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Abstract

Trust and Reputation in Multi-Agent Systems

Babak Khosravifar

Multi-Agent systems (MAS) are artificial societies populated with distributed autonomous

agents that are intelligent and rational. These self-independent agents are capable of indepen-

dent decision making towards their predefined goals. These goals might be common between

agents or unique for an agent. Agents may cooperate with one another to facilitate their pro-

gresses. One of the fundamental challenges in such settings is that agents do not have a full

knowledge over the environment and regarding their decision making processes, they might

need to request other agents for a piece of information or service. The crucial issues are then

how to rely on the information provided by other agents, how to consider the collected data,

and how to select appropriate agents to ask for the required information. There are some pro-

posals addressing how an agent can rely on other agents and how an agent can compute the

overall opinion about a particular agent. In this context, the trust value reflects the extent to

which agents can rely on other agents and the reputation value represents public opinion about

a particular agent. Existing approaches for reliable information propagation fail to capture the

dynamic relationships between agents and their influence on further decision making process.

Therefore, these models fail to adapt agents to frequent environment changes. In general, a

well-founded trust and reputation system that prevents malicious acts that are emerged by self-

ish agents is required for multi-agent systems. We propose a trust mechanism that measures

and analyzes the reliability of agents cooperating with one another. This mechanism concen-

trates on the key attributes of the related agents and their relationships. We also measure and

analyze the public reputation of agents in large-scale environments utilizing a sound reputation

mechanism. In this mechanism, we aim at maintaining a public reputation assessment in which

the public actions of agents are accurately under analysis. On top of the theoretical analysis,
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we experimentally validate our trust and reputation approaches through different simulations.

Our preliminary results show that our approach outperforms current frameworks in providing

accurate credibility measurements and maintaining accurate trust and reputation mechanisms.
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Chapter 1

Introduction

1.1 Context and Motivation

Artificial Intelligence has become one of the most fundamental research areas in computer sci-

ence. One line of research in artificial intelligence is associated with coordination of intelligent

agents [6,7,9,10,17]. Coordination takes place in multi-agent systems [9,31,44,87] where dis-

tributed agents have limited knowledge about their surrounding environment; therefore, they

continuously ask other agents to obtain required information. They could also require services

provided by other (reliable and well-reputed) agents. In general, the growing popularity of

agents requires systematic coordination management that enables agents to decide about their

interacting partners and overall acting attitude. This is a main reason behind the emergence of

trust and reputation-based frameworks that facilitate agents’ coordination in multi-agent sys-

tems. Considered as agents’ beliefs about one another, reputation is highly significant in such

settings. Thus, a carefully designed mechanism is required to maintain the accuracy of this

parameter.

In this chapter, we introduce the context of our research, which is mainly about trust and

reputation in multi-agent systems. We identify the motivations, problems, and research ques-

tions that we address in this thesis. Finally, we present our summarized hypotheses, objectives,

and methodology.
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1.1.1 Agent

Agent is an intelligent entity that is programmed and equipped with variety of methods and

techniques, observes its surrounding environment, and acts according to the decisions that are

made in its control system [13,22]. A particular agent uses the built-in capabilities to decide

about the most appropriate real-time action(s). It applies reasoning techniques to analyze the

outcome of its action, acts autonomous to achieve its predefined objectives, and could cooperate

with other agents, which share some goals. In general, agents react to the environment using

their reasoning capabilities, analyze the obtained data, and react towards achieving their goals

[42]. Overall, agents are reactive, proactive and follow social interactions. They have limited

capabilities, which constrain them to coordinate with other agents to accomplish complex tasks.

1.1.2 Multi-Agent Systems

A multi-agent system is composed of multiple interacting intelligent agents [13,19,21]. Multi-

agent systems are widely used in distributed environments [11, 67]. They are also used as an

alternative to centralized problem solving, either because problems are themselves distributed,

or because the distribution of these problems between different agents reveals itself to be a more

efficient way to organize the process of problem solving. Multi-agent systems give us the possi-

bility to build artificial universes that are small laboratories for testing theories about individual

and group behaviors. These artificial universes can be used to describe specific interaction

mechanisms and analyze their impact at a global level. The entities that are represented are

usually called animates, since they are mainly inspired by animal behaviors (hunting, searching

or gathering habits).

The aim of research in multi-agent systems is to have societies of agents that are very flex-

ible and autonomous (for example, when agent-based robots are sent within an expedition and

they are required to be very independent from the instructions they could receive). Multi-agent

approach can be used for the coordination of different mobile robots in a common space. This

approach can also be seen as an efficient and modular way of programming as agents could be
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designed and programmed with different abilities, behaviors and intentions. To this end, ana-

lyzing multi-agent systems is like analyzing human or animal behaviors in the sense that they

are self-independent and their selfish actions may affect the environment in any unpredictable

way. Multi-agent systems are designed mainly with the objective of finding best social situation

for all the involving intelligent components. The main feature obtained by developing multi-

agent systems is flexibility in proactive environments. These systems also tend to be rapidly

self-recovering and failure proof, usually due to self managed features.

In multi-agent systems, a class of computational models for simulating the actions and in-

teractions of autonomous agents is developed. In such systems, game theory [3, 51, 65, 80–82],

and evolutionary programming [21, 85, 94] are used. These techniques are important because

of random distribution of agents in multi-agent systems and their independent decision making

processes. In fact, rational agents aim at reaching their predefined goals and accordingly choose

their acting strategies using their limited knowledge and capabilities. This limitation encour-

ages agents to coordinate their actions. There are different research directions that address as-

pects of coordination in multi-agent environments such as coalition formation [10,66,87,90,95]

and clustering [27, 60, 78, 104]. To investigate the rationality behind these coordinations and

how agents are involved in, we need to thoroughly address the problems of agents reliability

and how this reliability is established among agents.

1.1.3 Trust Establishment and Reputation Formation

The unpredictable behavior of multi-agent systems raises different important questions. Two

interesting issues that we are mainly interested in are the concepts of trust and reputation that

have crucial impacts on agents’ strategic decision-making. Trust has long been recognized

as a vital concept in open multi-agent systems, where agents are self-interested, diverse and

deceptive. Trust is the parameter that reflects agents’ risk level when they want to rely on the

provided information or service of other agents for the fulfilment of their own goals. Trust

is established in a mutual way between agents. It is defined with variety of meanings, but as

in [67], we denote trust as a belief an agent has that the other particular agent would accomplish
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what it promises. To this end, we define the trust as a peer-to-peer reliability estimation in which

different components are involved and might change over time and during different interaction

experiences.

Reputation is a parameter that reflects agents public reliability level in the multi-agent net-

work. Reputation is then a combination of different trust ratings which form a public opinion

about a particular agent. To this end, an agent that wants to evaluate the reliability of a particular

agent with no previous interaction can use the the agent’s reputation as a reasonable reliability

rating. As a matter of fact, in any environment populated with multiple (self-interested) com-

ponents that act independently and follow self-dedicated goals, trust and reputation assessment

becomes important in the sense that the inter-correlation of components is influenced by the

level of trust that components manage to have in a mutual way. Furthermore, in large-scale

environments (and mostly in market-based societies), reputation becomes an important param-

eter that reflects the image of a component (i.e. an agent) regarding other components in the

system. Reputation provides a form of social control, which encourages honesty in cooperative

environments. Since agents are acting in a cooperative network with dynamic behaviors, there

would be diverse opinions about a particular agent raised from different perspectives. The rep-

utation aggregates various impressions reflecting the public opinion about a particular agent.

Obviously, this value would be more accurate when there is a small diversity of opinions about

a particular agent.

The Trust Model

In the literature, the term ’trust’ has been used with different meanings. But in the context of

multi-agent systems, trust is mostly referred to as the expected reliability of a particular agent

in cooperative networks [14]. In many agent-based frameworks, interactions take place when

agents trust each other. The first attempt in computing the trust associated to agents is made by

Marsh [53]. Since then, there has been a number of other models that advance the trust com-

puting in different aspects. We mainly concentrate on the frameworks that consider multi-agent

environments [17, 40, 61]. In most of these models, intelligent agents [4, 25] are equipped with
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reasoning capabilities which influence their interacting strategies. However, these models are

not adaptable for open multi-agent systems where agents freely join or leave the network. In

ubiquitous multi-agent environment, we require more advanced trust frameworks that specifi-

cally tackle the trust evaluation problem with respect to continuous environment changes. In

this context, there have been a number of models [32, 33, 83] that to some extent address the

trust evaluation problem [84, 89, 96, 98]. We explore the characteristics of each one of these

models in detail in Chapter 2. However, all these models have one common missing aspect

which has not been addressed in any of them: the concept of effective trust adjustment after

trust evaluation. This means agents do not reconsider trust evaluation process to analyze their

evaluation accuracy. In multi-agent environments with random distribution of agents and dy-

namic changes of behaviors, trust adjustment is crucial for agents to adapt with environment

characteristics. The belief set adjustment should be fast enough to avoid agents’ misleading

in interactive environments. This issue is the main distinguishing point that advances our pro-

posed framework compared to the existing trust-based frameworks.

To this end, we characterize a well-founded trust framework (called ”ideal trust framework”

in this thesis) that is applicable to multi-agent systems to hold the following properties:

• Accuracy: The trust framework is accurate once two requirements are fulfilled:

(a) the collected data should be relevant to the trust evaluation process; and (b)

the necessary amount of data should be collected to facilitate trust evaluation.

• Rationality: Intelligent agents are supposed to be rational and an ideal trust frame-

work establishes the trust in such a way that agents utilize the framework based

on some reasoning techniques. For example, a new agent runs the trust evalua-

tion system more frequently than the one that has a consistent belief set about the

environment. However, these agents also periodically utilize the trust framework

and update their belief sets.

Rationality is considered in common agent-based architectures and therefore, all

the models that we consider in our related work develop rational behavior. But

still we highlight it as a characteristic for an ideal trust framework.
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• Adaptability: Agents require to update their belief sets with respect to environ-

mental changes to adapt with new network characteristics. This property is cru-

cial in systems that maintain business interactions. In such systems, agents need

to adapt with new changes to keep their efficiency high. For example, in business

interactive networks with diversity of behaviors, an agent might form a belief

regarding a particular service provider agent by trusting it as an optimal choice

to provide a given service. The adaptable agent should be able to recognize the

change in service provider’s attitude if it is altered. Otherwise, the selfish service

provider could increase the service fee and decrease the service quality while has

no doubt that the agent still follows the same belief about its interactive network.

• Agileness: Beyond adaptability, a trust framework is required to effectively up-

grade the belief set to the most recent information captured from the environment

such that agents are always holding the information that refer to the most recent

collected data and reflect the most recent environment changes. Such a frame-

work is more effective in decision making process regarding acting strategies of

agents.

1.1.4 Trust versus Reputation

Since we mainly focus on trust and reputation modelling in multi-agent systems, it is worth

clarifying their roles in agent-based interactions. The trust is a parameter that is mutually

established between components and imposes impact on their one to one cooperation. Trust

represents the level of reliability that agents have regarding the type and quality of information

or service that is provided by other agents [54]. Although the measured trust might not reflect

the actual credibility of agents, agents still need to evaluate this parameter to make decisions

[44, 53]. Moreover, agents utilize trust-oriented learning strategies [84] that take into account

past interactive experiences.

The reputation parameter is a factor that an agent holds as a means to attract other agents
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in order to communicate and coordinate with them. Reputation represents the level of pop-

ularity that an agent has and this value is obtained with respect to the agents truthful actions

regarding other agents in the environment [97]. Similar to trust, the obtained reputation might

not accurately reflect the real reputation of an agent in the system, but that is a valuable source

of information that agents use to make decisions. This is the reason behind the need to en-

hance the quality of the trust and reputation assessments and provide sound trust and reputation

mechanisms. As it is deduced from the definitions, we consider the reputation as the extended

form of trust in group-wise decision making process. In fact, when we analyze the reputation

evaluation and gather individuals’ ratings, we skip the details of the provided rating evaluation.

These ratings could be the trust values that agents have regarding a particulars agent. We still

consider the four factors representing an ideal trust model in any reputation mechanism that

collects the data and computes a reputation value associated to a particular agent. However,

we mainly concentrate on the public aspects of such computation and study the conditions un-

der which this data collection is performed and how the reputation mechanism functions in a

truthful environment.

1.2 Problem Statement

1.2.1 Trust Assessment

In multi-agent environments, intelligent agents get involved in continuous interactions to achieve

their goals. In an effort to realize their defined goals, agents need to make the best decisions in

their moves and apply selective strategies to facilitate their progresses. Therefore, these agents

should be equipped with a strong trust assessment protocol that is capable of estimating the

trust level of other agents. The trust level should be accurate enough that allows each agent to

identify the most reliable agents in its surrounding environment.

The trust assessment protocol should be complete to gather all the relevant factors which

influence the trust that an agent has about other agents. Failure to gather those factors would
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lead to compute a non-accurate trust value, which could explicitly influence agent’s outcome.

For instance, the incomplete trust evaluation process would miss the reliable interactive agents

and bring relatively low outcome for the agent that is looking for accurate information or high

quality of service. In systems where agents are capable of learning other’s attitudes, selfish

service provider agents could easily recognize such incomplete trust assessment procedure and

could mislead the evaluating agents to interact with them at high price but with low service

quality. Moreover, the protocol should dynamically update the agents’ belief sets to capture

new characteristics of the environment.

1.2.2 Reputation Formation

In a large-scale multi-agent system, a sound reputation mechanism is required to reflect the

public reputation of agents. This mechanism should be flexible enough to regularly get updated

and provide accurate reputation ratings. Also it should be strong enough not to get violated and

the represented data turn out to be inaccurate. This means that selfish agents may try to violate

the reputation mechanism to take advantage of the faked data that support self reputation. This

action is expected in open multi-agent networks within which the reputation plays an important

role in agents interactions.

Moreover, in interactive multi-agent environments, reputation is highly competitive be-

cause agents resort to this value as a means of ranking their interactive parties. In fact, the

obtained information regarding ones’ reputation would highly influence the decision making

process of agents that are looking for high quality of service or accurate information. To this

end, a sound reputation mechanism has to act rigorously against any sort of violation in the

collected data. Furthermore, like trust frameworks, this mechanism has to be agile in updating

the computed values to represent an accurate image of the environment.



9

1.3 Objectives

The goal of this thesis is to develop and maintain strong trust and reputation assessment pro-

cedures that optimally function in multi-agent systems with dynamic changes of environment

attributes such as agent goals, credibilities, and population. The main objectives are categorized

as follows:

• Designing and developing a flexible trust-based framework to accurately consider

the involved factors and provide an optimum (in computation and accuracy) trust

estimation process. Moreover, the agile adaptation of agents’ goals and beliefs

should be considered in this framework as the system is supposed to be highly

dynamic.

• Proposing a sound reputation mechanism to discourage malicious actions of the

agents trying to increase self-reputation level and take advantage of open multi-

agent system environment.

• Proposing a mechanism that investigates the parameters yielding optimal perfor-

mance for agents. We aim to study the cases where selfish agents could obtain

best payoffs using their decision making procedure.

1.4 Basic Assumption

In this thesis, we consider trust and reputation in different chapters and analyze their details

within different simulated environments. However, trust and reputation are strongly connected

in the sense that reputation is based on collected ratings and the provided ratings could be

considered as direct trust that agents have regarding a particular agent [6,8,9]. Therefore in this

thesis, we start the discussions by proposing a trust framework and continue by generalizing it

to a reputation system.

In the trust-based framework, we mainly focus on the details of mutual agent relationships.



10

The parameters that are involved in this framework reflect the type and strength of the rela-

tionship between two specific agents (the evaluating agent and the agent being evaluated). We

carefully investigate the data related to the previous interactions between these specific agents.

At some point, we also consider the collected data in the form of consulting reports. But overall,

the main concentration is the reliability analysis, which is maintained by the evaluators.

In the reputation mechanism, we mainly focus on the details of global reputation value

that agents hold and use as a means to represent self-status. This is a crucial factor that is

being used in enterprize environments to attract consumers. To this end, we consider a special

and concrete multi-agent system where the agents evolve as a structure hosting (web) services,

which are abstracted by intelligent agents. In this environment, agents are categorized into

consumers and providers of services. We analyze the reputation of these agents (also called

agent-based (web) services) and investigate their attitudes in representing truthful actions in

the system. The motivation behind using this specific case of multi-agent system is the need to

use specific and concrete parameters when evaluating the reputation of the system, which are

(web) services in my case. In this environment, the reputation value associated to a particular

agent is in fact the (weighted) mean value of ratings from different agents that might have

variety of impressions about this particular agent. Therefore, unlike trust, the reputation is not

from an agent’s point of view but is more general as it reflects public opinion. This value could

be used by new agents that do not have previous interactions with a particular agent.

1.5 Thesis Overview

The organization of this thesis is represented in the following. Moreover, Figure 1.1 illustrates

the sequence of chapters and their prerequisites for convenient reading.

� In Chapter 2, we present relevant literature review and related work. We split the related

work into two sections, one for trust-based frameworks and one for reputation mecha-

nisms. A discussion about these frameworks is included in this chapter. Reputation is

the context of (web) service ends the chapter.
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� In Chapter 3, we introduce our trust-based framework and discuss the algorithms to

maintain the optimal trust assessment procedure. We also discuss the implemented sys-

tem to observe the framework functionality. The proposed model is fully described and

analyzed with respect to the ideal characteristics defined in the current chapter. Further-

more, we study the effectiveness of the proposed model against conventional systems

in different environments. The objective is to clarify the cases where the accurate trust-

based model could effectively function.

� In Chapter 4, we introduce a reputation mechanism to compute general reputation value

with respect to different involving parameters. We consider a typical multi-agent system

hosting agent-based (web) services and we define communities of (web) services as

groups of (web) services with common functionalities. I consider community of (web)

services because these entities form an enterprize system where continuous interactions

are crucial for their survival in the environment. Therefore, we put the system under

a competitive reputation mechanism within which rational agents aim to achieve their

predefined goals. The objective of that is to maintain an accurate reputation system that

reflects the most recent image of agents’ opinions about service provider agents. We

implement the proposed mechanism and investigate its accuracy in a variety of settings.

� In Chapter 5, we continue the discussions about the reputation model with a different

perspective. In this chapter, we mainly concentrate on the sound reputation mechanism

and the conditions under which the malbehavior of rational agents is minimized. We

apply game-theoretic payoff analysis to increase the expected payoff as a result of truth-

ful actions. The objective is to maximize accuracy and prevent collusion, which could

temporarily increase ones reputation. We study in details the scenarios and consider

different parameters that influence agents’ reputation and identify constraints where the

malicious acts are minimized.

� In Chapter 6, we introduce an application in context of (web) services where the pro-

posed reputation mechanism could be utilized. In general, we use reputation as a means
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to enhance decision making process of the (web) service agents to maximize their per-

formance over long time interactions. We implement a multi-agent environment where

agents interact based on the proposed reputation mechanism (Chapter 4) and seek for

maximizing their payoffs. We study long-term performance of such agents where set-

tings alter according to agents’ actions and movements. We apply reputation mechanism

in this model and enhance agents’ capabilities to maintain long-term high performance.

� In Chapter 7, conclusions and future work are discussed and the contributions of this

thesis are summarized.
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Figure 1.1: Thesis chapters listed in sequence of reading.



Chapter 2

Literature Review

2.1 Introduction

In multi-agent context, trust and reputation are very close concepts in the sense that most of the

proposed frameworks analyze them both and in many cases without clear distinction. But in this

thesis, we clarify our point of view in the following. Considering a multi-agent environment

hosting rational agents, trust refers to peer-to-peer reliable interactions between two agents that

are called the evaluating agent and the agent being evaluated. Different frameworks consider

diverse approaches to address the trust evaluation problem. On the other hand, the reputation

refers to public opinion about particular agent’s reliability. The public opinion could be restored

in a central unit and disclosed to agents upon requests. But there is no guarantee on the accuracy

of the information. The obtained reputation value could be used as the expected trust value if

an agent initiates the interaction with a particular agent with disclosed reputation value.

In this chapter, we discuss different frameworks and categorize them into two sections

related to trust and reputation. Some of the reputation models consider trust assessment in their

approaches, but for representing public opinion. According to our classifications, those models

will be discussed in the reputation section.

2.2 Trust-based Frameworks

During the past few years, agent communication languages and protocols have been of much

interest in multi-agent systems. Agents are distributed in large scale networks and mutually

14
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interact to collaborate, coordinate and share services and resources with other agents. There-

fore, trust is essential to ensure effective interactions within open multi-agent networks. In the

Oxford dictionary, trust is defined as ”confidence in or reliance on some quality or attribute of a

person or thing”. In multi-agent context, an agent’s trust is a measure of the agent’s willingness

to actually do what it agrees to do. In fact, trust is a measurement of the complement of risk

level that an agent can take when it wants to interact with another agent. The trust value is used

as a means to estimate the reliability of the interactive party. This value could refer to different

aspects such as accuracy, responsibility, or honesty. The estimated value might be wrong which

misleads agents in interactive settings. Overall, trust represents the extend to which an agent

relies on another agent.

In the literature, there are different proposed frameworks that consider variety of approaches

to address the trust establishment problem in multi-agent systems. These models are aimed

at developing trust-based models to enforce reliability in multi-agent environments. To sur-

vey these models, we need to categorize them into groups that have similar assumptions. We

explore the details of these models in the rest and compare their characteristics against our

proposed idealistic trust model using the four aforementioned characteristics in Chapter 1: ac-

curacy, rationality, adaptability, and agileness.

The first group is based on direct interaction of two agents [71, 72, 88, 91]. In the frame-

works belonging to this group, the trust is only computed by information obtained from direct

interaction experience of two agents. The main idea of these frameworks is to explore details

of previous interactions and obtain required information to compute the reliability of the agents

being evaluated. The second group includes frameworks that consider the type of interaction as

a means to estimate the reliability of agents [31, 32, 73]. These models consider the interaction

domain and distinguish agents with respect to their capabilities in different domains. The third

group includes frameworks that collect information from external parties to maintain the trust

evaluation process [32,33,83]. Direct interactions (if any) are still used as a part of the process.

The proposed model in this thesis (proposed in Chapter 3) is highly relevant to the models of

this group. To this end, we explore more details about these frameworks and compare their
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capabilities in different perspectives.

We continue our discussion with detailed analysis of the relevant models that include

FIRE [32], REGRET [71], BRS [33] and Travos [83] that our model will be compared against

in Chapter 3. We implement these models in our simulated environment to compare their per-

formances with respect to different aspects. We mainly highlight their differences with respect

to the ideal trust framework’s characteristics explained in Chapter 1. For example, the BRS

system filters out outlier ratings that are provided by other agents. This leads to the model’s

low accuracy in models where malicious agents collude to broadcast misleading information.

In a setting where probability density functions are used to estimate the reputation of a selling

agent, propagating ratings provided by multiple advisors requires careful analysis. This process

of filtering and propagating ratings does not satisfy the adaptability and agileness factors of the

ideal trust framework since a group of agents could collude and propagate some misleading

ratings that distract the trust evaluation process. The Travos system uses the approach of dis-

counting the ratings provided by less trustworthy advisors. We will show that this model also

does not satisfy the agileness factor of the ideal trust framework. We highlight the advantages

and disadvantages of these frameworks and clarify the motivation of the proposed framework.

We also introduce a categorization of various features that have been introduced to make trust

models robust, and discuss the types of systems in which they have been used. The catego-

rization of different approaches provides a valuable perspective on the key challenges faced in

designing an effective trust-based system that makes use of advice from other agents.

2.2.1 Beta Distribution Model (BRS)

One of the most complete trust frameworks that we survey in this chapter is the beta reputa-

tion system [33]. This framework is among witness trust models and computes the trust value

of interactive agents trough a probabilistic model. In this probabilistic model, events occur

with respect to beta probability distribution, which is parameterized by α and β. In the prob-

ability theory, beta distribution is a type of continuous distribution which is defined on the

interval [0, 1]. Variable x denotes the probability (x ∈ [0, 1]). The probability density function
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f(x;α, β), mean μ, and variance V ar(x) of this distribution are as follows:

f(x;α, β) =
xα−1(1− x)β−1∫ 1

0 uα−1(1− u)β−1du

μ = E(x) =
α

α+ β

V ar(x) =
αβ

(α+ β)2(α+ β + 1)

In [33], authors compute the reliability of an agent by collecting information provided

by some other agents. The collected information represent other agents’ impressions about

the reliability of the agent in question. These ratings fall into discrete choices of 0 (negative

impression) and 1 (positive impression). The collected data are counted in terms of number

of positive ratings (m) and negative ones (n). In the beta distribution model used in [33],

α = m + 1 and β = n + 1 to ensure positive parameters. Therefore, the reliability of a

particular agent is considered as the expected value μ ( α
α+β ), which reflects the most likely

frequency value. In general, BRS satisfies the accuracy and rationality factors of the ideal trust

model. The reason for accuracy is the approach to aggregate positive and negative impressions.

Using BRS, an agent estimates the trustworthiness of another agent by relying on the obtained

ratings. This model together with other trust frameworks are rational since they are used by

intelligent agents that we assume rational. However, there could be some irrational models that

are not agent-based and they are out of scope of our related work.

Although BRS considers accumulated ratings in terms of suggestions from other active

agents, this approach is accurate when a certain portion of ratings points out the actual reliability

of the agent to be evaluated. However, the model fails to accurately update the trust values once

dramatic changes are applied in the system. This might occur when a group of malicious agents

collude to distribute misleading ratings. Therefore, this model does not satisfy the adaptability

and agileness factors of the ideal trust model. For example, the expected value μ could fail to

represent the reliability due to misleading ratings collected from other agents, which might not

have correct impression of the agent or provide fake information for purpose.



18

2.2.2 Travos

Travos [83] is another trust model that falls into witness trust category. This approach advances

the beta distribution model in the sense that it attempts to discard the inaccurate ratings. Doing

this, Travos is a sequence of two parts. In the first part, the reliability of the witness agent

is computed via the direct experience of interaction between the evaluating agent and witness

agent. This value is used to consider the accuracy of the provided rating in terms of witness

report. In this model, n equal subintervals between 0 and 1 are considered. This is used to

compare previous witness reports provided by the same witness agents to find out the similar

ratings. Therefore, the current rating is accurate following the beta probability density function

that is parameterized by the number of successful and unsuccessful ratings regarding previous

reports. The Travos model mainly concentrates on the consulting reports and best ways to

aggregate them for an accurate trust value. This model satisfies accuracy and rationality factors

of the proposed ideal trust model.

The second part of Travos is to update the report data set to discard inaccurate ratings. The

objective is also to rate the inaccurate witness agents in order to avoid collecting information

from them in future. Following this approach, Travos outperforms the BRS model and also

satisfies the adaptability factor. But, this model fails to recognize stochastic behavior of agents.

A rational reliable agent may change its behavior to follow its goals and therefore act selfishly.

The report provided by the witness agent influences the trustworthiness value of other agents.

Therefore, the witness agent can easily mislead the evaluator agent by providing inaccurate re-

ports. According to the system settings, it takes certain time for the evaluator agent to recognize

the inaccuracy of the provided reports from the previously trusted witness agents. Moreover,

the reliable witness agents might not have enough information to provide accurate ratings. But

in Travos, the collected data is still used for trust computation. Consequently, the Travos model

does not satisfy the agileness factor of the ideal trust model.

The BRS and Travos models are the main ones that our personalized model will be com-

pared to in Chapter 3 because all the three approaches use the beta probability density function.

In the rest of this chapter, we also introduce other related models. The categorization of these
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approaches will provide a valuable perspective on the key challenges faced when designing an

effective approach to cope with the problem of unfair ratings. All the remaining trust models

studied in the rest of this chapter do not satisfy the agileness factor of the ideal trust model.

They do not quickly capture environmental changes. Some of them also fail to adapt with new

agents’ attitudes and therefore do not satisfy the adaptability criteria as well. But all the se-

lected trust models are aimed at computing an accurate trust value and rational agents could

use them to estimate the reliability of the interacting agents.

2.2.3 FIRE

The FIRE model [32] is a witness-based trust model that collects the required information

from other agents in the form of advisors. The collected data is used by the evaluator agent to

compute the trustworthiness of a particular agent. The computed trust is used as a means for

further interactions with the agent. Overall, the FIRE trust framework is simple and satisfies the

accuracy criteria. However, there are a number of missing details, which leads to weak results

in some cases. For instance, the data collection process, advisor selection, and the belief set

update and its influence on advisor set management could simply fail to accurately function in

highly dynamic multi-agent systems. All these operations influence the integrity of the model

in developing a sound trust-based framework that is applicable to multi-agent environments.

In a model based on witnesses, there is a possibility for witnesses to refuse sharing their

experiences. Therefore, the authors in [32] propose a method called certified reputation. This

method consists in adding an additional factor for defining the trustworthy of referee agents

which are introduced by the target agent. The most important aspect of this method is that an

agent quickly evaluates the target agent’s trust value, because of the small number of interac-

tions needed while it does not create the trust graph. In some cases, target agents propose some

colluding referee agents to mislead the evaluating agent. Thus, in these cases the final trust rate

would be affected by non-reliable information about the target agent. Essentially, the agents

beliefs about the target agent will not be true, therefore the evaluating agent has to evaluate the
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referee agents, although it will cost an extra computational overhead for the method. Consider-

ing the characteristics of the FIRE model, equipped agents are rational and adaptable, but they

fail to be accurate and agile in all situations. In our implemented environment explained in

Section 3.6 (Chapter 3), we compare the FIRE model along with other models that take similar

approach against the proposed trust framework.

2.2.4 Reinforcement Learning Model (RL)

The reinforcement learning model [84] is a trust model based on the reinforcement learning

technique. This model falls into the interactive trust category, which is based on information

collected from past direct experiences. This method of learning is used to select best interac-

tive party in the multi-agent environment. From service consumer agent’s perspective, the RL

model enhances the obtained profit in terms of service quality, whereas from service provider

agent’s perspective, the RL model enhances the efficiency in balancing the service fee and

quality that yield best outcome. The trust update procedure used in the RL model is inspired

by a trust framework proposed in [100]. The update process is maintained after comparing

the obtained information about the reliability of a particular service provider agent against the

obtained service quality from the same agent. In the RL method, there are some certain thresh-

olds set to categorize service provider agents to trustworthy and untrustworthy agents. The

service consumer agents do not interact with the untrustworthy agents and among the trustwor-

thy ones, agents with the highest values are selected as interaction option. The problem with

this approach is that a particular service consumer agent can easily lose the trust in a partic-

ular service provider agent and avoid interacting with it afterwards. In the RL model, agents

attempt to use the collected information at best to compute the trust values, but do not quickly

recognize the environment changes and adapt with new settings. Moreover, the information is

based on consumer agent’s personal interaction experience, so the new entry agent has lack of

knowledge about different service provider agents. To this end, the agents equipped with the

RL model only satisfy the rationality characteristic of the ideal trust framework. This model

is extended in [68] to include information exchange between evaluating agents. The collected
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data is also categorized into trustworthy and untrustworthy using the same learning process.

