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ABSTRACT

Automatic Detection and Classification

of Neural Signals in Epilepsy

Rajeev Yadav, Ph.D.

Concordia University, 2012

The success of an epilepsy treatment, such as resective surgery, relies heavily on

the accurate identification and localization of the brain regions involved in epilepsy

for which patients undergo continuous intracranial electroencephalogram (EEG) mon-

itoring. The prolonged EEG recordings are screened for two main biomarkers of

epilepsy: seizures and interictal spikes. Visual screening and quantitation of these

two biomarkers in voluminous EEG recordings is highly subjective, labor-intensive,

tiresome and expensive. This thesis focuses on developing new techniques to detect

and classify these events in the EEG to aid the review of prolonged intracranial EEG

recordings.

It has been observed in the literature that reliable seizure detection can be made

by quantifying the evolution of seizure EEG waveforms. This thesis presents three

new computationally simple non-patient-specific (NPS) seizure detection systems that

quantify the temporal evolution of seizure EEG. The first method is based on the

frequency-weighted-energy, the second method on quantifying the EEG waveform

sharpness, while the third method mimics EEG experts. The performance of these

new methods is compared with that of three state-of-the-art NPS seizure detection

systems. The results show that the proposed systems outperform these state-of-the-art

systems.

Epilepsy therapies are individualized for numerous reasons, and patient-specific

(PS) seizure detection techniques are needed not only in the pre-surgical evaluation of

prolonged EEG recordings, but also in the emerging neuro-responsive therapies. This

thesis proposes a new model-based PS seizure detection system that requires only
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the knowledge of a template seizure pattern to derive the seizure model consisting

of a set of basis functions necessary to utilize the statistically optimal null filters

(SONF) for the detection of the subsequent seizures. The results of the performance

evaluation show that the proposed system provides improved results compared to the

clinically-used PS system.

Quantitative analysis of the second biomarker, interictal spikes, may help in the

understanding of epileptogenesis, and to identify new epileptic biomarkers and new

therapies. However, such an analysis is still done manually in most of the epilepsy

centers. This thesis presents an unsupervised spike sorting system that does not

require a priori knowledge of the complete spike data.
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I dedicate this work to people suffering from epilepsy,
and to great mentors who enlightened my career and life.
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Chapter 1

Introduction

Epilepsy is a name given to a collection of neurological disorders. It is usually defined as

a tendency to have recurrent seizures. It is an ancient disorder found in all civilizations,

and it can be traced back as far as medical records exist. In fact, epilepsy is a disorder

that can occur in all mammalian species, probably more frequently as brains become

more complex. Remarkably, epilepsy is also uniformly distributed around the world.

There are no racial, geographical or social class boundaries. It occurs in both genders at

all ages, especially in neonates and in aging population. The clinical features of seizures

are often dramatic and alarming and frequently elicit fear and misunderstanding. This

in turn has led to profound social consequences for sufferers and has greatly added to

the burden of this disease [1].

In this chapter, we introduce some basic concepts in recognition and management

of epilepsy, and motivation for this research. Finally, we will give an outline of the

thesis.

1.1 Epileptic Seizure

Epilepsy is one of the most common and the oldest chronic neurological disorder

known to mankind. It is not a singular disease entity, but a variety of disorders
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reflecting underlying brain dysfunction that may result from many different causes [2].

Approximately, 2% of the world population exhibit symptoms of epilepsy characterized

by the existence of abnormal synchronous discharges in large ensembles of neurons in

the brain structure [3]. This results in one or more clinical symptoms such as loss of

consciousness, behavioral changes, loss of motor activity, loss of senses. At times, it

can lead to death due to unexplained reasons, known as sudden unexplained death

in epilepsy (SUDEP). It is characterized by a tendency to have recurrent seizures. A

person is diagnosed epileptic on the occurrence of two or more unprovoked seizures,

and every year more than 2 million new cases of epilepsy are diagnosed [1, 4-9].

Seizure prevalence increases with age resulting in severe neurological damage that

often becomes medically intractable, a condition in which seizure cannot be controlled

by the administration of two or more anti-epileptic drugs (AEDs). Patients with

medically intractable seizures are often candidates for surgical resection (removal

of the epileptic foci in the brain), which requires accurate localization. Because

of the unknown time of occurrence of seizures, these patients undergo prolonged

monitoring during which a variety of clinical examinations are performed. These

include electrophysiological assessment and neuroimaging evaluation to accurately

identify and localize epileptic foci. Unfortunately, not all patients with intractable

seizure can benefit from resective surgery because of the associated severe systemic

consequences. Alternatively, these patients may benefit by the recent emergence of

novel electroconvulsive and neuromodulation therapies.

1.2 Electroencephalography

Electrophysiological assessment of epileptic patients involves mainly the electroen-

cephalography, which is the primary tool for the clinical recognition and management

of various neurological disorders, including epilepsy. It represents neurophysiologic
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activity of the brain measured electrographically using electrodes placed on the scalp

or in special cases, subdurally on the cerebral cortex or deeper brain tissues. The

resulting traces are known as an electroencephalogram (EEG) and are sometimes

called brainwaves. Depending on how the electrodes are used for recording the EEG,

it can be specified as the scalp EEG (electrodes placed on the scalp), or intracerebral

EEG (electrodes implanted on the surface or deep brain). Subdural EEG electrodes

are those electrodes which sit over the surface of the brain while depth EEG electrodes

are inserted in the brain. The placement of these electrodes is confirmed with co-

registration on the MRI scan image. Figure 1.1 illustrates the three modes of electrode

placement in patients undergoing EEG monitoring.

(a) Scalp EEG (b) Subdural EEG (c) Depth EEG

Figure 1.1: Classification of EEG-based on the electrode placement. Images obtained
from (a) www.erwinadr.blogspot.com, and (b-c) www.uwhealth.org.

Intracerebral EEG is often called stereoencephalogram (SEEG) and an example of

multi-channel SEEG is shown in Fig. 1.2. The EEG becomes a very informative tool

to monitor activities observed during epilepsy and provides exact information about

the time of occurrence, nature and the focus of these neuronal discharges in the brain.

Advanced imaging tools, such as functional magnetic resonance imaging (fMRI),

positron emission tomography (PET) or computerized tomography (CT) scans can

provide anatomical information about an abnormal growth or detectable lesion if

present in the brain. These methods are discontinuous and cannot scan a patient during
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an on-going seizure where the time of occurrence is unknown. That is, continuously

scanning a patient is not possible. Thus, EEG is the only practical approach for

functional long-term continuous monitoring of the brain with a high temporal and

spatial resolution. Recent advances in the new neurostimulating system for epilepsy

rely on the EEG to detect seizures and subsequently abort their progression by

triggering focal treatment (electrical stimulation, focal cooling or drug release) [10-18].

Clearly, EEG plays a significant role from diagnosis to treatment of epileptic patients.

However, interpretation of EEG is notoriously difficult and requires EEG experts

(EEGer) consensus for its recognition.

Figure 1.2: An example of 20 seconds of multi-channel intracerebral EEG of a patient.

1.3 EEG Classification

The EEG consists of signals from both the cerebral and non-cerebral origins. Depending

on the recording technique, the contribution from each may vary. Abnormal EEG

patterns are specific to the type of study being performed. It is the task of the EEGer

to recognize the waveform of interest from the observed EEG and to identify the likely

locations of their generators. Since intracerebral or subdural electrodes are usually
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closer to neurons than the scalp electrodes, the amplitude of EEGs recorded by the

depth electrodes is usually larger than that from scalp electrodes [19-21]. When EEG

is recorded with scalp electrodes, the amplitude is of the order of 20μV to 100 μV , and

of the order of 100 μV to 2 mV when recorded using depth electrodes. The spectral

bandwidth of the EEG (normal and abnormal) is from under 0.5 Hz to about 500 Hz.

The EEG experts visually inspect the prolonged recordings to identify epileptiform

activities. The common approach utilized to classify EEG is shown in Fig. 1.3.

Interictal EEG is defined as the non-seizure activity or the background EEG. The

interictal EEG comprises of normal patterns as well as abnormal patterns (such as

spikes, high frequency oscillations, etc) along with normal rhythmic discharges such

as alpha rhythm and sleep spindles [5, 22-27].

Generally, most of the seizures have some common characteristics, such as rhythmic

discharge of large amplitude or a low amplitude desynchronized EEG at the onset,

and repetitive spikes and irregular slow waves. No two patients have identical ictal

pattern. Even within the same patient, the two ictal patterns are never identical

though similar. Thus, the definition of a seizure still remains vague. However, the most

widely accepted definition for seizure states that during an epileptic seizure, a new

type of EEG rhythm appears, hesitantly, and then more distinctly, and soon it boldly

dominates the EEG tracing. It tends to become slower with increasing amplitude and

the more distinct spiky phases of the rhythmical waves observed in an EEG recording

[5]. An example of such a seizure is shown in Fig. 1.4.
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EEG

Normal

Abnormal

Epileptiform

Non-epileptiform

Spikes

Seizure

Figure 1.3: Schematic for classification of EEG in epilepsy by the EEGer. Adapted
from Self-adapting algorithms for seizure detection during EEG monitoring by H. Qu,
1995, McGill University, Canada [20].

Figure 1.4: An example 20 seconds of SEEG representing ictal (seizure) and interictal
activity for a patient

Early stages of an epileptic seizure provide information about the seizure focus,

type and various characteristics of clinical significance. Seizures can be divided into

two distinct categories: (a) clinical and (b) sub-clinical. Clinical seizures are recognized

by certain behavioral changes associated with the seizure. Behavioral symptoms in

epileptic children are illustrated in Fig. 1.5. In some patients, there is minimal

or no behavioral changes during an epileptic seizure. Such seizures are known as

electrographic or sub-clinical seizures. EEG captures the abnormal activity in both
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types of seizure. To prevent irreversible secondary brain damages and to maintain

patient safety, therapeutic intervention must be made during the initial stages of

the epileptic seizure which requires constant observation of patient by medical or

nursing staff. Monitoring an epileptic patient continuously over a long period of time

by simultaneously observing the behavioral manifestations in video along with the

EEG patterns is one way to capture all of the seizures. The continuous long-term

monitoring (LTM) is performed in a time frame ranging from days to weeks in the

epilepsy monitoring unit (EMU), and during this period, whenever an epileptic event

occurs, the observer simply tags relevant areas of the video and the EEG recording

for a later review by neurologists. However, this procedure is very labor intensive,

expensive, and not a practical solution.

Figure 1.5: Graphical illustration of behavioral changes during seizure in epi-
leptic children. Images obtained from the website of WHO/UNESCO, and from
http://wikinoticia.com.

Alternatively, an EEGer can review the voluminous long-term EEG recordings

once the monitoring has been completed. Typically, an EEGer reviews these records

in a page/window of 10-20 seconds in search of an epileptic event that can last from

several seconds to several minutes. However, much of the data is uninteresting in

these voluminous recordings except the sections corresponding to epileptic spikes and

seizures, and such sections are highlighted for a subsequent review by the experts.
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This review process is again highly subjective, labor intensive, and tiresome.

Automatic seizure and spike detection methods can assist the nursing staff as

well as the EEGer to rapidly review the prolonged EEG recordings to retain sections

from recordings of clinical significance. Therefore, there arises a need for automatic

detection and classification of seizures and interictal spikes.

1.4 Motivation

The following provides the role of seizures and spikes in the management of epilepsy

in the EMUs, highlighting the clinical needs and challenges encountered that builds

the foundation for this research.

Seizure Detection

Automatic seizure detection techniques have received intense attention in the recent

past. Such methods are used in the EMU as a seizure warning system and aid in the

rapid review of the prolonged EEG recordings. Majority of the existing seizure detection

systems are designed for the scalp EEG. Patients who are candidate for resective

surgery or neurostimulating therapies undergo prolonged intracranial EEG recording.

Intracranial EEG contains a wide variety of seizure patterns that are minimally

contaminated by artifacts. Seizure detection methods designed for intracranial EEG

often require very high sensitivity and with minimal number of false detections. In

spite of high sensitivity, several electrographic seizures go undetected. Additionally,

majority of the existing seizure detection methods report difficulty in detecting short-

duration seizures or those with non-rhythmic mixed frequency characteristics or low

amplitude seizures.

In order to maintain high sensitivity and specificity, majority of the existing

methods employ strategies by combining a number of neighboring channels. Such
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methods often fail to detect seizures occurring on a few channels, i.e., focal seizures that

occur on spatially separated channels. To improve sensitivity and specificity, a handful

of patient-specific seizure detection methods, that are based on the recurring nature

of epileptic seizures, have been proposed. Isolating precisely reproducible phenomena

in EEG signals still remains a difficult task that can highlight the neurophysiological

mechanisms to characterize an epileptic brain. Patient-specific seizure detection

systems thus become an indispensable tool aimed at better defining and understanding

epileptogenic areas to improve surgical treatments [28, 29].

Even though patient-specific seizure detectors demonstrate improved performance

over the generic methods, they are not practical. The main limiting factors in

all patient-specific detectors are (a) supervised selection of the seizure EEG, (b)

supervised selection of the non-seizure EEG (or a set of non-seizure EEG patterns),

and (c) supervised training of the classifier. Another fundamental problem in all seizure

detection methods is the detection of seizures with subtle changes in the amplitude [30-

37]. This is a problem that persists even in the visual detection of seizures. Addressing

some of these limitations will lead to a more practical patient-specific detector.

In addition to the seizure detection, one of the primary aims of the review of

prolonged intracranial EEG monitoring is to map channel-by-channel timeline of

seizures and epileptiform activities that can provide visualization of seizure onset

and spread (both temporally and spatially), which is pivotal when planning resective

surgery. This type of 2D visualization is unavailable for the review of intracranial

EEG. Automatic seizure detection can aid in the rapid identification of seizures.

However, it does not allow for a quantitative seizure analysis, which is still done

manually by experts. Therefore, adjunctive methods that allow quick identification of

seizures, provide a view of seizure activity over prolonged durations, seizure recurrence

frequency, and sites involved in the seizure generation for therapeutic interventions,

and management are much needed in the EMUs [5, 38-42].
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Prolonged intracranial EEG recording is also performed prior to the implantation

of a neurostimulating device to identify the seizure foci and neural areas for stimulation

therapy for patients who may not benefit from the resective surgery. The idea behind

neurostimulation devices is to deliver focal treatment to inhibit the epileptic activity.

Electrical stimulation of the epileptogenic foci to inhibit the progression of seizure

is one such method that is gaining popularity [13-16, 18, 43, 44]. The success of

such devices rely heavily on the seizure detection capabilities. Computationally light,

low-power, robust and patient-specific seizure detectors are prerequisite to maintain

the longevity of the device (battery) and patient safety. However, seizure detection

system for application in the neurostimulating device is still in its infancy.

A fully automatic patient-adaptive seizure detection system is much needed, but

the clinical requirements of the seizure detection system and the existing challenges

in the non-patient specific (NPS) and patient-specific (PS) approaches of seizure

detection do not allow the existence of such a system. However, a fully automated

patient-adaptive seizure detection system is feasible by combining NPS and PS systems

to capture the advantages of the two approaches. The architecture of such a system is

shown in Fig. 1.6. Automatic patient-adaptation in such a system may be possible

by addressing the limitations in the PS systems, that is, by removing the need for a

large background EEG, automating the selection of the template seizure pattern and

training of the classifier. In such a system, the NPS system bootstraps the PS system

with template seizure patterns, and the PS system leverages on the event it detects to

optimize itself. It may be possible that seizures that are difficult to be detected by

the NPS system are easily identifiable by the PS system. Conversely, seizure patterns

that are difficult to be detected by the PS system are detected by the NPS system.

The patient-specific pattern database is updated on subsequent detections. Then,

the patterns in the database, ranked based on their recurrence frequency via the PS

system, may allow the experts to perform rapid qualitative and quantitative analysis.
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Thus, the time involved in the manual qualitative analysis of the detected patterns,

quantification of reproducible seizure patterns, and correlation with the clinical data,

reduces significantly. However, realization of such a system demands that both the

NPS and PS systems are computationally light and robust.

Figure 1.6: Architecture of a fully automatic patient-specific seizure detection system.

In this thesis, we aim to develop new NPS and PS systems that can be used in the

fully automatic PS seizure detection system of Fig. 1.6.

Spike Classification

In addition to seizures, epileptic spikes also play an important role in the diagnosis

of seizure onset zones. They tend to occur more frequently than seizures and are

linked to the seizure onset zones. Detection and classification of spikes thus can

improve the epilepsy management. Furthermore, several studies have reported a

better surgical outcome when regions of frequent spikes (interictal) are also removed

[45]. However, it is still unclear as to exactly how interictal spikes develop, and how

they propagate and contribute to the generation of seizures [46-48]. A recent study

examined human brain tissues at regions of seizure onset and found a small group

of genes highly correlated with the interictal spike frequency [49, 50]. Quantitative

analysis of interictal spiking thus becomes inevitable, and may help to identify epileptic

biomarkers for drug therapy.
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Automatic spike detection has received intense attention in the literature. On the

other hand, to date, spike classification is still done manually by the experts in most of

the EMUs, which is extremely subjective, challenging, tiresome, and expensive. There

exist a large number of automatic spike classification systems for neurophysiological

experiments but not for the intracranial EEG recording that can handle a large number

of electrodes and massive amount of data. Unavailability of a system for quantitative

analysis of interictal spikes in the intracranial EEG motivated us to develop a new

spike classification system.

1.5 Scope of the Thesis

The first objective of this research is to devise robust computationally-light techniques

for seizure detection that find widespread application in the EMU as a seizure warn-

ing system, aid in the rapid review of the prolonged intracranial EEG recordings,

and provide quantitative and qualitative seizure related information towards rapid

identification of epileptogenic sites. New NPS and PS seizure detection methods are

developed to overcome some of the existing challenges present in the seizure detection

literature. The proposed methods are compared against the popular seizure detection

techniques in the literature. These systems are also explored from the point of view

of generation of a new multi-channel 2D visualization of epileptiform activities that

allows easy and rapid quantitation of intracranial EEG recordings in the EMU.

The second objective of this research is to devise a robust spike sorting technique

for intracranial EEG recordings. Towards this goal, we develop an unsupervised

spike sorting algorithm that does not require a priori knowledge of spike classes,

is computationally simple and overcomes some of the existing challenges in spike

sorting. A graphical user interface (GUI) for spike sorting is developed to facilitate

easy integration of the algorithm in the clinical settings.
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1.6 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 reviews popular seizure detection and spike sorting methods.

Chapter 3 describes the EEG data used to develop and evaluate the performance

of the methods proposed in this thesis.

Chapter 4 describes three new, computationally simple, data driven NPS systems.

The NPS systems quantify the continual increase (temporal evolution) in the seizure-

related EEG characteristics to make detections. This chapter presents results obtained

on the training dataset.

Chapter 5 presents performance evaluation results on the test data for the new NPS

methods compared against three popular comparison systems (Gotman system [51],

Reveal algorithm [52], and Grewal-Gotman system [32]). This chapter also describes a

new digital trending tool aimed to facilitate rapid review of prolonged EEG recordings

in the EMU.

Chapter 6 describes a new model-based PS system suitable for the development

of a fully automatic PS system. The PS system is developed in the framework of

statistically optimal null filters, which is a novel approach for solving the problem

of enhancement/suppression of narrowband signals of short-record length. The per-

formance of the new model-based PS system is compared with that of the popular PS

system of Qu-Gotman [21]).

Chapter 7 describes a new graphical user interface (GUI) software package for

automatic classification of epileptic spikes in the intracranial EEG recordings. The

chapter describes the data utilized in the development, validation strategy and the

spike classification algorithm. An easy-to-use GUI is developed that facilitates easy

integration of the method in the clinical settings.

Finally, in Chapter 8, concluding remarks highlighting the contributions of the

thesis and suggestions for further investigation are provided.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides an overview of published research on seizure detection and spike

sorting. A plethora of seizure detection and spike sorting algorithms1 exists in the

literature. We limit our discussion to some of the recent and landmark approaches of

seizure detection and spike sorting methods, with particular attention to the algorithms

that are relevant to this research work.

2.2 Automatic Seizure Detection

The topic of seizure detection has gained much attention in recent years due to its

evidence in prognosis, diagnosis and as a therapeutic tool in the epilepsy care along

with the availability of low-cost, fast computation tools. Chapter 1 introduced the

role of EEG in epilepsy care and management and discussed some of the existing

challenges in the design of the automatic seizure detection (ASD) systems. The study

of Ives and Woods [53] on 100 patients reported 30% of seizures as only electrographic

1It is important to note that the spike sorting algorithms reviewed in this chapter are designed
specifically for the action potentials that are also called spikes and not for the epileptic spikes.
Nonetheless, the process in these methods can be employed for epileptic spike classification.
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changes with no observable behavioral manifestations. This study demonstrated the

importance of EEG monitoring and the role of ASD systems without which it would

have been virtually impossible to detect purely electrographic seizures. Majority

of ASD systems are designed to facilitate the review of prolonged EEG recordings,

whereas only a few ASD systems are designed to perform online detection during

the monitoring session. Care and management of an epileptic patient are dependent

on the ASD system. Therefore, automatic seizure detectors must have a very high

sensitivity (proportion of seizures that are detected) and a very low false detection

rate (FDR). In the EMU settings, the detection sensitivity is of more importance

than the FDR, since missed seizures may never be reviewed by the EEGer, and are

therefore of more serious consequence [22, 54]. Both sensitivity and FDR are equally

important in neurological intensive care unit (NICU) applications, as large number

of false detections are annoying and require additional staff vigilance in a very busy

and stressful environment [55-59]. In certain applications of ASD systems, the time

lag associated in a seizure detection is also important. For example, neuroresponsive

therapy (NRT) application requires the ASD system to predict/detect seizure as early

as possible to initiate preventive measures.

The first automatic seizure detection method designed to detect seizures with

sustained paroxysmal rhythmic activity is the pioneering work of Gotman [51, 54] and

is an industry standard in seizure detection. Since then, there has been a marked

increase in seizure-related research. ASD systems are available (a) as seizure onset

detectors, (b) as seizure pattern detectors or (c) as seizure prediction systems. A

seizure onset detector aims to detect seizures at the onset, which inherently results

in a higher rate of false detection. Some methods aim to detect the seizure patterns,

improving FDR rate at the cost of increased detection delay, while a few methods

predict seizures minutes or even hours in advance. However, such systems report none

to minimal success in predicting seizures.
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In general, an ASD system comprises of three main stages, pre-processing, feature

extraction, and decision-making (classifier). The two popular approaches of feature

extraction considered in the design of the ASD systems are based on (a) waveform or

morphology and (b) EEG statistics in short segments, which we define as segment-

based features for the sake of simplicity. In the first approach, the EEG waveform

characteristics or morphology include, such as the height/width of the wave complexes,

and area of the positive/negative half-waves. In the second approach, the more popular

ones are the segment-based features such as average amplitude, energy, variance, and

power spectral density. The classifier is designed using features to discriminate the

EEG into two classes: seizure or non-seizure. A number of classifiers are available in

the literature that can be broadly categorized as linear classifiers, statistical classifiers,

non-linear classifiers, or artificial neural networks.

Based on the number of channels used in the EEG classification, ASD systems are

further sub-divided into single channel or multi-channel system. It should be noted

that a majority of the multi-channel ASD systems are, in fact, single channel detectors

that combine the individual channel detections to include spatial information from

several channels towards the final decision. Furthermore, based on the patient age

group, ASD systems are grouped into newborn (neonate) or adult seizure detection

systems, and according to the method of EEG acquisition into scalp (surface) or depth

(intracranial) ASD systems.

In addition to the above, ASD systems are available as generic or specific to each

patient. Generic ASD systems can be termed as non-patient-specific (NPS) systems,

and those that are optimized for each patient as the patient-specific (PS) systems.

Majority of the ASD systems in the literature belongs to the former category. This

is because seizure-pattern information for a given patient is usually unavailable in

advance. On the contrary, there exist only a few PS systems, which rely on a priori

information of seizure and non-seizure data for each patient to train the detector
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prior to usage. Table 2.1 provides a summary of the ASD systems according to the

categories described above.

Clearly, the challenges facing the designer of an automatic seizure detector are

significant. No one detector can easily satisfy the varying requirements, and is the

reason for the existence of many seizure detection methods in the literature. In this

thesis, we broadly categorize automatic seizure detection into two groups:

• NPS seizure detection

• PS seizure detection

2.2.1 Non-Patient-Specific Seizure Detection

Gotman [54] designed a seizure detection system, which detected seizures based on

decomposing EEG signals into half-wave components and analyzing them in 2-second

epochs. The features selected to characterize seizures were the zero-crossings, half-

wave amplitude, and rhythmicity. Relative to a background that trails the test

epoch, a seizure detection occurs in the test epoch when the features exceed the pre-

defined detection thresholds. Detections in individual channels are combined in some

spatio-temporal context for final detection. Numerous types of seizures were detected

by this method in 22 scalp EEG recordings (mean duration 12.4 h) and 44 depth

EEG recordings (mean duration 18.7 h). The method was subsequently improved

by increasing the distance between the background and test epoch to account for

seizures with a gradual onset [51]. By altering the amplitude parameters, the method

was capable of detecting low amplitude seizure discharges. Additionally, enhanced

temporal context further reduced the false detections caused by short rhythmic bursts.

A patient alarm was introduced to automatically record ictal event when either the

patient or nurse became aware of a seizure onset. These modifications on 293 h of

EEG of 49 patients resulted in an overall sensitivity ranging between 70-80% with a
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Table 2.1: Summary of seizure detection systems

LC: linear classifiers, NLC: non-linear classifiers, SC: statistical classifiers, ANN: artificial neural network
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FDR of 0.84/h in scalp EEG and a FDR of 1.35/h in depth EEG [51]. Many of the

concepts introduced by Gotman continue to be pervasive in seizure detection research.

Pauri et al. [96] evaluated the method of [51] in a clinical setting. The EEG

data of twelve patients with medically intractable partial seizure, who had undergone

video-EEG monitoring over 1-15 days (mean 10.5 days), were marked with the help

of the Gotman ASD system and fast video review. Detections in individual channels

were rated from 1 to 4 according to their likelihood of being genuine. The method was

tested with several settings. A total of 461 hours of EEG having 216 seizures from

twelve patients were analyzed. The two best performing settings showed a sensitivity

of 81.4% with a FDR of 5.38/h and a sensitivity of 73.1% with a FDR of 5.01/h. The

study demonstrated the need for tunable detection thresholds in ASD systems.

Harding [97] proposed a system to detect seizures (temporal lobe epilepsy) by

detecting spiking phases using two main features: (1) magnitude of the sample-to-

sample difference, and (2) the time difference between large magnitude spikes to

determine the spiking rate. In this method, the number of large magnitude spikes are

counted in a 5 s epoch and when the counter value exceeds a pre-defined threshold, a

detection is made. The magnitude of a spike is considered large if it is greater than

the running average of the background spikes scaled by a signal-to-background ratio

(SBR). Spiking rate and rhythmicity are used to differentiate between the seizure

activity and the spike bursts or artifacts. The method was tested on 40 patient EEG

data with a total of 416 seizures over 1578 hours, and resulted in a sensitivity of 92.6%

and a FDR of 1.94/h. The detection threshold was adjusted for individual patients on

observation of the first seizure.

Gabor et al. [98] proposed a self-organizing map (SOM) neural network-based

seizure detector named as CNet. In this method, the individual channels are filtered

using a wavelet transform-based matched filter followed by 256-point FFT. Input to

the SOM were the 256 coefficients that constituted the feature vector. The method
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detected seizures with a sensitivity of 90% and a FDR of 0.79/h. The weak aspects in

this study are the use of a high-dimensional feature vector, pre-selection of the seizure

type (frontal and temporal lobe) and tuning of the detection parameters to optimize

the performance. In a subsequent study [99], the authors validated the performance

of their method against two commercial seizure detection algorithms, namely, Monitor

(Stellate Systems Inc.) and audio-transformation (Oxford Medilog). The methods were

evaluated on 4553.8 h of EEG data of 65 patients. CNet resulted in a sensitivity of

92.8% with a FDR of 1.35/h, Monitor resulted in a sensitivity of 74.4% sensitivity with

a FDR of 3.02/h, and audio-transformation method reported a sensitivity of 98.3%

(false detection was not reported because of the subjective nature of the method). The

authors demonstrated variation in the performance of the algorithm on data previously

unseen by the algorithm.

Osorio et al. [100] proposed a real-time seizure detection system with short

detection delay. The EEG is filtered in the frequency range of 5-40 Hz using a wavelet

finite impulse response (FIR) filter. The filtered EEG is squared, median filtered and

compared to a background signal. The method was tested on 125 seizures reporting

100% sensitivity and zero false positives. The authors claim the method to be generic,

but on close inspection, it seems to be specific to a group of patients (mesial temporal

seizures). Furthermore, the method has neither been validated on continuous data nor

on previously unseen data, thus contributing to overestimated performance.

Khan and Gotman [101] proposed a seizure onset method to improve the per-

formance of [51] for depth EEG recordings. The method requires a minimum of two

channels for detection and employs wavelet decomposition to separate the EEG into

frequency scales. A number of features are calculated for each scale and applied

to empirical decision thresholds. The method was evaluated on 229 hours of depth

EEG from 11 patients that resulted in a sensitivity of 85.6% with a FDR of 0.3/h.

Note that the wavelet decomposition into different scales hinders the clinical use of
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the method, since different clinical settings record EEG at different sampling rates.

This research was extended in [102] for scalp EEG and in [32] for depth EEG. The

limitation introduced by wavelet decomposition is addressed by the use of filter-banks

and the limitations of the empirical thresholds with an approximate Bayesian classifier.

The method included a user tunable threshold, which allows for trade-off between

sensitivity, detection delay, and FDR. The data is processed in 4 s epoch and is filtered

by a filter-bank similar to wavelet decomposition. Relative energy, relative amplitude,

and coefficient of variance of the amplitude were adapted from the previous work of

[101]. Once the EEG data is separated into frequency bands, each frequency band has

a combination of five features to create a feature vector. Using Bayes theorem, the

classifier is trained to separate the two classes. The method was evaluated on 360 h of

EEG and resulted in a sensitivity of 77.9% with a FDR of 0.85/h for scalp EEG and a

sensitivity of 86.4% with a FDR of 0.47/h for depth EEG without any tuning.

