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ABSTRACT 

ANALYSIS OF A THREE-DIMENSIONAL RAILWAY VEHICLE-TRACK SYSTEM 
AND DEVELOPMENT OF A SMART WHEELSET 

Md. Rajib Ul Alam Uzzal 
Concordia University, 2012 

 

Wheel flats are the sources of high magnitude impact forces at the wheel-rail interface, which 

can induce high levels of local stresses leading to fatigue damage, and failure of various vehicle 

and track components. With demands for increased load and speed, the issue of wheel flats and a 

strategy for effective maintenance and in-time replacement of defective wheels has become an 

important concern for heavy haul operators. A comprehensive coupled vehicle-track model is 

thus required in order to predict the impact forces and the resulting component stresses in the 

presence of wheel flats.  

This study presents the dynamic response of an Euler- Bernoulli beam supported on two-

parameter Pasternak foundation subjected to moving load as well as moving mass. Dynamic 

responses of the beam in terms of normalized deflection and bending moment have been 

investigated for different velocity ratios under moving load and moving mass conditions. The 

effect of moving load velocity on dynamic deflection and bending moment responses of the 

beam have been investigated. The effect of foundation parameters such as, stiffness and shear 

modulus on dynamic deflection and bending moment responses have also been investigated for 

both moving load and moving mass at constant speeds.  

This dissertation research concerns about modeling of a three-dimensional railway vehicle- 

track model that can accurately predict the wheel-rail interactions in the presence of wheel 

defects. This study presents a three-dimensional track system model using two Timoshenko 
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beams supported on discrete elastic supports, where the sleepers are considered as rigid masses, 

and the rail pad and ballast as spring-damper elements. The vehicle system is modeled as a three-

dimensional 17- DOF lumped mass model comprising a full car body, two bogies and four 

wheelsets. The railway track is modeled as a pair of three-dimensional flexible beams that 

considers two parallel Timoshenko beams periodically supported by lumped masses representing 

the sleepers.  

The wheel-rail contact is modeled using nonlinear Hertzian contact theory. The developed 

model is validated with the existing measured data and analytical solutions available in literature. 

The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the 

wheel-rail interface due to the presence of single as well as multiple wheel flats.  

The effects of single and multiple wheel flats on the responses of vehicle and track 

components in terms of displacements and acceleration responses are investigated for both 

defective wheel and the flat-free wheel. The characteristics of the bounce, pitch and roll motions 

of the bogie due to a single wheel flat are also investigated. The study shows that nonlinear 

railpad and ballast model gives better prediction of the wheel-rail impact force than that of the 

linear model when compared with the experimental data. The results clearly show that presence 

of wheel flat within the same wheelset has significant effect on the impact force, displacement 

and acceleration responses of that wheelset.  

This study further presents the modeling of a MEMS based accelerometer in order to detect 

the presence of a wheel flat in the railway vehicle. The proposed accelerometer can survive in a 

dynamic shock environment with acceleration up to ±150g. Simulations of the accelerometer are 

performed under various operating conditions in order to determine the optimum configuration.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW  

1.1 INTRODUCTION  

Railway transportation is an efficient means of conveyance of passengers and goods. It is 

safe, economical and environment friendly too. Canada has one of the largest rail networks in the 

world with over 48,000 km of track, used primarily for freight handling [1]. Association of 

American Railroads (AAR) and Transport Canada regulations, standards and programs work to 

make railway system safer, secure, accessible, competitive and more environmentally 

responsible. In Canada, there are two major transcontinental freight railway systems, 

the Canadian National (CN) and Canadian Pacific (CP) Railway. With highest revenue and large 

physical size of its rail network, Canadian National (CN) is the largest railway in Canada 

spanning from Atlantic coast in Nova Scotia to Pacific coast in British Columbia. In a very 

recent announcement, the Association of American Railroads (AAR) has stated that U.S. freight  

railroads are planning to spend a record $12 billion on capital improvements in year 2011 

whereas it was $10.7 billion in 2010 [2]. According to Rail Association of Canada (RAC), 

Canada spends approximately $9 billion per year in railway sector [3]. Study shows that Rail 

system moves over 70 million people and 75 per cent of all surface goods every year in Canada. 

Furthermore, it is growing throughout Canada every year for its economical and environment 

friendly operation and its more than 35,000 employees help provide safe and secure access to 

national and international markets for its customers, enabling Canada to successfully grow and 

compete in the 21st century [3]. 
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In typical North American freight cars, the car body is supported on a pair of trucks or 

bogies. In a typical freight truck, as shown in Fig. 1.1, the wheelset to side frame connection 

consists of only a bearing and bearing adapter with associated friction. The lateral and yaw 

motions of the wheelsets relative to the side frames are thus generally very small. The 

elastomeric pads between the bearing adapter and the sideframe, however, form the primary 

suspension, whose stiffness is usually considered in the modeling process. The bolster is 

connected to the sideframes by a combination of vertical springs, as shown, in parallel with the 

friction plates, which constitute the secondary suspension. The lateral motion is restricted by the 

bolster gibs. The dry friction at the centerplate together with the stiffness of continuous contact 

with the side bearings resists the truck rotation relative to the centerplate. 

 
Fig. 1.1: A three-piece freight car truck 

The conventional railway track structure consists of various discrete subsystem layers 

representing the rails, sleepers, railpads, fasteners, ballast, sub-ballast, and the sub-grade. Rails 

are connected to the sleepers through rail-pads and fasteners, which are supported by the ballast. 

The ballast bed rests on a sub-ballast layer, which forms the transition layer to the subgrade. The 
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different layers of the track structure are shown in Fig. 1.2. The modern rail is made of steel and 

its cross section is derived from an I-profile that serves as a carrier of the vertical load of the 

train that is distributed over the sleepers. Railpads are usually synthetic materials to provide 

some cushioning effect between the rail and the sleeper. The properties of the pads affect the 

overall track stiffness, while soft railpads attenuate the high frequency vibration and permit 

larger deflection due to load. The modeling of the track structure thus necessitates identification 

of appropriate parameters of the railpad, apart from other structural layers. 

 

 
Fig. 1.2: Various layers of the track structure 

1.2 LITERATURE REVIEW 

The dynamic wheel-rail interactions in the presence of wheel/rail defects require accurate 

characterization of the complex wheel-rail contact model particularly in the presence of interface 

defects. With the significant increase of train speed and axle load, the vibrations of the coupled 

vehicle and track system due to a single or multiple wheel flats are further intensified adversely 

affecting the safe operation of trains. Furthermore, the presence of nonlinearity in between the 

wheel-rail contact points and the track components makes the analysis more complex. In order to 
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analyze the railway coupled vehicle-track interaction in the presence of wheel/rail defects, 

numerous studies have been carried out to date. These studies include both analytical and 

experimental analyses of vehicle-track interactions in the presence of wheel/rail defects. A vast 

majority of these studies are analytical which incorporate one or two-dimensional vehicle and 

track models in order to predict wheel-rail impact force due the presence of wheel and rail 

defects [4-18]. A very few studies have been carried out field measurement of impact loads and 

accelerations caused by the wheel and rail defects [4, 19, 20, 21]. A comprehensive review on 

different types of dynamic vehicle and track models and the sources of the wheel-rail impact 

forces has been presented by Knothe and Grassie [22]. Another comprehensive review on the 

effects of wheel defects on vehicle and track components has been presented by Barke and Chiu 

[23]. In order to have accurate prediction through the analysis, detailed study of the modeling of 

vehicle, track and wheel/rail defects is required. The relevant reported studies, grouped under 

relevant topics, are thus reviewed and discussed in the following subsections in order to build 

essential background and to formulate the scope of this dissertation research.   

1.2.1 Railway beam under moving load and mass: 

 The dynamic behavior of beams on elastic foundations subjected to moving loads or masses 

has been investigated by many researchers, especially in Railway Engineering. The modern trend 

towards higher speeds in the railways has further intensified the research in order to accurately 

predict the vibration behavior of the railway track. These studies mostly considered the Winkler 

elastic foundation model that consists of infinite closely-spaced linear springs subjected to a 

moving load [24-28]. These models are also termed as one-parameter models [29]. These one-

parameter models, as shown in Fig. 1.3, have been extensively employed in early studies to 

investigate the vibration of beams subjected to moving loads. In case of moving mass, studies are 
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limited to single [30-42] or multiple span [43, 44] beams with different boundary conditions and 

without any elastic supports. A very few studies considered one parameter foundation model for 

prediction of beam responses subjected to a moving mass [45-47]. However, these one parameter 

models do not accurately represent the continuous characteristics of practical foundations since it 

assumes no interaction among the lateral springs. Moreover, it also results in overlooking the 

influence of the soil on either side of the beam [48].  

 

Fig. 1.3: Beam structure resting on Winkler foundation. 

 In order to overcome the limitations of the one parameter model, several two-parameter 

models, also known as Pasternak models, have been proposed for the analysis of the dynamic 

behavior of beams under moving loads [49-51]. A two-parameter Pasternak foundation model 

excited by a moving force is shown in Fig. 1.4. All of these models are mathematically 

equivalent and differ only in foundation parameters. However, dynamic response of the beam 

supported on a two parameter foundation model under a moving mass is not investigated so far. 

Moreover, the effects of shear modulus and foundation stiffness on deflection and bending 

moment responses of the beam supported by Pasternak foundation have also never been 

investigated in the presence of a moving mass. 

( )k x
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Fig. 1.4: Infinite beam model on Pasternak foundation subjected to a moving load [50]. 

In order to capture the distributed stresses accurately, a three-parameter model has been 

developed for cohesive and non-cohesive soil foundations [52-54]. This model, as shown in Fig. 

1. 5, offers the continuity in the vertical displacements at the boundaries between the loaded and 

the unloaded surfaces of the soil [55]. In the analysis of vibration of beams under the moving 

loads and masses, the beam has been modeled as either a Timoshenko beam [30, 47, 48, 56-61], 

or an Euler-Bernoulli beam [24-29, 32-38, 43, 50, 51, 62- 64]. The analytical solution of the 

vibration of infinite beams under the moving load has received considerable attention by 

researchers [24, 28, 51, 65, 66]. In the case of two-parameter model, studies are scarce due to the 

model complexity and difficulties in estimating parameter values [51, 65-67]. In recent years, a 

growing interest on the vibration of the beam under moving load arises in railway industry 

because of the use of beam type structure as simplified physical model for railway track and 

pavements [26, 28, 68]. 
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Fig. 1. 5: A three-parameter foundation model developed by Kerr [52] 

Apart from the one-, two- or three- parameter foundation models, poroelastic half space 

model of the foundation is also common in the dynamic analysis of a beam due to a moving  

oscillating load [69, 71], or moving point load [70, 72-76]. These half-space models can be 

single layer [71, 72, 74-76], or multiple layers [70, 73]. Responses of the beams in terms of 

displacements [69-76], bending moments [70], accelerations [71] and shear force [70] have been 

analyzed in these studies. Studies with multilayer half space show that the response calculated 

for the multi-layered case exhibits higher frequencies and larger amplitudes than the response 

obtained for a uniform half-space [70, 73].  

1.2.2 Vehicle system model: 

In analyzing the interaction between the train and the track, the vehicle system can be 

modeled as one-dimensional, two-dimensional, or three-dimensional model. The simplest vehicle 

model is a single DOF one dimensional model, which considers a single wheel with static force 

representing the static load due to the car and bogie where the contact between the wheel and rail 
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is maintained by either linear or non-linear spring. This model is shown in Fig. 1. 6. This model 

has been applied in a number of published studies concerned with dynamic wheel-rail 

interactions [5, 18, 19], and is considered sufficient for high frequency vibration analysis 

considering the interaction between the wheel and rail with surface irregularities. However, this 

model is insufficient in a number of scenarios, namely: (i) to evaluate the effects of vehicle 

suspensions on the impact loads caused by a wheel flat; (ii) to analyze the contributions due to 

pitch and roll motions of the vehicle on wheel-rail impact load; and (iii) to investigate the effect 

of multiple defects in different wheelsets.  

 

Fig. 1. 6: A single DOF one dimensional vehicle model 

Several two- or three- DOF vehicle models have been evolved those employ car, bogie, a 

single wheelset, and primary and secondary suspensions [4, 6, 7]. A three-DOF one-dimensional 

model is shown in Fig. 1.7. This model permits the analysis of influence of car body and 

suspension on the wheel-rail impact loads, while the pitch and roll dynamic responses could not 

be evaluated. 

W 

HC  

Wheel 

Rail 

 Vehicle Load 

Hertzian contact spring 
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Fig. 1. 7: A three-DOF one-dimensional vehicle model [4] 

Alternatively, two-dimensional or in-plane models those include half of the car body and two 

bogies and four wheelsets have been most widely formulated and applied for studies on wheel-

rail interactions. A two-dimensional model can be either a pitch-plane or a roll-plane model. A 

vast majority of the studies dealing with the two-dimensional vehicle model employ the pitch-

plane vehicle model in order to incorporate the pitch effect of the vehicle on wheel-rail impact 

force [8, 9, 10, 77], while some studies employ roll-plane vehicle models in order to incorporate 

the influence of the roll dynamics [11, 12].  A four-DOF two-dimensional pitch plane vehicle 

model, as shown in Fig. 1.8, has been developed by Nielsen and Igeland [77] in order to study 

the influence of wheel and rail imperfections on vehicle-track interaction. This model has been 

further employed by Dong [8] and Cai [9] in order to simulate the vehicle-track interaction under 

wheel defects. 

Bogie 

Car body 

Secondary 
suspension 

Primary 
Suspension  

Wheel 
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Fig. 1. 8: Four-DOF two-dimensional pitch-plane vehicle model [77]. 

Unlike the pitch-plane vehicle model, little effort has been made to develop a roll- plane 

two-dimensional vehicle model in order to study the contribution due to roll dynamics. A two-

dimensional vehicle model in the roll plane consists of a wheelset, side frame and car body 

connected together through the primary and secondary suspension, as shown in Fig. 1.9 [11, 78]. 

These models permit the study of effects of wheel defects within the opposite wheels. 

 

Fig. 1. 9: A typical roll-plane vehicle model with several DOF [11] 
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Several two-dimensional vehicle models have also been formulated with 10-12 DOF that 

consist of half bogie and a quarter of the car body weight and include the pitch motion of both 

the car body and bogie [13, 15]. Such a model would be sufficient to analyze the dynamic 

interaction between the leading and trailing bogie and wheels and effect of the cross wheel 

defects. However, contributions due to either pitch or roll motion of the car body and bogies 

have to be neglected in such models. 

A number of comprehensive three-dimensional vehicle models have been developed in 

recent years [16, 79, 80] incorporating a full or half of the car body, two bogies, and two 

wheelsets, as shown in Fig. 1. 10. Such models permit dynamic coupling between the leading 

and trailing bogies. These vehicle models are employed to investigate the wheel-rail impact force 

and track component force due to rail joints [81], sleeper voids [82], curved tracks [83, 84, 85, 

86], random track irregularities [87, 88, 89], wheel flats [90], rail corrugation [91] and out-of-

roundness (OOR) of wheel [92, 93].  Several three-dimensional railway vehicle-track models 

have also been developed in order to study vehicle-track-bridge interactions in the absence of 

wheel/rail defects [94, 95, 96]. However, the effects of multiple wheel flats on the wheel-rail 

impact forces and their consequences have never been investigated with these full three-

dimensional vehicle models.  
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Fig. 1. 10: A three-dimensional 10-DOF vehicle model [16] 

Sun et al. [97] developed a comprehensive three dimensional vehicle model, as shown in Fig. 

1. 11, in order to study lateral and vertical dynamics of the wagon-track system. Such a model 

provides all the advantages of roll, pitch plane models, and quite adequate for the investigation 

of the influences of coupled vertical, pitch, and lateral dynamics of the vehicle. Furthermore, 

under certain conditions, the pitch and roll motions of the car body and bogie that could enhance 

the wheel-rail impact force caused by the wheel and rail irregularities can be adequately 

investigated. Moreover, the investigation of the cross wheel effects of the four wheels of a bogie 

and the leading and trailing wheelsets can be effectively carried out. 
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Fig. 1. 11: A three-dimensional vehicle model developed by Sun et al. [97], (a) car body; (b) 

bogie. 
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1.2.3 Track system model: 

The reported track system models for analysis of dynamic train-track interactions can be 

grouped into three categories, namely: (i) lumped parameter models; (ii) rail beam on continuous 

supports; and (iii) rail beam on discrete supports. Among the reported track system models, 

lumped parameter model is the simplest and the earliest model that includes a single effective 

rigid mass supported on track of two or more layers of sleepers and ballasts connected by linear 

spring and damping elements [98]. This model was employed to study the formation of rail 

corrugations and wheel/rail impact forces due to wheel OOR defects. In early analyses, as shown 

in Fig. 1.12, a single-layer continuous track model was used where the track was treated as a 

finite/infinite rail beam on an elastic foundation and subject to a moving load [4, 99]. Such a 

model is considered to represent the track system fairly well, and can provide a closed form 

analytical solution. Furthermore, there is a possibility to replace the subsoil foundation by the 

frequency and wave number dependent stiffness. However, this model presents certain 

limitations, such as the sleeper mass cannot be adequately distributed over the rail and dynamic 

behavior of sleeper cannot be investigated.  

 

Fig. 1.12: Finite beam on single-layer continuous elastic foundation [99] 
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Alternatively, a two-layer continuous track model that consists of two Timoshenko beams 

supported on continuous spring-damper elements has been developed by Bitzenbauer and Dinkel 

[100]. Similar models have also been applied by many researchers to study rail corrugations, 

wheel-rail noise generation, wheel-rail impact loads due to rail joints and to investigate the 

dynamic interaction problems between a moving vehicle and substructure [100, 101, 102]. The 

model, as shown in Fig. 1.13, enables analysis of dynamic behavior of the sleeper considering 

both symmetric and asymmetric bending modes, while only limited information could be derived 

for dynamic behavior of the total track system.   

 

Fig. 1. 13: A two-layer continuous track model [101] 

In the analysis of impact forces generated at the wheel-rail interface caused by wheel and 

rail defects, the rail beam models on discrete supports have been most widely used in order to 

include the effect of discrete sleeper support into the impact analysis [20, 93, 104]. Similar 

models have also been used to study the effect of OOR wheel profiles, the dynamic response of 

vehicle and track under high-speed conditions and noise emissions caused by wheel and rail 

defects [77, 105]. These models show the advantage of capturing the responses corresponding to 
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three resonance frequencies of the track structure, the rail and the sleeper [106]. A two-layer 

discrete track model is shown in Fig. 1.14. 

 

Fig. 1. 14: Two-layer discrete track model [19] 

Three-layer track models have also been formulated where the ballast is modeled as a 

massive mass in addition to the sleeper mass. These models have been employed by Zhai and 

Cai [13, 15] to study the wheel-rail impact loads due to wheel flats and rail joints, and Jin et al. 

[6, 14]  to study the effect of rail corrugations on vertical dynamics of the vehicle and track. 

Oscarsson [107] also used this model to simulate the train-track interactions with stochastic track 

properties. Ishida and Ban [7] developed a five layers track model, as shown in Fig. 1.15, in 

order to analyze the effect of different types of wheel flats in terms of impact loads and rail 

acceleration where the ballast is divided into three different layers coupled through damping and 

spring elements. This model permits analysis of the response of ballast at different positions to 

the excitation at wheel-rail interface. The model results, however, did not show substantial 

advantage in enhancing the dynamic wheel-rail impact load prediction ability when compared to 

the simpler models. 
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Fig. 1. 15: A comprehensive five-layer discrete track model developed by Ishida and Ban [7]. 

Apart from the track system modeling, modeling of the track components, such as rail, 

sleeper, railpad, ballast, also varies depending upon the purpose of studies. The rail is mostly 

modeled as a continuous beam, either as an Euler-Bernoulli beam or a Timoshenko beam. The 

Euler beam model of the rail has been used in many studies on dynamic analysis of the vehicle-

track system to study the effects of wheel flats [88, 108], rail corrugation [6, 14, 91], rail dipped 

joints [109], rail welds [81, 108], bridge-train interactions [110] and OOR defects [93]. However, 

the Euler beam model neglects shear deformation and rotational inertia of the rail which may 

yield overestimation of the dynamic force in the high frequency range. Thus, lateral dynamic 

studies that involve lateral flexibility of the rail web may not be suitable with this model. 

Furthermore, it has been reported that Euler beam representation of the rail is adequate for the 

rail response to vertical excitation for frequencies less than about 500 Hz, while for Timoshenko 

beam model it is up to 2.5 kHz [22]. Timoshenko beam model of rail has, thus, been widely 

employed in order to study the dynamic interaction between the wheel and rail in the presence of 

wheel and/or rail imperfections, effect of nonlinearity and railpad stiffness on wheel-rail impact 

and noise generation [18, 103, 105, 111, 112]. In recent years, several number of studies have 

employed Timoshenko beam to model the rail in order to analyze the vehicle-track interactions 
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due to the wheel flats [78, 113, 114] and track irregularities [81, 87, 115]. A Timoshenko rail 

beam four-layer track model is shown in Fig. 1. 16. 

 

Fig. 1. 16: A Timoshenko rail beam four-layer track model [113] 

Railpads are used to support the rail, and to protect sleepers from wear and damage. Railpad 

is generally modeled using spring elements [104, 116] or combined spring and damping elements 

[6, 14, 93, 108] to form either continuous or discrete rail support. A state-dependent three-

parameter viscoelastic railpad model has been developed by Anderson and Oscarsson [5] in 

order to study the dynamic behavior of pad under low and high frequency excitations. Different 

types of pad models utilized in railway vehicle-track interaction analysis in the presence of wheel 

and rail defects are shown in Fig. 1. 17. In a continuous rail support, the railpad is continuously 

placed under the rail beam [99, 100], whereas the discrete models consider the visco-elastic pad 

model at a point on the rail foot at the center of the sleeper support to investigate the wheel-rail 

interactions [10, 18, 23, 104, 108].  

      

(a)        (b)                   (c)                                       (d) 

Stiffness 

Damping 
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Fig. 1. 17: Different types of rail pad model: (a) one-parameter; (b) two-parameter; and (c) and 

(d) three-parameter.    

In the analysis of vehicle-track interactions in the presence of wheel and rail defects,  a 

sleeper can be considered either as a transverse beam with either uniform or variable cross 

section [118] or as discrete mass [6, 10, 14, 105, 107] on an elastic foundation representing the 

ballast. These studies have invariably concluded that sleeper modeled as a rigid mass is adequate 

for prediction of dynamic vehicle-track interaction force, while the bending stiffness is neglected 

that may yield an overestimation of impact force at higher speeds. The ballast is generally 

modeled as parallel spring-damper elements [4, 8, 10, 93, 103, 104, 105] or as rigid masses those 

are interconnected by the shear springs and dashpots [6, 13, 14, 15]. The latter model permits 

analysis of distributed ballast deflections under excitations at the wheel-rail interface. However, 

the ballasts do not greatly affect the wheel-rail contact forces due to their distant placement from 

the wheel-rail contact [119]. A comprehensive ballast model developed by Zhai et al. [13, 15] 

that considers shear interaction between the ballast masses is shown in Fig. 1. 18. 

 

Fig. 1. 18: Ballast model considering the stiffness and damping in shear [13, 15] 
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The elastic properties of the track system can be modeled with either linear or nonlinear 

stiffnesses and damping. Although the properties of railpad and ballast in practice are nonlinear, 

a vast majority of the studies involving vehicle-track interaction in the presence of wheel and rail 

defects considered the linear properties of the railpad stiffness and damping [4, 8, 9, 13, 14, 16, 

83, 88]. The analytical studies of wheel-rail impact loads due to wheel and rail defects showed 

reasonably good agreements with measured peak contact force in the presence of wheel defects 

[13, 21]. The difference between the predicted peak wheel-rail impact loads and the measured 

data is, however, very high in case of high vehicle speed [4, 8]. The predicted wheel-rail impact 

loads were compared using linear and nonlinear rail track properties by Johansson and Nielsen 

[19]. The study concluded that a linear track model yields lower magnitudes of the impact loads 

than the nonlinear track model in low and medium speed range. However, at higher speeds, more 

than 70 km/h, both models predicted higher impact forces than the measured data.  The nonlinear 

properties of the railpad are included in a very few studies in order to investigate the wheel-rail 

interaction in the presence of wheel/rail defects [105, 117]. These studies showed considerable 

differences in the results due to linear and nonlinear track models. Dahlberg [117] claimed the 

necessity of a nonlinear track model when the load to the railpad and ballasts varies significantly 

because of the dramatic change in the railpad and ballasts stiffness with change in loads. 

However, these studies simplify the vehicle model to a single wheel model only, which do not 

consider the pitch and roll motion of the car body and bogie. Change in the static and dynamic 

stiffness of nonlinear railpad due to change in the load is shown in Fig. 1. 19. 
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Fig. 1. 19: (a) static stiffness of non-linear pads, — measured , ···· approximated. The upper 

curves are for the stiff pad and the lower curves are for the medium pad; (b) dynamic stiffness of 

non-linear pads, — stiff pad, --- medium pad, ···· soft pad [105]. 

1.2.4 Wheel-rail contact model: 

Wheel-rail contact points couple the vehicle model with the track model. The accurate and 

reliable prediction of wheel-rail impact force largely depends upon the accuracy of the wheel-rail 

contact model. A number of theories have been evolved to accurately describe the dynamic 

wheel-rail contact point.  The vast majority of the analytical studies considered linear [114, 120, 

121, 122, 123, 124, 125] or non-linear [5, 13, 14, 15, 97, 103, 107, 126, 127] Hertzian contact 

model in order to study the wheel-rail interactions due to wheel/rail defects. Hertzian contact 

model, as shown in Fig. 1. 20, is perhaps the simplest and most widely used to characterize the 

rolling contact in railway vehicle. A major disadvantage of non-linear Hertzian contact model is 

that it underestimates the impact force at low speeds and overestimates the impact force at higher 

speeds [112]. It has been suggested that a linearized contact spring could adequately represent 
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the wheel-rail contact when variations in the overlap are very small [121]. The linearized contact 

spring has been widely used to study the rail corrugations, vibration due to high frequency 

irregularities on wheel-rail tread, and noise generations [102, 121, 127, 128]. The linearization, 

however, yields overestimation of the contact stiffness in the vicinity of discontinuity and 

thereby the impact loads [8]. 

 

Fig. 1. 20: A single point wheel-rail contact model applied by Tassilly and Vincent [125] 

Kalker [129] proposed a Non-Hertzian contact model based on predicted contact area and 

shape, which requires extensive computation as the contact area must be established as a 

function of wheel angular position relative to the rail. A study of vehicle-track interaction by 

Baeza et al. [130] has used the non-Hertzian contact model for a wheel with flat. The study 

stated that it is not viable to solve this contact model simultaneously with the integration of 

differential equation of motion. Alternate methods to calculate the wheel-rail contact forces 

using non–Hertzian contact patch have been reported by Pascal and Sauvage [131]. The solutions 

of contact problems for an elliptical contact zone are presented by Kalker [132] and Shen et al. 
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[133], and later mostly used by others for analysis of wheel-rail squealing noise [134], 

corrugation studies [135], and interaction due to rail irregularities [136] etc.   

For analysis of vehicle system dynamics, instead of using single-point contact, multiple point 

wheel-rail contact models were used in [137, 138, 139, 140]. Several multipoint contact models 

based on elliptic and non-elliptic profile are cited in [139]. A multiple point contact model, as 

shown in Fig. 1. 21, has been developed by Dong [8] based on Hertzian static contact theory in 

order to study the wheel-rail impact load due to wheel flat. This model has also been employed 

later by Hou et al [90] and Sun et al [97] for the same purpose. Both of these studies reported 

that multiple contact model shows good correlation between the predicted and experimental data, 

except for some overestimations of wheel-rail impact load at a speed of 70 km/h [97]. These 

studies, nevertheless, assume that contact region is symmetric about the vertical axis, and the 

results obtained are very similar to those predicted by Hertzian point contact model. A recent 

study by Zhu [78] developed a multipoint adaptive contact model to account for the asymmetric 

contact as the flat enters the rail. Further study is, however, required to establish the spring 

stiffness for the model. 
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Fig. 1. 21: Multipoint wheel-rail contact model. 

1.2.5  Wheel defects: 

Railway wheel defects are generally attributed to the imperfections caused by the 

misalignment and fixation, manufacturing flaws, and those caused by the operation of the 

vehicle. These defects are termed as wheel flat, shelling, spalling, shattering, corrugation, 

eccentricity, etc. Several comprehensive reviews on various types of wheel defects, their effect 

on wheel-rail impact loads, and vehicle and track components have been described in [20, 23].    

Wheel shelling is a type of wheel defect that is caused by loss of materials from the wheel 

tread and is assumed as the result of rolling contact fatigue. Moyar and Stone [139] carried out a 

study on formation of railway wheel shelling due to thermal effect and concluded that periodic 

rail chill has a strong effect on shelling in the case of hot-braked treads. Wheel spalling is 

another type of wheel defect that has been associated with rolling contact fatigue. Railway wheel 

spalling is assumed to occur as the result of fine thermal cracks joining to produce the loss of a 
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small piece of tread material. It has been observed that spalling appears shortly after reprofiling 

due to the lack of inspection [142]. A railway wheel with shelling defect is shown in Fig. 1. 22. 

 

Fig. 1. 22: Wheel shelling defect. 

Apart from the wheel shelling, a number of studies have investigated the impact loads caused 

by various other types of surface defects and their propagation. These include wheel Out Of 

Roundness (OOR), wheel spalling, wheel shelling, and wheel and rail corrugation. The clamping 

of wheel during reprofiling is known to be a cause of periodic OOR, while non-periodic OOR 

are caused by unbalances in the wheelset or by inhomogeneous material properties of the wheel. 

Both of these types of OOR are usually found in disc-braked wheel sets [143]. It has been 

concluded that for a vehicle speed up to 145 km/h, the effect of the wheelset unbalances on 

dynamic responses of the vehicle is small and negligible [140]. 



26 

 

 
. The formation of the wheel OOR, their experimental detection, mathematical model to predict 

impact load due to wheel OOR and criteria for removal of OOR wheels have been thoroughly 

discussed in a comprehensive review presented by Barke and Chiu [23], and Nielsen and 

Johansson [20].   

Among all the types of wheel defects, wheel flat is the most common type encountered 

by railway industry [8]. The impact load due to wheel flats induces high-frequency vibrations of 

the track that causes damage to track components, which may also be high enough to shear the 

rail [7, 13, 15]. Wheel flats thus affect track maintenance and the reliability of the vehicle’s 

rolling elements [130]. In addition to safety and economic considerations, these defects reduce 

passenger comfort and significantly increase the intensity of noise [120]. Due to the modern 

trend in increasing the speed and wheel load of the vehicle, replacement of defective wheels and 

in-time maintenance of the track has become an important concern for heavy haul operators. In 

order to predict the wheel-rail impact load accurately, it is necessary to develop the effective 

impact load prediction tools. A wide range of mathematical models have thus evolved to 

characterize the geometry of wheel flats in order to investigate the impact loads [7, 8, 15, 90, 

103].  

In order to control the adverse effect of wheel flats and ensure the safe operation of the 

railroads, various railroad organizations have set the criteria for removal of wheels with flats 

primarily based on flat size and the impact load produced by the flat. The American Association 

of Railroad (AAR) has set the criteria to replace the wheel from the service for 50.8 mm long 

single flat or 38.1mm long two adjoining flats [144]. The AAR also states that a wheel should be 

replaced if the peak impact forces due to single flat approaches the 222.41 to 266.89 kN range 
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[145]. According to Transport Canada safety regulations, a railway car may not continue in 

service if one of its wheels has a flat of more than 63.50 mm in length or two adjoining flats each 

of which is more than 50.80 mm [1]. Swedish Railway sets the condemning limit for a wheel flat 

based on a flat length of 40 mm and flat depth of 0.35 mm [17]. According to UK Rail safety and 

standard board [146], freight vehicle with axle load equal to or over 17.5 tonnes a wheel with flat 

length exceeding 70 mm must be taken out of service. These removal criteria for defective 

wheels are based on the damage potential of the wheel flat and mostly the magnitude of the 

wheel-rail impact force due to the wheel flat. The presence of multiple flats either within a single 

wheel or within a multiple wheels of a freight car that could lead to considerably different 

magnitudes of impact loads is not properly addressed by the current guidelines. The Transport 

Canada guidelines also stipulate the threshold lengths of two adjoining flats in a single wheel, 

while the basis for the threshold values is not known. Furthermore, the contributions due to roll 

and pitch dynamics of the car and relative positions of different wheel flats with wide variations 

in relative positions between the flats on the wheel-rail impact forces were not investigated.  

