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ABSTRACT 

A Full Bayes Approach to Road Safety: Hierarchical Poisson Mixture 

Models, Variance Function Characterization, and Prior Specification 

Mohammad Heydari 

 

Road safety is a major concern of every department of transportation. Allocating 

resources to improve safety requires the identification of hazardous sites (hotspots) and 

the assessment of safety countermeasures. For such tasks, reliable safety performance 

functions are noteworthy to predict collisions, prioritize improvements, and capture 

countermeasures effectiveness for overall road network management.  

In this thesis, a case study from New Brunswick was used. Bayesian statistics were 

mainly applied in analyses by introducing Poisson mixture models in a hierarchical 

fashion. Poisson and Poisson mixture models were compared. Different characterizations 

of variance functions were verified. In a novel approach, the inverse of variance in 

Poisson-Lognormal models was examined to vary across sites as a function of site 

characteristics. In addition, accidents were analyzed by severity. Hierarchical Poisson-

Gamma models presented the best fit. Traffic flow was the most influential factor in 

variance functions. Models with random variance structure provided the best fit, followed 

by those varying as a function of site characteristics. The interaction between 

precipitation and density of horizontal curves was statistically significant only for injury-



  iv   

fatality accidents - these contributing factors weren’t significant when considered 

separately. 

Additionally, the effect of prior specifications in hierarchical Poisson-Gamma models 

was examined adopting a case study and a data simulation framework. Results showed 

that informative priors, especially for the inverse dispersion parameter, improve the 

accuracy of parameter estimates. Data with low sample mean and small sample size were 

dramatically affected by prior specification. However, hotspot identification and 

goodness-of-fit were not very sensitive to prior choice. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter is divided into 4 sections: (1) background, (2) objectives, (3) scope and limitations, 

and (4) organization of the thesis, which are described as follows.  

1.1 BACKGROUND 

Traditionally, less consideration has been dedicated to road collisions from a 

management perspective. It was mainly over the past decade that road safety has widely 

attracted the attention of researchers, governments, and in particular, transportation 

authorities. Despite this attention and effort, there is still considerable potential for safety 

improvements in road networks in many countries; including developed ones. A study 

conducted in Canada estimates that accidents cost Canada $62.7 billion each year that is 

4.9% of Canada’s 2004 Gross Domestic Product (Transport Canada, 2007). The accident 

cost is mainly derived from two sources: economic and non-economic losses. Economic 

losses are related to physical damages to vehicles and infrastructures, injury recovery, 

administrative procedures, etc. And non-economic losses are those not directly measured 

in monetary terms like psychological consequences, pain, etc. Additionally, as reported 

by Transport Canada (2011), there were 2,209 fatalities, 11,451 serious injuries, and 

172,883 injuries in Canada just in 2009. Currently 90% of the world’s 1.2 million road 

fatalities per annum are in low and middle income countries, and by 2020 the number of 

road fatalities in these countries is expected to grow by 50% (International Road 



  2 

Assessment Program, 2011). These numbers are compelling and clear evidence to urge 

for safety improvement programs. 

In fact, road safety has lately become one of the major concerns in the transportation 

engineering community (e.g., in the USA and European Countries). This is first because 

of the global awareness of the problem. Second, there is a broad accordance on the fact 

that prevention is more desirable than post-crash medical care especially when one 

considers the social and economic cost of fatalities. Third, economic costs of 

countermeasures (treatments) for safety improvements are usually rapidly compensated 

by reduction on the number of observed accidents. At this stage, evaluating treatment 

effects and prioritizing sites where countermeasures should be destined become 

remarkable. In the literature, these prioritized sites that suffer from unsuitable safety 

conditions are called hotspots. It should be taken into account that road safety as part of 

an overall road network management requires reliable estimation of the safety of each 

entity (e.g., road segment). This estimation is then used to guide the decision making 

process in allocation of funds related to safety improvements that result in a safer 

network for road users. Furthermore, transportation engineering decisions and projects 

usually cause variations in road network characteristics (e.g., change in geometric design) 

that in turn could affect the safety of the network (Hauer, 1997). The latter also requires 

dependable evaluation of the safety before the implementation of such decisions and 

projects. There are different methods for both hotspot identification and countermeasure 

assessment; the most important ones rely on safety performance functions (SPF). In other 

words, the evaluation of the safety mainly depends on the quality and reliability of SPFs. 
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SPF is a mathematical equation that provides a relationship between accident frequencies 

and a series of site characteristics.  

1.2 OBJECTIVES 

The major goal of this work is to achieve reliable SPFs for accident modeling in traffic 

safety so that the management processes can be more effective from a cost and safety 

perspective. Specifically, the aim is to investigate some of the most important modeling 

approaches in road safety and to try to improve them theoretically and practically. 

Therefore, the first specific objective is to compare the basic Poisson model and two of 

the most common Poisson mixture hierarchical models (Poisson-Gamma and Poisson-

Lognormal). The second specific objective is to explore various characterizations of the 

variance function in Poisson mixture models. The reason for this objective is the fact that 

characterization of the inverse dispersion parameter as a function of site characteristics in 

Poisson-Gamma models has been shown, by some researchers, to be able to improve 

goodness-of-fit and parameter estimation precision. The third specific objective is to 

analyze accidents by type and severity; property damage only, injury-fatality, and total 

accidents. Hence, it is possible to explore the effect of various site characteristics on the 

mean and the variance functions. Finally, since providing the prior distribution for model 

parameters in the Bayesian approach is necessary, another objective is to focus on the 

prior specification issues and to investigate on the model outcomes through various prior 

choices. Specific objectives are summarized in more detail as follows: 
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a)  To compare Poisson and hierarchical Poisson mixture models  

For this objective, in a fully Bayesian framework, three regression approaches (1) the 

Poisson model, (2) the hierarchical Poisson-Gamma model, and (3) the hierarchical 

Poisson-Lognormal model will be applied to a case study to compare each of the model 

outcomes that are parameter estimations and model fitting using a Bayesian goodness-of-

fit measure. 

b) To examine the effect of different variance function characterizations in 

hierarchical Poisson mixture models 

To follow this objective, first, different characterization of the inverse dispersion 

parameter as a function of site characteristics will be investigated in the hierarchical 

Poisson-Gamma model. Second, in a novel approach this characterization methodology 

will be extended to the hierarchical Poisson-Lognormal model; this time for the inverse 

of variance. Third, a randomly varying approach will be adopted based on which the 

inverse dispersion parameter and the inverse of variance, instead of being fixed or 

variable as a function of site characteristics, will be allowed to vary randomly across 

sites. 

c) To analyze accidents by type and severity 

In this research study, accidents will be divided into three categories: property damage 

only, injury-fatality, and total accidents. Each category will be investigated separately, 

and the effect of different site characteristics on the mean and the variance functions will 

be estimated. 
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d) To examine the effect of the prior specification for model parameters on 

estimation accuracy, hotspot identification, and goodness-of-fit 

Almost all studies in road safety that apply Bayesian statistics adopt a non-informative 

prior for model parameters. Since some problems have been reported to merge from the 

non-informative prior specification regarding accuracy of estimates especially when 

working with limited datasets, here, the impact of the informative prior specification on 

results will be examined. For this purpose, model outcomes obtained from different prior 

specifications will be compared in terms of parameter estimates, hotspot identification, 

and goodness-of-fit. 

1.3 SCOPE AND LIMITATIONS 

The scope of this thesis is limited to investigation on some of the most important accident 

modeling aspects in road safety. In other words, the aim is not only to verify the 

reliability of SPFs developed based on current methodologies in road safety, but also to 

suggest some practical improvements for these methodologies. The final outcome can 

then be used for the road safety management process in hotspot identification and in 

evaluation of countermeasure effectiveness. The most important limitation was related to 

data availability and the case study – provided by the New Brunswick Department of 

Transportation. In fact, not many site characteristics were available. Nevertheless, to 

overcome this limitation, firstly, a macro-level approach has been employed to develop 

SPFs. Secondly, to increase the size of data (observations) three different types 

(severities) of accidents were considered. 
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1.4 ORGANIZATION OF THE THESIS 

This thesis consists of 5 chapters as explained in the following: 

Chapter 1 provides an introduction by presenting the background, research objectives, 

and the scope and limitations.  

Chapter 2 reviews literature to provide the reader with adequate background knowledge. 

This chapter has three parts: (i) review of road safety management, (ii) review of Safety 

Performance Functions, and (iii) review of Bayesian statistics. 

The work described in Chapters 3 and 4 have been written as self contained papers and as 

such, each of these chapters has its own abstract, introduction, and methodology. 

Chapter 3 compares some of the most important regression approaches in road safety: 

Poisson and hierarchical Poisson mixture models. Subsequently, this chapter examines 

different variance function characterizations in hierarchical Poisson mixture models. 

Lastly, it discusses the accident analysis by different severities. 

Chapter 4 investigates the effect of various prior specifications on the analysis results in 

terms of parameter estimation accuracy, hotspot identification, and goodness-of-fit using 

a case study and a data simulation framework. 

Chapter 5 provides a summary and conclusions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter some of the most important and basic aspects of road safety are reviewed. 

As briefly explained in the previous chapter, road safety management comprises two 

phases that are prioritizing sites for safety improvements and estimating countermeasure 

effects. The first section of this chapter is dedicated to the managerial road safety issues 

and the second section’s focus is on the accident modeling or development of SPFs. 

Finally, the third section represents a concise review of Bayesian statistics. 

2.1 ROAD SAFETY MANAGEMENT 

The safety of a site is defined as the number accidents, or accident consequences, by kind 

and severity, expected to occur on that site during a specified time period (Hauer, 1997).  

For road safety management purposes, there are two periods of before and after treatment 

that are studied to evaluate the impact of a treatment (countermeasure). Indeed, these 

studies that take into account before and after periods are called before-after road safety 

studies. In the literature the widely accepted duration for each of the before and the after 

period is three years. Consequently, two concepts are typically used: (1) prediction, and 

(2) estimation. As explained by Hauer (1997), prediction is what would have been the 

safety of a site in the after period had treatment not been implemented, and estimation is 

what the safety of a treated site in the after period was with treatment in place.  
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The effectiveness of a countermeasure can be traced with different levels of accuracy. For 

example, this effectiveness can be estimated by using a raw approach that is just based on 

the comparison between accident counts from before and after the period in which 

countermeasures have been implemented. This approach is known as naïve before-after 

study (Hauer, 1997; Miaou and Song, 2005). The naïve approach has two main 

drawbacks; firstly, it ignores the fact that every change in the safety of a site after a 

treatment takes place may be due to other factors like variation in some site 

characteristics (e.g., traffic flow). Secondly, it may be characterized by the regression-to-

the-mean phenomenon (Hauer and Persaud, 1984). This phenomenon, basically, comes 

from the fact that an abnormally high accident frequency on a site may decrease whether 

or not a countermeasure was implemented.  

As an alternative, the accident rate has been also used to verify the effectiveness of a 

treatment and to prioritize sites. Accident rate, for instance for a road segment, is usually 

presented as the number of accidents in a specific period of time divided by vehicle 

kilometers traveled in that period (Hauer, 1997). However, this method also is not 

reliable enough since it assumes a linear relationship between the accident frequencies 

and the traffic flow. Moreover, the accident rate does not account for the importance of a 

transportation facility. This means that, for example, a road segment with very low 

accident frequency and very limited traffic flow may be given the priority over a more 

important site with higher accident frequency and much higher traffic flow.  

To overcome the above mentioned problems and inaccuracies, the empirical Bayes (EB) 

method has been used being, in fact, the most common approach in road safety (Persaud 

et al., 1999; Heydecker and Wu, 2001; Hauer et al., 2002). The EB method can be 
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applied to prioritize sites for the safety improvements and also to estimate the impact of 

countermeasures on the safety of a site. This method combines the accident history of 

sites under investigation with their expected accident frequencies - estimations of the 

mean obtained from a reference group of sites with similar characteristics - to evaluate 

the safety effect of a treatment. The EB approach is a model based method in which an 

SPF, which is developed for an untreated reference group of sites, is used to predict the 

expected accident frequency for a series of treated sites under examination. In other 

words, the accident frequencies related to the before treatment period for the treated sites 

are known from the observed data. Subsequently, it’s possible to verify how a particular 

countermeasure affected the occurrence of accidents on the treated sites by using the 

expected accident frequencies obtained from the reference sites, which have not been 

subject to any treatment.  

Recently, some studies have suggested the use of the full Bayes approach for before-after 

studies (Lan et al., 2009; Persaud et al., 2010). The full Bayes approach can provide some 

improvements and advantages with respect to the EB approach such as: the possibility to 

add more flexibility and complexity in the model, and to obtain a better and more 

interpretative uncertainty around the estimated values. Both approaches, the EB and the 

full Bayes, are model based methods (Miaou and Song, 2005) in which the use of an SPF 

is indispensable for the analysis. At this point, the importance of developing reliable 

SPFs becomes clear, which is reviewed in the next section. 
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2.2 ACCIDENT MODELLING & SAFETY PERFORMANCE 

FUNCTIONS 

An accident model, or an SPF, is a mathematical equation that describes the accident 

frequencies (as dependent variable) based on a series of site characteristics (as 

independent variables). These independent variables are also known as contributing 

factors. Equation 2.1 represents a generic SPF, for road segments, where μi = accident 

frequency of site i; α = vector of SPF parameters, and x = vector of site characteristics of 

site i. 

ln (μi) = α0 + α1xi1 + 
…

 + αnxin               [2.1] 

Statistical methods are used to develop SPFs; these models mainly depend on the 

historical observation of accident counts.  To develop SPFs the first step is the choice of a 

model function that may include different contributing factors; then, a regression 

approach should be applied to the determined model function for the parameter 

estimation purpose. Regarding regression approaches, accident occurrences are typically 

assumed to follow the Poisson distribution due to their random nature (Equations 2.2). 

ki ~ Poisson (θi)             [2.2] 

where  

ki = observed accident frequency for site i; 

θi =  Poisson parameter or expected accident frequency for site i. 
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Moreover, the Poisson probability density function is defined in Equation 2.3 where the 

probability of having k accidents for an  specific site, P(k), is calculated based on θ; 

expected accident frequency (mean) of that site. 

P(ki) = (e
-θi θi

Ki)/ki!                 [2.3] 

The basic regression approach in developing SPFs is the Poisson regression, and almost 

all other regression approaches (Poisson mixtures) are an extension of this regression; for 

instance, Poisson-Gamma and Poisson-Lognormal models. In these models the expected 

accident frequency (θi) is defined as μiri where μi is calculated from the SPF and ri is the 

multiplicative random effect. In Poisson-Gamma models, ri is assumed to follow a 

Gamma distribution while in Poisson-Lognormal models ri is assumed to be log-normally 

distributed.  

