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ABSTRACT 

Seismic response of high-rise zipper braced frame structures with outrigger trusses 

Zhi Chen 

 

Concentrically braced frame (CBF) structures provide high stiffness and moderate ductility, 

while they are prone to damage concentrated within a single floor. To overcome this 

drawback, researchers have proposed to add a vertical member to the CBF system, labeled 

a “zipper column”, with the aim to involve the buckling and/or yielding of several braces. 

Thus, the zipper column members are designed to transfer the unbalanced forces caused by 

buckling of braces in chevron configuration along the building height. By employing the 

zipper braced frame system (ZBF), the damage is more uniformly distributed over the 

height. However structures taller than 8-storey are prone to lateral drift amplification due 

to the higher mode effects. In this study, in order to control the lateral drift, it is proposed to 

add a set of outrigger trusses over one floor, at the roof level, and if necessary at another 

floor among those located at the mid-height. 

Accordingly, the purpose of this study is two-fold: i) to investigate the inelastic be-

havior of the 12- and 16-storey ZBF building structures with elastic zippers located in a 

high risk seismic zone and ii) to study the behavior of ZBF structures when outrigger 

trusses are added. 
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Nonlinear time-history analyses conducted in Drain-2DX software are considered in 

this study to analyze the behavior of the 12- and 16-storey buildings without and with 

outrigger trusses that are subjected to 21 ground motions equally divided in three ensem-

bles: crustal, subduction and near-field. Outcomes of the study show that buildings located 

in a high risk seismic zone (Victoria, B.C.) exhibit less seismic damage when outrigger 

trusses are added to the ZBF system. 
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CHAPTER ONE 

Introduction 

1.1 Generalities 

Concentrically braced frame (CBF) in chevron configuration is a cost-effective system 

for resisting lateral loads. This structural system is usually employed for low- and 

mid-rise steel framed buildings. Braces in chevron configuration provide support for the 

CBF beams at the brace to beam intersection point. However, under strong seismic exci-

tations, this configuration shows a concentration of damage within a single floor and the 

tendency of storey mechanism formation. For instance, extensive damage was found in 

CBF buildings during Tohoku earthquake on March 2011 (Lignoset al, 2011), Christ-

church earthquake on 2010 (Bruneauet al, 2010), Loma Prieta earthquake (1989), 

Northridge earthquake (1994), Kobe earthquake in 1995 (Tremblay, Bruneau, & Wilson, 

1996)and other events. In light of this, frequent damage was observed in braced frames 

where braces were proportioned to resist tension only, where connections were weaker 

than the braces attached to them, where braces framed directly into columns, and where 

braces were inclined principally in one direction. Under strong ground motions, braces in 

compression have buckled, and in consequence lose their buckling resistance strength. 

After buckling of braces occurred, beams were deflected downward as a result of the 
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combined action of the gravity loading and the unbalanced force developed at the braces 

to beam intersection point due to the difference between the tensile and post-buckling 

capacity of brace members. In this case, strong floor beams are required to stabilize the 

system when the unbalance vertical load transferred from braces to beams has increased 

due to the attaining of the post-buckling strength in the compressive brace. Thus, due to 

this behavioural characteristic, the chevron bracing system shows a limited efficiency in 

terms of distributing the lateral loads over the building height. 

In Canada, the limitation of the number of stories for the CBF structures was im-

posed since 1995 (see National Building Code edition 1995, NBCC 95) and was defined 

as a function of ductility factor and the characteristic of the seismic zone. In the 2005 edi-

tion of NBCC, this limitation was changed from the number of stories to the height of the 

building. In spite of this limitation, researchers have shown that the system is still prone 

to storey mechanisms under seismic ground motions. This drawback pointed out by 

Khatib et al. (1988). Typically, in the CBF structures, excessive storey drifts is concen-

trated within a few stories and large ductility demand is required. 

To address the above concern, Khatib et al (1988) proposed a modified CBF system 

labeled CBF with zipper columns. By definition, the zipper column is a vertical member, 

added to a CBF system in chevron configuration, in order to link together all 

brace-to-beam intersecting points. As a result, all compressive braces will be forced to 
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buckle almost simultaneously while only a few tensile braces will yield. When ground 

motion reversed, braces that acted previously in tension buckle in compression, while the 

zipper column transfers the unbalanced load upwards or downwards depending on 

ground motion signature. This new structural system is able to force almost all braces to 

buckle or yield and a large amount of energy is dissipated in the system. In the past dec-

ade, several researchers have conducted studies in this topic as follows:  

 Sabelli (2001) proposed design criteria for CBF with weak zipper strut. In this de-

sign method, zipper columns are allowed to buckle and to yield, while braces be-

have in inelastic range; 

 Tremblay and Tirca (2003) proposed design criteria for CBF system with strong 

zipper column. In this light, zipper columns were designed to behave in elastic 

range, allowing braces to buckle simultaneously upwards or downwards (Tirca & 

Tremblay, 2004); 

 Leon and Yang (2003, 2008) developed a similar system labeled CBF with sus-

pended zipper strut. A truss system was added at the top floor while top floor brac-

es were designed to respond in elastic range. Yielding is allowed to occur in the 

zipper column. 