In order to predict the wheel-rail impact load accurately, it is necessary to develop the 

effective impact load prediction tools. A wide range of mathematical descriptions have thus 

evolved to characterize the geometry of wheel flats in order to investigate the impact loads [7, 8, 

13, 16, 103]. Wheel flats have been classified as chord type flat, cosine type flat and combined 

flat based on the flat geometries. As shown in Fig. 1. 23, a newly formed fresh flat with 

relatively sharp edges is known as chord type flat. This type of flat model has been widely used 

in various studies on wheel-rail impact load, rail acceleration, and noise [7, 16, 103]. However, it 

has been shown that the chord type flat model overestimates the wheel-rail impact load [7].  
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Fig. 1. 23: Chord type wheel flat model. 

With continued service, the edges of the chord type flat become rounded under repeated 

impact loads. This type of flat can be modeled as haversine flat, which is widely used for 

analysis of dynamic behavior of rail vehicles and tracks together with the wheel-rail impact load 

due to flat [8, 13]. The impact force response predicted by a haversine wheel flat generally shows 

good agreement with experimental data [7, 8].  However, in reality, the shape of the wheel flat is 

neither purely chord type nor purely haversine shape. In an attempt to make a model that 

represents a real wheel flat shape, a combined wheel flat model was introduced by Ishida and 

Ban [7]. This model, however, did not show notable advantages over a haversine flat model. 

Although the presence of the multiple flats within a wheel or axle is very common in practice, a 

vast majority of the studies consider only a single flat. A few recent studies have also 

investigated the effects of multiple wheel flats on the force responses of the direct and cross 

wheel-rail impact point [78, 97, 119]. A typical wheel flat and the model of a wheel with 

multiple wheel flats are shown in Fig. 1. 24. 
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Fig. 1. 24:  A railway wheel (a) with two flats; (b) model with two haversine type flats. 

Experimental and theoretical studies on impact loads due to wheel flats have been described 

by Johansson and Nielsen [20], Newton and Clark [4] and Fermer and Nielsen [21]. These 

studies revealed that impact loads produced by wheel defects are not always easily detectable by 

visual inspection of the wheel and a nonlinear track model yields more accurate prediction of the 

wheel-rail impact force due to wheel defects than the linear track model. Early experimental 

studies carried out by Jenkins et al [147] and Frederick [148] showed the effect of vehicle and 

track parameters on vertical dynamic forces in the presence of wheel flats and rail joints. A 

recent experimental study on vertical wheel-rail contact force in the presence of track 

irregularities has been carried out by Gullers et al. [149]. The experimental study to observe the 

flat growth has been carried out by Jergeus et al. [142]. The study concluded that the rate of 

growth of wheel flat is very high at the beginning and it is thus essential to take the wheelset out 

of service as soon as possible when a wheel flat is observed. 

1.2.6 Simulation methods: 

There are two different techniques widely used in the analysis of moving load and moving 

mass problems. These are Fourier transformation method and generalized mode or assumed 
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mode method. Fryba [24] presented a detailed solution of the moving load problem where the 

beam was modeled as infinitely long Euler-Bernoulli beam resting on Winkler foundation. A 

vast majority of the studies dealing with the moving load problems utilized the Fourier 

transformation method to solve the governing differential equations arising from either Euler-

Bernoulli or Timoshenko theory [24, 28, 51, 65, 66]. The responses of the infinite beam under 

moving load supported on either Winkler or Pasternak foundation were studied by means of 

Fourier transforms and using Green’s function in [25, 66, 150]. Mead and Mallik [151], and Cai 

et al. [152] presented an approximate “assumed mode” method to study the space-averaged 

response of infinitely long periodic beams subjected to convected loading and moving force, 

respectively. These methods are applicable to the forced vibration analysis of an infinite 

continuous beam subjected to arbitrary excitations. In order to consider the effect of non linearity 

in beam analysis, Finite Element Analysis (FEA) of an infinite beam has been carried out in 

[153-155]. In these studies, FEA has been adopted to perform the analysis of nonlinear dynamic 

structure under moving loads where the load varies with both time and space.  

In moving force problem, the magnitude of the moving force has been assumed to be constant 

by neglecting the inertia forces of a moving mass. However, in case of moving mass, the 

interaction force consists of inertia of the mass, centrifugal force, etc. Hence, the velocity of the 

moving mass, structural flexibility, and the mass ratio of the moving mass to structure play 

important roles on the overall interaction process. A closed-form solution to a moving mass 

problem is obtained by Michaltos et al. [32] by approximating the solution without the effect of 

the mass. By using the method of Green functions, the effects of the system parameters on the 

dynamic response of the beam subjected to a moving mass have been studied by Ting et al. [36], 

Foda and Abduljabbar [37], and Sadiku and Leipholz [39]. The method of the eigenfunction 
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expansion in series or modal analysis has been employed by Akin and Mofid [41], Bowe and 

Mullarkey [42], Ichikawa et al. [43], Stanisic and Lafayette [46], and Lee [47]. Lou et al. [60], 

Yavari et al. [61], Vu-Quoc and Olsson [62], Bajer and Dyniewicz [63], and Cifuentes [64] 

investigated the dynamic response of single and multi span beams subjected to a moving mass by 

using finite element method. 

To analyze the wheel-rail interactions in presence of wheel/rail defects, two different 

techniques, namely, Frequency domain and Time domain techniques are widely used. Frequency 

domain technique has been used to study the impact load due to wheel defects, track 

irregularities and the formation of corrugations [93, 122, 135]. This technique takes less time to 

analyze and is effective for the prediction of the frequency response related to excitation. 

However, it is limited to investigation of the linear models only. When nonlinearity is present 

either in vehicle-track system model or in contact model, it is necessary to adopt the solution 

process in time domain. Time domain analysis can be further classified into modal analysis 

method and finite element method. Modal analysis method has been used to study the wheel-rail 

impact load due to wheel flats and rail joints, noise generation and rail corrugations [6, 13, 14, 

15, 119, 134]. This method has the advantage of fast computing when the local variations of the 

track are small. However, many modes are required to exactly model the track in order to have 

accurate prediction of the track behavior. Alternatively, use of finite element method for solution 

of train-track interaction has become more attractive due to the recent progress in computer 

capacity. Finite element method has been applied to study the impact load due to wheel and rail 

defects and formation of OOR in wheel profiles [18, 89, 112, 113, 147]. The extreme 

adaptability and flexibility of finite element method have made it a powerful tool to solve PDE 

over complex domain. However, the accuracy of the obtained solution is usually a function of 
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the mesh resolution and the solution often requires substantial amount of computer and user 

time, particularly when extensive parametric study is required. 

1.2.7 Detection of wheel defects: 

Imperfections on the wheel tread and rail surface can have detrimental influence on both 

vehicle and track components such as vehicle bogies, wheelsets, bearings, rails and railpads. The 

high impact forces from a defective wheel cause stress in the rail, and in extreme cases can break 

the track or cause the wheel to jump off the track, resulting in derailment. The continuous 

repetitions of impacts on rail, together with the high forces involved, cause rapid deterioration of 

both rolling and fixed railway equipment. If ignored or underestimated, the fault will wear out 

materials up to the breakdown. Thus, various methods have been proposed for detecting flat 

wheels. One method is to employ inspectors to listen to the trains as they move through a 

particular location. In some cases, flat wheels are identified through routine inspections when the 

cars are being serviced. These methods employ a range of technologies from optical systems that 

gauge the wheels in real time to sensors that look for vibrations and stress levels. 

Continuous wavelet transform has been applied to vibration signal analysis of railway wheels 

in order to detect the wheel tread defects by Belotti et al. [156] and Yue et al. [157].  Belotti et al. 

[156] has shown a wheel-flat diagnostic tool by using wavelet transform method, as shown in 

Fig. 1. 25. In this study, an experimental layout was designed to develop and to validate a 

reliable, effective, and low-cost wheel-flat diagnostic tool. The method implies the detection of 

the wheel flats through the measurement of peak acceleration by the use of several 

accelerometers placed in fixed positions on the rail. The results obtained from experimental 

study validate the theoretical model and demonstrates the advantages of wavelet-based detection 

of signatures. However, the wired connections between the accelerometer and the analysis house 
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make the overall system bulky. Furthermore, the entire train has to pass through the specific test 

section that can be far from the train operating area. 

 

Fig. 1. 25: Testing train scheme with damaged wheels represented by deep marked and 

instrumented rail where the arrows near the accelerometers indicate their measuring axes [156]. 

The detection of wheel flats with fiber optic sensors has been reported by Anderson [158]. In 

this method, the screen is fixed between the end of the fiber and the active area of the detector, 

and the pinhole is sized to have the same diameter as the RMS value of the bright/dark spots in 

the speckle pattern, as shown in Fig. 1.26. When the fiber is disturbed the speckle pattern 

changes. As the speckle pattern changes, bright and dark fringes pass over the pinhole, resulting 

in a time varying signal that is indicative of the vibration of the fiber. For small perturbations, the 

frequency of this signal is equal to the frequency of the physical disturbance. The advantages of 

the pinhole/detector system are low cost and simplicity. For visible and near-infrared light, large-

area detectors are readily available for modest cost, and can be readily assembled with a built-in 

pinhole and fiber-optic connector, making field assembly simple and straight forward. However, 

the design has poor optical efficiency, wasting up to 90% or more of the incident light, which is 

attributed to the limiting aperture of the pinhole. Furthermore, the placement of the fiber on the 
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underside of the metal grating alongside the track makes the system rather complicated. Several 

different types of optical sensors have been applied in order to detect wheel and rail defects with 

fair accuracy and high resolutions [159, 160].  

  
Fig. 1. 26: Detector and pinhole assembly used to measure temporal changes in speckle pattern 
[159]. 

Another method of detecting wheel flats employs scanning with laser beam [161], as shown 

in Fig. 1. 27. The entire module consists of a detector to send and receive radiation signals after 

the scanning of the wheel. The module also has a smart electronics box (SEB) that contains 

digital signal processors and connection to the wayside personal computer (PC) for further 

analysis. Wheel flats can be clearly detected from the unique signature and the gradients between 

scans at different heights on the wheel. Similar technique has also been applied by Kenderian et 

al. [162] in order to detect dynamic railroad defects. 

Ultrasound technique has often been used as a non-destructive technique in order to inspect 

the defects of rail wheel [163-167]. The methods consist of sending an ultrasound pulse over the 

rolling surface to detect echoes produced by the defects. The inspections can be carried out 

manually or by expensive and complex installations. In both cases, however, long inspection 
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time is required. Moreover, ultrasound techniques use high frequencies that cannot penetrate 

certain type of defects because of excessive attenuation [166].    

 

Fig. 1. 27: Positioning of scanner assemblies to view inner bearing, outer bearing, and wheels 

[161] 

Acoustic method for detection of wheel flats is also available in literatures [168, 169]. In this 

method, sound from a passing train is recorded and the particular sound caused by the impact 

between a wheel flat and the supporting rail is distinguished by detecting frequencies in that 

particular sound. Another method for detection of the presence of the wheel flats rely on the 

sensing of changes in voltage resulting from a break in the established circuit caused by the 

wheel flat.  

The most common approach to detect wheel defects is based on the analysis of impact loads 

or accelerations of wheels or rails developed due to the presence of wheel and rail defects in 

time-domain schemes [170-173]. These methods employ several accelerometers placed on rails 

in order to detect the wheel/rail defects by inspecting the acceleration levels. Detection of the 

wheel/rail defects depends on the analysis of the frequency spectrum of the measured rail 

accelerations. Bracccialli et al. [172] presented a description of this type of method based on the 

cepstrum analysis of rail accelerations. These accelerometers can be MEMS based 
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accelerometers or conventional piezoelectric accelerometers. The vast majority of accelerometers 

are based on piezoelectric crystals, but they are too big and too clumsy, whereas, MEMS based 

accelerometers are tiny and are made using a highly enabling technology with a huge 

commercial potential. They provide lower power and robust sensing. The most common 

application for MEMS based accelerometers in railway engineering is health monitoring of the 

track [174-176]. A MEMS based sensor network for rail signal system has been proposed by 

Fukuta [177]. Lee et al. [178] developed a MEMS based hybrid uniaxial strain transducer in 

order to monitor the fatigue damage of the rail. However, all these MEMS based sensors are 

developed to monitor the track only.  

1.3 THESIS SCOPES AND OBJECTIVES 

 From the review of the relevant literature, it is evident that although different types of 

railway vehicle and track models have been developed in order to study the interaction effect in 

the presence of wheel and rail defects, very few studies have considered three-dimensional 

representation of the railway vehicle and track model. Furthermore, although railpad and ballast 

stiffness and damping properties are nonlinear in practice, a vast majority of the studies has 

considered the linear properties of railpad and ballast model in dynamic analysis of vehicle-track 

interaction due to wheel and rail defects.  

 It is also evident from the review of the relevant literature that a great deal of research efforts 

has been made in order to predict the wheel-rail impact force in the presence of wheel and rail 

defects such as, single wheel flat, rail corrugation, etc. These studies have provided guidelines 

for acceptable limits of wheel flats for the railway transportation industry in order to ensure safe 

and efficient operation. Although the presence of multiple flats within a wheel or different 

wheels in the same or different axles have been widely noticed in practice, the vast majority of 
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the efforts focus on the impact interactions due to a single flat only. The influences of multiple 

flats, and their consequences have not been adequately quantified. Furthermore, the pitch and roll 

motions of the car body and bogie could adversely affect the wheel-rail impact force caused by 

the wheel and rail irregularities. A comprehensive three-dimensional vehicle model coupled with 

a three-dimensional track model is thus required in order to predict the wheel-rail impact loads 

due to wheel and rail defects.   

From the review of the relevant literature, it is also evident that considerable efforts have 

been made to detect the presence of defects in the wheels and rails. However, all these detection 

techniques utilize the railway track to mount the sensors, which requires the train to pass through 

that particular test section of the rail in order to investigate the wheel defects. A train in operation 

that needs prompt investigation may not be possible by these present techniques i.e. continuous 

monitoring of all the wheels for detection of the flat is not possible. Furthermore, the present 

techniques require huge connections of wires to transfer the data from the test section to analysis 

center. One of the challenges for sensors is the need to operate remotely in harsh environments 

with exposure to wide temperature ranges as well as rain, snow, slush, dirt and grime. 

Development of an on-board measuring system is thus required that can be placed on the wheel 

bearing in order to enable the detection of the wheel defects continuously.  

The present dissertation research thus aims to develop a comprehensive three-dimensional 

dynamic railway vehicle-track model coupled with non-linear railpad and ballast stiffness and 

damping properties. The developed model must be capable of predicting dynamic responses in 

terms of force or acceleration in the presence of single as well as multiple flats. Finally, based on 

the analytical results predicted by the developed model, a smart railway wheelset will be 
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developed with MEMS based accelerometers. The specific objectives of the proposed research 

are listed below, which are also the expected major contributions: 

a) Develop a two-parameter Pasternak foundation model subjected to moving load or 
moving mass in order to analyze the vibration of Euler-Bernoulli beam of finite and 
infinite length.  

b) Develop a comprehensive three-dimensional railway vehicle-track model using two 
Timoshenko beams supported by discrete non-linear elastic supports to study the 
interactions of two sideframe wheels and the wheels within a wheelset taking into 
account the contribution of vehicle pitch and roll motions. 

c) Formulate models for single as well as multiple wheel flats in order to evaluate the 
impact responses in terms of force or acceleration arising from single as well as multiple 
wheel flats and investigate the influences of one wheel flat on the force or acceleration 
imparted at the interface of the adjacent wheel. 

d) Investigate the influences of variations in various design and operating parameters on the 
magnitudes of the impact force or acceleration such as, speed, flat size and relative 
positions of the flats within the same wheel or wheelsets 

e) Develop a smart wheelset that can detect its defect automatically.  

f) Design and analyze MEMS based accelerometer for automatic detection of wheel flats.  

1.4 ORGANIZATION OF THE THESIS 

 The first chapter summarizes the highlights of the relevant reported studies on different types 

of modeling of vehicle and track systems employed in studies related to dynamic responses and 

railway vehicle track interactions in the presence of wheel defects. The reported studies on 

different types of wheel defects, analytical and experimental methods for detection of wheel 

defects are also summarized in this chapter. The scope of the dissertation research is 

subsequently formulated on the basis of the reviewed literature.   

 In chapter 2, dynamic response of an infinite Euler-Bernoulli beam under a constant moving 

load is investigated. The same beam with finite length is further employed to obtain the dynamic 

response with moving load as well as moving mass. The foundation representing the soil is 

modeled as both one-parameter Winkler and two-parameter Pasternak model. Fourier transform 
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technique is employed to find the analytical solution of the governing partial differential 

equation in the case of moving load problem.  However, numerical method is employed in the 

case of moving mass problem. The dynamic responses of the beam in terms of beam deflections, 

and bending moments have been obtained with different velocity ratios. The effects of shear 

modulus and foundation stiffness on deflection, bending moment and shear force responses have 

also been investigated for both damped and undamped cases where the speed varies from below 

critical to above critical velocity. In case of damped analysis, responses are obtained for both 

underdamped and overdamped conditions. 

In chapter 3, a three-dimensional vehicle model is developed together with a three-

dimensional two-layer track model. The two models are coupled by the non-linear Hertzian 

wheel-rail contact model. The equations of motion of the vehicle and track system are presented 

along with the parameter values. Modal analysis method is used to analyze the coupled 

continuous rail track and lumped-parameter vehicle system models. Natural frequencies of the 

vehicle and track systems are calculated and presented in this chapter. This chapter further 

presents the validation of the developed vehicle-track system model under wheel flat conditions 

using both theoretical and experimental results from the literature. The responses obtained from 

the validated vehicle and track system model in terms of wheel-rail impact force are also 

presented as functions of operating speed and flat geometry.  

In chapter 4, the three-dimensional vehicle-track model developed in chapter 3 is validated in 

terms of wheel-rail impact force with both experimental and analytical data available in 

literature. The validation is carried out with both linear and nonlinear properties of railpad and 

ballast. The validated model is then employed to obtain displacement and acceleration responses 

of individual vehicle and track components in the presence of single wheel flat. The results are 
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shown for both defective and flat-free wheel. The characteristics of the bogie bounce, pitch and 

roll motions due to a single wheel flat are also investigated. The analyses are performed with 

different position of the wheel flats such as in front or rear wheelsets within a front or rear bogie. 

The response characteristics are also obtained with different flat sizes and vehicle speeds. 

In chapter 5, the developed and validated three-dimensional railway vehicle-track model is 

employed to study the effect of multiple wheel flats on wheel acceleration response.  The 

response characteristics of wheel acceleration are obtained for both left and right wheels within 

same and different wheelsets for different types of wheel flats and their relative positions. The 

effects of both direct and cross wheel flats on different wheels within same bogie are also 

investigated. The effect of bogie pitch and roll motions on overall peak acceleration of the wheel 

is also investigated in the presence of multiple flats. In order to develop a smart wheelset that can 

detect its wheel flat size by measurement of the peak wheel acceleration, the relation between the 

peak wheel acceleration, vehicle speed and the wheel flat size are also presented.  

In chapter 6, a MEMS based accelerometer model is developed for automatic detection of 

wheel flat. The three-dimensional railway vehicle-track model developed in chapter 3 is 

employed in order to investigate the wheel acceleration level in presence of a single wheel flat. 

COMSOL Multiphysics software is employed to validate the developed accelerometer model. 

The simulated responses are compared with the results obtained from the calculations. A self-test 

region is designed within the accelerometer to facilitate the self-tests/diagnostics of each 

individual accelerometer. Finally, the stability and maximum stress level of the accelerometer is 

estimated in order to ensure the safe operation of the sensor.  

In chapter 7, major conclusions drawn from this dissertation research are summarized and 

a few recommendations and suggestions for further studies in this area are presented.   
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CHAPTER 2 

STEADY STATE RESPONSE OF ELASTICALLY SUPPORTED CONTINUOUS BEAM 

UNDER A MOVING LOAD/MASS 

2.1 INTRODUCTION  

The dynamic analysis of beam type structures subjected to moving loads or moving masses is 

important and widespread in railway engineering as a beam resting on soil can be conveniently 

used to represent the track of railway. As the loads/wheels of the railway move over the beam 

with a very high speed, the structures over which they move are exposed to very high dynamic 

forces. It is, thus, necessary to understand and analyze the behaviour of these structures in order 

to facilitate their use in case of higher speeds and heavier loads. A wide range of analytical 

studies have thus been evolved in order to accurately predict the vibration of the railway track 

under moving loads/masses [24-38, 47, 48, 56- 64]. Most of these studies employed one-

parameter Winkler foundation model consisting of infinite closely-spaced linear springs 

subjected to a moving load [24-28]. Although this model is very simple, it does not accurately 

represent the characteristics of many practical applications. Two-parameter elastic foundations, 

thus, have been suggested in some studies for the vibration analysis of beams under moving 

loads [49-51]. These models are also known as Pasternak models, which allow shear interaction 

between the continuous springs.  

The beam, that represents the railway track, can be modeled as either an Euler-Bernoulli 

beam [30, 47, 48, 56-61] or a Timoshenko beam [32-38, 43, 50, 51, 62- 64] depending upon the 

physical system. A Timoshenko beam model considers the shear deformation and rotational 

inertia of the beam. Chen and Huang [57] have graphically shown that an Euler-Bernoulli beam 

can accurately predict the response of the beam for foundation stiffness up to 108 N/m2. 
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Therefore, an Euler–Bernoulli beam has been considered in the present analysis, since the 

foundation stiffness considered is 4.078×106 N/m2, which is much less than the suggested value. 

Moreover, an Euler–Bernoulli beam model can accurately predict the response since the depth 

and rotary inertia of the track can be considered small compared to the translational inertia [51]. 

The differential equation governing the system can be obtained by the dynamic equilibrium of 

beam resting on elastic foundation subjected to moving load or moving mass.       

 In the present analysis, dynamic responses of an Euler-Bernoulli beam under constant moving 

load as well as constant moving mass are investigated. In case of moving load, the exact analysis 

has been validated by numerical method. However, only numerical method is employed in case 

of moving mass problem. The foundation representing the soil is modeled as both one-parameter 

Winkler and two-parameter Pasternak model. The beam and foundation both were assumed to be 

homogeneous and isotropic. Fourier transform technique is employed to find the analytical 

solution of the governing partial differential equation in case of moving load problem.  Both the 

static and dynamic responses of the beam in terms of beam deflections, bending moments and 

shear force have been obtained for both damped and undamped cases with different velocity 

ratios. The effects of shear modulus and foundation stiffness on deflection and bending moment 

responses have also been investigated. 

2.2 MODELING OF BEAM ON PASTERNAK FOUNDATION  

The governing equation of motion of an Euler-Bernoulli beam resting on two-parameter 

Pasternak foundation and subjected to a moving load or mass, as shown in Fig. 2.1, can be 

written as [51]: 
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4 2 2

14 2 2 ( , )r f
w w w wEI c k k w F x t

x t t x
ρ∂ ∂ ∂ ∂

+ + − + =
∂ ∂ ∂ ∂

 
(2.1)  

 
where, ( ), ( )F x t P x vtδ= −  in case of moving load, and 

( )
2

2

( , ), ( )w vt tF x t Mg M x vt
t

δ
 ∂

= − − ∂ 
in case of moving mass, ) ( ,w w x t= is the transverse 

deflection of the beam, E is the Young’s modulus of elasticity of the beam material, I is the 

second moment of area of the beam cross section about its neutral axis, rρ is the mass per unit 

length of the beam, c is the coefficient of viscous damping  per unit length of the beam, 1k is the 

shear parameter of the beam, fk is the spring constant of the foundation per unit length, 

( )P x vtδ − is the applied moving load per unit length, x is the space coordinate measured along 

the length of the beam, t is the time in second, M is the moving mass, g is the acceleration due to 

gravity, and δ is the Dirac delta function.  

 

  P( x,t )   

+ ∞   - ∞   x   

- y   

+   

1 k1          

  
kf 

  c 
  

 

(a) 
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 x vt=  

v  

1k  

fk  
c  

+x 

-y 
 

(b) 

Fig. 2.1: Beam on Pasternak foundation subjected to a (a) moving load; and (b) moving mass. 

Defining the followings, 
  2

ra
EI
ρ

= , 2 fk
b

EI
= , 1

1 2
kc
EI

= , cd
EI

= , Eqn. (2.1) can be written as: 

4 2 2
2

14 2 22 2 ( , )w w w w Fa d c b w x t
x t t x EI

∂ ∂ ∂ ∂
+ + − + =

∂ ∂ ∂ ∂
 

(2.2)  

2.3 METHOD OF ANALYSIS FOR A BEAM UNDER MOVING LOAD 

The dynamic response of an Euler-Bernoulli beam under constant moving load has been 

investigated by both Fourier transform technique and modal analysis method. The exact analysis 

has been validated by the numerical method. This section describes the formulation of the 

analytical solution of the governing partial differential equation by means of Fourier transform 

technique. Solutions have been obtained for both damped and undamped conditions, where the 

speed varies from below to above the critical velocities. 
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2.3.1 For undamped case (velocity less than the critical): 

In case of undamped system, 0c = and for one parameter model, 1 0k = , then Eqn. (2.2) can 

be written as: 

4 2
2

4 22 ( )w w Pa b w x vt
x t EI

δ∂ ∂
+ + = −

∂ ∂
 

(2.3)  

Let, *( , ) ( , ) i xw t w x t e dxγγ
∞ −

−∞
= ∫  (2.4.a)  

and,   1( , ) *( , )
2

i xw x t w t e dγγ γ
π

∞ +

−∞
= ∫  

(2.4.b)  

constitute a Fourier transform pair, where, γ is a variable in complex plane. Both sides of Eqn. 

(2.3) are multiplied by i xe γ−  and integrated by parts over x  from −∞ to+∞ . Assuming that w and 

its space derivatives vanish at x = ±∞ , namely, for x →+∞ , x →−∞ ; 

( ) ( ) ( ) ( ) 0w x w x w x w x′ ′′ ′′′= = = = , we get 

2
4 2

2

** * 2 i vtd w Pw b w a e
dt EI

γγ −+ + =  
(2.5)  

The solution of the homogeneous part of Eqn. (2.5) in the presence of light damping dies down 

and is neglected here. Thus, the steady state solution is given by only the particular integral of 

Eqn. (2.5). 

Substituting * * i vtw W e γ−= in Eqn. (2.5), we obtain  

4 2 2 2( 2 ) * Pb a v W
EI

γ γ+ − =  
(2.6)  

or,  4 2 2 2

1*
2

PW
EI a v bγ γ

 
=  − + 

 
(2.7)  
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or, 4 2 2 2

1*
2

i vtPw e
EI a v b

γ

γ γ
− 

=  − + 
 

(2.8)  

Thus, from Eqn. (2.4.b) one obtains 

( )

4 2 2 2

1( , )
2 2

i x vtP ew x t d
EI a v b

γ

γ
π γ γ

∞ −

−∞

=
− +∫  

(2.9)  

The integral in Eqn. (2.9) is evaluated by contour integration as discussed below [25] 

1( , ) (2 ) residues
2

Pw x t i
EI

π
π

= ∑ at four simple poles. 
(2.10)  

Calculation of the residues: 

Let 4 2 2 2
1 2 3 4( ) 2 ( )( )( )( )s a v bγ γ γ γ γ γ γ γ γ γ γ= − + = − − − −  (2.11)  

Let, as shown in Fig. 2.2, the four roots of γ  of Eqn. (2.11) be, 

1 iγ β α= + , and 3 ( )iγ β α= − + . (2.12)  

2 iγ β α= − + , and 4 iγ β α= − . (2.13)  

Substituting the values of ,
iγ s in terms of α and β  from Eqns. (2.12) and (2.13) into Eqn. 

(2.11), and equating the coefficients of similar terms, we get: 

2 2 bα β+ = ,  (2.14)  

2 2 2avβ α− = . (2.15)  

From Eqns. (2.14) and (2.15), we get 

2

2
b avβ +

= , 
2

2
b avα −

= . 
(2.16)  

Poles at γ : 

4 2 2 2( ) 0 2 0s a v bγ γ γ= ⇒ − + = .  
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Assume 2 bv
a

<  , where the critical velocity is given by 2
cr

bv
a

=  

For crv v< , 

2 2 2 2 2
1,3 ( )av i b avγ = + −  (2.17)  

and, 2 2 2 2 2
2,4 ( )av i b avγ = − −  (2.18)  

The four poles are shown in Fig. 2. 2, two each on either side of the real axis. 

 

4γ •  
3γ •  

2γ •  

Re( )γ  

C1 

C2 

1γ •  

mI ( )γ  

 

Fig. 2. 2: Position of the poles for velocity less than the critical velocity. 

For ( ) 0x vtξ = − > , considering the contour 1C  (going from −∞  to +∞  on the real axis in order 

to travel in the counter clock wise direction along the contour), we get, 

( , ) iPw x t
EI

= [Residue at 1γ + Residue at 2γ ]. 

or, 
1 2

1 2 1 3 1 4 2 1 2 3 2 4

( , )
( )( )( ) ( )( )( )

i iiP e ew x t
EI

γ ξ γ ξ

γ γ γ γ γ γ γ γ γ γ γ γ
 

= + − − − − − − 
. 

(2.19)  

Substituting ,
iγ s in terms of α and β , we finally get 

( , ) [ cos sin ]
4

Pew x t
EI b

αξ

β βξ α βξ
αβ

−

= + . 
(2.20)  
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Similarly, for 0ξ < , considering the contour 2C (going from +∞  to  −∞  on the real axis in order 

to travel in the counter-clock wise direction along the contour), we get 

( , ) iPw x t
EI

= [Residues at 3γ + Residues at 4γ ]. 
(2.21)  

3 4

3 1 3 2 3 4 4 1 4 2 4 3

( , )
( )( )( ) ( )( )( )

i iiP e ew x t
EI

γ ξ γ ξ

γ γ γ γ γ γ γ γ γ γ γ γ
 

= + − − − − − −  .
 

(2.22)  

Substituting ,
iγ s in terms of α and β , we finally get 

( , ) [ cos sin ]
4

Pew x t
EI b

αξ

β βξ α βξ
αβ

= − .   
(2.23)  

Bending moment: 

We know, Bending moment, 
2

2( , )) ( ,M
x

I wE xx tt =
∂
∂

    
(2.24)  

For 0ξ > , substituting the value of ( , )w x t  from Eqn. (2.20) into Eqn. (2.24) and differentiating 

it twice with respect to x gives: 

[ cos sin ]
4

( , ) P e
b

M x t
αξβ β βξ α βξ

α

−−
+= .   

(2.25)  

Similarly, for 0ξ < , substituting the value of ( , )w x t  from Eqn. (2.23) into Eqn. (2.24) and 

differentiating it twice with respect to x gives: 

[ cos s( , in) ]
4
P e

b
M x t

αξβ β βξ α βξ
α

−
−= .   

(2.26)  

Shear force: 

We know, Shear force 
3

3( , )) ( ,T
x

I wE xx tt =
∂
∂

   
(2.27)  
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For 0ξ > , substituting the value of ( , )w x t  from Eqn. (2.20) into Eqn. (2.27) and differentiating 

it three times with respect to x gives: 

2

[ sin co) s, ]
4

( P e
b

T x t
αξβ β βξ α βξ

α

−

−= .   
(2.28)  

Similarly, for 0ξ < , substituting the value of ( , )w x t  from Eqn. (2.23) into Eqn. (2.27) and 

differentiating it three times with respect to x gives: 

2

[ sin co
4

) s, ]( P e
b

T x t
αξβ β βξ α βξ

α
+= .   

(2.29)  

2.3.2 For undamped case (velocity greater than the critical): 

For crv v> , Eqns. (2.12) and (2.13) can be written for two parameter model as: 

2 2 2 2 2
1,2,3,4 1 1( ) ( )av c av c bγ = − − ± − −   (2.30)  

Let, the four roots of γ  of Eqn. (2.30) be 

1

2

3

4

,
,

,
.

q
q

r
r

γ
γ
γ
γ

=
= −
=
= −

  

(2.31)  

where, q and r  are given by 

2 2
1 1( ) ( )

2 2
av c b av c bq − + − −

= +      
(2.32)  

and,
 

2 2
1 1( ) ( )

2 2
av c b av c br − + − −

= −  
(2.33)  

Thus, the four poles are as shown in Fig. 2.3. For, ( ) 0x vtξ = − > , 
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Fig. 2.3: Position of the poles for velocity greater than the critical velocity. 

( , ) iPw x t
EI

= [Residues at 1γ + Residues at 2γ ]. 

or,
1 2

1 2 1 3 1 4 2 1 2 3 2 4

( , )
( )( )( ) ( )( )( )

i iiP e ew x t
EI

γ ξ γ ξ

γ γ γ γ γ γ γ γ γ γ γ γ
 

= + − − − − − − 
. 