Since the Poisson regression is not completely appropriate for accident data in most of 

the cases, Poisson mixtures are usually used. The assumption of the simple Poisson 

model is that the mean and the variance are equal; that is, these two parameters are only 

described by the SPF. However, this assumption is not satisfied in many accident data 

where heterogeneity across sites is a usual fact (Mitra and Washington, 2006). The 

heterogeneity mainly shows itself in the form of over dispersion, which implies that the 

variance is greater than the mean. Therefore, to circumvent such a problem the Poisson-

Gamma (Negative Binomial) model is often used in accident data analysis (Poch and 

Mannering, 1996; Hinde and Demetrio, 1998; Miaou and Lord, 2003; Anastasopoulos 

and Mannering, 2008). In the Poisson-Gamma model, the variance is greater than the 

mean so that this model accounts for the over dispersion phenomenon. Moreover, other 
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Poisson mixture models like Poisson-Lognormal have been used for accident data 

analysis in different studies (Lord and Miranda-Moreno, 2008; El-Basyouny and Sayed, 

2010). Poisson-Lognormal can also overcome the over dispersion problem.  

In road safety, Poisson-Gamma models with fixed dispersion parameter have been 

commonly used; however, recently some researchers have proposed a methodology in 

which the dispersion parameter varies across sites as a function of some site 

characteristics such as traffic flow and segment length (Hauer, 2001; Miaou and Lord, 

2003; Geedipally et al, 2009). This approach was first examined by Hauer (2001) where 

the dispersion parameter was a function of the segment length. Moreover, Geedipally and 

Lord (2008) have studied the effect of the varying dispersion parameter as a function of 

site characteristic on confidence intervals of SPFs estimations. This study was focused on 

intersection data, and the dispersion parameter was a function of the minor and the major 

traffic flows. Results showed that in general a varying dispersion parameter approach 

provides more precise results. 

2.3 BAYESIAN STATISTICS 

Road safety, heavily, relies on statistical analysis in order to develop SPFs based on local 

observations. Maximum Likelihood Estimation (MLE) is perhaps the most common 

method used to estimate model parameters in statistical analyses (Hauer, 1997; Bedford 

and Cooke, 2001; Winkelmann, 2003). However, the use of Bayesian estimation that 

requires a large amount of computation (Gelman et al., 1995; Carlin and Louis, 2009) has 

became very popular especially in the last decade because of the computational capacities 

found in personal computers. Bayesian statistics have some advantages with respect to 
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MLE such as (i) interesting probabilistic interpretative properties, (ii) superiority in 

dealing with uncertainty and randomness, and (iii) the ability to analyze complex data 

and data comprising small number of observations (Mitra and Washington, 2006; Gelman 

and Hill, 2007; Amador and Mrawira, 2011). Additionally, in the Bayesian approach 

hierarchical models can be introduced in the analysis adding more flexibility in the model 

and some improvements in the analysis (Congdon, 2010). Hierarchical models are those 

in which one or more parameters of the model are in turn dependent on a series of other 

parameters (called hyper-parameters) based on certain probability density functions 

(hyper-priors). In this case, hyper-parameters follow a particular prior distribution too. So 

that different levels of hierarchy can be set up in the analysis. The Bayesian paradigm is 

widely used in some fields; for instance, reliability engineering and medicine, particularly 

epidemiology. In road safety, also, some researchers have applied Bayesian methods for 

hotspot identification, evaluation of countermeasure effectiveness, and parameter 

estimations in developing SPFs (Oh and Washington, 2006; Lord and Miranda-Moreno, 

2008; El-Basyouny and Sayed, 2010). 

Bayesian statistics include three elements: (1) prior distribution, (2) likelihood 

distribution, and (3) posterior distribution. In Bayesian statistics, it’s necessary to provide 

a prior for each parameter. The prior consists of some sort of knowledge that exists for a 

certain parameter based on previous studies or expert criteria. The likelihood is obtained 

by the observed data, and consequently, the posterior inference can be made based on 

these two; the prior and the likelihood. In particular, the process of making posterior 

inferences takes advantage of Markov Chain Monte Carlo (MCMC) methods (Gamerman 

and Lopes, 2006) to overcome computational complexity and difficulties of the Bayesian 
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approach. Equations 2.4 and 2.5 show the estimation of the posterior in Bayesian 

statistics. 

P(a|Data) ∝ f(Data|a).P(a)            [2.4] 

 
   

   


daaPaDataP

aPaDataP
DataaP            [2.5] 

                 

where 

P(a): prior distribution of parameter a; 

P(Data|a): likelihood function; observed data given parameter a; 

P(a|Data): posterior distribution of parameter a given observed data; 

and the denominator represents the marginal likelihood. 

One of the most important concerns in running MCMC simulations for the posterior 

inference is whether or not iterations are stable and convergence is reached. In fact, by 

running more than one chain the convergence can be verified graphically in conventional 

software such as OpenBUGS (used for running MCMC simulations for Bayesian 

inference). Finally, deviance information criterion (DIC) is used as a goodness-of-fit 

measure in Bayesian statistics. DIC is a generalization of the Akaike information 

criterion (AIC) and can be used to compare model-fitting of statistical models that are 

developed for the same data. Models with smaller DIC value are those that fit the data 

better. Usually, differences of smaller than 5 in DIC values are not considered significant, 

whereas differences that are greater than 10 are generally important and indicate the 

superiority of the model that has the smaller DIC value.  
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CHAPTER 3 

Hierarchical Poisson Mixture Models, Variance Function 

Characterizations, and Severity Modeling 

Abstract 

The Objectives of this research are: (1) to examine differences in parameter estimation 

and goodness-of-fit between Poisson and hierarchical Poisson mixture models, (2) to 

investigate different variance function characterizations under hierarchical Poisson-

Gamma models with a novel extension to hierarchical Poisson-Lognormal models, (3) to 

investigate a randomly varying approach in which the inverse dispersion parameter and 

the inverse of variance vary randomly across sites, (4) to verify the statistical significance 

of various site characteristics in variance functions, and (5) to examine the effect of 

different contributing factors in the specification of models by severity and accident type. 

This study applied Poisson and hierarchical Poisson mixture models in the Bayesian 

context, to a case study. For Poisson-Gamma models, the inverse dispersion parameter 

was incorporated in the models as (a) fixed, (b) varying as a function of site 

characteristics, and (c) randomly varying. Similarly, for Poisson-Lognormal models same 

procedures were adopted. That is, the inverse of variance was characterized as fixed, 

varying as a function of site characteristics, and randomly varying. Three datasets 

including different types of accidents (property damage only, injury-fatality, and total 

accidents) were used, and influence of various contributing factors, for each type, on 

mean and variance functions were verified.  
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In this research study, hierarchical Poisson-Gamma models presented the best fit to all 

three datasets. Models with random variance structure provided the best fit, followed by 

those varying as a function of site characteristics and then fixed structures. AADT was 

the most influential factor in variance functions. Density of horizontal curves was 

significant in variance functions for modeling property damage only and total accidents 

while it wasn’t bounded away from zero in mean functions. The interaction between 

precipitation and density of horizontal curves was found to be statistically significant for 

injury-fatality accidents. However, these contributing factors when considered 

individually didn’t have any important effect on injury-fatality accidents. 

Moreover, this study indicated that, similar to the inverse dispersion parameter in 

Poisson-Gamma models, the inverse of variance in Poisson-Lognormal models can be 

defined as a function of site characteristics in order to improve estimation precision and 

goodness-of-fit. In addition, a randomly varying structure for the inverse dispersion 

parameter and the inverse of variance can be used that cause a noteworthy improvement 

in model-fitting, especially when the mean function, solely, cannot provide an adequate 

fit to the dataset. Finally, this study showed that modeling accidents by severity is crucial 

in identifying contributing factors that affect different accident frequencies. 
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3.1 INTRODUCTION 

Road safety as part of an overall road network management requires a reliable estimation 

of the safety of each entity (e.g., road segment), not only to guide the decision making 

process in allocation of funds related to safety improvements but also to provide a safer 

network to road users. Furthermore, transportation engineering decisions and projects 

usually cause variations in road network characteristics (e.g. change in geometric design), 

which in turn, could affect the safety of the network (Hauer, 1997). Therefore, an 

estimation of the safety effects of such a decision is necessary. Safety of an entity can be 

expressed as the number of accidents, or accident consequences, by kind and severity, 

expected to occur during a specified period of time (Hauer, 1997). For the purpose of 

estimating expected accident frequencies, safety performance functions (SPF), or 

accident prediction models, can be developed. SPF is a mathematical equation that 

explains observed accidents based on specific site characteristics. Safety performance 

modeling relies on historical observations in order to calibrate a functional form that 

captures interactions between contributing factors and the safety response to local 

conditions in terms of accident frequency. In this study, we applied Bayesian estimation 

(Gelman et al, 1995; Gamerman and Lopes, 2006) in order to develop SPF’s based on 

local observations. Bayesian estimation presents some advantages over classical methods 

(e.g., Maximum Likelihood Estimate) such as capacity to deal with uncertainty associated 

to contributing factors and to produce more reliable estimates even in cases of small 

sample size (Mitra and Washington, 2006; Gelman and Hill, 2007, Amador and Mrawira, 

2011).  
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Many transportation engineers and researchers have focused on road safety issues. The 

main objective has been to examine various factors that may affect expected accident 

frequencies of transportation facilities, and to develop statistical models that can, 

accurately, describe accident datasets (Milton et al, 2008; Caliendo et al, 2007). 

Traditionally, Poisson distribution has been used as a regression approach for modeling 

accident data (Hauer, 1997). However, equality of the mean and the variance – which is a 

characteristic of Poisson models – is considered an important disadvantage of this 

approach (Anastasopoulos and Mannering, 2008; Mitra and Washington, 2006). For 

instance, Poisson regression does not provide an adequate fit in cases in which data is 

over dispersed, a common case among accident datasets. Approaches like Poisson-

Gamma (Negative Binomial) regression have been adopted to overcome this deficiency 

(Poch and Mannering, 1996). In fact, the presence of a random effect inside the Poisson-

Gamma mean structure allows it to deal with heterogeneity across sites; intersections and 

road segments. Other researchers suggested the use of generalized negative binomial 

regression in which the over dispersion parameter is expressed as a function of length and 

traffic volume (Hauer, 2001; Miaou and Lord, 2003; Geedipally et al, 2009). In addition 

to the Negative Binomial models, other probability density functions, typically, Poisson 

mixtures have been adopted like Poisson-Lognormal model (Lord and Miranda-Moreno, 

2008; El-Basyouny and Sayed, 2009). The latter also has shown to be a good candidate to 

substitute simple Poisson regression, because of the presence of a multiplicative random 

effect in its mean specification that can capture heterogeneity across sites. 

Increased computational capabilities have made possible the adoption of hierarchical 

Bayesian models (Gelman et al, 1995). For this purpose, Markov Chain Monte Carlo 
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simulation, MCMC, is applied (Gamerman and Lopes, 2006). The use of MCMC 

methods for estimating hierarchical models, often involve complex data structures, 

sometimes described as revolutionary development, and has arguably facilitated the 

fitting of such models (Congdon, 2010). As a matter of fact, some researchers have 

employed hierarchical Bayesian models in road safety (Miranda-Moreno et al, 2007). 

Therefore, Poisson mixture models can be adopted in a hierarchical fashion to profit from 

the additional advantages of their variance function and extra variation in order to 

account for heterogeneity in data. Indeed, the role of the extra variation in the hierarchical 

model is not simply to account for the lack of fit of a simpler model, but to use it as a tool 

to detect irregular patterns and changes in observations (Kim et al, 2002).  

Researchers like Miaou and Lord (2003), Mitra and Washington (2007), and Geedipally 

et al (2009) have investigated various characterization of the dispersion parameter, under 

Negative Binomial regression, as a function of site characteristics, and provided some 

comparisons and inferences mainly using non Bayesian methods. In this study, first, we 

extended the same methodology to hierarchical Poisson-Lognormal models. Second, we 

examined a randomly varying approach, and finally, all the estimations were obtained in 

a fully Bayesian framework. Three approaches to specify dispersion parameter in the 

model were applied in this study: (1) fixed, (2) varying as a function of site 

characteristics, and (3) randomly varying. Furthermore, for Poisson-Lognormal models a 

similar methodology, this time for the inverse of variance, was adopted to investigate the 

effect of the characterization of the variance function on model estimation and fit. In 

order to increase the number of observations and datasets, three types of accidents 

(property damage only, injury-fatality, and total accidents) were analyzed separately 
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under three regression approaches. And, various contributing factors in mean and 

variance functions were examined to determine statistically significant factors under 

different model structures and accident types. Accident data used in this study was based 

on 958 kilometers of rural highway segments in New Brunswick, Canada. The statistical 

software OpenBUGS was used for running MCMC stochastic simulations applying Gibbs 

sampler in order to estimate the posterior distributions of models’ parameters. 

3.2 METHODOLOGY 

3.2.1 Safety Performance Function (SPF) 

The SPF that represents a non linear mathematical relationship between accident 

frequencies (expected number of accidents per unit of time) and a vector of contributing 

factors (e.g. traffic flow and environmental exposure) is used for the purpose of 

evaluating the safety of road segments or intersections. Having a reliable SPF is 

important for examining the effect of various contributing factors on expected accident 

frequencies and also to identify hazardous sites. Three main steps are required in order to 

develop an SPF: (a) choice of an appropriate model function, (b) choice of a regression 

approach, and (c) estimation of parameters presented in the model based on local 

observations. 

Equation 3.1 (El-Basyouny and Sayed, 2010) is a widely accepted SPF, applicable on 

road segments, which was used in this paper. The main contributing factors were annual 

average daily traffic (AADT), segment length and a series of site characteristics as 

reported in Table 3.I.   
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         axAADTaLaa lnlnlnln 210                               [3.1] 

 where,  μ = expected accident frequency; 

  ln(a0) = constant; 

a = vector of stochastic parameters to be estimated using Bayesian 

inference; 

L = segment length (km); 

AADT = annual average daily traffic (vehicles per day); 

x = vector of site characteristics. 

3.2.2 Regression Models in a Fully Bayesian Framework 

Three different regression approaches were tested in a fully Bayesian framework in order 

to estimate the parameters (coefficients) of the SPF and to estimate the expected accident 

frequencies for each site. We assumed that accident data might be explained by: (a) 

Poisson model, (b) hierarchical Poisson-Gamma model, or (c) hierarchical Poisson-

Lognormal model.  

