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Abstract

The Minimizer of the Dirichlet Integral

Ruomeng Lan

In this thesis, we consider the minimizer of the Dirichlet integral, which is used to

compute the magnetic energy. We know that the Euler equations describe a motion of

an inviscid incompressible fluid. We show that the infimum of the Dirichlet integral,

by the action of area-preserving diffeomorphisms, is a stream function corresponding

to some velocity field, which is a solution to the stationary Euler equation. According

to this result, we study the properties and behaviors of the steady incompressible flow

numerically. We utilize three distinct numerical methods to simulate the minimizer

of the Dirichlet integral. In all cases the singularity formation was observed. Every

hyperbolic critical point of the original function gives rise to a singularity of the

minimizer.
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Chapter 1

Introduction

My thesis is devoted to the study of the Magnetic Equilibrium Problem. This prob-

lem appears in astrophysics (the solar corona, magnetized neutron stars), geophysics

(terrestrial magnetism), nuclear engineering (plasma equilibrium in Tokamak), and

other situations. In general, we consider an electrically conductive medium (”fluid”)

interacting with a magnetic field. If the electric conductance of the medium is high

enough, and/or the size of the domain is large enough, the Ohmic resistance of the

fluid is negligible, and the magnetic field is ”frozen in”; it is transported by the fluid.

On the other hand, the magnetic field produces a force upon the fluid affecting its

motion. Thus, we have a system of interacting magnetic field and moving fluid; this

system is described by the equations of MagnetoHydroDynamics (MHD) (see below).

Here we can single out two extreme cases:

(1) The magnetic field is passively driven by the fluid, while its reverse action on

the fluid is negligible; the fluid is driven by other forces, say by convection. This may

result in the growth of magnetic field. Such situation is called ”Magnetic Dynamo”

and is regarded as a possible mechanism of generation of the terrestrial magnetic field.

(b) The fluid is driven exclusively by the magnetic field, while other moving forces

are negligible. In this case the magnetic field tends to assume a configuration having
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minimal magnetic energy. This is the magnetic equilibrium problem called sometimes

the Sakharov-Zeldovich problem.

This is an extremely nonlinear, degenerate problem; it may be regarded as a

degenerate problem of nonlinear elasticity. The prominent feature of such problems

is the formation of singularities in the course of minimization. The nature of these

singularities is the most interesting question in the study of the problem. I restrict

the study to the case of a field frozen in an incompressible 2-dimensional fluid in a

compact domain M . This is a considerable simplification, but even in this model case

some characteristic singularities are observed. The central role in our work is played

by the classical observation that any energy minimizing configuration of magnetic

field may be regarded as a velocity field of a steady (time independent) solution of

2-d Euler equations describing the flow of ideal incompressible fluid.

My thesis contains two main parts, theoretical analysis and numerical analysis.

In chapter 2, the theoretical part, we begin with introducing the Euler equations,

following [2]. We will explain the equations from the mathematical and physical

viewpoints. Then we define the vorticity field ω and state the interpretation and some

properties (also see [3]) of vorticity. Meanwhile, we introduce the stream function and

show the uniqueness of solution of the Euler equations equipped with a vorticity field

in a simply connected domain. We also introduce the steady Euler equations whose

solutions do not depend on the time. The solutions are good models to study the fluid

equilibrium or the motion after a long period of time. Theorem 3 states a property

of the stream functions corresponding to the solutions of steady Euler equations,

which is a crucial result for the numerical part. The last section in chapter 2 is

about the magnetodydrodynamics [1, 4, 13]. We state two variation problems from

[1] and provide the definition of Dirichlet integral. Theorem 4 shows the equivalence

between the minimizer of the Dirichlet integral and the stream function of steady

Euler equation, which is the theoretical fundament of the numerical part.
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In chapter 3, we find the minimizer of the Dirichlet integral by three dinstinct

numerical methods. All the methods employ the idea of the penalty function [6, 7].

The finite element method is the most used for the computing the integral numerically;

the water bag method can preserve the area better and obtain more details about the

level lines of the minimizer near the singularity line and the method of bubbles with

level lines can provide a panoramic view of the minimizer directly.
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Chapter 2

Theoretical Analysis

2.1 Euler Equation

Fluid mechanics is the study of behavior of gases and liquids. The phenomena studied

in this thesis are macroscopic. In other words, we only focus on the gross behavior

of many molecules constituting the fluid, instead of an individual molecule. For this

purpose we regard the fluid as a continuum, a point of which is a very small portion

of the real fluid, negligible with respect to the macroscopic size, but very large with

respect to the intermolecular distance. This small volume, a point of continuum, is

called fluid particle. Consequently, the physical state of a fluid will be described by

properties of the fluid particles and not by the physical state of all the microscopic

molecules. The macroscopic fields describing the state, such as the velocity field

u = u(x), the density field ρ = ρ(x), can be physically interpreted by means of

averages of suitable microscopic quantities. For example, the macroscopic velocity

field at a point u(x) means

u(x) =
1

N(x)

N(x)∑
i=1

μi (2.1)

where N(x) is the number of molecules associated to the fluid particle localized in x

and μi, i = 1, ..., N(x) are the velocities of these molecules.
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In this thesis, we will mainly use the Euler Equation to study the properties of

inviscid incompressible flow.

Let M ⊂ R
n (usually n=2 or 3) be an open and bounded set with a regular

boundary ∂M containing a fluid represented as a continuum of particles. We can

define a kind of displacements in the domain.

Definition 1. An incompressible displacement of the fluid is a transformation

s : M → M satisfying the following properties:

(a) s is invertible and s(M) = M ;

(b) s, s−1 ∈ C1(M); and

(c) s preserves the Lebesgue measure.

The property (a) means s should be bijective and the range is just the domain

itself; in (b) C1 denotes the set of continuous functions with continuous derivatives

and the the property (c) means that, for any measurable set A the set A ⊂ M defined

by

s(A) = {x ∈ M |s−1(x) ∈ A}, (2.2)

we have

|s(A)| = |A| (2.3)

where |A| =mes A denotes the Lebesgue measure of A. We denote by S the set of

all the incompressible displacements. It is evident that S has a group structure with

respect to the law of natural compostition

s1 ◦ s2(x) = s1(s2(x)). (2.4)

Definition 2. An incompressible motion is a function s, t ∈ R1 → Φs,t ∈ S such

that:

(a) Φs,t(Φt,r(x)) = Φs,r(x);
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(b) Φt,t(x) = x; and

(c) Φt,s is continuously differentiable in t and s.

Here Φs,t denotes the position at time t of the particle of fluid, which was at

the point x at s. All these conditions are reasonable properties of regularity. The

requirement that the transformation be invertible implies that one particle of fluid

cannot occupy the position of a distinct particle.

Now we denote by ρ = ρ(x, t) the density field. Then we can compute the mass

of fluid contained in the element of volume dx as ρ(x, t) dx. Here we assume that

ρ ∈ C(D). By the law of conservation of mass (see [5]), we have

d

dt

∫
Vt

ρ(x, t) dx = 0 (2.5)

where

Vt = {Φt(x)|x ∈ V0} (2.6)

is the region moving along the trajectories of an incompressible motion and the tra-

jectory function Φt(x) = Φt,0(x)

Let

u(Φt(x), t) =
d

dt
Φt(x) (2.7)

be the velocity field associated with this motion. Then, by (2.5), we have

d

dt

∫
Vt

ρ(x, t) dx =
d

dt

∫
V0

ρ(x, t)Jt(x) dx

=
d

dt

∫
V0

ρ(x, t) dx = 0 (2.8)

where Jt(x) is the Jacobian of the transformation x → Φt(x) and the value is one by

the incompressibility condition (see [2]).
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Hence, by the arbitrariness of V0, we have

d

dt
ρ(Φt(x), t) = 0 (2.9)

which means the density is constant.

The condition of incompressibility is equivalent, by the Liouville Theorem (see

[8]), to the condition

div u(x, t) = 0, ∀x ∈ M, t ∈ R. (2.10)

Equation (2.10) is usually called the continuity equation for incompressible flows. We

call the vector field satisfying (2.10) divergence-free field.

Since the particles cannot pass through the boundary,

u(x, t) · n = 0 on ∂M, (2.11)

where n is the exterior unit normal (this is called a slip condition).

