 occupants open the 

windows and 20 occupants open the doors. If 10 occupants open both the windows and 

doors simultaneously, it can be calculated that these 10 occupants account for 10% of all 

the building occupants (10/100 = 10%), and 25% of the occupants who open windows 

(10/40 = 25%). Then, the information that occupants who open windows also tend to open 

doors at the same time can be represented in the following association rule:  
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In this statement, support and confidence are employed to indicate the validity and 

certainty of this association rule. Different users or domain experts can set different 

thresholds for support and confidence according to their own requirements, in order to 

discover useful knowledge eventually. Accordingly, the association rule mining (ARM) 

can be defined as finding out association rules that satisfy the predefined minimum support 

and confidence from a given database. 

Mathematically, support and confidence can be calculated by probability, P(X∪Y), and 

conditional probability, P(Y|X), respectively (X denotes the premise and Y denotes the 

consequence in the sequence). That is, 

                                       ∪                               [3.12] 

                                                                        [3.13]  

Another concept, lift, which is similar to confidence, is commonly used to demonstrate 

the correlation between the occurrence of X and Y when conducting the ARM. 

Mathematically,  

                                
   ∪  

        
 

      

    
                           [3.14] 

Particularly, a lift value greater than 1 represents a positive correlation (the higher this 

value is, the more likely that X coexists with Y, and there is a certain relationship between 

X and Y (Han et al., 2006) while a lift value less than 1 represents a negative correlation. If 

the value is equal to 1, i.e.   ∪            , the occurrence of X is independent of the 

occurrence of Y, and there is no correlation between X and Y.  
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Commonly used ARM algorithms include the Apriori algorithm and the 

frequent-pattern growth (FP-growth) algorithm (Han et al., 2006). In this study, the 

FP-growth algorithm was utilized due to its high efficiency and wide applicability. The 

specific algorithm of the FP-growth is presented in (Han et al., 2006). 

3.4 Data Collection 

To demonstrate the applicability of the proposed process and framework, the measured 

data from a set of Japanese residential buildings and from the EV building located in 

Montreal was collected and analyzed. 

3.4.1 Measured Data from Residential Buildings 

To evaluate and improve the energy performance of residential buildings, a project 

entitled “Investigation on Energy Consumption of Residents All over Japan” was carried 

out by the Architecture Institute of Japan from December 2002 to November 2004 

(Murakami et al., 2006). For this project, field surveys on energy-related data and other 

relevant information were carried out in 80 residential buildings located in six different 

districts in Japan: Hokkaido, Tohoku, Hokuriku, Kanto, Kansai, and Kyushu. Table 3-1 

shows the survey items and corresponding investigation methods. Figure 3-7 shows the 

measuring instruments which were used to monitor temperature and consumptions of 

electricity, gas, and/or kerosene. 
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Table 3-1 Investigation items and methods 

Method Survey items Measuring time 

Field 

measurement 

Different end-use loads of all 

kinds of fuel   

Electricity  Measured every minute 

Gas Measured every 5 minutes 

Kerosene Measured every 5 minutes 

Indoor air temperature  

(1.1m above floor) 
Measured every 15 minutes 

Questionnaire 

survey 

Lifestyle, Utilization of equipment, Annual income, 

etc. 
Once only 

Inquiring survey Other issues, such as basic building information Once only 

 

 

Figure 3-7 Measuring instruments (from left to right: electricity, gas, kerosene 

and air temperature) 

 

The building energy consumption was broken down into eight major end-use loads: 1) 

HVAC, 2) supply hot water (SHW), 3) kitchen (KITC, including cooking and other kitchen 

equipment such as dishwasher and range hood), 4) lighting (LIGHT), 5) refrigerator (REF), 

6) amusement and information (A&I, such as television, telephone, and computer, etc.), 7) 

housework and sanitary (H&S, such as washing machine, vacuum, and electrical shaver, 

etc.), and 8) others (OTHER, unidentified usage such as electrical shutter and all the 

unclear items).  
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Figure 3-8 Boxplot for monthly average outdoor temperature in 2003 

 

Figure 3-8 shows the boxplot for monthly average outdoor air temperature in each 

district in 2003 using Japanese meteorological data. The mean value of monthly average 

temperature, i.e., annual average temperature, is also given. Clearly the monthly average 

temperature has a more or less symmetric distribution. The annual average temperature is 

higher than 8 °C in all the six districts and the temperature in Hokkaido and Tohoku is 

comparatively lower than other districts.  

Scrutinizing the data from the 80 buildings it was found that only 67 sets were complete 

while the other 13 had missing values of energy consumption data. Figure 3-9 shows the 

percentage breakdown of available residential buildings in each district. It can be seen that 
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the distribution is roughly uniform.  

 

Figure 3-9 Percentage breakdown of buildings in each district 

Table 3-2 Conversion coefficients of different fuels  

Fuel Conversion coefficient Unit 

Electricity 3.6 MJ/kWh 

City gas (4A-7C) 20.4 MJ/Nm
3
 

City gas (12A-13C) 45.9 MJ/Nm
3
 

Liquefied petroleum gas (LPG) 50.2 MJ/Nm
3
 

Kerosene 36.7 MJ/L 

 

Data reduction and aggregation was then performed to obtain a smaller representation 

of the original data. For example, diverse energy unit of different kinds of primary energy 

sources used by various buildings, including electricity, natural gas, and kerosene, was 

converted to MJ based on conversion coefficients given in Table 3-2. Then, readings of 

each end-use load at different intervals (e.g. 1 or 5 minutes) were averaged over each 

month. The resulting data was stored in a database.  
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3.4.2 Measured Data from the EV Building 

The EV pavilion located in Montreal, a complex building that mainly includes offices 

and chemical labs, was selected as data source for this study. This building consists of two 

parts: the ENCS part (17 floors) and the VA part (12 floors), as shown in Figure 3-10.  

 

 

Figure 3-10 EV Pavilion  

Each pavilion has its own VAV air-conditioning system. In the ENCS part, the air 

handling units (AHUs) are installed in the local mechanic rooms on each floor except for 

the 17
th

 floor (the mechanical floor), where various equipment, such as the chillers and 

fresh air handling units (FHUs), are installed. On the 17
th
 floor, two identical FHUs (i.e., 

the FHU 1 and FHU 2) are employed to process fresh air and each has two variable speed 

fans in parallel, as shown in Figure 3-11. Due to the existence of chemical labs in the 

ENCS part, the fresh air is separated into two streams: stream 1 is sent to the local 

mechanical rooms in each floor and mixed with the return air from the same floor’s 

VA part 

ENCS 

part 
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rooms other than chemical labs. Then the mixed air is conditioned by the AHUs in that 

floor’s mechanical room and supplied to those rooms again. Meanwhile, stream 2 is 

mixed with the return air from the atriums in the ENCS part. Then the mixed air is 

conditioned by the FHU 3, which also has two variable speed fans in parallel, and sent to 

the chemical labs. The exhaust air from both the chemical labs and other rooms is 

discharged to outside directly by the EHU 1, which contains two variable speed fans, as 

shown in the dash line square. Moreover, the dash dot line in Figure 3-11 indicates a 

recuperation loop installed between the fresh air and the exhaust air to exchange heat in 

both cooling and heating seasons. 
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 Figure 3-11 Flow chart of air-conditioning system in the ENCS pavilion  
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Figure 3-12 Flow chart of air-conditioning system in the VA pavilion 

 

The flow chart of air-conditioning system in the VA pavilion is shown in Figure 3-12. 

Similarly, the air handling units (AHUs) are installed in the local mechanical rooms on 

each floor except for the 12
th

 floor (the mechanical floor), where various equipment, such 

as the chillers and fresh air handling units, are installed. On the 12
th
 floor, two identical 

FHUs (i.e., the FHU 4 and FHU 5) are employed to process fresh air and each of them 

has two variable speed fans in parallel. Given that there is no chemical lab in the VA 

pavilion, the fresh air is mixed with the return air from all the VA part directly. The mixed 

air is sent to the local mechanical rooms in each floor to be conditioned by the AHUs, and 

then sent to various rooms in the same floor. Two RHUs (i.e., the RHU 1 and RHU 2) are 
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employed to return air, and each of them has two variable speed fans in parallel. The 

exhaust air in the VA pavilion is discharged to outside by the EHU 2, which contains 

three variable speed fans, as shown by dash line square. Also, the dash dot line in Figure 

3-12 indicates a recuperation loop installed between the fresh air and exhaust air to 

exchange heat in both cooling and heating seasons. 

 

Table 3-3 The monitored parameters of the air-conditioning systems 

No. Parameter No. Parameter No. Parameter No. Parameter 

1 QI1 21 TAIVac 41 TAIXari 61 FIX3 

2 QI2 22 TAVac 42 TAIXarii 
  

3 QII1 23 TAIah 43 TAIXariii 
  

4 QII2 24 TAIIah 44 TAoENCS 
  

5 QIII1 25 TAIVah 45 HoENCS 
  

6 QIII2 26 TAVah 46 TAoVA 
  

7 QIV1 27 TAIIbr 47 HoVA 
  

8 QIV2 28 TAIVbr 48 TGENCSar 
  

9 QV1 29 TAVbr 49 TGVAar 
  

10 QV2 30 TAIar 50 FI 
  

11 QIII 31 TAIIar 51 FII 
  

12 QVI 32 TAIVar 52 FIII 
  

13 QVII 33 TAVar 53 FIV 
  

14 QVIII1 34 TAVIIIbri 54 FV 
  

15 QVIII2 35 TAVIIIbrii 55 FVI 
  

16 QVIII3 36 TAIXbri 56 FVII 
  

17 QIX1 37 TAIXbrii 57 FVIII1 
  

18 QIX2 38 TAIXbriii 58 FVIII2 
  

19 TAIac 39 TAVIIIari 59 FIX1 
  

20 TAIIac 40 TAVIIIarii 60 FIX2     

 

In order to conduct the case study, the historical data of the air-conditioning systems 
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in both parts were collected from December 2006 to May 2009. However, since the 

online monitoring program was updated from November 2007 to January 2008, data 

reports were not generated during this period. In total, 61 parameters were monitored in 

the two air-conditioning systems and data of each parameter was trended at a 15-minute 

interval. The monitored parameters are given in Table 3-3.  



 

 

4. A DECISION TREE METHOD FOR BUILDING ENERGY 

DEMAND MODELING 

4.1 Introduction 

In the design of an energy efficient building, architects and building designers often 

need to identify which parameters influence future building energy demand significantly. 

Furthermore, based on different combinations of these parameters as well as their values, 

architects and building designers usually expect to find a simple and reliable method to 

estimate building energy performance rapidly so that they can optimize their building 

design plans. In recent years, there have been many studies on building energy demand 

modeling, and several methods were employed, mainly including traditional regression 

methods and artificial neural networks (ANN) methods. Both of the methods have been 

reviewed in Chapter 2; and in this study the decision tree method is proposed to remove 

their limitations.  

In the past two decades, the decision tree method, a novel computational modeling 

technique that uses flowchart-like tree structure, was widely used for classification and 

prediction in many scientific and medical fields. The popularity of the decision tree method 

can be attributed to its ease of use, and abilities to generate accurate predictive models with 

understandable and interpretable structures, which, accordingly, provide clear and useful 

knowledge of corresponding domains. Moreover, the decision tree method is able to 

process both numerical and categorical variables, and perform classification and prediction 
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tasks rapidly without requiring much computation efforts. However, it should be 

mentioned that the decision tree method, as a classification analysis method, is more 

appropriate for predicting categorical variables than for predicting numerical variables
1
. 

The application of the decision tree method in building-related studies is still very sparse.  

4.2 Methodology, Model target/input variables 

4.2.1 Methodology 

Figure 4-1 shows the methodology proposed for building energy demand modeling 

based on the decision tree method. Data collection and data pre-processing are first 

conducted. Then the learning process and the classification process are performed in turn. 

These two processes were described in detail in Chapter 3. If the accuracy of generated 

decision trees is considered acceptable, the decision trees can be applied to energy demand 

modeling. Commonly used decision tree generation algorithms include ID3, classification 

and regression trees (CART), and C4.5. In this study, we employ C4.5 algorithm, along 

with the open-source data mining software WEKA (Bouckaert et al., 2009). This software 

is selected due to its flexibility and wide applicability to different types of data.  

 

                                                 

1
 In the data mining filed, data classification differs from data prediction. In classification analysis, the 

target attribute is a categorical attribute. In prediction, the target attribute is a numerical attribute. 
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Accuracy is considered acceptable ?

Analyzing training data by a decision 

tree algorithm and 

generating decision tree

Estimating the accuracy of obtained 

decision tree using test data
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N
Identifying  reasons

 and finding  solutions
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Data collection and 

data pre-processing

Energy demand modeling

Figure 4-1 Proposed methodology for building energy demand modeling 

 

The applicability of the methodology is demonstrated for the Japanese residential 

buildings. 
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4.2.2 Model target variable 

In order to demonstrate building energy performance, model target variable is 

expressed in energy use intensity (EUI), defined as the ratio of annual total energy use to 

the total floor area (the annual total energy use is calculated as the sum of the energy 

content of all fuel used). As mentioned previously, the decision tree method is more 

appropriate for predicting categorical variables. Therefore, a concept hierarchy for 

building EUI is formed prior to the classification and prediction. Due to the small database 

size, a two grade descending scale, i.e., high level and low level, corresponding to low 

energy performance and high energy performance, are considered applicable and 

understandable. Building EUI ranges from 176 MJ/m
2
 to 707 MJ/m

2
 in the database and 

thus data ranged from the average of the maximum and minimum to the maximum value, 

[441.5, 707], is considered ‘HIGH’. And data from the minimum value to the average of 

the maximum and minimum, [176, 441.5), is considered ‘LOW’.  

It should be mentioned that decision tree can also be used to classify and predict 

multiple EUI levels rather than just two. For example, instead of ‘HIGH’ and ‘LOW’, a 

concept hierarchy of EUI may map real EUI values into four conceptual levels such as 

EXCELLENT, GOOD, FAIR, and COMMON, thereby resulting in a smaller data range of 

each level and providing a more detailed description. However, more conceptual levels 

require a larger database and may be prone to higher misclassification rate of data records 

and thus reduce the accuracy of decision tree models.  
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4.2.3 Model input variables  

Ten parameters (or attributes) are selected from the database to be model input 

parameters and are summarized in Table 4-1.  

 

Table 4-1 Summary of model input parameters 

Number Variable Type Value Variable label (unit) 

1 T Categorical High/Low Annual average air temperature 

2 HT Categorical Detached/Apartment House type 

3 CO Categorical Wood/Non-wood Construction type 

4 FA Numerical [70, 240] Floor area (m
2
) 

5 HLC
a*

 Numerical [1.01, 4.35] Heat loss coefficient (W/m
2
K) 

6 ELA
b*

 Numerical [0.35, 13.30] Equivalent leakage area (cm
2
/m

2
) 

7 NO Numerical [2, 6] Number of occupants 

8 HEAT Categorical Electric/Non-electric Space heating  

9 HWS Categorical Electric/Non-electric Hot water supply  

10 KITC Categorical Electric/Gas Kitchen 

a
*
 Calculated based on building design plans. 

b
*
 Measured by the fan pressurization method. 

 

These ten parameters are grouped into four categories that are important determinants 

of household energy demand. 

(1) Climatic conditions (T). The range of annual average outdoor air temperature in the six 

districts is discretized into two intervals based on the same concept hierarchy as the 

EUI mentioned earlier: the low interval [8.8 °C, 14.3 °C], and the high interval (14.3 °C, 

17.4 °C]. According to this discretization criterion, the low temperature districts 

include Hokkaido and Tohoku while the other four districts belong to high temperature 

districts, 
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(2) Building characteristics (HT, CO, FA, HLC, ELA). For building construction type, the 

non-wood type includes steel reinforced concrete (SRC), reinforced concrete (RC), and 

steel structure (S),  

(3) Household characteristics (NO), and 

(4) Household appliance energy sources (HEAT, HWS, KITC). Energy sources are 

divided into energy generated from electricity consumption and energy generated from 

other fuels such as kerosene and natural gas. 

Figure 4-2 shows the distribution of all the categorical parameters. It can be observed 

that all the percentages range from 30% to 70%, indicating a fairly uniform distribution. 

 

 

Figure 4-2 Categorical distribution of the six categorical parameters 
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4.3 Results and discussion 

C4.5 algorithm was used for training data set (55 records were arbitrarily selected from 

the database) and test data set (the remaining 12 records) by using WEKA to build a 

decision tree for predicting the EUI of residential buildings to either ‘HIGH’ or ‘LOW’.  