(2.34)  

Substituting ,
iγ s in terms of q and r , we get 

2 2 2 2( , )
2 ( ) 2 ( )

iq iqiP e ew x t
EI q q r q q r

ξ ξ− 
= − − − 

 

 2 2

(cos sin ) (cos sin )
2 ( )

iP q i q q i q
EI q q r

ξ ξ ξ ξ + − −
=  − 

 

(2.35)  

Finally, the deflection of the beam is obtained as 

2 2( , ) sin
( )

Pw x t q
qEI q r

ξ= −
−

  
(2.36)  

Similarly, for 0ξ < , we get 

( , ) iPw x t
EI

= [Residues at 3γ + Residues at 4γ ]. 
(2.37)  

3 4

3 1 3 2 3 4 4 1 4 2 4 3

( , )
( )( )( ) ( )( )( )

i iiP e ew x t
EI

γ ξ γ ξ

γ γ γ γ γ γ γ γ γ γ γ γ
 

= + − − − − − −  .
 

(2.38)  

Substituting ,
iγ s in terms of q and r , and following the same procedures as outlined in Eqn. 

(2.35), the equation of beam deflection can be written as 

R ( )e γ  

mI ( )γ  

1γ  

 

3γ  

 

2γ  

 

4γ  

 



51 

 

2 2( , ) sin
( )

Pw x t r
rEI q r

ξ= −
−

  
(2.39)  

The expression for bending moment, ( , )M x t , and shear force, ( , )T x t , can also be obtained by 

substituting the value of ( , )w x t from Eqns. (2.36) and (2.39) into Eqns. (2.24) and (2.27). 

2.3.3 For underdamped case (with two-parameter model): 

In the presence of damping, Eqn. (2.9) can be written as 

( )

4 2 2 2 2
1

1( , )
2 2 2

i x vtP ew x t d
EI a v c idv b

γ

γ
π γ γ γ γ

∞ −

−∞

=
− + − +∫    

(2.40)  

The integral in Eqn. (2.40) can be expressed as the limit: 

( )+R
4 2 2 2 2RR 1

( ) lim
2 2

i x vteF d d
a v b c idv

γ
γ γ γ

γ γ γ γ

−∞

−∞ −→∞
=

− + + −∫ ∫
       

(2.41)  

where R is the radius of semicircle C. 

According to Cauchy’s residue theorem, the integral in the counter-clock wise direction around 

the closed curve Cc consisting of segments –R, +R and semicircle C at limit R = ∞ is 

( ) ( )+R

4 2 2 2 2 4 2 2 2 2RR1 1
lim2 2 2 2

c

i x vt i x vt

C

e ed d
a v b c idv a v b c idv

γ γ

γ γ
γ γ γ γ γ γ γ γ

− −

−→∞
=

− + + − − + + −∫∮

( )

4 2 2 2 2
11

2 ( ) |
2 2 j

C

ni x vt

C
j

e d i residueF
a v b c idv

γ
γ γγ π γ

γ γ γ γ

−

=
=

+ =
− + + −

∑∫                                              

(2.42)  

where n=4, is the number of poles in the circle.   

The integral in Eqn. (2.40) is evaluated by contour integration as discussed above [179], and we 

obtain 

1( , ) (2 ) residues
2

Pw x t i
EI

π
π

= ∑ at four simple poles.   
(2.43)  

Considering ( 1 0k =  and 0d = ) Let 4 2 2 2( ) 2s a v bγ γ γ= − +   
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Poles at γ : 4 2 2 2( ) 0 2 0s a v bγ γ γ= ⇒ − + = .      (2.44)  

Therefore, 2 2 2 2 2
1,2,3,4 ( )av av bγ = ± −  (2.45)  

Assume 2 bv
a

<  where the critical velocity is given by 2
cr

bv
a

=  

For, crv v< , 2 2 2 2 2
1,3 ( )av i b avγ = + − .    (2.46)  

and, 2 2 2 2 2
2,4 ( )av i b avγ = − − .  (2.47)  

From Eqn. (2.46), let the two roots of γ be 

1 ,p irγ = +  and 3 q irγ = − .
 (2.48)  

Similarly, from Eqn. (2.47) the other two roots of γ  are 

2 p irγ = − + , and 4 q irγ = − − .  (2.49)  

Let, the poles of the function of the complex variable in the integrand of Eqn. (2.40) be in the 

form as shown in Fig. 2.4. 

 

3γ •
4γ •

2γ •

Re( )γ

C1 

C2 

1γ •  

mI ( )γ

 

Fig. 2.4: Position of the four poles for damping less than the critical damping. 
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1

2

3

4

,
,

,
.

p ir
p ir

q ir
q ir

γ
γ
γ
γ

= +
= − +
= −
= − −

 

(2.50)  

The poles can be determined by the roots of the denominator ( )Q γ in Eqn. (2.40). The values of 

,p ,q and r  are computed from the condition: 

4 2 2 2 2
1 1 2 3 4( ) 2 2 ( )( )( )( )Q a v c idv bγ γ γ γ γ γ γ γ γ γ γ γ γ= − + − + = − − − −    (2.51)  

Substituting the values of ,
iγ s in terms of p , q and r from Eqn. (2.50) into Eqn. (2.51), and 

equating the coefficients of similar terms, we get: 

2 2 2 2
12 2 2 ,r p q av c− − = − +  (2.52.a)  

2 22 ( ) ,ri q p idv− = −  
(2.52.b)  

2 2 2 2 2( )( ) .p r q r b+ + =  (2.52.c)  

From Eqns. (2.52.a) and (2.52.b), we get 

2 2 2
1

1
4

p av c r dv
r

= − + + ,   
(2.53)  

2 2 2
1

1 ,
4

q av c r dv
r

= − + −  
 

(2.54)  

By substituting the p and q  values in Eqn. (2.52.c), we get 

6 2 4 2 2 2 2 2 2 2 2
1 1

1 1 1 1 1( ) ( ) 0
4 2 4 4 16

r av c r a v av b c r d v+ − + − − + − =  
(2.55)  

Calculating the residues: 

 For ( ) 0x vtξ = − > , as shown in Fig. 2.4, integrating in the upper half plane: 

( , ) iPw x t
EI

= [Residues at 1γ + Residues at 2γ ]. 
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or, 
1 2

1 2 1 3 1 4 2 1 2 3 2 4

( , )
( )( )( ) ( )( )( )

i iiP e ew x t
EI

γ ξ γ ξ

γ γ γ γ γ γ γ γ γ γ γ γ
 

= + − − − − − − 
. 

(2.56)  

Substituting ,
iγ s in terms of p , q  and r (as chosen in Eqn. 2.50), we finally get 

1 2
1 2 1 22 2

1 2

( , ) ( ) ( )
( )

i iPw x t A A i e A A i e
EIp A A

γ ξ γ ξ = − + + +
 

 = 1 22 2
1 2

2 ( cos sin )
( )

rP e A p A p
EIp A A

ξ ξ ξ− +
+

.   

(2.57)  

Similarly, for 0ξ < , 

3 4
3 4 3 42 2

3 4

( , ) ( ) ( )
( )

i iPw x t A A i e A A i e
EIq A A

γ ξ γ ξ = + + − +
 

 = 3 42 2
3 4

2 ( cos sin )
( )

rP e A q A q
EIq A A

ξ ξ ξ−
+

.  

(2.58)  

where, 1 ,A pr=    3 ,A qr=  

2 2 2
2

1 ( ),
4

A r p q= − −   2 2 2
4

1 ( )
4

A r p q= + − .  

(2.59)  

When damping is higher than the critical damping, Eqn. (2.54) becomes negative. Therefore, the 

poles can be designated in this case as shown in Fig. 2.5. 

1 ,p irγ = +  2 ,p irγ = − +  3 ( ) ,r q iγ = − − 4 ( )r q iγ = − + .   (2.60)  
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Fig. 2.5: Position of the poles for damping greater than the critical damping. 

Using a procedure analogous to that of deriving Eqns. (2.51) and (2.52), we get 

2 2 2
1

1 .
4

q dv c av r
r

= + − −    
(2.61)  

The values of p and r continue to be defined by the Eqns. (2.53) and (2.55).  

Calculating the residues: 

 For ( ) 0x vtξ = − > , as shown in Fig. 2.5, integrating in the upper half plane: 

( , ) iPw x t
EI

= [Residues at 1γ + Residues at 2γ ]. 

or, 
1 2

1 2 1 3 1 4 2 1 2 3 2 4

( , )
( )( )( ) ( )( )( )

i iiP e ew x t
EI

γ ξ γ ξ

γ γ γ γ γ γ γ γ γ γ γ γ
 

= + − − − − − − 
. 

(2.62)  

Substituting ,
iγ s in terms of p , q  and r (as chosen in Eqn. 2.60), we finally get 

1 2
1 2 1 22 2

1 2

( , ) ( ) ( )
( )

i iPw x t A A i e A A i e
EIp A A

γ ξ γ ξ = − + + +
 

 = 1 22 2
1 2

2 ( cos sin )
( )

rP e A p A p
EIp A A

ξ ξ ξ− +
+

. 

(2.63)  

Similarly, for 0ξ < , integration is carried out in the lower half plane of Fig. 2.5 to get: 

 

C1 

C2 

1γ •  

3γ  

4γ  

2γ •  

eR ( )γ  

mI ( )γ  
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( ) ( )
3 4 4 32 2

4 3

( , ) ( ) ( )
( )

r q r qPw x t A A e A A e
EIq A A

ξ ξ− + = + − − −
   

(2.64)  

where, 1 ,A pr=    3 ,A qr=  

2 2 2
2

1 ( ),
4

A r p q= − +   2 2 2
4

1 ( )
4

A r p q= + + .   

(2.65)  

2.4 ANALYSIS METHOD FOR A BEAM UNDER MOVING MASS 

The deflection modes of continuous beam with simply supported boundary conditions can be 

obtained from the Euler-Bernoulli equation of the beam. The natural deflection modes and the 

natural frequencies of a simply supported Euler beam can be expressed as: 

( ) sink
k xY x

l
π =  

 
; and  

2

k
r

k EI
l
πω

ρ
 =  
 

,        k =1, 2, 3……… K                            
(2.66)  

where ( )kY x is the normal mode, kω is the corresponding natural frequency and l is the beam 

length. 

The above equations were obtained for the following boundary conditions: 

(0) ( ) 0Y Y l= = ; and  (0) ( ) 0Y Y l′′ ′′= =  (2.67)  

Assume a solution of Eqn. (2.1) in the form of a series: 

( )
1

, ( ) ( )
K

r k k
k

w x t Y x q t
=

=∑                1, 2,3.....k K=                                                              
(2.68)  

where ( )kY x are the  normal modes of the beam, ( )kq t are the functions of time which have to be 

found and k is the number of contributing modes.  Recalling Eqn. (2.1) for moving mass 

problem as: 

4 2 2 2

14 2 2 2

( , ) ( )r f
w w w w w vt tEI c k k w Mg M x vt

x t t x t
ρ δ

 ∂ ∂ ∂ ∂ ∂
+ + − + = − − ∂ ∂ ∂ ∂ ∂ 

   
(2.69)  
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The substitution of Eqn. (2.66) together with Eqn. (2.68) into the Eqn. (2.69) and using a 

simplified subscript for differentiation yields: 

1

4

2

1 1

1
1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

K K K

k k k k k k
k k k

K K K

k k k k k k
k k k

r

f

kEI c
l

kk k Mg M
l

Y x q t Y x q t Y x q t

Y x q t Y x q t Y vt q t

π ρ

π

= = =

= = =

  + + 
 

  − + = −      

∑ ∑ ∑

∑ ∑ ∑

 



 

(2.70)  

Multiplying both sides of Eqn. (2.70) by ( )pY x and integrating along the beam length, applying 

the orthogonality of functions ( )qY x , and after some rearrangement it becomes 

4 2
1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )      2       

f

r r
k k k k k

K

k k

r

k

r

p
r

q t q t q t q t q t

Y vt q

kkEI k c k
l l

Mg vM Y
l

t t

π π
ρ ρ ρ ρ

ρ =

   + + − +   
   

 
= − 

 
∑

 



     for 1, 2,3.....k K=               

(2.71)  

In case of moving load problem, Eqn. (2.71) can be written as: 

4 2

1

1( ) ( ) ( ) ( ) ( ) ( ) ( )2 K

k k k k k k p
f

r r r r kr

q t q t q t q t
kkEI k c k q t Y vt Y vtP

l l l
π π

ρ ρ ρ ρ ρ =

   + + − + =   
   

∑     
(2.72)  

for 1,2,3.....k K=       

Equations (2.71) and (2.72) are sets of coupled ordinary differential equations and a numerical 

procedure is employed to solve them. A MATLAB predefined function “ode 45” is applied to 

solve the differential equations in time domain. The equations are solved simultaneously to 

obtain the deflection and bending moment responses for both moving mass and moving load 

conditions.  

2.5 MODEL VALIDATION 

 The validity of the present model is examined by comparing the responses in terms of 

deflection and bending moment of the beam under moving load condition with the analytical 
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results presented in [51]. In this reported study, an infinite Euler–Bernoulli beam of constant 

cross-section resting on an elastic foundation with both one and two parameters was considered. 

The beam was subjected to a constant point load moving with a constant speed along the beam. 

Dynamic responses such as beam deflection, bending moment have been obtained for different 

velocity ratios. All the parameters considered in the validation are taken from Mallik et al. [51] 

and presented in Table 2.1. The variations in beam deflection and bending moment responses 

obtained from the present study is evaluated and compared with those reported in [51], as shown 

in Fig. 2.6. It can be seen that the deflection and bending moment response predicted by the 

current model agrees reasonably well with those reported in [51]. The amplitude of deflection 

and bending moment and the period of vibrations predicted by both models are also in very good 

agreement, although some differences in the bending moment responses become evident.  

Table 2.1: Simulation parameters [51] 
 

Parameters Assumed values 

rρ (kg/m) 25 
EI (N-m2) 1.75×106 

fk (N/m2) 40.78×105 

1k (N) 66.6875×104 
P ( N/m) 99.36×103  
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Fig. 2. 6: Comparison of beam (a) deflection and (b) bending moment responses of the present 

model with that reported by Mallik et al. [51]. 
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2.6 RESULTS AND DISCUSSIONS 

Numerical computations have been carried out based on the analytical solutions obtained in 

sections 2.3 and 2.4 for both moving load and moving mass conditions. The normalized dynamic 

responses in terms of deflection, bending moment and shear force are obtained with respect to 

the normalized position of the beam. The deflection is normalized by dividing the response 

obtained by its maximum value under static condition. The normalized distance is obtained by 

multiplying the distance along the beam (ahead and behind the load) by the coefficient of 

characteristic wavelength, which can be expressed as [51]: / 2bλ = . The velocity at which the 

deflection response shoots up to infinity is known as critical velocity, which can be expressed 

as: 1( ) /crv b c a= + . The normalized bending moment is obtained by dividing the bending 

moment response by its maximum value for the static case. Similarly, the normalized shear force 

is obtained by dividing the bending moment response by its maximum value for the static 

condition. The parameters used in the present study are given in Table 2.1. The normalized 

dynamic responses in terms of deflections, bending moment and shear force of the beam are 

obtained with respect to the normalized position of the beam.  

2.6.1 Exact analysis: 

The dynamic normalized deflections of a beam resting on two-parameter Pasternak 

foundation subjected to a moving load with various velocity ratios ( / crv v ) are shown in Fig. 2.7. 

In Fig. 2.7 (a), the results show that the deflections are symmetric about the contact point with 

moving load for all the selected velocity ratios and the maximum deflections occur beneath the 

load and die down at a distance far away from the load. In this study, a zero velocity ratio 

represents static load condition. The negative value of the deflection signifies the downward 
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deflection with the moving load acting downward. A small amount of uplift (positive deflection) 

occurs at distances away from the load. The figure further shows that the maximum dynamic 

deflection for both upward and downward deflection increases with increase in the velocity 

ratios of the moving load.  

The normalized deflection responses of the beam for velocities greater than the critical 

velocity are shown in Fig. 2.7 (b). It can be seen that the deflection at the loading point 

approaches zero as velocity increases to greater than the critical velocity. Figure 2.7 (b) further 

shows that increase in velocities decreases the peak deflection of the beam for both front (right 

hand side of the curve from origin zero) and rear wave (left hand side of the curve from origin 

zero). The wavelengths of the front waves also decrease with increase in speed. However, the 

peak deflection values in the rear waves are greater than the front waves for a constant velocity 

ratio. The figure further shows that point of maximum settlement (downward deflection) occurs 

behind the load and the distance of this point from the load increases with increasing speed. The 

figure also illustrates that maximum amount of uplift never dies out although it is far away from 

the load, which can be attributed to the very low damping ratio ( / crc c = 0.0005).    
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Fig. 2. 7: Normalized deflection vs. normalized distance with velocity ratios (a) less than the 

critical velocity ( / crv v =0, 0.5, 0.75 and 0.9); (b) greater than the critical velocity ( / crv v =1.25, 

1.50, 1.75 and 2.0) with damping ratio ( / crc c = 0.0005) for two parameter model. 



63 

 

Figure 2.8 shows the normalized deflection response of the beam for different velocities, 

which are equal to and less than the critical velocity and for a damping ratio of 0.03. The figure 

clearly shows, similar to Fig. 2.7 (a), the increase in peak deflection of the beam with increase in 

speed.  The figure further shows that with increase in speed the points of maximum settlements 

and uplifts shift behind and ahead of the load, respectively. The amount of shifts also increases 

with increase in speed. However, the peak value of uplift dies down as it is away from the load 

due to the presence of damping.  

The differences in peak magnitude of normalized bending moment and normalized deflection 

between a one-parameter Winkler and two-parameter Pasternak foundation model are shown in 

Figs. 2.9 and 2.10. It can be seen from Fig. 2.9 that for a velocity ratio of 0.99 and undamped 

case, the magnitude of the maximum bending moment is somewhat less for the two parameter 

model than that for the one parameter model. Similar difference also can be obtained for peak 

deflection response for a velocity ratio=1.0 and damping ratio=0.30, as shown in Fig. 2.10.  

These differences can be attributed to the shear interaction between the springs of the 

foundations that has been considered in two- parameter (Pasternak) foundation model. The 

maximum difference in the peak value in bending moment is around 6%, while for deflection it 

is around 3%. The figures further show that despite the differences in peak values in peak 

magnitude of bending moment and deflection, the wavelengths at the front and rear of the 

moving load are same for both foundation models.  
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Fig. 2. 8: Normalized deflection vs. normalized distance with different velocity ratios 

( / crv v =0.25, 0.50, 0.75 and 1.0) with damping ratio ( / crc c = 0.03) for two parameter model. 
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Fig. 2. 9: Normalized bending moment vs. normalized distance without damping for velocity 

ratio =0.99 for one and two parameter models. 



65 

 

-6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

Normalised Distance

No
rm

ali
se

d 
De

fle
cti

on

 

 

One parameter model
Two parameter model

 

Fig. 2. 10: Normalized deflection vs. normalized Distance with damping ratio=0.30 and velocity 

ratio =1, for one and two parameter models. 

Figure 2.11 shows the deflection responses of the beam with a damping ratio of 0.30 and for 

velocities above the critical velocity. These responses for beam deflections are similar to the 

responses, as shown in Fig. 2.7(b), for a very low damping ratio in terms of front and rear waves 

and shifts of the settlement and uplift. However, decays in peak of the front waves occur as they 

move away from the center point, which can be attributed to the higher damping ratios. The 

figure further illustrates that the smaller the velocity ratio the higher is the decay rate.   
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Fig. 2. 11: Normalized deflection vs. normalized distance with different velocity ratios above the 

critical velocity ( / crv v =1.25, 1.50, 1.75 and 2.0) with damping ratio ( / crc c = 0.3) for two 

parameter model. 

The variations in normalized bending moment (dividing the dynamic bending moment 

responses by the maximum value of it in static case) for velocities less than and equal to the 

critical velocity along the beam are shown in Fig. 2.12 (a). The figure shows the absolute value 

of the bending moment distribution is symmetrical about the load for zero velocity ratio. The 

figure also  shows small variations in the maximum negative bending moment at front and rear 

of the load for velocities below the critical velocity. The figure further shows that maximum 

negative bending moment occurs at a point ahead of the load and the magnitude of this peak 

negative bending moment increases with increase in speed. However, the maximum positive 

bending moment occurs at the point of the load. With decrease in speed, the maximum negative 

bending moments at both front and rear of the load shift away from the load.  
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Figure 2.12 (b) shows the variations in bending moment distribution along the beam for 

velocities above the critical velocities. Similar to Fig. 2.12 (a), the maximum negative bending 

moment occurs at a point ahead of the load and shifts away from the load with decrease in speed. 

The magnitude of this peak negative bending moment, however, decreases with increase in 

speed. As the speed decreases, the maximum positive bending moment shifts behind the load. 

The maximum negative bending moment decreases in oscillatory fashion as it moves away from 

the load, which can be attributed to the viscous damping coefficient of the beam.  Similar to the 

deflection characteristic of the beam, the higher the velocity ratio the smaller is the decay rate. 
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Fig. 2. 12: Normalized bending moment vs. normalized distance with different velocity ratios (a) 

( / crv v =0, 0.50, 0.75 and 1.0); and (b) greater than the critical velocity ( / crv v =1.50, 2.00, 2.50 

and 3.00) with damping ratio ( / crc c = 0.3) for two parameter model. 

 
The variations in shear force distribution along the length of the beam for subcritical, critical 

and supercritical velocities are shown in Figs. 2.13 and 2.14. The damping ratio is considered as 

0.1. For all velocities, the maximum negative shear force occurs at a point ahead of the load and 

shifts away from the load with decrease in speed. For subcritical velocities, as shown in Fig. 

2.13, the maximum shear force becomes negative at the point just behind the load whereas it is 

positive for critical and supercritical velocities, as shown in Fig. 2.14. For supercritical 

velocities, the peak shear force decreases in oscillatory fashion as it moves away from the load 

due to the presence of damping. Figure 2.14 further shows that the peak and wavelength of the 

front waves decrease with increase in speed.  
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Fig. 2. 13: Normalized shear force vs. normalized distance with different velocity ratios 

( / crv v =0,0.75, 0.90 and 1.00) with damping ratio ( / crc c =0.1) for two parameter model.  
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Fig. 2. 14: Normalized shear force vs. normalized distance with different velocity ratios greater 

than the critical velocity ( / crv v =1.25, 1.50, 1.75 and 2.00) with damping ratio ( / crc c = 0.1).  
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The variations in shear force distribution along the beam for a combination of different 

velocity and damping ratios where the damping is higher than the critical damping are shown in 

Fig. 2.15. It can be seen that at the point of load, maximum positive shear force occurs for the 

front wave and maximum negative shear force occurs for the rear wave. The responses are 

similar to those obtained in Fig. 2.13. However, only a few waves can propagate along the beam 

due to the high damping ratios.  

A measure in terms of magnification factor is further defined as the ratio of the maximum 

dynamic responses to maximum static values. The variations in dynamic magnification factors 

for deflections and bending moments under, behind and ahead of the load with different 

velocities and damping ratios are shown in Figs. 2.16-2.19. 
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Fig. 2. 15: Normalized shear force vs. normalized distance with different combination of velocity 

ratios and damping ratios for two parameter model. 
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Velocities are varied from static-subcritical-critical-supercritical velocities whereas the 

damping ratios are varied from undamped-underdamped-critically damped-overdamped. The 

figures clearly show the resemblance in nature to those of frequency response curves of a single 

degree-of-freedom system. The figures further show that the maximum deflections and bending 

moments are higher at lighter damping. From Figs. 2.18 and 2.19, it can be seen that the 

deflection amplitude of the rear wave is much larger than that of the front wave for velocities 

greater or equal to the critical velocities. For very low velocities ( / 0.5crv v ≤ ), these figures 

further illustrate that the deflection waves become more symmetrical about the loading point as 

the speed decreases.    
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Fig. 2. 16: Dynamic magnification factors for deflection vs. the velocity ratio with different 

damping ratios under the load for two parameter model. 
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Fig. 2. 17: Dynamic magnification factors for bending moment vs. the velocity ratio with 

different damping ratios under the load for two parameter model. 
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Fig. 2. 18: Dynamic magnification factors for deflection vs. the velocity ratio with different 

damping ratios behind the load (settlement) for two parameter model. 
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Fig. 2. 19: Dynamic magnification factors for deflection vs. the velocity ratio with different 

damping ratios ahead of the load (uplift) for two parameter model. 

2.6.2 Modal analysis: 

Dynamic response of an Euler-Bernoulli beam resting on Pasternak foundation is further 

investigated using the modal analysis approach under both moving load and moving mass 

conditions. In case of “moving mass” condition, the mass of the wheel is considered to exert 

force on the beam equivalent to the moving load. The parameters listed in Table 2.1 are 

employed in this study and a total of 60 modes have been considered. The normalized dynamic 

response in terms of deflection, bending moment for both “moving load” and “moving mass” 

conditions is obtained with respect to the normalized position of the beam. 

(i) Comparison between moving load and moving mass responses  

     Figure 2.20 shows normalized deflection responses for both moving load and moving mass 

systems with different velocity ratios. The damping ratio of the beam is kept at 0.0005.  The 

figure shows that the maximum deflections occur, for all the given conditions, at the midpoint of 
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the beam. However, the maximum deflection is always higher in case of moving mass, which is 

attributed to the inertia of the mass. The maximum normalized deflections for moving mass 

problem are 1.248, 1.582, 1.656, and 1.725 for velocities of 44.12, 88.25, 132.38, and 176.50 

km/h, respectively. The maximum normalized deflections for moving load problem are 1.002, 

1.003, 1.005, and 1.007 for velocities of 44.12, 88.25, 132.38, and 176.50 km/h, respectively. 

These results show that the variations in peak normalized deflections for moving mass problem 

are significant with variations in speed for the given speed range. This variation is not significant 

for moving load problem. These variations, however, can be significant for higher velocity ratios 

as shown in Fig. 2.7 (a).    

0.4 0.43 0.46 0.49 0.52 0.55 0.58 0.6

-1

-0.5

0

Normalized distance

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

 

 

Moving load
Moving mass

 

(a) 



75 

 

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
-1.65

-1.15

-0.65

-0.15

0.2

Normalized distance

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

 

 

Moving load
Moving mass

 

(b) 

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
-1.8

-1.3

-0.8

-0.3

0.2

Normalized distance

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

 

 

Moving load
Moving mass

 

(c) 



76 

 

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

-1.8

-1.3

-0.8

-0.3

0.2

Normalized distance

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

 

 

Moving mass
Moving load

 (d) 

Fig. 2. 20: Normalized deflection response with different velocity ratios; (a) velocity 

ratio=0.025; (b) velocity ratio=0.05; (c) velocity ratio=0.075; (d) velocity ratio=0.1. 

The variations in normalized bending moment response for both moving load and moving 

mass systems with different velocity ratios are shown in Fig. 2.21. Similar to the deflection 

response, the maximum bending moments occur beneath the load for all the given conditions.  

Figure 2.21 shows that the maximum bending moment is always higher for moving mass system 

irrespective of the speed. The maximum normalized bending moments for moving mass problem 

are 0.8767, 1.104, 1.211, and 1.326 for velocities of 44.12, 88.25, 132.38, and176.50 km/h, 

respectively. In case of moving load problem, the maximum normalized bending moments are 

0.7063, 0.7096, 0.7127, and 0.7157 for velocities of 44.12, 88.25, 132.38, and 176.50 km/h, 

respectively. The figures further show that the peak bending moments increase significantly with 

increase in speeds in case of moving mass problem for the considered speed range. Thus, 

simplification of the moving vehicle into a moving load in analysis of dynamic vehicle-track 
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interactions can result in lower prediction of the deflections and bending moments of the track.  

In case of moving load, the increment is not so pronounced which can be attributed to the 

considered speed ratios. For higher speed ratios, as shown in Fig. 2.12 (a), this increment is 

significant. It can be concluded that considering the moving load instead of moving mass 

essentially neglects the inertia of the mass, centrifugal force, velocity of the moving mass which 

in turn gives us the inaccurate prediction of the deflections, bending moments and contact forces 

that arise in between the contact points.  
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(d) 

Fig. 2. 21: Normalized bending moment responses with different velocity ratios; (a) velocity 

ratio=0.025; (b) velocity ratio=0.05; (c) velocity ratio=0.075; (d) velocity ratio=0.1. 

(ii) Effect of foundation stiffness 

Foundation stiffness has significant influence on dynamic deflection response under both 

moving load and moving mass conditions, as shown in Fig. 2.22. For both cases, decreasing the 

foundation stiffness increases significantly the dimensionless peak deflections, while the speed is 

kept constant at 88.25 km/h.  However, the rate of increment is slightly higher for moving load 

problem. When the value of the foundation stiffness decreases from 2.0 kf to 0.5 kf, the 

normalized maximum deflection increases from 0.607 to 1.667 for moving load, while it is 

0.9298 to 2.493 for moving mass.   
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Fig. 2. 22: Effect of foundation stiffness on dynamic deflection responses at a constant speed of 

88.25 km/h; (a) moving load (b) moving mass. 

    The effect of foundation stiffness on normalized dynamic bending moment response for both 

moving load and moving mass conditions is shown in Fig. 2.23. Similar to the deflection 

response, for a constant speed, decreasing the foundation stiffness increases the peak of the 

dimensionless bending moment. The rate of increment is slightly higher for moving load 
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problem. In case of moving load, the maximum normalized bending moment increases from 

0.5541 to 0.8907, while for moving mass it is 0.8545 to 1.362, when the value of the foundation 

stiffness decreases from 2.0 kf to 0.5kf.      

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Normalized distance

N
or

m
al

iz
ed

 b
en

di
ng

 m
om

en
t

 

 

0.5k
f

1.0k
f

1.5k
f

2.0k
f

 
(a) 

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized distance

N
or

m
al

iz
ed

 b
en

di
ng

 m
om

en
t

 

 

0.5k
f

1.0k
f

1.5k
f

2.0k
f

 
(b) 

 
Fig. 2. 23: effect of foundation stiffness on dynamic bending moment responses at a constant 

speed of 88.25 km/h; (a) moving load (b) moving mass. 
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(iii)Effect of shear modulus 

The effect of shear modulus on dynamic normalized deflection responses for both moving 

load and moving mass conditions is shown in Fig. 2.24. The figure shows that, for a constant 

speed, increasing the shear modulus decreases the peak of the dimensionless deflection. The rate 

of decrease is slightly higher for moving load problem. When the value of the shear modulus 

decreases from 3.0 1k  to 0.1 1k , the maximum normalized deflection increases about 17.71% and 

15.22% for moving load and for moving mass, respectively.  
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Fig. 2. 24: Effect of shear modulus on dynamic deflection responses at a constant speed of 88.25 

km/h; (a) moving load (b) moving mass. 

 Figure 2.25 shows the effect of shear modulus on normalized bending moment responses for 

both moving load and moving mass conditions at a constant speed of 88.25 km/h. The figure 

clearly shows that decrease in shear modulus increases the normalized bending moment for 

given conditions. When the value of the shear modulus decreases from 3.0 1k  to 0.1 1k , the 

maximum normalized bending moment increases about 26.44% and 25.40% for moving load and 

for moving mass, respectively.   
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Fig. 2. 25: Effect of shear modulus on dynamic bending moment responses at a constant speed of 

88.25 km/h; (a) moving load (b) moving mass. 
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2.7 SUMMARY  

The dynamic response of an Euler-Bernoulli beam with both finite and infinite length 

supported on both one-parameter Winkler and two-parameter Pasternak foundation and subjected 

to a moving load as well as moving mass is investigated. Fourier transform technique is 

employed to find the exact analytical solution of the governing partial differential equation of an 

infinite beam subjected to a moving load. Modal analysis method is employed to convert the 

partial differential equation into a series of ordinary differential equations for both moving load 

and moving mass condition. Numerical calculations have been performed to analyze the 

displacement and bending moment responses of the beam on the Pasternak foundation subjected 

to both moving load and moving mass with different velocity ratios.  

This study shows that for subcritical velocities of the moving load, the dynamic deflection 

and bending moment responses of the beam are symmetrical about the location of the moving 

load. In case of very low velocities ( / 0.5crv v ≤ ), the maximum deflection, bending moment and 

shear force responses of the beam increases slightly with increase in speed and the responses 

approach those for the static one as the velocity decreases.  

The study further shows that for supercritical velocities of the load, significant deflection 

occurs behind the load whereas bending moment and shear force are higher ahead of the load. 

The maximum values of the front and rear waves decrease with increase in damping ratio. The 

wavelengths of the rear waves are always higher than the front waves for deflection, bending 

moment and shear force response of the beam. For all speeds above the critical speed, the 

wavelengths of the front waves of deflection, bending moment and shear force decrease with 

increase in speed. These indicate that only a small amount of disturbance could propagate in 

front of a moving load when the load is moving at a very high speed. Furthermore, for 
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supercritical velocities, the point of maximum deflection, bending moment and shear force 

behind the load shift farther behind with increase in speeds whereas the maximum positive peak 

of the front wave shift towards the location of the load. The variations in dynamic magnification 

factors with different velocities and damping ratios are analogous to the frequency response of 

the single degree-of-freedom system. All the curves show a peak value near the critical speeds. 