We use the notation

Dtf ≡ ∂tf + (u,∇)f (2.12)

for the derivative of a function f along the trajectories Φt(x). In this case we have

Dtu = −∇p (2.13)

where p is a scalar function. The physical meaning of the equation is that the accel-

eration of a fluid particle, Dtu, is equal to a force −∇p. From another point, −∇p

can be consider as the constraint force for a free partical system constrained to move

on a manifold. The scalar field p = p(x, t) is called pressure.
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Together with Equation (2.10) and (2.11) we obtain the Lagrange-Euler equation

for an ideal (inviscid) incompressible fluid

Dtu = −∇p

div u = 0

u · n = 0 on ∂M

If we consider M ∈ R
2, and substitute Dt from the previous equation, then we obtain

the Euler equations for the velocity and pressure fields which look as follows:

∂

∂xi

ui(x, t) +
2∑

j=1

uj
∂

∂xj

ui(x, t) = − ∂

∂xi

p(x, t) i = 1, 2 (2.14)

∂

∂x1

u1(x, t) +
∂

∂x2

u2(x, t) = 0 (2.15)

u1n1 + u2n2 = 0 on ∂M (2.16)

where u = (u1, u2) and n = (n1, n2).

2.2 Vorticity and Stream Function

Now consider another important field, the vorticity field ω(x).

Definition 3.

ω(x) ≡ curl u ≡ ∇× u (2.17)

The vorticity field ω(x) is a measure of the fluid rotation. We can understand the

meaning of ω in the following way. Every smooth velocity field u(x, t) has a Taylor

series expansion at a fixed point x0

u(x0 + h) = u(x0) + (∇u)(x0)h + O(h2), (2.18)
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where ∇u is a matrix

(∇u)ij =
∂ui

∂xj

. (2.19)

Moreover, ∇u has a symmetric part D and an antisymmetric part Ω:

D =
1

2
(∇u + ∇uT ) (2.20)

Ω =
1

2
(∇u −∇uT ). (2.21)

D is called the deformation matrix and Ω is called the rotation matrix. Since the

flow is incompressible, div u = 0, then the trace tr D = 0. We can also find that ω

satisfies

Ω · h =
1

2
ω × h (2.22)

Using the Taylor series expression (2.18), the definitions of D and ω we have

u(x0 + h) = u(x0) +
1

2
ω × h + D · h + O(h2). (2.23)

From (2.23) we see that the velocity of a point close to x0 is the sum of three terms:

a translation, a rotation with angular velocity 1
2
ω and a deformation.

Now let M ⊂ R
3. By (2.17) we have

ω(x) = (
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

) (2.24)

By observation, we will find that if the M ⊂ R
2, then ω is a scalar field because only

the third component of curl does not vanish. In this case, we also denote this third

component as curl u.

We can pose the following problem by using the vorticity field to study the be-

havior of fluids. If the vorticity field ω is known, we want to deduce the velocity field

u generating ω. So we should solve the following equations in the unknown quantity

9



u

curl u = ω, div u = 0 (2.25)

where we let the given field ω ∈ C(M).

Now we consider the system in 2-dimension. Equations (2.25) can be rewritten as

∂u2

∂x1

− ∂u1

∂x2

= curl u = ω (2.26)

∂u1

∂x1

+
∂u2

∂x2

= 0 (2.27)

However, the solution of the system of Equations (2.26) and (2.27) may not be

unique. In fact, if u′ is a solution of the system, then u = u′ + ∇ϕ, where ϕ is a

harmonic function, is a solution as well. Thus, we add Equation (2.11), the boundary

condition, to obtain a unique solution.

Now we restrict that M is simply connected and bounded. In this case, the

condition div u = 0 allows us to introduce a function Ψ such that

u = ∇⊥Ψ (2.28)

where

∇⊥ = (
∂

∂x2

,− ∂

∂x1

) (2.29)

is called the skew gradient.

Definition 4. The function Ψ, satisfying the equation (2.28), is called the Stream

Function.

By the definition of ω we have

ΔΨ = −ω (2.30)

Equation (2.30) is called the Poisson equation (see [9]).
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From the condition u ·n = 0 on ∂M , it follows that Ψ must be a constant on ∂M .

For convenience, we suppose

Ψ|∂M = 0. (2.31)

Theorem 1. Equations (2.26) and (2.27) with the condition u · n = 0 have a unique

solution.

Proof. Suppose the equations have two distinct solutions u and u′ and let v = u−u′.

We should only show that v = 0. Since u and u′ are both solutions of equations (2.26)

and (2.27), then we have

div v = div (u − u′) = 0, curl v = curl (u − u′) = 0

From the second equation, we have

∂v2

∂x1

− ∂v1

∂x2

= 0.

Because the domain M is simply connected, there exists a function ϕ such that

v = ∇ϕ. (2.32)

Since v · n = 0 on ∂M , then ∂
∂n

ϕ = 0 on ∂M . Taking the divergence of (2.32) we

obtain the Neumann problem

Δϕ = 0

∂

∂n
ϕ = 0 on ∂M

The only solution for this problem implies that ϕ is a constant function. It follows

that v = 0 on M .
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2.3 Steady Euler Equation

Now let us consider the corresponding idealized model of steady flows of an incom-

pressible fluid. Such flows are stationary solutions of Euler equation that do not

depends on time.

Definition 5. An ideal steady (or stationary) incompressible fluid flow u(x) in a

domain M ⊂ R
n is a divergence-free solution, namely div u = 0 of the steady Euler

equation

(u,∇)u = −∇p (2.33)

where p denotes some pressure function on M.

Comparing with (2.13), equation (2.33) does not contain the component ∂tu.

Thus, as mentioned, the solutions of (2.33) does not depend on time. The following

theorem describes a property of the solutions of (2.33) when M ⊂ R
3.

Theorem 2. If u(x) is a solution of equation (2.33) in M ⊂ R
3, then we have

u × curl u = ∇α (2.34)

where α = p + ‖u‖2
2

We will prove it in Cartesian coordinates.

Proof. Suppose first u = (u1, u2, u3). Then we have

curl u = (
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

) (2.35)
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Then the left side of (2.34) is

u × curl u =(u2(
∂u2

∂x1

− ∂u1

∂x2

) − u3(
∂u1

∂x3

− ∂u1

∂x3

), u3(
∂u1

∂x3

− ∂u3

∂x1

) − u1(
∂u2

∂x1

− ∂u1

∂x2

),

u1(
∂u1

∂x3

− ∂u3

∂x1

) − u2(
∂u3

∂x2

− ∂u2

∂x3

))

After rewriting, we have

u × curl u = − (u1
∂u1

∂x1

+ u2
∂u1

∂x2

+ u3
∂u1

∂x3

, u1
∂u2

∂x1

+ u2
∂u2

∂x2

+ u3
∂u2

∂x3

,

u1
∂u3

∂x1

+ u2
∂u3

∂x2

+ u3
∂u3

∂x3

)+

(u1
∂u1

∂x1

+ u2
∂u2

∂x1

+ u3
∂u3

∂x1

, u1
∂u1

∂x2

+ u2
∂u2

∂x2

+ u3
∂u3

∂x2

,

u1
∂u1

∂x3

+ u2
∂u2

∂x3

+ u3
∂u3

∂x3

)

= − (
3∑

i=1

ui
∂u1

∂xi

,
3∑

i=1

ui
∂u2

∂xi

,
3∑

i=1

ui
∂u3

∂xi

)+

(
3∑

i=1

ui
∂ui

∂x1

,
3∑

i=1

ui
∂ui

∂x2

,
3∑

i=1

ui
∂ui

∂x3

)

= − (u,∇)u + ∇(
‖u‖2

2
)

By equation, (2.33) we know that −(u,∇)u = ∇p. Thus, we obtain the equation

(2.34).

Definition 6. The function α: M → R defined by the relation u × curl u = ∇α is

called the Bernoulli function of the steady flow u.

Recall that the vorticity ω = curl u. So (2.34) can be rewritten as u × ω = ∇α.

It follows that both of the velocity field and vorticity field are tangent to the level

surfaces of the Bernoulli function α.

If M ⊂ R
2, we can obtain a stronger result.