Iasemidis et al. [103] proposed a short-term maximum Lyapunov exponent

(STLmax)-based seizure prediction and detection system to assist in easy review

of EEG recordings. The authors in subsequent studies [68-73] demonstrated a pro-

gressive dynamical entrainment of electrode sites as seizure onset approaches. The

method has been validated on single as well as on the multi-channel EEG recording

from 2-5 patients that resulted in prediction sensitivity ranging between 82-91% and

FDR between 0.16-0.19/h. The method has not been validated on a large data set

and is designed for a specific type of seizure (TLE). However, the method is promising

for therapeutic application.

Wilson et al. [52] proposed the Reveal algorithm based on Matching Pursuit (MP),

small neural-network-rules and connected-object hierarchical clustering based seizure

detection system for clinical application in the EMU. The EEG is decomposed into a

set of ’atoms’ each localized in time and frequency using the MP algorithm. From

the resulting set of atoms, temporal features are extracted relative to a background
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and combined with spatial information to develop a set of rules, which authors have

referred to as neural network-rules. The detections are clustered together towards the

final detection. The algorithm has been validated on a large dataset and compared

with two other methods CNet and Sensa (Stellate Systems). The method included 676

seizures from 1046 hours of EEG recording and resulted in a sensitivity of 76% with a

FDR of 0.11/h, whereas CNet and Sensa reported sensitivities of 48.2 and 38.5% with

FDR of 0.75 and 0.11/h respectively. The method is another widely accepted clinical

seizure detection tool used in the EMU.

Navakatikyan et al. [110] proposed a waveform-based (morphology) neonatal

seizure detection algorithm to detect heightened regularity in EEG wave sequences

using wave intervals, amplitudes and shapes. The algorithm involves several steps

mimicking human experts. It includes filtering the EEG signal, parallel fragmentation

of EEG signal into waves, wave-feature extraction and averaging, and elementary,

preliminary and final detection. The EEG trace is fragmented into waves using a

moving average technique to determine the points of intersection with the EEG signal.

Then, each wave is partitioned into two halves based on the local maxima and minima

of the wave. The positive half of the wave is defined as peak-wave and negative

half of the wave as the trough wave. To quantify increased regularity in the EEG

waveforms during seizure, the peak- and trough- waves are matched with the peak-

and trough- waves of previous two consecutive waves. The average of the previous

four matching parameters (correlation coefficient) is compared to a threshold to detect

seizure. The performance of the algorithm was assessed against Gotman [111] and Liu

[112] algorithms and resulted in sensitivity ranging between 83-95% when tested on 55

neonate EEG data. The method of Gotman [111] and Liu [112] resulted in sensitivities

ranging between 45-88% and 96-99% respectively. This study (along with the study of

[51, 97, 113]) suggests that methods based on morphological features tend to perform

better over the ASD techniques that employ the more popular segment-based features

22



for classification.

Aarabi et al. [114] proposed an adaptive neuro-fuzzy inference-based seizure

detection system for depth EEG recordings. In this method, the measures employed

to quantify seizure were adapted from [32] and [115]. The measures are input to a rule-

based classifier which detects seizure on individual channels. The individual channel

detections are combined in some spatio-temporal context to make a multichannel final

detection. The study reported a sensitivity of 98.7% and a FDR of 0.27/h for depth

EEG from 21 patients. The study considered only clinical seizures with an average

duration of 102 s and excluded all subclinical and short seizures from their analysis.

Kelly et al. [116] proposed the IdentEvent seizure detection method for scalp

EEG that has recently received FDA approval for clinical use in review of EEG

recordings. The method employs three descriptors: pattern-match regularity statistic,

local maximum frequency, and amplitude variation, in order to identify seizures. The

IdentEvent algorithm performance has been evaluated on 1208.24 hours of the scalp

EEG of 55 patients that resulted in positive percentage agreement value (PPV) of

79.5% and a FDR of 2/h and is compared against the Reveal algorithm [52]. Reveal

algorithm was evaluated at three different detection settings that resulted in PPV

ranging between of 74-80% with FDR ranging between 6-13/h.

Duun-Henriksen et al. [117] have investigated the performance of automatic seizure

detection using only a few recording channels. The method operates in two stages:

first, it selects the channels used for analysis based on a simple feature, and then it

performs seizure detection using a support vector machine-based classifier with wavelet

domain features. Data from 10 patients undergoing presurgical invasive monitoring

with 48-64 channels sampled at 239.75 Hz were considered to train and test the ASD

system. The data contains a total of 59 clinical seizure in 1419 h of recordings. The

study reports minimal improvement in the sensitivity by the algorithm over the EEGer

on a set of preselected channels having highest variance and entropy between the two
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groups. Note that the selected channel may not always remain the highest variance

channel at all times during the monitoring session. Furthermore, the study did not

include sub-clinical and focal seizures in the performance evaluation. Therefore, the

claims may not hold true for all types of epileptic seizures.

Recently, Majumdar and Vardhan [118] have proposed a differential operator and

windowed variance based seizure detection system that yielded 91.5% sensitivity and

a FDR of 0.12/h on 15 patients depth EEG recording. It is interesting to note that

the method quantifies abnormally sharp activities to make a seizure detection similar

to our work in [33, 34, 119, 120], but using different features. Authors excluded six

patients on which their method did not perform satisfactorily. Furthermore, this

method did not detect subclinical seizures in this data.

2.2.2 Patient-Specific Seizure Detection

Qu and Gotman [21] introduced the concept of patient-specific seizure detection using

a template matching approach. During LTM, once a seizure occurs in a patient, its

onset is manually selected and stored. A large background preceding the seizure is also

selected. This information about the seizure and the background is utilized to train a

classifier. During subsequent monitoring sessions for the given patient, the EEG is

scanned for a good match to the template seizure using the trained classifier; when one

is found, it is reported immediately as the onset of a similar seizure. The classifier used

in the method is a modified nearest-neighbor classifier. The method is not automatic

and its applicability in clinical setting is limited because of the requirement of manual

selection of the template seizure pattern and manual selection of a large background

EEG. Additionally, the training of the classifier is complex. However, this study

opened new avenues towards building new PS seizure detection schemes.

Wendling et al. [28] proposed a method to quantify similar seizures using a modified

Wagner and Fischer’s algorithm . The process involves (i) segmentation of depth EEG
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signals, (ii) characterization and labeling of the EEG segments, and (iii) comparison

of observations coded as sequences of symbol vectors. The third step is based on a

vectorial extension of the Wagner and Fischer’s algorithm [121] to first quantify the

similarities between observations and then to extract invariant information, referred to

as spatio-temporal signatures. The study reported reproducible mechanisms occurring

during seizures for a given patient. In subsequent studies on medically refractory

partial seizures, the authors demonstrated reproducible propagation schemes that may

help in the understanding of epileptogenic networks [122, 123].

Shoeb et al. [124] proposed a multichannel seizure onset detector system using

wavelet decomposition to capture morphological and spatial information that con-

stituted feature vector as an input to a support vector machine (SVM) classifier

for the presence of seizure. The method requires prior knowledge of at least 2-4

seizures, and non-seizure background EEG. The trained classifier is used to detect

subsequent seizures in the record. The method was evaluated on 36 pediatric scalp

EEGs resulting in a sensitivity of 94% with a FDR of 0.25/h. In contrast to other

PS methods, where only a single seizure pattern is used for training, this method

requires more than one template seizure pattern. The method has been considered in

a neuroresponsive therapy [125], where the EEG features were computed within the

implantable device.The features were then transmitted to a high performance remote

computer for classification. Authors suggest that remote classification reduces the

computational cost and is aimed at extending the implant’s battery life. However, a

centralized remote system for seizure classification is not a practical solution.

Osario et al. [64, 90-93] extended their originally proposed NPS method [100] in

the design of PS system to prevent propagation of a seizure using electrical stimulation.

A set of candidate filter banks based on the power in the different spectral bands

are designed using a priori known seizure and non-seizure patterns. The filter that

maximally separates the seizure and non-seizure is selected to train the classifier. The
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trained classifier is used to detect remaining seizures in the data. The authors selected

short segments of seizure and non-seizure to demonstrate their method. However, the

scheme has not been validated on prolonged and continuous EEG recordings.

Wilson et al. [130, 131] presented a neural network architecture to design a

PS method (known as MagicMarker) similar to their Reveal algorithm. It trains

the PS classifier rapidly without human intervention, requires minimal sample data,

and employs a supervised learning algorithm to improve classification errors. The

probabilistic neural network (PNN) is trained on a single seizure event and the

corresponding background activity that extends from the end of the previous seizure

event (or the beginning of the record) to the start of the current seizure event. Although

the method requires a single seizure pattern, it needs extensively long background

EEG, thus limiting its practical application.

Shi et al. [132] proposed a model-based seizure detection using statistically optimal

null filter (SONF) which requires only the a priori knowledge of a single seizure

pattern. The authors proposed sinusoidal wavelet basis function to model the template

seizure. The approach provided 100% sensitivity and no false detection on single

channel study of two patients. However, the method has several drawbacks: (1)

it is not automatic, (2) involves visual segmentation of the template pattern, (3)

employs wavelet domain-based modeling of the template pattern, and (4) has not been

validated on large dataset. Addressing the limitation to this method may lead to the

development of an automatic, robust and more practical PS system.

Zandi et al. [35] proposed a patient-specific seizure detection method for scalp

EEG recording based on wavelet packet transform. The method requires a priori

knowledge of the seizure and a large background EEG (∼30 min.). The seizure and

background EEG is analyzed in a 2 s moving window with 50% overlap. Each epoch

is decomposed into a wavelet-packet tree. Energy in each sub-band is used to estimate

the probability density function of each sub band relative to a reference, to estimate
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the distance between seizure and non-seizure. In addition, regularity index is also

computed from the decomposed wavelet packets to train the classifier. The combined

seizure index which measures increased regularity and energy index on the individual

channels are combined with multichannel information to identify seizures similar to

the template seizure. The method has been validated on 14 patients resulting in a

sensitivity of 90.5% with a false detection rate of 0.51/h. The PS scheme has several

drawbacks: not automatic, selection of very large non-seizure reference, wavelet-packet

based analysis, manual tuning of the detection thresholds, and selection of specific

type of seizure dataset (temporal lobe epilepsy).

Salam et al. [133] recently proposed a low-power patient-specific seizure onset

detector for implantable devices. The method is based on the concept of detecting

progressive increase in the amplitude and frequency at the seizure onset to make

accurate seizure detection proposed in [33, 34, 36, 98-100]. Based on this concept, the

authors devised an algorithm that consists of a set of voltage and frequency detectors

to identify a progressive increase in the amplitude and frequency at the seizure onset in

multiple frequency bands. The detection thresholds are customized for each individual

patient to maximize specificity and to prevent unwarranted neural stimulation. The

algorithm is validated on seven medically refractory epileptic patients with a report

of 100% specificity and average onset delay of 13.5 seconds. The method is designed

specifically for seizure that progressively increases with low-voltage fast-activity. Note

that specificity can be maximized to 100%, but at the cost of sensitivity, which has

not been reported in this study. Further, the method has also not been validated on

varied and large intracranial EEG recordings.
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2.3 Spike Sorting Techniques

Patients with medically refractory seizures are candidates for surgical resection of the

seizure onset area or for deep brain stimulation therapies that can lead to significant

reduction or cessation of seizures. Several studies report a better surgical outcome when

regions of frequent interictal spikes are also removed [45, 101-106]. However, as to how

exactly the interictal spikes develop and as to how they propagate and contribute to

the generation of seizures is not well understood [107-109]. Automatic spike detection

techniques have received intense attention to aid rapid identification of spikes in the

voluminous EEG recordings. However, quantitative analysis of epileptiform spikes is

still done manually which is a very labor-intensive and time consuming task.

On the other hand, spike2 classification is the first step in experimental neuro-

physiological studies aimed to better understand the brain functions. Classification of

spikes is studied since (1) spikes are highly stereotypical, permitting the modeling of

their shapes to facilitate classification of the associated neurons, (2) spike trains carry

an affluent amount of information permitting modeling of brain functions at very high

temporal and spatial resolutions, and (3) spike occurrences mediate plasticity such

as learning and memory formations [110-112]. However, spike classification schemes

mainly focus on the timing of their individual occurrences (spike train analysis) and

not on their actual shapes [146, 147]. A relatively large number of spike classification

methods have been proposed for neuro-physiological experiments. The following

presents some of the popular spike classification methods.

Willming and Wheeler [149] proposed a four channel extracellular spike sorting

algorithm based on spike amplitude. The classification routine considered a spike to

belong to the same class when the peak amplitude fell within a user specified interval.

2It must be noted that spikes in the EEG and in the basic neurophysiological experiments are
two different entities. The use of the term ’spike’ in experimental neurophysiological studies refer
to action potentials, recorded using microelectrodes (1 ms events) that represent the normal and
abnormal functions of single/multi-cell neurons. The epileptic spikes in the EEG are recorded with
macroelectrodes that typically last 35 to 200 milliseconds.
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The authors proposed two more approaches that compared the RMS error between the

stored templates of each unit’s spike waveform and the spike most recently detected.

The new spike was classified according to the minimum of the RMS errors computed.

The third algorithm utilized principal component analysis (PCA) for classification.

Peak amplitude windowing-based algorithm outperformed the principal component

and template matching algorithm. The signal-to-noise ratio of the spikes and large

variation in the spike waveforms justifies the poor classification by template matching

approach compared to peak-amplitude and principal component approaches.

Chandra and Optican [150] proposed a connectionist neural network for sorting

extracellular spike recordings. Spikes were detected when the amplitude of the recorded

signal exceeded a positive or negative threshold. Detected spikes were clustered together

to form noise-free templates using the simultaneous clustering algorithm, which first

finds the best clusters around each waveform, groups these initial clusters together

and then selects the best and final clusters. Each detected waveform is initially a

potential initiator waveform for a cluster. The waveforms are clustered with the

initiator waveform based on the best alignment and Euclidean distance, resulting in

M clusters for M waveforms. The clusters are selected based on inter-cluster distance,

cluster density and a cluster-scatter measure. Centroids of the selected clusters are

the templates. A fully connected feed-forward, three layer trained neural network

examines the template and spikes. The performance was determined on simulated

data.

Quiroga et al. [151] proposed a method for detecting and sorting spikes from

multi-unit extracellular recordings. The method combines wavelet transform and

super-paramagnetic clustering and encompasses three principal stages. Spikes are

detected with an automatic amplitude threshold on the high-pass filtered data and a

small set of wavelet coefficients from each spike is chosen as input for the clustering

algorithm. Clustering algorithm is based on simulated interaction between each
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data point and its k -nearest neighbors, which is implemented as a Monte Carlo

iteration of a Potts model. The complete clustering algorithm is known as super-

paramagnetic clustering algorithm. The algorithm outperformed when compared to

other conventional methods using several simulated data sets whose characteristics

closely resemble those of in vivo recordings. The unsupervised and fast implementation

of the sorting technique is commonly known as WAVE CLUS.

Wood et al. [152] studied variability in manual spike sorting and its implications in

the neural prosthetics. The study highlighted the challenges encountered in manually

sorting a large number of multi-channel data and the need for a robust spike sorting

algorithm.

Kaneko et al. [153] proposed tracking spike-amplitude changes to improve the

sorting results. Their sorting algorithm included spike detection, spike vectorization,

burst detection, and spike classification. A spike was detected by matching the

recorded waveforms with a set of spike templates with different durations (spike

detection). The amplitudes of these waveforms constituted a spike-amplitude vector

(spike vectorization). Spike bursts were detected based on attenuation of the spike

amplitude and inter-spike intervals (ISIs) (burst detection). Finally, clusters of spike-

amplitude vectors in the six-dimensional vector space were statistically classified by

bottom-up hierarchical clustering in which every spike-amplitude vector was first

assigned to a cluster, and then the nearest clusters were repeatedly combined into a

new cluster until clustering ended by Mahalanobis generalized distance. The study

reports that cluster tracking improves the quality of multi-neuronal data analysis

resulting in compact clusters.

Wolf et al. [154] proposed an unsupervised algorithm for sorting and tracking

action potentials of individual neurons in multi-unit extracellular recordings. This

approach assumes that each neuron produces spikes whose waveform features vary

according to a probability distribution, and thus, each generating neuron may be
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represented as a component in a mixture model. Additionally, the method incorporates

the knowledge of available information over time to re-identify previously identified

neurons despite possible changes in the amplitude, phase, and numbers of neuronal

signals. This is achieved by dividing the long recordings into short time intervals

followed by temporal alignment of spike events. The detected spike waveform is then

projected onto a d -dimensional feature space, and are clustered by optimizing the

Gaussian mixture models (GMM) via expectation–maximization (EM). Validation

of the sorting algorithm on the recordings from macaque parietal cortex showed

significantly more consistent clustering and tracking results than traditional methods

based on EM optimization of the mixture models.

Chan et al. [155] proposed an unsupervised spike sorting method for extracellular

recordings. It is based on wavelet coefficients, spike alignment and template-matching.

The method uses significant wavelet coefficients near the alignment point to improve

the sorting results. Herein, once a spike is detected, its selected wavelet coefficients

are used as a vector to find a match in the codebook. The method does not require a

priori knowledge of complete recording to derive the templates.

2.4 Summary

Seizure detection

In the first part of this chapter, we have reviewed seizure detection to identify the

drawbacks, limitations and scope for improvements in existing methods. A large

number of seizure detectors exists in the literature that are designed based on the

patient age group (neonatal and adult), type of EEG recording (scalp, ECoG, or

depth), and clinical use (prediction or detection). The seizure detection techniques

can be broadly classified according to the detection approach: non-patient-specific

and patient-specific.
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It is noted that the literature is abundant with NPS seizure detection methods

and there exist relatively few PS seizure detection methods. In the development of

NPS seizure detection methods, a large training dataset is employed, whereas in the

PS detection methods, the patient’s own seizure and non-seizure EEG data constitute

the training data. The NPS/PS methods derive features using the training data to

build a classifier for an accurate detection of seizure events.

Some NPS algorithms use a simple threshold-based classifier (rule-based), where

the detection threshold is generally fixed and only a few of these provide a facility to

tune the detection threshold. The study of Pauri et al. [96] showed that sensitivity is

inversely proportional to the detection threshold. Low detection threshold results in

high sensitivity, but at the cost of increased false detections, whereas a high threshold

setting causes an increased number of missed detections. Unpredictable and dynamic

behavior of the epileptic seizure increases the complexity in selecting the detection

threshold. In order to reduce this trade off, a multitude of features are extracted from

the short EEG segment. The linearly separable dichotomy problem of the EEG into

seizure and non-seizure becomes hyper-dimensional with the increase in the numbers

of features. ANN-based classifiers are often considered in the seizure detection systems,

which requires a complex supervised training of the classifier. The large number of

features in the ANN-based methods typecast such methods to some specific type of

seizures, and also increases the algorithm’s complexity.

In contrast to the non-patient-specific seizure detection systems, there exists no

patient-specific method that is fully automatic. PS methods rely on the manual

selection of one or more seizure and non-seizure sections by the EEGer to train

the classifier. Manual selection of the EEG sections is time-consuming and very

subjective. To some extent, the model-based seizure detection using SONF of Shi et

al. [132] reduces the dependence of the classifier on both the template seizure and

the background EEG . This approach still needs the a priori known template pattern
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that is provided by an EEGer. The performance of PS methods are superior to that

of the NPS methods, but they are generally not practical.

Spike classification

The second part of the chapter reviewed spike sorting techniques to identify drawbacks,

limitations and scope of improvements in the existing methods. Spike classification is

of immense importance in basic sciences, experimental and clinical neurophysiology to

better understand the dynamic brain functions. Analyzing neural signals allows a better

understanding of the mechanism underlying complex functions such as perception,

learning, and motor processing that lead to accurate diagnosis and development of new

bio-markers, drug therapies and prosthetic devices. This is one of the reasons as to

why spike sorting literature primarily dominates intra- and extra-cellular spikes (action

potentials). Furthermore, literature review depicts why spike sorting still remains as

one of the most challenging problems despite decades of effort. The difficulties (intra-

and extracellular recordings) are well-known and include issues of nonstationarity,

non-Gaussianity, temporal dependencies between spikes and overlapping spike shapes

due to synchronous activity in nearby neurons. Several unsupervised methods for

spike sorting have been proposed in the recent past with varying degree of success.

Most methods are offline classification, which employ principal component analysis,

wavelet transform and/or neural networks. Some online spike sorting approaches based

on template-matching have been proposed that dynamically derive templates, which

are susceptible to noise interferences leading to misclassification, and often employ

computationally demanding techniques such as hierarchical clustering.

Epileptiform spikes which tend to occur more frequently compared to seizures are

stereotyped and linked to specific neurons involved in their generation. Removing the

sites of frequent epileptic spikes has been shown to improve surgical outcome. Recently,

it has been shown that a small group of genes to be highly correlated with the interictal
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spike frequency demanding a need for qualitative and quantitative analysis of epileptic

spikes. While immense attention is given to automatic detection of epileptic spikes,

only a handful spike sorting algorithms are available for the EEG recordings. Note

that spike sorting methods designed for extracellular recordings (local field potentials

or action potentials) cannot be applied to classify spikes in the EEG for several reasons.

Typically, epileptic patients undergo prolonged monitoring period for several days to

weeks making it nearly impossible to have a priori knowledge of the spike waveforms,

which is required in most of the sorting algorithms. The number of electrodes also

varies across patients and generally ranges between 32-256 channels. A large number

of channels introduce computational complexity in online spike sorting. Additionally,

the EEG is digitized at different sampling rates (200 to 5000 Hz) within the same

centre and across laboratories. Sorting methods based on multi-resolution analysis,

such as wavelet transform, are limited by the sampling rate which ultimately limits

their widespread application.
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Chapter 3

Data Description

3.1 Introduction

In this chapter, we provide the details of the data used in the development and testing

of the new systems described in this thesis along with the techniques of performance

evaluation.

3.2 Data Description

The International League Against Epilepsy (ILAE) commission [156] provides a

guideline for the use of long-term monitoring in epilepsy. We have selected EEG

data as per this recommendation to train and test the new seizure detection methods.

The data for the seizure detection methods are obtained from two different sources

- (1) Montreal Neurological Institute, McGill University (MNI), and (2) Freiburg

University Hospital (FSP), while the data for spike classification method is obtained

from Wayne State University (WSU). The databases from these sites are as described

in this section.
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3.2.1 MNI Database

The first dataset referred to as the MNI database consists of intracerebral EEG data

acquired with the Harmonie System (Stellate System Inc., Montreal, Canada) from

the Epilepsy Telemetry Unit at the Montreal Neurological Institute and Hospital

(MNI/MNH). The database contains fifteen patients’ data collected for another study

[32]. One patient data was rejected because it was not possible to define unambiguous

start and end of seizures. Thus, data from 14 patients with over 304 h of EEG

constitutes the MNI database.

MNI data were bandpass filtered between 0.5 and 70 Hz prior to digitization at

the sampling rate of 200 Hz. All patients had stainless steel nine contact depth EEG

electrodes that were surgically placed inside the brain with contacts located 5 mm

apart. Some patients also had epidural peg electrodes that were typically labeled

using the letter ’E’. Depth electrodes were most commonly placed in the amygdala,

hippocampus, frontal or occipital lobes labeled as ’AM’, ’H’, ’F’, and ’O’ with deepest

contact labeled as 1. Normally, electrodes placed in the left and right hemispheres were

labeled with either an ’L’ or an ’R’, for example, electrode in the left amygdala was

labeled ’LAM’. There was no pre-screening of the patients other than the requirement

that they had at least three electrographic seizures during the monitoring sessions.

For each patient, five sections of recordings, approximately 4-7 h each, were extracted

in such a way that the three sections had at least one seizure each, one section during

wakefulness without seizures, and one without seizures during sleep. This ensured

that no patient biased the overall performance. Prior to sectioning, a trained EEG

specialist using a bipolar montage scored all data for seizures.

In our initial assessment of the MNI database, we observed that some seizures are

present only on a single channel. Therefore, we considered analyzing MNI database

in single channel configuration. We selected the channel in which seizure is visually

clearest or obvious in the first seizure section of each patient of the MNI database.
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The same channel is used in the remaining data for each patient in all the methods.

3.2.2 FSP Database

The second dataset of intracerebral EEG, referred to as the FSP database, consists

of a subset of data from the Freiburg seizure prediction (FSP) database which is a

subset of European epilepsy database [30, 157]. The FSP database contains invasive

EEG recordings of 21 patients suffering from medically intractable focal epilepsy. The

data were recorded from patients undergoing presurgical epilepsy monitoring at the

Epilepsy Center of the University Hospital of Freiburg, Germany. The EEG data were

acquired using Neurofile NT digital video EEG system with 128 channels sampled at

256 Hz sampling rate, and digitized using a 16-bit analogue-to-digital converter. The

database contains EEG recordings obtained using grids, strips and depth-electrodes.

The six contacts from the implanted grids, strips and depth-electrodes were selected by

visual inspection of the raw data by the EEGer. Three of these contacts were selected

from the seizure onset zone, specifically from the areas involved in early ictal activity.

The remaining three electrode contacts were selected as not involved or involved last

in the seizure spread [157].

FSP database data were filtered using a 5th order digital Butterworth bandpass

filter between 0.5 and 70 Hz, and notched to remove 50 Hz power line noise. Four

bipolar channels were constructed by subtracting the signals of consecutive intracerebral

contacts, two for the epileptogenic zone and two for the associated remote locations

[114].

3.2.3 WSU Database

The third dataset of intracerebral EEG, referred to as the WSU database, consists

of a subset of data of nine medically intractable epilepsy patients who underwent

presurgical evaluation between January, 2002 and August, 2008 at the Comprehensive
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Epilepsy Program at Wayne State University, Detroit, USA. The EEG in the WSU

database were obtained with Stellate Harmonie digital recorder (Stellate Inc., Montreal,

PQ, Canada) with a sampling rate of 200 Hz. For each patient, three distinct 10

minute segments of the continuous awake EEG were selected based on the criteria:

(a) at least a 3 h interval between each segment, and (b) ≥ 2 h after a partial seizure

and ≥8 h after a secondarily generalized tonic-clonic seizure as described in [49, 50].

One of the three randomly selected 10 minute segment for each patient is considered

in the design and evaluation of the spike sorting algorithm. The study was designed

to elucidate activity-dependent molecular pathways in human epileptic foci using

functional genomic methods and to quantify interictal patterns linked with specific

genes in epilepsy.

3.2.4 Data Conversion

In this dissertation, algorithm development, data processing and performance evalu-

ations are carried out using the MATLAB (Mathwork Inc., USA), while the review of

the EEG signals and detected events are performed in the Stellate Harmonie software.

Figure 3.1 illustrates the various steps involved in the data conversion, analysis and

review. The EEG signals in the two databases were acquired using two different EEG

machines that store the data in a format that is incompatible with the MATLAB

environment. Therefore, the data must be converted to a format that is recognized by

MATLAB in order to process the EEG signals.

The signal files in the MNI and WSU database are imported into MATLAB

environment using the Stellate’s MATLAB interface toolbox. The signal files in the

FSP database were only available in the ASCII format. Neurofile NT EEG recording

system does not support exporting multichannel EEG signals into single ASCII file.

Therefore, the continuous multichannel EEG recording is segmented into one file per

channel, and each file is approximately 1 h long. Thus, the twenty-one patient FSP
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database contained 4299 ASCII files. ASCII files for each patient were loaded into

MATLAB, where the data is converted to bipolar montage. This is done by subtracting

the signals of consecutive intracerebral contacts. The resulting single channel bipolar

signals are then merged to generate the four-channel record per patient.

Harmonie 6.2e review software (Stellate Systems Inc., Montreal, Canada) is a

clinical EEG review software that allows an easy and rapid review of multichannel

EEG recordings. Since the MNI and WSU database were originally recorded in the

Harmonie software, no additional data conversion is required for this data. However,

the ASCII signal files in the FSP database are not compatible with Harmonie. To

review FSP data in Harmonie, the data must first be converted to a format that is

supported by the Harmonie software. The European Data Format (EDF/EDF+) is a

standard data format for exchange and storage of medical time series data such as EEG.

This data format is supported by Harmonie. BioSig [158] is a toolbox for MATLAB

that allows converting ASCII to EDF format. Therefore, the four channel bipolar

EEG data in the FSP database were converted to EDF using freely available BioSig

toolbox [158]. Subsequently, the converted EDF files were imported into Harmonie

6.2e software.

All algorithm developments are done in the MATLAB environment, while data is

reviewed in the Harmonie software. This allows an easy evaluation of the algorithm

performance and validation of detected events by the EEG experts.

Performance of the newly developed seizure detection systems in this thesis are

compared against popular methods from the literature (Gotman (1990) [51], Qu and

Gotman (1997) [21], Grewal-Gotman (2005) [32], and Reveal Algorithm (2004) [52]).

Harmonie software includes Gotman (1990), Qu and Gotman (1997), and Grewal-

Gotman (2005) seizure detection methods. The Reveal algorithm is included in the

Persyst EEG Suite ver. 20090819 (http://www.eeg-persyst.com).

In this work, we have used the freely available time-limited Persyst EEG Suite
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version that supports the EDF format. The algorithm detections are stored by the

software in its own proprietary format, but provides a provision to export results

to Microsoft Excel (Microsoft Inc, USA). Performance analysis is done by exporting

Reveal detections to Microsoft Excel and then imported into the Harmonie files using

the Stellate MATLAB interface toolbox (refer to Fig. 3.1). By doing so, events

detected by Reveal algorithm can be easily reviewed and compared with those revealed

by the other methods on a common platform.

3.2.5 Data Selection

Seizure Detection

An initial assessment of the data of the complete MNI database revealed that in some

patients seizures are present only in a single channel (focal seizures). Therefore, a

single channel analysis is considered for the MNI database. Visual inspection of the

first seizure section facilitated the selection of the single channel for analysis. For

patients with seizures occurring simultaneously on multiple channels, we selected the

channel in which the seizure is the most prominent. The selected channel is used to

evaluate all data for the given patient.

For the purpose of training and testing, the MNI database was split into two sets.

The training dataset for the NPS system includes randomly-selected seven patient

data. This subset contains 58 seizures in approximately 145 h of single channel EEG.

