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ABSTRACT

Formal Reliability Analysis using Higher-Order Logic Theorem Proving

Naeem Ahmad Abbasi, Ph. D.

Concordia University, 2012

Traditional techniques used in the reliability analysis of engineering systems

have limitations. Paper-and-pencil based analysis is prone to human error and simu-

lation based techniques cannot be computationally one hundred percent accurate.

An alternative to these two traditional approaches is modeling and analysis of relia-

bility of systems using formal methods based techniques such as probabilistic theorem

proving. Probabilistic theorem proving using higher-order logic can be used for mod-

eling and analysis of reliability of engineering systems provided a certain reasoning in-

frastructure is developed. The developed infrastructure can include random variables,

their probabilistic and statistical properties, and basic reliability theory concepts such

as survival and hazard functions. This thesis describes state-of-the-art research in re-

liability analysis using theorem proving. It also describes the main contributions of

this thesis which include: the formalization of statistical properties of continuous

random variables, the formalization of multiple continuous random variables and the

formalization of the basic notions of reliability that can be applied to single and mul-

tiple component systems. Engineering applications of the formalization are presented

that illustrate the usefulness of our formalization infrastructure. These applications

include reliability analysis of electronic system components such as a capacitor and

an underground power transmission cable. We also present the reliability analysis of

an automobile transmission using our higher-order logic formalization.
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To the best of our knowledge, for the very first time, the use of theorem proving

based infrastructure enables formal reliability analysis of engineering systems that is

computationally one hundred percent accurate and sound. The analysis is performed

using real and true random variables. We show that the results presented in this

thesis are general and can be applied to many reliability engineering problems.
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Chapter 1

Introduction

1.1 Motivation

If something can go wrong, it will - Murphy’s Law

European Journal of Applied Physics, 1995

The above statement, popularly known as the Murphys Law, is attributed to

captain A. Murphy of the United States Air Force who was involved in experiments

designed to study the effects of sudden deceleration on humans in the late 1940s.

Analogues of similar nature have been known to exist earlier than the 1940s in many

disciplines of engineering and applied science. They all highlight the fact that if there

are more than one ways to do something and one of which could be wrong, then some

one will eventually intentionally or un intentionally use the wrong method. This has

become a very serious problem in modern engineering designs and is motivating the

development of systematic and accurate methods, algorithms and tools.

Engineering systems are usually complex, involve a lot of detail, and operate

in unpredictable environments. In order to predict accurate behavior, often times
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it is necessary to build mathematical models that take into account unpredictable

behavior of the system and its environment. System function, system performance

and system trustworthiness is evaluated through system analysis. System function

analysis refers to the ability of a system to perform certain operations in a predefined

sequence in response to given stimuli. System performance analysis usually refers to

the completion of the function in a certain amount of time. For example, average

time taken to complete a certain operation. An important component of system

trustworthiness is its reliability. Reliability of a system is a measure of continuity of

service under specified conditions.

Probabilistic and statistical analysis enables us to answer questions about sys-

tem function, performance and reliability that cannot be answered using traditional

deterministic analysis techniques. For example, what is the probability of a failure

causing the system to shut down within N hours? or what is the expected size of

a message queue after X minutes? Engineering systems whose failure can result in

serious harm to humans, significant loss of revenue or both are called safety critical

systems. Examples of such systems can be found in health care, transportation, elec-

trical power transmission and distribution, communications, chemical, nuclear and

aerospace industries.

Traditionally, paper-and-pencil based approaches and computer simulations have

been used for the analysis of safety critical systems. Both of these techniques are un-

suitable for safety critical applications. This is due to the possibility of human error

in paper and pencil based analysis and the lack of accuracy in computer simulations.

In computer simulations, a trade-off between the accuracy of computations and the

simulation run time is often made. Moreover, modeling of true random behavior is

a challenge in computer simulations as computer generated random numbers are in

2



fact only pseudo random.

A fairly new development in the area of functional, performance and reliability

analysis is the formal analysis of systems using higher-order logic theorem proving.

In such formal analysis, first the system is described using an expressive logic, and

then its functional, performance and reliability properties are verified through rigorous

mathematical reasoning. Theorem proving is a formal verification technique in which

an equivalence or an implication relation between the implementation and the spec-

ification of a system is proved using mathematical reasoning. The theorem proving

approach can handle infinite systems; it can help establish properties of potentially

infinite systems, such as stacks, queues etc. This technique together with higher-order

logic has been extended to deal with performance analysis problems. Formalized real

numbers facilitate functional performance analysis of systems. Higher-order logic the-

orem proving can be used to reason about large sized systems that cannot be dealt

with by model checking [21], but the process of verification is interactive as higher-

order logic is undecidable. Model checking is a formal technique that considers finite

systems or finite models of infinite systems and is only suitable for relatively small

sized reliability analysis problems.

At this time theorem proving lacks formalized mathematical foundations for

reliability analysis. For example, formalized multiple random variables, statistical

properties of continuous random variables and basic notions of reliability. This the-

sis provides a framework for reliability analysis of engineering systems in a theorem

proving environment. The work is important as it enables modeling of true random

behavior, one hundred percent computationally accurate reliability analysis and pro-

vides an accurate alternative to the traditional reliability analysis techniques such as

paper and pencil analysis and computer simulations.
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1.2 System Reliability Analysis

Tragedies such as the industrial accident at the union carbide pesticide plant in Bhopal

India [11] and the high-speed train accident near the village of Eschede in Lower Sax-

ony in Germany [35] highlight the importance of design reliability in various disciplines

of engineering. The reliability of a system is defined as the probability that it will ad-

equately perform its specified purpose for a given period of time under certain specific

environmental conditions [43].

A system usually consists of two or more components each performing a cer-

tain sub function of the system. Series, parallel, a combination of series-parallel and

parallel-series, and sometimes more complicated interconnections exist in a system.

Additional functional units are often added in safety critical systems to increase re-

dundancy that helps improve its reliability.

System reliability analysis involves mathematically expressing the arrangement

of components in a system and computing its overall reliability. The modeling process

deals with the structural properties associated with a system of components and

the analysis involves probabilistic and statistical properties and the bounds of these

measures of reliability associated with the system of components.

Qualitative methods help in determining reliability relevant components of a

system. They provide a systematic way of determining whether a system component

affects the system reliability. These methods analyze the function and the environmen-

tal stresses a component experiences and try to determine if and how the component

will affect the system reliability, and what would be the effects of failure of the com-

ponent on the system. For example, Failure Model Effect Analysis (FMEA) and Fault

Tree Analysis (FTA).
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Reliability behavior and lifetime properties of engineering systems can be mod-

eled with the help of continuous random variables. Most commonly used measures

of reliability of a system are a function of the standard probabilistic and statistical

properties of these random variables. System lifetime is modeled using positive real

valued random variables. For example, Exponential and Weibull random variables.

Four commonly used lifetime distribution representations are the survival function,

the hazard function, the cumulative hazard function, and the fractile function. They

are all measures of reliability of a system and can be derived from each other. Sta-

tistical properties such as expectation and variance are useful ways to summarize the

reliability behavior. For example, the expectation property of the distribution is used

to describe the mean time to failure of a system component. Once the component life-

time distributions and the arrangement of various components in a system are known,

the reliability functions of the entire system and its distribution can be determined.

1.3 State-of-the-art in Reliability Analysis

One of the earliest examples of detailed reliability studies in engineering systems dates

back to 1938 [18]. In this study, factors for the improvement of service reliability for

electrical power systems were considered. In the field of electronics, the concepts

related to reliability were initially introduced after the second world war to improve

the performance of communication and navigational systems [55].

In order to predict reliability, one must model a system and its constituent

components in a way that captures failure mechanisms. For example, in the case of

electronic systems, a method called the part failure method has been shown to be very

accurate [51]. This method has been extensively used by military engineers to predict

useful lifetimes of systems and to develop highly reliable systems and equipments. This
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method is based on calculating failure rates of individual components of the system

and then using appropriate formulas to determine the reliability of the whole system.

Standards such as MIL-HDBK-2173 [52], FIDES [22], and IEEE 1332 [53] are some

of the examples which specify adequate performance requirements and environmental

conditions for reliability modeling, analysis, and risk assessment.

Simulation techniques for analyzing reliability are sometimes attractive because

the process can be completely automated. Moreover, for some reliability problems,

either the analytical solutions are not available (for example non-determinism arising

in problems involving concurrency) or prohibitively complex to find due to the amount

of detail involved, as is the case in many modern engineering systems.

Simulation based analysis cannot be termed one hundred percent accurate be-

cause of the computational inaccuracies, the use of fixed and floating point arithmetic

and the use of pseudo random numbers instead of true random numbers. This can

lead to inaccurate result, resulting in serious consequences sometime. For example,

the spectacular disaster with space shuttle Challenger in which the entire crew of

seven lost their lives with in 75 seconds of the take off was due to a reliability issue

in the design of one of the booster rockets [56]. Table 1.3 lists a few examples of

simulation based tools for analyzing reliability and their applications [37].

Formal methods for performance analysis include run time verification [44],

model checking [21] and theorem proving [38]. These techniques have been extended

to analyze reliability of systems during the last two decades. Many expressive for-

malisms such as stochastic petri nets [41] and process algebras [13] along with various

probabilistic [40] and stochastic temporal logics [5], and compositional and guarded

command notations [36] have been used in modeling, specification and analysis of com-

plex engineering [31] and applied science problems [7]. They were either not designed
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Reliability Analysis Tool Description and Application
CARE[60, 49], ARP[37], Fault Tolerant Computer Architectures
SHARE[37], SURF[15], AIRES[37]
RELIANT[23], SysRel[4], ERNI[12] Integrated Circuit conductor reliability and

failure analysis, predict reliability and
hazards due electro-migration

MARK1[42] Markov Modeling Package

METASAN[58] Michigan Evaluation tool for the analysis
of stochastic activity

SAVE[27] System AVailability Estimation
BERT[61] BErkely Reliability Tool

Table 1.1: Simulation based reliability analysis tools

to deal with reliability analysis problems or lack the capability to handle reliability

problems due to lack of infrastructure.

Formal methods based techniques, such as probabilistic model checking, can be

used to analyze reliability; however, they do not have support for the verification of

statistical properties (moments and variance) of the commonly used lifetime distri-

butions [5, 57]. The proposed approach on the other hand is capable of handling

these and other probabilistic and statistical properties. Probabilistic model checkers,

for example PRISM [39], have the ability to verify exact solutions for probabilistic

properties in an automated manner. Moreover, they have been used to determine

expected values in what amounts to a semi-formal method. In the PRISM model

checker, probabilistic finite state models are constructed with real value probabilities

associated with the transitions between various states of the model. Probabilistic

model checking tools run out of memory very quickly when the probabilistic state

space is large, and that puts a practical limit on the number of reliability analysis

problems that can be reasonably handled with this technique and the tools associated

with it. Both simulation and probabilistic model checking do, however, have their
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place and can play an important role within a comprehensive verification methodol-

ogy where appropriate and reasonably small parts of a problem can be automatically

verified using these techniques.

Probabilistic theorem proving techniques, on the other hand, though interac-

tive, are completely formal, sound, one hundred percent computationally accurate,

and, in theory, have no limitations as far as the number of states is concerned. In

order to analyze systems formally in a theorem proving environment, it is important

to have an infrastructure for reasoning about the underlying mathematical concepts

of probability and statistics. The accuracy of reliability analysis depends on both the

field data gathering and the methods and tools used for analysis. In this thesis, we

do not address the problem of field data gathering. Our focus is on the higher-order

logic formalization of fundamental concepts of the reliability theory. Until recently it

was only possible to reason about reliability problems that involved discrete random

variables in a theorem proving environment [29]. Hurd [34] formalized a probability

theory along with discrete random variables in the HOL theorem prover [26]. Build-

ing upon Hurd’s work [34], Hasan [29] formalized statistical properties of single and

multiple discrete random variables. Hasan [29] also formalized a class of continuous

random variables for which the inverse CDF functions can be expressed in a closed

form. Hasan et al. [32] presented higher-order-logic formalizations of some core re-

liability theory concepts and successfully formalized and verified the conditions for

consistent repairability for reconfigurable memory arrays in the presence of stuck-at

and coupling faults.
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1.4 Proposed Methodology

Based on the above discussion and the stated limitations of the state-of-the-art in

the area of formal reliability analysis, we propose a formal reliability analysis frame-

work for reasoning about practical engineering problems. Our approach is based on

higher-order logic theorem proving. We develop necessary infrastructure needed for

formal reliability analysis by formalizing underlying mathematics and basic notions

of reliability theory.

Reliability modeling and analysis process requires formalized continuous single

and multiple random variables. In this process, an engineer first constructs a formal

model of the system and its environment. He or she then specifies functional and

reliability requirements of the system as formal logic statements to check the function

and reliability of the system. The proposed reliability analysis framework facilitates

verification, computation, reasoning, and documentation of the reliability proofs in

the sound environment of the HOL theorem prover. Finally, the formal functional

and reliability analysis results are unformalized and interpreted and stated in an

appropriate language in the problem domain.

The formal reliability analysis framework is shown in Figure 1.1. The solid box

below the top dotted line in Figure 1.1 highlights some of the main features of the

proposed reliability analysis framework.

An important class of reliability properties are the statistical properties. These

properties conveniently summarize the complete reliability behavior into one or more

quantitative measures such as the expectation and the variance. Positive real valued

continuous random variables such as the exponential random variable are commonly

used random variables in reliability analysis of engineering systems. In such analysis,

system lifetime is modeled as a random variable and the average time taken by the

9



Figure 1.1: Formal reliability analysis framework.

system to fail is defined as the expected value of the random variable and is commonly

known as the mean time to failure or MTTF in reliability analysis literature. We

provide a large set of lemmas and theorems for facilitating verification of statistical

reliability properties of a system.

Multiple continuous random variables play an important role in the reliability

modeling and analysis of engineering systems. Our proposed reliability analysis frame-

work includes formalized multiple continuous random variables and their probabilistic

properties such as the joint and marginal cumulative distribution functions and re-

sults which verify that the cumulative distribution functions are bounded, monotonic

non-decreasing and tend to 0 and 1 as the argument of these functions tend to −∞

and ∞ respectively. These formalized properties help define basic notions of relia-

bility such as the survival function and the hazard function. We verify a large set

of helper lemmas, theorems and properties of the basic notions of reliability theory.

10



All of these reduce the interactive effort required for reliability analysis of engineering

systems using theorem proving.

Complex systems usually consist of multiple functional units. Each of these

units behave independently as far as their reliability behavior is concerned. In order

to determine the overall system reliability, formal modeling of system structure is

absolutely important. Therefore, we have formalized and verified results for modeling

and verification of reliability of various system configurations such as series, parallel,

series-parallel and parallel-series structures.

These formalizations together provide capabilities of complete formal reliability

analysis of engineering systems and provide an alternative to traditional simulation

based reliability analysis approach.

1.5 Thesis Contributions

This thesis focuses on developing an infrastructure for carrying out formal reliabil-

ity analysis using higher-order logic theorem proving. The theorem proving based

approach, described in this thesis, for formal reliability analysis is very useful in con-

structing formal proofs of correctness of reliability related properties of safety critical

hardware and software. The thesis makes the following main contributions.

1. It presents the formalization of statistical properties of continuous random vari-

ables. Expectation, variance and moment relations are formally verified in

higher-order logic using Lebesgue integration theory. Basic properties of the

linearity of expectation and variance are also verified using Lebesgue integra-

tion theory. These higher-order logic proofs document detailed proof steps and

are generalized expressions with quantifications over random and real variables

and probability distribution parameters; they explicitly state all the assumptions

11



and are valid and sound, something that is not possible with existing formal and

simulation based techniques.

2. It presents formalization of multiple continuous random variables. The frame-

work allows us to specify and verify higher-order logic theorems related to prob-

abilistic properties of multiple continuous random variables.

3. It presents the formalization of basic notions of reliability in higher-order logic.

We believe this is the first such formalization of reliability theory in any higher-

order logic theorem proving environment

4. It provides a framework to model reliability structure of engineering systems.

The theorems related to various system configurations, such as series, parallel,

series parallel and parallel series, facilitate the reliability analysis process and

reduce the interactive effort.

5. The usefulness of the proposed reliability analysis framework is demonstrated

with the help of practical engineering applications: 1) Reliability analysis of

electronic and electrical power system components, 2) Reliability analysis of an

automobile transmission.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows: In Chapter 2, we introduce some pre-

liminary concepts which will facilitate reading of the rest of the thesis. In Chapter

3, we describe the methodology for the formalization and verification of statistical

properties of continuous random variables. In Chapter 4, we provide formal defini-

tions of multiple continuous random variables and the formalization and verification of

12



probabilistic properties of a list of random variables. We also formalize the notion of

independence of random variables. We present the formalization of the basic notions

of reliability in Chapter 5 and verify their important properties. We also verify stan-

dard results related to various multi-component system configurations. In Chapter

6, we present practical applications utilizing our formalization of multiple continuous

random variables and reliability theory concepts. Finally, with a summary of the main

contributions and suggestions for future work, we conclude the thesis.
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Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to probabilistic and statistical prop-

erties of continuous random variables, Lebesgue integration and the HOL theorem

prover. An introduction to basic notation used in the rest of this thesis is also in-

troduced. The chapter concludes with a brief description of theories of probability,

random variables and Lebesgue integration in HOL.

2.1 Random Variables and Distributions

A random variable is a deterministic function that maps the outcomes of a random

experiment to a real value. Figure 2.1 graphically shows how a random variable RV

assigns a real value to an event A in the sample space S of the random variable.

An event A can be any valid subset of the sample space S. The domain of the ran-

dom variable is the sample space S of the random experiment, and the range of the

random variable is the whole real line. There are two main types of random vari-

ables; discrete and continuous. The range of discrete random variables is a finite or

a countably infinite set. They mostly appear in problems involving counting. The
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Figure 2.1: Random variable.

range of a continuous random variable is an infinite set. They are easier to handle

analytically, represent a limiting form of many discrete random variables, and can be

used to model a larger class of problems with just a few parameters. The cumulative

distribution function or CDF of a random variable X, denoted as FX(x), is defined

as the probability of an event {X ≤ x} and is mathematically stated as:

FX(x) = P{X ≤ x}, −∞ < x < +∞ (2.1)

The Cumulative Distribution Function (CDF ) of a discrete random variable is a right-

continuous, staircase function, with jumps at a countable set of points whereas the

CDF of a continuous random variable is continuous everywhere. The probability

density function (PDF ) of a continuous random variable X, if it exists is denoted as

fX(x), and is defined as the derivative of its CDF.

fX(x) =
dFX(x)

dx
(2.2)

A valid PDF of a random variable is a non-negative, continuous or piecewise contin-

uous function that has a finite integral.
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2.2 Statistical Properties of Random Variables

The definitions of expectation, variance, and moment of a discrete and continuous

random variable are summarized in Table 2.1. Other important and interesting sta-

tistical properties include the moment generating function, the characteristic function,

the Laplace transform, and the tail distribution bounds. A good description can be

found in [19].

Property Discrete Continuous

Expectation, E[X] = µX

∑

i xipX(xi)
∫ +∞

−∞
xfX(x)dx

Variance, V AR[X]
∑

i(xi − µX)
2pX(xi)

∫ +∞

−∞
(x− µX)

2fX(x)dx

k-th Moment, E[Xk]
∑

i x
k
i pX(xi)

∫ +∞

−∞
xkfX(x)dx

Table 2.1: Expectation, variance, and moment of a random variable.

2.3 Multiple Random Variables

Many real-world applications require finding the probabilities of events that involve

the joint behavior of two or more random variables. The joint CDF and the joint

PDF functions of multiple random variables completely define the probabilities of

product-form events. For example, consider two random variables X and Y. The

joint cumulative distribution function of X and Y is defined as the probability of an

event described by a semi-infinite rectangle ({(x1, y1)|x ≤ x1 and y ≤ y1}) in the real

x-y plane. It is mathematically expressed as:

FX,Y (x1, y1) = P{X ≤ x1, Y ≤ y1} (2.3)

If both X and Y are jointly continuous random variables, then their joint PDF

fX,Y (x, y), if it exists, can be obtained by partial differentiation of their joint CDF
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function FX,Y (x, y)

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
(2.4)

The joint CDF and PDF functions of n random variables are similarly defined. Ta-

ble 2.2 shows the definitions of the jk-th moment and the jk-th central moments of

two jointly discrete and continuous random variables. Where pX,Y (x, y) is the joint

probability mass function of the two random variables.

Property Discrete Continuous

jk-th Moment
∑i=I

i=0

∑n=N

n=0 xj
iy

k
npX,Y (xi, yn)

∫ +∞

−∞

∫ +∞

−∞
xjykfX,Y (x, y)dxdy

jk-th Central
∑i=I

i=0

∑n=N

n=0 (xi − µX)
j(yn − µY )

k
∫ +∞

−∞

∫ +∞

−∞
(x− µX)

j(y − µY )
k

Moment pX,Y (xi, yn) fX,Y (x, y)dxdy

Table 2.2: The jk-th moment and the jk-th central moment of two jointly discrete
and continuous random variables.

2.4 Lebesgue Integration

Lebesgue integral formalization partitions the range of the function rather than its

domain and thus is able to integrate some functions for which Riemann integral does

not exist. Also it does not put any restriction on the type of domain of a function

and is not limited to functions which have real type as their domain, as is the case

with Riemann integral. To understand the Lebesgue formalization of the integral,

lets consider a bounded function y = f(x) with an upper and lower limit as shown in

Figure 2.2. Here the y interval, or the range of the function, is divided into n parts.

Let Ek be a set of points or values for which yk ≤ f(x) ≤ yk+1. For example E3 is a

set for which all points are marked in black, where y3 ≤ f(x) ≤ y4. In general l(Ek)

stands for the total length of the set Ek (i.e., that sum of lengths of x-intervals for

which yk ≤ f(x) ≤ yk+1). As n increases the summation in Equation 2.5 approaches
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the true area under the curve f(x)
∫

E

f(x)dx = lim
n→∞

N
∑

k=1

hnkl(Enk) (2.5)

where yk ≤ hnk ≤ yk+1, and N = 2n. The points of Ek are chosen because the

value of the function on these points is close. This allows us to pick sets of points

Ek without saying anything about the continuity property of f(x). This way the

Figure 2.2: Lebesgue integral formalization.

Lebesgue integral is able to handle a class of functions far larger than the Riemann

definition. It is important to point out here that even though in this example we

used the real line as the domain of the function f, the Lesbegue integral puts no such

restriction on the domain of the functions. The Lebesgue integral is based on the

concept of measure (which in this example was the length of the real interval Ek).

In general the Lebesgue integral is defined for a class of functions called measurable

functions, which are well-behaved functions between measurable spaces. Several texts

contain very good descriptions of Lebesgue integral formalization [8][63]. In this thesis

research, we formally define the statistical properties of the random variables such as

their expectation based on Lebesgue’s integration theory.

18



2.5 The HOL Theorem Prover

The HOL [26] system is a general purpose theorem prover whose underlying logic is

called HOL. It is based on meta language (ML), which is a functional programming

language. HOL is a descendant of LCF system [25] and supports both forward and

backward proofs. It does not use decision procedures, and all theorems are proven

using basic axioms and inference rules. The proof process consists of applying tactics

to proof goals. Tactics are functions used to rewrite and simplify the goals. Each

tactic automatically generates a set of elementary inferences required to justify the

proof step. Users are allowed to write their own tactics, and such tactics cannot

compromise the soundness of the proof because the basic inferences operate on proof

states implemented as an abstract data type in ML. Once a theorem is proven, it can

be used in other proofs.

Table 2.3 lists HOL versions of mathematical symbols and their explanation.

Some of these symbols appear in various definitions and theorems described in this

thesis.

HOL Mathematical English

\ λ Lambda abstraction
! ∀ Universal quantification
? ∃ Existential quantification
/\ ∧ Conjunction
\/ ∨ Disjunction
==> ⇒ Implication
∼ ¬ and − Logical and numerical negation
= = and ⇔ Equality and ”if and only if”
{} ϕ Empty Set

Table 2.3: HOL mathematical symbols.
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2.6 Probability Theory and Random Variables in

HOL

A measure space is defined as a triple (Ω,Σ, µ), where Ω is a set, called the sample

space, Σ represents a σ-algebra of subsets of Ω and the subsets are usually referred

to as measurable sets, and µ is a measure with domain Σ [24]. A probability space is

a measure space (Ω,Σ, P ) such that the measure, referred to as the probability and

denoted by P , of the sample space is 1.