3.2.2.1 Poisson model 

The assumption of this model is that accidents occur following the Poisson distribution 

with the mean and the variance being equal (Hauer, 1997).  In such a case, the mean 

value for the expected number of accidents, θ, is only described by known site 

characteristics; that is, the SPF. A Poisson model is expressed as k ~ Poisson (θ) where k 
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is the number of observed accidents over an  specific period of time. And θ is the 

function of the contributing factors’ vector x and vector of unknown parameters a; θ = f 

(x, a). In other words, θ is the mean value obtained from the SPF. Equality of the mean 

and the variance is a drawback for this model since it cannot deal with the heterogeneity 

across sites, a typical trait in accident data (Mitra and Washington, 2006). The Poisson 

model was used as a base case scenario for comparison purposes with Poisson mixture 

models believed capable of overcoming the heterogeneity issue that usually shows itself 

in the form of over-dispersion in accident data. 

3.2.2.2 Hierarchical Poisson-Gamma model 

In this case, the assumption is that accidents within sites are Poisson and unobserved 

accident heterogeneity across sites is gamma distributed (Washington et al, 2003). 

Therefore, the expected accident frequency (θ) is described by the SPF and a 

multiplicative random effect, r, which varies across sites. The model is expressed as k ~ 

Poisson (θ) where k is the observed accident frequency, and θ = μr with μ as a function 

of the contributing factors’ vector x and the vector of unknown parameters a; μ = f(x, a). 

Random effect r is assumed to follow a Gamma distribution (r ~ gamma (φ, φ)) with 

mean of 1 and variance of 1/φ; where φ is the inverse dispersion parameter 

(Anastasopoulos and Mannering, 2008; Miranda-Moreno et al, 2007). In Bayesian 

hierarchical models (Congdon, 2010), φ is also assumed to have a Gamma distribution 

with shape and scale parameters a and b, respectively (φ ~ gamma (a, b)). These 

parameters are assumed to be identical and can be equal to 0.01, and φ is, therefore, 

defined as φ ~ gamma (0.01, 0.01) with a mean = 1 and a large variance = 100. This 



  23 

relatively large variance indicates a non informative hyper-prior (Miaou et al., 2003; Lord 

and Miranda-Moreno, 2008).  

Traditionally, Inverse dispersion parameter has been assumed to be fixed across sites, 

which means that the variance function of Poisson-Gamma model is only described by 

the mean of accident counts. However, recent research proved that this parameter may 

vary across sites as a function of some site characteristics, φ = f(x, a), such as segment 

length and traffic volume (Hauer, 2001; Miaou and Lord; 2003; Winkelmann, 2003; 

Mitra and Washington, 2006). In this study (for variance function), we found that AADT 

and density of horizontal curves were statistically significant in modeling (i) property 

damage only and (ii) total accidents. On the other hand, AADT and segment length were 

statistically significant in modeling injury-fatality accidents. Hence, Equations 3.2 and 

3.3 were used to account for these effects. 

ln(φi) = b0 + b1(ln(AADT)) + b2(density of horizontal curves)         [3.2] 

ln(φi) = b0 + b1(ln(AADT)) + b2(length)          [3.3] 

Alternatively, in addition to models developed based on previous approaches, we 

examined the case in which the inverse dispersion parameter varies randomly across road 

segments following a Gamma distribution; that is, φi ~ gamma (0.01, 0.01). Thus, in this 

case, both r and φ vary across sites. This approach was expected to add more flexibility to 

Bayesian hierarchical models, improving the ability of these models to account for 

heterogeneity issue, and to provide better model-fitting compare with other structures as 

explained before. In this study, and under the Poisson-Gamma model, we tested the 
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above mentioned approaches to specify the inverse dispersion parameter on three 

different datasets. 

3.2.2.3 Hierarchical Poisson-Lognormal model 

The Poisson-Lognormal model is also a good alternative in road safety, and has been 

used and discussed by various researchers (Kim et al, 2002; El-Basyouny and Sayed, 

2010). The assumption of this model is that accidents occur following a Poisson 

distribution with a mean - expected accident frequency - that is log-normally distributed; 

i.e., θ ~ lognormal (ln (μ), υ). In other words, similar to previous model, k, observed 

accident frequency, is expressed as k ~ Poisson (θ), and θ = μr with μ as a function of the 

contributing factors’ vector x and vector of unknown parameters a; μ = f(x, a). Random 

effect r, in this case, is assumed to follow the Lognormal distribution; r ~ lognormal (0, 

υ) where in hierarchical Bayesian models υ
-1

, the inverse of variance, is assumed to 

follow a Gamma distribution with parameters a and b. These parameters are assumed to 

be identical and can be equal to 0.01; therefore, υ
-1

 is defined as υ
-1

 ~ gamma (0.01, 0.01) 

with a mean = 1 and a large variance = 100 indicating a vague hyper-prior (Miaou et al., 

2003; Lord and Miranda-Moreno, 2008; El-Basyouny and Sayed, 2010).  

Under Poisson-Lognormal model, again, we adopted an approach similar to hierarchical 

Poisson-Gamma model in characterization of the variance function. As mentioned before, 

in Poisson-Lognormal model, random effect is log-normally distributed with mean = 0 

and variance = υ. This variance, in this study, was assumed to be fixed or varying across 

sites. Moreover, it might be varying based on a relationship with some site characteristics 

or randomly varying. Equations 3.4 and 3.5 represented the relationship between the 
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inverse of variance and some site characteristics, in this study. Contributing factors 

presented in these equations were found to be statistically significant in the structure of 

the inverse of variance. 

ln(τi) = b0 + b1(ln(AADT)) + b2(density of horizontal curves) ; τi = υi
-1

        [3.4]        

ln(τi) = b0 + b1(ln(AADT)) + b2(length)              ; τi = υi
-1

        [3.5] 

In addition, the inverse of variance could be assumed to vary randomly across sites 

following a Gamma distribution; that is, υi
-1

 ~ gamma (0.01, 0.01). We applied the above 

mentioned approaches for modeling the variance function structure in Poisson-

Lognormal models in order to verify the associated outcomes.   

3.2.3 Modeling Accidents by Severity 

Some researchers have worked on accident modeling by severity suggesting different 

approaches and methodologies (Saccomano et al, 1996; Ma and Kockelman, 2006; 

Milton et al, 2008). In this study, accidents were divided into three types; the first type 

represented the aggregation of all severities and the other two were based on diverse 

severities. Since the number of fatality accidents were extremely small, fatality and injury 

accidents were considered under the same severity. Therefore, three different types of 

accidents: (1) property damage only, (2) injury-fatality, and (3) total accidents were 

modeled independently, in a fully Bayesian framework. There are some critics to 

analyzing severity-frequency models separately (Milton et al, 2008); yet, we adopted this 

method since the main focus of this research was the examination of various model 

structures in terms of regression approaches and variance function specifications. Thus, 

by modeling each accident type separately, number of accidents increased by three folds, 
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and it was possible to test various model structures on three different datasets. 

Additionally, effects of various contributing factors on each accident type were 

investigated, individually. Indeed, contributing factors varied for three cases of accident 

types not only in the mean equation but also in the variance function equation.  

3.2.4 Bayesian Estimation of the Model Parameters 

Different methods are available to estimate regression model parameters such as 

maximum likelihood estimation (Bedford and Cooke, 2001) and Bayesian estimation 

(Gelman and Hill, 2007). The latter has been used in this study because of its interesting 

properties, substantial interpretive advantages (Mitra and Washington, 2006), and 

capacities to deal with uncertainty and randomness related to the contributing factors 

presented in each SPF.  Moreover, Bayesian regression can combine expert criteria with 

local observations in order to calibrate models based on specified contributing factors for 

various engineering performance models (Amador and Mrawira, 2011). Bayesian 

estimation is structured based on prior, likelihood and posterior. The prior distribution, 

which represents the initial knowledge about a parameter, can be selected based on 

previous researches, literature, expert criteria, or experience. The likelihood function is 

represented by data containing local observations, and finally, the posterior distribution 

can be obtained by mixing these two; prior and likelihood. In particular, posterior 

distribution can be estimated applying Markov Chain Monte Carlo methods using Gibbs 

sampler that samples the space of the contributing factors and takes into account the 

randomness associated to these factors.  
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3.2.4.1 Goodness-of-fit 

The deviance information criterion, DIC (Spiegelhalter et al, 2002), can be used as a 

goodness-of-fit measure for comparing models in Bayesian statistics. DIC is a 

generalization of the Akaike information criterion (ACI) based on the posterior 

distribution of the deviance statistics, and is defined as: 

DpDDIC   

Here, D is the posterior expectation of the deviance, and Dp  is the effective number of 

parameters that captures the complexity of the model (Carlin and Louis, 2009). Models 

with smaller values of DIC indicate a better fit to the dataset. Differences of more than 10 

might definitely rule out the model with the higher DIC, differences between 5 and 10 are 

substantial, but if the difference in DIC is, say, less than 5, and the models make very 

different inferences, then it could be misleading just to report the model with the lowest 

DIC (Spiegelhalter et al, 2002). In addition, DIC can only provide a measure of 

comparison between models, nested or not, that are applied to the same dataset 

(Spiegelhalter et al, 2002; Mitra and Washington, 2006).  

3.3 CASE STUDY AND DATA DESCRIPTION 

A case study of 958 kilometers of rural highway segments in New Brunswick, Canada 

was used in this study for the application of various models and associated comparisons. 

This case study consists of 720 observations including 1652 accidents during 3 years. 

Contributing factors used in this study – based on availability of the data – are reported in 

Table 3.I, and summary statistics of the dataset is shown in Table 3.II.  
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Table 3.I    Contributing factors list 

Contributing factors definition 

traffic flow (AADT) Average annual daily traffic (vehicles per day) 

length Segment length (km) 

district District indicator (1 for districts 5 and 6, 0 otherwise). 

undiv Presence of median; un-divided road indicator (1 if un-divided, 0 

otherwise). 

precipitation Average annual precipitation for 2004, 2005 and 2006, in millimeters. 

dhc Density of horizontal curves per km 

indp  Precipitation-horizontal curve interaction indicator (1 if precipitation is 

greater than 1153.4 mm and density of horizontal curves is greater than 

0.40 per kilometer, 0 otherwise). 

 

Accident data were aggregated over a period of three years, 2004 to 2006. This 

aggregation can be justified since it helps to avoid the regression to the mean 

phenomenon and confounding effects associated to exceptional events observed in a 

particular year (Lord and Persaud, 2000; Cheng and Washington 2005; El-Basyouny and 

Sayed 2009).  Three types of accidents including property damage only, injury-fatality, 

and total accidents were taken into account separately to follow objectives of the study. 

This leads to application and investigation of various models (in terms of regression 

approach and variance function structure) on three different datasets. Injury and fatality 

accidents were considered together since the number of fatal accidents was extremely 

small. In addition, observations of average annual precipitation for the study period, 2004 

to 2006, from four weather stations (Canadian National Climate Data and Information 

Archive) located across highway segments were used in order to examine the effect of 

environmental exposures on the expected accident frequency. To do so, weather stations 

were designated to road segments based on their proximity and altitude (see Milton et al, 

2008).  
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3.4 MODEL SPECIFICATION IN OPENBUGS 

Statistical software OpenBUGS (for performing Bayesian inference Using Gibbs 

Sampling) was used for stochastic MCMC simulation in order to estimate the posterior 

distributions of the models’ parameters. A normal distribution (normal (0, 0.001)) in 

OpenBUGS, with a mean value equal to zero and a large variance (non informative prior) 

was selected as the prior distribution for parameters associated to contributing factors in 

order to let the data dominate the derivation of the posteriors. Moreover, as stated before, 

we adopted vague priors for the inverse dispersion parameter and the inverse of variance 

in Poisson-Gamma and Poisson-Lognormal models, respectively. 

Two different chains were considered with different initial values; so that, it was possible 

to verify the convergence of these chains after running thousands of iterations. An initial 

portion of the iterations was used to verify the convergence and then excluded from the 

estimation of the parameters (Burn-in iterations); the rest of the iterations were 

considered to derive the posterior distributions. In particular, we ran 20000 iterations 

Table 3.II    Summary statistics of observed data (case study) 

Variables Mean S.D. Min. Max. 

total Accidents (accident/3 years) 20.6500 13.9203 0 65 

property damage only (accident/3 years) 14.4375 9.4719 0 46 

injury and fatality (accident/3 years) 6.2125 4.8878 0 20 

traffic flow (AADT) 7887.700 3337.916 4435 17550 

length 11.9735 4.7270 3.170 19.800 

district 0.7500 0.4357 0 1 

undiv 0.0750 0.2650 0 1 

precipitation 1159.5520 56.3548 1114.300 1256.200 

indp 0.3375 0.4758 0 1 

dhc 0.4069 0.1392 0.1649 0.7692 
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from which the first 5000 were discarded as burn-in and the remaining was used to 

estimate posteriors of parameters. 

The convergence was checked using trace plots, iteration history plots, and Gellman 

Rubin diagrams (Brooks and Gelman, 1998). Furthermore, the stability of the posterior’s 

mean values and the value of the Monte Carlo error that should be less than 5% of the 

related standard deviations indicated the dependability of the estimates. 

3.5 RESULTS AND DISCUSSION 

We applied three regression models (Poisson, Poisson-Gamma model and Poisson-

Lognormal) to three datasets containing: property damage only, injury-fatality, and total 

accidents. In Poisson mixture cases, three possible specifications of the variance function 

were analyzed. The results of the analysis for these estimations are summarized in Tables 

3.III to 3.VII. As reported in these tables, the main differences are in DIC values, credible 

intervals, and variances that indicate how each approach differs from the other in 

capturing variability, uncertainty, and in fitting data through goodness-of-fit measure. 

Moreover, for every model, all parameters were positive, except the constant term, which 

indicated that these contributing factors were positively correlated with accident 

frequencies. 

3.5.1 Comparisons and Inferences Based on Different Regression Approaches  

As expected, Poisson regression - because of its limitation to deal with over dispersion as 

described before - fell short on describing all three datasets used in this study. This can be 

verified by comparing DIC values for each of three datasets that indicated the greatest 

DIC value for Poisson model (Tables 3.III, 3.IV, and 3.V). Additionally, in this study,  
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Poisson-Gamma model fitted all three datasets better than Poisson-Lognormal. However, 

in some cases DIC values were very close; for instance, under injury-fatality accidents 

(where variance functions were only described by the mean) DIC differences were only 

1.9 (Tables 3.IV and 3.V).  Thus, in such cases, choice of either model could be justified.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.III    Estimation results for Poisson models 

Contributing factors Mean (S.D.) 95% C.I. 

