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Abstract  

Inspection Plan for Dependent Multi-Characteristic Components with 

Multi-Classifications 

Jian Xiong Li 

 In this research, a mathematical model is developed for inspecting multicharacteristic 

components with multi-classifications in a multistage production system. The 

characteristics’ defective rates are statistically dependent. The output of the model is an 

optimized inspection plan. The plan minimizes the total cost per accepted component. A 

heuristic algorithm is proposed in solving the problem with optimized solutions. The 

developed model and proposed heuristic algorithm are demonstrated using an example 

from a medical equipment manufacturing system. The data used in the example are 

realistic but hypothetical. The model can be modified for solving similar problems in 

other applications. 

 

Keywords: Quality improvement, inspection error, multistage production system, 

inspection plan. 
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Chapter One 

Introduction 

1.1 Motivation 

 Along with the popularity of Total Quality Management (TQM) philosophy, quality 

control and improvement of products and processes throughout organizations have 

become essential and indispensable in organizational strategic planning in various 

industries [23, 33 and 49]. Numerous tools have been developed and adopted in the past 

decades for product and process quality improvement. For example, robust design, cost 

of quality, Statistical Process Control (SPC), inspection strategy design, Six Sigma, etc., 

have been widely used [2, 5, 15, 20, 22, 25, 27, 30, 32, 37, 38, 42, 45, 51 and 52]. To 

survive and succeed in today’s competitive environment, organizations often use 

combinations of these tools to achieve organizational objectives of profit and total 

customer satisfaction. The inspection oriented quality assurance strategy design, as one 

important category of the inspection strategy design, has been accepted as an effective 

solution methodology for achieving these objectives. This strategy design is to minimize 

the total system cost by optimizing the inspection parameters such as the number of 

inspection repetitions, inspection sequence and the allocation of inspections in order to 

ensure that customers receive high quality products [35, 39 and 46].  

As a common practice in modern industries, a multistage system provides great 



2 
 

opportunities for quality improvement and cost reduction. More specifically, in a 

multistage production system, the final products are manufactured with 

multicharacteristic components through the processing at multiple stations or stages. In 

such a system, inspection of the multicharacteristic products is broadly accepted and 

considered as necessary to be repeated in multiple times. One reason is that inspection is 

not perfect. Rejecting a conforming component or product by fault (Type I error) or 

failure to reject a defective component by fault (Type II error) can happen in practice and 

both errors bring in costs. Nonconforming products received by customers may cause 

injury or loss of life and bring in much higher cost in the manner of rework, penalty, 

judicial action and the loss of potential customers. Product inspections are performed in 

multiple times to reduce such errors. Inspecting different characteristics in different 

stations may cost differently. Inspection in an earlier station may cost much less than that 

in a later station due to cost accumulation along with the processing of products. To 

perform inspection in station with high defect rate first may contribute to more cost 

savings than that at a low defect rate station first. 

 Therefore, developing and applying economic models to improve the profit by 

minimizing the total cost per accepted component are very important. The total cost may 

include the costs associated with the two types of inspection error and the inspection cost.  

An optimized inspection plan with optimized solutions of inspection frequency and 

sequence will be essential for quality improvement to improve the average quality level 

(AQL) in a multistage production system. 
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1.2 Research Background 

This research studies the problem of inspection frequency and inspection sequence 

optimization in a multistage production system. We extend the earlier work in Duffuaa 

and Nadeem (1994), which in turn, is an extension of the model in Raouf et al. (1983). In 

Duffuaa and Nadeem (1994), defective rates of the considered characteristics are 

assumed statistically dependent. Two inspection classifications, accept or reject, are   

assumed in the model in minimizing total expected cost per accepted component due to 

Type I and Type II error as well as the inspection cost. Another related work in Duffuaa 

and Khan (2002) also extends the model in Raouf et al. (1983) considering three 

inspection classifications, accept, reject and rework. However, the defective rates of the 

characteristics were assumed statistically independent. In this thesis, we extend these two 

earlier works by developing a new cost model. We consider the problem of 

multicharacteristic component inspection with three inspection classifications and 

dependent defective rates. 

 

1.3 Objectives and Scope of the Thesis 

This research is to design an inspection plan with optimized inspection frequency and 

inspection sequence so that the total cost per accepted component will be minimized. To 

avoid unnecessary complexity and redundant constraints in developing the model, the 

costs associated with Type I and Type II errors as well as the inspection are considered in 
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the total cost formula. Including other costs may not significantly change the outcome of 

the model developed in this research. 

 The developed model applies to multistage production system with 

multicharacteristic components for inspection in a sequential manner. The characteristics’ 

defective rates are assumed statistically dependent. The rework station is assumed as 

error-free. Inspection may be repeated more than once to improve the outgoing quality of 

final products. Inspection will be stopped when the minimized total cost per accepted 

product is achieved. 

 

1.4 Research Methodology  

In this research, we start with the development of a new mathematical model for the 

design of an inspection plan to be implemented in a multistage production system with 

multicharacteristic component inspection requirement. It is followed by developing a 

heuristic method to solve the model. 

 

1.5 Contributions of the Thesis 

This research generalizes and extends the earlier works of Duffuaa and Nadeem 

(1994) and Duffuaa and Khan (2002) in that a cycling inspection of the 

multicharacteristic components with three inspection classifications and defective rates 
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are statistically dependent. The problem to optimize the cycling inspection frequency and 

inspection sequence is solved by solving the proposed new model. A heuristic approach 

is introduced in this research to efficiently solve the model. The main contributions of the 

research are two-folds: 

 Design an inspection plan for the inspection of components with dependent 

defective rates with three inspection classifications, 

 Implement a heuristic algorithm as the solution approach to efficiently solve 

problems of practical size. 

 

1.6 Organization of the Thesis 

 Research literature in the field of multistage inspection plan optimization is 

reviewed in Chapter Two. Chapter Three presents the problem description and the 

formulated mathematical model along with the heuristic algorithm. One numerical 

example problem is solved and presented in Chapter Four with extensive analysis and 

discussions. Conclusions and future research directions in this area are discussed in 

Chapter Five. 
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Chapter Two 

  Literature Review 

 

 The problem of multistage system inspection strategy design with minimized overall 

cost has been studied by many researchers. Raouf et al. (1983) introduced a model to 

determine the optimal inspection sequence and inspection frequency for 

multicharacteristic components to minimize the total expected cost per accepted 

component due to Type I & Type II error costs and inspection cost. In their model, the 

inspection result was classified into two categories, accept and reject, and the defective 

rates of characteristics were assumed statistically independent. Duffuaa and Khan (2002) 

extended the model of Raouf et al. (1983) in that the inspection results were classified 

into three categories, accept, reject and rework. 

 

Many researchers have discussed the issue of inspection strategy design in multistage 

systems. This chapter reviews a few of these works in this area. A summary of the 

reviewed articles is shown in Table 2.1. 
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Table 2.1: Classification of Literature 

 

Heuristic and                                              

Meta-Heuristics 

Ben-Daya and Rahim (2003), Duffuaa and Khan (2002),  

Duffuaa and Nadeem (1994), Duffuaa and Najjar (1997), 

Emmons and Rabinowitz (2002), Greenshtein and Rabinowitz 

(1997), Heredia-Langner et al. (2002), Kogan and Raz (2002), 

Lee and Unnikrishnan (1998), Mohib et al. (2009),       

Raouf et al. (1983), Rabinowitz and Emmons (1997), Rau et al. 

(2005), Shiau (2002), Yeh et al. (1999) 

Dynamic                                 

Programming 

Chen (1998), Chun (2010), Elshafei et al. (2006) 

Other Methods 

Chen and Lambrecht (1997), Chun (2009), Duffuaa and Khan 

(2005), Maleyeff et al. (2003), Veatch (2000) 
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2.1 Heuristic and Meta-Heuristics 

Raouf et al. (1983): The authors introduced a model for multicharacteristic component 

repeated inspection with economic considerations. They considered a sequential and 

cycling inspection plan where inspection result for each characteristic was classified as 

accept or reject. The economical consideration was to minimize the total cost which 

included the cost of falsely rejecting the acceptable component and falsely accepting the 

rejected component and the inspection cost per final accepted component. They 

developed a computational procedure to solve the model. The optimal inspection 

sequence was to first inspect the characteristic having lowest ratio of inspection cost over 

rejection rate. 