The remaining seven patient data were used as the test dataset and had 42 seizures in

approximately 158 h of single channel EEG. The training dataset for the PS system

on the other hand includes the first occurring seizure in the first seizure section of

each patient along with 30 seconds of background EEG preceding the seizure onset.

The FSP database is used as a completely blind test data. This database is not

considered during the development phase of the methods, and is used for an unbiased

performance evaluation of NPS systems.
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Spike Sorting

The WSU data are scored for interictal spikes by two different spike detection strategies

in the referential montage. The spike detection module in the Stellate Harmonie

software v 6.2e (Stellate Inc.) with default settings is utilized to identify interictal

spikes [159]. The same data is visually scored by a trained EEGer for interictal spikes.

The visually scored data included noise-free polyspikes that were often missed by the

automatic spike detector. On the contrary, automatically detected spikes included

false positives such as spike-like movement artifacts and mu rhythms. We will hereafter

refer to ’AutoSpike’ as the spikes detected by the Stellate spike detection module and

’ManuSpike’ as the spikes identified by the EEG expert.

The training data consists of randomly selected EEG of five patients while the test

data included all the nine patients of the WSU database. The spike sorting algorithm

is optimized using the AutoSpike events of the training data. Validation involves the

comparison of sorting outcomes using the two spike events (AutoSpike and ManuSpike)

of all the nine patients.

3.3 Performance Evaluation Methodology

3.3.1 Seizure Detection

There is quite a bit of inconsistency in the literature in terms of the format of the

results reported. For this reason, it is worth defining the measures that we will use to

evaluate the proposed methods. In this dissertation, a single channel EEG analysis

is considered, since most of the seizure detection methods in the literature detect

seizures independently on each channel, and later combine the individual detections

from neighboring channels to make a final multi-channel detection. Another reason

for single channel analysis is that focal seizures often occur only in one or sometimes
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in two neighboring channels. In each EEG recording, we have selected the channel

in which seizure is unambiguous and there is no likelihood of disagreement among

EEGers by visual inspection of only the first seizure section.

The time instant where the seizure starts first in any given channel is considered

as the beginning of the seizure event (seizure onset) and the end of the seizure event

is defined as the time instant at which the seizure activity is no longer present in

any channel. A manually marked seizure event is a duration event marked across all

channels. In this work, since the detections are made on a single channel basis, the

channel selected for analysis may not be the channel representing the seizure onset.

The performance is evaluated by examining any overlap of the automatic detection

with the manually scored event, as shown in Fig. 3.2. The example show in Fig. 3.2

contains a multichannel EEG scored for seizure onset (SzO) and end (SzE) based

on multichannel information by the EEG expert. The shaded area (’yellow’ color)

encapsulates seizure section marked by the EEGer. To demonstrate single channel

performance evaluation, we select LH1-LH3 as the channel of interest on which

automatic detections are enumerated from 1-8. Automatic seizure detection can occur

prior to the seizure onset or after the seizure ends depending upon the temporal

characteristics of the seizure. Furthermore, multiple seizure events can be detected

for a given seizure depending on the classification rule. As a general rule, automatic

detection events detected within 30 s of one another are grouped into a single event [19,

30, 32, 54, 81]. As a result of this grouping, it is possible that some algorithm detections

occur prior to the manually scored onset. This can be addressed by extending the

manually marked seizure sections, allowing a fair assessment of the detected events. In

this work, the seizure section is extended on either side by 15 s, (T1 = T2 = 15 s) for

the purpose of performance evaluation. In the example shown in Fig. 3.2, automatic

detected events 3, 4, 5, 6 are considered good detection while 1, 2, 7, 8 are considered

false events for this seizure.
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Figure 3.2: Section-based technique of performance evaluation. Numbered events
represent the algorithm detections, EEGer section is a multi-channel duration event
and the ’red’ rectangular box represents the detection section on channel of interest
(LH1-LH3).

The performance measures, sensitivity, specificity, false detection rate, average

detection latency and receiver operating characteristic curve are used to evaluate

the performance of the new seizure detection systems presented in this thesis and to

compare it with those of the existing methods. These are defined as follows [21, 32,

51, 52, 54, 101, 160, 161]:

• Sensitivity: Ratio of the number of true seizures detected by the algorithm (TP )

to the total number of seizures marked by the EEGer (TE) and is given by

ST = TP/TE.

• Specificity: Ratio of the number of true seizures detected by the algorithm (TP )

to the total number of events detected by the algorithm detected (TD) and

is given by SP = TP/TD = TP/(TP + FP ), where FP is false positive, i.e.,

events detected by the algorithm, but not scored by the expert, which is also

referred to as false detection (FD).

• False Negative (FN) : Events identified as seizures by the EEGer, but were

missed by the algorithm.
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• False Detection Rate (FDR): Number of false detections/hour.

• A receiver operating characteristic (ROC) curve is a graphical representation of

sensitivity against specificity or FDR, as the detection parameter of interest is

varied. The area under the ROC curve (ROC area, calculated using trapezoidal

numerical integration) is an effective way of comparing the performance of

different features or classifiers. A random discrimination will give an area of 0.5

under the curve, while perfect discrimination between classes will give an area

of 1 under the ROC curve. The ROC area is equivalent to the Mann Whitney

version of the Wilcoxon rank-sum statistic [162].

It is important to mention at this point that aforementioned definition of the term

sensitivity and specificity are often misinterpreted with the accuracy and positive

predictive value that are commonly used in the diagnostic testing, where the presence

or absence of an event is clear (disease/no disease). True negative (TN) outcome

isn’t well defined for continuous data. For example, in one-hour section of EEG with

one-minute of seizure and 59 minutes of non-seizure, it is not obvious what constitutes

a negative event. The definition of the term sensitivity and specificity mentioned

above are consistent with the usage in a large number of publications in the seizure

detection literature [21, 32, 51, 52, 54, 94, 101, 160, 161].

3.3.2 Spike Sorting

One of the main challenges in the spike sorting is the lack of a priori knowledge of the

total number of classes or clusters in the data. To address this challenge, we propose

a new indirect approach to validate our sorting method and is described in Chapter 7.
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Chapter 4

New Non-Patient-Specific Seizure

Detection Systems

4.1 Introduction

We propose in this chapter three new non-patient-specific (NPS) seizure detection

systems, that track the temporal progression of seizures by simple mathematical

descriptors [33, 34, 36, 120, 136]. We select three popular NPS seizure detection

systems for a comparative evaluation of the performance. The three selected NPS

systems are the Gotman system [51], the Reveal algorithm [52], and the Grewal-

Gotman system [32], which will hereafter be referred to as the comparison NPS

systems.

The first proposed NPS system employs a simple detection strategy to track the

continual increase in the feature value (relative frequency-weighted energy) as a seizure

progresses, and hence is termed the relative frequency-weighted energy (RFWE) system

[36]. The second proposed NPS system quantifies the EEG waveform morphology

and tracks the continual increase of abnormally sharp activity to make a detection,

and is called as morphology system [34, 120]. The third proposed system, termed
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the evolution seizure detection (eSD) system [33, 136], incorporates the intelligent

seizure detection strategy of the EEG experts to make a detection, and quantifies four

different EEG features to track the temporal progression of seizures.

First, we introduce the time evolution of seizure that is utilized in the development

of the new NPS systems. We then describe each of the new NPS systems and present

results of the optimized method on the MNI training data. The results are compared

against three existing systems mentioned previously. Each of the new NPS systems

aims to address some of the challenges of its predecessor to improve the overall

detection results.

4.2 Time-evolution of Seizure

Traditionally, NPS seizure detection techniques treat seizure detection as a binary

classification problem, i.e., seizure or non-seizure. A variety of features are considered

to quantify and identify the discrimination boundary that separates the two classes.

However, features that can perfectly separate seizure and non-seizure classes have not

yet been found. Alternatively, we hypothesize that it is possible to make accurate

seizure detection by tracking the time evolution of the EEG characteristics.

Epileptic seizure is a dynamic short-time abnormal activity in the brain that starts

sporadically, propagates, and after sometime terminates by returning to the normal

brain state. This seizure evolution can be mapped as a function of time. A graphical

illustration of seizure time evolution is shown in Fig. 4.1. The envelope represents the

changes in the amplitude characteristics of the EEG. The example depicts how we

encode the time evolution of a seizure using the amplitude feature. Seizure onset is at

the point ’A’ and the end of the seizure is at ’D’. Complete seizure has been segmented

into three sections. The section AB represents the monotonic increase (growth) in the

feature value. The BC section represents the stable amplitude segment, and section
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CD represents the monotonic decrease (decay). The rate of increase or decrease, and

the duration of each of the three sections vary from seizure to seizure, making the

seizure detection very challenging. Nonetheless, this observation of continual growth

or decay in the EEG characteristics can be employed to design computationally light,

robust data-driven NPS systems. We believe that by quantifying the AB section of

the seizure time evolution, it is possible to detect seizure as close as possible to the

onset, which is one of the prerequisites for clinical application of the new system.

-20 0 20 40 60 80 100 120
Time (s)

A

B C

D

Figure 4.1: Encoding the time evolution of seizure by tracking the EEG characteristics.
The example parametrizes temporal changes in EEG amplitude. Seizure onset is at the
point ’A’. Seizure is segmented into three sections representing monotonic increase (AB),
stable (BC) and monotonic decrease (CD) in the amplitude.

In the following, we present three proposed NPS seizure detection systems, namely,

the RFWE system [36], morphology system [34, 120] and eSD system [33, 136].

4.3 Relative Frequency-Weighted Energy System

In this proposed system, the temporal changes in the amplitude and the frequency

are quantified using a single EEG feature, namely, the relative frequency-weighted

energy (RFWE) to make detections [36]. More specifically, we devise a new seizure

detection scheme that uses the RFWE feature to track the continually increasing

phase of the seizure onset (AB described in Fig. 4.1). The three main steps involved

in this system include: (1) pre-processing and artifact rejection, (2) feature extraction,
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and (3) classification. The flow chart of the RFWE system is shown in Fig. 4.2, and

the following subsections describe the various blocks of the RFWE system in detail.

0φΔ >
0tφ =

1t tφ φ= +

mint Tφ >

Figure 4.2: Flow chart of the RFWE seizure detection system.

4.3.1 Pre-processing and Artifact Rejection

Intracranial EEG is relatively free from artifacts in comparison to the scalp EEG, but

spans a wider frequency spectrum, has a highly variable seizure morphology and a

variety of sharp wave complexes, ranging from needle-like fast activity to much slower

discharges that can be contaminated by high-amplitude artifacts (HAs), iso-electric

artifacts (IEAs), power line noise, and fast electromygraphy (EMG) activity [5]. The

pre-processing and artifact rejection block conditions the signal and incorporates

techniques to reject these commonly occurring artifacts.

EMG artifact in the intracranial EEG is observed with substantial energy in the

spectral content beyond 30 Hz [163], while the seizure activity in the intracranial
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EEG is observed to be within 0.5-70 Hz band and primarily reported to be in 3-30 Hz

band [32, 35, 51]. To reduce high frequency interferences and noise, the raw EEG is

band-pass (3-30 Hz) filtered using a 5th order digital Butterworth IIR filter [102]. The

data is processed in both forward and reverse directions to minimize the non-linear

phase distortion caused by the IIR filters [32, 114].

Generally, poor electrode connection is the root cause for EEG contamination by

power line noise. A notch filter with null frequency centered at the power supply

frequency, i.e., 50/60 Hz is employed to filter the power line noise [164, 165].

Iso-electric artifacts (IEAs) cause false detection in NPS methods that employ

techniques to compute features relative to a background EEG [32, 114]. A flat or

iso-electric EEG (disconnection artifact) occurs when a patient gets disconnected for

one or the other reasons from the recording device while recording continues. An

increase in the feature value relative to the flat background is observed upon the

patient reconnection. Since we compute the RFWE feature relative to the background

EEG, it becomes necessary to handle IEA in this block. A disconnection is identified

by computing the variance of the EEG amplitude in small segments. It is expected

that during the flat-line, the variance in the EEG amplitude will be zero. On the

occurrence of such an event in the data, the detection is suppressed for the next 90

seconds.

High-amplitude artifacts (HAs) are the second most common type of artifact

observed in the intracranial EEG that often originate as an abrupt change in the EEG

amplitude due to patient or electrode movement [32, 114]. Typically, intracranial

EEG is observed to be within ±2500 μV . Therefore, an epoch contaminated by

high-amplitude artifact can be easily identified and excluded from the analysis. Any

test window in which the amplitude exceeds ±2500 μV is ignored from further analysis.

The example in Fig. 4.3 depicts a 5-hour single channel EEG data contaminated by

IEA and HA.
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Figure 4.3: (A): Single channel EEG contaminated by the two common artifacts
present in the intracranial EEG. (B) represents the time instances of IEAs, and (C)
represents the time instances of HAs in (A).

4.3.2 Feature Extraction

Feature Extraction Techniques

In the seizure detection arena, feature extraction is performed using a sliding data

frame (window/epoch) approach. There are two popular approaches in the literature:

(a) single sliding window, and (b) two sliding windows. In the first approach, the

features are computed from the EEG in the test window (xtest) which moves through

the data in small steps. The size of the test window and the step size are determined

by the detection algorithm requirements. In general, the duration of the test window

is preferred to be as short as possible to address the rapidly changing EEG, yet it must

be large enough to compute the features accurately. Figure 4.4A illustrates the single

sliding window feature extraction technique. The second feature extraction technique

incorporates two sliding windows and is shown in Figure 4.4B. This feature extraction

technique enhances the separability between seizure and non-seizure by computing

the features relative to a reference window. Here, the reference window is also known
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as the background window (xbkg) that ideally represents the non-seizure EEG. The

background window can be fixed or slide synchronously with the test window. The

latter is more commonly used to ensure that the most current background EEG state is

used for the reference [51, 54]. The gap or separation between the test and background

windows reduces the chances of the background window to include seizure EEG. The

duration of the background window and gap is generally large compared to the test

window.

(A)
test window

xtest

(B)
step size test windowbackground window

xbkg xtestgap

time

Figure 4.4: Feature extraction techniques: (A) single sliding window, and (B) two
sliding window feature extraction.

We experimented with different test window lengths (0.5-30 seconds) and selected

2 seconds to be suitable for the RFWE system. Detection delay and subtle changes

in the ongoing epileptic seizure are captured with a sliding test window that moves

in small steps. Empirically determined overlap of 75% is considered suitable for this

method. The test window is separated from the background window by a 60 s gap,

where the background window duration is chosen to be 30 s. The size of the gap and

the background window is taken from the previous studies of Gotman et al. [21, 32,

51, 54, 101, 156, 166].
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Relative Frequency-Weighted Energy

In general, seizure EEG patterns are distinguished from the background EEG by

a change in the amplitude in one or more dominant rhythms for a short duration.

However, some seizures show a fast transition in frequency with minimal or no change

in the amplitude. It is possible to quantify such seizures using frequency-weighted-

energy (FWE). Frequency-weighted-energy is sensitive to variations in both amplitude

and frequency resulting in higher energy during the seizure than non-seizure activity

[37, 39, 169]. Teager proposed a simple non-linear energy operator (NLEO) to quantify

the energy proportional to change in the amplitude or frequency. This operator can

be presented in its discrete form as [168]

ψ [x(n)] = x2(n) − x(n − 1)x(n − 2), (4.1)

where x(n − k), k = 0, 1, 2 are delayed samples of the EEG signal. One of the key

properties of this operator for a pure sinusoid can be summarized by the rule

Ψ = ψ[A cos(ωin + φ)] = A2 sin2(ωi), (4.2)

where A is the amplitude and ωi is the frequency. For ωi much less than the sampling

frequency, Ψ ≈ A2ω2
i . In cases where the frequencies of interest are much lower than the

sampling frequency, as with EEGs, the output of NLEO can be considered a measure

of the spectral content of the signal [39, 167, 169-172]. A more generalized form of

the Teager operator had been given earlier by Plotkin and Swamy [170, 171, 172],

ψg[x(n)] = x(n − l)x(n − p) − x(n − q)x(n − s), l + p = q + s (4.3)

where ψg denotes generalized NLEO. Agarwal et al. [167] showed that for l �= p and

q �= s, ψg is more robust to noise. That is, if the input signal x contains additive
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white noise, then the output in Eq. (4.3) will not contain a component reflecting the

input noise [39, 167, 169]. This is due to the removal of the square term in Eq. (4.3).

For this reason, we choose l = 1, p = 2, q = 0 and s = 3. The expected value of the

output of the generalized NLEO (ψg) is referred to as the frequency-weighted-energy

(FWE) [39, 167].

Some seizures do not reflect any amplitude evolution, but show a rapid transition

from one frequency to another. FWE is useful in the identification of such seizures,

since it has been shown to be highly sensitive to amplitude and frequency changes

in the EEG [39, 167]. For this method, the feature is extracted using two sliding

windows. The ratio of the FWE in the two windows (test and background) is referred

to as the relative frequency-weighted energy, Q′(n),

Q′(n) =
1
N

∑N
1 ψg[xtest(n)]

1
M

∑M
1 ψg[xbkg(n)]

. (4.4)

An example of the time-evolution of a seizure in the RFWE is shown in Fig. 4.5.

Figure 4.5: The example represents 160 s of EEG activity that includes normal
(background) and seizure activity. The RFWE describes the changes seen in the EEG as
it progresses from inter-ictal (background) to ictal (seizure) state, and back to inter-ictal
state.

4.3.3 Classification

The RFWE feature shows a continual increase from the baseline at the onset of seizure,

as seen from Fig. 4.5. It was realized that this can be used to track the RFWE
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trajectory for a reliable seizure detection. However, sharp transients and artifacts

cause abrupt fluctuations in the time-evolution trends of the RFWE (Q′[n]), and

must be addressed prior to classification. The spurious fluctuations in Q′[n] can be

suppressed by a moving average (MA) filter to generate a smooth time-evolution trend.

Therefore, we incorporate a recursive moving average filter to attenuate the effects of

spurious fluctuations in Q′[n], given by

Q[n] = Q[n − 1] + Q′[n] − Q′[n − M ]
M

, (4.5)

where Q[ ] is the M -point average output signal and Q′[ ] represents the unfiltered

RFWE input signal.

We experimented with different lengths of the MA filter to determine the filter

length that best suits the RFWE system. Figure 4.7 illustrates the effect of the MA

filter length on the RFWE feature. It can be seen that with increasing filter length,

M , the spurious fluctuations in the Q′[n] are suppressed, resulting in a smooth trend.

The amount of spurious noise reduced by the MA filter is equal to the square root of

the filter length. That is, a 120 points MA filter reduces the noise by a factor of 10.95

while a 360 point MA filter reduces the noise by a factor of 18.95 [173]. It is also noted

that a higher-order MA filter tends to blur the seizure onset and end. In the example

of Fig. 4.7, it can be seen that for M = 360 the envelop shifts the seizure onset and

terminates the seizure far beyond the actual seizure onset and end. Interestingly, the

output accurately maps the seizure onset and end for M = 120 points. After studying

the training data, a 120 points MA filter, which corresponds to 30 seconds of the EEG,

was considered suitable.
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Figure 4.6: Tracking the continual increase of the RFWE trajectory at the seizure
onset.

In the RFWE system, we aim to quantify the time evolution of the seizure to make

a detection that does not require a priori knowledge of the seizure type. In other

words, the method aims to track the continual increase in the feature value, which

does not require a default detection threshold with respect to the feature. However,

the definition of minimum duration of seizure can be used to control the trade-off

between sensitivity and specificity. This is achieved by examining the gradient of Q[n]

for continual increase as illustrated in Fig. 4.6. The gradient, Δφ[n], is computed by

taking the difference of two successive Q[n] values.

Δφ[n] = Q[n] − Q[n − 1], (4.6)

Continual increase in the amplitude, frequency or both can be tracked using Δφ[n]

by looking for a continual positive gradient. Furthermore, in order to classify the

continual increase in the RFWE trend to be due to seizure, it must satisfy a minimum

duration. This is achieved by extracting the sign of Δφ[n] given by
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Figure 4.7: Effect of filter length on the feature trajectory.

sgn(Δφ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Δφ > 0

0, Δφ = 0

−1, Δφ < 0

, (4.7)

and counting the number of times the sign is continually positive (= 1). The counter

(tφ) is used to find consecutive positive gradients and is incremented by unity, if

sgn(Δφ) equals one (or positive gradient), otherwise it is reset to zero (see Fig. 4.2).

When the counter exceeds a minimum duration (Tmin = 120), a seizure is identified,

and the counter is reset. In this manner, the RFWE system detects a seizure reflecting

the continual increase in the RFWE for the minimum duration. Note that we do

not define the discrimination boundary(ies) or the detection threshold(s) needed for

the classification, which is typical in most of the existing NPS systems. Instead, the

detection parameter in the RFWE system is the continual increase in the RFWE

feature for a certain minimum duration. Typically, the EEGer considers various

properties of the EEG that sustain for certain minimum duration to identify seizures.

However, in the literature, there exists an ambiguity as to what should be the minimum

duration to define a seizure, and is often left up to the experts. Our definition of

seizure is any paroxysmal EEG activity sustaining for at least six seconds.
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4.3.4 Performance Evaluation

The performance of the RFWE system is evaluated on the MNI training dataset and is

compared against the three previously mentioned comparison NPS systems (Gotman,

Reveal, and Grewal-Gotman systems). Note that the RFWE system is developed

using the MNI training dataset, but not the three comparison systems. Therefore, the

detection settings of the comparison systems need to be optimized on this dataset.

We utilize receiver operating characteristic (ROC) analysis to determine the default

detection settings for the comparison systems.

Majority of the seizure detection systems in the literature are dependent on the

detection threshold derived using the training data. The detection threshold means

that the specified feature(s) must satisfy certain minimum preset value(s) in order to

classify the current epoch as a seizure. For example, as default detection threshold,

the average amplitude in the test window must be at least three times the average

amplitude in the background window in the Gotman system. It is not necessarily

true that all seizures will satisfy this condition, resulting in missed seizures. The

NPS systems considered for comparison also include a minimum duration threshold

to further enhance the detection specificity. Therefore, the detection settings of the

comparison systems must be optimized on the same dataset that were utilized in the

development of the proposed RFWE system for an unbiased performance evaluation.

The optimal detection thresholds for the comparison systems are determined from the

ROC analysis using the training dataset. The performance of each of the NPS systems

is evaluated at several thresholds in a given range. The threshold value that results in

the best compromise between the sensitivity and false detection rate is selected. ROC

analysis for the Grewal-Gotman and Reveal algorithm are shown in Fig. 4.8.
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Figure 4.8: ROC analysis for Grewal-Gotman system and Reveal algorithm. The
detection threshold of the Grewal-Gotman system and Reveal algorithm is varied from
1 to 10. The selected thresholds for Grewal-Gotman system (detection threshold = 3)
and Reveal algorithm (perception value = 5) are selected.

Note that the seizure varies from the patient-to-patient. Therefore, it is very

difficult to set a single threshold value at which the detector gives the best result

for all patients. One of our aims is to overcome this limitation, which we achieve by

tracking the time evolution of the seizure as it progresses.

Prior to any performance evaluation, all automatic detections that are within 30 s

of each other are clustered as a single seizure event. An event detected by the proposed

algorithm is considered a good detection, if there is any overlap with a manually

scored event; otherwise, it is considered a false detection. The performance is assessed

with the three most commonly used performance measures in the seizure detection

literature: sensitivity, specificity and false detection rate as described in Chapter 3

[32, 160].
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4.3.5 Results

The detection results on the MNI training data of the RFWE system for each patient

are shown in Table 4.1, while the corresponding results for the three comparison

systems are shown in Table 4.2. The RFWE system results in a sensitivity of 95.4%,

specificity of 69.2%, and FDR of 0.2/h. The Gotman, Reveal, and Grewal-Gotman

systems report a sensitivity of 64.6%, 41.9% and 85.5%, and a specificity of 65.7%,

22.2% and 51.5%, respectively. The RFWE system shows an overall improvement of

30.8%, 53.5% and 9.9% in terms of sensitivity, and 3.5%, 47% and 17.7% in terms of

specificity over the Gotman, Reveal and Grewal-Gotman systems, respectively.

Table 4.1: Detection results for the proposed RFWE system on the MNI training
dataset

PID = patient ID, TE = total expert, TP = true positive, FP = false positive, FN = false

negative, SN = sensitivity, SP = specificity, FDR = false detection rate.

4.3.6 Discussion

The main goal of the proposed RFWE system was to quantify the temporal evolution

of seizure by a computationally simple approach. This is achieved by quantifying the

amplitude and frequency changes in the EEG by a single feature, i.e., the relative

frequency-weighted energy (RFWE). Since the RFWE feature is highly sensitive to

subtle changes in the EEG amplitude and frequency, sharp transients which occur

more frequently in the background EEG can disrupt temporal evolution in the RFWE.
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Figure 4.9: Seizure classification-based on duration.

Therefore, any spurious fluctuation in the RFWE feature is suppressed by a moving

average filter. Then, the gradient of the filtered RFWE is examined for a continual

increase to make a detection. An advantage of the RFWE system is that it does not

require a priori knowledge of seizures to set the detection threshold. Training-data

results demonstrate a significantly improved detection sensitivity over the NPS systems

in , [51], and [52] with a nearly similar detection specificity.

To better assess the limitations of the new NPS, we categorized the seizures based

on their duration and according to their characteristics upon visual review of the

training data. Seizure activity sustaining for more than 30 s were defined as long

seizures, otherwise they were considered short seizures. The distribution of short and

long seizures based on this classification is shown in Fig. 4.9. Patients 1, 2 and 5 had

both long- and short- length seizures, while Patients 3, 4, and 7 had only long-length

seizures and Patient 6 had only short-length seizures.
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Sensitivity

The proposed RFWE system detected at least one seizure in all the patients, with an

overall sensitivity of 95.4% for the MNI training dataset. However, any seizure that

occurs within the first 98 s of the start of the EEG recording will not be detected

by this system. This is because of the feature extraction technique employed in

this method, and the definition of paroxysmal activity utilized to make a detection.

Similarly, seizures occurring immediately following disconnection (IEA) artifact will

not be detected by the RFWE system.

In terms of sensitivity, the proposed RFWE system performs relatively better over

the three comparison NPS systems, as shown in Fig. 4.10. Grewal-Gotman system

has a sensitivity similar to that of the RFWE system. A significant improvement in

sensitivity is observed over the Gotman system and the Reveal algorithm.

Figure 4.10: Comparison of sensitivity against comparison systems. The error bars
represent standard error.

The RFWE system missed two seizures in Patient 1 and one seizure in Patient 5.

An example of missed seizure in Patient 1 is shown in Fig. 4.11. The missed seizure is

a short seizure that was also missed by the Gotman system, Reveal algorithm and the
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Grewal-Gotman system. Majority of the NPS systems in the literature report difficulty

in detecting short seizure including the three NPS systems considered for performance

comparison. This may be a possible reason as to why all the three comparison NPS

systems missed this seizure. It was observed in the review of this patient EEG that

several minutes (> 30 min) of the background EEG before the seizure onset consisted

frequent discharges of sharp transients. This could be a possible reason for missing

this seizure by the RFWE system as it relies on relative characteristics.

Figure 4.11: Missed 30 s long seizure in Channel LH1-LH3 in Patient 1. The seizure
was missed by the RFWE system as well as all three comparison systems.

The missed seizure in Patient 5 is shown in Fig. 4.12. The missed seizure evolves

with low amplitude and mixed frequency characteristics. This seizure was detected by

the Reveal algorithm and Grewal-Gotman system. The likely cause for its detection by

these two NPS systems could be due to prominent seizure activity in the neighboring

channel. The Grewal-Gotman and Reveal algorithm rely on multiple channels to make

a detection, but not the proposed RFWE and the Gotman systems.

Figure 4.12: An example of low amplitude, mixed frequency seizure in Patient 5 that
was missed by the RFWE and Gotman systems, but detected by the Reveal algorithm
and Grewal-Gotman system.

An example of good detection in Patient 2 is shown in Fig. 4.13. The example
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represents short focal seizure detected by the RFWE system and Grewal-Gotman

system, but missed by the Gotman system and the Reveal algorithm.

The examples of missed and good detections show that the proposed RFWE system

fails to detect short-length seizure if the background is contaminated by the presence

of sharp transients. It is observed that in some patients, the frequency of occurrence

of sharp transients increases several folds prior to the seizure. Onset of frequent

discharges compared to sporadically occurring sharp transients in the background

EEG can lead to detection of events several minutes to several seconds before the

actual seizure. In other words, frequent discharge of sharp-transients over-shadows

the evolution of short seizures, thereby missing the detection of such events.

Figure 4.13: Good detection in Patient 2 (channel: RC1-RC3) of the MNI training
dataset. The multichannel EEG (15 s) containing a seizure that was detected by RFWE
system and Grewal-Gotman system but missed by Gotman system and Reveal algorithm.
The detection time instance is shown by vertical line.

Specificity

Specificity indicates the quality of the detections made by the seizure detection method.

Majority of the false detections are due to sporadically occurring sharp transients with

a relatively higher amplitude or due to contamination by high-amplitude artifacts. An
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example of false detection in Patient 5 is shown in Fig. 4.14. This event was detected

by all NPS systems.

In Patient 2, some of the false detections were due to the presence of low amplitude

fast activity. An example of such a false event is shown in Fig. 4.15. Detection of

such an event is possible probably due to the fact that the RFWE feature is highly

sensitive to changes in the amplitude and the frequency. On careful examination of

these false events by the RFWE system, it was realized that some of these events were

very similar to the seizures detected by the experts. It may indeed be possible that

the experts missed such events in their manual scoring. Validating these false events

may further improve the detection specificity.

In terms of specificity, with the exception of the Reveal algorithm, the other two

comparison NPS systems had a specificity nearly similar to that of the proposed

RFWE system, as shown in Fig. 4.16.

Figure 4.14: Multichannel EEG (30 s) with an example of false detection in Patient
5 (channel: LP1-LP2) of the MNI training dataset that was detected by the RFWE
system and the three comparison systems. The detection time instance is shown by the
vertical line.
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Figure 4.15: An example of false detection in Patient 2 (channel: RC1-RC3) of the
MNI training dataset. The multichannel EEG (15 s) containing a seizure-like event
that was detected by RFWE system and Reveal algorithm, but missed by Gotman and
Grewal-Gotman systems. The detection time instance is shown by the vertical line.