Total accidents – dataset 1 DIC = 648.194 

constant -7.7500 (0.790) -9.3280, -6.2710 

a1: ln(AADT) 0.6091 (0.060) 0.5047, 0.7321 

a2: ln(length) 0.9414 (0.0717) 0.789, 1.0750 

a3: district 0.5103 (0.076) 0.3648, 0.6626 

a4: undiv 0.6018 (0.0752) 0.4527, 0.7474 

a5: precip
 

0.0216 (0.0047) 0.0128, 0.3051 

Property damage only – dataset 2 DIC = 561.774 

constant -6.9620 (0.655) -8.2490, -5.5830 

a1: ln(AADT) 0.7652 (0.066) 0.6297, 0.8976 

a2: ln(length) 0.9583 (0.076) 0.8103, 1.1150 

a3: district 0.4479 (0.079) 0.2918, 0.6040 

a4: undiv 0.6665 (0.087) 0.4951, 0.8342 

Injury & fatality accidents – dataset 3 DIC = 399.248 

constant -4.9590 (1.111) -6.9860, -2.5330 

a1: ln(AADT)
 

0.3983 (0.123) 0.1207, 0.6175 

a2: ln(length) 1.204 (0.144) 0.9436, 1.5040 

a3: undiv 0.8566 (0.124) 0.6063, 1.0930 

a4: indp
 

0.2631 (0.092) 0.0842, 0.4443 
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3.5.2 Comparisons and Inferences Based on Different Variance Function 

Characterizations  

One should take into account that the effect of the variance function specification on 

goodness-of-fit is more significant when contributing factors in the mean function are not 

sufficient or are not able to describe the data appropriately. When comparing models 

structured with different variance functions, variations in the 95% credible interval band 

and DIC values were more significant compare with variations in the mean values of 

parameters (Tables 3.IV and 3.V). Considering both Poisson mixture models, 95% 

credible interval band was the narrowest in models with φ, or υ varying as a function of 

site characteristics (φ, or υ = f (x, a)), followed by fixed (φ, or υ are fixed) and then 

randomly varying (φ, or υ vary randomly) structures. Even though the range of the 

credible interval affects the precision in estimation of model parameters, this does not 

necessarily imply a better fit. For example, in this study, Poisson model provided the 

smallest credible interval band with respect to other models; however, it did not produce 

the best fit (Tables 3.III, 3.IV, and 3.V). For Poisson-Gamma model, Geedipally and 

Lord (2008) investigated the effect of the varying dispersion parameter as a function of 

site characteristics on the confidence intervals of estimations and found that models with 

fixed dispersion parameter produced bigger confidence intervals.  The same behavior was 

observed in this study.  

Furthermore, under both Poisson mixture models, when modeling dataset 1 (total 

accidents), DIC variations were more than 10, for three variance function structures, 

which indicated noteworthy alterations in goodness-of-fit. Similarly, these variations 

were greater than 10, in all cases, when comparing fixed structures (φ, or υ are fixed) 
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with randomly varying structures (φ, or υ vary randomly). Moreover, considering 

Poisson-Gamma regression, DIC values varied more notably between fixed and varying φ 

cases. Instead, these differences were smaller, still greater than 5, between two varying φ 

approaches in which, firstly, the inverse dispersion parameter varied as a function of site 

characteristics, and secondly, it varied randomly. Again, as explained before, 

Spiegelhalter et al (2002) state that a DIC difference greater than 5 is substantial. 

Likewise, under Poisson-Lognormal regression, DIC differences were always greater 

than 5. Besides, these differences for Poisson-Lognormal models were greater than 10 

taking into account, first, dataset 2, property damage only models for the two cases of 

varying variances (Table 3.V). And second, dataset 3, injury-fatality accident models for 

the fixed case and varying as a function of site characteristics (Table 3.V).  

Finally, this study showed that contributing factors presented in mean functions might 

vary from those presented in variance functions. Under both Poisson mixture models, for 

total accidents and property damage only, density of horizontal curves wasn’t statistically 

significant in mean functions, while it was found to be significant in variance functions 

(Tables 3.IV and 3.VI). Additionally, not necessarily, all statistically significant 

contributing factors that represented the mean were significant in the variance function. 

For example, precipitation for total accidents was bounded away from zero in the mean 

function but it was not significant in the variance function. Similar cases were observed 

for injury-fatality accidents. Furthermore, the most influential factor in all variance 

functions was the traffic volume (AADT). Therefore, one should take into account that 

there is no single functional form or parameterization that is suitable for all datasets 
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(Geedipally et al, 2009). For more clarifications see Tables 3.VI and 3.VII where 

additional models are reported. 

3.5.3 Comparisons and Inferences Based on Different Types of Accidents   

In this study, modeling accidents by type and severity showed similar behaviors in all 

regression approaches. As summarized in Tables 3.III, 3.IV, and 3.V, the vector of 

contributing factors in the mean and the variance functions differs for almost all type of 

accidents. For instance, precipitation that was statistically significant for total accidents 

was not found to be significant for property damage only and injury-fatality accidents. An 

interesting finding in this case study was the fact that density of horizontal curves and 

precipitation was not individually significant in the mean function for injury-fatality 

accidents. However, their interaction (see Table 3.I) was found to be bounded away from 

zero for this severity (Table 3.IV). In addition, contributing factors AADT, Length, and 

the presence of median (Table 3.I) were significant for all three types of accidents.  

 

 

 

 

 

 



  35 

Table 3.IV    Estimation results for hierarchical Poisson-Gamma models 

Contributing 

factors 
φ fixed φi varying  

   φi = f (site characteristics)  φi randomly varying 

 Mean (S.D.) 95% C.I. Mean (S.D.) 95% C.I. Mean (S.D.) 95% C.I. 
 

Total Accidents (including property damage only, injury-fatality accidents) – dataset 1 
 

 DIC = 514.3 DIC = 501.4 a DIC = 490.2 

constant -7.972 (1.739) -11.43, -0.561 -7.369 (1.495) -10.28, -4.407 -7.761 (1.796) -11.29, -0.255 

a1: ln(AADT) 0.5998 (0.194) 0.218, 0.982 0.5804 (0.133) 0.317, 0.839 0.6020 (0.193) 0.222, 0.978 

a2: ln(length) 0.9175 (0.137) 0.651, 1.187 0.9464 (0.116) 0.717, 1.174 1.0260 (0.137) 0.758, 1.294 

a3: district 0.4953 (0.150) 0.197, 0.791 0.5369 (0.122) 0.298, 0.777 0.5055 (0.158) 0.194, 0.819 

a4: undiv 0.6522 (0.198) 0.271, 1.056 0.5352 (0.149) 0.238, 0.828 0.5683 (0.196) 0.188, 0.958 

a5: precip 
 

0.0249 (0.013) 0.001, 0.050 0.0207 (0.010) 0.001, 0.041 0.0207 (0.012) -0.002, 0.044
 b
   

 
 ln(φi) = b0+b1(ln(AADT))+b2(dhc)  

constant   -31.73 (10.490) -54.70, -13.31   
b1: ln(AADT)   3.5360 (1.163) 1.4950, 6.123   
b2: dhc   6.6700 (2.456) 2.0670, 11.780   
 

Property damage only – dataset 2 
  

 DIC = 481.0 DIC = 469.6 DIC = 462.8 

constant -6.848 (1.669) -10.17, -0.568 -6.345 (1.334) -8.920, -3.682 -6.755 (1.844) -10.40, -3.127 

a1: ln(AADT) 0.7599 (0.177) 0.411, 1.115 0.6977 (0.134) 0.429, 0.952 0.7272 (0.195) 0.345, 1.109 

a2: ln(length) 0.9423 (0.130) 0.685, 1.199 0.9653 (0.111) 0.746, 1.182 1.0220 (0.145) 0.737, 1.307 

a3: district 0.4158 (0.148) 0.118, 0.703 0.4593 (0.116) 0.228, 0.687 0.4651 (0.165) 0.142, 0.791 

a4: undiv 0.6818 (0.193) 0.314, 1.072 0.6270 (0.135) 0.362, 0.897 0.6036 (0.186) 0.236, 0.971 

  ln(φi) = b0+b1(ln(AADT))+b2(dhc)  
constant   -27.14 (11.020) -50.74, -7.337   
b1: ln(AADT)   2.9570 (1.229) 0.711, 5.556   
b2: dhc   8.4880 (3.132) 2.864, 15.19   
 

Injury and fatality accidents – dataset 3 
  

 DIC = 385.9 DIC = 376.1 DIC = 368.8 

constant -5.443 (1.553) -8.544, -2.420 -5.094 (1.304) -7.627, -2.514 -4.854 (1.950) -8.600, -0.964 

a1: ln(AADT)
 

0.4541 (0.169) 0.121, 0.787 0.4226 (0.148) 0.130, 0.711 0.4008 (0.216) -0.027, 0.814
 c
 

a2: ln(length) 1.1960 (0.158) 0.888, 1.513 1.1710 (0.152) 0.878, 1.474 1.180 (0.212) 0.772, 1.604 

a3: undiv 0.8801 (0.189) 0.507, 1.260 0.8453 (0.167) 0.514, 1.173 0.8200 (0.225) 0.378, 1.267 

a4: indp 
 

0.2786 (0.119) 0.044, 0.518 0.2498 (0.108) 0.036, 0.463 0.2074 (0.153) -0.091, 0.510
 d
  

 

  ln(φi) = b0+b1(ln(AADT))+b2(length)  
constant 

 
  -38.39 (17.150) -72.51, -6.269   

b1: ln(AADT)   5.6050 (2.039) 1.826, 9.664   
b2: length   -0.5005 (0.315) -1.235, -0.006   
a 
See Table 3.VI for two alternative models. 

b
 This parameter is statistically significant at 90% C.I. (0.00135, 0.0399); see Table 3.VII for an 

alternative model. 
c
 This parameter is statistically significant at 90% C.I. (0.04209, 0.7499). 

d
 This parameter is statistically significant at 80% C.I. (0.01203, 0.4046).
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Table 3.V    Estimation results for hierarchical Poisson-Lognormal models 

Contributing 

factors 
τ fixed τi varying  

   τi = f (site characteristics)  τi randomly varying 

 Mean (S.D.) 95% C.I. Mean (S.D.) 95% C.I. Mean (S.D.) 95% C.I. 
 

Total Accidents (including property damage only, injury-fatality accidents) – dataset 1 
 

 DIC = 524.1 DIC = 512.4 DIC = 492.4 

constant -8.6250(1.675) -11.91, -5.304 -8.4290 (1.515) -11.46, -5.536 -8.230 (1.922) -12.14, -4.580 

a1: ln(AADT) 0.6289 (0.185) 0.261, 0.991 0.6510 (0.132) 0.393, 0.904 0.6310 (0.210) 0.212, 1.039 

a2: ln(length) 0.9019 (0.132) 0.641, 1.158 0.9349 (0.113) 0.715, 1.155 1.0520 (0.146) 0.768, 1.342 

a3: district 0.4894 (0.148) 0.198, 0.777 0.5567 (0.124) 0.309, 0.800 0.5297 (0.172) 0.198, 0.877 

a4: undiv 0.6652 (0.198) 0.287, 1.070 0.5493 (0.155) 0.240, 0.854 0.5627 (0.217) 0.161, 0.995 

a5: precip 
 

0.0280 (0.012) 0.004, 0.053 0.0239 (0.009) 0.005, 0.044 0.0215 (0.012) -0.004,0.046 
a
 

 
  ln(τi) = b0 + b1(ln(AADT)) + b2(dhc)  

constant   -32.360 (11.340) -56.48, -12.060   
b1: ln(AADT)   3.6160 (1.241) 1.400, 6.237   
b2: dhc   6.4780 (3.027) 1.098, 13.080   
 

Property damage only – dataset 2 
  

 DIC = 487.6 DIC = 480.0 DIC = 464.9 

constant -7.241 (1.641) -10.53, -4.031 -7.0100 (1.284) -9.531, -4.490 -7.082 (2.044) -11.17, -3.174 

a1: ln(AADT) 0.7971 (0.173) 0.458, 1.145 0.7649 (0.128) 0.512, 1.015 0.7501 (0.213) 0.341, 1.175 

a2: ln(length) 0.9447 (0.129) 0.691, 1.197 0.9720 (0.108) 0.756, 1.185 1.0530 (0.156) 0.748, 1.363 

a3: district 0.3973 (0.147) 0.106, 0.688 0.4671 (0.114) 0.241, 0.686 0.4729 (0.184) 0.125, 0.842 

a4: undiv 0.7255 (0.187) 0.358, 1.101 0.6570 (0.130) 0.401, 0.915 0.6156 (0.195) 0.212, 0.997 

  ln(τi) = b0 + b1(ln(AADT)) + b2(dhc)   
constant   -27.730 (12.660) -53.86, -4.142   
b1: ln(AADT)   2.9540 (1.453) 0.138, 5.875   
b2: dhc   10.7400 (5.741) 2.966, 28.530   
 

Injury and fatality accidents – dataset 3 
  

 DIC = 387.8 DIC = 377.3 DIC = 371.6 

constant -5.675 (1.542) -8.799, -2.743 -5.4040 (1.261) -7.866, -2.934 -5.2880(2.080) -9.337, -1.193 

a1: ln(AADT)
 

0.4759 (0.168) 0.155, 0.818 0.4643 (0.143) 0.184, 0.742 0.4279 (0.230) -0.029, 0.872 
b
 

a2: ln(length) 1.1950 (0.157) 0.889, 1.508 1.1370 (0.149) 0.845,  1.430 1.2330 (0.234) 0.781, 1.702 

a3: undiv 0.9002 (0.187) 0.541, 1.279 0.8818 (0.152) 0.579, 1.177 0.8382 (0.248) 0.345, 1.319 

a4: indp 
 

0.2702 (0.119) 0.035, 0.507 0.2538 (0.106) 0.046, 0.463 0.2073 (0.165) -0.122, 0.528 
c
 

  ln(τi) = b0 + b1(ln(AADT)) + b2(length)   
constant 

 
  -37.070 (21.010) -80.62, 1.423 

d   
b1: ln(AADT)   6.5550 (2.569) 1.8720, 11.930   
b2: length   -1.0340 (0.544) -2.323, -0.1479   
a
 This parameter is statistically significant at 90% C.I. (0.0007, 0.0418). 

b
 This parameter is statistically significant at 90% C.I. (0.0469, 0.8034).  

c
 This parameter is statistically significant at 50% C.I. (0.0985, 0.3181). 

d
 This parameter is statistically significant at 90% C.I. (-72.110, -4.155). 
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Table 3.VI Estimation results for alternative Poisson-Gamma models (Total Accidents); 

density of horizontal curves in the mean function 

Contributing 

factors 

φi  fixed  φi = f (site characteristics) 

Mean (S.D.) 95% C.I.  Mean (S.D.) 95% C.I. 