Theorem 3. Let Ψ be the stream function corresponding to u(x) which is the solution
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of (2.33) in M ⊂ R
2. Then we have the equation

∇Ψ ×∇ΔΨ = 0 (2.36)

Proof. Take the operation ∇⊥ on both sides of (2.33). Then the right side is

∇⊥(∇p) =
∂2p

∂x2∂x1

− ∂2p

∂x1∂x2

= 0 (2.37)

and the left side is

∇⊥((u,∇)u) =(
∂u1

∂x2

∂u1

∂x1

+ u1
∂2u1

∂x1∂x2

+
∂u2

∂x2

∂u1

∂x2

+ u2
∂2u1

∂x2
2

)−

(
∂u1

∂x1

∂u2

∂x1

+ u1
∂2u1

∂x2
1

+
∂u2

∂x1

∂u2

∂x2

+ u2
∂2u1

∂x2∂x1

)

=(u1
∂2u1

∂x1∂x2

+ u2
∂2u1

∂x2
2

) − u1
∂2u1

∂x2
1

− u2
∂2u1

∂x2∂x1

+

(
∂u1

∂x2

− ∂u2

∂x1

)div u

Since div u = 0, we obtain

u1
∂2u1

∂x1∂x2

+ u2
∂2u1

∂x2
2

− u1
∂2u1

∂x2
1

− u2
∂2u1

∂x2∂x1

= 0 (2.38)

We know u = ∇⊥Ψ. Then we have

∇Ψ = (−u2, u1), ΔΨ = −ω = −∂u2

∂x1

+
∂u1

∂x2

(2.39)

We can compute the left side of (2.36) by using u

∇Ψ ×∇ΔΨ = u1
∂2u1

∂x1∂x2

+ u2
∂2u1

∂x2
2

− u1
∂2u1

∂x2
1

− u2
∂2u1

∂x2∂x1

(2.40)

which is just the left side of (2.38). Thus, equation(2.36) holds when M ⊂ R
2.
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2.4 Magnetic Equilirium

The study of the fluid which is electrically conducting and moves in a magnetic field

is known as Magnetohydrodynamics or MHD for short. The simplest example of an

electrically conducting fluid is a liquid metal, for example, mercury or liquid sodium

(see [10]). However, the major use of MHD is in plasma physics (see [11] and [12]). A

plasma is a hot, ionized gas containing free electrons and ions. It is not obvious that

plasmas can be regarded as fluids since the mean free paths for collisions between the

electrons and ions are macroscopically long. But when we consider the large number of

plasma particles, the collective interactions between them can isotropize the particles

velocity distributions in some local mean reference frame, thereby making it sensible

to describe the plasma macroscopically by a mean density, velocity, and pressure.

These mean quantities can then be shown to obey the same conservation laws of

mass, momentum and energy, as derived for fluids (see [13]).

Now we consider the governing equations of MHD. Suppose the domain M ⊂ R
3

is filled with an electrically conducting fluid, which is incompressible with respect to

the standard volume form μ = d3x and transports a divergence-free magnetic field B.

Then, the evolution of the field B and of the fluid velocity field v is described by the

system of ideal magnetohydrodynamics equations [1]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v
∂t

= −(v,∇)v + (curl B × B) −∇p

∂B
∂t

= −{v,B}
div B = 0

(2.41)

In the first equation of (2.41) the pressure term ∇p is uniquely defined by the condi-

tion ∂v/∂t = 0, just as it is for the Euler equation in ideal hydrodynamics. The term

curl B×B represents the Lorentz force. The second equation is the definition of the

”frozenness” of the magnetic field B into the medium, and {, } denotes the Poisson
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bracket (see [14]) space of two vector fields.

The total energy E of the MHD system is the sum of the kinetic and magnetic

energy

E :=
1

2

∫
M

(v, v)μ +
1

2

∫
M

(B,B)μ (2.42)

where (, ) denotes the inner product of two vectors.

Recall the Bernoulli function α and equation (2.34). If α is constant, then we

have

u × curl ≡ 0 (2.43)

It follows that the velocity field u and the corresponding vorticity field ω are collinear

at each point. In magnetohydrodynamics, such fields are called force-free fields.

Now we will focus only on the magnetic part of the total energy of the MHD

system. Consider the following variational problem. Let M be a closed Riemannian

manifold in R
3 equipped with a volume form μ, and a divergence-free vector field ξ

on M . The energy of the field is the integral

E =
1

2

∫
M

(ξ, ξ)μ. (2.44)

Problem 1. Find the minimum energy and the extremals among all fields obtained

from a given field ξ by the action of volume-preserving diffeomorphisms of the manifold

M .

Denote the divergence-free field after the action of a volume-preserving diffeomor-

phism g : M → M on ξ, a divergence-free field, by ξg. Here g should satisfy the

following condition: the flux of the field ξ across any surface σ is equal to the flux of

ξg across g(σ). In other words, the field is frozen into an incompressible fluid filling

M : the vector field can be thought of as drawn on the elements of fluid and expanding

as these elements expand. Moreover, for the boundary ∂M the field ξ is assumed to

16



be tangent to ∂M and the diffeomorphisms send the boundary ∂M into itself.

In magnetohydrodynamics, where this variational problem naturally arises, the

role of ξ is played by a magnetic field B, frozen into a fluid of infinite conductivity

filling M .

The above energy minimization problem assumes the following form of the Dirich-

let problem in the two-dimensional case. Let M be a Riemannian Manifold in R
2 with

a Riemannian volume form μ.

Problem 2. Find the infimum and the minimizer of the Dirichlet integral

E(u) =
1

2

∫
M

(∇f,∇f)μ (2.45)

among all the smooth function f on the manifold M that can be obtained from a given

function f0 by the action of area-preserving diffeomorphisms of M to itself.

Both of the problems above arose in [1]. It is not hard to see that this is the two-

dimensional version of Problem 1. We can consider the skew gradient ∇⊥f instead

of ∇f . This is because

(∇⊥f,∇⊥f) = (fx)
2 + (fy)

2 = (∇f,∇f) (2.46)

where we consider them in the x, y coordinates. It follows that the functional E has

the same value. Then f is regarded as a Hamiltonian function and any area-preserving

change of coordinates for the function f implies the corresponding diffeomorphism

action on the field ∇⊥f .

Theorem 4. A smooth minimizer u of the Dirichlet Problem 2 on a Riemannian

manifold M obeys the following condition: the gradient of the functions f and Δf

are collinear at every point of M .

We will prove the theorem above in X, Y coordinates.
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Proof. To prove the theorem, we should only show that

∇f ×∇Δf ≡ 0. (2.47)

Let δE be the first variation of the integral. Then we have

δE = δ(
1

2

∫
M

|∇f |2 μ)

=
1

2

∫
M

|∇(f + δf)|2 − |∇f |2μ

=
1

2

∫
M

|∇f |2 + 2∇f · ∇δf + |∇δf |2 − |∇f |2 μ

=

∫
M

∇f · ∇δf μ.

Suppose δf = εν · ∇f where ν = ∇⊥ψ and ψ = 0 on ∂M . So we can rewrite the

variation of the integral as

δE =

∫
M

∇f · ∇(ν · f) μ

=

∫
∂M

(ν · ∇f)∇f · −→n dS −
∫

M

(ν · ∇f)Δf μ

= −
∫

M

(ν · ∇f)Δf μ

= −
∫

M

(∇⊥ψ · ∇f)Δf μ

Here we use the first Green’s identity and −→n is the outward normal of the boundary

element dS. Since ν is zero on the boundary ∂M , we can neglect the first term. Now

18



express the integral
∫

M
(∇⊥ψ · ∇f)Δfμ in coordinates as

∫
M

(∇⊥ψ · f)Δf μ =

∫∫
M

(ψyfx − ψxfy)(fxx + fyy) dxdy

=

∫∫
M

ψyfx(fxx + fyy) − ψxfy(fxx + fyy) dxdy

=

∫
∂M

ψfx(fxx + fyy)ny dS −
∫

∂M

ψfy(fxx + fyy)nx dS

−
∫∫

M

ψfxy(fxx + fyy) − ψfx(fxxy + fyyy) dxdy

+

∫∫
M

ψfxy(fxx + fyy) + ψfy(fxxx + fyyx) dxdy

where nx and ny are the components of the vector −→n . Since ψ = 0 on the boundary

∂M , we have

∫
M

(∇⊥ψ · f)Δf μ = −
∫

M

ψ(fx(fxxy + fyyy) − fy(fxxx + fyyx)) dxdy

= −
∫

M

ψ(∇f ×∇Δf) μ.

Thus, the variation of the integral (2.45) can be expressed as

δE =

∫
M

ψ(∇f ×∇Δf) μ. (2.48)

If the integral reaches a minimum at f , then the corresponding δE(f) = 0. Then
∫

M
ψ(∇f ×∇Δf) dM = 0. Since ψ is any functions such that ψ|∂M = 0, we have the

identity (2.47)

∇f ×∇Δf ≡ 0.

We should note that equation (2.47) is the same as the equation (2.36). It means

that if the integral reaches the minimum at the point f , then f is the stream func-

tion corresponding to some velocity field, which is a solution of the stationary Euler
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equation. Thus, we can use the infimum of the Dirichlet energy (Problem 2) to study

the properties and behaviors of the steady incompressible flow.

In the following numerical simulation, we will consider the function fg(x) =

f(g−1(x)) for all area preserving diffeomorphisms g of the domain M . Instead of

E(f), the Dirichlet integral of the original function f , we consider E(fg), the Dirich-

let integral of the transformed function fg = f ◦ g−1. Then we will minimize E(fg)

with respect to g. We use the result in [15], in which the existence of a weak solution

of the minimization problem is proved. Such solutions admit transformations g which

can be discontinuous along level lines of the function f . We want to show that the

minimizer of the Dirichlet problem for an initial function with more than one critical

point (for example, two maxima and a saddle point) has a singular line. We will call

this phenomenon X-Y transition.
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Chapter 3

Numerical Analysis

In this chapter, we will use numerical methods to solve Problem 2 for several different

functions f(x). Namely, given a function f(x), we consider functions fg(x) = f ◦
g−1(x) where g is an arbitrary area preserving diffeomorphism of M . We are looking

for a function of this kind such that the Dirichlet integral
∫

M
|∇f(x)|2dx is minimal.