 

Duffuaa and Khan (2002): This paper was an extension of the earlier work done by 

Raouf et al. (1983). The authors developed a new mathematical model for 

multicharacteristic critical component inspection optimization. They considered 3 

classifications of products, accept, reject and rework. This leads to 6 categories of 

misclassification probabilities.  They assumed the rework station was error-free and the 

characteristics defective rates were statistically independent. A computational procedure 

to determine optimal inspection sequence and the number of inspection cycles was 

developed to minimize total quality related cost per final accepted component including 

misclassification costs and inspection cost.  
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Duffuaa and Nadeem (1994): This article is an extension of the earlier work done by 

Raouf et al. (1983). In this article, the authors developed a mathematical model for 

multicharacteristic critical component inspection optimization considering that the 

defective rates were statistically dependent. Similar as the assumption made in defective 

rate independent case, the joint probability mass function was given as known 

information. The inspection was sequential and cycling. The marginal mass function of 

non-inspected characteristics needed to be updated after the inspection of each 

characteristic due to their statistical dependency. A computational procedure was 

developed to search for optimal inspection frequency and inspection cycles. 

 

Duffuaa and Al-Najjar (1997): In this article, the authors studied the 

multi-characteristic critical component inspection optimization problem. A model was 

developed to decentralize the inspection frequency performed on each characteristic 

based on different failure rates and inspection costs. The objective is to find optimal 

repeated inspection frequency on each characteristic so that total expected cost per 

accepted component would be minimized. The total cost includes Type I and Type II error 

costs as well as inspection cost. The defective rates between characteristics are assumed 

statistically independent. The steepest decent technique was used to solve the problem 

and to determine the optimal inspection plan. 
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Ben-Daya and Rahim (2003): In this article, the authors considered quality 

improvement and economical production quantity (EPQ) optimization problem in 

multistage production systems. They built a model for multistage process. The screening 

inspection of nonconforming products produced when the process is out-of-control can 

reduce total cost. This total cost was defined as the sum of the inventory cost, quality 

related cost and inspection error cost as well as inspection and restoration cost. They 

developed a pattern search technique to escape from the local optimal solution in 

searching for the global optimal solution. It demonstrated the contribution of inspection 

and restoration to the total cost. 

 

Emmons and Rabinowitz (2002): The authors discussed an inspection scheduling 

problem in multistage production system. Solving the problem is to decide (1) the 

number of required inspection facility, (2) the assignment of the inspection facility and (3) 

the schedule of the inspection tasks. These decisions are mutually exclusive. The 

objective of the model is to minimize the work load imbalance related to these decisions. 

A heuristic solution procedure was developed to solve the problem. 

 

Greenshtein and Rabinowitz (1997): The authors studied the problem for 

multi-attribute product inspection optimization. They presented applications of 

statistical-economical tools to achieve the objective of minimizing inspection cost and 
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misclassification cost. A double-stage inspection system was proposed. They developed a 

stepwise algorithm based on multi-variable normal distribution and used conditional 

probability to decide which product needs to be inspected in the second stage after 

collecting data from the first-stage. The proposed system was evaluated in a real 

application. It concluded with good capability of identifying and classifying highly 

suspected components in the first stage so that the cost in the second stage can be 

reduced. 

 

Heredia-Langner et al. (2002): The authors discussed a partial inspection option, such 

as rectifying inspection in a multistage inspection system. Binomial distribution was used 

in the developed model and the objective was to determine the optimum sample size and 

the threshold number since inspection is proportional to the average number of inspected 

items. They developed a procedure based on genetic algorithm to solve the multistage 

partial inspection problem.  

 

Kogan and Raz (2002): In this article, the authors considered multistage 

multicharacteristic component inspection problem in continuous time. They used 

maximum principle and obtained several analytical results in identifying optimal 

inspection conditions, inspection sequence, optimal inspection timing between models, 

concurrent change over regime and consecutive change over regimes. They developed a 

computational method to solve the problem in minimizing inspection and penalty costs. 
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Lee and Unnikrishnan (1998): The authors developed a mathematical model for 

inspection station allocation and assignment in a multistage production system. They 

used inspection time as a constraint to the objective function which was to minimize the 

total cost. The considered problem has large combinations of different allocations. The 

authors developed 3 heuristic solution methods based on sequential plan selection method 

(SPS), time constrained solution method (TCS) and manufacturing cost and 

nonconforming probability selection method (CNS). The heuristic methods can find near 

optimal solution with less execution time and less computer memory required. 

 

Mohib et al. (2009): The authors proposed a hybrid inspection plan for 

multicharacteristic component inspection. The component may have different geometric 

characteristics so that both contact inspection and non-contact inspection are applied. 

They used Travelling Salesman Problem (TSP) formulation to decide the optimal 

inspection sequence of the hybrid inspection tasks. The objective is to minimize total 

inspection time and cost.  

 

Rabinowitz and Emmons (1997): In this article, the authors discussed the problem of 

scheduling multiple inspection tasks in a single inspection station. The inspection facility 

was used for detecting the processes malfunction rather than screening defective parts. A 

two-stage system model was developed to maximize the number of good items produced 
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by the production system. The authors used 5 heuristic methods to find feasible solutions 

of the considered problem. 

 

Rau et al. (2005): The authors studied multicharacteristic component inspection 

allocation problem in a re-entrant production system. They classified inspection results 

into accept, reject, repair and rework in their quality characteristic measurement model. 

The developed model is to maximize the total production profit. A heuristic method was 

developed to solve the problem. 

 

Shiau (2002): The author discussed the inspection allocation problem in multistage 

production systems. The considered problem has finite inspection resources subject to 

inspection errors. An optimal inspection plan should be developed to respond quickly 

when a customer changes the tolerance requirements. The objective is to minimize the 

total manufacturing cost. The author used two heuristic methods, earliest stage 

assignment method and hybrid weighting assignment method, to solve the problem. 

 

Yeh et al. (1999): The authors studied specific multicharacteristic component inspection 

problem considering carryover defect between characteristics. Due to carryover defect, 

the inspection of all characteristics in one component may not be realized every time and 

the inspection needs to be continued for the subsequent characteristic inspection with a 

different component. The authors proposed an inspection plan to minimize the required 
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inspection. They used heuristic methods to solve the considered problem. The model was 

further extended to include minimum inspection time as an addition objective. The 

optimal inspection plan compromised solution considering these two objectives. 

 

2.2 Dynamic Programming 

Chen (1998): The author discussed inspection allocation problems in multistage 

production systems. The author used the cost of detecting and discarding a defective item 

as the intermediate objective function in the solution process. The author proposed two 

models, optimal allocation for defective penalty cost model and optimal allocation for a 

specified AOQ Level. The author used dynamic programming to solve the problem. 

 

Chun (2010): The author studied problem of determining optimal inspection interval and 

stopping rules in a serial production system subject to random failure. The author used 

Bayesian model to estimate defect rate. A renewal-reward process model was introduced 

considering inspection cost, non-defective product market value and the salvage value of 

a discarded product. Stochastic dynamic programming was used to solve the problem. 

 

Elshafei et al. (2006): The authors introduced a model to determine inspection sequence 

for multicharacteristic component inspection with repeated inspection on each 

characteristic. They classified the inspection results into three categories: accept, scrap 
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and rework. The defective rate among each characteristic was assumed statistically 

independent. The objective is to minimize inspection error costs and inspection cost per 

accepted component. They developed an efficient beam search dynamic programming 

algorithm to solve the model. The solution is an inspection plan. 

 

2.3 Other Methods 

Chen and Lambrecht (1997): The authors developed a model to solve 

multicharacteristics inspection problems. The objective function of the model is to 

maximize final profit by reducing all inspection costs. The model was solved using 

branch-and-bound algorithm. 

 

Chun (2009): The author used Bayesian model for sequential inspection plan and 

consider that inspections were positively related. Prior planning and posterior planning 

were considered. The author used the number of undetected non-conforming items and 

probability of undetected faults to make decision whether or not to perform another cycle 

of inspection for both planning stages. They used this approach to solve the problem. 

 

Duffuaa and Khan (2005): The authors discussed economic aspects of inspecting 

multicharacteristic components. The inspection may have inspection errors related to 

average outgoing quality (AOQ), average total inspection (ATI) and expected total cost 
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per accepted component (ETC). They developed a mathematical model to determine 

inspection plans where inspection results were classified into accept, reject and rework. 

Various inspection errors were studied in the paper. They also used sensitivity analysis to 

study the impact of inspection errors on inspection performances. 

 

Maleyeff et al. (2003): The authors proposed a cost model for multicharacteric product 

inspection. The objective is to minimize cost by determining the number of required 

inspection characteristics.  

 

Veatch (2000): The author developed a quality cost model for multistage inspection 

considering variable defect rate for different characteristics. Cost per accepted component 

was to be minimized. The author proposed to integrate quality and product configuration 

data in generating cost report. 

 

2.4 Summary 

 Different models and solution methods for solving inspection optimization problems 

in multistage production systems have been developed by many researchers and 

practitioners. They include various heuristic and meta-heuristic methods in addition to 

many other solution methods based on dynamic programming.  