DIC = 514.6  DIC = 501.8 

constant -7.7780 (1.741) -11.230, -4.3640  -7.4990 (1.490) -10.4300, -4.5770 

a1: ln(AADT) 0.5701 (0.195) 0.1886, 0.9540  0.5622 (0.134) 0.2930, 0.8230 

a2: ln(length) 0.9214 (0.135) 0.6588, 1.1890  0.9602 (0.115) 0.7340, 1.1870 

a3: district 0.4637 (0.154) 0.1563, 0.7610  0.5046 (0.128) 0.2570, 0.7610 

a4: undiv 0.5935 (0.206) 0.1979, 1.0130  0.4682 (0.163) 0.1410, 0.7880 

a5: precip  0.02404 (0.012) -0.0003, 0.0491  0.0216 (0.010) 0.0020, 0.0420 

a6: dhc 0.4553 (0.405) -0.3288, 1.249 
a  0.3826 (0.345) -0.2940, 1.0620 

b 

     
 ln(φi) =b0+ b1(ln(AADT))+b2(dhc) c 

constant 
    

 -32.810 (10.41) -56.090,-14.3100 

b1: ln(AADT) 
    

 3.6800 (1.154) 1.6300,6.2450 

b2: dhc 
    

 6.1980 (2.679) 1.4470,11.8100 

a
 density of horizontal curves is not significant in mean function. This parameter is significant at 

50% C.I. (0.1802, 0.7624). 
b 
density of horizontal curves is not significant in mean function. This parameter is significant at 

50% C.I. (0.1529, 0.6118). 
c 
density of horizontal curves is significant in the variance function.  
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Table 3.VII  Estimation results for alternative Poisson-Gamma models (Total Accidents) 

Contributing 

factors 

φi randomly varying φi = f (site characteristics) 

Mean (S.D.) 95% C.I. Mean (S.D.) 95% C.I. Mean (S.D.) 95% C.I. 

DIC = 490.9 a DIC = 509.2 b DIC = 508.3 b 

constant -6.723 (1.661) -10.00, -3.50 -7.616 (1.556) -10.650, -4.515 -7.589 (1.583) -10.7, -4.40 

a1: ln(AADT) 0.739 (0.175) 0.400,1.090 0.568 (0.142) 0.291, 0.845 0.564 (0.143) 0.280, 0.840 

a2: ln(length) 1.109 (0.129) 0.860,1.360 0.920 (0.125) 0.680, 1.169 0.915 (0.125) 0.670, 1.160 

a3: district 0.424 (0.146) 0.140,0.720 0.511 (0.132) 0.255, 0.769 0.514 (0.132) 0.250, 0.770 

a4: undiv 0.680 (0.191) 0.330,1.080 0.584 (0.219) 0.167, 1.032 0.569 (0.210) 0.170, 0.990 

a5: precip 
 

  0.024 (0.011) 0.003, 0.046 0.024 (0.011) 0.003,0.050 

   
ln(φi) 

=b0+b1(ln(AADT))+b2(length) 
ln(φi) = b0+b1ln(AADT) 

constant   -22.28 (8.639) -40.500, -6.341 -23.29 (8.262) -40.300, -8.100 

b1: ln(AADT)   2.816 (0.979) 1.032, 4.887 2.855 (0.941) 1.120, 4.780 

b2: length   -0.049 (0.061) -0.17, 0.065 
c
   

a
 Similar DIC respect to model presented in Table 3.IV where precipitation was among 

contributing factors (not being statistically significant under φi randomly varying). And smaller 
DIC respect to model presented in Table 3.IV under φ fixed specification. 
b
 Higher DIC respect to model presented in Table IV where ln(φi) = b0+ b1(ln(AADT)) + b2(dhc). 

c
 This parameter is not statistically significant at 95% credible Interval.  
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3.6 SUMMARY AND CONCLUSIONS  

This paper had five main objectives: (1) application of Poisson and hierarchical Poisson 

mixture models, in a Bayesian framework, to examine probable differences in parameter 

estimation and goodness-of-fit, (2) different characterization of variance functions under 

hierarchical Poisson mixture models to investigate on associated outcomes and to 

compare results related to parameter estimation and goodness-of-fit, (3) to investigate a 

randomly varying approach in which the inverse dispersion parameter and the inverse of 

variance (in hierarchical Poisson-Gamma and hierarchical Poisson-Lognormal models, 

respectively) were allowed to vary randomly across sites, (4) identification of statistical 

significance of various site characteristics in the variance function specifications for 

hierarchical Poisson mixture models, and (5) specification of models by severity, and 

accident type, to examine the statistical significance of various contributing factors in 

each case. To do so, for Poisson-Gamma models, the inverse dispersion parameter, φ, 

was incorporated in the models as (a) fixed, (b) varying as a function of site 

characteristics, and (c) randomly varying. Likewise, for Poisson-Lognormal approach the 

same procedure was adopted. However, in the latter, instead of the inverse dispersion 

parameter, the inverse of variance, υ
-1

, was characterized as fixed, varying as a function 

of site characteristics, and randomly varying. 

To address such objectives we used three datasets. Over 35 models were developed from 

which 26 are presented in Tables 3.III to 3.VII. In this study, hierarchical Poisson-

Gamma models provided the best fit, having the smallest DIC values, for all cases, 

followed by hierarchical Poisson-Lognormal and then Poisson models. Considering 

variance function characterization, in terms of goodness-of-fit, randomly varying 
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structure under both Poisson mixture models provided the smallest DIC values; hence, 

the best fit. DIC differences were greater than 5 in all cases and greater than 10 in some 

others (Tables 3.IV and 3.V). Nevertheless, some contributing factors which were 

statistically significant under the fixed dispersion parameter models were not found to be 

significant under randomly varying models; for instance, precipitation in modeling total 

accidents (Table 3.IV). Furthermore, we observed that goodness-of-fit increased 

significantly when the inverse dispersion parameter in Poisson-Gamma and the inverse of 

variance in Poisson-Lognormal were defined as a function of site characteristics as 

compare to those models in which these parameters were fixed. A similar situation was 

still more obvious when comparing fixed with randomly varying specifications. In fact, in 

this study for some cases, we observed that by specifying a randomly varying dispersion 

parameter still the best fit was obtained even if fewer contributing factors were presented 

in the SPF. For instance, when modeling total accidents under Poisson-Gamma models 

(see Tables 3.IV and 3.VII). Therefore, when facing lack of data regarding some 

contributing factors, it may be still possible to have an adequate model-fitting by 

adopting this structure that can account for heterogeneity across sites. Consequently, by 

applying a randomly varying structure practitioners would still be able to obtain an SPF 

that reflects data accurately even though a few contributing factors are available. 

Obviously, goodness-of-fit and level of significance of contributing factors in an SPF 

should be taken into consideration together to choose a model over others. Another 

justification in using randomly varying framework may be the fact that identifying 

contributing factors in an SPF or variance function and proving their true presence in the 

model is somehow time consuming, and in some situations not realistic because of the 
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discrepancies in datasets. So, by adopting this approach a simpler mean function could be 

developed without penalizing goodness-of-fit of the model.  

An additional aspect of this research was to identify contributing factors that might affect 

the variance function. In fact, in this study, traffic volume, density of horizontal curves, 

and segment length were presented in variance functions, being bounded away from zero 

with AADT as the most important factor. Moreover, the density of horizontal curves that 

was not statistically significant in mean functions was significant in variance functions 

when modeling property damage only and total accidents. Additionally, we observed that 

each type of accidents was described by a different vector of contributing factors. For 

instance, interaction between precipitation and density of horizontal curves was bounded 

away from zero for injury-fatality accidents while it was not statistically significant for 

other accident types. Finally, adopting other case studies - road segments and 

intersections - is recommended in order to verify methodologies discussed in this 

research study.  
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CHAPTER 4 

Sensitivity of Safety Performance Functions to Different Prior 

Specifications in Poisson-Gamma Models Applying Bayesian 

Hierarchical Methods 

 

This chapter aims to explore Bayesian accident data analysis from a practical perspective; 

that is, the choice of priors for model parameters.  

Abstract 

This paper aims to explore Bayesian accident data analysis from a practical perspective; 

that is, the choice of priors for model parameters. The use of Bayesian statistics in road 

safety has recently become popular by researchers and practitioners who mainly apply 

Poisson-Gamma models using non-informative priors to calibrate safety performance 

functions. Bayesian modeling requires the specification of priors for model parameters. 

In this paper, we, firstly, determined a series of informative, semi-informative, and non-

informative priors for model parameters. Then, we examined the effect of prior choices 

on the accuracy of outcomes in terms of parameter estimates, hotspot identification, and 

goodness-of-fit. A case study consisting of 958 km of rural highway segments in New 

Brunswick has been used to obtain the true estimates for model parameters. From this 

case study, three different sample sizes having two different mean values, high and 

relatively low mean, have been examined in the analyses. For each case, in a simulation 
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framework, 100 datasets have been replicated, and consequently, calibrated under three 

different prior specifications.  

We observed that introducing an informative prior for the inverse dispersion parameter 

dramatically improved estimates, especially, when modeling datasets characterized by 

low sample mean and small sample size. We also observed that regression parameters 

were less sensitive to prior choice compare with the inverse dispersion parameter. 

However, as the sample size or the sample mean decreases, an informative prior 

specification provides more precise estimates also for regression parameters. Finally, 

prior specification didn’t have any significant impact on hotspot identification and 

goodness-of-fit.        

4.1 INTRODUCTION 

Researchers in transportation engineering have recently employed Bayesian statistics, 

particularly hierarchical models, in road safety to develop safety performance functions 

(SPF) and to identify hotspots (hazardous sites) that, eventually, would be subject to 

safety treatments (Miaou and Song, 2005; Miranda-Moreno at al., 2007; Mitra and 

Washington, 2006; El-Basyouny and Sayed, 2009). Bayesian inference (Gelman et al, 

1995) consists of three main elements (i) prior, (ii) likelihood, and (iii) posterior, in 

which the posterior distribution is drawn from the prior and the likelihood. The prior 

distribution may provide some sort of information about an unknown parameter based on 

previous studies, expert criteria or experiences, and the likelihood is represented by the 

data itself. Bayesian inference requires significant amount of computation that is not, any 

more, of a major concern since the computational capacities of personal computers have 
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increased dramatically in recent years. This computation, which cannot be done 

analytically, takes advantage of Markov Chain Monte Carlo (MCMC) methods (Gelman 

et al, 1995; Gamerman and Lopes, 2006; Carlin and Louis, 2009) to obtain the posterior 

distribution from the prior and likelihood distributions. The use of MCMC methods for 

estimating hierarchical models, often involve complex data structures, sometimes 

described as revolutionary development, and has arguably facilitated the fitting of such 

models (Congdon, 2010). 

Bayesian estimation has some advantages over traditional methods (e.g., maximum 

likelihood estimation), such as interesting interpretive capacities in providing the 

probability of the null hypothesis being true using the credible interval concept (Mitra 

and Washington, 2006; Carlin and Louis, 2009). And when the sample size is relatively 

small, Bayesian inference is still able to provide reliable estimates for the model 

parameters (Mitra and Washington, 2006; Gelman and Hill, 2007; Amador and Mrawira, 

2011). In addition, as explained by Congdon (2010), using the Bayesian estimation is 

relevant when facing complex data, involving hierarchical nesting of subjects, spatially 

configured data, and repeated measures on subjects. Finally, the Bayesian approach can 

easily accommodate hierarchical models.   

The Bayesian estimation requires specification of priors in order to be able to 

approximate posteriors of the model parameters. So that where this prior knowledge 

exists, in e.g. based on previous studies or expert opinion, Bayesian inference of the 

posterior distributions can take advantage of this known knowledge to estimate unknown 

parameters. Adopting this methodology, usually, leads to more reliable inferences on 

posteriors especially in limited datasets. Incorporating the prior knowledge in the model 
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varies in terms of the precision and the level of knowledge available about that prior. In 

general, priors that introduce very small amounts of information about a parameter are 

known as non-informative (vague) priors, and those introducing considerable amount of 

information are known as informative priors. Several studies in different fields like 

Reliability Engineering and Epidemiology have been conducted in order to verify the 

effect of informative priors on the Bayesian analysis outcomes (Lambert et al. 2005; Van 

Dongen, 2006). However, in the road safety community this type of research has been 

rare, and researchers have mainly focused on the development of statistical models, and 

identification of hotspots and contributing factors that affect accident frequencies.   

The most common regression approach used in road safety is the Poisson-Gamma 

(Negative Binomial) model (Miranda-Moreno et al., 2005) that can be defined in a 

hierarchical fashion under the Bayesian context. The structure of the mean in Poisson-

Gamma models contains a multiplicative random effect that follows a Gamma 

distribution by identical shape and scale parameters, called the inverse dispersion 

parameter. Since such a parameter may have a great impact on the model estimates, its 

characterization has attracted the attention of some researchers (Hauer, 2001; Miaou and 

Lord, 2003; Geedipally et al, 2009). Adopting the MLE approach, Lord (2006) has 

investigated the effect of low sample mean and small sample size on the estimation of the 

fixed dispersion parameter in Poisson-Gamma models. The author concluded that for the 

dispersion parameter, the probability of an unreliable estimate increases significantly as 

sample mean and sample size decrease. Considering the Bayesian approach and relating 

to the prior choice, Lord and Miranda-Moreno (2008) stated that a dataset characterized 

by a low sample mean combined with a small sample size can seriously affect the 



  46 

estimation of the posterior mean of the inverse dispersion parameter when a non-

informative prior specification is used for the gamma hyper-parameter. And that by 

choosing an appropriate prior for the inverse dispersion parameter the accuracy of 

estimates will increase significantly. Additionally, Miranda-Moreno et al. (2008) have 

examined the incorporation of an informative prior for the inverse dispersion parameter, 

in the analysis, considering different sample sizes (and years of data) and found that this 

type of priors provided more reliable estimates for the posterior mean of the inverse 

dispersion parameter.   

The objective of this paper is to study the influence of prior specifications, in hierarchical 

Poisson-Gamma models, on: (1) the estimation of the model parameters (the inverse 

dispersion parameter and regression parameters), (2) credible intervals of estimates, (3) 

hotspot identification, and (4) goodness-of-fit. Basically, a series of informative and 

semi-informative priors have been determined from previous studies, respectively, for the 

inverse dispersion parameter and regression parameters. Consequently, results have been 

compared in terms of parameter estimates, hotspot identification, and goodness-of-fit. For 

parameter estimation comparisons, the mean value and 95% credible intervals have been 

calculated. In addition, Spearman’s correlation coefficient has been used to compare 

ranking of sites for hotspot identification. And finally, DIC values were computed as a 

Bayesian measure of goodness-of-fit for model-fitting comparisons.  