These peak values, however, increase with decrease in the damping ratios.    

The study reveals that the results obtained from the modal analysis method are comparable to 

those obtained from exact analytical method. This study further reveals that moving mass has 

significantly higher effect on dynamic responses of the beam than that of the case of the moving 

load. Furthermore, increase in speed increases both displacements and bending moments of the 

beam. In case of moving load conditions, the deflections are symmetric about the contact point 

and maximum deflections occur beneath the load for all the selected velocity ratios. The 

deflection and bending moment responses are always higher for moving mass condition than 

those for the moving load. Detailed analyses are also performed to investigate the effect of 

various parameters such as foundation stiffness and shear modulus on dynamic deflection and 

bending moment responses under a moving load as well as moving mass. The study shows that 

the maximum deflection and bending moment of the beam increases significantly with the 

reduced shear modulus and stiffness of the foundation for a constant velocity. For a given 

velocity, this increment is always higher for moving load than the moving mass. For the given 

range of shear modulus, the normalized maximum deflection increases about 26.44% and 

25.40% for moving load and moving mass, respectively.         
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     CHAPTER 3 

VEHICLE-TRACK SYSTEM MODEL AND ITS NATURAL FREQUENCIES 

 

3.1 INTRODUCTION 

The analysis of wheel-rail impact force or acceleration responses in the presence of wheel 

and/or rail defects requires development of a representative vehicle and track system models, 

wheel-rail contact model together with wheel and rail defects. The magnitudes of the impact 

forces and accelerations caused by the wheel and rail defects largely depend on interactions 

between these elements. This study is primarily concerned with vertical wheel-rail impact 

responses considering the contribution due to the pitch and roll motion of the car body and 

bogies in the presence of multiple wheel defects. This research further aims to analyze the 

dynamic interaction between the leading and trailing bogie, and two wheels within a wheelset in 

the presence of cross wheel defects. A comprehensive three-dimensional vehicle model 

incorporating a full car body, two bogies, and four wheelsets is thus required in order to 

investigate the wheel-rail impact responses in terms of both force and acceleration due to wheel 

defects. Since the impact magnitudes due to the presence of wheel flats are significantly 

influenced by the track properties, more effort has thus been made in order to develop an 

effective model of the track system [8]. Among these different types of railway track models, the 

most common approach is to model a rail beam based on Timoshenko or Euler-Bernoulli theory 

supported on discrete supports [2, 6, 13, 15]. 

This study describes the modeling of a three dimensional full car vehicle considering the 

roll and pitch motion of the car body and bogie. A three-dimensional track model is also 

developed using the discrete beam support. The rail beams are modeled as two parallel 
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Timoshenko beams periodically supporting lumped masses. The generalized coordinates method 

is used to convert the partial differential equations (PDE) describing the deflections of the 

continuous track to ordinary differential equations (ODE). In order to have practical 

representation of the track model, the nonlinear properties of the railpad and ballast are 

considered into the model. A shear parameter beneath the rail beams has also been considered 

into the model in order to facilitate interactions between the discrete railpads. The vehicle and 

track models are coupled through the nonlinear Hertzian contact spring. A MATLAB predefined 

function “ode 45” is employed in order to solve the coupled partial and ordinary differential 

equations of the vehicle-track system in presence of single wheel flat. The developed model is 

then employed to identify the natural frequencies of the vehicle and track system. Since the 

lateral and longitudinal relative motions between the wheel and rail are small, and creep forces at 

the wheel-rail contact interface have little effect on the dynamic vertical forces, the track is 

assumed as perfect and straight track. The forward speed of the vehicle is also assumed to be 

constant, while the contribution due to the track roughness is considered small in relation to 

forces that may be caused by wheel defects.  

3.2  VEHICLE SYSTEM MODEL 

  The vehicle system model adopted in this study consists of a full car body, two bogie frames 

and four wheelsets. The car body is supported on two double-axle bogies at each end. The bogie 

frames are connected to the wheelsets through the primary suspensions and linked to the car 

body through the secondary suspensions. The primary and secondary suspensions are modeled as 

parallel combination of linear springs and viscous damping elements. The vehicle is assumed to 

move on the track with a constant travelling speed, v . The mass of the car body cM , bogie 

mass bM , and wheel mass wM  are coupled through the suspension elements, as shown in Fig. 
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3.1. The vehicle is modeled as a rigid body having a mass cM and having second moments of 

area cxJ and cyJ about transverse and longitudinal horizontal centroidal axes, respectively. Each 

of the bogie frames is also modeled as a rigid body with a mass bM  (for two bogie 

frames 1bM and 2bM ) with second moments of area bxJ and byJ about transverse and longitudinal 

horizontal centroidal axes, respectively. Each axle together with the wheels has a mass of 

wM (for four axles 1wM , 2wM , 3wM and 4wM ). The total vehicle system model is represented by a 

17-DOF dynamic system that includes the car body vertical, pitch and roll motions, cZ , cθ , 

and cφ , respectively, two bogies vertical, pitch and roll motions, 1bZ and 2bZ , 1bθ and 2bθ , and 

1bφ and 2bφ , respectively, and four axles vertical and roll motions, 1wZ , 2wZ , 3wZ  and 4wZ , 

and 1wφ , 2wφ , 3wφ and 4wφ , respectively. The primary suspension stiffness and damping elements 

are represented by pK and pC , respectively, while sK and sC  represent the stiffness and viscous 

damping coefficient due to secondary suspension. Half of the bogie frame and wheelset distances 

in longitudinal direction, respectively, are cl and bl . Similarly, pl and sl  are half of the primary 

and secondary suspension distance in lateral direction, respectively.  
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Fig. 3. 1: Three-dimensional railway vehicle model with one full car and two bogies. 

The equations of motion of the vehicle model consisting of one car body, two bogie frames, 

and four wheelsets, are derived upon neglecting the contribution due to track roughness as 

follows: 

Car body bounce motion: 

1 2 1

2

2 ( ) 2 ( ) 2 ( )
2 ( ) 0
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s c c c b
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(3.1)  

or, 1 2 1 24 4 2 2 2 2 0c c s c s c s b s b s b s bM Z C Z K Z C Z C Z K Z K Z+ + − − − − =     (3.2)  

Car body pitch motion: 
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(3.3)  

or, 2 2
1 2 1 24 2 2 4 2 2 0cy c s c c s c b s c b s c c s c b s c bJ C l C l Z C l Z K l K l Z K l Zθ θ θ+ − + + − + =   

 
(3.4)  

Car body roll motion: 
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(3.5)  

or, 2 2 2 2 2 2
1 2 1 24 2 2 4 2 2 0cx c s s c s s b s s b s s c s s b s s bJ C l C l C l K l K l K lφ φ φ φ φ φ φ+ − − + − − =     (3.6)  

Bogie bounce motion: 

Front bogie bounce: 
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(3.8)  

Rear bogie bounce: 
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(3.9)  
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(3.10)  

Bogie pitch motion: 

Front bogie pitch: 
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Rear bogie pitch: 
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(3.14)  

Bogie roll motion: 

Front bogie roll: 
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(3.16)  

Rear bogie roll: 
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bx b p p b s s b p p w p p w s s c p p b

s s b p p w p p w s s c

J K l K l K l K l K l C l

C l C l C l C l

φ φ φ φ φ φ φ

φ φ φ φ

+ + − − − +

+ − − − =

 

   

 
(3.18)  

Wheelset bounce motion: 

1st Wheelset: 

1 1 1 1 1 1 1 12 { ( )} 2 { ( )} 0w w p w b b b p w b b b WRM Z K Z Z l C Z Z l Pθ θ+ − + −+ + + =    (3.19)  

or, 

1 1 1 1 1 1 1 12 2 2 2 2 2 0w w p w p b p b b p w p b p b b WRM Z K Z K Z K l C Z C Z C l Pθ θ+ − + −+ + + =    (3.20)  

2nd Wheelset: 

2 2 1 1 2 1 1 22 { ( )} 2 { ( )} 0w w p w b b b p w b b b WRM Z K Z Z l C Z Z l Pθ θ+ − + −+ + + =    (3.21)  

or, 

2 2 1 1 2 1 1 22 2 2 2 2 2 0w w p w p b p b b p w p b p b b WRM Z K Z K Z K l C Z C Z C l Pθ θ+ − + −+ + + =    (3.22)  

3rd Wheelset: 

3 3 2 2 3 2 2 32 { ( )} 2 { ( )} 0w w p w b b b p w b b b WRM Z K Z Z l C Z Z l Pθ θ+ − + −+ + + =    (3.23)  

or, 
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3 3 2 2 3 2 2 32 2 2 2 2 2 0w w p w p b p b b p w p b p b b WRM Z K Z K Z K l C Z C Z C l Pθ θ+ − + −+ + + =    (3.24)  

4th Wheelset: 

4 4 2 2 4 2 2 42 { ( )} 2 { ( )} 0w w p w b b b p w b b b WRM Z K Z Z l C Z Z l Pθ θ+ − + −+ + + =    (3.25)  

or, 

4 4 2 2 4 2 2 42 2 2 2 2 2 0w w p w p b p b b p w p b p b b WRM Z K Z K Z K l C Z C Z C l Pθ θ+ − + −+ + + =  

 

(3.26)  

Wheelset roll motion: 

1st Wheelset: 

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 5

{ ( )} { ( )}

{ ( )} { ( )} 0
wx w p p w p w b p b p p w p w b p b

p p w p w b p b p p w p w b p b WR

J K l Z l Z l K l Z l Z l

C l Z l Z l C l Z l Z l P

φ φ φ φ φ

φ φ φ φ

+ − − −

+ − − −

+ + − − +

+ − − + =



      

 
(3.27)  

or, 2 2 2 2
1 1 1 1 1 52 2 2 2 0wx w p p w p p b p p w p p b WRJ K l K l C l C l Pφ φ φ φ φ+ − + − + =    (3.28)  

2nd Wheelset: 

2 2 2 1 1 2 2 1 1

2 2 1 1 2 2 1 1 6

{ ( )} { ( )}

{ ( )} { ( )} 0
wx w p p w p w b p b p p w p w b p b

p p w p w b p b p p w p w b p b WR

J K l Z l Z l K l Z l Z l

C l Z l Z l C l Z l Z l P

φ φ φ φ φ

φ φ φ φ

+ − − −

+ − − −

+ + − − +

+ − − + =



      

 
(3.29)  

or, 2 2 2 2
2 2 1 2 1 62 2 2 2 0wx w p p w p p b p p w p p b WRJ K l K l C l C l Pφ φ φ φ φ+ − + − + =    (3.30)  

3rd Wheelset: 

3 3 3 2 2 3 3 2 2

3 3 2 2 3 3 2 2 7

{ ( )} { ( )}

{ ( )} { ( )} 0
wx w p p w p w b p b p p w p w b p b

p p w p w b p b p p w p w b p b WR

J K l Z l Z l K l Z l Z l

C l Z l Z l C l Z l Z l P

φ φ φ φ φ

φ φ φ φ

+ − − −

+ − − −

+ + − − +

+ − − + =



      

 
(3.31)  

or, 2 2 2 2
3 3 2 3 2 72 2 2 2 0wx w p p w p p b p p w p p b WRJ K l K l C l C l Pφ φ φ φ φ+ − + − + =    (3.32)  

4th Wheelset: 
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4 4 4 2 2 4 4 2 2

4 4 2 2 4 4 2 2 8

{ ( )} { ( )}

{ ( )} { ( )} 0
wx w p p w p w b p b p p w p w b p b

p p w p w b p b p p w p w b p b WR

J K l Z l Z l K l Z l Z l

C l Z l Z l C l Z l Z l P

φ φ φ φ φ

φ φ φ φ

+ − − −

+ − − −

+ + − − +

+ − − + =



      

 
(3.33)  

or, 2 2 2 2
4 4 2 4 2 82 2 2 2 0wx w p p w p p b p p w p p b WRJ K l K l C l C l Pφ φ φ φ φ+ − + − + =    (3.34)  

where, 1WRP , 2WRP , 3WRP , 4WRP , 5WRP , 6WRP , 7WRP , and 8WRP  are the contact forces 

developed at the wheel-rail interfaces corresponding to the 8 degrees of freedom of the wheelsets 

obtained by algebraic summation of reactions from the left and right rails. 

3.3 TRACK SYSTEM MODEL 

The dynamic forces developed at the wheel-rail interface are derived upon development and 

analysis of the railway track. In this study, a three-dimensional model of the track system model 

consisting of rails, pads, sleepers and ballasts is developed upon consideration of two subsequent 

layers. Two rails modeled as Timoshenko beams are discretely supported on the sleepers through 

the railpads and fasteners that are modeled as combination of spring and damper elements, as 

shown in Fig. 3.2. The sleepers are modeled as lumped masses which are discretely supported on 

the ballasts. The ballasts are modeled as combination of spring and damper elements inserted 

between each discrete sleeper and subgrade with consideration of the elastic properties of the 

ballasts. The contribution due to the ballast mass to the wheel-rail contact forces is assumed to be 

negligible. Two rail beams are modeled as Timoshenko beams, where both rotary inertia of the 

beam cross section and beam deformations due to the shear force are taken into account. The 

track is assumed to be symmetric with respect to its centerline. Furthermore, the track system 

model is simplified to describe its dynamic motions in vertical plane only considering negligible 

contributions of the longitudinal and lateral deformations of the track system. Since the 

longitudinal and lateral motions have little effect on the vertical wheel-rail interactions, the 
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longitudinal and lateral displacements of all the masses are neglected. A finite length of the track 

structure is considered by including a total of 100 sleepers/ballasts.  

It has been suggested that a total of 50 to 60 sleepers/ballast elements would be sufficient for 

analysis of dynamic wheel-rail impact load due to a wheel/rail defects [80, 109]. However, 100 

sleepers/ballasts are considered in this study in order to investigate the contribution due to pitch 

and roll dynamics of the car body and bogie, and various vehicle design parameters. The total 

length of the rail with 100 sleepers is about 59.4 m with 0.6 m of sleeper distance. This length is 

4.6 times higher than the total length of a full length railway car with two bogies, which is about 

12.86 m. This sufficiently long rail length will allow steady state simulated results when the 

system is stable. However, it will increase the simulation runtime of the total system. The 

vertical and rotational motions of the two rail beams (left and right beams) coupled with the 

sleepers are expressed as ( , )rlZ x t , ( , )rrZ x t and ( , )rl x tψ , ( , )rr x tψ , respectively, while 

( )siZ t and ( )si tφ  describe the vertical and roll motions of the i’th sleeper, respectively. 

priK , priC , biK and biC are the nonlinear railpad and ballast stiffness and damping coefficients, 

respectively. Further, 1k is the shear viscosity coefficient of the foundation under the rail beam 

and sL is the half of the lateral distance between left and right end railpads. The length of the 

track considered in simulation is sufficiently large to minimize the end effects. The infinite long 

track is modeled as a track of finite length, whose two ends are simply supported.  
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Fig. 3. 2: Three-dimensional two-layer railway track model. 

The equations of motion of the entire track system are derived upon integrating the equation 

of motion for the two rails as Timoshenko beams with the differential equations of motion for the 

discrete sleepers. The deflection of the continuous rail can be derived from the partial differential 

equation for the Timoshenko beam as [17]:  

For left rail: 

2 2

2 2

4
( ) ( )

2
1

1 1

2
( , ) ( , ) ( , ) ( , ){ }

i pj

rl rl rl rl
r

N
RSli x x WRlj x x

i j

Z x t Z x t x t Z x tA GAk
xt

F P

k
xx

δ δ

ψ
ρ

− −
= =

∂∂ ∂ ∂
− −

∂∂ ∂

= − +

−
∂

∑ ∑
 

(3.35)  

2 2

2 2
( , ) ( , ) ( , ){ ( , )} 0rl rl rl

r rl
x t Z x t x tA GAk x t EI

xt x
ψ ψ

ρ ψ
∂ ∂ ∂

− − − =
∂∂ ∂

 
(3.36)  

For right rail: 

 

Shear layer  Left rail 

Right 
 

Sleeper 

Ballast 

Railpad Kpri, 

 

Zsi, ϕsi 

Zrl(x,t),
ψrl(x,t)  

Zrr(x,t)
,ψrr(x,t
  

Kbi, Cbi 

2Ls 1k
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2 2

2 2

4
( ) ( )

2
1

1 1

2
( , ) ( , ) ( , ) ( , ){ }

i pj

rr rr rr rr
r

N
RSri x x WRrj x x

i j

Z x t Z x t x t Z x tA GAk
xt

F P

k
xx

δ δ

ψρ

− −
= =

∂∂ ∂ ∂
− −

∂∂ ∂

= − +

−
∂

∑ ∑
 

(3.37)  

2 2

2 2
( , ) ( , ) ( , ){ ( , )} 0rr rr rr

r rr
x t Z x t x tA GAk x t EI

xt x
ψ ψρ ψ∂ ∂ ∂

− − − =
∂∂ ∂

 
(3.38)  

where, ρ  is rail density, A  is the rail cross sectional area, G  is the shear modulus of rail, rk  is 

the Timoshenko shear coefficient, N  is total number of the sleepers considered in the model, 

k is the number of deflection modes considered for the rail beam and j is the number of 

wheelsets incorporated in the vehicle model (j=1, 2,.., 4), which represent the number of moving 

point loads acting on the beam. E is the elastic modulus of rail beam materials and I  is the 

second moment of area. The coordinate x  represents the longitudinal position of the beam with 

respect to the left end support of the rail beam. ix defines the position of the i th sleeper and 

( )xδ is the Dirac delta function. RSriF and RSliF  are the forces developed at the i th  right and 

left  rail/sleeper interface, respectively (i=1,2,3,…N). WRrjP  is the contact force develop at the 

interface of the right side wheels of the vehicle and right rail, whereas WRljP is the contact force 

developed at the interface of the left side wheels of the vehicle and left rail. 

The equation of motion for the sleeper can be written as: 

Sleepers bounce motion: 

[ ]
[ ]

2 2 ( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , ) 0

si si bi si bi si pri sli rl i pri sli rl i

pri sri rr i pri sri rr i

M Z K Z C Z K Z t Z x t C Z t Z x t

K Z t Z x t C Z t Z x t

+  + + − + − + 
 − + − = 

   

 

 
(3.39)  
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where, ( )sriZ t and ( )sliZ t are the vertical displacement of i'th sleeper at the right and left end pad 

location, respectively. priK , and priC are nonlinear dynamic stiffness and equivalent viscous 

damping of the railpad, which can be expressed for medium stiff pad as [105]: 

0Pi
PbZK k e=  MN/m (3.40)  

1 1Pi PC m Kη=  kN-s/m (3.41)  

where,  PZ is the compression of the pad (in meter), 1η is the loss factor of the hysteretic damping 

of the pad ( 1η =0.25 [105]) and 1m is the equivalent mass. Further, 0k is the pad stiffness without 

load, and for a medium stiff pad 0k =115.2 MN/m and b=7.49/mm. Since at high frequency, the 

rail and sleepers vibrate separately on the pad and ballast stiffnesses, respectively. Thus, the 

equivalent mass ( 1m ) can be calculated as parallel combination of rail and sleeper masses, such 

as [105]:   

1
s r

s r

M Mm
M M

=
+

 
(3.42)  

where, rM is the rail mass in a sleeper bay. Similarly, the nonlinear stiffness and equivalent 

viscous damping properties of the ballasts, biK and biC , can be expressed as [105]: 

8 222.75 2.6 10bi bK Z= + ×  MN/m (3.43)  

2 2bi bC m Kη=  kN-s/m (3.44)  

 where,  bZ is the compression of the pad (in meter), 2η is the loss factor of the hysteretic 

damping of the ballast ( 2η =1 [105]) and 2m is the equivalent mass.  In case of low frequency, the 

entire track (rail mass and sleeper mass) vibrates together on the ballast stiffness. Hence, the 
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equivalent mass ( 2m ) can be calculated as series combination of rail and sleeper masses, such as 

[105]:   

2 s rm M M= +  (3.45)  

Sleepers roll motion: 

The equation for sleeper roll motion is given by: 

[ ]
[ ]

( ) ( ) ( )

( ) ( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , ) 0

si si bi s si s si bi s si s si bi s si s si bi s

si s si pri s sli rl i pri s sli rl i

pri s sri rr i pri s sri rr i

J K L Z L K L Z L C L Z L C L

Z L K L Z t Z x t C L Z t Z x t

K L Z t Z x t C L Z t Z x t

φ φ φ φ

φ

+ ++ − − + −

 − − − − − + 
 − + − = 

 

  

 

 

(3.46)  

3.4 WHEEL-RAIL CONTACT MODEL 

Wheel-rail interface distinguishes railways from other forms of land transports. In this study, 

the wheel-rail contact is established by the nonlinear Hertzian contact theory commonly used in 

the wheel-rail interaction problems [6, 4, 13, 14, 15, 87, 97, 105, 109, 113, 115, 119]. 

According to the Hertzian contact theory, the wheel-rail contact force is related to the rail 

deflection in a nonlinear manner, such as: 

3/ 2( ) ( )HP t C z t= ∆  (3.47)  

where, ( )z t∆  is the wheel-rail overlap in the vertical direction, HC is the Hertzian contact 

stiffness coefficient. In the absence of a wheel defect, the overlap is defined by the relative 

motion of the wheel with respect to the rail:  

( ) ( ) ( , )w rz t Z t Z x t∆ = −  (3.48)  

In the above equation, ( )wZ t  and ( , )rZ x t  are the wheel and rail deflections in vertical direction, 

respectively.  
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In the presence of a wheel defect, the instantaneous overlap ( )z t∆ between the wheel and the rail 

can be expressed as: 

( ) ( ) ( , ) ( )w rz t Z t Z x t r t∆ = − −  (3.49)  

where, ( )r t is the wheel flat function. In case of haversine flat, as shown in Fig. 3.3 (a), the 

function of the wheel flat geometry can be expressed as: 

1( ) [1 cos(2 / )]
2 f f fr t D x Lπ= −  

(3.50)  

where fD is the flat depth that has been related to wheel radius R , in the following manner [8]:  

2 /(16 )f fD L R=  (3.51)  

where, fL is the flat length, and fx  is the longitudinal coordinate of the instantaneous contact 

point within the flat. The origin of fx lies at the vertical projection of the origin of the flat, as 

shown in Fig. 3.3 (a). The change in radius ( )r t diminishes when the wheel-rail contact lies 

outside the flat length.  

In case of two flats within the same wheel, as shown in Fig. 3.3 (b), the variations in radius can 

be expressed in similar fashion:  

1( ) [1 cos(2 / )],
2 fi fi fiir t D x Lπ= −  

(3.52)  

where ( )ir t  define the change in radius of the wheel within the flat regions of lengths fiL , and 

depths fiD , respectively, and ( )ifix v t t= − , and it  refer to the instants when leading and 

trailing flats come in contact with the rail, respectively. The relative position between the two 

i=1, 2
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flats, whether in a single wheel or in two wheels, is defined in terms of a phase angle ϕ (Fig. 3.3 

(b)), which is expressed by the time lapse as a function of the forward velocity, such that:  

12 /t t R vϕ=−  (3.53)  

 

(a) 

R 

xf r(t) 
Lf 

Df 
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(b) 

Fig. 3. 3: A railway wheel with (a) single and (b) double haversine type flats. 

3.5 METHOD OF ANALYSIS 

The linear equations of motion of the vehicle coupled with the nonlinear equations of motion 

of the track are solved in time domain considering the nonlinear contact between the wheel and 

rail. The presence of wheel defects as modeled in section 3.4 is also included in the resultant 

vehicle-track model. In this study, the nonlinear track system model formulation comprises both 

Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs) describing the 

deflection of sleeper and the continuous rail, respectively, under moving contact forces. By 

applying Ritz’s method, all the PDE’s representing the continuous rail beam are converted in 

ODEs by assuming mode shape functions. The fourth order PDEs describing the motion of the 

continuous rail are expressed by a series of second order ordinary differential equations similar 

to the vehicle equations of motion in terms of the time coordinates. The resulting ODEs of the 

Lf2 

Df2 

xf2 

r2(t) 

ϕ
 

Lf1 

Df1 

R 

xf1 r1(t) 
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track and vehicle systems are then solved in time domain to obtain responses of individual 

components of the vehicle-track system model. As the vehicle moves along the track, the contact 

force and deflections of the rail and those of the lumped masses of vehicle and the track are 

calculated through numerical integration of the differential equations. It has been suggested that 

good convergence of solution can be obtained if the number of modes is equal to or more than 

60. A total of 100 modes of a single rail beam are considered in this study for analysis of the 

coupled vehicle-track system model.  

The vertical deflection , ( , )rl rZ x t and rotation , ( , )rl r x tψ of the left and right rail are obtained 

using modal superposition method as:  

,
1

( , ) ( , ) ( )
K

rl r z k
k

Z x t N k x Z t
=

= ∑  
(3.54)  

and,
 

,
1

( , ) ( , ) ( )
K

rl r k
k

x t N k x tψψ
=

= Ψ∑  
(3.55)  

where, ( , )zN k x  and ( , )N k xψ  are the k th mode shape functions of the vertical deflection and 

rotation of the rail, respectively. ( )kZ t and ( )k tΨ are the k th mode time coefficients of the 

vertical deflection and rotation of the rail, respectively. Further, ,l r denote either left or right side 

of the rail beam. K is the total number of modes considered into the simulation and x represents 

the linear coordinate along the length of the rail beam. ( , )zN k x  and ( , )N k xψ  
can be assumed 

as:  

( , ) ( , ) sinz
k xN k x N k x

Lψ
π = =  

 
 

(3.56)  

where, L is the length of the beam considered into the simulation. 
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By substituting Eqns. (3.54) and (3.55) together with Eqn (3.56) into Eqns. (3.35) and (3.36) for 

left side rail beam, we get: 

2 22

2
1

4

1 1

( , ) ( ) ( ) ( )

( , ) ( , )

rl r r
k k k

N
RSli z i WRlj z j

i j

d Z x t Gk Gkk k kZ t t Z t
L L A Ldt

F N k x P N k

k

x

π π π
ρ ρ ρ

= =

     + − Ψ + =     
     

− +∑ ∑
 

(3.57)  

22

2
( ) ( ) ( ) 0k r r

k k
d t GAk GAkE k kt Z t

I L I Ldt
π π

ρ ρ ρ

 Ψ     + + Ψ − =        
 

(3.58)  

The reaction force between the left rail and the i -th sleeper RSliF is expressed as: 

[ ]( ) ( , ) ( ) ( , ) ( )RSli pri rl i sli pri rl i sliF t K Z x t Z t C Z x t Z t = − − − 
   (3.59)  

where, ( )sliZ t and ( )sliZ t are the vertical displacement and velocity of the i th sleeper at left end 

pad location as given by: 

( ) ( ) ( )sli si s siZ t Z t L tφ= − and ( ) ( ) ( )sli si s siZ t Z t L tφ= −    (3.60)  

where, sL  is the lateral distance between two sleeper supports. 

In Eqn. (3.57), the contact force WRljP between the j th wheel of the left side of the vehicle and 

rail is determined by non linear Hertz contact theory as given by: 

3/2{ ( ) ( , ) ( )}
( )

0
H wlj rl j

WRlj
C Z t Z x t r t

P t
 − − =  
        

( ) ( , ) ( ) 0

( ) ( , ) ( ) 0
wlj rl j

wlj rl j

Z t Z x t r t

Z t Z x t r t

− − >

− − ≤
 

(3.61)  

where, ( )wljZ t is the vertical displacement of the left wheel for a particular wheelset ( 1,.., 4j = ) 

and expressed as: 

( ) ( ) ( )wlj wj p wjZ t Z t l tφ= −  (3.62)  

Similarly, for right side rail beam: 
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2 22

2
1

4

1 1

( , ) ( ) ( ) ( )

( , ) ( , )

rr r r
k k k

N
RSri z i WRrj z j

i j

d Z x t Gk Gkk k kZ t t Z t
L L A Ldt

F N k x P N k

k

x

π π π
ρ ρ ρ

= =

     + − Ψ + =     
     

− +∑ ∑
 

(3.63)  

22

2
( ) ( ) ( ) 0k r r

k k
d t GAk GAkE k kt Z t

I L I Ldt
π π

ρ ρ ρ

 Ψ     + + Ψ − =        
 

(3.64)  

The reaction force between the right rail and the i th sleeper RSriF is expressed as: 

[ ]( ) ( , ) ( ) ( , ) ( )RSri pri rr i sri pri rr i sriF t K Z x t Z t C Z x t Z t = − − − 
   (3.65)  

where, ( )sriZ t and ( )sriZ t are the vertical displacement and velocity of the i ’th sleeper at the 

right end pad location, and can be expressed as: 

( ) ( ) ( )sri si s siZ t Z t L tφ= + and ( ) ( ) ( )sri si s siZ t Z t L tφ= +    (3.66)  

The contact force WRrjP between the j th wheel and rail is determined by non-linear Hertz 

contact theory as given by: 

3/2
0{ ( ) ( , ) ( )}

( )
0

H wrj rr j
WRrj

C Z t Z x t Z t
P t

 − − =  
  

( ) ( , ) ( ) 0

( ) ( , ) ( ) 0
wrj rr j

wrj rr j

Z t Z x t r t

Z t Z x t r t

− − >

− − ≤
 

(3.67)  

where, ( )wrjZ t is the vertical displacement of the right wheel for a particular wheelset 

( 1,.., 4j = ) and expressed as: 

( ) ( ) ( )wrj wj p wjZ t Z t l tφ= +  (3.68)  

 The equations of motion of the vehicle system described by Eqns. (3.1) to (3.34), and of the 

track system derived by Eqns. (3.35) to (3.46) together with the Hertzian nonlinear contact 

model in Eqn. (3.49) describe the vertical dynamics of the coupled vehicle-track system. These 



107 

 

equations are solved simultaneously to obtain the wheel-rail interaction force or acceleration and 

the responses of the vehicle-track system components.    

3.6 NATURAL VIBRATION ANALYSIS OF THE VEHICLE-TRACK SYSTEM 

The natural vibration characteristics of the individual vehicle and track systems govern the 

overall wheel-rail interaction responses. Natural frequencies provide useful information to 

understand the basic behaviors of the vehicle-track system. In this section, the natural 

frequencies of the individual vehicle components, such as car body, bogies and wheelsets are 

investigated. The natural frequencies of the entire track system is also identified in order to 

compare these frequencies with those obtained from the individual vehicle components and the 

excitation frequencies obtained from the wheel-rail impact response analysis due to wheel flats. 

3.6.1 Natural vibration of the vehicle components: 

   The dynamic behavior of the vehicle system components and structures largely depend 

upon the natural frequencies and deflection modes of the individual components. In this study, 

the vehicle system model consists of a car body, two bogies and four wheelsets. The car body 

and two bogies have vertical, pitch and roll motions, whereas the four wheelsets have vertical 

and roll motions only. The total vehicle system model is represented by 17-DOF system. This 

system, thus, has a number of different natural frequencies and these frequencies can be 

separated. An eigenvalue problem is formulated to derive the natural frequencies and deflection 

modes of the vehicle, which is discussed below: 

The equation of free vibration of linear vehicle can be written in matrix form as: 

[ ] [ ] [ ] [ ]0v v vz C z K zM + + =   (3.69)  

where, vM , vC and vK are (17×17) mass, damping and stiffness matrices, respectively. These 

matrices are shown below: 
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1
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1

2

1

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

c

cy

cx
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, , , ,1 2 1 2 1 2 1 2 3 4 1 2 3 4[ ] [ , , , , , , , , , , , , ]T
c c c b b b b b b w w w w w w w wz Z Z Z Z Z Z Zθ φ θ θ φ φ φ φ φ φ=  

1 1

0
v v v vz zM C M K

z zI

− − − −   
=    

    

 



 
(3.70)  

where, I is an identity matrix, HK is linearized Hertzian contact stiffness that can be obtained 

from Eqn. (3.47). If we consider the overlap between the wheel and rail ( z∆ ) in Eqn. (3.47) is 

constant and can be evaluated by the static wheel load 0P . The linear contact stiffness can be 

expressed as: 

H
P

z
K ∂

∂∆
=  

(3.71)  

or, 0

1
31.5 ( / )H H HK C P C=  

(3.72)  

where, HC is the nonlinear Hertzian contact coefficient.  

The eigenvalue solution of the dynamic matrix of Eqn. (3.70) will generally yield 17 pairs of 

complex conjugate eigenvalues of form: 

i i iD jα β= +  (3.73)  

Natural frequency of ith mode is given by: 

2 2
ni i iω α β= +  (3.74)  

The damped natural frequency of ith mode is: 

 (3.75)  

In order to identify the mode associated with the i'th natural frequency, the eigenvector for the 

i'th eigenvalue may be examined. The maximum absolute value in a column of the eigenvector 

will identify the corresponding eigenvalue and the corresponding 17 motions associated with the 

di iω β=
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natural modes. The eigenvalues and eigenvectors are obtained by using MATLAB. The 

eigenvalue problem is solved using the model parameters summarized in Table 3.1.  