4.3.1 Generation of decision tree 

Figure 4-3 shows the decision tree for the classification of building EUI levels. This 

decision tree is built on the basis of the training data set of 55 data records with the ten 

attributes listed in Table 4-1. This tree includes a total of 21 nodes among which 11 are leaf 

nodes, including 8 LEAFs and 3 STOPs: this represents 11 classes (either EUI = HIGH or 

EUI = LOW). The explanatory note of three kinds of nodes, namely root node, internal 

node, and leaf node in this decision tree is shown in Figure 4-4. Note that entropy is also 

calculated and given in each node to characterize the purity of the sub dataset in that node. 

Moreover, the average EUI value of data records in each class is given and used for 

reference when performing prediction. Specifically, this reference value can be viewed as 

predictive numerical EUI value of the new data records that fall into that class. 

The WEKA analysis report also provides the information on the classification accuracy 

of the decision tree. The report indicates that 51 records which accounts for 93% of all the 

training records are correctly classified: this indicates a good accuracy. Also, confusion 

matrix reports how many data records are correctly classified and misclassified in the class 

of HIGH EUI and LOW EUI separately, as below: 
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a    b   <-- classified as 

                              35    1   |  a = 'LOW EUI' 

                              3    16   |  b = 'HIGH EUI' 

In this matrix, the number of correctly classified records is given in the main diagonal, 

i.e., upper-left to lower-right diagonal; the others are incorrectly classified. Only one 

instance of class "LOW EUI" was misclassified as "HIGH EUI" and three instances of 

class "HIGH EUI" was misclassified as "LOW EUI". Such information indicates that high 

EUI is more prone to be misclassified than low EUI. This may have occurred due to the fact 

that most of the data records are in LOW EUI so the tree became more sensitive to this 

class. An even distribution between the HIGH EUI and LOW EUI classes in database 

would possibly help to obtain sufficient accuracy and sensitivity in the desired classes. 

The major strength of a decision tree lies in its interpretability and ease of use, 

particularly when decision rules are created. Based on a decision tree, decision rules can be 

easily generated by traversing a path from the root node to a leaf node. For example, a 

decision rule can be generated from Node 1 to Node 5 in above decision tree as follows: If 

T is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is electric then EUI is LOW. Since 

each leaf node produces a decision rule, the complete set of decision rules, which is 

equivalent to the decision tree, can be derived after all the leaf nodes have been included. 

Accordingly, above decision tree is converted to a set of decision rules, as show in Table 

4-2.  
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4.3.2 Evaluation of the decision tree 
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Figure 4-3 Decision tree for the prediction of building EUI level 
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Table 4-2 Decision rules derived from the obtained decision tree 

 

 
Node Decision rules 

1 5 If T is high and HLC > 3.89 then EUI is HIGH 

2 6 If T is low and HEAT is electric then EUI is HIGH 

3 9 If T is high and HLC ≤ 3.89 and ELA > 4.41 then EUI is LOW 

4 10 If T is low and HEAT is non-electric and NO ≤ 2 then EUI is LOW 

5 12 If T is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is electric then EUI is LOW 

6 15 If T is low and HEAT is non-electric and NO > 2 and HT is apartment then EUI is HIGH 

7 16 
If T is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is electric 

then EUI is HIGH 

8 18 
If T is low and HEAT is non-electric and NO > 2 and HT is detached and HLC ≤ 1.70 then 

EUI is LOW 

9 19 
If T is low and HEAT is non-electric and NO > 2 and HT is detached and HLC > 1.70 then 

EUI is HIGH 

10 20 
If T is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is 

non-electric and HLC ≤ 2.93 then EUI is LOW 

11 21 
If T is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is 

non-electric and HLC > 2.93 then EUI is HIGH 
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As mentioned previously, the decision tree accuracy should be evaluated to estimate 

how accurately it can predict building EUI levels before applying it to new residential 

buildings. Accordingly, the obtained decision tree was applied to the test dataset and the 

results are given in Table 4-3.  

Table 4-3 shows that among twelve data records included in the testing set eleven 

records, accounting for 92%, are correctly classified. Given that the size of testing set is 

relatively small and only one record is misclassified, this accuracy is acceptable. At the 

same time, the WEKA analysis report also provides a confidence level for the classification 

of each data record. The confidence level determines how likely the test data record falls 

into that class and, it is equal to the ratio of the number of correctly classified data records 

to the total record number in that class in the training set. It can be seen from Table 4-3 that 

generally the confidence level for the classification is higher than 80%, indicating that 

most predictions are reliable. Furthermore, by using a pre-specified threshold, e.g., 80%, 

the confidence level could improve estimated accuracy of classification. In particular, if the 

confidence level of a data record classification exceeds the threshold, this classification is 

accepted. For example, if the threshold in this evaluation is set at 80%, then all the records, 

except the record 2 that is misclassified, will be accepted. Similarly, the threshold is very 

useful when applying decision rules to the prediction of new data sets. In addition, the error 

rate between the actual EUI value and the reference EUI value are also given in this table 

for the reliability test of reference value. It can be seen that, among 11 correctly classified 
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data records, five have an error rate lower than 5% while the other 6 have an error rate 

between 20% and 35%. This indicates that a higher concept hierarchy for building EUI 

needs to be formed to improve the prediction performance of reference value. However, 

this is limited by the size of database in this study. 

 

Table 4-3 Results of decision tree accuracy evaluation 

 
Actual 

level 

Predicted 

level 

Correct or 

incorrect 

Confidence 

level 

Actual 

EUI 

Reference 

EUI 
Error 

1 HIGH HIGH Correct 100% 449 450 0.2% 

2 LOW HIGH Incorrect 75% 258 624 141.9% 

3 HIGH HIGH Correct 100% 581 584 0.5% 

4 LOW LOW Correct 100% 327 322 1.5% 

5 HIGH HIGH Correct 100% 707 552 22.0% 

6 LOW LOW Correct 81.80% 303 316 4.3% 

7 LOW LOW Correct 81.80% 238 316 32.8% 

8 LOW LOW Correct 88.90% 258 315 22.1% 

9 HIGH HIGH Correct 100% 507 488 3.7% 

10 HIGH HIGH Correct 100% 495 601 21.4% 

11 LOW LOW Correct 81.80% 427 316 26.0% 

12 HIGH HIGH Correct 100% 458 601 31.2% 

 

4.3.3 Utilization of decision tree  

Using decision tree for prediction 

Based on predictor variables, decision tree and decision rules can be utilized to predict 

target variables. Assume the EUI level of a new residential building in Japan must be 

predicted by using the decision tree in Figure 4-3. The threshold of confidence level is set 
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at 85%. The typical building parameters are shown in Table 4-4. The building EUI level is 

predicted as follows: 

Step 1 The root node, i.e., node 1 in this decision tree, is the starting point of prediction. 

From node 1, it can be seen the value of T should be first examined. Since T is high, the 

node 1 test T is high is satisfied, then go to node 2; 

Step 2 Examine the value of HLC. Since HLC = 2, the node 2 test HLC ≤ 3.89 is 

satisfied, then go to node 4; 

Step 3 Examine the value of ELA. Since ELA = 3, the node 4 test ELA ≤ 4.41 is 

satisfied, then go to node 8; 

Step 4 Examine the value of HWS. Since HWS is non-elec., the node 8 test HWS is elec. 

is not satisfied, then go to node 13; 

Step 5 Examine the value of KITC. Since KITC is gas, the node 13 test KITC is elec. is 

not satisfied, then go to node 17; 

Step 6 Examine the value of HLC. Since HLC = 2, the node 17 test HLC ≤ 2.93 is 

satisfied, then go to node 20; 

Step 7 Node 20 is a leaf node. As a result, the decision tree in Figure 4-3 predicts that 

the EUI level of the residential building is LOW. In this node, the correctly classified data 

records account for 89% and thus the confidence level of prediction is 89% that is larger 

than the predetermined threshold (85%). Therefore, the prediction is accepted. 

Furthermore, the value of correctly classified records in this node ranges from 242 MJ/m
2 
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to 389 MJ/m
2
 and the average value is calculated at 315 MJ/m

2
. These values can be used 

as reference values for the prediction, as mentioned previously.  

 

Table 4-4 Building parameters for the prediction of building EUI levels 

Number Variable Attribute value Unit 

1 T High  

2 HT Detached house  

3 CO Wood  

4 NO 4  

5 FA 100 m
2
 

6 HLC 2 W/m
2
K 

7 ELA 3 cm
2
/m

2
 

8 HEAT Electricity  

9 HWS Non-electricity  

10 KITC Gas  

 

Model interpretation and knowledge extraction 

Useful knowledge can be extracted from the decision tree based model so as to help 

understand energy consumption patterns and optimize a building design plan. For example, 

various parameters are automatically selected as predictor variables by the decision tree 

algorithm for the classification of EUI levels. These parameters are used to split the nodes 

of the decision tree and their degrees of closeness to the root node indicate the strength of 

the influence and the number of records impacted. Therefore, by examining the decision 

tree nodes, the significant factors, as well as their ranks, that determine the building energy 

demand profiles can be identified. In particular, the variable importance of this decision 



 

70 

 

tree model can be analyzed as follows: first, the root node, i.e., T, indicates that outside air 

temperature is the most important determinant of energy demand among all these factors. 

Then, for clarity, the significant factors for the high temperature districts (i.e. Hokuriku, 

Kanto, Kansai and Kyushu) and low temperature districts (i.e. Hokkaido and Tohoku) are 

identified separately and summarized in Table 4-5.  

 

Table 4-5 Summary of significant factors 

Potential factors 
High temperature districts Low temperature districts 

Significant factors Rank Significant factors Rank 

House type   √ 3 

Number of occupants   √ 2 

Floor area     

Heat loss coefficient  √ 1 √ 4 

Equivalent leakage area √ 2   

Construction type     

Space heating mode   √ 1 

Hot water supply mode √ 3   

Kitchen energy mode √ 4   

 

Clearly, four significant influencing factors are identified for each district and the only 

parameter found to be significant for the both districts is heat loss coefficient. This implies 

that the significance of these factors, except building heat loss coefficient, is dependent on 

outside air temperature. Moreover, among the three household appliance energy source 

parameters, space heating plays a role in low temperature districts while hot water supply 

and kitchen are significant in high temperature districts. Note that floor area and 
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construction types do not appear in the decision tree. This is reasonable since the target 

variable, i.e., EUI level, is a measure of annual total energy normalized for floor area and 

building heat loss coefficient embodies the effect of construction type. At the same time, 

these significant factors are ranked in terms of the degree of closeness to the root node. It 

can be found that the heat loss coefficient and space heating mode rank the first in the two 

districts respectively, and thus deserve extra attention when designing energy efficient 

buildings. 

The decision tree provides the combinations of significant factors as well as the 

threshold values that will lead to high building energy performance. Based on such 

combination and threshold values, some hidden yet useful knowledge can also be extracted 

to help understand building energy consumption patterns. For example, it can be seen that, 

in high temperature districts, a higher building heat loss coefficient than 3.89 W/m
2
K will 

normally cause a high EUI. Meanwhile, for a residential building with heat loss coefficient 

lower than 3.89 W/m
2
K, a high equivalent leakage area (> 4.41 cm

2
/m

2
) will benefit energy 

conservation. This seems perhaps unreasonable and one possible explanation is that the 

high temperature districts locate in moderate climate and have a moderate outside air 

temperature range. Accordingly, in summer infiltration can serve as cooling source to 

remove the excess heat generated indoor, thereby reducing overall energy consumption. 

This indicates that a rational combination of heat loss coefficient and equivalent leakage 

area of residential buildings in high temperature districts is important to improve building 
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energy performance. Also, a further study on the range selection of equivalent leakage area 

may provide deeper insights into its impact on the building energy demand. Additionally, 

from the nodes 8 and 13 in Figure 4-3, it can be observed that the change of the energy 

source of hot water supply and kitchen will cause a substantial increase or decrease in the 

EUI. Clearly electrical water heaters, instead of non-electric water heaters such as natural 

gas heaters, should be used to save energy. Moreover, electrical water heaters can take full 

advantage of cheap nighttime electricity and thus help users save money spent on energy.  

 

 

Figure 4-5 Comparison of the EUI between electric HWS and non-electric HWS 

 

The EUI values in node 8 are plotted in Figure 4-5 in order to make a comparison 

between buildings with the electric HWS and buildings with the non-electric HWS. The 
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two significant factors with higher ranks than HWS, i.e., HLC and ELA, are also taken into 

consideration (HLC at abscissa, ELA at ordinate). The abscissa-ordinate plane is divided 

into various grids so that EUI values can be compared based on similar HLC and ELA 

values, thereby removing the impact of these two factors. It is apparent from Figure 4-5 

that, in a same grid or adjacent grids, red points, which denote EUI values with non-electric 

HWS, are generally higher than blue points, which denote EUI values with electric HWS. 

This is in accordance with the above conclusion drawn from the decision tree.  

With regard to kitchen energy source, electrical appliances, however, tend to consume 

more energy than the appliances using natural gas. This may have occurred since the power 

of many kitchen electrical appliances, such as rice cookers, is comparatively high and the 

use of these appliances is routine. Further, compared to hot water supply energy source, 

kitchen energy source has a smaller contribution to building energy demand and even 

though non-electric appliances are adopted in kitchen, an extra requirement on heat loss 

coefficient (≤ 2.93 W/m
2
K) still need to be met in order to achieve low EUI levels.  

In low temperature districts, from an energy saving point of view, building owners and 

designers should give a prior consideration to space heating energy source that plays a 

significant role in influencing EUI. The node 3 in Figure 4-3 shows that non-electric fuel, 

particularly kerosene and natural gas, should be used as primary source of residential space 

heating since the use of electric space heating tends to bring about a high EUI. This may be 

partly ascribed to the high efficiency of non-electric space heating devices such as 
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kerosene space heaters. Moreover, non-electric heating devices are more applicable than 

electric space heaters, such as air conditioners, in real life due to the high electricity rate in 

Japan. Similar to Figure 4-5, EUI values in node 3, together with EUI values in low 

temperature districts in the test dataset, are plotted in Figure 4-6. HLC and NO are used as 

abscissa and ordinate. The red and blue points represent EUI values with electric and 

non-electric space heating respectively. It can be observed that red points are generally 

higher than blue points. This observation is in accordance with above conclusion.  

 

 

Figure 4-6 Comparison of EUI between electric HEAT and non-electric HEAT 

 

The number of occupants, is another important determinant of EUI in low temperature 

districts. As can be seen, buildings with more than two occupants will have significantly 
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higher EUI than those with two occupants. This may have occurred since a larger family 

size will cause more complicated occupant behavior patterns thereby resulting in an 

increase in EUI. With regard to house type, detached houses with low heat loss coefficients 

(≤ 1.70 W/m
2
K) tend to have a better energy performance than apartments, which can 

occur for at least two reasons. First, a small HLC contributes greatly to reduce energy 

consumption on space heating and cooling; second, detached houses normally have larger 

areas than apartments while both of them have approximately same family size, which also 

lowers EUI values.  

Such knowledge can help building designers and owners make intelligent decisions to 

improve building energy performance and reduce building energy consumption. For 

example, based on above knowledge, architects and building designers can identify the 

parameter that deserves more attention as well as its value range at the early design stage. 

Also, they can perform a fast performance estimation of newly constructed residential 

buildings. Moreover, building owners will easily determine which energy source should be 

used for space heating, hot water supply, and kitchen to save energy. It should be 

mentioned that heat loss coefficient and equivalent leakage area cannot be determined 

directly by architects and building designers. However, their value can be adjusted through 

some indirect measures such as improving construction material and building air tightness. 

4.4 Summary 

The decision tree method is applied to the Japanese residential buildings for predicting 
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and classifying building EUI levels and its basic steps, such as the generation of decision 

tree based on training data and the evaluation of decision tree based on test data are 

presented. The results have demonstrated that the use of decision tree method can classify 

and predict building energy demand levels accurately (93% for training data and 92% for 

test data), identify and rank significant factors of building EUI levels automatically, and 

provide the combination of significant factors as well as the threshold values that will lead 

to high building energy performance. The methodology along with derived knowledge 

could benefit building owners and designers greatly and one crucial benefit is improving 

building energy performance and reducing energy consumption and the money spent on 

energy. Although the decision tree method is mainly employed to predict categorical 

variables (the number of the predetermined target intervals depends on the size of database 

while too many intervals may result in errors in classification) and reference value (i.e., 

average value of EUI in each class in this study) instead of the precise value of target 

variables, as a modeling technique, the utilization of decision tree method is very simple 

and its result can be interpreted more easily compared to other widely used modeling 

techniques, such as regression methods and ANN methods.  
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5. A SYSTEMATIC PROCEDURE FOR STUDYING THE 

INFLUENCE OF OCCUPANT BEHAVIOR ON BUILDING 

ENERGY CONSUMPTION 

5.1 Introduction 

Efforts have been devoted to the identification of the impacts of occupant behavior on 

building energy consumption. However, various factors influence building energy 

consumption at the same time, leading to the lack of accuracy when identifying the 

individual effects of occupant behavior. As mentioned previously, one possible approach 

to estimating the effects of occupant behavior is to analyze measured building-related 

data. This study develops a methodology for identifying the effects of occupant behavior 

on building energy consumption through data analysis, thereby evaluating the energy 

saving potential by modifying user behavior and providing deep insights into the building 

energy consumption patterns.  