Another framework that uses reinforcement learning is the work done in [38]. In this paper,

authors propose a model to identify the trustworthy agents. The model enhances the decision

making performance of the agents so that the agents equipped with this model can selectively

interact with the others. The novel approach in this framework is modelling trustworthy agents

based on their outcomes from taking different actions while they interact with other agents.

This is done instead of tracking different properties regarding prior interactions. Authors claim

that the system accurately functions when agent’s actions are clearly identified. But the preci-

sion metric that is built in this framework could be misplayed by colluding agents and deviate

from the primary concern of trustworthy selections.

2.2.5 Other Conventional Trust Computation Models

In multi-agent networks, the trust is generally compared based on collected information either

from past experience or from other agents. Most of the proposed frameworks have similarity

in the approach they use to address the question. For instance SPORAS [101] is a trust-based

system, which performs simple rating. This system suffers from rating noise because it treats

all ratings equally. In addition, SPORAS is a centralized approach so it is not suitable for open

systems. This system fails to consider the adaptability and agileness factors of the ideal trust

system.

Yu and Singh [97] by applying social network concepts in multi-agent systems have pro-

posed a trust model called Referral. In this framework, witness agents use message passing

method for transmitting information. Doing so, they retrieve ratings through social networks.

This aspect of the referral model is similar to the role of links that search engines use to obtain

a web page while approaching another source of information.

The idea of witness reputation has been used by Sabater who has proposed a decentralized

trust model called REGRET [71]. REGRET uses the reports from the witnesses in addition to

the technique based on direct interaction experience. This work is sensitive to noise and thus

vulnerable to fake information known as distractions made by some malicious agents. In [88],
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Wang and Singh have developed an algebraic method for aggregating trust over graphs under-

stood as webs of trust. They state that current approaches based upon combining trust reports

tend to involve ad hoc formulas. In their work, they have developed a principled evidential

trust model that would underlie any multi-agent system, where trust reports are gathered from

multiple sources. Regarding ad hoc formulation, a work similar to Wang and Singh’s one has

been done by Velleso and his colleagues who assign trust levels in ad hoc networks [86]. The

key aspect of their work is its reference to human concept of trust. They also use the recom-

mendations by trustworthy agents in addition to self direct experience. They tried to balance

the recommendations regarding recency relevance and relationship maturity. However, agents

in this framework do not have reasoning capabilities. Moreover, they do not have policies for

dealing with malicious agents.

2.2.6 Trust Model with Statistical Foundation (TMSF)

In the work done by Shi et al. [79], a trust model has been introduced to assist agents’ deci-

sion making in order to predict the likely future behavior by analyzing the past behavior. The

authors have mostly worked on the environment characteristics, for example the space of pos-

sible outcomes has been studied. They state that it is crucial to identify the space of possible

outcomes, which determines the nature of the associated trust model. The notion of discrete

categories used in this model gives more flexibility to the ratings as feedback in order to get

more accurate direct interaction estimation. However, they have not taken into account the

measurements, which would unbalance the trust estimation and decision making that are solely

based on the previous interactions. Therefore, agents equipped with TMSF trust model only

satisfy the rationality criteria.

2.2.7 Discussion on Trust Frameworks

In Chapter 1, we categorized four criteria that represent an ideal trust framework: accuracy, ra-

tionality, adaptability, and agileness. In this chapter, we surveyed a number of trust frameworks
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that are developed in the context of multi-agent systems. We discussed their methodologies,

highlighted their advantages, and criticized their weaknesses with respect to presented ideal

trust framework’s characteristics. For example, the FIRE model [32] is an accurate and ratio-

nal framework, but it fails to be adaptable and agile in highly dynamic environments. This is

due to the model’s approach in computing trust and the aggregation technique. In FIRE, the

recent dramatic changes do not impose big affect on the computed trust values and therefore,

the equipped agent continues relying on an agent that has recently changed its goal and is not

reliable anymore. This model recognizes the changes fairly late and the equipped agent un-

dergoes a number of interactions with unreliable agents to update its belief set. Adversely, the

REGRET model [71] is adaptable, but not accurate to some acceptable extent. The REGRET

model satisfies the adaptability criteria thanks to the approach that the method takes by de-

veloping images that reflect agents’ impression about other agents’ attitudes. The images are

transferred to the other agents and therefore, recent changes in the environment are recognized

and properly broadcasted. However, this approach fails to accurately compute the trust values

because the aggregation function does not consider all relevant data. In this model, the trust-

worthy agents that are not well-connected with other agents (because they are new comers) do

not succeed to interact with many agents and therefore it takes relatively long time for them to

become well-known. Adversely, agents that are well-connected with other agents can collude

to propagate unified images regarding their reliability and stay well-known in the system.

Among the aforementioned trust frameworks, the Travos model [83] outperforms the other

models since it accurately computes the trust values and the equipped agents rationally use the

model. Moreover, this model attempts to adapt agents’ belief sets with recent changes of the

environment. The Travos model is relatively complete and considers all related parameters that

influence the trust values of the agents. However, the model fails to recognize dramatic changes

in the environment. For instance, consider a trusted service provider agent in a system. Due to

some changes in the surrounding environment of the service provider agent, this agent is not

able to provide the service with the same quality as before whereas the agent is still considered

as a trusted service provider. Consequently, the agent can change its goal and based on its prior
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Table 2.1: Trust models classifications with respect to characteristics of the ideal trust
framework.

Models Accuracy Rationality Adaptability Agileness
BRS

√ √

Travos
√ √ √

FIRE
√ √

RL
√

SPORAS
√

Referral
√ √

REGRET
√ √

TMSF
√

trust impression that it has among other agents collects a high number of service fees and leaves

the environment. This dramatic change of the agent is not recognized with other agents. In fact,

the reluctance of the service provider agent in service response could be recognized by some

interacting agents and they could consequently warn other agents about this particular agent’s

suspicious action.

Table 2.1 classifies the aforementioned trust models with respect to the ideal trust frame-

work’s criteria. As it is clear from the table, there is no any trust framework that satisfies all the

criteria. That means there is no such a comprehensive framework that can accurately compute

the trust, and adapt with the environment as well as quickly take actions towards updating the

belief sets to keep most reliable impressions about the multi-agent environment. Consequently,

there is a need to have a system that accurately functions in multi-agent system with dynamic

changes in agents’ goals. A robust system needs to be designed that can manage the trust com-

putation of such environments in long term interactions. To achieve this objective, we propose a

trust framework in Chapter 3 that is aimed at satisfying all the criteria and overcome the already

mentioned problems.

2.3 Reputation-based Frameworks

In the literature, the reputation mechanisms are mostly applied to large scale multi-agent sys-

tems, which host numerous interactive agents that seek to find the highly reputed agents to

interact with. As mentioned before, the trust and reputation are very close concepts in the sense
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that in most frameworks both concepts are analyzed and addressed without a clear separation

line. In general, the reputation refers to public opinion about a particular agent and the trust is

a reliability that is measured by an agent regarding others. In the following, we continue the

survey by presenting different models that compute agents’ reputation values. Since the data

aggregation processes are very similar, we do not repeat the same analysis in this chapter, but

we investigate the system integrity and accuracy in long-term interactive networks. We mainly

concentrate on the techniques that guarantee long-term effective reputation management sys-

tem.

Unlike trust frameworks, we do not categorize the reputation models against ideal repu-

tation system characteristics. The reason is simply because the same set of criteria that we

mentioned for trust frameworks could be applied to reputation assessment systems. Our con-

cern in reputation systems is mainly establishing a sound and long-term secure mechanism

allowing active agents in a dynamic multi-agent environment to achieve their goals. We gener-

ally aim at advancing the reputation mechanisms to function accurately and safe in long term

interactions. We go beyond the computation problem, which was our main concern in trust

frameworks. We would like to maintain a sound and secure reputation system within which the

accuracy is achieved via provided incentives to the interacting agents. This point of view is new

and does not overlap with the target of the related works that concentrate on addressing the rep-

utation mechanism. Consequently, we discuss different reputation frameworks as well as their

characteristics. We continue with highlighting the needs of an efficient reputation mechanism

that last long enough in a multi-agent system with dynamic behaviors.

2.3.1 Bayesian Network Model

The Bayesian network model [89] is an interactive/witness reputation model in which service

provider’s behavior is analyzed in different aspects such as download speed, quality, and type.

In this model, a naı̈ve Bayesian network represents conditional dependencies between the relia-

bility of the service provider and the analyzed aspects. Therefore, each service consumer agent

constructs a naı̈ve Bayesian network regarding each service provider agent. The user might
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get access to the naı̈ve Bayesian network constructed by other agents in case it does not have

enough information about the particular service provider. In this case, the evaluating agent con-

siders the reliability of the recommender in its decision-making process. The reputation values

are continuously updated using RL model’s formulation [38].

The Bayesian network model is constructed based on the similarity of the service consumer

and provider agents and their preferences in interactions. This approach in unsuitable in the

cases where the preferences of the recommender and evaluator agents do not perfectly match

and the collected information does not accurately represent the trustworthiness of the service

provider agent. In fact, this model fails to accurately combine the obtained data when the

recommenders had weak interacting relationship with the particular agent under study.

2.3.2 Weighted Majority Algorithm (WMA)

The weighted majority algorithm is a discrete algebraic method [98] that uses Dempster-Shafer

theory [15, 76] to compute the trust value of agents. This approach falls into witness report

category. The method is based on three parameters: belief (b), disbelief (d), and uncertainty

(u) that sum up to 1. An orthogonal sum function is defined in this method that aggregates the

parameters to combine impressions of different witness ratings. In WMA, there are assigned

values for witness agents which reflect their reliability from evaluator agent’s point of view.

These weights are assigned by the evaluator agent and updated due to reliability changes of the

witness agents.

In [97], the weights are increased and decreased based on their positive or negative in-

fluence in correct reputation evaluation maintained by the evaluator agent. This algorithm is

inadequate since the evaluator agent might unfairly decrease the weights when it does not have

enough information about the provider agent. There is no methodology defined to fix the mis-

taken weight updates. Additionally, the witness agent would not get the chance to increase its

associated weight once been decreased. The method does not characterize a realistic multi-

agent environment where agents dynamically change their acting strategies.



27

2.3.3 Cluster Filtering Approach

Cluster filtering approach [20] is another witness trust-based mechanism that mainly concen-

trates on discarding inaccurate ratings to compute a general overview regarding a particular

agent’s reputation. In this model, a collaborative filtering technique [1] is used to recognize the

most trustworthy agents for the evaluating agent. Using cluster filtering approach, a particu-

lar evaluating agent divides its surrounding agents into high and low rating clusters. The high

rating cluster represents reports with relatively high inaccuracy and therefore are discarded.

This approach also considers most recent reports to avoid confusion in clustering. This model

addresses the agileness of the reputation computation, but the whole technique does not accu-

rately function in some situations where multi-agent network hosts agents with rapid change of

behavior.

In [20], the author concludes that by controlling anonymity, the inaccurate witness reports

cannot be minimized because of collusion that could be established between the agent to be

evaluated and the witness agent. Moreover, this framework works with higher efficiency in

large networks where agents’ relocation is not highly considered. The concept of collusion

emerges when agents act in an open environment and individuals by default do not have full

knowledge about their surrounding environment and agents might expect better outcome by

colluding with other agents. This issue of collusion is fully analyzed in Chapter 5.

2.3.4 Robust Reputation System for Mobile Ad-hoc Networks (RRS-

MAN)

In [11], authors propose a robust reputation system for mobile Ad-hoc networks. This system is

based on distributed individuals and the objective is to handle false disseminated information.

In this model, agents have a belief set regarding the reliability and public reputation of other

agents. The reliability is used as the probability that the agent will provide truthful information.

The reputation reflects agent’s influence in decision making maintained by the agent that holds

this information. This model associates different ratings for the collected data and therefore,
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categorizes the surrounding agents in its belief set. To handle false information provided by

other agents, RRSMAN updates the reputation ratings with respect to their accuracy in com-

parison with other random trusted advisers. The collected data from an agent is considered

accurate if the difference with the held reputation is less than a deviation threshold. In the

RRSMAN model, the collected data are investigated in the order they are received. This could

decrease the accuracy of the model in cases where a high load of non-relevant data needs to be

analyzed where an important evidence of environment changes is reported. Furthermore, the

time discount factor is not considered in this model and therefore, old information are treated

the same as new ones. In open multi-agent environments with dynamic behavior changes, this

approach quickly fails since the used approach in collecting data fails in stochastic environ-

ments that host agents with different ranges of behaviors.

2.3.5 Discussion on Reputation Frameworks

In this section, we categorized some reputation frameworks that mainly focus on reputation

computation and the ways to keep it accurate. The attempts to compute such a value is similar

to the ones we discussed in trust frameworks. This is the reason we do not go into further

details about comparing different approaches of aggregating some collected data. We would

like to highlight the fact that in multi-agent systems there are rational agents that by default

follow their goals and they could take actions that benefit themselves whereas others undergo

some payoff loss. For example, in an environment where agents exchange services based on

some fees, the goal of the service provider agent could be to charge as many agents as possible.

To achieve this goal, the agent needs to maintain a high reputation value to absorb other agents’

attentions. In such a system, if there is a way to claim high reputation, the rational service

provider agent would resort to any way to maintain it. Consequently, the reputation should

be competitive and the reputation mechanism should be robust against malbehavior of agents

to mislead the environment with fake reputation values. Moreover, the reputation mechanism

should last long and this is fulfilled when such a mechanism can update itself with respect to

dynamic change of environment.
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Considering the related work, we feel the need of a robust mechanism that imposes in-

centives in such a way that malicious behavior of agents are minimized. In general, we need a

mechanism to maintain accuracy of the reputation system by preparing a situation within which

agents seek maximum payoff by acting truthfully and compete for high reputation rather than

colluding for fake reputation values to temporary increase their reputations. Chapter 4 is asso-

ciated to propose such a reputation mechanism that its objective is to tackle the incentive-based

reputation assessment problem. Chapter 5 and 6 are also about a robust reputation mechanism

which is claimed to be sound and secure in long term interactive interval. The combination

of these three chapters develop a complete reputation model that could be implemented in

multi-agent environments where there is a need to cope with malicious agents and constrain the

accuracy of the network and safety of the interacting agents’ transactions. The structure used in

these chapters is the network of web services that could be also grouped together as community

of web services. The rational behind the use of this structure is the enterprise system of web

services and their rational activities while exchanging services between one another. Moreover,

web services (that are attached to agents as web service agents) compete to serve their services

and obtain utilities that could be in the form of service fee or any other sort of payoff. We

explore more details about this structure in the following section.

2.4 Web Service Applications and Discussions

Networks of web service agents are typical examples of multi-agent environments that run

continuous business interactions through service exchange. In this context, the reputation man-

agement has been intensively stressed [35,41,54,91] aiming to facilitate and automate the good

service selection. In [77], the authors have developed a framework aiming to select web ser-

vices based on the trust policies expressed by the users. The framework allows the users to

select a web service matching their needs and expectations. In [52], the authors proposed to

compute the reputation of a web service according to the personal evaluation of the previous

users. In general, the common characteristic of these approaches is that the reputation of the
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web service is measured by a combination of data collected from users. To this end, the credi-

bility of the user that provides this data should be taken into account. There should be a mech-

anism that recognizes the biased rates provided from the users and accordingly updates their

credibilities. If the user tries to provide a fake rating, then its credibility will be decreased and

the rating of this user will have less importance in the reputation of the web service. In [57],

authors have designed a multi-agent framework based on an ontology for Quality of Service

(QoS). The ontology provides a basis that allows the providers to advertise their offerings, the

users to express their preferences, and the ratings of services to be gathered and shared. The

users’ ratings according to the different qualities are used to compute the reputation of the web

service. In [74, 75], authors believe that selection process should be consumer-oriented and

context-dependent. But to avoid misleading from diversity in context and satisfaction criteria,

authors propose a model that captures subtle details using ontology. Furthermore, liars could

be detected by investigating their prior experiences and getting filtered during service selection

process. In [35], service-level agreements are discussed in order to set the penalties over the

lack of QoS for the web services. In general, in all the mentioned models, web services are

considered to act individually and not in collaboration with other web services. In such sys-

tems, the service selection process is very complicated due to the relatively high number of

services in the network. Furthermore, web services can easily rig the system by leaving and

joining the network when they have incentives to do so. For example, when their reputation is

fall off for some reason, which is a rational incentive for such web services that manage to start

as new once they have shown a low efficiency. Meanwhile, it is hard to manage the huge num-

ber of data in web services settings. Considering these inefficiencies, authors in [49] highlight

the concept of gathering web services together into communities. Communities are in general

formed to get stronger and more publicized in the system, so they do not resign and register

as new. In such a methodology, users interconnect with the community as the service provider

and there would be a web service assigned through the community.

Regarding the aforementioned issues, there have been some proposals that try to gather web

services and propose the concept of community-based multi-agent systems (CWSs) [16,26,42].
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In [16], authors propose a reputation-based architecture for CWSs and classify the involved

metrics that affect the reputation of a community. They derive the involved metrics by process-

ing some historical performance data recorded in a run-time logging system. The purpose is

to be able to analyze the reputation in different points of views, such as users to CWSs, CWSs

to web services, and web services to CWSs. The authors discuss the effect of different factors

while diverse reputation directions are analyzed. However, they do not derive the overall rep-

utation of a CWS from the proposed metrics. Failing to assess the general reputation for the

community leads to failure in efficient service selection. Moreover, authors assume that the

run-time logging mechanism (the logging file, which holds the feedback submitted by the ser-

vice consumers) is an accurate source of information. In general, in open reputation-feedback

mechanisms, always the feedback file is subject to be the target by selfish entities. To this end,

the feedback mechanism should be supervised and its precise assessment should be guaran-

teed. In [42], authors have proposed a framework that explores the possibilities that the active

communities act truthfully and provide their actual information upon request. This method is

related to the ideas proposed in this thesis in the sense that the communities are provided with

the incentives that push them to act truthfully. In [26], a layered reputation assessment system

is proposed mainly addressing the issue of anonymity. In this work, the focus is on the layered

policies that are applied to measure the reputation of different types of agents, specially the new

comers. Although, the proposed work is interesting in terms of anonymous reputation assess-

ment, the layered structure, because of its rigid hierarchical organization, does not optimally

organize a community-based environment that gathers autonomous web services. Moreover, as

claimed by authors, ”the computational expenses seem to be relatively high”.



Chapter 3

Trust-based Framework

3.1 Background

As discussed in previous chapters, the trust issue is application-dependent. In most of multi-

agent environments, there are numerous agents that continuously interact with one another with

respect to the trust they have regarding each other. Although in repeated interactions, agents

form a history of interactions that helps them address the trust evaluation problem (interactive

trust category), in many cases agents lack enough information required to compute the trust

value of others (witness trust category). We consider a comprehensive approach that is mixed

of both cases (where agents have or lack the required information to compute trust value of other

agents) in the sense that we carefully analyze the history feedback and collect the required data

from environment in the form of witness reports. So we address the trust estimation problem

with a combination of direct and indirect trust evaluations.

The proposed trust framework is based on collected information from inside (belief set and

the interaction history) and outside (witness agents), which is mostly the core of the witness

trust category in the literature. We implement a comprehensive trust assessment mechanism,

which effectively aggregates the collected data and produces the most efficient results. More-

over, we apply a maintenance mechanism to reconstruct the belief set based on the obtained

experiences. The maintenance part is new in trust models in the sense that it accounts for quick

changes and modifies the belief set according to the obtained experiences via direct interactions.

We investigate the characteristics of the proposed trust framework in different implemented en-

vironments.

32
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3.1.1 Motivating Example

We motivate our approach with an example. Consider two agents Aga and Agb that are active

in the environment. These agents have already interacted with each other in the past. These

interactions could be named as information or service exchanges. After each interaction, agents

obtain a feeling on the quality of the interaction. For example, if the provided information by

Agb was useful, Aga obtains a positive view regarding Agb. Likewise, if the provided service by

Agb was not as promised, Aga obtains a negative view regarding Agb. Over time and continuous

interactions, Aga rates the credibility of Agb with respect to the direct experience that Aga have

had with Agb. There is a similar process for Agb and any other agent.

Trust models using direct experience need long term of interaction to reach a stage that

agents can evaluate trust level of others. To this end, if agent Aga thinks its previous interac-

tions could not be the perfect source of information to make a decision about Agb’s trust level, it

might request some other agents to reveal their credibility rate (or estimated trust value) regard-

ing Agb. This is done by moving to the second level of evaluation process [6, 32], asking other

agents that are known to be trustworthy (these agents are called trustworthy agents). However,

there is a problem if these trustworthy agents are not able to report on the agent being evaluated

(Agb). Therefore, in our proposed framework, we use trustworthy agents together with referee

agents that are proposed by the agent Agb. Figure 3.1 illustrates this situation by using agents

in different groups. The consulting agents are either known by Aga to be trustworthy (we call

these agents trustworthy agents) or known by Agb and have been introduced by this agent to

report on its trust level based on their past experience (we call these agents referee agents).

Consequently, we distinguish the community of trustworthy agents from the community of

referee agents.

In the proposed framework, the consulting agents are supposed to reveal the trust value of

the agent Agb with their own evaluation perspective. Although the provided information by

the consulting agent Agc helps Aga analyze the trust value of the Agb, this is considered as an

interaction done between agent Aga and the consulting agent Agc. In this case, Aga can obtain

an overview on the credibility and accuracy of the consulting agent. In fact, this would help
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Figure 3.1: Overall trustworthy and referee agents network topology.

Aga to also stay updated on the credibility of its surrounding agents.

In our approach, we propose a maintenance algorithm that helps Aga update its belief set

regarding the credibility of the consulting agents that provide information for some different

reasons. In the maintenance process, the suggestions provided by other agents are compared

with the actual behavior of the new agent in direct interaction.

3.1.2 Application Discussions on the Proposed Approach

Several trust-based architectures exist in the literature. In the context of service computing, a

consumer agent maintains trust only based on its history, even there might be no interaction

recorded. Using this model, the consumer agent selects some providers that look trustworthy.

However, this can negatively affect the decision that the agent can make. Next, the consumer

interacts with the provider agent and evaluates the actual quality of the provided service and ac-

cordingly records the evaluation ratings in its history. In an alternative scenario, the consumer

consults with some other agents and evaluates the credibility of the evaluated agents by com-

bining the collected information from consulting agents. In this case, the consumer requires

applying learning methods to update the model it is maintaining for the trust evaluation. Our

approach handles both of these scenarios.
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3.2 Direct Trust Evaluation

During the past couple of years, agent communication languages and protocols have been of

much interest in multi-agent systems, where agents are distributed in large scale networks and

interact to collaborate, coordinate and share services and resources. Trust is then essential to

make such interactions within open multi-agent systems effective [16, 77, 96]. An agent’s trust

is a measurement of the agent’s possibility to actually do what it agrees to do. Attempting

to maintain a trust-based approach, different frameworks have been proposed to represent and

assess the trust agents have in one another. As discussed in Chapter 2, the most recent research

proposals in trust models for multi-agent systems are as follows: (a) interaction trust, based on

the direct interactions of two parties [88, 91]; (b) trust based on the type of prior interactions

[31,32,73]; (c) witness reputation based on certified (and encrypted) references obtained by the

agent to be evaluated after interacting with other agents. These references are then made public

to any other agent that wants to interact with this agent [31, 33, 49, 71, 83]; and (d) certified

reputation, based on references from other agents detailing a particular agent’s behavior [6, 31,

32].

The proposed frameworks objectively focus on collecting some parameters that may con-

tribute in the trust assessment procedure. The aim is to collect reliable information leading to

an accurate trust assessment process. Since agents might be selfish, receiving fake information

by particular agent(s) is always possible. This problem does exist even when a certified repu-

tation [31] is provided by the agent to be evaluated. In this case, the final trust rate would be

affected by non-reliable information and eventually the agents’ perception of their surrounding

environment will not be accurate. Generally, these frameworks are not suitable when the en-

vironment changes dynamically because they fail to quickly recognize the recent improvement

or degradation of agents’ capabilities as in dynamic environments these agents tend to change

their goals and behaviors. To overcome this problem, some methods have been proposed to

capture the recent changes in the environment [49]. In these frameworks, a retrospect trust ad-

justment mechanism is proposed to reconsider the trust evaluations that have been performed
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in the past to learn how to select better witness agents. Although the mechanism is novel in

this domain, its complexity is a considerable issue. Moreover, the applicability of the proposed

framework is vague in the sense that the retrospect mechanism does not follow a systematic

execution process that enhances the agents’ accuracy.

The framework we propose is built upon a model in which a set of trust meta-data is intro-

duced to define the trust level of contributing agents [6,8,16,49]. The objective is to overcome

the aforementioned limitations by proposing a comprehensive framework called CRM [46]

(Comprehensive Reputation Model). The CRM model is aimed at satisfying the four criteria

we mentioned in Chapter 1 to maintain a complete trust framework to be used in multi-agent

environments. In this framework, agents interact and rate each other based on previous inter-

actions (either satisfactory or dissatisfactory). The obtained ratings are collected to assess the

trustworthiness of a particular agent. To be self-contained, we also consider how agents com-

municate to exchange ratings. Inter-agent communication is regulated by protocols (shared

amongst agents and thus made public) and determined by strategies (internal to agents and thus

private). Using this framework, agents are capable of evaluating the trust level of other agents

that are not known (or not very well-known) by collecting some relative information, either

from their interaction history or from consulting other agents that can provide their sugges-

tions in the form of ratings. To express the efficiency of the proposed framework with respect

to our aforementioned ideal trust framework’s characteristics, we discuss in more details the

performance of the CRM considering accuracy, scalability and applicability. We analyze the

scalability of the system because CRM is capable of handling the large scale systems. But this

cannot be considered as an ideal trust model’s characteristics in the sense that a model could be

highly efficient in an environment where scale is not a point of interest. Moreover, we explore

more details about the applicability of the CRM model to highlight its strengthen as a trust

model. More details about CRM’s ability to satisfy ideal trust model’s criteria are discussed in

the implemented environment in Section 3.6.

CRM’s Accuracy: In general, CRM is based on collecting information before making

decisions. The idea of consulting other agents originates from the fact that in social networks,
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agents assess diverse trust levels for other agents depending on their different experiences of

direct and indirect interactions, and thus, an evaluator agent can balance the trust assessment

process by considering different factors. In this model, the evaluator agent is referred to as the

trustor agent and the agent to be evaluated is referred to as the trustee agent. In the evaluation

process, the trustor may ask some other agents to report on the trustee. These interfering agents

are basically divided into two groups: (1) well-known agents by the trustor agent (so-called

trustworthy agents); and (2) those introduced by the trustee agent (so-called referee agents).

CRM reaches acceptable accuracy because it collects the information from the agents that are

considered the most appropriate sources. The potential aim is on updating the consulting agents

to only keep the most accurate ones (i.e. the most trustful). The structure of information update

approaches a stable situation wherein the trustor agent received accurate information from the

surrounding agents and continuously updates its surrounding environment with respect to the

changes in agents behaviors and goals.

CRM’s Scalability: In general, a system is considered scalable when over the population

expansion, the complexity does not affect accordingly. In the structure that defines the CRM

framework, the scalability is considered at best. This is claimed due to the fact that enlarging

the network does not affect the fact that the trustor agent uses a limited number of consulting

agents. Agents use their historical information and do not initiate a new process of information

search upon every request. Therefore, in case of increasing the agents to hundreds or thousands,

the process of evaluation does not change. But the knowledge over the environment is reduced

which makes the agents to maintain interactions with new agents more rapidly. The trustor

agent in this system considers its history of interactions and accordingly rates the importance

of the information provided by the consulting agents. Moreover, the extendable social network

would increase the accuracy of agents by since the new source of information are needed.

CRM’s Applicability: It is worthy to discuss the applicability of the proposed model. In

fact, in distributed multi-agent system (for example distributed agent-based web services and

trading agents in e-commerce settings) the proposed framework is applicable. However, what

makes the proposed model essential in these environments is its sensitivity to obtain accurate
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information and its capability to survive in dynamic environments. In fact, all the systems

that involve multiple components, which require to exchange information need to establish a

comprehensive and adaptable trust framework to guarantee the safety of information retrieval.

The off-line evaluation adjustment made by the trustor after a period of direct interaction

with the trustee is the main contribution of our proposed framework. The trustor does this in

order to adjust the accuracy of the consulting agents (i.e. trustworthy and referee agents). In the

off-line process, the suggestions provided by other agents are compared with the actual behavior

of the trustee through direct interaction. The trustor will update its beliefs about the consulting

agent with respect to the accuracy and usefulness of the provided information through different

trust evaluation procedures. By doing this, more accurate ratings about the other agents will

be gradually propagated throughout the environment, which provides a better trust assessment

in the CRM model. In off-line process, the maintenance mechanism is designed such that it

prevents collusion performed between the trustee and the referee community. In the off-line the

consulting agents encounter the trustor agent and for not being accurate are getting penalized.

Therefore, to attract the trustor agent, they need to provide their accurate information. We have

analyzed the impact of the off-line process from different points of view and compared the

system’s efficiency with some other models.

The remainder of this chapter is organized as follows. In Section 3.3, we present the spec-

ification of agents interaction system together with the trust computing mechanism. Section

3.4 focuses on the propagation of trust through a social network and defines our framework

that combines trustworthy and referee agents as reporters. Afterwards, we describe and discuss

the details of computing the trust in our combined framework. In Section 3.5, we perform the

maintenance that typical agent makes after a period of time since the interactions have been ini-

tiated. In Section 3.6, we outline the properties of our model in the experimental environment,

present the testbed and compare the simulation results of the CRM model with the results of

other well-known trust models in terms of efficiency in reputation assessments. We also dis-

cuss the features of the CRM model and its efficiency, particularly in dynamically changing

environments. Finally Section 5.9 concludes the comprehensive trust framework.
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3.3 Trust Evaluation Environment

3.3.1 Interaction System Structure

In this section, we define the communication messages the agents exchange during the trust

evaluation process along with the corresponding dialogue game rules.

Definition 3.1 A communication message is a tuple 〈CType, CV alue,Agx, Agy,M, t〉, where

CType (CType ∈ {Request, Reply}) indicates whether it is a request or reply commu-

nication message; CV alue (CV alue ∈ {Information,Refuse,Not Have}) represents

the type of the message as requesting information in case of initiating the communication

(Information), refusing to reveal information (Refuse), or not having the information in

case of replying to a request message (Not Have); agents Agx and Agy are respectively the

sender and receiver of the message; M is the content of the message and finally t is the time at

which the message is sent.