Table 3.1: Vehicle model parameters [8]. 

Notation Parameter Value 

cM  Car body mass  76150 kg 

tM  Bogie mass 1700 kg 

wM  Wheelset mass 1120 kg 

cxJ  Mass moment of inertia of the car body about X axis  95576 kg-m2 

cyJ  Mass moment of inertia of the car body about Y axis 726462  kg-m2 

bxJ  Mass moment of inertia of the bogie about X axis 1600 kg-m2 

byJ  Mass moment of inertia of the bogie about Y axis 760 kg-m2 

wxJ  Mass moment of inertia of the wheelset about X axis 420.1 kg-m2 

PK  Primary suspension stiffness 7.88×105 kN/m 

PC  Primary suspension damping 3.5 kN-s/m 

SK  Secondary suspension stiffness 5.32×103 kN/m 

SC  Secondary suspension damping 70 kN-s/m 

cl  Semi-longitudinal distance between bogies 5.18 m 

bl  Semi-longitudinal distance between wheelsets in bogie  1.25 m 

sl  Semi-lateral distance between  secondary suspensions 0.80 m 

pl  Semi-lateral distance between  primary suspensions 0.80 m 

R  Wheel radius 0.475 m 
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The natural frequencies, damped natural frequencies and their corresponding deflection 

modes for fully loaded conditions (103 kN of static wheel load) are shown in Table 3.2. It can be 

seen from Table 3.2 that the natural frequencies of the car body are very small compared to the 

wheelset natural frequencies. This is because of the very high primary stiffness considered in 

modeling to ensure the isolation of the vibration from the exciting source. Furthermore, this also 

indicates that the properties of the wheel-track system have little effect on fundamental 

frequency of the vehicle system.     

Table 3. 2: Natural frequencies, damped natural frequencies and corresponding deflection modes 

Natural frequency (Hz) Damped natural frequency (Hz) Dominant modes 

2.0308 2.0301 Car body roll 

2.7544 2.7528 Car body bounce 

4.7818 4.7818 Car body pitch 

137.4785 137.3983 Front bogie roll 

137.5231 137.3984 Rear bogie roll 

156.1791 155.7443 Front bogie bounce 

156.0906 155.7442 Rear bogie bounce 

312.0656 312.0656 Axle bounce (j = 1, 2) 

346.8085 345.8302 Axle bounce (j = 3, 4) 

405.1506 405.1506 Front bogie pitch 

405.1506 405.1506 Rear bogie pitch 

407.6833 407.6833 Axle roll (j = 1, 2) 

423.5512 423.1655 Axle roll (j = 3, 4) 
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3.6.2 Natural vibration of the track structure 

The natural frequencies and different associated modes of the vibrating systems have 

significant importance in railway engineering. The natural frequency of the railroad track has 

been investigated in different studies for many years [9, 180, 181, 182]. Most of these reported 

studies considered the railway track model as continuous Euler-Bernoulli or Timoshenko beam 

resting on elastic layers to find out the natural frequencies of the track. These layers are modeled 

as either one-parameter Winkler or two-parameter Pasternak foundation model. Cai [9] reported 

a three-dimensional railway track model with discrete elastic supports representing the railpads 

and ballasts. The entire track model was simplified to a generalized track element in order to 

investigate the natural frequencies of the track. In this section, the natural frequencies of the 

railway track model developed in section 3.3 will be identified. In order to facilitate the analysis, 

the complex three-dimensional track model is simplified into a two-dimensional generalized 

track model with linear railpad and ballast stiffness.   

Equations of motion of Timoshenko beam under general condition: 

Let us consider a free-body diagram of a differential element dx of an arbitrary beam. As 

shown in Fig. 3.4, the beam is acted upon by general distributed force ( , )p x t , and a constant 

axial force aP . U and UU dx
x

∂
+
∂

 are the sectional shear forces, M and MM dx
x

∂
+
∂

 are the 

sectional bending moments, F is the inertial force and R is the rotary inertial moment. Since the 

beam is considered as Timoshenko beam, the effects of the shear distortion and rotary inertia of 

the beam mass has been taken into account. The rotational angle and shear distortion are denoted 

by ψ and η , respectively.  
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Fig. 3. 4: Flexural vibration of Timoshenko beam 

The vibrational equilibrium of the differential element can be established by summing up the 

forces and moments equal to zero, as: 

Summing all the forces in vertical direction: 

( , ) ( ) 0UU p x t dx U dx F
x

∂
− + + + − =

∂
 

(3.76)  

which can be shown upon reduction as: 

η

 

η

 

Z
x

∂
∂

 ψ
 

Z (x,t) 

X 

dx
 

U
 

UU dx
x

∂
+
∂

 

R

 
F
 

aP  

M

 

MM dx
x

∂
+
∂

 

( , )p x t
 

aP  O

 



116 

 

( , )U F p x t
x

∂
− + =
∂

 
(3.77)  

Summing all the moments about point O gives: 

( ) ( , ) 0
2 a

M dxM Udx M dx p x t dx R P dx
x

ψ∂
+ − + − + + =

∂
 

(3.78)  

Neglecting the higher order terms in dx yields: 

( ) 0a
MM Udx M dx R P dx
x

ψ∂
+ − + + + =

∂
 

(3.79)  

where the rotary inertia R is given by: 

2
2

2R mr dx
t
ψ∂

=
∂

 
(3.80)  

where, m is the unit mass of the beam, and r  is the radius of gyration of the beam cross-section. 

Rearranging Equation 3.78 leads to: 

2
2

2a
MU P mr
xt

ψψ ∂ ∂
= − + +

∂∂
 

(3.81)  

The relationships between the shear force and shear distortion, and between the moment and the 

curvature can be expressed as: 

( , )rU k AG x tη= −  (3.82)  

( , )x tM EI
x

ψ∂
= −

∂  
(3.83)  

where, rk and A  are the shear coefficient and area of the beam cross section, respectively, and 

G  is the shear modulus of the beam material. 

Substituting Equations (3.82) and (3.83) into Equations (3.77) and (3.81), the following relations 

can be obtained: 



117 

 

2

2( ) ( , )r
zk AG m p x t

x t
η∂ ∂

+ =
∂ ∂

 
(3.84)  

2
2

2r ak AG P mr EI
x xt

ψ ψη ψ ∂ ∂ ∂ − = − + −  ∂ ∂ ∂  

(3.85)  

the shear distortion η  can be replaced as: 

z
x

ψ η ∂
= +

∂
 

(3.86)  

The final form of Timoshenko beam can be written in terms of vertical deflection and rotation 

angle as: 

2

2( ) ( , )r
z zk AG m p x t

x x t
ψ∂ ∂ ∂ − + = ∂ ∂  ∂

 
(3.87)  

2
2

2( ) 0r a
zEI k AG mr P

x x x t
ψ ψψ ψ∂ ∂ ∂ ∂  − − − + = ∂ ∂ ∂  ∂  

(3.88)  

 For free vibration case, setting ( , )p x t =0 and with added foundation stiffness term ( , )sk z x t , 

Equation (3.87) and (3.88) can be written as: 

2

2( ) ( , ) 0r s
z zk AG k z x t m

x x t
ψ∂ ∂ ∂ − + + = ∂ ∂  ∂

 
(3.89)  

2
2

2( ) 0r a
zEI k AG mr P

x x x t
ψ ψψ ψ∂ ∂ ∂ ∂  − − − + = ∂ ∂ ∂  ∂  

(3.90)  

 

Dynamic stiffness matrix of a Timoshenko beam: 

For a steady-state harmonic motion, displacement z  and rotation ψ  may be expressed by: 
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( , ) ( )

( , ) ( )

i t

i t

z x t Z x e

x t x e

ω

ωψ

=

= Ψ
 

(3.91)  

where, ω  represents the frequency, and Z and Ψ  represent the amplitude functions. 

Therefore, Equations (3.89) and (3.90) can be rewritten as: 

" '
1 0Z q Z+ −Ψ =  (3.92)  

'' 2 2 '( ) 0r a rEI mr k AG P k AGZωΨ + − + Ψ + =  
(3.93)  

where, 2
1

1 ( )s
r

q m k
k AG

ω= −   

Eliminating Z and Ψ  from Equations (3.92) and (3.93) yields the following results: 

"'' '' 0Z Zα β+ + =  (3.94)  

'''' '' 0α βΨ + Ψ + =  
(3.95)  

where, 2 2
1

1 ( );aq mr P
EI

α ω= + +
  

2 21 ( )r a
q mr k AG P
EI

β ω= − +  
(3.96)  

Equations (3.94) and (3.95) represent the same form of 4th order ordinary differential equations 

for the complex variables ( )Z x and ( )xΨ . 

The solutions of the amplitude functions ( )Z x and ( )xΨ  can be assumed in the form:  

4

1
( ) j x

j
j

Z x C eλ

=
= ∑  

(3.97)  

4

1
( ) j x

j
j

x D eλ

=
Ψ = ∑

 

(3.98)  

where, jC and jD represent integration coefficients, and jλ represents solution of the 

characteristic equations.  
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Substituting Equations (3.97) and (3.98) into Equations (3.94) and (3.95) gives the solution of 

jλ as: 

( )1/ 2
21 4

2jλ α α β= ± − ± −  
(3.99)  

Substituting Equations (3.97) and (3.98) into Equations (3.92) and (3.93) yields the relationship 

between the complex coefficients jC and jD  as: 

j j jD s C=  (3.100)  

where, 1
21j
j

q
js λ

λ

 
+  

 
=  1, 2, 3, 4j =

 
(3.101)  

The four unknown complex coefficients jC ’s or jD ’s can be determined by four boundary 

conditions at the beam ends.  

The nodal displacement amplitudes at the beam ends can be expressed by the four complex 

coefficients ( 1, 2, 3, 4)jjC =  such that: 

3 31 1

3 31 1

1 1 3 3

1 1 3 3

1 1 1 1(0)
(0)
( )
( )

l ll l

l ll l

Z
s s s s

e e e eZ l
l s e s e s e s e

λ λλ λ

λ λλ λ

−

−

      − −Ψ    =   − −   
   Ψ  − − 

 

(3.102)  

or, { } [ ]{ }P C∆ =  (3.103)  

Similarly, the nodal forces at the beam ends can be expressed by the corresponding 

displacements by Equations (3.82) and (3.83) such that: 
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'

'

'

'

[ (0) (0)](0)
(0) (0)

{ }
( ) [ ( ) ( )]

( )
( )

r

r

k AG ZU
M EI

F
U l k AG l Z l

M l
EI l

 Ψ −   
   − − Ψ   = =   − − Ψ −   
     Ψ  

 

(3.104)  

Substituting Equations (3.97) and (3.98) into Equation (3.104) gives: 

{ } [ ]{ }F L C=  (3.105)  

where, the matrix [ ]L  is given as: 

3 31 1

3 31 1

1 1 1 1 3 3 3 3

1 1 1 1 3 3 3 3

1 1 1 1 3 3 3 3

1 1 1 1 3 3 3 3

( ) ( ) ( ) ( )

[ ]
( ) ( ) ( ) ( )

k k k k

l ll l
k k k k

l ll l

s s s s s s s s
fs fs fs fs

L
s e s s e s s e s s e s

fe s fe s fe s fe s

λ λλ λ

λ λλ λ

λ λ λ λ
λ λ λ λ

λ λ λ λ

λ λ λ λ−−

− − − − − − 
 − − − − =  − − − − − − 
  

 

(3.106)  

where, f EI= and k rs k AG= .  

From Equations (3.105) and (3.106), the dynamic stiffness matrix of a beam can be written as: 

{ } [ ]{ }F K= ∆  (3.107)  

where, 1[ ] [ ][ ]K L P −=  (3.108)  

since above discussions involve manipulation of complex numbers depending upon the relative 

values of α  and 2 4α β−  of Equation (3.99), which in turn depend upon the magnitude of 

frequencyω . 

Considering the values of α  and 2 4α β− , following two different cases with respect to the 

value of cω (known as cut-off frequency) are dealt individually. Cut-off frequency can be defined 

as:    
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1/ 2

2
r a

c
k AG P

mr
ω − =  

 
 

(3.109)  

Case 1: if the frequency satisfies the condition cω ω≤ , 

The values of jλ ’s are two imaginaries and two reals, and assumed as:  

1,2 1iλ ρ= ±  and 3,4 2λ ρ= ±  (3.110)  

where, 1ρ and 2ρ are given as follows: 

( )1/ 2
2

1
1 4
2

ρ α α β= + −  
(3.111)  

( )1/ 2
2

2
1 4
2

ρ α α β= − + −  
(3.112)  

The corresponding js values those relate the coefficients jC and jD  are given by:  

1,2 1s iu= ± and 3,4 2s u= ±  (3.113)  

where, 1
1 1 2

1

1 qu ρ
ρ

 
= − 

 
 and 1

2 2 2
2

1 qu ρ
ρ

 
= − 

 
 

(3.114)  

The corresponding amplitude functions ( )Z x and ( )xΨ  given by the Equations (3.97) and (3.98) 

can be reduced to the following form as: 

' ' ' '
1 1 2 1 3 2 4 2( ) cos sin cosh sinhZ x C x C x C x C xρ ρ ρ ρ= + + +  (3.115)  

' ' ' '
1 1 2 1 3 2 4 2( ) sin cos sinh coshx D x D x D x D xρ ρ ρ ρΨ = + + +  (3.116)  

where, '
1C ’s and '

1D ’s are all real, and their relationships can be expressed as: 

' '
1 1 1D u C= − , ' '

2 1 2D u C= , ' '
3 2 3D u C= − , ' '

4 2 4D u C=  (3.117)  

Finally, the general dynamic stiffness matrix for a Timoshenko beam for cω ω≤ is then given as 

follows: 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

[ ]

K K K K
K K K K

K
K K K K
K K K K

 
 
 =
 
 
 

 

(3.118)  

where, 

( )

11 33 1 2 1 1 2 2 1 2

12 21 34 43

1 2 2 1 2 1 2 1 2 1

22 44 1 2 1 1 2 2 1 2

13 31 1 2 1 1 2 2 1 2

23 32 14 41

( )( )

( ) 1 ( )

( )( )

( )( )

k k k k k

k k k k k

k k k k k

k k k

k

K K B u u u u u s C u S c

K K K K

B u u u u c C u u s S

K K B u u u u u S c u s C

K K B u u u u u s u S

K K K K B u

ρ ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ

= = + +

= = − = − =

− − + −  

= = − + −

= = − + +

= = − = − = 1 2 1 1 2 2

24 42 1 1 2 2 1 2

( )( )

( )( )

k k

k k k

u u u c C

K K B u u u S u s

ρ ρ

ρ ρ

+ −

= = + −

 

(3.119)  

where, 1sin( )ks lρ= , 1cos( )kc lρ= , 2sinh( )kS lρ= , 2cosh( )kC lρ= , and 

( )2 2
2 1 1 22 ( 1)k

k k k k

EIB
u u s S u u c C

=
− + −

 

Case 2: if the frequency satisfies the condition cω ω> , 

The values of jλ ’s and js ’s are all imaginaries, and assumed as:  

1,2 1iλ ρ= ±  and 3,4 2iλ ρ= ±  (3.120)  

1,2 1s iu= ± and 3,4 2s iu= ±   (3.121)  

where, 1ρ and 2ρ are given as follows: 



123 

 

( )1/ 2
2

1
1 4
2

ρ α α β= + −  
(3.122)  

( )1/2
2

2
1 4
2

ρ α α β= − −  
(3.123)  

and, 1
1 1 2

1

1 qu ρ
ρ

 
= − 

 
 and 1

2 2 2
2

1 qu ρ
ρ

 
= − 

 
 

(3.124)  

The corresponding amplitude functions ( )Z x and ( )xΨ  given by the Equations (3.97) and (3.98) 

can be reduced to the following form as: 

' ' ' '
1 1 2 1 3 2 4 2( ) cos sin cos sinZ x C x C x C x C xρ ρ ρ ρ= + + +  (3.125)  

' ' ' '
1 1 2 1 3 2 4 2( ) sin cos sin cosx D x D x D x D xρ ρ ρ ρΨ = + + +  (3.126)  

where, ' '
1 1 1D u C= − , ' '

2 1 2D u C= , ' '
3 2 3D u C= − , ' '

4 2 4D u C=  (3.127)  

The general dynamic stiffness matrix for a Timoshenko beam for cω ω> is then exactly same as 

Equation (3.118) with different values of elements, such as: 

( )

11 33 1 2 1 1 2 2 1 2

12 21 34 43

1 2 2 1 2 1 2 1 2 1

22 44 1 2 1 1 2 2 1 2

13 31 1 2 1 1 2 2 1 2

23 32 14 41

( )( )

( ) 1 ( )

( )( )

( )( )

k k k k k

k k k k k

k k k k k

k k k

k

K K B u u u u u s C u S c

K K K K

B u u u u c C u u s S

K K B u u u u u S c u s C

K K B u u u u u s u S

K K K K B

ρ ρ

ρ ρ ρ ρ

ρ ρ

ρ ρ

= = − − +

= = − = − =

− + − − +  

= = − −

= = − −

= = − = − = − 1 2 1 1 2 2
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where, 1sin( )ks lρ= , 1cos( )kc lρ= , 2sin( )kS lρ= , 2cos( )kC lρ= ,and 

( )2 2
2 1 1 22 ( 1)k

k k k k

EIB
u u s S u u c C

=
+ + −

 

Natural frequencies of the railway track: 

The railway track model developed in section 3.3, as shown in Fig 3.2, has periodic, chain 

type structure composed of two parallel rails and equally spaced sleepers. In order to obtain the 

fundamental vibration characteristics of the railway track model, a generalized track element 

model is developed, as described in [9]. The simplified model is shown in Fig. 3.5. The entire 

three-dimensional track model is simplified to an assembly which consists of one rail span, two 

adjacent sleepers and the contact stiffness between the rail and sleepers, as shown in Fig. 3.5 (a). 

The rail beam is continuous and modeled by Timoshenko theory, whereas the sleepers are 

considered as rigid masses. The stiffness and damping properties of the individual railpad and 

ballast, rail sleeper mass are further represented by equivalent linear spring stiffness at each end 

of the rail span, as shown in Fig. 3.5 (b). This equivalent spring stiffness depends upon the 

inertial and elastic properties of the rail components as well as the vibration frequency of the 

track, which can be expressed as [9]:  

21 p
e p

p s t

K
K K

K K M ω
 

= −  + − 
 

(3.129)  

where, eK  represents the equivalent frequency-dependent spring stiffness, pK  represents the 

linear stiffness of the rail pad, tM is the total tie mass with respect to one rail, ω  is the 

vibrational frequency of the entire track system and sK is the total foundation stiffness that can 

be expressed as: 
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K K
K

K K
=

+
 

(3.130)  

where, bK is the linear stiffness of the rail ballast.  

  

(a) 

 

(b) 

Fig. 3. 5: Formulation of the track element for eigenvalue analysis (a) generalized track element 

(b) simplified track element. 

This equivalent spring stiffness significantly simplifies the analysis while preserving the 

characteristics of the underlying rail supports. However, the damping properties of the railpad 

and ballast are ignored in natural frequency analysis. The dynamic stiffness matrix of the rail 
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span as described in Eqn. (3.118) can be combined with the equivalent spring stiffness as 

described in Eqn. (3.129) in order to formulate the generalized dynamic stiffness matrix of the 

track element as: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

[ ]

e

r
e

K K K K K
K K K K

K
K K K K K
K K K K

 +
 
 =
 +
 
 

 

(3.131)  

where, ijK ’s are the elements of the dynamic stiffness matrix as described by Eqns. (3.119) and 

(3.128). The relationship between the modal forces and corresponding displacements, as shown 

in Fig. 3.5, can be expressed as: 

{ } { }[ ( )]r r rF K ω δ=  (3.132)  

where,  

{ } 1 1[ , , , ]T
r i i i iF F M F M+ +=  (3.133)  

and, { } 1 1[ , , , ]T
r ri rri ri rriZ Zδ ψ ψ+ +=  (3.134)  

where, i  refers to the thi rail/sleeper connection point, ,F M denote the modal force and moment, 

respectively; ,r rrZ ψ denote the modal deflection and rotation angle of the rail, respectively.  

The natural frequencies of the entire track are determined by formulating the overall dynamic 

stiffness matrix of the track. The resulting set of simultaneous equations can be written as: 

{ }[ ( )] 0R RK ω ∆ =  (3.135)  

where, [ ( )]RK ω represents the global dynamic stiffness matrix, and 

{ } [ ]1 1 2 2, , , ,........, , T
R r rr r rr rN rrNZ Z Zψ ψ ψ∆ = represents the displacements of the rail. Here, N is the 

total number of sleepers included into the track model. The determinant of the overall dynamic 
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stiffness matrix needs to be set to zero in order to obtain non-trivial solutions of { }R∆ in Eqn. 

(3.135), such as: 

( ) 0RK ω =  (3.136)  

which forms the characteristic frequency function of the track system.  

The undamped natural frequencies of the track system are obtained from Eqn. 3.136, while 

the parameters used to solve the equation are summarized in Table 3.3.  

Table 3. 3: Track model parameters [8, 17]. 

  

 

 

Notation Parameter Value 

rm  Rail mass per unit length 60.64 kg/m 

E  Elastic modulus of the rail 207×109 N/m2 

 I Rail second moment of area 2.94×10-5  m4 

A Rail cross sectional area 7.77×10-3  m2 

G  Shear modulus of the rail 8.1×109 N/m2 

rk  Timoshenko shear coefficient of the rail 0.34 

sM  Sleeper mass 250 kg 

pK  Railpad stiffness (linear) 140 MN/m 

pC  Railpad damping (linear) 45 kN-s/m 

bK  Ballast stiffness (linear) 40 MN/m 

bC   Ballast damping (linear) 50 kN-s/m 

L  Length of the rail beam 60 m 
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Figure 3.6 shows the first 10 natural frequencies of the railway track numerically, 161.54 Hz, 

165.68 Hz, 175.86 Hz, 179.84 Hz, 187.80 Hz, 193.53 Hz, 201.49 Hz, 206.10 Hz, 213.26 Hz and 

218.52 Hz. Cai [9] published natural frequencies of railway track model for 1st and 10th modes as 

158.3 Hz and 176.0 Hz, respectively. The track model developed by Cai for natural frequency 

study was similar to the model presented in this study. The track model was a two-layer three 

dimensional Timoshenko beam model with linear railpad and ballast properties. However, the 

parameters used for track model were different from the present model.   
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Fig. 3. 6: First 10 natural frequencies of the railway track 
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3.7  SUMMARY 

This chapter presents modeling of a comprehensive three-dimensional railway vehicle-track 

in presence of wheel flat. The vehicle system model consists of a full car body, two bogies and 

four wheelsets, whereas the railway track model consists of  two parallel Timoshenko beams 

periodically supported by lumped masses representing the sleepers. The equations of motion for 

the lumped mass vehicle model and Timoshenko beam theory based continuous track model 

have been formulated. Both the linear and nonlinear properties of the railpads and ballasts are 

considered in the model in terms of nonlinear stiffness and damping elements. 

 In order to ensure the interactions between the railpads, a shear parameter beneath the rail 

beams has also been considered into the model. A nonlinear Hertzian contact model is 

considered for deriving the dynamic wheel-rail contact force. Wheel flats have been modeled for 

both single and multiple flats. The solution method for the three dimensional vehicle and track 

system has been presented. The PDEs representing the motion of the continuous rail beam is 

converted to a set of ODEs by using generalized coordinate method.   

The natural frequencies of the individual components of the railway vehicle and entire track 

system have been obtained through eigenvalue analysis. In order to identify the natural 

frequencies of the track, the three-dimensional railway track model has been simplified to a 

generalized track element with equivalent stiffness representing the railpad and ballast stiffness 

and sleeper mass. The nonlinear Hertzian contact stiffness has been converted in linear contact 

stiffness in order to facilitate the eigenvalue analysis of the vehicle. Linear parameters of the 

railpad and ballast stiffness have also been considered for eigenvalue analysis of the track model. 

Damping properties of the railpads and ballasts are ignored in eigenvalue analysis of the track 

model. The study shows that natural frequencies of the car body are far less than the natural 
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frequencies of the wheelsets, which in turn shows that the influence of primary suspension is 

negligible due to relatively large wheelset stiffness. The fundamental natural frequency of the 

track is found as 161.54 Hz, which is slightly higher than the reported study with different 

parameters.   
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CHAPTER 4 

MODEL VALIDATION AND DYNAMIC RESPONSE OF VEHICLE-TRACK 

SYSTEM DUE TO WHEEL FLAT  

4.1 INTRODUCTION 

The primary objective in developing the three-dimensional railway vehicle-track model is to 

examine the wheel-rail impact force and acceleration response of the wheel in the presence of 

single and multiple wheel defects such as wheel flats. In order to examine the effect of relative 

position of the wheel flats within the wheelsets or bogie on pitch and roll motion of the vehicle 

necessitates a three-dimensional coupled railway vehicle-track model. Furthermore, in order to 

find out the effect of presence of nonlinearity in the track model requires a nonlinear railpad and 

ballast model. However, such a complex railway vehicle-track model together with the nonlinear 

wheel-rail contact model must be first examined using the test data and analytical results that 

deal with impact response due to wheel flats available in literature. Due to the lack of available 

data for wide range of operating conditions and vehicle-track system design parameters in 

addition to wheel defects, only a limited validation is possible for a study of this scope. Thus, the 

present model parameters are assembled from different sources in order to represent the vehicle-

track system presented for the purpose of examining the model validity.  

 This chapter is devoted to the validation of the developed vehicle-track model where 

simulations are carried out in order to examine quantitative and qualitative responses of the 

wheel-rail impact responses.  The wheel-rail contact model together with the coupled vehicle-

track model developed in chapter 3 is applied to obtain the vehicle-track interaction responses in 

terms of impact forces and accelerations. Since the wheel-rail contact, the railpad and ballast 

properties are nonlinear the proposed model is validated in time domain. The validated model is 
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utilized to investigate the responses in terms of impact forces or accelerations in the presence of 

either single or multiple wheel flats. The purpose of this chapter is to carry out a thorough 

investigation of wheel-rail impact load and acceleration responses in the presence of a single 

wheel flat. The analyses are performed with different position of the wheel flats such as in front 

or rear wheelsets within a front or rear bogie. The response characteristics are also obtained with 

different flat sizes and vehicle speeds. 

4.2 VALIDATION OF THE DEVELOPED MODEL 

In an attempt to validate the present model in the presence of a wheel flat, the equations of 

motion of vehicle and track system described in Eqns. (3.1) to (3.46) are combined with wheel-

rail interface and wheel defect models presented in Eqns. (3.49) and (3.50), respectively. The 

developed model has been validated using the experimental data reported by Newton and Clark 

[4], and the analytical data presented by Sun and Dhanasekar [17]. The study reported by Sun 

and Dhanasekar [17] has presented and compared both the analytical and experimental data. In 

this reported study, a 10-DOF pitch-plane model of the full car was considered with a four-layer 

track model. The rail was modeled as a Timoshenko beam. The parameters employed in the 

simulation are obtained from reported studies [4, 17] and listed in Table 4.1. The nonlinear 

parameters of the railway track model such as railpad and ballast stiffness and damping are 

obtained from Eqns. (3.40), (3.41) and Eqns. (3.43) , (3.44), respectively. The listed parameters 

resulted in the total track length of 59.4 m and a total of 617 coupled ordinary differential 

equations for the vehicle and track system model. A MATLAB predefined function “ode 45” has 

been applied to solve the coupled partial and ordinary differential equations.  
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Table 4. 1: Parameters used for model validation [4, 17] 
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The dynamic response of the entire vehicle-track system is evaluated under a constant speed 

of 117 km/h and static wheel load of 82 kN in the presence of a 150 mm long and 2.15 mm deep 

flat on the left side wheel of the leading wheelset of the front bogie, as reported by Sun and 

Dhanasekar [17]. The comparisons between the responses obtained by the developed model with 

that of the reported study are shown in Fig. 4.1. In order to have in-depth investigation of the 

developed model, validation has been carried out in four steps, namely (a) with linear railpad and 

ballast; (b) with linear railpad and nonlinear ballast; (c) with nonlinear railpad and linear ballast; 

and (d) with nonlinear railpad and ballast. However, the wheel-rail contact is always nonlinear 

for all the simulations carried out in this study. The variation in the dynamic contact force 

obtained at the interface of the defective wheel and rail is evaluated when the effect of the end 

conditions diminishes. The simulations under selected excitations are performed with a time step 

of 4.615e-5 s, which is significantly smaller than the time required for the selected flat size to 

overcome the contact with rail in order to obtain accurate prediction of the contact force.   

Figure 4.1 shows that the contact force response predicted by the current model with 

nonlinear railpad and ballast properties agrees reasonably well with the experimental data 

reported by Newton and Clark [4]. The ratio of the dynamic wheel-rail contact force to the static 

wheel load can be defined as peak impact force factor.  The value of peak impact force factor 

and period of vibration due to excitation predicted by the current model and experimental data 

are in very good agreement. The dominant period of oscillation of the contact force is 

approximately 4.1 ms for both experimental data and current model. The peak contact force 

factor predicted by the current model with nonlinear railpad and ballast is about 3.9, whereas for 

linear railpad and ballast it is about 4.5. In the case of nonlinear railpad and linear ballast the 

peak contact force factor is about 4.12, whereas for linear railpad and nonlinear ballast it is about 
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4.18. It can be seen from Fig. 4.1 that as the model moves from nonlinear to linear railpad and 

ballast properties (Figs. 4.1 (a) to 4.1 (d)), the peak impact force factor increases slowly. It can be 

seen from Fig. 4.1 that the impact force reaches a peak value of about 4.8 after followed by a loss 

of contact between the wheel and rail. This loss of contact occurs in the time histories of the 

impact force for about 2.7 ms as the wheel comes in contact with the rail. This loss of contact 

time period predicted by the current model is almost same as the analytical study reported in 

[17]. The figure further suggests that for a static load of 82 kN and a vehicle speed of 117 km/h, 

the peak impact force could increase by 56.86% due to the consideration of the linear properties 

of the railpad and ballast into the track model for the selected wheel flat parameter. This could be 

attributed to the lower deflection of the relatively stiffer rail beam in the case of linear railpad.  

 
(a) 
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(b) 

 

 
(c) 
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(d) 

 

Fig. 4. 1: Comparison of the wheel-rail impact force factor predicted by the current model with 

experimental data [4] and analytical study [17]; (a) both railpad and ballast are linear; (b) linear 

railpad and nonlinear ballast; (c) nonlinear railpad and linear ballast; and (d) both railpad and 

ballast are nonlinear.  

The effect of speed on peak wheel-rail impact force for both linear and nonlinear railpad and 

ballast stiffness and damping properties are shown in Figs. 4.2 (a) to 4.2 (d). The results are 

shown for three different sizes of flats ranging from small to relatively large flat. For all these 

simulations, a single flat is assigned to the left wheel of the front wheelset of the front bogie with 

same size as considered for validation. It can be seen from Figs. 4.2 (a) to 4.2 (d) that speed has 

significant influence on peak wheel-rail impact force in the presence of wheel flat for both linear 

and nonlinear railpad and ballast. 
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Figures 4.2 (a) to 4.2 (c) further show that the results of peak wheel-rail impact forces have a 

small peak in low speed range (30-50 km/h) and rise gradually with increase in speed. However, 

the rate of increase in peak impact load is lower in low speed range (up to 60 km/h) and higher at 

high speed range. When the speed reaches over 80 km/h, the rate of increase of impact force is 

very significant, which is due to the separation of the wheel, rail, and tie during the impact 

process. The figure further shows that linear railpad and ballast model predicts higher wheel-rail 

impact force than the nonlinear railpad and ballast model for the selected speed range and flat 

sizes. These differences in peak impact forces are, however, more at high speeds and large size 

flat and less at low speeds and small size flat. The comparison between the experimental data 

reported by Johansson and Nielson [2] and the current model with linear and nonlinear railpad 

and ballast properties is shown in Fig. 4.2 (b). It can be seen that the current model with linear 

and nonlinear railpad and ballast underestimate the peak wheel-rail impact force at low speed 

range (up to 60 km/h) and overestimate at high speed range. These discrepancies in the peak 

impact forces can be attributed to the inclusion of nonlinear single point Hertzian contact spring 

into the wheel-rail contact model.  
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(d) 

 

Fig. 4. 2: Effect of speed on peak wheel-rail impact force with linear and nonlinear railpad and 

ballast; (a) small flat (Df=.05 mm, Lf=20 mm); (b) medium flat (Df=.9 mm, Lf=100 mm); (c) 

large flat (Df=1.5 mm, Lf=150 mm); and (d) very large flat (Df=2.15 mm, Lf=150 mm) 
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4.3 IMPACT RESPONSE DUE TO A SINGLE WHEEL FLAT 

Wheel flat is the most common type of wheel defects encountered by the railway industry.  