Figure 4.16: Comparison of specificity against comparison systems. The error bars
represent standard error.

4.4 Morphology System

A large number of seizures contain rhythmic discharges with increasing amplitude

and sustained dominant rhythm. Such epileptiform activities are easily detected

by many seizure detection methods. However, these methods often fail to detect
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short duration seizures or those with non-rhythmic mixed frequency characteristics

[32, 51, 100, 114, 88]. As noted in the previous section, a large number of false events

are detected in the presence of sharp transients and high-amplitude artifacts by the

proposed RFWE system as well as the three NPS systems selected for comparison.

This needs to be addressed in order to improve the overall detection performance for

widespread applicability of the NPS methods in the EMU.

In general, one common property of all epileptic seizures is the increase in the

number of sharp-wave complexes (SWCs) as the seizure progresses. Sharp wave com-

plexes include sharp transients, sharp waves and polymorphic epileptogenic waveforms

that are distinct from the background EEG [51, 174, 175]. Figure 4.17 illustrates the

evolution of epileptic seizure in the context of sharp-wave complexes (SWCs) as the

seizure progresses. By quantifying this unique morphological property of the EEG,

it may be possible to make more accurate seizure detections with improved system

performance. In our initial investigation of various EEG properties, we discovered that

sharpness of the half-waves (SHWs) can grossly characterize the EEG morphology.

It was noted that the number of SHWs profoundly increase as the seizure progresses.

This characteristic morphological property of the seizure is utilized to design a new

NPS system that we refer to as the morphology system [34, 120]. We note that this is

the first reported use of the sharpness feature to track temporal evolution of seizure

for detection.

The Morphology system is composed of the following six blocks.

1. Pre-processing and artifact rejection

2. Half-wave (HW) decomposition

3. Estimation of sharpness of the half-waves

4. Identification of sharp epileptiform activity

5. Median filtering
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sharp components
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Figure 4.17: Illustration of gradually increasing number of sharp components (sharp
wave complexes and spike-like activities) as the seizure evolves. The number of sharp
components prior to seizure onset is non-existent compared to post-onset.

6. Detection criteria

All epileptic seizures whether rhythmic, non-rhythmic or mixed-frequency, exhibit

increased sharp-wave like activity as they evolve. To quantify this increased sharp-wave

activity, the raw EEG is decomposed into half-waves (HW). Prior to HW decomposition,

the pre-processing block screens each epoch for high amplitude artifact contamination.

The sharpness of each half-wave is estimated by the slope of the best-fit least-square

estimated straight line. Median filtering is used to reduce the effect of very sharp

outlier HWs, and a seizure is detected on the continual presence of SHWs. To track

the persistence of SHWs, the data is processed in 0.5 s non-overlapping epochs. The

continual detection of the SHWs represents an ongoing epileptic activity. The flow

chart of the proposed method is shown in Fig. 4.18. The details of each of the six

blocks of the morphology system are described below.

4.4.1 Pre-processing and Artifact Rejection

The pre-processing block screens each epoch for contamination by HA artifacts as

in the case of the proposed RFWE system. Epochs contaminated by HA artifacts

are excluded from the analysis. The preprocessed data is utilized to compute the

morphological feature as described below.
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Figure 4.18: Flow chart of the morphology system.

70



4.4.2 Feature Extraction

Seizures occurring at the start of data recording are missed due to the unavailability of

the background EEG in the two sliding-window feature extraction scheme as observed

in the proposed RFWE system. Therefore, in this proposed system, the feature is

computed using a single window technique, i.e., no background EEG is utilized. A

small test epoch (0.5 s) is employed to capture subtle changes in the EEG to detect

seizure as close as possible to the onset.

Half-wave Decomposition

Majority of the false detections in the RFWE system and the three comparison NPS

systems were due to the discharge of sharp transients. These systems failed to make

a clear distinction between the seizure and sharp transients. As described earlier in

this section, one of the key properties of seizure is the persistent increase in the sharp

wave complexes (SWC) as the seizure evolves. By devising a method to quantify this

property, it is possible to improve the detection specificity. To do so, the EEG is

first decomposed into a series of half-waves, where a half-wave (HW) is defined as the

segment of EEG waveform located between two adjacent extrema (i.e., a minimum

and a maximum, or vice versa), as shown in Fig. 4.19. The extremas are detected

by the change in the sign of slope, which we measure as the difference between two

adjacent samples [22, 176]. To reduce the effect of small fluctuations due to noise and

artifacts, HWs less than 15 ms (3 samples) in duration are ignored.

Sharpness of a Half-wave

Each half-wave is characterized by its sharpness feature, sharpness being defined as the

slope (m) of the best-fit straight line of each half-wave. Since the slope is a function of

both amplitude and duration (frequency) of the HW, the sharpness feature is highly

sensitive to both of these. Some approaches in the literature have utilized the HW
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Figure 4.19: A section of EEG is zoomed in to illustrate half-wave decomposition and
estimation of sharpness of the half-wave. The slope of the best-fit line between the local
extrema (thick-black line) is the sharpness feature.

peak-to-peak amplitude and their duration as features for detection of epileptiform

EEG [22, 97, 110, 176]. In the same spirit, we quantify the amplitude and frequency

changes in the EEG by a single feature, the sharpness of the half-wave (SHW), defined

as the absolute value of m. It may be noted that this has not been previously reported

for the detection of epileptic seizures. The evolution of EEG sharpness as a function of

time is illustrated by the example in Fig. 4.20. Clearly, the SHW is profoundly greater

and increases during the seizure compared to that during the non-seizure activity. We

utilize this observation in the proposed morphology system to differentiate between

normal and epileptic activity.
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(a)

(b)

Figure 4.20: Evolution of SHW as the seizure progresses. (A) Seizure with background.
(B) SHW corresponding to the EEG in (A).

4.4.3 Classification

Identification of Sharp Epileptiform Activities

As noted in the example shown in Fig. 4.20, it is possible to discriminate between the

seizure and the normal EEG by applying a threshold that highlights abnormally sharp

activities linked with the seizure. This can be achieved by applying a scaled-heaviside

step function (activation function) [177] that limits the SHWs to a minimum sharpness,

and is given by

g(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m for m ≥ mth

0 otherwise

, (4.8)

where mth is the threshold to identify candidate HWs that may correspond to the

seizures. Receiver operator characteristic (ROC) analysis on the training data is
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utilized to determine the default value of mth that provides a suitable separation

between seizure and non-seizure EEG. Using the MNI training data, the sensitivity

and the FDR are computed for each mth in the range of 5 − 50. We use the knee of

the ROC curve to select mth and is shown in Fig. 4.21.

Median Filter

The output of the activation filter is shown in Fig. 4.22C, which indicates that not all

sporadically occurring SWCs in the EEG (see Fig. 4.22C prior to seizure onset) are

removed. Such occasionally occurring SWCs may lead to an increase in the detection

of false events. Therefore, such sporadic SWCs must be removed prior to classification.

The impact of spurious SWCs can be suppressed or smoothed by a moving average

or a median filter. A median filter is preferred to eliminate the effect of a few SWCs

over the moving average filter, since it is insensitive to outliers and the extreme values

[100, 129, 178, 179].

The median filter is defined as follows: To compute the output of a median filter,

an odd number of sample values are ranked (sorted numerically) and the middle value

is used as the filter output. For a filter of window length (L = 2k + 1), the filtering

procedure for the input SHW sequence is given by

G(n) = med[g(n − k), . . . , g(n), . . . , g(n + k)] (4.9)

where g(n), and G(n) are the input values and the output of the window centered at

the nth value, respectively. In Eq. (4.9), ’med’ denotes the median value. Equation

(4.9) represents a non-recursive median filter [178, 180]. Computational cost can be

reduced by employing a recursive median filter that replaces the center point g(n) of

the window by the median value of all the points inside it, and uses these values to

calculate the median in the subsequent window positions. The output of recursive

median filter is given by
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G(n) = med[G(n − k), . . . , G(n), g(n), . . . , g(n + k)], (4.10)

which replaces at every step, the leftmost k-points in the moving window with the

previously k output points [181, 180]. The filter length (L) is empirically determined

considering the low-frequency seizure activity. We hypothesize that each 0.5-second

epoch will have at least one abnormally sharp activity, therefore, a total of 12 in the

six seconds, we round this number to 15 for robustness due to potential influence by

noise.

An added advantage of this layer is that it preserves continual increase of the

SHWs as the seizure evolves. Figure 4.22 illustrates the process of quantifying SWCs

using half-waves. In this example, a 10 s section of epileptic seizure is shown in Fig.

4.22A, and best-fit straight lines for each HW are shown in Fig.4.22B. The sharpness

measure (m) of the HWs that satisfy the requirement for SHWs are shown by the bar

plot in Fig. 4.22C. G(n) clearly reveals absence of SHWs prior to seizure onset while

during the post onset there is sudden increase in the number of SHWs (Fig. 4.22D).

Figure 4.21: Threshold estimation using the receiver operating characteristics (ROC)
analysis. The threshold mth is varied from 5 to 50 and for each mth, the average
sensitivity and false detection rate is computed to generate the ROC curve. The default
threshold (mth = 25) which we use for morphology system is shown encircled.
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Figure 4.22: Epileptic seizure recognized by the morphology system. (A) Detected
seizure event. (B) Raw EEG in A is decomposed into half-waves as modeled by the
best-fit straight line. (C) represents bar graph of the absolute slope (|m|) for each
half-wave after processing by the activation function, and (D) is median filtered g(n).
The horizontal line represents the detection threshold.

Detection Criteria

An electrographic seizure is detected on a sustained discharge of SWCs for at least

6 s, i.e., G(n) exceeding mth as illustrated in Fig. 4.22D. The number of SWCs in

an epoch depends on the morphology and rhythm of the sharp wave complex. A 0.5

second epoch may contain a single or burst of SWCs. In order to make a seizure

detection, at least 12 consecutive 0.5 second epochs must contain at least one SWC

greater than mth in the time series G(n). Such a stringent detection criterion may not

be fulfilled in cases where there are short pauses in the seizures. Therefore, we relax

the detection criterion to a minimum 10 epochs within 12 consecutive epochs (6 s).

4.4.4 Performance Evaluation

Like the RFWE system of the previous section, the proposed morphology system is

also assessed in the single channel configuration, and is compared against the RFWE
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system and the three NPS systems considered earlier. The performance is evaluated

with the same rules as was done for the RFWE system. All detections within 30 s are

grouped prior to performance evaluation.

4.4.5 Results

The automatic detection results of the proposed morphology system for each patient

are shown in Table 4.3. The morphology system resulted in 100% sensitivity, specificity

of 84.5% and a FDR of 0.2/h. The results of the RFWE and the three comparison

NPS systems on the training dataset are given in Table 4.4. It is seen from this table

that the proposed morphology system shows an improvement of 4.6%, 35.4%, 58.1%

and 14.5% in terms of sensitivity and an improvement of 15.3%, 18.8%, 62.3%, and

33% in terms of specificity over the RFWE system, Gotman system, Reveal algorithm

and Grewal-Gotman system, respectively.

Table 4.3: Single channel evaluation of the MNI training dataset

PID = Patient ID, TE = total expert, TP = true positive, FP = false positive, FN = false

negative, SN = sensitivity, SP = specificity, SP* = specificity after re-classification of FDs

in Patient 2, FDR = false detection rate, and FDR*= FDR after re-classification.

4.4.6 Discussion

Majority of the existing NPS systems in the literature fail to detect seizures that are

of short duration (sub-clinical electrographic seizures without significant change in the

EEG amplitude) or seizures that do not show a sustained rhythmic component. False
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detection in the presence of artifacts and sharp transients significantly increases, and

often some true events are missed. Such a limitation was also noted in the RFWE

system considered in the previous section. The overall goal was to overcome these

challenges in the seizure detection by designing a computationally simple system that

detects a wide-variety of seizure patterns with high sensitivity and high specificity

(low false detection rate).

Sensitivity

The proposed morphology system detected all seizures in the MNI training dataset.

Approximately, 5% improvement in terms of sensitivity over the RFWE system is

obtained. Comparison of the sensitivity with the three NPS systems is shown in Fig.

4.23. The proposed morphology system performs better in terms of sensitivity over

the other NPS systems considered.

Figure 4.23: Comparison of sensitivity of the proposed morphology system against
other systems. Error bars represent the standard error.

An example of good detection by the proposed morphology system that was missed

by the other NPS systems is shown in Fig. 4.24. The missed seizure manifests in the

EEG with low amplitude and mixed frequency. As noted in the previous section, such

mixed frequency seizures are difficult to detect by the three NPS systems considered
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for performance comparison. The seizures missed by the RFWE system were detected

by the proposed morphology system, demonstrating the robustness of this system in

the presence of artifacts and sharp transients.

Figure 4.24: An example of good detection in Patient 2 of the MNI training dataset.
Multichannel EEG (20 s) containing a seizure that was detected by both the new NPS
systems but missed by all three comparison systems. The channel of interest is RC1-RC3
and detection time instance is shown by vertical line.

An example of good detection for all the comparison systems is shown in Fig. 4.25.

The detection time instances for the various systems are shown by vertical lines.

Figure 4.25: An example of good detection in Patient 3 of the MNI training dataset.
Multichannel EEG (30 s) containing a seizure that was detected by all NPS systems.
The channel of interest is LH1-LH3 and detection time instance is shown by the vertical
line.
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Specificity

Visual inspection of the events detected by the proposed morphology system revealed

that majority of the false detections in Patients 1, 2, and 5 were mainly due to

short duration high amplitude bursts or mixed frequency activity. Patient 2 had

a significantly higher FDR. Example of events detected by the morphology system

in Patient 2 (channel: RC1-RC3) are shown in Fig.4.26. Figure 4.26A is an event

marked by the expert that was detected by the morphology system, while Fig.4.26B

and C are events detected by the morphology System, but not by the expert. In this

example, the false events detected have characteristics resembling the manually scored

event in Fig.4.26A. We manually re-classified all false events detected by the proposed

morphology system that matched the EEGer marked events for this patient, and

considered all false events > 6s to be events missed by the expert. Nearly, 80% of the

false events fell into this category, which demonstrates that the morphology system

may highlight electrographic seizures that are missed by the experts. The remaining

20% of the false events also had characteristics similar to the manually marked event,

but did not fit our seizure definition in terms of the minimum seizure length. An

example of such a false event is shown in Fig. 4.26C. We re-evaluated the performance

for this patient by validating false events ( ≥ 6 s) similar to events detected by the

expert as true events. By doing so, the overall specificity (SP*) improved by 6% (Table

4.3).

Overall, the proposed morphology system shows an improvement in the detection

specificity over the three NPS systems including the proposed RFWE system as shown

in Fig. 4.27.
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(a) An example of good detection.

(b) An example of event missed by the expert.

(c) An example of false event.

Figure 4.26: Detections by the morphology system in Patient 2 (channel: RC1-RC3).
All examples are 30 s in duration and the detection time intervals are shown by downward
pointing arrows. The ’red’ rectangle in (C) denotes six seconds of electrographic event
that we considered as false event.

4.5 Evolution Seizure Detection System

The proposed morphology system addressed some of the limitations in the RFWE

system, but its performance is dependent on the pre-determined threshold. It is also

noted that the presence of high-amplitude activity and fast electromyographic (EMG)

activity can degrade the detection specificity of the morphology system. In this system,

the EEG is not filtered to reject high-frequency interferences (> 30 Hz) as was done in

the RFWE system to preserve the EEG waveform morphology. However, a new NPS

seizure detection system can be designed taking into account the respective advantages

of the two previously proposed NPS systems, the RFWE and the morphology systems,

to improve the overall detection performance, i.e., to reduce false detections without

affecting the detection sensitivity. We propose a new NPS system that quantifies the
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Figure 4.27: Comparison of specificity of the morphology system with the other
systems on the MNI training dataset. Error bars represent standard error.

evolving changes in the EEG characteristics as the seizure progresses, and will be

called the evolution seizure detection (eSD) system [33, 136].

The seizure identification in the proposed eSD system is done in two steps. The

concept utilized in the eSD system is to first identify candidate seizure (CSZ) events

based on the evolving changes in the amplitude, frequency and the rhythmicity, and

then verify the CSZ event sharpness characteristics to make the final detection. The

proposed eSD system scheme gains its strength from (a) a novel computationally

simple scheme, which continuously examines the evolving characteristics of the EEG

features to set unique detection threshold to identify the candidate seizure event, and

(b) then use a computationally simple approach to validate and classify the candidate

seizure event. The proposed eSD system is composed of the following four blocks.

1. Pre-processing and artifact rejection

2. Feature extraction

3. Identification of candidate seizure event

4. Validation of candidate seizure event
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The flowchart of the eSD system is shown in Fig. 4.28, and each of the four blocks is

described below.

4.5.1 Pre-processing and Artifact Rejection

The pre-processing and artifact rejection techniques employed in the RFWE system

(described in Section 4.3.1) are also utilized in the proposed eSD system.

4.5.2 Feature Extraction

The two popular approaches of feature extraction in the literature are (a) single sliding

window and (b) two sliding windows as discussed in Section 4.3. In the proposed eSD

system, we employ both of these techniques, since some of the features are computed

relative to a dynamically changing background, while some others do not require

the reference window for their computation. For computing features relative to a

background, the length of the test epoch must be sufficiently large to compute reliable

estimates of the features, and must have a small step-size to capture subtle changes in

the EEG. Subtle changes in an ongoing epileptic seizure are captured with a sliding test

epoch (xtest) of 2 s that moves in steps of 0.25 s. The test epoch (xtest ) is separated

from the background window (xbkg) by a 60 s gap. The length of the background

window duration is 30 s. The test window that slides in small steps allows smooth

tracking of the seizure evolution as well as reduces the risk of missing seizures.

Features computed using the single sliding window must be time synchronized

with the two sliding windows feature extraction technique, and at the same time must

provide reliable estimates of the EEG parameters. Therefore, the length of the test

epoch (= 2 s) is kept the same for both the feature extraction techniques.

In the proposed eSD system, four non-redundant features are utilized to quantify

changes in the seizure EEG compared to the two single feature methods of Sections

4.3 and 4.4. The four features are relative amplitude (RA) that captures changes
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in the EEG amplitude, RFWE that quantifies the spectral content of the seizure,

coefficient of variation of the amplitude (CVA) that quantifies the EEG rhythmicity,

and sharp-wave complex density (SWCD). The features RA and RFWE are calculated

relative to a dynamically changing background, while the features CVA and SWCD

are computed from the single sliding window.

85



>T T

thN N

#of 4k
N ≥

Figure 4.28: Flowchart of the eSD system.
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Sharp-Wave Complex Density

One of the key properties of seizure evolution is the continual increase in the number

of sharp components, as previously discussed in Section 4.3 [34]. Patterns due to

artifacts can be isolated by examining this characteristic property of seizure evolution.

We compute the SWC density feature to establish the increase in the number of

sharp components as the seizure evolves. This is achieved by decomposing the EEG

into half-waves and quantifying the sharpness of the half-waves by the slope of the

best-fit line, as was done in the morphology system in Section 4.4. As was done in

that system, the sharpness of the half-waves is restricted to highlight the potential

epileptiform sharp activity. The SWC density (SWCD) is then defined as the number

of SHWs in the test epoch. Computational load can be significantly reduced by

computing the density of SWCs in a non-overlapping test window instead of a sliding

window that moves in small steps. Therefore, the density of SWCs is computed from

a two-second non-overlapping test window. This feature is computed along with the

other three features, but used only to validate a candidate seizure event (CSZ). The

validation of CSZ involves establishing evolving changes in terms of sharp-components

to differentiate between seizure and artifact.

Coefficient of Variation of the Amplitude

The coefficient of variation of the amplitude (CVA) quantifies in a simple way the

increased regularity in the amplitude during a seizure. It is defined as the ratio of

variance of the absolute amplitude to the square of the mean absolute amplitude.

CVA=
σ2

|xtest|
μ2

|xtest|
, (4.11)

where σ2
|xtest| is the variance and μ|xtest| is the mean of the absolute of the xtest. The

CVA is computed from the 2 s test epoch that slides in small steps. Signals exhibiting
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strong rhythmic characteristics are likely to have regularity both in the frequency

and the amplitude as typically observed in the seizures [32]. An example of CVA

feature before and after a seizure onset is shown in Fig. 4.29. The CVA decreases

with the increased rhythmic EEG activity and vice versa. It is seen in Fig.4.29 that

CVA decreases and remains below some arbitrary baseline value during the seizure.

-20 -10 0 10 20 30 40
Time (s)

Onset

Figure 4.29: Time evolution of coefficient of variation of amplitude superimposed on
the EEG.

Relative Amplitude

The widely accepted definition of epileptic seizure states that during an epileptic

seizure, a new type of EEG rhythm appears, hesitantly, and then more distinctly, and

soon it boldly dominates the EEG tracing. It tends to become slower with increasing

amplitude and the more distinct spiky phases of the rhythmical waves appear [5].

Our observation is consistent with this definition with respect to the increase in the

amplitude relative to the background during a seizure evolution, and is therefore,

considered as one of the hallmark features suitable for the identification of seizures.

The relative amplitude (RA) is computed using the two sliding window technique. It

is defined as the ratio of the mean absolute amplitude in the test window (xtest) and

the background window (xbkg) and is given by

RA = E(|xtest|)
E(|xbkg|) , (4.12)
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Figure 4.30: Time evolution of relative amplitude superimposed on the EEG.

where E is the expectation operator.

This feature allows the quantification of the amplitude changes observed during

seizure evolution as shown in Fig. 4.30. The example illustrates changes in the EEG

amplitude before and after the seizure onset.

Relative Frequency-Weighted-Energy

The RFWE feature is described in Section 4.3 towards the development of the RFWE

system. This feature is incorporated in the proposed eSD system to quantify the

spectral changes in the EEG.

4.5.3 Identification of Candidate Seizure Event

Our initial assessment of the features revealed that RA and RFWE tend to increase

at the seizure onset while CVA decreases. The features RA/RFWE and CVA change

in opposite directions at the seizure onset; this guided us in developing a technique

that can adapt the detection threshold for each ongoing seizure activity. We define

this characteristic property at the seizure onset as the divergence in the features.

Figure 4.31 illustrates the concept of divergence observed in the features at the seizure

onset. It can be seen that at the seizure onset, a continual increase in the RA and

RFWE is observed, while a continual decrease in the CVA is observed. In randomly
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selected non-seizure epochs from the training dataset, we observed no such divergence

or sustained increase or decrease in the feature values during non-seizure activity.

A candidate seizure event can be identified by looking for sections in the EEG

with a continual increase/decrease in the above features for a minimum duration.

At such instances, the detection threshold for each feature can be set. We define

this process of identifying and setting the detection threshold as the learning phase

of the proposed eSD system as illustrated in Fig. 4.31. In the learning mode, the

instantaneous feature values of the RA, RFWE and CVA are continuously examined.

The system continuously monitors for instances, where RA and RFWE increase, while

CVA decreases. This is achieved by comparing the current feature value with the

previous one, to detect the onset of the divergence (κ). That is, we evaluate the

following:

κ = ((FA ∨ FB) > 0) ∧ (FC < 0), (4.13)

where,

FA = RAp − RAp−1. (4.14)

FB = RFWEp − RFWEp−1. (4.15)

FC = CVAp − CVAp−1. (4.16)

and p represents the test epoch number. The operators utilized in the determination

of κ are mathematical (logical) operators, i.e., ‘OR’ (∨) and ‘AND’ (∧). At the onset

of the divergence, the detection thresholds (δp
RA, δp

RF W E, and δp
CV A) are set as the

current epoch (pth epoch) feature values.
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In the detection mode, the feature values in the subsequent epochs must satisfy

the detection thresholds for at least 6 s to identify a CSZ. Due to the presence of

artifacts or non-stationary nature of the seizure evolution, it is possible that there

may be some spurious fluctuations or pauses during the detection phase, where the

detection criteria may not be satisfied for a continuous 6 s period. In such conditions,

the detection criteria must be satisfied for at least a minimum of 6 s within eight

seconds.

The eSD system switches between the learning and detection modes to identify a

CSZ. At any given time point, only one of the two modes is active. That is, the learning

mode is active when the system examines the EEG features for divergence, and, on

the occurrence of divergence in the features, the system switches to the detection

mode. The system returns to the learning mode after the CSZ is validated or when

the conditions to identify a CSZ are not fulfilled.

4.5.4 Validation of Candidate Seizure Event

The proposed eSD system validates a CSZ by establishing a continual increase in

the sharp components via the SWC density. One simple approach to quantify the

progressive or continual increase in the SWCs is by examining the slope of a regression

line fitted to the SWC density of the CSZ. Figure 4.32 illustrates this concept. On

detection of a CSZ, the most recent five SWCDs are examined, which corresponds

to 10 s of the EEG. The 10 s CSZ pattern shown in Fig. 4.32A is decomposed into

half-waves and modeled by fitting a straight line (Fig. 4.32B), as described in the

morphology system described in Section 4.3. The absolute value of the slope (m) of

the best-fit line for each half-wave is shown in Fig. 4.32C. SWCs are identified by

comparing the sharpness feature (m) to a minimum (mth). We compute the density

of SWCs as the number (Nk) of SHW in the 2 s epochs shown in Fig. 4.32D. A

regression line is fit to the Nk of the five two-second epochs of the CSZ. The slope
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(μ ) of the resulting regression line is used to determine the continual increase in the

sharp components. A positive slope (μ > 0) establishes a continual increase in the

density of sharp components.

Normal EEG rhythms with occasionally occurring sharp transients can at times

meet the condition of μ > 0, and are detected as the CSZ. Such false events plagued

both the RFWE and the morphology systems. One way to reject such events is by

enforcing a minimum number of SWCs in the CSZ. The total number of SWCs in

the CSZ (NT = ∑5
k=1 Nk) is examined against a default threshold (NT

th), where Nk

represents SWCD in the kth two-second epoch.

It is a well-known fact that the best-fit line is sensitive to extreme values which may

pass the first validation criterion (μ > 0) of the CSZ, that is establishing a continual

increase in the Nk. Furthermore, a single instance of high-frequency burst in the CSZ

can satisfy the second validation criterion, namely, NT > NT
th, which can lead to a

false classification of the CSZ. Such CSZ patterns can be rejected by examining the

characteristic property of seizure as a continual increase in the sharp components at

the seizure onset. That is, in addition to the above two conditions, the CSZ must

have Nk > 0 in at least 4 of 5 two-second epochs. A seizure is detected when all the

three conditions are met, otherwise the CSZ is rejected as due to artifacts.

4.5.5 Performance Evaluation

The performance of the proposed eSD system is also assessed in single channel

configuration, and is compared against the two proposed NPS systems, and the three

comparison NPS systems. The performance is evaluated with the same rules as was

done for the two NPS systems proposed earlier in this chapter. Any detections within

30 s were grouped prior to performance evaluation.
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4.5.6 Results

As with the two previous new NPS systems proposed, the eSD system is also optimized

using the single-channel MNI training dataset. The threshold to identify SHWs is

adapted from the morphology system described in the previous section.

The detection results for the proposed eSD system for each patient are shown in

Table 4.5. The eSD system resulted in an average sensitivity of 91.8%, specificity

of 82.1% and a FDR of 0.1/h. Table 4.6 compares the results with the two new

NPS systems proposed in this chapter, and the three NPS systems considered for

the performance evaluation. It is seen that in terms of sensitivity, the proposed eSD

system is inferior to both the morphology system and the RFWE system. However,

the proposed eSD system shows significantly improved detection specificity over the

two new NPS systems, and improved sensitivity as well as specificity over all three

NPS systems considered for comparison.

Table 4.5: Single channel analysis of eSD system on the MNI training dataset.

PID = patient ID, TE = total expert, TP = true positive, FP = false positive, FN = false

negative, SN = sensitivity, SP = specificity, and FDR = false detection rate.

4.5.7 Discussion

The main goal of the eSD system was to overcome the limitations of the RFWE and

morphology systems proposed in Section 4.3 and 4.4, that is, to improve the detection

specificity. The results obtained on the MNI training data suggests that the proposed
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eSD system clearly improves the detection specificity, but at the cost of sensitivity.

Sensitivity

The proposed eSD system detected at least one seizure in every patient with an overall

sensitivity of 91.8%. Comparison of sensitivity with other NPS systems is shown in

Fig. 4.33. The proposed eSD and RFWE systems, and Grewal-Gotman system, all

had a similar sensitivity. The best sensitivity is reported for the morphology system

while the worst performance is obtained from the Reveal algorithm.

The proposed eSD system detected all seizures in the training data with the

exception of Patients 5 and 6. The events missed in Patient 1 (channel: LH1-LH3)

by the RFWE system were detected by the eSD system. The eSD system missed six

out of 14 seizures in Patient 5 (channel: LP1-LP2). Typically, the missed seizures

in this patients had minimal change in the amplitude from the background and had

mixed frequency characteristics. An example of missed detection in Patient 5 (channel:

LP1-LP2) by the eSD system is shown in Fig. 4.34. The missed seizure is a very low

amplitude mixed-frequency seizure lasting for more than 30 s.

In Patient 6, the eSD system missed one seizure event that was also missed by

all the three comparison NPS systems. The missed seizure in Patient 6 (channel:

LS4-LS5) is shown in Fig. 4.35 . The example illustrates a very low amplitude mixed

frequency seizure lasting for more than 30 s that was detected by the proposed RFWE

and morphology systems. Such low amplitude seizures are often considered difficult to

detect even by the experts. The expert scoring of such a seizure is highly subjective

and eventually require consensus from a group of experts before classifying it as a

seizure.
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Figure 4.34: Seizure embedded in the 60 s EEG section in Patient 5 (channel: LP1-
LP2) missed by the eSD system, Gotman System and Reveal algorithm. The vertical
downward arrow represents the detection time instances.

Specificity

Comparing the specificity of the proposed RFWE and morphology systems with that

of the three NPS systems, both the morphology and eSD systems report similar

specificity, but significantly improved specificity over the other NPS systems. The eSD

system reports improved specificity over the RFWE system by 12.9%, the Gotman

system by 16.4%, the Reveal algorithm by 59.9% and the Grewal-Gotman system by

30.6%. Comparison of specificity with all the NPS systems is shown in Fig. 4.36.