 In the next chapter, a mathematical model is presented to decide inspection plans for 
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multicharacteristic components with dependent defective rates. This is an extension of the 

research in Duffuaa and Khan (2002) and Duffuaa and Nadeem (1994). The inspection 

result classifications are accept, reject and rework. A heuristic algorithm is developed to 

find optimal or near-optimal solution of the model.  
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Chapter Three 

Model Formulation and Solution Approach 

 This chapter presents detailed problem description in this research and discusses the 

development of mathematical model for the considered problem. The following topics are 

organized to be presented in this chapter. 

• Detailed description of the inspection frequency and sequence optimization 

problem 

• Assumptions in the considered problem 

• Notation 

• Development of the mathematical model 

• Heuristic solution approach 

3.1 Problem Introduction 

The considered problem is to establish an optimized inspection plan in a multi-stage 

production system by determining two inspection parameters: the cycling inspection 

frequency and the inspection sequence. The objective is to minimize the total cost per 

final accepted component. In the considered production system, inspection is conducted 

in stages corresponding to quality characteristics. Probability to detect the defect at each 

stage, probability of inspection errors at each stage, cost of inspection and cost of 

inspection errors are associated with the inspection process. 
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The multi-stage product inspection process is presented in Figure 3.1. The figure is 

adopted from that in Duffuaa and Khan (2002) assuming that there are a number of 

components with N characteristics of each component entering the inspection stations. 

Each inspection station performs the inspection one characteristic of the product or 

component. An inspector inspects one particular characteristic for each component 

entering the inspection process, and after inspection, classifies them into three categories: 

accept, reject and rework. All the accepted (good) components go to the second inspector. 

Those classified as “rework” will be sent to the rework station. They will be reworked on 

the inspected characteristic and become accepted for that characteristic. They will then be 

sent to the second inspector who inspects the second characteristic. This chain of 

inspection continues until all the characteristics are inspected. This completes one cycle 

of inspection. All accepted components, if necessary, go to the next cycle of inspection. 

This process will repeat n times before it stops where n is the optimized number of 

inspections to minimize the total expected cost per accepted component. In this research, 

the inspection process is the same as described in Duffuaa and Khan (2002). At each 

station, the components are 100% inspected subject to 6 types of inspection errors.  

These errors are associated with that the inspector falsely classifies: 

 good components as rework,  

 good components as scrap,  

 rework components as good,  
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Incoming products for jth                           

cycle of inspection

Jth inspection of all products      

for 1st characteristic

Products accepted           

in the 1st stage

Jth inspection of all products                                        

for 2nd characteristic

Products accepted           

in the 2nd stage

Jth inspection of all products                                        

for Nth characteristic

Products accepted           

in the Nth stage

Products accepted           

in the jth cycle

Figure 3.1: Multi-stage Product Inspection Process (Duffuaa and Khan,2002)

Products sent to rework 

in the 1st stage

Products sent to rework 

in the 2nd stage

Products sent to rework 

in the Nth stage

Products rejected at 

rework station                  

in jth cycle

Products rejected           

in jth cycle

      Fraction of good products

Fraction of good products

Fraction of good products
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 rework components as scrap,  

 scrap components as good and 

 scrap components as rework.  

These false classifications create two types of costs: false rejection cost and false 

acceptance cost. These two costs and the inspection cost will be considered as the 

expected total cost of inspection which is to be minimized in solving the considered 

problem. 
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3.2 Assumptions in the Considered Problem 

1. The multi-stage system consists of N inspection stations, each station is to inspect 

one characteristic and the inspection is performed in sequence. 

2. 100% inspection of component is assumed for each inspection station. 

3. A component is accepted if all of its characteristics are accepted as good, A 

component is rejected if one of its characteristics is classified as defective, A 

to-be-reworked component is reworkable in the rework station. 

4. All inspections have errors in inspecting each characteristic. 

5. The rework station is assumed as error free. 

6. The joint probability mass function of the multivariate random variable  

𝑋 =  (𝑋1, 𝑋2 , …  𝑋N)  is assumed to be known or can be estimated empirically. 

7. The probability of inspection errors of each characteristic is known. 

8. Cost due to falsely rejecting a non-defective component, cost due to falsely accepting 

a defective component and the inspection cost per component are assumed to be 

known. 

 

A mathematical model is developed to determine inspection frequency and 

inspection sequence in order to minimize the total expected cost per final accepted 

component. Before the mathematical model is presented, we first give the notation used 

in the mathematical model.  
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3.3 Notation 

 𝑁 = Number of characteristics to be inspected for each component. 

𝑛 = Number of inspection cycles. 

𝑀i , j =  Number of components entering the 𝑖-th stage of the 𝑗-th cycle of inspection. 

 𝑖 = 1,2, … , 𝑁.   𝑗 = 1,2, … , 𝑁. 

𝑋𝑖: a discrete random variable,   𝑋𝑖 = {
0,   if characteristic  𝑖  is scrap,

0.5,  if characteristic  𝑖  is rework,

1, if characteristic  𝑖  is good.

 

𝑃 
j (𝑋1, 𝑋2, … 𝑋𝑁) =  Joint probability mass function of  𝑋𝑖for a component. 

 entering the 𝑗-th cycle of inspection. 

k,j𝑃 (𝑋1, 𝑋2 … , 𝑋N)  =  Joint probability mass function of the random variable 𝑋i for   

a component entering the 𝑘-th stage of the 𝑗-th cycle of inspection. 

j𝑃i(𝑋i) = Marginal probability mass function of the 𝑖-th characteristic of the random 
 

 variable 𝑋i, while entering the 𝑗-th cycle of inspection. 

j𝑃𝐺 =  Probability of a component being good entering the 𝑗-th cycle of inspection. 

j𝑃𝑆 =  Probability of a component being scrap entering the 𝑗-th cycle of inspection. 

j𝑃𝑅 = Probability of a component being rework entering the 𝑗-th cycle of inspection. 

𝐸igs =  Probability of classifying 𝑖-th good characteristic as scrap with inspection. 

𝐸igr =  Probability of classifying 𝑖-th good characteristic as rework with inspection. 

𝐸isg =  Probability of classifying 𝑖-th scrap characteristic as good with inspection. 

𝐸isr =  Probability of classifying 𝑖-th scrap characteristic as rework with inspection. 

𝐸irg =  Probability of classifying 𝑖-th rework characteristic as good with inspection. 
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𝐸irs =  Probability of classifying 𝑖-th rework characteristic as scrap with inspection. 

𝐹𝐺𝑅i, j =  Number of falsely sending good components to rework station at the 

 𝑖-th stage of the 𝑗-th cycle of inspection. 

𝐹𝑆i,j =  Number of falsely send to scrap in 𝑖-th stage of 𝑗-th cycle of inspection. 

𝐹𝐴i, j = Number of falsely accepted components in the 𝑖-th stage of  

               the 𝑗-th cycle of inspection. 

𝐶𝐴i, j = Number of correctly accepted components in the 𝑖-th stage of  

               the 𝑗-th cycle of inspection. 

𝑅i, j = Rate of rejection of components due to 𝑖-th characteristic  

             entering the 𝑗-th cycle of inspection. 

𝑅i, j, k =  Rate of rejection of components due to 𝑖-th characteristic entering  

 the 𝑘-th stage of the 𝑗-th cycle of inspection. 

𝐶a =  Cost of false acceptance of a scrap or rework component. 

𝐶r =  Cost of false rejection of a good or rework component. 

𝐶i =  Cost of inspection of a component. 

𝐴 (𝑗) =  Number of accepted components in 𝑗-th cycle. 

𝐶𝐹𝑅 (𝑗) =  Cost of false rejection in the 𝑗-th cycle. 

𝐶𝐹𝐴 (𝑗) =  Cost of false acceptance in the 𝑗-th cycle. 

𝐶𝐼 (𝑗) =  Cost of inspection in the 𝑗-th cycle. 

𝑇𝐶𝐹𝑅 =  Total cost of false rejection. 

𝑇𝐶𝐹𝐴 =  Total cost of false acceptance. 
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𝑇𝐶𝐼 =  Total cost of inspection. 

𝑇𝐴  =  Total number of accepted components. 

𝐸𝑋𝑃(𝑡𝑐)|𝑗  = Expected total cost per accepted component after 𝑗-th cycles of  

   inspection. 

𝑃( ) =  Probability.  

3.4 Development of the Model 

 This model is developed for inspecting components among which the defective rates 

of characteristics are statistically dependent. We first establish certain important relations 

between different variables. 

The probability  j𝑃i(𝑋i)  

Since the joint probability mass function (jpmf) of the random variable 𝑋𝑖, 𝑖 =

1,2, … , 𝑁 is considered known at the 1
st
 stage of inspection, we may therefore obtain the 

individual marginal probability mass function (mpmf) based on the following equation. 

             𝑃i(𝑋i) = ∑  𝑥1 ∑  𝑥2 ∑  𝑥3 … ∑  𝑥𝑖−1 ∑ … ∑  𝑥𝑁𝑥𝑖+1 𝑃(𝑋1, 𝑋2, … , 𝑋N)                         (1)               

 Since the characteristics are assumed as statistically dependent, the joint and 

marginal mass functions need to be updated for inspections among characteristics 

according to Bayes’ Theorem. 