We use three different numerical methods to attack this problem. Each method has

its advantages and disadvantages.

3.1 Finite Element Method

Finite element method, or FEM for short, is a very common numerical technique

for computing the approximate solutions of partial differential equations and integral

equations. In the finite element method, a continuous system to be analysed is divided

into a number of discrete elements. Usually, the number should be very large to

guarantee the accuracy of the corresponding numerical solution. Although the domain

of the complete system may be very complex and irregular, each element is not difficult

to analyze. According to the shape of the domain, the divisions into the elements

may be different. However, in general, triangles and quadrilaterals are used in 2-D

problem, and tetrahedrons and hexahedrons are used in 3-D problem.
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So, the 2-dimensional domain M is divided into triangles Δi with the vertices

i, Bi, Ci. The function f is approximated by a function f̃ which is linear inside each

triangle, and continuous in M . The diffeomorphism g is replaced by a continuous,

piecewise-linear map g̃ which is linear inside every triangle Δi. In what follows we

drop tilde and write simply f , g instead of f̃ , g̃.

To define a piecewise linear map g, it is enough to define it for the vertices Ai, Bi, Ci

of the triangles Δi, for they are extended inside the triangle by linearity. The same

is true for the function f . The map g transforms every triangle Δi into another

triangle Δ′
i with the vertices A′i, B

′
i, C

′
i, and the function fg is uniquely defined by

fg(A
′
i) = f(Ai), fg(B

′
i) = f(Bi), fg(C

′
i) = f(Ci), and then extended linearly inside

M ′
i .

So, the only variables of our problem (after we fix the vertices Ai, Bi, Ci of the

triangles Δi and the initial function f at the same vertices) are the coordinates

of the transformed triangles Δ′
i = g(Δi). However, the choice of new triangles is

not arbitrary, because the transformation g should be area-preserving. The obvious

approximation to this condition for the discrete problem is the requirement that the

area of any transformed triangle Δ′
i equals to the area of Δi for all i. But this

requirement is too restrictive, and in what follows we will use softer methods to

approximate the incompressibility.

Here we use the finite element method to evaluate Dirichlet energy

I (g) =
1

2

∫
M

|∇fg(x)|2dx (3.1)

in the domain M . But it should be noted that the volume (area in 2-D) of each

triangle Δi may change during the progress of numerical minimization. Thus, we

assume the fluid to be studied to be slightly compressible, in other words, the density

is not constant, but can change slightly. When we minimize the energy of (3.1), we

should consider the energy of density change.
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Definition 7. The energy of density change is defined as

F (g) =

∫
M

P
(∣∣∣∂g(x)

∂x

∣∣∣
)
dx (3.2)

where P (t) should satisfy that P (1) = 0 and P (t) > 0 when t �= 1.

�

�

t

p(t)

t = 1

Figure 3.1: The Graph of P (t)

By the definition above, we know if the area does not change, then
∣∣∣∂g(x)

∂x

∣∣∣ = 1,

namely F (g) = 0 as well.

We convert Problem 2 into the minimization problem of the following function

E (g) = I (g) + λF (g) (3.3)

where λ is a positive parameter. In this case, we should minimize the magnetic energy

combined with the energy of density change. If λ is small (say 0 < λ < 1), the object

to be studied is a ”small-soft” flow; if λ is large (say λ � 1), the flow is nearly

incompressible. Thus, the second part guarantees that g(x) is ”almost” in SDiff (M)

(the set of all area preserving diffeomorphisms of M). Actually, we can consider F

and λ as the penalty function and the penalty parameter, respectively.

We should note that it is very crucial to set the value of λ. This is because, on one

hand, the large λ can make g(x) ”more like” an area preserving diffeomorphism, on the
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other side, if the λ is too large, the weight of the minimization for the magnetics energy

will be decreased, in other words, we cannot approach very close to the minimizer for

Problem 2.

Let us compute the energy of (3.3) by finite element method. We use a small

triangle as the element in the computational method. Suppose that the vertices of

the small triangle are A(x1, y1), B(x2, y2) and C(x3, y3), as in figure 3.2, and the

corresponding values of the function f are

f(A) = α, f(B) = β, f(C) = γ.

We should note that the function to be considered is fg(x) = f(g−1(x)), so the values

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

A B

C

u

v

Figure 3.2: A Small Element

of f(A), f(B) and f(C) only depend on the initialization. In other words, if the new

triangle is ΔA′B′C ′ after the tramsform, then the following equations still hold

f(A′) = α, f(B′) = β, f(C ′) = γ.
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Define two vectors as

u = (u1, u2) =
−→
AB = (x2 − x1, y2 − y1) (3.4)

v = (v1, v2) =
−→
AC = (x3 − x1, y3 − y1). (3.5)

Denote the area of the triangle by SΔ. Then we have

SΔ =
1

2
(u1v2 − u2v1) =

1

2
u · v⊥, (3.6)

where

v⊥ = (v2,−v1).

To compute the energy in the triangle, we should first find a linear function L(x, y)

in ΔABC such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(A) = f(A) = α

L(B) = f(B) = β

L(C) = f(C) = γ

. (3.7)

Furthermore, if a = (a1, a2) denotes the gradient of L, then a should satisfy

a · u = β − α, a · v = γ − α. (3.8)

By equation (3.8), we have

⎧⎨
⎩

a1u1 + a2u2 = β − α

a1v1 + a2v2 = β − γ
(3.9)
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The solution of the system (3.9) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 =

˛
˛
˛
˛
˛
˛
˛
˛
˛

β − α u2

γ − α v2

˛
˛
˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛
˛
˛

u1 u2

v1 v2

˛
˛
˛
˛
˛
˛
˛
˛
˛

a2 =

˛
˛
˛
˛
˛
˛
˛
˛
˛

u1 β − α

v1 γ − α

˛
˛
˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛
˛
˛

u1 u2

v1 v2

˛
˛
˛
˛
˛
˛
˛
˛
˛

. (3.10)

It is easy to find that the denominators of the solution are just the 2SΔ. Since we

can consider that ∇fg = ∇L in the small triangle ΔABC, we can use the following

approximation to compute the magnetic energy in ΔABC

IΔ = 1
2

∫
ΔABC

|∇fg|2dx

≈ 1
2

∫
ΔABC

|∇L|2dx

≈ 1
2
(a2

1 + a2
2)SΔ .

(3.11)

For the energy of density change, assume the area changes little after the transform

g ∈SDiff(M). So we have ∣∣∣∂g(x)

∂x

∣∣∣ ≈ SΔ

S0

(3.12)

where S0 is the initial area. Then we can compute the energy of density change in

the small triangle

FΔ =

∫
ΔABC

P
(∣∣∣∂g(x)

∂x

∣∣∣
)
dx = P

(SΔ

S0

)
S0. (3.13)

By equation (3.11) and (3.13) we know the total energy in ΔABC is approximated
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by

EΔ = IΔ + λFΔ

= 1
2
(a2

1 + a2
2)SΔ + λP

(
SΔ

S0

)
S0

(3.14)

To obtain the energy in the domain M , we should compute the energy in each element

and add them together: E =
∑

i EΔi
.

Thus, the energy E is a function of the coordinates of the vertices of the triangles

Δ′
i. Its minimization is done by the gradient method.

The domain M is a rectangle 0 < x < a, 0 < y < b. It is divided into equal

squares Rm,n : ml < x < (M + 1)l, nl < y < (n + 1)l where l is a square size.

Each square Rm,n is divided by a diagonal into two triangles, Δ+
m,n and Δ−

m,n. These

triangles are the finite elements we use in our solution.

Consider the minimization of the energy. Suppose Q(xi, yi) is a common vertex

of several small triangles, as shown in figure 3.3. To minimize the functional U we
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�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�(xi, yi)

Figure 3.3: A Common Vertex of several small triangles

should only move Q along the opposite direction of the gradient ( ∂U
∂xi

, ∂U
∂yi

). To find

the gradient numerically we replace the partial derivatives by finite differences:

∂U

∂xi

≈ U(xi + δ, yi) − U(xi, yi)

δ
∂U

∂yi

≈ U(xi, yi + δ) − Uy(xi, yi)

δ
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where δ is a very small positive number, such as 10−9. Then the new position Q′(x′i, y
′
i)

is

(x′i, y
′
i) = (xi, yi) − h(

∂U

∂xi

,
∂U

∂yi

) (3.15)

where h is the step size. By this method, we can relocate every point on the grid of

the finite element method to minimize the energy.