Hurd in [34] formalized some measure theory concepts in HOL to define a mea-

sure space as a pair (Σ, µ). Building upon this formalization, the probability space

was also defined in HOL as a pair (E ,P), where the domain of P is the set E , which

is a set of subsets of infinite Boolean sequences B∞. Both P and E are defined using

the Carathéodory’s Extension theorem, which ensures that E is a σ-algebra: closed

under complements and countable unions.

A random variable, which is one of the core concepts in probabilistic analysis,

is fundamentally a probabilistic function and thus can be modeled in higher-order

logic as a deterministic function, which accepts the infinite Boolean sequence as an

argument. These deterministic functions make random choices based on the result

of popping the top most bit in the infinite Boolean sequence and may pop as many

random bits as they need for their computation. When the functions terminate, they

return the result along with the remaining portion of the infinite Boolean sequence to

be used by other programs. Thus, a random variable which takes a parameter of type

α and ranges over values of type β can be represented in HOL by the function F .

F : α → B∞ → β × B∞
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As an example, consider the Bernoulli(1
2
) random variable that returns 1 or 0

with equal probability 1
2
. It can be formalized in HOL as follow [34]

⊢ bit = (λs. if shd s then 1 else 0, stl s)

It accepts an infinite Boolean sequence, s, where shd and stl are the sequence equiv-

alents of the list operation ‘head’ and ‘tail’. The formalized P and E can be used

to verify the basic laws of probability as well as probabilistic properties regarding

random variables in the HOL theorem prover. For example:

⊢ P {s | fst (bit s) = 1} = 1
2

where the HOL function fst selects the first component of a pair and {x|C(x)}

represents a set of all x that satisfy the condition C. It is important to note here

that, since the probability measure P is only defined on sets in E , it is absolutely

necessary to verify that the set that appears in a probabilistic property is in E before

we can formally verify that property in HOL. For the above example, this condition

translates to the verification of {s | fst (bit s) = 1} ∈ E .

The above approach has been successfully used to formalize and verify most of

the commonly used discrete random variables [34].

In this work, a discrete random variable is an algorithm which satisfies prob-

abilistic termination. Probabilistic termination refers to the fact that an algorithm

terminates with a probability of one. Hurd formalized four probabilistic algorithms us-

ing well formed recursive functions and probabilistic programming constructs such as

probabilistic while and until loops [34]. These probabilistic algorithms have uniform,

bernoulli, binomial, and geometric probability mass functions. Hasan [29], Building

on Hurd’s work, formalized a standard uniform random variable as a special case of
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the discrete version of a uniform random variable, as given in Equation 2.6.

lim
n→∞

(λn.
n−1
∑

k=0

(
1

2
)k+1Xk) (2.6)

where (λn.
n−1
∑

k=0

(
1

2
)k+1Xk) represents the discrete uniform random variable. Hasan’s

formal specification of the standard uniform random variable in HOL is given in

Definition 2.1, and is based on Equation 2.6.

Definition: 2.1 Standard Uniform Random Variable [29]

⊢ ∀ s. std unif cont s = lim (λn. fst (std unif disc n s))

The function std unif disc is a standard discrete uniform random variable in HOL.

It takes two arguments, a natural number (n:num) and an infinite sequence of random

bits (s:num→bool). The function utilizes these two arguments and returns a pair of

type (real, num→bool). The real value corresponds to the value of the random variable

and the second element in the pair is the unused portion of the infinite boolean

sequence. The function fst takes a pair as input and returns the first element of

the pair, and the function lim P in HOL is the formalization of the limit of a real

sequence P.

Building upon the above mentioned probability theory framework, an approach

for the formalization of continuous random variables has been presented in [29]. The

main idea is based on the concept of the Inverse Transform Method (ITM) [20], ac-

cording to which, the random variable X, for any continuous cumulative distribution

function (CDF) F , can be defined as X = F−1(U), where F−1 is the inverse function

of F , and U represents the Standard Uniform random variable. The formal proof

of this proposition is based on the CDF characteristic of the Standard Uniform ran-

dom variable and some of the CDF properties [29]. ITM allows us to formalize any

continuous random variable, which has a well-defined CDF, in terms of a formalized
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Standard Uniform random variable (std unif rv). Based on this approach, the CDFs

and higher-order-logic definitions of three continuous random variables are given in

Table 2.4 [29].

Distribution CDF Formalized Random Variable

Uniform(a, b)
0 if x ≤ a;
x−a
b−a

if a < x ≤ b;

1 if b < x.

⊢ ∀s l. uniform rv a b s =
(b− a)(std unif rv s) + a

Triangular(0, a)

0 if x ≤ 0;

( 2
a
(x− x2

2a
)) if x < a;

1 if a ≤ x.

⊢ ∀s a . triangular rv l s =
a(1−

√
1− std unif rv s)

Exponential(l)
0 if x ≤ 0;
1− e−lx if 0 < x.

⊢ ∀s l. exp rv l s =
−1

l
ln(1− std unif rv s)

Table 2.4: Continuous random variables in HOL

2.7 Lebesgue Integration in HOL

Lebesgue integration is based on the concept of measure and is defined for a class

of functions called measurable functions, which are well-behaved functions between

measurable spaces. The higher-order-logic definition of the Lebesgue integral utilizes

the concepts of indicator function, positive simple-function and measurable functions

[24].

In HOL Lebesgue integration theory [45], a function f defined over a measure

space (Ω,Σ, µ) is considered integrable if and only if
∫

Ω
|f |dµ < ∞ or equivalently

∫

Ω
f+dµ < ∞ and

∫

Ω
f−dµ < ∞. Positive continuous random variables in HOL are

such well-behaved functions. We utilize the following convergence of a non-negative

integrable function f property to verify the first and second moment relation in Chap-

ter 3.

Theorem: If f is any non-negative integrable function, there exists a sequence of

23



positive simple functions (fn) such that ∀ n x. fn(x) ≤ fn+1(x) ≤ f(x) and

∀ x. fn(x) → f(x), and

∫

Ω

fdµ = lim
n

∫

Ω

fndµ (2.7)

In the next chapter, we will present formalization of statistical properties of

continuous random variables and their verification for well-known and commonly used

bounded and unbounded continuous random variables.
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Chapter 3

Statistical Properties of

Continuous Random Variables

Reliability and lifetime behaviour of engineering systems is modeled using positive

valued continuous random variables. Their probabilistic and statistical properties are

needed in the overall reliability analysis of a system. In this chapter, the higher-

order logic formalization of statistical properties of continuous random variables is

presented. We also describe the methodology we used for the verification of statistical

properties of well-known and commonly used bounded (Uniform and Triangular) and

unbounded (Exponential) continuous random variables in a theorem proving environ-

ment.

First we verify general relations for the expectation and the second moment for

bounded and unbounded random variables. These relations then allow us to verify the

statistical properties such as expectation, second moment and variance of continuous

random variables used in the reliability analysis in the sound core of a theorem prover.

25



3.1 Introduction

The main idea of conducting probabilistic analysis of systems using theorem proving,

initially proposed in [29], consists of modeling of the system and its unpredictable

environment using formalized discrete and continuous random variables. The proba-

bilistic and statistical properties of random variables are then used to reason about

system characteristics, such as downtime, availability, number of failures, capacity,

and cost, in a theorem prover. The analysis carried out in this way is free from any

approximation issues or flaws due to the mathematical nature of the models and the

inherent soundness of the theorem proving approach.

The milestones achieved so far, in this endeavor of developing a complete theo-

rem proving based probabilistic analysis framework that is capable of analyzing any

hardware or software system, include the formalization of probability theory [34], the

ability to formalize discrete and continuous random variables and verify their prob-

abilistic properties [34, 29] and the ability to verify statistical properties of discrete

random variables [29].

One of the contributions of this thesis is that it presents a higher-order logic

formalization of statistical properties of continuous random variables. These statis-

tical properties, such as expectation or first moment of a random variable, play a

major role in decision making as they tend to summarize the probability distribution

characteristics of a random variable in a single number. Thus, the contribution of

this chapter paves the way to formally analyze many engineering and physical science

systems with continuous random components in a theorem prover. Some of the in-

teresting examples include the performance analysis of computer arithmetic systems

like floating-point arithmetic [64], where the Uniform random variable can be used to

model the roundoff error, algorithms that utilize continuous random variables, such as
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the Balls and Bins with feedback [46] and network protocols by modeling the request

arrival rates by the exponential random variables.

The most commonly used definition of expectation, for a continuous random

variable X, is the probability density-weighted integral over the real line [46].

E[X] =

∫ +∞

−∞

xfX(x)dx (3.1)

The function fX in the above equation represents the probability density function

(PDF) of X and the integral is the well-known Reimann integral. The above definition

is only limited to continuous random variables that have a well-defined PDF. A more

general, but not so commonly used, definition of expectation for a random variable

X, defined on a probability space (Ω,Σ, P ) [24], is as follows:

E[X] =

∫

Ω

XdP (3.2)

This definition utilizes the Lebesgue integral and is general enough to cater for both

discrete and continuous random variables. The reason behind its limited usage in

the probabilistic analysis domain is the complexity of solving the Lebesgue integral,

which takes its foundations from the measure theory that most engineers and computer

scientists are not familiar with.

The obvious advantage of using Equation (3.1) is the user familiarity with

Reimann integral that usually facilitates the reasoning process regarding the expec-

tation properties in the theorem proving based probabilistic analysis approach. On

the other hand, it requires extended real numbers, R = R ∪ {−∞,+∞}, whereas

all the foundational work regarding theorem proving based probabilistic analysis has

been built upon the standard real numbers R, formalized by Harrison [28]. Thus,
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the formalization of the expectation definition, given in Equation (3.1), and mak-

ing it compatible with the available formal probabilistic analysis infrastructure would

require creating a new data type R, and re-verifying the already proven results in

a theorem prover for this new data-type, which is a considerable amount of work.

The expectation definition, given in Equation (3.2), does not involve extended real

numbers; it accommodates infinite limits with ease due to the inherent nature of the

Lebesgue integral. It also offers a more general solution. The limitation, however, is

the compromise on the interactive reasoning effort, as it is not a straightforward task

for a user to build on this definition to formally verify the expectation of a random

variable.

In this chapter, we address the above mentioned limitation of using Lebesgue

integration for defining expectation and higher moments. Starting from Equation

(3.2), we mainly utilize the properties of the Lebesgue integral to formally verify two

simplified expressions for the expectation. The first one is for the case when the

random variable X is bounded in the positive interval [a, b]

E[X] = lim
n→∞

[

2n−1
∑

i=0

(a+
i

2n
(b− a))P

{

a+
i

2n
(b− a) ≤ X < a+

i+ 1

2n
(b− a)

}

]

(3.3)

and the second one is for an unbounded positive random variable [24].

E[X] = lim
n→∞

[

n2n−1
∑

i=0

i

2n
P

{

i

2n
≤ X <

i+ 1

2n

}

+ nP (X ≥ n)

]

(3.4)

Both of the above expressions do not involve any concepts from Lebesgue integration

theory and are based on the well-known arithmetic operations like summation, limit

of a real sequence, etc. Thus, users can simply utilize them, instead of Equation

(3.2), to reason about the expectation properties of their random variables and gain
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the benefits of the original Lebesgue based definition. It is also important to note that

we have a different expression for the bounded case in order to facilitate the formal

reasoning about the probability term, which becomes very challenging to reason about

if the unbounded expectation equation is used for a bounded random variable.

Similarly, we also verified two similar simplified expressions for the second mo-

ments (E[X2]) of bounded and unbounded random variables given in Equations 3.5

and 3.6.

E[X2] = lim
n→∞

[

2n−1
∑

i=0

(a+
i

2n
(b− a))2P

{

a+
i

2n
(b− a) ≤ X < a+

i+ 1

2n
(b− a)

}

]

(3.5)

E[X2] = lim
n→∞

[

n2n−1
∑

i=0

(
i

2n
)2P

{

i

2n
≤ X <

i+ 1

2n

}

+ nP (X ≥ n)

]

(3.6)

To demonstrate the effectiveness of the above expressions, we utilize them for

the formal verification of the expected values and second moments for the commonly

used continuous random variables Uniform, Triangular and Exponential. Besides

being illustrative examples, these results can be essentially utilized in conducting the

formal performance analysis of many systems that utilize these random variables.

The work described in this chapter is done using the HOL theorem prover [26],

which is based on higher-order logic. The main motivation behind this choice is

the fact that most of the work that we build upon is developed in HOL, such as

the formalization of the real number theory [28], probability theory [34], continuous

random variables [29] and Lebesgue integration [14]. Though, it is important to note

here that the ideas presented in this chapter are not specific to the HOL theorem

prover and can be adapted to any other higher-order-logic theorem prover as well,

such as Isabelle, Coq or PVS.
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The rest of the chapter is organized as follows: Section 3.2 presents the for-

malization of the definitions of important statistical properties of random variables

in HOL. Section 3.3 describes the verification of the simplified expressions for the

expectation and the second moment of random variables. Section 3.4 describes the

verification of the expectation, the second moment, and the variance of of Uniform,

Triangular and Exponential random variables. The chapter concludes with a summary

of conclusions in Section 3.5.

3.2 Formalization of Statistical Properties of Con-

tinuous Random Variables

In this section, we present the formalization of the definitions of several important

statistical properties of random variables in HOL. Statistical properties such as mo-

ments and variances are often used in reliability theory to summarize the properties

of systems lifetime distributions. The most commonly known statistical property, the

first moment or expectation, is also known as the mean-time-to-failure or MTTF in

reliability theory. The expectation and higher moments are all measures of central

tendency.

These statistical properties are summarized in Table 3.1. In these formalized

definitions, rv is a random variable. m represents a probability space defined as:

m = (U , E ,P), where U is a sample space, E is a set of events, and P is the probability

measure. The function expec represents the expectation or the first moment of the

random variable.

The verification of the expectation, second moment and variance relations for the

bounded and unbounded random variables begins with the definition of expectation
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and second moment given in the second and third row of Table3.1. The functions

expec and second moment accept a probability space, (U , E ,P), and a random variable

rv that maps infinite Boolean sequences to real numbers. In Hurd’s formalization of

the probability space (U , E ,P), U represents the universal set of all Boolean sequences,

as outlined in [29].

Property Definition HOL Formalization
expec. X ⊢ ∀m rv. expec m rv =

E[X]=
∫

U
XdP fn integral m (λx. rv x)

expec. h(X) ⊢ ∀m h rv. fun rv m h rv =
E[h(X)]=

∫

U
h(X)dP expec m (λx. h (rv x))

first moment ⊢ ∀m rv. first moment m rv =
µ=E[X]=

∫

U
XdP expec m (λx. rv x)

second ⊢ ∀m rv. second moment m rv =
moment µ2=E[X2]=

∫

U
X2dP expec m (λx. (rv x) pow 2)

Nth ⊢ ∀m rv N. nth moment m rv N =
moment µN=E[XN ]=

∫

U
XNdP expec m (λx. (rv x) pow N)

variance ⊢ ∀m rv. variance m rv = expec m
σ2=E[(X-µ)2] (λx. ((rv x) - expec m rv) pow 2)

standard ⊢ ∀m rv. std dev m rv =
deviation σ sqrt(variance m rv)
coef. of ⊢ ∀m rv. coef of var m rv =
variation σ

µ
(std dev m rv)/(expec m rv)

mean ⊢ ∀m rv. m abs dev m rv =
absolute E[|X − µ|] expec m (λx. abs((rv x)
deviation - expec m rv))
coef. ⊢ ∀m rv. skew m rv = expec m

of α3 = E[(X−µ

σ
)3] (λx. ((rv x) - expec m rv) pow 3)

skewness /((std dev m rv) pow 3)
coef. ⊢ ∀m rv. kurt m rv = expec m

of α4 = E[(X−µ

σ
)4] (λx. ((rv x) - expec m rv) pow 4)

kurtosis /((std dev m rv) pow 4)

Table 3.1: Statistical properties and their HOL formalizations
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3.3 Verification of Expectation and Second Mo-

ment Relations

In this section, we utilize the probability and Lebesgue integration theories, described

in the previous chapter, to formally verify the expectation and second moment re-

lations for the bounded and unbounded random variables, given in Equations (3.3),

(3.4), and (3.5), (3.6), respectively.

We use the definitions of expectation and second moment given in Table 3.1 to

reason about the expectation and the second moment of random variables formalized

in [34, 29].

The expectation property of bounded random variable is expressed as a higher-

order-logic theorem as follows:

Theorem 3.1: Expectation of Bounded Random Variables

⊢ ∀ a b rv. (0 ≤ a) ∧ (a < b) ∧ (∀ s. a ≤ rv s ≤ b) ∧

(∀ x y. x < y ⇒ {s
∣

∣ x ≤ rv s < y} ∈ E) ⇒
(

expec (U , E ,P) rv =

lim
n→∞

[

∑

2
n−1

i=0
(a+ i

2n
(b− a))P

{

s

∣

∣

∣

∣

a+ i

2n
(b− a) ≤ rv s < a+ i+1

2n
(b− a)

}])

The first three assumptions state that the random variable rv is bounded in the

positive interval [a, b]. Whereas, the fourth assumption states that the set involved in

this verification is measurable. It is assumed that the sequence (rvn) is defined as:

rvn(x) =
2
n−1
∑

i=0

(a+
i

2n
(b− a))I





s

∣

∣

∣

∣

a+ i

2n
(b−a)≤rv s<a+ i+1

2n
(b−a)







(x) (3.7)

where IA(x) is a real-valued function of a set A, such that: IA(x) = 1 if x ∈ A, and

IA(x) = 0 if x /∈ A.
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In order to utilize any definition or property of Lebesgue integration theory with

the above theorem, we first need to show that the triple (U , E ,P) is a measure space

with a positive measure. We verified these conditions based on the corresponding

theorems available in Hurd’s formalization of the probability space (E ,P) along with

the definition of measure in [14] under the given assumptions.

The convergence of a positive measurable function to the Lebesgue integral

property [14] and the Modus Ponens (MP) rule are then used to split the proof goal of

Theorem 3.1 into the following seven subgoals. They correspond to the monotonicity

and positive simple-function requirement on rvn and five other conditions described

below [14]:

mono increasing









2
n−1
∑

i=0

(a+
i

2n
(b− a))I





s

∣

∣

∣

∣

a+ i

2n
(b−a)≤rv s<a+ i+1

2n
(b−a)







(x)









(3.8)

(

∀i.(i < 2n) ⇒
{

s

∣

∣

∣

∣

a+
i

2n
(b− a) ≤ rv s < a+

i+ 1

2n
(b− a)

}

∈ E
)

(3.9)

(

∀i.0 ≤ a+
i

2n
(b− a)

)

(3.10)

(

FINITE{i|i < 2n}
)

(3.11)









2
n−1
∑

i=0

(a+
i

2n
(b− a))I





s

∣

∣

∣

∣

a+ i

2n
(b−a)≤rv s<a+ i+1

2n
(b−a)







(x)









≤ rv(x) (3.12)

lim
n→∞









2
n−1
∑

i=0

(a+
i

2n
(b− a))I





s

∣

∣

∣

∣

a+ i

2n
(b−a)≤rv s<a+ i+1

2n
(b−a)







(x)









= rv(x) (3.13)
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∃y. lim
n→∞

[

2
n−1
∑

i=0

(a+
i

2n
(b− a))P

{

s

∣

∣

∣

∣

a+
i

2n
(b− a) ≤ rvs < a+

i+ 1

2n
(b− a)

}

]

= y

(3.14)

The monotonically increasing property in the first subgoal (Equation 3.8) can

be verified based on the facts that (1) the indicator function only becomes 1 for one

interval or one particular value of i and (2) as the argument of the sequence, i.e.,

n, increases the intervals become finer and thus the resulting value of the sequence

becomes greater and close to the value rv x. The term multiplied by the indicator

function in the summation is in direct proportion with the argument of the sequence

n.

The second, third, and fourth subgoals (Equations 3.9, 3.10 and 3.11) correspond

to the pre-conditions for the function rvn to be a positive simple-function. These three

subgoals can be discharged based on the fourth assumption of Theorem 3.1, arithmetic

reasoning and set theory principles, respectively. The fifth subgoal (Equation 3.12)

is true as there is only one i, say i′, for which the real value of rv x would fall in

the interval [a + i
2n
(b − a), a + i+1

2n
(b − a)) out of all 2n possible values for i. Thus

the indicator function would be 1 for this particular i only and 0 otherwise, which

means that the summation would be equal to (a+ i′

2n
(b− a)). Now, substituting this

value for the summation in the fifth subgoal along with the fact that rv x lies in the

interval [a + i′

2n
(b − a), a + i′+1

2n
(b − a)) leads to its verification. The sixth subgoal

(Equation 3.13) can also be discharged based on the reasoning used to discharge the

previous subgoal along with the monotonicity of the given sequence and the definition

of limit of a real sequence. Finally, the real sequence in the seventh subgoal (Equation

3.14) can be verified to be convergent by verifying that it is monotonic, just like the

sequence in the first subgoal since the probability term will only be non-zero for one
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particular value of i, and has an upper bound b, since the value of i is always less

than 2n and the maximum value that the probability term can take is 1. This also

concludes the verification of Theorem 3.1.

The second moment relation for a bounded random variable, given in Equa-

tion 3.5, is verified in Theorem 3.2, as follows:

Theorem 3.2: Second Moment of Bounded Random Variables

⊢ ∀ a b rv. (0 ≤ a) ∧ (a < b) ∧ (∀ s. a ≤ rv s ≤ b) ∧

(∀ x y. x < y ⇒ {s
∣

∣ x ≤ rv s < y} ∈ E) ⇒
(

second moment (U , E ,P) rv =

lim
n→∞

[

∑

2
n−1

i=0
(a+ i

2n
(b− a))2P

{

s

∣

∣

∣

∣

a+ i

2n
(b− a) ≤ rv s < a+ i+1

2n
(b− a)

}])

The detailed proof steps for the verification of the second moment relation for

a bounded continuous random variable, given in Theorem 3.2, are described in [2] is

as follows:

The expectation relation for an unbounded random variable, given in Equation

3.4, is verified in Theorem 3.3 as follows:

Theorem 3.3: Expectation of an Unbounded Random Variable

⊢ ∀ rv. (∀ s. 0 ≤ rv s) ∧ (∀ x. {s
∣

∣ rv s ≥ x} ∈ E)

(∀ x y. x < y ⇒ {s
∣

∣ x ≤ rv s < y} ∈ E) ⇒
(

expec (U , E ,P) rv =

lim
n→∞

[

∑

n2
n−1

i=0
( i

2n
)P

{

s

∣

∣

∣

∣

i

2n
≤ rv s < i+1

2n

}

+ nP

{

s

∣

∣

∣

∣

rv s ≥ n

}])

As in Theorem 3.1, the function expec accepts a probability space, (U , E ,P), and a

random variable rv that maps infinite Boolean sequences to real numbers [29]. A

detailed description of the proof can be found in [2]
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Similarly, the second moment relation for an unbounded random variable, given

in Equation 3.6, is verified in Theorem 3.4, as follows:

Theorem 3.4: Second Moment of an Unbounded Random Variable

⊢ ∀ rv. (∀ s. 0 ≤ rv s) ∧ (∀ x. {s
∣

∣ rv s ≥ x} ∈ E)

(∀ x y. x < y ⇒ {s
∣

∣ x ≤ rv s < y} ∈ E) ⇒
(

second moment (U , E ,P) rv =

lim
n→∞

[

∑

n2
n−1

i=0
( i

2n
)2P

{

s

∣

∣

∣

∣

i

2n
≤ rv s < i+1

2n

}

+ nP

{

s

∣

∣

∣

∣

rv s ≥ n

}])

The detailed proof steps of Theorem 3.4 are very similar to Theorem 3.2 as

verification of both the expressions required very similar reasoning [2].