5.2 Methodology 

A methodology is proposed for examining the effects of occupant behavior on 

building energy consumption. Basically, it is realized by clustering similar buildings into 

groups based on the four influencing factors unrelated to user behavior (refer to Section 

2.4), so that for each building in the same group the four factors have similar effects on 
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the building energy consumption. The effects of occupant behavior on building energy 

consumption can be identified accurately within each group. Furthermore, provided that 

there is a sufficient sample size and subject buildings have a large divergence in the four 

influencing factors, implying that the full effects of the four factors in each group can be 

similar enough and the energy consumption difference caused by them is comparatively 

small, energy consumption difference between buildings in each group could be thought 

of as being caused only by occupant behavior. The identification of building groups is the 

most important element of this methodology. Such identification is achieved mainly via 

cluster analysis, which was introduced in Section 3.3.2.  

Before conducting cluster analysis, some preprocessing steps are needed to deal with 

the inconsistencies of different attributes. For example, most of the energy-related 

attributes have their own units. Switching attribute units from one to another may 

significantly change the attribute values, thereby impacting the quality and accuracy of 

clusters. Therefore, data transformation techniques are applied in order to help avoid 

dependence on the selection of attribute units. Also, data transformation can help prevent 

attributes with large ranges from outweighing those with comparatively smaller ranges. 

The contribution of different attributes to the building energy consumption may differ 

considerably. Thus, after data normalization, each attribute should be associated with a 

weight that reflects its significance. Grey relational analysis is used to identify such 

weights. The procedure of data transformation and grey relational analysis is introduced 
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in the following two sections.  

5.2.1 Data transformation 

As mentioned previously, data transformation was applied to deal with the 

inconsistencies in measured dataset. Specifically, min-max normalization (Han et al., 

2006) is performed to scale the values to fall within a predetermined range. The main 

advantage of min-max normalization is its ability to reserve the relationships between the 

initial data since it carries out a linear normalization. Assume that xmax and xmin are the 

original maximum and minimum values of a numerical attribute. By min-max 

normalization, a value x of this attribute can be transformed to x’ in the new specified 

range [x’min, x’max] by calculating 

                   
      

         
                                    [5-1] 

In this study, the new range is defined as [0, 1].  

For binary attributes, their two states, such as the operation states of room air 

conditioners, i.e., [ON, OFF], can be transformed to [0, 1] or [1, 0] directly. The decision 

to recode these two states to either [0, 1] or [1, 0] depends upon whether or not there is a 

preferred positive value.  

For multi-valued categorical attributes with an implicit order, it is often necessary to 

rank their ordered states first, and then map the obtained range onto [0, 1] by 

                                
       

         
                          [5-2] 
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where  

xi’: transformed value of each state 

ranki: corresponding rank of each state 

rankmax: maximum rank 

For example, the four levels of certification in the Leadership in Energy and 

Environmental Design (LEED) Green Building Rating System, i.e., [CERTIFIED, 

SILVER, GOLD, PLATINUM], are transformed to [0, 1/3, 2/3, 1] using the above 

method. 

5.2.2 Grey relational analysis 

Grey relational analysis (GRA) was proposed to find grey relational grades and a grey 

relational order (i.e., the rank of grey relational grades) that can be used to describe 

primary trend relationships between related factors, and to identify the important factors 

that significantly influence predefined target factors (Deng, 1989). For example, if the 

building energy consumption is defined as the target factor, GRA can provide grey 

relational grades for its various influencing factors, such as outdoor air temperature and 

floor area. These grey relational grades are numerical measures of the impact of the 

influencing factors on total building energy consumption. Larger grey relational grades 

indicate more significant impacts. The main advantages of GRA over other similar 

multi-factorial analysis methods such as regression analysis and principal component 
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analysis are its comparative simplicity and the ability to deal with small data sets that do 

not have typical probability distributions.  

Let y0 be the objective sequence (measured data of target factors, such as building 

energy consumption) and yi be the compared sequences (measured data of related factors, 

such as the various influencing factors of building energy consumption):  

                                                       [5-3] 

                                                                [5-4] 

The procedure of GRA is described as follows: 

Step 1 Normalize the raw data (Min-max normalization is used in this study), y0 and 

yi are used to denote obtained normalized sequences; 

Step 2 Calculate grey relational coefficients   .        between y0 and yi is defined 

as:  

                 
                                            

                                    
             [5-5] 

                         

where α is the distinguishing coefficient and 0<α<1, normally α = 0.5;  

Step 3 Calculate the grey relational grade γ: 

                                  
 

 
       

                       [5-6] 

Step 4 Rank the obtained grey relational grades; thus, grey relational order can be 

identified. 

As mentioned previously, grey relational grade is employed to be weighted 
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coefficients of the corresponding attributes in cluster analysis. Note that grey relational 

grades range from 0 to 1. Generally, r > 0.9 indicates a marked influence, r > 0.8 indicates 

a relatively marked influence, r > 0.7 indicates a noticeable influence, and r < 0.6 

indicates a negligible influence (Fu et al., 2001).  

5.3 Selection of typical parameters 

Table 5-1 Representative parameters of the four influencing factors 

Influencing factors Representative parameters Category Unit Abbreviation 

City 

Climate 

(i) Annual mean air temperature numerical °C T 

(ii) Annual mean relative humidity numerical  RH 

(iii) Annual mean wind speed numerical m/s V 

(iv) Annual mean global solar radiation numerical MJ/m2 RA 

Building-related 

characteristics 

(i) House typesa* categorical  HT 

(ii) Building area numerical m2 FA 

(iii) Equivalent leakage areab*  numerical cm2/m2 ELA 

(iv) Heat loss coefficientc* numerical W/m3K HLC 

User-related 

characteristics except 

social and economic 

factors 

(i) Number of occupants numerical  NO 

Building services 

systems and 

operationd*  

Energy source of usage for    

(i) Space heating and cooling  categorical  HEAT 

(ii) Hot water supply categorical  HWS 

(iii) Kitchen equipment categorical  KITC 

a
*
) House types are divided into either detached house or apartment. 

b
*
)

 
Measured by the fan pressurization method. 

c
*
) Calculated based on building design plans. 

d
*
) Energy source of usage is divided into either electric or non-electric. Since all of the space cooling 

equipment is electric, the value of HEAT is determined by space heating equipment.  

 

The applicability of the proposed methodology is demonstrated by the measured data 

collected from the Japanese residential buildings. The main parameters that could 
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generally represent the four influencing factors unrelated to the occupant behavior should 

be identified before the cluster analysis. Based on the characteristics of the residential 

buildings in Japan, twelve representative parameters of the four influencing factors were 

captured from the database and are outlined in Table 5-1. 

5.4 Results and discussion 

5.4.1 Grey relational grades 

The goal of this research is to identify the influences of the occupant behavior on the 

building energy consumption. Therefore, annual building energy use intensity (EUI) in 

2003 was selected as the objective sequence in GRA, and accordingly, there is no need to 

consider the building area independently. Among the remaining eleven parameters, four 

weather parameters are time-series variables that can be viewed as a function of time. In 

order to take both the impact of season and regional climate difference into consideration, 

grey relational grades were first calculated for each building based on monthly building 

EUI and local monthly weather parameters (Japan Meteorological Agency 2003); then, an 

average was taken over grey relational grades in each district. For the other seven 

parameters, considering the size of database, grey relational grades were calculated on all 

the buildings. 

The results of GRA are given in Table 5-2. It shows that, generally outdoor air 

temperature influenced EUI more significantly than the other three parameters, especially 
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in the cold districts, i.e., Hokkaido and Tohoku. Also, the number of occupants and the 

heat loss coefficient had noticeable impact on the building energy performance, since the 

grey relational grades of these two parameters are between 0.7 and 0.8. This implies that 

these two parameters deserve more attention in the building design phase.  

 

Table 5-2 Grey relational grades for each district 

District 
Grey relational grades 

T V RH RA NO HLC ELA HTa* HEATb* HWSb* KITCb* 

Hokkaido 0.799  0.584  0.620  0.683  

0.701  0.780  0.490  0.617  0.537  0.514  0.551  

Tohoku 0.831  0.555  0.765  0.662  

Hokuriku 0.772  0.532  0.644  0.716  

Kanto 0.737  0.601  0.732  0.641  

Kansai 0.712  0.580  0.695  0.690  

Kyushu  0.654  0.605  0.661  0.675  

a
*
 The two states of house types, i.e., detached house and apartment, are transformed to [0, 1]. 

b
* 

The two states of these three parameters, i.e., electrical and non-electrical, are transformed to [0, 1]. 

 

5.4.2 Cluster analysis 

After data preprocessing and the calculation of the grey relational grades, i.e., 

weighted coefficients of the selected parameters in Table 5-2, cluster analysis was 

conducted using the open-source data mining software WEKA. The results of cluster 

analysis are given in Table 5-3. With the consideration of the size of the database, four 

clusters were determined by the K-means algorithms based on Euclidean distance 

measures. Cluster centroids, representing the mean value for each dimension, were used 

to characterize the clusters.  
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Table 5-3 Centroid of each cluster and statistics on the instances in each cluster 

Attribute Full Data 
Cluster 

1 2 3 4 

T 0.451  0.609  0.483  0.312  0.408  

V 0.313  0.316  0.303  0.339  0.302  

RH 0.395  0.262  0.417  0.428  0.439  

RA 0.347  0.318  0.370  0.343  0.343  

HT 0.166  0.000  0.134  0.411  0.116  

HLC 0.183  0.254  0.154  0.116  0.229  

ELA 0.394  0.291  0.413  0.460  0.390  

NO 0.275  0.216  0.320  0.234  0.296  

HEAT 0.305  0.331  0.000  0.501  0.537  

HWS 0.307  0.514  0.067  0.514  0.289  

KITC 0.222  0.551  0.000  0.514  0.000  

Clustered instances and proportion 67 (100%) 13 (19%) 23 (34%) 15 (22%) 16 (24%) 

 

For example, cluster 1, in comparison with the other clusters, is a segment of 

buildings representing a high outdoor air temperature (the cluster centroid of T in this 

cluster is 0.609, which is higher than that in the other three clusters), detached houses (the 

cluster centroid of HT in this cluster is 0, indicating that all the buildings in this cluster 

are detached house), high heat loss coefficients, low equivalent leakage areas, small 

number of occupants, non-electrical hot water supplies and kitchen equipment, etc. 

Similarly, the other clusters can be explained as follows: cluster 2 is characterized as high 

solar radiation, large number of occupants, electrical space heating and cooling, and 

electrical kitchen equipment. Cluster 3 is a segment of buildings representing a low 

outdoor air temperature, low heat loss coefficients, high equivalent leakage area, and 

non-electrical hot water supplies. Cluster 4 is characterized as high outdoor relative 
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humidity, non-electrical space heating and cooling, and electrical kitchen equipment. In 

addition, the centroid of all the data is also given for comparison with the cluster 

centroids, as shown in Full Data column in Table 5-3. The internal cohesion and external 

separation for the clusters based upon the eleven attributes imply that these attributes 

have the most similar holistic effects on the building energy performance in the same 

cluster, while the effects are significantly distinct for the buildings in different clusters. 

5.4.3 Effects of occupant behavior 

End-use load shapes 

After the generation of four clusters, the end-use loads of the buildings in each cluster 

were averaged over one year. Figure 5-1 shows the average annual EUI of different 

end-use loads for each cluster. The proportion of each end-use load to the whole load is 

also given above the corresponding bar.  

 

 

Figure 5-1 Average annual EUI of different end-use loads 

2
5

%
 3
7

%
 

9
%

 

1
1

%
 

7
%

 

5
%

 

5
%

 

3
%

 

2
9

%
 

3
7

%
 

1
0

%
 

7
%

 

6
%

 

5
%

 

2
%

 

4
%

 

2
8

%
 

3
4

%
 

7
%

 

9
%

 

7
%

 

7
%

 

3
%

 

4
%

 

4
1

%
 

3
3

%
 

6
%

 

6
%

 

5
%

 

5
%

 

2
%

 

1
%

 

0 

50 

100 

150 

200 

H
V

A
C

 
SH

W
 

LI
G

H
T 

K
IT

C
H

 
R

EF
R

I 
A

&
I 

H
&

S 
O

TH
ER

 
H

V
A

C
 

SH
W

 
LI

G
H

T 
K

IT
C

H
 

R
EF

R
I 

A
&

I 
H

&
S 

O
TH

ER
 

H
V

A
C

 
SH

W
 

LI
G

H
T 

K
IT

C
H

 
R

EF
R

I 
A

&
I 

H
&

S 
O

TH
ER

 
H

V
A

C
 

SH
W

 
LI

G
H

T 
K

IT
C

H
 

R
EF

R
I 

A
&

I 
H

&
S 

O
TH

ER
 

A
v
er

ag
e 

an
n
u
al

 E
U

I 
o

f 

d
if

er
en

t 
en

d
-u

se
 l

o
ad

s 

(M
J/

m
2
) 

End-use loads 

Cluster 4 Cluster 3 Cluster 2 Cluster 1 



 

87 

 

 Figure 5-1 shows that hot water supply and HVAC form the two largest categories of 

end-use loads in terms of average annual EUI in all four clusters, while housework and 

sanitary and ‘others’ have a modest contribution. Also, the two largest loads far exceed 

the other six end-use loads that do not have significant variations in the proportion among 

most of the clusters. This indicates that occupants in different clusters had similar 

behavior. Moreover, the proportions of both hot water supply and HVAC remain 

approximately steady among these clusters, except that there is a noticeable increase in 

the HVAC proportion in Cluster 4, which is mainly characterized by the medium-low 

outdoor air temperature and non-electrical space heating equipment. This increase may be 

partly caused by two factors: 1) the high electricity rate in Japan, and 2) the high energy 

efficiency of non-electrical space heating devices such as kerosene space heaters. A high 

electricity rate tends to restrict occupants’ usage of electrical heating/cooling equipment 

in the other three clusters, while high efficiency of non-electrical space heating devices 

encourages occupants’ utilization of them in Cluster 4, thereby increasing energy 

consumption. Therefore, a rational combination of electricity rates and primary 

heating/cooling sources could help reduce building energy consumption through 

influencing occupant behavior.  

Variability in annual EUI of different end-use loads induced by occupant behavior 

In order to examine the variability in the annual EUI of different end-use loads caused 

by occupant behavior, the end-use loads in each cluster were normalized and plotted. 
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Figure 5-2 depicts a box plot of normalized annual EUI of different end-use loads. The 

annual EUI of each building is normalized by the mean value of all the buildings in that 

cluster, thus highlighting the variability and allowing all the end-use loads to be plotted 

together on the same scale. As shown in Figure 5-2, a large variability that ranges from 

close to zero to about four times over the mean value is induced by the user behavior. 

Since the end-use loads in each building are normalized by the mean value of all the 

buildings in that cluster, the value of end-use loads ranges from zero to twice as many as 

the mean value was considered to be an insignificant variation. Accordingly, the threshold 

value for significant variation is defined as 2 (illustrated by the dash line). Except for 

SHW and REFRI, the range of the other six end-use loads exceeds the threshold value in 

most of the clusters. Such high variability implies that there still remains great potential 

for energy saving by improving occupant behavior related to these six domestic end-use 

loads. Contrarily, considering the relatively narrow range of SHW and REFRI, there 

could be little expectation of reducing energy consumption in these areas via improving 

occupant behavior.  

Reference building and energy-saving potential 

In order to evaluate the energy-saving potential for the four clusters, a reference 

building for each cluster was first defined. The characterization of each reference 

building was carried out by identifying the building with the energy consumption closest 

to the cluster energy consumption centroid in terms of Euclidean distance and end-use 
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loads. The annual EUI of different end-use loads of a reference building for each cluster 

is given in Table 5-4.  