The probability of a component goes into the next stage of inspection is: 

𝑃( ) = 𝑃i(1)(1 − 𝐸igr − 𝐸igs) + 𝑃i(1)𝐸igr + 𝑃i(0.5)𝐸irg + 𝑃i(0)𝐸isg 

or      𝑃( ) = 𝑃i(1)(1 − 𝐸igs) + 𝑃i(0.5)𝐸irg + 𝑃i(0)𝐸isg 
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The marginal probability mass function for the 𝑖-𝑡ℎ characteristic of cycle 2 being good 

is: 

2𝑃i(1) =
1𝑃i(1)(1 − 𝐸igs)

1𝑃i(1)(1 − 𝐸igs) + 1𝑃i(0.5)𝐸irg + 1𝑃i(0)𝐸isg

                                                          (2) 

The marginal probability mass function for the 𝑖-𝑡ℎ characteristic of cycle 2 being 

rework is:    

2𝑃i(0.5) =
1𝑃i(0.5)𝐸irg

1𝑃i(1)(1 − 𝐸igs) + 1𝑃i(0.5)𝐸irg + 1𝑃i(0)𝐸isg

                                                      (3) 

The marginal probability mass function for the 𝑖-𝑡ℎ characteristic of cycle 2 being scrap 

is: 

2𝑃i(0) =
1𝑃i(0)𝐸isg

1𝑃i(1)(1 − 𝐸igs) + 1𝑃i(0.5)𝐸irg + 1𝑃i(0)𝐸isg

                                                          (4) 

 

In general, the marginal probability mass function for 𝑖-𝑡ℎ characteristic of 𝑗-𝑡ℎ cycle 

being good can be written as: 

j𝑃i(1) =
j-1𝑃i(1)(1 − 𝐸igs)

j-1𝑃i(1)(1 − 𝐸igs) + j-1𝑃i(0.5)𝐸irg + j-1𝑃i(0)𝐸isg

                                                     (5) 

The marginal probability mass function for 𝑖-𝑡ℎ  characteristic of 𝑗-𝑡ℎ  cycle being 

rework is: 

j𝑃i(0.5) =
j-1𝑃i(0.5)𝐸irg

j-1𝑃i(1)(1 − 𝐸igs) + j-1𝑃i(0.5)𝐸irg + j-1𝑃i(0)𝐸isg

                                                  (6) 

The marginal probability mass function for 𝑖-𝑡ℎ characteristic of 𝑗-𝑡ℎ cycle being scrap 

is: 

j𝑃i(0) =
j-1𝑃i(0)𝐸isg

j-1𝑃i(1)(1 − 𝐸igs) + j-1𝑃i(0.5)𝐸irg + j-1𝑃i(0)𝐸isg

                                                     (7) 

Based on the Eqs.(5), (6) and (7), the marginal probability mass function of the 𝑖-𝑡ℎ 

characteristic in the 𝑗-𝑡ℎ cycle of inspection can be obtained after the completion of the 
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(𝑗-1)𝑡ℎ  cycle of inspection. The marginal probability mass function of other 

characteristics must be updated prior to inspecting them. Eq. (1) shows that the mpmf can 

be obtained based on the jpmf. Therefore the jpmf must be updated first after the 

completion of the inspection of the 𝑖-𝑡ℎ characteristic. This update can be accomplished 

by: 

                           k, j𝑃(𝑋1, 𝑋2 … , 𝑋N)  =  
k-1, j𝑃(𝑋1, 𝑋2 … , 𝑋N) 

k, j𝑃i(𝑋i)
k-1, j𝑃i (𝑋i)

                              (8)  

In the inspection process for dependent characteristics defective rates, the joint 

probability mass function for the next stage will be updated according to Eq. (8) after the 

𝑘-𝑡ℎ stage of the 𝑗-𝑡ℎ cycle of inspection. The independent marginal probability mass 

function can be obtained using Eq. (1). It proceeds to the (𝑖+1)𝑡ℎ stage of the 𝑗-𝑡ℎ 

cycle of inspection until it completed with all characteristics inspected.  

The Probability 𝑃𝐺 N, j  

The probability of a good component entering the 𝑁 stage of the 𝑗-𝑡ℎ cycle is 

                                                     𝑃𝐺 N, j =  N, j 𝑃(1,1, … ,1)                                                                           (9) 

The expected total cost per accepted component after the 𝑛-𝑡ℎ cycle of inspection is    

                         𝐸𝑋𝑃(𝑡𝑐)|j=n = [𝑇𝐶𝐹𝑅(𝑛) + 𝑇𝐶𝐹𝐴(𝑛) + 𝑇𝐶𝐼(𝑛)]/ 𝑇𝐴(𝑛)                      (10) 

When there is no inspection, the expected total cost per accepted component is the cost 

due to falsely accepting all defective components 

                      𝐸𝑋𝑃(𝑡𝑐)|j=0 = 𝐶a (1 − 𝑃𝐺)                                                                 (11) 

 The objective is to determine the optimized number of inspection cycles,𝑛, so that 

the total expected cost per accepted component in Eq. (10) can be minimized. Therefore, 
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we need to decide the inspection cycle and the value of 𝑇𝐶𝐹𝑅, 𝑇𝐶𝐹𝐴, 𝑇𝐶𝐼 and 𝑇𝐴. 

3.4.1 Analysis of the j-th Cycle of Inspection 

Stage 1 

 Let 𝑀 j be the number of components entering the 𝑗-𝑡ℎ cycle of inspection 

𝑀1, j =  𝑀 j                                                                        (12) 

Probabilities of a component being good, rework or scrap are 

 𝑃𝐺1, j =  𝑃𝐺N, j-1 =  𝑃 (1, 1, … ,1)                                        (13) 

𝑃𝑅1,j =  N,  j-1𝑃𝑅                 

𝑃𝑆1,j = N, j-1𝑃𝑆                    

𝐹𝐺𝑅1, j , the number of good components falsely sent to rework in the 𝑗-𝑡ℎ cycle of 

inspection, can be calculated by: 

𝐹𝐺𝑅1, j =  𝑀1, j 𝑃𝐺1, j 
N, j-1𝑃1(1)𝐸1gr                                                         (14) 

𝐹𝑆1, j , the number of components falsely sent to scrap in the 𝑗-𝑡ℎ cycle of inspection, is 

calculated by: 

𝐹𝑆1, j =  𝑀1, j (𝑃𝐺1, j 
N, j-1𝑃1(1)𝐸1gs +  𝑃𝑅1, j 

N, j-1𝑃1(0.5)𝐸1rs )             (15) 

 

𝐹𝐴1, j , the number of components falsely accepted in the 𝑗-𝑡ℎ cycle of inspection, is 

calculated by: 

𝐹𝐴1, j =  𝑀1, j (𝑃𝑅1,j
 N, j-1𝑃1(0.5)𝐸1rg +  𝑃𝑆1,j 

N, j-1𝑃1(0)𝐸1sg )                (16) 

𝐶𝐴1, j , the number of correctly accepted components, is calculated by: 
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𝐶𝐴1, j =  𝑀1, j 𝑃𝐺1, j 
N, j-1𝑃1(1) (1 −  𝐸1gr −  𝐸1gs)                                       (17) 

All accepted components in this stage proceed to the next stage to be inspected on other 

characteristics. 

Stage 2 

𝑀2, j =  𝐶𝐴1, j +  𝐹𝐴1, j +  𝐹𝐺𝑅1, j                                                           (18) 

𝑃𝐺2, j =  2, j𝑃 (1, 1, … ,1)                                                                            (19) 

𝑃𝑅2,j =  2, j𝑃𝑅                                                 

    𝑃𝑆2,j =  2, j𝑃𝑆                                                                       

𝐹𝐺𝑅2, j =  𝑀2, j 𝑃𝐺2, j 
2, j 𝑃2(1)𝐸2gr                                                           (20) 

𝐹𝑆2, j =  𝑀2, j (𝑃𝐺2, j 
2, j𝑃2(1)𝐸2gs +  𝑃𝑅2, j 

2, j𝑃2(0.5)𝐸2rs )                 (21) 

𝐹𝐴2, j =  𝑀2, j (𝑃𝑅2,j 
2, j𝑃2(0.5)𝐸2rg +  𝑃𝑆2,j 

2, j𝑃2(0)𝐸2sg )                           (22)  

𝐶𝐴2, j =  𝑀2, j 𝑃𝐺2, j 
2, j𝑃2(1) (1 −  𝐸2gr –  𝐸2gs)                                      (23) 

  

  

  

Stage 𝑁 

𝑀N, j =  𝐶𝐴N-1, j +  𝐹𝐴N-1, j +  𝐹𝐺𝑅N-1, j                                                   (24) 