Both the bounded and unbounded random variables play an important role in

the modeling of the lifetime behavior of engineering system components. The ex-

pressions formally verified in this section do not involve any concepts from Lebesgue

integration theory and are based on the well-known arithmetic operations like sum-

mation, limit of a real sequence, etcetera. This allows us to formally reason about

the statistical properties of random variables commonly used in reliability analysis in

a relatively simple manner while at the same time gain the benefits of the original

rather complicated Lebesgue based definition.

3.4 Expectation, Second Moment and Variance of

Continuous Random Variables

To illustrate the effectiveness of the expectation and the second moment relations,

proved in the previous section, we now utilize them to verify the expectation, second

moment and variance of three continuous random variables, i.e., Uniform, Triangular

and Exponential.
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3.4.1 Uniform Random Variable

The expectation relation for the continuous Uniform random variable bounded in the

interval [a, b] can be formalized as follows:

Theorem 3.5: Expectation of the Uniform(a,b) Random Variable

⊢ ∀ a b. (0 ≤ a) ∧ (a < b) ⇒
(

expec (U , E ,P) (uniform rv a b) = a+b
2

)

In Theorem 3.5, uniform rv represents the Uniform random variable formalized using

inverse transform method [20] as:

0 if x ≤ a; x−a
b−a

if a < x ≤ b; 1 if b < x.

⊢ ∀s l. uniform rv a b s = (b− a)(std unif rv s) + a

where std unif rv is the standard Uniform random variable formalized in [29]. De-

tails of its formalization are briefly described in Chapter 2, Section 2.6 (Table 2.4) of

this thesis.

In order to utilize Theorem 3.1 to reason about the correctness of the above

theorem, we first verify that the Uniform random variable satisfies all pre-conditions,

given in Theorem 3.1, based on the theorems given in [29]. Next, we rewrite the

probability term in Theorem 3.1, using the CDF properties of the Uniform random

variable to simplify our proof goal as follows:

lim
n→∞

[

2
n−1
∑

i=0

(a+
i

2n
(b− a))

(

a+ i+1

2n
(b− a)− a

b− a
− a+ i

2n
(b− a)− a

b− a

)

]

=
a+ b

2

(3.15)

The above subgoal can now be discharged using arithmetic reasoning, along with

the properties of summation of a real sequence and the limit of a real sequence. This

also concludes the verification of Theorem 3.5.
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Theorem 3.6: Second Moment of the Uniform(a,b) Random Variable

⊢ ∀ a b. (0 ≤ a) ∧ (a < b) ⇒
(

second moment (U , E ,P) (uniform rv a b) = a2+ab+b2

3

)

We start the proof process by rewriting the left hand side of the proof goal of

Theorem 3.6 using the general second moment theorem for bounded random variables

(Theorem 3.1).

lim
n→∞

[

∑

2
n−1

i=0
(a+ (b−a)i

2n
)2P

{

s

∣

∣

∣

∣

a+ (b−a)i
2n

≤ (uniform rv a b) s < a+ (b−a)(i+1)
2n

}]

= a
2+ab+b

2

3

Then using set theory properties and the definition of CDF of the continuous

Uniform random variable, we show that

P

{

s

∣

∣

∣

∣

a+ (b−a)i
2n

≤ (uniform rv a b) s < a+ (b−a)(i+1)
2n

}

=

[

a+
(b−a)(i+1)

2n
−a

(b−a)
− a+

(b−a)(i)
2n

−a

(b−a)

]

We then rewrite the left hand side of the subgoal with the above result and

arrive at the following subgoal.

lim
n→∞

[

∑

2
n−1

i=0
(a+ (b−a)i

2n
)2
[

a+
(b−a)(i+1)

2n
−a

(b−a)
− a+

(b−a)(i)
2n

−a

(b−a)

]]

= a
2+ab+b

2

3

This subgoal involves limit and summation on the left hand side. Using the

property of square of sum of two functions, we further simplify the left hand side and

reduce it to a sum of the following three limit expressions.

lim
n→∞

∑

2
n−1

i=0

a
2

2n
+ lim

n→∞

∑

2
n−1

i=0

2a(b−a)i
22n

+ lim
n→∞

∑

2
n−1

i=0

(b−a)2i2

23n
= a

2+ab+b
2

3

38



Then we show that these three limits exist and are given by:

lim
n→∞

∑

2
n−1

i=0

a
2

2n
= a2, lim

n→∞

∑

2
n−1

i=0

2a(b−a)i
22n

= ab− a2, and

lim
n→∞

∑

2
n−1

i=0

(b−a)2i2

23n
= (b−a)2

3
respectively.

The proof of the above three limit expressions involved real, arithmetic and limit

theories in HOL. Now using these three results we reduce the left hand side of the

subgoal to

a2 + ab− a2 + (b−a)2

3
= a

2+ab+b
2

3

which is easily shown to be equal to the right hand side thus completing the proof.

Theorem 3.7: Variance of the Uniform(a,b) Random Variable

⊢ ∀ a b. (0 ≤ a) ∧ (a < b) ⇒
(

variance (U , E ,P) (uniform rv a b) =
(b−a)2

12

)

We verified the variance relation for the continuous Uniform random variable

by first rewriting the left hand side of the proof goal with the variance of continuous

random variable property. Then the resulting subgoal was rewritten with the expec-

tation [30] and the second moment of the Uniform random variable (Theorem 3.6).

This reduced the left hand side to:

a
2+ab+b

2

3
− (a+b

2
)2 = (b−a)2

12

The above equation was then shown to be true. This completed the proof of the

variance of the positive valued continuous Uniform random variable.

3.4.2 Triangular Random Variable

The expectation relation for the continuous Triangular random variable bounded in

the interval [0, b] can be formalized as follows:
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Theorem 3.8: Expectation of the Triangular(b) Random Variable

⊢ ∀ b. (0 < b) ⇒
(

expec (U , E ,P) (triangular rv b) = b
3

)

In Theorem 3.8, triangular rv represents the Triangular random variable formalized

using inverse transform method [20] as:

0 if x ≤ 0; ( 2
a
(x− x2

2a
))if x < a; 1 if a ≤ x

⊢ ∀s a . triangular rv l s = a(1−
√
1− std unif rv s)

where std unif rv is the standard Uniform random variable. More details of its

formalization can be found in Chapter 2 of this thesis.

The verification steps are similar to the ones for Theorem 3.5 and are primarily based

on Theorem 3.1 and the CDF of the Triangular random variable.

Theorem 3.9: Second Moment of the Triangular(b) Random Variable

⊢ ∀ b. (0 < b) ⇒
(

second moment (U , E ,P) (triangular rv b) = b2

6

)

The Theorem 3.9 proof process begins by rewriting the left hand side of the goal

using the second moment theorem for bounded random variables (Theorem 3.2).

lim
n→∞

[

∑

2
n−1

i=0
(ib
2n
)2P

{

s

∣

∣

∣

∣

ib

2n
≤ (triangular rv b) s < (i+1)b

2n

}]

= b
2

6

Then using set theory properties and the definition of CDF of the triangular random

variable, we show that

P

{

s

∣

∣

∣

∣

i

2n
b ≤ (triangular rv b) s < (i+1)

2n
b

}

=
[

(1− b
2(1− i+1

2n
)2

b2
)− (1− b

2(1− i

2n
)2

b2
)
]

We then rewrite the left hand side of the subgoal with the above result and

arrive at the following subgoal.
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lim
n→∞

[

∑

2
n−1

i=0
( i

2n
b)2

[

(1− b
2(1− i+1

2n
)2

b2
)− (1− b

2(1− i

2n
)2

b2
)
]]

= b
2

6

This subgoal involves limit and summation on the left hand side. Using the

limit and real theories of HOL, the left hand side of the proof goal was reduced to a

sum of the following three limit expressions.

lim
n→∞

∑

2
n−1

i=0
(−2ib2) i

3

24n
+ lim

n→∞

∑

2
n−1

i=0
(−b2) i

2

24n
+ lim

n→∞

∑

2
n−1

i=0
(2b2) i

2

23n
= b

2

6

Next we showed these three limits exist and are given by:

lim
n→∞

∑

2
n−1

i=0
(−2ib2) i

3

24n
= −b

2

2
, lim

n→∞

∑

2
n−1

i=0
(−b2) i

2

24n
= 0, and

lim
n→∞

∑

2
n−1

i=0
(2b2) i

2

23n
= 2b

2

3
respectively.

The proof of the above three limit expressions involved real, arithmetic and limit

theories in HOL. Then using these three results we reduced the left hand side of the

subgoal to

−b
2

2
+ 0+ 2b

2

3
= b

2

6

which was easily shown to be equal to the right hand side and thus completes

the proof.

Theorem 3.10: Variance of the Triangular(b) Random Variable

⊢ ∀ b. (0 < b) ⇒
(

variance (U , E ,P) (triangular rv b) = b2

18

)

The variance relation for the continuous triangular random variable was verified

by first rewriting the left hand side with the variance of continuous random variable

property. Then the resulting subgoal was rewritten with the expectation and the

second moment properties of the triangular random variable. This reduced the left

hand side to:

b
2

6
− (b

3
)2 = b

2

6
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The above equation was then shown to be true with some rewriting. This

completed the proof of the variance of a continuous triangular random variable.

3.4.3 Exponential Random Variable

The expectation for the continuous Exponential random variable, which is unbounded

at the upper end, that is, defined in [0,∞), can be formalized as follows:

Theorem 3.11: Expectation of the Exponential(l) Random Variable

⊢ ∀ a. (0 < a) ⇒
(

expec (U , E ,P) (exp rv a) = 1

a

)

In Theorem 3.11, exp rv represents the Exponential random variable formalized using

inverse transform method [20] as:

0 if x ≤ 0; 1 - e−lx if 0 < x

⊢ ∀s l. exp rv l s = −1
l
ln(1− std unif rv s)

where std unif rv is the standard Uniform random variable. Chapter 2 of this thesis

contains more details of its formalization.

Due to its unbounded nature, we use Theorem 3.3 to reason about the expecta-

tion of Exponential random variable. Now, after rewriting the probability term and

some arithmetic simplification, we get the following subgoal:

lim
n→∞

[

(

1− e−
a

2n

)( n2
n−1
∑

i=0

i

2n
e−a

i

2n

)

+ ne−an

]

=
1

a
(3.16)

which can be broken into the following two subgoals.

lim
n→∞

(

ne−an
)

= 0 (3.17)

lim
n→∞

[

(

1− e−
a

2n

2n

)( n2
n−1
∑

i=0

i(e−
a

2n )i
)

]

=
1

a
(3.18)
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We proceed with the verification of the first subgoal by rewriting the exponential

term e−an as (1+ x)−n, where x > 0. Next, we verify that the term (1+ x)n is greater

than 1+ nx+ 1

2
n(n− 1)x2, for all values of n, as the latter represents a truncated

form of its Binomial expansion. This fact leads us to verify that the value of the real

sequence (λn.n(1+ x)−n) will be less than the real sequence (λn.n(1
2
n(n− 1)x2)−1) for

all values of n. This reasoning allows us to discharge the first subgoal, given in Equa-

tion (3.17), as the limit value of the real sequence (λn.n(1
2
n(n− 1)x2)−1) = (λn. 2

x2(n−1)
)

is 0.

In order to simplify the verification of the second subgoal, given in Equation

(3.18), we first evaluate the summation term by verifying the summation of a finite

arithmetic-geometric series in HOL.

n
∑

k=0

kqk =
q

(1− q)2
(1− qn)− nqn+1

1− q
(3.19)

The above relationship allows us to rewrite the second subgoal as follows:

lim
n→∞

(

e−
a

2n (1− e−an)

2n(1− e−
a

2n )
− ne−an

)

=
1

a
(3.20)

Now, Equation (3.17) and the already proved fact that the limit value of the real

sequence (λn.e−ln) is 0 allows us to simplify the above subgoal as follows.

lim
n→∞

(

e−
a

2n

2n(1− e−
a

2n )

)

=
1

a
(3.21)

We reason about the correctness of the above limit by first evaluating the following

limit relationship.

lim
x→0

(

xe−ax

(1− e−ax)

)

=
1

a
(3.22)
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The proof of the above equation is primarily based on the L’Hopital’s Rule, which

we also verified in HOL as part of this thesis. Now, the variable x in Equation (3.22)

can be specialized to 1

2n
. This expression along with the definitions of limit of a

real sequence and the limit of a function when its arguments approaches a real value

leads to the verification of the remaining subgoal, given in Equation (3.21). This also

concludes the proof of Theorem 3.11.

Theorem 3.12: Second Moment of the Exponential(m) Random Variable

⊢ ∀ m. (0 < m) ⇒
(

second moment (U , E ,P) (exp rv m) = 2

m2

)

We start the proof process by rewriting the left hand side using the general

second moment theorem for the unbounded random variables (Theorem 3.4).

lim
n→∞

∑

n2
n−1

i=0
( i

2n
)2P

{

s

∣

∣

∣

∣

i

2n
≤ (exp rv m) s < i+1

2n

}

+P

{

s

∣

∣

∣

∣

n ≤ (exp rv m) s

}

= 2

m2

Then using set theory properties and the definition of CDF of the Exponential random

variable, we show that

P

{

s

∣

∣

∣

∣

i

2n
≤ (exp rv m) s < i+1

2n

}

+ nP

{

s

∣

∣

∣

∣

n ≤ (exp rv m) s

}

=
[

(e−m
i

2n )(1− e−
m

2n ) + ne−mn

]

We then rewrite the left hand side of the subgoal with the above result and arrive at

the following subgoal.

lim
n→∞

[

∑

n2
n−1

i=0
( i

2n
)2(e−m

i

2n )(1− e−
m

2n ) + ne−mn

]

= 2

m2

In order to evaluate the limit terms, we first prove the following sum of a sequence

containing terms of type (i2Pi).
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∑

M−1

i=0
(i2Pi) = P

M(M2P2−2M
2
P+M

2−2MP
2+2MP+P

2+P)
(P−1)3

− P(P+1)
(P−1)3

We then specialize this result for the case when M = n2n and P = e
−m

2n as follows:

∑

n2
n−1

i=0
i2(e−

m

2n )i = n
2
2
2n
e

−m

2n
(n2n)

(e
−

m

2n −1)
− 2(n2n)(e

−m

2n
(n2n+1)

)

(e
−

m

2n −1)2
+ (e

−m

2n
(n2n)

−1)(e
−m

2n )(e
−m

2n +1)

(e
−

m

2n −1)3

Using the above results along with some real analysis properties , we arrive at

the following subgoal.

lim
n→∞

[−n2e−mn] + lim
n→∞

[

−2ne
−mn

e

−m

2n

2n(1−e

−m

2n )

]

+ lim
n→∞

[

− (e−mn−1)(e
−m

2n )(e
−m

2n +1)

22n(1−e

−m

2n )2

]

+ lim
n→∞

[ne−mn] = 2

m2

We then show that the first and fourth terms on the left hand side of the above

subgoal approach zero as n tends to∞, that is, lim
n→∞

[−n2e−mn] = 0 and lim
n→∞

[ne−mn] =

0

The evaluation of the second and third limit terms required a lot of rewriting

effort in HOL, and the proof steps are explained in the following. First we prove the

following two limit expressions in HOL using L’hopital’s rule.

lim
x→0

[

xe
mx

1−e−mx

]

= lim
x→0

[

x(−me
mx)+e

mx

0−(−me−mx)

]

= 1

m
, and

lim
x→0

[

x

1−e−mx

]

= lim
x→0

[

1

0−(−me−mx)

]

= 1

m

Then we specialize the above two results for the case when x = 1
2n

and show

that lim
n→∞

[

e

−m

2n

2n(1−e

−m

2n )

]

= 1

m
and lim

n→∞

[

1

2n(1−e

−m

2n )

]

= 1

m

Then using the sum and product limit theorem we rewrite the second and third

limit terms as follows:
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m
)(1

m
+ 1

m
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m2

Finally, we substitute these limits in the above subgoal and show that the left

hand side is equal to the right hand side, which completes the proof of the second

moment of the Exponential random variable.

Theorem 3.13: Variance of the Exponential(m) Random Variable

⊢ ∀ m. (0 < m) ⇒
(

variance (U , E ,P) (exp rv m) = 1

m2

)

The verification steps for the variance of the Exponential random variable in-

volve some rewriting using the definition of the variance and the expectation and the

second moment theorems. The resulting subgoal ( 2
m2 ) − ( 1

m
)2 = 1

m2 is easily shown

to be true, based on arithmetic reasoning, thus completing the proof of the variance

of the Exponential random variable.

The verification of the expectation, second moment, and variance properties

did not involve any reasoning based on the Lebesgue integral. As a consequence,

the verification process, which just took around 80 man hours with approximately

3500 lines of HOL code. It was very straightforward and quick in comparison to the

verification of Theorems 3.1, 3.2, 3.3, and 3.4, which took around 350 man-hours and

approximately 5000 lines. This clearly demonstrates the strength of our work, which

is to provide the ability to build upon Theorems 3.1, 3.2, 3.3 and 3.4, and reduce

the interactive reasoning efforts regarding the expectation properties of continuous
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random variables. Also, our theorems are quite general and can be built upon to

reason about expected values of many other random variables as well, such as the

Rayleigh and Pareto.

3.5 Summary

In this chapter, we have presented an infrastructure to reason about statistical prop-

erties of continuous random variables using a higher-order-logic theorem prover. This

capability allows us to conduct formal statistical analysis of systems with continuous

random components, which is not supported by most of the existing probabilistic

analysis tools at this time.

We built upon a formalized Lebesgue integration theory to define expectation

and based on this definition we verified four alternate expectation and second mo-

ment relations. These relations do not involve any concepts from the mathematically

complex Lebesgue integration theory and thus facilitate reasoning about statistical

properties of continuous random variables significantly. We utilized these relations to

verify the expected values and second moments of the Uniform, Triangular and Expo-

nential random variables. To the best of our knowledge, this is the first time that the

formal reasoning about the expectation, second moment and variance of these con-

tinuous random variables has been presented in a higher-order-logic theorem prover.

These verified properties can now be utilized in the verification of statistical proper-

ties of lifetimes of individual components in a system and also in other engineering

analysis problems such as the round of error analysis of floating point numbers.

Moreover, in many applications, what is measured or observed is not what we

are interested in, but, we can learn about what we are interested in through what we

can measure. For example, consider that we are interested in learning about random
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variable X, but we can only measure or observe random variable Y, where random

variable Y may be a function of random variable X. Our developed infrastructure

supports reasoning about probabilistic and statistical properties of such functions of

random variables.

In the next chapter, we present the formalization of multiple continuous random

variables and the verification of their probabilistic properties.
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Chapter 4

Probability Distribution Properties

of Multiple Random Variables

Reliability analysis often requires use of positive valued random variables with differ-

ent distributions such as Exponential and Weibull distributions. Sometimes random

variables with the same distribution function but different distribution parameters

are required. At other times multiple random variables with different distribution

functions are required. In this chapter, we describes formalization of multiple random

variables. We also define and verify the CDF properties of random variable lists in

higher-order logic. Moreover, we formalize the notion of independence of multiple

random variables.

4.1 Introduction

We use the existing infrastructure in HOL to formalize multiple random variables.

Hurd [34] formalized a probability space based on a measure space defined using

sets of boolean sequences. He defined the notion of discrete random variables as
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probabilistic algorithms that utilize a finite number of bits for their computation

from a random boolean sequence. In this formalization, in order to guarantee the

property of independence, the bits used by one probabilistic algorithm are never re

used. This is accomplished by passing the boolean sequence to the first probabilistic

algorithm, then passing the remaining portion of random bits in the sequence to the

second probabilistic algorithm, and so on, until the last probabilistic algorithm, so

that all the probabilistic algorithms receive a disjoint segment of the random boolean

sequence. He then showed that this approach of using disjoint segment of random

boolean sequence guarantees independence.

Hasan’s formalization of continuous random variables builds on Hurd’s formal-

ization of probabilistic algorithms with a standard discrete uniform probability dis-

tribution. In this formalization, a standard continuous random variable is defined

as a standard discrete uniform random variable that utilizes a very large number of

random bits from the sequence that in limit approach infinity. Then using inverse

transform method, random variables with various distributions for which inverse cu-

mulative distribution function exists in a closed form, are formalized. One limitation

of this approach is that it cannot be used for modeling more than one continuous

random variables as it exhausts all the bits when modeling a standard continuous

random variable. At best, it is possible to model multiple discrete random variables

and a maximum of a single continuous random variable as this method exhausts

the complete sequence of random bits in the standard continuous random variable.

Therefore, this technique of passing remaining portion of the boolean sequence from

one discrete random variable to the other, that works very well for multiple discrete

random variable case, cannot be used for the formalization of multiple continuous

random variables.
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We build on these foundations and extend them to solve this problem of infinite

boolean sequence exhaustion, by splitting it in to a finite number of disjoint boolean

sequences first. For example, one possible way is to split a given infinite random

boolean sequence into several disjoint boolean sequences. One possible way to split a

boolean sequence into two sequences is by picking the even and the odd elements from

the original sequence and then constructing two infinite random boolean sequences

from it. In general using this technique, a given random boolean sequence can be

split into a finite number of disjoint infinite random boolean sequences. Then using

Hasan’s formalization of continuous random variables, we can model multiple continu-

ous random variables. We use this approach in our formalization and ensure that each

random variable receives a disjoint segment of the random boolean sequence. This

guarantees independence of random variables. To achieve this goal, we first define

several higher-order logic functions that take a random boolean sequence and returns

a list of disjoint random boolean sequences by selectively picking certain bits from the

original random boolean sequence. Then, when we define random variable lists, we

pass these disjoint segments of random boolean sequences to each corresponding ele-

ment of the list of random variables. This ensures that the resulting random variables

will be independent.

In the rest of this chapter, we present the formalization of the CDF of a list

of random variables and verify its properties. We also present the formalization of

multiple continuous random variable lists with different distributions. Finally, we

describe the formalization of the notion of independence of multiple random variables

using the method based on splitting of the random boolean sequence.
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4.2 Formal Specification of CDF of Lists of Ran-

dom Variables

In order to formally specify the CDF of a list of random variables in higher-order

logic, we first define two list functions. They are rv val and rv lf. The higher-order

logic recursive definitions of the two functions rv lf and rv val are as follows:

Definition: 4.1 Random Variable Logical Formula Function

⊢ ∀s. rv val [] s = [] ∧

∀ h L s. rv val (h :: L) s = h s :: rv val L s

The function rv val takes a list of random variables, X, and the random boolean

sequence, s, and returns a list of real values. The function rv lf takes two real lists

as input and returns a boolean expression consisting of conjunction of several terms

formed from the corresponding elements of the two input lists. Each inequality in

this boolean expression is of the form ( (EL X i) s ≤ (EL x i) ). The function

EL takes a list and a natural number as input arguments (for example, EL Y i) and

returns the corresponding element of the list as output (in this case it would return

ith element of the list Y). Definition 4.2 describes the random variable value function

rv lf.

Definition: 4.2 Random Variable Value Function

⊢ (rv lf [] [] = T) ∧

(rv lf (h1 :: t1) (h2 :: t2) = h1 ≤ h2 ∧ rv lf t1 t2)

Now using Definitions 4.1 and 4.2, we formally specify the joint CDF of a list

of random variables in Definition 4.3.
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Definition: 4.3 Joint CDF of a List of Random Variables

⊢ ∀X x. mcrv cdf X x =

prob bern {s | rv lf (rv val X s) x}

where X is a list of random variables of type (((num→bool)→real) list), and x is a

list of real numbers of type (real list). For example, if the list of random variables

X and the list of real values x both have four elements given by [ X0; X1; X2; X3

] and [ x0; x1; x2; x3 ], respectively, then the joint CDF function of the list of

random variables, X, is given by mcrv cdf X x = prob bern {s | rv lf (rv val

X s) x } . The right hand side of the equation can be expanded to mcrv cdf X x =

prob bern {s | (X0 s ≤ x0) ∧ (X1 s ≤ x1) ∧ (X2 s ≤ x2) ∧ (X3 s ≤ x3) }

by using the definitions of the rv lf and rv val, which is the standard textbook def-

inition of CDF of a vector of four random variables.