  
Figure 5-2 Boxplot of normalized annual EUI of different end-use loads 

Table 5-4 Annual EUI of end-use loads of reference buildings (MJ/m
2
) 

 HVAC SHW LIGHT KITCH REFRI A&I H&S OTHER SUM 

Cluster 1 77  165  31  24  25  12  29  0  363  

Cluster 2 45  161  39  25  22  20  7  12  332  

Cluster 3 154  141  33  42  20  13  6  0  409  

Cluster 4 188  212  34  25  15  19  11  0  504  

 

Figure 5-3 Stacked-column diagram of annual EUI of end-use loads of three 

typical buildings 
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Figure 5-3 shows the stacked-column diagram of annual EUI of different end-use 

loads of three typical buildings in the four clusters: a reference building (RB) and 

buildings with the minimum (Min) and maximum (Max) annual EUI. Occupant behavior 

led to a huge difference between these three different buildings in each cluster. In this 

study, annual EUI of different end-use loads of a reference building was taken as a 

baseline. Accordingly, the energy-saving potential of a building with a larger annual EUI 

than that of a reference building could be determined by computing the difference 

between them. For example, the potential energy savings that could be achieved by 

improving occupant behavior for the buildings with the maximum annual EUI in the four 

clusters, i.e., EUIMax – EUIRB, were 281 MJ/m
2
, 250 MJ/m

2
, 198 MJ/m

2
, and 202 MJ/m

2
, 

respectively. Moreover, comparison with a reference building provided a means of 

examining which end-use load seemed to have the greatest potential for energy 

conservation. For instance, comparison between the building with the maximum annual 

EUI and the reference building in each cluster indicated that HVAC contributed the most 

towards energy saving, while HWS had a negligible contribution. This result is consistent 

with the conclusion drawn from Figure 5-1. Similarly, other end-uses loads with 

noticeable energy-saving potential in each cluster could be identified, such as housework 

and sanitary in Cluster 1 and lighting in Cluster 4. Such information can help building 

owners realize which occupant behavior should be modified to improve building energy 

performance. Furthermore, based on this information, a better outcome may be achieved 
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if building occupants receive an energy-saving education and tips on how to improve 

their behavior. It should be noted that, in comparison with a reference building, buildings 

with the minimum annual EUI in the four clusters not only had lower HVAC EUI, but 

also had much smaller SHW EUI. A possible explanation for this is that occupants in 

these buildings reduced energy consumption by being concerned about the cost in living 

standards. For example, these occupants may decrease the frequency of utilization of 

room air conditioners in the cooling season, even though the indoor temperature is not the 

best comfort temperature. Further field investigation is needed to identify the real 

reasons.    

Monthly variations of end-use loads induced by occupant behavior 

In order to examine the effects of occupant behavior on end-use loads over time and 

buildings, monthly variations of average end-use loads in each cluster were plotted in 

semi-logarithmical graphs, as shown in Figures 5-4 to 5-7. Clearly HVAC shows a 

significant variation in all the four clusters. Generally, the peak of HVAC occurred in the 

heating season, especially in December and January, while the trough of HVAC occurred 

in the cooling season, especially June and July. This may have occurred because four 

districts (i.e., Hokuriku, Kanto, Kansai, and Kyushu) have a moderate climate and the 

other two (Hokkaido, Tohoku) are located in a cold climate, and cooling energy demand 

is considerably lower than heating energy demand. At the same time, HVAC in Cluster 3, 

characterized by the lowest outdoor air temperature, had the biggest peak-to-trough ratio. 
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This indicates that weather conditions significantly influenced occupant behavior, thereby 

impacting building energy consumption. With respect to SHW, its variation is noticeable, 

considering the absolute magnitude of the variation is comparatively large. In general, the 

peak of SHW occurred in December or January, while the trough occurred in August or 

September. Evidently this was also caused by weather conditions, especially outdoor air 

temperature. With regard to LIGHT, KITCH, REFRI, and A&I, these four curves bear a 

remarkable similarity to each other in the four clusters, and almost all of them vary by 

less than 20% from the mean. This indicates that these households tended to maintain 

their lifestyles, and the level of their general indoor activities associated with these 

end-use loads did not fluctuate wildly from month to month. In addition, the remaining 

two smaller end–use loads, i.e., H&S and OTHER, showed a marked seasonal variation 

in the four clusters, while the absolute magnitude of the variation is comparatively small. 

Basically the end-use loads in a heating season are higher than in a cooling season. A 

further investigation of corresponding occupant-behavior patterns is needed to explain the 

reasons for this variation. 
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Figure 5-4 Monthly variation of end-use loads in Cluster 1 

 

Figure 5-5 Monthly variation of end-use loads in Cluster 2 

 

Figure 5-6 Monthly variation of end-use loads in Cluster 3 
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Figure 5-7 Monthly variation of end-use loads in Cluster 4 

Monthly average indoor temperature of air-conditioned room  
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of Min was around 5 °C higher than that of Max, and the room temperature of RB was 

generally between that of Max and Min in this season. Considering that Cluster 1 is 

characterized by the highest outdoor air temperature, it can be deduced that the frequency 

of utilization of room air conditioners in the cooling season in these three buildings can 

be ranked as: Max > RB > Min. With respect to the other three clusters, Figures 5-9 to 

5-11 show that the living room of Max was maintained at a temperature of about 24 °C 

throughout the year, while living-room temperatures of RH and Min varied with the 

outdoor air temperature. Clearly the frequency of utilization of space cooling/heating 

equipment in the three buildings in these three clusters has the same order as that in 

Cluster 1 for both heating and cooling seasons. These results suggest that occupant 

behavior that seeks thermal comfort normally results in high energy consumption. 

Therefore, there has to be a trade-off between human thermal comfort and building 

energy consumption, and it is necessary to strike a balance between achieving a high 

comfort level and reducing energy consumption through modifying occupant behavior.  

 

Figure 5-8 Monthly average living-room temperature of three typical buildings 

in Cluster 1 
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Figure 5-9 Monthly average living-room temperature of three typical buildings 

in Cluster 2 

 

Figure 5-10 Monthly average living-room temperature of three typical buildings 

in Cluster 3 

 

 

Figure 5-11 Monthly average living-room temperature of three typical buildings 

in Cluster 4 
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5. 4 Summary 

This chapter presents the development of a novel data analysis methodology through 

clustering techniques for identifying the effects of occupant behavior on the building 

energy consumption. It is realized by organizing similar buildings among all the 

investigated buildings into various groups based on the four influencing factors unrelated 

to user behavior, so that for each building in the same group the four factors have similar 

full effects on energy consumption. Min-max normalization techniques are performed as 

a data preprocessing step to deal with the inconsistencies of different attributes. Grey 

relational analysis is also carried out, and grey relational grades, a measure of relevancy 

between two factors, are used as weighted coefficients of attributes in cluster analysis.  

In order to demonstrate its applicability, this methodology was applied to the 

residential buildings located in six different districts of Japan. Twelve attributes were 

captured from the database to represent the influencing factors unrelated to occupant 

behavior. The K-means method was selected in cluster analysis and four clusters were 

obtained as a result.  

In these four clusters, the effects of occupant behavior on the building energy 

consumption were examined at the end-use level. End-use variations over time and 

buildings induced by the occupant behavior were analyzed. Also, as a preliminary step 

toward identifying energy-saving potential, a reference building was defined as the 

building whose energy consumption was the closest to cluster energy consumption 
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centroid in terms of Euclidean distance and end-use loads. Moreover, indoor climate was 

investigated to better understand and interpret the effects of occupant behavior.  

The proposed method allows researchers to evaluate building energy-saving potential 

by improving user behavior, and provides multifaceted insights into building energy 

end-use patterns associated with occupant behavior. The results obtained could help 

prioritize efforts of modification of occupant behavior to reduce building energy 

consumption. 
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6. A NOVEL METHODOLOGY FOR KNOWLEDGE 

DISCOVERY THROUGH MINING ASSOCIATIONS 

BETWEEN BUILDING OPERATIONAL DATA 

6.1 Introduction 

Building industry is not only energy-intensive, but also knowledge-intensive. Hence, 

it is highly desirable that useful knowledge hidden in building operation data be 

discovered to help reduce building energy consumption. In particular, associations and 

correlations between building operational data should be examined. 

This chapter reports the development of a methodology for examining the 

associations and correlations between building operational data. The goal of this study is 

to achieve a better understanding of building operation and to provide opportunities for 

developing strategies to reduce energy consumption while maintaining a comfortable and 

healthy indoor environment.  

6.2 Methodology  

A methodology is proposed for examining all the associations and correlations 

between building operational data and leading to knowledge discovery. The methodology 

is based on a basic data mining technique: association rule mining (ARM), which was 

introduced in Chapter 3. In order to find and take advantage of more complete 
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associations and correlations, building operational data in two different time periods (i.e., 

both a day and a year) need to be mined separately, considering associations/correlations 

between operational data in different time periods could be significantly different. 

Moreover, data in two different years also need to be mined separately, and obtained 

associations/correlations in the two years should be compared between each other. The 

comparison can assist in identifying marked changes in associations/correlations and also 

building operation, thereby uncovering useful knowledge. The proposed methodology is 

given in Figure 6-1, and it can be divided into 8 steps and is explained as follows: 

 

Data 

collection

Data pre-

processing

ARM 

(typical day in 

the 2nd year)

ARM 

(2nd year)  

Comparison 

between the 

two rule sets

Rule set 2
Knowledge 

extraction

ARM 

(1st year)
Rule set 3

Rule set 4

ARM 

(typical day in 

the 1st year)

Rule set 1

Comparison 

between the 

two rule sets

 

Figure 6-1 Proposed methodology to examine all the associations and 

correlations between building operational data 

 

Step 1 Data collection. Two-year building operational data need to be collected and 

stored in a database.  
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Step 2 Data pre-processing. Measured data is often noisy (especially containing outlier 

values whose values are grossly different, i.e., much higher or lower, from others in 

databases), which can lead to low-quality mining results. Hence, the collected data should 

be processed to remove outliers. 

Step 3 Perform the ARM in typical day (e.g., the coldest or hottest day) data in the 1
st
 

year. Obtained rules are stored in Rule set 1 (see Figure 6-1).   

Step 4 Select parameters having associations in the typical day data in the 1
st
 year; and 

perform the ARM in the typical day data in the 2
nd

 year within the selected parameters, in 

order to remove time effects and reduce other influences, such as the change of occupant 

behavior and weather conditions. Obtained rules are stored in Rule set 2. 

Step 5 Perform the ARM in the 1
st
 year data. Obtained rules are stored in Rule set 3. 

Step 6 Select parameters having associations in the 1
st
 year data; and perform the ARM 

in the 2
nd

 year data within the selected parameters. Obtained rules are stored in Rule set 4. 

Step 7 Compare the rules between the rule sets 1 and 2, and the rule sets 3 and 4; and 

highlight the similarity and difference in associations between the two different time 

periods (i.e., the typical day in the1
st
 year and 2

nd
 year, the 1

st
 year and the 2

nd
 year).   

Step 8 Extract useful knowledge from the comparison between these rules.  

For demonstration purposes, the proposed methodology was applied to the collected 

data in the EV building in this study.  



 

102 

 

6.3 Data pre-processing 

Outliers are data objects in the database whose values are grossly different (i.e., much 

higher or lower) from others. Outliers regularly occur in building energy consumption 

measurement and they are often indicative of measurement errors, and thus must be 

removed. Removal of outliers plays a crucial role in preparing for the ARM, since the 

outliers will skew and thus alter the grouping of data. For example, suppose an attribute 

ranges from 0 to 10, and can be discretized into two intervals, [0, 5) and [5, 10] (or LOW 

and HIGH) as mentioned previously. If there exists an outlier (e.g., 30), then the two 

intervals are [0, 15) and [15, 30] (or LOW and HIGH) by using the same method. 

Accordingly, all the data are defined as LOW except the outlier, which is not true.  

Various methods can be used for effective detection and removal of the outliers. In this 

study, a method based on the lower quartile (Q1) and the upper quartile (Q3) of the standard 

boxplot was used due to its simplicity (Han et al., 2006). Specifically, outlying values can 

be distinguished using the following two rules: 

Rule 1: data values that are less than Q1 – 1.5 × (Q3 – Q1) are defined as outliers 

Rule 2: data values that are larger than Q3 + 1.5 × (Q3 – Q1) are defined as outliers 

Additionally, in order to perform the ARM, the value of quantitative attributes 

generally needs to be classified into categorical values. Given that building operational 

data, such as supply air temperature and monthly energy consumption, is normally 

described as either high or low by occupants in practice, a two-interval scale, i.e., HIGH 
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and LOW, was applied in this study. Specifically, for each quantitative attribute, data 

ranged from the average of the maximum and minimum to the maximum value is ‘HIGH’, 

and data ranged from the minimum value to the average of the maximum and minimum is 

‘LOW’.  

With consideration of the seasonality of building energy consumption, the ARM was 

performed based on seasonal data instead of annual data in this study (refer to steps 5 and 

6 in Section 6.2). Given that the EV building is located in Montreal which has very cold 

winters, the winter data in both 2007 and 2009 was mined to generate association rules to 

provide opportunities for saving more energy (as mentioned earlier, the winter data in 2008 

was unavailable). Furthermore, only the data in working days/hours was used when mining 

seasonal data, considering that building energy consumption is significantly different 

between working days/hours and non-working days/hours due to occupant behavior (for 

the EV building, non-working days include weekends and holidays; and working hours are 

from 8 AM to 5 PM). The resulting data in 2007 and 2009 were stored in dataset_1 and 

dataset_2, respectively. Figure 6-2 shows the distribution of two intervals of the entire 

ARM attributes in the dataset_1 after the removal of outliers and discretization. Note that 

the numbers in the abscissa represent the ARM attributes, and correspond to the numbers in 

Table 1. Clearly, it can be observed that most of the percentages range from 30% to 70%, 

indicating a roughly uniform distribution. 
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Figure 6-2 Distribution of two intervals of all monitored parameters in the 

dataset_1 

6.4 Results and Discussion 

6.4.1 ARM on the Coldest Day in the Dataset_1 and Dataset_2 

The initial rule mining was carried out with the dataset_1 and dataset_2 on the coldest 

day in both 2007 and 2009. After experimenting with various combinations of support and 

confidence values, a support of 80% and a confidence of 95% were set as minimum 

thresholds. The thresholds mean that, for each generated association rule, at least 80% of 

all the data records under analysis contain both premise and conclusion; and the probability 

that a premise’s emergence leads to a conclusion’s occurrence is 95% or more. In addition, 

the minimum threshold of lift value was set 1 to find positive correlations. The mining in 

the dataset_1 generated 476 rules (i.e., the rule set 1) and 43 parameters were involved. 
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Then, the association rules were mined in the dataset_2 and only the data records of these 

43 parameters were used. Such mining generated 169 rules (i.e., the rule set 2). Among the 

generated rules, many of them are obvious and uninteresting; and truly interesting rules 

need to be further identified based on the knowledge of building engineering. Also, the two 

rule sets (i.e., the rule sets 1 and 2) were compared with each other. As a result, three 

potentially useful association rules were found and given in Table 6-1.  

 

Table 6-1 Three best rules generated 

No. Premise Conclusion Sup Conf Lift  Dataset 

Rule 1 
TAIVah [HIGH],  

TAIVac [LOW] 

FIV [HIGH],  

TAVac [LOW] 
0.81 0.99 1.21 1 

Rule 2 
FIV [HIGH],  

TAVac [LOW] 

TAIVah [HIGH],  

TAIVac [LOW] 
0.81 0.99 1.21 1 

Rule 3 TAIVac [LOW] TAIVah [HIGH] 0.78 1.00 1.12 2 

 

Clearly, the premise and conclusion of the first two rules are reversed, and thus shows 

that the following four facts frequently occurred at the same time in winter 2007:  

(1) The fresh air temperature after the heating coil in the FHU 4 was ‘HIGH’,  

(2) The fresh air temperature after the cooling coil in the FHU 4 was ‘LOW’, 

(3) The fresh air fan frequency of the FHU 4 in the VA side was ‘HIGH’, 

(4) The fresh air temperature after the cooling coil in the FHU 5 was ‘LOW’.  

Also, Rule 3 shows that the following two facts frequently occurred at the same time 

in winter 2009: 
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(1) The fresh air temperature after the cooling coil in the FHU 4 was ‘LOW’, 

(2) The fresh air temperature after the heating coil in the FHU 4 was ‘HIGH’. 

Based on the facts 1, 2, 5, and 6, it was observed that, in winter, the fresh air 

temperature in the FHU 4 usually increased first and then significantly decreased, which 

indicates a possible waste of energy. In order to illustrate this observation clearly, the 

screenshot of the FHU 4 control panel is shown in Figure 6-3. In this diagram, the 

components in ∆, ⃞, ⃝, ∇ are the heat recovery (recuperation), heating coil, humidifier 

and cooling coil, respectively.  