An example of false detection in Patient 1 is shown in Fig. 4.37. The example

represents a false detection due to a burst of sharp transients. The event was detected

by the proposed morphology system, and the Grewal-Gotman system. The detected

event resembles some true events. However, this event cannot be considered a true

seizure, because it does not evolve in a manner similar to that of the EEGer-scored

seizures in this patient. EEGers may find such events interesting and often require

consensus from a group of experts before classifying it as a seizure.

The two new NPS systems of Section 4.3 and 4.4 detected several false events in
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Figure 4.35: Seizure embedded in the 30 s EEG section in Patient 6 (channel: LS4-LS5)
missed by the eSD system, and also by all three comparison systems. The vertical
downward arrow represents the detection time instances.

Patient 2 resulting in a poor specificity. On the contrary, the proposed eSD system

did not detect such low amplitude mixed-frequency events in this patient, thereby

improving the detection specificity. It is important to note that several false events

detected by the morphology system in this patient were actually true events that

experts missed. False detections in other patients were also due to sharp transients.

It is observed that eSD system in general has difficulty in detecting low-amplitude

mixed frequency seizures.

4.6 Summary

In this chapter, we have presented three new simple NPS systems to detect seizures

by tracking the temporal evolution of seizures. Among the three new NPS systems,

the RFWE and the morphology systems are based on a single-feature, while the eSD

system utilizes multiple features to detect seizures.

The first NPS system proposed in this chapter is the RFWE system that tracks

the temporal evolution of a seizure by the relative frequency-weighted energy feature.

The RFWE feature is highly sensitive to the amplitude and the frequency changes
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Figure 4.37: An example of false detection in Patient 1 (channel: LH-Lh3) of the MNI
training dataset. The multichannel EEG (30 s) containing a false event detected by the
morphology, eSD and Grewal-Gotman system. The detection time instance is shown by
the vertical line.

in the EEG. Most of the existing NPS systems in the literature rely upon some

pre-defined/patient-tunable detection threshold to classify the EEG as seizure or non-

seizure. The RFWE system does not require a detection threshold to classify the EEG

as it maps the continual increase in the RFWE feature as seizure progresses to make

a detection. The results on the training data has shown a significant improvement

in the detection sensitivity, but not in the specificity over the three comparison NPS

systems. The false detections in the RFWE system were mainly due to the discharge

of sharp transients and high-amplitude artifacts. It is noted that the background EEG

contaminated by these two artifacts preceding the seizure resulted in missing some

short duration seizures.

The second NPS system proposed in this chapter is the morphology system, which

incorporates a new morphological feature to quantify the temporal evolution of seizure.

The morphological feature, the sharpness of the EEG waveform, is one of the most

important electrographic features utilized by the experts for accurate and reliable

identification of seizures. The waveform morphology is characterized by a measure of

sharpness as defined by the slope of the half-waves. Further filtering of the sharp waves

along with the duration of the train of sharp waves is used to identify seizures. The

morphology system detected a wide range of seizure patterns that included rhythmic

and non-rhythmic seizures of varying length, including those missed by the experts.

False detection in this system were mainly due to sharp transients, and high-amplitude

artifacts. Contamination of the EEG by electromyographic artifacts can lead to an
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increase in the number of false detections. Nonetheless, the proposed morphology

system offers improved performance over all the three comparison NPS systems, and

establishes a definitive role in the review of long-term EEG recordings.

The third NPS system proposed is this chapter is the eSD system, which incor-

porates the intelligent approach of EEG experts in the identification of seizures by

quantifying and validating the temporal evolution of seizure characteristics. The eSD

system first identifies a candidate seizure event by examining the temporal evolution of

EEG in the relative amplitude, the RFWE, and the coefficient of variation of amplitude

features. The morphological properties of the candidate seizure event is then assessed

to make a detection with an attempt to improve the drawbacks of the RFWE and

morphology systems. The eSD system significantly improved detection specificity over

the RFWE and morphology systems as well as the three comparison NPS systems.

However, on the training data, it is noted that majority of the low-amplitude mixed

frequency seizures are difficult to be detected by the eSD system. Overall, the eSD

system offers a performance comparable to that of the morphology system and can

aid in a rapid review of long-term EEG recordings.
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Chapter 5

Performance Evaluation and Rapid

EEG Review Tool

5.1 Introduction

Three new NPS seizure detection systems were proposed and optimized using the MNI

training dataset in Chapter 4. In this Chapter, we evaluate the performance of these

new systems on a previously unseen MNI test dataset. Among the three proposed

NPS systems, the one with the best performance is selected for final performance

assessment on a completely blind test data (FSP database). We conclude this chapter

by demonstrating a novel tool to aid in a rapid review of voluminous multichannel

EEG recordings for application in EMU [119, 182].

5.2 MNI Database Results

In Chapter 4, we proposed three new NPS systems and presented results on the

seven patients (Patients 1-7) belonging to the training dataset of the MNI database.

We compared the performance of the new NPS system against three popular NPS

systems from the literature. Training data results of the new systems revealed an
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improvement in the overall performance over all the three popular NPS systems from

the literature. However, this performance evaluation is biased, since we optimized

the proposed NPS systems using the same data that was used for the performance

evaluation. Therefore, to make meaningful comparisons, we evaluate all the three

proposed systems on a previously unseen test data. We utilize the remaining seven

patients (Patients 8-14) of the MNI database to evaluate the performance of the

proposed RFWE, morphology, and eSD systems. The performance of these new NPS

systems are compared against that of the popular NPS systems: Gotman system,

Reveal algorithm and Grewal-Gotman system. The default setting for each of the

NPS systems considered for the performance evaluation is determined using the ROC

analysis, as described in the previous chapter. The performance is evaluated using

the same technique as was done for the training data. A summary of the results

obtained on the test dataset are shown in Table 5.1. For comparative assessment, we

also include results obtained on the training dataset.

Table 5.1: MNI database results.

Method Training Data Test Data
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

RFWE System 95.4 69.2 98.7 41.1
Morphology System 100 84.5 86.7 71.3

eSD System 91.8 82.1 88.0 81.4
Gotman System 64.6 65.7 47.9 46.3
Reveal Algorithm 41.9 22.2 46.2 30.7

Grewal-Gotman System 85.5 51.5 90.2 40.5

Figure 5.1 shows single channel performance of the various NPS systems on the

MNI test dataset. It is seen that for all the three new NPS systems proposed in

Chapter 4 and the Grewal-Gotman system have similar sensitivity.

The proposed RFWE system reported the highest sensitivity on this unseen test

data (98.7%) followed by the Grewal-Gotman system (90.2%), the proposed eSD

system (88%), the proposed morphology system (86.7%), the Gotman system (47.9%)

and the Reveal algorithm (46.2%).
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In terms of specificity, both the morphology and the eSD systems result in a

significantly improved specificity over the RFWE and the three NPS systems used

for comparison. The eSD system reported 40.3%, 10.1%, 35.1%, 50.7% and 40.9%

improvement in the specificity over the RFWE, morphology, Gotman, Reveal and

Grewal-Gotman systems, respectively. Similarly, the morphology system reported

30.2%, 25%, 40.6%, and 30.8% improvement in the specificity over the RFWE, Gotman,

Reveal and Grewal-Gotman systems, respectively. The eSD system had specificity

similar to that of the morphology system.

Performance comparison between the training and test MNI dataset for the various

NPS systems are indicated by ’up’ and ’down’ pointing arrows in Fig. 5.1. The ’up’

arrow represents improved results on the test data while ’down’ arrow represents

improved results on the training data. No change or similar results on both the

training and test data is represented by ’dash’.

5.3 Discussion

Sensitivity

On the MNI test dataset, the RFWE system reported highest sensitivity while missing

one short length seizure in Patient 8. One possible reason for missing this seizure is

due to the complex background activity that is precursor to the missed seizure. In

Patient 9, the morphology and eSD systems missed one seizure. This patient mainly

had seizures of very low amplitude that were difficult to detect. An example of the

missed seizure in this patient is shown in Fig. 5.2.
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Figure 5.2: An example of low amplitude seizure in Patient 9 of the MNI test dataset.
The example contains 30 s of multichannel EEG (channel: RH1-RH3) containing a
seizure that was detected by the morphology and RFWE systems, but missed by the
eSD, Gotman, Reveal, and Grewal-Gotman systems. The detection time instance are
shown by the vertical line.

An example of missed seizure by the Gotman system and Reveal algorithm in

Patient 10 is shown in Fig. 5.3. The probable cause of missing this seizure by the

Gotman and Reveal systems is the frequent sharp transients that constituted most of

the background EEG prior to the seizure onset. It is also observed that both of these

comparison systems had difficulty detecting low-amplitude seizures resulting in a poor

sensitivity.

In Patient 9, the morphology and eSD systems missed one seizure, while the

Grewal-Gotman system missed three seizures. In Patient 12, the morphology and

Grewal-Gotman systems missed one seizure, while the eSD system missed four seizures.

Similarly, in Patient 14, the morphology system missed five seizures, the Grewal-

Gotman system missed four seizures, while the eSD system missed only one seizure.

An example of missed seizure in Patient 14 by all the methods except for the RFWE

and Gotman systems, is shown Fig. 5.4. This example depicts a very short, low

amplitude mixed frequency seizure. It is realized that the morphology, eSD and

Grewal-Gotman systems, all had difficulty detecting low-amplitude as well as short

seizures. Note that the MNI test data had nearly 87% of seizures with an average

length of 72.6 seconds, and the remaining 13% seizures had an average length of 15.4

seconds.
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Figure 5.4: An example of short length seizure in Patient 14 of the MNI database. The
example contains 30 s of multichannel EEG (channel: RE3-RE4) containing a seizure
that was detected by Gotman system and Reveal algorithm, and missed by all other
systems. The detection time instances are shown by the vertical lines.

Specificity

On the test data, among the three new NPS systems, the RFWE system reported

28% drop in the specificity on the test data compared to the MNI training data. The

likely cause for the drop in the specificity is due to a fairly large number of sharp

transients in some of the patients in the MNI test data. The performance of the

morphology system also deteriorates in the presence of sharp transients, and is one

possible reason as to why the system reports 13% drop in the specificity. An example

of the false event detected by the RFWE and morphology systems is shown in Fig.

5.5. Among all the three new systems, only the eSD system is minimally affected by

the presence of sharp transients with a 1% drop in the specificity compared to that

for the training data. The false detections are mainly due discharge of high-frequency

activity or sharp transients. It is noted that computing features relative to a running

background EEG improves the detection specificity by suppressing the effect of such a

complex background EEG. Although the false detection shown in Fig. 5.5 does not

match the seizure characteristics in this patient, it seems to have traits of a seizure.

The EEGer may find such events interesting, and may consider retaining them for

further analysis. Morphology system also highlighted several seizures missed by the

expert on the training data. False detections made by the morphology system on the

MNI test dataset are revisited in Section 5.4 with further detailed analysis.
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Figure 5.5: An example of false detection in Patient 9 of the MNI test data. The
example contains 30 s of multichannel EEG (channel: RH1-RH3) detected by RFWE
system and morphology system, but not by other NPS systems. The detection time
instances are shown by the vertical lines.

5.4 FSP Database Results

The performance assessment on the MNI test data can still be viewed as biased for

several reasons. Since the proposed methods were developed in sequence, after the

assessment of first method, that test data is no longer blind to subsequent methods

even though the test data was not used in the development of the other methods.

Our channel selection criterion and single channel vs. multichannel performance

evaluation are among several possible reasons. Depth recordings are made using the

grid, strip or depth electrodes. The strip and grid electrodes are disk electrodes of

4 mm in diameters that are placed on brain surface (cortex). On the other hand,

depth electrodes penetrate the brain and have multiple electrodes along their length

with smaller surface area compared to the grid and strip electrodes. They may be

closer to the generators of the epileptic discharges and hence, the EEG may be of

higher amplitude. Thus, electrode configuration can cause variations in the overall

system performance [47, 183]. In addition, the digital EEG acquisition systems within

the same center and across different EMUs, have different front-end settings such as

amplifier gains, filter settings and sampling rates. These settings can also lead to

variation in the performance. Therefore, we evaluate the performance of one of the

new NPS systems proposed in Chapter 4, and compare it with one of the popular

comparison NPS systems, on a totally new EEG dataset recorded using a different
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hardware (different front-end settings) consisting of varied type of intracranial EEG

recordings (depth, strip, and grid electrodes).

For this purpose, we select the new NPS system that reports the best overall

performance on the MNI database. It is seen from Table 5.1 that the NPS systems

with the best overall sensitivity and specificity are the morphology system, the eSD

system and the Grewal-Gotman system. Both the morphology and eSD systems report

a similar sensitivity, but the latter reports 10% improvement in the specificity on

the MNI test dataset. It is important to mention here that re-assessment of false

detections made by the morphology system revealed several events that were in fact

true events, i.e., events not scored by the expert. In addition, the morphology system

is computationally light compared to the eSD system. Considering all these factors, we

selected the morphology system from the new NPS systems, and the Grewal-Gotman

system from the literature, for performance evaluation on the blind test dataset.

The performances of the morphology and Grewal-Gotman systems are assessed

in multichannel configuration on the FSP database (see detailed description of the

database in Chapter 3). The performances are evaluated with the same rules as was

done for the MNI database.

On the multichannel FSP database, the morphology system resulted in an average

sensitivity of 81% and specificity of 58.9%, respectively, whereas the Grewal-Gotman

system reported an average sensitivity of 65.6% and specificity of 57.7%, as shown in

the Table 5.2. For this database, the morphology system shows an overall improvement

in the sensitivity by 15.4% over the Grewal-Gotman system with a similar specificity.

It is interesting to note that the Grewal-Gotman system did not make any detection

(missed all seizures) in Patients 1, 8 and 19. Excluding these patients from the

performance evaluation, the morphology system reports an additional 9.4% and 11.6%

improvement in the sensitivity and specificity, respectively, over the Grewal-Gotman

system.

112



Table 5.2: Multichannel evaluation of the FSP database

PID = Patient ID, TE = Total number of seizure events identified by the experts, SN =

Sensitivity, and SP = Specificity. The overall performance result for all 21 patients is in the

first row of the TOTAL while results obtained by excluding highlighted patients is shown in

the bottom row of the ’TOTAL’.

Both the NPS systems report a poor specificity compared to the MNI test dataset.

A possible cause for an increase in the false detection rate (specificity) could be due

to the fact that the EEGer scored the FSP database only in the sections of clinical

seizures. That is, the EEGer did not score seizures in sections in which there were

no clinical seizures. False detections may in fact be real seizures, which warrant

studying the characteristics of false detections by the experts. Typical classifications

of seizures that an EEGer may consider during a normal EEG review are: seizure-like

(SL), interesting events (IE) or false detection (FD). Seizure-like events are those that

match characteristics of seizures. Interesting events include detections such as sharp

transients, including events difficult to classify as seizure-like, however display some
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properties of the seizures. False detections are clearly non-seizure like activity. Two

neurophysiologists (EEGer A & B) independently re-assessed all the false detections,

and classified them in the above three categories for the proposed morphology system

and the Grewal-Gotman system. We define the three category classification of the

FDs by the experts as Assessment I. The performance is re-assessed using Assessment

I approach and the results are shown in Table 5.3. Re-assessment of the FDs for the

two methods showed improvement in the specificity for all data.

It is not uncommon to note variability in the EEG scoring by the experts. We too

note a variation in the EEGer scoring. Therefore, we estimated the Cohen’s κ score,

a popular measure employed to measure inter-rate variability. We used κ statistics

to adjust the observed inter-observer agreement (po) for the proportion of random

agreement (pe): κ = (po − pe)/(1 − pe). If both the EEGers are in complete agreement,

then κ = 1. If there is no agreement other than what would be expected by chance,

then κ ≤0 [116, 184]. A moderate agreement between the two EEGers is achieved

(κ = 0.43) on re-assigning these false detections into the three categories (SL, IE, and

FD).

Some EEGers consider classifying the EEG into two categories: seizure-like and

false detection [52, 185]. This motivated us to evaluate the performance using the

two category classification, which we define as Assessment II. In this assessment of

false detections, we combine the seizure-like and interesting as seizure-like events.

The specificity for the Assessment II validation approach is also shown in Table

5.3. Re-assessment using Assessment II showed an improvement in the detection

specificity for the two systems. This classification mode resulted in a substantial

agreement (κ = 0.81) between the EEGers, establishing expert’s agreement on a

clear demarcation between the two categories: SL and FD. Re-assessment of the false

detection is discussed in the next section.

114



Table 5.3: Re-assessment of false detections in the FSP Database

TE = Total number of seizure events identified by the experts, SP = Specificity, SP* =

Specificity by Assessment I approach, and SP** = Specificity by Assessment II approach.

The overall performance result for all 21 patients is in the first row of the TOTAL while

results obtained by excluding highlighted patients is shown in the bottom row of the

’TOTAL’.

5.5 Discussion

In the literature, it is reported that majority of the existing systems for seizure

detection fail to detect seizures that are of short duration or seizures that do not show

a sustained rhythmic component, and are of low-amplitude. We too observed that

the selected NPS systems from the literature, as well as the proposed NPS systems

report difficulty in detecting such seizures in the MNI database. Our overall goal was

to overcome these challenges in seizure detection by designing a system that detects a

wide-variety of seizure patterns with high sensitivity and high specificity (low false
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detection rate).

The performance evaluation results are shown in Figure 5.6, which compares the

sensitivity and specificity of the proposed morphology system against the Grewal-

Gotman system on the two databases. The results depict that the proposed morphology

system reports improved sensitivity and specificity on the FSP database, and improved

specificity with nearly similar sensitivity on the MNI database over the Grewal-Gotman

system.

Figure 5.6: Comparison of sensitivity and specificity of the morphology system with
Grewal-Gotman system on the MNI and FSP database. Error bars represent standard
errors. Specificity results for FSP database are after re-classification of false detections
by the EEGer A and B using ’Assessment I’ technique.

Sensitivity

The proposed morphology system detected at least one seizure in all the patients, with

an overall sensitivity of 86.7 % for the MNI test database and 81% for the FSP test

database using the default threshold (obtained using the MNI training dataset). On

the contrary, Grewal-Gotman system failed to detect any seizure in Patients 1, 8, and

19 of the FSP database. The detected seizures consisted of a wide variety of patterns

in the frequency range of 0.5 to 70 Hz that included focal seizures (seizure occurring

only on a single channel), rhythmic as well as seizures of mixed characteristics (non-
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rhythmic, discharge of spikes and sharp-wave complexes). However, seizures having

subtle changes in the EEG amplitude were often missed.

Comparing the sensitivity with the Grewal-Gotman system, our system performed

much better (∼ 15% improvement) on the FSP database and with nearly similar

results on the MNI database (Fig. 5.6A). The Grewal-Gotman system, however, had

difficulties in detecting seizures that were present on a single channel, seizures that

were of short duration, and seizures with slow evolution or non-rhythmic characteristics.

An example of good detection is shown in Fig. 5.7 and an example of seizure missed by

both the systems in the FSP database is shown in Fig. 5.8. The EEGer identified this

electrographic seizure because of the associated clinical component. The missed seizure

is about 27 seconds in duration with subtle changes in the EEG amplitude and ending

with low-frequency complexes (< 1 Hz). Detection of this seizure is questionable

without the clinical components, as it does not follow the typical definition for

electrographic seizures. In general, both the methods failed to detect seizures having

a subtle change in the EEG amplitude.

Figure 5.7: An example of good detection in Patient 7 of FSP database. Multichannel
EEG (20 s) containing a seizure that was detected by both systems. The detection time
instance is shown by vertical line.
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Figure 5.8: An example of missed event in Patient 5 of FSP database. Multichannel
EEG (20 s) containing a seizure that was missed by both systems. The detection time
instance by EEGer is shown by the dotted vertical line.

Specificity

As previously mentioned, specificity indicates the quality of detections made by the

seizure detection method. On the MNI database, using the default threshold, the

morphology system had an average specificity of 91.2 % on the training data [34]

and 71.3% on the test data. A specificity of 58.9% is obtained on the FSP test

database. The specificity on the FSP test database is poor compared to that on the

MNI database, thus indicating a higher false detection rate. It is possible that some

of these false detections may in fact be sub-clinical seizures that were not identified by

the EEGer in the original review of this data. Re-evaluating these false detections

may provide more insight into the detection specificity.

The average number of false detections in the MNI database as well as in the

FSP database were quite uniform in majority of the patients. In the MNI database,

two patients (Patient 9 and 11) had a significantly large number of false detections.

In both cases, majority of the false detections occurred prior to the seizures. The

false detections included a discharge of sharp-wave complexes (∼5 s), low amplitude

fast activity, or were due to bursts of sharp transients in addition to high amplitude

artifacts (see Fig. 5.9). A large proportion of the false detections occurred several

seconds to several minutes before the seizure onset. A recent study by Marsh et al.
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[45] has demonstrated the role of interictal epileptic discharge (IED) for improved

localization of seizure focus in children with intractable epilepsy. The authors report

that electrodes with highest frequency of IEDs over long periods of intracranial EEG

correlate with the electrodes involved in the seizure onset in about two-thirds of

patients [45]. Furthermore, IEDs are used clinically in a variety of ways to help

identify the regions of surgical resection [186]. Several other studies, using long-term

depth EEG, report that in addition to resection of the seizure onset zone, resection

of regions generating ’significant’ interictal spikes and sharp waves improves seizure

freedom postoperatively [187, 188]. It may be possible that in some patients increased

false detections by our system, due to increased sharp activity, are precursors to

seizures or markers for seizure onset zones. Therefore, such events can be potentially

used as a clinical tool to identify regions of interest that warrant further review.

Similarly, a large proportion of false detections in the FSP database were due

to discharges of sharp-wave complexes and fast rhythmic activities. Two patients

(Patient 9 and 18) had a significantly higher number of false detections. An example of

false detection for Patient 9 is shown in Fig. 5.10 and for Patient 18 in Fig. 5.11. The

examples in Fig. 5.10 and 5.11 in fact resemble sub-clinical electrographic seizures that

were not marked by the EEGer. As noted above, this is because the FSP database is

annotated by experts based on the knowledge of clinical seizures. That is, the data was

reviewed for the presence of electrographic discharges only at the instances of clinical

seizures. It is possible that some of the false detections (EEG sections without clinical

events) are indeed electrographic seizures. To further evaluate these false detections,

two neurophysiologists (EEGer A and B) re-classified these events into three categories

(Assessment I), seizure-like (SL) activity, interesting events (IE) and false detections

(FD). Seizure-like activity included detections that matched characteristics of seizures

(as in, Fig. 5.10 and 5.11). Interesting events included detections such as discharge

of sharp transients that may be considered interesting events to the EEGer. False
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detection included those that were clearly non-seizure. Performance was re-assessed

using this approach (Assessment I) and results of the re-classification are shown in

Table 5.3. The inter-reviewer variability was evaluated by calculating Cohen’s κ

between the EEGers.

(a) Example of false detection in Patient 9 (channel: RH1-RH3) which represents low amplitude
fast activity.

(b) An example of false detection in Patient 11 (channel: RH1-RH3) which represents a burst of
high amplitude sharp wave complexes.

Figure 5.9: A 20 s example for false detections in the Patient 9 and 11 belonging to the
test dataset from the MNI database. The channel of interest is enclosed in the rounded
rectangle box with detection made by the proposed system shown by solid vertical line.
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Figure 5.10: An example of false event detected in Patient 9 of FSP database. Mul-
tichannel EEG (20 s) with detection by our system (represented by solid vertical line)
and Grewal-Gotman system (represented by dashed vertical line). The detection time
instance is shown by vertical line.

Figure 5.11: An example of false event detected in Patient 18 of FSP database. A 20
s of multichannel EEG with detection by our system (represented by solid vertical line)
and Grewal-Gotman system (represented by dashed vertical line). The detection time
instance is shown by vertical line.

An unweighted κ coefficient of 0.430 is obtained representing a moderate agreement

between the EEGers. This might be explained by differences in the interpretation

of certain seizure-like and interesting events by the two EEGers. Seizure-like events

identified by one EEGer were considered interesting events by the other EEGer and

vice versa. It may be difficult to interpret certain epileptiform discharges leading

to differences in the opinion among the EEGers. Limited number of channels (four

channels) could be one possible explanation for this disagreement among the EEGers.

A limited number of channels do not provide any anatomical orientation information.

Availability of all channels, anatomical orientation and baseline EEG for review

will significantly improve the inter-rater agreement. Nevertheless, previous studies
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have shown that EEGers (based on their experience) report perfect to near perfect

agreement when the EEG is categorized into seizure and false detections [116, 184, 189].

In our data, near perfect agreement (κ = 0.81) between the EEGers is achieved when

all events that were scored seizure-like by one EEGer and interesting by the other

are treated as true positives, i.e., the two categories (seizure-like + interesting =

seizure-like) are combined. Therefore, we computed specificity for two category re-

classification (Assessment II). As expected, an overall improvement in the specificity

is observed (see Table 5.3 and Fig. 5.12), which suggests that several FDs are in fact

seizures that were not originally scored in the FSP database.

It can be seen that the specificity is poor in some patients in both the MNI and

FSP databases. That is, there are a large number of false detections in these patients

due to short paroxysmal activities. For clinical application of the method, a tunable

threshold must be considered, which can be used to address the trade-off between the

detection sensitivity and specificity. In our NPS systems, we have aimed to remove

the dependence on the preset detection thresholds. However, the use of a minimum

duration as part of the definition of seizures can be considered as a threshold that

can be tunable. The EEGer can increase the duration threshold on observing a large

number of short false events to reduce these false detections.

It is important to mention here that MNI database are all depth recordings while

FSP database is a mix of depth, strip and grid recordings. Seizure manifestations

in the depth EEG are likely to be similar for both the databases, while strip and

grid electrodes are likely to have a different manifestation. This is because seizure

manifestation is different for different brain regions. Depth electrodes can be placed

into deeper brain regions such as hippocampus, hypothalamus, and deep frontal lobes,

where there is inadequate coverage provided by subdural strip and grid electrodes.

Furthermore, the two database were acquired using two different hardware (Stellate

Harmonie and Neurofile NT systems) and at two different sampling rates. The
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performance of the morphology system, however, did not change significantly for the

two databases.

We also assessed the computational cost of the proposed morphology system

on the FSP database. Running our system on MATLAB 2008b (MathWorks Inc.)

on a laptop with Intel dual core 1.8 GHz processor, 3 GB RAM, having the 32-

bit Microsoft Windows 7 operating system, our system processed 24-h four channel

EEG in approximately 30 minutes. Computational performance of the system can

be significantly enhanced by developing a standalone version in C++. In addition,

running on systems with faster processors with multiple cores can further reduce

the computation time. The performance and computational speed suggests that the

proposed morphology system can be clinically useful in the review of long-term EEG

recordings.

As with other systems, the morphology system generally failed to detect seizure

events that occurred with minimal changes in the EEG amplitude. In addition, a large

number of false events may be detected by our system in the presence of discharge of

sharp wave complexes, spikes, high-amplitude artifacts, and fast EMG artifacts. We

anticipate that by including additional artifact removal techniques to handle some of

the mentioned artifacts, it would be possible to further improve the specificity, and is

considered as part of future work.

5.6 Rapid Review of Prolonged EEG Recordings

5.6.1 Background

In the EMU, the main role of automatic seizure detection method is to aid in a rapid

review of the voluminous EEG data. The seizure detection method helps to identify

seizures along with false events in the prolonged recordings. The detected events are

visually examined by the experts to filter the false events and accurately localize the
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epileptogenic sites, which is a tiresome task. Mapping channel-by-channel timeline of

seizures and the epileptiform activities can provide visualization of seizure onset and

spread (both temporally and spatially), and can be a powerful tool for planning of

surgical resection. This type of 2D visualization is generally unavailable for the review

of intracranial EEG. Therefore, it becomes very important to develop adjunctive

tools that allow quick identification of seizures, provide a view of seizure activity over

prolonged durations, seizure recurrence frequency, and the sites involved in the seizure

generation for therapeutic interventions and management [5, 38-41].

Rapid identification of epileptogenic sites and evaluation of spatio-temporal dynam-

ics is possible by digital trending tools [38-40]. Tools such as amplitude integrated

EEG (aEEG ), envelope trend (ET), compressed spectral array (CSA), color density

spectral array (CDSA), and compressed EEG pattern analysis (CEPA) allow graphical

display of the EEG trends [38-40]. The process typically involves splitting EEG data

into small epochs, and extracting features for graphical display. For example, CSA

displays time, frequency, and power in a three-dimensional graphical view. However,

CSA display has a practical limitation of a few channels [38, 40, 42, 190]. CDSA is a

modified CSA that allows the display to accommodate a few more channels. Typically,

intracranial EEG recording consist of 32 to 256 channels. The large number of channels

increases the computational complexity. EEGer experience in the interpretation of

such graphical display is yet another limiting factor [38-40]. These factors limit the

utility of the compressed EEG display in the EMU. Computationally simple and

easy-to-interpret compressed EEG display, specially designed to review multichannel

intracranial EEG for paroxysmal or seizure activity is much needed.

5.6.2 Method

Note that the seizure onset zone is the single most definitive localizing feature of the

epileptogenic region. For this reason, it is important to identify all channels (electrodes)
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in the seizure onset and their recurrence frequency for anatomical localization [38-40].

As previously mentioned in Chapter 4, an electrographic seizure is a discharge of

sharp wave complexes evolving in frequency and amplitude, including repetitive spikes.

Furthermore, discharge of sharp waves (sharp transients, spikes, and epileptiform

discharges) occur more frequently than seizure, and can be linked to the brain regions

involved in the epileptogenesis [5]. It is realized that the sharpness of the EEG

waveform can be a robust marker to highlight epileptogenic areas (both temporally

and spatially). The sharpness measure to parametrize the EEG waveform morphology

proposed in Chapter 4 is utilized to generate the new compressed display.