For these objectives, a simulation framework has been employed to replicate 100 datasets 

for various samples produced based on a case study which consists of accident data for 

958 km of rural highway segments in New Brunswick, Canada – from 2004 to 2006. 

These replicated data were then used to investigate on the outcomes of various models 
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under three prior specification structures taking into account different sample sizes and 

sample means. All estimations were obtained by applying the Bayesian approach using 

MCMC methods. Finally, statistical software (i) Stata, (ii) OpenBUGS, (iii) 

R2OpenBUGS, and (iv) R were used for the computational purposes in this study.  

4.2 METHODOLOGY 

4.2.1 Hierarchical Poisson-Gamma Model 

Poisson-Gamma models are very popular in road safety. This is because of their 

interesting property in dealing with heterogeneity across sites that make them adequate 

for accident data. The Poisson-Gamma model is mathematically described as follows: 

Yi|θi ~ Poisson (θi),  

θi = μiri , 

μi = f(xi, a), 

ri ~ Gamma(φ,φ). 

Where, θi is the expected accident frequency on site i. μi is function of the contributing 

factors’ vector x and the vector of unknown parameters a for site i; in other words, μi  is 

the mean obtained from the SPF. ri is a multiplicative random effect that is usually 

assumed to be gamma distributed with a mean of 1 and a variance of 1/φ; where φ is the 

inverse dispersion parameter (Anastasopoulos and Mannering, 2008). When adopting a 

hierarchical model the inverse dispersion parameter, φ, is in turn assumed to follow a 

hyper-prior, usually, the Gamma distribution. That is φ ~ gamma (a, b) where a and b are 

shape and scale parameters, respectively (Lord and Miranda-Moreno, 2008). 
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Instead of simple Poisson regression, Poisson-Gamma models can overcome the over 

dispersion issue, which is common in many accident datasets. In fact, by the presence of 

the multiplicative random effect in the mean structure, Poisson-Gamma models can 

account for heterogeneity - unobserved factors that may vary across sites 

(Anastasopoulos and Mannering, 2008).  Thus, the expected accident frequency is then 

described by the SPF and a multiplicative random effect
 
r. 

4.2.2 Simulation Framework (Replication of Datasets)  

Based on the case study, which basically represents the entire population of observations, 

two different types of accidents, Injury-fatality and total accidents, with different mean 

values have been used in the analysis. So that it was possible to verify differences 

between datasets characterized with a high and a relatively low sample means. For each 

of the high and the relatively low mean data, three different sample sizes consisting of 20, 

50, and 80 observations were replicated 100 times under the Poisson-Gamma structure. 

Additionally, three different approaches in the specification of the prior distribution for 

model parameters have been examined. These specifications were (1) non-informative 

priors for all parameters, (2) an informative prior only for the inverse dispersion 

parameter, and (3) an informative prior for the inverse dispersion parameter and semi-

informative priors for regression parameters. Consequently, for each replicated dataset all 

model parameters (regression parameters and the inverse dispersion parameter) have been 

estimated, in a fully Bayesian framework, under the hierarchical Poisson-Gamma 

approach considering different prior specifications. The results have then been compared 

with the true estimates; the parameter estimation results obtained from the analysis of the 

case study. In fact, the case study has been calibrated using the MLE to obtain the true 
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(real) estimates using the standard Negative Binomial (Poisson-Gamma) model. Here, the 

aim was to determine, for each case of the sample size and the sample mean, the prior 

specification approach that provides better estimates. And basically, a better estimate is 

the one that is closer to the true estimates. In addition to monitoring parameter estimation 

accuracies, we obtained 95% credible intervals for parameter estimates so that it was 

possible to compare credible intervals for three prior specification approaches.  

Furthermore, models have been compared in terms of hotspot identification. For this 

comparison purpose a ranking criterion based on the Posterior distribution of θ, or 

expected accident frequency, was adopted to rank sites (Rao, 2003). To do so, first, we 

obtained true ranks for each replicated data after generation of that data. Second, for each 

replicated data, true ranks have been compared - using the Spearman’s correlation 

coefficient (Ruppert, 2010) - with those ranks obtained from Bayesian inference 

considering various prior specifications. Finally, goodness-of-fit has been the third 

comparison measure in this study to investigate the impact of the prior specification on 

the associated outcomes. To summarize, the following steps have been followed in this 

study: 

1. Estimation of parameters for the case study, using the MLE, to obtain the true 

estimates; 

2. Application of the true estimates in the SPF to obtain μi; 

3. Generation of the multiplicative random effect ri based on the true estimates of φ, 

obtained from step 1, using the Gamma distribution; ri ~ Gamma(φ,φ); 

4. Calculation of θi
true

 (the true expected accident frequency) based on μi and ri 

obtained from previous steps; that is θi
true

 = μiri ; 
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5. Preparation of the true rank of sites based on θi
true

 calculated in the previous step; 

6. Generation of synthetic accidents based on the mean of real observed accidents 

for each case of high and relatively low sample means; i.e., Yi|θi ~ Poisson (θi); 

7. Replication of datasets using accidents from the previous step together with site 

attributes (characteristics) obtained from the case study;  

8. Application of Bayesian inference considering three prior specifications to obtain 

posteriors of parameters (regression parameters, φ, and θi) and goodness-of-fit; 

9. Evaluation of the outcomes of the previous step with respect to the true estimates 

and the true rank of sites, and comparison of credible intervals and the model-

fitting. 

4.2.3 Safety Performance Function (SPF) 

An SPF is a mathematical equation that represents the relationship between accident 

frequencies and a series of site characteristics such as traffic flow, segment length, and 

environmental exposure. The SPF adopted in this study is presented in the Equation 4.1. 

This SPF is a basic function used in the literature to model the safety of roadway 

segments based on the traffic flow (AADT) and the segment length (Highway Safety 

Manual, 2010).  

               
              [4.1] 

where, 

 μi = expected accident frequency for road segment i; 

a0 = constant; 

a1 = parameter associated to traffic flow; 
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Li = segment length (km) for road segment i; 

AADTi = annual average daily traffic (vehicles per day) for road segment i. 

4.2.4 Prior Specifications 

Three prior specifications used in this study are described as follows. 

a) Non-informative priors: The most used approach in the road safety literature when 

applying Bayesian statistics specifies priors as non-informative. This way, the importance 

of the likelihood becomes more significant. In other words, the data itself will lead to the 

parameter estimations and the contribution of the prior distribution is then minimized. In 

the road safety literature, for regression parameters, such as those representing the 

constant and the traffic flow, a normal distribution with a mean of 0 and a large variance 

of 1000, a ~ normal (0, 1000), has been commonly used (Mitra and Washington, 2006). 

Moreover, to specify the prior for the inverse dispersion parameter in the hierarchical 

Poisson-Gamma model a Gamma distribution with the shape and the scale parameters 

identical and equal to 0.001, φ ~ Gamma(0.001, 0.001), can be assumed (El-Basyouny 

and Sayed, 2009). Therefore, this specified prior for φ has a mean equal to 1 and a large 

variance equal to 1000. In fact, in the Gamma distribution the mean and the variance are 

calculated as: 

φ ~ Gamma(a, b) where a is the shape parameter and b is the scale parameter. 

Mean (φ) = a/b 

variance (φ) = a/b
2 

b) Informative prior only for the inverse dispersion parameter: As explained above, 

a non-informative prior is usually used for the inverse dispersion parameter; however, 
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adopting an informative prior is also possible. In this study, we determined such an 

informative prior based on previous studies. To do so, we explored the road safety 

literature to obtain some values that have been reported for the inverse dispersion 

parameter, for roadway segments, by various researches. These values are tabulated in 

Table 4.I.   

Table 4.I Reported values for the inverse dispersion parameter (φ) 

 Inverse dispersion parameter (φ) 

Previous studies Total accidents Injury-Fatality accidents 

Persaud et al, 2004 2.703, 1.695 3.030 

Caliendo et al, 2007 4.227, 3.623 6.339, 2.625 

Lord et al, 2008  2.638 3.244 

 

 

From these studies the inverse dispersion parameter has a mean and a variance equal to 

2.905 and 0.863, respectively, for total accidents. And it has a mean and variance equal to 

3.8095 and 2.9096, respectively, for injury-fatality accidents. From these values the scale 

and the shape parameters for the Gamma distribution have been calculated; thus, 

informative priors for φ adopted in this study were: 

Total accidents:  φ ~ Gamma (9.7787, 3.3660) 

Injury-fatality accidents: φ ~ Gamma (4.9877, 1.3092) 

c) Informative prior for the inverse dispersion parameter & semi-informative priors 

for regression parameters: In this case, an informative prior for the inverse dispersion 

parameter has been defined as indicated in the previous approach. Additionally, a 



  53 

methodology similar to that adopted for the inverse dispersion parameter was used to 

characterize priors for regression parameters. Based on previous studies parameter 

estimates for the constant and the traffic flow are reported in Table 4.II. For total 

accidents, the mean and the variance for the constant term are -6.186 and 11.264, 

respectively. Moreover, the mean and the variance for traffic flow are 0.788 and 0.098, 

respectively. For injury-fatality accidents, the constant has a mean and a variance equal to 

-6.495 and 12.613, respectively. And, the traffic flow has a mean and a variance equal to 

0.778 and 0.089, correspondingly. In order to specify an informative prior for these 

parameters we assumed a normal distribution as stated in the case of non-informative 

priors. Under this approach, we adopted an informative prior with a large variance (say, 

semi-informative prior) because of the fact that informative priors with small to medium 

variances were penalizing the estimation results. Hence, for regression parameters mean 

values have been specified in the analysis as calculated above with a large variance of 

1000. To summarize, following priors have been used for regression parameters. 

For Total accidents:   

 Constant; a0 ~ Normal (-6.186, 1000) 

 Traffic flow; a1 ~ Normal (0.788, 1000) 

For Injury-Fatality accidents: 

 Constant; a0 ~ Normal (-6.495, 1000) 

 Traffic flow; a1 ~ Normal (0.778, 1000) 

4.2.5 Goodness-of-fit 

In this study, models obtained from different types of prior specifications have been also 

monitored in terms of goodness-of-fit. So that it was possible to verify the effect of the 
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prior specification on the model-fitting. For this purpose, the deviance information 

criterion, DIC (Spiegelhalter et al., 2002), were computed to compare model-fitting. DIC 

is a Bayesian goodness-of-fit measure, and generally, a smaller DIC value indicates a 

better fit. However, one should take into consideration that as stated by Spiegelhalter et 

al. (2002), differences of more than 10 might definitely rule out the model with the higher 

DIC, differences between 5 and 10 are substantial, but if the difference in DIC is, say, 

less than 5, and the models make very different inferences, then it could be misleading 

just to report the model with the lowest DIC.  

Table 4.II Reported values for constant and traffic flow (previous studies) 

 Constant 

Previous studies Total accidents Injury-Fatality 

Persaud et al, 2004 -7.432, -6.541, -6.973, -5.817 -8.770 

Caliendo et al, 2007 0.539, 0.035 -1.353, -1.330 

Lord et al, 2008 -8.108, -8.459 -7.960, -8.139 

Geedipally et al, 2008 -6.750, -9.240, -2.990 - 

HSM, 2010 -9.025, -9.653 -8.505, -9.410 

 
Traffic flow 

Previous studies Total accidents Injury-Fatality 

Persaud et al, 2004 0.933, 0.844, 0.803, 0.811 0.945 

Caliendo et al, 2007 0.221, 0.323 0.419, 0.391 

Lord et al, 2008 1.028 0.858 

Geedipally et al, 2008 0.72, 1.12, 0.43 - 

HSM, 2010 1.049, 1.176 0.958, 1.094 
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4.2.6 Computations 

In this study the replication of 100 datasets for each case of the sample mean and the 

sample size, obtaining site ranks, and the calculation of Spearman’s correlation 

coefficients have been processed in the statistical software R (R Development Core 

Team, 2004). Then OpenBUGS (for performing Bayesian inference Using Gibbs 

Sampling) were used for running MCMC simulations to estimate model parameters 

(Spiegelhalter et al., 2003). In fact, since the number of datasets to be analyzed was large, 

R2OpenBUGS (Sturtz et al., 2005) was used to connect R and OpenBUGS together for 

the convenience of the computational purpose. In OpenBUGS two different chains were 

defined for producing samples. The total number of iterations was 7000 from which 

initial 3000 iterations were discarded as burn-in; therefore, 4000 iterations were used to 

compute posteriors. Finally, for analyzing the case study in order to obtain the true 

estimates, the statistical software Stata (StataCorp LP) has been utilized for the MLE.  

4.3 CASE STUDY AND DATA DESCRIPTION 

The case study employed in this paper consists of 958 kilometers of rural highway 

segments in New Brunswick, Canada. Two types of accidents considered here were 

injury-fatality and total accidents, which basically represent two different sample means. 

For total and injury fatal accidents, the sample means are 20.65 (acc./3 years) and 4.36 

(acc./2 years), respectively. Total accident data covers a period of three years, 2004 to 

2006. And Injury-fatality accident data represents a two year period, 2004 and 2005. 

Table 4.III shows the summary statistics of the data. The case study has been used to 

create different samples and to represent the true parameter estimates. Accordingly, three 
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samples in terms of size have been chosen from the case study; each sample included 

randomly selected observations. 

Table 4.III Summary statistics of observed data 

Variables Mean Standard deviation Minimum Maximum 

Total accidents 20.650 13.920 0 65 

Injury-Fatality accidents 4.360 3.566 0 14 

Traffic flow (AADT) 7887.700 3337.916 4435 17550 

Length 11.974 4.727 3.170 19.800 

 

4.4 RESULTS AND DISCUSSIONS 

4.4.1 Parameter Estimates and Associated Credible Intervals 

Estimation results in terms of the mean and the 95% credible interval are reported in 

Tables 4.IV and 4.V for total accidents and injury-fatality accidents, respectively. 

Basically, these values represent the mean of 100 replications. In addition, true estimates, 

obtained by the MLE for observed data, are tabulated in above mentioned tables. The 

comparison between true estimates and different prior characterization estimates shows 

that a non-informative prior on the inverse dispersion parameter (φ) provides more 

inaccurate estimates for this parameter, especially, when analyzing data characterized by 

a low sample mean, a small sample size, or a combination of these two (in e.g., injury-

fatality accidents with a sample size of 20). As sample size decreases, the difference in φ 

estimates increases (Table 4.IV and 4.V). These differences are still more significant 

under the relatively low sample mean data (Table 4.V). For instance, while φ estimate for 
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the non-informative prior specification in a data with a high sample mean (total 

accidents) and 20 observations varied from 4.032 to 6.312, this estimate varied from 

4.608 to 84.307 in a data with a relatively low sample mean (injury-fatality accidents). 