In the actual computation of partial derivatives of U , there is no need to compute

the full energy change resulting from the small variation of the vertex position. Let

us call the star of the vertex Q, St(Q), the union of all triangles having Q as a vertex.

Then the change of position of Q changes the contributions of the triangles in St(Q)

only. Thus, to find the partial derivatives of U with respect to the displacement of

the vertex Q, we need to compute the contribution to the energy from the triangles

in St(Q) only.

The minimization proceeds as follows.

1. Divide the domain into small triangles.

2. Store the positions of vertices in the matrices Ax and Bx, respectively. Com-

pute the value of f at each point and store in the matrix F .

3. Minimize the energy. For each step, compute the gradient and store them in

the matrices ∂Ax and ∂Ay. We should note that the boundary points can only move

along the boundary. Define the new matrices by

Ax = Ax − h∂Ax (3.16)

Ay = Ay − h∂By. (3.17)

The stepsize h is crucial in the minimization process. If h is too small, the minimiza-

tion takes impractically long time. On the other hand, if h is too large, the process

becomes unstable, and does not converge at all (it ”explodes”). So, we should use

Adaptive Stepsize (see appendix or [16]) to control h (which is not constant any
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more, but is chosen at every step). To avoid the oscillation, the grid point moving

forward and backward, we use the Fast Fourier tramsform (see appendix) to enhance

the efficiency. Meanwhile, we record the total energy in the whole domain for each

step.

4. Terminate the program when the total energies Enew for this step and Epre

satisfy

Epre − Enew < θt, (3.18)

where θt is the given number to control the error.

Now suppose that the given function in Problem 2 is f = sin(π
2
(x+4y)) sin(π

2
(x−

4y)) with the domain M = [0, 1] × [0, 0.25]. This is a periodic function and the

domain which we consider is a quarter of the period. Thus, we just minimize the

Dirichlet energy having the same symmetry and the full doubly periodic solution can

be obtained by reflections.

We first divide the domain into some small squares with side length 1/N (say

N=128) and then divide the each square into two triangles as shown in figure 3.3.

Then the initial area of each triangle is 1/(2N2). Then we initialize the matrix

Ax, Ay. Meanwhile, we compute the function’s values at corresponding grid-point

and use F to record them. The following graph shows the level lines of the function

f in the domain.

After the initialization, we can minimize the energy. Here we use the function

P (t) = t +
1

t
− 2, t ∈ (0, +∞) (3.19)

to compute the energy of density change. We found experimentally that λ = 100 is a

suitable value for this problem.

Figure 3.6 shows the grid after the minimization (every cell is a union of two
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triangles; diagonals are not shown for better view). Compare with figure 3.4 it is

obvious that the elements (small squares) near the diagonal (from the top right corner

to bottom left corner) are severely skewed. Especially, the elements close to the right

top and left bottom shift to the opposite side and are squeezed to be quite long and

narrow. This means that the transformation g delivering a minimum to the energy

is no longer smooth; it is discontinuous along the diagonal. This is clear from figure

3.7 which contains the level lines of the displacement.

We should note that although the minimizer function is not continuous along

the diagonal, the discontinuity will not result in infinite energy since the function is

constant on the diagonal.

As mentioned before, the given function is a periodic function, so we can get a

whole period by reflections (see figure 3.8 and 3.9).

From those two figures, we can find that the saddle point (0, 0) is replaced by a

segment, which implies an existing singularity. Thus, there is a X-Y transition in this

example.

3.2 Water Bag Method

The Finite Element Method has an obvious advantage of universality: it is applicable

to arbitrary domains and functions f . On the other hand, it has a built-in disad-

vantage. Namely, it is difficult to construct piecewise-linear transformations which

are area-preserving, i.e. such that the area of any triangle Δ′
i is equal to the area of

corresponding triangle Δi. The number of conditions is very close to the number of

free parameters, and as a result, we cannot find such transformation close to a given

smooth diffeomorphism. We have to admit some distortion of areas, which is taken

into account by the compression term in the energy. Therefore, the solution is not

very accurate, and to decrease the error, we have to decrease the size of triangles,
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thus increasing the computation time.

It is quite natural to use the level lines of the function f as a basis for the partition

of the domain M . This is the idea of the Water Bag Method.

To solve Problem 2 numerically we should always keep in mind that the trans-

formation g must preserve areas. In last method, we employ the energy of density

changes as the penalty function to preserve the areas of each elements. However, the

”areas” to be preserved are bounded by the level lines.

In this method, we will use the differences between the areas after the transforma-

tion and the original areas as the penalty function. The areas bounded by the level

lines will be computed at every step, instead of considering the area of each elements

in the FEM. So the result will be more accurate. And the displacement of the level

lines can be observed directly during the process of the simulation.

To realize the water bag method, we should first plot some level lines of the given

function f (the accuracy also depends on the number of level lines). Then select

some points on each level line (uniform distances are not required, but the number of

the points one each level line should be equal). We can divide the strip between two

adjacent level lines into some small quadrilaterals (like FEM) by using those points

on the level lines, as shown in figure 3.10.

Ai

Bi

Ai+1

Bi+1

Ai+2

Bi+2

Ai+3

Bi+3

Ai+4

Bi+4

... ...

Figure 3.10: The Strip between Two Level Lines

For each quadrilateral, we can divid into two triangles (see figure 3.11) and then

compute the Dirichlet energy in the small triangle numerically by the method used

in FEM. And we also use the same method in FEM for the minimization problem.
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Figure 3.11: Division of Quadrilateral

Here we only take the magnetic energy into account, so we just minimize the Dirichlet

energy. However, we should also check the areas as mentioned above for each step.

In another word, if the current area is smaller than the initial area, we should expand

to area bounded by the level line; otherwise, we should compress the area. Here

we should note that distinct step sizes should be allocated for the two sub-steps to

guarantee that the program works efficiently. Moreover, the ratio of the two step

sized cannot be fixed. At the beginning, we can set the step size for the minimization

larger to emphasize the energy part and, after running the algorithm for a while, we

can decrease this step size to make sure the areas change little. Thus, one of the

critical point of the simulation is to keep the balance of the two step sizes.

We give a brief description of the water bag method:

1. According to the given function f , define some level lines and select some

points on the level line. The number of points on each level lined should be equal.

Use the points to divid the strip between adjacent level lines.

2. Minimize the energy. For each step there are two sub-steps. One is to

minimize the magnetic energy and the other is to check the areas bounded by the

level lines. The steps sizes should be adjusted to make the program running well.

3. Terminate the program when the magnetic energy does not to change (de-

35



crease) anymore, and the differences between the current areas and the initial areas

are smaller than the tolerant error.

First, let us consider a simple example of a doubly-connected domain. In our case,

the domain is a square with a round hole. The function is 1 on the exterior boundary

and 0 on the interior boundary. There are N − 2 level lines between the boundaries.

Suppose that the interior boundary is the first level line and the exterior boundary is

the N -th level line. Then we define the fi and λi, the function value of the i-th level

line and the area bounded by the i-th level line and the interior boundary, by

fi =
i − 1

N − i
(3.20)

λi = S0 +
i − 1

N − i
(SN − S0) (3.21)

where S0 and SN are the areas of the round hole and the square, respectively, and

i = 1, 2, ... N . At the beginning, we define all the level lines to be contours of a

square, like the exterior boundary. The grid points are the intersection points of the

level lines and the segments connecting the two boundaries. Furthermore, the grid

points are restricted to move along the segments. Then we minimize the Dirichlet

integral of this function by the method above. Figure 3.12 shows the configurations

of the level lines of the minimizer.

It is observed that the configurations of the level lines are more like to the bound-

ary which they are closer to.

Now consider a more complicated example. Suppose that a function f defined in

the domain [0, 1] × [0, 1] has the minimum 0 at (0, 0) and the maximum 2 at (1, 1)

(example: f(x, y) = 1 − cos(π
2
(x + y)). In this case, like in the previous one, we can

anticipate the X-Y transition (and it really occurs). Therefore we have to introduce

a grid which permits the Y-topology. Since we focus on the rearrangement of the

minimizer, the initial configuration can be ignored. We want to define the position
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Figure 3.12: The Minimizer for a Function in a Domain with a Round Hole

functions of the grid points with respect to the value the given function f . We also

employ another variable t to define the grid point. For convenience, we divide the

domain into four parts.
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2
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1 3

2 4

Figure 3.13: Partition of the Domain

Suppose that s is a value in the range of f , [1, 2] and t ∈ [0, 3]. Let (x, y) be in

the domain and define the initial position of the grid point by, see Figure 3.13,
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Figure 3.14: The Grid Points

if (x, y) in the area 1:

x(s, t) =
1

2
s · t, y(s, t) = s (3.22)

if (x, y) in the area 2:

x(s, t) =
1

2
s, y(s, t) = (2 − t) · s (3.23)

if (x, y) in the area 3:

x(s, t) =
1

2
s, y(s, t) = 1 − (2 − s) · (t − 1) (3.24)

if (x, y) in the area 4:

x(s, t) =
1

2
(2 − (2 − s) · (3 − t)), y(s, t) = s − 1. (3.25)

Figure 3.14 shows the initial grid points. We can find that the method to define the

grid points is similar to the polar coordinates. There are two distinct centers in the
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Figure 3.15: The Level Line

domain. The point (0, 0) is the center of area 1 and 2 and the point (1, 1) is the center

of area 3 and 4. Paths (blue lines) radiate from these two points. In the functions

x(s, t) and y(s, t) t defines the path and s defines the distance to the center.