     𝑃𝐺N, j =  N, j𝑃 (1, 1, … ,1)                                                                         (25) 

 𝑃𝑅N,j =  N, j𝑃𝑅                                               

 𝑃𝑆N,j =  N, j𝑃𝑆                                                                     

  

𝐹𝐺𝑅N, j =  𝑀N, j 𝑃𝐺N, j 
N, j 𝑃N(1)𝐸Ngr                                                            (26) 
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𝐹𝑆N, j =  𝑀N, j (𝑃𝐺N, j 
N, j𝑃N(1)𝐸Ngs +  𝑃𝑅N, j 

N, j𝑃N(0.5)𝐸Nrs )               (27) 

𝐹𝐴N, j =  𝑀N, j (𝑃𝑅N,j 
N, j𝑃N(0.5)𝐸Nrg +  𝑃𝑆N,j 

N, j𝑃N(0)𝐸Nsg )                 (28) 

𝐶𝐴N, j =  𝑀N, j 𝑃𝐺N, j 
N, j𝑃N(1) (1 −  𝐸Ngr –  𝐸Ngs)                                        (29) 

If the components will be inspected in the next cycle, then the number of components 

entering the first stage of (𝑗+1)𝑡ℎ cycle is 

 𝑀1, j+1 =  𝐶𝐴N, j +  𝐹𝐴N, j +  𝐹𝐺𝑅N, j                                                      (30) 

The cost of falsely sending components to scrap in the 𝑗-𝑡ℎ cycle is 

𝐶𝐹𝑅 (𝑗) = 𝐶r ∑ 𝐹𝑆 i , j

𝑁

𝑖=1

                                                                             (31) 

The cost of falsely accepting the components in the 𝑗-𝑡ℎ cycle is 

𝐶𝐹𝐴 (𝑗) = 𝐶a ∑ 𝐹𝐴 i , j

𝑁

𝑖=1

                                                                             (32) 

The cost of inspection in the 𝑗-𝑡ℎ cycle is 

𝐶𝐼 (𝑗) = 𝐶i ∑ 𝑀 i , j

𝑁

𝑖=1

                                                                                  (33) 

 

3.4.2 Minimizing the Cost of Inspection in the j-th Cycle of Inspection 

The cost of inspection in rejecting different characteristics can be different and 

defective rates of characteristics may vary from one to another. Inspection sequence may 

affect the total expected costs and thus needs to be considered in order to minimize the 

total expected cost. In general, we may want to first inspect those components associated 
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with minimum inspection cost and highest defective rate to reduce overall cost. In this 

research, we propose two sequence rules. 

Rule 1. At the beginning of cycle 𝑗, we calculate 

𝐶i / 𝑅i, j  where   𝑅i,j =  i, j-1𝑃𝑖(0)(1 −  𝐸isg −  𝐸isr)  +  (1 −  i, j-1𝑃𝑖(0))(𝐸igs + 𝐸irs)   (34) 

The characteristics 𝑖 with the lowest ratio of 𝐶i / 𝑅i, j will be inspected first. 

Rule 2. At the 𝑘-𝑡ℎ stage of 𝑗-𝑡ℎ cycle, we calculate 

𝐶i / 𝑅i,j,k  where 𝑅i,j,k =  k-1, j𝑃𝑖(0)(1 −  𝐸isg −  𝐸isr)  +  (1 −  k-1, j𝑃𝑖(0))(𝐸igs + 𝐸irs)(35) 

The characteristics with the lowest ratio of 𝐶i / 𝑅i,j,k will be inspected first.  

 

3.4.3 Expected Total Cost per Accepted Component 

Based on the analysis of the  𝑗-𝑡ℎ cycle of inspection presented in section 3.4.1, we 

can calculate 𝐸𝑋𝑃(𝑡𝑐)|j=n , the total expected cost per accepted component after 𝑛 

cycles of inspection shown below. 

𝑇𝐶𝐹𝑅 (𝑛) = ∑ 𝐶𝐹𝑅(𝑗)

𝑛

𝑗=1

                                                                   (36) 

𝑇𝐶𝐹𝐴 (𝑛) = 𝐶𝐹𝐴(𝑛)                                                                             (37) 

𝑇𝐶𝐼 (𝑛) = ∑  

𝑛

𝑗=1

  ∑ 𝑀 i , j

𝑁

𝑖=1

                                                                        (38) 

   𝑇𝐴(𝑛) =  𝐶𝐴N, n +  𝐹𝐴N, n +  𝐹𝐺𝑅N, n                                                   (39) 

We use the algorithm presented in the next section to determine the optimized number of 

inspections. 
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3.5 Heuristic Solution Approach 

A simple algorithm is developed to calculate the probabilities and cost functions in 

the model discussed in Section 3.4. This algorithm as discussed previously progressively 

computes the variable values of the equations. The computing template is created in 

Excel 2010. The program requires to input the number of components (M), the inspection 

errors probability (𝐸igs, 𝐸igr, 𝐸isg, 𝐸isr, 𝐸irg, 𝐸irs), the unit costs (𝐶a, 𝐶𝑟, 𝐶𝑖) and the joint 

probability 𝑃(𝑋1, 𝑋2, 𝑋3) . It will generate inspection cycle with minimized total 

inspection costs as discussed previously. The steps of the algorithm are given below. 

Step 1: Calculate 𝐸𝑋𝑃(𝑡𝑐)|j=0 using Eq. (11). Set 𝑗=1. 

Step 2: Calculate 
j𝑃i(1), j𝑃i(0.5), j𝑃i(0) for 𝑖=1,2,..,𝑁 using Eq.(5) ~ (7). Select the 

𝑖-𝑡ℎ characteristic which has the lowest ratio in Eq. (35), and continue the 

inspection until all the characteristics have been inspected.  

Update 
k, j𝑃(𝑋1, 𝑋2 … , 𝑋N)  for each stage 𝑘  of cycle 𝑗  using Eq. (8) and 

calculate the marginal probability k,j𝑃i(𝑋i). 

Step 3: Calculate 𝐹𝐺𝑅i, j , 𝐹𝑆i, j , 𝐹𝐴i, j , 𝐶𝐴i, j , 𝑀i, j using Eqs. (26) ~ (30) for each 𝑖. 

Step 4: Calculate 𝐶𝐹𝑅 (1), 𝐶𝐹𝐴 (1),  𝐶𝐼 (1) using Eqs. (31) ~ (33). 

Step 5:  Calculate 𝐸𝑋𝑃(𝑡𝑐)|j using Eq.(10), set j=j+1. 

Step 6: If 𝐸𝑋𝑃(𝑡𝑐)|j <  𝐸𝑋𝑃(𝑡𝑐)|j, Then go to step 2; if not, n=j-1. 

Step 7: Calculate 𝑇𝐶𝐹𝑅 (𝑛), 𝑇𝐶𝐹𝐴 (𝑛), 𝑇𝐶𝐼 (𝑛), 𝑇𝐴(𝑛) using Eqs. (36)~ (39). 

Step 8: Search n with the minimum total expected cost per accepted unit 𝐸𝑋𝑃(𝑡𝑐)|j. 
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 We present several example problems to illustrate and validate the developed model 

in the next chapter. 
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Chapter Four 

Numerical Example and Analysis 

This chapter presents a numerical example to illustrate the developed mathematical 

model and the heuristic solution method presented in the previous chapter. The purpose 

of this research is to design an inspection plan by determining inspection sequence and 

inspection cycles in order to minimize total cost per accepted product. The example 

problem is based on the inspection practice in a medical device manufacturing company. 

The data used in the example are realistic but hypothetical. The inspection process is 

illustrated in Figure 4.1. The products are processed by the first manufacturing station. 

They will be inspected repeatedly through a 3-stage inspection. Accepted products then 

proceed to the next manufacturing station. The products may be inspected again after 

they are processed by the second manufacturing station. 

 

Inspection 

Stage # 1

Inspection 

Stage # 2

Inspection 

Stage # 3

Manufacturing 

Station #1
Products to 

be inspected

Repeat inspectionRepeat inspection

Final 

accepted 

products

Figure 4.1 Multicharacteristic Products Inspection Process

Manufacturing 

Station # 2
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  The calculations of the model with different combinations of the parameter values 

were performed following the systematic design of experiment (DOE) approach. The 

details will be presented next. 