Therefore, in such cases adopting an informative prior approach for φ is fundamental in 

order to obtain accurate estimates. This study also shows that there is a slight variation in 

φ estimates for two approaches in which informative priors are adopted (Tables 4.IV and 

4.V). Furthermore, one can observe that credible intervals of φ in the non-informative 

approach are greater than those in two informative approaches. The latter, indicates that φ 

estimations using an informative prior can give more precise estimates by providing a 

smaller boundary around the mean. With regard to credible intervals for φ, as it is usually 

expected, the confidence interval of true estimate is smaller than the credible interval 

bound.  One should take into account that confidence and credible intervals have different 

meanings (Carlin and Louis, 2009). That is, certain mean for a population with an  

specific percentage (like 95%) credible interval directly indicates the probability for that 

population being in that credible interval boundary while confidence interval does not 

imply the same implication. 

As indicated in Tables 4.IV and 4.V, differences in regression parameters estimates 

(constant and traffic flow) are not as sensitive as φ estimates to three prior specification 

structures. However, differences between true estimates and different prior 

characterization estimates are more obvious as sample size and sample mean decrease. 

Indeed, for both sample mean cases, total accidents and injury-fatality accidents, with a 

small sample size (20 observations) the non-informative prior approach provides the least 

accurate estimates (Tables 4.IV and 4.V).  In these cases, the approach in which φ has an 
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informative prior and regression parameters have a semi-informative prior provides the 

best estimates in terms of accuracy - similarity to true estimates.  Therefore, the use of 

such an approach should be taken into account, particularly, in modeling datasets with a 

low sample mean and a small sample size. For credible intervals of regression parameter 

estimates, the non-informative prior approach had the smallest interval followed by that 

with only φ informative, for all cases. This is in contrast with φ credible intervals for 

which the non-informative prior approach provided the largest intervals. 

Table 4.IV Estimation results for high sample mean data, Total accidents (T = 3 years), 

sample mean = 20.65 (acc./T) 

 ln(a0) Traffic flow 
Inverse dispersion 

parameter (φ) 

True Value (MLE) -3.014
a
 (-6.101, 0.074)

b 0.397 (0.0512, 0.743) 4.032 (2.703, 6.024) 

Sample  

Size 
 Inf.1

c Inf.2
d Ninf.

e Inf.1 Inf.2 Ninf. Inf.1 Inf.2 Ninf. 

20 mean -2.746 -2.685 -2.633 0.367 0.360 0.353 3.555 3.556 6.213 

2.5%
f 

-9.485 -9.374 -8.606 -0.353 -0.360 -0.292 1.775 1.776 2.154 

97.5%
g 

3.710 3.767 3.152 1.123 1.110 1.022 6.127 6.128 16.230 

50 mean -2.916 -2.875 -2.863 0.385 0.381 0.379 3.827 3.827 4.493 

2.5% -7.083 -7.056 -6.849 -0.069 -0.073 -0.054 2.395 2.394 2.620 

97.5% 1.163 1.200 1.030 0.852 0.849 0.825 5.716 5.719 7.201 

80 mean -3.108 -3.095 -3.069 0.408 0.406 0.403 3.930 3.932 4.339 

2.5% -6.290 -6.238 -6.117 0.061 0.061 0.069 2.688 2.689 2.861 

97.5% -0.011 -0.011 -0.087 0.765 0.759 0.746 5.502 5.508 6.304 

a
 Mean value 

b 
95% Confidence Interval

 

c Inf.1: φ has an informative prior, and regression parameters have semi-informative priors 
d Inf.2: only φ has an informative prior 
e Ninf.: all parameters have a non-informative prior 
f
 Lower  limit, 2.5 percentile, for the 95% Credible Interval 

g
 Upper limit, 97.5 percentile, for the 95% Credible Interval 
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4.4.2 Hotspot Identification Comparisons 

Table 4.VI shows calculated Spearman’s correlation coefficients between the true ranks 

and those ranks based on three different approaches adopted in the specification of priors 

for model parameters. From this table, it can be clearly inferred that the effect of various 

prior characterizations in the identification of hazardous sites was not significant. 

Table 4.V Estimation results for relatively low sample mean data, Injury-Fatality 

accidents (T = 2 years), sample mean = 4.36  (acc./T) 

 ln(a0) Traffic flow 
Inverse dispersion 

parameter (φ) 

True Value (MLE) -4.915
a
 (-8.641, -1.188)

b 0.435 (0.018, 0.852) 4.608 (2.208, 9.615) 

Sample  
Size 

 Inf.1
c Inf.2

d Ninf.
e Inf.1 Inf.2 Ninf. Inf.1 Inf.2 Ninf. 

20 mean -4.738 -4.603 -4.585 0.412 0.397 0.394 3.961 3.949 84.307 

2.5%
f 

-13.175 -13.024 -11.991 -0.520 -0.534 -0.436 1.458 1.448 1.995 

97.5%
g 

3.601 3.735 2.845 1.356 1.340 1.223 8.574 8.530 638.117 

50 mean -4.884 -4.854 -4.848 0.432 0.428 0.427 4.349 4.354 22.616 

2.5% -9.991 -9.975 -9.666 -0.131 -0.134 -0.103 2.127 2.129 2.471 

97.5% 0.169 0.201 -0.083 1.000 0.999 0.964 8.102 8.112 159.642 

80 mean -5.174 -5.156 -5.143 0.464 0.462 0.461 4.670 4.664 19.038 

2.5% -9.014 -8.972 -8.774 0.041 0.038 0.057 2.529 2.524 2.934 

97.5% -1.388 -1.359 -1.529 0.893 0.889 0.866 8.126 8.132 125.608 

a
 Mean value 

b 
95% Confidence Interval

 

c Inf.1: φ has an informative prior, and regression parameters have semi-informative priors  
d Inf.2: only φ has an informative prior 
e Ninf.: all parameters have a non-informative prior 
f
 Lower  limit, 2.5 percentile, for the 95% Credible Interval 

g
 Upper limit, 97.5 percentile, for the 95% Credible Interval  
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However, the informative prior structure performed slightly better compare with the non-

informative prior specification. These differences were somewhat greater when working 

on data with a small sample size, a low sample mean, and particularly, the combination of 

these two.  

Table 4.VI Spearman’s correlation coefficients (Hotspot identification) 

High sample mean data, Total accidents (T = 3 years) 

Sample size Inf.1a Inf.2b Ninf.c 

20 0.9048 0.9051 0.9039 

50 0.9403 0.9403 0.9402 

80 0.9428 0.9428 0.9427 

Relatively low sample mean data, Injury-Fatality accidents (T = 2 years) 

Sample size Inf.1 Inf.2 Ninf. 

20 0.7672 0.7671 0.7474 

50 0.8360 0.8357 0.8297 

80 0.8375 0.8375 0.8318 

a Inf.1: φ has an informative prior, and regression parameters have semi-informative priors  
b Inf.2: only φ has an informative prior 
c Ninf.: all parameters have a non-informative prior 

 

4.4.3 Goodness-of-fit Comparisons 

As reported in Table 4.VII, differences in DIC values between three prior specification 

approaches were smaller than 5 in all cases of the sample mean and the sample size. Non-

informative characterizations provided the biggest DIC value. However, DIC differences 

of smaller than 5 are usually thought of as hardly worth mentioning (Carlin and Louis, 
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2009). Thus, based on the assumptions and methodology used in this study it can be 

concluded that goodness-of-fit was not sensitive to the prior specification.  

Table 4.VII Goodness-of-fit, DIC values 

High sample mean data, Total accidents (T = 3 years) 

Sample size Inf.1a Inf.2b Ninf.c 

20 128.877 128.882 129.338 

50 321.759 321.748 321.949 

80 510.707 510.670 510.957 

Relatively low sample mean data, Injury-Fatality accidents (T = 2 years) 

Sample size Inf.1
 

Inf.2
 

Ninf.
 

20 90.149 90.145 91.665 

50 225.153 225.180 226.744 

80 353.978 354.022 355.372 

a Inf.1: φ has an informative prior, and regression parameters have an 

informative prior with a large variance 
b Inf.2: only φ has an informative prior 
c Ninf.: all parameters have a non-informative prior 

   

 

4.5 SUMMARY AND CONCLUSIONS 

In this paper, in the Bayesian paradigm by applying the hierarchical Poisson-Gamma 

structure, the impact of various prior specifications (Informative, semi-informative, and 

non-informative) on the model validity has been examined considering the following 

aspects: (1) regression parameters estimates, (2) the inverse dispersion parameter 

estimates, (3) hotspot identification through the ranking of sites based on the posterior 

distribution of θ and Spearman’s correlation coefficient, and (4) goodness-of-fit criterion 

using DIC values. 
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A case study of 958 km of rural highway segments in New Brunswick, Canada has been 

used to present the observed data and to obtain true (real) estimates applying the MLE. 

Three different sample sizes (including 20, 50, and 80 observations) with two different 

sample means (i.e., data characterized by high mean values and relatively low mean 

values) have been analyzed. In fact, these sample means have been introduced in the 

analysis using injury-fatality and total accidents for a period of 2 years and 3 years, 

respectively. For each case, a series of 100 simulated data has been produced. Then, three 

different prior specifications have been employed to estimate model parameters - 

regression parameters and the inverse dispersion parameter. In order to generate and 

analyze datasets we used the Poisson-Gamma model. The analysis has been done in a 

hierarchical fashion by adopting a full Bayes framework through MCMC methods.  

The results indicated that the specification of an informative prior for the inverse 

dispersion parameter, introduced in the analysis based on previous studies, has a 

noteworthy impact on this parameter estimates. In particular, when working on data 

characterized with small sample size and low sample mean. We found that regression 

parameters are less sensitive to prior specifications compare with the inverse dispersion 

parameter. For regression parameters, similarly, a non-informative specification was the 

most inaccurate when modeling limited data. This founding was also valid for data 

characterized with a high sample mean. In other words, data characterized by high mean 

values and small number of observations was still affected by prior choice. Considering 

regression parameters, the approach in which regression parameters were semi-

informative and the inverse dispersion parameter was informative provided the best 

estimates in terms of the estimation accuracy. In general, we observed that as sample size 
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and/or sample mean increase, parameter estimates approach the true estimates. Moreover, 

hotspot identification wasn’t found to be affected considerably by different prior 

specifications; yet, models with informative priors, slightly, performed better. Similarly, 

DIC values didn’t show any significant improvement in goodness-of-fit when using 

informative priors for model parameters.  Based on this study, we recommend the use of 

informative priors especially in modeling data characterized by a small sample size and a 

low sample mean. Lastly, the future research should investigate the effect of prior choice 

on other road transportation facilities such as intersections. Moreover, the methodology 

used in this study should also focus on other regression approaches like hierarchical 

Poisson-Lognormal models to explore the impact of different prior specifications. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

This chapter consists of three sections. First section summarizes the thesis and provides 

the contributions of this research study. Second section, suggests various steps that 

researchers and practitioners can follow to benefit from this work. Recommendations for 

future research are discussed in the last section. 

5.1 SUMMARY AND MAJOR CONTRIBUTIONS 

In this thesis, a case study comprising 958 km of highway segments in New Brunswick 

have been adopted to examine some of the most important aspects of road safety using 

the Bayesian approach. The focus was on accident modeling, model-fitting, and the 

development of reliable SPFs that are used for hotspot identification and countermeasure 

assessment. Furthermore, an important part of the thesis explored the effect of prior 

specifications in Bayesian analysis of accident data.   

In Chapter 3, three datasets representing different accident severities were analyzed. A 

series of comparisons were presented for Poisson and hierarchical Poisson mixture 

models. Different characterizations of the inverse dispersion parameter in hierarchical 

Poisson-Gamma models were studied; that is, this parameter were introduced in the 

analysis as fixed, varying as a function of site characteristics, and randomly varying 

across sites. Similarly, in a novel approach the inverse of variance in the hierarchical 

Poisson-Lognormal model was characterized as a function of site characteristics. In 

addition, considering different severities, the presence of various contributing factors in 
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the mean and the variance functions was examined. For the above mentioned objectives, 

more than 35 Bayesian models have been analyzed, running the MCMC simulation to 

make posterior inferences, form which 26 models were presented in Chapter 3. 

The results showed that, for the case study, hierarchical Poisson-Gamma models 

provided the best model-fitting for all three datasets: property damage only, injury-

fatality, and total accidents. Regarding the variance function characterizations, fixed 

inverse dispersion parameter and fixed inverse of variance presented the worst fit to all 

datasets. The introduction of the inverse of variance as a function of site characteristics in 

hierarchical Poisson-Lognormal models performed adequately improving goodness-of-

fit; similar to hierarchical Poisson-Gamma models. Additionally, from this research 

study, it can be inferred that modeling accidents by severity is crucial for the 

identification of the contributing factors. In fact, it was found that the interaction between 

precipitation and the density of horizontal curves was statistically significant in modeling 

injury-fatality accidents; however, these variables when considered separately weren’t 

affecting the injury-fatality accidents. Finally, the results demonstrated that contributing 

factors presented in the mean and the variance functions were not necessarily the same.       

In Chapter 4, a data simulation framework based on the previous case study was used in 

order to verify how the specification of prior in hierarchical Poisson-Gamma models 

affects the results - parameter estimates, hotspot identification, and goodness-of-fit. The 

Poisson-Gamma model is the most common model in road safety and is widely used and 

accepted in a variety of studies. When applying Bayesian inference in accident analysis, 

almost all studies have used non-informative or vague priors for model parameters. Here, 

the sensitivity of the analysis to prior choice was tested. Since, in the road safety 
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literature, it has been demonstrated that the MLE provides inaccurate results for data 

characterized by a low sample mean and a small sample size, different sample sizes and 

sample means were taken into account in this thesis applying the Bayesian estimation. 

Therefore, a high sample mean data and a relatively low sample mean data were 

extracted from the case study. High sample mean dataset was presented by total accidents 

for a period of three years. And relatively low sample mean dataset was presented by 

injury-fatality accidents for a period of two years. Consequently, three sample sizes 

consisting of 20, 50, and 80 observations have been, randomly, chosen from the case 

study, for each sample mean dataset. Then, all synthetic datasets were analyzed using 

three diverse prior specifications. So in total 18 models were developed for this chapter’s 

objectives. The prior specification included: (a) non-informative priors as commonly 

used in the road safety literature, (b) an informative prior for the inverse dispersion 

parameter, and (c) an informative prior for the inverse dispersion parameter and semi-

informative priors for regression parameters. Furthermore, these priors have been defined 

based on previous studies as explained in detail in Chapter 4. 