This defect causes significant wheel-rail impact loads, which can be as high as 2-3 times the 

static wheel load. The peak dynamic impact loads produced by the wheel flats can be further 

intensified by the flat sizes and speeds of the vehicle. The high magnitude impact loads create 

high magnitude impact acceleration at both the defective and flat free wheels, which may cause 

final fracture in vehicle and track components level such as bearings, axles and rails. Although 

the impact accelerations produced at the flat free surface due to the adjacent wheel flat is small in 

magnitude, they may contribute to the fatigue damage of the track and increase the maintenance 

cost.  

In this section, studies on impact acceleration response are carried out due to a single wheel 

flat of 50 mm long and 0.35 mm deep. This size of the wheel flat is within the limit of the wheel 

removal criteria set by AAR, Transport Canada and UK Rail safety and standard board [1, 139, 

145]. The flat is only introduced to the left wheel of the first wheelset of the front bogie, while 

all other wheels within the front and rear bogies of the car body are assumed to have perfect 

profiles.  The variations in radius of a wheel with a 50 mm long and 0.35 mm deep flat is shown 

in Fig. 4.3 as a function of wheel angular position. The analytical method presented in chapter 3 

is utilized here to generate time domain solutions. The vehicle and track parameters used for 

simulations are presented in Tables 4.2 and 4.3, respectively. The simulations have been carried 

out for a constant vehicle speed of 100 km/h and static wheel load of 103 kN. 
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Fig. 4. 3: Variations in radius of a wheel with single flat ( fL = 50 mm and fD = 0.35 mm) as a 

function of angular position of the contact. 

 Figure 4.4 shows the variations in the vertical displacement responses of the left wheel with 

haversine flat and flat-free right wheel within first wheelset, while the vehicle is moving with a 

constant velocity of 100 km/h. Figure 4.4 illustrates the displacement responses over two 

consecutive cycles, while the static load per wheel is 103 kN. It can be seen from Fig. 4.4 (a) that 

the left wheel with flat moves downwards due to its flat geometry as the flat approaches the 

contact region. This is followed by a relaxation of the wheel prior to further compressions. The 

maximum downward displacement of the left wheel with flat is 1.24 mm, while the steady 

deflection of the wheel is 1.15 mm.   
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Table 4. 2: Vehicle parameters for analysis of system response [4, 17] 

Notation Parameter Value 

cM  Car body mass  76150 kg 

tM  Bogie mass 1700 kg 

wM  Wheelset mass 1120 kg 

cxJ  Mass moment of inertia of the car body about X axis  95576 kg-m2 

cyJ  Mass moment of inertia of the car body about Y axis 726462  kg-m2 

bxJ  Mass moment of inertia of the bogie about X axis 1600 kg-m2 

byJ  Mass moment of inertia of the bogie about Y axis 760 kg-m2 

wxJ  Mass moment of inertia of the wheelset about X axis 420.1 kg-m2 

PK  Primary suspension stiffness 7.88×105 kN/m 

PC  Primary suspension damping 3.5 kN-s/m 

SK  Secondary suspension stiffness 5.32×103 kN/m 

SC  Secondary suspension damping 70 kN-s/m 

cl  Semi-longitudinal distance between bogies 5.18 m 

bl  Semi-longitudinal distance between wheelsets in bogie  1.25 m 

sl  Semi-lateral distance between  secondary suspensions 0.80 m 

pl  Semi-lateral distance between  primary suspensions 0.80 m 

R  Wheel radius 0.475 m 

HC  Nonlinear Hertzian spring constant 87×109 N/m3/2 

fL  Flat length 50 mm 

fD  Flat depth 0.35 mm 
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Table 4. 3: Track parameters for analysis of system response [4, 17, 105] 

 

Notation Parameter Value 

rm  Rail mass per unit length 60.64 kg/m 

E  Elastic modulus of the rail 207×109 N/m2 

 I Rail second moment of area 2.94×10-5  m4 

A Rail cross sectional area 7.77×10-3  m2 

G  Shear modulus of the rail 8.1×109 N/m2 

rk  Timoshenko shear coefficient of the rail 0.34 

1k  Shear viscosity coefficient of the foundation 666870 N 

sM  Sleeper mass 250 kg 

pK  Railpad stiffness (nonlinear) * 0
PbZk e MN/m 

pC  Railpad damping (nonlinear) * 1 1 Pm Kη kN-s/m 

bK  Ballast stiffness (nonlinear) * 8 222.75 2.6 10 bZ+ × MN/m 

bC   Ballast damping (nonlinear) * 2 2 bm Kη  kN-s/m 

L  Length of the rail beam 60 m 

lS  

N 

Sleeper spacing  

No. of sleepers 

0.6 m 

100 
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* PZ and bZ are the compression of the pad and ballast, respectively (in meter), 1η =.25 and 2η =1, 

1
s r

s r

M Mm
M M

=
+

 and 2 s rm M M= + , 0k =115.2 MN/m and b=7.49/mm. [105] 

 The impact caused by the left wheel flat also yields deflections of flat free right wheel, as 

shown in Fig. 4.4 (b), although the peak displacement is relatively small. This is attributed to the 

cross wheel impact force generated at the left wheel-rail contact point. Figure 4.4 (b) further 

shows that as the left wheel flat comes into the contact point, the right wheel moves upward at 

the same time. Both Figs. 4.4 (a) and 4.4 (b) show that the variations in wheel displacement tend 

to recover its static value in 15.5 ms, while the displacement responses exhibit oscillations near 

45.6 Hz, which has been referred to as coupled vehicle-track system resonance [8, 17, 97]. 

 The variations in the vertical velocity responses of the left wheel with flat and rear wheel 

without flat within the first wheelset are shown in Fig. 4.5 for a constant vehicle speed of 100 

km/h. Figure 4.5 (a) shows the velocity response for defective left wheel whereas Fig. 4.5 (b) 

shows the velocity response for the flat-free right wheel. It can be seen from Fig. 4.5 that as the 

wheel flat comes in contact with the rail, the velocity response of the left wheel goes downward 

first before it reaches its maximum peak value, while the velocity of the flat free right wheel goes 

upward at the same instant. For the given flat size and vehicle speed, the maximum peak vertical 

velocity for the left wheel with flat is 0.128 m/s, whereas for flat-free right wheel it is 0.046 m/s. 

Figures 4.5 (a) and 4.5 (b) further illustrate that the oscillations of the vertical velocity response 

due to the excitation by the wheel flat comes into steady value (almost zero) after approximately 

28.3 ms for both the defective left wheel and flat-free right wheels.    
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Fig. 4. 4: Time histories of vertical displacement responses of the wheels in first wheelset (v = 

100 km/h; fL = 50 mm; fD = 0.35 mm): (a) left wheel with flat; (b) right wheel without flat  
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Fig. 4. 5: Time histories of vertical velocity responses of the wheels in first wheelset (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm): (a) left wheel with flat; (b) right wheel without flat  
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 The time histories of the vertical acceleration response for the both left wheel with flat and 

flat- free right wheel within the first wheelset are shown in Fig. 4.6 for a constant vehicle speed 

of 100 km/h. Figure 4.6 illustrates the acceleration responses over two consecutive cycles, while 

the static load per wheel is 103 kN. It can be seen from Fig. 4.6 that the nature of oscillations is 

similar to those obtained for displacement and velocity responses for both the defective left 

wheel and flat-free right wheel. Figure 4.6 shows that as the vertical acceleration response at the 

left wheel due to the flat goes down, the right wheel vertical acceleration response goes up at the 

same instant. For the given parameters as listed in Tables 4.2 and 4.3, the maximum vertical 

acceleration of the left wheel with flat is 33.32 g, whereas for the flat-free right wheel it is 10.24 

g. It can also be seen from Fig. 4.6 that the excitation frequency due to the wheel flat of the given 

size is approximately 588.2 Hz. Figure 4.6 further illustrates that the oscillations of the vertical 

acceleration response due to the excitation by the wheel flat comes into steady value after 

approximately16.9 ms for both the defective left wheel and flat-free right wheels.   

 The time histories of the roll displacement, velocity and acceleration responses of the first 

wheelset with left wheel flat are shown in Figs. 4.7, 4.8 and 4.9, respectively.  These figures 

show that presence of flat, either in right or left wheel, has significant effect on roll 

displacement, velocity and acceleration response of a wheelset. Figure 4.9 shows that for the 

given parameters and flat size, the maximum roll acceleration of the wheelset with a medium 

size flat can be as high as 250 rad/s2. 
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(b) 

Fig. 4. 6: Time histories of vertical acceleration responses of the wheels in first wheelset (v = 

100 km/h; fL = 50 mm; fD = 0.35 mm): (a) left wheel with flat; (b) right wheel without flat  
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Fig. 4. 7: Time histories of first wheelset with one wheel flat roll displacement response (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm). 
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Fig. 4. 8: Time histories of first wheelset with one wheel flat roll velocity response (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm). 
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Fig. 4. 9: Time histories of first wheelset with one wheel flat roll acceleration response (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm). 

Figure 4.10 illustrates the variations in displacement responses of all the four wheelsets of 

the vehicle, while the left wheel of the first wheelset has flat only. The displacement responses 

are evaluated under constant static load of 103 kN, while the speed of the vehicle is 100 km/h. 

Figure 4.10 clearly shows the difference in peak displacement responses due to the presence of 

wheel flat. The maximum displacement of the first wheelset with a left wheel flat is 1.18 mm, 

whereas the peak displacement of the second wheelset without any flat is in the order of 1.17 

mm. The static displacements of all the wheelsets are in the order of 1.14 mm. The results clearly 

show a considerable phase difference between the peak displacement responses developed at the 

leading wheelset with a flat and the flat-free trailing wheelset, which is mainly due to the 

transmission delay of the impact associated with the deflection of the continuous rail. It can be 
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further seen that the presence of flat within the first wheelset does not have any effect on 

displacement responses of the third and fourth wheelsets of the rear bogie, which is mainly due 

to the location of the flat being far away.      
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Fig. 4. 10: Time histories of all four wheelsets vertical displacement response with left wheel flat 

in first wheelset (v = 100 km/h; fL = 50 mm; fD = 0.35 mm). 

The variations in all four wheelsets roll motions due to a single wheel flat within first 

wheelset are shown in Fig. 4.11. It can be seen that the peak value of roll motion is higher for 

first wheelset, which is due to the presence of the flat within first wheelset. It can be also seen 

that presence of wheel flat within first wheelset has also effect on roll motion of the second 

wheelset although it does not have any effect on third and fourth wheelsets roll motions. Figure 

4.11 further shows that the magnitudes of oscillations due to the impact come to zero after 45.8 

ms. The magnitude of the first wheelset peak roll motion is in the order of 6.32×10-5 rad, while 

for second wheelset it is in the order of 3.95×10-5 rad. When the wheelset with flat reaches the 
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wheel-rail contact point, the wheel axle starts to oscillate. This explains why the impact load at 

left wheel-rail contact point is transmitted to the right rail as it will be shown in Fig. 4.15. 
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Fig. 4. 11: Time histories of all four wheelsets roll motions with left wheel flat in first wheelset 

(v = 100 km/h; fL = 50 mm; fD = 0.35 mm). 

The time histories of the front and rear bogie bounce, pitch and roll motions are shown in 

Figs. 4.12, 4.13 and 4.14, respectively. It can be seen from all these three figures that the 

presence of a single wheel flat within first wheelset largely affect the front bogie bounce, pitch 

and roll motions, which is primarily due to the location of the flat within the front bogie. Since 

the location of the flat is not within the rear bogie the presence of flat within front wheelset has 

little or no effect on bounce, pitch and roll motions of the rear bogie, as it can be seen from Figs. 

4.12, 4.13 and 4.14. This can be attributed to the low secondary suspension spring stiffness. 

Figure 4.12 shows that the maximum vertical displacement of the front bogie can reach up to 

1.305 mm from a static value of 1.275 mm, for the given flat size and vehicle speed. This figure 

further shows that the bounce motion of the front bogie is almost stabilized after 25.5 ms, as the 
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wheel with flat leaves the wheel-rail contact point by this time period as shown in Fig. 4.4. For 

the given parameters, as shown by Figs. 4.13 and 4.14, the maximum pitch and roll motions of 

the front bogie are 2.61×10-5 rad and 3.56×10-5 rad, respectively.  
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Fig. 4. 12: Time histories of bogie vertical displacement response with left wheel flat in first 

wheelset (v = 100 km/h; fL = 50 mm; fD = 0.35 mm). 
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Fig. 4. 13: Time histories of bogie pitch motion with left wheel flat in first wheelset (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm). 
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Fig. 4. 14: Time histories of bogie roll motion with left wheel flat in first wheelset (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm). 

The deflection and acceleration responses of the left and right rail due to a single wheel flat 

are also evaluated, as shown in Fig. 4.15 for the rail deflection and Fig 4.16 for rail acceleration 

response.  The left and right rail deflection response, as shown in Fig. 4.15, reveals that presence 

of wheel flat in left wheel-rail contact point affects not only the left rail but also the right rail 

deflection. However, the magnitude of the maximum amount of deflection is less for right rail. 

Figure 4.15 further shows that as the flat approaches the contact region, the rail moves up prior 

to the impact at the contact point followed by the downward deformation of the rail due to the 

impact force developed at the wheel-rail interface, as seen in Fig. 4.4 (a). Subsequently, the rail 

profile tends to recover its steady value after approximately 25 ms of the impact. The 

acceleration response of the left rail with a single wheel flat shows that the impact acceleration 
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can be as high as 219 g, as it can be seen in Fig. 4.16, for the given parameters as listed in Tables 

4.2 and 4.3. The figure further shows that the acceleration response comes to steady value after 

9.5 ms of the impact for both left and right rails.  
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Fig. 4. 15: Time histories of rail vertical deflection with left wheel flat in first wheelset (v = 100 

km/h; fL = 50 mm; fD = 0.35 mm). 
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Fig. 4. 16: Time histories of rail vertical acceleration with left wheel flat in first wheelset (v = 

100 km/h; fL = 50 mm; fD = 0.35 mm). 

The effects of wheel flat on peak wheel acceleration due to different vehicle speeds in the 

range of 20-140 km/h are further investigated and the results obtained are shown in Fig. 4.17. 

The results are presented for both left wheel with flat and flat-free right wheel accelerations 

under the influence of five different sizes of wheel flats, while the static wheel load of 103 kN is 

considered. Here, the depth of the flat is varied during the simulation and the length of the flat is 

automatically changed following the relation between the length and the depth of the flat as 

stated by Eqn. 3.51 in chapter 3. The figure illustrates that peak wheel acceleration increases 

with increasing the speed of the vehicle for both defective and flat-free wheels. The rate of 

increment, however, is considerably larger in the defective left wheel acceleration responses.  

The left wheel acceleration response shows that the impact response exhibits higher 

magnitude in the medium speed range (70-90 km/h) for low flat sizes (Df =0.2-.04 mm), and 

tends to increase rapidly at speeds above 100 km/h. However, this higher magnitudes in the peak 

acceleration response of the left wheel is not profound for higher flat sizes, which can be 

attributed to the matching in excitation frequency due to the wheel flat (approximately 330 Hz) 

with the natural bounce frequency of the first wheelset (312 Hz). The right wheel peak 

acceleration responses due to the presence of left wheel flat within same wheelset also shows the 

increase in peak acceleration with speeds and flat sizes as well. However, the magnitudes of the 

right wheel peak impact accelerations are less than that of the left wheel. Furthermore, the cross-

wheel impact acceleration developed at the right wheel increases slightly with vehicle speed for 

low flat sizes, while the effect of left wheel flat becomes evident at speeds above 90 km/h.        
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Fig. 4. 17: Effect of vehicle speed on peak wheel acceleration: (a) with flat; (b) without flat. 
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The size of the wheel flat has significant effect on excitation frequency due to the presence of 

the wheel flat.  The effects of speed on excitation frequency for different flat lengths are shown 

in Fig. 4.18. It can be seen that increase in speed always increases the frequency of excitation. 

However, for a constant speed, increase in wheel flat length decreases the frequency of 

excitation.   
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Fig. 4.18: Effect of vehicle speed and flat size on frequency of excitation due to a flat. 

4.4 SUMMARY 

The coupled three-dimensional vehicle-track model developed in this dissertation has been 

validated with both experimental and analytical data from the reported studies on the resulting 

impact force. The validation has been carried out with both linear and nonlinear railpad and 
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ballast properties. The study shows that nonlinear railpad and ballast model gives better 

prediction of the wheel-rail impact force than that of the linear model when compared with the 

experimental data. The study shows that speed has significant effect on peak wheel-rail impact 

force for both linear and nonlinear railpad and ballast models. However, linear railpad and ballast 

predict higher peak wheel-rail impact forces in the selected speed range. This study shows that 

for the selected parameter the consideration of the linear properties of the railpad and ballast into 

the track model could increase the peak impact force up to 56.86%.  

The validated model is then applied to obtain the response of individual vehicle and track 

components. The effects of a single wheel flat on the responses of vehicle and track components 

in terms of displacements and accelerations responses are investigated for both defective wheel 

and the flat-free wheel. The characteristics of the bounce, pitch and roll motions of the bogie due 

to a single wheel flat are also investigated. The results clearly show that presence of wheel flat 

within the same wheelset has significant effect on the impact force, displacement and 

acceleration responses of that wheelset. The results further show that although the effect of cross 

wheel impact on responses of the neighborhood wheelset or bogie displacements and 

accelerations responses are not so significant, this low magnitude impact may cause rapid fatigue 

damage of the vehicle and track components. However, this study shows that the effect of the 

transmitted force on the rear bogie due to the presence of the wheel flat within the front bogie is 

little and negligible which can be attributed to the low suspension spring stiffness. The study 

further shows that increase in vehicle speed and flat sizes always increases the wheel peak 

accelerations for both defective and flat-free wheels.    
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CHAPTER 5 

IMPACT RESPONSE DUE TO MULTIPLE WHEEL FLATS 

5.1 INTRODUCTION 

The presence of wheel flats can cause high magnitude impact excitations on both wheel and 

rail eliciting large responses. This high frequency vibration in the vehicle track system affects the 

track maintenance and reliability of the vehicle’s rolling elements. The presence of multiple 

wheel flats within a wheel or axle of a car is not very uncommon in practice. Multiple flats can 

be developed at the same locations of both wheels within a wheelset due to the locking of the 

brake system. The presence of multiple flats on same wheel or wheelsets causes multiple impacts 

in every revolutions of the wheel or wheelset. Furthermore, the number of flats, their sizes and 

their location with respect to each other may play an important role on the peak wheel-rail 

impact responses.  

Various railroad organizations have been trying to set a threshold of flat size as an indication 

for replacement of the wheel with flat. The American Association of Railroad (AAR) has set the 

criteria to replace the wheel from the service for 50.8 mm long single flat or 38.1mm long two 

adjoining flats [139]. According to Transport Canada safety regulations, a railway car may not 

continue in service if one of its wheels has a flat of more than 63.50 mm in length or two 

adjoining flats each of which is more than 50.80 mm [1]. Swedish Railway sets the condemning 

limit for a wheel flat based on a flat length of 40 mm and flat depth of 0.35 mm [17]. According 

to UK Rail safety and standard board [146], a wheel with flat length exceeding 70 mm must be 

taken out of service. Most of these wheel removal criteria are based on single or multiple 
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adjoining flats within a wheel. The possible existence of flats on both wheels within same 

wheelsets or bogies is not dealt by any of the requirements.   

Although the presence of multiple wheel flats within a wheel or wheelset is common in 

practice, the vast majority of the studies dealing with wheel flat utilizes simple vehicle-track 

model and considers single wheel flat only. Presence of multiple defects within the contact point 

would further enhance the complexity of the analytical model. The nonlinear contact of the 

wheel and rail makes it more complex for analysis. Furthermore, the contributions due to roll and 

pitch dynamics of the car and relative positions of different wheel flats with wide variations in 

relative positions between the flats on the wheel-rail impact forces were not investigated. A 

detailed study on dynamic wheel-rail interactions with 3-dimensional car and track model is thus 

required in order to characterize the contact impact responses due to the presence of multiple 

wheel flats. 

In this chapter, the three-dimensional railway vehicle-track model developed in chapter 3 and 

validated in chapter 4 is employed to study the effect of multiple wheel flats on wheel 

acceleration response. Studies are carried out for different types of wheel flats and their relative 

positions. The effect of multiple wheel flats on both direct and cross wheels within same or 

different wheelsets are also investigated. The effects of vehicle speed on peak wheel acceleration 

in presence of multiple wheel flats are further investigated for both left and right wheel within 

same wheelset. Finally, the effect of bogie pitch and roll motion on overall peak acceleration of 

the wheel is also investigated in presence of two in-phase flats.  

5.2 MULTIPLE WHEEL FLATS MODEL 

A single flat in one wheel may be followed by another flat of same or different size in the 

adjacent wheel. Their relative positions can also be different. As discussed in chapter 1, although 
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the presence of multiple wheel flats in a single wheel or within same wheelsets are widely 

observed the resulting impact response in terms of accelerations have not been reported. In this 

section, the developed three-dimensional vehicle-track model is applied to study the influences 

of multiple flats. In this study, similar to the single wheel flat model as described before, 

commonly used haversine wheel flat model is utilized to study the effect of multiple flats. The 

studies s are performed for two different cases: (i) two identical size flats on the same wheel 

located at different angular positions (phase angle) (ii) two same size flats on the different 

wheels either in phase or out-of-phase. Descriptions of two flats in same wheel with different 

angular positions are already given in chapter 3. The positions of two similar or different flats in 

same wheel or two different wheels within same wheelset are shown in Fig. 5.1. The flats are 

defined such that the leading flat comes into contact with the rail first followed by trailing flat, 

which enters the contact with a defined phase angle. The variations in radius of a wheel with two 

flats each with 60 mm length and 0.45 mm depth that are 450 apart are illustrated in Fig. 5.2, as a 

function of the wheel position. 

     

(a) 

Left wheel Right wheel 

Leading flat 

Trailing flat 



164 

 

 

(b) 

 

(c) 

Fig. 5. 1: Location of same or different size flats (a) two flats within same wheel out-of-phase; 

(b) two flats in different wheels within same wheelset in-phase; (c) two flats in different wheels 

within same wheelset out-of- phase. 
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Fig. 5. 2: Variations in radius of a wheel with two same size flats ( fL = 60 mm and fD = 0.45 

mm), which are  450 apart. 

5.3 DYNAMIC RESPONSE DUE TO TWO FLATS ON SINGLE WHEEL 

In order to analyze the effect of multiple wheel flats in same wheel on wheel acceleration 

response, two same size flats with different specified phase angles are considered. The 

simulations are carried out for multiple flats within the left wheel of first wheelset at a forward 

speed of 100 km/h. Both flats are 60 mm long and the depths of the flats are determined by the 

relationship between them as shown by Eqn. (3.51).   Studies are carried out by considering the 

fact that all wheels except the left wheel of front wheelset are perfect. The variations in the wheel 

impact acceleration due to the presence of multiple flats are evaluated by considering different 

phase angles between the two flats, namely, 50, 150, 300 and 450.  

Figures 5.3 to 5.6 illustrate the variations in wheel acceleration response at the left and right 

wheels for different phase angles between the flats, while the flats are within left wheel only and 

the right wheel is assumed as perfect. The results clearly show two distinct peaks in the impact 

acceleration response of both left and right wheel due to the presence of two flats in two different 

locations. However, as expected, the peak impact accelerations for right wheel without flats are 
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much less than that for the left wheel with flats. The figures further show that although two flats 

are identical in size, the magnitudes of the peak impact accelerations induced by the two flats 

differ.  The peak impact acceleration induced by the leading flat is in the order of ±45.6 g at the 

left wheel and approximately ±13.5 g at the right wheel irrespective of the position of the trailing 

flat. In case of left wheel acceleration, the magnitude of the peak impact acceleration induced by 

the trailing flat tends to increase with increase in phase angles between the flats. The figures 

further show that the difference between the peak acceleration induced by the leading and 

trailing flats are insignificant when the flats are 300 and 450 apart, while the time lapse between 

the two peak accelerations directly related to the vehicle speed and the phase difference between 

the two flats.  
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Fig. 5. 3: Wheel impact acceleration responses due to two flats on left wheel at 50 out-of-phase 

(v=100 km/h and fL = 60 mm): (a) left wheel; (b) right wheel. 
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Fig. 5. 4: Wheel impact acceleration responses due to two flats on left wheel at 150 out-of-phase 

(v=100 km/h and fL = 60 mm): (a) left wheel; (b) right wheel. 
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Fig. 5. 5: Wheel impact acceleration responses due two flats on left wheel at 300 out-of-phase 

(v=100 km/h and fL = 60 mm): (a) left wheel; (b) right wheel. 
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Fig. 5. 6: Wheel impact acceleration responses due to two flats on left wheel at 450 out-of-phase 

(v=100 km/h and fL = 60 mm): (a) left wheel; (b) right wheel. 

In case of right wheel acceleration, the figures show that the peak impact acceleration 

induced by the trailing flat can be slightly higher than the peak impact acceleration induced by 

the leading flat for some phase angles, as it is evident in Figs. 5.4 and 5.5, for 300 and 450 phase 

angles. The results further suggest that the magnitudes of impact accelerations induced by two 

flats are similar to that caused by a single flat, if they are apart from each other by 300 phase 

angle or more. The frequency of the impact, however, increases with increase in number of flats, 

which could yield rapid fatigue damage of the vehicle and track components.    

The second flat in a wheel of multiple flats may generate different impact acceleration from 

those of a single flat case under certain condition, as it is shown in Figs. 5.3 to 5.6.  Speed of the 

vehicle also strongly affects the variations in impact accelerations responses induced by the 

multiple flats. Increase in vehicle speed will particularly decrease the time lapse between the two 

peak impacts caused by two flats. The effect of speed on the peak wheel accelerations due to 
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multiple wheel flats within left wheel under certain phase angles is therefore examined in the 

speed range of 20-140 km/h.  Figures 5.7 to 5.9 show the effect of speed on peak left wheel 

acceleration responses caused by the presence of two flats within left wheel only and with phase 

angles of 150, 300 and 450, respectively.  The results show that, similar to single wheel flat, 

increase in speed and flat size always increases the left wheel impact acceleration caused by the 

leading flat irrespective of the phase angles between the two flats.  

In case of left wheel acceleration caused by the trailing flat, the results show complex 

relationship between the vehicle speed, flat size and the peak acceleration responses. It can be 

seen from Figs. 5.7 to 5.9 that the peak impact acceleration due to the trailing flat on the 

multiple-flat left wheel is significantly affected by the phase angles, when the phase angle is 

small and the flat size is large. The results further show that the difference in impact 

accelerations due to the leading and trailing flats on left wheel is not significant, when the phase 

angle between the flats is more than 450 and the flat length is equal to or less than 60 mm, 

irrespective of the vehicle speed. Beyond this value of phase angle and within this flat size, the 

impact acceleration caused by the trailing flat is same as that predicted by the simulation of 

single flat of same size. 
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Fig. 5. 7: Effect of speed on peak wheel acceleration response for different sizes of flats with two 

flats on left wheel at 150 of phase angle. 
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Fig. 5. 8: Effect of speed on peak wheel acceleration response for different sizes of flats with two 

flats on left wheel at 300 of phase angle. 
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Fig. 5. 9: Effect of speed on peak wheel acceleration response for different sizes of flats with two 

flats on left wheel at 450 of phase angle. 

5.4 DYNAMIC RESPONSE DUE TO SINGLE FLAT ON TWO WHEELS OF SAME 

WHEELSET OUT-OF-PHASE 

The effect of multiple wheel flats on wheel acceleration response is further investigated with 

two same size flats on both left and right wheels of the first wheelset with different specified 

phase angles, while all other wheels of the vehicle are assumed as perfect. The simulations are 

carried out for multiple flats of 60 mm length and a forward vehicle speed of 100 km/h. The 

depths of the flats are determined by the relationship between the wheel flat length and depth as 

shown by Eqn. (3.51). The left wheel flat is assigned ahead of the right wheel flat with a specific 

phase angle. The variations in the both left and right wheel impact acceleration due to the 

presence of multiple flats within a same wheelset are evaluated by considering different phase 

angles between the two flats, namely, 150, 300 and 450.  
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The time histories of left and right wheel impact acceleration due to a single flat on both the 

left and right wheels at 150, 300, and 450 out-of-phase are shown in Figs. 5.10 to 5.12, 

respectively. The results clearly show two distinct peaks in both left and right wheel acceleration 

responses corresponding to their respective flats, when the phase angle is more than 150. The 

difference in magnitudes of the peak acceleration due to the direct and cross wheel flat is also 

pronounced for all three phase angles considered. The magnitudes of the peak acceleration due to 

the direct wheel flat are same as those obtained for a single wheel flat earlier.  

Figures 5.10 to 5.12 illustrate that the impact acceleration due to the flat on left wheel which 

enters into the contact first is unaffected by the flat on the right wheel, which enters the contact 

region after the defined phase angle. This is consistent with the right wheel impact acceleration 

responses too. The results further illustrate that the cross wheel flat effect is more pronounced 

primarily for low phase angles. However, the extent of the effect is dependent on speed, flat size 

and phase angles between the flats.  For the given speed and flat size, the magnitude of the left or 

right wheel acceleration due to direct wheel flat is in the order of 47.5 g irrespective of the phase 

angle. However, the magnitudes of the left wheel acceleration due to the right wheel flat (cross 

wheel flat effect) are 12.9, 14.6 and 16.4 g for phase angles of 150, 300 and 450, respectively. On 

the other hand, the magnitude of the right wheel acceleration due to cross wheel flat is in the 

order of 12.85 g irrespective of the phase angle. 
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Fig. 5. 10: Left and right wheel impact acceleration responses due to a single flat on both wheels 

of a wheelset at 150 out-of-phase (left wheel flat ahead by 150) 
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Fig. 5. 11: Left and right wheel impact acceleration responses due to a single flat on both wheels 

of a wheelset at 300 out-of-phase (left wheel flat ahead by 300) 
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Fig. 5. 12: Left and right wheel impact acceleration responses due to a single flat on both wheels 

of a wheelset at 450 out-of-phase (left wheel flat ahead by 450) 
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The effect of speed on peak left and right wheel acceleration due to a single flat on both 

wheels at particular phase angles is further investigated in speed range of 20-140 km/h.  Two 

identical flats are assumed to be present on both left and right wheels of first wheelset of the 

front bogie at 150, 300 and 450 phase difference. The peak magnitudes of the left and right wheel 

acceleration due to the direct wheel flat with 30, 45, 60, 70 and 80 mm of lengths as a function of 

speed were investigated. The depths of the flats are calculated by the relation as stated in Eqn. 

(3.51). The simulations are carried out with static load per wheel of 103 kN, and the results 

obtained are shown in Figs. 5.13 to 5.15 with different flat sizes and phase angles.   
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Fig. 5. 13: Effect of speed on peak wheel impact acceleration due to a single flat on both wheels 

of a wheelset at 150 out-of-phase. 
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Fig. 5. 14: Effect of speed on peak wheel impact acceleration due to a single flat on both wheels 

of a wheelset at 300 out-of-phase. 

Similar to the peak impact acceleration response due to single wheel flat, figures 5.13 to 5.15 

clearly show that increase in vehicle speed and flat length always increases the peak acceleration 

responses for both the left and right wheel peak acceleration responses irrespective of phase 

angles between the two flats. The right wheel peak impact acceleration increases in sinusoidal 

motion which is mainly due to the sinusoidal motion of the left wheel acceleration response after 

the impact. The results clearly demonstrate that the right wheel peak acceleration experienced 

larger magnitudes of impact acceleration than that of the left wheel, when the speed is higher and 

flat size is larger. This indicates the possibility of significantly larger impact acceleration due to a 

direct wheel flat if the other wheel has experienced a flat prior to it. This study shows that for a 
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speed of 110 km/h, the left wheel with single flat of 60 mm length that comes into wheel-rail 

contact first will generate a peak acceleration of 51.81g for a 150 phase angle between the flats. 

However, the right wheel that experiences an impact due to a similar flat on left wheel 150 prior 

to the direct wheel flat will generate a peak acceleration of 55.69 g.     
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Fig. 5. 15: Effect of speed on peak wheel impact acceleration due to a single flat on both wheels 

of a wheelset at 450 out-of-phase. 

5.5 DYNAMIC RESPONSE DUE TO A SINGLE FLAT ON ALL WHEELS OF FRONT 

BOGIE AND ENTIRE VEHICLE 
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In an attempt to investigate the effect of car body pitch and roll motion on peak wheel 

acceleration response, the developed three-dimensional vehicle-track model is applied to study 

the influence of multiple flats. Studies are carried out for two different cases: (i) four identical 

wheel flats on four wheels within the front bogie only at same angular position; (ii) eight same 

size flats on eight wheels of both front and rear bogies of the entire vehicle at same angular 

position. Simulations are carried out with 60 mm flat length and for a vehicle speed of 100 km/h. 