4.3 Formal Verification of CDF of Lists of CRVs

Using the formal specification of the CDF function for a list of random variables, we

have formally verified the classical properties of the CDF of a list of random variables.

These properties are verified under the assumption that the set {s | R s x}, where R

represents a list of random variables under consideration, is measurable for all values

of the list. The formal proofs for these properties confirm our formalized specifications

of the CDF of a list of random variables.

In order to formalize and prove properties of the CDF of lists of random vari-

ables, we first define a few new list operations. These operations include picking an

arbitrary element from the list, dropping an arbitrary element from the list, replacing

an arbitrary element from the list and filling the list with arbitrary elements. These

operations are defined using the basic list operators such as TAKE, DROP, HD, TL,
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APPEND, and concatenate (::) operators. The details and use of these new opera-

tions will be given in the descriptions of the proof of the properties of CDF of lists of

random variables. These list operations are defined in Table 5.8

List Operation HOL definition

ITH EL
⊢ ∀x i a. ITH EL x i a =

TAKE (i - 1) x ++ [a] ++ DROP i x

FILL LIST
⊢ ∀n. FILL LIST [] [] ∧
∀h t n. FILL LIST (h::t) n = [& n] ++ FILL LIST t n

ITH EL DROP ⊢ ∀X i. ITH EL DROP X i = TAKE (i - 1) X ++ DROP i X

Table 4.1: New list operations

The list function ITH EL takes three arguments. The first argument is a list of

real numbers. The second argument is a natural number i. The third argument is

a real value a. The function ITH EL replaces the ith element of list x with the real

number a.

The function FILL LIST fills the real list x with real values “&n”, and finally, the

function ITH EL DROP takes a real list, drops its ith element and returns remaining

list. Here n is a natural number and & is a function of type (num→real). In addition

to the above new operations defined on the lists, we have verified a rich set theorems

involving functions rv val, rv lf, ITH EL LIST, FILL LIST, and ITH EL DROP. The

proofs of these theorems was not trivial and involved the principle of induction on

lists, and basic list theorems related to splitting and appending lists. These general

list theorems also significantly facilitated the proofs of the properties of cumulative

distribution function of multiple random variable described in the rest of this section.

Theorem 4.1 through 4.5 describe the properties of CDF of a list of random

variables. Each CDF property of the list of random variables is mathematically de-

scribed first, followed by its HOL formalization. Following each of the property we

provide a detailed proof sketch of each of the property.
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CDF Bounds

This property states that for a list of random variables X, and a list of real numbers

x, the CDF function is bounded between 0 and 1. The property is mathematically

described as:

0 ≤ FX1,....,Xn
(x1,....,xn) ≤ 1

Theorem: 4.1 CDF Bounded

⊢ ∀X x. (∀ Y y. {s | rv lf (rv val Y s) y} IN events bern) ⇒

( (0 ≤ mcrv cdf X x) ∧ (mcrv cdf X x ≤ 1) )

where (X :((num → bool) → real) list) and (Y :((num → bool) → real)

list) in Theorem 4.1 represent lists of random variables. (x :real list) and (y

:real list) are two lists of real numbers and (s :num → bool) represents an in-

finite boolean sequence. The proof of this property follows from the definition of

joint CDF function of list of multiple random variables and the fact that joint CDF

function represents the probability measure.

Multiple Random Variable CDF is Monotonic and Non-decreasing

The joint CDF function of a list of multiple random variable is a monotonically non-

decreasing function in each variable. For any two real numbers (a < b), this property

is mathematically expressed as:

FX1,...,Xi,...,Xn
(x1,...,a,...,xn) ≤ FX1,...,Xi,...,Xn

(x1,...,b,...,xn)

This fact is formally stated and verified in Theorem 4.2. In this theorem, X

is a list of random variables. x and y are lists of real numbers. The assumptions

formally state that all lists X, x and y have same length. All elements of real lists x

and y are equal except for the ith element. The ith element of the list y is greater

than the ith element of list x. All events of the form {s | rv lf (rv val Y s)

y} are measurable events in the probability space. Under these conditions the joint
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cumulative distribution function of the list of random variables X is monotonic and

non-decreasing. The above result is true for all values of i.

Theorem: 4.2 Multiple Continuous Random Variable CDF is Monotonic and

Non-decreasing

⊢ ∀X x y i. (i ≤ LENGTH x) ∧ (LENGTH X = LENGTH x) ∧

(LENGTH x = LENGTH y) ∧ (EL i x < EL i y) ∧

(∀j. 1 ≤ j ∧ j ≤ LENGTH X ∧ (¬(i = j) ⇒ (EL j x = EL j y))) ∧

(∀Y y. {s | rv lf (rv val Y s) y} IN events bern) ⇒

mcrv cdf X x ≤ mcrv cdf X y

We start the proof by rewriting the conclusion of the goal with the definition

of multiple random variable CDF (mcrv cdf). Then using the Monotone property of

probabilities, that is for all measurable events A and B in the probability space, (A ⊆

B) ⇒ P(A)≤P(B), along with modus ponens rule of inference, we reduce the proof

goal to the following subgoal.

prob space bern ∧

{s | rv lf (rv val X s) x} IN events bern ∧

{s | rv lf (rv val X s) y} IN events bern ∧

{s | rv lf (rv val X s) x} ⊆ {s | rv lf (rv val X s) y}

This subgoal of the proof consists of a conjunction of four terms. The first

assumption states that bern is a measure space such that measure of universe in

this measure space is 1, that is, bern is a probability space. The second and the

third subgoals state that the events {s | rv lf (rv val X s) x} and {s | rv lf

(rv val X s) y} are measurable events in the probability space bern. These three

subgoals are proved to be true by using reasoning from the probability theory and

the assumptions of Theorem 4.2. The fourth and the final subgoal is first rewritten
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in predicate notation as given below.

rv lf (rv val X s) x ⇒ rv lf (rv val X s) y

Both the antecedent and the consequent of this goal consist of conjunction of

logical terms. All the corresponding logical terms in the antecedent and consequent

are the same except for the ith term. In order to prove this subgoal, first we divide

both the antecedent and consequent of the subgoal into conjunction of three terms

each by splitting the lists rv val X s, x and y. The three logical terms consist of 1)

the terms up to and not including the ith term, 2) the ith term and 3) the remaining

terms starting from the (i+1)th term all the way to the end of the list. Then using

case analysis and reasoning from propositional logic on the first and third logical

terms, we reduce the subgoal to the following:

( ((EL i X) s) ≤ (EL i x) ) ⇒ ( ((EL i X) s) ≤ (EL i y) )

Now the proof is completed using the fourth and the fifth assumptions of the the-

orem, that is, ((∀j. (1 ≤ j) ∧ (j ≤ LENGTH X) ∧ (¬(i = j) ⇒ (EL j x =

EL j y))) and (EL i x < EL i y)) and the less than equal to transitivity property

of real numbers (∀x y z. (x ≤ y) ∧ (y ≤ z) ⇒ (x ≤ z)).

Marginal CDF property of List of Random Variables

Joint distribution function can be used to uniquely determine the marginal distri-

bution of the individual random variables. This property is mathematically stated

as:

lim
xi→∞

FX1,...,Xi−1,Xi,Xi+1,...,Xn
(x1,...,xi−1,xi,xi+1,...,xn) =

FX1,...,Xi−1,Xi+1,...,Xn
(x1,...,xi−1,xi+1,...,xn)

In Theorem 4.3, we have proved the standard Marginal CDF property for a list

of random variables. This property states that the distribution of individual random

variable Xi can be obtained from the knowledge of their joint distribution function.
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Theorem: 4.3 Marginal CDF Property of List of Random Variables

⊢ ∀i. (1 ≤ i) ∧ (i ≤ LENGTH x) ∧ (LENGTH X = LENGTH x) ∧

(∀n. { s | rv lf (rv val X s) (ITH EL x i (&n))} IN events bern) ⇒

(lim (λn. mcrv cdf X (ITH EL x i n)) =

mcrv cdf (ITH EL DROP X i) (ITH EL DROP x i))

We begin the proof process by rewriting with the definitions of the CDF of

multiple random variables, mcrv cdf, and reduce the proof goal to:

prob bern o (λn. {s | rv lf (rv val X s) (ITH EL x i n)}) →

prob bern {s | rv lf (rv val (ITH EL DROP X i) s) (ITH EL DROP x i)}

where the operator → is the limit of a sequence operator and the operator o is the

function composition operator. We then utilize the continuity property of probabilities

of expanding sequences of sets to simplify the above subgoal. This property states

that for an increasing sequence of measurable events An in the probability space, such

that, ∀n. An ⊆ An+1 in the sample space S implies lim
n→∞

An =
∪∞

n=1 An = S.

This increasing sequence of events in this case are expressed in lambda calculus

as: (λn. {s | rv lf (rv val X s) (ITH EL x i n)}). Here n is a natural num-

ber. Using the property of expanding sequence of sets and the property of continuity

of probability, we reduce the proof goal to the following four subgoals:

prob space bern ∧

(λn. {s | rv lf (rv val X s) (ITH EL x i n)}) ∈ (UNIV->events bern) ∧

(∀n. (λn. {s | rv lf (rv val X s) (ITH EL x i n)}) n ⊆

(λn. {s | rv lf (rv val X s) (ITH EL x i n)}) (SUC n)) ∧

({s | rv lf (rv val (ITH EL DROP X i) s) (ITH EL DROP x i)} =

BIGUNION (IMAGE (λn. {s | rv lf (rv val X s) (ITH EL x i n)}) UNIV))

The first subgoal states that bern is a probability space. The second subgoal
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ensures that the events {s | rv lf (rv val X s) (ITH EL x i n)} are measurable

events in the probability space. The first two subgoals are discharged using the fact

that bern is a probability space and from the fact that all events of type { s |

rv lf (rv val X s) (ITH EL x i (&n))} are measurable as stated in the fourth

assumption of Theorem 4.3.

The third subgoal states that the sequence of events ( λn.{s | rv lf (rv val

X s) (ITH EL x i n)} ) are an expanding sequence of sets or

(∀n. (λn. {s | rv lf (rv val X s) (ITH EL x i n)}) n ⊆

(λn. {s | rv lf (rv val X s) (ITH EL x i n)}) (SUC n)).

We prove this subgoal by first rewriting with the definition of subset and rea-

soning from list theory to split the antecedent and the conclusion into three logical

terms each. We then perform case analysis on the equal logical terms to reduce the

proof goal to:

(EL i (X s) ≤ &n) ⇒ (EL i (X s) ≤ &(SUC n))

This is shown to be true using the less than and equal to transitivity property of the

real numbers.

Finally, the fourth subgoal is first rewritten with the definitions of IMAGE and

BIGNUION. The higher-order logic definitions of IMAGE and BIGUNION are ∀f s.

IMAGE f s = {f x | x ∈ s} and ∀P. BIGUNION P = {x | ∃s. s ∈ P ∧ x ∈

s} , respectively. The resulting subgoal expressed in predicate calculus is as:

rv lf (rv val (ITH EL DROP X i) s) (ITH EL DROP x i) =

∃n. rv lf (rv val X s) (ITH EL x i n)

This subgoal states that the logical expression on the left hand side of the equation is

equal to the logical expression on the right hand side for at least one value of natural

number n. There is a corresponding equal logic expression on both left and right hand
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sides of this the above subgoal. As before, we split the logical expression into three

subexpressions using Boolean and List theories in HOL. Then, we remove the equal

logical expressions from either side of the equation using cases analysis, discharging

the false case and simplifying the true case, which leads to the following subgoal.

∃n. (EL i X) s ≤ &n

We then pick an n = ⌈((EL i X) s)⌉ + 1 and show that the subgoal is true using

the less than and equal transitivity property of real numbers and this step finally

concludes the proof of Theorem 4.3.

Multiple Random Variable CDF at Positive Infinity

This property can be mathematically stated as:

lim
x1→∞

,..., lim
xn→∞

FX1,...,Xn
(x1,...,xn) = FX1,...,Xn

(∞,...,∞) = 1

This property formally states that when real numbers x1, x2, ..., xn increase and

tend to ∞, then the joint CDF function of the random variables approaches unity.

Theorem: 4.4 Multiple Random Variable CDF at Positive Infinity

⊢ ∀i. (1 ≤ i) ∧ (i ≤ LENGTH x) ∧ (LENGTH X = LENGTH x) ∧

(∀n. { s | rv lf (rv val X s) (FILL LIST x n)} IN events bern) ⇒

(lim (λn. prob bern {s | rv lf (rv val X s) (FILL LIST x n)})= 1)

We begin the proof of this theorem by rewriting with the definition of mcrv cdf

and the limit of a sequence lim and arrives at the following subgoal:

prob bern o (λn. {s | rv lf (rv val X s) (FILL LIST x n)}) → 1

The proof of this subgoal utilizes the fact that for an expanding sequence of

events An, that is, (∀n. An ⊆ An+1) of S, lim
n→∞

An =
∪∞

n=1 An = S. Now using

the fact that the sequence of events (λn. {s | rv lf (rv val X s) (FILL LIST

x n)}) approach the sample space (UNIV) as n becomes very large, we reduce the

proof goal to the following four subgoals:
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prob space bern ∧

(λn. {s | rv lf (rv val X s) (FILL LIST x n)}) ∈ (UNIV->events bern) ∧

(∀n. (λn. {s | rv lf (rv val X s) (FILL LIST x n)}) n ⊆

(λn. {s | rv lf (rv val X s) (FILL LIST x n)}) (SUC n)) ∧

(UNIV =

BIGUNION (IMAGE (λn. {s | rv lf (rv val X s) (FILL LIST x n)}) UNIV))

The first two subgoals are shown to be true using reasoning from probability

theory and the fourth assumption of Theorem 4.4.

{s | rv lf (rv val X s) (FILL LIST x n)} ⊆

{s | rv lf (rv val X s) (FILL LIST x (SUC n))}

The third subgoal is proved by rewriting with the definition of subset and less

than equal to transitivity property of real numbers.

Finally, the fourth subgoal is first rewritten with the definitions of IMAGE and

BIGNUION. The resulting subgoal expressed in predicate calculus is given below.

∃n. rv lf (rv val X s) (FILL LIST x n)

The subgoal states that there exists an n such that &n is less than or equal to every

element of list (X s). This subgoal is proven to be true by selecting an n, such that n

is equal to the ceiling of the maximum of the elements of the list X s. This completes

the proof of Theorem 4.4.

Multiple Random Variable CDF at Negative Infinity

This property of the distribution function states that for any i,

lim
xi→−∞

FX1,...,Xi,...,Xn
(x1,...,xi,...,xn) =

FX1,...,Xi,...,Xn
(x1,...,−∞,...,xn) = 0

This property formally states that the CDF function approaches zero as the real

numbers x1, x2, ...., xn approach −∞.
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Theorem: 4.5 Multiple Random Variable CDF at Negative Infinity

⊢ ∀i. (1 ≤ i) ∧ (i ≤ LENGTH x) ∧ (LENGTH X = LENGTH x) ∧

(∀n.{ s | rv lf (rv val X s) (ITH EL x i (-&n))} IN events bern) ∧ ⇒

(lim (λn. prob bern {s | rv lf (rv val X s) (ITH EL x i (-&n))})= 0)

We begin the proof of this theorem by rewriting with the definition of CDF of

multiple random variables (mcrv cdf) and the limit of a sequence (lim) arriving at

the following subgoal:

prob bern o (λn. {s | rv lf (rv val X s) (ITH EL x i (-&n))}) → 0

For the proof of this subgoal we utilize the continuity property of probabilities

of contracting sequences of sets. The property states that, for all events An in the

probability space, lim
n→∞

P (An) = P (
∩∞

n An). This helps us in reducing the above

subgoal to the following three subgoals:

(λn. {s | rv lf (rv val X s) (ITH EL x i (-(&n)))})

∈ (UNIV->events bern) ∧

(∀n. (λn. {s | rv lf (rv val X s) (ITH EL x i (-&n))}) (SUC n) ⊆

(λn. {s | rv lf (rv val X s) (ITH EL x i (-&n))}) n) ∧

{} =

BIGINTER (IMAGE (λn. {s | rv lf (rv val X s) (ITH EL x i (-&n))}) UNIV)

The first subgoal is discharged using the fourth assumption of Theorem 4.5. We

simplify the second subgoal with the definition of subset and then using reasoning

from list theory followed by case analysis, we reduce the subgoal to the form, (EL i

(X s) ≤ -(SUC n)) ⇒ (EL i (X s) ≤ -n), which is shown to be true using the

less than and equal to transitivity property of real numbers.

Finally, the fourth subgoal is first rewritten with the definitions of IMAGE and

62



BIGINTER, ∀f s. IMAGE f s = {f x | x ∈ s} and ∀P. BIGINTER P = {x |

∀s. s ∈ P ⇒ x ∈ s} , respectively. The resulting subgoal expressed in predicate

calculus is given below.

∃n. ¬ rv lf (rv val X s) (ITH EL x i (-(&n)))

The subgoal states that there exists an n, such that the logical expression is

false. We proceed by splitting the logical expression into three logical terms. Then,

we show that there exists an n such that the logical negation of the ith term ∃n.

¬((EL i (X s)) ≤ -&n) is true by picking n = (⌈(X s)⌉ + 1 and then using the

less than equal transitivity property of real numbers and the definition of ceiling of

a real number to finish the proof of this subgoal. This also completes the proof of

Theorem 4.5.

In this section standard properties of cumulative distribution function were ver-

ified. These properties will be used later in defining basic notions of reliability of a

system. Each random variable in the list of random variables can be used to model

the reliability behavior of a component of the system. In the next section, the for-

malization of the notion of independence of multiple continuous random variables is

described.

4.4 Independent Random Variables

In many engineering applications independent random behaviour needs to be modeled.

The notion of independence for a list of random variables X = [X0; X1; X2; ...

; X(N−1)] is defined as:

P(X0 ≤ x0 ∧ X1 ≤ x1 ∧ ... ∧ XN−1 ≤ xN−1) = Πi=N−1
i=0 P(Xi ≤ xi)

where x = [x0; x1; x2; ... ; x(N−1)] is a list of real numbers. The subscript in

the above equation represents the index of the random variable in the list. N represents
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the length of the list of random variables X.

In order to formalize a list of independent continuous random variables, we first

define the notion of a list of disjoint random boolean sequences using higher-order

logic functions s arb and s split in Definitions 4.4 and 4.5 respectively.

Definition: 4.4 Boolean Sequence Split Function

⊢(∀s M i. s arb s M i 0 = s i) ∧

∀s n M i. s arb s M i (SUC n) = s (M * SUC n + i)

The function s arb takes three arguments. The first argument is a boolean se-

quence s. The second and third arguments are natural numbers M and i. The function

s arb can split the input boolean sequence s into M disjoint boolean sequences. The

third argument i is used to pick every ith element from the input infinite boolean

sequence and the function s arb returns that boolean sequence as output. This way

we can provide each random variable in the list of random variables with a different

infinite random boolean sequence. This fact also guarantees independence of random

variables in the list [65].

Definition: 4.5 List of Disjoint Boolean Sequences

⊢ ∀M s. s split 0 M s = [(λx. s arb s x M) 0]) ∧

∀N M s. s split (SUC N) M s =

(λx. s arb s x M) (SUC N) :: s split N M s

The function s split takes a boolean sequence as input and returns a list con-

sisting of M+1 disjoint boolean sequences. For example, s split 2 2 s would return a

list of three disjoint boolean sequences given by [s arb s 2 2; s arb s 1 2; s arb

s 0 2].
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In order to define the notion of independence of a list of random variables, we

first define a list function that we call rv val indep. This function merges two lists

element by element and generates a list. The first list argument of this function is

a list of random variables of type ((num->bool)->real) list and the second list

argument is a list consisting of random boolean sequences of type ((num->bool)

list). The function merges the two lists element by element and returns a list of real

independent random variables.

Definition: 4.6 List function rv val indep

⊢ (rv val indep [] [] = []) ∧

(rv val indep (h1::t1) (h2::t2) = h1 h2::rv val indep t1 t2)

As an example, consider a list of three random variables [X0; X1; X2] and

random boolean sequence s. The expression rv lf (rv val indep [X0; X1; X2]

(s split (PRE (LENGTH [X1; X2; X3])) (LENGTH [X1; X2; X3]) s)) [x1; x2;

x3] returns the following expression upon simplification. (X0 (s arb s 2 3) ≤ x1)

∧ (X1 (s arb s 1 3) ≤ x2) ∧ (X2 (s arb s 0 3) ≤ x3) The function s split

splits the boolean sequence s into three disjoint sequences and returns them as a list

of three element. Then each corresponding random variable is passed a corresponding

disjoint segment of the input boolean sequence s using the function rv val indep.

This guarantees the independence of random variables [65].

Finally, the HOL formalization of the notion of independence is given in Defi-

nition 4.7.
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Definition: 4.7 Independent Random Variable List

⊢ ∀X x. indep rv list X x =

(prob bern {s | rv lf

(rv val indep X (s split (PRE (LENGTH X)) (LENGTH X) s)) x} =

prod1 (0,LENGTH X) (λi. prob bern {s |

EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s)) ≤ EL i x})) ∧

{s | rv lf (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s)) x} IN events bern ∧

∀i. {s | EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s)) ≤ EL i x} IN events bern

where X and x are of types (((num -> bool) -> real) list) and (real list)

respectively. prod1 is a product of a sequence function and represents the big pi op-

erator (Π). The function s split splits the random boolean sequence s and returns

a list of disjoint random boolean sequences. PRE is a function of type (num->num) and

is defined as: ∀m. PRE m = (if m = 0 then 0 else @n. m = SUC n), where @

is the hilbert’s choice operator. The list function EL takes two arguments, a natural

number and a list. The function returns the ith element of the list. The second and

the third logical terms in Definition 4.7 state that the respective events are measur-

able in the probability space. Definitions 4.8 through to 4.12 show our formalization

of lists of random variables with various distributions.

Definition: 4.8 List of Weibull random variables

⊢ (WB RV LIST [] [] = []) ∧

(WB RV LIST (ah::at) (bh::bt)

= [(λa b s. weibull rv a b s) ah bh] ++ WB RV LIST at bt)
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Definition: 4.9 List of Exponential random variables

⊢ (EXP RV LIST [] = []) ∧

∀ah at. EXP RV LIST (ah::at)

= [(λa s. exp rv a s) ah] ++ EXP RV LIST at

Definition: 4.10 List of Rayleigh random variables

⊢ (RAYLEIGH RV LIST [] = []) ∧

∀ah at. RAYLEIGH RV LIST (ah::at)

= [(λa s. rayleigh rv a s) ah] ++ RAYLEIGH RV LIST at

Definition: 4.11 List of Uniform random variables

⊢ (UNIFORM RV LIST [] [] = []) ∧

(UNIFORM RV LIST (ah::at) (bh::bt)

= [(λa s. uniform rv a b s) ah bh] ++ UNIFORM RV LIST at bt)

Definition: 4.12 List of Triangle random variables

⊢ (TRIANGLE RV LIST [] = []) ∧

∀ah at. TRIANGLE RV LIST (ah::at)

= [(λa s. triangular rv a s) ah] ++ TRIANGLE RV LIST at

Note that we build on Hasan’s [29] formalization of continuous random vari-

ables. This formalization was briefly described in Chapter 2 of this thesis. In these

formalizations, the list of a random variables is constructed recursively using a random

variable with a given distribution. If random variables with different distributions are

required in a single list, then the two random variable lists shall be constructed sepa-

rately. Then these two lists will be appended to construct the desired list of random

variables. Then using function such as rv val indep and s split, it can be guar-

anteed that each of the random variable in the list will receive a disjoint segment of
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the boolean sequence. This guarantees the independence of random variables in the

constructed list of random variables.

We demonstrate this with the help of a simple example in the following. In

this example, we construct list of 6 random variables. The first and the last two

random variables are of type Exponential, and the second, the third and the fourth

random variables are of type Weibull. For this purpose, first we construct three lists.