 

 

Figure 6-3 Screenshot of the FHU 4 control panel 
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The heating coil was always on while the cooling coil was always shut down in winter
2
. 

Hence, after the heating coil the temperature of fresh air drops only because of the 

humidifier that uses municipal water
2
 at about 2°C. Site visit confirmed that this water was 

drained directly to sewage after humidification process. The heating and humidifying 

process is plotted in Figure 6-4 (left). 
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Figure 6-4 Heating and humidification processes in psychrometric chart 

 

As seen in the left diagram of Fig. 6.4, outdoor air is at state point A. Process A-B 

represents sensible pre-heating and heat recovery, which can be characterized by a 

horizontal line. After this, heating and humidification are carried out successively, shown 

                                                 

2 Information provided by the building operators. 

2 Information provided by the building operators. 
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as processes B-C and C-D. Based on the monitored data, the actual air temperature after the 

heating coil (point C) and the air temperature after the humidifier (point D) are plotted in 

Figure 6-5.  

 

 

Figure 6-5 Air temperature after heating coil (state C) and humidifier (state D) 

 

Figure 6-5 indicates that the air temperature after the heating coil is around 14°C higher 

than that after the humidifier. Clearly it is the low temperature of municipal water that 

caused the dramatic temperature drop (from state C to state D) in the conditioned fresh air, 

and such temperature drop can lead to a significant energy waste. That means the heat 

added to the fresh air during A to B process and B to C process is simply drained to 

municipal sewage after the humidifier.  

One possible remedy for such an issue would be decreasing the air temperature after 
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the heating coil. More specifically, shift point C to the left (to point E), as shown in the right 

diagram of Figure 6-4. Correspondingly, one possible method in reality could be recycling 

and reusing (instead of discharging) the municipal water after it is warmed up after passing 

through the humidifier. In order to describe this process clearly, based on the monitored 

data and heat transfer theory, two schemas of hypothetical air/water temperature in the 

FHU 4 in winter before and after the remedy are given in Figures 6-6 and 6-7. 

Heat 

recovery

Heating 

coil
-9 °C 3 °C

Heating water

Fresh 

air
28 °C

2 °C

Municipal water

15 °C

12 °C

A B C D

Back to boiler Drained as 

waste water

Humidifier

 Figure 6-6 Hypothetical air/water temperature in the FHU 4 before the remedy 

Heat 

recovery

Heating 

coil
-9 °C 3 °C

Reducing flow rate of 

heating water

Fresh 

air
21 °C

8 °C

Mixed water 

(Municipal water + recycled water)

15 °C

12 °C

Recycle and supply 

to humidifier again

A B C D

Back to boiler

Humidifier

Figure 6-7 Hypothetical air/water temperature in the FHU 4 after the remedy 

In Figure 6-6, the outdoor air temperature, air temperature after the heat recovery, air 
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temperature after the heating coil, and air temperature after the humidifier are assumed to 

be -9 °C, 3 °C, 28 °C and 15 °C, respectively. At the same time, municipal water before and 

after the humidifier are assumed to be 2 °C and 12 °C.  

In Figure 6-7, the recycled high temperature municipal water (at 15 °C) and fresh 

municipal water (at 2 °C) could be mixed and then supplied to the humidifier again, 

considering the water loss during humidifying. The temperature of the mixed water is 

assumed to be at 8 °C and the water left the humidifier at 12 °C (or even higher). With this 

method, it would be enough to heat the fresh air up to a lower temperature (e.g., 21 °C as 

shown in Figure 6-7) instead of 28 °C in the heating coil. Accordingly, a huge amount of 

energy can be saved in the heating coil. However, it should be mentioned that it would be 

necessary to treat the water before it is reused
3
 to prevent microbial issues.  

6.4.2 ARM in winter in the dataset_1 and dataset_2  

Association rule mining was also carried out for the dataset_1 and dataset_2. After 

experimenting with various combinations of support and confidence values, a support of 

50% and a confidence of 80% were set as minimum thresholds. In addition, the minimum 

threshold of lift value was set 1 to find positive correlations. Specifically, association 

                                                 

3
 Through discussion with the building operators, this energy waste was confirmed and they planned to 

fix this problem using an appropriate method.  
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rules were first mined in the dataset_1. Such mining generated 461 rules (i.e., the rule set 

3), and 32 parameters were involved in these rules. Then, association rules were mined in 

the dataset_2 and only the data records of these 32 parameters were used. Such mining 

generated 262 rules (i.e., the rule set 4). After that, the two sets of generated rules were 

compared with each other to further identify truly interesting rules. As a result, the 

obtained interesting rules were grouped into three categories in order to discover useful 

knowledge, as follows: 

 

Category 1: same rules generated in the both datasets  

 

Table 6-2 Four rules in Category 1 

No. Premise Conclusion Sup Conf Lift  Dataset 

Rule 1 QI1 [LOW] QII1 [LOW] 0.52  0.98  1.70  1 

Rule 2 QI1 [LOW] QII1 [LOW] 0.55 1.00  1.63  2 

Rule 3 QI2 [LOW] QII2 [LOW] 0.52 0.97  1.70  1 

Rule 4 QI2 [LOW] QII2 [LOW] 0.57 0.95  1.65  2 

 

From Rules 1 and 2, it can be observed that, the airflow rates of fan 1 in the FHU 1 

and FHU 2 have a strong association and correlation. At the same time, Rules 3 and 4 

show that the airflow rates of fan 2 in the FHU 1 and FHU 2 also have a strong 

association and correlation (this is reasonable since the two fans in the same FHU are 

identical and controlled by one variable speed drive (VSD)). Therefore, it can be inferred 
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that the total airflow rates of the FHU 1 and FHU 2 are strongly associated and 

correlated.  

 

 

Figure 6-8 Air flow rates of the FHUs 1 and 2 in the dataset_1 and dataset_2 

 

The airflow rates of the FHUs 1 and 2 in both dataset_1 and dataset_2 are plotted in 

Figure 6-8. It can be seen that the variation of airflow rates of these two FHUs follows 

the same trend. Furthermore, the values of airflow rates between these two FHUs are 

close to each other in both datasets. This indicates that the total airflow rates of the FHU 

1 and FHU 2 are always strongly associated and correlated. Accordingly, if a continuous 

significant difference between them is observed, it can be inferred that either of the FHUs 

could have a fault. Therefore, the rules can help to understand FHU operation and also be 

applied to online fault detection. 
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Category 2: similar rules generated in both the datasets but are opposite in 

premise/conclusion 

 

Table 6-3 Six rules in Category 2 

No. Premise Conclusion Sup Conf Lift  Dataset 

Rule 1 QV1 [LOW] QIV1 [LOW] 0.59 0.92 1.49  1 

Rule 2 QV1 [HIGH] QIV1 [LOW] 0.51 0.81 1.31 2 

Rule 3 QV2 [LOW] QIV2 [LOW] 0.57 0.91 1.50  1 

Rule 4 QV2 [HIGH] QIV2 [LOW] 0.54 0.99 1.31 2 

Rule 5 QIX3 [LOW] TAIXbri [HIGH] 0.60 0.82 1.12 1 

Rule 6 QIX3 [HIGH] TAIXbri [HIGH] 0.52 0.90 1.51 2 

 

Six potentially useful rules in Category 2 are found and given in Table 6-3. Rules 1 

and 2 show that, between these two years, the airflow rates of fan 1 in the FHU 4 and 

FHU 5 have opposite associations and correlations. Similarly, Rules 3 and 4 can also be 

explained.  

In order to provide an insight into the association opposition, the airflow rates of fan 1 

in the FHUs 4 and 5 in these two years are plotted in Figures 6-9 and 6-10, respectively. 

Considering that fan 1 and fan 2 in the same FHU are identical and controlled by the 

same VSD, their airflow rates are approximately the same, and thus only the airflow rate 

of the fan 1 is plotted. 
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Figure 6-9 Air flow rates of fan 1 in the FHUs 4 and 5 in dataset_1  

 

 

Figure 6-10 Air flow rates of fan 1 in the FHUs 4 and 5 in dataset_2 

 

Figure 6-9 clearly shows that the values of air flow rates of fan 1 in these two FHUs 

are very close in 2007. This is reasonable since these two FHUs are identical, and clearly 

their airflow rates should always be almost the same. However, Figure 6-10 shows that, 

in 2009, the airflow rates of fan1 in the FHU 5 are much larger than that in the FHU 4 

most of the time. Accordingly, it can be inferred that a fan fault occurred in the FHU 4 in 

2009. Therefore, the rules can be used as a guide of fault diagnosis on the fans and FHUs. 

Based on Rules 5 and 6, it can be found that these two rules’ premises (i.e., the 
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airflow rate of fan 3 in the EHU 2) are opposite.  

Figure 6-11 shows the screenshot of the EHU 2 control panel. Clearly, exhaust air 

from different parts of the VA part will be mixed in duct 4 before being distributed to the 

three exhaust air ducts (refer to 1, 2 and 3 in this diagram) and the three fans (refer to 

three yellow circles in this diagram). A further analysis of operational data on these three 

fans in both years shows that two of them were always turned on to extract exhaust air 

while the other one was turned off. Moreover, two different control strategies were 

implemented in the two different years respectively: in 2007, the fans 1, 2, and 3 were 

turned off alternatively; in 2009, the fan 2 was always turned off while the fans 1 and 3 

were always turned on. However, from the point of view of energy consumption, there is 

no difference between these two strategies, and it is highly desirable that a new control 

strategy can be proposed to save energy. Given that these three fans are identical and 

controlled by individual VSD, one possible energy-saving method is to use all these three 

fans instead of two of them. A comparison between the current and proposed strategy is 

made to show the energy conservation. For current strategy, assume the actual air flow 

rate of each fan is M, the actual fan speed is V, and the actual power required by each fan 

is P. Table 6-4 shows the results of comparison between the two strategies. 
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Figure 6-11 Screenshot of the EHU 2 control panel 

 

Table 6-4 Comparison between the two control strategies 

Strategy 
Number of 

fans used 

Air flow rate  

of each fan 

Total air 

flow rate 

Fan 

speed 

Power required by 

each fan 

Total power 

required 

Current  2 M 2M V P 2P 

Proposed  3 2M/3 2M 2V/3
a
 8P/27

b
 8P/9 

a 
According to the fan laws, the capacity is directly proportional to the fan speed. 

b
 According to the fan laws, the power required is proportional to the cube of fan speed. 

 

From Table 6-4, it is obvious that (2P-8P/9) = 10P/9 can be saved if the proposed 

strategy is used. However, before this strategy is adopted in practice, it should be checked 

whether the fans will operate in the range of high efficiency, but not the dangerous 

unstable (surge) region at low air flow rates.  
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Category 3: rules generated in only one dataset (either dataset_1 or dataset_2) 

 

Table 6-5 One rule in Category 3 

No. Premise Conclusion Sup Conf Lift  Dataset 

1 FVI [HIGH] FVII [HIGH] 0.60 0.97 1.60 1 

 

One potentially useful rule in Category 3 was found and given in Table 6-5. The rule 

shows that the fan frequency in the RHU 1 and RHU 2 has a strong association and 

correlation. The frequency of the two fans is plotted in Figure 6-12, and it can be seen 

that FVI is almost equal to FVII all the time. Given that the RHU 1 and RHU 2 are identical, 

it can be inferred that these two RHUs’ air flow rates (i.e., QVI and QVII) should be 

approximately identical. Accordingly, there should exist a strong association and 

correlation between QVI and QVII. However, no rule between QVI and QVII has been found 

in both dataset_1 and dataset_2. For this reason, air flow rates of the fan in the RHUs 1 

and 2 in the dataset_1 are plotted in Figure 6-13. Clearly, a significant difference can be 

found between QVI and QVII, which indicates that either RHU 1 or RHU 2 has a fault. 

Further, data shows that the RHU 1 did not operate in 2009 (QVI is zero in the dataset_2). 

Therefore, it can be concluded that the RHU 1 has a fault. 
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Figure 6-12 Frequency of VSD on the fan in the RHU1 and RHU2 in dataset_1 

 

 

Figure 6-13 Air flow rates of the fan in the RHUs 1 and 2 in dataset_1 

6.4.3 Association map 

Besides association rules in the form of text, RapidMiner also provides a graphical 

view of an association map, representing all generated association rules. For simplicity, 

the association map in the dataset_2 instead of the dataset_1 is given in Figure 6-14, 
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considering that only the parameters showing up in both the rule set 3 and the rule set 4 

are involved.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-14 Association map in the dataset_2 provided by RapidMiner 

 

In this map, each line represents one association rule, and thus the amount of lines 

quantitatively indicates the amount of associations between various parameters. Moreover, 

an arrow towards the parameter shows that this parameter appears in the conclusion of 

the association rule, and vice versa.  

The map provides a holistic pattern of associations between various parameters. 
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Clearly it can be seen that there exists a significant difference between the parameters on 

the amount of associations with other parameters. For example, TAIar and TAIIar (i.e., fresh 

air temperature after the recuperation glycol in the FHUs 1 and 2) have only one 

association with other parameters and both of them appear in the premise. This indicates 

that these two parameters’ values may be purely random or remain relatively stable 

throughout the whole winter and thus no association with other parameters can be found. It 

may have occurred since these two parameters are partly decided by outdoor air 

temperature, which is uncontrollable and relatively irregular. On the contrary, QIV2 (i.e., the 

fresh air flow rate of fan 2 in the FHU 4) has the most associations with other parameters, 

and appears in both premises and conclusions. This indicates the parameter has the highest 

possibility of influencing or being influenced by other parameters and thus deserves extra 

attention.  

In addition, between similar parameters (e.g., air flow rates of two fans in the same 

FHU), difference in the amount of associations with other parameters should not be huge. 

However, it is noticed that, between TAIVac and TAVac (i.e., the fresh air temperature after the 

cooling coil in the FHUs 4 and 5), such difference is significant: TAIVac only has one 

association with other parameters while TAVac has eight. This implies that the FHU 4 may 

have a fault. Accordingly, data analysis was performed on various parameters of the FHU 4; 

and the air flow rates of fans 1 and 2 in the FHU 4 are plotted in Figure 6-15. Clearly, the air 

flow rates between these two fans are completely different most of the time. Considering 
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fan 1 and fan 2 in the same FHU are identical and controlled by the same VSD, it can be 

inferred that, either the fan 1 or the fan 2 (or both of them) in the FHU 4 has a fault. This 

conclusion is in accordance with the conclusion drawn from Rules 1 to 4 in Category 2 

(Section 6.4.2). 

 

 

Figure 6-15 Air flow rates of fans 1 and 2 in the FHU4 in the dataset_2 

 

The acquired knowledge could help building operators and owners better understand 

HVAC system operation and detect faults. 

6.5 Summary and conclusions 

In this chapter, a methodology is proposed for examining all the associations and 

correlations between building operational data. Accordingly, useful knowledge will be 

uncovered to help improve HVAC system performance and reduce energy consumption. 
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The methodology is based on a basic data mining technique: association rule mining. In 

order to use this methodology, two-year building operational data needs to be collected. 

Data pre-processing should be performed before the ARM to remove outliers, so as to 

improve the quality of data and, consequently, the mining results. Furthermore, to take 

complete advantage of building operational data, data in different period length (e.g., 

both a day and a year) should be mined. Also, the obtained associations and correlations 

in different years should be compared between each other. 

In order to demonstrate its applicability, this methodology was applied to the EV 

building located in Montreal, which is very cold in winter. Accordingly, the winter data of 

the air-conditioning system in this building in both 2007 and 2009 was mined. A waste of 

energy in the air-conditioning system was identified through mining association rules for 

the coldest day. Also, based on the comparison between winter association rules in the 

different years, possible faults in equipment were detected, and a low/no cost strategy for 

saving energy in system operation was proposed. Moreover, the association map was 

used to provide a holistic view of all the generated rules. This map could help explain 

how various parameters associate one with each other, and detect faults in equipment. 

The proposed methodology allows for addressing the special challenges caused by the 

complexity of large volume of building operational data. By using this methodology, 

building operators and owners can discover all the useful associations and correlations 

between building operational data. Based on domain expertise, they can translate the 
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obtained associations and correlations into useful knowledge, thereby better 

understanding building operation, identifying energy waste, detecting faults in equipment, 

and proposing low/no cost strategies for saving energy. 
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7. A METHODOLOGY FOR IDENTIFYING AND 

IMPROVING OCCUPANT BEHAVIOR IN RESIDENTIAL 

BUILDINGS 

7.1 Introduction 

Among various factors influencing residential building energy consumption, occupant 

behavior plays an essential role and is difficult to investigate analytically due to its 

complicated characteristics. Note that here occupant behavior refers to activities that have 

a direct or indirect impact upon building energy consumption. For example, occupants 

turn on/off lights, TV sets, computers, microwave ovens, and so on. Commonly such 

behavior is associated with various household appliances and thus can be deduced 

indirectly from corresponding end-use loads. For example, the total daily (or monthly, 

annual) lighting energy consumption in a residential building qualitatively indicates the 

duration of lighting usage in this day (or month, year). Accordingly, any improvement in 

the occupant behavior leads to the reduction of the residential building energy 

consumption. Therefore, it is necessary to develop a methodology to help occupants 

identify and improve their behaviour that needs to be modified.  