Now, we choose the initial function f as a piecewise-constant function; its ”level

lines” are shown in the next figure (see figure 3.15). We should note that these are

not the real level lines of the function f and we just minimize the energy from this

situation.

We should find an efficient way to record the x and y for the numerical com-

putation. If we use X and Y as the matrices to record the coordinates x and y,

respectively, then X and Y should have the form from figure 3.16. The parts 1, 2,

3 and 4 are corresponding the areas in figure 3.13. In other words, the part 1 stores

the coordinate of points in area 1. Furthermore, all the entries in the blank part of

figure 3.16 are 0. We should also construct the matrices S and T for s and t with the

same form as X and Y (see figure 3.17).

39



�

�

1
1

M + 1 2M + 1 3M + 1
1

N + 1

2N + 1

n

m

1� 2�

3� 4�

Figure 3.16: The Form of Matrices which Store the Coordinates

We initialize the matrices S and T as

S(n, m) = (n − 1)/N (3.26)

T (n, m) = (m − 1)/M (3.27)

where m and n satisfy

1 ≤ n ≤ N + 1, 1 ≤ m ≤ 2M + 1 (3.28)

or

N + 1 ≤ n ≤ 2N + 1, M + 1 ≤ m ≤ 3M + 1. (3.29)

The rest of the entries in the matrices are set as 0. By the definition of x and y, we

initialize X and Y as

X(n, m) = x(S(n, m), T (n, m)) (3.30)

Y (n, m) = y(S(n, m), T (n, m)). (3.31)
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Figure 3.17: The Form of Matrices S and T

Since the path which a certain point is on depends on the variable t, the matrix T will

not be changed during the progress of minimization. We change the matrix S, namely,

the distances of grid points to the centers, to minimize the energy. We use the similar

method in the first example. The only difference is that we we consider the magnetic

energy as function with respect to s in this case. Thus, we will first change S(n, m)

a little, say S(n, m) + δ, and get the new value of X(n, m) and Y (n, m) by (3.30)

and (3.31). Then find the change of energy in a neighborhood of (X(n, m), Y (n, m)).

In this way, we can compute the derivative ∂S(n, m) numerically. To minimize the

energy, the new matrix is

Snew = Scurrent − h · ∂S (3.32)

where h is the step size.

But it is not sufficient if we only optimize S. We expect the grid points to have

more freedom. Thus, we use another transformation Gα defined by

Gα(x, y) = (α(x(1 − x)(y − 0.5)) + x, y) (3.33)

where (x, y) is a grid point and α is an unknown variable. This transformation allows
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Figure 3.18: The Gα Transformation

the grid points to move horizontally. Figure 3.18 show the situation of α < 0. So

the paths which radiate from the center will bend and their curvatures depend on

α. When we take the transformation for the matrices X and Y , we can get the new

positions of grid points. In this case, the magnetic energy in the domain is a function

with respect to α. Thus, we can first define a initial value of α and then optimize α

by computing the derivative ∂α numerically. Define the new α by

αnew = αcurrent − η · ∂α (3.34)

where η is the step size.

The parameter α is very crucial to check whether there is X−Y transition. When

the absolute value of α is large enough, the end points of the vertical line (between

(1
2
, 0) and (1

2
, 1)) can reach the vertices of the square, say, (0, 1) and (1, 0). In this

case, there is no singular line in the minimizer.

We should note that these two transformations can not be taken in the same time.

In other words, if we want to compute the matrix ∂S, we should save the X and Y

from the previous step and then optimize α by using the X and Y from the previous

step, instead of the current step X and Y which are defined by the new matrix S.
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After finding the new S and α, we can compute the new X and Y .

Let us consider preserving the areas. Since each row in X and Y record the grid

points on the same level line, it is quite convenient to compute the area bounded by

the level line. When we initialize the matrices X and Y , we should use a column

vector λ0 to store the areas by the level lines as well. We should check the areas

and record in a column vector λ each step when we minimize the magnetic energy by

changing S and α. Since the S decides the distance between the grid points and the

center, we should adjust the values of S to preserve the area. For example, if λi < λ0
i ,

then we change S(i, j) by the following formula

S(i, j) = S(i, j) + ε(λ0
i − λ) (3.35)

where 1 ≤ j ≤ 2N + 1 or M + 1 ≤ j ≤ 3M + 1 and ε is the given step size.

For the different step size (h, η and ε) we should keep a balance among them to

make the program run efficient. At first we can set h and η a little larger to make

the energy reach the minimum faster. And then ε can be set larger to guarantee

preserving the areas.

Figure 3.19 is the rearrangement of the function after minimization. From

the figure we can find the straight level line in figure 3.14 become the curved lines.

Additionally, the vertical line (between (1
2
, 0) and (1

2
, 1)) looks like the letter S and

the end points do not reach the vertices of the square. Thus, there is X−Y transition

during the minimization. In other words, there is a singular line in the minimization

function and the gradient is not continuous.

Actually, we can consider that this is the minimizer of the function similar to

f(x, y) = sin(
π

2
(x + y)) sin(

π

2
(x − y)). (3.36)

So figure 3.19 is just a piece of a whole period and we can expand the figure by
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Figure 3.19: The Configuration of the Minimizer

Figure 3.20: The Expansion of the Minimizer by Reflection
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reflection as in the method of example 1. We obtain figure 3.20 and the singular lines

are very obvious in this figure.

3.3 Level Lines in Bubbles

In the previous two examples we considered a periodic function on just a quarter

of a period, instead of a whole period. Now we will try to simulate Problem 2 in

a bounded domain (unit square) directly. We will use a different method which we

call ”the bubble method”. Suppose the initial function f has the following property:

the domain M can be divided into a finite number of domains Mi such that (1) the

function f is constant on ∂Mi for all i; (2) The function f has a local maximum or

minimum at some point xi ∈ Mi and no other critical points in every domain Mi (so

that the saddle points of f belong all to
⋃

i ∂Mi). In this case, we can find many

piecewise-smooth area preserving maps g : M → M disconnected along
⋃

i ∂Mi such

that fg = f ◦ g−1 is continuous, and
∫

M
|∇fg|2dx < ∞ (in fact ∇fg is disconnected

along g(
⋃

i ∂Mi). The weak solution of the magnetic energy minimizing problem

should be looked for in the class just described. This was the case in the examples

considered above.

We can regard the domains Mi as ”slippery bubbles” with a fixed volume. The

frozen magnetic field (or its stream function f) provides these bubbles with a sort of

elasticity, and the bubbles are looking for an equilibrium, i.e. a configuration with a

minimal potential energy. It should be stressed that the topology of the equilibrium

configuration, i.e. which domains are touching each other and in which order, is not

fixed; it should be found in the course of the solution.

Before solving Problem 2, let us consider a model problem, namely the problem

of configuration of a collection of true bubbles (a ”foam”). In this case, the energy

is proportional to the length of
⋃

i ∂Mi (this means the sum of lengths of all simple
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arcs comprising
⋃

i ∂Mi, including the outer boundary ∂M). So, we are solving the

following problem:

Problem 3. Find the configurations of several bubbles in a unit square domain such

that

1. the sum of areas is equal to the area of the domain;

2. the sum of perimeters is the smallest.

We will consider the problem starting from the simplest condition, merely one

bubble in the domain. It is obvious that the configuration of the bubble should be

the same as the domain, namely, the unite square. But one wonders how to obtain

the result numerically. In this case, we can set an initial configuration of the bubble,

say a circle (see figure 3.21). Then we expect to inflate the bubble by some rules

Figure 3.21: The Initial Configuration of One Bubble

such that we can obtain the correct configuration finally. To solve Problem 3, we

should do two things: one is to make the value of bubble very close to the area of

the domain; the other is to minimize the perimeters. However, if we want to solve

the problem numerically, we should consider some other things. This is because it is

possible that the bubble has been out of the range of the domain before it reaches

the area of the domain (see figure 3.22). Thus, we have to add some restrictions for
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Figure 3.22: The Initial Configuration of One Bubble

the problem such that the bubble can ”feel” the boundary of the domain. Here we

will employ a functional, which is called the potential energy, as the restriction.