Let TAga be the set of all Aga’s trustworthy agents and T sAgb
Aga

⊆ TAga be the selected

trustworthy agents Aga (the trustor) uses to evaluate Agb (the trustee). The selection of trust-

worthy agents is upon need and thus would differ from evaluation to another with respect to

the interaction history between the trustor and trustee. In general, the most trustworthy agents

could be a reasonable idea (ranking the trustworthy agents and selecting the first 3 in case Aga

would like to consider 3 in each consulting agents). The set of selected trustworthy agents is

subject to continuous update with respect to environment changes. This issue is discussed in

more details later in this section. To request information, Aga uses the communication mes-

sage 〈Request, Information,Aga, Agt1, T rust(Agb), t0〉, which means Aga at time t0 sends

to the trustworthy agent Agt1 (Agt1 ∈ T sAgb
Aga

), a request for information (Information) re-

lated to Agb’s trust. Consequently Agt1 replies to the message by one of the following choices:

1) 〈Reply, Information,Agt1, Aga, Information(Agb), t1〉;

2) 〈Reply,Not Have,Agt1, Aga, ∗, t1〉; or
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3) 〈Reply,Refuse,Agt1, Aga, ∗, t1〉

where t1 > t0. In the first choice, Agt1 replies by sending to Aga the relative information (trust

rating and the number of direct interactions between Agt1 and Agb) about the credibility of

Agb. In the second choice, Agt1 informs Aga that it does not have any information regarding

the credibility of Agb (∗ represents empty message). Finally, in the third choice, Agt1 refuses

to reveal the requested information to Aga. There is a chance that Agt1 replies with Not Have

reply type in order to hide its refusal of providing information. Such cases are among the sit-

uations that Aga would consider while adjusting its beliefs about the accuracy of the provided

information. Consequently, the non-accurate agents would be penalized in the sense that a trust-

worthy agent for Aga may not be considered in TAga anymore. These details are out of scope

of this framework and here we only focus on recognizing and thus avoiding the non-accurate

agents. The sequence of these request and reply messages represents a dialogue game that we

formalize by the following rule, where ⇒ is the implication symbol:

〈Request, Information,Aga, Agt1, T rust(Agb), t0〉 ⇒

〈Reply, Information,Agt1, Aga, Information(Agb), t1〉

∨ 〈Reply,Not Have,Agt1, Aga, ∗, t1〉

∨ 〈Reply,Refuse,Agt1, Aga, ∗, t1〉

Meanwhile, Aga uses the 〈Request, Referee, Aga, Agb, Referee(NUM), t0〉 com-

munication message, which means Aga at time t0 sends to Agb a request to introduce

some referees (Referee). The content message Referee(NUM) indicates the num-

ber of referee agents (NUM ) that can recommend Agb. Agb is supposed to introduce

the referee agents that support him in the trust evaluation done by Aga. Agb would

rely on his best trustworthy agents in this exercise. Let RAgb be the set of Agb’s ref-

eree agents. Then, Agb after receiving the request communication message, chooses

the appropriate referee agents from RAgb . The selected subset, which is introduced to
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Aga at time t2 (t2 > t0), is denoted by RsAga
Agb

, where |RsAga
Agb

| = NUM . This issue is

formalized by the dialogue game represented by the following rule:

〈Request, Referee, Aga, Agb, Referee(NUM), t0〉 ⇒

〈Reply, Referee, Agb, Aga,RsAga
Agb

, t2〉

After obtaining the set of referee agents from Agb, Aga continues with requesting

information from each introduced referee agent at time t3. At t4 (t4 > t3), the requested

referee agent has three possible answers: replying by giving the relative information

about the credibility of Agb; replying with no information; or refusing to reveal the

information regarding the credibility of Agb. Let Agr1 be a selected referee agent

(Agr1 ∈ RsAga
Agb

), the following dialogue game rule specifies the exchanged messages:

〈Request, Information,Aga, Agr1, T rust(Agb), t3〉 ⇒

〈Reply, Information,Agr1, Aga, Information(Agb), t4〉

∨ 〈Reply,Not Have, Agr1, Aga, ∗, t4〉

∨ 〈Reply, Refuse, Agr1, Aga, ∗, t4〉

It is rare that the referee agent does not have information regarding the trust level of

Agb. This is because the referee has been chosen by Agb based on previous direct inter-

actions. But this does not guarantee a positive rating regarding Agb’s credibility. The

chosen referee agent is in fact facing the trustor Aga and since there would be after

interaction off-line mechanism, the referee agent would be penalized if provides inac-

curate information. Therefore, if the referee agent is not satisfied with Agb’s behavior,

it is better to retrieve the correct information (bad rating) rather than hiding it (replying

”Not Have”). To this end, in case Agb has changed its behavior, the referee would
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rationally retrieve its accurate information to obtain better rate from the trustor agent.

3.3.2 Trust Computing Mechanism

To compute trust (i.e. credibility) in our model, we first introduce the trust function as

follows:

Definition 3.2 Let A be a set of agents, D a set of domains or topics, and T a set of

time points. The trust function Tr associates two agents from A, a domain from D,

and a time point from T with a trust value between 0 and 1:

Tr : A×A×D × T −→ [0, 1]

Given some concrete agents Aga (the trustor) and Agb (the trustee) in A, some concrete

domain D, and a time point t, Tr(Aga, Agb, D, t) stands for “the trust value associated

to the trustee agent Agb in domain D at time t by the trustor agent Aga”. To simplify

the notation, in the remainder we will omit the domain and time from all the formulas.

Given agents Aga and Agb in A, we will represent Tr(Aga, Agb) in short as TrAgb
Aga

.

The reason behind this simplification is that our main contribution in this framework

is to equip the agents to efficiently evaluate the trust and get adapted with continuous

environment changes. Although the domain is important in trust evaluation (as mainly

considered in some trust-based frameworks [13]), but in this framework we only focus

on the adaptation of agents with dynamically changing environment and on how agile

the agent is while acting where the trust evaluation is crucial. Furthermore, although

the time is omitted from the formulation, it is implicitly represented as the trust function

is continuous over T .
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We propose a probabilistic method by investigating the distribution of the random

variable X representing the trustworthiness of the trustee agent Agb. Let us first con-

sider the case where X takes only two values: 0 (the agent is not trustworthy) or 1

(the agent is trustworthy). Therefore, the variable X follows a Bernoulli distribution

β(1, p) so that E(X) = p where E(X) is the expectation of the variable X and p is the

probability that the agent is trustworthy.

f(k; p) = pk(1− p)1−k for k ∈ {0, 1}

E(X) = p; var(X) = p(1− p)

Here, p is the probability we are looking for. Therefore, it is enough to evaluate the

expectation E(X) to find TrAgb
Aga

. However, when X is a continuous variable, this ex-

pectation is a theoretical mean that we must estimate. To this end, we can use the Cen-

tral Limit Theorem (CLT) and the law of large numbers. The CLT states that whenever

a sample of size n (X1, . . . , Xn) is taken from any distribution with mean μ, then the

sample mean (X1+ · · ·+Xn)/n will be approximately normally distributed with mean

μ. As an application of this theorem, the arithmetic mean (average) (X1+ · · ·+Xn)/n

approaches a normal distribution of mean μ and standard deviation σ/
√
n. Generally,

and according to the law of large numbers, the expectation can be estimated by the

weighted arithmetic mean.

Our random variable X is the weighted average of n independent variables Xi that

correspond to Agb’s trust level according to the point of view of trustworthy agents

T sAgb
Aga

and referee agents RsAga
Agb

. These variables follow then the same distribution.

They are also independent because the probability that Agb is trustworthy according

to an agent Agt1 is independent of the probability that this agent (Agb) is trustworthy
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according to another agent Agt2. Consequently, the variable X follows a normal dis-

tribution whose average is the weighted average of the expectations of the independent

variables Xi. In our model defined in depth in the following sections, the mathemati-

cal estimation of the expectation E(X) is computed in two steps, on-line and off-line

estimation. In the on-line estimation four main components are considered: direct

trust, rates from referee and trustworthy agents, interaction strength and interaction re-

cency. The off-line estimation, performed after the on-line process, is finalized. The

estimation is formulated to modify the trust values of the agents that have provided

information in the on-line process. We refer to this process as maintenance, which will

be addressed in Section 3.5.

3.4 On-line Trust Estimation

In this section, we discuss the on-line evaluation process in which the trustor collects

some information and combines them to assess the credibility of a trustee. Two ap-

proaches can be distinguished in this process. In the former one, the evaluator only

relies on what it has from previous interactions with the trustee. In the later, the trustor

prefers using the information provided by some other agents to get a more accurate

assessment. In fact, the direct interaction assessment is combined with the suggested

ratings by the consulting agents.

3.4.1 Direct Trust Evaluation

Agents can compute the trust value of each other using their interaction histories. This

would generate real numbers, which fall in the range [0,1] and thus, instead of just

integer ratings (scores) 0 and 1, we would have more flexible real ratings representing

the satisfaction or dissatisfaction degree of the interaction’s outcome. In the general
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case, agents can evaluate their interactions according to a scale of n types numbered

from 1 (the most successful interaction) to n (the less successful interaction), such that

the first m interaction types (m < n) are successful. Let NIi
Agb
Aga

be the number of in-

teractions of type i between Aga and Agb. Then, TrAgb
Aga

can be computed by Equation

1. This type of trust evaluation is not novel as seen in literature [13, 30]. In this Equa-

tion, the ratio of the “number of successful outcomes” to the “total number of possible

outcomes” is computed, where wi is the weight associated to the interaction type i to

represent its importance and vij is the value of the interaction, which is particularly

important in transactional settings to avoid two transactions with different values being

treated equally. It is worthy to point out that the number of interactions NIi
Agb
Aga

is only

considered here as a mean to evaluate the strength of the connection between the agents

Aga and Agb. In our approach, we do not consider the details of these interactions as it

would increase the complexity of the trust evaluation.

TrAgb
Aga

=

∑m
i=1(wi ×

∑NIi
Agb
Aga

j=1 vij)∑n
i=1(wi ×

∑NIi
Agb
Aga

j=1 vij)

(1)

In fact, there are two issues in weighting an interaction: 1) the importance of the

interaction type (e.g., in some cases fair as an interaction’s outcome is enough for the

interaction to be counted as important, but in other cases, maybe very good is manda-

tory as an outcome type for the interaction to be counted as important enough); and

2) transaction importance (e.g, two transactions of the same type (say good) may have

different values in terms of their actual entity). Let us consider the following exam-

ple of two dissatisfactory transactions (e.g., outcome is bad) that have been weighted

for wi = 3. Basically the value 3 reflects the importance of this kind of transactions
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(i.e., the weight of bad transactions), which could hold different values. vij is used to

represent this value. For example, the first transaction has as value (vi1 = 20000$ and

the second has as value vi2 = 200$). In this example, vij would reflect the extent to

which the damage has been occurred. This idea will protect the model from attacks

like reputation squeeze [19] in which one agent would obtain some positive ratings and

make a bad interaction that actually makes a large damage.

Another factor should be considered to reflect the timely relevance of transmit-

ted information. This is because the agent’s environment is dynamic and may change

quickly. The idea is to promote recent information and to deal with out-of-date infor-

mation with less emphasis. The timely relevance could be represented as a coefficient

when computing the agent’s trust. In literature, there are similar approaches addressing

this issue. For example, in [13], authors discuss about the limitations that are used in

the freshness of the data to be evaluated. In our model, we assess this factor denoted

by TiR(ΔtAgb
Aga

)ij by using the function defined in Equation 2 and we do not make the

system so sensitive to the past data as it might bring up more confusion to the trustor

agent. However, as later discussed in this chapter, we equip the CRM agent with an

off-line mechanism that overcome this sensitivity. We call this function: the Timely

Relevance function.

T iR(ΔtAgb
Aga

)ij = e−λ ln(Δt
Agb
Aga

)ij λ ≥ 0 (2)

The variable λ is application-dependent and (ΔtAgb
Aga

)ij is the time difference be-

tween the current time and time at which interaction j of type i took place. The in-

tuition behind this formula is to use a function decreasing with the time difference.
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Figure 3.2: The timely relevance function with respect to different λ values.

Consequently, recent information makes the timely relevance coefficient higher. The

graph of T iR(ΔtAgb
Aga

)ij using different λ values is shown in Figure 3.2. In some ap-

plications, recent interactions are more desirable to be considered when evaluating the

trustee. In that case, the trustor uses a higher value for λ. In some other applications,

even the old interactions are still valuable sources of information. In that case, the

trustor assigns a smaller value to λ. Considering the involved issues, we recompute

the direct trust in Equation 3. In fact, Aga rates each previous interaction with Agb

in terms of its freshness, which privileges recent interactions because they are more

valuable sources of information.

TrAgb
Aga

=

∑m
i=1(wi

∑NIi
Agb
Aga

j=1 vij × T iR(ΔtAgb
Aga

)ij)∑n
i=1(wi

∑NIi
Agb
Aga

j=1 vij × T iR(ΔtAgb
Aga

)ij)

(3)



48

3.4.2 Consulting Reports: Indirect Trust Estimation

The other approach in trust estimation of the trustee consists of collecting some infor-

mation in terms of suggestions from some other agents. As described before, consult-

ing agents are divided into two groups: (1) trustworthy agents the trustor Aga can rely

on to request information; and (2) referee agents introduced by the trustee Agb as rec-

ommenders. In this section, we address the selection process of the consulting agents

and how to deal with the information they provide to support Agb.

As mentioned before, T sAgb
Aga

is the set of trustworthy agents selected by Aga for

consultation. Another set to be involved in the evaluation process is the set of referee

agents, which are introduced by Agb. Upon request from Aga, Agb replies by providing

a list of the referee agents it knows. Aga consequently asks (some of) the referees to

report on the credibility of Agb (RsAgb
Aga

) and those referees reply according to their past

experiences of direct interaction with Agb.

Assume there is a particular referee agent Agr that Aga does not know. In this

case, Aga does not consider its suggestion about Agb, but it saves it anyway in order

to compare it with the real behavior Agb performs after starting interacting with Aga.

Thus, the referee is known by Aga from now on and its trust level is calculated by the

adjustment of the Agb’s real behavior and the referee’s suggestion.

Let n be the total number of interaction types (see Equation 1) and NI
Agy
Agx

be the

total number of interactions between two agents Agx and Agy, which is computed by

Equation 4:

NI
Agy
Agx

= min(
n∑

i=1

NIi
Agy
Agx

,MV ) (4)

In this equation, MV , fixed by the system designer, is the maximum value that NI
Agy
Agx

can reach after a finite number of interactions. When the number of interactions goes



49

beyond MV , the old interactions are simply not counted, so that only the MV most

recent interactions are considered. This restriction makes the model suitable for a large

amount of real scenarios where agents have limited resources and computing capabil-

ities. It is worthy to mention that the total number of interactions between Agt as a

trustworthy agent (resp. Agr as a referee agent) and Agb, NIAgb
Agt

(resp. NIAgb
Agr

) is an

important factor because it promotes information coming from agents knowing more

about Agb. The agents that had high number of interactions with Agb are considered

as good sources of information about its trustworthiness in the sense that they are sup-

posed to know Agb from relatively longer history of interactions. Considering this

factor, Aga would penalize the agents with high interactions harder in the maintenance

process.

Regarding the importance of the information provided by a consulting agent, we

consider another factor, which reflects the confidence (in the range of [0, 1]) of the

consulting agent on truthfulness of the provided information (CfAgb
Agt

for the typical

trustworthy agent and CfAgb
Agr

for the typical referee agent). This factor has a twofold

aim. First, the consulting agent would let the trustor agent Aga to have a better decision

on the extent to which it can take this information into account. Second, the consulting

agent would clarify the extent to which it can take the risk on contributing in the trust

estimation process initiated by Aga. In the simulations, the confidence is randomly

generated for each consulting agent using a Gaussian distribution with mean 0.5 and

variance 0.2.

The trust equation TrAgb
Aga

we are interested in should take into account the afore-

mentioned relevant factors: (1) the trustworthiness of trustworthy/referee agents ac-

cording to the trustor Aga (TrAgt
Aga

and TrAgr
Aga

); (2) the trustee Agb’s trustworthiness

according to the trustworthy/referee agents (TrAgb
Agt

and TrAgb
Agr

); (3) the total number of

interactions between these trustworthy/referee agents and Agb (NIAgt
Agb

and NIAgr
Agb

), as
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communicated by Agt/Agr to Aga following the dialogue games previously indicated

in Section 3.3.1; and (4) the confidence of trustworthy/referee agents about the pro-

vided information (CfAgb
Agt

and CfAgb
Agr

∈ [0, 1]). Before defining this equation, let us

discuss its desired properties. Some of these properties are inspired by [42].

Property 1 Assuming that the trustee is known in the system by some agents, TrAgb
Aga

is

continuous.

This property says that at each moment the trustor Aga can evaluate the trustee Agb.

This does not mean that agents are interacting every moment of time, but at every

moment, the trustor can get the needed information to assess the trust value of the

trustee.

Property 2 Assuming that the trustee is known in the system by some agents, TrAgb
Aga

is

strictly monotonically increasing in TrAgb
Agt

and TrAgb
Agr

.

This property says that the trust value of the trustee increases if it performs well in

this environment. Consequently, agents always have incentives to do better to get their

overall trust increased.

Property 3 Assuming that the trustee is known in the system by some agents, TrAgb
Aga

is not monotonically increasing or decreasing in one of the followings: TrAgt
Aga

, NIAgb
Agt

,

CfAgb
Agt

, TrAgr
Aga

, NIAgb
Agr

, and CfAgb
Agr

.

This property says that the trust values of trustworthy agents and trustee are not nec-

essarily correlated. The reason is that some of these agents support the trustee, but

some of them do not. The same property holds for referee agents and for the number

of interactions and confidence. Thus, for instance, by increasing the number of its in-

teractions with some agents, the trustee cannot guarantee a growth of its trust value,

because these agents are may not be supportive.
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Property 4 Assuming that the trustee is known in the system by some agents, TrAgb
Aga

is strictly monotonically increasing in one of the followings: TrAgt
Aga

, NIAgb
Agt

, CfAgb
Agt

,

TrAgr
Aga

, NIAgb
Agr

, and CfAgb
Agr

iff all Agt and Agr agents support Agb.

This property gives the condition on the trustworthy and referee agents, so that increas-

ing their trust value, number of interactions, and confidence will make the trust value

of the trustee increasing. The opposite is given by the following property:

Property 5 Assuming that the trustee is known in the system by some agents, TrAgb
Aga

is strictly monotonically decreasing in one of the followings: TrAgt
Aga

, NIAgb
Agt

, CfAgb
Agt

,

TrAgr
Aga

, NIAgb
Agr

, and CfAgb
Agr

iff all Agt and Agr agents do not support Agb.

Property 6 Let X be the set of all pieces of information that Aga uses to assess

Agb, and Y the set of all pieces of information that Aga uses to evaluate another

trustee Agc, i.e. X = {TrAgt
Aga

, T rAgb
Agt

, NIAgb
Agt

, CfAgb
Agt

|Agt ∈ T sAgb
Aga

∪ RsAgb
Aga

} and

Y = {TrAgt′
Aga

, T rAgc
Agt′

, NIAgc
Agt′

, CfAgc
Agt′

|Agt′ ∈ T sAgc
Aga

∪ RsAgc
Aga

}. Suppose that there is

an injective function f : X → Y such that for all x ∈ X , f(x) is at least as good for

Agc as x is good for Agb; then, TrAgc
Aga

is at least as great as TrAgb
Aga

.

Let us now define the trust equation TrAgb
Aga

(Equation 5) and then prove it satis-

fies the aforementioned properties. This equation is composed of two different terms

representing the values obtained from two different consulting communities involved

in trust evaluation. The functions ΩT and ΨR are defined as the combination of the

trust values estimated by the trustworthy and referee agents together with their related

trustworthiness from Aga’s point of view, timely relevance, confidence and number of

interactions between the trustworthy and referee agents and the trustee Agb.

TrAgb
Aga

=
ΩT (T sAgb

Aga
) + ΨR(RsAgb

Aga
)

Ω′T (T sAgb
Aga

) + Ψ′R(RsAgb
Aga

)
(5)
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where

ΩT (T sAgb
Aga

) =
∑

Agt∈T s
Agb
Aga

TrAgt
Aga

× TrAgb
Agt

×NIAgb
Agt

× CfAgb
Agt

Ω′T (T sAgb
Aga

) =
∑

Agt∈T s
Agb
Aga

TrAgt
Aga

×NIAgb
Agt

× CfAgb
Agt

ΨR(RsAgb
Aga

) =
∑

Agr∈Rs
Agb
Aga

TrAgr
Aga

× TrAgb
Agr

×NIAgb
Agr

× CfAgb
Agr

Ψ′R(RsAgb
Aga

) =
∑

Agr∈Rs
Agb
Aga

TrAgr
Aga

×NIAgb
Agr

× CfAgb
Agr

We notice that TrAgt
Aga

�= 0 ∀Agt ∈ T sAgb
Aga

and Agb is known for at least one Agt, which

means NIAgb
Agt

, CfAgb
Agt

�= 0, so Ω′T (T sAgb
Aga

) �= 0.

We now show that Equation 5 satisfies Properties 1 to 6. To simplify the notation,

we will omit the arguments of the functions ΩT , Ω′T , ΨR, and Ψ′R. TrAgt
Aga

and CfAgb
Agt

are non-zero continuous functions on time, and TrAgb
Agt

is continuous on time, so by

considering NIAgb
Agt

as a coefficient for TrAgb
Agt

for each Agt, we conclude that ΩT and

Ω′T are non-zero continuous functions. Similarly, ΨR and Ψ′R are continuous, so the

trust function is continuous. To show that Property 2 is satisfied, we need to prove that

the partial derivative of the trust function with respect to TrAgb
Agt

is greater than zero,

and the same thing with respect to TrAgb
Agr

. To simplify the proof, but without loss of

generality, let us consider a specific agent Agt1, then the same procedure can be applied

to all other Agt agents. We have:

∂TrAgb
Aga

∂TrAgb
Agt1

=
TrAgt1

Aga
.NIAgb

Agt1
.CfAgb

Agt1

Ω′T +Ψ′R
> 0

The same proof can be used for a specific referee agent Agr1, thus the satisfaction

of Property 2. To show that Property 3 is satisfied, we need to show that the partial
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derivative of the trust function with respect to the factors mentioned in this property is

not always positive and not always negative. Here we only show the proof for the case

TrAgt
Aga

and the same proof can be used for CfAgb
Agt

×NIAgb
Agt

(the number of interactions

is considered as a coefficient) and for the other factors. As we did for Property 2, we

consider a specific trustworthy agent Agt1 and the generalization follows. We have:

∂TrAgb
Aga

∂TrAgt1
Aga

=
(TrAgb

Agt1
.NIAgb

Agt1
.CfAgb

Agt1
).(Ω′T +Ψ′R)− (ΩT +ΨR).(NIAgb

Agt1
.CfAgb

Agt1
)

(Ω′T +Ψ′R)
2

The sign of this partial derivative depends then on the sign of the numerator, which

could be positive or negative. Thus, to prove that Properties 4 and 5 are satisfied, we

only need to analyze when the numerator is strictly positive, and when it is strictly

negative. We have:

(TrAgb
Agt1

.NIAgb
Agt1

.CfAgb
Agt1

).(Ω′T +Ψ′R)− (ΩT +ΨR).(NIAgb
Agt1

.CfAgb
Agt1

) > 0

iff TrAgb
Agt1

>
ΩT +ΨR

Ω′T +Ψ′R

iff TrAgb
Agt1

> TrAgb
Aga

Thus, the partial derivative is strictly positive iff Agt1 is supportive (Property 4), and

it is strictly negative iff Agt1 is not supportive (Property 5). If it is equal to zero, the

function is simply constant. Finally, to prove that Property 6 is satisfied, we define the

injective function f as follows: f(TrAgt
Aga

) = Tr
Agt′
Aga

; f(TrAgb
Agt

) = TrAgc
Agt′

; f(NIAgb
Agt

) =

NIAgc
Agt′

; and f(CfAgb
Agt

) = CfAgc
Agt′

. So, for all x ∈ X , f(x) is at least as good for

Agc as x is good for Agb iff f(x) ≥ x. Consequently, from Property 4, we obtain

TrAgc
Aga

≥ TrAgb
Aga

, which is the result we want to prove.

Equation 5 is used by the initial trustor Aga to evaluate the trustee Agb where each
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consulting agent is supposed to forward its own estimation (together with its confidence

level) for this trustee. Following the ideology that Aga could, to a certain extent, rely on

its own history of interactions with Agb (direct trust evaluation approach) and partially

use the second approach (indirect approaches), Aga gives a 100% trustworthy rate to his

history and considers himself as a member of its trustworthy community. This aggre-

gation method takes into account the proportional relevance of each approach, rather

than treating the two approaches separately. Basically, the contribution percentage of

each approach in the final evaluation of TrAgb
Aga

is defined regarding how informative the

history is in terms of the number of direct interactions between Aga and Agb and their

time recency. Therefore, consulting other agents is considered with less importance if

the history represents a lower uncertainty. Doing so, the indirect evaluation approach

is combined with the direct approach to end up with an accurate trust estimation of the

trustor Aga for the trustee Agb. To be more precise, we aim to analyze the quality of the

interactions of the trustee considering what is expected (final trust evaluation TrAgb
Aga

)

and what is actually performed. To this end, we have a retrospect trust evaluation,

which is represented in Section 3.5.

3.5 Off-line Trust Estimation

To avoid exposing the reputation framework to dishonest ratings, two types of agents

should be considered: (a) bad mouthers: agents that exaggerate by giving negative

ratings; and (b) ballot stuffers: agents that exaggerate by giving positive ratings. Mini-

mizing the effects caused by these two types of consulting agents is an important aspect

in trust evaluation. Although the ratio of relationship strength can be certainly inserted

as a measure of trust to increase the accuracy of referee agent’s credibility, this tech-

nique is not generic as it depends on how this relationship strength is represented and
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measured. To tackle this problem, we propose other parameters. First, we consider the

number and time recency of interactions as factors that reflects the trustor’s expectation

of receiving accurate information. Second, we consider the confidence level provided

by consulting agents as a mean to enable the trustor to update its friend list. To this

end, we split the off-line trust estimation into two parts: Off-line Interaction Inspection

and Maintenance.

3.5.1 Off-line Interaction Inspection

After each interaction, the trustor Aga performs an off-line interaction inspection pro-

cess regarding each of the consulting agents role in the trust evaluation process. In

this procedure, Aga considers the given rate provided by the consulting agent Agc ∈

(T sAgb
Aga

⋃
RsAgb

Aga
), the number and recency of interactions done by the trustee agent

Agb. The objective of this process is to assign a flag (useful/useless) for each involved

consulting agent.

Since the off-line interaction inspection is a process performed after the interac-

tion, Aga has a self opinion regarding the credibility of Aga. Therefore, we refer to

OTRAgb
Aga

as the actual credibility observed by the trustor Aga. This value is compared

to the given rate provided by each consulting agent. Figure 3.3 is the off-line inter-

action inspector algorithm that takes the observed trust value (OTRAgb
Aga

), given rate of

each one of the consulting agent Agc (TrAgb
Agc

), their corresponding number of inter-

actions (NIAgb
Agc

) and the provided information time recency (T iRAgb
Agc

) as input. This

algorithm provides an array (called flag) of binary numbers about the usefulness of the

information provided by each one of the involved consulting agents.

In this algorithm, first the average of the differences between the provided trust

and observed one of all the consulting agents is evaluated. The rational behind this is

explained by the fact that the public opinion affects the threshold of the accuracy of
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credibility rating. This means if the average difference is relatively high, the trustor

agent Aga would doubt that the trustee agent Agb is a consistent reliable agent, oth-

erwise the public opinion about this agent would not achieve that divergency. Once

the average difference is obtained, the consulting agents are checked one by one to be

tagged either as useful or useless. The agents who provided relatively accurate ratings

with an acceptable confidence level CfAgb
Agc

> ν (ν is application-dependant and in the

simulations we assume that ν = 0.5) are not all tagged as useful. They are all good

except the ones who do not have high number of interactions or time relevance (strong

connection or holding fresh information). This is due to the fact that in credibility

assessment, the ratings that are submitted at random (by chance) could not be consid-

ered as a means to evaluate the truthfulness of a consulting agent. In this algorithm,

the number of interactions and time relevance of the consulting agents are compared

with the ones about the trustor and trustee agents’ connection. To this end, there is

higher priority assigned to consulting agents that hold stronger relationship. This par-

tition of consulting agents based on useful and useless flags is an operational way of

obtaining the partition of agents as reliable and doubtful as proposed in the TRSIM

framework [12].

3.5.2 Maintenance

The maintenance procedure is a periodic process initiated to update the information

that the trustor agent Aga has about its surrounding environment. Before performing

this process there are two questions that have to be addressed: (1) when does the trustor

agent need to initiate the maintenance?; and (2) which agents have to be cleared in the

maintenance? In the rest of this section, we answer these questions in more details.

(1) When to initiate the maintenance procedure?
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function interactionInspector(Aga,Agb,T sAgb
Aga

,RsAgb
Aga

,TrAgb
Aga

,OTrAgb
Aga

):[flag]
D = 0; D = 0

for all Agc ∈ T sAgb
Aga

⋃
RsAgb

Aga

DAgc = |TrAgb
Agc

−OTrAgb
Aga

|;
D = D +DAgc ;

D = D

|T s
Agb
Aga

⋃
Rs

Agb
Aga

|
;

for all Agc ∈ T sAgb
Aga

⋃
RsAgb

Aga

if DAgc < D

if NIAgb
Agc

> NIAgb
Aga

flag[Agc]=useful
else if TiRAgb

Agc
> TiRAgb

Aga
flag[Agc]=useful

else flag[Agc]=useless
else flag[Agc]=useless

Figure 3.3: After interaction inspection algorithm for assigning usefulness flags to
each involved consulting agent

There are three answers for this question:

• Bad Performance: When the performance of correctly evaluating agents

is decreased below a predefined threshold (1 − TrAga). TrAga is in fact

the reputation value that Aga has in the system as estimated by himself of

its interactions with other agents. This value does not have to be known

publicly as it is used by Aga to perform a type of internal maintenance. In

the case of bad performance, the trustor agent realizes that its performance

Pt(Aga) in trust evaluations (regarding time t) is decreasing in almost a

continuous manner. The performance in evaluation is always calculated

since the most recent maintenance and is aggregated (in average) over the

time elapse. Equation 6 computes the current performance (Pt(Aga)) of

the trustor agent Aga that is regarding the current time period (t) and does
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not include the agent’s performance in trust evaluations that have already

gone through the previous maintenance procedures.