The first list consists of one Exponential random variable, the second list consists of

three Weibull random variables and the last list consists of two Exponential random

variables. The following shows a specification of the list.

rv val indep

((EXP RV LIST [a0]) ++ (WB RV LIST [a1; a2; a3] [b1; b2; b3]) ++

(EXP RV LIST [a4; a5]))

(s split

(PRE (LENGTH ((EXP RV LIST [a0]) ++

(WB RV LIST [a1; a2; a3] [b1; b2; b3]) ++ (EXP RV LIST [a4; a5]))))

(LENGTH ((EXP RV LIST [a0]) ++

(WB RV LIST [a1; a2; a3] [b1; b2; b3]) ++ (EXP RV LIST [a4; a5]))) s)

which upon rewriting with the definitions of rv val indep, EXP RV LIST, WB RV LIST,

s split, and PRE and LENGTH gives a list of 6 independent random variables with the

desired distributions.

[exp rv a0 (s arb s 5 6); weibull rv a1 b1 (s arb s 4 6);

weibull rv a2 b2 (s arb s 3 6); weibull rv a3 b3 (s arb s 2 6);

exp rv a4 (s arb s 1 6); exp rv a5 (s arb s 0 6)]

In the following, in Theorem 4.6 and 4.7, we verify the CDF properties of inde-

pendent Exponential and Weibull random variables, respectively.
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Theorem: 4.6 CDF of a list of Independent Exponential random variables

⊢ ∀ a. (∀i. 1 ≤ i ∧ i ≤ LENGTH a ⇒ 0 < EL i a) ∧

¬(LENGTH a = 0) ∧ (LENGTH a = LENGTH (EXP RV LIST a)) ∧

(LENGTH a = LENGTH x) ∧ indep rv list (EXP RV LIST a) x ⇒

(prob bern {s | rv lf

(rv val indep (EXP RV LIST a)

(s split (PRE (LENGTH a)) (LENGTH a) s)) x} =

prod1 (0,LENGTH a) (λi. 1 - exp (-EL i a * EL i x)))

The first assumption in Theorem 4.6 states that the parameters of the Exponen-

tial random variable list are all greater than zero. The second, third and the fourth

assumptions state that the list of Exponential random variables and their parameter

list are non empty and of equal size. The fifth and the final assumption states that

the exponential random variables in the list EXP RV LIST are independent.

The proof of the Theorem 4.7 also involved the principle of list induction and

some other relevant lemmas involving the recursive list function rv val indep.

Theorem: 4.7 CDF of a list of Independent Weibull random variables

⊢ ∀ a b. (∀i. 1 ≤ i ∧ i ≤ LENGTH a ⇒ 0 < EL i a) ∧

¬(LENGTH a = 0) ∧ (LENGTH a = LENGTH b) ∧

(LENGTH a = LENGTH (EXP RV LIST a)) ∧ (LENGTH a = LENGTH x) ∧

indep rv list (WB RV LIST a b) x ⇒

(prob bern {s | rv lf (rv val indep (WB RV LIST a b)

(s split (PRE (LENGTH a)) (LENGTH a) s)) x} =

prod1 (0,LENGTH a) (λi. 1 - exp -((EL i a * EL i x) powr EL i b)))

The proof of Theorem 4.7 also involved the principle of list induction and is

similar to the proof of Theorem 4.6. These useful theorems will be helpful in the
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formal reliability analysis of multi-component systems whose lifetime behaviour mod-

eling requires that independent random variables be used as in real life the system

components can fail independent of each other.

Vectors of random variables with same or different distributions and parameter

values are often needed in reliability analysis. Our formalization of multiple random

variables allows the flexibility of having independent random variables with same

or different distribution functions. In the case when random variables have same

distribution type, it is possible to have same or different parameters.

The formalization results presented in this section are completely general. Tra-

ditionally, in simulation based schemes, independence of random variables requires

that independent random number generators be used. Our proposed approach pro-

vides a formal alternative to this traditional approach and at the same time guarantees

independence.

4.5 Summary

In this chapter, we described the formalization of multiple continuous random vari-

ables. We also formalized important concept of cumulative distribution function and

verified its important properties. Moreover, we defined the notion of independence of

random variables. The formalization presented in this chapter consists of over 4900

lines of HOL code and took over 310 man-hours to complete.

The formalization described in this chapter can be used to formalize a gaus-

sian random variable pair using two independent and identically distributed standard

continuous random variables and the box-muller method. Such formalization would

allow reasoning about problems involving the use of gaussian random variable.

In the next chapter, we introduce the basic reliability theory concepts. They

70



include some of the commonly used quantitative measures of reliability and provides

means for modeling and analysis of multiple component systems.
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Chapter 5

Reliability Theory Formalization

In this chapter, basic concepts of reliability theory are described and their higher-order

logic formalization is presented. Important properties of these reliability concepts

are formally verified using the HOL theorem prover. The relationships for system

reliability for various possible system configurations are also verified.

5.1 Introduction

Different lifetime distribution representations have been used in the past depending

upon the specific needs of a lifetime reliability analysis problem. For example, some-

times the probability of failure is of interest at a certain time (Survival function),

whereas, in other application, such as in planning for serviceability and maintain-

ability of a system, the total amount of risk associated with a system up to a given

time (Cumulative Hazard function) may be required [37]. Two other commonly used

important reliability properties are the Hazard function and the Fractile function.

The hazard function expresses the failure risk at a given time and the Fractile func-

tion allows resoning about the times of failure corresponding to a given probability of
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failure [43]. The survival function ST (t) is defined as:

ST (t) = 1− FT (t) (5.1)

where FT (t) is the cumulative distribution function of the random variable T . The

hazard function, hT (t), is defined as:

hT (t) = −
dST (t)

dt

ST (t)
= lim

h→0

ST (t)− ST (t+ h)

hST (t)
(5.2)

and the cumulative hazard function, HT (t), is defined as:

HT (t) =

∫ t

0

hT (τ)dτ (5.3)

and finally the p-th fractile tT (p) of a random variable T is defined as:

tT (p) = F−1
T (p) (5.4)

The contributions of this chapter lie in the formalization of these reliability concepts

and proof of their important properties using higher-order logic. This chapter also

formalizes concepts related to the various commonly used system configurations that

would facilitate formal reliability analysis of systems in a theorem proving environ-

ment.

5.2 Formalization of Reliability Concepts

In this section, we present the formalization of the concepts of survival function, haz-

ard function, cumulative hazard function and the fractile function of various lifetime

distributions.

5.2.1 Survival Function

The survival function represents the probability that a component is functioning at

one particular time t and is formalized in HOL as follows:
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Definition 5.1: Survival Function

⊢ ∀rv. survival function rv = (λt. 1 - CDF rv t)

where CDF is the cumulative distribution function of random variable rv. Both survival

function and CDF in HOL are of type (((num → bool) → real) → real → real).

Using the above formalization of the survival function, we formally verified three

important existence properties of the survival function in HOL. They are:

1) Survival function at time 0 is equal to 1

Theorem 5.1: Survival function at time 0 is equal to 1

⊢ ∀rv. (∀x. CDF in events bern rv x) ⇒

(survival function rv 0 = 1)

where the assumption of Theorem 5.1 ensures that events of the type {s|rv s ≤ x},

which define the CDF, are measurable.

The proof involved rewriting with the definition of the survival function and

properties of the cumulative distribution function of the random variable rv.

2) Survival function approaches 0 for very large values of times

Theorem 5.2: Survival function approaches 0 for very large values of times

⊢ ∀rv. (∀x. CDF in events bern rv x) ⇒

lim (λn. survival function rv &n ) = 0

The proof of Theorem 5.2 involved rewriting with the definition of survival

function, real analysis and CDF properties of the random variable rv.

3) Survival function is a non increasing function

Theorem 5.3: Survival function is a non increasing function

⊢ ∀rv a b. (a<b) ∧ (∀x. CDF in events bern rv x) ⇒

(survival function rv b ≤ survival function rv a)
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The proof of Theorem 5.3 also involved rewriting with the definition of the

survival function and the properties of the CDF of a random variable.

Besides the above mentioned three properties, we verified survival function re-

lations for random variables that are commonly used in reliability analysis.

Theorem 5.4: Survival Function, Exponential(m) Random Variable

⊢ ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒

(survival function (λs. exp rv m s) t = e−mt)

Theorem 5.4 was verified using the definitions of survival function and CDF of the

Exponential random variable together with set theory properties. If T represents the

Time-to-Failure of an electronic system component, for example, then using Theorem

5.4, we can now formally reason about probabilities of failure events at any time t

i.e., P{T ≤ t}, or between any two times t1 and t2, i.e., P{t1 ≤ T ≤ t2}.

Distribution Survivor Function, S(t)
Uniform ⊢ ∀ a b t. (0 ≤ a) ∧ (a < b) ∧ (0 ≤ t) ⇒

survival function (λs. uniform rv a b s) t =
(

b−t
b−a

)

Triangular ⊢ ∀ b t. (0 < b) ∧ (0 ≤ t) ⇒
survival function (λs. triangle rv b s) t = 1− 2

b
(t− t2

2b
)

Exponential ⊢ ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒
survival function (λs. exp rv m s) t = e−mt

Weibull ⊢ ∀ a m t. (0 < a) ∧ (0 < m) ∧ (0 ≤ t) ⇒
survival function (λs. weibull rv a m s) t = e−(mt)a

Table 5.1: Formally verified survival function relations for commonly used life time
distributions

Table 5.1 presents the formally verified survival function relations for commonly

used life time distributions.
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5.2.2 Hazard Function

The hazard function or instantaneous failure rate is used to model the amount of risk

associated with a component at a given time t and is formalized in HOL as follows:

Definition 5.2: Hazard Function

⊢ ∀rv t. hazard function rv t = @l.

((λa. (survival function rv t - survival function rv (t + a))

/ ((a) (survival function rv t))) → l) 0

The HOL function hazard function takes as input a random variable rv and a real

value t and returns a real value l such that the incremental parameter a in the above

definition approaches zero. The operator “@” is the hilbert’s choice operator, and

the operator “→” is a limit of sequence operator in HOL. The expression (lim P =

L) is equivalent to ((λn. P n) → L) in HOL and both express that the limit of a

sequence P as n tends to infinity is equal to a real value L. Using Definition 5.2, we

formally verified the following important property of the hazard function in HOL.

1) Hazard function is a positive function

Theorem 5.5: Hazard function is a positive function

⊢ ∀rv t. (∀x. CDF in events bern rv x) ⇒ (0 ≤ hazard function rv x)

The proof of this property involved rewriting with the definition of the hazard

function and the fact that the survival function of the random variable rv is continuous

and a non-increasing function (Theorem 5.4).

Using the definitions of hazard function, survival function, and CDF of random

variable, we also formally verified the hazard function of Uniform, Triangle, Expo-

nential and Weibull random variables. For example, the well known result that the

76



hazard function of an Exponential random variable is constant and is given by its

parameter m is verified in Theorem 5.6.

Theorem 5.6: Hazard Function, Exponential(m) Random Variable

⊢ ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒

(hazard function (λs. exp rv m s) t = m)

The hazard function gives an indication of how a component ages. Its units are usually

given as the number of failures per unit time. A larger hazard function suggests that

the component is under greater risk of failure. Using Theorem 5.6, we can now

formally reason about the amount of failure risk associated with a component when

operating under certain stress conditions. The results presented in this section are

100% accurate, completely general and exhaustive as opposed to simulation based

techniques where approximate numerical results are available for a very restricted set

of parameters.

Table 5.2 summarizes the hazard function relations for the Uniform, Triangle,

Exponential, and Weibull random variables.

Distribution Hazard Function, h(t)
Uniform ⊢ ∀ a b t. (0 ≤ a) ∧ (a < b) ∧ (0 ≤ t) ⇒

hazard function (λs. uniform rv a b s) t = 1
b−t

Triangular ⊢ ∀ b t. (0 < b) ∧ (0 ≤ t) ⇒
hazard function (λs. triangle rv b s) t =

2
b
(1− t

b
)

1− 2
b
(t− t2

2b
)

Exponential ⊢ ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒
hazard function (λs. exp rv m s) t = m

Weibull ⊢ ∀ a b t. (0 < a) ∧ (0 < m) ∧ (0 ≤ t) ⇒
hazard function (λs. weibull rv a m s) t = amata−1

Table 5.2: Formally verified hazard function relations for commonly used life time
distributions
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5.2.3 Cumulative Hazard Function

The cumulative hazard function is used to model the total amount of risk associated

with a component up to a given time t. It is defined as:

HX(t) =

∫ t

0

hX(τ)dτ (5.5)

Its HOL formalization is given in Definition 5.3:

Definition 5.3: Cumulative Hazard Function

⊢ ∀rv t. cumu haz function rv t = @l.

(Dint (0,t) (λa. hazard function rv a) l)

The HOL function cumu haz function takes as input a random variable rv and a

real value t and returns a real value l such that l is the definite integral of the

hazard function over the closed interval [a,b]. We verified three important properties

of the cumulative hazard function in HOL. They are:

1) Cumulative Hazard function at time zero is equal to zero

This property is mathematically expressed as:

HX(0) = 0 (5.6)

The HOL formalization of this property is given in Property 5.5.

Theorem 5.7: Cumulative Hazard function at time zero is equal to zero

⊢ ∀rv t. (∀x. CDF in events bern rv x) ⇒

(0 = cumu haz function rv 0)

The proof of Theorem 5.7 involves rewriting with the definition of the accumulated

hazard function and the properties of the definite integral when t is set to zero in

Definition 5.3.
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2) Cumulative Hazard function is a positive function

Hazard function is a positive function and thus its integral over the positive

interval is also positive, which is mathematically expressed as:

0 ≤ HX(t) (5.7)

the HOL formalization is given in Theorem 5.8.

Theorem 5.8: Cumulative Hazard function is a positive function

⊢ ∀rv t. (∀x. CDF in events bern rv x) ⇒

(0 ≤ cumu haz function rv t)

The proof of Theorem 5.8 involved rewriting with the definition of accumulated

function and Theorems 5.5 and 5.7.

3) Cumulative Hazard function is a monotonically increasing function

A valid cumulative hazard function must also satisfy the monotonically increas-

ing property, which can be mathematically stated as:

t1 ≤ t2 ⇒ HX(t1) ≤ HX(t2) (5.8)

The HOL formalization of this property is given in Theorem 5.9.

Theorem 5.9: Cumulative Hazard function is a monotonically increasing function

⊢ ∀rv t1 t2. ( t1 ≤ t2) ∧(∀x. CDF in events bern rv x) ⇒

(cumu haz function rv t1 ≤ cumu haz function rv t2)

The proof of Theorem 5.9 involved reasoning from Theorem 5.7 and 5.8, and the fact

that for t1 ≤ t2 the definite integral
∫ t2

0
hX(τ)dτ can be split into a sum of two definite

integrals
∫ t1

0
hX(τ)dτ +

∫ t2

t1
hX(τ)dτ . We formally verified this and some other related

basic properties of definite integrals in HOL which are not part of standard HOL
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distribution. The proofs of these and other basic properties utilize the definite integral

formalization of the gauge integral, theory of derivatives, fundamental theorem of

calculus and the property of uniqueness of definite integral [28, 26].

Distribution Cumulative Hazard Function, H(t)
Uniform ⊢ ∀ a b t. (0 ≤ a) ∧ (a < b) ∧ (0 ≤ t) ⇒

cumu haz function (λs. uniform rv a b s) t = ln
(

b−a
b−t

)

Triangular ⊢ ∀ b t. (0 < b) ∧ (0 ≤ t) ⇒
cumu haz function (λs. triangle rv b s) t = 2ln

(

b
b−t

)

Exponential ⊢ ∀ m t. (0 < m) ∧ (0 ≤ t) ⇒
cumu haz function (λs. exp rv m s) t = mt

Weibull ⊢ ∀ a m t. (0 < a) ∧ (0 < m) ∧ (0 ≤ t) ⇒
cumu haz function (λs. weibull rv a m s) t = (mt)a

Table 5.3: Formally verified cumulative hazard function relations for commonly used
life time distributions

Table 5.3 summarizes the cumulative hazard function relations for some com-

monly used random variables that we formally verified using Definition 5.3 and The-

orems 5.7, 5.8 and 5.9.

5.2.4 Fractile Function

The p-th fractile of a distribution is the time at which the probability of failure is given

by p. The p-th fractile of a lifetime distribution is given by the inverse cumulative

distribution function and is formalized in HOL as follows:

Definition 5.4: Inverse CDF function

⊢ ∀f g. inverse cdf fun f g =

(∀x. (g x = 0) ⇒ x ≤ f (g x)) ∧

(∀x. (g x = 1) ⇒ f (g x) ≤ x) ∧

(∀x. 0 < g x ∧ g x < 1 ⇒

(f (g x) = x) ∧ ∀x. 0 < x ∧ x < 1 ⇒ (g (f x) = x))
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Definition 5.5: p-th Fractile of a life time distribution

⊢ ∀rv. fractile rv = @l. (inverse cdf fun l (CDF rv))

The HOL function fractile takes as input a random variable rv and returns a

function l such that l is the inverse CDF function of the random variable rv. Table 5.4

lists the p-th fractile functions that we formally verified in HOL for Uniform, Triangle,

Exponential, and Weibull random variables.

Distribution p-th Fractile
Uniform ⊢ ∀ a b p t. (0 ≤ a) ∧ (a < b) ∧ (0 < p) ∧ (p < 1) ⇒

fractile (λs. uniform rv a b s) p = (a+p(b-a))
Triangular ⊢ ∀ b p t. (0 < b) ∧ (0 < p) ∧ (p < 1) ⇒

fractile (λs. triangle rv b s) p = b(1 +
√

1− p2)
Exponential ⊢ ∀ m p t. (0 < m) ∧ (0 < p) ∧ (p < 1) ⇒

fractile (λs. exp rv m s) p = − 1
m
ln(1− p)

Weibull ⊢ ∀ a m p t. (0 < a) ∧ (0 < m) ∧ (0 < p) ∧ (p < 1) ⇒
fractile (λs. weibull rv a m s) p = 1

m
(−ln(1− p))

1
a

Table 5.4: Formally verified p-th fractile function relations for commonly used life
time distributions

Some of the important special cases of the fractile function are the percentile,

decile and quartiles. Percentile and Decile correspond to probabilities of 0.01 and 0.1,

respectively. The first, the second and the third quartiles correspond to probabilities

of 0.25, 0.50 and 0.75, respectively. Median that separates the upper half of the

distribution from the lower half of the distribution is defined as second quartile of

the distribution function of a random variable. Percentile, decile and quartile are

commonly used measures of reliability in electrical and mechanical engineering.

Table 5.5 lists the formalization a few fractile functions and their HOL formal-

ization.

Using the HOL formalizations of Tables 5.4 and 5.5, we have verified a sev-

eral standard properties of fractile functions of random variables used in reliability
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Fractile Function HOL Formalization
median ⊢ ∀rv. median rv rv = fractile rv (1 / 2)
tertile ⊢ ∀rv k. kth tertile rv rv k = fractile rv (& k / 3)
quartile ⊢ ∀rv k. kth quartile rv rv k = fractile rv (& k / 4)
quintile ⊢ ∀rv k. kth quintile rv rv k = fractile rv (& k / 5)
sextile ⊢ ∀rv k. kth sextile rv rv k = fractile rv (& k / 6)
deciles ⊢ ∀rv k. kth decile rv rv k = fractile rv (& k / 10)
duodecile ⊢ ∀rv k. kth duodecile rv rv k = fractile rv (& k / 12)
vigintile ⊢ ∀rv k. kth vigintile rv rv k = fractile rv (& k / 20)
Percentile ⊢ ∀rv k. kth percentile rv rv k = fractile rv (& k / 100)
Permille ⊢ ∀rv k. kth permille rv rv k = fractile rv (& k / 1000)

Table 5.5: HOL definitions of commonly used fractile functions

analysis. Theorem 5.10 is presented here as an illustrative example. The median of a

continuous uniform random variable U(a,b) is given by (a+b)
2

. The HOL formalization

is given in Theorem 5.10.

Theorem 5.10: Median of a continuous uniform random variable

⊢ ∀a b. median rv (λs. uniform rv a b s) = (a + b) / 2

The proof of Theorem 5.10 involved rewriting with the definition of median and

p-th fractile of uniform random variable, given in Tables 5.4 and 5.5 respectively, and

then specializing it for p equal to 0.5.

In this section, we presented formalization of four important life time distribu-

tion representations, namely, the survival function, the hazard function, the cumula-

tive hazard function and the fractile function. We also verified the lifetime distribution

relations four commonly continuous random variables, namely, the Uniform, the Tri-

angular, the Exponential and the Weibull random variables.

The lifetime distributions can be defined in other ways as well. For example,

the Mellin transform [48], the moment generating function [33], the total time to test

transform [6, 17], the probability density function [43], the mean residual life functions

[43], the reversed hazard rate [9], and the density quartile functions [54] to name a
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few. Formalization of these concepts is possible using our proposed approach and

the existing theories in HOL theorem prover and the ones we have developed and

described in this chapter.

The higher order logic formalization of basic reliability theory concepts, de-

scribed in this section, can be used for accurate modeling and analysis of reliability

problems in engineering, biostatistics, actuarial and other applied sciences. In the

next section, we consider the analysis of complex systems which may contains more

than one component and may be connected in an arbitrary way.

5.3 Reliability Analysis of Complex Systems

Engineering systems are usually built by connecting various functional components

together to perform a particular task. The structure of the system is also determined

by non functional requirements such as its reliability and maintainability. Many

complex series and parallel connected systems configurations are thus possible and

are carefully considered in the reliability analysis. Present day engineering designs

are extremely complex consisting of hundred’s of thousands of components and some

time millions of components such as power plants and terrestrial and extra terrestrial

vehicles such as modern speed commuter trains and the space shuttle. This increase

in complexity trend is expected to increase in the forseable future. The increase in the

design complexity also increases the complexity of reliability analysis and the task of

making sure that such an analysis is accurate is an important concerns for engineers.

Suppose a system consists of several sub systems connected in some arbitrary way.

It can be shown that the reliability of such a system can be computed in terms of

the reliability of its sub components, provided the components are assumed to fail

independent of each other.
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In reliability analysis, the system lifetimes are modeled using positive valued

continuous random variables with an appropriate distribution. The events of interest

are usually of type {T ≤ t} or {t < T}. Where T represents the lifetime of a system

component and is a positive random variable and t is a positive real value. Let Asys

be the event a “system is functioning at time t”. Then reliability or the probability

that the system is functioning at time t is mathematically expressed as:

R(t) = P{Asys} (5.9)

List functions for Modeling of multi component system

We build on the formalization of multiple continuous random variables described

in Chapter 4. In this section, we formalize behavior of various structures in higher-

order logic. For modeling the behavior of multi component systems, we utilize lists

of random variables with various distributions. In order to model the structure and

reliability behavior of multi component systems, we first define a few list functions in

higher-order logic. These higher-order logic functions are given in Table 5.6, 5.7, and

5.8 and will be explained as they appear in the formalization described in the rest of

this chapter. The table also provides some of the basic list operator definitions and

some of the list functions that were earlier described in Chapter 4 and are reproduced

here for ease of reference.