The model outcomes indicated that introducing informative priors improved the 

parameter estimation accuracy, particularly, for the inverse dispersion parameter. 

Moreover, this improvement was more obvious as sample size and sample mean 

decreased. Therefore, in cases of low mean problem (low sample mean) and limited data, 

the use of an informative prior specification approach is strongly recommendable. To 

understand the importance of this research one should take into consideration that typical 

accident data are usually limited in size and characterized by low mean problem. This 
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study also showed that the choice of priors doesn’t have any outstanding influence on 

hotspot identification and goodness-of-fit.  

5.2 PRACTICAL SUGGESTIONS FOR PRACTITIONERS 

Practitioners and researchers wishing to implement the methodologies discussed in this 

thesis can follow the bellow mentioned steps to analyze accident datasets: 

1. Verifying data availability related to observed accidents and site characteristics; 

2. Explanatory data analysis to identify the most important contributing factors that 

may affect accident frequencies (property damage only, injury-fatality, and total 

accidents); 

3. Choosing an appropriate SPF; 

4. Selecting a regression approach (hierarchical Poisson mixture models are 

recommended); 

5. Verifying if data is characterized by low mean problem and/or small sample size; 

6. In the case of low mean problem and/or small sample size, it is recommended to 

estimate informative or semi-informative priors, depending on the type of 

parameters, from previous studies. Otherwise, use non-informative priors as 

indicated in the road safety literature; 

7. Selecting a variance function characterization approach. For instance, the inverse 

dispersion parameter in hierarchical Poisson-Gamma models may be fixed, 

varying as function of site characteristics, and randomly varying across sites. 

8. Applying Bayesian statistics to obtain the model parameters. 
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5.3 RECOMMENDATION FOR FUTURE WORK 

This research study provides some practical methods in order to improve SPFs reliability 

in terms of goodness-of-fit and parameter estimation accuracy, which in turn can lead to 

more dependable hotspot identification and safety countermeasure assessment. In this 

thesis, the research focus was on road segments. However, future work can focus on 

applying these methodologies to other road facilities. Discussions related to model 

comparisons, variance function characterizations, severity modeling considering 

interaction between site characteristics (e.g., road alignment and weather condition 

interaction), and the choice of prior should be applicable to rural or urban intersections.  

In this research study, the effect of prior specification on parameter estimates, hotspot 

identification, and goodness-of-fit was examined in Poisson-Gamma models. Future 

research can investigate the impact of prior choice on other Poisson mixture regression 

approaches such as hierarchical Poisson-Lognormal models. 

Lastly, future research can provide specific guidelines for practitioners (1) to identify the 

amount of data (e.g., in terms of years) required to obtain accurate estimates, particularly 

when using a non-informative prior specification approach and (2) to provide a series of 

informative priors for the most important contributing factors such as traffic flow and 

segment length based on the type of the road facility and accident severity.  
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1) Precipitation data for weather stations across highway segments 

Precipitation observations used in Chapter 3 are reported in Table A.I. The 

mean values were introduced in the analysis to verify the effect of 

environmental exposure. 

 

Table A.I Precipitation in mm 

 Weather Stations 

Year Moncton Fredericton Woodstock St. Leonard 

2004 1132.2 779.0 908.6 930.3 

2005 1412.2 1364.5 1615.4 1381.8 

2006 1204.2 1199.5 1256.2 1148.0 
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2) Spearman’s Correlation Coefficient 

Spearman’s correlation coefficient represents the correlation between two sets of 

statistical ranks. This coefficient varies from -1 to +1 indicating the perfect negative and 

the perfect positive correlations, respectively. One should take into consideration that 

Spearman’s coefficient does not necessarily imply that variables associated to these 

compared ranks are correlated. This coefficient is computed based on Equation A.1. 

     
    

       
                       [A.1]  

where 

 s is the Spearman’s correlation coefficient; 

 d is difference between corresponding ranks; 

 n is number of elements to be ranked. 

The calculated value should then be compared with critical values of Spearman’s 

correlation coefficient in order to be accepted or rejected.  
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3) Example of History Plots - OpenBUGS 

 

  

 

Fig. A.I Unstable chains – convergence not reached 

 

 

 

Fig. A.II Stable chains – convergence reached 
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4) Example of Density Plots – OpenBUGS  

 

 

 

Fig. A.III Density Plots 
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5) R code for prior specification comparisons  

#   non informative 

nipg_a0 <- rep.int(0,100) 

nipg_a1 <- rep.int(0,100) 

nipg_DIC <- rep.int(0,100) 

nipg_phi <- rep.int(0,100) 

nipg_a02.5 <- rep.int(0,100) 

nipg_a12.5 <- rep.int(0,100) 

nipg_phi2.5 <- rep.int(0,100) 

nipg_a097.5 <- rep.int(0,100) 

nipg_a197.5 <- rep.int(0,100) 

nipg_phi97.5 <- rep.int(0,100) 

nipg_a0sd <- rep.int(0,100) 

nipg_a1sd <- rep.int(0,100) 

nipg_phisd <- rep.int(0,100) 

#  all informative 

ipg_a0 <- rep.int(0,100) 

ipg_a1 <- rep.int(0,100) 

ipg_DIC <- rep.int(0,100) 

ipg_phi <- rep.int(0,100) 

ipg_a02.5 <- rep.int(0,100) 

ipg_a12.5 <- rep.int(0,100) 

ipg_phi2.5 <- rep.int(0,100) 

ipg_a097.5 <- rep.int(0,100) 

ipg_a197.5 <- rep.int(0,100) 

ipg_phi97.5 <- rep.int(0,100) 
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ipg_a0sd <- rep.int(0,100) 

ipg_a1sd <- rep.int(0,100) 

ipg_phisd <- rep.int(0,100) 

#  only phi informative 

ipg2_a0 <- rep.int(0,100) 

ipg2_a1 <- rep.int(0,100) 

ipg2_DIC <- rep.int(0,100) 

ipg2_phi <- rep.int(0,100) 

ipg2_a02.5 <- rep.int(0,100) 

ipg2_a12.5 <- rep.int(0,100) 

ipg2_phi2.5 <- rep.int(0,100) 

ipg2_a097.5 <- rep.int(0,100) 

ipg2_a197.5 <- rep.int(0,100) 

ipg2_phi97.5 <- rep.int(0,100) 

ipg2_a0sd <- rep.int(0,100) 

ipg2_a1sd <- rep.int(0,100) 

ipg2_phisd <- rep.int(0,100) 

# spearman all informative and non informative against true ranking 

spearman.pginf <- rep.int(0,100) 

spearman.pginf2 <- rep.int(0,100) 

spearman.pgninf <- rep.int(0,100) 

# mean of synthetic datasets 

acc <- rep.int(0,100) 

mean.acc <- rep.int(0,100) 

# DIC differences 

delta.DIC <- rep.int(0,100) 

delta.DIC2 <- rep.int(0,100) 



  82 

for (j in 1:100) 

{ 

acctot<- read.csv("data20sitesacctot3years.csv", header=TRUE) 

  #variables: x1=AADT; x2=length# 

x1 <- acctot$x1 

x2 <- acctot$x2 

 #----------Poisson-Gamma----------# 

n <- nrow(acctot) 

a0 <- 0.04912    # ln (a0) = -3.0135 

a1 <- 0.39735 

mu <- a0*(x2)*((x1)^a1) 

phi <- 4.03 

 #simulation 

r <- rgamma(n,shape=phi,rate=phi) 

theta <- mu*r 

acc <- rpois(n,theta) 

mean.acc[j] <- mean(acc) 

acctotpg <- read.csv ("data20sitesacctot3years.csv", header=TRUE) 

N <- nrow(acctotpg) 

y <- acc 

x1 <- acctotpg$x1 

x2 <- acctotpg$x2 

data <- list("N","y","x1","x2") 

parameters <- c("a0","a1","phi","theta") 

inits <- function(){list (a0=0,a1=0,phi=1,r=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))} 

# Bayesian Inference; non-informative prior # 

acctotpg.ni <- bugs(data, inits, parameters, model.file="ni_acctotpg.txt", 

n.chains=2,n.burnin=3000,n.iter=7000)  



  83 

sim1 <- acctotpg.ni$summary 

# Bayesian Inference; informative prior 1 # 

acctotpg.in <- bugs(data, inits, parameters, model.file="inew_acctotpg.txt", 

n.chains=2,n.burnin=3000, n.iter=7000) 

sim2 <- acctotpg.in$summary 

# Bayesian Inference; informative prior 2 # 

acctotpg.in2 <- bugs(data, inits, parameters, model.file="i_acctotpgphi.txt", 

n.chains=2,n.burnin=3000, n.iter=7000) 

sim3 <- acctotpg.in2$summary 

# non-informative estimation # 

nipg_DIC[j] <- acctotpg.ni$pD 

 # mean parameters # 

nipg_a0[j] <- sim1[1,1] 

nipg_a1[j] <- sim1[2,1] 

nipg_phi[j] <- sim1[3,1] 

 

 # credible interval # 

nipg_a02.5[j] <- sim1[1,3] 

nipg_a12.5[j] <- sim1[2,3] 

nipg_phi2.5[j] <- sim1[3,3] 

nipg_a097.5[j] <- sim1[1,7] 

nipg_a197.5[j] <- sim1[2,7] 

nipg_phi97.5[j] <- sim1[3,7] 

 

 # standard deviation # 

nipg_a0sd[j] <- sim1[1,2] 

nipg_a1sd[j] <- sim1[2,2] 

nipg_phisd[j] <- sim1[3,2] 
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# informative estimation all informative# 

ipg_DIC[j] <- acctotpg.in$pD 

# mean parameters # 

ipg_a0[j] <- sim2[1,1] 

ipg_a1[j] <- sim2[2,1] 

ipg_phi[j] <- sim2[3,1] 

 

# credible interval # 

ipg_a02.5[j] <- sim2[1,3] 

ipg_a12.5[j] <- sim2[2,3] 

ipg_phi2.5[j] <- sim2[3,3] 

ipg_a097.5[j] <- sim2[1,7] 

ipg_a197.5[j] <- sim2[2,7] 

ipg_phi97.5[j] <- sim2[3,7] 

 

 # standard deviation # 

ipg_a0sd[j] <- sim2[1,2] 

ipg_a1sd[j] <- sim2[2,2] 

ipg_phisd[j] <- sim2[3,2] 

 

# informative estimation only phi informative# 

ipg2_DIC[j] <- acctotpg.in2$pD 

# mean parameters # 

ipg2_a0[j] <- sim3[1,1] 

ipg2_a1[j] <- sim3[2,1] 

ipg2_phi[j] <- sim3[3,1] 
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# credible interval # 

ipg2_a02.5[j] <- sim3[1,3] 

ipg2_a12.5[j] <- sim3[2,3] 

ipg2_phi2.5[j] <- sim3[3,3] 

ipg2_a097.5[j] <- sim3[1,7] 

ipg2_a197.5[j] <- sim3[2,7] 

ipg2_phi97.5[j] <- sim3[3,7] 

 

 # standard deviation # 

ipg2_a0sd[j] <- sim3[1,2] 

ipg2_a1sd[j] <- sim3[2,2] 

ipg2_phisd[j] <- sim3[3,2] 

 

 # Ranking based on posterior mean 

theta.ni<-sim1[4:23,1] 

rank.theta.ni <- (n+1)-rank(theta.ni) 

theta.i<-sim2[4:23,1] 

rank.theta.i <- (n+1)-rank(theta.i) 

theta.i2<-sim3[4:23,1] 

rank.theta.i2 <- (n+1)-rank(theta.i2) 

# True rank 

rank.true <- (n+1)-rank(theta) 

 #rank comparison between inf & non inf with true rank 

spearman.pgtrue.inf <- 1-((6*(sum((rank.theta.i-rank.true)^2)))/(n*(n^2-1))) 

spearman.pginf[j] <- spearman.pgtrue.inf 

spearman.pgtrue.inf2 <- 1-((6*(sum((rank.theta.i2-rank.true)^2)))/(n*(n^2-1))) 

spearman.pginf2[j] <- spearman.pgtrue.inf2 
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spearman.pgtrue.noninf <- 1-((6*(sum((rank.theta.ni-rank.true)^2)))/(n*(n^2-1))) 

spearman.pgninf[j] <- spearman.pgtrue.noninf 

 # compare DIC between informative and non-informative  

delta.DIC[j] <- nipg_DIC[j]-ipg_DIC[j] 

delta.DIC2[j] <- nipg_DIC[j]-ipg2_DIC[j] 

} 

# Saving results as a CSV file 

write.csv(cbind(nipg_a0,nipg_a0sd,nipg_a02.5,nipg_a097.5,nipg_a1,nipg_a1sd,nipg_

a12.5,nipg_a197.5,nipg_phi,nipg_phisd,nipg_phi2.5,nipg_phi97.5,nipg_DIC,ipg_a0,i

pg_a0sd,ipg_a02.5,ipg_a097.5,ipg_a1,ipg_a1sd,ipg_a12.5,ipg_a197.5,ipg_phi,ipg_ph

isd,ipg_phi2.5,ipg_phi97.5,ipg_DIC,ipg2_a0,ipg2_a0sd,ipg2_a02.5,ipg2_a097.5,ipg2

_a1,ipg2_a1sd,ipg2_a12.5,ipg2_a197.5,ipg2_phi,ipg2_phisd,ipg2_phi2.5,ipg2_phi97.

5,ipg2_DIC, 

spearman.pgninf,spearman.pginf,spearman.pginf2,delta.DIC,delta.DIC2,mean.acc),"

Result_pg20sitesacctot3years2infnew.csv",quote=F) 
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6) The inverse dispersion parameter values estimated for 100 

datasets. 

 

 

Fig. A.IV Inverse dispersion parameter (φ) - High mean data, 20 observations. 

 

 

Fig. A.V Inverse dispersion parameter (φ) - High mean data, 80 observations. 
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Fig. A.VI Inverse dispersion parameter (φ) - Low mean data, 20 observations. 
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Fig. A.VII Inverse dispersion parameter (φ) - Low mean data, 80 observations. 
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7) Spearman’s correlation coefficients estimated for 100 datasets. 

 

Fig. A.VIII Spearman’s correlation coefficient - Low mean data, 20 observations. 

 

 

Fig. A.IX Spearman’s correlation coefficient - Low mean data, 80 observations. 
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