Pt(Aga) =

∑
Agb∈S(t) |Tr

Agb
Aga

−OTRAgb
Aga

|
|S(t)| (6)

The trustee agent Agb is selected from the set of trustee agents of Aga

(S(t)) which keeps all the trustee agents since the last maintenance. We

assume in this set, we keep different references for the same trustee agent

with a number of interactions. This would allow us to evaluate all the in-

teractions since last maintenance. In this process, if Pt(Aga) > 1−TrAga ,

the trustor agent Aga realizes that is the time to apply a new maintenance

process.

• Huge Difference: This is the case where Aga is disappointed with a no-

ticeable low quality trust evaluation that is recently done. In this case, Aga

realizes that the provided information is not satisfactory to the extent to

which Aga can rely on to continue its upcoming evaluations. Therefore if

the following inequality holds, the trustor agent will decide to run a new

maintenance process as an exceptional case to update its belief set. The

value z depends on how picky the evaluator is. In our simulations we as-

sume z = 0.5. For instance, picky agents can consider 0.2 < z ≤ 0.5 and

very picky agents can consider 0 < z ≤ 0.2.

|TrAgb
Aga

−OTRAgb
Aga

| > z

• After Certain Period of Time: If during the evaluation process there was

no problem that caused initiation of a maintenance procedure, the off-line



59

trust estimation system would run after a certain period of time the main-

tenance process to update the belief set. This would help to have a better

adaptation in case of rapid changes in surrounding agents’ behavior.

(2) Which agents have to be cleared in the maintenance?

In the maintenance process, Aga selects some agents so that applying the maintenance

on them would enhance the adaptation of Aga with its surrounding environment. In

fact, if in the process of trust evaluation, since the most recent maintenance, Aga’s

belief set has not been changed, Aga would consult with the same set of trustworthy

agents. All these agents are then included in the maintenance process. Besides these

agents, some referee agents probably were involved in some trust evaluations. Aga

selects the referees that did provide the asked information (regarding different trustee

agents) with relatively high confidence (say ν, which is set by Aga). The reason behind

this is that the process of indirect trust evaluation is in fact a twofold aimed process.

Besides obtaining accurate information, Aga would like to get to know new agents

and to better know the previously known agents. Therefore, the truthfulness of the

agents regarding the provided information could be considered as a mean to get their

credibilities updated. However, Aga would not consider any type of referee agent. In

the maintenance process, Aga only considers the referee agents with high confidence

on their provided information. This would let Aga to apply the update in a more serious

and reliable manner.

Let UF t1,t2
Agm

and ULt1,t2
Agm

be the set of useful and useless flags associated with a

trustworthy or referee agent Agm from his interactions during the interval [t1, t2] as

computed by the algorithm given in Figure 3.3. Equation 7 gives the rate illustrating the

performance of Agm at time t2 considering t1 as a point of reference. This performance

is computed in terms of the number of useful and useless flags during [t1, t2], where

−1 reflects the worst performance (all the flags are useless), 0 the average performance
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(the numbers of useful and useless flags are equal), and 1 the best performance (all the

flags are useful). This rate is used to update the trust value of Agm at t2 (Tr
Agm
Aga

(t2)) as

illustrated by Equation 8. This update satisfies the properties that 1) if the performance

is average (αAgm(t2) = 0), then the trust is constant (TrAgm
Aga

(t2) = TrAgm
Aga

(t1)); 2) if

the performance is the worst, then TrAgm
Aga

(t2) = 0; and 3) if the performance is very

good, then TrAgm
Aga

(t2) can achieve 1 depending on the value of (TrAgm
Aga

(t1).

αAgm(t2) =
|UF t1,t2

Agm
| − |ULt1,t2

Agm
|

|UF t1,t2
Agm

|+ |ULt1,t2
Agm

|
(7)

TrAgm
Aga

(t2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if TrAgm
Aga

(t1).(1+αAgm(t2)) > 1

TrAgm
Aga

(t1).(1+αAgm(t2)) if 0 < TrAgm
Aga

(t1).(1+αAgm(t2)) ≤ 1

αAgm(t2) if TrAgm
Aga

(t1).(1+αAgm(t2))=0 and αAgm(t2)>0

0 else
(8)

Figure 3.4 shows the pseudo-code of the maintenance process that computes TrAgm
Aga

(t2).

Aga initiates this process with respect to any of the three discussed answers to question

1. In this pseudo-code, MAga is the set of agents that are going to be selected for the

maintenance and as mentioned before, all the trustworthy agents TAga are included. For

all the interactions since the latest maintenance, the trustee is considered. For all the

referees of the trustee in question, the selected ones are those who showed high confi-

dence. Finally, with respect to their flags (useful +UF and useless −UL), their update

rates (αAgm) are computed as shown in Equation 7 (with a notational simplification).

Then the updated trust value is computed as illustrated in Equation 8.

Since between the variable maintenance periods the trustworthy agents of a partic-

ular trustor agent Aga are the same, there is a fixed number of agents that are involved
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function maintenance(Aga,S(t))
MAga := TAga ;

for all Age ∈ S(t)

for all Agc ∈ RsAge
Aga

if CfAge
Agc

> ν

MAga := MAga

⋃
{Agc}

end for all

end for all

for all Agm ∈ MAga

consider all interactions since last maintenance

αAgm = +UF−UL
+UF+UL

if TrAgm
Aga

�= 0

X := TrAgm
Aga

× (1 + αAgm)

if X > 1

TrAgm
Aga

:= 1

else TrAgm
Aga

:= X

end if

else

if αAgm ≥ 0

TrAgm
Aga

:= αAgm

else TrAgm
Aga

:= 0

end if

end if

end for all

end function

Figure 3.4: The maintenance algorithm for updating trust rating performed by the
trustor Aga

in the maintenance process. Moreover, there are some referee agents that are con-

sidered in this process and might be different with respect to different trustee agents.

Because the number of involved agents in such a process is not high, the corresponding

computations regarding their trust value update is negligible in the off-line trust esti-

mation mechanism. Besides this, the trustor agent Aga takes the advantage of updating

his trust values with respect to the referee agents that might not have high number of

interactions. Furthermore, the maintenance algorithm is linear with both the number
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of agents and the number of interactions (i.e. O(|TAga | +
∏

Age∈S(t) |RsAga
Age

|)) where

|S(t)| is the number of interactions with different trustee agents (say Age as a particular

trustee agent), |TAga | is the number of trustworthy agents, and |RsAga
Age

| is the number

of referee agents for a given trustee agent Age. We notice that we need to compute

all the interactions with referee agents even if some of them are common to different

trustee agents, which justifies the product over those trustee agents S(t). The linear

complexity of the proposed maintenance process makes it computationally efficient.

3.6 Analysis and Experimental Simulation

3.6.1 Implemented Testbed

In this section, we assess the CRM model efficiency and describe the implementation of

the tested. We also compare our model with three well known models as benchmarks:

FIRE [31, 32], Referral [97, 99], SPORAS [101], Travos [83] and BRS [33]. All these

models are explained in details and discussed in the related work chapter (Chapter

2). In the implemented testbed, agents are implemented as Jadex c©TM agents, i.e.

they inherit from the basic class Jadex−Simulator c©TM Agent. The agent reasoning

capabilities are implemented as Java modules using logic programming techniques. As

Java classes, agents have private data called Belief Data. The different dialogue games

(presented in Section 3.3.1) are given by a data structure and implemented using tables

and the different actions expected by an agent in the context of a particular dialogue

game are given by a table called data representative manager. The different agents’

reputation values that an agent has about other agents are recorded in a data structure

called data reputation. Each agent also has a knowledge base about the reputation

of other agents, called table reputation. Such a knowledge base has the following

structure: Agent− name, Agent− reputation, Total − interaction− number and
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Recent − interaction − time. The visited agents during the evaluation process and

the agents added in the reputation graph are recorded in two Jadex c©TM beliefsets

called: table visited agents and table graph reputation.

The testbed environment (represented in Table 3.1) is populated with 200 agents

categorized by two agent types: (1) service provider agents that are supposed to pro-

vide services (for simplicity, we assume that only one type of service is provided and

therefore consumed); and (2) service consumer agents (equipped with the different

trust models) that are looking for service providers to interact with and consume the

provided service. As in FIRE and Travos, in the rest of this section we use the gained

utility as a measurement for the quality of obtained service (QoS) in terms of satisfac-

tion, response time, price, etc. Thus, the gained utility depends on the performance

of service provider. We consider two service consumer groups to compare with our

model CRM: (1) group1 (FIRE, Referral and SPORAS); and (2) group2 (Travos and

BRS). The criterion used in this separation is the degree of sensitivity of the models

to the environment and changes of behavior of the service providers. Group1 does not

consider the continuous change of agents behaviors. The agents in this group tend to

accurately maintain the trust process rather than putting effort on updating trust regard-

ing the environment changes. Group2 takes action in response to such changes more

rapidly. Generally, service providers are different and thus provide diverse range of

service qualities. Furthermore, the consumer agents using these services obtain differ-

ent gained utilities. In CRM, service agreements and generally intercation details such

as expectations and contexts are abstracted. The focus is mainly on the numerical evlu-

ation of trust. But this model could be completed using the proposed model in [75] as

the context and satisfaction criteria are taken into account. The objective is to capture

subtle details regarding consumer-oriented selection process.
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Each agent (either service provider or consumer) is located randomly in the envi-

ronment and has been centralized and known by all other agents that are in its network

of activity. The ordinary agents are given more populated network because they act

normal, so in realistic environment they are more comparing to good providers or bad

providers. The fickle agents are given the most populated network in order to distribute

them in the environment to catch the capabilities of different trust models in treating

them. In the network of agents, those that are close enough, have beliefs about each

other. However, this does not exclude the fact that agents extend their activity areas

and gradually get acquainted with other agents that are not in their activity areas. This

allows agents to evaluate some other agents to interact with and update their belief sets

based on the interaction output. The agents’ belief sets are built and updated upon

internal (previous history) and external (using consulting agents) information.

The simulation consists of a number of consequent runs in which agents are acti-

vated and build their private knowledge, keep interacting with one another, gain utility

and enhance their overall knowledge about the environment. The more an agent knows

the environment, the better it can choose service providers and thus, the more utility it

gains. Agents are free to ask others for their beliefs about the service provider to be se-

lected. Finally, each agent requests the service from the most trustworthy and reliable

provider according to him. Table 3.1 represents the four types of service providers we

consider in our simulation: good, ordinary, bad and fickle. The first three provide ser-

vices according to the assigned mean value of quality with a small range of deviation.

However, fickle providers are more flexible as their range of quality covers all possible

outcomes. To put the system in a more tight situation, we use a high number of fickle

agents.

Since the major difference between the considered models is the trust mechanism
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Table 3.1: Testbed environment

Service
Provider

Agents ( S.P. ) 

S.P.  Agent Type Density in the
S.P.  Community 

Provided Utility at Each RUN Radius of
ActivityRange Standard Deviation

Good 15.0% ]+5, +10] 1.0 25
Ordinary 30.0% ]-5, +5] 2.0 28

Bad 15.0% ]-10, -5] 2.0 25
Fickle 40.0% [-10, +10] - 30

Service
Consumer

Agents ( S.C. ) 
Group1

S.C.  Agent Type Density in the
S.C.  Community 

Number of Joining Agents at Each
RUN

Radius of
Activity

CRM 25.0% 6 35
FIRE 25.0% 6 35

REFERRAL 25.0% 6 35
SPORAS 25.0% 6 35

Service
Consumer

Agents ( S.C. ) 
Group2

S.C.  Agent Type Density in the
S.C.  Community 

Number of Joining Agents at Each
RUN

Radius of
Activity

CRM 33.3% 10 35
Travos 33.3% 10 35

BRS 33.3% 10 35

they employ for credibility assessment, the utility gained by each model is consid-

ered as its efficiency in selecting reliable service providers. Doing so, we compare

CRM with other models in two perspectives, honest (Section 3.6.2) and biased (Sec-

tion 3.6.3) environments. In honest environments, agents are supposed be honest in

the sense they reveal their beliefs with full accuracy. However, in biased environments,

agents can reveal inaccurate information. Comparison is done first between CRM,

FIRE [31] (a successful trust model with high performance), SPORAS [101] (a cen-

tralized approach), and Referral [97] (following the concept of reference in an honest

environment). Travos [83] and BRS [33] are two other models that we compared CRM

with in terms of how they survive in such biased environment where agents constantly

change their behaviors. Like CRM, Travos and BRS are designed to take actions while

agents are not fully trustworthy. These models differ from CRM in the trust assessment

mechanism and analysis they perform in order to choose the best possible provider.

In such an environment where agents have an intermittent attitude, a successful trust

model is the one that adapts itself to new situations.
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3.6.2 Honest Environment

Figure 3.5 depicts the overall comparison of different models. The testbed consists of

a number of runs represented as the horizontal axis, and the ranking mean value for the

utility gained of each group is represented in the vertical axis. As the runs are elapsing,

each service consumer is using a particular model to find the most trustworthy service

provider and thus, gain the most utility. First, the mean value of the gained utility by

agents using the same trust model is computed. Then, the mean values obtained from

different trust models are compared with each other using two sample t-test with 95%

of confidence level to show the overall outperforming of CRM and FIRE compared to

the other two models.
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Figure 3.5: Comparison of CRM with FIRE, Referral and Sporas in terms of mean
utility gained at each run in an honest environment

Groups reflect the performance of four different trust models we considered for

comparison. SPORAS model evaluates the trust based on very recent interactions of

each agent. Moreover, in this model, the credibility of highly interacted agents un-

dergo a minor change compared to one with low number of interactions. Since SPO-

RAS (generally used as benchmark in the literature) is a centralized model, it suffers

from inconsistency of the trust values associated to agents while they register upon en-

trance in the system. Thus, this model would not perform well in situations when the

good service providers are new to the system and remain unknown for a longer time
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compared to others. Moreover, we still observe the problem of fake advertising to the

central agent to get more benefit. Therefore, SPORAS performs weak in selecting the

best service providers. Referral agents directly consider how to place trust in others

and emphasize the key properties that affect the trust assessment. However, they do

not restrict the suggestions of other agents, which lead them to assess the credibility

of an unknown or partially known service provider. This may impact the selection of

good providers from the beginning of simulation. FIRE agents [31] regulate the prob-

lem of collecting the required information by the evaluator to assess the trust of its

partner. In addition, they apply certified reputation introduced by the trustee agent. As

results of t-test illustrated in Figure 3.5, the commutative utility gained over the 500

elapsed runs by the FIRE and CRM agents are culminated to be the highest as both

methods select good service providers, and therefore gain the highest possible utility

(for space reasons, only the first 180 runs are shown in the figure). In this environment,

the agents are considered honest and they reveal their beliefs with full accuracy. In the

next section, we carry on comparison in the biased environment in which agents would

not necessarily reveal their beliefs with 100% accuracy. As a result, the trustor can get

confused in the trust assessment. Objectively, we discuss how the CRM agents cope

with such a problem.

3.6.3 Biased Environment

Being more realistic, we exposed the same agents in a very biased environment in

which agents, serving some certain goals, may reveal much less accurate information.

Each agent employs its corresponding trust model to accumulate the utility gained

through interactions. In general, the agents with more adaptable trust framework would

be able to express more efficient performance and thus, obtain higher utility from the

environment.
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To prove the applicability of the proposed framework, we discuss the features al-

lowing the CRM model to perform higher over the FIRE, Travos and BRS models in

terms of efficiency. This discussion considers two perspectives. The former is in terms

of balancing the trust assessment process by considering different involved agents. This

comparison is done between FIRE and CRM, which is also highlighted with a detailed

scenario. The latter discussion focuses on how agents are sensitive to the environment

inconsistency and how it would be possible to gain more from diverse types of service

providers. The CRM model is compared with the Travos and BRS models to show how

these dynamic models act in an extensive intermittent environment. Our main objective

is to investigate different models’ abilities in satisfying the ideal trust model’s criteria.

FIRE is a successful trust-certified reputation model, which addresses the problem

of lack of direct history. Agents evaluate the trust of other agents as decentralized ser-

vices. However, the FIRE agents do not recognize the agents that have got the good

ratings and performed bad either in terms of inaccurate ratings provided for some others

or the bad obtained utility. The CRM agents are equipped with a maintenance mecha-

nism, which enables them to recognize change of behavior of others and respectively

adjust their beliefs regarding the trust of some particular consulting agents. This mech-

anism is also effective in recognizing collusion behavior, by which agents intentionally

reveal inaccurate information, aiming to gain more benefit at the end. This change of

behavior should be recognized and the benefit of other agents should get adjusted. This

process helps in quickly recognizing the fickle agents that may provide any quality of

service.

Figure 3.6 shows a graph plotting fickle selection percentage versus number of runs.

The graph highlights the difference of having and missing the maintenance regarding

the behavior of the CRM and FIRE agents. In the first 80 runs, we observe that the

CRM agents are reducing the selection of fickle agents as the time goes on. This is
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because the CRM agents perform maintenance on the behavior of the fickle agents that

provide a bad utility after the interaction and deduce their beliefs about them, which

leads to less selection afterwards. The performance of the FIRE agents remain almost

the same as they do not recognize the fluctuated behavior of the fickle agents. The picks

of the CRM graph (P1 and P2) are simply because of a selection of few number of the

CRM agents at each run, and therefore, the maintenance they perform generally has

low effect on the consequent run until they are selected or distribute their ratings about

the typical fickle agent they have done maintenance for. Hence, the curve goes down

in a fluctuated manner until all the fickle agents lose their credibilities and never get

selected, which happens in P3. In a similar way, Figure 3.7 illustrates the good agent

selection percentage versus the number of runs. This graph is the complementary of

the one shown in Figure 3.6 as the less fickle providers are selected, the more good

providers are recognized. As a result of maintenance, the CRM agents would then

enhance their performance since good providers are always selected.
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Figure 3.6: Comparison of CRM and FIRE in terms of selecting fickle service
providers along the elapsing runs in a biased environment

In this section, we also analyze the CRM behavior compared with BRS and Travos,

which are similar to CRM in the sense that they do consider other agents’ sugges-

tions while evaluating the trust of some specific agents (service providers) and discard

inaccurate suggestions aiming to adapt themselves to the environment inconsistency
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Figure 3.7: Comparison of CRM and FIRE in terms of selecting good service providers
along the elapsing runs in a biased environment

attitude. In BRS, the trustor agent evaluates the recommender agents’ suggestions us-

ing the beta distribution method and ignores the suggestions that deviate the most from

the majority of ratings. BRS is in fact a relatively static trust method, which causes

a low-efficient performance in very dynamic, open and biased environments. Cumu-

lative gained utility vs. number of runs is shown in Figure 3.8. In this graph, all the

agents consider the history of interactions in their selections. The BRS model is not

sensitive to an agile behavior change. This means if a BRS agent decides to evaluate

a new agent, it considers the majority of ratings, which are supposed to be truthfully

revealed about the trustee agent. In the case where the trustee agent has just changed

its strategy, the trustor agent would lose in trust assessment and does not maintain any

action to verify the accuracy of the gained information. It may take as much time that

other agents perform a number of direct interactions to start rating the spurious trustee

agent. Therefore, as illustrated in Figure 3.10, the BRS agents would have a higher per-

centage of fickle providers selection and a relatively less percentage of good providers

selection (illustrated in Figure 3.9). The peaks in Figure 3.10 are again as a result of

rational agents learning the credibilities of their surrounding agents in the environment.

It takes some while for the active agents to enhance the accuracy of their belief sets.

Generally, it would take more time for the BRS agents to adapt themselves to the new
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environment conditions. The simulation results outlined in this section are all based on

50% agent activation rate.

Figure 3.8: Comparison of CRM, Travos and BRS in terms of cumulative utility gained
along the elapsing runs in a very biased environment

Figure 3.9: Comparison of CRM, Travos and BRS in terms of good provider selection
percentage along the elapsing runs with 50% activation rate in a very biased environ-
ment

Travos [83] has a method similar to BRS. It also uses beta distribution to esti-

mate the trustworthiness of an agent based on the previous interaction experience. The

Travos model also does not have a partial rating. It gives the trustor agent the authority

to merge its own experience with recommendations from other agents. However, un-

like BRS, Travos filters the surrounding agents that are fluctuating in their reports about
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Figure 3.10: Comparison of CRM, Travos and BRS in terms of fickle provider se-
lection percentage along the elapsing runs with 50% activation rate in a very biased
environment

Figure 3.11: Comparison of CRM, Travos and BRS in terms of fickle gained utility
along the elapsing runs with 50% activation rate in a very biased environment

a specific trustee agent. To some extent, this feature would implement a partial sugges-

tion consideration and thus, the Travos agents would learn faster compared to the BRS

agents. Ratings concerning the good and fickle selection percentage shown in Figures

3.9 and 3.10 reflect higher efficiency of Travos compared to BRS. The Travos agents

are capable of preventing the concept of fake reputation in which a group of agents

artificially increase their reputation by their collusive behaviors. However, the Travos

model considers that agents do not change their behaviors during runs. This unreal-

istic assumption affects the accuracy of trust estimation in a very biased environment.
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On the other hand, lack of agile learning ability for agents will weaken the protection

against collusion and fake behaviors. This is the case when a surrounding agent is

being discarded because of providing diverse reports about a particular trustee agent.

In this case, the deviation would be filtered by mistake if the reports are reflecting the

fickle attitude of that particular provider.

The Travos and BRS trust models enable agents to sense the environment and up-

grade their beliefs along the elapsing time. Compared to the performance of FIRE, the

Travos and BRS agents attempt to improve their best agent selection. However, these

models have some aforementioned limitations that cause wrong direction to accurate

trust estimation. In CRM, the aim is to improve the trust mechanism to deal with these

limitations by enabling agents to adapt themselves while the environment is strictly

intermittent. The CRM agents are equipped with the maintenance procedure by which

they update their beliefs about the service providers together with the accuracy of the

ratings provided by the neighbor agents in support or against a specific provider. Con-

sidering all the involved parameters, the agent that is doing maintenance balances its

beliefs to be more accurate in terms of knowing the best provider and the best neighbors

that can be consulted. Therefore, as shown in Figure 3.8, the CRM agents would gain

more utility compared to the other two models. Figures 3.9 and 3.10 reflect the CRM

agile reaction to increase its good selection percentage very fast, and thus, decrease

the maximum possible its fickle selection percentage. To better analyze the affect of

the fickle agents that we concern not to select them, we have shown the gained utility

from fickle agents in each run in Figure 3.11. This figure elaborates the fact that the

gained utility from selecting fickle agents is ideally minimized in the sense that there

is no guarantee about the provided utility after selecting a fickle agent. Therefore the

high performance agents would not rely on this utility and thus, they accumulate the

obtained unitively from selecting the good providers.
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The detailed simulation environment with different settings concludes the fact that

CRM functions as a comprehensive trust framework that satisfies the aforementioned

ideal trust framework’s criteria (accuracy, rationality, adaptability and agileness repre-

sented in Chapter 1). This trust framework outperforms related work mainly because of

its agile reaction to change of behaviors and its ability to reconstruct the accurate belief

set. Considering the maintenance part of this model, a CRM agent is able to know its

surrounding environment relatively faster than the one using similar trust frameworks.

3.7 Conclusion

Our contribution in this chapter is the proposing a new probabilistic-based model to se-

cure multi-agent systems in which agents communicate with each other using dialogue

games. The trust assessment procedure is composed of on-line and off-line evaluation

processes. On-line framework is based upon trustworthy and referee agents as well as

several other features. Objectively, this allows enhancing the accuracy for agents to

make use of the information communicated to them by other agents. Off-line frame-

work considers the communicated information to judge the accuracy of the consulting

agents in the previous on-line trust assessment process.

Our model has the advantage of being comprehensive and taking into account four

important factors: (1) the trust (from the viewpoint of the trustor agents) of the trust-

worthy agents; (2) the trust value assigned to trustee agents according to the point

of view of trustworthy agents; (3) the number of interactions between trustworthy

agents and the trustee agents; and (4) the timely relevance of information transmit-

ted by trustworthy agents. Moreover, the original process of maintenance proposed in

this framework enables agents to dynamically adjust their beliefs and their trustworthy

community in a more efficient manner. The resulting model allows us to produce a
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comprehensive assessment of the agents’ credibility in a software system even if the

environment is very biased. The proposed mechanism accuracy is compared with other

related models and discussed in details to prove the capabilities of our framework. In

conclusion, our proposed trust framework satisfies all the four factors regarding an

ideal trust model.



Chapter 4

Reputation-based Framework
Applied to Agent-based Communities of Web Services

4.1 Background

In the previous chapter, we proposed a trust framework that is used to rate agents’ re-

liability in interactive multi-agent system with dynamic environmental changes. The

trust is individual’s opinion regarding reliability of an entity. This could be generalized

to public opinion that we refer to as reputation. The reputation then reflects public

opinion regarding an entity’s reliability. In this chapter, we propose a new framework

to address reputation evaluation problem. This approach is built on the trust framework

that we proposed before. So we mainly concentrate on the public aspect of the relia-

bility computation. Moreover, we consider the network of web service agents as the

infrastructure of the proposed model because such a network of web service agents is

a suitable environment to discuss the public opinion regarding reliability of intelligent

agents.

The proposed reputation framework is based on some relevant parameters that are

inspired by the case study that we consider in this chapter. In literature, there are a

number of related works that aggregate the relevant parameters to compute the reputa-

tion of an agent. But we distinguish our proposed framework from others by stressing

the fact that the contribution of our framework in this chapter is to maintain truthful

76
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feedback submission system. Upon reliable feedback pool, we aggregate the param-

eters utilized to compute the reputation. Regarding the truthful feedback submission,

there are some relative models that encourage the feedback poster to act truthfully, but

in this chapter we focus on malicious feedback detection, and the ways to discard fake

feedback as well as penalizing the malicious poster agent. We generally investigate the

scenarios where rational agents estimate better results via truthful actions. This type of

reputation analysis is new and we have extended it into different directions in a number

of publications [49, 50].

As one of the recent technologies for developing loosely-coupled, cross-enterprize

business processes (usually referred to as B2B applications), a plethora of web services

exists on the web waiting to receive users’ requests for processing. Such requests are

usually competitive in a reputation-driven manner. As pointed out in Chapter 2, we

implement and apply our proposed reputation mechanism on the web services setting,

where web services are supposed to be associated with agents that act on their behalf.

One general way for such reputation assessment is collection of the after-interaction

feedback that users provide with respect to the quality of the received service. However,

in feedback-based reputation mechanisms, the precise reputation assessment needs to

be verified. Selfish web services might manage to provide feedback that support them

in the reputation mechanism. In general, online reputation mechanism is always subject

to get violated with selfish web services.

Another way to address the selection problems is to gather web services having

similar functionalities into a community. Community of web services (CWS) is a gath-

ering of single and functionally similar web services that are aggregated to perform as

one community while offering unique or variety of services [45,48]. The main property

of a CWS is to facilitate and improve the process of web service discovery and selection

and effectively regulate the process of user requests. There are underlying reasons for
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Figure 4.1: Architecture of reputation-based community of web services

this. In general, the individual web services fail to accept all the requests for them, and

thus refuse to accept a portion of their concurrent requests. This would decrease their

overall reputation in the environment and would lead to loose some users. In CWSs,

the community gathers a set of functionally homogeneous web services. Given that

some communities offer the same functionality (hotels booking, weather forecasting,

etc.), there is a competition between different communities. In this case, reputation is

considered as a differentiation driver of the communities. Moreover, reputation helps

users to select the most reputable community, which would provide the best QoS, and

helps providers to join the best community, which would bring them the most value.

Users assess the reputation of the community and upon that request a service. Although

the service selection process might be simplified, still communities might distract the

reputation mechanism to support themselves. To this end, the reputation mechanism is

needed to maintain a truthful service selection procedure.
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4.2 Architecture of Reputation-Embedded Web Services

Communities

In this section, we represent the CWSs architecture [16], which is designed to maintain

the reputation of the communities. Here we assume that each web service is associated

with a community and do not function alone. If a web service is not registered in a

community, it could not be invoked by a user. Indeed, a web service can be registered

in one of many communities. In Figure 4.1, we represent different components of the

architecture, with their reputation and interactions. These components together with

their detailed performance are explained as follows:

User agent. It is a proxy between the user and other interacting parties such as the

extended UDDI, CWS and the reputation system.

Master agent. This agent is considered as the representative of the community in

the sense that it manages the community requests in selecting the proper web service.

Meanwhile, the master agent hires (or fires) some web services to join (or leave) the

community. In general, the master of the community always tends to increase the com-

munity’s performance and consequently, its reputation level.

Provider agent. Like the user agent, it relates the provider with the extended UDDI,

CWS and reputation system.

Extended UDDI. The traditional UDDI XML schema is based on six types of infor-

mation, allowing people to have information in order to invoke the web services [62].

In the UDDI registry, we restrict the access of the agents in the sense that user and

provider agents only consult the list of masters, whereas the masters have access to the

list of the web services in the UDDI registry. By adding this new information concern-

ing the CWSs, we would clarify which CWS a web service belongs to.
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Reputation system. Considering the fact that the CWSs could offer the same service,

they always compete in order to obtain more requests. Therefore, evaluating CWSs

is unavoidable for the users and providers. To be able to compute the reputation of

these communities, the user and provider agents must gather operational data, reflect-

ing different performance metrics, about the interaction between the user, provider and

CWS. The user agents should intercept some logs like Submission log, Response Time

log, Invocation log, Success log, Failure log, Recovery log and so on. It is important

that the user and provider agents are independent parties in order to intercept trusted

run-time data about each web service interaction.

The reputation system is the core component in this architecture. Its first function-

ality is to register the run-time logs; and the second functionality is to rank the commu-

nities based on their reputation by using a ranking algorithm. The ranking algorithm

would maintain a restrictive policy, avoiding the ranking violation, which could be

done by some malicious CWSs. The violation, which has not been considered in [16]

could be done by providing some fake logging data (by some colluding users) that

reflect positive feedback in support of the CWS, or by fake negative data that is regis-

tered against a particular community. To deal with this violation, we propose to assign

a controller agent Cg. The task of this agent is to update the CWS reputation rankings

in order to drop inaccurate registered data and thus enhance accuracy of the reputation

system. The detailed discussion of this issue is provided in Section 4.4.

Controller agent. Cg is the assigned agent that takes the logging file under surveil-

lance and updates the assigned reputations to the communities. Cg is mainly responsi-

ble to remove the cheated feedback that support particular communities. Investigating

the recent feedback, Cg recognizes the fake feedback and accordingly analyzes the

further actions of the community. In general, Cg may fail to accurately detect the fake

feedback or similarly may recognize normal feedback as fake. Therefore, malicious
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communities always consider this fake detection and analyze their chance of success-

ful cheating.