This chapter reports the development of a rational methodology for identifying and 

improving occupant behavior in residential buildings, based on an analysis of collected 
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data and information. In particular, feasible recommendations are made for assisting 

occupants to modify their behaviour so as to reduce energy consumption.    

7.2 Methodology  

A methodology is proposed for efficiently improving occupant behavior in residential 

buildings, and evaluating the energy-saving potential resulting from these modifications. 

As mentioned previously, end-use loads are used to deduce user activities indirectly. 

Specifically, these loads are used to map onto occupant behavior at two levels, as shown 

in Figure 7-1.  

 

End-use loads in residential buildings

Level 1

Main end-use loads

1) water heater...

2) lamp, table lamp...

3) rice cooker, dishwasher...

4) refrigerator

5) television, computer...

6) washing machine, dryer...

7) unclear items

1) Hot water supply

2) Lighting

3) Kitchen

4) Refrigerator

5) Entertainment & Information

6) Housework & Sanitary

7) Others

Level 2

Sub-category end-use loads

General occupant behavior Specific occupant behavior
 

Figure 7-1 Two-level end-use loads 
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Level 1 loads are divided into seven main end-use loads, each of which can be further 

divided into various end-users in level 2. The seven end-use loads in level 1 are assumed 

to be non-weather-dependent (Zmeureanu et al., 1999), due to the fact that the usage of 

these appliances (i.e., lighting, refrigerators, etc.) is mainly determined by occupants’ 

presence and behaviour. It should be mentioned that, the level 2 end-users are not fixed in 

different residential buildings since commonly different families have different household 

appliances. The level 1 and level 2 loads are mapped onto general occupant behavior, 

such as activities associating with lighting and hot water supply, and specific occupant 

behavior, such as the use of computers and washing machines.  

For demonstration purposes, a group of buildings is used to show the practical 

application of this methodology. Recommendations for improving occupant behavior are 

provided for a selected building (case building) within this group. The methodology is 

briefly described as follows:  

(1) Identify energy-inefficient general occupant behavior in the case building,  

(2) Identify a reference building for the case building to evaluate its energy-saving 

potential, and further determine its energy-inefficient general occupant behavior by 

comparison with the reference building, and  

(3) Identify energy-inefficient specific occupant behavior in the case building.  

The proposed methodology can be demonstrated in a five-step process, as shown in 

Figure 7-2.  
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Provide recommendations for modifying occupant behavior for the  

case building occupants

 Case building

(data measurement)

Database development

(related buildings)

Clustering-then-classification

Reference building identification

for the case building

Association rule mining in the case building

 

Figure 7-2 Methodology of evaluating and efficiently improving occupant 

behavior in the case building 

 

Each step in this methodology is briefly explained as follows: 

(1) First, a database should be developed based on the collection of measured data for 

the case building and other related buildings (e.g., buildings selected in the same 

city or country). The daily (or hourly) level 2 end-use loads should be measured, 

and the level 1 end-use loads can be accumulated based on the level 2 data. The 

database should also contain information about building-related parameters, such 
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as floor area and number of occupants.  

(2) Through clustering analysis, all the related buildings in the database are clustered 

into different groups in terms of the level 1 loads (for each main end-use load, the 

annual per capita end-use loads is used for comparison).  Accordingly, general 

occupant behavior in different buildings in the same group has a high similarity, 

but is quite different from that in other groups. Specifically, comparing with 

occupants in other clusters, on average each occupant in the same cluster 

consumes similar amounts of energy each year in terms of the seven level 1 

end-use loads. Note that these seven loads are taken into consideration separately 

but simultaneously. Consequently, by comparing with other clusters, the 

characteristics of occupant behavior in each cluster can be identified. Such 

information can help building occupants to evaluate their own behavior among all 

the building owners in the database, thereby identifying general occupant 

behaviour which results in inefficient use of energy. Then, data classification 

based on the generated clusters is performed, and specifically, a decision tree 

(Han et al., 2006) is developed. By using the generated decision tree, a building 

can be assigned to a specific cluster, provided its level 1 loads are available. In 

particular, once the case building has been assigned to a cluster, its general 

energy-inefficient occupant behaviour can be determined. It should be mentioned 

that, the decision tree was selected and used in this study due to the fact it can 
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provide useful information which can help to understand the role of building 

occupant behavior in improving energy saving. 

(3) Among the related buildings in the database, a reference building (RB) is 

identified for the case building to evaluate its energy-saving potential due to the 

occupant behavior modification. The RB is selected from the same cluster as the 

case building so that both of them have similar holistic occupant behavior patterns. 

The comparison with the RB also shows the case building occupants which 

general occupant behavior still needs to be modified.  

(4) After identifying the energy-inefficient general occupant behavior through 

clustering analysis and RB identification, it is necessary for the case building 

owner to know which specific activities and corresponding appliances deserve 

extra attention. Therefore, association rules are mined to identify the associations 

and correlations between various user activities in the case building, in order to 

highlight energy-saving opportunities. 

(5) Recommendations for energy-efficient activities are provided for the case 

building occupants, so that they can modify their behavior. 

7.3. Reference Building (RB) identification  

The steps in identifying a RB for the case building are explained as follows. 

RB is normally utilized as a benchmark for comparison and the method of defining a 

RB depends on the purpose of study. In this study, the RB was defined to evaluate the 
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energy-saving potential due to occupant behavior modification in the case building, and 

identify occupant behavior that needs to be improved. Therefore, the definition of RB for 

the case building should comply with the following two rules: 

Rule 1: The holistic occupant behavior patterns in RB and the case building should be 

as similar as possible. Different residential building occupants normally have different 

lifestyles and behavior patterns. In general, it is difficult for building occupants to make 

dramatic lifestyle changes in order to reduce energy consumption. Hence, among the 

related buildings in the database, buildings with similar occupant behavior patterns 

should be considered when evaluating the energy-saving potential for the case building. 

This implies that potential RB candidates should be chosen from buildings in the same 

cluster as the case building, since occupant behavior in the same cluster has a high 

similarity in comparison to one another, but is quite dissimilar to that in the other clusters. 

Rule 2: Among all the potential RB candidates, the selected RB should have the 

highest similarity to the case building in terms of building-related parameters, such as 

outdoor temperature and floor area. This can also improve the reliability of comparative 

results between the two buildings. Euclidean distance can be used to define the similarity. 

With consideration of the two rules, RB identification for the case building consists of the 

following steps:  

Step 1 Assign the ‘case building’ to a cluster according to the level 1 loads and the 

generated decision tree; 
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Step 2 Calculate the total energy consumption (i.e., the sum of the seven main end-use 

loads) in the case building and other buildings in the same cluster. Rank the total energy 

consumption in all these buildings; and 

Step 3 Identify the RB. Buildings in the same cluster with lower total energy 

consumption than the case building are used as potential RB candidates. Then, based on 

building-related parameters and Euclidean distance, the most similar building to the case 

building among the candidates can be found. This building is identified as RB for the 

case building.  

7.4 Data pre-processing 

7.4.1 Case building selection  

As mentioned earlier, for demonstration purposes, one building with the most 

comprehensive household appliances should be selected as the case building, and the 

remaining 66 buildings are used for both clustering-then-classification and RB 

identification. Data inspection indicates that a building located in Hokkaido has the most 

appliances, as shown in Table 7-1. This Table also shows some measured environmental 

parameters of this building such as indoor air temperature and humidity. These 

parameters will also be used in the ARM to analyze the associations between them and 

occupant behaviour.  

 



 

132 

 

 

Table 7-1 Appliances in the case building and environmental parameters used in 

ARM 

No

. 

Appliances/ 

indoor parameters 

No

. 

Appliances/ 

indoor parameters 

No

. 

Appliances/ 

indoor parameters 

1 Heating boiler 16 TV (other rooms) 31 Living room temperature 

2 Hot water boiler 17 TV (standby power) 32 Living room humidity 

3 Kerosene heater 18 Video 33 Bedroom (1F) temperature 

4 Ventilator 19 Phone 34 
Master bedroom (2F) 

temperature 

5 Air cleaner 20 Telephone handset 35 Total energy consumption 

6 Lamp (1F
a*

) 21 Iron 36 SHW 

7 Lamp (2F
b*

) 22 Vacuum cleaner 37 LIGHT 

8 Table lamp 23 Washing machine (1F) 38 KITCH 

9 IH heater 24 Washing machine (2F) 39 REFRI 

10 Dishwashers  25 Living room outlet 40 E&I 

11 
Microwave, toaster, 

coffee 
26 Rest room outlet (1F) 41 H&S 

12 Bidet  27 Rest room outlet (2F) 42 OTHER 

13 Boom box 28 Outdoor air temperature 
  

14 TV (Dining room) 29 
Outdoor relative 

humidity   

15 TV (master bedroom 2F) 30 Outdoor air velocity 
  

a* 
first floor, 

b* 
second floor. 

 

Table 7-2 shows the statistical data of the level 1 loads for the remaining 66 buildings. 

Clearly, it can be seen that each main end-use load is spread over a wide range, which 

implies a fairly large energy-saving potential by improving occupant behavior. 
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Table 7-2 Statistical data of the seven main end-use loads for the 66 buildings 

(unit: MJ per capita per year) 

End-use load Min Max Average Standard deviation 

SHW 994.945 11649.175 4695.497 2616.451 

LIGHT 130.372 2938.521 1311.695 846.283 

KITCH 110.761 5321.785 971.773 786.056 

REFRI 390.136 2667.98 883.033 439.375 

E&I 106.254 2301.679 727.136 480.946 

H&S 64.137 2102.968 400.303 385.46 

OTHER 55.259 2374.798 738.422 564.375 

 

7.4.2 Data transformation for cluster analysis 

Before performing the cluster analysis on the level 1 data, it should be noted that the 

loads, which were mapped onto various corresponding user activities, have different 

ranges. Moreover, the activities were considered to be of equal importance in this study. 

In order to prevent the loads with large ranges from outweighing those with 

comparatively smaller ranges, min-max normalization was applied before clustering the 

buildings in terms of the seven main end-use loads, which were introduced in Section 

5.2.1.  

In this study, the new range is defined as [0, 1]. Table 7-3 shows the statistical data of 

the level 1 loads for the remaining 66 buildings after min-max normalization. 
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Table 7-3 Statistical data after normalization 

End-use load Min Max Average Standard deviation 

SHW 0 1 0.347 0.246 

LIGHT 0 1 0.421 0.301 

KITCH 0 1 0.165 0.151 

REFRI 0 1 0.216 0.193 

E&I 0 1 0.283 0.219 

H&S 0 1 0.165 0.189 

OTHER 0 1 0.295 0.243 

 

7.4.3 Removal of outliers for conducting ARM in the case building 

As introduced in Section 6.3, removal of outliers plays a crucial role in preparing for 

the ARM, since outliers produce a large measure of skewness and have a significant 

influence on the partition of attribute values into different intervals. In this study, the 

method based on the lower quartile (Q1) and the upper quartile (Q3) of the standard 

boxplot was used (see Section 6.3). Moreover, in order to perform the ARM, the value of 

quantitative attributes generally needs to be classified into categorical values. 

Considering that most attributes used in the ARM in this study are end-use electricity 

loads, a two-interval scale (i.e., HIGH and LOW) was applied to represent high and low 

energy consumption using the same classification method in Section 6.3. Such high and 

low energy consumption can then be qualitatively mapped onto energy-inefficient and 

energy-efficient occupant behavior. It should be mentioned that HIGH and LOW quite 

possibly, but do not necessarily, correspond to energy-inefficient and energy-efficient 
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occupant behaviour in practice. For example, less energy efficient appliances will also 

cause higher energy consumption. However, given that energy-inefficient behaviour will 

waste energy and normally cause high energy consumption, such mapping was still used 

in this study. Consequently, the results need to be carefully analyzed and 

energy-inefficient behaviour should be eventually identified based on practical occupant 

behaviour patterns.  

With consideration of the seasonality of occupant behavior, the ARM was performed 

based on seasonal data instead of annual data in this study for demonstration purposes. 

Given that the case building is located in Hokkaido, the coldest area in Japan, the winter 

data in 2003 was mined to generate association rules. Figure 7-3 shows the distribution of 

two intervals of all the ARM attributes after the removal of outliers. Note that the 

numbers in the abscissa represent the ARM attributes, and correspond to the number in 

Table 7-1. Clearly, it can be observed that most of the percentages range from 30% to 

70%, indicating a roughly uniform distribution. 

Commonly used ARM algorithms include the Apriori algorithm and the 

frequent-pattern growth (FP-growth) algorithm (Han et al., 2006). In this study, we 

employed the FP-growth algorithm to mine association rules due to its high efficiency 

and wide applicability. At the same time, the K-means algorithm and the decision tree 

method were used in the cluster analysis and data classification, respectively. In addition, 

the open-source data mining software RapidMiner was used as data mining tools to 
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analyze the data.   

 

 

Figure 7-3 Distribution of two intervals of all ARM attributes after the removal 

of outliers 

 

7.5 Results and Discussion 

7.5.1 Clustering-then-classification 

Clustering results 

After data pre-processing, the cluster analysis was conducted for the 66 buildings 

using RapidMiner. With consideration of the size of the database, four clusters were 

determined by the K-means algorithm and the performance vector (Davies Bouldin index, 

DBI). The results of the cluster analysis are given in Table 7-4. Cluster centroids, which 
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represent the mean value for each dimension, were used to characterize building occupant 

behavior in the four clusters. For example, in comparison with building occupant 

behavior in the other clusters, user activities in cluster_2 caused medium energy 

consumption in supply hot water (the cluster centroid of SHW in this cluster is 0.440, 

which is of medium value among the four clusters), high energy consumption in lighting, 

medium energy consumption in kitchen, etc. Moreover, cluster_2 has significantly higher 

energy consumption for lighting; this indicates that, in general, building owners in 

cluster_2 should give primary consideration to the activities related to lighting in order to 

save energy. Similarly, other clusters can be explained. It should be noted that nearly half 

of the data records (44%) were grouped into cluster_1, which represents low energy 

consumption in most of the main end-use loads. A possible explanation for this is that a 

good portion of Japanese families have a high degree of awareness regarding 

energy-savings. In addition, among the seven attributes and four clusters, H&S has the 

largest maximum/minimum ratio (0.509/0.088 = 6.5), while KITCH has the lowest 

maximum/minimum ratio (0.268/0.144 = 1.91). This indicates that occupant behavior 

related to H&S differs significantly between the four clusters; and deserves extra 

attention in occupant behavior improvement; on the contrary, the total energy 

consumption caused by KITCH-related user activities has a narrow gap between different 

clusters, which implies relatively small energy-saving potential for modifying such kind 

of activities. 
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Table 7-4 Centroid of each cluster and statistics on the number and percentage of 

instances assigned to different clusters 

Attribute Cluster_1 Cluster_2 Cluster_3 Cluster_4 

SHW 0.266 0.440 0.738 0.215 

LIGHT 0.262 0.881 0.291 0.288 

KITCH 0.144 0.181 0.268 0.140 

REFRI 0.119 0.255 0.372 0.296 

E&I 0.218 0.169 0.572 0.403 

H&S 0.088 0.167 0.509 0.150 

OTHER 0.136 0.430 0.231 0.500 

Clustered buildings and proportion 29 (44%) 16 (24%) 7 (11%) 14 (21%) 

 

Table 7-5 shows the number of buildings in various districts in each cluster. Clearly, 

the distribution of buildings in various districts is roughly even, especially in cluster_1 

and cluster_4. Such a distribution indicates that the attributes in the cluster analysis are 

not dependent on weather (otherwise buildings in the same districts would tend to be 

grouped together), which is consistent with the assumption that the seven main end-use 

loads in clustering analysis are non-weather-dependent components.  

 

Table 7-5 The number of buildings in various districts in each cluster 

cluster Hokkaido Tohoku Hokuriku Kanto Kansai Kyusyu 

cluster_1 6 3 7 3 5 5 

cluster_2 0 4 0 8 2 2 

cluster_3 1 2 4 0 0 0 

cluster_4 3 2 1 1 5 2 
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Classification by decision tree 

(1) Generation of decision tree 

After the four clusters were generated, a decision tree was constructed to assign 

buildings to a specific cluster provided their main end-use loads are available, as shown 

in Figure 7-4. C4.5 algorithm was used in RapidMiner to build the decision tree. 