Definition 8. Suppose (xf , yf ) is a fixed point and (x, y) is any other point. We

define the potential energy to the fixed point as

d(x, y; xf , yf ) =
1

(x − xf )2 + (y − yf )2
(3.37)

It is obvious that the potential energy is just the reciprocal of the square of the

distance between (xf , yf ) and (x, y). So the energy will be very large if (x, y) is very

close to (xf , yf ). In the situation of problem 3, we can assume the fixed point is

on the boundary of the domain and the (x, y) is a point on the bubble. Then the

potential energy can be utilized to control the distance between the domain and the

bubble. Since the point (xf , yf ) is fixed, then d is a function with respect to (x, y)

and the gradient of (3.37) is

u(x, y; xf , yf ) = grad d(x, y; xf , yf ) = − 2(x − xf , y − yf )

((x − xf )2 + (y − yf )2)2
(3.38)

In fact, we should select a large number of points, say N , on the boundary, and the

bubble during the simulation. Suppose {(xi
f , y

i
f ), 1 ≤ i ≤ N} is the collection of the
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points on the boundary. Then the potential energy to the boundary is

D(x, y) =
N∑

i=1

d(x, y; xi
f , y

i
f )

=
N∑

i=1

1

(x − xi
f )

2 + (y − yi
f )

2

It follows the gradient of D is

U(x, y) = grad D(x, y)

=
N∑

i=1

grad d(x, y; xi
f , y

i
f )

=
N∑

i=1

− 2(x − xf , y − yf )

((x − xi
f )

2 + (y − yi
f )

2)2

We should keep the potential energy from being too large in order to avoid the point

(x, y) too close to the boundary. Namely, the potential energy should be minimized

when we adjust the area and perimeter of the bubble. To minimize the energy, we

should define the new position of (x, y) as

(x, y)new = (x, y)current − h1 · U(x, y) (3.39)

where h1 is the step size.

Here we use matlab to simulate problem 3. Since the matrix operation is more

efficient than the loop computation in matlab, we choose the matrix operation to com-

pute the gradient. Suppose that the column vectors X and Y record the coordinates

of the points on the bubble

X = (x1, x2, · · · , xN−1, xN)T (3.40)

Y = (y1, y2, · · · , yN−1, yN)T , (3.41)
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where (xi, yi) and (xi+1, yi+1) are adjacent points. Similarly, the matrices Xf and Yf

record the coordinates of the points on the boundary

Xf = (x1
f , x

2
f , · · · , xM−1

f , xM
f )T (3.42)

Yf = (y1
f1, y

2
f , · · · , yM−1

f , yM
f )T . (3.43)

Then define the matrices A, B, C and D as

A = X × J1,M (3.44)

Af = JN,1 × Xf (3.45)

B = Y × J1,M (3.46)

Bf = JN,1 × Yf (3.47)

where Jm,n is the m× n matrix of ones. Thus, all the above are N ×M matrices. In

matlab we can use the following code to compute the matrix C

C=((A-Af).∧2+(B-Bf)∧.2)∧.2
Then the entry Cij is ((xi − xj

f )
2 + (yi − yj

f )
2)2 and let

Ux=(A-Af)./C

Uy=(B-Bf)./C

where the entries Uxij and Uyij are (xi−xj
f )/Cij and (xi−xj

f )/Cij. We can compute

the new coordinates by using the code

X=X-h1*(sum(Ux))’

Y=Y-h1*(sum(Uy))’

where sum(Ux) treats the columns of Ux as vectors, returning a row vector of the sums

of each column and (sum(Ux))’ is the transpose of the matrix sum(Ux), namely, a

column vector.

That was the method to prevent the bubble getting out of the domain. Now let
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us return to the problems of expanding the area and minimizing the perimeter. We

also expect to expand the area by matrix operation. Suppose figure 3.23 is a piece of

the bubble. We define the new position of the point (xi, yi) by the formula
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Figure 3.23: A Piece of the Bubble

(xi, yi)new = (xi, yi)current + h2 · (a − a0) · ui+1 (3.48)

where h2 is the step size, a and a0 are the current areas and the area of the fixed

domain, respectively, and ui+1 denotes the vector

ui = (xi+1 − xi, yi+1 − yi)
⊥

= (−yi+1 + yi, xi+1 − xi).

We should note that uN = (−y1 + yN , x1 − xN). If we define matrix R as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1 · · · 0

...
. . . . . . . . .

...

0 · · · 0 −1 1

1 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.49)

then the i-th entries of A × X and A × Y are xi+1 − xi and yi+1 − yi. By equation

(3.48), we can use the following code to expand the area in matlab
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X=X-h2*(a-a0)*(A*Y)

Y=Y+h2*(a-a0)*(A*X)

Meanwhile we should consider the current area a. We can use the following formula

a =
N−1∑
i=1

(xi+1 − xi)(
yi+1 + yN

2
) + (x1 − xN)(

y1 + yN

2
) (3.50)

to compute the area bounded by a close curve numerically. Thus, we can compute a

by matrix R

a = XT × R × Y. (3.51)

We use the matrix operation to minimize the perimeter as well. Figure 3.24 shows

the method to minimize the perimeter. We define the vector vi as

�
�

�
�

��

(xi, yi)

(xi+1, yi+1) �
�

�
�

��

(xi+2, yi+2)

(xi+3, yi+3)�
�

��
vi

�
�
��
vi+1

�
�

��
vi+2

�
�

��
vi+3

Figure 3.24: The Minimization of Perimeter

vi = h3(xi−1 + xi+1 − 2xi, yi−1 + yi+1 − 2yi) (3.52)

where h3 is the step size.When i = 1 or N , we let

v1 = h3(xN + x2 − 2x1, yN + y2 − 2y1) (3.53)

vN = h3(xN−1 + x1 − 2xN , yN−1 + y1 − 2yN). (3.54)
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For convenience, we use the matrix L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 1

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
. . . . . . . . . . . .

...

0 · · · 0 1 −2 1

1 0 · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.55)

In this case, if we let

Vx = h3 · D × X (3.56)

Vy = h3 · D × Y (3.57)

then we can define the new coordinates in matrix form by

Xnew = Xcurrent + Vx (3.58)

Ynew = Ycurrent + Vy. (3.59)

Consequently, we should do three things for each step:

1. expanding the area

2. minimizing the perimeter

3. minimizing the potential energy

to solve Problem 3 numerically by running the program in matrix form. There are

distinct step sizes (h1, h2, h3) for each sub step. During the simulation, we can change

the step size to keep the program running stable. For example, the step size (h2) for

the area should be larger than the others at the beginning and when the area is very

close to the area of the domain, we should decrease the h2 and increase the step size
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(h1) for the potential energy to guarantee the bubble in the domain.

Let the unit domain be [−0.5, 0.5]×[−0.5, 0.5]. Figure 3.25 is the simulation result

for one bubble. From the picture, we can find that the configuration of the bubble

Figure 3.25: One Bubble in the Domain

is not the same as the domain. This is because there are potential energy between

the bubble and the boundary of the domain. In spite of this, the configuration is still

very close to the domain.

Now we can consider more bubbles. The methods of minimizing the perimeter

and expanding the area are the same as one bubble. However, we should not only

consider the potential energy between the boundary and the bubble, but also consider

the potential energy between different bubbles. In this case Xf and Yf should record

the coordinates of the boundary of the other bubbles. Then we can use the same

method to minimize the potential energy. In this case, the bubble areas are adjusted

for each bubble separately; this means that the area term in the total energy is

proportional to
∑

i(ai − a0
i )

2 where ai are the current bubble areas, and a0
i are the

prescribed ones (so that
∑

i a
0
i = 1). Figure 3.26 and 3.27 are the configurations of

the two and three bubbles, respectively.

This method works for arbitrarily many bubbles.
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Figure 3.26: Two Bubbles in the Domain

Figure 3.27: Three Bubbles in the Domain

We utilize the model of Problem 3 to solve Problem 2 numerically. Suppose

that the function f has two maxima and two minima in the square domain (to be

concrete, we consider the function f(x, y) = sin(2πx) · sin(2πy)). In this situation,

we can assume there are four bubbles in the domain. The function f has the maxima

f = 1 at the centers of the top right bubble and bottom left bubble and has the

minima f = −1 at the other two centers. On the boundaries of the bubbles f = 0.

Furthermore, there are some intermediate level lines between the center and the

boundary in each bubble. For numerical computation, we set the i-th level lines
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with the value fi = ±i/N where N is the number of level lines (including the center

and the contour line) and 1 ≤ i ≤ N . We expect that the area Si bounded by

the i-th level line is equal to a quarter of the area bounded by the level line of the

function sin(πx) sin(πy). So the area denoted by λ is a function with respect to f .

We computed this function numerically; Figure 3.28 is the graph of λ(f).