4.1 Example Problem 

 The manufacturing system considered in this study produced different types of 

products. Since these products follow similar manufacturing and inspection processes, the 

parameters used in the model are for different products except the ranges of their values 

may vary. The developed model can be applied for different product types. The ranges of 

the parameters values are presented in Table 4.1. Due to the fact that the products are for 

medical use, falsely accepting a non-conforming product may cause very serious health 

or even safety problems, the cost of failure to reject non-conforming products is 

considered very high. This consideration is reflected in the ranges of such cost values 

presented in Table 4.1.  
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Table 4.1: Data Range of Inspection Process Parameters 

Parameter Description Min Max 

Egs 
Probability of false classification of good product 

as scrap 
0.03 0.08 

Egr 
Probability of false classification of good product 

as rework 
0.001 0.005 

Esg 
Probability of false classification of scrap product 

as good 
0.05 0.15 

Esr 
Probability of false classification of scrap product 

as rework 
0.001 0.005 

Erg 
Probability of false classification of rework 

product as good 
0.05 0.1 

Ers 
Probability of false classification of rework 

product as scrap 
0.02 0.05 

Ca 
Cost of false acceptance of a scrap or rework 

product 
200000 1000000 

Cr 
Cost of false rejection of a good or rework 

product 
4000 6000 

Ci Cost of inspection a product 150 300 

  

Other data for the considered problem are given in Table 4.2. Inspection cost is the 

cost incurred for one product at k-th stage of j-th cycle of inspection. 

 If there is no inspection, the expected total cost per accepted product will be the cost 

due to false acceptance of all defective products. In this example, expected total cost per 

accepted product without inspection assumed to be 80,000. 
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Table 4.2: General Data of 3-Stages Inspection Problem 

Number of inspection stations ( N )  3 

Number of products to be inspected ( M ) 200 

Probability of false classification of good product as scrap ( Egs ) 0.05 

Probability of false classification of good product as rework ( Egr ) 0.001 

Probability of false classification of scrap product as good ( Esg ) 0.1 

Probability of false classification of scrap product as rework ( Esr ) 0.002 

Probability of false classification of rework product as good ( Erg ) 0.06 

Probability of false classification of rework product as scrap ( Ers ) 0.02 

Cost of false acceptance of a scrap or rework product ( Ca ) 200000 

Cost of false rejection of a good or rework product ( Cr ) 5000 

Cost of inspection a product ( Ci ) 200 

 

4.1.1 Determine Inspection Sequence 

 Following the solution procedure explained previously, we first inspect those 

products with lowest inspection cost and highest rejection rate. The ratio of inspection 

cost to the defective rate is used to determine the inspection sequence. The characteristics 

that have the lowest ratio will be inspected first. The ratios for this problem are given in 

Table 4.3. 

Table 4.3: Ratios of Inspection Cost to Rejection Rate 

          

  Ci / R1,1,1 1180.92     

  Ci / R2,1,2 2393.25     

  Ci / R3,1,3 2552.96     
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The result indicates that the inspection of characteristic #1 should be conducted first, 

followed by inspecting characteristic #2 and #3 to minimize inspection cost. 

4.1.2 Determine Inspection Cycles 

 Three characteristics are inspected in stages in one cycle of inspection. After 

inspection of one characteristic is completed, marginal probabilities of the characteristics 

are updated based on the new joint probability mass function. The inspection cycle 

repeats until the minimum total cost per accepted product is attained. This repeated 

inspection cycles are used for the designed inspection plan. We used Excel spreadsheet to 

perform the calculation in solving the problem. The results after the 1
st
 cycle of 

inspection are shown in Table 4.4.  

 

Table 4.4: 1
st
 Cycle of Inspection Results 

            

Stage 1 Stage 2 Stage 3 

M1,1 200 M2,1 86.37 M3,1 55.710 

PG1,1 0.6 PG2,1 0.78 PG3,1 0.883 

PR1,1 0.11 PR2,1 0.05 PR3,1 0.020 

PS1,1 0.29 PS2,1 0.18 PS3,1 0.097 

FGR1, 1 0.09 
2,1

P2(1) 0.87 
3,1

P3(1) 0.901 

FS1, 1 4.56 
2,1

P2(0.5) 0.05 
3,1

P3(0.5) 0.020 

FA1, 1 0.87 
2,1

P2(0) 0.08 
3,1

P3(0) 0.079 

CA1, 1 85.41 FGR2, 1 0.06 FGR3, 1 0.044 

  
FS2, 1 2.93 FS3, 1 2.216 

  
FA2, 1 0.14 FA3, 1 0.044 

  
CA2, 1 55.51 CA3, 1 42.043 



39 
 

  

The updated marginal probabilities are non-negative and the sum adds to one, this 

shows the updated marginal probabilities are also the probability mass function.  

Due to inspection errors and low probability of good products at the beginning of the 

inspection, only 86 out of 200 products (43%) are accepted as “good”. They will go to the 

2
nd

 stage inspection for the 2
nd

 characteristic. After inspections in the 2
nd

 stage, 55 out of 

86 products (64%) are accepted as “good” to continue for inspection in the 3
rd

 stage. An 

increasing percentage of products are accepted as “good” in the following stage. 

Probability of good products increases while probabilities of products being rework or 

scrap decrease with inspections due to the update of joint probability mass function. The 

accepted products have less probability of being defective after inspection. 

 After three stages of inspections are complete, total cost per accepted product is 

computed. The total cost per accepted product after 1
st
 cycle of inspection for this 

example is shown in Table 4.5. 

      

Table 4.5: Total Cost after the 1
st
 Cycle of Inspection 

        

  TA(1) 42.13   

  CFR(1) 48505.58   

  CFA(1) 210168.36   

  CI(1) 68415.51   

  EXP(tc)|j=1 7763.58   

  PG(1) 0.96930   
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As shown in Table 4.5, there are 42 out of 200 products (21%) are accepted as “good” 

at the end of the 1
st
 cycle of inspection. The probability of the accepted products being 

“good” is 96.93%. The total cost per accepted product is 7764. Comparing with 80,000 

calculated previously for the total cost per accepted product without inspection, there is 

90% of saving. 

 We used inspection cycles to decide the total cost per accepted product. The results 

of 2
nd

 cycle of inspection are shown in Table 4.6.  

Table 4.6: 2
nd

 Cycle of Inspection Results 

      
Stage 1 Stage 2 Stage 3 

M1,2 42.131274 M2,2 38.296382 M3,2 35.384387 

PG1,2 0.969299 PG2,2 0.980844 PG3,2 0.988348 

PR1,2 0.007340 PR2,2 0.001225 PR3,2 0.001072 

PS1,2 0.023361 PS2,2 0.017932 PS3,2 0.010580 

3,1
P1(1) 0.987103 

2,2
P2(1) 0.991572 

3,2
P3(1) 0.990206 

3,1
P1(0.5) 0.005474 

2,2
P2(0.5) 0.001220 

3,2
P3(0.5) 0.001072 

3,1
P1(0) 0.007423 

2,2
P2(0) 0.007203 

3,2
P3(0) 0.008722 

FGR1, 2 0.040311 FGR2, 2 0.037246 FGR3, 2 0.034630 

FS1, 2 2.015589 FS2, 2 1.862311 FS3, 2 1.731479 

FA1, 2 0.000832 FA2, 2 0.000498 FA3, 2 0.000329 

CA1, 2 38.255239 CA2, 2 35.346643 CA3, 2 32.863454 

 

The probability of good products in the accepted ones increases after each stage 

inspection. More products are accepted as good for next stage inspection. The total cost 

per accepted product after the 2
nd

 cycle of inspection is shown in Table 4.7.  
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Table 4.7: Total Cost after the 2
nd

 Cycle of Inspection 

        

  TA(2) 32.90   

  CFR(2) 76552.47   

  CFA(2) 331.85   

  CI(2) 91577.92   

  EXP(tc)|j=2 5120.68   

  PG(2) 0.99713   

 

 There are 32 out of 200 products(16%) are accepted as “good” at the end of the 2
nd

 

cycle of inspection and 99.713% of these products are assumed as good. Total cost per 

accepted product is reduced to 5120 after two cycles of inspection compared with 7764 

with one cycle of inspection. 2644 dollars of saving per product is gained. 

 To possibly reduce the total cost per accepted product, the 3
rd

 cycle of inspection is 

conducted. The results are shown in Table 4.8.  

Table 4.8: 3
rd

 Cycle of Inspection Results 

      
Stage 1 Stage 2 Stage 3 

M1,3 32.898413 M2,3 31.130303 M3,3 29.493916 

PG1,3 0.997131 PG2,3 0.998105 PG3,3 0.998830 

PR1,3 0.000465 PR2,3 0.000067 PR3, 3 0.000067 

PS1,3 0.002404 PS2,3 0.001827 PS3,3 0.001103 

3,2
P1(1) 0.998924 

2,3
P2(1) 0.999192 

3,3
P3(1) 0.999011 

3,2
P1(0.5) 0.000333 

2,3
P2(0.5) 0.000067 

3,3
P3(0.5) 0.000067 

3,2
P1(0) 0.000742 

2,3
P2(0) 0.000740 

3,3
P3(0) 0.000923 

FGR1, 3 0.032769 FGR2,3 0.031046 FGR3, 3 0.029430 

FS1, 3 1.638437 FS2, 3 1.552311 FS3, 3 1.471513 

FA1, 3 0.000006 FA2, 3 0.000004 FA3, 3 0.000003 

CA1, 3 31.097528 CA2, 3 29.462865 CA3, 3 27.929320 
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The trend of the increasing of probability of good products and the decreasing of 

probabilities of rework and scrap products are the same as shown in the previous cycles. 