In the rest of this section, we describe analysis of systems connected using

series, parallel, series parallel, and parallel series connections. We also formalize their

reliability properties and verify important system reliability results that facilitate

reliability analysis of complex systems in the sound core of the HOL theorem prover.
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List Functions HOL definition

list conj gt

⊢ (list conj gt [] [] = T) ∧
(list conj gt (h1::t1) (h2::t2) =

(h2 < h1) ∧ list conj gt t1 t2)

list disj gt

⊢ (list disj gt [] [] = F) ∧
(list disj gt (h1::t1) (h2::t2) =

(h2 < h1) ∨ list disj gt t1 t2)

min seq

⊢ (∀f. min seq f 0 = f 1) ∧
∀f n. min seq f (SUC n) =

min (f (SUC n)) (min seq f n)

FILL LIST N

⊢ (∀n. FILL LIST N [] n = []) ∧
∀h t n. FILL LIST N (h::t) n =

[n] ++ FILL LIST N t n

FILL LIST NM

⊢ (∀M. FILL LIST NM M 0 = []) ∧
∀M N. FILL LIST NM M (SUC N) =

M::FILL LIST NM M N

FILL LIST R

⊢ (∀a. FILL LIST R [] a = []) ∧
(∀h t a. FILL LIST R (h::t) a =

[a] ++ FILL LIST R t a)

LIST SPLIT

⊢ (∀M. LIST SPLIT [] M = []) ∧
∀hN tN M. LIST SPLIT (hN::tN) M =

TAKE hN M::LIST SPLIT tN (DROP hN M)

LENGTH LIST OF LISTS

⊢ (LENGTH LIST OF LISTS [] = []) ∧
∀h t.LENGTH LIST OF LISTS (h::t) =

LENGTH h::LENGTH LIST OF LISTS t

ELEL ⊢ ELEL = (λi j L. EL i (EL j L))

Table 5.6: List and Sequence Functions

List Functions HOL definition

LENGTH
⊢ (LENGTH [] = 0) ∧

∀h t. LENGTH (h::t) = SUC (LENGTH t)

FLAT
⊢ (FLAT [] = []) ∧

∀h t. FLAT (h::t) = h ++ FLAT t

HD ⊢ ∀h t. HD (h::t) = h

TL ⊢ ∀h t. TL (h::t) = t

EL
⊢ (∀l. EL 0 l = HD l) ∧

∀l n. EL (SUC n) l = EL n (TL l)

Table 5.7: HOL basic list functions and operators
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List Functions HOL definition

rv val indep

⊢ (rv val indep [] [] = []) ∧
(rv val indep (h1::t1) (h2::t2) =

h1 h2::rv val indep t1 t2)

s split

⊢ (∀M s. s split 0 M s =

[(λx. s arb s x M) 0]) ∧
∀N M s. s split (SUC N) M s =

(λx. s arb s x M) (SUC N)::s split N M s

s arb

⊢ (∀s M i. s arb s 0 M i = s i) ∧
∀s n M i. s arb s (SUC n) M i =

s (M * SUC n + i)

Table 5.8: List and sequence functions defined in Chapter 4

5.3.1 Series Connected Systems

In a series connected system with N components, the system functions as long as

all its components are functioning. As soon as any of the system component fails,

the system fails as well. In a series connected system, the event that the system is

functioning at time t is given by the intersection of events that each of the individual

elements of the system is functioning at time t, that is, Asys = A1∩A2∩A3∩ ...∩AN .

Where Aj is the event that the “jth component of the system is functioning at time

t”.

Using the property of independence of multiple continuous random variables, it

can be shown that:

Figure 5.1: Reliability of series connected systems.

R(t) = P{Asys} = P{A1 ∩ A2 ∩ ... ∩ An} = P{A1}P{A2}...P{An} (5.10)

R(t) = R1(t)R2(t)...Rn(t) = ΠN
i=1Ri(t) (5.11)
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Since P{Aj} is the reliability of the jth component and is between zero and

one, therefore the system can be no more reliable than the least reliable component

in the series connected system, that is:

R(t) ≤ minjRj(t) (5.12)

If N components of a system are connected in series and if the component lifetimes

are modeled using exponential random variables with rates λ1, λ2, λ3, ...., λN , then

the overall system reliability of a series connected system is given by:

R(t) = R1(t)R2(t)...Rn(t) = ΠN
i=1Ri(t) (5.13)

R(t) = e−λ1te−λ2t....e−λN t (5.14)

R(t) = e−(
∑

i=N

i=1 λi)t (5.15)

In such situations, the system reliability is also exponentially distributed with

rate λ = λ1 + λ2 + ....+ λN = (
i=N
∑

i=1

λi)

We have formally verified these basic concepts and results in higher-order logic

using the HOL theorem prover and some of the infra structure developed in this thesis.

HOL Formalization of Series Connected Systems

A series connected system consisting of a number of subcomponents is modeled

using a list of random variables of type ((num->bool)->real) list. The function

rv val indep takes two lists as arguments and constructs a single list. The first

argument of this function is the list of random variables L. The second argument is
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another list. This list is generated by the function s split. This generated list con-

sists of disjoint segments of the boolean sequence s. Finally, list conj gt constructs

a conjunction of logical terms, each of which is a greater than inequality and con-

sists of corresponding terms from its two list arguments. Both the list arguments of

list conj gt are real lists. The second argument of list conj gt is constructed by

the list function LIST FILL R, which fills the list x with a real value t.

Definition 5.6: Series System Structure Function

⊢ ∀L x s t. series system L x s t = list conj gt (rv val indep L

(s split (PRE (LENGTH L)) (LENGTH L) s)) (FILL LIST R x t)

Definition 5.7: N Series System Structure Function

⊢ ∀L x s t N. N series system L x s t N = list conj gt (rv val indep L

(s split (PRE N) N s)) (FILL LIST R x t)

In Definition 5.7, we define a series system structure that consists of N compo-

nents. Now using Definitions 5.6 and 5.7 , we define the survival function of a series

connected system and a N series connected system, respectively.

Definition 5.8: Series System Survival Function

⊢ ∀X x. series survival function X x = (λt. prob bern

{s | list conj gt (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s)) (FILL LIST R x t)})

Definition 5.9: N Series System Survival Function

⊢ ∀X x N. N series survival function X x N = (λt. prob bern {s |

list conj gt (rv val indep X (s split (PRE N) N s)) (FILL LIST R x t)})

In Theorems 5.11 and 5.12, we verify the series connected and the N series

system reliability properties.
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Theorem 5.11: Series System Reliability

⊢ ∀X x t. indep rv list X (FILL LIST R x t) ⇒

(series survival function X x t = (λt. prod1 (0,LENGTH X) (λi.

prob bern {s | t < EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s))})) t)

Theorem 5.12: N Series System Reliability

⊢ ∀X x t N. indep rv list X (FILL LIST R x t) ⇒

(N series survival function X x N t = (λt. prod1 (0,N) (λi.

prob bern {s | t < EL i (rv val indep X

(s split (PRE N) N s))})) t)

This proof of these two theorems follows from the definitions of the series survival

function and the independence of a list of random variables. In theorems 5.13 and

5.14, we verify the reliability lower bound for a series connected system.

Theorem 5.13: Series System Reliability Lower Bound

⊢ ∀X x t. indep rv list X (FILL LIST R x t) ⇒

series survival function X x t ≤

min seq (λi. prob bern {s | t < EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s))}) (LENGTH X)

Theorem 5.14 corresponds to a system with N components connected in series.

Theorem 5.14: N Series System Reliability Lower Bound

⊢ ∀X x t N. indep rv list X (FILL LIST R x t) ⇒

N series survival function X x N t ≤

min seq (λi. prob bern {s | t < EL i (rv val indep X

(s split (PRE N) N s))}) N
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The recursive function min seq takes two arguments, a real sequence and a

natural number that represents the number of elements in the sequence and returns

the minimum element of the sequence. In Theorems 5.13 and 5.14, we formally verify

that the reliability of a series connected system is less than or equal to the minimum of

the survival functions of the components in the series connected system. That in other

words means that a series system reliability is less than the least reliable component

in the series system. The proof of this theorem used Theorem 5.11 and 5.12, the

definition of the survival function, the survival function of the series connected system

and the definition of the independence of a list of random variables.

In Theorem 5.15 and 5.16, we verify the series system reliability modeled using

exponential random variables.

Theorem 5.15: Series System Reliability - Exponential Random Variables

⊢ ∀t x a. indep rv list (EXP RV LIST a) (FILL LIST R x t) ∧

(∀i. 0 ≤ i ∧ i < LENGTH a ⇒ 0 < EL i a) ⇒

(series survival function (EXP RV LIST a) x t =

exp (-sum (0,LENGTH (EXP RV LIST a)) (λi. EL i a) * t))

Theorem 5.16: N Series System Reliability - Exponential Random Variables

⊢ ∀t x a. indep rv list (EXP RV LIST a) (FILL LIST R x t) ∧

(∀i. 0 ≤ i ∧ i < N ⇒ 0 < EL i a) ⇒

(N series survival function (EXP RV LIST a) x t =

exp (-sum (0,N) (λi. EL i a) * t))

The proof of Theorem 5.15 and 5.16 utilizes Theorem 5.6, the definitions of the

survival function, the series system survival function, and the independence of a list

of random variables, the exponential random variable CDF and the survival function
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of the exponential random variable. The proof of this theorem also utilized reasoning

from real, measure, probability, and set theories in the HOL theorem prover. The

product of sequence of theory did not exist in HOL theorem prover libraries and we

developed this theory and proved several standard results [1]. This theory simplified

the proof effort for this theorem.

5.3.2 Parallel Connected Systems

If N components of a system are connected in parallel, the system will function

properly as long as at least one of the components is functioning. The system will

stop functioning when all the system components fail. Let Ap be an event that all

the components in the parallel connected system have failed at time t, and Asys be

the event that the system is functioning at time t, then Ap = Asys. Ap is then given

by the intersection of the complements of N events, Ai, where Ai represents an event

that the ith component in the parallel system is functioning at time t.

P{Ap} = P{Ac
s} = P{Ac

1 ∩ Ac
2 ∩ ... ∩ Ac

N} = P{Ac
1}P{Ac

2}...P{Ac
N} (5.16)

Figure 5.2: Reliability of parallel connected systems.

Using the basic probability theory properties, it can be shown that:

1− P{Asys} = (1− P{A1})(1− P{A2})...(1− P{AN}) (5.17)
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Which by the definition of reliability of a system component can be written as:

1−R(t) = (1−R1(t))(1−R2(t))...(1−RN(t)) = ΠN
i=1(1−Ri(t)) (5.18)

and finally, it can be shown that:

R(t) = 1− [(1−R1(t))(1−R2(t))...(1−RN(t))] = 1− ΠN
i=1(1−Ri(t)) (5.19)

Equation 5.19 presents an important result for the reliability of a system com-

posed of N individual components connected in parallel.

If N components of a system are connected in parallel and if the component lifetimes

are modeled using exponential random variables with rates λ1 = λ2 = λ3 = .... =

λN = λ, then the overall system reliability is given by:

R(t) = 1− ΠN
i=1(1−Ri(t)) = 1− ΠN

i=1(1− e−λit) = 1− (1− e−λt)N (5.20)

We have formally verified these results and concepts in higher-order logic using the

infrastructure developed in this thesis research.

HOL Formalization of Parallel Connected Systems

Similar to the formalization of the series connected system, we begin the de-

scription of formalization of the parallel connected system with the definition of the

parallel system survival function. In Definitions 5.10 and 5.11 the parallel system

structure function is formalized.

Definition 5.10: Parallel System Structure Function

⊢ ∀L x s t. parallel system L x s t = list disj gt (rv val indep L

(s split (PRE (LENGTH L)) (LENGTH L) s)) (FILL LIST R x t)
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In these definitions,rv val indep constructs a list of independent random vari-

ables as described in the case of series connected systems. The function list disj gt

constructs a disjunction of logical terms, each of which is greater than inequality and

consists of corresponding terms from its two list arguments.

Definition 5.11: N Parallel System Structure Function

⊢ ∀L x s t N. N parallel system L x s t N = list disj gt (rv val indep

L (s split (PRE N) N s)) (FILL LIST R x t)

Definition 5.12 describes the survival function of a parallel connected system.

Definition 5.12: Parallel System Survival Function

⊢ ∀X x. parallel survival function X x =

(λt. prob bern {s | list disj gt (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s)) (FILL LIST R x t)})

In Definition 5.13, we define a parallel connected system with N element.

Definition 5.13: N Parallel System Survival Function

⊢ ∀X x N. N parallel survival function X x N = (λt. prob bern {s |

list disj gt (rv val indep X (s split (PRE N) N s)) (FILL LIST R x t)})

Definitions 5.12 and 5.13 formally describes the parallel connected system sur-

vival functions. These function takes two and three arguments, respectively. The

first argument is a list of random variables of type ((num->bool)->real) list. The

function list disj gt takes to lists as arguments and creates a logical expression

that consists of disjunction of greater than inequalities involving the corresponding

terms of the two input lists. The first list (rv val indep X (s split (PRE (LENGTH
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X)) (LENGTH X) s)) argument of list disj gt is a list of real random variables con-

structed in a similar manner as explained in Definition 5.6. The function FILL LIST R

returns the list x after filling it with the variable t. Definition 5.13 describes the sur-

vival functions of a N parallel system. The third argument N represents the number

of components in the parallel reliability structure.

The reliability expression for a parallel connected system and a N parallel con-

nected system is verified in Theorem 5.17 and 5.18.

Theorem 5.17: Parallel System Reliability

⊢ ∀t X x. indep rv list X (FILL LIST R x t) ⇒

(parallel survival function X x t = 1 - prod1 (0,LENGTH X)

(λi. 1 - prob bern {s | t < EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s))}))

Theorem 5.18: N Parallel System Reliability

⊢ ∀t X x. indep rv list X (FILL LIST R x t) ⇒

(N parallel survival function X x N t = 1 - prod1 (0,N)

(λi. 1 - prob bern {s | t < EL i (rv val indep X

(s split (PRE N) N s))}))

The proof of this theorem begins with the rewriting of the goal of the theorem

with the definitions of parallel system survival function, survival function, and the

independence of list of random variables. The proof also utilized basic properties and

some reasoning from the set theory the HOL theorem prover.

The reliability expression for a parallel system modeled using exponential ran-

dom variables is verified in Theorem 5.19.
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Theorem 5.19: Parallel System Reliability - Exponential Random Variables

⊢ ∀t m x y. (0 < m) ∧

indep rv list (EXP RV LIST (FILL LIST R y m)) (FILL LIST R x t) ⇒

(parallel survival function (EXP RV LIST (FILL LIST R y m)) x t =

1 - (1 - exp (-m * t)) pow LENGTH (FILL LIST R x t))

Theorem 5.20: N Parallel System Reliability - Exponential Random Variables

⊢ ∀t m x y N. (0 < m) ∧

indep rv list (EXP RV LIST (FILL LIST R y m)) (FILL LIST R x t) ⇒

(parallel survival function (EXP RV LIST (FILL LIST R y m)) x t =

1 - (1 - exp (-m * t)) pow N)

The proof of Theorem 5.19 and 5.20 begins by rewriting with the definitions

of parallel connected system survival function. All the exponential random variables

are independent and identically distributed with the parameter m. The proof of this

theorem also utilized reasoning from probability and set theories along with some real

analysis.

5.3.3 Series Parallel Connected Systems

If a system consists ofM components in parallel, where each of such parallel connected

component has N components connected in series then such a system is called a series-

parallel system. One such example is shown in Figure 5.3 and the reliability of such

a system is given by:

RSP (t) = 1− ΠN
i=1(1− ΠM

j=1Rij(t)) (5.21)

Where Rij is the reliability of the jth component in the ith branch of the system.
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Figure 5.3: Reliability of series-parallel connected systems.

Such a system configuration is typically used to enhance the reliability at the system

level.

HOL Formalization

A series parallel connected system is modeled using a list of lists. Each list in

the list of lists corresponds to each of the parallel connected component. Each element

of these sub lists then corresponds to the individual series component. Each element

of this list is a random variable of type (num->bool)->real and can be chosen to

have an appropriate probability distribution function.

Definition 5.14 formally describes a series parallel connected system structure.

Definition 5.14: Series Parallel System Structure Function

⊢ (∀t. series parallel system [] t = F) ∧

∀hL tL t. series parallel system (hL::tL) t =

list conj gt hL (FILL LIST R hL t) ∨ series parallel system tL t

The function series parallel system takes two arguments, a list of lists that

contains the random variables describing the series parallel system and another vari-

able t, and recursively computes the disjunction of terms generated by the function

list conj gt. List function list conj gt operates on the elements of the list of lists

each of which corresponds to the series connected part of the series parallel system.

The function FILL LIST R takes a list and a the variable t as arguments. It then
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returns the list after filling it with the variable t. In order to illustrate the function of

Definition 5.15, consider a system that consists of a parallel connection of three series

connected systems. Lets assume that the first parallel component has two sub compo-

nents in series, the second parallel component has three sub components in series and

the third parallel component has two sub components in series. Such a system can be

modeled using a lists of three lists given by [[a1; a2]; [a3; a4; a5]; [kk; a6]].

In this list each of the elements is a random variable that models the corresponding

element in the series parallel system. The expression ⊢ series parallel system

[[a1; a2]; [a3; a4; a5]; [kk; a6]] t evaluates to ((t < a1) ∧ (t < a2)) ∨

((t < a3) ∧ (t < a4) ∧ (t < a5)) ∨ ((t < kk) ∧ (t < a6)).

Now using the structure function of the series parallel system formalized in

Definition 5.14, we define the survival function of the series parallel connected system

in Definition 5.15.

Definition 5.15: Series Parallel System Survival Function

⊢ ∀L. series parallel survival function L = (λt. prob bern

{s | series parallel system (LIST SPLIT (LENGTH LIST OF LISTS L)

(rv val indep (FLAT L)

(s split (PRE (LENGTH (FLAT L))) (LENGTH (FLAT L)) s))) t})

The first argument of the function series parallel system is a list (LIST SPLIT

(LENGTH LIST OF LISTS L) (rv val indep (FLAT L) (s split (PRE (LENGTH (FLAT

L))) (LENGTH (FLAT L)) s))). In the construction of the list several list functions

and lists are used and are briefly described in the following. The list (s split (PRE

(LENGTH (FLAT L))) (LENGTH (FLAT L)) s) is generated by the function s split

and is a list of disjoint random boolean sequences of length (LENGTH (FLAT L)) gen-

erated from the boolean sequence s. In this list expression the list function FLAT
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converts a list of lists L into a list that contains the elements of all the sub lists.

In this conversion the order of elements in the lists is maintained. This is done by

appending each of the elements of the sub lists with each other starting from the

head of the list. The higher-order logic definition of this function is given in Table

5.6. The function LENGTH LIST OF LISTS takes a list of lists as an argument and

returns a list that consists of lengths of each of the lists in the list of lists. So for

example, LENGTH LIST OF LISTS [[a1; a2]; [a3; a4; a5]; [kk; a6]] returns a

[2; 3; 2].

The function rv val indep takes (FLAT L) and (s split (PRE (LENGTH (FLAT

L))) (LENGTH (FLAT L)) s) as inputs and generates a list that consists of indepen-

dent random variables. Finally, the function LIST SPLIT reconstructs the lists of lists

of the parallel series system such that now each list in the lists consists of independent

random variables. The second argument of the function series parallel system is

the real value t.

To illustrate how this definition facilitates the specification of the series parallel

system survival function, we construct the survival function of the series parallel sys-

tem we described earlier in this section. The expression series parallel survival function

[[a1; a2]; [a3; a4; a5]; [kk; a6]] returns (λt. prob bern {s | (t < a1

(s arb s 6 7)) ∧ (t < a2 (s arb s 5 7)) ∨ (t < a3 (s arb s 4 7)) ∧ (t <

a4 (s arb s 3 7)) ∧ (t < a5 (s arb s 2 7)) ∨ (t < kk (s arb s 1 7)) ∧ (t

< a6 (s arb s 0 7))}). Note that each random variable receives a disjoint segment

of the random boolean sequence and that the structure of the system is series parallel

is indicated by the conjunction and disjunction of various greater than inequalities.

An N x M series parallel structure has N components connected in parallel such

that each of these components has M sub components connected in series. Definition
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5.16 shows how such a system structure function can be formally specified.

Definition 5.16: N x M Series Parallel System Structure Function

⊢ ∀N M L s. NxM series parallel system N M L s =

LIST SPLIT (FILL LIST NM M N)

(rv val indep (FLAT L) (s split (PRE (N * M)) (N * M) s))

As an example, consider a 2 x 3 series parallel system and it needs to be

specified using random variables given in the list of lists [[a1; a2; a3]; [b1; b2;

b3]]. Definition 5.17 allows us to specify such a system as: [[a1 (s arb s 5 6); a2

(s arb s 4 6); a3 (s arb s 3 6)]; [b1 (s arb s 2 6); b2 (s arb s 1 6); b3

(s arb s 0 6)]]. Note that in this specification all the random variables receive a

disjoint segment of the random boolean sequence s.

Definition 5.17 formally describes the series parallel survival function of a N x

M system.

Definition 5.17: N x M Series Parallel System Survival Function

⊢ ∀L N M. NxM series parallel survival function L N M = (λt. prob bern

{s | series parallel system (LIST SPLIT (FILL LIST NM M N)

(rv val indep (FLAT L)

(s split (PRE (LENGTH (FLAT L))) (LENGTH (FLAT L)) s))) t s})

Lets consider a 3 x 2 parallel series system described using a list of lists given

by: [[a1; a2]; [b1; b2]; [c1; c2]].

The survival function of the system NxM series parallel survival function [[a1;

a2]; [b1; b2]; [c1; c2]] 3 2 is given by: (λt. prob bern {s | (t < a1

(s arb s 5 6)) ∧ (t < a2 (s arb s 4 6)) ∨ (t < b1 (s arb s 3 6)) ∧ (t <

b2 (s arb s 2 6)) ∨ (t < c1 (s arb s 1 6)) ∧ (t < c2 (s arb s 0 6))})
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The reliability expression for a N x M parallel series system is verified in Theorem

5.21.

Theorem 5.21: Series Parallel System Reliability

⊢ ∀t x a. (∀ L x t. indep rv list (FLAT L) (FILL LIST R x t)) ⇒

NxM series parallel survival function L N M t =

1 - prod1 (0,N) (λi. 1 - prod1 (0,M)

(λj. prob bern {s | t < ELEL i j (LIST SPLIT (FILL LIST NM M N)

(rv val indep (FLAT L) (s split (PRE (N * M)) (N * M) s)))}))

The proof of this theorem involved rewriting with the definitions of the NxM

series parallel system survival function and the independence of a list of random

variables, Theorem 5.14 and 5.18 for the series and parallel connected systems, and

reasoning from the probability theory.

5.3.4 Parallel Series Connected Systems

If a system consists of M components connected in series such that each of the series

component consists of N sub components connected in parallel. Such a system is

called a parallel-series system and is shown in Figure 5.4.

The reliability of such a system is given by:

RPS(t) = ΠM
j=1(1− ΠN

i=1(1−Rij(t))) (5.22)

Where Rij is the reliability of the ijth component of the system.

Parallel-series connections can be considered as introducing component level

redundancy. It can be shown mathematically that such a redundancy improves the

reliability of the system more than the system level redundancy.
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Figure 5.4: Reliability of parallel-series connected systems.

HOL Formalization of Parallel Series Connected Systems

A parallel series connected system is modeled using a list of lists. Each list in

the list of lists corresponds to each of the series connected component. Each element

of these lists then corresponds to the individual parallel component. Each element of

this list is a random variable of type (num->bool)->real and can be chosen to have

an appropriate probability distribution function.

Definition 5.18 describes a parallel series connected system structure.

Definition 5.18: Parallel Series System Structure Function

⊢ (∀t s. parallel series system [] t = T) ∧

∀hL tL t. parallel series system (hL::tL) t =

list disj gt hL (FILL LIST R hL t) ∧ parallel series system tL t

Note that the function parallel series system takes two arguments, a list of

lists that contains the random variables describing the parallel series system and an-

other variable t, and recursively computes the conjunction of terms generated by the

function list disj gt. List function list disj gt operates on the elements of the

list of lists each of which corresponds to the parallel connected part of the parallel se-

ries system. The function FILL LIST R takes a list and a the variable t as arguments.

It then returns the list after filling it with the variable t. In order to illustrate the func-

tion of Definition 5.18, consider a system that consists of a series connection of three

parallel connected systems. Lets assume that the first series component has two sub
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components in parallel, the second series component has three sub components in par-

allel and the third series component has two sub components in parallel. Such a system

can be modeled using a lists of three lists given by [[a1; a2]; [a3; a4; a5]; [kk;

a6]]. In this list each of the elements is a random variable that models the correspond-

ing element in the parallel series system. The expression parallel series system

[[a1; a2]; [a3; a4; a5]; [kk; a6]] t evaluates to ((t < a1) ∨ (t < a2)) ∧

((t < a3) ∨ (t < a4) ∨ (t < a5)) ∧ ((t < kk) ∨ (t < a6)).

Now using the structure function of the parallel series system formalized in

Definition 5.18, we define the survival function of the parallel series connected system

in Definition 5.19.