Easy, reliable and intuitive interpretation is important to maintain patient safety

in the EMU, where experienced EEGer may not be available round-the-clock. Color-

intensity plots are intuitive, easy-to-interpret and require minimal training. Therefore,

we quantify the level of sharp activity in the EEG, and graphically display it as a color-

intensity plot. To do so, we split the EEG into short segments (epochs) and extract

a feature for the graphical display. For compressed display, the EEG is processed in

10 s non-overlapping epochs. The feature for graphical display is the level of sharp

activity in an epoch referred to as relative sharpness index (RSI), and is given by

RSI = # ofm > mth

Total # of m
, (5.1)

where m is a measure of the sharpness of the half-waves in the epoch (see Chapter

4, Section 4.4). The resulting RSI is displayed as a color-intensity plot that allows

the compression of several hours of multichannel EEG on a single page display. We

randomly selected two patients from the MNI database to illustrate the RSI display

to aid in a rapid review of prolonged intracranial EEG recordings.
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5.6.3 Results and Discussion

The performance evaluation of the compressed displays is done by examining the

display size, interpretation, and computational complexity. To do a comparative

assessment of these complexities, we selected CDSA and aEEG displays. Compressed

EEG displays using all three techniques (RSI, CDSA and aEEG) were generated for

the two patient EEG recordings from the MNI database. Seizure, epileptiform activity,

and areas of potential seizure development were visually identified and correlated with

the EEG. This evaluation allowed us to decide on the best method among the three

techniques.

13:39 13:49

F

0

0.2

0.4

0.6

0.8

1

30

0
TIME [HH:MM]

COLOR DENSITY SPECTRAL ARRAY (CDSA)

COLORMAPRELATIVE SHARPNESS INDEX (RSI)

Figure 5.13: Identification of seizure in the compressed EEG display. The example
represents 10 min single channel RSI and CDSA displays. Seizure detected by the EEGer
is annotated with ’horizontal bar’ on both the displays.

First, it is important to describe how compressed displays are interpreted for

seizures. Note that compressed display represents EEG activity in a transformed

domain as a function of time. The features utilized are the level of sharpness in the RSI

display, power at the different frequencies in the CDSA, and the amplitude activity

in the aEEG. These features are represented as color-intensity (RSI and CDSA) or

trend (aEEG) graphs. An electrographic seizure evolves in both the amplitude and

frequency; therefore, the intensity or the magnitude of the feature will be lower during

non-seizure and maximum during a seizure. A seizure can be identified by looking

for high-intensity segments in the compressed display. An example to illustrate the
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interpretation of RSI and CDSA display is shown in Fig. 5.13. The example represents

10 min single channel EEG that contains a seizure (horizontal bar above the graph).

Each vertical block in the RSI display represents RSI in a 10 s epoch. The RSI

reaches maximum (= 1) during the early part of the seizure and slowly decreases as

seizure evolves and eventually terminates. In our experimentation, we found that the

RSI is minimal (< 0.2) during normal background activity, between 0.2 and 0.5 in

the presence of paroxysmal discharges and above 0.5 during the seizure. We believe

seizures can be identified by looking for instances with higher color intensity (RSI

> 0.5) in the display. Similarly, high power at several frequencies is observed in the

CDSA display during the seizure, resulting in a plateau formation (see Fig. 5.13).

Thus, seizures can be identified in the CDSA display by looking for the sections with

plateaus.

All displays were scored for seizures using the above mentioned approach. The EEG

corresponding to the scored events were visually examined to confirm the detection

accuracy. Figure 5.14 depicts an example of 30 channel 4 h compressed display using

the three techniques for Patient 1. The EEGer marked seizure events are annotated

on top of each display by downward pointing ’blue’ arrow. All seizures of this patient

were longer than 60 s with an average amplitude above 200 μV . It was easy to identify

seizure for all three methods. An example of the seizure obtained around the time

instant ’1’ is shown in Fig. 5.15A. Referring to Fig. 5.14, seizures do not occur on all

the channels according to RSI and CDSA display. However, seizure occurs on most

channels according to the aEEG display (Fig. 5.14). EEG review confirmed that

seizures actually occur only on specific channels, and RSI mapping of seizure channels

were more accurate and precise than the CDSA mapping.

Similarly, identification of seizure was easier using RSI display in Patient 2 (see Fig.

5.16). It was found that seizures in this patient were of short duration (30-60 s) with

average amplitude below 200 μV . Identification of all the six EEGer-marked seizures
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using CDSA and aEEG was difficult. This is probably due to the fact that seizures in

this patient were focal and low amplitude (channel: RH1-RH2 and RC1-RC2). This is

consistent with the observations in [5, 191]. As with the CDSA and aEEG, detection of

seizures with no or minimal change in the EEG amplitude (< 20 μV) is also challenging

for the RSI display. However, RSI is still able to clearly and accurately highlight the

epileptogenic sites, i.e., channels with profoundly increased sharp activity (confirmed

by the EEG review) than the comparison displays. Increased sharp activities are

often associated with regions involved in the seizure generation [190]. Therefore, this

information may be clinically vital in the identification of neuronal areas involved

in the seizure generation. In Patient 1, we observed such activity to be present,

predominantly and consistently in all seizure EEG sections on the channels LA7-LA8,

LFC1-LFC3 and LE2-LE3 (see Fig. 5.14) that disappears at the seizure onset. The

corresponding raw EEG of such an activity is shown in Fig. 5.15B (obtained around

the time instant shown by arrow ’2’ in Fig. 5.14). In this patient, RSI display also

reveals increased sharp activity on other sites as well (channel: LH1-LH3, LH3-LH5

and LH7-LH8). Figure 5.15C depicts an example of such activity (around the time

instant shown by arrow ’3’ in Fig. 5.14). Similarly, in Patient 2, such sharp activity

predominantly occurs only on two specific channels (RH1-RH2 and RC1-RC2) as seen

in Fig. 5.16 (RSI display). CDSA display also confirmed presence of such activity but

not the aEEG display (not shown).

A compressed display is advantageous in the EMUs when timely intervention

becomes important on seizure detection to prevent secondary brain damages [5, 38, 39,

192]. The main limiting factor of the compressed display is the display-size complexity

[38, 193]. In CDSA and aEEG, the spatio-temporal resolution of the display decreases

with an increase in the number of channels and the duration of monitoring, making

the interpretation very difficult. On the contrary, an increase in the number of

channels minimally affects the RSI display. This effect can be seen on the multichannel
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compressed display in Fig. 5.14. An added advantage of the RSI display is that it is

easy-to-interpret, and hence can be used by experienced as well as inexperienced staff

to monitor and flag ongoing or ensuing abnormalities.

5.7 Summary

In this chapter, we have evaluated the performance of three new NPS systems proposed

in Chapter 4 and compared against the three popular NPS systems from the literature

on the MNI test dataset. We have selected one of the new NPS systems and one of

the comparison NPS systems to make a head-to-head comparison on a completely

blind test data.

Among the new NPS systems, the morphology and eSD systems both outperformed

the comparison NPS systems in terms of sensitivity as well as specificity on the seven

patients single-channel MNI test dataset. Furthermore, the morphology system and

the Grewal-Gotman system were selected for further performance assessment on a

completely blind test data (FSP database). The FSP database consists of 21 patient

intracranial EEG recordings that were recorded using a different EEG system with a

different sampling rate and included varied types of electrodes (depth, grid and strip

electrode). The morphology system does not require any a priori knowledge of patient-

specific seizures. It is based on quantifying the morphology of the EEG waveform.

The method does not require a background EEG in computing the ’sharpness’ feature,

which improves the overall computational cost, and the results do indeed show an

improvement in the sensitivity and specificity on the FSP database. The performance

suggests that the morphology system can be clinically useful in the review of long-term

depth EEG recordings.

The chapter also described a clinical tool for the EMU, aimed to rapidly review

prolonged recordings, and to identify epileptogenic sites by a novel multichannel
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compressed (RSI) display. The new RSI display is compared for computational,

interpretation and display complexities against two popular digital trending tools from

the literature. The RSI display has been shown to be easy-to-interpret compared to

the compressed EEG displays for multichannel prolonged intracranial EEG recordings.
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Chapter 6

A New Model-Based

Patient-Specific Seizure Detection

System

6.1 Introduction

Patient-specific (PS) seizure detection systems are those that allow the recognition

of recurring seizure patterns tailored for individual patients. It is based on the

observations that one or two, and sometimes even more types of seizures, tend to occur

repeatedly within a patient. To build such a system, experts utilize the knowledge

of previously identified seizure and non-seizure EEG to train a classifier for the

given patient. The trained classifier for the given patient is used to detect similar

seizures in all subsequent EEG recordings/monitoring. Even though PS systems

report significantly improved detection performance over the NPS systems, they are at

present, impractical due to (a) supervised selection of the seizure pattern that serves

as the template pattern, (b) supervised selection of the non-seizure EEG (or a set of

non-seizure EEG patterns), and (c) supervised training of the classifier. It is believed
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that removing the latter two dependencies would lead to a more practical solution in

the design of PS systems.

In Chapter 1, we introduced the framework of a fully automatic PS system that

aims to address the existing challenges in the seizure detection by combining the NPS

and PS systems. New computationally light NPS systems were developed in Chapter

4 and 5 for this framework. In this chapter, we develop a new PS seizure detection

system that eliminates the need for supervised selection of non-seizure data and for

the supervised training of the classifier. Such a PS system is able to detect recurring

seizure patterns of non-equal duration. The new PS system builds a seizure model

for a previously identified seizure that can be used with the statistically optimal null

filter (SONF) for subsequent detection of similar seizures [37, 134, 135, 194]. The

performance of the new PS system is evaluated on the 304 h of single channel EEG

obtained from 14 patients of MNI database and is compared with the clinically used

PS system proposed by Qu and Gotman [21].

6.2 Problem Formulation

We assume seizure to be a narrow-band signal in comparison to the disproportionately

large background EEG and define the problem as the detection of rhythmic narrowband

seizure activity, s(n), from the observed EEG consisting of signal and noise, x(n) =

s(n) + n(n). It is important to note that the rhythmic narrowband seizure activity

evolves as the seizure progresses over time. In other words, a seizure is composed

of short piecewise stationary rhythmic discharges that change from one rhythm to

another as the seizure progresses. Figure 6.1 illustrates the temporal progression of a

seizure in short piecewise stationary rhythms. The problem can be re-defined as the

detection of these narrowband piecewise stationary rhythms, i.e., the template seizure,

s(n), consisting of a set of components, s1(n), s2(n) , ... sN(n), with a specific order of
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Figure 6.1: The example illustrates temporal evolution of a seizure which is observed
as piecewise stationary rhythms. This example encapsulates a 90 s single channel EEG
(channel: RH1-RH2) of a patient, which is considered as the template pattern in this
patient. The piecewise stationary rhythms (template epochs) in the template pattern
are enumerated and is obtained by the proposed STFT-based adaptive segmentation
algorithm.

temporal occurrence.

The proposed PS seizure detection system must be capable of

1. detecting the seizure components (piecewise rhythms) of non-equal duration,

and

2. quantifying the time-order sequences of the occurrence of these components for

the final seizure detection.

We aim to address these challenges by a new PS system that is computationally light,

generates a seizure model and maps the time-ordered occurrence of the seizure compon-

ents in order to make an accurate detection. To address the existing challenges listed

above, the new PS system must utilize techniques that estimate seizure components

from the observed EEG ensuring maximal separation between the two categories:
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seizure and non-seizure. We select statistically optimal null filters (SONF) for the

proposed model-based PS system. The use of SONF is a novel approach for the prob-

lem of enhancement/suppression of narrowband signals of short-record length based

on combining maximum signal-to-noise ratio (SNR) and least-square optimization

criteria [170, 172]. Its intrinsic property is the ability to track signals rapidly leading

to a more practical processing of short-duration signals and has been shown to be

equivalent to the well-known Kalman filter, but with a much simpler implementation

[195-199]. SONF is a linear time-varying filter, and can be implemented as a number

of parallel filters. Thus, SONF becomes an obvious choice for processing time-varying,

narrowband seizure components that may lead to a practical PS system. However,

SONF requires a priori knowledge of the signal components or the basis functions

constituting the signals to be estimated.

In the proposed PS system, the first step involves partitioning the seizure signal

s(n) into a set of piecewise stationary seizure components, s(n), s2(n), ..., sN(n). Here,

an a priori known seizure is considered as the template seizure pattern TP AT , the

piecewise stationary segments as seizure components or epochs, and the unknown

seizures for a given patient as the candidate seizure pattern (CP AT ). The second step

involves extracting ’k’ non-redundant rhythmic components of TP AT that constitute

the set of ’template epochs ’. The third step involves identifying the composing basis

functions for each template epoch that are required to implement the SONF. The

seizure model is a set of basis functions for each of the k-template epochs. Finally,

the PS classifier is trained using TP AT and the derived seizure model. The trained

PS system is employed to detect narrowband template epochs in all subsequent data.

The tracking of the time-ordered occurrence of k-template epochs is possible by a

parallel implementation of the SONFs, where each of the SONFs corresponds to a

different template epoch of TP AT . That is, at any given time only one SONF will track

a template epoch. By tracking the time-ordered estimation of the components by the
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SONF, it is possible to identify the subsequent seizures with similar characteristics.

An added advantage of this detection strategy is the ability to minimize the detection

of non-epileptic rhythms that have similar rhythmic characteristics as TP AT , but not

the time-ordered component occurrence. This is due to the fact that the dominant

rhythm of an epileptic seizure evolves in short bursts as shown in Fig. 6.1, while

normal EEG rhythms do not typically evolve. The non-epileptic rhythms include the

non-ictal rhythmic discharges such as the alpha rhythms, mu rhythms, lambda waves,

sleep spindles, and sub-clinical rhythmic discharges (SREDA) [5, 134].

6.3 Model-Based Seizure Detection

The block diagram of the proposed PS system is shown in Fig. 6.2, and consists of

the blocks: (a) pre-processing and artifact rejection, (b) seizure model, (c) SONF,

(d) detection criterion (energy ratio), and (e) evolution-based classification. SONF is

used to estimate the seizure waveform (rhythmic components) from the observed EEG.

If the observed EEG contains the same type of seizure as described by the a priori

known model, the output of the SONF will represent an estimate of the seizure ŝ(n).

In this case, the energy ratio γ between the seizure estimate ŝ(n) and the observed

EEG x(n) should be large; conversely, if the EEG contains no seizure (x(n) = n(n)),

then the SONF output should be near zero with little energy. The energy ratio in

this case will be small. Thus, the energy ratio γ of the seizure estimate ŝ(n) and the

observed EEG x(n) can be used as a metric to decide whether the input EEG contains

a seizure or not [132]. In terms of k-parallel SONFs, one for each of the k-template

epochs, the energy ratio γk of the estimate of the kth template epoch, ŝk(n), and the

observed EEG x(n) is used as a metric to decide whether the input EEG contains the

kth template epoch or not. The time-ordered sequence in which the template epochs

occur in the TP AT and CP AT are matched to determine whether the TP AT and CP AT
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are similar or not.

As previously mentioned, the first step in building the seizure model involves

segmenting the template seizure pattern (TP AT ) into stationary epochs (piece-wise

stationary rhythms as seen in Fig. 6.1). The first 60 s of a priori known seizure or the

complete seizure, if it lasts less than 60 s, is considered as the TP AT . Short-time Fourier

transform (STFT)-based segmentation algorithm is developed to partition the TP AT

into quasi-stationary segments or epochs [37, 167, 169]. Redundant epochs (epochs

with similar characteristics) reduce the robustness of the classifier while increasing the

computational load. Therefore, we incorporate an unsupervised clustering scheme to

identify and reject similar epochs as well as epochs that may be due to noise. This

results in disjoint, noise-free, non-redundant epochs that are utilized for building the

seizure model, and are referred to as ’template epochs’. Seizure model is a set of

orthogonal basis functions (required in the SONF) that represent the dominant rhythm

of each template epoch, e.g., each rhythmic epoch of the seizure in Fig. 6.1. The data

is processed in short segments (test epochs) that slide in small steps (step-size = 0.25

s). A small step-size allows tracking subtle changes in the EEG. The epoch length

ranges from 2 to 6 s, determined by the segmentation algorithm [37]. The following

sections describe each block of Fig. 6.2 in detail.

Φ
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Figure 6.2: Model-based PS seizure detection scheme. x(n) = observed EEG, TP AT

= template seizure pattern, Φ= seizure model (basis functions) derived from template
seizure pattern, ŝ(n) =estimated seizure waveform, γ = detection metric
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6.4 Pre-processing and Artifact Rejection

As discussed previously in Chapter 4, intracranial EEG is relatively free from artifacts

as compared to the scalp EEG, but spans a wider frequency spectrum, has a highly

variable seizure morphology and a variety of sharp wave complexes, ranging from

needle-like fast activity to much slower discharges [5]. Generally, most of the seizure

activity is reported to be dominant in 3-30 Hz band [31, 102]. Therefore, we employ a

5th order Butterworth low-pass digital filter (cut-off frequency fc = 30 Hz) to remove

unwanted high frequency interferences as was done in Chapter 4 for NPS systems.

High-amplitude and iso-electric artifacts are also addressed in a manner similar to

what was done in the NPS systems.

Since the SONF has properties similar to the recursive least-square (RLS) es-

timation technique, it is expected that it may not work well for data that contains

randomly occurring data points with extreme values. That is, the tracking capability

of the SONF may be impaired or reduced in the presence of sporadically occurring

high-amplitude transients. Such high-amplitude transients need to be suppressed

before estimating the desired signal by the SONF. We employ the idea of instantaneous

matched filter (IMF) proposed by Agarwal et al. [195-199] as a key building block

in the SONF to identify and suppress instantaneous time-points of high-amplitude

transients within each processing epoch. If a matched filter (MF) is used to detect

the signal at any given time, then at the output we obtain a signal that provides the

maximum output signal-to-noise ratio (SNRo), for the considered time interval - 0 to

n. Because the time interval or frame of observation is continually increasing, at each

considered time instant, the MF provides a new output signal and a new SNRo, and

hence it is termed the instantaneous matched filter [197, 199]. Figure 6.3 depicts the

IMF.

141



Figure 6.3: Instantaneous matched filter

The IMF provides at each instant of time the maximum SNRo at the output, v(n),

and the effect of sporadically occurring high-amplitude transients on v(n) is seen as

sudden jumps or shifts. An example illustrating an input signal x(n) contaminated

with such artifacts (encircled areas) and estimated output ŝ(n) without any artifact

rejection from the SONF is shown in Fig. 6.4A. The corresponding IMF output is

shown in Fig. 6.4B, which reflects (encircled areas) sudden jump due to the presence

of transients. Examining v(n) can assist in identifying the time-instances in the input

signal, where these artifacts occur. As IMF provides maximum SNRo at the output,

it is expected that a continual increase (linear) in the IMF output is observed. We

first remove such trends in the v(n) by taking the first order difference of the v(n)

time series.

w(n) = v(n) − v(n − 1), (6.1)

where v(n) is the output of the IMF and w(n) is the first-difference series. The new

time series w(n) is examined to identify the considerably dissimilar points with respect

to the remaining data. Chebyshev’s inequality is employed to determine a lower bound

of the percentage of data that is within b number of standard deviations from the

mean [134, 200]. In the case of data with normal distribution, it is known that about

95% of the data will fall within two standard deviations from the mean.

When data distribution is unknown, Chebyshev’s inequality, given by
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P (|W − μ| ≤ bσ) ≥ (1 − 1
b2 ) (6.2)

can be used, where W represents a random variable of the detrended w(n) of unknown

distribution with the expected mean, μ, and variance σ2. The number of standard

deviations from the mean is represented by b that gives a lower bound for the percentage

of data that is within a certain number of standard deviations from the mean. Equation

(6.2) can be re-arranged to focus on the amount of data away from the mean, and is

given by

P (|W − μ| ≥ bσ) ≤ ( 1
b2 ). (6.3)

Assuming that a relatively small percentage of outliers (high-amplitude transients)

exists in the input x(n), then outliers are the sample points outside the boundary, bσ,

due to the high amplitude transients [134, 200]. The amplitude of the corresponding

sample points in the input signal are attenuated by empirically determined factor of

75 % [134, 135]. The resulting non-linearly modified signal is used as the input to the

SONF. Figure 6.4 represents the non-linearly modified input signal x(n) along with

its estimate ŝ(n) by the SONF. The corresponding IMF output is shown in Fig. 6.4D

which clearly reflects the suppression of the transients present in x(n).

6.5 Seizure Model

The fully automated process of modeling TP AT involves

• Segmentation of TP AT into piecewise stationary segments.

• Identification and rejection of redundant epochs resulting from the segmentation

of TP AT .

• Modeling of each remaining template epoch.
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Figure 6.4: An illustration of impact of high-amplitude transients on the tracking
ability of the SONF. (A) depicts the input signal x(n) containing two sharp transients
labeled as 1 and 2 (enclosed by the ellipse) along with its estimate ŝ(n) using SONF,
and (B) represents the corresponding IMF output (vi(n)). (C) represents the sharp
transients attenuated input signal x(n) along with the its estimate ŝ(n) using SONF,
and (D) represents the corresponding IMF output (vi(n)).

6.5.1 STFT-based Segmentation

The first step in modeling the template pattern (TP AT ) involves partitioning TP AT

into disjoint stationary epochs corresponding to the piece-wise stationary rhythms.

In the original work of Shi et al. [132], the template seizure pattern was visually

segmented into 6 s non-overlapping epochs. Since a fixed length of the epochs may not

be ideal for all types of seizures, we determine the length of the epochs using adaptive

segmentation. The segmentation process is automated by introducing a short-time

Fourier Transform (STFT)-based segmentation technique to identify the stationary

sections [36, 135]. The Fourier transform of the template pattern is computed for

sliding data frames of 2 s with a step size (τ) of 0.25 s. The dominant rhythm

frequency Fm in each data frame is defined as the frequency with maximum power in

the discrete Fourier transform (DFT), X(f), and m denotes the frequency index with

the maximum power. The resulting set is a new discrete time series of the dominant

frequency with a sampling interval of τ as shown in Fig. 6.5B. The changes in the
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dominant rhythm of TP AT are observed as a change in Fm(τ). The points of change

in the dominant frequencies are identified as segmentation boundaries given by

gτ = |Fm(τ) − Fm(τ − 1)| < Δ, (6.4)

where Δ = 0.25 is the tolerance threshold defined as the maximal allowable change in

two consecutive Fm samples [36, 135].

Segmented epochs shorter than 2 s are rejected. By doing so, we retain only the

epochs with sustained dominant rhythm. The length of the final basis functions is set

as the average duration of all identified epochs. The length of the sliding test window

required in the SONF is set to the length of the basis functions.

In the example of Fig. 6.5, TP AT is segmented into a set of seven stationary epochs

(p = 7), E = {E1, E2, . . . , E7}. Some epochs in this set represent the same dominant

rhythms, that is, epochs E1 and E2, E3 and E4, and E5, E6 and E7 shown in Fig.

6.5B have the same dominant rhythm. Computational cost in the PS system can

be reduced by rejecting redundant epochs prior to constructing the basis functions.

Additionally, in some complex template seizures, it is possible that some of the epochs

resulting from the segmentation algorithm are due to background noise. Such epochs

must also be eliminated prior to the construction of the seizure model.

6.5.2 Rejection of Artifacts and Redundant Epochs in TPAT

A simple approach to keep only one of the several epochs with the same dominant

rhythm is possible by examining the dominant frequency. Alternatively, cross-validation

techniques can be explored to identify and reject redundant epochs. We use the latter

method to identify and reject redundant epochs. The idea is to use the pth template

epoch to derive a model for use in the SONF to process the remaining (p − 1) template

epochs. The classifier of the pth template epoch is trained using the pth epoch and
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model derived for the SONF and tested on the remaining (p − 1) epochs. All of the

epochs detected by the pth model are observed to be similar. The epoch with the

highest energy ratio is retained as one of the template epochs to model the seizure.

The process is repeated until all the epochs are unique. An epoch due to noise consists

of a mixture of frequencies without any sustained rhythm; the model derived using

such epochs will fail to detect the epoch itself. These epochs are therefore rejected

from further considerations [134, 135].

The resulting k epochs are disjoint, noise-free and non-redundant, and are utilized

to build the final seizure model. As seen in the example of Fig. 6.5, segmentation

of TP AT resulted in seven stationary epochs (E = {E1, E2, . . . , E7}) of which only

three epochs are unique (k = 3). These three disjoint template epochs are utilized to

build the final seizure model that uses 3-SONF branches, one SONF for each template

epoch.

Figure 6.5: STFT-based segmentation of TP AT . The 60 s long template seizure
pattern (TP AT ) is shown in (A) along with evolution of dominant (peak) frequency
Fm obtained from Fourier transform in (B). The dashed-boxes represent the stationary
epochs identified by the adaptive segmentation algorithm in the TP AT , and are labeled
E1, E2, . . . E7.
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6.5.3 Modeling of TPAT Epochs

In using the SONF, an orthogonal linear expansion of the signal to be estimated is

required. The basis functions in this expansion constitute the model for the signal.

We, therefore, consider representing an EEG rhythm (template epoch) in terms of

a linear combination of sinusoids, which is the one of the more popular approaches

employed in signal analysis. One approach of constructing basis functions to model

the template epochs in the wavelet domain is proposed in [132]. In this method, each

template epoch is decomposed into wavelet scales in 3-25 Hz band. At the sampling

rate of 200 Hz, scales 3, 4, 5 corresponds to the 3-25 Hz band. The scale contributing

maximum energy is selected and peak frequency in the spectrum of the selected scale

signal is used to construct the sinusoid. Since the phase information is unknown, the

Hilbert transform is also required. This approach of constructing the basis functions

is limited by the sampling rate at which the EEG is digitized. We propose three

additional techniques of modeling the template epochs [36, 134, 135].

• Sinusoidal Basis Function (SBF) [36, 134, 135]: The first and second dominant

frequencies corresponding to the two largest peaks in the power spectrum of

the template epochs are selected and modeled by sinusoids. Hilbert transforms

(quadrature component) of the sinusoids of the selected frequencies are also

considered since the phase of the input is unknown.

• Harmonic Basis Function (HBF) [135]: It is observed that power spectral density

of some template epochs consists of dominant peaks as well as their harmonic

components. As with the SBF method, the first and second dominant frequencies

corresponding to the largest peaks in the spectrum are selected to formulate the

basis functions. Additionally, the harmonics of the two dominant rhythms are

also identified. Sinusoids corresponding to the frequencies of the two dominant

rhythms and their relevant harmonic components (and their Hilbert transform)
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are used as the basis functions to model each template epoch.

• Ratio-spectrum Basis Function (RBF) [128, 135]: In this approach, the ratios

of the power spectral densities of the template epochs and the background

EEG are taken to highlight the dominant seizure frequencies. The dominant

frequencies resulting from the ratio-spectrum are selected and modeled using

the SBF approach. The reference EEG is the 30 s of background EEG preceding

the template seizure pattern.

Of the three, the model that best represents TP AT is selected to identify similar seizures

in the remaining data. Selection of the best model representing TP AT is described in

the classifier training section. The main building block of the model-based PS seizure

detection is the SONF, which is described in the next section.

6.6 Statistically Optimal Null Filter

The use of statistically optimal null filter (SONF) was proposed by Agarwal et al.

[195-199] for the enhancement/suppression of narrowband signals, and is based on

combining the maximum output signal-to-noise ratio (SNRo) and the least-square

(LS) optimization criteria. SONFs are obtained by scaling the output (optimal in the

maximum output SNR ratio sense) of the instantaneous matched filter (IMF). Its

intrinsic property is the ability to track signals rapidly leading to a more practical

processing of short-duration signals. It has been shown that SONF is equivalent to

the well-known Kalman filter, but with a much simpler implementation [195-199].

In the SONF-based estimation of a signal with unknown shape, we assume that

the desired signal s(n) can be represented as a linear combination of a priori known

set of orthogonal basis function, {φi(n), i = 1, 2, ..., N}, i.e.,

s(n) =
N∑

i=1
aiφi(n) (6.5)
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where ai are the unknown scaling variables.

In a model-based PS system, TP AT represents the signal s(n) of interest that is to be

estimated, and consists of k-narrowband components, s(n) = {s1(n), s2(n), ..., sk(n)},
in a specific-time ordered sequence. We consider implementing k-parallel SONF

branches, one for each template epoch as shown in Fig. 6.6. The kth epoch can be

represented as sk(n) = ∑N
i=1 aikφik(n). The signal sk(n) in the presence of additive

white Gaussian noise (AWGN) can be estimated by the SONF with N parallel

branches− one corresponding to each term in the expansion of sk(n), as shown in Fig.

6.6B.

Since only one seizure component sk(n) can occur at any given time, then at the

lth time instance, the input mixture xk(n) to the SONF can be written as

xk(n) = sk(n) + n(n), (6.6)

=
N∑

i=1
aikφik(n) + n(n). (6.7)

The output of the ith IMF in Fig. 6.6 is,

vik(n) =
N∑
m

xk(m)Φik(m), (6.8)

=
n−1∑
m

xk(m)φik(m) + xk(n)φik(n), (6.9)

= vk(n − 1) + xk(n)φik(n), (6.10)

scaled by λk(n)’s (obtained through LS optimization) to produce the estimate of the

desired seizure signal (Fig. 6.6B),

ŷk(n) =
N∑

i=1
λik(n)vik(n), (6.11)
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and

ˆsk(n) =
N∑

i=1

ˆyik(n) (6.12)

The above can be summarized in general vector notation (without any subscript)

as,

λ(n) = [ λ1(n) λ2(n) λ3(n) ... λN(n) ]T

ν(n) = [ ν1(n) ν2(n) ν3(n) ... νN(n) ]T

Φ(n) = [ φ1(n) φ2(n) φ3(n) ... φN(n) ]T

where λ(n), ν(n) and φ(n) are the post-IMF scaling functions, output of the IMF and

the set of known basis functions, respectively. The complete recursive algorithm for

implementing the SONF for the kth branch of Fig. 6.6 can be written as

νk(n) = νk(n − 1) + x(n)Φk(n)

Pk(n) = Pk(n − 1) − Pk(n − 1)Φk(n)ΦT
k (n)Pk(n − 1)

1 + ΦT
k (n)Pk(n − 1)Φk(n)

λk(n) = Pk(n)Φk(n)

ŝk(n) = νT
k (n)λk(n)

The gain matrix P (n) is initially chosen to be positive-definite. As a general rule,

one may choose P (0) = SNR • I, where I is the identity matrix of order N and

ν(0) = x(0)Φ(0). A detailed description of the statistically optimal null filter can be

found in [195-199].
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6.6.1 Classifier Training

The SONF estimates the desired signal using the model. The output of the SONF is

nearly zero except when the input EEG matches the model. That is, the output of

the SONF for the kth template epoch is nearly zero except at the time instance where

the kth template epoch is present in TP AT . The energy ratio, γk, of the kth estimated

component and the input signal can be used to discriminate parts of the seizure that

are similar to the kth template epoch, and is given by (Fig. 6.7)

γk =
∑

ŝk
2(n)∑

x2(n) . (6.13)

The detection threshold for the kth model, δth
k , is set as 1/3 of the maximum γk where

the input is the template pattern itself. The strategy for selection of δth
k is based

on the observation on simulated EEG and MNI training dataset. Different values

of the thresholds were explored that included maximum γk, 1/3rd of the maximum

γk, 1/2 of the maximum γk, and average γk at the instance of template epoch. The

remaining data for a given patient is evaluated using the SONF at the set thresholds.