The entire parameters are same as for single wheel flat used before. The results obtain from 

simulations are shown in Fig. 5.16 for both cases. 

Figure 5.16 shows the time histories of left or right wheel acceleration response for the first 

wheelset in presence of single flats on four wheels or eight wheels of the vehicle. However, it is 

expected that all other wheels of the same bogie or entire car would show similar responses. 

Hence, they are not shown here. It can be seen that time histories of impact acceleration for 

multiple flats in phase within the front bogie and entire vehicle are same as the time history of 

impact acceleration due to single wheel flat. However, there is a difference in peak magnitude 

and frequency of oscillations after impact between the impact acceleration response due to single 

and multiple wheel flats. This difference in peak magnitude of the impact acceleration is in the 

order of 21 g.  

Peak impact acceleration due to single flat on four wheels is 21 g less than the peak impact 

acceleration due to single wheel flat of same size. This difference can be attributed to the 

symmetry of the bogie about the central lateral axis due to the presence of flats on all four wheels 

at same location.  In the presence of flats on four wheels, both front and rear wheelsets of the 

front bogie move together while the pitch and roll motions of the bogie are not excited. On the 

other hand, in case of single wheel flat, owing to the pitch and roll motion of the front bogie 
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together with the roll motion of the wheelset, the deflections of wheel is more which ultimately 

increases the wheel acceleration. 

 Fig. 5.16 further shows that there is no difference in peak magnitude and frequency of 

oscillation of the impact acceleration due to four wheel flats within front bogie and eight wheel 

flats within the entire vehicle. For both of these cases, the peak magnitude of the impact 

acceleration is 26.7 g. This shows that car body pitch and roll motion have no effect on peak 

acceleration response due to wheel flats. This can be attributed to the high suspension stiffness of 

the primary and secondary suspension that isolates the car body from impact that occurs in 

wheel-rail contact region.     
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Fig. 5. 16: Time history of left or right wheel impact acceleration responses due to a single flat 

on (a) all four wheels of the front bogie; (b) all eight wheels of the entire vehicle, in phase. 

5.6 DYNAMIC RESPONSE DUE TO TWO FLATS ON OPPOSITE WHEELS OF SAME 

WHEELSET IN PHASE 

 The presence of two flats in two wheels of same wheelset is very common in practice due to 

the sliding of the locked wheelset. These flats may be same or different in size and their effects 

on impact acceleration response can be different too. In this subsection, the wheel impact 

acceleration responses and effect of speed on peak impact accelerations are investigated. Two 

flats of same size are assigned to left and right wheels of the first wheelset at same position, i.e. 

00 phase angle.  

Figure 5.17 illustrates the time history of left or right wheel impact acceleration due to a 60 

mm long flat on both left and right wheels in same location within the first wheelset of the front 

bogie. As the result shows, with two similar flats on both wheels in phase, the left or right wheel 

impact acceleration develops response identical to the single wheel flat acceleration response. 
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However, the magnitude of the peak acceleration for two flats in opposite wheels in phase is less 

than the impact acceleration due to single wheel flat. It can be seen that the magnitude of the 

peak left or right wheel acceleration is in the order of 37.64 g. This peak is approximately 11 g 

more than the peak magnitude of impact acceleration in the presence of single flat of same size 

on all four wheels of the front bogie as shown in Fig. 5.16 (a). This difference can be attributed 

to the excitation of the bogie pitch motion, in case of single flat on two wheels of first wheelset 

of the front bogie. In case of flats on both wheels of the first wheelset, the displacement of the 

first wheelset of the front bogie is more while the second wheelset without any flats remains 

same. This motion of the first wheelset increases the peak wheel acceleration in case of single 

flat on both wheels in phase.  

The effect of speed on peak wheel acceleration due to a single flat on left wheel and two in-

phase flats on both wheels of a wheelset is shown in Fig. 5.18. The results are shown for speed 

range of 20-140 km/h, where the flat length is varied from 30-80 mm. The figure clearly shows 

that the peak impact acceleration due to a single wheel flat is higher than the peak wheel 

acceleration due to the two in-phase flats on both wheels of same wheelset. This result is 

consistent for the selected speed range and the flat sizes. For a vehicle speed of 140 km/h and flat 

length of 80 mm, the difference can be as high as 27.3 g.   
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Fig. 5. 17: Time history of left and right wheel impact acceleration responses due to a single flat 

on both wheels in phase (bogie pitch effect). 
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Fig. 5. 18: Effect of speed on peak wheel impact acceleration due to a single flat on left wheel 

and two flats on both wheels of a wheelset in phase. 
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5.7 DYNAMIC RESPONSE DUE TO TWO FLATS ON LEFT WHEELS OF TWO 

WHEELSETS AT SAME POSITION 

The effect of presence of multiple wheel flats on two different wheelsets within the same 

bogie is further investigated for a vehicle speed of 100 km/h. Two flats of identical size are 

assigned to left wheels of the first and second wheelsets at same location. Figure 5.19 illustrates 

the time history of left wheel impact acceleration due to a 60 mm long flat on left wheels of first 

and second wheelsets within the front bogie in same location. As the result shows, the left wheel 

impact acceleration response follows similar trend as the single wheel flat acceleration response. 

However, similar to the multiple flats on both wheels within the same wheelset in phase 

condition, the magnitude of the peak acceleration for two flats in left wheel of opposite wheelsets 

in phase is less than the impact acceleration due to a single wheel flat.  

The magnitude of the peak left wheel acceleration is in the order of 38.80 g, which is 

approximately 12.2 g more than the peak magnitude of impact acceleration in the presence of 

single flat of same size on all four wheels of the front bogie as shown in Fig. 5.16 (a). This 

difference can be attributed to the excitation of the bogie roll motion. In case of flats on left 

wheels of the first and second wheelset, the displacement of the left wheels of both first and 

second wheelsets are more while the flat-free right wheels of first and second wheelsets remains 

same. These motions of the left wheels increase the peak wheel acceleration in case of single flat 

on left wheels of first and second wheelsets in phase. Furthermore, due to the presence of the 

flats on left wheels only the roll motion of the wheel is also excited, which contributes in 

increasing the magnitude of the peak wheel acceleration.     

 Figure 5.20 shows the effect of speed on peak wheel acceleration due to a single flat on left 

wheel and two in-phase flats on left wheels of first and second wheelsets. The results are shown 



188 

 

for speed range of 20-140 km/h, where the flat length is varied from 30-80 mm. The figure 

clearly shows that the peak impact acceleration due to a single wheel flat is higher than the peak 

wheel acceleration due to the two in-phase flats on left wheels of first and second wheelset. This 

result is consistent for the selected speed range and the flat sizes. For a vehicle speed of 100 

km/h and flat length of 70 mm, the difference in magnitude of peak acceleration can be as high 

as 13.25 g.   
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Fig. 5. 19: Time history of left wheel impact acceleration responses due to a single flat on left 

wheels of first and second wheelset of the front bogie in phase (bogie roll effect). 
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Fig. 5. 20: Effect of speed on peak wheel impact acceleration due to a single flat on left wheel 

and two flats on left wheels of first and second wheelset in phase. 

5.8 SUMMARY 

In this chapter, the developed coupled vehicle-track model is employed to study the wheel 

impact acceleration responses caused by multiple wheel flats. Effect of multiple wheel flats on 

peak wheel acceleration is investigated with different sizes and relative positions of the flats. In 

case of two out-of-phase flats, the study shows that there are two distinct peaks in acceleration 

responses of both left and right wheel due to the presence of two flats. However, the peak 

magnitudes of the acceleration differ due to direct and cross wheel flats. This study shows that 

although this cross wheel impact acceleration is considerably less than that of the direct wheel 

impact acceleration, its effect can be significant in high-speed condition.   
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In investigations of impact acceleration due to multiple flats with the three-dimensional 

vehicle-track model, it is observed that the presence of two flats on same location of different 

wheels within same or different wheelsets has considerable effect on peak wheel-rail impact 

load. This study shows that the presence of a single flat in all four wheels of front bogie in phase 

induces impact acceleration less than the impact acceleration induces by a single wheel flat of 

same size, which can be attributed to the symmetry of the bogie about the central lateral axis due 

to the presence of flats on all four wheels at same location.  

This study further shows that the magnitudes of the peak wheel impact accelerations produced 

by two in-phase flats within same wheelset are lower than the impact acceleration produced by a 

single flat of same size on one wheel for all vehicle speeds. This can be attributed to the bogie 

pitch motion effect, which is excited due to the presence of two in-phase flats. It is also obvious 

from this study that due to the excitation of bogie roll motion, the impact acceleration produced 

by two in-phase flats on different wheels of opposite wheelset is lower than the impact 

acceleration produced by a single flat of same size on one wheel for all vehicle speeds. The study 

further illustrates that the magnitudes of the direct wheel impact acceleration generated due to 

multiple flats either in the same or different wheels are same to that generated by single wheel 

flat when the flats are far away from each other.  
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CHAPTER 6 

DEVELOPMENT OF A SMART WHEELSET 

 

6.1. INTRODUCTION 

Formation of wheel flats on railway wheel profile is a major concern for railway industry 

because of its effect on safe, secure and efficient operation of the railway. Due to the increases in 

speed and axle load of the modern railway vehicle, presence of these defects either in wheel or in 

rail can lead to excessive impact force leading to an accelerated deterioration of the vehicle or 

track structure components, such as wheelsets, bearings, rails, and sleepers. It is estimated that 

the railway industry in North America is currently spending nearly $90 millions annually to 

replace 125,000 wheels due to wheel defects [8]. When a wheel flat exceeds a certain length and 

depth, their impact forces become unacceptably high to keep operating in that condition.  

Presence of undetected wheel flats can thus cause untimely on service failure of the railway 

vehicle, requiring suspension of the operation and on-site replacement of wheelsets which is very 

costly. Many defects worsen gradually and can be repaired or replaced before they reach 

unacceptable level. In order to facilitate in-time maintenance of the vehicle, it is thus necessary 

to detect and monitor the development of wheel defects so that its replacement or repair can be 

properly scheduled. An automatic wheel defect detection system will allow for train maintenance 

schedule to be done as indicated by the condition of the wheels, rather than just based on past 

experience or regulations. 

Industries have been looking for improved means to identify defective wheels for several 

decades. The most primitive way to detect the wheel defects is by physical inspection of the train 

by inspectors. Over the years, numerous techniques and tools have been developed to automate 
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the detection of wheel defects. Some of these include, acoustic, optical and laser-based detection 

technology [161, 162, 168, 169]. In these detection systems, the variations of the signals in the 

form of sound, light, or laser beam are detected through the detectors. In case of acoustical 

detection system, the sound signal can be influenced by surrounding noise and therefore is not 

considered as accurate as necessary in railway operation. Wheel flat detections can also be 

carried out by measuring the dynamic force or acceleration of the track under the wheel. Belotti 

et al. [156] and Yue et al. [157] have presented a wheel-flat diagnostic tool by using wavelet 

transform method. In these studies, the detection of the wheel flats is carried out through the 

measurement of peak acceleration by the use of several accelerometers placed in the fixed 

position of the rail. These along with other measurement techniques are referred to as way-side 

measurements, where the measurements are taken at a fixed instrumented location of the track as 

the train passes over the section. Some of the drawbacks of such system include the fact that the 

instrumented section can be far away from the maintenance facility. The detection system may 

not accurately identify the wheel with the defect. The measurement may miss the wheel defect as 

the impact due to defect may occur at different location with respect to the instrument. In general 

way-side detection systems are known to exhibit poor repeatability and unreliable as they often 

generate false warning or miss the defect. Most of these limitations of way-side detection system 

based on instrumented track can be overcome by developing an instrumented smart wheelset that 

will have an on-board measurement system, capable of monitoring its health in real time.  

A smart wheelset is an instrumented wheelset that continuously monitors its dynamic 

response and uses it to identify if and when a defect is developed on the wheel profile. It also has 

the capability to establish the length and depth of the defect or a flat under all operation 

conditions. The methodology for the smart wheelset is developed based on the extensive study 
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carried out in this investigation examining the responses of railway vehicle system due to 

existence of wheel flats. Response acceleration of wheelsets being the most convenient variable 

is selected for measurements. In this technique, two bearings of the wheelset will be fitted with 

low cost accelerometers that does not require the wheel to be machined, thus the structural 

integrity will not be altered. The major challenge in developing the smart wheelset is in 

formulating the methodology in using the acceleration signals in real time to establish the 

existence of a defect, the type of defect and the extent of the defect at all operating conditions.    

The operating condition of a railway vehicle can vary widely as they carry wide range of loads at 

a wide range of speeds. Since many factors strongly influence the response of railway wheelset 

depending on the flat size, the system must predict the flat size using acceleration signal under 

all conditions. It is, thus, required to establish, examine and incorporate the relationships 

between all the operating parameters that are related to the change in acceleration of the 

defective wheel. 

In this chapter, development of a smart wheelset for continuous in-time automatic detection of 

wheel defects is developed and described that can be realized through the use of an on-board 

measurement technique. The effects of wheel flat size on peak wheel acceleration at different 

vehicle speeds are identified. Simulations are carried out for different axle loads including empty 

and fully loaded car conditions. Finally, the relation between the peak wheel acceleration, 

vehicle speed and the wheel flat size is formulated for selected axle loads that can be readily 

applied towards the development of a smart wheelset. The objective in this formulation for smart 

wheelset is to measure the peak acceleration signal that should be an indicator for flat size 

regardless of vehicle speed and axle weight. 
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6.2.  FORMULATION OF INDICATOR AS A FUNCTION OF SPEED                   

Throughout the present investigation it has been shown that speed has a very significant effect 

on the peak impact force and acceleration generated due to a flat within a wheel profile. The 

effect of speed must therefore be an integral part in the formulation of a smart wheelset. The 

maximum allowable speed of a freight car in Canada is 108 km/h [9]. Thus, for this 

investigation, the influences of selected parameters on the nature of impact accelerations are 

evaluated in 0-140 km/h speed range in order to ensure that the study is valid for future trends. 

The range of flat is chosen in accordance with the threshold values for wheel removal by 

different railway organizations. The American Association of Railroad (AAR) [144] criteria for 

removal of wheel from service requires that a railway car wheel with a 50.8 mm long single flat 

or two 38.1mm long adjoining flats cannot continue to be in service. According to Swedish 

Railway, the condemning limit for single wheel flat is 40 mm long and 0.35 mm deep [17]. 

Transport Canada safety regulations [145] require that a railway company do not keep a car in 

service if a wheel has a slid flat spot that is more than 63.50 mm in length or two adjoining flat 

spots each of which is more than 50.80 mm.  

In order to incorporate the stipulated guidelines, this study considers the flat length size in the 

range of 30-80 mm, while the flat depths are changed automatically by following the relation 

between the flat length and depth given by Eqn. 3.51. Simulations are carried out for a single 

wheel flat assigned at the left side of the first wheelset. The parameters used for the simulations 

are same as those presented in Tables 4.2 and 4.3. In Parametric studies, only one parameter and 

its effects are varied while the other parameters are kept same as their nominal value. All the 

results presented in this section correspond to the peak value of the acceleration level at the 

bearing location of the wheel with defect predicted by a simulation.  
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Figure 6.1 shows the trend for peak wheel acceleration with vehicle speed due to a single 

wheel flat on left wheel of first wheelset for different flat lengths and full load. A fully loaded 

vehicle corresponds to a wheel load of 103 kN. As the results show, the relationships between 

the vehicle speed and peak wheel acceleration for a given flat are similar to those obtained as 

peak impact force presented in chapter 4. From these results it is observed that there is a clear 

trend for increase in the peak acceleration as the speed is increased while the sensitivity to flat 

size increases with increase in speed. It is further observed that the relationship between the peak 

wheel acceleration and vehicle speed can be effectively expressed by a third order polynomial 

function with real coefficients. For example, the third order polynomial function for a flat length 

of 60 mm, can be expressed as: 

Y = -1.98e-5*v3 + 0.0039*v2 + 0.324*v               (6.1)  

where, Y is the peak wheel acceleration in g’s and v is the vehicle speed in km/h. These 

polynomial functions for each of the flat sizes are also presented in Figure 6.1 for comparison. 

A close examination of all the polynomials obtained for different flat size in Figure 6.1 

further reveals that there exist a trend for the coefficients of v3, v2 and v as a function of flat size. 

These coefficients of v3, v2 and v as a function of flat lengths are shown in Fig. 6.2. Figures 6.2 

(a) to (c) show each of these coefficients along with a third order polynomials that can represent 

the trend for the change in each of the coefficients as a function of flat size (Lf). In order to 

incorporate the effect of flat size within the expression for acceleration as a function of speed, 

the fist, second and third coefficients in Equation 6.1 are replaced by the polynomials of Lf 

obtained from Figures 6.2 (a), (b) and (c), respectively. In doing so, the final expression for the 

peak acceleration as a function of velocity, v for different flat size can be predicted using:  
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Apeak=(2.60e-9*Lf
3-4.62e-7*Lf

2+2.42e-5*Lf–3.7e-4)*v3+(-5.25e-7*Lf
3+9.60e-

5*Lf
2 - 0.005*Lf + 0.081)*v2 + (2.34e-5*Lf

3 -0.0044*Lf
2 + 0.25*Lf - 3.98)*v 

(6.2)  

where, Apeak is the peak acceleration due to a wheel flat in g’s, Lf is the wheel flat length in mm, 

and v is the vehicle speed in km/h.  

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Lf=30 mm
Lf=45 mm
Lf=60 mm
Lf=70 mm
Lf=80 mm
Poly. (Lf=30 mm)
Poly. (Lf=45 mm)
Poly. (Lf=60 mm)
Poly. (Lf=70 mm)
Poly. (Lf=80 mm)

Vehicle speed (km/h)

Pe
ak

 w
he

el
 a

cc
el

er
at

io
n 

(g
's

)

 

Fig. 6. 1:  Relationship between the speed of the vehicle, peak wheel acceleration and their 

corresponding third order polynomials for different flat lengths for fully loaded condition. 

In order to examine the effectiveness of Equation (6.2) obtained using compound 

polynomials, it is utilized to obtain the peak acceleration as a function of speed for different flat 

sizes and compared with the best fit lines derived from simulations in Figure 6.1. These results 

presented in Figure 6.3 show that although there is slight difference for some flat sizes, the 

percentage difference is negligibly small. In order to improve the results, further attempts were 
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made using higher order polynomials. The results, however, showed that improvement is 

negligible for the complexity added by introducing higher order polynomials. 

The Equation (6.2) thus established above can be readily used to estimate the flat length Lf, 

knowing the vehicle forward speed, v, for a fully loaded freight train. When the flat length is 

known, the flat depth can be easily identified by their relationship as given by Eqn. (3.51). 
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Fig. 6. 2: The relationships between the coefficients of the polynomials obtained from best fit 

lines in Figure 6.1 as a function of flat length along with their representation by a third order 

polynomial, (a) coefficient of v3; (b) coefficient of v2; (c) coefficient of v. 
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Fig. 6. 3:  Comparison of best fit peak acceleration generated by simulation (Figure 6.1) with 

those predicted using Equation (6.2) as a function of speed for different flat lengths. 

A modern railway freight train typically may consist of over 100 cars, each with four 

wheelsets.  Such a train will require 800 sensors or accelerometers simultaneously being 

monitored. It is therefore desirable to minimize the costs of sensors and processors. One further 

attempt is thus made to simplify the Equation (6.2) by reducing the number of coefficients for 

the flat size. For this the results in Figure 6.2 are repeated using a second order polynomial rather 

than the third order used earlier. These results showing comparison of the coefficients as 

function of flat length with approximation by a second order polynomial are presented in Figure 

6.4. Similar to Equation (6.2), replacing the three coefficients in Equation (6.1) by flat size 

polynomial of Figure 6.4 (a) to (c), a simplified equation for acceleration can be established as:  
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Apeak =(-3.37e-8*Lf
2 + 1.857e-6*Lf - 1.184e-6)*v3 + (9.055e-6*Lf

2 - 6.112e-4*Lf 

+ 8.437e-3)*v2 +( -5.198e-4*Lf
2 + 0.0486*Lf - 0.732)*v 

(6.3)  

where, Apeak is the peak acceleration due to a wheel flat in g’s, Lf is the wheel flat length in mm, 

and v is the vehicle speed in km/h.  

The simulated relationships between the vehicle speed and the peak wheel acceleration 

expressed by the best fit line as shown in Figure 6.1 and those predicted using Equations (6.3) 

are shown in Figure 6.5 for a wheel load of 103 kN. These results when compared to those 

presented in Figure 6.3 reveal noticeable superiority of Equation (6.2) over that of (6.3) and thus 

use of Equation (6.2) is recommended for the development of smart wheelset concept.  
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Fig. 6. 4:  The relationships between the coefficients of the polynomials obtained from best fit 

lines in Figure 6.1 as a function of flat length along with their representation by a second order 

polynomial, (a) coefficient of v3; (b) coefficient of v2; (c) coefficient of v. 
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Fig. 6. 5: Comparison of best fit peak acceleration generated by simulation (Figure 6.1) with 

those predicted using Equation (6.3) as a function of speed for different flat lengths. 

The results presented thus far in this section towards the development of smart wheelset for 

freight trains consider response acceleration as vehicle speed is changed while the vehicle weight 

represent a fully load car. It is, however, known that the axle load also plays a very significant 

role on the magnitude of impact loads generated due to wheel flats.  It is thus expected that the 

load will also strongly influence the acceleration responses. For a smart wheelset to be useful, it 

must also be effective at all wheel loads. This will introduce additional challenge in the 
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development of smart wheelset not only because of the effect of load but also due to difficulty in 

determining the static axle load at each wheel. The following section examines the issues of 

wheel loads. 

6.3. FORMULATION OF INDICATOR AS A FUNCTION OF LOAD                   

During the operation of a freight car, its load can fluctuate from empty car to the fully loaded 

condition. For a given freight car, the axle or wheel loads corresponding to empty as well as 

when fully loaded condition are well defined or can be assumed to be a known parameter.  Since 

the axle load must be taken into account in the formulation of model for smart wheelset, it is 

suggested that the model only consider either empty or fully loaded scenario.  This will simplify 

the design of the processor significantly while limiting the capability of smart wheelset to detect 

defects only when operating under those conditions. Such approach is reasonable since 

determination of wheel load at other loading conditions will be difficult. It is also reasonable to 

assume that a freight train will operate more frequently when either empty or fully loaded.  

Similar to the smart wheelset developed in section 6.2 for fully loaded condition, the 

procedure is repeated here in order to develop a new relationship for an empty car. Literature 

review shows that the variation in wheel load is in the range of 34.325-117.68 kN in Sweden 

[17], and 3.11-146.8 kN in Canada [8]. In this study, a fully loaded car is assigned a static wheel 

load of 103 kN and was the parameter used in section 6.2. For an empty car, a static load of 5 kN 

will be assigned for each wheel. These are in line with load parameters commonly used in the 

literature [8, 9, 17].  

Similar to section 6.2, simulations are further carried out, for an empty car load in order to 

establish the relationship between the peak wheel acceleration, vehicle speed and wheel flat 

length. Figure 6.6 shows the simulated relationship between the vehicle speed and peak 
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acceleration at the wheel bearing location of the wheel with a flat for different flat sizes. These 

results show that for very low static wheel loads, the dynamic response is significantly more 

complex than those predicted for very high loads. In these cases, there is more than one peak that 

can be attributed to natural frequencies of the vehicle and vehicle–track systems when the loads 

are low. These cases further show that the peak acceleration has a decreasing tendency at very 

high speeds, which is lower and more significant for smaller flat lengths. 
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Fig. 6.6:  Relationship between the speed of the vehicle, peak wheel acceleration and their 

corresponding fourth order polynomials for different flat lengths for empty car. 

In order to account for such variations, the best fit of these trends are obtained using a fourth 

order polynomials instead of third order used for fully loaded cars in Section 6.2. These best fit 
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lines are also presented in Figure 6.6 for direct comparison with the simulated results.  As an 

example, the polynomial generated for flat length of 60 mm, the fourth order polynomial 

function for empty car wheel can be expressed as: 

           Y = -5.68e-8*v4 + 2.03e-5*v3 - 0.003*v2 + 0.25*v     (6.4) 

where, Y is the peak wheel acceleration in g’s and v is the vehicle speed in km/h.  

The coefficients of v4, v3, v2 and v in the best fit line for each of the curves representing a flat 

size in Figure 6.6 are next examined in order to establish a trend. For this the coefficients are 

plotted as a function of flat size in Figure 6.7. The best fit lines for each of these coefficients are 

next expressed using four different third order polynomials.  These results are shown in Figures 

6.7 (a) to (d).  The third order polynomials are finally used to replace the coefficients in Equation 

(6.4) which yields a relationship between the peak wheel acceleration, vehicle speed and wheel 

flat length for empty car and is expressed as: 

Apeak=(1.02e-11*Lf
3 - 1.72e-9*Lf

2 + 8.91e-8*Lf - 1.38e-6)*v4 +(-2.84e-9*Lf
3 + 

4.87e-7*Lf
2 - 2.56e-5*Lf + 4.13e-3)*v3 +(2.38e-7*Lf

3 -4.2e-5*Lf
2 + 2.22e-3*Lf - 

0.038)*v2 + (-5.64e-6*Lf
3 + 9.93e-4*Lf

2 - 0.053*Lf + 1.05)*v 

(6.5) 

where, Apeak is the peak acceleration due to a wheel flat in g’s, Lf is the wheel flat length in mm, 

and v is the vehicle speed in km/h.  
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Fig. 6. 7: The relationships between the coefficients of the polynomials obtained from best fit 

lines in Figure 6.6  as a function of flat length along with their representation by a fourth order 

polynomial: (a) coefficient of v4; (b) coefficient of v3; (c) coefficient of v2; (d) coefficient of v. 
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Similar to the fully loaded condition of the vehicle, if the peak wheel acceleration and vehicle 

speed are known, we can easily find the wheel flat length from Eqn. (6.5) for operation of an 

unloaded car. Figure 6.8 shows the relationships between the vehicle speed and the peak wheel 

acceleration obtained by the best fit line of simulations as shown in Figure 6.6, and the 

compound polynomial derived in Equation (6.5).  The results show the effectiveness of the 

compound equation in predicting the peak acceleration for variation of speeds and flat sizes for 

empty operation. It is, however, easy to foresee that the effectiveness of Equation (6.2) to predict 

flat size of a fully loaded car will be superior to that of Equation (6.5) for prediction of flat size 

on an unloaded wheel. This is due to the fact that multiple peaks are generated for empty cars 

which will require higher order polynomial for generating better best fit lines. The results 

generated using Equation (6.5) presented in Figure 6.8 clearly cannot predict these peaks and 

may not be accurate in predicting flat size from the peak acceleration levels. 

 In order to overcome this limitation, polynomials with sixth order are considered in order to 

represent the relationship between the peak wheel acceleration and vehicle speed. The results 

obtained with sixth order polynomials are shown in Fig. 6.9. It can be seen that sixth order 

polynomials can more accurately represent the actual peak wheel acceleration as a function of 

velocity for only low flat sizes.  On the other hand, it fails to predict the peaks accurately for 

larger flats when multiple peaks are generated.  It is, thus, logical to consider fourth degree 

polynomials to represent actual relationship between the peak wheel acceleration and vehicle 

speed, as it is shown in Fig. 6.8.        
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Fig. 6. 8: Comparison of best fit peak acceleration generated by simulation (Figure 6.6) with 

those predicted using Equation (6.5) as a function of speed for different flat lengths. 
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Fig. 6. 9: Relationship between the speed of the vehicle, peak wheel acceleration and their 

corresponding sixth order polynomials for different flat lengths for empty car. 

6.4.   FINAL PROPOSED MODEL FOR SMART WHEELSET  

As presented in the previous sections, acceleration responses are the simplest among the 

different response variable that can be used for detecting wheel defects. It is also reasonable to 

assume that a freight train will operate either empty or fully loaded conditions at most of the 

times. Therefore the smart wheelset formulations presented in the previous sections can be 

practically implemented for detection of wheel flats. The procedure will involve selecting the 

appropriate equation based on the loading condition being either empty or fully loaded. Based on 

the present investigation and parameters used for the vehicle, the proposed prediction models 

are: 
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For empty condition:   

Apeak=(1.02e-11*Lf
3 - 1.72e-9*Lf

2 + 8.91e-8*Lf - 1.38e-6)*v4 +(-2.84e-9*Lf
3 + 

4.87e-7*Lf
2 - 2.56e-5*Lf + 4.13e-3)*v3 +(2.38e-7*Lf

3 -4.2e-5*Lf
2 + 2.22e-3*Lf - 

0.038)*v2 + (-5.64e-6*Lf
3 + 9.93e-4*Lf

2 - 0.053*Lf + 1.05)*v 

and,  

For fully loaded condition: 

Apeak= (2.60e-9*Lf
3- 4.62e-7*Lf

2 + 2.42e-5*Lf – 3.7e-4)*v3 + (-5.25e-          

7*Lf
3+9.60e-5*Lf

2 - 0.005*Lf + 0.081)*v2 + (2.34e-5*Lf
3 -0.0044*Lf

2 + 0.25*Lf - 

3.98)*v 

(6.6) 

 

 

 

 

 

(6.7) 

where, Apeak is the peak acceleration due to a wheel flat in g’s, Lf is the wheel flat length in mm, 

and v is the vehicle speed in km/h.  

In the above equation, if we know the peak wheel acceleration due to a flat that can be 

measured by an accelerometer we can easily obtain the wheel flat length knowing the velocity of 

the vehicle. For example, if an empty train is moving at a speed of 80 km/h and the repeated 

peak acceleration measured by an accelerometer on a wheel bearing is 7.9 g, the length of the flat 

can be obtained from Eqn. (6.6) as 60 mm.  

Similarly, if a fully loaded train is moving at a speed of 80 km/h and the repeated peak 

acceleration measured by an accelerometer on a wheel bearing is 40.3 g, the length of the flat can 

be obtained from Eqn. (6.7) as 60 mm. It should be noted that for each peak acceleration value, 

Eqns. (6.6) and (6.7) will give three flat lengths out of which one will be positive and two other 

will be negative. As wheel flat length cannot be negative, the positive value will be used as the 

predicted flat size. Once the flat size is determined, the processor can be designed to further 

determine if and when the wheel should be maintained or replaced based on existing guidelines.   
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6.5. SUMMARY 

This chapter is devoted for development of a smart wheelset for detection of wheel flats from 

the relationship between the peak wheel acceleration, vehicle speed and flat sizes. Two different 

load conditions are considered assuming that the vehicle will operate on either empty or fully 

loaded conditions. The influences of vehicle speeds on the nature of peak impact accelerations 

are evaluated in 0-140 km/h speed range, which covers the maximum allowable speed of a 

freight car in Canada. The range of flat is chosen in accordance with the threshold values for 

wheel removal by different railway organizations, such as American Association of Railroad 

(AAR), Transport Canada, and Swedish Railway. 

In this chapter, the effects of speed on peak wheel acceleration due to different flat sizes have 

been investigated for two common vehicle loading conditions. The models for smart wheelset are 

based on curve fitting of simulated results as a function of vehicle speed. A further curve fitting 

for the coefficients lead to a single compound equation that relates peak acceleration, velocity 

and flat length for either empty or a fully loaded condition of the vehicle. By using these 

relations, it is easy to identify the flat size developed at the wheel surface by knowing the peak 

wheel acceleration developed at the wheel with defects. Two numerical examples are given in 

order to show how to find the flat size from a knowledge of the peak wheel acceleration for a 

given vehicle speed. The effects of using different order polynomials for generating the final 

equation are also presented and discuss in this chapter. The development of a MEMS based 

accelerometer in order to detect the wheel flat automatically is further presented in next chapter. 
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CHAPTER 7 

MODELING OF A MEMS BASED ACCELEROMETER FOR AUTOMATIC 

 DETECTION OF WHEEL FLAT 

7.1 INTRODUCTION  

As described in chapter 1, wheel flat is the most common type of wheel defect encountered 

by railway industry. During sliding of the wheel on the rail, the part of the wheel tread could be 

removed causing a flat surface to form on the wheel profile. This surface irregularity causes 

impact loads on the rail and track structure as the wheel rolls. A damaged bearing that seizes can 

also cause skidding. Extreme flat wheels produce an audible "clank-clank" noise, due to the flat 

surface impacting the rail with each turn. This impact load induces high frequency vibration of 

the track and the vehicle components [183]. It has been suggested that excessive magnitude of 

the impact load may even shear the rail [7].  