4.3 Reputation Model

For simplification reasons, but without loss of generality, in the remainder of this

framework, we only consider the users point of view (rather than users and providers)

in reputation assessment. In order to assess the overall reputation of a CWS, the user

needs to take some correlated factors into account. In Section 4.3.1, we present the

involved metrics that a user may consider in this assessment. Consequently, in Section

4.3.2, we explain the methodology that the user uses to combine these metrics in order

to assess the reputation of a CWS.

4.3.1 Metrics

Responsiveness Metric: Let Ci be the community that is under consideration by user

Uj . Responsiveness metric depicts the time to be served by a CWS. Let Res
Uj ,qs

t

Ci
be the

time taken by the master of the community Ci to answer the request received at time t

(qst) by the user Uj . This time includes the time for selecting a web service from the

community and the time taken by that web service to provide the service for the user

Uj . When it is understood from the context, Ci will be removed from the notations.

Equation 1 computes the response time of the community Ci, computed with Uj during

the period of time [t1, t2] (ResUj ,[t1,t2]), where n is the number of requests received by

this community from Uj during this period of time.

ResUj ,[t1,t2] =
1

n

t2∑
t=t1

ResUj ,qs
t × e−λ(t2−t) (1)
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Here the factor e−λ(t2−t), where λ ∈ [0, 1] is application-dependent and reflects the

time recency of the received requests so that we can give more emphasize to the recent

requests. If no request is received at a given time t, we suppose ResUj ,qs
t
= 0.

InDemand Metric: It depicts the users’ interest for a community Ci in comparison

with the other communities. This factor is computed in Equation 2.

InD[t1,t2] =
Req[t1,t2]∑M
k=1 Req

[t1,t2]
Ck

(2)

In this equation, Req[t1,t2] is defined as the number of requests that Ci has received

during [t1, t2], and M represents the number of communities under consideration.

Satisfaction Metric: Let SatUj ,qs
t be a feedback rating value (which is supposed

to be between 0 and 1) representing the satisfaction of Uj with the service regarding its

request qst sent at time t to Ci. Equation 3 shows the overall satisfaction of the user Uj

to community Ci.

SatUj ,[t1,t2] =
1

n

t2∑
t=t1

SatUj ,qs
t × e−λ(t2−t) (3)

4.3.2 Metrics Combination

In order to compute the reputation value of a CWS (which is between 0 and 1), it is

needed to combine these metrics in a particular way. Actually, the Responsiveness and

Satisfaction metrics are the direct evaluations of the interactions between a user and

a CWS whereas the inDemand metric is an assessment of a community in relation to

other communities. In the first part, each user adds up its ratings of the Responsiveness
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and Satisfaction metrics for each interaction it has had with the CWS. Equation 4 com-

putes the reputation of the community Ci during the interval [t1, t2] from the user Uj’s

point of view. In this equation, ν represents the maximum possible response time, so

that if a community does not respond, we would have ResUj ,[t1,t2] = ν. In the second

part, the inDemand metric is added. Therefore, the overall reputation of Ci from the

users’ point of view is obtained in Equation 5.

RepUj ,[t1,t2] = η(1− ResUj ,[t1,t2]

ν
) + κSatUj ,[t1,t2] (4)

Rep[t1,t2] = χ
1

m

m∑
j=1

(
RepUj ,[t1,t2]

)
+ φ InD[t1,t2] (5)

Where η + κ = 1 and χ+ φ = 1.

In the rest of this chapter, we call Rep[t1,t2] as the reputation of the community Ci

computed with respect to interacting users’ points of views as well as the community’s

inDemand metric. But in next chapters, we discuss about the reputation of web service

agents computed by the central reputation system and refer to this parameter by Ri

reflecting web service i’s reputation value. In context, these two parameters are same,

but considering the time interval, we differently refer to the parameter in this chapter.

4.4 Feedback Logging Mechanism

Without loss of generality, in a network composed of CWSs, master agents (as repre-

sentatives of communities) are selfish and may alter their intentions in order to obtain

more benefits (in terms of popularity). This could happen by improving one’s reputa-

tion level or by degrading other’s reputation level. We respectively refer to these cases
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as fake positive/negative alteration. Violating the logging feedback (distracting the rep-

utation levels) could lead to system inconsistency in the sense that low quality CWSs

may obtain more users or high quality communities may loose some users. There-

fore, it is important to avoid such attacks and keep the logging mechanism accurate.

In the rest of this section, we explain how to perform fake positive/negative correction

(recognition and adjustment) and thus effectively maintain a reputation adjustment.

In the proposed architecture for the CWS, the reputation is computed based on the

information obtained from the logging system that over the elapsing time, users leave

their feedback. Thus, it is essential to keep such logging file accurate and discourage

malicious actions. It is the responsibility of the controller agent Cg to maintain an ac-

curate attack-resilient logging file. As a part of the UDDI system, Cg has the authority

to update information such as overall reputation level of any CWS. In this framework,

we assume that this agent is highly secured in order to avoid being compromised. How-

ever, if Cg gets compromised with a given community, then inconsistent actions of Cg

could be recognized by some other communities, given the fact that they are competing

with one another. But this issue is out of the scope of this chapter.

4.4.1 Fake Positive Correction

Fake positive recognition. One of the main responsibilities of the controller agent

Cg is to perform fake positive correction. To this end, initially Cg should recognize a

malicious behavior from one or a set of user agents (that could possibly collude with a

particular community). This recognition is done based on the recent observable change

in the reputation of a community. To this end, Cg would always check the recent feed-

back of the communities. So Cg would consider the reputation that is computed for

a specific period of time [t1 − ε, t1], where t1 is the current time. The value ε is set

by the controller agent regarding to the system inconsistency in the sense that if the
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network is inconsistent, so Cg would need to check most recent feedback (ε as rela-

tively small amount). Otherwise, Cg would take even older feedback into account (ε

as relatively large amount). Thus, Rep[t1−ε,t1] is the reputation of the community Ci

obtained from data measured from t1 − ε to t1. Different values of ε will be used in

the simulation to observe the effect of the considered period on the overall recognition.

Let U [t1−ε,t1] be the set of users that during this time interval have provided a feed-

back for the community Ci, and tb be the beginning time of collecting feedback. Cg

would consider the positive feedback to be suspicious if the reputation improvement

(Rep[t1−ε,t1]−Rep[tb,t1]) divided by the number of users that caused such improvement

is greater than the predefined threshold ϑ, i.e:

Rep[t1−ε,t1] −Rep[tb,t1]

|U [t1−ε,t1]| > ϑ

The number of users (|U [t1−ε,t1]|) is bounded by two factors: 1) communities cannot

manage more than a maximum number of users by time unit considering their sizes

(i.e. the number of web services populating the communities); and 2) in case of a

malicious community, it is very unlikely that this community manages to collude with

more than a certain number of users. This will prevent malicious communities from

violating the feedback without being recognized by maximizing |U [t1−ε,t1]|. In that

case, it is assumed that community Ci had a drastic reputation increase in the recent ε

time. The value ε is set with respect to the controller agent’s success in fake feedback

detection. Interacting in the environment, Cg would update this value in the sense that

the most efficient value is figured out. The detail algorithms on how to learn this value

is out of scope of this chapter.

Fake positive Adjustment. Exceeding the threshold ϑ, Cg would figure out that

a particular community is receiving consequent positives. Then Cg, in order to reload
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Figure 4.2: Fake positive correction cases

the previous and actual reputation level, would freeze the recent positive logs and no-

tifies the corresponding community of such suspending. So, Cg would observe the

upcoming behavior (in terms of satisfaction and responsiveness) of the community in

order to match the actual efficiency with the suspended enhanced reputation level. Dur-

ing this period, the community is encouraged to behave in such a way that reflects the

suspended enhanced reputation level. As it is shown in Figure 4.2, the community’s

feedback is recognized as suspicious at time t1. Feedback from time t0 are freezed

to investigate the further behavior of the suspicious community Ci. At time t2 con-

troller agent Cg would decide whether to penalize community Ci or to redeem the

freezed feedback. If the community shows the real improved performance, the sus-

pended reputation level would be redeemed and considered for its reputation. But if

the community fails to do so, the previous reputation level will be decreased by some

applied penalties. In this case, the community would be in such a situation that either

has to outperform its past in order to improve the enhanced reputation level, or would

loose its current reputation, which is not wanted. Therefore, we form an incentive that

communities would not risk their current reputation level and thus they do not by any
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means (colluding with users or providers) provide fake positives in support of them-

selves. Let Evol[t1,t2] be the evolutionary reputation value for the community Ci that is

measured by the Cg during specified time interval [t1, t2] (investigation period). This

value is computed in Equation 6, where δ is a small value such that the reputation is

measurable within [t− δ, t].

Evol[t1,t2] =

∑t2
t=t1+δ Rep[t−δ,t]

t2 − t1
(6)

Also, let Pnt be the general penalty value that is assigned by Cg to Ci at a specific time

t. Equation 7 computes the adjusted reputation level of Ci (R̂ep
[tb,t2]

). This equation

reflects the incentive we propose, so that CWSs in general would be able to analyze

their further reputation adjustments upon fake action.

R̂ep
[tb,t2]

=

⎧⎪⎨
⎪⎩
αRep[tb,t1] + βEvol[t1,t2], if redeemed;

αRep[tb,t0] + βEvol[t1,t2] − Pnt2 if penalyzed.
(7)

where α + β = 1.

As discussed before, Cg will decide to redeem the community Ci if the evolutionary

value for the reputation is more than Ci’s previous reputation value, i.e.: Evol
[t1,t2]
Ci

≥

Rep
[tb,t0]
Ci

. If Cg decides to redeem the community Ci, then the previous reputation

value (from time tb to investigation time at t1) would be considered together with the

evolutionary reputation value as a result of investigation during [t1, t2]. If Cg decides to

penalize the community Ci, then the previous reputation is considered regardless of the

improved reputation obtained in the period of [t0, t1]. In addition to the evolutionary

reputation, a penalty Pnt2 would also be assigned at time t2.

False alarm detection. It is worth to discuss more about alternatives of Cg’s fake

positives recognition. Consider the two cases that Cg falsely, and truly recognizes the
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Figure 4.3: Fake negative correction cases

fake positives. In the former case, the positives are real, therefore, they reflect the

actual performance of the community. Then even being suspended, the community can

easily prove the quality level as it continues as before and basically would not loose

anything. In the later case, the positives are fake, so the community needs to improve

its actual quality level to prove suspended enhanced reputation level. If the community

failed to fulfill such reputation, Cg would decrease its previous reputation level.

4.4.2 Fake Negative Correction

Similar to the fake positive case, there might be some fake negatives in order to de-

crease the reputation level of a particular community (see Figure 4.3). This could

happen when a community or a set of communities would like to weaken a particular

community (by dropping its reputation level) hoping not to compete with them. How-

ever, one unique case should not be excluded in which, a particular community would

mal-behave and after certain number of providing services and obtaining negative feed-

back, claims that the feedback were fake and do not reflect its actual reputation level.

To avoid such a situation, each community is responsible to recognize a change in its

reputation level and consequently report the case to Cg. Upon received report, Cg
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would decide whether the negative feedback were really as a result of the mal-behavior

of the community or as a result of some other parties fake negatives. If Cg initiates

the investigation at time t1, after a period of evolutionary time, Cg would decide for

the reputation adjustment at time t2. In case of redeeming the community Ci that was

suspected to have fake negative feedback, the negatives are discarded (Rep[t0,t1] is not

considered), and a reward Rwt2 is assigned at time t2. The reason is to discourage the

opponent communities not to cause a fake negative feedback for Ci and hope to de-

grade its reputation level. However, if after evolutionary investigation, Cg decides to

penalize Ci, then the negative feedback are also considered (by considering Rep[tb,t1]),

and a penalty Pnt2 is assigned to the community. Equation 8 computes the updated

reputation value of the community Ci (R̂ep
[tb,t2]

).

R̂ep
[tb,t2]

=

⎧⎪⎨
⎪⎩
αRep[tb,t0] + βEvol[t1,t2] +Rwt2 , if redeemed;

αRep[tb,t1] + βEvol[t1,t2] − Pnt2 if penalyzed.
(8)

There is also a case that a malicious community tries to mislead controller agent Cg

with the fake feedback that it managed to provide for himself and tries to act better than

usual in the evolutionary time to get the reward Rwt2 . All such false detections reflect

diverse situations in which Cg needs to recognize the source of submitted feedback

(colluded users). For sake of simplicity, in this framework we do not talk about these

cases and consider such cases of false detection out os scope.

4.4.3 Theoretical Analysis

In this section, we will discuss in details the updates of reputation level when a par-

ticular community Ci causes fake feedback that is eventually beneficiary for itself. To

this end, we follow the steps over this reputation updates and elaborate Cg’s actions

on them. For simplicity reasons, we only analyze the case of self-positive feedback

and generalize our discussion to fake negative feedback. We objectively assume that
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Figure 4.4: The tree of backward induction reasoning

penalizing a community is relative to the reputation improvement that community had

obtained. In this section, we use backward induction reasoning technique to show that

CWSs loose interest in doing malicious acts that cause extra (fake) positives for them-

selves or extra (fake) negatives for some others.

To better analyze the decisions the communities could take, we calculate the ex-

pected reputation value of a particular community in the case that the community acts

maliciously to provide fake positive feedback for itself and the case that the commu-

nity acts as normal and performs its actual capabilities. By comparing the two expected

values, the typical community Ci will decide either to act maliciously or as normal. As

discussed earlier, this decision is made based on the probability that Ci estimates to
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have a successful act. Being malicious, Ci always looks for the cases that could possi-

bly cheat to increase its current reputation. Let qt be the probability that the controller

agent Cg notices the real intention of the community Ci and take actions with penaliz-

ing Ci at time t. We compute the expected reputation of Ci as a result of a malicious

action in Equation 9 and as a result of normal action in Equation 10. In these equa-

tions, the expected value of the reputation for community Ci is measured under two

assumptions. In the case that Ci has faked the feedback (E(R̂ep
[tb,t2]|Ci faked)), the

community decides to fake at time t0 (therefore, the reputation till t0 is considered as

normal), the biased feedback are recognized by Cg at time t1, and the investigation is

finalized at time t2. To this end, by penalizing Ci, its previous reputation till t0 is con-

sidered together with the investigation period [t1, t2] with its penalty. If the controller

agent Cg does not recognize Ci’s malicious act, all the feedback are taken into account.

In this analysis, we consider a very low possibility that Cg warns false negatives, which

is the case that Cg falsely recognizes a malicious act. To this end, we assume that if

the community Ci acts as normal, the reputation value would be measured as normal.

E(R̂ep
[tb,t2]|Ci faked) =

qt2(αRep[tb,t0] + βEvol[t1,t2] − Pnt2)

+ (1− qt2)(αRep[tb,t1] + βEvol[t1,t2])

(9)

E(Rep
[tb,t2]
Ci

|Ci notfaked) = Rep
[tb,t2]
Ci

(10)

Figure 4.4 is the tree representing the backward induction reasoning through actions

of the community Ci and corresponding reactions made by the controller agent Cg in

two steps. In this Figure, IMP refers to the fact that the community’s reputation is

getting improved thanks to fake positives the community has provided. We also refer

in this Figure to PN as the state that the community’s fake action is detected and
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thus penalized by Cg. As it is illustrated, the community that provides fake positives,

obtains an improvement, which could be followed by a penalty. Here we state that the

probability of Cg’s detection given the fact that Ci has faked before is high. Therefore,

if Ci has been already penalized, it is so hard to retaliate and improve again. There is a

slight chance that Ci fakes and Cg ignores, which comes with a very small probability.

Thus, we compute the expected reputation level of both cases and compare them.

Definition 4.1 Let Imp[tb,t2] be the difference between the adjusted reputation (in the

case where the community is under investigation) and normal reputation (in the oppo-

site case) within [tb, t2], i.e:

Imp[tb,t2] =

⎧⎪⎨
⎪⎩

R̂ep
[tb,t2] −Rep[tb,t0], investigated by Cg;

Rep[tb,t2] −Rep[tb,t0], otherwise.

The following proposition gives the condition for the penalty to be used, so that the

communities will not act maliciously.

Proposition 4.2 If Pnt2 > 1
qt2

Imp[tb,t2] − αRep[t0,t1], then communities obtain less

reputation value if they act maliciously and provide fake feedback for themselves.

Proof: To prove the proposition, we should consider the condition true and prove

that E(R̂ep
[tb,t2]|Ci faked) < E(Rep[tb,t2]|Ci Not faked). By simple calculation we

get:

E(Rep[tb,t2]|Ci Not faked)− E(R̂ep
[tb,t2]|Ci faked) =

Pnt2 − 1
qt2

Imp[tb,t2] + αRep[t0,t1]

The obtained value is positive, so we are done.

In the previous proposition, we talked about the incentive that a rational community

has to avoid fake feedback. Now we would like to discuss the general incentive of a
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malicious act in multiple times to generalize the ultimate reputation adjustment of bad

communities that in general prefer to cheat on the logging system. To this end, we

extend our analysis by discussing about a particular community Ci that has previously

made malicious act (for the first time action made at time tl1, detection made at time

tm1, and decision made at time tn1). In this analysis, we would like to investigate

the community’s further acts (made at general time tl) in distracting the logging file

and thus, its reputation treatment via the controller agent (detection at time tm and

decision at time tn such that tn > tm > tl > tn1). Basically, as a result of the previous

act, Ci could have been penalized (which means the community is less likely to act

maliciously again) or have gained a reward (which means the community is very likely

to act maliciously again). In the following, we study the penalty Pntn that should be

assigned to these types of communities to avoid their multiple malicious acts.

Assume that Ci has made its malicious act at time tl1. For the performed action,

there is a chance (qtn1) that the controller agent Cg noticed the act at time tn1 and thus,

penalized the community by Pntn1 . We also consider the chance (1 − qtn1) that the

controller agent ignores the act and thus, the community has obtained the improvement

Imp[tl1,tn1] through the feedback without any penalty from the controller agent. Con-

sidering the probabilities of different strategies that the controller agent may take, as we

discussed earlier, there is a small chance that Cg ignores the malicious act. This basi-

cally means the probability of notice (for the first time) (qtn1) is normally high and that

is because the sensitivity of the controller agent in investigating the list of feedback for

each particular community. However, once recognized, the controller agent becomes

more sensitive to the recognized community’s further actions. Therefore, the probabil-

ity of missing the second fake action is less than the first one and so on ((qtn2 > qtn1)).

Generally speaking, the community would be more interested to continue its malicious

behavior when it has never been recognized via Cg and thus penalized. However, there
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is always a high possibility for this community to be recognized later (for the first time).

Considering the aforementioned cases, the expected reputation E(Rep[tb,tn]) for a

community that fakes the feedback again (for the second time or more) can be decom-

posed by the cases that Cg has previously (tnj) noticed the community’s malicious act

(Cg noticed|Ci faked) with the probability qtnj (nj < n) and Cg has previously ig-

nored such action (Cg ignored|Ci faked) with the probability 1− qtnj . We study each

case by analyzing the strategy that Cg has previously took in response to such fake

action.
E(Rep[tb,tn]|Ci fake again) =

(qtnj)E(Rep[tb,tlj ]|Cg noticed)+

(1− qtnj)E(Rep[tb,tlj ]|Cg ignored)

Consider the first case that Cg notices the current fake behavior of Ci. We expand

this case to the cases that Cg noticed Ci’s previous act and the case that Cg ignored Ci’s

previous malicious act. This basically influences the control of Cg over the feedback

of the community Ci since being recognized as malicious community.

E(Rep[tb,tn]|Cg noticed) =

(qtn)E(Rep[tb,tn]|Cg noticed before)+

(1− qtn)E(Rep[tb,tn]|Cg ignored before)

Basically the probability of notice for a community that has faked before is more

than ordinary community without previous fake action. To this end, qtn is higher than

qtnj such that qtn × α = qtnj . The value α is a generic value (0 < α < 1), but to be

consistent we always use this value in order to apply the degradations.

Considering the case that Cg ignored the current fake behavior of the Ci, we expand

this case to the case that Cg noticed Ci’s previous malicious act and the case that Cg

ignored Ci’s previous malicious act. For simplicity, here we assume q′tn = 1 − qtn .
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This means that if the previous fake action is recognized, the current fake action would

be recognized as well with the probability of qtn . Likewise, if the previous fake action

is ignored, the current fake action is made with the probability of qtn .

E(Rep[tb,tn]|Cg ignored) =

(q′tn)E(Rep[tb,tn]|Cg noticed before)+

(1− q′tn)E(Rep[tb,tn]|Cg ignored before)

The value q′tn would be a very small value in the sense that if Cg noticed the previous

act of Ci, now the possibility of ignore would be very small. In general, the controller

agent would become very sensitive to the acts of malicious communities. Consider-

ing the updates made by Cg over the reputation values of communities, the following

proposition holds.

Proposition 4.3 If communities fake again, they make a drastic degradation in their

reputation value.

Proof: Given the fact that Cg noticed previous fake action of Ci, it would be more

restrictive for Ci’s further performance, therefore, the probability of noticing the new

fake action is higher than before (qtn > qtnj ). In this case Cg increases the checking

accuracy for such community and we defined this improvement by the factor of 1 + α,

which is multiplied to the previous notice probability value. Consequently, we rewrite

the expected value as following. In Equation 11, the first line represents the case that

fake action has been noticed before and now (so there is two penalties applied and

no reward). Second line represents the case that fake action is noticed now but has

been ignored before (so there is a current penalty but previous reward). Third line

represents the case that fake action is ignored now but has been recognized before (so

there is current rewards but previous penalty). Last line represents the case that fake
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action been ignored in both previous and current time (so there are just rewards and

no penalties).

E(Rep[tb,tn]|Ci faked again) =

qtn(qtnj)(Rep[tb,tlj ] − Pntnj − Pntn)

+qtn(1− qtnj)(Rep[tb,tlj ] − Pntnj + Imp[tl,tn])

+(1− qtn)(qtnj)(Rep[tb,tlj ] − Pntnj + Imp[tlj ,tnj ])

+(1− qtn)(1− qtnj)(Rep[tb,tlj ] + Imp[tlj ,tnj ] + Imp[tl,tn])

(11)

Following the ideology that the expected value of faking again should be (strictly)

less than not faking, we simplify the obtained value in Equation 11 to the following:

E(Rep[tb,tn]|Ci fake again) <

E(Rep[tb,tn]|Ci not fake again) ⇒ 1−qtn
qtn

Imp[tl,tn] < Pntn

(12)

Generalizing the case 1−qtn
qtn

Imp[tl,tn] < Pntn to be valid in all tn, it is shown that the

required amount for the penalty for time tn is less than the required amount for any

previous time. This clarifies the incentive for faking again is less than the incentive for

the first fake.

Pntn < Pntn′

n′ < n
(13)

Therefore, the probability of faking again is decreasing over time, so we are done.

4.5 Experimental Results

In this section, we describe the implementation of a proof of concept prototype. In the

implemented prototype, CWSs are composed of distributed web services (Java c©TM

agents). The agent reasoning capabilities are implemented as Java modules. The
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Table 4.1: Simulation summarization over the obtained measurements.
CWS Type WS Density WS Type WS QoS
Ordinary [25.0%, 35.0%] Good [0.5, 1.0]

Faker [25.0%, 35.0%] Bad [0.0, 0.5]
Intermittent [25.0%, 35.0%] Fickle [0.2, 0.8]

testbed environment is populated with two agent types: (1) agent-based web services

that are gathered in a community (we assume only one type of service is provided

and therefore consumed); and (2) user agents that are seeking for the best service pro-

vided by a web service. In general, the simulation consists of a series of empirical

experiments tailored to show the adjustment of the CWS’s reputation level. Table 4.1

represents three types of CWSs we consider in our simulation: ordinary, faker and

intermittent. Ordinary community acts normal and reveals what it has, the faker com-

munity is the one that provides fake feedback in support of itself, and the intermittent

community is the one that alternatively changes its strategies over the time. As it is

shown in Table 4.1, the QoS value is divided into three ranges.

In each RUN, a number of users are selected to search for the best service. Strictly

speaking, users are only directed to ask CWSs for a service and thus, user would not

find out about the web service that is assigned by the master of the community. In order

to find the best community, the requesting user would evaluate the CWSs regarding

their reputation level. Some times, the users are in contact with some communities that

are very good for the user, so the users re-select them. The selected community might

be overloaded and consequently rejects the user requests. If the user agent is rejected

from the best selected community, it would ask the second best community in terms

of reputation level (and so on). After getting a response from a community, the user

agent would provide a feedback relative to the quality of the obtained service and the

community responsiveness. The feedback are logged in the logging mechanism that
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Figure 4.5: Communities overall quality of service vs. the number of simulation RUNs

is supervised by Cg. The accumulated feedback would affect the reputation level of

communities. In other words, the communities would loose their users if they receive

negative feedback, which will cause drop in their reputation level.

Considering the general incentive of CWSs to attract maximum possible users,

communities in general, compete to increase their reputation level. Cheating on rep-

utation level is done by colluding with a user (or a small group of users) to provide

consecutive positive feedback in support of the malicious (faker) community. In the

empirical experiment, we are interested observing the over-RUN reputation level of

different types of communities and how fast and efficient the adjustment is performed

by Cg. Figure 4.5 illustrates the plot of reputation level for a faker community C8. The

upper plot represents the individual QoS for the community’s assigned web services. In

this plot the gray line defines the average QoS for the web services. The most promi-

nent feature of the plot is the comparison of the reputation level with the average of

the community web services QoS. The average value is assumed to be the actual QoS
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for the community and thus, community’s reputation level. In general, there would be

convergence to such value if the community is acting in an ordinary manner (for C8

is 0.173). The lower plot illustrates the reputation level of this community over the

elapsing RUNs. Here we notify that the master of a community is responsible to assign

the web services to the user requests. To this end, normally the high quality web ser-

vices are assigned first until they become unavailable, which forces the master agent to

assign other lower quality web services. Thus starting the RUNs, C8 gains reputation

value (up to 0.313), which is better than its individual average quality of service. In

Figure 4.5 the peek P1 defines the RUN in which the community C8 is out of high

quality web services. After passing this point, the reputation level of this community

is decreased.

Figure 4.6 illustrates community C8 reputation level in comparison with an ordi-

nary community C6. C8 at point P3 decides to provide fake positive feedback for

itself to increase self reputation level. For the interval of 30 RUNs, this community

gains higher reputation level up to the point P4. The controller agent Cg, periodi-

cally verifies the feedback logs, in order to recognize the malicious actions. At P4 the

controller agent Cg notices the malicious act of C8 and freezes the obtained feedback

for investigation. Peek P2 is the point in which the community C8 is penalized in its

reputation level. After P2, a drastic decrease in reputation value is seen, which goes

underneath C8’s average quality of service (up to 0.112). There is also a continuing

but slower increase in the reputation of the faker community C8 that persists long after

the first fake action recognition. There are then strong restriction effects, which cause

loosing the users by the faker communities. However, there is also an ongoing effect

of social influence, which leads users to have doubt in communities that have drastic

decrease in their reputation level.

We continue our discussion by analyzing some parameters related to the controller
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Figure 4.7: Controller agent Cg’s accuracy in detection vs. the number of simulation
RUNs

agent’s performance and accuracy. One of the main factors in such a system is the

accuracy of the controller agent in fake detection. The controller agent is supposed to

investigate the feedback and recognize the malicious acts while the requesting users

provide their rates. However, there are two possibilities for Cg to fail to accurately

Figure 4.8: Communities’ tendency to fake vs. the number of simulation RUNs
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Figure 4.9: Controller agent’s characteristic analysis

detect such actions. The false detections are detecting a non-fake action as fake, and

ignoring a fake action as non-fake. The former case is called false positive (or α-error

in statistics), which is rejecting the null-hypothesis when it is true. The later case is

called false negative (or β-error), which is accepting the null-hypothesis when it is

actually false. The false positive is the case that the controller agent would ignore a

malicious act and thus, would not investigate it more closely. Since the controller agent

is not re-acting to the initially detected action, there is a chance to recover the initial

false alarm. Over the further investigation, the false negative (initially warned by Cg)

is most likely corrected once the investigation is done, but the other cases, which have

been ignored are not recognized as there is no further investigation over the detection.

To this end, one of the main objectives is to enhance the efficiency of the controller

agent to decrease the false alarm ratio and strength the logging feedback crawling algo-

rithm. Figure 4.7 shows the controller agent’s accuracy over the elapsing RUNs while

the recognized communities are penalized and thus, discouraged to redo the fake ac-

tions. As shown in this figure, the controller agent is relatively less accurate during

the initial RUNs. Basically, detection weakness would highly encourage the faker and

intermittent communities to perform fake actions. Mostly as a result of the reward

that they obtain without the penalty. Basically, the accuracy of Cg is increased while
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Cg acts successfully in detecting and thus, penalizing faker communities. Cg would

act better over the Runs since previously detected communities are investigated more

carefully and thus, the chance of failing to detect is decreasing.

In Figure 4.8 we discuss this issue as we observe the tendency of the communities

to provide fake feedback in support of themselves. In this figure, the vertical axes plot

the average percentage of the intermittent communities that might be encouraged to

fake and the horizontal axes plot the RUNs, which reflect the elapse of time. In this

figure, the average tendency to fake is decreasing as the number of intermittent agents

that are penalized are increasing.

We take a narrower analysis on the characteristics of the controller agent Cg and

their impacts that eventually influence the incentive of different communities to act

maliciously. To this end, we study the aforementioned issues towards the network con-

density and the extent to which the controller agent is crawling the feedback. In the

former study, the idea is to observe how dealing with different malicious communi-

ties make the controller agent sensitive to get suspicious while crawling the feedback.

Basically, the controller agent sets the threshold ϑ in Section 4.4.1 by observing the

number of malicious communities in the environment. This means the controller agent

tries to get more though when the number of malicious communities is increasing (see

Plot (a)). However, this harsh manner could not be kept on since Cg cannot keep

tracking all communities at the same time. On the other hand, by getting suspicious

for any community, the false positive ratio would be going up, which reflects the low

efficiency of Cg in terms of detection performance. Following the idea that Cg tries to

avoid the increase of the malicious communities, we observe that this agent increases

the average penalty value assigned to malicious communities while their number is in-

creasing. Plot (b) assigns a dot point to each community that gets penalized. The dot

points are getting more condense, which shows their high number.
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In the second part of the Figure 4.9, we study the efficiency of the controller agent

versus its sensitivity. Since we analyzed the threshold that is set to indicate Cg’s sensi-

tivity, here we study how well Cg can act with different thresholds. Plot (c) sketches

a graph that shows a parabola for the effectiveness of Cg. In this graph, there is a

tradeoff between the false positive and false negative errors. At a low sensitivity pe-

riod, there are high number of false negatives. This basically encourages the malicious

communities to highly redo their malicious acts as they distract in the logging file and

increase their reputation and do not get penalized afterwards. To this end, the observed

slope for the effectiveness is relatively small. There is a maximum point for the ef-

fectiveness, but this is not always true and may change depending on the environment

and surrounded communities. Therefore, we cannot finalize the controller agent’s effi-

ciency to a specific value. Plot (d) is depicting the same problem from another point

of view. Indeed, in this plot we study the false alarm in spite of effectiveness. The false

alarm is computed as the sum of false positive and false negative ratios. In this plot,

the total false detections is minimized once the controller agent reaches its maximum

efficiency. Likewise, the decreasing slope is so slow.