The threshold that reported best sensitivity and specificity was selected, which was

found to be 1/3rd of the maximum γk.

6.6.2 Model Selection

In Section 6.5.3, we proposed three techniques for constructing the basis functions

for the template epoch. The resulting set of basis functions for the template epoch is

known as a model. Model selection involves selecting the model that best represents

the template epoch, i.e., the model which results in maximum separation between

non-seizure and seizure EEG in the SONF framework. The energy ratio is computed

using a model during background EEG (γbkg) and at the time instances where the

model matches the template epoch (γsez). The Euclidean distances between γbkg
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Figure 6.6: Estimation of signal using statistically optimal null filter (SONF). (A)
represents block diagram of k-branches of SONF utilized to track the temporal evolution
of seizures. Model (basis function) for the template epoch, represented by Φk is employed
in the SONF to the estimate seizure waveform (ŝ(n) = ∑k

i=1 ŝi(n)) in the input signal
x(n). (B) represents the estimation counterpart of the kth discrete SONF.
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and γsez are evaluated using all three models for the template epoch. The Euclidean

distance dlk for lth modeling technique for kth template is given by

dlk =

√√√√√
⎛
⎝ 1

Nk

Nk∑
n=1

γSez
lk (n)

⎞
⎠ −

⎛
⎝ 1

Nbkg

Nbkg∑
n=1

γbkg
lk (n)

⎞
⎠, (6.14)

where Nk is the length of template epoch, Nbkg is 30 s of the background EEG,γSez
lk and

γbkg
lk are the energy ratios of the kth template epoch and background EEG obtained

using lth modeling technique. Among three models for each template epoch, the

one that results in maximal separation between seizure and non-seizure segments as

quantified by the metric dlk is selected for the template epoch under consideration.

6.6.3 Evolution-based Classification

One of the primary goals of the PS system is to identify seizure events CP AT that

are similar to TP AT . Existing PS systems identify patterns similar to the template

patterns, but do not use the sequence of time-ordered occurrence of piecewise rhythmic

discharges. In our approach, we track this time-ordered sequence of the occurrence

of template epochs that constitute TP AT . By doing so, it is possible to improve the

detection specificity. Such a tracking of temporal evolution of the seizure results in a

reduction of false detections caused by non-epileptic rhythms that may have matching

dominant rhythms with the template epochs of TP AT , but not the time-ordered

evolution.

For a given TP AT , the modeling step results in k-disjoint, non-redundant, noise-

free template epochs. The sequence of their occurrence is remembered and matched

with the time-order sequence of the candidate seizure pattern. This matching of

time-sequence within a given time-frame is what we define as the evolution-based

classification. A seizure similar to the template is detected when the time sequence of

the epochs matches TP AT epochs with in a 60 s time-frame.
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Figure 6.7 illustrates this novel evolution-based classification approach employed in

the proposed model-based PS system. The modeling process resulted in two disjoint

non-redundant epochs for the given TP AT . The two template epochs of TP AT are

labeled E1and E2 and shown in Fig. 6.7A. Enumerated subscripts denote the time-

order in which they occur in TP AT . The power spectral density plot confirms the

non-overlapping dominant rhythm of the template epochs (Fig. 6.7B). The model-

based PS system for this TP AT consists of two parallel branches of SONF, one for each

template epoch. The detection thresholds are set using the model and the training

data, as described in the classifier training section (Section 6.6.1). The trained PS

system is utilized to detect candidate seizure patterns similar to TP AT . An example of

detected CP AT similar to TP AT is shown in Fig. 6.7C. Raw EEG is shown to map the

detection by the evolution-based classifier. The energy ratios (γ1, γ2) are shown in Fig.

6.7D. The time-sequence of the detected epochs in CP AT is matched to the template

epochs of TP AT to make final detection. In this example, the sequential detection of

template epoch 1 followed by template epoch 2 matches the sequence of the template

epochs in TP AT . The final detection decision is represented by vertical ’dashed’ line in

Fig. 6.7. In this example, there are two instances where the time-ordered template

epochs match. Therefore, there are two detections as indicated by the two dashed

vertical lines.

6.7 Performance Evaluation

The performance of the proposed model-based seizure detection system is assessed on

the MNI database. The MNI database consists of intracranial EEG recordings from

14 patients that was originally scored based on all channels for another study [32]. We

selected the most prominent seizure channel from the multichannel EEG of individual

patients for evaluating the performance of the proposed system, as was done for the
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(a)

(b)

Figure 6.7: Evolution-based classification. (A) represents two disjoint (k = 2) template
epochs of TP AT along with their power spectral density plot. A candidate seizure pattern
CP AT similar to TP AT detected using the seizure model is shown in (B). (C) represents the
CP AT and (D) the energy ratios γk for the k-SONF branches (one model for each template
epochs), and (E) depicts detection by the individual SONF branches. The ’number’
represents time-order in which the template epochs constitute the TP AT, = {E1,E2}
that are examined by the evolution-based classifier to make a detection. The vertical
’dashed’ line denotes the final detection of an event similar to TP AT .
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NPS systems in Chapter 4. For each patient, the first occurring seizure is used as

the template seizure pattern (TP AT ) for the training of the proposed PS system. The

training data includes 30 s of EEG preceding the seizure template. The trained PS

system is used to detect all other seizures that are similar to the template seizure for

the given patient. Same template seizure pattern is used to train the Qu-Gotman

system which, in addition, requires a minimum of 30 minutes of non-seizure EEG.

We selected 30 min section of non-seizure EEG preceding the template pattern. The

background EEG in some patients included one or two patient-disconnection artifacts.

The background EEG is visually inspected for such artifacts. When the background

EEG contains these artifacts, additional seizure-free EEG data is added to compensate

the disconnection artifacts. In all 14 patients, we did not find any manually scored

seizures within the 30 min seizure-free section preceding TP AT for the Qu-Gotman

system. For both the methods, the training data consisted of the first seizure in each

patient (14 template seizures) and the test data included the remaining 4 sections

of data for each patient consisting of a total of 68 seizures in the 304 hours of single

channel EEG for the 14 patients. We used hold-out validation technique in evaluating

the performance of the proposed and Qu-Gotman systems. The test data for each

patient included all EEG sections except the training sections. That is, the test and

training data are mutually exclusive or do not overlap.

A good detection in the proposed system is an event that is detected within 60 s of

the manually scored seizure onset. Prior to performance evaluation, detections within

30 s of one another were grouped as a single detection. We evaluate the Qu-Gotman

system [21] using the same dataset and the same criterion. The performance is assessed

by the three popular measures in the seizure detection literature: sensitivity, specificity,

and false detection rate (FDR), described in Chapter 3.
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6.8 Results

Results of the proposed PS system and the Qu-Gotman system for the individual

patients on the test data are shown in Table 6.1. The model-based PS system resulted

in an overall 100% specificity (FDR = 0/h) and 92.2% sensitivity. Qu-Gotman system

resulted in an overall specificity of 66.6%, sensitivity of 93.7% and a FDR of 0.2/h.

The new PS system reflects a significant improvement (approximately by 33%) in the

specificity when compared to the Qu-Gotman system, but at the cost of a 2% drop in

the sensitivity.

6.9 Discussion

The main goal of the patient-specific seizure detection system in the EMU is to identify

reproducible phenomena that characterize epileptic seizures. The advantage of a PS

system is that it improves the detection sensitivity and reduces the false detection rate.

The proposed model-based PS system significantly improves the detection specificity

resulting in no false detection, while the Qu-Gotman system resulted in a FDR of

0.2/h on the same dataset. Clearly, our method outperforms the popular Qu-Gotman

system.

Although the existing patient-specific seizure detectors show improved sensitivity

and FDR over the generic methods, they are not practical. The main limiting factors

are (a) selection of the template seizure pattern, (b) selection of the background EEG,

and (c) supervised training of the classifier. We have overcome these challenges by

using a novel model-based scheme with SONFs as the building blocks, which can

rapidly track narrowband signals buried in noise [195, 197]. Adaptive modeling and

unsupervised classifier training are some of the key attributes of this new system.

Unlike the multiresolution-based detectors, our PS system is not limited by the

sampling rate. Additionally, seizures with minimal change in the EEG amplitude are
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reported to be generally very difficult to detect by experts as well automatic seizure

detectors. The proposed PS system is capable of detecting low-amplitude seizures,

since it estimates the seizure signals while suppressing the non-seizure EEG, thereby

enhancing the discrimination boundary between the two categories. We have studied

the ability of the proposed system to detect low amplitude seizures using simulated

data1 in [134].

The new PS system resulted in no false detections while missing five out of nine

seizures in Patient 3, one out of three seizures in Patient 4 and one out of five seizures

in Patient 10. An example of the missed seizure and the corresponding template

pattern for Patient 3 (channel: RC1-RC3) is shown in Fig. 6.8. The initial few seconds

of the template pattern contain the mixed frequency characteristics (4 to 34 s) that

later evolve into rhythmic activity. The missed seizure is similar to the mixed seizure

part of the template seizure in the initial seconds (6 to 20 s), but did not continue to

evolve into the rhythmic part. On careful examination of the four derived template

epochs for this patient data, it is observed that the first template epoch corresponded

to the mixed frequency part, while the other three template epochs came from the

rhythmic part of the template pattern (TP AT ). The proposed system is designed to

detect seizures when the candidate seizures match the time-ordered occurrence of the

template epochs in the TP AT . All of the missed seizures in this patient did not meet

this criterion. Clearly, the missed seizure do not match the template seizure.

1Simulated EEG under varying SNR conditions and durations were used in the development of
the model-based PS system. These are not presented in this thesis.
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Figure 6.8: Examples of TP AT and a missed seizure by the proposed model-based
seizure detection system. Plot represents 60 s of the template seizure and a missed
seizure in Patient 3 (channel: RC1-RC3) shown in 20 s segments.

Since the first 20 s of all seizures in Patient 3 were very similar, we tested the idea

of using only the first 20 s of the template pattern to build the seizure model. However,

this was not successful as a minimum of two disjoint template epochs could not be

found. Our method is designed to detect seizures evolving with sustained dominant

rhythms. Therefore, it is not surprising that seizures that do not evolve with sustained

dominant rhythms were not detected. In contrast, the Qu-Gotman system detected

majority of the seizures for this patient, but at the cost of eleven false detections.

Figure 6.9 depicts the template seizure pattern and a missed seizure in Patient

4. The missed seizure partially matches the template seizure pattern and is also

contaminated by high-amplitude artifacts. Since it did not evolve similar to TP AT ,

this seizure was eventually not detected by the proposed PS system. The Qu-Gotman

system detected all the seizures in Patient 4 at the cost of several false detections

resulting in 100% sensitivity, but at a much lower specificity (25% ).

The Qu-Gotman system detected all the seizures in Patient 10 with no false

detections. On the other hand, it missed seven out of nine seizures in Patient 7, while
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our system detected all of them with no FDs. The likely cause for the Qu-Gotman

system to miss some of them is the very low EEG amplitude. Additionally, the seizures

missed by the Qu-Gotman system did not evolve in a way similar to the multichannel

template seizure within first 20 s. Seizures can go undetected in the Qu-Gotman

system due to spatial constraints, which require the seizure onsets to occur in the

same channel as those of the template seizure [21]. An example of a training seizure

and a missed seizure in the Qu-Gotman system is shown in Fig. 6.10. Clearly, in this

example, the test seizure in channels other than RH1-RH3 were of low amplitude and

did not evolve in the same manner as the template seizure. No such spatial constraints

exists in our PS system.

Majority of the false detections made by the Qu-Gotman system were brief rhythmic

bursts (< 4-6 s). These short rhythmic discharges did not evolve like the template

seizure pattern, and hence were not detected by our system, resulting in a significantly

improved detection specificity2.

As with other systems, our system too has limitations. It cannot detect mixed

frequency seizures. The system requires a minimum of two template epochs in order

to make a detection.

Isolating precisely reproducible phenomena in EEG signals remains a difficult task

and is vitally important to answer several fundamental questions and can highlight

possible pathways of the propagation of epileptic discharges. The proposed evolution-

based classification in the PS system allows the identification of recurring seizure

patterns that can accurately map the propagation of epileptic discharges by incorpor-

ating multichannel information; this warrants further research and is considered as

part of future work.

2It must be noted that Qu-Gotman system is designed as a seizure warning system which requires
the method to have a short detection delay. Our system, while improving the detection specificity,
cannot be used as a seizure warning system because of the constraints imposed in the evolution-based
classification which increases the detection delay.
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Figure 6.9: Examples of TP AT and a missed seizure by the proposed PS system. Plot
represents 60 s of the template seizure and a missed seizure in Patient 4 (channel:
LH1-LH3) broken in segments of 30 s. The missed seizure did not evolve similar to
TP AT , therefore, did not satisfy the detection criterion.
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6.10 Summary

We have presented a novel fully-automated patient-specific seizure detection method

that is based on the idea that epileptic seizures of one or more type tend to recur within

each patient. Piece-wise sustained rhythms of each types of seizure were modeled

from the a priori known template seizure pattern. Resulting model formulates the

required kernel for the SONF to detect similar seizures in subsequent EEG recordings.

The process of building a dedicated seizure detection method for each type of seizure

(template seizure) has been fully automated. We have assessed the performance of

the detection on simulated EEG as well as on 14 patient recordings. The results have

shown a sensitivity greater than 92% without any false detections on the 14 patient

recordings. Comparison with one of the seminal patient-specific seizure detection

methods on the same data has shown a greatly improved performance.
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Chapter 7

Unsupervised Spike Sorting

7.1 Introduction

In epilepsy, little is known as to how normal brain regions become and remain epileptic.

Regardless of the original brain insult, the neocortical epileptic foci show remarkably

similar electrophysiological patterns of localized abnormal electrical discharges. These

discharges become rhythmic and spread to widespread brain regions to produce clinical

seizures. A lot more frequently than seizures, the focal brain regions generate localized

’interictal’ discharges that can be used to identify regions of seizure onset [49, 50, 201].

Interictal discharges commonly known as interictal spikes (ISs) are expressed by high-

amplitude (> 50μV), fast transients often followed by a slow wave for several hundreds

of milliseconds. The hallmark property of interictal spikes are the increased tendency

to recur periodically and often cluster in brief paroxysms [49, 202]. Because normal

neuronal activity is a critical force that shapes nervous system development and

plasticity, it appears that ongoing ictal and interictal epileptic activities influence the

functional and structural changes that lead to hyper-excitability and hyper-connectivity.

Consistent with this idea, gene encodings, neurotransmitter receptors, ion channels,

transcription and neurotrophic factors have been found to be differentially expressed in
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various animal models of epilepsy and in the human epileptic brain tissues [49, 50, 201].

Therefore, it is possible to elucidate activity-dependent molecular pathways linked

with epilepsy. This can be achieved by comparing “electrically-active neocortex” to

“control neocortex” within the same patient to search for common gene expression

changes across many patients [49, 50, 201]. Furthermore, even though as to how

exactly interictal spikes develop, propagate and contribute to the generation of seizures

is not well understood, several studies report a better surgical outcome when regions

of frequent interictal spikes are also removed [45, 203]. Qualitative and quantitative

analysis of interictal spikes thus become vitally important for epilepsy management.

However, no such tool exists for use with intracranial EEG recordings.

In this chapter, we propose a new unsupervised spike sorting method to facilitate

rapid qualitative and quantitative analysis of interictal spikes for intracranial EEG

[204, 205]. The performance of the proposed sorting method is compared against a

popular unsupervised spike sorting technique (WAVE CLUS1) [151] that is designed

for extracellular potentials.

Keeping in mind the heavy workload of the clinical staff in the EMUs, we unify the

proposed spike sorting algorithm with a simple, easy-to-use graphical user interface

(GUI). Hereafter, we will refer to complete spike classification software package as the

automatic spike classification (ASC) package.

7.2 Challenges in Spike Sorting

Spike sorting is the first step in the qualitative and quantitative analysis of neural spikes.

The process involves detecting spikes and clustering or mapping each spike to its source.

It is generally considered a high dimensional clustering problem that still remains

incompletely-solved due to issues of signal-to-noise ratio (SNR), non-stationarity, and

1Wave Clus spike sorting system is designed for sorting action potentials and not for the interictal
spikes.
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non-Gaussianity. Artifacts resembling spikes lead to erroneous classification [147, 153,

154, 206-210]. The two major challenges to be faced in the analysis of interictal spikes,

are the wide variety of spike morphologies and the lack of a priori knowledge of spike

information for each patient. Manual correction of the sorting errors and the sorting

results thus become mandatory; this is time-intensive and subjective [211].

A large number of electrodes introduces computational complexity that can vary

from patient to patient. Furthermore, EEG is digitized at different sampling rates (200

to 5000 Hz) across various laboratories. Sorting methods based on multi-resolution

analysis, such as the wavelet transform, are dependent on the sampling rate, which

ultimately limits their widespread application [155, 209]. Majority of the spike sorting

algorithms in the literature parametrize spikes into a high dimensional feature space to

overcome the data sparsity and low SNR. However, representation of spikes in terms

of features loses the morphology of the spikes, which can be important in the invasive

studies [155, 209].

Validation of the spike sorting results is another challenge, since spike classes

are not known a priori. Typically, the sorting results are evaluated using one or

more cluster validity metrics on simulated data for varying SNR and with a limited

number of spike classes. The popular performance evaluation measures are intra- and

inter- cluster distance, Folkes and Mallows index, Huberts Γ statistics, cophenetic

correlation coefficient, Dunn index, Davies-Bouldin index, and Xie-Beni index [212].

These measures give an indication of the cluster quality, which requires experts to

visually screen the spikes and validate the automatic sorting results.

In this chapter, we propose a new spike sorting method, designed for prolonged

depth EEG recordings, that address some of the above practical issues. This chapter

also proposes an easy-to-interpret cluster validation method.
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7.3 Automatic Spike Classification

In the literature, it has been reported that template matching sorting methods

outperform other sorting techniques. These methods, however, require complete

knowledge of the data, and often employ principal component analysis (PCA) and

wavelet transformations to generate the templates [209, 213]. Taking into account

the superior performance of the template matching sorting techniques, we propose

a sorting algorithm that uses template matching at its core, but does not require a

priori knowledge of all the data to generate the templates. That is, the templates

are created on-the-fly as the data becomes available. Thus, one of the primary goals

in the proposed method is to generate the best representation of the template, as

the clustering outcomes are heavily dependent on the templates. Since spike wave

complexes are crucial in epilepsy research, we propose a full waveform-based sorting

algorithm. Challenges in waveform-based sorting techniques mainly arise due to

noise, data dimensionality and sparsity. In multichannel recordings, adjacent channels

sometimes contain the same type of spike activity. In these cases, correlations between

channels can be exploited to generate templates for which we consider a morphological

correlator and the PCA. Waveform-based sorting methods suffer from transient and

unavoidable gradual changes in the spike waveform (waveform nonstationarities),

resulting in the creation of a large number of overlapping clusters. To eliminate

this type of sorting errors, we employ an offline method (hierarchical clustering and

validation) that uses a priori knowledge of the templates and the spike waveforms

to improve the quality of the sorting results. The proposed sorting algorithm is

shown in the block diagram enclosed by thick ’blue’ rectangular box in Fig. 7.1 and

is composed of five blocks: (a) spike alignment, (b) morphological correlator, (c)

principal component analysis, (d) template matching, and (e) hierarchical clustering

and validation.

It is important to define the various terms used in the proposed method before
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describing each of the building blocks. We define a single channel detected spike

as the reference spike irrespective of whether the spike was detected automatically

or manually. Multichannel EEG centered around the vertex of the reference spike

is defined as the multichannel spike event. Let X = [x1, x2, ..., xN ] represent the

multichannel spike event, where N is the number of channels and the column xi

represents the ith channel spike data of length n. A variety of clinical studies examine

not only the spike, but also the waveform following the spike which we define as the

spike-wave-complex (SWC). Therefore, 150 ms of the EEG following the spike event

is added to create the SWC. Let Y = [yi, y2, ...yN ] represent the N -channel SWCs,

where each column is a vector of length m. In our analysis, m = 250 ms (± 50 ms

of spike data around the spike vertex and 150 ms of data following the spike event)

was empirically found to be optimal in this development. Since the proposed method

generates templates on-the-fly by exploiting the spatial correlation between adjacent

channels, aligning spikes to a common reference point (which is the vertex of reference

spike) becomes inevitable and is the first step in the proposed method. Both X and Y

represent aligned multichannel spike data. Figure 7.2 illustrates the multichannel EEG

extracted around the reference spike, aligned multichannel spike and the resulting

SWC event. A template is defined as the optimal or best single-channel representation

for a group (class) of similar SWC events and a codebook is defined as a collection of

SWC templates for a patient.

7.3.1 Spike Data (Spike Detection)

The state-dependent spike detection algorithm of [159] available in the Stellate Har-

monie v6.2e software (Stellate Inc, Montreal, Canada) is employed to identify spikes,

which we refer to as the AutoSpike events. Same patient data is also scored for spike

events by an experienced EEGer. Manually identified spikes will be referred to as

the ManuSpike events. Even though previously detected spikes are utilized for spike
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Figure 7.2: Multichannel spike and spike-waveform complex event. (A) represents
multichannel EEG event extracted around the vertex of the reference (detected) spike.
Vertical line represents the vertex of the detected spike. (B) represents 100 ms of
multichannel spike data (X), and (C) represents example of multichannel spike-waveform
complex (Y), both aligned to the reference spike vertex.

clustering, the classification is done in an online manner. The detected spikes are

processed sequentially; one at a time as they would be in an online application.

7.3.2 Spike Alignment

One of the most difficult and complex parts of sorting process is the unsupervised

clustering where no a priori knowledge of the templates or clusters is available. In

the case of template-matching, it is a well established fact that the shape, phase,

and length of the templates have a significant effect on the algorithm’s performance.

Therefore, it is important to generate a noise-free estimate of the template. In a

multichannel EEG, noise-free template can be generated on-the-fly by exploiting the

spatial correlation between adjacent channels. However, it is observed that interictal

spikes do not occur perfectly aligned across multiple channels. This generally happens

due to sequential activation of unidirectional dynamical neural networks. Therefore,
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it becomes important to first align the multichannel spike event to the vertex of the

reference spike to minimize the effect of time-shift.

The considered spike event labeled at the vertex serves as the reference spike. The

vertex is used as the reference point along which spikes in all the other channels will

be aligned. To do so, we extract 50 ms of the multichannel data around the vertex of

the reference spike. The local maxima or minima within ±25 ms of the reference spike

vertex is considered as the correct vertex in each of the other channels. Local maxima

or minima in each channel is shifted so that it occurs at the same time instance as the

reference spike vertex. This rule is applied to all channels whether there exists a spike

or not.

7.3.3 Morphological Correlator

As previously mentioned, we want to exploit the spatial correlation between adjacent

channels in the creation of a noise-free template using PCA. In multichannel EEG data,

not all channels contain the same type of interictal spike as the reference spike, and

not all channels contain spike events. It becomes very difficult to automatically select

the principal component that best represents the reference spike. Therefore, channels

without interictal spikes and/or channels with dissimilar spikes from the reference must

be ignored in the analysis. This step is aimed at increasing the data sparsity, enhancing

the SNR, and reducing the computational load in the PCA. Channels with waveforms

similar to that of the reference spike channel are extracted from the multichannel spike

event, X ∈ RNxn by using the correlation measure. Since the wave-complex following

the spike is highly variable, including it would significantly affect the identification of

similar spikes. Therefore, we consider only the multichannel spike event and not the

multichannel SWC event in the morphological correlator.

The correlation coefficient ρij between the reference spike channel, xi, and all the

other channels, xj is computed by

172



ρij = nΣxixj − (Σxi)(Σxj)√
n(Σx2

i ) − (Σxi)2
√

n(Σx2
j) − (Σxj)2

, (7.1)

where n is the length of the spikes. The correlation coefficient ρij between the ith

reference spike and jth channel is compared to a threshold, ρMC . If ρij exceeds ρMC ,

then channels with spikes similar to the reference spike are identified. In this manner,

only those channels similar to the reference spike channel are retained for further

analysis, as shown in Fig. 7.3. This step reduces the data dimension and is similar

to subtractive clustering technique in [213]. In subtractive clustering, similar spikes

around the defined cluster center point (reference spike) are searched and extracted,

and the process iterates until all of the data belongs to unique classes.

Figure 7.3: Identification of channels with spikes similar to the reference spike using
morphological correlator.

7.3.4 Principal Component Analysis

The output of the morphological correlator along with the wave-complexes following

the spike represents the multichannel SWC event, Y. We apply PCA to the resulting

multichannel SWC event to generate a noise-free estimate of the template spike. PCA
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is a linear mathematical transform that seeks a projection of the correlated data to a

new uncorrelated coordinate system called principal components. These coordinates

are an ordered set of orthogonal basis vectors that capture the directions of the largest

variation in the data. It has been shown that incorrectly aligned spike waveforms

affect the projection bases in the PCA and thus, the clustering outcome [214, 215]. It

is for this reason that we align the spike vertex across channels.

For the implementation of PCA, the mean-centered signals, Yc are whitened using

the following equation:

Z = V · Yc, (7.2)

where V = Λ−1/2UT is the whitening matrix, Λ = diag[λ1, ..., λk] and U are the

eigenvalue and eigenvector matrices, respectively, of the covariance matrix of YC .

Mean centering is necessary for performing PCA to ensure that the first principal

component describes the direction of maximum variance. In Eq. (7.2), each column zi

corresponds to the projection of y on the ith principal component ui, and the variance

of the component zi is λi such that λ1 > λ2 >, ..., > λk.

In high SNR conditions, the first principal component (highest variance) corres-

ponds to the signal (reference SWC) while low variance components correspond to

noise. In low SNR conditions, the selection of principal components corresponding

to the SWC event becomes more complex. In the framework of unsupervised spike

sorting, we want to automatically select the component that best represents the SWC.

By employing the morphological correlator as a preprocessing step, we eliminate

channels that do not contain information related to the reference spike. This results

in a high SNR condition, where the best representation of the reference SWC is the

first principal component. Therefore, the first principal component is considered as

the candidate SWC, wi, as shown in Fig. 7.4.
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Figure 7.4: Principal component analysis of the multi-channel SWC.

7.3.5 Codebook-based Template-Matching

The codebook (T) stores the SWC templates (T = {t1, t2, . . . , tr}), class membership

details such as SWC time and channel of occurrence, and various properties of

individual SWCs. The ith candidate SWC, wi, is matched with SWC templates in T.

The correlation coefficient metric given by Eq. (7.1) is utilized to identify the best

match for wi.

The correlation coefficient of wi and jth template, ρwitj
(where j = 1, 2, ..., r), is

compared to a preset threshold, ρT M . When ρwitj
exceeds the threshold (ρT M > 0.9), a

match is found, and wi is assigned to the jth class. Sometimes, it is possible that there

may be more than one template matching the candidate SWC. In such situations, wi

is assigned to the class with the highest correlation coefficient. The jth SWC template

is updated by averaging with wi, i.e., tj = 0.5 ∗ (tj + wi). If no match is found for wi

in the codebook T, then a new class is created and the codebook is updated with the

new SWC template, i.e., T = {t1, t2, . . . , tj, tj+1}), where tj+1 = wi. The process is

continued until all SWCs have been classified.
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7.3.6 Hierarchical Clustering and Post-classification

Since the SWC templates evolve over time, they are highly susceptible to noise and

EEG non-stationarity, resulting in the creation of redundant classes. Furthermore,

since interictal spike-wave-complexes tend to recur periodically, a large number of

these events will be concentrated in clusters with large number of members. Therefore,

sorting results can be further improved by identifying and rejecting overlapping and

insignificant clusters.

Kaneko et al. [153] utilized the bottom-up approach (agglomerative) hierarchical

clustering to identify and merge similar classes. We too employ agglomerative clustering

using single linkage rule, where the similarity parameter is the Mahalanobis distance

to identify and merge similar classes. In this approach, the process iterates until all

objects are aggregated into a single class using the distance measure. The distance,

di,j, between ith and jth class is evaluated using the Mahalanobis distance given by

di,j =
√(

μi − μj

)T
Σ−1

(
μi − μj

)
(7.3)

where μ and
∑

are the SWC classes and the covariance matrix, respectively. The

threshold to merge clusters based on the Mahalanobis distance between cluster centers

is set to 0.1 and is adapted from [216]. This results in well-separated clusters.

In our application, we are only interested in clusters with a significantly large

number of members. Since rarely occurring SWC events and events due to noise and

artifacts are expected to have a relatively low number of members in the clusters. By

applying a threshold relative to the highest-ranking cluster (cluster with the highest

number of members), we can reject clusters that contain rarely occurring events and

events due to noise and artifacts, thus improving the codebook quality. Therefore, we

examined the number of spikes lost with this relative threshold on the five patients

training data. Figure 7.5 illustrates the effect of the relative threshold on the number
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of spikes lost. It is observed that at 10% threshold relative to the highest-ranking

cluster retains the maximum number spike events. Therefore, we selected a threshold

of 10% relative to the most significant cluster to reject the insignificant clusters.

Figure 7.5: Events lost in the insignificant clusters on thresholding relative to the
most significant cluster.