Total cost per accepted product after the 3
rd

 cycle of inspection is shown in Table 4.9. 

 

Table 4.9: Total Cost after the 3
rd

 Cycle of Inspection 

        

  TA(3) 27.96   

  CFR(3) 99863.78   

  CFA(3) 2.68   

  CI(3) 110282.45   

  EXP(tc)|j=3 7516.39   

  PG(3) 0.99972   

 

There are additional 5 out of 200 products (2.5%) are scraped in the 3
rd

 cycle of 

inspection. Compare with total cost in Table 4.7, the total cost per accepted product 

increases by 2396. Since a higher value of total cost per accepted product is observed 

after the 3
rd

 cycle of inspection, we determine that 2 cycles of inspection for this example 

will lead to the minimum total cost per accepted product.  

 We stop the inspection once an optimized solution is found. 

 In analyzing this example problem, we conducted the 4
th

 cycle of inspection with 

results shown in Table 4.10. The total cost per accepted product after the 4
th

 cycle of 

inspection is shown in Table 4.11. 
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Table 4.10: 4
th

 Cycle of Inspection Results 

            

Stage 1 Stage 2 Stage 3 

M1,4 27.958753 M2,4 26.550699 M3,4 25.216232 

PG1,4 0.999718 PG2,4 0.999807 PG3,4 0.999881 

PR1,4 0.000029 PR2,4 0.000004 PR3, 4 0.000004 

PS1,4 0.000253 PS2,4 0.000189 PS3,4 0.000115 

3,3
P1(1) 0.999901 

2,4
P2(1) 0.999918 

3,4
P3(1) 0.999899 

3,3
P1(0.5) 0.000021 

2,4
P2(0.5) 0.000004 

3,4
P3(0.5) 0.000004 

3,3
P1(0) 0.000078 

2,4
P2(0) 0.000078 

3,4
P3(0) 0.000097 

FGR1,4 0.027948 FGR2,4 0.026543 FGR3, 4 0.025211 

FS1, 4 1.397405 FS2, 4 1.327170 FS3, 4 1.260533 

FA1, 4 0.000000 FA2, 4 0.000000 FA3, 4 0.000000 

CA1, 4 26.522750 CA2, 4 25.189688 CA3, 4 23.924922 

 

Table 4.11: Total Cost after the 4
th

 Cycle of Inspection 

        

  TA(4) 23.95   

  CFR(4) 119789.32   

  CFA(4) 0.02   

  CI(4) 126227.58   

  EXP(tc)|j=4 10272.05   

  PG(4) 0.99997   

 

The total cost per accepted product after the 4
th

 cycle of inspection is 10272, higher than 

that after the 3
rd

 cycle. 

 In summary, for the considered example problem, 

 We should inspect the products in the sequence of characteristics #1, #2 then #3. 

 The inspect will stop after 2 cycles 
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4.2 Experimental Design and Analysis 

Design of Experiment (DOE) is a systematic approach to analyze a process or a 

system in evaluating the impact of process inputs (Xs) on the process output (Y). It will 

help to determine the target level of those inputs to achieve a desired output. Following a 

DOE approach, a series of structured tests are designed where planned changes are made 

to input factors of a process or a system. The effects of changes on the pre-defined output 

are then assessed. DOE is also referred to as experimental design. 

In this study, experiments were conducted to evaluate various parameters and their 

interactions to total cost per accepted product. A two-level fractional factorial design was 

used to analyze the effect on total cost per accepted product and to determine the 

significant input factors. 

The experimental design analysis was conducted using statistical software Minitab 

R16.  

4.2.1 Effect on Total Cost per Accepted Product 

 The experiments based on a 2
9-4

 fractional factorial design were conducted for the 

effect of nine considered input factors on the total cost per accepted product. The 

experiments require 32 runs. These runs were conducted randomly to reduce the 

variations and biases caused by the runs.  Table 4.12 presents the information on the 

design used for this example problem analysis 

. 
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Table 4.12: 2
9-4 

Fractional Factorial Experimental Design 

  Factor 9   

  Runs 32   

  Resolution IV   

  Fraction 1/16   

 

Table 4.13 presents the detailed experimental design matrix and the response values 

of the calculations. As shown in Table 4.13, the input factors chosen for analyzing the 

effect on total cost per accepted product are: 

 probability of false classification of good product as scrap (Egs) 

 probability of false classification of good product as rework (Egr) 

 probability of false classification of scrap product as good (Esg) 

 probability of false classification of scrap product as rework (Esr) 

 probability of false classification of rework product as good (Erg) 

 probability of false classification of rework product as scrap (Ers) 

 cost of false acceptance of a scrap or rework product (Ca) 

 cost of false rejection of a good or rework product (Cr)  

 cost of inspection a product (Ci) 

The levels of input factors are shown in Table 4.14. They are based on historical and 

empirical information. 
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Table 4.13: Design of Experiment Matrix 

Std. 

Order 

Run 

Order 
Egs Egr Esg Esr Erg Ers Ca Cr Ci EXP(tc) 

1 23 - + + - + - + + - 7023.53 

2 24 + + + - + - - - + 13195.84 

3 4 + + - - - - - + + 7865 

4 9 - - - + - - - - + 5318.56 

5 21 - - + - + + + - + 9165.59 

6 18 + - - - + - + + + 14167.34 

7 28 + + - + + - - + - 7529.62 

8 29 - - + + + - - + + 8258.79 

9 25 - - - + + + + + - 5211.25 

10 16 + + + + - - - - - 8689.81 

11 26 + - - + + + - - + 8065.25 

12 13 - - + + - + + - - 6067.9 

13 30 + - + + + - + - - 10130.8 

14 1 - - - - - + + + + 7565.67 

15 22 + - + - + + - + - 11445.74 

16 10 + - - + - - + + - 10402.47 
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Table 4.13: Design of Experiment Matrix (Cont.) 

Std. 

Order 

Run 

Order 
Egs Egr Esg Esr Erg Ers Ca Cr Ci EXP(tc) 

17 17 - - - - + - - - - 4100.37 

18 5 - - + - - - - + - 5237.64 

19 3 - + - - - - + - - 4331.84 

20 2 + - - - - + - - - 5806.65 

21 8 + + + - - + + + - 12787.65 

22 19 - + - - + + - + + 4802.49 

23 20 + + - - + + + - - 8520.53 

24 12 + + - + - + + - + 11475.49 

25 27 - + - + + - + - + 7145.29 

26 6 + - + - - - + - + 13952.68 

27 32 + + + + + + + + + 16963.37 

28 31 - + + + + + - - - 4706.77 

29 15 - + + + - - + + + 9505.65 

30 14 + - + + - + - + + 12835.66 

31 11 - + - + - + - + - 4460.22 

32 7 - + + - - + - - + 7299.53 
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Table 4.14: The Levels of Factors 

      

 Low (-) High (+) 

Egs 0.03 0.08 

Egr 0.001 0.005 

Esg 0.05 0.15 

Esr 0.001 0.005 

Erg 0.05 0.1 

Ers 0.02 0.05 

Ca 200000 1000000 

Cr 4000 6000 

Ci 150 300 

 

Confounded patterns were not used in this analysis. Table 4.15 presents the estimated 

effects and the coefficients of the experiments. The coefficients with probability less than 

0.05 are considered significant. Figure 4.2 presents normal probability plot of effects 

estimated from the experiments. It shows that the main effects Egs, Esg, Ca and Ci are 

significant to the total cost per accepted product.  

 

Table 4.15: Estimated Effects and Coefficients on Total Cost 

          

Predictor Coef. SE Coef. T P 

Constant -1155 1404 -0.82 0.42 

Egs 88290 7433 11.88 0.000 

Egr -69230 92912 -0.75 0.464 

Esg 23437 3716 6.31 0.000 

Esr -54690 92912 -0.59 0.562 

Erg 4789 7433 0.64 0.526 

Ers -5576 12388 -0.45 0.657 

Ca 0.0024842 0.0004646 5.35 0.000 

Cr 0.4716 0.1858 2.54 0.019 

Ci -0.08011 0.01249 -6.41 0.000 
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Figure 4.2: Normal Probability Plot of Effects 

 

 Based on the analysis, the linear regression equation of the coefficients can be 

generated and shown in Eq. ( 4.1). It can be used to estimate the total cost per accepted 

product in solving this example problem.  

 

Total Cost per accepted product  

  = - 1155 + 88290 Egs - 69230 Egr + 23437 Esg - 54690 Esr + 4789 Erg 

    - 5576 Ers + 0.00248 Ca + 0.472 Cr - 0.0801 Ci 

                  …. (4.1) 
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 The analysis of variance (ANOVA) shown in Table 4.16 confirms the results 

presented in Figure 4.2. It also indicates that the main effects Egs, Esg, Ca and Ci are 

significant with probability values less than 0.05.  