Chapter 5

Sound Reputation Mechanism

5.1 Background

In the previous chapter, we proposed a reputation-based framework that is used to com-

pute agents’ reliability in interactive multi-agent systems according to public opinion.

The computed reputation value is accurate upon calculation but might lose its impor-

tance once the system has undergone dynamic changes of agents’ strategies. A sound

reputation mechanism is the one that maintains its accuracy over time and discards in-

accurate information. Following this claim, in this chapter we continue our analysis of

the proposed reputation mechanism and concentrate on its soundness in order to min-

imize the malicious strategies that might be adopted by selfish agents. A part of this

chapter is dedicated to preliminaries that refer to the concepts that are already stated in

the reputation model proposed in the previous chapter, but there are some clear differ-

ences that we explore in the following. The previous reputation model was based on the

user agents and their points of views. The main concentration was on the aggregation

of relevant parameters and maintenance of accurate feedback pool. We computed repu-

tation of communities of web services (referred to Repi) using the aggregated feedback

as well as other relevant parameters. In that case, the reputation parameter was com-

puted within time intervals and was the value from consumer agents’ points of views.

But in this chapter we have a different point of view regarding this parameter and we

compute it considering some new parameters. Moreover, we discard the concept of

104
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interval and mainly focus on the way that this parameter is computed and updated.

Considering these changes, we refer to the reputation by Ri in the rest of this Thesis.

This parameter (Ri) represents the reputation associated to an entity i that could be a

web service agent or a community of web services. The reputation model proposed in

this chapter mainly concentrates on the soundness issue and how a reputation system

could constrain its accuracy while the interacting agents are free to choose any sort

of acting strategies. The reputation mechanism is aimed at imposing some incentives

in the multi-agent environment so that essentially truthful strategies are adopted by

majority of agents.

Regarding the related work, there are a number of reputation models that all aim

at maintaining accurate systems [35, 54, 89]. But the dynamism of the environment is

not well-studied yet. In this proposed model, we explore game-theoretical analysis of

the expected payoffs obtained via different acting strategies [23, 24]. In general, game

theory is a method of investigating different strategic decision making procedures that

intelligent agents maintain. More formally, it is ”the study of mathematical models

of conflict and cooperation between intelligent rational decision-makers” [59]. We

use game theory to focus on agents’ preferences and the formation of their beliefs

to find and develop tactics that impose our idealistic state (truthful environment) as a

common goal between agents. We provide incentives to rational agents to investigate

their risky alternative actions and estimate their expected outcomes. We investigate

the specific thresholds by which the controller system can approach sound reputation

system. Furthermore, we have implemented multi-agent environment systems with

flexible parameters to observe impacts of the adopted strategies of the controller agent.
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5.2 Overview and Motivation

Web services are deployed to maintain continuous interactions between loosely cou-

pled applications. Abstracting web services using knowledge-empowered agents will

benefit them from flexible and intelligent interactions that those agents are able to

manage [28, 93]. However, because agents are autonomous and selfish, a key issue

in agent-based environments is reputation, which is a significant factor that regulates

the process of service selection. As discussed in Chapter 2, during recent years, there

have been extensive work addressing the reputation in multi-agent and service envi-

ronments [41], [52], [57], [35, 37]. Many of the proposed models are based on data

collected from different sources that are considered reliable. However, this might not

be the case in many concrete situations.

There is a different point of view in addressing the reputation mechanism, which

is maintaining an incentive-based sound reputation mechanism [102, 103]. In this per-

spective, the ideal case is the situation in which rational agents have incentives to act

such that ultimately the whole environment turns into a truthful network of agents.

Maintaining this mechanism requirers designing a reputation framework with some

defined characteristics that establish incentives and penalties along the direction to-

wards a sound reputation mechanism. The concept of sound reputation assessment is

being considered in very few attempts. The reputation model we propose in this chapter

aims to advance the state-of-the-art by addressing this open issue (promoting truthful

actions).

The general idea of collusion-resistent reputation mechanism is inspired by a pre-

vious framework we proposed in [50], in which we developed a game-theoretic analy-

sis to maintain accurate reputation assessment mechanism for agent-based web service

systems. In this reputation assessment framework, web services are ranked using users’

feedback posted with respect to the quality and satisfaction of the received service. The
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goal is to investigate the payoffs obtained through different situations and propose so-

lutions that allow building collusion-resistent reputation mechanisms. In this chapter,

we extend this framework by expanding the reputation management, considering more

collusion scenarios, and providing more theoretical and simulation results and analysis.

Moreover, we discuss in detail the system implementation and simulation environment.

More details regarding the contributions of this proposed model are provided in the fol-

lowing subsection.

Contributions. In this model, we consider agent-based web services and address

the aforementioned problems by providing accurate reputation assessment in open en-

vironments in which web services are selfish and utility maximizers. The reputation

is accurately assessed mainly as a result of incentives provided to participating agents

in order to act truthfully and avoid malicious actions. We aim to advance the-state-

of-the-art by analyzing the system’s parameters using game theory. We investigate the

incentives to cheat that malicious web services can have and incentives to act truthfully

while being aware of the possible penalties assigned by the controller agent (see Chap-

ter 4 for the definition of this agent). In fact, we theoretically and empirically analyze

the obtained payoffs according to the agent’s followed strategy (i.e. acting truthfully or

maliciously). In our simulations, we discuss the obtained results that enable us to elab-

orate on the outcome of different strategies that participants (or players) might choose.

We conclude with incentives for web services to act truthfully and identify the state

that is socially acceptable for all the participants.

5.3 Preliminaries

In Section 4.2 (Chapter 4), we pointed out the preliminaries related to the multi-agent

system hosting web services agent as service providers and service consumer agents.
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In this Section, we refer to these entities and highlight the most important concepts that

are used in this model.

Service consumers are intelligent agents that continuously seek for the services pro-

vided by some other agents. Each service consumer agent is equipped with a purchase

mechanism that facilitates its request initiation process. Moreover, this mechanism an-

alyzes the received quality of service (QoS) and generates the corresponding feedback.

Each service consumer c holds an acceptable quality threshold QTc that is compared

against the received QoS to decide about posting positive or negative feedback. Service

consumer agents rationally follow their predefined goal, which is obtaining the most

satisfactory QoS over time. However, some of them could be encouraged by some web

services to temporarily support them by reporting false feedback, which could be tem-

porarily compatible with the goals of these service consumer agents. This issue will be

discussed in details later in this chapter.

Web services are agent-based services engaged in answering the service consumers’

requests. As mentioned before, web services might initiate some collusion with con-

sumers that might be beneficial for both parties. Each web service agent i is equipped

with a selling mechanism that enables the agent to approach its predefined goal. This

goal is to have a maximum reputation (which results in maximum market share). The

reputation Ri of the agent i is a value, which is computed as a result of feedback ag-

gregation kept in the feedback file, which is supervised by the controller agent (both

the feedback file and controller agent are explained later as preliminaries). Each web

service agent holds parameters of QoS Qi, and market share Mi that are used by the

selling mechanism to reach the predefined goal. The market share Mi is a metric in-

spired by the inDemand metric represented in the previous chapter. In fact, here we use

Mi instead if inDemand because market share is partially declared by the web service

agent and is more consistent with the quality and reputation computations.
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Figure 5.1: Architecture of the proposed framework

Feedback file is used in the proposed system to gather the submitted feedback from

the service consumers. Consumers’ feedback are aggregated to reflect the total credi-

bility of web services. The feedback file is required to be supervised against malicious

actions maintained by some selfish agents in the environment (selfish consumer agents

and web services). Malicious actions mean violating the feedback file by posting some

false feedback, which results in falsely increasing the reputation of some web services.

As discussed in Chapter 4, controller agent Cg is the assigned agent that takes the

feedback file under surveillance. Cg is responsible of removing the false feedback that

support particular web services. Cg is equipped with an investigation mechanism that

enables this agent to investigate the recent feedback aggregated in the feedback file and

recognize the faked ones by investigating further actions of the benefitted web service.

In general, Cg might fail to accurately detect the fake feedback (false negative error)

or similarly might recognize truthful feedback as fake (false positive error). Therefore,

Cg holds a parameter regarding its accuracy ACg.

Figure 5.1 illustrates the links among the different entities in the proposed frame-

work. Consumer agents take the initiative by looking for services using a service se-

lection mechanism. These agents might contact previously known web services (direct
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link in the figure) or refer to the controller agent to get updated with the most recent

reputation ranking of the web services (indirect link and discontinue arrows in the fig-

ure). Once the web service is selected (i.e. the request is sent) and the corresponding

service is provided, the consumer agent posts a feedback to the feedback file through

the service selection mechanism. The controller agent updates the reputation ranking

by aggregating the accumulated feedback. In this process, active web services would

ask the controller agent for advertisement, which means they require to be considered

in the reputation rankings provided to the consumer agents.

5.4 Reputation Mechanism

To maximize the reputation accuracy, we advance the reputation mechanism proposed

in Chapter 4 by computing the reputation parameters in a different way and proposing

some new parameters. We therefore, maintain a sound reputation mechanism. This is

a mechanism that enables the service consumers to evaluate the credibility of the web

services they want to invoke. In this system, Cg updates its surveillance algorithm

and web services learn from their surrounding environment to make good decisions.

The main result of this model is that over time, agent-based web services will get

encouraged to act truthfully and discouraged to increase self reputation level with fake

feedback. In the assessment process, there are key factors that we need to measure

from the feedback. These factors, which reflect the health of a typical web service i

are: quality (Qi), and market share (Mi).

In the rest of this part, we explain each factor, then, we formalize the reputation of

a typical web service as aggregation of these factors.
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5.4.1 Reputation Parameters

Quality Qi is used to measure the mean rate that is given to the web service i repre-

senting its quality in handling the users’ requests in a timely fashion. Qi is computed by

collecting all the rates given to the web service to be evaluated. For simplicity reasons,

but without affecting the main results of this model, we consider discrete feedback

having the form (+) for positive and (−) for negative feedback. Let Pi be the set of

positive feedback a web service i has received and Ti be the set of all the feedback i

has received since published in the web. Thus, the acceptance factor would be simply

computed in Equation 1.

Qi =
|Pi|
|Ti|

(1)

where |Pi| and |Ti| are the cardinality of Pi and Ti respectively.

Time Discount. In the trivial way of calculating Qi in Equation 1, only the number

of positive feedback is compared with the total number of feedback. This calculation

is not highly effective when the environment is equipped with selfish agents that dy-

namically change their behaviors. We need then to consider the interactions history in

a more effective way by giving more importance to the recent information. This can

be done using a timely relevance function. In this model, we consider the following

function similar to the one used in [31] and [50]: e−λΔtk , where Δtk is the time differ-

ence between the current time t and feedback k submission time tk and λ (λ ∈ [0, 1])

is the recency scaling factor (i.e. scaling time values). Therefore, e−λΔtk is a weighted

feedback. Consequently, the quality factor Qi of web service i can be measured as

shown in Equation 2.
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Qi =

∫
k∈Pi

e−λΔtkdtk∫
k∈Ti e

−λΔtkdtk
=

∫
k∈Pi

e−λ(t−tk)dtk∫
k∈Ti e

−λ(t−tk)dtk

⇒ Qi =
1
λ
e−λteλtk |k∈Pi

1
λ
e−λteλtk |k∈Ti

(2)

We notice that:

lim
|Pi|→∞

∫
k∈Pi

e−λΔtkdtk =

∫ ∞

0

e−λΔtkdtk =
1

λ

Consequently:

lim
|Pi|→∞
|Ti|→∞

Qi =

1

λ
1

λ

= 1

Intuitively, this means when the number of (positive) feedback is huge, the quality

converges towards 1, which reflects the popularity of the concerned web service.

Market Share Mi is a parameter that indicates the extent to which the web service

is active in the providers’ network. This basically affects the popularity of the web

service in the sense that the high service load together with high provided quality bring

higher number of consumers (as a successful web service). We call this property the

popularity property. In the proposed reputation mechanism, a successful web service

is the one that receives high number of positive feedbacks while maintaining a good

response to its consumers, which reflects its high request number. Equation 3 defines

the market share for the web service i, which satisfies the popularity property. In

this equation, the numerator represents the total feedback received for i, whereas the

denominator is the integrated value for all recorded feedback (G) for all active web
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services controlled by Cg. As in Equation 2, the time discount is also considered.

Mi =

∫
k∈Ti e

−λΔtkdtk∫
k∈G e

−λΔtkdtk
=

∫
k∈Ti e

−λ(t−tk)dtk∫
k∈G e

−λ(t−tk)dtk

⇒ Mi =
1

1
λ
e−λteλtk |k∈G−Ti

(3)

where G − Ti �= ∅

5.4.2 Reputation Assessment

Taking the aforementioned parameters into account, we propose the estimated total

reputation for the web service i that is crucial for its selection process and over-

all survival in the environment. First, we weight each parameter with a coefficient

(β1 + β2 = 1). The value of each coefficient reflects the importance of the associated

parameter. Therefore, we obtain the estimated reputation value ri regarding the web

service i in Equation 4. The reputation value ri is only deduced from the feedback

posted on the feedback file. However, at some point this value might not be the one

that is publicly announced to the service consumers. These agents refer to the controller

agent for the most accurate information regarding web services’ reputation value and

use the obtained value as a measure of reliability.

ri = β1Qi + β2Mi (4)

In the proposed reputation mechanism, Cg is dedicated to manage the reputation

assessment and make it sound. Therefore, on top of the rates that a web service i

receives from collecting the consumers’ feedback (ri), Cg is eligible to offer a rate
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reflecting its own point of view regarding the web service’s reputation. The rate (Ci)

that is given by Cg affects the web service i’s total reputation. If Ci is so low (lower

than ri), that means the web service i has a bad-reputed history that might encourage

users to avoid him. If the rate is relatively high (higher than ri), the consumers rely

more on what they have evaluated from the files. Equation 5 gives the formula of

computing the total reputation Ri, which is defined so that it satisfies the conservative

property. Such a property consists in giving higher weight to the lowest feedback. This

is achieved because if ri > Ci, then γ2 > γ1 where γ1 is the weight of ri and γ2 is the

weight of Ci.

Ri = γ1ri + γ2Ci such that:

⎧⎪⎨
⎪⎩

γ2 − γ1 = ri − Ci

γ1 + γ2 = 1
(5)

5.5 Reputation Alteration

5.5.1 Collusion (Web Service Perspective)

In an open environment populated with agents who are aimed to achieve their prede-

fined goals, some agents may choose strategies that only benefit some of them and

in general are not good strategies for the whole system. In a multi-agent system of

web services and service consumers, selfish web services might desire to increase self

reputation to a level that have not been ranked to. The faked reputation level would

temporarily bring extra service requests towards the malicious web service. However,

the goal of the malicious web service is to keep the faked reputation as much as pos-

sible. A web service would collude with some consumer agents to provide continuous

positive feedback supporting him. These consumer agents have to be encouraged to

collaborate in the collusion by obtaining some privileges, such as low service fee, out-

standing QoS, etc.
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To discuss the collusion concept in more details, consider the web service i, which

aims at increasing its quality report Qi and market share Mi. In a collusion process,

the malicious web service i faces a major risk reflected by the rate Ci submitted by the

controller agent in the sense that if the malicious action is being detected, Ci would be

fairly small reflecting bad history of the web service. The submitted rate via the con-

troller agent affects the reputation value of the web service to some certain extent. In

case of acting truthfully, the web service would obtain a better reputation compared to

the case where its fake reputation is being recognized and thus, a low rate is submitted.

To this end, a malicious web service, that is aiming to increase self reputation level,

has a main challenge, which is the decision of acting maliciously. This means that even

though the web service is capable of colluding with some consumers, there might be

some reasons that prevent the agent from initiating such an action. Thus, to account for

the web service’s willingness to act maliciously, we introduce a willingness parameter

wi. In this case, the expected reputation values of acting 1) truthfully (Exp(Ri|Truth))

and 2) maliciously (Exp(Ri|Mal)) should be compared. A web service is willing to

act maliciously when the expected reputation value of colluding is more than the one

of acting truthfully. The parameter wi is set as follows:

wi = 1 if Exp(Ri|Mal) > Exp(Ri|Truth)

wi = 0 if Exp(Ri|Mal) ≤ Exp(Ri|Truth)

The expected values of reputation in different cases are computed in Equations 6

and 7. In Equation 6, q and 1 − q are respectively probabilities of being detected

and ignored by the controller agent. The parameter ri is the altered reputation as a

result of collusion and the parameter Ci is the rate the controller uses if the collusion

is detected. The value of ri is greater than ri thanks to the submitted faked feedback
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by the colluding consumers. Likewise, the value of Ci is less than Ci as long as the

controller agent would penalize more in case of collusion being detected.

Exp(Ri|Mal) = q(γ1ri + γ2Ci) + (1− q)(γ1ri + γ2Ci)

⇒ Exp(Ri|Mal) = γ1ri + γ2(qCi + (1− q)Ci) (6)

Exp(Ri|Truth) = γ1ri + γ2Ci (7)

In general, a normal web service that is acting truthfully, expects the actual repu-

tation level when there is nothing wrong in the feedback file. Later in this section, we

also consider the false positive cases where the truthful action also gets penalized and

thus, the expected reputation rank should be updated. The malicious web service also

has some other challenges, which are beyond the scope of this model: 1) when to act

maliciously; 2) who to collude with; and 3) how many fake feedback to provide. To be

focussed, in this model we only consider the malicious actions consisting of providing

positive feedback. The fact of providing negative feedback, for example a web service

can (indirectly) provide continuous negative feedback to a concurrent web service, is

also important to be considered in future work.

5.5.2 Collusion Scenario

The collusion scenario could be initiated by either the consumer agent or web service

agent. In this reputation model, we assume that this procedure is initiated by the ma-

licious web service that is already willing to collude. This means that for the web

service, the expected reputation rank with respect to collusion is more than the one

of following a truthful action. Before discussing the collusion scenario, we also need

to provide some insights regarding the consumer agent. In the proposed framework,
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the consumer agents are aimed at obtaining the best service quality and therefore, they

need to seek for the best reputed web service. In order to find the best web service, the

consumer agent is required to refer to the controller agent to obtain the most updated

web services’ ranks. Otherwise, the consumer has to consider its history of service se-

lection and accordingly, requests the most reliable web service. To this end, on top of

the eagerness of high quality service, the consumer agent requires from the controller

agent to be updated. Therefore, if the consumer agent accepts the malicious web ser-

vice’s invitation for collusion, the corresponding risk of reaction from the controller

agent needs to be taken into account. If the controller agent recognizes the collusion,

the recognized consumer would not benefit from the controller agent’s services for

some certain time, which affects the consumer agent’s expected service quality. To be

focussed, in our collusion analysis, we skip the details of collusion willingness regard-

ing consumer’s point of view and mainly consider the collusion process initiated by the

web service and collaborated by the consumer agent. This limitation does not affect

the obtained results.

In the collusion scenario, the malicious web service and consumer agent agree on

a collusion that bring some benefits to both colluding parties. The web service i gets

extra positive feedback that increase its reputation value out of the feedback file. The

enhanced reputation value ri is computed in Equation 8.

ri = β1Qi + β2Mi (8)

where Qi = Qi(1 + fQ) and Mi = Mi(1 + fM)

fQ = f(|Pi|, |Ti|, |Fi|) and fM = g(|Ti|, |G|, |Fi|)

In Equation 8, the factors fQ and fM respectively represent the update factor regard-

ing web service i’s quality and market share parameters. These factors are functions
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of current status of the web service i in the feedback file (|Pi| denotes the number of

positive feedback for i, |Ti| the number of all feedback for i, |Fi| the number of faked

submitted feedback for i, and |G| the number of all recorded feedback for all active

web services). The functions f and g are monotonically increasing with respect to |Pi|

and |Ti| respectively (note that Fi ⊆ Pi ⊆ Ti ⊆ T ). Overall, the evaluated rate of rep-

utation of web service i would be increased after collusion. The colluding consumer

obtains higher quality of service with low fees, which exceeds its expectations if it acts

truthfully. To this end, if the collusion is not recognized by the controller agent, the

web service gains higher reputation value and the colluding consumer obtains better

deal.

5.5.3 Detecting Malicious Actions

In the proposed framework, the controller agent serves as representative of the repu-

tation system. Therefore, this agent is aimed to seize malicious acts and maintain a

sound reputation system. In fact, Cg’s challenges are: 1) how cautious to be (how to

set the certainty parameter Ci explained earlier, which is proposed by the controller

agent to measure the confidence this agent has on the web service i); 2) always be-

ing careful not to generate false alarms (detections); and 3) setting proper penalties

to avoid detection failures [84]. Failing to detect malicious acts leads to false alarms,

which are composed of two cases: the case of penalizing truthful agents (web service

and consumer) by mistake (false positive), and the case of ignoring malicious agents

by mistake (false negative). When a web service i is under investigation by Cg for a

possible malicious action, a reputation value during the investigation time is calculated

as shown in Equation 5 and denoted by μi. This means only the feedback received

during this period are considered.
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In the penalizing scenario, the controller Cg applies a penalty that affects the pe-

nalized web s.ervice with respect to its reputation value. Also the colluding consumer

is penalized in the sense that it will not profit from the controller’s services, for in-

stance in terms of getting updated regarding the most recent reputation ranking. To this

end, Cg analyzes the applied penalty to minimize malicious acts in the network. One

clue would be applying a relatively high penalty to maintain a strong control over the

feedback file. Such (harsh) manner does not necessarily imply a high performance for

Cg because penalizing truthful agents imposes negative influence on its accuracy level.

Therefore, Cg always looks for an optimum penalty value, which minimizes malicious

acts and maximizes self-performance level. To detect malicious actions, Cg is then re-

quired to be equipped with a mechanism to analyze the interactions of the web services

with the consumers. During the investigation, Cg aims to make the best decisions to

update its significance level, which affects the accuracy of the rate Ci. Also, Cg needs

to learn from the current penalties the information that is used in further detections. In

our framework, we suggest using the t-statistic as a measurement of error and detec-

tion criteria that Cg uses to capture suspected behavior of the web services. Equation

9 shows this detection criteria where σi is the standard deviation of the reputation of

i during the investigation period. The threshold ν is set by the controller agent and is

application-dependant. The t-statistic is used because the mean and standard deviation

of a sample reflecting the investigation time are to be considered, instead of the param-

eters of the whole periods since the activation of the web service. In fact, this error

computes an estimate for the number of standard deviations the given sample (reflect-

ing the behavior of the web service i during the investigation time) is from the mean

reputation value of i.

|Ri − μi

σi

| > ν (9)
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5.5.4 Suspecting Phase

The controller agent initiates a secret suspecting phase about the web service i when

equation 9 is satisfied. In this stage, the behavior of the web service i is under closer

investigation. The controlled web service is better off doing its best not to get pe-

nalized. If the web service did not act according to the raise in its reputation level

(ΔRi = Ri − μi), Cg might penalize the agent for faked feedback. If not, Cg would

ignore the investigation and consider the raised reputation level as a normal improve-

ment.

Although Cg uses its history of investigations together with the learned information

collected from the environment, always there is a chance of mistake that would cause

wrong decision. In general there are four cases: (c1) the web service acts maliciously

and accordingly gets penalized by Cg; (c2) the web service acts maliciously, but gets

ignored by Cg; (c3) the web services acts truthfully, but gets penalized by Cg; and (c4)

the web service acts truthfully and Cg considers its action normal. Cases (c1) as true

positive and (c4) as true neutral represent the fair situations. However, cases (c2) as

false negative and (c3) as false positive are failures, which decrease Cg’s performance.

In the following, we analyze the scenario for each case and conclude with a general

payoff gained by each involved party.

The concept of reputation update is the fact about changing ones reputation level by

which social opinions could be influenced. Adversely, the reputation is updated once

Cg applies some penalties to detected malicious acts. In general, the feedback file

is subject to be modified by some non-authorized agents or an authorized controller

agent. The interaction between a selfish web service and the controller agent can be

modelled as a repeated game over time. The game consists of actions (made by the

web service) and reactions (made by Cg). Here we consider the aforementioned four

cases and obtain the corresponding payoffs of each case. The obtained reputation value
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for web service i after web service i’s action together with Cg’s reaction (which could

be estimated by Exp(Ri|Mal) or Exp(Ri|Truth) that are computed in Equations 6

and 7) is denoted ORi. We use R′i to denote the actual (or fair) reputation that has to

be set for web service i. However the current set value (ORi) might be different from

R′i because of false positives or negatives. In the rest of this chapter, we consider the

effect of collusion and penalties on the reputation of web services.

According to the decision made by the controller agent, four outcomes are to be

considered and we categorize them as follows: false negative (FN ), false positive

(FP ), true positive (TP ), and true neutral (TN ). Hereafter, we explain and analyze

each one of them.

Malicious Act not Penalized (FN). This is the case where the web service i acts

maliciously for instance by colluding with some users and Cg does not recognize it.

Thus, web service i increases its reputation level. We refer to this improvement as

Impi. Impi is in fact the increased reputation that is obtained by increasing ri value.

We also refer to the assigned penalty value as Pni. This value is set by Cg considering

the past history of i and is updated through time elapse. Equation 10 gives the corre-

sponding values for the obtained reputation level ORi and the actual (fair) reputation

value R′i.

ORi = Ri + Impi; R′i = Ri − Pni (10)

ORi −R′i = Impi + Pni = ω (11)

The difference between the actual (fair) and current reputation values reflect the

payoff that we can use in our game-theoretic analysis (Equation 11). We use this dif-

ference to be able to compare the possible scenarios in terms of reputation level. For

simplicity, we set Impi + Pni to ω. The difference here is positive, which means the

web service gets benefit of +ω.
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Truthful Act Penalized (FP). This is the case where the web service i acts normal,

but Cg decides to penalize him. In this case, i would lose its actual reputation value

as shown in Equation 12. Equation 13 shows the obtained payoff, which is a negative

value in this case. This reflects the fact that the web service i loses ω. This basically

affects Cg as well in the sense that a wrong decision is being made, so there is a

negative effect applied to its accuracy level.

ORi = Ri − Pni; R′i = Ri + Impi (12)

ORi −R′i = −ω (13)

Truthful Act not Penalized (TN). This is the ideal case where i acts normal and

Cg refuses to penalize. In this case the current reputation is the same as the actual

reputation (ORi = R′i). Thus, the payoff assigned to i is zero (ORi −R′i = ω = 0).

Malicious Act Penalized (TP). This is also the fair case where web service i acts

maliciously hoping to increase self reputation level. Cg detects the action and thus,

applies the penalty. In this case, i loses both the penalty and improvement (−Pni −

Impi = −ω).

In the cases considered here, we also need to discuss the obtained payoff for the

consumer and controller agents. However, in this reputation model we only focus on

the controller agent and skip the details of the penalizing procedure regarding consumer

agents. Nevertheless, we assume that the penalized user would not be able to get

the controller agent’s services, for instance receiving information about the reputation

ranking of web services. Therefore, the colluding consumer would be also influenced.

Regarding the controller agent’s payoff, one basic idea that we use in the rest of this

chapter is to consider the accuracy of Cg in detecting the malicious acts and according

to the performed reaction, we set the payoff. Therefore, in the first two cases where
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the detections are wrong, Cg obtains a negative payoff (say −π), and in the second

two where the decisions are correct, Cg obtains the positive payoff (say +π). The

payoff is not received immediately after Cg’s reaction, but after a period of time. The

main question is then who is going to pay the controller agent and how? Different

scenarios can be applied and in this model we assume that web services and consumers

contribute together to the Cg’s payoff by paying a fee to the controller for making

the system secure and fairly competitive, which is of a great significance for both the

consumers and web services. In such a setting, −π means less income for Cg because

some web services and users stop paying the fees. Here we analyze the different cases

according to the four outcomes discussed earlier.

Malicious Act not Penalized (FN). In this case, some bad web services get pro-

moted and ranked high. This can quickly be recognized by the competitors (web ser-

vices) and some users who had previous experiences with those bad web services.

Therefore, those competitors and users will refuse paying the controller as the system

is no more secure for the users and fairly competitive for honest web services.

Truthful Act Penalized (FP). In this case, some honest web services are unfairly

penalized, which make them stop paying the controller. Other honest competitors and

some users who know the reputation of the penalized web services will feel the system

unfair and insecure. They can consequently decide to stop contributing in the payment

of Cg and get its services.

Truthful Act not Penalized (TN). This is the situation where all the web services

and users are satisfied as the system seems secure and working correctly, which brings

more competition for the benefit of the users. Web services and users will then continue

supporting Cg and requesting its services.

Malicious Act Penalized (TP). In this situation, some users and competitors who

know the penalized web services will feel satisfied as the system is getting more secure
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and fairly competitive. This will encourage them to increase the Cg’s payment to

counterbalance the system against the loss caused by the penalized web services who

will probably cease participating in the payment of the controller.

The reason behind this payoff assumption is the fact that we consider the interac-

tion between the web service and controller agent as a repeated game. The repeated

game theory brings the concept of learning in detection and penalizing process. Such

a repeated game would rationally help web services to obtain experiences from the

past interactions with Cg and thus, know whether to act maliciously or truthfully. The

objective of the repeated game is to maintain a sound reputation mechanism in which

the controller agent is getting stronger in reputation updates, and the web services are

discouraged to act maliciously.

5.6 Game Theoretic Analysis and Simulation

This section is dedicated to analyze the incentives and equilibria of reputation mech-

anism using the feedback file. Since the challenge is on the reputation (from web

service’s point of view, either to act maliciously, i.e. fake F or act truthfully, i.e. act

normal N ) and accuracy of the feedback file (from Cg’s point of view), we model the

problem as a two-player game. The active web services are of type good SG or bad

SB (P [SG] and P [SB] represent the portion of each in the environment, e.g. 0.7 and

0.3). Web services of type good are more reliable and likely to act honestly, while the

bad ones are more likely to act maliciously. The types are labelled with Cg’s opin-

ion imposed by web service’s general reputation in the system. Let Pr[N |SG] (resp.

Pr[N |SB]) be the probability that a web service of type good (resp. bad) acts normal.