Figure 3.28: The Curve of λ(f)

Figure 3.29 shows the initial condition of the functional to be minnimized. We

can consider each bubble as an individual domain and minimize the magnetic energy

by the water bag method. However, the contour lines of the bubbles are level lines

as well. We can change the configurations by the method in Problem 3. Thus, we

adjust the configurations of the bubbles while the magnetic energy is minimized.

Moreover, we expect that the quadrangle elements between the level lines are

very close to rectangles to increase the accuracy. Here we use the grid correction and

phase correction. The grid correction is to make the points on level lines equidistant.

Suppose (xi
j, y

i
j) and (xi

(j+1), y
i
(j+1)) are two adjacent points. For grid correction we

define the new position of (xi
(j+1), y

i
(j+1))new, such that the vector from(xi

(j+1), y
i
(j+1))

to (xi
(j+1), y

i
(j+1))new having the same direction of the vector from (xi

(j+1), y
i
(j+1)) to
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Figure 3.29: Four bubbles with Level Lines in the Domain

(xi
(j+1), y

i
(j+1)) and the length of the vector equals the Mth of length of the level line

where M is the number of points on the level line. The phase correction can prevent

the small elements skew very much. We redefine the indices of the points on the level

lines. For example, (xi
1, y

i
1) is the point on the i-th level line. We define the closet

points on the (i + 1)-th level line to (xi
1, y

i
1) to be (x

(i+1)
1 , y

(i+1)
1 and define the rest of

the points in counterclockwise order. In this way, the small elements are always like

rectangles.

Note that the initial configuration (Figure 3.29) is already an equilibrium (because

the function f(x, y) = sin(2πx) · sin(2πy) is an eigenfunction of Laplacian, and hence

a stream function of a steady solution of the Euler equations, for it satisfies (2.47).

But this is not a local minimum of magnetic energy. Hence, we could use the method

of the gradient descent, if we start from a different configuration which is close to

the equilibrium, but lacks the symmetry. To do it, the initial configuration was

chosen such that the position of a local maximum in one of the bubbles was randomly

displaced, and then the minimization was started. The small asymmetry in the initial

configuration grew up, and the result of minimization is shown at Figure 3.30. It is
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Figure 3.30: The Minimizer of Four bubbles with Level Lines

clearly seen that two opposite bubbles are touching one another along a segment

(”a bridge”), while two other bubbles stay apart. So, this is a clear case of an X-Y

transition, like in the examples considered before. Note that the bridge orientation

is not unique; we could turn the picture by π/2, and get another minimizer with

the same energy. To be sure, we found the value of the magnetic energy for the

last configuration; it is (numerically) E = 10.3826, while for the initial (symmetric)

configuration it was E0 = 11.2227.

3.4 Methods Discussion

In this chapter we used three different methods to solve one problem. We used FEM

first because it is very convenient to compute the Dirichlet integral numerically. But

there are some disadvantages. First, when we compute the Dirichlet energy, the small

elements (quadrangles) should be very close to rectangles. However, it is observed in

Figure 3.6 that the elements on the diagonal are quite skewed. So the approximation

is not too good in this case. Another disadvantage is that FEM cannot guarantee area-
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preserving transformations. We just used the energy of density change to preserve

the area of small elements. But, in fact, we cannot check the areas bounded by the

level lines. To obtain a more accurate result, we used the water bag method.

The advantage of the water bag method is that we can observe the level lines

during the transformation. We can check the areas inside each level line at each step

to preserve them. Thus, the result is more accurate. And the result does not depend

on the initial configurations. We should only define the values of the function and

the areas bounded by the level lines initially. However, there is a disadvantage: to

use this method, we should know in advance the topology of the minimizer, i.e. the

configuration of its level lines and critical points. We need some grid (like a polar

system of coordinates) to define the coordinates of grid points. But the grid points

can only move along the paths defined at the beginning, so the lack of freedom affects

our possibilities.

The last method, the bubble method, offers an opportunity to observe the singular

line clearly. The ”bridge” in Figure 3.30 is just the singular line. Although we employ

the water bag method to minimize the energy, we can make the small elements more

like rectangles. This is because we consider the whole level lines here, instead of

pieces of them, and we can use the grid correction and phase correction to adjust the

small elements. The disadvantage of this method is that there is a potential energy

between the boundary and the bubbles. It results in some blank space between them.

This is why the singular line looks like a narrow strip (”bridge”) here.
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Chapter 4

Conclusion

From Chapter 2, we know that the problem of minimization of the Dirichlet inte-

gral for a smooth function in a 2-dimensional domain transformed by area-preserving

diffeomorphisms is equivalent to the problem of magnetic equilibrium of ideally con-

ductive incompressible fluid in the same domain. In fact, the later problem is to solve

the steady Euler equations, but it is quite difficult to find the solution directly, either

by analytical methods or by numerical methods. However, the equivalence offers an

efficient way to find the solutions numerically. We can minimize the Dirichlet integral

numerically and the infimum is just the stream function to the velocity field of the

steady Euler equations.

The minimization problem was solved by using 3 different numerical methods. The

key point is to preserve areas. We use different penalty functions to guarantee this

condition. The numerical results showss that the singularity formation was observed

in all the cases. Every hyperbolic critical point of the original function gives rise

to a singularity of the minimizer. We should note that the minimizing function

is continuous, but its gradient is discontinuous along a segment of a curve. This

phenomenon is called the X − Y transition.

Although the work in my thesis is only a simplified model, it still implies the
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existence of singularities. And the effect of the singularities is crucial in the plasma

physics and astrophysics.
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Appendix A

Adaptive Stepsize Method

The adaptive stepsize method is a very common technique to enhance the efficiency

and accuracy of an algorithm in numerical analysis. Usually it is used for solving dif-

ferential equations and computing integration. Let us consider an ordinary differential

equation with initial value

y′(t) = f(t, y(t)), y(t0) = a (A.1)

where t ∈ [t0, T ]. We want to approximate the value of y(T ). The simplest method to

solve this problem is Euler’s method. In this method, we use a set of points chosen on

the interval [t0, T ] and find the approximation value by iteration. Usually the stepsize

h is fixed, say h = (T − t0)/N and then we define a recursive sequence as

yk+1 = yk + hf(tk, yk) (A.2)

where tk = t0 + kh, 0 ≤ k ≤ N . By the Taylor series, we know

y(x + h) = y(x) + hf(x, y(x)) + f ′(θ, y(θ))
h2

2
(A.3)
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where θ ∈ [x, x + h]. Since f ′(θ, y(θ)) is a constant, then the stepsize h decides the

accuracy of the approximation. In other words, as h decreases, the algorithm yields

more precise results. If the error

ε = |y(t0 + kh) − yk| (A.4)

is bigger than the allowed error εt, we have to decrease h. If ε is much smaller than

εt, we can raise h a little.

In our example (FEM), we can use the adaptive stepsize method during the process

of minimization. Actually, the stepsize h decides how long the grid points move along

the opposite direction of the gradients. We use the following rule to modify the

stepsize,

if |Ek+1 − Ek| < 10−6, h = h × 1.01

if |Ek+1 − Ek| > 10−6, h = h × 0.7

where Ek and Ek+1 denote the energies of two consequent steps. We should note that

the second condition implies instability, so we should use the grid points of the last

step, instead of the current step, after modifying of h.
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Appendix B

Fast Fourier Transform

The Fast Fourier Transform (FFT) is a method to compute the Discrete Fourier

Transform (DFT), which transforms a sequence of complex number into components

of different frequencies, as well the inverse of DFT. DFT is an important technique

in various digital signal processing applications, such as linear filtering, correlation

analysis, and spectrum analysis. In our case, we use DFT to eliminate the oscillation

during the minimization and make the grid points move more smoothly.

Let {xi, 0 ≤ i ≤ N} be a sequence of complex numbers. The DFT is defined by

the formula

Xi =
N∑

j=0

xie
−i2πk j

N 0 ≤ i ≤ N. (B.1)

It takes O(N2) arithmetical operations to compute the DFT of N points. The FFT

computes the same results more quickly. The FFT only needs O(N log N) arith-

metical operations to compute the same problem. There are many distinct FFT

algorithms and most of them depend on the factorization of N . Thus, N should not

be a prim number.

In our example, we take FFT for each row of the matrices X and Y . We double

the length of each row by reflection to guarantee N to be a composite of two numbers.

For convenience, we use the built-in functions fft and ifft in Matlab. The functions
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Y = fft(x) and y = ifft(X) implement the transform and inverse transform pair

given for vectors of length N by

X(k) =
N∑

j=1

x(j)ω
(j−1)(k−1)
N (B.2)

x(j) =
1

N

N∑
k=1

X(k)ω
−(j−1)(k−1)
N (B.3)

where ωN is an N -th root of unity

ωN = e
−2π
N

i. (B.4)

We should note that the results of fft and ifft are both vectors of complex numbers

and we only need the real part of the entries in the vectors.
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