 

Table 4.16: Analysis of Variance on Total Cost per Accepted Product 

Source DF Seq SS Adj SS Adj MS F P 

Main Effects 9 285674423 285674423 31741603 532.06 0.034 

Egs 1 155901643 155901643 155901643 2613.24 0.012 

Egr 1 613480 613480 613480 10.28 0.192 

Esg 1 43945102 43945102 43945102 736.61 0.023 

Esr 1 382854 382854 382854 6.42 0.239 

Erg 1 458678 458678 458678 7.69 0.22 

Ers 1 223859 223859 223859 3.75 0.303 

Ca 1 31597494 31597494 31597494 529.64 0.028 

Cr 1 7116057 7116057 7116057 119.28 0.058 

Ci 1 45435255 45435255 45435255 761.59 0.023 

2-Way 

Interactions 
21 24250019 24250019 1154763 19.36 0.178 

Residual Error 1 59658 59658 59658 
  

Total 31 309984100 
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Figure 4.3: Plots of Residuals 

 

As shown in Figure 4.3, the model was validated as adequate by analysis of residual 

plots for total cost per accepted product. As a diagnostic check, the normal probability 

plot of the residuals shows that the residuals are normally distributed. 
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Figure 4.4: Main Effects Plot on Total Cost per Accepted Product 

 

Figure 4.4 shows the main effects plot of the input factors on the total cost per 

accepted product. Inspection errors Egs, Esg, Erg and unit costs Ca, Cr, Ci have positive 

effects on the total cost per accepted product. Total cost per accepted product increases 

when these input values increase. Inspection errors Egr Esr, Ers have negative effect to 

the total cost per accepted product. These results are reasonable since lower probabilities 

of inspection errors and lower unit costs will reduce the total cost per accepted product. 
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Figure 4.5: Interaction Plot (AHJ) on Total Cost per Accepted Product 

 

 Figure 4.5 shows the interaction plot (AHJ) of Egs, Cr and Ci on the total cost per 

accepted product. As shown in the figure, if Egs (factor A) increases, Cr (factor H) and Ci 

(factor J) also increase and the total cost per accepted product increase as well.  
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Figure 4.6: Interaction Plot (CGJ) on Total Cost per Accepted Product 

 

 Figure 4.6 shows the interaction plot (CGJ) of Esg, Ca and Ci on the total cost per 

accepted product. As shown in the figure, if Esg (factor C) increases, Ca (factor G) and 

Ci (factor J) also increase and the total cost per accepted product increase as well.  

 Inspection errors Egs and Esg play import roles in reducing the total cost per 

accepted product. A further analysis of Egs and Esg to the total cost per accepted product 

is presented in section 4.3.  

The optimized number of inspections in the example problem is insensitive to the 

change of Egs and Esg.  

 Figure 4.7 shows optimization plot for total cost per accepted product for the model. 

We used Minitab and adjusted the value of each input factor in square bracket then the 
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response value of the total cost per accepted product will be calculated directly. As shown 

in Figure 4.7, the model reaches the minimum cost per accepted product when all input 

factors were at their lower level limit.  

 

        Figure 4.7: Optimization Plot of Total Cost per Accepted Product 

 

4.3 Impact of Inspection Errors on Total Cost per Accepted Product 

Inspection errors Egs and Esg are significant factors on the total cost per accepted 

product. We herein conducted further analysis using Minitab and the results are shown in 

Figure 4.8. 
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Figure 4.8: Boxplot of Inspection Errors on Total Cost per Accepted Product 

 

 To increase Egs or Esg will lead to the increase of the total cost per accepted product. 

However, the increase of Esg may result in a higher total cost per accepted product than 

the increase of Egs. This indicates that failure to reject a bad product will lead to much 

higher cost.  

  

4.4 Impacts of Probability of Good Products  

 In this research, we design an inspection plan for products with characteristics’ 

defective rates statistically dependent. Consider that probability of good products is of the 
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most interest in industrial practice, we investigate its impact on the total cost per accepted 

product. Probability of good products at the beginning of inspection is assumed to be 

known. 

4.4.1 Characteristics’ Defective Rates Independence Verification 

 The characteristics’ independence is verified by comparing the value of joint 

probabilities and the corresponding value of the multiplications of marginal probabilities. 

If the joint probability is equal to the multiplication of marginal probabilities, the 

characteristics are assumed statistically independent, Otherwise, they are considered 

statistically dependent. The independence of the characteristics considered in this 

example problem is verified as shown in Table 4.17.  

 

 

 

 

 

 

 

 

 

 



58 
 

Table 4.17: Characteristics' Defective Rates Independence Verification 

No. X1 X2 X3 P(X1,X2,X3) P(X1).P(X2).P(X3) 
Independence 

Verification 

1 0 0 0 0.01 0.001872 

Characteristics’ 

Defective Rates 

are Statistically                              

Dependent 

2 0 0 0.5 0.01 0.001296 

3 0 0 1 0.01 0.011232 

4 0 0.5 0 0.01 0.001404 

5 0 0.5 0.5 0.01 0.000972 

6 0 0.5 1 0.01 0.008424 

7 0 1 0 0.01 0.012324 

8 0 1 0.5 0.01 0.008532 

9 0 1 1 0.04 0.073944 

10 0.5 0 0 0.01 0.002028 

11 0.5 0 0.5 0.01 0.001404 

12 0.5 0 1 0.01 0.012168 

13 0.5 0.5 0 0.01 0.001521 

14 0.5 1 0 0.01 0.013351 

15 1 0 0 0.01 0.0117 

16 1 0 0.5 0.01 0.0081 

17 1 0 1 0.04 0.0702 

18 1 0.5 0 0.01 0.008775 

19 1 1 0 0.05 0.077025 

 

4.4.2 Impact of the Probability of Good Products on Total Cost per Accepted 

Product 

Figure 4.9 shows the impact of probability of good products at the beginning of 

inspection on the total cost per accepted product. Higher probabilities of good products 

reduce significantly the total cost per accepted product. In practice, if the quality of 

manufactured products is very good, the probabilities of inspection errors may be reduced 

and consequently the total cost per accepted product is reduced. 



59 
 

 

Figure 4.9: Impact of Good Products Probability on Total Cost per Accepted 

Product 

 

4.4.3 Impact of the Probability of Good Products on Optimized Inspection Cycle 

 The effect of probability of good products before inspections on the optimized 

inspection cycles is illustrated in Figure 4.10. It shows that the probability of good 

products before inspections will affect the number of inspection cycles. A higher 

probability will reduce the required inspections. This result matches with industrial 

practice in that products of higher quality need less inspection. 
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Figure 4.10: Impact of Good Products Probability on Optimized Inspection 

Cycle 

 

4.5 Summary 

 The developed model to design an inspection plan with minimum total cost per 

accepted product is solved by using a heuristic algorithm. The methodology is tested by 

an example problem from a real manufacturing system. Data used for the tested problem 

are realistic but hypothetical. The obtained results are illustrative for variations of many 

important parameters. The heuristic solution approach is efficient and effective in 

handling different problem scenarios. 

 A better insight is obtained into the effects of adjusting model input factors such as 

inspection errors and cost parameters with different values. Design of Experiment (DOE) 
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is conducted to identify significant input factors and to search for an optimized result. 

Inspection errors, Esg and Egs, and cost parameters, Ca and Ci are significant factors to 

total cost per accepted product. The interaction among significant factors shows that the 

reduction of inspection errors, especially Esg and Egs will reduce total cost per accepted 

product as a result. 

  The analysis of impact of probability of good products before inspection on total 

cost per accepted products and on the number of inspection cycles clearly shows that 

improved product quality will reduce total cost per accepted product as well as required 

inspection.  
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Chapter Five 

Conclusions and Future Research 

 This chapter presents a summary of the research conducted in this thesis. Several 

concluding remarks based on the developed model and computational result analysis are 

also presented. Future directions for research are discussed at the end. 

5.1 Concluding Summary 

 This research generalizes the work presented in Duffuaa and Nadeem (1994) and 

Duffuaa and Khan (2002). A new model is developed for inspecting critical 

characteristics of products with defective rates dependent. Bayes’ theorem is employed in 

the development of the model. The output of the model is an optimized inspection plan 

for quality control on critical characteristics of products. The inspection plan is to 

minimize the total cost per accepted product. The developed model and proposed 

heuristic solution approach are illustrated using an example from a medical equipment 

manufacturing system. The model can be modified without much difficulty for solving 

similar problem in other applications. 
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5.2 Future Directions for Research 

 Some of possible extensions to this work include: 

 Extending the model to cases in which to optimize inspection sequence in large scale 

inspections. 

 Extending the model to cases where there are constraints on inspection time and 

inspection budget.  
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