In general, Cg’s expected value for normal action from a typical web service is:

Pr[N ] = P [SG]Pr[N |SG] + P [SB]Pr[N |SB] (14)
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where Exp(Ri|Truth) and Exp(Ri|Mal) that are computed in Equations 6 and 7 are

good estimators of Pr[N |SG] and Pr[N |SB] respectively. For instance, the probability

that a web service of type good to act truthfully can be estimated to be the expected

reputation of this web service given that it acts truthfully.

The set of pure strategies for web services is defined as st = {F,N}. This cho-

sen strategy imposes the behavior that the web service shows and thus, the controller

agent observes after the action is occurred. Cg also chooses between two strategies:

penalizing (P ) and not penalizing, which means ignoring (I) the event. We consider a

payment function χ associated to the sequence of actions performed by web services.

The payment mechanism is defined as follows: χ : st × stM−1 �→ [−ω,+ω], where

M is the number of actions performed during the past and current periods and −ω and

+ω are explained and computed in equations 11 and 13. Thus, χ(Oi, O−i) represents

the assigned payoff to web service i when it selects Oi ∈ st at current moment and

O−i ∈ stM−1 represents its M − 1 previous chosen strategies during M − 1 periods.

There is a similar payoff function for Cg that assigns values in the range [−π,+π]. In

the rest of this section, we start by analyzing the one-shot game, which is then extended

to continuous game.

Proposition 5.1 In one-shot game, penalizing a fake action is the unique Nash equi-

librium.

Proof: Clearly acting fake by web service i, controller agent Cg would have a

best utility if penalizing strategy is chosen rather than ignoring. On the other hand, if

Cg chooses to penalize, i would not change its chosen strategy since in both cases i

will lose −ω. Consequently, penalizing a fake action is a Nash. Adversely, the normal

act by i would let Cg to ignore. However, if the strategy is to ignore (by Cg), the best

strategy for i is to act fake. Therefore, there is no Nash in ignoring the normal act.
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Therefore, the obtained Nash is unique.

In one-shot game, players only consider the present information and they rationally

tend to stay in fake-penalized state. This unique Nash is a good situation for Cg, but

not for i. We need to study a socially better situation for both players when they learn

the best strategies over time. This can be done by considering the repeated game.

If i can estimate the expected payoff with respect to Cg’s response, it might prefer

acting normal. In fact, this issue is how to make agents (i and Cg) converge to a

Pareto-Optimal [5], which is the best situation for both players. We call this situation

Pareto-Optimal Socially Superior.

Definition 5.2 Pareto-Optimality. A situation in a game is said to be Pareto-Optimal

once there is no other situation that makes at least one player better off without making

any other player worse off.

In the following, we extend the one-shot game to the repeated game over periods

of time. Therefore, following different strategies in time intervals will generate the

corresponding payoffs to the players. At a given moment, Cg would decide whether

to continue or stop investigating. To this end, e0 is referred to as the case of doing no

investigation effort and basically ignoring all actions. Otherwise, the best effort is made

by Cg doing investigation. Cg has to decide about a proper strategy and obviously, if it

chooses e0 and i plays fake, the controller agent would lose right away. For simplicity,

we analyze the game during fix intervals of time and a strategy of acting in each interval

needs to be decided. We apply a weight to each interval to reflect the payoff portion

during this interval. For instance, if 2 intervals are considered, μ would be the payoff

coefficient for the acts done in [t0, t1] and 1− μ the payoff coefficient for the acts done

in [t1, t2].
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For simplicity and illustration purposes but without loss of generality, we con-

sider the repeated game with two shots. The general case with n shots (n ≥ 2)

will follow. In such a game, web service i as player 1 has to make two decisions

over over fake F and act normal N , one in the first decision time spot (weighted

by μ), and the other in the second decision time spot (weighted by 1 − μ). Since i

is the game starter, and Cg initially decides whether to stop or continue the game,

we consider two continuous actions that reflect our game the best. An example of

these actions is faking the first time spot (denoted here by F μ) and the second time

spot (F 1−μ), which is denoted by F μF 1−μ. Therefore, i’s set of pure strategies is

Ai = {F μF 1−μ, F μN1−μ, NμF 1−μ, NμN1−μ}. In n-shot game, the set of pure strate-

gies is: Ai = {F μ1 . . . F μn , F μ1 . . . Nμn , . . . , Nμ1 . . . Nμn} where
∑n

i=1 μi = 1. Con-

sidering the choice of efforts, Cg’s set of pure strategies (penalizing P or ignoring I) is

ACg = {e0, P μP 1−μ, P μI1−μ, IμP 1−μ, IμI1−μ}. Table 5.1 represents the payoff table

of the two players over their chosen strategies. We continue our discussions in the rest

of this section on this table.

In this game, the idea is to give the highest possible payoff +ω to the case in

which i decides to fake the most and gets ignored by Cg. The more Cg recognizes the

malicious act of i, the highest assigned negative value weighted by the payoff portion

of the time spot (μ or 1 − μ). For instance, if the web service i decides to fake during

the first time spot but gets penalized, i’s payoff would be −μω, and if it decides to

fake again, but gets ignored this time, it will gain (1 − μ)ω, which makes the final

payoff χ(Oi, O−i) = (1 − 2μ)ω (see line 3 column 1 of Table 5.1). There is a similar

payoff assignment for Cg in the sense that its accurate detection is under investigation.

For example, a correct detection in the first time spot would bring +μπ, and if the

second detection is wrong, this first portion will be added to the negative payoff of the

second time spot −(1 − μ)π, which makes the final payoff equal to (2μ − 1)π (see
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Table 5.1: Two-shot game between web service i and controller agent Cg with ob-
tained payoffs

line 3 column 1 of Table 5.1). The crucial key to survive in the environment for both

players is to consider the previous events and moves. In the following, we elaborate on

different cases while web services do or do not consider Cg’s behavior in the game.

Proposition 5.3 In repeated game, if i is not aware of Cg’s previous chosen strategies,

then faking all the time and penalizing all fake actions is the unique Nash equilibrium.

Proof: (We illustrate the proof for two-shot game from which the general case

follows.)

Nash. It is clear from Table 5.1 that in both faking intervals, Cg receives the maximum

payoff by penalizing both cases. In this case, i would not increase its payoff (−ω) and

thus, would not prefer any other strategy. In any other case, by choosing the maximum

received payoff for any player, the other player has a better strategy to increase its

payoff.

Uniqueness. We prove that theis Nash point is the only Nash with respect to the follow-

ing cases. In the first row of Table 5.1, there is no Nash because Cg makes no effort,

so the maximum received payoff is zero and thus, it can be increased by changing the

status. In the third and forth rows, still there is no Nash since in these rows there are

choices of P and I in the sense that for any of these choices, i would be better off
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changing to a strategy that maximizes its assigned payoff. In the last row, the payoff

assignment is similar to the first one, so that Cg prefers to change its chosen strategy

to apply penalty to fake actions.

We also have the following propositions generalized from the two-shot game. We

motivate the fact that if the penalty assigned by Cg is clear, the strategy chosen by i

would be different. The proofs are straightforward from the two-shot game as shown

in Table 5.1.

Proposition 5.4 In repeated game, if i is not aware of Cg’s previous chosen strategies,

then faking all the time is dominant strategy for i.

Proposition 5.5 In repeated game, if i is not aware of Cg’s accuracy level, then acting

normal by i and ignoring by Cg all the time is Pareto-Optimal Socially Superior .

To analyze the reasons behind encouragement to act truthfully, we need to measure

some expected values. In the repeated game, the probability that exactly n normal acts

out of M acts are done in the past and current moment (Pr[n,M ]) can be computed

using binomial distribution as follows:

Pr[n,M ] =

(
M

n

)
Pr[N ]n(1− Pr[N ])M−n (15)

where Pr[N ] is calculated in Equation 14. We use this probability in measuring the

expected cumulative payoff denoted by V (Oi, O−i) for web service i in the sense that

in the chosen strategies (Oi, O−i) n actions were normal as follows:

V (Oi, O−i) =
M∑
n=0

Pr[n,M ]χ(Oi, O−i) (16)

As the objective of a rational web service i is to maximize the expected cumulative
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payoff, it would select the current strategy O∗i that maximizes V (Oi, O−i):

O∗i = argmaxOi∈stV (Oi, O−i) (17)

This would be achieved when the following inequality is satisfied:

M∑
n=0

Pr[n,M ]χ(O∗i , O−i) >
M∑
n=0

Pr[n,M ]χ(O∗i , O−i) (18)

where O∗i denotes the opposite strategy of O∗i , which means:

V (O∗i , O−i) > V (O∗i , O−i) (19)

Recall that q is the probability of correct recognition via Cg that impacts the strat-

egy that i adopts in the repeated game. Therefore, in the repeated game, these proba-

bilities of Cg are labelled as qt0 , . . . , qtM , which reflects the evolution of Cg’s accuracy

over time. Indeed, Cg’s accuracy has impact on the expected cumulative payoff that

web service i estimates given the penalty and improvement it makes. Therefore, Cg

applies such penalty that discourages i to act maliciously.

Proposition 5.6 At a given moment tn, If Pni >
1−2qtn
qtn

Impi, then web service i re-

ceives less cumulative payoff V (Oi, O−i) if it acts maliciously.

Proof: To prove this proposition, we can simply assume that all the previous

strategies O−i are known as normal, and prove that if the condition Pni >
1−qtn
qtn

Impi

is true, then O∗i = N . As V (Oi, O−i) is defined in terms of χ(Oi, O−i) (Equation 16),

which in turn is defined in terms of i’s reputation, we simply need to prove that if the

condition is true, then i will have less reputation value. To do that, we need to prove

that:

Exp(Ri|Nμ1 . . . Nμn−1F μn) < Exp(Ri|Nμ1 . . . Nμn)
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By simple calculation, we expand the expected values to their possible cases together

with their probabilities, so we get:

Exp(Ri|Nμ1 . . . Nμn−1F μn) =

(qtn)(Ri − Impi − Pni)

+(1− qtn)(Ri + Impi)

Exp(Ri|Nμ1 . . . Nμn) = Ri

The first equation gives the expected reputation value given that a fake action is made

at the moment tn, and the second one shows the expected reputation value given that

no fake action is made. Assuming that Pni >
1−2qtn
qtn

Impi, it is easy to see that:

(qtn)(Ri − Impi − Pni) + (1− qtn)(Ri + Impi) < Ri

so we are done.

Theorem 5.7 qtn is increasing with respect to Impi and decreasing with respect to

Pni

Proof: From Proposition 5.6, we obtain the lower bound of Cg’s accuracy qtn :

Impi
Pni+2Impi

(qtn > Impi
Pni+2Impi

). Let Bi denote this lower bound. We have:

∂Bi

∂Impi
=

Pni

(Pni + 2Impi)2

As Pni ≥ 0, ∂Bi

∂Impi
≥ 0, which means Bi is increasing with respect to Impi. Conse-

quently, qtn is also increasing with respect to Impi.
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Table 5.2: Implemented environment details

On the other hand, we have:

∂Bi

∂Pni

=
−Impi

(Pni + 2Impi)2
≤ 0

Bi is then decreasing with respect to Pni. Consequently, qtn is also decreasing with

respect to Pni.

This theorem is important and very intuitive as it tells us if the improvement in the

web service’s reputation is very high, then the controller should be very cautious as

probably the improvement is a result of some malicious actions. On the other hand, if

the agent is less cautious, then this should be balanced by making the penalty high, so

that web services will be discouraged to act maliciously. This theorem is inline with

the result found in [84] according to which “buying agents will not be harmed infinitely

by dishonest selling agents and therefore will not incur infinite loss, if they are cautious

in setting their penalty factor”.

Theorem 5.8 In n-shot repeated game, if Pn > 1−2qtn
qtn

Impi, acting normal and being

ignored is both Nash and Pareto-Optimal.

Proof: From Proposition 5.5, we know that ignoring normal acts in all the shots

is Pareto-Optimal. On the other hand, from Proposition 5.6, we deduce that i would



133

Figure 5.2: Overall reputation and accuracy assessment regarding different types of
web services

have less cumulative payoff if it fakes given that it is aware of the assigned penalty

Pni and Cg’s accuracy. Therefore, the dominant strategy for i would be acting N . If

i plays N as its dominant strategy, the best response from Cg would be I in all shots

(see Table 5.1). Therefore, if the condition Pn > 1−2qtn
qtn

Impi holds, then playing N

and I is Nash, where Nμ1 . . . Nμn and Iμ1 . . . Iμn are dominant strategies for i and

Cg, which completes the proof.

This theorem shows that if the web services are aware of the penalties and the

controller’s accuracy, then the system will achieve a secure and healthy state.

5.7 Simulation and Experimental Results

We developed a simulator in a java-based platform hosting different agents having

broad range of characteristics and capabilities. Three types of agents are implemented:

controller agent, web service agents, and consumer agents. During the simulation runs,

web services and consumers might leave or join the network if they wish so. Table
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5.2 provides detailed information regarding the implemented environment. We cate-

gorized the consumer and web service agents into three classes with respect to their

acting strategies through simulation runs: (1) acting strategies using fixed opinions;

(2) acting strategies using random movements; and (3) acting strategies using environ-

ment observations. Acting using fixed opinions means agent are completely (100%)

truthful (0% tendency to act maliciously) or completely malicious (100% tendency to

act maliciously). Acting using random movements means agents randomly decide to

act truthfully or maliciously and can change their decisions continuously. This type of

agents, which represents 30% of the population with 50% tendency to act maliciously,

makes the environment more realistic with presence of noise. Finally, acting through

observations means agents are strategic and change their behaviors based on their ob-

servations of Cg’s performance and their tendency to act maliciously is function of

previous and current observations p1, . . . , pn. The objective of this simulation is to

analyze the outcome and performance of these agent types in different scenarios.

The first group of agents follow their predefined strategies regardless of the envi-

ronment changes. The agents following this strategy fall into two groups of malicious

and truthful. Figure 5.2 plot (a) illustrates two graphs reflecting the accumulated rep-

utation of two typical web services (truthful and malicious) over the simulation runs.

The truthful web service (lower graph) gradually maintains its actual reputation value,

which converges to its publicly announced quality of service. This is the normal case

in the implemented environment as the active web service collects the feedback with

respect to the offered quality of service and thus, the accumulated reputation would re-

flect the actual quality value. The malicious web service (upper graph) eventually loses

its accumulated reputation because based on its fixed strategy, it will continuously be

involved in collusion scenarios. The controller agent recognizes the collusion made

by web services following fixed malicious strategies. As consequence, the reputation
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dramatically decreases at a certain time. Figure 5.2 plot (d) illustrates the overall repu-

tation mechanism efficiency (i.e. Cg’s accuracy) with respect to all the actions made by

the web services and consumers and the reactions maintained by the controller agent.

As shown by the graph, the controller agent acts accurately. In fact, recognizing the

malicious actions maintained through fixed strategies is easy to learn for the controller.

Therefore, the accuracy obtained by the controller agent is relatively high. We would

carry on illustrating the efficiency graph in the rest of this section in order to com-

pare the impacts on the reputation mechanism imposed by diverse parameters in the

environment.

Figure 5.2 plot (b) represents the same results according to the observed reputa-

tion of a typical agent following random behavior as acting strategy. As represented

in Table 5.2, agents of this type are developed with 50% chance of acting maliciously.

Observed in different simulations, the controller agent is capable of recognizing these

agents from time to time and penalizes them as it keeps the information regarding the

past detections and web services with history of being detected are investigated more

carefully. Hence, the web services which do not consider the controller’s existence in

their acting strategies would fail to accumulate a stable reputation value. In this figure,

plot (e) illustrates the corresponding reputation mechanism efficiency with respect to

the maintained actions. In fact, the unpredictable behavior of this type of web services

confuses the controller agent because the agent that has maintained some collusion at-

tempts, might act truthfully at some periods of time, where the controller agent has got

very suspicious about the web service agent (because of a number of detected collu-

sion attempts). The unpredictable and random behavior of this agent would generate a

number of false detections for the controller agent, which brings about an oscillating

efficiency.
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Figure 5.2 plot (c) illustrates the results regarding a typical web service that consid-

ers the environment parameters (the controller agent’s accuracy) in its acting strategy.

The behavior of this type of agent is more dynamic compared to the previously dis-

cussed agents. In this plot, the considered web service maintains collusion attempt

twice, which in both, the controller agent recognizes the attempt. Overall, controlling

this type of agents is easy, but takes some time for the controller to completely learn

from their behaviors and as illustrated by plot (f), the corresponding reputation mecha-

nism efficiency increases once the behavior is being learnt, which reflects the controller

agent’s overall capability to manage the detections. In the rest of this section, we ana-

lyze the reputation assessment and reputation alteration in no collusion, collusion, and

collusion-resistent environments. The exposed graphs are upon observed data from

different experiments to avoid unpredicted randomization effects.

5.7.1 Reputation Assessment with No Collusion

We ran the simulation in a safe environment within which, web services act truthfully

and the accumulated feedback reflect the actual reputation of the web services. The ra-

tional behind this experiment is to emphasize the fact that based on truthful actions, the

accumulated reputation of a web service would approach its actual quality of service.

Figure 5.3 illustrates different curves obtained from separated simulation runs re-

garding only one typical web service i holding a quality Qi. As shown by the figure,

the overall reputation of this web service approaches its actual quality of service QoSi

over different experiments. This fact is analyzed via the reputation assessment proce-

dure that is formalized in Equation 5 in Section 5.4. The reputation value regarding web

service i is computed by aggregating web service’s quality Qi with the web service’s

market share Mi. In the simulations, Mi follows a normal distribution N (Qi, 0.2).

According to a truthful web service i, Qi percent of services are satisfactorily
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Figure 5.3: Reputation assessment with no collusion

offered and thus, web service i expects positive feedback for ”Qi” percent of total

posted feedback. However, there is another parameter that comes to play, which is

the probability of posting unbiased feedback k from a consumer agent upon reception

of a service (Pr(unb(k))). Therefore, the probability of receiving positive feedback

(Pr(k ∈ Pi)) for web service i is computed in Equation 20.

Pr(k ∈ Pi) = Qi × Pr(unb(k)) (20)

The value Pr(unb(k)) would be different in experiments according to the reaction

of the consumers. This value is out of control and is completely based on the dis-

tribution that the consumer uses to produce accurate feedback regarding the received

service. In Figure 5.3, different curves are shown reflecting a number of experiments in

which, the consumers use dynamic probabilities of providing unbiased feedback. How-

ever, overall in all of the graphs, the total reputation of the web service approaches its

general quality of service (QoSi) value. This means that, in a honest environment in

which agents do not perform collusion, one’s quality of service overall reflects its ac-

cumulated reputation. The reputation mechanism efficiency in this case is pretty high

and very similar to the one shown in Figure 5.2 plot (d). The controller agent can eas-

ily manage the system control (as long as there is no collusion and web services act
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Figure 5.4: Reputation assessment through collusion

truthfully) and quickly recognize that the active users do not attempt to collude.

5.7.2 Reputation Assessment Through Collusion

In this simulation, we investigate the collusion impacts on the malicious agents’ repu-

tation values in a scenario where the controller agent imposes no penalty during simu-

lation runs. Figure 5.4 plot (a) illustrates one typical malicious web service’s reputation

value extracted from different experiments. As depicted by the curves, the malicious

web service performs collusion in all of them. This is due to the fact that the web ser-

vice at the earlier collusion experiments recognizes that the controller agent is dormant

and therefore, there would be no penalty applied after a performed collusion. This

results in a dramatic increase of the probability of colluding.

Figure 5.4 plot (b) represents the collusion tendency of the whole network involv-

ing all the web services that are capable of acting maliciously, which represents 80% of

the population (20%+ 30%+ 30%, see Table 5.2). The X-axis of this plot denotes the

elapse time over the simulation runs. The left Y-axis denotes the percentage of collud-

ing web services (obtained from whole active web services in the network). This value

is increasing over time, which expresses the increasing tendency of the web services

to act maliciously. The right Y-axis denotes the number of colluding feedback, which
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reflects the amount of increase in faked positive feedback set in the collusion agree-

ment between the colluding web service and consumer. The dots in plot (b) show the

extent to which the colluding web service maintains faked feedback in the collusion

process. It is observed that overall, the amount of faked feedback is increasing over

time when the malicious action is widespread in the environment. In such a chaos sys-

tem, the performance of reputation mechanism (controller agent’s accuracy) decreases

dramatically as shown in Figure 5.4 plot (c)).

5.7.3 One-shot Game and Penalty Impact on Reputation Assess-

ment

In this part, we expose the results obtained after one-shot game between the web ser-

vice and consumer agents. Figure 5.5 plots (a), (b), and (c) represent respectively the

reputation graphs obtained after a series of experiments. We study this result on three

different types of web services (acting upon fixed opinions, acting randomly, and envi-

ronment observers). In plots (a) and (b) typical agents follow strategies within which

the controller agent’s action is not considered. However, plot (c) shows agents which

follow a strategy which considers controller agent’s action. All these agents adopt

malicious actions and get penalized via the controller agent, which confirms the the-

oretical result discussed in Proposition 5.1 that represents the Nash equilibrium. As

shown in plots (d), (e), and (f), the controller agent expresses accurate collusion detec-

tion system and thus, the efficiency graph is increasing over time. However, the social

situation depicted by the Nash is not well-accepted since the collusion is maintained

regardless of the controller’s accuracy.
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Figure 5.5: Reputation assessment and penalty impact in one-shot game

5.7.4 Repeated Game and Penalty Impact on Reputation Assess-

ment

To simulate the repeated game case, we ran the simulation with agents capable of an-

alyzing the history of interactions in order to adopt the most appropriate strategy. The

web services, which belong to categories of fixed and random opinions are not con-

sidered in these experiments as they carry on the same behavior shown in Figure 5.5

plots (a) and (b). The repeated game and history analysis only affect the agents, which

consider the environment characteristics. To this end, we run many experiments con-

sidering these agents with tendency to maintain malicious actions over the time. Figure

5.6 shows different simulations running different web services capable of observing the

environment characteristics and analyzing the history of previous interactions with the

controller agent. In these simulations, the controller agent adopts different detection

and penalty settings, which imposes some impacts on the behavior and convergence

of web services to a truthful reputation mechanism. In these experiments, the involved

web services are all capable of collusion attempts. However, as shown in all the graphs,
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the collusion attempt is being detected and the corresponding penalty is applied, which

results in decreasing the reputation value. As mentioned in Theorems 5.7 and 5.8, the

assigned penalty exceeding the specified threshold brings about truthful actions made

by malicious web services and affects controller agent’s accuracy to some certain ex-

tent. Obviously for the sake of true detections, the controller agent cannot increase the

assigned penalty with no limit.

The graphs shown in plots (a), (b), and (c) are representative of reputation manage-

ment regarding different penalty settings that the controller agent imposes in a repeated

game to a set of malicious web services. Figure 5.6 plot (d) shows overall reputation

management efficiency reflected by the accuracy of the controller agent in detecting

malicious actions. The analysis of the reputation management efficiency shows that

obtaining high efficiency does not necessarily make web service adopt the truthful

strategy as shown in Figure 5.2 Plot (d). However, it is crucial to obtain this efficiency

where web services also tend to act truthfully. The results in plots (a), (b), and (c)

show that reputation values are affected through the collusion and penalties assigned

by the controller agent. Figure 5.6 plot (e) shows the overall tendency of malicious

web services to attempt collusion. Over simulation runs, the tendency of these agents

is decreasing, which reflects the trustful action as Nash equilibrium.

5.8 Related Work

Reputation is measured in open systems using different methodologies [29]. In the

literature, the reputation of web services have been intensively stressed [41]. In [77],

the authors have developed a framework aiming to select web services based on the

reputation policies expressed by the users. The framework allows the users to select a

web service matching their needs and expectations. In [52], authors have proposed a
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Figure 5.6: Reputation assessment and penalty impact in repeated game

model to compute the reputation of a web service according to the personal evaluation

of the previous users. These proposals have the common characteristic of measuring

the reputation of web services by combining data collected from users. To this end, the

credibility of the user that provides the data is important. In [49], authors have designed

a sound mechanism to address the credibility of the collected data from users. In [57],

a multi-agent framework based on an ontology for QoS has been designed. The users’

ratings according to the different qualities are used to compute the reputation of the web

service. In [35, 37], service-level agreements are discussed in order to set the penalties

over the lack of QoS for the web services. In [26], a layered reputation assessment

system is proposed mainly addressing the issue of anonymity. In this work, the focus

is on the layered policies that are applied to measure the reputation of different types

of agents, specially the new comers. Although, the proposed work is interesting in

terms of anonymous reputation assessment, the layered structure does not optimally

organize a community-based environment that gathers web services and users, and

also the computational expenses seem to be relatively high.
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In all the aforementioned frameworks, the service selection is based on the data that

could not be reliable. The main issue we addressed in this model, and which makes it

different from the existing proposals is that web services are selfish agents and utility

maximizers. Thus, if those agents are not provided with an incentive to act truthfully,

they can violate the system to maliciously increase their reputation level. Analyzing

the relationship between the payoffs and systems efficiency is another issue that has

not been addressed in related proposals.

5.9 Conclusion

The contribution of this reputation model is the theoretical analysis and simulation over

the reputation-based infrastructure that hosts agent-based web services as providers,

users as consumers, and controller agent as reputation manager of the system. In the

deployed infrastructure, web services can act maliciously to increase self reputation.

Meanwhile, controller agent investigates user feedback and penalizes malicious web

services. Controller agent may fail to accurately function, which is an incentive for

some web services to act maliciously. The discussion is formed in terms of a game

that is analyzed in one-shot and then repeated cases. This analysis is concluded by de-

noting the best social state in which selfish services are discouraged to act maliciously

and increase self reputation. The analysis is accompanied by empirical results that

highlight reputation system’s parameters. In experimental results, malicious services

are observed and their characteristics are measured over time. In general, the Pareto-

Optimality is observed to be a stable state for both web services and the controller

agent.

Our plan for future work is to advance the game theoretic analysis such that web

services that risk the malicious act deploy a learning algorithm that enables them to
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measure their winning chance. To this end, a continuous game can be extended, so that

both players update their selected policies. Similarly, we need to discuss more about

the different false detection cases that distract the reputation management.



Chapter 6

Long-term Performance Mechanism
Applied to Community of Web Services

6.1 Background

In the previous chapter, we investigated situations where agents are encouraged to act

truthfully and the inaccurate information is discarded according to controller agent’s

collusion detection. In this chapter, we propose a model that is based on the infrastruc-

ture proposed in Chapters 4 and 5 and maintains long-term performance for the agents

in interactive multi-agent systems. The contribution of this chapter is the analysis of

long-term interactive strategies that constrain high performances for agents involved

in dynamic environments hosting rational and selfish agents. In the model proposed

in this chapter, we mainly focus on the efficiency of rational entities in the form of

single web service agents or communities of web services. Unlike previous chapter,

we do not consider controller agent to impose incentives to interacting agents to main-

tain sound reputation mechanism. Using game theory, we mainly highlight the states

where rational agents obtain high performances while they are active for long-time in

a dynamic multi-agent system.

145
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6.2 Overview and Motivation

A multi-agent system is composed of multiple intelligent agents that according to their

goals play different roles and follow different strategies of acting. Each agent is in

fact a decision maker that seeks to effectively accomplish its goals. A typical active

agent in a multi-agent system environment is potentially limited due to its own obser-

vations and domain knowledge. This is the main reason behind agent communication

in an environment composed of multiple entities, which are functionally distributed.

As motivated in previous chapters, the network of web services with consumers is one

example of multi-agent system design as it represents distributed cooperation in IT net-

works. A typical web service abstracted as an intelligent agent is capable of providing

some services in some certain domains. Doing this, the web service agent maintains

some interactions and compositions aiming to enhance its productivity in enterprize

networks. A typical service consumer is also an intelligent agent, which is capable of

comparing different service qualities and based on its domain knowledge attempts to

enhance the obtained quality in an enterprize network.

In IT networks with cooperative settings, each web service acts individually, but

it is the resulting joint action that produces the outcome. Cooperation is therefore a

crucial aspect that improves performance, robustness and scalability in such settings.

The goal of cooperation is to result in optimal outcome for the group as a whole. In

multi-agent systems composed of web service agents, the key goal is to maximize

individuals outcome and performance. Considering the service quality as a built-in

individual characteristic, we distinguish the performance from the quality in the sense

that the performance is defined as the extent to which web service agent is success-

ful in accomplishing some of its goals, whereas the quality is the ability of the agent

to provide the required service. Exploring this further, web service agent is success-

ful (highly efficient) when it can effectively use its resources and abilities. Adversely,
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a web service agent is unsuccessful (poorly efficient) when it fails to manage its re-

sources due to either high service demand or no demand. To this end, the key goal of a

rational intelligent web service agent is to maximize its performance (with respect to its

individual capabilities) rather than its service quality. We believe that performance in-

crease is a systematic quality assurance procedure whereas the built-in quality increase

needs fundamental enhancement of web service capabilities.

As discussed in Chapter 4, to address web service cooperation, there have been

efforts attempting to model and analyze collaborations with communities of web ser-

vices [50, 69, 70]. Recall that communities (introduced in Chapter 4) are frameworks

gathering functionally similar web service agents that share a common goal [49]. In

the context of communities, we distinguish web services collaboration from web ser-

vices composition. By collaboration, we mean that the community aggregates web

services capable of interacting with one another to manage allocated tasks, for exam-

ple by allowing a web service to replace another that is incapable of executing a task.

By composition, we mean the extension initiated by a web service to finalize a spe-

cific task. In all these proposed frameworks, the objective is to increase performance

in distributed computing. However, in such frameworks, strategies web services can

follow to achieve this goal are just limited to aggregation and different types of col-

laborations. In this context, more sophisticated strategies are yet to be investigated

and analyzed. Such sophisticated strategies can help communities and individual web

services achieve higher performance in using their resources.

The aim of this chapter is to investigate strategies as rational behaviors that web

services and communities can adopt to increase performance. We present a game-

theoretical model in which web services either act alone or cooperate with other web

services within a community. Each entity (single web service or community of web
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services) manages its score rate, market share, capacity, and performance parame-

ters. Using our proposed framework, interactive agents are capable of efficient decision

making mechanism which yields maximum performance in multi-agent environments

with diverse characteristics. A game is defined between typical single web service and

the representative of a typical community (called master web service). Each entity

seeks maximum performance following strategies of joining/leaving a community, ac-

cepting/refusing a request to join a community, and inviting to join a community. In

different scenarios, we investigate the situation that maximizes players’ performances.

Overall contributions of the proposed model are threefold: (1) we provide a distributed

network of web services and consumers where the task allocation problem is regu-

lated by a mechanism taking score rate, market share, and performance into account;

(2) we propose a game-theoretic analysis investigating the stabilized situation within

which, entities achieve high performance; and (3) we identify thresholds allowing the

master web service to identify the optimal number of web services associated to the

community. We also provide experiments that show and uphold the impact of our

game-theoretic analysis on the behavior of rational web services.