7.3.7 Graphical User Interface and Result Display

For clinical use of the proposed sorting algorithm, we have designed a simple graphical

user interface (GUI). The GUI is designed keeping in mind the heavy workload of

the clinical staff in the EMU. It has preset settings to automate the sorting process

while including a variety of tunable parameters to help manually set the parameters of

choice and export results in a variety of formats. The display of the results contains

the SWC templates in the codebook. Each class template and its members are

superimposed along with the total number of members in each class. Summarized

result also includes projection of codebooks onto their two principal components,

3-dimensional representation indicating the cluster quality, inter- and intra- cluster

distance, and dendogram chart. Morphological descriptors of codebook are exported

to the pre-defined Microsoft excel compatible format.
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7.4 Performance Evaluation

A popular unsupervised spike sorting technique ’WAVE CLUS’ [151] for extracellular

recordings is considered for comparison. The inputs to the WAVE CLUS are AutoSpike

and ManuSpike events. The sorting results are visually assessed for the number of

overlapping clusters in the codebook.

One of the main challenges in the spike sorting is the lack of a priori knowledge

of the total number of classes or clusters in the data. Researchers, therefore, often

validate their spike sorting methods using simulated data with a fixed number of

spike classes [155, 207]. On real data, algorithm performance may vary and requires

mandatory visual inspection of the sorting results. Evaluating the clustering results

by traditional approaches is time-consuming and highly subjective.

We propose a new indirect approach to validate our sorting method, which estab-

lishes a definite role for automatic spike detection and sorting methods for clinical

application. In this approach, we compare the sorting results of spike events detected

by two different approaches - automatic spike detector (AutoSpike) and the gold

standard manual spike scoring by the EEGer (ManuSpike). Codebooks generated

using the two sets of spike data for the same patient are expected to have the same

number and type of classes. Therefore, the spike sorting method can be indirectly

validated by visually comparing the codebooks for the two sets of spikes. We refer to

these two codebooks as the AutoSpike- and Manuspike-codebooks for each patient. To

facilitate easy visual assessment of the sorting result, we employ visual cluster analysis

techniques.

Visualization mitigates the challenges in traditional approaches of cluster validation.

It maps the high-dimensional data to a 2D or 3D space and aids users having an intuitive

and easily understood graph/image to reveal the grouping relationship between the

data [217, 218]. Several techniques have been proposed for visual cluster analysis

such as icon-based, pixel-oriented, and geometric techniques, and multidimensional
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scaling maps such as hierarchical blob, self-organizing maps, and PCA [217, 218].

However, visual assessment of quality of clustering result still heavily relies on the

user’s visual perception and understanding on cluster distribution. We include two

different easy-to-interpret cluster visualizations: (a) geometric technique, and (b)

dendogram.

7.4.1 Geometric Technique

The basic idea of geometric technique is to visualize transformations and projections

of the data to produce useful and insightful visualizations. We propose a new easy-

to-interpret visual cluster analysis technique, which is a combination of visualization

and cluster analysis. We represent the cluster quality metrics in 3D space as spheres.

The center of the sphere is the centroid of the cluster and radius of the sphere is

the variation within the cluster (intra-cluster distance). The centroid of a cluster

is the average of all SWC points for the given cluster. Since waveform variations

in a cluster can lead to shift in the actual cluster center, we compute the cluster

centroid using the first principal component from PCA instead of directly deriving

it from the cluster. The ith cluster is represented as sphere Si at center Pi of radius

ri = σ2
i , where Pi = {ci, ci, ci} and ci is the centroid of the first principal component

of the ith cluster in the codebook. The inter-cluster distance is the Mahalanobis

distance between the ith and jth cluster. The resulting 3D visualization allows an easy

identification of overlapping clusters, where disjoint spheres symbolize non-overlapping

clusters. The example in Fig. 7.6 shows the 3D representation of the inter- and intra-

cluster distances obtained using the AutoSpike events of a patient before applying

the hierarchical clustering. At this stage, the codebook contains six clusters of which

two are well separated and compact (A and B), while two pairs of clusters overlap (C,

D) and (E, F). It is noted that in the pair (E, F), one of the overlapping clusters (F)

appears to be much less compact than the other (E), i.e., larger intra-cluster distance.
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The EEGer can rapidly identify in his or her visual assessment that the two pairs

of clusters overlap and can further scrutinize the SWC templates of the overlapping

clusters.

Figure 7.6: Visual analysis of the cluster quality

7.4.2 Dendogram Analysis

We want to compare the two codebooks for each patient resulting from the two

sets of spikes (AutoSpike and ManuSpike) using the proposed sorting method in

order to validate the sorting results. This can be achieved by dendogram, which

can highlight similarity and dissimilarity between codebooks via a simple tree-like

diagram. A dendogram is generated using hierarchical clustering method (bottom-up,

complete linkage rule with Euclidean distance metric). Identical SWC templates in

Auto-codebook and Manu-codebook for each patient will be at the same node in the

dendogram that can be visually confirmed. We compute the accuracy (%), which

is defined as the percentage of correct matching between the two codebooks, that

is, the number of templates in the AutoSpike codebook that correctly matches the

templates in the ManuSpike codebook and vice versa. When no match for a cluster in

one codebook is found in the other codebook, they are assigned as unmapped clusters.

Additionally, for each method, the total number of significant and insignificant clusters
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are also calculated.

7.5 Results

The results of quantitative analysis of the two codebooks for each patient in the

WSU database for the proposed method are shown in Table 7.1. On the average, the

proposed sorting method loses 19.7% of AutoSpike and 21.6% of ManuSpike events

in the respective codebooks for all the nine patients. The average number of spikes

in the insignificant classes were 6 for AutoSpike and 4 for ManuSpike events (not

shown). Visual inspection of the codebooks via the 3D geometric technique revealed

the clusters to be disjoint. The comparison of significant clusters in the two codebooks

for each patient via the dendogram resulted in 79.3% accurate matching.

Figure 7.7: Percentage of events lost by the proposed ASC and WAVE CLUS methods.
Error bar represents standard error.

Similarly, the results of quantitative analysis of the two codebooks for the WAVE CLUS

method are shown in Table 7.2 for all the nine patients. On the average, the

WAVE CLUS sorting algorithm loses 38.9% of AutoSpike and 31.7% of ManuS-

pike events in the respective codebooks. In several patients, WAVE CLUS clustering

results were observed to be imprecise. In such situations and without a knowledge of

the true class labels, it was difficult to match the two codebooks. Therefore, matching
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accuracy is not reported for the WAVE CLUS algorithm.

7.6 Discussion

The purpose of this study was to develop an unsupervised sorting technique to aid in

the rapid quantitative analysis of interictal spikes and establish definite role of spike

detection and sorting techniques for clinical application in the EMU.

Template matching-based sorting methods are the most preferred technique in the

literature because of their superior performance. These methods, however, require a

knowledge of the complete data to derive the templates. Therefore, template-matching

sorting methods are generally not well suited for online analysis. We have proposed a

novel online spike sorting technique that employs template-matching at its core and

dynamically derives the templates as the data becomes available.

Majority of the spike sorting methods in the literature extract various features

of spikes such as spike height, width, peak-to-peak amplitude, half-wave duration,

slopes, and wavelet coefficients. These features are utilized to measure similarity

between spikes to perform sorting. Classifying spikes directly using waveforms in

high dimensional space is considered very challenging because data points are sparse

and noisy, resulting in imprecise clusters [147, 211, 219]. Waveform morphology is

vitally important in invasive EEG studies. Therefore, representation of the spike wave

complex into features is not generally suitable. To address this clinical need, we have

proposed a multistage complete waveform-based sorting technique.

We have incorporated PCA to generate the noise-free estimate of the templates.

However, PCA requires a set of synchronized spikes to perform PCA. We have used

the reference spike (defined earlier) to align data on other channels prior to processing

the multichannel SWC by PCA to generate the best estimate for the SWC candidate.

When multichannel SWC events are not available for PCA, the SWC event is considered
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as the SWC candidate.

In the literature, there exist a few template-matching sorting techniques that dy-

namically derive templates, but such methods have been shown to result in overlapping

clusters [206, 220-222]. Visual assessment of sorting results, therefore, becomes very

difficult. The challenges arise due to (1) overlapping clusters, and (2) unknown number

of clusters. The latter is application dependent and does not have a general solution.

However, the issue of overlapping clusters that arises due to noise and artifacts can be

resolved. It has been shown in [153] that tracking spike-amplitude changes improves

the quality of the spike templates and reduces the number of overlapping clusters. We

have also followed a similar approach to minimize the influence of noise and artifacts.

The templates are continually updated over time whenever a matching event is found.

This is advantageous as it improves the SNR of the SWC template and results in a

reduction of number of overlapping clusters.

Kaneko et al. [153] showed that tracking spike clusters by repeatedly applying

bottom-up hierarchical clustering to spike data recorded during temporally overlapping

frames helps in improving the quality of the sorting results. However, repeatedly

applying hierarchical clustering is computationally expensive. Instead of repeatedly

performing hierarchical clustering on each subsequent frame, the same can be applied

on the codebook once the online analysis has been completed. Our method identifies

and merges overlapping clusters in the codebook using hierarchical clustering once the

online analysis has been completed. This improves the quality of the sorting results.

The codebook contains clusters that are due to interictal spikes as well as rarely

occurring events and artifacts. The EEGer is mainly interested in the significant

clusters. This is because significant clusters are likely to contain the highly stereotypical

recurring interictal spikes. Therefore, clusters with lower membership can be deleted

from the codebook. We reject clusters with number of SWC members below some

percentage of the most significant cluster membership. This improves the quality of
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the sorting results; and also reduces the visual inspection workload of the EEGer.

However, it may result in eliminating some small clusters and rarely occurring SWCs

that may be important.

Another challenge lies in the visual assessment and validation of the sorting results.

We have proposed a new indirect technique to validate the quality of the clusters. In

this approach, the EEGer visually examines the 3D cluster quality for overlapping

clusters. To validate the sorting accuracy of the proposed method, we have compared

the AutoSpike and ManuSpike codebooks for each patient using dendogram. The two

codebooks matched with 79.3% accuracy, i.e., 79.3% of the templates of AutoSpike

codebook matched correctly with the ManuSpike codebook. The codebooks obtained

using the two sets of spikes for Patient 5 are shown in Fig. 7.8, which represents SWC

members along with its template (in ’red’ bold) for each class. The 3D plots to assess

the cluster quality are shown in Fig. 7.9. The size of the sphere represents the variation

within the cluster (compactness), while disjoint spheres symbolize non-overlapping

clusters. Visual inspection of these plots reveals that the resulting clusters from the

proposed sorting method to be disjoint (non-overlapping). Comparison of the two

codebooks using the proposed indirect approach is shown in Fig. 7.10 in terms of the

dendogram. It is seen that two-of-three clusters of AutoSpike (A) codebook perfectly

matches the two clusters of ManuSpike (B) codebook . For the additional cluster in

the AutoSpike codebook, no match was found in the ManuSpike codebook. Similarly,

Patients 1, 6, and 8 also had additional SWC classes for which no match was found in

the ManuSpike codebook. In these patients, it is possible that EEGer missed these

frequently occurring spike events, which were detected by the automatic method.

The EEGer can decide whether to retain or reject such additional SWC classes by

examining the codebooks. Patients 3, 4 and 7 had additional classes in the codebook

derived using ManuSpike events. It is possible that either the automatic spike detection

method missed spikes belonging to these classes or were filtered by the validation
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Figure 7.8: Codebook generated using AutoSpike and ManuSpike events for Patient 5
using the proposed spike sorting algorithm.

block (due to lower cluster membership). The cut-off threshold in the validation block

is a function of the class with the highest membership. Therefore, some of the SWC

classes with lower membership may have been rejected. It is important to mention

that the EEGer may not have access to both the AutoSpike and Manuspike codebooks.

The two codebooks were employed to validate the sorting results in the absence of

true class labels. Validation of the sorting results with this indirect approach reported

good matching between the two codebooks. This establishes a definite role for spike

detection and the proposed sorting method for clinical use. The EEGer can rapidly

examine the codebook, thereby significantly reducing the cost of identifying and

classifying events by the experts.

We have also compared our sorting method with a popular spike sorting tech-

nique WAVE CLUS [151]. The AutoSpike and ManuSpike events were input to the

WAVE CLUS sorting algorithm to generate the two codebooks. Sorting was performed

at the default settings of the algorithm and summary of the sorting results are shown

in Table 7.2. The sorting results for Patients 4 and 9 obtained using the AutoSpike

events by the proposed and WAVE CLUS techniques, respectively, are shown in Fig.
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Figure 7.9: Illustration of cluster validation in terms of inter- and intra- cluster distance
for the two codebooks of Patient 5.

Figure 7.10: Visual comparison of the AutoSpike and ManuSpike codebooks using
dendogram for Patient 5.
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7.11 and 7.12. Visual inspection of the sorting results confirms that WAVE CLUS

clusters have large intra-cluster distance, which could be due to the wave-complex

following the spike. This is because WAVE CLUS algorithm is designed for spikes and

not for spike-wave-complexes. The wave-complexes following spikes are highly variable

and act as noise source causing imprecise clustering results from the WAVE CLUS

algorithm. It is important to mention here that clustering is a data-driven process,

which means that there is no absolutely superior clustering method. Each method

is designed for certain type of data and without the knowledge of true spike classes,

comparison of sorting results is extremely difficult.

Figure 7.11: Sorting results for Patient 4 using the AutoSpike SWC events. (A)
contains three most significant clusters obtained with the proposed sorting algorithm.
(B) contains results obtained from the WAVE CLUS sorting algorithm.
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Figure 7.12: Sorting results for Patient 9 using the AutoSpike SWC events. (A)
represents three most significant clusters obtained with the ASC algorithm, and (B)
depicts results obtained using the WAVE CLUS sorting algorithm.

As previously mentioned, sorting is a multi-step process, which requires selection

of a number of parameters that can increase the learning time of the software. A

simple GUI with preset parameters reduces the learning time of the software. Keeping

in mind the heavy workload and challenges in the clinical setting, we have developed a

simple GUI. The algorithm requires minimal input from the user. The learning time,

therefore, is significantly reduced by allowing the algorithm to process data in the

sequential pagination framework. Pagination is a process of formatting information

into ordered pages that streamlines the information flow and reduces the complexity

in its application. The screen-shot of the ASC software GUI is shown in Fig. 7.13.

The first step in the ASC software requires the user to provide basic information

regarding the data such as file path, montage and spike events of interest. It allows

the comparison of events within the same file. The next step allows the user to set

parameters of choice or to use default settings that are easy to remember. This step

also allows the selection of features and data formats for exporting the results. The

user can then execute the sorting process by clicking the ’RUN’ button. However,

it is activated only if all the information necessary for sorting are correctly entered.
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Figure 7.13: Graphic user interface of the ASC software.

The third step displays sorting results and allows a quick review of the codebook2.

The software also includes basic artifact rejection methods to improve the SNR. The

current version of the ASC is designed to work with Stellate Harmonie (ver. 6.2e)

EEG system and allows exporting results in various formats such as MATLAB native

format, Excel, CSV, JPEG, EMF and TIFF.

7.7 Summary

This chapter has presented a new automatic spike classification (ASC) software package

for analyzing neural signals. It is designed to assist researchers in performing easy

quantitative analysis of neural data by combining a number of advanced neural signal

processing algorithms in a unified GUI. The ASC can easily process massive amounts

of neural data and generate clusters of neural signal without loss in the waveform

2Note that even though the sorting results are shown in the GUI as single channel traces, the
EEGer can examine the sorting results in multichannel configuration using the EEG review ’Harmonie’
software since the spike classification results are exported to the EEG file on an event-by-event basis.
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morphology. The ASC is designed to improve the quality of analysis. A new indirect

approach to validate sorting results has also been proposed in this chapter. Visual

assessment of the sorting results revealed disjoint and compact clusters. The method

has been compared against a popular spike sorting algorithm, WAVE CLUS. Results

have shown greatly improved performance compared to that of the WAVE CLUS

algorithm.
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Chapter 8

Conclusion

This chapter presents the overall conclusions of this research, including the summary

of achievements and contributions towards the classification of neural signals followed

by directions for future research.

8.1 Concluding Remarks

In epilepsy, EEG is the primary and the only continuous monitoring tool available to

the clinicians. However, its interpretation is notoriously difficult. The success of an

epilepsy treatment, such as resective surgery, relies heavily on accurate identification

and localization of the abnormal brain regions involved in epilepsy for which patients

undergo continuous EEG monitoring. The two main biomarkers of epilepsy in the EEG

are (a) the seizures and (b) interictal spikes. They are identified by visually inspecting

the prolonged EEG recordings. However, visual screening in the voluminous EEG

is highly subjective, labor-intensive, tiresome and expensive. Therefore, automatic

techniques to quantify spikes and seizures are much needed in the EMUs. In this thesis,

we have developed automatic techniques to detect and classify these two biomarkers

of epilepsy to facilitate easy and rapid analysis of the prolonged EEG recordings.

Epilepsy therapies are individualized for numerous reasons; therefore, automatic
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detection and classification techniques must also be patient-specific. In the seizure

detection arena, patient-specific seizure detection techniques are needed not only in

the presurgical evaluation of prolonged EEG recordings, but also in the emerging

neuro-responsive therapies. However, to date, there does not exist any fully automatic

patient-specific seizure detection system.

One of the possible design frameworks for a fully-automatic patient-specific (PS)

seizure detection system may involve combining the PS and the more generalized

non-patient-specific (NPS) seizure detection techniques. In this framework, a NPS

technique (which does not requires any a priori seizure information) can be employed

to bootstrap the PS technique with the necessary seizure-related information. This

information then can be utilized for on-the-fly (unsupervised) training of the PS

scheme and subsequently, the PS system can detect recurring patterns similar to the

template. However, the inherent tradeoff between the detection accuracy and the

algorithm complexity in the NPS and PS techniques limit the possibility of such a

fully automatic PS system. Thus, one of the primary goals of this research was to

develop robust computationally-simple NPS and PS seizure detection methods that

may serve as building blocks of a fully automatic PS seizure detection system.

The design process of a new seizure detection system involves the determination

of discriminating boundaries between seizure and non-seizure EEG by parametric

representation of seizure EEG. Majority of the NPS and PS systems in the literature

are based on this design approach. However, these systems report difficulty in detecting

short-duration seizures, slow evolving seizures, seizures with minimal change in the

amplitude and frequency, and seizures occurring on a single channel. Alternatively, in

the seizure detection literature, it has been observed that reliable detection can be

made by quantifying the seizure evolution. However, quantifying time-evolution of

seizure in a low-complexity domain has been considered very challenging. Thus, one

of the objectives of this research was to develop new computationally simple NPS and
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PS seizure detection systems that quantify seizure evolution.

In Chapter 4, three new NPS systems, namely the RFWE, morphology and the

eSD systems were proposed that quantify the time-evolution of seizures. The main

focus in the design of NPS systems was to ensure that the proposed systems can detect

a wide variety of seizure patterns and seizures occurring on a single channel, and at

the same time is computationally light. This led to the investigation of a variety of

EEG features in order to design the new NPS systems. The performance of the new

systems have been evaluated against three popular NPS systems, namely, the Gotman

system, Reveal algorithm, and the Grewal-Gotman system.

The evaluation in single channel configuration of the RFWE, morphology and the

eSD systems on the MNI test data yielded an average sensitivity of 98.7%, 86.7%

and 88%, and detection specificity of 41.1%, 71.3% and 81.4%, respectively. The new

NPS systems reported improvement in both the sensitivity and the specificity over

the compared systems. Among the three new NPS systems, the morphology system

detected a wide range of seizure patterns that included rhythmic and non-rhythmic

seizures of varying length, including those missed by the experts. This system was

robust to noise and artifacts, and computationally light compared to the RFWE and

eSD systems. Therefore, this system was selected for performance evaluation in mul-

tichannel configuration using previously unseen FSP database. Among the comparison

systems, Grewal-Gotman system outperformed the other two comparison systems on

the MNI test data. Therefore, this system was selected for multichannel evaluation

on the FSP database. Multichannel evaluation of the morphology system against the

Grewal-Gotman system yielded significantly improved detection performance. The

comparison systems generally failed to detect seizures occurring on a single channel,

seizures with minimal change in the amplitude and frequency, and short-duration

seizures. The new NPS systems detected seizures that are often difficult to detect by

the comparison system, and also revealed several electrographic seizures missed by
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the experts. The performance results suggest that new NPS system can aid in the

rapid review of prolonged EEG recordings in the EMUs.

The focus of this research was not limited only to the design of NPS system, but

also to explore and develop new tools that can provide visualization of seizure onset

and spread, and allow easy mapping of channel-by-channel timeline of seizure. In

Chapter 5, a new adjunctive tool (RFI display) that allows easy and quick identification

of paroxysmal activities in the intracranial EEG has been proposed. RFI display has

been compared against two other methods in the literature. It was demonstrated

that the RFI display is easy-to-interpret and minimally affected by the display size

complexity.

The second objective of this research was to address the main limitations in

the automation of patient-specific seizure detection. The limiting factors are due

to (1) the supervised selection of the seizure EEG, (2) the supervised selection of

non-seizure EEG, and (3) the supervised training of the classifier. In Chapter 6, we

have addressed these challenges with a new model-based PS system. The model-based

PS system requires only the knowledge of the seizure pattern to derive the seizure

model consisting of a set of basis functions necessary to utilize the statistically optimal

null filters (SONF) for the detection of seizures. The process of modeling involves

several steps that have been automated. The seizure classification is based on tracking

the temporal evolution of the seizure rhythm to enhance the detection specificity. The

new model-based PS system has been compared against a popular patient-specific

system (Qu-Gotman system) from the literature on the MNI database. The evaluation

of the new PS system yielded an average sensitivity of 92% with no false detection

and resulting in significantly improved performance over the compared system. This

translates into a very promising reliable system with enormous clinical potential.

The development of a fully-automatic patient-specific system based on the new

NPS and PS systems presented in this thesis, will open the doors to the investigation
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of numerous unanswered questions in epilepsy and find a variety of clinical applications.

Nonetheless, the new NPS and PS systems can work independently and can be clinically

used to review prolonged intracranial EEG recordings.

The third objective in this research was to develop an unsupervised spike classi-

fication system to aid in the rapid quantitative and qualitative analysis of interictal

spikes. Such a tool for the intracranial EEG is unavailable for clinical use. In this

thesis, we have developed a new unsupervised spike sorting algorithm based on the

spike waveform template matching, which does not require a priori knowledge of

the spike templates. A graphical user interface (GUI) has also been developed to

assist easy integration of the automatic spike sorting system in clinical setting. In

Chapter 7, the new spike sorting system has been described and compared against

one of the popular spike sorting systems (WAVE CLUS) for extracellular recordings

on the nine patients’ EEG of the WSU database. Due to the unavailability of all

spike classes, it becomes extremely difficult to validate the sorting results. We have

introduced a simple easy-to-interpret visual analysis technique to validate the sorting

results. Visual inspection of the sorting results has confirmed that the proposed system

had non-overlapping clusters with improved sorting accuracy over the WAVE CLUS

system.

8.2 Contributions

The main contributions of this research are (1) introduction of a new feature to quantify

seizures, (2) design of three new NPS seizure detection systems that quantify temporal

evolution of seizures, (3) a new adjunctive 2D visualization tool for rapid review

of long-term intracranial EEG recordings, (4) semi-automatic PS seizure detection

system that includes a new adaptive EEG segmentation algorithm, a new technique

for artifact rejection, unsupervised modeling of the template seizure, and unsupervised
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training of the PS classifier, and (5) a new unsupervised spike classification system for

intracranial EEG recordings. The following provides further details on each of these

contributions:

1. The main limitation in NPS detection schemes is the lack of simple robust

markers for seizures. This has resulted in seizure detection schemes that often

employ a large number of features and a complex detection strategy to address

the highly varying seizure EEG morphologies. One of the hallmark properties

of seizure evolution is the increase in the number of sharp waveform complexes

as the seizure evolves. We have introduced a novel approach to quantify EEG

sharpness that allows reliable detection of seizures. This has not been done

previously.

2. Tracking temporal progression (evolution) of seizure to detect seizure in low

complexity detection schemes is considered extremely challenging. We have

developed three computationally simple NPS detection schemes by tracking the

temporal progression of the seizures. The performances of the newly developed

detection systems have been shown to be superior to the current state-of-the-art

NPS systems.

3. We have introduced a new adjunctive compressed EEG display to aid in the

rapid review of voluminous intracranial EEG recording. It is based on a new

relative sharpness index measure which quantifies the frequency of abnormally

sharp activity in the EEG and provides a birds-eye-view of potential epilepti-

form activity. Such a display is currently unavailable for the intracranial EEG

recordings.

4. A novel PS system, that requires only the knowledge of the template seizure

patterns, has been developed. The key building blocks of this new system are

(1) a new adaptive segmentation method, (2) new adaptive modeling approach,
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(3) novel evolution-based classifier and (4) a new technique for artifact rejection.

Underlying each of the building blocks is the SONF. While current state-of-the-

art requires one or more template seizure patterns, a large amount of carefully

selected background EEG and supervised training of the classifier, our proposed

PS system requires only the selection of a single template pattern to build a

patient-specific seizure classifier. The new PS system is computationally light

compared to the existing PS detection systems. The performance of the new PS

system has been shown to be superior in terms of the detection specificity over

the current state-of-the-art PS system.

5. A spike sorting system for quantitative analysis of interictal spike in the EMU is

unavailable. We have developed a new unsupervised spike sorting system based

on waveform template matching and principal component analysis (PCA) for

quantitative analysis of the interictal spikes. The new system does not require

a priori knowledge of the complete data or the spike templates. The spike

templates are dynamically derived and a patient-specific template codebook

generated. It has been shown that the new system is capable of handling a large

number of electrodes. The performance of the new sorting system results in

disjoint clusters, in contrast to the current state-of-the-art spike sorting system.

A GUI is also designed keeping in mind the heavy workload of the clinical staff

in the EMU.

8.3 Future Perspectives

8.3.1 Non-Patient-Specific System

• High-frequency activity up to 1000 Hz in the EEG has been shown to be linked

to epilepsy. These patterns have come to be known as high-frequency oscillations
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(HFOs). HFOs are low-amplitude transient events that are thought to play a

role in the physiological and pathological neural process [223-227]. We have

demonstrated that the new sharpness of EEG waveform feature is highly sensitive

to changes in the amplitude and frequency. We believe that this feature can be

utilized to make computationally light and robust HFO detector.

• The ideal spike detector does not exist as the specificity and sensitivity remain

difficult to assess when there exists a large variability in the visual classification

by the experts [228]. Nonetheless, the waveform sharpness is one of the most

important characteristics of an interictal spike, which can be explored with

respect to the new feature proposed in this thesis to develop a reliable spike

detector.

• It has been noted that the detection specificity of the new NPS system proposed

in this thesis may deteriorate in the presence of sharp transients, high-frequency

electromyographic activity and high-amplitude artifacts. New artifact rejection

strategies need to be explored to handle such artifacts. Since scalp EEG is prone

to additional artifacts, extending the new NPS systems to scalp EEG would

require additional considerations.

• The RSI display allows rapid identification of epileptogenic sites. However, the

new compressed EEG display does not provide any quantitative information of

the epileptiform activity. Information such as seizure recurrence, onset zone, and

spreads, are manually identified by the expert. Manual identification of these

crucial informations is extremely tiresome and subjective. These informations

can be made available by combining the RSI display, NPS and the PS systems

developed in this thesis, which could improve the care and management of

epilepsy patients, and therefore, must be investigated.

200



8.3.2 Patient-Specific System

• The patient-specific seizure detection system developed in this thesis is based on

a single channel EEG. In practical applications, EEG is analyzed in multichannel

configuration. An extension of the model-based PS system to the multi-channel

scenario can be developed by (a) modeling the template seizure epochs across

multiple channels, (b) removing the redundant epochs, (c) finding spatio-temporal

sequence, and (d) then looking for similar sequence in the remaining data. A

match across multichannel in spatio-temporal sequences would likely increase

the detection specificity.

• One of the limitations in the proposed PS system is that it fails to detect

non-rhythmic mixed frequency seizures along with short duration seizures. New

techniques to model mixed-frequency and short rhythmic seizures need to be

explored.

• As described earlier in this chapter, automatic PS systems are needed in view of

their unmatched detection accuracy for a variety of diagnostic and therapeutic

applications. We have developed individual building blocks of such a fully-

automatic PS system. The obvious next step would be to implement and

validate the fully-automatic PS system, where the NPS system bootstraps the

PS system to supply the template seizure.

• The extension of the proposed PS system for the scalp EEG would require

inclusion of additional artifact management. This is due to fact that the scalp

EEG is generally affected by artifacts to a greater degree than the intracranial

EEG. Since the proposed PS system examines the sequential occurrences of

specific rhythmic discharges, rhythmic artifacts may not be a problem as they will

not satisfy the stringent criterion of the sequential occurrences. However, motion,

electro-oculogram (EOG), electrocardiogram (EKG) and electromyogram (EMG)
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artifacts must be removed to ensure that components representing EEG activity

are preserved [229]. Therefore, extending the new PS system to scalp EEG

would require additional considerations to handle these artifacts.

8.3.3 Spike Sorting System

The proposed spike sorting system provides the basic tool necessary for the analysis

of interictal spikes. The method can be improved on several fronts, and some of the

possible avenues are listed below.

• Alignment of the spikes to its maximum amplitude plays a pivotal role in the

success of the proposed method. However, local maximum of the spike may

get corrupted by the noise causing misalignment. Smoothing techniques such

as cubic spline interpolation can be explored to minimize the effect of noise.

Aligning spikes to the point of its maximum slope or frequency-weighted energy

can also be explored; these should further improve the classification results.

• Aligning spikes in the multichannel EEG distorts the spike propagation pathways,

which are vitally important in some clinical studies such as epilepsy. Instead of

aligning multichannel EEG with the reference spike, the multichannel spike event

can be used directly as a template. This will result in multichannel templates

instead of a single-channel template and will preserve the spike propagation

pathways. However, this will lead to templates with poor SNR that can result

in an increased number of misclassification and overlapping clusters. Effect of

noise in the multichannel template can be minimized by exploring techniques

such as independent component analysis (ICA). The benefits of ICA are many,

including the ability to automatically detect artifacts and overlapping spikes

and to handle waveform non-stationarities [230]. However, it must be noted that

the ICA, an iterative algorithm, is computationally expensive.
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An obvious extension of the proposed sorting method would be in the statistical

characterization of the spatio-temporal distribution of interictal spikes in a large

dataset and identifying the subsets of brain structures frequently and conjointly

involved in the generation of interictal spikes [228].
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