With continuing increases in the in the axle loads and operating speed, the wheel flats are 

becoming increasingly common. The high magnitude of impacts due to wheel flats, whether 

single or multiple, not only induce high magnitude impact force and stress on vehicle 

components but also to the rails and the sleepers [13, 15]. Wheel flats thus affect track 

maintenance and the reliability of the vehicle’s rolling elements [130]. In addition to safety and 

economic considerations, these defects reduce passenger comfort and significantly increase the 

intensity of noise [120]. The high impact forces from a flat wheel cause stress in the rail, and in 

extreme cases can break the track or cause the wheel to jump off the track, resulting in a 

derailment. The contact forces are quite high; therefore, damage and wear are consistently 
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relevant, mainly due to the great weights involved in the rail traffic and to the hardness of rail 

and wheel materials.  

It is also clear that the continuous repetitions of impacts on rail, together with the high forces 

involved, cause rapid deterioration of both rolling and fixed railway equipments. If ignored or 

underestimated, the defects will wear out materials up to the breakdown. Various methods have 

been proposed for detecting flat wheels. One method is to employ inspectors to listen to the 

trains as they move through a particular location. Some flat wheels are found through routine 

inspections when the cars are being serviced. A wide range of sensors has been proposed for 

detecting flat wheels. These employ a range of technologies from optical systems that gauge the 

wheels in real time to sensors that look for vibrations and stress. 

From the review of the relevant literature as discussed in chapter 1, it is evident that 

considerable efforts have been made to detect the presence of flats in the wheel. However, all 

these detection techniques utilize the railway track to mount the sensors, which requires the train 

to pass through that particular section of the rail in order to investigate the wheel flat. A train in 

operation that needs prompt investigation may not be possible by the present techniques i.e. 

continuous monitoring of all the wheels for detection of the flat is not possible. Furthermore, the 

present techniques require huge connections of wires to transfer the data from the test section to 

analysis center. One of the challenges for sensors is the need to operate remotely in harsh 

environments with exposure to wide temperature ranges as well as rain, snow, slush, dirt and 

grime.  

The aim of this study is to design a MEMS based sensor that can be placed on a wheel 

bearing that will enable to detect the wheel defect continuously. This MEMS based 

accelerometer can sense and transmit the peak acceleration due to wheel flat automatically in 
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terms of electrical signal for further analytical study. The three-dimensional coupled railway 

vehicle-track developed in chapter 3 is employed in this section in order to investigate the 

acceleration level at the wheel in presence of a single wheel flat. An idealized haversine wheel 

flat with the rounded corner is included in the wheel-rail contact model. A commercially 

available software COMSOL Multiphysics is employed in order to validate the developed 

accelerometer model. The simulated responses are compared with the results obtained from the 

calculation. Finally, the stability and maximum stress level of the accelerometer is estimated in 

order to ensure the safe operation of the sensor.  

7.2 MODELING OF THE VEHICLE, TRACK, AND WHEEL FLAT 

In order to design a MEMS based sensor to detect the acceleration caused by the presence of 

wheel flat, it is required to know first the acceleration level that the sensor should able to detect. 

The three-dimensional coupled vehicle-track model developed earlier in chapter 3 together with 

wheel flat model and nonlinear Hertzian contact model are employed here.  The dynamic model 

used in this study to investigate the vehicle-track response in vertical direction consists of a 17- 

DOF vehicle model coupled with a 2-layer three-dimensional track system.  

The detailed descriptions of the mathematical model combined with the equations of motion 

for vehicle and track system are given in chapter 3. The final forms of the equations for vehicle 

and track subsystem are as follows: 

Vehicle subsystem: V V V V V V VTM d C d K d F+ + =                    (7.1)  

Track subsystem: T T T T T T VTM d C d K d F+ + =                        (7.2)  

Wheel-rail interface subsystem: VTF = 3/2( )HC Z∆                  (7.3)  
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  where, VM , VC and VK are mass, damping and stiffness matrices of the vehicle subsystem, 

respectively. Vd , Vd , Vd  are displacement, velocity and acceleration vectors of the vehicle 

subsystem, respectively. VTF  is the interface force vector between the vehicle and track 

subsystem. TM , TC and TK are  mass, damping and stiffness matrices of the track subsystem 

respectively. Td , Td and Td  are displacement, velocity and acceleration vectors of the track 

subsystem respectively. Z∆ is the wheel-rail overlap in the vertical direction and HC  is the 

Hertzian constant. 

 The equations of motion of the vehicle system described by Eqn. (7.1) and of the track system 

shown by Eqn. (7.2) together with the Hertzian nonlinear contact model in Eqn. (7.3) describe 

the vertical dynamics of the coupled vehicle-track system. All these equations of motion are 

simultaneously solved together in order to obtained the acceleration level of the wheel in the 

presence of a flat. 

7.3 DYNAMIC ANALYSIS OF WHEEL IN THE PRESENCE OF A FLAT 

In order to design of an accelerometer, the peak acceleration of the wheel in the presence of a 

flat is required to be known for selection of the operating range of the accelerometer. Thus, the 

coupled vehicle-track system developed at the previous is simulated for a set of given 

parameters. In the simulation of the wheel-rail interaction, the contact is modeled with the 

consideration of the wheel lift-off from the rail. The nominal vehicle, track and flat parameters 

used for the simulations are presented in Tables 7.1 and 7.2.  
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Table 7. 1: Vehicle model parameters [8]. 

Notation Parameter Value 

cM  Car body mass  76150 kg 

tM  Bogie mass 1700 kg 

wM  Wheelset mass 1120 kg 

cxJ  Mass moment of inertia of the car body about X axis  95576 kg-m2 

cyJ  Mass moment of inertia of the car body about Y axis 726462  kg-m2 

bxJ  Mass moment of inertia of the bogie about X axis 1600 kg-m2 

byJ  Mass moment of inertia of the bogie about Y axis 760 kg-m2 

wxJ  Mass moment of inertia of the wheelset about X axis 420.1 kg-m2 

PK  Primary suspension stiffness 7.88×105 kN/m 

PC  Primary suspension damping 3.5 kN-s/m 

SK  Secondary suspension stiffness 5.32×103 kN/m 

SC  Secondary suspension damping 70 kN-s/m 

cl  Semi-longitudinal distance between bogies 5.18 m 

bl  Semi-longitudinal distance between wheelsets in bogie  1.25 m 

sl  Semi-lateral distance between  secondary suspensions 0.80 m 

pl  Semi-lateral distance between  primary suspensions 0.80 m 

R  Wheel radius 0.475 m 

HC  Nonlinear Hertzian spring constant 87×109 N/m3/2 
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Table 7. 2: Track model parameters [4, 17, 105] 

 

* PZ and bZ are the compression of the pad and ballast, respectively (in meter), 1η =.25 and 2η =1, 

1
s r

s r

M Mm
M M

=
+

 and 2 s rm M M= + , 0k =115.2 MN/m and b=7.49/mm. [105], 

Notation Parameter Value 

rm  Rail mass per unit length 60.64 kg/m 

E  Elastic modulus of the rail 207×109 N/m2 

 I Rail second moment of area 2.94×10-5  m4 

A Rail cross sectional area 7.77×10-3  m2 

G  Shear modulus of the rail 8.1×109 N/m2 

rk  Timoshenko shear coefficient of the rail 0.34 

1k  Shear viscosity coefficient of the foundation 666870 N 

sM  Sleeper mass 250 kg 

pK  Railpad stiffness (nonlinear) * 0
PbZk e MN/m 

pC  Railpad damping (nonlinear) * 1 1 Pm Kη kN-s/m 

bK  Ballast stiffness (nonlinear) * 8 222.75 2.6 10 bZ+ × MN/m 

bC   Ballast damping (nonlinear) * 2 2 bm Kη  kN-s/m 

L  Length of the rail beam 60 m 

lS  

N 

Sleeper spacing  

No. of sleepers 

0.6 m 

100 
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The time histories of the acceleration of the front wheel of the vehicle obtained from the 

simulation are shown in Fig. 7.1 for three different vehicle forward speeds ( v = 50, 90 and 130 

km/h), which covers the speed range of a freight car in Canada [9]. A wheel flat of 50 mm length 

and 0.35 mm depth is considered that meets the wheel replacement criteria set by Association of 

American Railway (AAR) [139] and Transport Canada [1]. The static load acting on the wheel is 

103 kN, which is the nominal load for a freight car system in North America [120]. The figure 

shows that the peak acceleration of the wheel can be reached as high as 46.86 g in the presence 

of a single haversine wheel flat, when the speed of the vehicle is 130 km/h. After the first peak, 

the time history of acceleration shows several peaks which die out after about 17.1 ms at a 

vehicle speed of 130 km/h. Thus, an accelerometer capable of receiving this peak acceleration 

within the fraction of a second should be designed. 
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Fig. 7. 1: Acceleration time history of left wheel in the presence of a single wheel flat ( fL = 50 

mm; fD = 0.35 mm) at a speed of (a) 50 km/h; (b) 90 km/h and (c) 130 km/h. 

7.4 DESIGN OF THE ACCELEROMETER 

  It is apparent from the above section that the proposed accelerometer needs to sense the 

acceleration in the range of ±50 g in vertical direction while able to maintain a 10 kHz frequency 
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response. The accelerometer should also able to survive a maximum shock of ±150 g in case of 

extreme condition. The design’s layout should fit within an area of 1 cm2. In order to achieve the 

desired output, accurate design of the each elements of the accelerometer is required. In this, the 

analyses of the design of the various components are presented in order to satisfy the design 

requirements. The design presented in this project geared towards the use of a multi-user 

microfabrication facility/process known as PolyMUMPS. The decision to design the 

accelerometer with this predefined process in mind was tied down to the low costs involved 

when using such multi-user facilities and also due to the very high reliability of this 

microfabrication process, which has turned out over 69 different fabrication runs with 

outstanding success [184]. 

The PolyMUMPs process, started in 1992, is a surface micromachining process containing a 

series of coating and etching procedures [184]. It contains three-layers of doped polysilicon, 

which work as both structural and conducting layers. The anchor polysilicon layers are separated 

by silicon dioxide layers that acted as sacrificial layers. In addition, there is a silicon nitride layer 

at the bottom for isolation and metal on the top for making electrical contacts. This is the most 

popular process that can be used for fabricating variety of MEMS designs. Other more complex 

processes involving up-to 5 structural layers are also available (such as the SUMMiT IV process 

from SANDIA National labs). However, the extra layers are not necessary for this accelerometer 

design.  

7.4.1  Spring 

In an accelerometer, the displacement of the proof mass is restricted by the spring force. The 

displacement of the proof mass will compress one spring and stretch the other until the spring 

forces cancel the force due to acceleration. Thus, the combined spring constant of the springs 
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will determine the amount of proof mass displacement and hence the signal generated by the 

sensing capacitors. Therefore, a suitable spring parameter is required to choose for accurate 

prediction of the accelerometer output. In MEMS, the most convenient way to make a spring is 

to use a folded structure as shown in Fig. 7.2 [185]. 

 

Fig. 7. 2: Schematic diagram of a folded spring made of polysilicon. 

The spring is composed of four beams made of polysilicon layers. The “b” marked area in 

Fig. 7.2 is the anchor, which fixes the spring on to the substrate. The central plate (proof mass) is 

connected from the “a” marked area to the other symmetrical spring. The spring constant (KC) 

determined the extent of displacement of the proof mass and can be calculated by the formula in 

Equation (7.4) as given in [185]. 

34

3 3
1 2
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6 (2 ) (2 )
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π
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+
 

(7.4)  

where, EP is the Young’s modulus of polysilicon, W is the beam width, H is the beam thickness 

and L1, L2 are the beam lengths as shown in Fig. 7.2. From the above formula, it can be seen that 

the spring constant is strongly dependent on the lengths (L1 and L2), if H and W are fixed. Other 

important parameter in the design of an accelerometer is the proof mass (m) since the spring 

constant and proof mass determine the resonant frequency (ω0) as given in Equation (7.5): 
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0 2 CKf
m

ω π= =  or, 2
0

CKm
ω

=                                                                                                                           
(7.5)  

The resonant frequency determines how fast the accelerometer can responds to a changing 

acceleration or the bandwidth of operation. This study required the bandwidth to be 

approximately 700 Hz and it is necessary to set the resonant frequency to be higher than the 

bandwidth to avoid unstable operation [186]. In the present design, the resonant frequency was 

set to be about 15 times the bandwidth or 10 kHz. For simplicity, lengths L1 and L2 are assumed 

to be the same and the dimensions of W and H are also taken to be the same as the polysilicon 

layer thickness (2 μm). In order to estimate the proof mass that gives the resonant frequency of 

about 10 kHz, the total spring constant due to the two springs (2KC) using Eqn. (7.4) is first 

calculated. Thereafter, using the resonant frequency and the calculated spring constants, the mass 

of the proof mass are determined for different sets of L1 and L2. Several iterations are carried out 

in order to find out the mass of the proof mass. The analysis showed that in order to achieve 10 

kHz resonant frequency, it is necessary to have L1 = L2 = 150 μm and proof mass of 2.924×10-10 

kg. The total stiffness of the accelerometer (2KC) is obtained as 1.1545 N/m. 

7.4.2 Proof mass and electrodes 

The proof mass included the masses of the central plate and all the moving electrodes as 

illustrated in Fig. 7.3. In order to perform the self-test function, the whole structure is separated 

into two parts, the sensing region, and the self-test region. 
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Fig. 7. 3: Schematic diagram of proof mass with sensing and self-test electrodes. 

(i)Design of the electrodes 

Sensing region is responsible for detecting motion when the acceleration is applied. 

According to the previous calculation, the proof mass including the central plate and all of the 

connected electrodes should be limited to about 2.924×10-10 kg. The attached finger-like 

polysilicon structure in the central plate is the sensing element. The moving and fixed fingers 

formed a parallel plate capacitor and the capacitance (C) can be estimated using Eqn. (7.6). 

0 0

ap

AC
g
ε

=          
(7.6)  

where, 0ε  is the permittivity, 0A is the total overlap area between all the fingers in the sensing 

region, and apg  is the separation between adjacent fingers. Since the changing capacitance is 

proportional to the area ( 0A ), in order to achieve higher signal it is necessary to increase the area 

or number of fingers. By setting the value of the capacitance to be about 100 fF, the number of 

Sensing electrodes 
Self-test electrodes 
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fingers required is found to be about 80. The parameters used in this estimation are summarized 

in Table 7.3. These electrodes can be placed on either side of the proof mass as illustrated in Fig. 

7.3. 

Table 7. 3: Parameters of electrodes attached to the center plate 

Parameters Electrodes design data 

Total length 176 μm 

Overlap length 141 μm 

Width 2 μm 

Depth 2 μm 

Gap between fingers 2 μm 

Permittivity 8.854 × 10-12 F/m 

Density of the polysilicon 2330 kg/m3 

  

In the self-test region, the design considerations are the same as that in the sensing region 

except for the applied voltages and number of electrodes. Approximately, 30% of the sensing 

electrodes (24) are selected for generating an internal electrostatic force for self-testing. These 

are located on both sides of the central plate and separated into 4 regions. Each region is made of 

6 electrodes and the dimensions are all the same as those found in Table 7.3. 

(ii)Design of the proof mass 

In order to achieve the required total mass (m), the dimensions of the central plate is 

determined by subtracting the mass of all the fingers (including the ones used for testing) and 

found to be 624 μm for length and 42.11 μm for width. The calculations of mass of the central 

plate and 104 electrodes are shown below. 
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3 -10624 42.11 2 2330 /   1.2167 10central C Cm V m m m kg m kgρ µ µ µ= = × × × = ×  

3 -10104 2 176 2 2330 /   1.7077 10fingersm m m m kg m kgµ µ µ= × × × × = ×  

-102.9243 10central fingersm m m kg= + = ×  

where, Cρ  and CV are the density and volume of the central plate, respectively. 

Force on the proof mass is achieved by applying a DC voltage to the self-test capacitor. The 

amount of force as a function of DC voltage can be estimated using the stored energy (WC) on 

the capacitor as followed: 

21
2CW CV=                (7.7)  

where, V  is the potential difference in Voltage .Using Eqn. (7.7), the electrostatic force F can be 

found as: 

2
0 0

22
C

ap ap

W A VF
g g

ε∂
= =
∂

     
(7.8)  

If one plate is free and the other one is fixed in the parallel capacitor, it would mean that the 

free plate could be driven by electrostatic force. The force controlled by voltage is inversely 

proportional to apg  and directly proportional to 2V . The force between each pair of movable and 

fixed electrodes is given by: 

2
0 0

22 ap

A VF
g

ε
=  

(7.9)  

Combining Hook’s law and Newton’s second law as well as the effective spring constant, one 

could compute the displacement of the proof mass under the conditions of self-test, and under 50 

g and 150 g of acceleration. 
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CF K x ma= =       (7.10)  

Using the total mass of the proof mass of 2.924×10-10 kg, the deflections under 50 g and 150 g 

are found to be 1.242 × 10-7 m and 3.73 × 10-7 m, respectively. The corresponding voltages 

required for achieving above displacements using the self-test capacitor can be estimated using 

Eqn. (7.8) and found to be about 4.37 V and 7.58 V, respectively. 

At this point, the preliminary design and operating parameters are set. These design 

parameters of the accelerometer are used to layout the design using COMSOL Multiphysics 

software as shown in Fig. 7.4. In addition to layout, COMSOL software is also used for finite 

element modeling of the designed software. COMSOL is then used to run simulations that took 

into account all the nonlinearities of the design and the results are used to perform analysis of the 

designed accelerometer. The 3-D views of the various components of the accelerometer are 

shown below in Figs. 7.5 to 7.7.  

7.5 SIMULATIONS AND RESULTS 

In order to perform a realistic simulation of the performance of the accelerometer, the 

boundary conditions of the 3-D model with the points of acting load are set up in COMSOL, 

where the COMSOL would perform the simulation depending on the various forces applied by 

the user. Since the proof mass activates the movement due to acceleration, the supplied force was 

also put on the central plate body and denoted as a force point in COMSOL. The simulated 

results would show displacements and stresses in vertical axis. According to the requirements 

described in section 7.4, the device should survive 150 g of acceleration. Although it is desired 

that measurements at this high acceleration level are not required, but it should survive such 

shocks. The easiest way to make sure that it works is to check whether the structure exceeds its 

stress limits under 150 g of acceleration. 
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Fig. 7. 4: Schematic view of the proposed accelerometer in COMSOL 

7.5.1 50 g Force 

The designed accelerometer is first analyzed under the force of 50 g acceleration applied on 

the proof mass. The simulations were carried out in COMSOL software. The simulated results 

are shown in Figs. 7.8-7.9. In Figs. 7.8-7.9, the amount of deflection is color coded with maroon 

being the highest deflection. The maximum deflection is found to be about 1.26×10-7 m. The 

highlighted view of the local area of the springs shows that the deflection is minimum near the 

anchors and increased gradually towards the center of the spring where the proof mass is 
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connected. This response is similar to the preliminary calculated result as presented in the 

previous. The difference between the preliminary calculations and the COMSOL simulations is 

about 1.5%.  

 

Fig. 7. 5: 3-D highlighted view of the folded spring of the accelerometer 

7.5.2 150 g Force 

Similar to the 50 g simulation, one could put the force of 150 g on the central plate. In this 

simulation, it is necessary to pay attention to stresses in the beams of the springs in addition to 

displacements. Because the connecting region of springs to proof mass displayed the maximum 

displacement, the COMSOL simulations were carried out highlighting these sections as shown in 

Figs. 7.10-7.11. The simulated results yielded displacement of about 3.76×10-7 m along the 

direction of the force (y direction). This is about 3 times larger than the displacement under 50 g 
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force. The calculated value is lower than the simulation by almost 1%. The maximum stress in 

the anchor is found as 9.87 MPa as shown in Fig. 7.12. This stress level is, however, far smaller 

than the material elastic limit of 130 GPa.  

 

Fig. 7. 6: 3-D highlighted view of the moveable electrodes attached to the center plate  

7.6 FUNCTIONAL ANALYSIS 

7.6.1 Output voltage and displacement: 

The basic working principle of the accelerometer is based on the fact that under an external 

acceleration a proof mass is displaced a small distance, which changed the gap between the 

electrodes that behave as varying capacitors. The moveable electrodes are located between two 

fixed electrodes, which are biased using two voltage supplies with equal magnitudes and 
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opposite in direction. The device can be described by the following equivalent electrical circuit 

[185], as shown in Fig. 7.13, where the C1 and C2 are variable capacitors. 

 

Fig. 7. 7: 3-D highlighted view of the fixed electrodes of the accelerometer  
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Fig. 7. 8: Displacement of proof mass along with moving electrodes under 50 g force 
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Fig. 7. 9: Expanded view of the spring deflection under 50 g force 
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Fig. 7. 10: Displacement of proof mass along with moving electrodes under 150 g force 
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Fig. 7. 11: Expanded view of the spring deflection under 150 g force 
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Fig. 7. 12: Stress in y-direction under 150 g force 
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Fig. 7. 13: Equivalent electrical circuit of the accelerometer  

The output voltage (Vo) of the circuit in Fig. 7.13 can be written as [185]:   

1 1 2

1 2 1 2

(2 )o s s s
C C CV V V V

C C C C
−

= − + =
+ +

 
(7.11)  

     The capacitances C1 and C2 are not fixed due to the motion of the electrodes attached to the 

proof mass. When the moveable electrodes are at rest position, the two capacitances are equal 

and the output voltage is zero. However, under acceleration, the movable electrodes will displace 

and the gaps between fixed and movable electrodes will change by amount of δx as shown in 

Fig. 7.14. 
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Fig. 7. 14: Displacement of moveable electrode due to acceleration. 

Thus, the output voltage as a function of displacement (δx), original gap (gap) and input voltage 

magnitude (Vs) can be written as: 

1 apg g xδ= −  and 2 apg g xδ= +  (7.12)  

2 1

1 2 1 2 1 2

2 11 2

1 2 1 2

o s s s

g gA A
C C g g g gV V V VA A g gC C

g g g g

ε ε

ε ε

−
−

−
= = =

++ −
 s

ap

x V
g
δ

=    

(7.13)  

The relationship between displacement and acceleration can be written as: 

2
0CC

ma a ax KK
m

δ
ω

= = =         
(7.14)  

 Hence, the relationship between the output voltage and the applied acceleration can be obtained 

as: 

Direction of 
displacement 
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o s s
ap ap

x aV V V
g g
δ

ω
= =    

(7.15)  

The oV is then calculated using the design parameters for a given acceleration (10 to 50 g) and the 

results are shown in Fig. 7.15. In addition, the output voltage is also estimated using the 

simulated displacement values obtained from COMSOL software. From the Fig. 7.15, it can be 

seen that the calculated and simulated output voltages are analogous. The linear relationship, as 

shown in Fig. 7.15, is resulted from the linear dependence of output voltage with displacement. 

 

Fig. 7. 15: Comparison of calculated and simulated output voltages. 

7.6.2 Stability and sensitivity analysis: 

The purpose of the stability analysis is to check whether the movable electrodes will remain 

within the stable equilibrium range when the various accelerations are applied. If the net force 

approaches an unstable point, the electrodes would have the possibility to hit the fixed structures 

and/or brake away. At pull-in voltage, the displacement is equal to gap/ 3 and the magnitude of 

the pull-in voltage can be obtained as [185]: 
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=     

(7.16)  

Using Eqn. 7.16, it is found that the pull-in voltage of the proposed accelerometer is obtained as 

33.1V. Thus, the input DC voltage of 7.58 V to achieve 150 g during the self-test will not push 

the accelerometer into the unstable region. 

The sensitivity of the accelerometer for a given acceleration can be estimated as [185]: 

2
0

o s
ap

aV V
g ω

=   
(7.17)  

Using the design parameters, the sensitivity of the accelerometer is found to be about 7.2 mV/g. 

This corresponded to an output voltage of 0.36 V at 50 g acceleration. It can be seen from Eqn. 

(7.17) that the sensitivity is strongly dependent on the resonant frequency, which is further 

depended on the required bandwidth of operation. 

7.7 SUMMARY 

The characteristic of the impact acceleration due to a haversine wheel flat is investigated by a 

three-dimensional vehicle model supported on the three-dimensional 2-layer track. In the design 

of the accelerometer, two main functions are performed. Initially, the sensing region is designed 

to measure the acceleration, which produces a change in displacement of the proof mass. This, in 

turns, changes the distance between electrodes and produces a change in capacitance that can be 

easily measured. Finally, a self-test region is designed within the accelerometer to facilitate the 

self-tests/diagnostics of each individual accelerometer. 

Finite element simulations are performed and their results are in very good agreement with 

the calculated results. The results from simple calculations vary 1% to 2% from the highly 

complex and time consuming simulations. 
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The current design resulted in a very high spring force, which is strong enough to prevent the 

movable electrodes from hitting the fixed electrodes under the largest foreseeable accelerations 

(150 g). This is favorable for stability, as the current design will never reach the unstable region 

of operations.  
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CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS  

8.1 INTRODUCTION 

As set out in chapter 1, the overall objective of the present dissertation to study the railway 

wheel-rail impact forces and accelerations caused by single and multiple wheel flats through 

developing a comprehensive three-dimensional railway vehicle-track model that considers the 

pitch and roll motion of the car body and bogie on overall wheel-rail impact responses. The 

specific objectives include: analysis of the two-parameter Pasternak foundation under moving 

load and moving mass; develop a comprehensive three-dimensional 17-DOF railway vehicle and 

three-dimensional nonlinear two-layer track model based on Timoshenko beam theory; natural 

frequency analysis of railway vehicle and track systems; coupling of the vehicle and track 

interaction model through nonlinear Hertzian contact spring; carry out simulations to determine 

wheel-rail impact forces and accelerations for various operating and wheel flat parameters; 

develop a smart wheelset that can detect its flat automatically; and modeling and analysis of a 

MEMS based accelerometer for automatic detection of the wheel flats.  

Modal analysis method incorporating the MATLAB predefined function was applied to solve 

coupled ordinary and partial differential equations representing the vehicle and track components 

motions, respectively. A thorough investigation of wheel-rail impact force due to a single wheel 

flat was conducted considering both linear and nonlinear track parameters. The results obtained 

from the developed mathematical model were compared with the reported analytical and 

measured data in the presence of a single wheel flat. Impact accelerations develop at both the 

defective wheel and flat-free wheel were investigated. The results obtained from the simulations 
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are employed to develop a smart wheelset. Based on the outcomes, some general and specific 

conclusions are drawn and a direction for future investigations is established. 

8.2 HIGHLIGHTS OF THE PRESENT WORK 

From the review of relevant literature, it was concluded that the accurate prediction of wheel-

rail impact forces and acceleration responses are mainly dependent on the accurate formulation 

of the vehicle-track model. The most common vehicle-track model used in such studies is a 

simple wheel that represents the vehicle moving on two-dimensional single- or double-layer 

track. The rail beam is usually modeled as a continuous Euler-Bernoulli beam, which does not 

consider the effect of rotary inertia of the beam cross section and beam deformation due to shear 

force. Although the presence of multiple flats within a wheel or different wheels in same or 

different axles have been widely noticed in practice, the vast majority of the efforts focus on the 

impact interactions due to a single flat only. The influences of multiple flats and their 

consequences have not been adequately quantified. Furthermore, under certain conditions, the 

pitch and roll motions of the car body and bogie could enhance the wheel-rail impact force 

caused by the wheel and rail irregularities, which has not been adequately investigated.  

 In this study, the effect of moving load and moving mass on a continuous one-or two- 

parameter finite or infinite beam is investigated. After that, a three-dimensional vehicle-track 

model is developed in order to incorporate pitch and roll motion of the bogie in overall wheel-

rail impact responses. The developed model can simulate the wheel-rail impact responses for 

both single and multiple flats within a wheel or wheelsets or within a bogie. The foremost 

contributions of the dissertation research are summarized below: 
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• Formulation of both one-parameter Winkler and two-parameter Pasternak 

foundation model in order to analyze the vibration of beam under moving load or 

moving mass with both finite and infinite length. 

• Formulation of a three-dimensional railway vehicle-track model in order to study 

the wheel-rail interactions in the presence of single and multiple wheel flats, while 

the contribution due to the vehicle pitch and roll motions are considered. 

• Formulation of a three-dimensional track system using two Timoshenko beams 

supported by discrete non-linear elastic supports, while the contribution due to the 

shear parameter of the rail beam is also considered. The natural frequencies of the 

developed three-dimensional vehicle-track model have also been investigated. 

• Validation of the developed model with the existing theoretical and measured data 

available in literature considering both linear and nonlinear properties of the railpad 

and ballast stiffness and damping. The validated model is employed to investigate 

the vertical dynamic wheel accelerations and wheel-rail impact forces induced by 

single and multiple wheel flats. 

• Evaluation of the impact accelerations arising from single as well as multiple wheel 

flats and investigation of the influences of one wheel flat on accelerations imparted 

at the interface of the adjacent wheel. 

• Development of a smart wheelset that can detect its defect automatically, and 

design and analysis of a MEMS based accelerometer. 

8.3 CONCLUSIONS 

The major conclusions drawn from the present research work are summarized below: 
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a) The study showed that both the moving load and moving mass have significant 

effect on the vibration of the beam. The study further revealed that moving mass 

has significantly higher effect on dynamic responses of the beam over the moving 

load for both displacement and bending moment responses. The simulation results 

for a single moving mass over two-parameter finite Pasternak foundation showed 

that the results obtained from the modal analysis method are comparable to those 

obtained from exact analytical method.  

b) This study with three-dimensional railway vehicle-track model showed that 

railway bogie pitch and roll motions have strong influence on peak wheel 

acceleration for all considered speed range, in case of multiple flats in phase. 

However, the car body pitch and roll motions do not have any effect on peak wheel 

acceleration with multiple flats in-phase condition. 

c) The study showed that nonlinear railpad and ballast model gives better 

prediction of the wheel-rail impact force than that of the linear model when 

compared with the experimental data. The study further showed that speed has 

significant effect on peak wheel-rail impact force for both linear and nonlinear 

railpad and ballast models. However, linear railpad and ballast predict higher peak 

wheel-rail impact forces for the selected speed range.  

d)  The study clearly showed that presence of wheel flat within the same wheelset 

has significant effect on the impact force, displacement and acceleration responses 

of that wheelset. This study further revealed that the effect of the transmitted force 

on the rear bogie due to the presence of the wheel flat within the front bogie is little 

of negligible which can be attributed to the low suspension spring stiffness. 
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e) This study showed that wheel flat on one side has influence on the wheel-rail 

interaction of other side. The magnitude of the peak impact accelerations largely 

depends on both length and depth of the wheel flats. 

f) When multiple flats are present within one wheel, wheel-rail impact load that 

arises at the position of second flat is mostly affected by the location of the first flat 

within the same wheel. The effects are significant when the locations of the flats are 

close to each other. 

g) This study further showed the development of a smart wheelset for automatic 

detection of wheel defects through the design and analysis of a MEMS based 

accelerometer.  

8.4 RECOMMENDATIONS FOR FUTURE WORK 

The present work provided significant insights on the issues associated with wheel-rail impact 

loads and impact accelerations in the presence of single and multiple wheel flats. Although this 

study clearly demonstrates reasonably accurate results compare to the experimental data, the 

potential usefulness and accuracy can be further enhanced upon some other more considerations.    

In view of the potential benefits of the present research, further detailed modeling and through 

investigations are required in order to improve accuracy of the prediction tools to ensure safe 

operation and low cost maintenance. A list of further studies that can be carried out with the 

developed model along with recommendations for model improvement is presented in the 

followings:  

• Although two-parameter Pasternak foundation can accurately represent the practical 

railway track model for investigating the dynamics of moving load and moving mass, 
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further studies with three-parameter Kerr model is required in case of non-cohesive 

soil foundation in order to study the dynamics of moving mass.  

• The developed three-dimensional vehicle-track model utilized nonlinear Hertzian 

single point contact model. This model is widely used in the study of vertical vehicle-

track interaction. However, this model assumes that contact occurs at wheel centre 

point that may not always accurate especially in case of defective wheel. Thus, a 

multipoint contact model that can accommodate the partial contact in the presence of 

wheel defect would be a better alternative to predict the wheel-rail interaction forces, 

especially in very high speed condition. 

• In this study, the developed model is validated with analytical and experimental data 

available in literature.  However, dedicated experiment to validate the present work 

will enhance the study, especially for multiple wheel flats. 

• In development of a smart wheelset, this study developed relationships between the 

wheel peak acceleration due to presence of flats, vehicle speed and flat sizes for two 

different wheel load conditions. Further studies with more wheel load conditions are 

required in order to cover wide variations of wheel load, especially for passenger rail. 

• In design of a MEMS based accelerometer, since PolyMUMPS provides three layers to 

construct the device and since only two layers (poly0 and poly1) are used in the current 

design, there is one more layer available to extend the accelerometer design. Future work 

is required to extend this accelerometer into a 3-axis design. Building the third axis on the 

same planar design space will require some innovation. 
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