6.3 The Model

In terms of notations, in the previous chapter we referred to an agent by letter i. For

instance, Ri represented the reputation associated to agent i. In this chapter, we con-

sider two types of intelligent entities: individual web services and communities of web

services. To this end, here we refer to individual web services by w and communities

of web services by c. Therefore, wi and cj respectively represent single web service i

and community j.

In our multi-agent design, we consider feedback pool where consumer agents post
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their satisfaction ratings regarding their past experiences with a particular service provider.

In this system, we assume every consumer agent provides post-interaction feedback.

Our assumption in rational behavior of the consumer agents does not deviate from our

main contributions and therefore, we skip details regarding consumer agents’ variation

of accuracy.

In our feedback system, posted feedback are accumulated to compute and analyze

service providers’ score rate in multi-agent environment. A typical web service agent’s

reputation (Rwi
) could be written as a function of its score rate (Srwi

). But we skip

the details of this function as it is discussed in Chapter 5. The rate is simply computed

based on satisfaction rates obtained from other interacting agents. In the proposed

model in this chapter, the score rate of a service provider (Srwi
for the web service

wi and Srcj for the community cj) as a value between 0 and 1. Web services and

communities as rational agents aim at increasing this value, which imposes positive

impact on their outcomes. However, increasing the score rate brings more requests

which might impose negative impact if requests are not systematically handled. In this

framework we use a simple and conventional scoring mechanism like the one used in e-

bay with three forms of +1 for satisfied experience, 0 for no response to the request, and

−1 for dissatisfied experience. This mechanism adds the value of all provided feedback

for particular service provider and divides by their number. In Equation 1, PFwi
and

NFwi
respectively denote the number of positive and negative feedback posted for

web service wi. NRwi
denotes the number of no responded requests associated to web

service wi. In Equation 1, the score rate of the community cj is computed as the average

of the score rates of all the web services (n) that are associated to the community cj .

Srwi
=

⎧⎪⎨
⎪⎩

PFwi−NFwi

PFwi+NFwi+NRwi+1
if PFwi

> NFwi

0 otherwise
(1)
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Srcj =

∑
wi∈cj Srwi

n

The parameters PFwi
, NFwi

, and NRwi
are updated on regular basis that could be

daily (in fact depending on the multi-agent design and how interactive the transaction

system is). Therefore, upon request, the updated score rate value is provided. Similar

to the individual web services, the community of web services also holds updated score

rate value (as an average of score rates of all the involving web services). In service

selection algorithm used by service consumer agents, the score rate of the community is

taken into account, but master web service would decide how to cope with the service

request. This means that the consumer agent cannot select the specific web service

in the community to be served. However, upon task allocation, the consumer agent

provides the post-interaction feedback regarding the corresponding web service(s) that

provided the service. In this case, active web services in the community still update

their individual score rates and influence the mean score rate value associated to the

community as a whole.

We continue formalizing the attributes of rational services. In general, all rational

entities, including users and web services, tend to maximize their efficiencies. To make

this chapter focussed, we only consider the perspective of web services. Thus, we

propose a heuristic (see Equation 2) for computing the efficiency Ex as a function f

of Srx,Mx (market share introduced in Chapter 5) and Cpx (capacity introduced in

Chapter 4) where x ∈ {wi, cj}

Ex = f(Srx,Mx, Cpx) (2)

The function f should satisfy the following properties.

Property 7 f is continuous.
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This property says that at each moment the efficiency of a web service or a community

can be evaluated with respect to the current attributes.

Property 8 f is strictly increasing in SrX and MX .

This property says that the efficiency of the service increases if it holds high score rate

and market share in the system. Consequently, services and communities will have

incentive to do better to get their overall efficiency increased.

Property 9 f is monotonically decreasing in MX − CpX .

This property says that the efficiency of a service or a community decreases if it fails

to make a good balance between its capacity and the requests it should handle. Conse-

quently, services and communities will have incentive to analyze their capacities and

manage to have acceptable market share. The idea is that the more service provider

entity succeeds in making balance between its capacity and market share, the higher

the efficiency would be.

Equation 3 gives a possible definition of f .

f =
Srx ×Mx

|Mx − Cpx|+ 1
(3)

Theorem 6.1 The function f satisfies Properties 1, 2 and 3.

Proof: Satisfaction of Property 1 is straightforward as all the parameters are

defined at each moment in time, so the function is continuous. Property 2 can be

proved by computing the partial derivatives ∂f
∂Srx

and ∂f
∂Mx

, which are clearly positive.

Property 3 can be proved by considering |Mx − Cpx| as a variable, say v and compute

the partial derivative ∂f
∂v

, which is manifestly positive, so we are done.

The other attribute that categorizes services is the risk factor SX . This factor is

denoted as how flexible the service is in loosing its efficiency. For example, if the risk
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factor associated to wi is %20 (Swi
= 0.20), then the web service wi would consider

any situation in its strategy analysis where estimated efficiency is more than %80 of its

current efficiency. Ewi
is defined as the estimated efficiency of the web service wi after

taking any strategy for updating its status (Ecj would corresponds to the community

cj). To this end, the web service wi would discard all the strategies (and choices of

updating the current status) that yield to an estimated efficiency less than (1−Swi
)Ewi

.

The reason behind using the provider risk factor is the fact that web services or

communities need to be flexible in choosing strategies. For the rest of this section, we

discuss two different cases where the web service is outside and inside the community.

In each case, we analyze the best strategies that culminate in maximum efficiency level

for both the web service and community.

6.3.1 Web Service Out of Community

In this scenario, the single web service wi is facing the community cj with different

strategies that would end in either the single web service wi joins the community cj

or not. This action could be initiated or ceased by the web service or community

representative. Doing so, there are four different cases: (a) wi attempts to join cj

and the attempt is accepted; (b) wi attempts to join, but cj refuses the join request;

(c) cj invites the web service wi but wi refuses the invitation; and (d) there is neither

invitation from cj nor join request from wi. From the outcome perspective, the cases

of “wi attempts to join and cj accepts” and “cj invites and wi accepts” are similar.

However, refusal from any party would lead to different estimating efficiencies and

this is why we consider them as two separated cases. In the following, we compute the

estimated efficiency of each entity with respect to the taken action.

Case (a) The web service wi that takes the risk of join (Swi
) would update its score

rate, market share and capacity parameters respectively in Equations 4 and 5, where n
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denotes the current cardinality of the community set.

Srwi
=

n× Srcj + Srwi

n+ 1
(4)

Cpwi
= Cpwi

Mwi
=

Mcj +Mwi

n+ 1
(5)

In this case, our assumptions are as follows: (1) the score rate of a web service

would be updated to the average of the community score rate. To this end, each reg-

istered web service in the community holds its individual score rate, but broadcasts

the public score rate of the community; and (2) we consider the capacity as a fixed at-

tribute. Therefore, the capacity of the web service stays unchanged, but the community

accumulates the joined web service’s capacity. When it comes to the market share, the

community simply accumulates the market share of the new web service. However, the

joined web service is going to obtain a share of total market share from the commu-

nity. The corresponding attribute updates regarding the community cj are formulated

in Equations 6 and 7.

Srcj = Srwi
(6)

Ccj = Ccj + Cwi
Mcj = Mcj +Mwi

(7)

In this case, both entities consider the estimated parameters and compute their new

efficiency values (see Equation 3). The case would take place when the following

inequalities hold:

Ewi
≥ (1− Swi

)Ewi
Ecj ≥ (1− Scj)Ecj

Case (b) In this case, wi requests joining, but the community does not accept the

request. The difference between the cases (a) and (b) is that in case (a) the join takes
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place, which brings actual updated efficiency for both entities. However, in case (b)

the join does not take place, which keeps the analysis at the estimation level. The

corresponding estimated efficiencies are characterized by the following inequalities:

Ewi
� (1− Swi

)Ewi
Ecj ≥ (1− Scj)Ecj

Case (c) This case is similar to the case (b), except the fact that the refusal is caused

by the web service. The corresponding estimated efficiencies are characterized by the

following inequalities:

Ewi
≥ (1− Swi

)Ewi
Ecj � (1− Scj)Ecj

Case (d) In this case, both entities are not encouraged to attempt joining and there-

fore, the join does not take place. In this case, we have:

Ewi
� (1− Swi

)Ewi
Ecj � (1− Scj)Ecj

6.3.2 The Game Set up for Single Web Service

Upon the discussed cases, we develop a game-theoretic model consisting of the web

service wi as player 1 and community cj as player 2. The player 1 follows the strategy

profile of (join/not join) when is initiating the game (i.e. play first), and follows the

strategy profile of (accept join/refuse join) when is reacting to the opponent’s move (i.e.

play second). Since for our analysis it is only important whether the join takes place

or not, the order of playing does not matter when calculating payoffs (represented in

terms of efficiency). Table 6.1 shows the assigned payoffs for both players in different

cases. As shown in the table, the values of Jwi,cj and Awi,cj are the generalized form

of “join/accept” or “invite/accept join” cases. These values are actual differences in
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Table 6.1: Payoff regarding 2 players when web service is outside the community.

efficiency values after the join (E ′wi
and E ′cj ). The obtained payoffs could be either

positive or negative. The negative payoff denotes the wrong decision the entity regrets.

The payoffs obtained in the other cases are all upon estimations.

The developed game is only a one-stage game between a typical web service and

a typical community. The game could be set up between any other two entities and is

repeated over time when entities are active in the network. Moreover, rational entities

consider the information obtained in one game in their further strategy analysis. We

formalize the results we obtain from the set up game between these entities in the

following.

Proposition 6.2 In one-stage game, there is no pure strategy Nash equilibrium.

Proof: In the set up one-stage game, the payoff of web services regarding ac-

cepted join request (Jwi,cj ) could be either more or less than that of refusing the in-

vitation (as it refers to the actual efficiency evaluation). This is also the case for the

master of the community. Consequently, there is no dominant strategy for any player.

Therefore, no pure strategy Nash equilibrium can be found.

As a consequence of this proposition, there is no stable situation rational entities
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can try to achieve by playing the game. Both players should then consider the risk

parameter in their strategy selections. To this end, we define web service and commu-

nity’s mixed strategy probabilities respectively as wi(Swi
, 1−Swi

) and cj(Scj , 1−Scj).

Thus, we compute web services expected payoff αwi
of join (or accept to join) versus

the mixed strategy profile of the community in Equation 8. Equation 9 computes the

related value regarding the refusal of join.

αwi
(join, cj(Scj , 1− Scj)) = Scj(Jwi,cj) + (1− Scj)(JR

cj
wi
) (8)

αwi
(stay, cj(Scj , 1− Scj)) = Scj(SI

cj
wi
) + (1− Scj)(0) (9)

The web service aims at maximizing its payoff. Therefore, for all adopted strate-

gies, we need to consider the best response (to the other player) and discard the others.

For instance, if the web service obtains a higher expected payoff with the joining strat-

egy, it would change its probability profile to (1, 0), so the join would be the dominant

strategy.

Since each player in each stage game chooses between only two strategies, and

since any of these strategies could be the best response in a particular situation, we

analyze the case where the expected payoffs are equal. By so doing, we can compute a

threshold (μwi
), which is used to identify which strategy is dominant. The threshold μwi

is used by the master to control the expected payoff of the web service in the sense that

the web service adopts the master’s desirable strategy as dominant. Thus, the master

would pay the least possible cost to obtain its desirable control on the web services.

This eventually would lead to the control mechanism of the master web service over

cardinality of the community set. The threshold is computed in Equation 10.

αwi
(join, cj(Scj , 1− Scj)) = αwi

(stay, cj(Scj , 1− Scj))
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⇒ Scj(Jwi,cj) + (1− Scj)(JR
cj
wi
) = Scj(SI

cj
wi
)

⇒ Scj(E
′
wi

− Ewi
) + (1− Scj)(Ewi

− Ewi
) = Scj(Ewi

− Ewi
)

⇒ μwi
=

(Swi
)(E ′wi

) + Ewi
− 3(Swi

)(Ewi
)

1− 2Swi

(10)

The threshold μwi
obtained in Equation 10 is in terms of the estimated efficiency

Ewi
, which could be changed by the master cj . So if the expected efficiency of join is

computed to be more than μwi
, the web service wi would adopt the join or accept the

invitation to join strategy. We have then the following result.

Proposition 6.3 In mixed strategy one-stage game, there is a threshold μwi
such that

if Ewi
> μwi

, joining the community would be the goal of the web service. Otherwise,

the web service wi would not join the community.

Corollary 6.4 If the master web service considers the expected efficiency value com-

puted by the web service and provides (broadcasts) a score rate that let Ewi
exceeds

μwi
, the master can control adopting strategy of the web service.

6.3.3 Web Service in the Community

In the previous sections, we analyzed the case where the web service wi was acting

alone outside the community cj . We also set up a game and analyzed the payoffs

regarding different adopting strategies. In this part, we analyze the same system where

the web service wi is already acting in collaboration with other web services inside the

community cj . In this case, the web service chooses its actions from strategy profile of

“leave/accept to leave” or “stay/refuse to leave” (we assume that any action that ends

up in changing the status of the web service is being made upon agreements between

the web service and the master of the community). The community cj also refers to the

strategy profile of “accept of leave/fire” or “refuse the leave/not fire”. Doing so, there
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are four different cases: (a) wi attempts to leave the community cj and the attempt is

accepted; (b) wi attempts to leave, but cj refuses the leaving request; (c) cj encourages

(fires) the web service wi, but wi refuses the invitation; and (d) there is neither firing

from cj nor leaving request from wi. Similar to the case where the web service was

outside the community, we analyze the cases with their parameter updates.

Case (a) The web service wi that takes the risk of leave (Swi
) would update its

score rate, market share and capacity parameters respectively in Equation 11

Srwi
= Sr”wi

Cpwi
= Cpwi

Mwi
= M”wi

(11)

In this case, our assumptions are as follows: (1) the score rate of a web service

would be back to its previous individual score rate (Sr”wi
). To this end, each registered

web service in the community holds its individual score rate when joining a commu-

nity. However, the community recalculates its average score rate; (2) we consider the

capacity as a fixed attribute. Therefore, the capacity of the web service stays unchanged

but the community reduces the left web service’s capacity. A similar analysis can be

obtained for the market share where M”wi
is the previous value. The corresponding

attribute updates regarding the community cj are formulated in Equation 12.

Srcj=
n(Srcj)− Srwj

n− 1
Ccj = Ccj − Cwi

Mcj = Mcj −Mwi
(12)

In this case, both entities consider the estimated parameters and compute their new

efficiency values (see Equation 3). The case would take place when the following

inequalities hold:

Ewi
≥ (1− Swi

)Ewi
Ecj ≥ (1− Scj)Ecj

Case (b) In this case, wi attempts to leave, but the community does not accept the
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Table 6.2: Payoff regarding 2 players when web service is inside the community.

leaving request. The difference between the cases (a) and (b) is the same as explained

in the previous section. We have then the following inequalities:

Ewi
� (1− Swi

)Ewi
Ecj ≥ (1− Scj)Ecj

Case (c) This case is similar to the case (b) except the fact that the refusal is caused

by the web service:

Ewi
≥ (1− Swi

)Ewi
Ecj � (1− Scj)Ecj

Case (d) In this case, both entities are not encouraged to attempt leaving:

Ewi
� (1− Swi

)Ewi
Ecj � (1− Scj)Ecj
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6.3.4 The Game Set up for the Joined Web Service

In this section, we also develop the game-theoretic analysis consisting of the web ser-

vice wi as player 1 and community cj as player 2. The player 1 follows the strategy

profile of (leave/not leave) when is the initiator and follows the strategy profile of (ac-

ceptance fire/refuse fire) otherwise. Table 6.2 shows the assigned payoffs for both

players in different cases. As shown in the table, the values of Lwi,cj and Fwi,cj are the

generalized form of “leave/accept” or “fire/accept join” cases. These values are actual

differences in efficiency values after the join (E ′wi
and E ′cj ). The obtained payoffs could

be either positive or negative. We formalize the results we obtain from the set up game

between these entities in the following.

Proposition 6.5 In one-stage game, there is no pure strategy Nash equilibrium.

Proof:

The proof is similar to the one given for Proposition 1.

Referring to the obtained payoffs shown in Table 6.2, we would have the same

best response analysis that we did in the case for the single web service. To this, the

obtained threshold μwi
is set the same.

Proposition 6.6 In mixed strategy one-stage game, there is a threshold μwi
such that

if Ewi
> μwi

, leaving the community would be the goal of the web service that is

already member of the community. Otherwise, the web service wi would not leave the

community.

Corollary 6.7 If the master web service considers the expected efficiency value com-

puted by the web service and provides a market share value that let Ewi
exceeds μwi

,

the master can control the strategy of the web service.
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Figure 6.1: Efficiency of three categorized web services on joining a community.

The market share offered to the web service by the community could cause dissat-

isfaction of the joined web services. Thus, this would generate a low Ewi
value, which

would cause the web service to leave considering its previous individual efficiency

value.

6.4 Empirical Analysis

We used a realistic multi-agent simulator in a java-based platform and developed many

agents with broad range of characteristics and capabilities. In the multi-agent based

environment, we exposed dynamism in agents’ actions and therefore, we could obtain

results that are based on the performed realistic experiments. In the implemented envi-

ronments, there are three types of agents: (a) user agents; (b) web service agents; and

(c) master web service agents that represent communities. We do not emphasize the

user agents for the sake of simplicity. However, in general, they look for best possible

web service (either from a single or a community of web services). During simulation

runs, web services and users might leave or join the network. Table 6.3 provides the

details regarding the implemented environment. We categorize the web services and
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Table 6.3: Environment Characteristics.

masters based on the risk they take in adopting strategies. There are three classes of

services that obtain different payoffs during the games.

In this section, we investigate the characteristics of the single web services that act

alone outside the community. During the simulation runs, we set up a number of one-

stage games analyzing the strategies that web services take in different situations. We

repeat the same process using three different classes of the web services according to

their risk attribute. Figure 6.3.4 illustrates 6 plots categorizing three different types of

single web services that are involved in the one-stage game regarding joining the com-

munity. In plots (a), (b), and (c) the x-axis denotes community’s public score rate that is

broadcasted by the player 2 (cj) in the game. The y-axis denotes the percentage of the

web services that considered to join the community. In this experiment, the community

is willing to accept joining web services since its market share is not balanced with its

limited capacity (Mcj > Ccj ). As it is shown in plots, there are different joining per-

centages regarding the situation that either encourages or discourages most of the web

services. In Figure 6.3.4, plots (d), (e), and (f) illustrate the average efficiency compar-

ison between the case where the web service was acting alone (the dotted curve) and

the case where the web service joined the community (the bold curve). The updates

in efficiencies clarify the extent to which the joining strategy is chosen wisely. In this

experiment, the community adopts its strategies according to its individual efficiency

analysis regardless of the threshold that could lead the web services to join.
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Figure 6.2: Efficiency of three categorized web services on joining a community while
threshold being investigated.

We also lunch the experiment with the community representative that is capable

of analyzing the threshold that would enhance the control of the master web service

over the adopting strategies of the single web services willing to join and obtain higher

efficiency. Figure 6.4 plots the same group of web services (categorized in plots (a),

(b), and (c)) facing a community whose master web service analyzes the threshold that

could encourage the web services to join. As shown in this Figure, cj is more successful

in games with players that hold relatively high risk attribute. In lower risky web ser-

vices, the community is more successful in absorbing the web services by advertising

higher score rate. This fact is promising according to web services’ desire to increase

self efficiency. However, the community facilitates the joining process and meanwhile,

obtains the control on the strategies that the web services adopt. Thus, the master web

service acts better compared to the case where the master web service considers self

parameters in games.

We carry on the experiments with analysis on the efficiency updates regarding the
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Figure 6.3: Efficiency of three categorized web services on leaving a community.

joined web services that are involved in one-stage game facing the community repre-

sentative. Figure 6.4 illustrates 6 plots categorizing three types of web services ac-

cording to their risk attribute class. These plots illustrate the percentage of leaving the

community together with their corresponding efficiency update. As it is clear in plots

(a), (b), and (c), the web services with lower risk levels act more or less according

to their satisfaction of joining the community. Therefore, the percentage of leaving is

decreased by increasing the score rate of the community. Note that the public score

rate of the community cannot be faked in this case as long as the web service is already

member of the community. The experiment shows the web services with higher risk

level could adopt leaving strategy with weaker reasoning mechanism. Consequently,

we observe a more chaotic behavior of the joined web service with higher risk level

acting in a community with relatively low score rate value. This chaotic percentage

is regulated while the score rate of the community is increased. In this case, the web

services consider to refuse the leave.

Figure 6.4 illustrates the leaving percentage of the web services in the same exper-

iment but facing a community that manages to recognize the threshold μwi
. In these
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Figure 6.4: Efficiency of three categorized web services on leaving a community while
threshold being investigated.

plots we observe a better handling of the web services, which reflects community’s

success in controlling the adopting strategies of the web services.

In Figure 6.4, we compare the total efficiency of different communities categorized

based on their efficiencies (Scj = 0.2, 0.5, and 0.8). In these plots, the bold curves

represent the efficiency of the community when the threshold μwi
is taken into account

and the dotted ones represent the community when the threshold is not taken into ac-

count. As shown in the plots, the efficiency of communities are enhanced when they

consider the computed threshold.

6.5 Related Work

In many frameworks proposed in the literature, service selection and task allocation

are regulated based on the reputation parameter [69, 70]. In [2], the proposed frame-

work regulates the service selection based on the trust policies expressed by the service
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Figure 6.5: Efficiency of three categorized communities of web services.

users. In [54], authors propose ontology for quality of service. Users compute the web

services’ reputation using ratings. The frameworks proposed in [41, 57] address effec-

tive reputation mechanism for web services. All these models address the reputation

in environments where Web services function alone. In such models, web service ef-

ficiency is not discussed in details and in general, balancing the market share with the

capacity is not considered as an issue for web service besides its reputation.

There have been few work addressing the communities of web service. The ob-

jective is to facilitate and improve the process of web service selection and effectively

regulate the process of request and task allocation [28]. In [49], authors propose a

reputation-based architecture for communities and investigate the collusion scenarios

that might falsely increase communities’ reputation in the network. In [50], the au-

thors mainly address the overall assessed reputation that is used as a main reason for

service selection. The authors do not consider efficiency as a parameter that impacts

service selection in future. In general, the recent aforementioned proposals motivate
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the existence of communities rather than single functional web services, but fail to sys-

tematically provide potential benefits and technically compare different scenarios that

increase service providers’ efficiency.

6.6 Conclusion

The contribution of this model is the proposition of a game-theoretic based model to

analyze the best efficiency characteristics for the active services in open networks. The

proposed framework measures the efficiency of the web services considering a number

of involved factors. The proposed game measures the threshold that lead to a control

of strategies adopted by the single web service.

Our model has the advantage of being simple and taking into account four im-

portant factors: (1) rational services seek better efficiency in the environment; (2) in

service computing the collaboration concept is well defined if the maximum efficiency

is posed as the main goal; (3) rational web services might meet higher performance

either by joining a community (for the sake of collaboration) or acting alone (for man-

aging the task alone); and (4) the community is capable of managing the number of

involving web services. The resulting model shows that the efficiency of the commu-

nity is increasing once the game-theoretic analysis is considered to impose parameters

to control the cardinality of the community set.



Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis is about studying and analyzing trust and reputation in systems of au-

tonomous agents. In Chapter 3, we proposed a probabilistic-based trust framework

to secure multi-agent systems in which agents continuously communicate with each

other. The trust assessment procedure is composed of on-line and off-line evaluation

processes. The on-line process is based upon trustworthy and referee agents as well

as several other features. Objectively, this allows enhancing the accuracy for agents to

make use of the information communicated to them by other agents. The off-line pro-

cess considers the communicated information to judge the accuracy of the consulting

agents in the previous on-line trust assessment procedure using a maintenance process

implemented as our optimization protocol.

Our trust model has the advantage of being computationally efficient and of tak-

ing into account four important factors: (1) the trust (from the viewpoint of the trustor

agents) of the trustworthy agents; (2) the trust value assigned to trustee agents accord-

ing to the point of view of trustworthy agents; (3) the number of interactions between

trustworthy and trustee agents; and (4) the timely relevance of information transmitted

by trustworthy agents. Addition process of maintenance enables agents to dynami-

cally adjust their beliefs and their trustworthy community in a more efficient manner.

The resulting model allows us to produce a comprehensive assessment of the agents’

168
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credibility in a software system even if the environment is very biased. The proposed

mechanism efficiency is compared with other related models and discussed in details

to prove the capabilities of our framework. The proposed CRM model in Chapter 3

fulfils the first objective we had in Chapter 1: CRM is a flexible trust-based framework

that accurately considers the involved factors and provides an optimum trust estimation

process. Moreover, the agile adaptation of agents’ goals and beliefs are considered in

this framework as the system is supposed to be highly dynamic. We extended the CRM

model proposed in [46] to a model that using trust, extends its connectivity in the so-

cial network [47]. In this model, we provide a detailed discussion over the network

formation by taking into account the edge creation factors.

In Chapter 4, we proposed an incentive-based reputation model for open multi-

agent systems modelled as communities of web services gathered to facilitate dynamic

users requests. The reputation of the communities are independently accumulated in

binary feedback reflecting the satisfaction of the users being served by the commu-

nities. The model represents a sound logging mechanism maintaining effective repu-

tation assessment for the communities. The controller agent investigates the logging

feedback released by the users to detect the fake feedback as a result of collusion be-

tween a community and a user (or a group of users), which are provided in support of

the community. Upon detection, the controller agent maintains an adjustment in the

logging system, so that the malicious community would be penalized by decreasing its

reputation level.

Our reputation mechanism has the advantage of providing suitable metrics used

to assess the reputation of a community. Moreover, having a sound logging mecha-

nism, the communities would obtain the incentive not to act maliciously. The proposed

mechanism efficiency is analyzed through a defined test-bed. The proposed reputation

mechanism in Chapter 4 mainly addresses our general thesis goal which is to develop
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and maintain strong reputation assessment procedures that optimally function in multi-

agent systems with dynamic changes of environment attributes such as agent goals,

credibilities, and population.

In Chapter 5, we continued the discussion on sound reputation mechanism by con-

centrating on agents’ acting strategies and their willingness to obtain highest positive

payoffs. The controller agent as the representative of the reputation system applies dif-

ferent penalties to constrain rational agents to adopt malicious actions as their dominant

acting strategies. In this chapter, we investigated scenarios within which the controller

agent overcomes the malicious activities and discourage agents to act maliciously. We

studied the obtained results and analyzed the impact of the controller agent’s imposed

values on the payoffs associated to the interacting agents. The mechanism proposed in

this chapter fulfils another objective of the thesis mentioned in Chapter 1: the sound

reputation mechanism discourages malicious actions of the agents trying to increase

self-reputation level and take advantage of open multi-agent system environment. This

model is also extended to another work where we model and analyze the arrival of

requests and study their impacts on the overall reputation [48]. The web services may

be encouraged to handle the peak loads by joining to a group of web services.

In Chapter 6, we utilized game theory to analyze the best performance character-

istics for active web service agents in open networks. The objective is to measure

thresholds within which the control of adopting strategies by web service agents could

be maintained. The model considers four important assumptions: (1) rational web

service agents seek better performance in the environment; (2) in service computing

the collaboration concept is well-defined if the maximum performance is set as the

main goal; (3) rational web service agents might meet higher performance either by

joining a community (for the sake of collaboration) or acting alone (for managing the

task alone); and (4) the community is capable of managing the number of involving
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web service agents. The resulting model shows that the performance of the commu-

nity is increasing once the game-theoretic analysis is considered to impose parameters

to control the cardinality of the community set. The game-theoretic analysis in this

chapter mainly fulfils our last objective mentioned in Chapter 1: the proposed mech-

anism investigates the parameters yielding optimal performance of agents. Using this

mechanism, we study the cases where selfish agents could obtain best payoffs using

their decision making procedure. This model is also extended to another work where

we discuss a mechanism which web services can use to join existing group of web

services [45]. Moreover, we analyze the scenarios where the community is overloaded

with web services that lied about their capabilities before joining.

7.2 Future Work

7.2.1 Trust Framework

Our objective for future work is to advance the assessment procedure to enhance the

model efficiency using a comprehensive approach we developed in [44], which con-

siders the trust issue as an optimization problem. We plan to enhance the efficiency of

the trust framework in different aspects. The maintenance process is in general a learn-

ing methodology that updates the agents’ beliefs with respect to environment changes.

The information provided by the consulting agents reflect their behaviors and honesty

and could be used in learning methodology to update the belief set about the surround-

ing environment. This helps agents quickly adapt with the environment changes and

recognize the honest agents around them.

In the maintenance process, we can use game theory and mechanism design ap-

proaches to analyze the incentives agents can have to encourage them to be more accu-

rate. In this framework, we need to investigate the cases where the consulting agents
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do not accurately provide the information they have. In fact, the agents’ incentives

for truthful action should be analyzed. The purpose of the game theoretic analysis of

this framework is to provide a methodology that agents can use for estimating their

expected benefits of their further actions. This analysis would let agents identify the

best strategies and act accordingly.

7.2.2 Reputation Mechanism

The second plan for future work is to advance the reputation mechanism developed

in [49]. In the logging system, we need to optimize detection process, trying to for-

mulate it in order to be adaptable to diverse situations. In the proposed reputation

mechanism, the detection policy of the controller agent plays an important role, as the

malicious actions are discouraged by accurate detection of the controller agent. We

aim at designing a game with three players in which the consumer is also considered

as a separate player together with the controller and provider agents.

In reputation mechanism, we are mainly aimed at establishing a sound reputation

mechanism. Following this aim, we can extend our work in different directions listed

in the following.

1. Consumer agents could be encouraged to only post truthful feedback and loose

their payoffs in case of collusion or any misleading action that leads to temporary

increase of one’s obtained payoff. This could be maintained by applying game

theory to analyze the behavior of consumer agents during interacting interval.

2. The controller agent could apply different learning methods to use the experi-

ences obtained from previous malicious action detections to decrease the possi-

bility and chance of false detection in future interactions.

3. The reputation control system could be re-defined as a Markov decision process
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to systematically cope with observations and rationally use them to enhance the

reputation system performance.

We can extend our framework to enhance the performance of the web service agents

to obtain best payoffs in interactive networks. Furthermore, we plan to promote the

concept of communities of web services by analyzing the performance of these com-

munities with respect to their handling abilities of service consumers compared to that

of web services that act lonely. In this analysis, we would like to provide a game-

theoretic analysis of the benefit of a single web service that is capable of serving lim-

ited number of consumers and the incentives that encourage the web service to join a

group of web services to increase self-performance. Examples of issues that still need

to be investigated are: when to join, which community to join if more than one choice

is available, which web service to hire/fire, and etc.
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