Definition 5.19: Parallel Series System Survival Function

⊢ ∀L. parallel series survival function L = (λt. prob bern

{s | parallel series system (LIST SPLIT (LENGTH LIST OF LISTS L)

(rv val indep (FLAT L)

(s split (PRE (LENGTH (FLAT L))) (LENGTH (FLAT L)) s))) t})

The first argument of the function parallel series system is a list (LIST SPLIT

(LENGTH LIST OF LISTS L) (rv val indep (FLAT L) (s split (PRE (LENGTH (FLAT

L))) (LENGTH (FLAT L)) s))). In the construction of the list several list function

and lists are used and are briefly described in the following. The list (s split (PRE

(LENGTH (FLAT L))) (LENGTH (FLAT L)) s) is generated by the function s split

and is a list of disjoint random boolean sequences of length (LENGTH (FLAT L)) gen-

erated from the boolean sequence s. In this list expression the list function FLAT

converts a list of lists L into a list that contains the elements of all the sub lists.

In this conversion the order of elements in the lists is maintained. This is done by

appending each of the elements of the sub lists with each other starting from the
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head of the list. The higher-order logic definition of this function is given in Table

5.6. The function LENGTH LIST OF LISTS takes a list of lists as an argument and

returns a list that consists of lengths of each of the lists in the list of lists. So for

example, LENGTH LIST OF LISTS [[a1; a2]; [a3; a4; a5]; [kk; a6]] returns a

[2; 3; 2].

The function rv val indep takes (FLAT L) and (s split (PRE (LENGTH (FLAT

L))) (LENGTH (FLAT L)) s) as inputs and generates a list that consists of indepen-

dent random variables. Finally, the function LIST SPLIT reconstructs the lists of lists

of the parallel series system such that now each list in the lists consists of independent

random variables. The second argument is the real value t.

To illustrate how this definition facilitates the specification of the parallel series

system survival function, we construct the survival function of the parallel series

system we described earlier in this section.

The expression parallel series survival function [[a1; a2]; [a3; a4;

a5]; [kk; a6]] returns (λt. prob bern {s | (t < a1 (s arb s 6 7) ∨ t <

a2 (s arb s 5 7)) ∧ (t < a3 (s arb s 4 7) ∨ t < a4 (s arb s 3 7) ∨ t < a5

(s arb s 2 7)) ∧ (t < kk (s arb s 1 7) ∨ t < a6 (s arb s 0 7))}) .

Note that each random variable receives a disjoint segment of the random

boolean sequence and that the structure of the system is parallel series indicated

by the conjunction and disjunction of various greater than inequalities.

An N x M parallel series structure has been formally described in Definition 5.20.

Definition 5.20: NxM Parallel Series System Structure Function

⊢ ∀N M L s. NxM parallel series system N M L s =

LIST SPLIT (FILL LIST NM M N)

(rv val indep (FLAT L) (s split (PRE (N * M)) (N * M) s))
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An N x M parallel series structureM components connected in series such that

each of these components has N sub components.

As an example, consider a 2 x 3 parallel series system needs to be specified using

random variables given in the list of lists [[a1; a2; a3]; [b1; b2; b3]]. Defini-

tion 5.20 allows us to specify such a system as: [[a1 (s arb s 5 6); a2 (s arb s 4

6); a3 (s arb s 3 6)]; [b1 (s arb s 2 6); b2 (s arb s 1 6); b3 (s arb s 0

6)]]. Note that in this specification all the random variables receive a disjoint seg-

ment of the random boolean sequence s.

Definition 5.21 formally describes the parallel series survival function of a N x

M system.

Definition 5.21: NxM Parallel Series System Survival Function

⊢ ∀L N M. NxM parallel series survival function L N M =

(λt. prob bern {s | parallel series system

(LIST SPLIT (FILL LIST NM M N) (rv val indep (FLAT L)

(s split (PRE (LENGTH (FLAT L))) (LENGTH (FLAT L)) s))) t s})

Lets consider a 3 x 2 parallel series system described using a list of lists given

by: [[a1; a2]; [b1; b2]; [c1; c2]]. Its survival function of the system described

earlier is given by: ⊢NxM parallel series survival function [[a1; a2]; [b1;

b2]; [c1; c2]] 3 2 is given by: (λt. prob bern {s | (t < a1 (s arb s 5

6) ∨ t < a2 (s arb s 4 6)) ∧ (t < b1 (s arb s 3 6) ∨ t < b2 (s arb s 2 6))

∧ (t < c1 (s arb s 1 6) ∨ t < c2 (s arb s 0 6))})

The reliability expression for a N x M parallel series system is verified in Theorem

5.22.
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Theorem 5.22: N x M Parallel Series System Reliability

⊢ ∀t x a. (∀ L x t. indep rv list (FLAT L) (FILL LIST R x t)) ⇒

NxM parallel series survival function L N M t =

prod1 (0,M) (λj. 1 - prod1 (0,N)

(λi. 1 - prob bern {s | t < ELEL i j (LIST SPLIT (FILL LIST NM M N)

(rv val indep (FLAT L) (s split (PRE (N * M)) (N * M) s)))}))

The proof of this theorem required reasoning from probability, set, measure,

boolean, and real theories and the definition of independence of random variables.

The principle of induction on variables N and M was used to prove some intermediate

results needed in this proof.

5.3.5 Reliability of K out of N Configurations

In many practical situations, a K out of N configuration must hold for the system to

meet certain reliability requirement. Such a system connection consists of N compo-

nents and K out of the N components must be operating or functional at any time

for the system to be considered operating properly.

One can find many real life examples where systems consist of identical com-

ponents with identical failure rates. However the failure mechanism is completely

independent. Binomial distribution can be used when N components are indepen-

dent and identical. For a constant failure rate, and an exponential distribution for

the component lifetime, the reliability of a K -out-of-N system configuration can be

mathematically expressed as:

R(t) =
N
∑

i=K







N

i






(e−λt)i(1− e−λt)N−i (5.23)
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HOL Formalization The HOL formalization of a K-out-of-N system is given

in Definition 5.22.

Definition 5.22: K out of N Parallel System Survival Function

⊢ ∀X K N. parallel K of N survival function X K N =

(λt. sum (K,N) (λi. & (binomial N i) *

(1 - prob bern {s | t < EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s))}) pow (N - i) *

(prob bern {s | t < EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s))}) pow i))

For a parallel connected system with N components in parallel, the reliability of

the system with K out of N components in working condition is verified in Theorem

5.23.

Theorem 5.23: K-out-of-N Parallel Connected System Reliability

⊢ ∀a t. (∀X t. {s | t < EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s))} ∈ events bern) ∧

(∀X t. {s | EL i (rv val indep X

(s split (PRE (LENGTH X)) (LENGTH X) s)) ≤ t} ∈ events bern) ⇒

(parallel K of N survival function (EXP RV LIST a) K N t =

sum (K,N) (λi. & (binomial N i) *

exp (-(EL i a) * t) pow (N - i) * (1 - exp (-(EL i a) * t)) pow i))

The proof of this theorem required rewriting with the CDF of exponential random

variable along with some real analysis.

The higher-order logic formalization presented in this section of the chapter en-

ables analysis of reliability behavior of many simple and complex engineering systems.
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For example, a battery of storage cells in a renewable energy system may consist of

N cells, in which a minimum of K cells must be operational for maintaining required

line voltage and to provide desired current/power to the load. Such sub systems are

an essential part of back up system in many industries and safety critical systems

such as power generation and process industry and life support systems for vehicles

meant for manned air and space flights. Accurate reliability analysis of such systems

is essential. With the help of the infrastructure we have developed, we can reason

about the reliability of such problems and construct formal correctness proofs and

generalized reliability expressions.

Using the results presented in this chapter, reliability analysis of complex struc-

tures can be performed. Complex reliability structures can first be transformed into

a combination of the four basic types of structures. Then, using the formalized re-

sults for these basic sub structures, over all reliability of complex structures can be

determined. Such analysis has traditionally been done using computer simulations

and suffers from accuracy problems. Moreover, it is not possible to model true inde-

pendent random behavior in computer simulations. This advancement in the area of

reliability analysis helps alleviate both of these limitations and such analysis was not

possible before the contribution of this thesis.

5.4 Summary

In this chapter, we presented an approach for the reliability analysis of engineering

systems in the sound environment of the HOL theorem prover. The approach builds

upon existing formalizations of continuous random variables and the formalization

of multiple continuous random variables described in Chapter 4. We presented the
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formalization of commonly used lifetime distribution representations, namely the Sur-

vival function, the Hazard function, the Cumulative Hazard function and the Fractile

function. We also presented the verification of several statistical properties of im-

portant lifetime distributions. The formalization described in this chapter consists of

over 6000 lines of HOL code and took over 400 man-hours to complete.

The work presented in this chapter, makes it possible to perform accurate life-

time reliability modeling and analysis for the very first time in the sound environment

of a theorem prover. Our proposed approach, though interactive, is very flexible and

allows modeling of lifetime behavior using single and multiple parameter, bounded

and unbounded continuous random variables. This allows us to model increasing,

constant and decreasing failure rates together with both short and long term lifetime

behaviors. In fact, at this time any random variable with a closed form CDF expres-

sion is supported and can be formally reasoned about. This ability makes it suitable

for a large set of reliability analysis problems in safety-critical engineering systems.

Using this work, applications where the reliability structure of the system is

series, parallel, series-parallel or parallel-series can also be modeled formally in higher-

order logic and their reliability analysis can be performed in the sound core of the

HOL theorem prover.

In the next chapter, we present the reliability analysis of a few applications using

the infrastructure we have developed during this thesis research.
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Chapter 6

Reliability Analysis Applications

In this chapter, we present three applications. The analysis described in these appli-

cations was not possible in the sound core of a theorem prover before the research

presented in this thesis. Traditionally such analysis has been done using simulation

based techniques. The first application deals with the analysis of lifetime behavior

of electronic system components. The second application describes and formally an-

alyzes the complex aging behavior of insulated power transmission and distribution

cables that operate in harsh environments. We construct formal models of these elec-

trical and electronic system components and then verify their useful lifetime reliability

properties. The third application analyzes an important multi component mechan-

ical engineering sub system, an automotive transmission. The analysis utilizes our

multiple continuous random variable formalization.

6.1 Electronic System Components

Capacitors are an essential component of many electrical systems ranging from basic

electronics used in medical devices to avionics used in aircrafts, artificial satellites
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and space shuttles. Uninterruptable power supplies and inverters commonly used

in renewable energy power systems contain capacitors for filtering and smoothing of

rectified power line voltages. Moreover, they are used in electrical power transmission

and distributions networks for power factor correction. Their reliability is absolutely

essential for correct behavior of electronics used in safety critical systems and in

efficient operation of electrical power systems.

Failures in electronic components most commonly occur at the beginning and

towards the end of their lifetime. Throughout their useful lifetime, the electronic sys-

tem components, such as capacitors, exhibit a memory less lifetime behavior. That

is, a used capacitor that is functioning has the same lifetime distribution as a new

capacitor. Exponential distribution is a continuous distribution that is memoryless

and has a constant hazard function. That is, the risk of failure associated with such

a device stays constant throughout its useful lifetime. Thus exponential distribution

is the most appropriate distribution for modeling the reliability behavior of a capac-

itor [43]. The computation of the exponential distribution parameter or the failure

rate starts with a component base failure rate value corresponding to standard oper-

ating environment and stress levels. Environment and quality factors are then used to

account for the changes in the base failure rate of a component due to the variations

in the environment, the operating stresses and the quality of components used in the

design. Definition 8 gives the base failure rate for a capacitor [51].

Definition 6.1: Base Failure Rate, Capacitor

⊢ ∀ A B VRop Ns Top NT G H.

cap failure rate base A B VRop Ns Top NT G H =

(A) (real pow (real pow (VRop / Ns) H + 1) B)

(exp (real pow ((Top + 273) / NT) G))
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where A is the adjustment and B is the shaping factor (specified in [51]), VRop is

the electrical stress ratio and is defined as the ratio of the operating to rated power.

Ns is a stress constant, Top is the operating temperature, NT is the temperature

constant, and G and H are called the acceleration constants (specified in [51]). The

HOL function real pow takes two real numbers as input and returns a real number.

The returned number is equal to the first argument raised to the power of second

argument of the function (i.e., real pow A b = Ab). exp represents the exponential

function. In the part failure method, each electronic system component is assigned a

base failure rate corresponding to standard operating environment and stress levels.

The quality and environment stress factors are used to adjust the base failure rate of

a component according to the operating environment and expected stress levels. A

major source of electronic component stress is its operating environment such as its

operating temperature, its applied voltage, current and power levels.

The definitions of these two factors are given in [51] and are formalized in HOL

as follows.

Definition 6.2: Quality Stress Factor

⊢ ∀ quality.

cap stress factor quality quality =

(if quality = 0 then 15 / 10 else

(if quality = 1 then 1 else

(if quality = 2 then 3 / 10 else

(if quality = 3 then 1 / 10 else 3 / 100))))
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Definition 6.3: Environment Stress Factor

⊢ ∀ environment.

cap stress factor environment environment =

(if environment = 0 then 1 else

(if environment = 1 then 1 else

(if environment = 2 then 2 else

(if environment = 3 then 4 else

(if environment = 4 then 5 else

(if environment = 5 then 7 else

(if environment = 6 then 15 / 2 else

(if environment = 7 then 8 else 15))))))))

The HOL formalization of these stress factors accepts a natural number as input.

Each natural number represents a range of environmental parameters and returns a

real number that represents the stress value. The formalization of the capacitor part

failure rate, operating in a certain environment under certain electrical stress levels,

is given in Definition 11.

Definition 6.4: Part Failure Rate, Capacitor

⊢ ∀ A B VRop Ns Top NT G H n m.

cap failure rate part A B VRop Ns Top NT G H n m =

(cap failure rate base A B VRop Ns Top NT G H )

(cap stress factor environment n) (cap stress factor quality m)

6.1.1 Capacitor Lifetime Model

The capacitor life time in HOL is modeled using a function that takes as input the

capacitor failure rate and returns a function of Exponential random variable of type
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((num→bool)→real).

Definition 6.5: Capacitor Lifetime Model

⊢ ∀ A B VRop Ns Top NT G H n m. cap lifetime model A B VRop Ns Top NT

G H n m = (λs. exp rv (cap failure rate part A B VRop Ns Top NT G H n

m) s)

6.1.2 Verification of Reliability Properties of a Capacitor

The survival and hazard functions and three important statistical properties of ca-

pacitor life time are presented in this section.

6.1.2.1 Survival and Hazard Functions

Theorems 6.1 and 6.2 formally prove the survival and hazard function properties of

the capacitor.

Theorem 6.1: Survival Function, Exponential Random Variable

⊢ ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧

(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧

(0 ≤ n) ∧ (0 ≤ m) ⇒

(survival function (cap lifetime model A B VRop Ns Top NT G H n m) t

= exp(-(cap failure rate part A B VRop Ns Top NT G H n m) t))

All assumptions in Theorem 6.1 except for (0 < t) ensure that the capacitor

part failure rate (cap failure rate part A B VRop Ns Top NT G H n m) is a posi-

tive real number.
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Theorem 6.2: Hazard Rate, Exponential Random Variable

⊢ ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧

(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧

(0 ≤ n) ∧ (0 ≤ m) ⇒

(hazard function (cap lifetime model A B VRop Ns Top NT G H n m) t

= cap failure rate part A B VRop Ns Top NT G H n m)

The proof of Theorem 6.2 involved rewriting with the definitions of survival and

hazard functions, part failure rate and the CDF of the Exponential random variable.

The limit term is simplified using L’hopital’s rule.

6.1.2.2 Statistical Properties

We formally verified several statistical properties of the capacitor lifetime using the

proposed reliability analysis method in the HOL theorem prover. Three of which are

presented below, namely, the mean, the second moment, and the variance of Time-

to-Failure of the capacitor.

Theorem 6.3: Mean Time-to-Failure (MTTF), Exponential(m)

⊢ ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧

(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧

(0 ≤ n) ∧ (0 ≤ m) ⇒

mttf (U , E ,P) (cap lifetime model A B VRop Ns Top NT G H n m)

=(1)/(cap failure rate part A B VRop Ns Top NT G H n m)
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Theorem 6.4: Second Moment of Time-to-Failure, Exponential(m)

⊢ ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧

(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧

(0 ≤ n) ∧ (0 ≤ m) ⇒

second moment (U , E ,P) (cap lifetime model A B VRop Ns Top NT G H n m)

= (2)/(cap failure rate part A B VRop Ns Top NT G H n m)2

Theorem 6.5: Variance of Time-to-Failure, Exponential(m)

⊢ ∀ A B VRop Ns Top NT G H n m t.

(0 < t) ∧ (0 < A) ∧ (0 ≤ B) ∧ (0 ≤ G) ∧ (0 ≤ H) ∧

(0 < Ns) ∧ (0 < NT) ∧ (0 ≤ VRop) ∧ (VRop ≤ 1) ∧

(0 ≤ n) ∧ (0 ≤ m) ⇒

variance (U , E ,P) (cap lifetime model A B VRop Ns Top NT G H n m)

= (1)/(cap failure rate part A B VRop Ns Top NT G H n m)2

The proofs of the above statistical properties were greatly facilitated by the cor-

responding Exponential random variable statistical properties, described in Section

3.4.3. These verified statistical properties summarize the reliability behavior of the

capacitor. Other statistical properties such as the standard deviation and the coef-

ficient of variance can be similarly verified. Moreover, other probabilistic reliability

properties such as the cumulative hazard function and the fractile functions can be

formally proved for electronic system components using the properties we have verified

in Chapters 3 and 5 of this thesis.

The proofs of the probabilistic and statistical reliability properties described

in this section are accurate and general, and together with our proposed reliability

analysis method provide an accurate alternative to traditional computer simulations
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based reliability analysis method.

6.2 Insulated Power Cables

Insulated cables are an important component of electrical power systems that operate

in harsh environment and are frequently subjected to one or more types of stresses

through out their useful life. These stresses can be electrical, mechanical or envi-

ronmental in nature. For example, changes in transmission voltages and presence

of harmonics produce varying electric fields that stress the cable insulation material.

Mechanical stresses, such as bending and vibration, and environmental stresses, such

as temperature variations, pollution and humidity also have an effect on the cable

insulation. All of these stresses progressively deteriorate the ability of the cable insu-

lation material to prevent conduction. This process is sometimes called aging and is

also commonly referred to as the wear of the insulation in power system literature. A

cable is said to have failed or reached its end-of-life once it is no longer able to prevent

conduction as a result of these applied stresses [47, 59].

Modeling of the cable aging process is an active area of research. Accurate

modeling, analysis and prediction of the times when cable insulation will stop com-

plying with its specifications plays an important role in planning, design and reliable

operation of power systems. Inaccurate aging models and inaccurate analysis and

prediction of the time and probability of failures can result in serious and expensive

consequences for power system operators [62]. Formal methods based modeling and

analysis techniques, such as the one proposed in this paper, have the potential to

alleviate these limitations of the traditional inaccurate and error-prone approaches

such as simulation and paper-and-pencil based approaches, respectively.

In this section, we consider an end-of-life model described in [62, 16]. This
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thermodynamic model assumes that the cable aging process is triggered by the supply

of heat. The model states the probability of insulation failure at time t using Weibull

distribution described by the following equation.

P{X ≤ t} = FX(t) = 1− e−(mt)a = 1− Sx(t) (6.1)

where a is the Weibull shape parameter. The parameter m or the scale parameter

depends on several physical parameters of cable insulation material and its operating

environment and is given by the following equation.

m =
sinh( ϵ0ϵr∆V E2

2kT
)

h
2πfkT

e
∆G

kT

(6.2)

where sinh is the sine hyperbolic function, ∆S is the entropy, T is the temperature,

∆H is the enthalpy, ∆V is the activation volume of the insulation material, k is the

Boltzmann’s constant, h is Planck’s constant, f is the alternating signal frequency,

ϵ0 and ϵr are the absolute permittivity of free space and the relative permittivity of

the insulation material, respectively, E is intensity of the electric field, and ∆G is the

energy required to trigger the aging chemical reaction in the cable insulation and is

given by:

∆G = ∆H − T∆S (6.3)

In [62] the author verifies the capability of this model to estimate the end-of-

life time under various conditions and estimates parameters of the model for various

types of cables with different insulation materials and operating voltages. In our

formalization of this problem, we model the wear behavior in higher-order-logic, and

verify expressions for the probability that the cable insulation will fail at a time t, as
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general expressions. We also verify the instantaneous and accumulated risk associated

during the useful lifetime of the cable.

The HOL formalization of the scale parameter or factor m for the Weibull dis-

tribution is given in Definition 6.6.

Definition 6.6: Wear factor, scale factor (m) for Weibull distribution

⊢ ∀ h k Tc f dV E e0 er dH dS.

scale fact h k Tc f dV E e0 er dH dS =

sinh (e0 er dV E pow 2 / (2 k Tc)) /

(h / (2 pi f k Tc) exp (dG dH Tc dS / (k Tc)))

In this definition sinh represents the sine hyperbolic function. We needed this

function for modeling the wear behavior of the insulated cable as shown in Defini-

tion 13. Our formalization of hyperbolic functions includes basic definitions of the

sine, cosine, tangent, cosecant, secant, and cotangent hyperbolic functions. In this

formalization, we also prove commonly used hyperbolic function identities, such as

(cosh2(x)− sinh2(x) = 1) etc. We have also verified several important results related

to the derivatives of hyperbolic functions and some related to the definite integral of

hyperbolic functions. This formalization was greatly helped by the real number and

transcendental function theories in HOL theorem prover, details of the hyperbolic

function theory can be found elsewhere [3].

6.2.1 Cable Insulation Lifetime Model

The higher-order-logic life time model of an insulated cable is given in Definition

14. The insulated cable lifetime is modeled using a higher order logic function

insu cable lifetime model, which takes as input various physical parameters and re-

turns a Weibull random variable of type (num→bool)→real
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Definition 6.7: Cable insulation lifetime model

⊢ ∀ shape fact h k Tc f dV E e0 er dH dS.

insu cable lifetime model shape fact h k Tc f dV E e0 er dH dS =

(λs. weibull rv shape fact (scale fact h k Tc f dV E e0 er dH dS) s)

6.2.2 Verification of Reliability Properties

Theorems 6.6, 6.7, 6.8, and 6.9 prove important lifetime properties of the insulated

power transmission cable. The probability that the insulated power transmission cable

is functioning at a time t (survival function) is verified in Theorem 6.6.

Theorem 6.6: Survival Function, Weibull Random Variable

⊢ ∀ h k Tc f dV E e0 er dH dS shape fact.

(0 < shape fact) ∧ (0 < Tc) ∧ (0 < dV) ∧ (0 < f) ∧ (0 < t)

⇒ (survival function

(insu cable lifetime model shape fact h k Tc f dV E e0 er dH dS) t =

exp(-real pow ((scale fact h k Tc f dV E e0 er dH dS)

(t)) shape fact)

The HOL function real pow in Theorem 16 takes two real numbers as input and

returns a real number. The returned number is equal to the first argument raised to

the power of second argument of the function (i.e., real pow A b = Ab).

All assumptions except for (0 < t) and (0 < shape fact)ensure that the (scale fact

h k Tc f dV E e0 er dH dS) is a positive real number.

The lifetime distribution of a system can be determined from the individual life-

time distributions. Sometimes a single survival function is used to model or represent

the lifetime behavior of the entire population when a large population of items has

identically distributed lifetimes. In this interpretation, the survival functions of two
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populations can be used to compare the survival patterns of the two populations of

items [43].

The amount of failure risk associated with the insulated cable at any time t is

verified in Theorem 6.7.

Theorem 6.7: Hazard Rate, Weibull Random Variable

⊢ ∀ h k Tc f dV E e0 er dH dS shape fact.

(0 < shape fact) ∧ (0 < Tc) ∧ (0 < dV) ∧ (0 < f) ∧ (0 < t)

⇒ (hazard function

(insu cable lifetime model shape fact h k Tc f dV E e0 er dH dS) t =

shape fact (real pow t (shape fact - 1))

(real pow (scale fact h k Tc f dV E e0 er dH dS) shape fact ) )

Hazard rate represents an expression for failure risk as a function of time. The

verified expression in Theorem 6.7 is completely general. The parameters in this

theorem when provided specific values for the insulated cable represent the failure

risk for the insulated cable as a function of time. The shape of the hazard function

gives an indication of how an electronic system component ages. For example, in

this case it describes how the insulated cable ages. A larger value of hazard function

means that the insulated cable is under a greater risk of failure and a smaller value

of this function indicates that the insulated cable is under less risk.