The decision tree includes a total of 19 nodes among which 10 are leaf nodes. The 

colors in the leaf nodes indicate the purity of classification in the nodes. A pure color in a 

node implies that all the records in this node are correctly classified. Clearly, all the data 

records in the training dataset are correctly classified in this decision tree. 

 

 

 

 

 

 

 

 

 

 

Figure 7-4 Decision tree for the prediction of cluster attribution 
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(2) Evaluation of the decision tree 

Table 7-6 Confusion matrix 

 

In order to evaluate the accuracy of the generated decision trees, the RapidMiner 

analysis report also provides a confusion matrix for data analysts. In this study, a 

four-dimensional confusion matrix was built since the decision tree has four target 

variables, as shown in Table 7-6. 

In this table, the rows indicate the number of actual data records used for testing in 

each cluster; and the columns represent the number of predicted data records generated 

by applying the decision tree to the actual data records. For example, the first column 

shows that 7 records in cluster_1 were correctly classified; while one record in cluster_2, 

one record in cluster_3, and two records in cluster_4 were misclassified into cluster_1. 

Therefore, the accuracy of this decision tree, which is also called ‘recall’ in the data 

mining domain, can be calculated as (7+4+1+4)÷(7+4+1+4+1+1+2) = 80%, which is still 

acceptable despite the fact that it is relatively low. This may be partly ascribed to the 

small size of database. Moreover, data records in cluster_2, cluster_3, and cluster_4 are 

  
Predicted data records 

  
Cluster_1 Cluster_2 Cluster_3 Cluster_4 

Actual 

data 

records 

Cluster_1 7 0 0 0 

Cluster_2 1 4 0 0 

Cluster_3 1 0 1 0 

Cluster_4 2 0 0 4 
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misclassified into cluster_1 (at least one record in each cluster and four records totally), 

while data records in cluster_1 are not misclassified into the other clusters. Such 

information indicates that cluster_1 is more prone to be misclassified than the other 

clusters. This may have occurred since nearly half of the data records in the database are 

in cluster_1, which makes the decision tree more sensitive to this cluster. An even 

distribution among the four clusters in the database would possibly improve the accuracy. 

In addition, the sum of values in the matrix corresponds to the number of data records 

used for model testing. Clearly 20 records in the database were randomly selected by 

RapidMiner for testing, which also implies that 46 data records were used to establish the 

decision tree.  

(3) Utilization of the decision tree 

The decision tree can be utilized to predict the cluster attribution of new buildings 

according to the main end-use loads. Such predictions can be easily made by traversing a 

path from the root node to a leaf node. Take the node in the lower left corner in Figure 

7-4 as an example. The prediction can be made as follows: for a building, if LIGHT ≤ 

2115.837 and SHW ≤ 8504.939 and H&S ≤ 1040.429 and OTHER > 903.886 and 

OTHER > 1591.781 and SHW > 2568.384, then this building belongs to cluster_2.  

Besides the prediction of cluster attribution, useful information can also be extracted 

from the decision tree so as to help understand building occupant behavior improvement. 

For example, various attributes are selected by the decision tree algorithm to split the 
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nodes; and their degrees of closeness to the root node determine the number of records 

impacted. Therefore, the closer an attribute is to the root node, the more significant it 

affects the cluster attribution. Clearly the attribute significance in the decision tree can be 

ranked as: LIGHT > SHW > H&S > OTHER > E&I > REFRI. Such information 

indicates a general descending order of occupant behavior deserving attention when 

modifying user activities in Japanese residential buildings. Moreover, among the seven 

end-use loads, KITCH does not appear in the decision tree. This may have occurred due 

to the narrow gap between energy consumption caused by KITCH-related occupant 

behavior among the four clusters (see Section 7.5.1), and thus KITCH has the weakest 

influence on the cluster attribution.  

7.5.2 RB identification 

In order to demonstrate the methodology, a case building with the most 

comprehensive household appliances was selected for case study. Table 7-7 shows the 

level 1 loads in this case building. 

 

Table 7-7 End-use data in the case building (unit: MJ per capita per year) 

SHW LIGHT KITCH REFRI E&I H&S OTHER Sum 

3882.699 582.052 250.600 1541.394 1799.530 621.743 336.592 9014.610 

 

Based on the decision tree, the cluster attribution of the case building can be 
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predicted as follows: 

Step 1 Examine the value of LIGHT, i.e., the attribute in the root node. Since LIGHT 

= 582.052, the node test in the right branch LIGHT ≤ 2115.837 is satisfied, then go to 

the right-side child node; 

Step 2 Examine the value of SHW. Since SHW = 3882.699, the node test in the right 

branch SHW ≤ 8504.939 is satisfied, then go to the right-side child node; 

Step 3 Examine the value of H&S. Since H&S = 621.743, the node test in the right 

branch H&S ≤ 1040.429 is satisfied, then go to the right-side child node; 

Step 4 Examine the value of OTHER. Since OTHER = 336.592, the node test in the 

right branch OTHER ≤ 903.886 is satisfied, then go to the right-side child node; 

Step 5 Examine the value of E&I. Since E&I = 1799.530, the node test in the left 

branch E&I ≤ 1589.182 is satisfied, then go to the left-side child node, which is a leaf 

node. As a result, the decision tree in Figure 7-4 predicts that the case building belongs to 

cluster_4.  

Comparing with the other three clusters, cluster_4, as shown in Table 7-4, can be 

characterized as the building group with high energy consumption in OTHER, medium 

high energy consumption in REFRI and E&I. Therefore, the case building occupants 

should manage to improve their behavior related to OTHER, REFRI, and E&I.  

After the prediction of cluster attribution, the sum of the seven main end-use loads in 

the buildings in cluster_4 was calculated and ranked. Table 7-8 shows these loads and 
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their sum in the 14 buildings in cluster_4 in ascending order.  

 

Table 7-8 The main end-use loads in the 14 buildings in cluster_4 (Unit: MJ per 

capita per year) 

No. SHW LIGHT KITCH REFRI E&I H&S OTHER Sum 

1 1691.656 744.428 1141.730 898.208 468.707 83.617 1670.297 6698.644 

2 2757.408 981.880 662.657 645.977 388.737 317.828 1100.376 6854.487 

3 1464.821 287.523 936.880 924.793 1958.911 504.171 845.352 6922.450 

4 2471.123 865.524 1065.978 879.398 608.810 162.782 942.645 6996.259 

5 1782.779 1099.852 322.597 1773.017 2092.484 142.018 556.186 7768.933 

6 3337.796 558.252 411.807 1013.407 1060.430 360.339 1253.659 7995.690 

7 3123.892 1094.065 1418.592 1055.741 803.612 160.549 1288.371 8944.821 

8 2694.449 1758.554 621.970 1170.580 1109.116 503.125 1220.652 9078.446 

9 3348.343 1407.656 1474.419 1046.065 768.032 550.396 739.591 9334.501 

10 5224.677 617.440 724.771 565.889 498.162 186.758 1530.789 9348.487 

11 4801.992 1080.952 994.315 909.184 870.845 202.665 818.539 9678.492 

12 5192.053 982.723 768.211 777.985 363.490 923.699 1129.407 10137.568 

13 5685.900 598.837 752.744 660.163 1007.248 269.102 1526.953 10500.947 

14 2366.639 1089.153 451.300 2585.726 1878.995 817.197 2374.798 11563.808 

 

A RB needs to be identified for the case building for the evaluation of energy-saving 

potential and the improvement of occupant behavior. The buildings with less total energy 

consumption (i.e., the sum of the seven main end-use loads) than the case building in 

cluster_4 were considered to be RB candidates. In order to provide reliable information 

for the case building occupants, the RB was defined as the most similar building to the 

case building in terms of building-related parameters. The Euclidean distance was used to 

determine the similarity. Various building-related parameters were captured from the 
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database to calculate the Euclidean distance, and among them, five are categorical 

parameters and are transformed into [0, 1], as shown in Table 7-9.  

 

Table 7-9 Transformation of categorical parameters 

Categorical parameters CO HT 
Energy sources by usage 

(HEAT, HWS, KITC) 

Value wood non-wood apartment detached house Electric non-electric 

 
Transformation value 

 
0 1 0 1 0 1 

 

Table 7-10 Building-related parameters of RB candidate buildings and the case 

building 

* The case building. 

 

Table 7-10 shows the building-related parameters of the RB candidate buildings and 

the case building.  

Again, the min-max normalization was applied in order to help prevent attributes with 

large ranges from outweighing those with comparatively smaller ranges. After 

No. NO FA HLC ELA CO HT 
Energy sources by usage 

T V RH RA 
HEAT HWS KITC 

1 4  112  2.04 4.385 1 1 1 0 0 15.1 2.1 73 12.3 

2 4 141.6  1.79 0.77  0 1 0 0 0 12.8 4.3 74 11.7 

3 2 185.9 1.87 0.35 1 1 1 1 1 8.8 3.6 68 12.6 

4 4  115  2.61 6.365 0 1 0 1 1 16.9 2.5 66 12.6 

5 2 87.05 0.83 1.06 1 0 1 1 1 8.8 3.6 68 12.6 

6 2  135  1.7 3.9 1 1 0 0 0 17.2 2.8 66 13.1 

7 4 160.6  1.84 2.20  0 1 1 1 1 11.8 4.2 72 11.8 

8
*
 2 128.3 1.69 0.6 0 1 0 1 1 8.8 3.6 68 12.6 
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normalization, the Euclidean distance between each candidate building and the case 

building was calculated; and the building with the smallest distance, i.e., No.3 building in 

Tables 7-10 and 7-8, was identified as the RB. For comparison, Table 7-11 shows the 

main end-use loads in the case building and the RB. 

 

Table 7-11 Comparison of end-use data between the case building and RB (Unit: 

MJ per capita per year) 

Building SHW LIGHT KITCH REFRI E&I H&S OTHER Sum 

Case building 3882.699 582.052 250.6 1541.394 1799.53 621.743 336.592 9014.61 

RB 1464.821 287.523 936.88 924.793 1958.911 504.171 845.352 6922.45 

 

Table 7-11 shows that the sum of energy consumption in the case building is 

evidently higher than that in the RB. Further, user activities in the case building caused 

significantly higher energy consumption in SHW, LIGHT, REFRI, and H&S than that of 

the RB. This indicates that, in comparison with buildings with similar occupant behavior 

and building-related parameters, energy-saving potential still exists for the case building. 

That means energy consumption may be considerably reduced through modifying 

occupant behavior related to SHW, LIGHT, REFRI, and H&S. It should be noted that 

energy consumption in REFRI in cluster_4 is also medium high when comparing with the 

other three clusters. This implies the energy-saving potential of REFRI-related behavior 

is comparatively higher than the potential of the others, and thus deserves extra attention.  
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Additionally, energy-saving potential in the case building can be identified as the 

energy consumption difference between the two buildings, i.e., 9014.610 – 6922.450 = 

2092.161 MJ per capita per year.  

7.5. 3 Association rule mining (ARM)  

Based on the information obtained from cluster-then-classification and RB 

identification, the ARM was then performed to find all the associations among the 

end-use loads at both levels. Accordingly, energy-inefficient specific occupant behavior 

will be determined and then energy-saving recommendations for modifying activities can 

be provided for the case building occupants.  

After experimenting with various combinations of support and confidence values, a 

support of 50% and a confidence of 80% were set as minimum thresholds. Such 

thresholds mean that, for each generated association rule, at least 50% of all the data 

records under analysis contain both premise and conclusion; and the probability that a 

premise’s emergence leads to a conclusion’s occurrence is 80% or more. In addition, the 

minimum threshold of lift value was set 1 to find positive correlations. Such mining 

generated 756 rules, many of which are obvious and uninteresting; and truly interesting 

rules need to be further identified based on domain knowledge. Fifteen association rules 

between household appliances were selected for demonstration purposes, as shown in 

Table 7-12. It should be mentioned that most obtained associations are between attributes 
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in the LOW range (i.e., low energy consumption), while clearly the associations in the 

HIGH range (i.e., high energy consumption) may provide more useful information on 

energy conservation. This also indicates that the attributes involved in the obtained rules 

have a skewed distribution toward the LOW range, and may be ascribed to the high 

degree of building occupants’ energy-saving consciousness. Moreover, due to the 

availability of the data source, daily data was used for ARM instead of hourly data; and 

thus the obtained rules do not necessarily indicate that user activities in the premises and 

conclusions occur simultaneously. Therefore, the actual occupant behavior patterns 

should also be taken into consideration when using these rules in practice.  

The results of the cluster analysis show that the case building was grouped into 

cluster_4, which was characterized as the building group with high energy consumption 

in OTHER, medium high energy consumption in REFRI and E&I. Hence, association 

rules involving OTHER, REFRI and E&I are the most important and deserve more 

attention. Accordingly, two rules, i.e., Rule 1 and Rule 2 in Table 7-12, were found among 

all the obtained rules and discussed as follows: 

Rule 1 shows that living room outlet and OTHER have a strong positive association 

with a confidence of 98% and a lift of 1.49. From this rule, it can be inferred that, in this 

building, the electricity load increase in living room outlet would quite possibly lead to 

the increase in OTHER. This indicates that, among all the unclear items included in 

OTHER, removable electrically-operated devices connecting to the living-room power 
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plugs deserve more attention than other devices. Therefore, building owners could easily 

identify these devices and then manage to modify their usage to reduce energy 

consumption. 

 

Table 7-12 Selected association rules (min_sup
a*

 = 50%, min_conf 
b*

= 80%, 

min_lift
c*

=1) 

No. Premise Conclusion Sup. Conf. Lift 

Rule 1 Living room outlet [LOW] OTHER [LOW] 54% 98% 1.49 

Rule 2 Heating boiler [HIGH] REFRI [HIGH] 51% 94% 1.12 

Rule 3 Lamp 1F [LOW] LIGHT [LOW] 59% 96% 1.33 

Rule 4 Washing machine 2F [LOW] H&S [LOW] 76% 97% 1.25 

Rule 5 Dishwasher [LOW] KITCH [LOW] 74% 99% 1.26 

Rule 6 Vacuum cleaner [LOW] H&S [LOW] 67% 84% 1.07 

Rule 7 
Microwave, toaster, coffee 

[LOW] 
KITCH [LOW] 66% 81% 1.04 

Rule 8 TV (master bedroom 2F) [LOW] Lamp 2F [LOW] 66% 87% 1.10 

Rule 9 TV (other rooms) [LOW] LIGHT [LOW] 51% 81% 1.11 

Rule 10 Video [LOW] Table lamp [LOW] 52% 84% 1.02 

Rule 11 Lamp 1F [LOW] Table lamp [LOW] 52% 84% 1.02 

Rule 12 TV (Standby Power) [HIGH] Ventilator [HIGH] 55% 100% 1.82 

Rule 13 Phone [LOW] Boom box [LOW] 57% 90% 1.06 

Rule 14 TV (dining room) [LOW] Boom box [LOW] 51% 85% 1.01 

Rule 15 TV (other rooms) [LOW] Boom box [LOW] 54% 86% 1.02 

a*
 Minimum support, 

b*
 Minimum confidence, and 

c*
 Minimum lift. 

 

Rule 2 shows that heating boiler has a strong positive association with REFRI with a 

confidence of 94% and a lift of 1.12. Given that the daily energy consumption of the 

heating boiler is mainly impacted by occupant presence and outdoor air temperature, this 

rule implies that, two factors (i.e., both a longer stay time of occupants and a lower 
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outdoor air temperature) possibly cause a higher energy consumption of refrigerators. 

With regard to the first factor, it sounds reasonable since a longer stay time of occupants 

tends to increase the refrigerator usage, thereby increasing the energy consumption. With 

regard to the second factor, it seems unreasonable since a low outdoor air temperature 

normally causes a relatively low indoor air temperature in a detached house without 

central HVAC systems, thereby decreasing the energy consumption of refrigerators. A 

possible explanation for this is that the building occupants had high thermal comfort 

requirements in cold days; and preferred to a high indoor air temperature by increasing 

the boiler thermostat setting or using kerosene space-heaters. In order to justify the 

assumption, the pattern relating mean daily kitchen air temperature
4
 to mean daily 

outdoor air temperature was plotted, as shown in Figure 7-5. A trend line was then drawn 

to find out whether the kitchen air temperature increased or decreased in relation to 

outdoor air temperature. Clearly, a downward trend in mean daily kitchen air temperature 

following the increase of mean daily outdoor air temperature can be observed, which is in 

accordance with the assumption.  