Moreover, with proper selection of insulated cable and weilbull distribution pa-

rameters, a decreasing, a constant, or an increasing hazard function can be modeled.

The decreasing, constant, and increasing hazard functions represent risks an insu-

lated cable experiences during its infancy, its useful lifetime, and close to its end of

life, respectively.
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The total amount of failure risk up to time t associated with the insulated cable

is verified in Theorem 6.8.

Theorem 6.8: Cumulative Hazard Function, Weibull Random Variable

⊢ ∀ h k Tc f dV E e0 er dH dS shape fact.

(0 < shape fact) ∧ (0 < Tc) ∧ (0 < dV) ∧ (0 < f) ∧ (0 < t)

⇒ (cumu haz function

(insu cable lifetime model shape fact h k Tc f dV E e0 er dH dS) t =

real pow ( ((scale fact h k Tc f dV E e0 er dH dS)(t)) shape fact ) )

The p-th fractile property for the insulated cable is verified in Theorem 6.9.

A special case of this property, when p=0.5, is some times is also referred to as the

median lifetime of the insulated cable.

Theorem 6.9: P-th Fractile Function, Weibull Random Variable

⊢ ∀ h k Tc f dV E e0 er dH dS shape fact p.

(0 < shape fact) ∧ (0 < Tc) ∧ (0 < dV) ∧ (0 < f) ∧ (0 < t) ∧

(0 < p) ∧ (p < 1) ⇒ (fractile

(insu cable lifetime model shape fact h k Tc f dV E e0 er dH dS) p =

(1/(scale fact h k Tc f dV E e0 er dH dS))

(real pow (-ln(1-p)) (1/shape fact)) )

The proofs of the above lifetime properties were completed with the help of

Weibull random variable theorems listed in Tables 5.1, 5.2, 5.3 and 5.4. It is important

to note that the reliability analysis results proved in this section are completely generic

expressions rather than numerical values as is the case in simulation based techniques.

Moreover these results are 100% accurate as we are dealing with real numbers rather

than floating point numbers as is the case in simulation based techniques. Such
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analysis was not previously possible in a theorem proving environment and we believe

it to be a major step forward in the direction of the formal reliability analysis of

engineering systems.

6.3 Reliability Analysis of an Automobile Trans-

mission

One of the objectives of reliability analysis is to identify and to predict the failure

behavior of a system as early as possible in the design process. This allows discovery of

weak points of the design and assists in their elimination in the early stages of design.

In this chapter, we present the formal reliability analysis of a single stage transmission

of an automobile. This example illustrates the details of the transmission system, the

determination of the reliability of each system component and the calculation of the

overall system reliability.

6.3.1 Automobile Transmission

The mechanical drawing of a single stage transmission is shown in Figure 6.1. The

transmission transfers mechanical power from the input shaft to the output shaft

using a pair of gears. The power is transmitted from a larger gear on the input shaft

to a smaller gear on the output shaft.

A detailed list of all the components is given in Table 6.3.1. Some of these

components are reliability relevant and some have no effect on the reliability of the

transmission and are termed as reliability neutral components.

Even though this example is simple, it is practical and at the same time clearly

illustrates the steps involved in the formal reliability analysis using theorem proving.
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Table 6.1: Components of an automotive transmission

housing locking washer 1 bearing cover sealing 2
housing cover locking washer 2 bearing cover sealing 3
housing bolts spacer ring bearing cover sealing 4
housing cover sealing bearing cover 1 shaft seal 1
input shaft bearing cover 2 shaft seal 2
output shaft bearing cover 3 roll bearing 1
gear wheel 1 bearing cover 4 roll bearing 2
gear wheel 2 hex bolt 1-12 roll bearing 3
fitting key connection bearing cover sealing 1 roll bearing 4

The developed higher-order-logic infrastructure is capable of handling much larger

problems with ease.

Figure 6.2 shows the reliability functional block diagram of the system. The

rectangular blocks, in Figure 6.2 represent various components of the automotive me-

chanical power transmission system. The circles represent various interfaces between

the components. The two and three character alpha-numeric codes inside circular

symbols abbreviate the interface names and their descriptions.

The method for the determination of system reliability is outlined in Figure 6.3.

It consists of three main steps. The first step is to identify the reliability relevant

components determine their reliability. The second step is to determine the reliability

structure of the system. Finally, based on the reliability structure of the system,

calculate the overall reliability of the system. These three steps are described in

detail in the rest of this section.

6.3.1.1 Reliability Relevant Components

ABC and FMEA analysis are qualitative analysis methods commonly used in the clas-

sification of system components into groups of components that are prone to risk and
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Figure 6.1: Mechanical drawing of the transmission.

those that are not. The components that are prone to failure risk are some times also

called the reliability relevant components. All other components are considered relia-

bility neutral components. ABC analysis looks at the loads and stresses experienced

by each component of the system and classifies them into three categories called the A,

the B and the C categories. The components belonging to groups A and B are prone

to risks while components in category C are reliability neutral. The category A com-

ponents are components that are loaded by defined static stresses and are involved

in power transmission. Their failure behavior is determined using Wholer curves.

These curves provide information needed to determine the distribution parameters of

the random variables used for reliability modeling. Weibull and exponential random

variables are two most commonly used random variables in the lifetime analysis of

mechanical systems. The components in category B experience friction, abrasion,

extreme temperatures and corrosion. For this category, the distribution parameters
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Figure 6.2: Reliability block diagram of the transmission.

Figure 6.3: Reliability analysis method
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of the random variables are determined through experiments. The category C com-

ponents are randomly loaded by impacts, friction and abrasion etcetera. They are

neutral to risk and usually not considered in the reliability analysis. In the ABC

analysis, both the physical components and the interfaces between the components

are considered in the reliability analysis. Failure Mode Effect Analysis (FMEA) is a

similar qualitative analysis method that is usually applied to more complex systems.

The end result in both types of analysis is the classification of components of the

system in to categories depending on their risk of failure.

Using the ABC analysis, the 27 parts in the automotive transmission can be

categorized into the A, B and C categories as shown in Table 6.3.1. This analysis

allows us to identify the twelve reliability relevant components of the system. These

components include the shafts, the bearings, the gears, the fitting keys and the seals.

Table 6.2: Reliability relevant components based on ABC analysis

Category A Category B Category C

input shaft shaft seal 1 housing, housing cover, bolts and sealing
output shaft shaft seal 2 locking washer 1 and 2
gear 1 breakage spacer ring
gear 2 breakage bearing cover 1-4
gear 1/2 pitting bearing cover sealing 1-4
fitting key connection hex bolt 1-12
roll bearing 1-4

6.3.1.2 Automotive Transmission Reliability Structure

After the classification of the system components, the next step in the reliability

analysis is to determine the reliability structure of the system. In this process, the

functional block diagram and the power flow schematics are used. Both of these

types of diagrams show how the mechanical power is transferred from input to output
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Figure 6.4: Reliability structure.

and how the system components are stressed. They also show how failure of one

component affects the rest of the system. For example, from the functional block

diagram of the transmission in Figure 6.2, we see that there are twelve reliability

relevant components in the system, and that all of these elements of the system have

to be working correctly for the system to be correct. The reliability block diagram

thus has a pure serial structure as shown in Figure 6.4.

The serial block diagram and system equations represent the system reliability

in terms of relevant components and their functional dependencies.

The system reliability RTRAN is given by the product of the reliability of the

individual components.

RTRAN = RIS.ROS.RG1B.RG2B.RRB1.RRB2.RFK .RG12P .RRB3.RRB4.RSS1.RSS2 (6.4)

6.3.1.3 Determination of System Reliability

In real life operation of systems, it is often the case that the failure behavior of a

component is not influenced by the failure behavior of other components in the sys-

tem. This fact in analysis requires that the random variables used in the analysis are

independent random variables. Our formalization of multiple continuous random vari-

ables enables modeling of true random and independent behavior. Simulation based

techniques which have traditionally been used in computer based reliability analysis
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cannot achieve true random or independent behavior. This is one of the strengths of

the proposed reliability analysis approach using theorem proving technique.

6.3.2 Formal Reliability Description of the Automotive Trans-

mission

In this analysis, we assume Weibull random variable is used to model the reliability

behavior of various components of the automotive transmission. Weibull distribution

is a commonly used in such analysis. We use the two parameter version of the Weibull

distribution in this analysis.

The transmission components are modeled using higher-order logic functions.

First a list of N independent Weibull random variables is constructed as given in

Definition 6.8.

Definition 6.8: Automotive Transmission Reliability Model

⊢ ∀a b N s. auto rv list a b N s =

rv val indep (WB RV LIST a b) (s split (PRE N) N s)

In Definition 6.8, a and b are lists that contains shape and scale parameters of the

Weibull random variables in the WB RV LIST. x is a real list, N represents the number

of components on the series reliability structure and t is a positive real value. Each

element of this list represents the lifetime of a component of the transmission. Table

6.3 shows the formal models of each of the transmission components. We use these

models to verify several important reliability properties of the individual components

of the transmission.

Definition 6.9 formally states the reliability model of the automotive transmis-

sion. The series reliability structure is modeled using the series reliability structure

definition (N series survival function) from Chapter 5.
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Definition 6.9: Automotive Transmission Reliability Model

⊢ ∀a b x N t. auto trans rel model N a b x N t =

N series survival function (WB RV LIST a b) x N t

Component Formal Model
1 Input Shaft ⊢ ∀ a b t. IS model a b x =

(IS) (λs. EL 0 (auto rv list a b 12 s))
2 Output Shaft ⊢ ∀ a m t. OS model a b x =

(OS) (λs. EL 1 (auto rv list a b 12 s))
3 Gear 1, Breakage ⊢ ∀ a m t. G1B model a b x =

(G1B) (λs. EL 2 (auto rv list a b 12 s))
4 Gear 2, Breakage ⊢ ∀ a m t. G2B model a b x =

(G2B) (λs. EL 3 (auto rv list a b 12 s))
5 Roll Bearing 1 ⊢ ∀ a m t. RB1 model a b x =

(RB1) (λs. EL 4 (auto rv list a b 12 s))
6 Roll Bearing 2 ⊢ ∀ a m t. RB2 model a b x =

(RB2) (λs. EL 5 (auto rv list a b 12 s))
7 Roll Bearing 3 ⊢ ∀ a m t. RB3 model a b x =

(RB3) (λs. EL 6 (auto rv list a b 12 s))
8 Roll Bearing 4 ⊢ ∀ a m t. RB4 model a b x =

(RB4) (λs. EL 7 (auto rv list a b 12 s))
9 fitting Key ⊢ ∀ a m t. FK model a b x =

(FK) (λs. EL 8 (auto rv list a b 12 s))
10 Gear 1,2 Pitting ⊢ ∀ a m t. G12P model a b x =

(G12P) (λs. EL 9 (auto rv list a b 12 s))
11 Shaft Seal 1 ⊢ ∀ a m t. SS1 model a b x =

(SS1) (λs. EL 10 (auto rv list a b 12 s))
12 Shaft Seal 2 ⊢ ∀ a m t. SS2 model a b x =

(SS2) (λs. EL 11 (auto rv list a b 12 s))

Table 6.3: Formal reliability models

6.3.3 Lifetime Reliability Analysis in HOL

6.3.3.1 Reliability Analysis of Transmission Components

Using the transmission component models give in Table 6.3, we have proved the sur-

vival function, the hazard function, the cumulative hazard function and the fractile
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function relations for the various components of the transmission. B1 and B10 are

commonly used measures of reliability in mechanical engineering systems. They rep-

resent the 1 and the 10 percent fractiles of the lifetime random variable distribution.

As an example, we list the reliability properties of the input shaft in Table 6.4. These

properties were proved using the general reliability properties we verified in Chapter

5 of this thesis for the Weibull random variable. These already verified properties of

the Weibull random variable reduced the interactive effort to relatively small number

of steps. This shows the strength of our work in reducing the interactive analysis

effort and making it less time consuming and at the same time making sure that the

analysis is one hundred percent correct.

Name Verified Input Shaft Reliability Properties
Survival ⊢ ∀ a b t. (0 ≤ EL 0 a) ∧ (0 < EL 0 b) ∧ (0 ≤ t) ⇒
Function survival function (IS model a b x) t = e−((EL 0 b)t)(EL 0 a)

Hazard ⊢ ∀ a b t. (0 ≤ EL 0 a) ∧ (0 < EL 0 b) ∧ (0 ≤ t) ⇒
Function hazard function (IS model a b x) t =

(EL 0 a)(EL 0 b)(EL 0 a)t(EL 0 a)−1

Cum. ⊢ ∀ a b t. (0 ≤ EL 0 a) ∧ (0 < EL 0 b) ∧ (0 ≤ t) ⇒
Hazard cum haz function (IS model a b x) t =
Function ((EL 0 b)t)(EL 0 a)

B1 ⊢ ∀ a b t. (0 ≤ EL 0 a) ∧ (0 < EL 0 b) ∧ (0 ≤ t) ⇒
fractile (IS model a b x) (1/100) =

1
(EL 0 b)

(−ln(99/100))
1

(EL 0 a)

B10 ⊢ ∀ a b t. (0 ≤ EL 0 a) ∧ (0 < EL 0 b) ∧ (0 ≤ t) ⇒
fractile (IS model a b x) (1/10) =

1
(EL 0 b)

(−ln(9/10))
1

(EL 0 a)

Table 6.4: Reliability properties of the input shaft

6.3.3.2 Reliability Analysis of the Automotive Transmission

The automotive transmission has a series reliability structure. We determined this

structure as well as the reliability relevant components using the qualitative analysis
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method described in section 6.3.1.

Theorem 6.10: Automotive Transmission System Reliability

⊢ ∀a b t.(∀a b t. indep rv list (WB RV LIST a b) (FILL LIST R x t)) ∧

(∀i. 0 < (EL i a)) ∧ (∀i. 0 < (EL i b)) ∧ (0 ≤ t) ∧

(LENGTH (WB RV LIST a b) = 12) ⇒

(auto trans rel model N a b x 12 t =

prod1 (0,12) (λi. survival function (EL i (WB RV LIST a b)) t))

Theorem 6.10 formally states that for an automotive transmission, consisting

of 12 critical reliability relevant components, given in Table 6.3, the over all system

reliability is given by the product of reliability of its individual components, provided

the components of the transmission fail independent of each other.

The proof of Theorem 6.10 required rewriting with Definition 6.9 and reasoning

from Theorem 5.12 for the series connected system. Theorem 6.10 provides a formal

proof of correctness of the reliability specification of an automotive transmission. The

expression provides a general result and is applicable to many situations. Such an

analysis was not possible in theorem proving environment and is enabled because of

the formalized reliability theory described in this thesis. The proofs of Theorems 6.1

through 6.10 required an order of magnitude less effort in terms of lines of HOL code

and the number of man-hours required. This was mainly due to the fact that several

of the general results needed for reasoning in the proofs of these theorems were avail-

able to us which we had already verified in Chapters 4 and 5. This fact shows the

strength of our proposed higher-order logic framework for formal reliability analysis

of engineering systems. Such analysis has traditionally been done using computer

simulations which have inherent accuracy limitations. Moreover, it is not possible to

create operating conditions in computer simulations that are truly random in nature
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because of the use of pseudo random number generators. Computer simulations usu-

ally require hundreds of thousands of samples and sometimes even millions of samples

to achieve reliability numbers with high enough confidence. With the availability of

our developed framework for reliability analysis, it now possible to perform many such

analyses in the sound core of the HOL theorem prover and get reliability analysis re-

sults simply by specializing the general results for specific distributions and system

parameter values.

6.4 Summary

In this chapter, we presented three applications. In the first two applications, we for-

mally analyzed the lifetime behavior of electronic system components and the complex

aging behavior of insulated power transmission and distribution cables, respectively.

In the third application, we utilized formalized multiple continuous random variables

to perform formal reliability analysis of an automobile transmission. We described

how the system, qualitative and quantitative analysis steps are performed. During

modeling and analysis we showed how the proposed reliability analysis infrastructure

developed in this thesis facilitated the formal analysis of the automotive transmission.

It reduced the interactive effort significantly, provided formal proofs of correctness of

properties and formal proofs of the analysis. Such analysis was only possible using

simulation based techniques before this research. Even though this example is simple,

it does highlight all the basic steps in formal reliability analysis. The infrastructure

developed is general and can facilitate performance and reliability analysis. It does

not have theoretical limitations as far as the number of system components and the

complexity of structure is concerned.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Reliability engineering is an important area of research. Formal methods based tech-

niques are more accurate and are better able to deal with the problem of book keeping

in complex reliability problems. They provide an alternative to the traditional com-

puter simulations and the paper-and-pencil based reliability analysis approaches. In

this thesis, we presented a higher-order logic theorem proving based approach to engi-

neering reliability analysis. We have developed an infrastructure that can be used to

perform formal reliability analysis of engineering problems in the sound environment

of the HOL theorem prover. Reliability models can be constructed using multiple

continuous random variables and an analysis can be performed that is free from ap-

proximations. The expressive power of higher-order logic makes it possible to deal

with a wide range of reliability problems, including but not limited to, commercial

and industrial safety critical hardware and software systems, and large mechanical,

civil and aerospace engineering systems.
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The primary focus of the thesis research was on using higher-order logic theo-

rem proving for reliability analyses of engineering systems. The basic infrastructure

developed can now facilitate more complex analysis at higher levels of abstraction,

where the results presented in this thesis can be used as basic primitive results. For-

mal modeling and analysis is a complex and time consuming task. While conducting

proofs, several times clever choices have to be made to simplify reasoning in order

to complete the proofs. In some cases, we proved results with slightly longer proof

scripts in a shorter period of time because we reduced the reasoning from set theory

to real numbers. We encountered many such situation during the proofs presented in

this thesis where we had to resort to such tactics to reduce interactive effort required

for the proofs. The time and effort spent in developing the basic infrastructure paid

off later when we applied these results to the formalization of reliability theory. The

thesis makes the following main contributions towards the development of a formal

reliability analysis framework in HOL.

• Building on existing HOL theories of probability and lebesgue integration, it

provides formalized statistical properties of continuous random variables. Con-

tinuous random variables and their probabilistic and statistical properties are a

measures of reliability of the lifetime of the components of a system.

• It provides formalized multiple continuous random variables. In many real world

engineering applications, the failure mechanisms and behaviors of components

of a system are random and independent of each other. Formalized indepen-

dent random variables with different distributions enable realistic modeling and

analysis of practical engineering systems.

• It describes formalization of various measures of reliability and how reliabil-

ity engineering problems can be modeled and analyzed in the sound core of a
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theorem prover. The reliability analysis notions of the cumulative distribution

function, the survival function, the hazard function, the cumulative hazard func-

tion and the fractile function are presented. Various useful properties of these

measures are also verified. These theorems facilitate reasoning when construct-

ing formal reliability proofs.

• Finally, the thesis presents several illustrative examples of applications of the

work in both electrical and mechanical engineering.

We used the HOL theorem prover in this work because it had basic mathemat-

ical support already formalized in higher-order logic, that is, measure, probability,

lebesgue integration, real, list and boolean theories. The task of formalization was

very tedious and time consuming. Knowledge of both mathematical concepts and the

HOL Theorem prover were required. Often times the proof descriptions in textbooks

were not detailed enough or were hard to find. In those cases, we had to come up

with proofs using the paper-and-pencil method; we then verified them interactively

in the theorem prover. The theorem proving based approach is also efficient in book

keeping; once a theorem is proved, it can be re-used and accessed in a much more

easy fashion than in the case of the paper-and-pencil based approach. We encountered

many such cases in this thesis research where a lot of initial formalization effort went

into proving many helpful lemmas and theorem which later on reduced the interac-

tive theorem proving effort for proving main results. This makes the theorem proving

based approach a useful tool for both mathematicians and engineers to accurately

document mathematical knowledge and make sure that the hardware and software

used in safety critical applications is correct and reliable.

135



7.2 Future Research Directions

The contributions of this thesis can be used as a basis to enhance the reliability anal-

ysis framework presented which will allow engineers to tackle many more interesting

reliability analysis problems.

• A random process is a sequence of random variables defined over a probability

space. Random processes are used in the modeling and analysis of many engi-

neering and applied-science problems. For example, the analysis of performance

of a communication system operating in an uncertain environment and the study

of behavior of biological processes. The infrastructure presented in this thesis

formally defines the notion of a list of a random variable and verifies some of

its properties. It would be interesting to extend this work and investigate the

avenue of formalization of random processes and their properties. Mechanically,

the process can begin with a formal definition of a random process based on a

standard advanced probability textbook. This should be followed by verification

of basic properties of stochastic processes to verify the logical and mathemati-

cal correctness of such a definition. This may require development of support

infrastructure related to real sequences. Finally, detailed proofs should be con-

structed with reasoning as detailed as possible using the paper and pencil based

technique. The formalization can then begin using the backward proof method.

The proof steps can be continued until the proof goals are reduced to a form

that are either trivial or simple enough to be discharged. Such subgoals can be

added as assumptions to the main goals. Once the verification of main goals has

been completed, then as many of the assumptions can be discharged as possible

to make the results more general, powerful and less constrained, ideally equiv-

alent to their mathematical statements. Finally, such results can be specialized
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to create corollaries and a set of helpful lemmas and theorems that can facilitate

analysis of engineering systems requiring formalized stochastic processes.

• Many engineering problems require that the multiple random variables have

some correlation between the random variables to model and analyze a behaviour

that is close to real world conditions. The proposed infrastructure can be used to

generate correlated random variables with ease. The process would begin with

the generation of correlated standard uniform random variables using techniques

such as the one described in [50]. Then, using inverse transform method random

variables with the desired probability distributions can be formalized [29].

• Another contribution that can be made to extend this work is to formalize

methods such as the Box-Muller method [10] and the Acceptance-Rejection

method for the formalization of other continuous random variables that are used

in reliability analysis such as the Gaussian and the Gamma random variables.

• Lifetime distributions can also be defined using the Mellin transform [48], the

moment generating function [33], the laplace and fourier transforms, the total

time to test transform [6, 17], the probability density function [43], the mean

residual life functions [43], the reversed hazard rate [9], and the density quartile

functions [54]. Most of the needed mathematic infrastructure exists in the HOL

theorem proving environment and the formalization of these concepts using our

proposed approach is possible. This would further enhance the formal reliability

analysis framework.

• Modern engineering systems such as, nuclear power plants and state-of-the art

aircrafts consist of thousands of sub systems and millions of components work-

ing together. Such safety critical systems can be formally analyzed by using
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the infrastructure presented in this thesis. There is a possibility of developing a

formal automated tool that can map functional descriptions of engineering sys-

tems to predicates involving random variables, probabilities and other measures

of reliability. Such a tool shall also rely on the infrastructure presented in this

thesis and on some of the formal proofs we provide for modeling of complex

multi component systems.

• There is a need to develop domain-specific theories in HOL to further reduce the

interactive effort and facilitate the process of reasoning for formal verification

engineers. One of the reasons that formal methods based approaches for analy-

sis have not become main stream is that domain specific problem modeling and

analysis is still too tedious and time consuming for an engineer or an applied

scientist. A simple solution to this problem is to create domain-specific theories.

For example, the two-port network theory was developed in the late 1950s to re-

duce the paper-and-pencil analysis required when analyzing electrical networks.

Many standard results were proven and are still used to-date in the analysis of

circuits and systems. The variables used in this analysis can be random vari-

ables describing some behavior of the circuit components or their environment.

Formalization of the two-port network theory in higher-order logic along with

the formalization of the multiple continuous random variables we present in this

thesis would open up a new avenue. It would be possible to conduct formal anal-

ysis of electrical and electronic circuits and systems. For example, the formal

analysis an electrical power transmission system and the front end of an ASDL

modem. Moreover, it would be possible to construct proofs of correctness of

functionality, performance, and reliability for such system, something that is

not possible today.
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