Therefore, a trade-off between human thermal comfort and building energy 

                                                 

4In this building, both the kitchen and the living room are in the first floor, and there are no partitions 

between them. Hence, they have the same indoor air temperature and the living room air temperature 

was used in this figure.  



 

151 

 

consumption is necessary for the owners, since an appropriate decrease of indoor 

thermostat settings for cold days results in an energy-consumption reduction in both 

space heating and refrigerators.  

 

 

Figure 7-5 Mean daily air temperature in kitchen vs. mean daily outdoor air 

temperature (winter, 2003) 

 

Further, the comparison between the RB and the case building shows that user 

activities in the case building caused significantly higher energy consumption in SHW, 

LIGHT, REFRI, and H&S than those in the RB. Hence, rules associating with these four 

attributes also deserve extra attention. At the same time, in order to provide more 

comprehensive recommendations for energy-efficient behavior, rules associating with 

other end-use loads were also analyzed in this study. Eventually, thirteen interesting rules 
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(i.e., Rules 3 to 15 in Table 7-12) were selected and discussed as follows.  

Similar to Rule 1, Rules 3, 4, and 5 show that lamp 1F, washing machine 2F and 

dishwasher have a strong positive association with LIGHT, H&S, and KITCH, 

respectively. Rules 6 and 7 show that vacuum cleaner, and microwave, toaster, coffee 

have a positive association with H&S and KITCH, respectively. Therefore, comparing 

with other appliances associating with LIGHT, H&S, and KITCH, the building occupants 

should pay more attention to the use of lamps in the first floor, washing machines in the 

second floor, and dishwashers, since activities related to these appliances could have a 

major influence on the corresponding main end-use loads. At the same time, the use of 

vacuum cleaners, microwave ovens, toasters, and coffee machines also deserve some 

attention, though their associations with H&S and KITCH are weaker than washing 

machine 2F and dishwasher. 

Rule 8 shows that TV (master bedroom 2F) has a positive association with lamp 2F 

with a confidence of 87% and a lift of 1.10. From this rule, it can be inferred that the 

usage of TV (master bedroom 2F) would quite possibly lead to the usage of lamp 2F. This 

may have occurred since the building occupants always turned the lights on when they 

were watching TV. An effective way of reducing energy consumption in this building is 

to watch TV with dim light. 

Rules 9 to 11 can be explained in the same way as Rule 8 and similar 

recommendations can be provided.  
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An unexpected result was that TV (Standby Power) and Ventilator have a strong 

positive association with a confidence of 100% and a lift of 1.82, as shown in Rule 12. 

Clearly the standby power of TVs and ventilators has the same trend of variation. This 

may have occurred since the building occupants would turn off the TVs and switch off 

the ventilators when the building was empty. However, standby power is commonly 

unnecessary and still accounts for energy cost. Therefore, TVs should be completely 

turned off or unplugged when they are not used. Furthermore, the wasted standby power 

of TVs is very small, but the sum of standby use consumed by all house appliances, such 

as microwave ovens, air conditioners, power adapters for laptop computers and other 

electronic devices, becomes significant. Standby power accounts for around 5-10% of 

residential electrical energy use in most developed countries; and continues to increase in 

developing countries (Standby Power, 2001). Hence, it is meaningful to help building 

owners to realize the importance of reducing standby power consumption, and feasible 

recommendations should also be provided for them. For example, a switchable power 

strip can be used for multiple devices, such as VCRs, DVD players, TVs, and computers, 

so that these appliances can be unplugged conveniently with one action. 

Rules 13 to 15 show that phone, TV (dining room) and TV (other rooms) have a 

positive association with boom box. This indicates that, among all the appliances included 

in E&I, boom boxes was used in comparatively high frequency and deserve extra 

attention. 
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Moreover, indoor and outdoor parameters were also included in this ARM model. 

Associations between indoor/outdoor parameters and household appliances can assist in 

understanding the factors influencing occupant behavior. In order to demonstrate such 

associations, six rules were selected and shown in Table 7-13.  

 

Table 7-13 Selected association rules between indoor/outdoor parameters and 

household appliances (min_sup = 50%, min_conf = 80%, min_lift=1) 

No. Premise Conclusion Sup. Conf. Lift. 

Rule 1 
Master bedroom (2F) temperature 

[HIGH] 

Microwave, toaster, coffee 

[LOW] 
58% 83% 1.02 

Rule 2 Living room humidity [LOW] 
Microwave, toaster, coffee 

[LOW] 
55% 86% 1.06 

Rule 3 Outdoor relative humidity [LOW] 
Microwave, toaster, coffee 

[LOW] 
57% 87% 1.07 

Rule 4 Outdoor air temperature [LOW] H&S [LOW] 54% 88% 1.12 

Rule 5 Outdoor air velocity [LOW] H&S [LOW] 59% 82% 1.05 

Rule 6 Living room humidity [LOW] H&S [LOW] 57% 90% 1.15 

 

Rules 1 to 3 show that master bedroom (2F) temperature (HIGH), living room 

humidity, and outdoor relative humidity have a positive association with microwave, 

toaster and coffee. This indicates that a high master bedroom temperature, as well as a 

low living room or outdoor relative humidity, tends to decrease the usage of microwave 

ovens, toasters, and coffee machines. A possible explanation for this is that the increase in 

indoor air temperature, or the decrease in indoor/outdoor relative humidity, causes the 

occupants to lose their appetite to some extent.  
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Rules 4 to 6 show that outdoor air temperature, outdoor air velocity, and living room 

humidity have a positive association with H&S. This indicates that the decrease in 

outdoor air temperature/velocity, and living room humidity tends to reduce the likelihood 

that occupants do housework such as cleaning and washing. It can be inferred that both 

local climatic conditions and indoor microclimate may have an impact on occupant 

behavior relating to housework. For example, the increase of outdoor air velocity may 

deteriorate indoor sanitary conditions (dust accumulation), thereby increasing the usage 

of vacuum cleaners and other sanitary appliances.  

In addition, based on all the generated rules, it was found that six attributes, as shown 

in Table 7-14, have no association with the remaining attributes.   

 

Table 7-14 Attributes without associations with the remaining attributes 

No. Appliances Indoor parameters 

1 Total energy consumption Living room temperature 

2 I&E Bedroom (1F) temperature 

3 Bidet 
 

4 IH heater 
 

 

The fact that these attributes have no association with the other attributes implies that, 

in this building, they are independent. There are two possible reasons for these attributes’ 

independence: for total energy consumption and I&E, they may be decided by the holistic 

effects of various user activities, instead of associating with some certain activity. For the 



 

156 

 

other four attributes, their values may be purely random or remain relatively stable in the 

whole winter and thus no association with other attributes can be found. Such information 

can help building owners to make intelligent decisions when modifying their behavior.  

7.6 Summary 

A methodology for identifying and improving occupant behavior in existing 

residential buildings is developed. End-use loads of various household appliances were 

mapped onto corresponding occupant behavior, and were used to deduce user activities 

indirectly in this study. Specifically, these end-use loads were divided into two levels 

(main and sub-category), and thus correspond to two-level activities, i.e., general and 

specific occupant behavior.  

In order to demonstrate its applicability, this methodology was applied to the 

residential buildings located in six different districts of Japan. A building with the most 

comprehensive household appliances was selected as the case building and the remaining 

buildings were used as related buildings. Data pre-processing was performed for the 

related buildings and they were grouped into four clusters by using K-means algorithm. 

The characteristic of occupant behavior in each cluster was analyzed. Base on these 

clusters, a decision tree was generated and its accuracy was evaluated as 80%. In terms of 

the decision tree, the case building was predicted to belong to cluster_4. A reference 

building was identified in the same cluster as the case building. Consequently, the case 

building was compared with buildings in the other clusters and the reference building to 
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determine energy-inefficient general behavior. Also, its energy-saving potential was 

identified as 2092.161 MJ per capita per year. Moreover, association rules were mined 

based on the data of the case building in winter in 2003, given the seasonality of 

occupant behavior. A number of interesting rules were found, and associations and 

correlations between different user activities were discovered. According to these rules, 

specific recommendations for highlighting energy-saving opportunities were provided for 

the building occupants.  

The results obtained could help building occupants to modify their behavior, thereby 

significantly reducing building energy consumption. Moreover, given that the proposed 

method is partly based on the comparison with similar buildings, it could motivate 

building occupants to modify their behavior. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

In this dissertation, data mining are proposed to analyze measured building-related 

data. Furthermore, a data analysis process and a data mining framework are proposed to 

extract useful knowledge from building-related data, so as to help reduce building energy 

consumption. The process consists of eight steps: (1) problem definition and objective 

setting; (2) data source selection; (3) data collection; (4) data preprocessing/preparation; 

(5) data warehouses/marts construction; (6) data mining and model construction; (7) 

results analysis and evaluation; (8) knowledge discovery and presentation. The 

framework is composed of measured building-related data and data mining algorithms. It 

provides useful knowledge about the total building energy performance. In particular, 

three main data mining techniques, namely classification analysis, cluster analysis, and 

association rule mining are employed in this framework.  

The applicability of the proposed process and framework was demonstrated through 

their applications to two sets of data collected from 80 residential buildings and a 

mechanically ventilated building. The applications have suggested that the process and 

framework can effectively help develop data analysis methodologies for extracting 

hidden useful knowledge from building-related data, in order to account for interactions 

between building energy consumption and its influencing factors. A clear and thorough 
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understanding of such interactions could provide essential guidance in reducing building 

energy consumption. In this study, four data analysis methodologies were developed and 

applied to the collected data, and are summarized as follows:  

(1) Classification analysis was applied to develop a methodology for establishing 

building energy demand predictive models.. The developed model estimates the 

building energy performance indexes in a rapid and easy way. This methodology is 

appropriate to classify and predict categorical variables: its competitive advantage 

over other widely used modeling techniques, such as regression methods and ANN 

methods, lies in the ability to generate accurate predictive models with interpretable 

flowchart-like tree structures that enable users to quickly extract useful information. 

To demonstrate its applicability, the methodology was applied to estimate residential 

building energy performance indexes by modeling building energy use intensity (EUI) 

levels (either high or low). The results demonstrate that the decision tree method can 

classify and predict building energy demand levels with an accuracy of 93% for 

training data and 92% for test data, and identify and rank significant factors of 

building EUI automatically. The method can provide the combination of significant 

factors as well as the threshold values that will lead to high building energy 

performance. Moreover, the average EUI in each classified data subsets can be used 

as reference when performing prediction. The outcomes of this methodology could 

benefit architects, building designers and owners greatly in the building design and 
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operation stage. One crucial benefit is improving building energy performance mainly 

due to the fact that designers can optimize their building design plans based on the 

combination of significant factors as well as the threshold values. Another advantage 

of this methodology is that it can be utilized by users without requiring much 

computation knowledge. 

(2) Cluster analysis was used to develop a methodology for examining the influences of 

occupant behavior on building energy consumption. To deal with data inconsistencies, 

min-max normalization is performed as a data preprocessing step before clustering. 

Grey relational grades, a measure of relevancy between two factors, are used as 

weighted coefficients of different attributes in cluster analysis. To demonstrate the 

applicability of the proposed methodology, it was applied to a set of residential 

buildings’ measurement data. The results show that the methodology facilitates the 

evaluation of building energy-saving potential by improving the behavior of building 

occupants, and provides multifaceted insights into building energy end-use patterns 

associated with the occupant behavior. The results obtained could help occupants to 

prioritize efforts at the modification of their behavior in order to reduce building 

energy consumption.  

(3) Association rule mining was employed to develop a methodology for examining all 

associations and correlations between building operational data, thereby discovering 

useful knowledge about energy conservation. To provide information for building 
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owners and operators to reduce energy consumption, both daily and annual data are 

mined. Moreover, data from two different years is mined, and the obtained 

associations and correlations in the two years are compared. In order to demonstrate 

the applicability of the proposed methodology, it was applied to the operational data 

of an air-conditioned building. The results show there are possibilities for saving 

energy by modifying the operation of mechanical ventilation systems and by repairing 

equipment. The results obtained from this methodology could help to better 

understand building operation and provide opportunities for energy conservation.  

(4) Cluster analysis, classification analysis, and association rule mining were combined 

to formulate a methodology for identifying and improving occupant behavior in 

buildings. In order to demonstrate its applicability, the methodology was applied to a 

group of residential buildings, and one building with the most comprehensive 

household appliances was selected as the case building. The results show that, for the 

case building, the methodology was able to identify the behavior which needs to be 

modified, and provide occupants with feasible recommendations so that they can 

make required decisions to modify their behavior. Also, a reference building can be 

identified for the case building to evaluate its energy-saving potential due to occupant 

behavior modification. Considering the diversity of specific occupant behavior, the 

determination of energy-inefficient general occupant behavior can narrow down the 

scope of identification of energy-inefficient specific occupant behavior, and thus can 
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help occupants to quickly find the generated association rules, as well as specific 

behavior, which deserve more attention. Also, such information is extracted from the 

measured data and covers almost all energy-related behavior. With such information, 

building occupants can then better understand their behavior patterns, and easily 

focus on the energy-inefficient behaviour that needs to be modified. Therefore, the 

main advantage of the proposed methodology lies in its high efficiency of occupant 

behavior improvement. Moreover, the identification of energy-inefficient general 

behavior in this study is mainly based on the comparison with other similar buildings; 

this can help building owners to be aware of avoidable energy waste caused by their 

behavior, and motivate them to modify their activities accordingly. 

8.2 Future Work 

The recommendations for the future study include:  

(1) The proposed data mining framework can be further improved in two aspects: 

 (i) Other data mining techniques also could be used besides the three data mining 

techniques employed in this framework. For example, anomaly detection (e.g., 

outlier and deviation detection) may be used in the field of fault detection and 

diagnosis. At the same time, summarization (e.g., visualization and report generation) 

may be used to help develop building automation systems.  

 (ii) Some data mining methods have been successfully used to address the problems 

within the building engineering domain in this research, such as the decision tree 
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method. However, more methods can be utilized to analyze measured 

building-related data and extract useful knowledge. For example, the regression tree 

method could be used to predict numerical variables in building energy demand 

modeling.  

(2) The four proposed methodologies can be further improved as follows: 

 (i) With regard to the proposed methodology for modeling building energy demand, the 

main focus of future research should be placed on selecting appropriate interval 

number and reference value of target variables without reducing estimation accuracy, 

since these measures will provide more precise and valuable information to users. In 

addition, more case studies in different sectors, such as commercial buildings and 

office buildings, should be conducted to further benefit energy conservation and 

policy formulation. 

 (ii) With regard to the proposed methodology for identifying the effects of occupant 

behavior on building energy consumption, the main focus of future research should 

be placed on identifying appropriate building sample sizes and number of clusters, 

selecting typical attributes that can adequately represent the influencing factors 

unrelated to occupant behavior, since these measures will provide more precise 

effects of occupant behavior. In addition, more case studies in different sectors, such 

as commercial buildings and office buildings, should be conducted to further 

improve building energy performance and policy formulation. 
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 (iii) The proposed methodology for examining all the associations and correlations 

between building operational data could be further improved by applying the 

proposed methodology to building operational data collected in different building 

sectors, climates, and building automation systems, in order to further evaluate its 

effectiveness and help understand the impact of different elements influencing 

building energy consumption. Once the methodology is generally accepted, it can 

be integrated into online data analysis and online fault detection to reduce building 

energy consumption efficiently. The software RapidMiner can be employed to 

perform the ARM and to help realize this methodology. Moreover, it can serve as a 

data mining engine for the integration and can automatically report interesting 

rules/patterns without requiring human intervention. However, data analysts are still 

necessary to compare obtained association rules to discover useful knowledge about 

building energy performance improvement. 

(iv) The proposed methodology for identifying and improving occupant behaviour that 

needs to be modified in existing residential buildings could be further improved by 

identifying appropriate database sizes as well as the number of clusters, and 

improving the accuracy of the generated decision tree. The selection of database 

sizes and the number of clusters has a strong influence on grouping buildings and 

characterizing occupant behavior in terms of obtained building groups. The 

accuracy of the generated decision tree has a strong influence on assigning the case 
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building to obtained building groups. In addition, it is noted that using daily end-use 

loads in the case building to mine association rules and provide recommendations 

for occupants is not sufficient. This is because user activities in the premises and 

conclusions of association rules may not occur simultaneously. For example, user 

activities in the premises may occur in the morning while activities in the 

conclusions may occur in the afternoon. Consequently the recommendations made 

based on the analysis of association rules will be meaningless or even misleading. 

In order to overcome this limitation, hourly (or less than one hour, such as 15 

minutes) end-use loads of various household appliances should be measured and 

used in association rule mining.  
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