 Tirca and Chen (2012) and Chen (2011) have refined the initial design method 

proposed by Tremblay and Tirca (2003). The system is labeled CBF with elastic 

zipper columns. 
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Experimental studies have been only performed for the CBF with suspended zipper strut. 

Meanwhile, the analytical studies have been conducted by using Drain-2DX software 

which is a nonlinear computer program for static and dynamic analysis of plane struc-

tures. 

The research carried out in the field of zipper braced frame is mostly focused on 

low- and mid-rise buildings. However, along with the increase in building height and sto-

ries number, undesired effects, such as excessive lateral deformation due to the activation 

of higher modes could drive the building near collapse. To overcome this drawback, an 

outrigger truss system(s) are proposed to be added to the elastic ZBF system. In this re-

gard, the stiffness is increased, the strength is increased and the deformability diminishes. 

Thus, the purpose of this research is to address the behavior of ZBF structures taller than 

the recommended code limitation. This study is developed for 12- and 16-storey building 

structures, while the influence of higher modes on the seismic response of zipper frame 

structures is discussed. In addition, the efficiency of adding outrigger trusses at the top 

floor of the 12- and 16-storey building located in Victoria, B.C., which is a high risk 

seismic zone, is emphasized. If the lateral deformation cannot be reduced bellow the code 

limit, a second pair of outrigger trusses is proposed to be added at the mid-height of the 

16-storey building. In this research, nonlinear time-history dynamic analyses of 12- and 

16-storey ZBF buildings with and without outrigger trusses were conducted by using the 

Drain-2DX computer program. The proposed design method for the ZBF with outrigger 
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trusses is in agreement with the CAN/CSA-S16-09 standard and National Building 2005 

(NBCC2005). In addition, the applied seismic detailing should comply with the S16-09 

standard provisions for moderately ductile CBFs. 

1.2 Objectives and Scope 

The aim of this research project is two-fold: 

 To investigate the inelastic behavior of the 12- and 16-storey ZBF building structures 

with elastic zippers located in a high risk seismic zone;  

 To emphasize the influence of adding outrigger trusses to the zipper braced frame 

building structure. 

1.3 Methodology 

In order to achieve the above objectives, the following methodology is proposed: 

 Design the gravity system (gravity columns and beams), the seismic force resisting 

system (braces, columns, and beams of braced frame in chevron configuration) by 

using seismic forces from the response spectrum analysis of the buildings. The 

seismic design process should comply with the CSA/ S16 2009 provisions for 

moderately ductile CBF system. By considering the capacity design approach and 

the two scenarios proposed for zipper column design in tension and compression, 

the design of the elastic ZBF system (E-ZBF) is completed. The assumptions made 

for the aforementioned two main scenarios are: a) the first brace buckles at the 
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ground floor level, buckling of braces propagates upwards and the transferred un-

balance force subjects the  zipper column in tension and b) the first brace buckles 

at the roof floor level, buckling of braces propagates downwards and the unbal-

anced force  transferred into zipper column subjects zippers to act in compression. 

In addition, for zipper column design and by considering insights from previous 

studies, four lateral load distribution patterns of internal forces developed in braces 

are considered in this study. Thus, the employed lateral load distribution patterns 

are: the sequential triangular (LP-ST) and sequential parabolic (LP-SP) pattern as 

well as the triangular (LP-T) and the parabolic (LP-P) pattern. Regarding the esti-

mation of the maximum tensile and compressive force triggered in zippers under 

the aforementioned scenarios, it is considered that zipper columns should be de-

signed to withstand the probable tensile and compressive force developed in braces. 

For high-rise buildings located in western Canada, in high risk seismic zone (e.g. 

Victoria, B.C.) , an additional system composed of outrigger trusses is added either 

at the top floor level only or at the top and mid-height floor. In addition, the design 

of outrigger trusses consists of applying the compatibility method of rotations be-

tween the laterally deflected zipper braced frame and outrigger segments. 

 For design validation, selection of ground motions compatible with the uniform 

hazard spectrum for Victoria, British Columbia location is required, as well as a 

minimum number of 7 ground motions. Because Victoria region is affected by 
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shallow crustal and subduction (Cascadia subduction fault) earthquakes, two 

ground motions ensembles are selected such as: 7 crustal ground motions and 7 

subduction ground motions. In this study, for comparison purpose, a third ensemble 

of 7 near-field ground motions with forward directivity was selected. All selected 

accelerograms were scaled to fit the uniform hazard spectrum over the period of 

interest 0.2T1 – 1.5T1, where T1 is the fundamental period of the building, in 

agreement with ASCE/SEI -07 provisions.  

 In this study, modal response spectrum and nonlinear time-history analyses were 

involved by employing the ETABS and Drain-2DX software, respectively. 

 To comply with the lateral deformation criterion, outrigger trusses, designed to 

perform in elastic range, were added to the computer model. As a result, the stiff-

ness of the system was increased, lateral deflection was reduced, and zipper col-

umns were able to hold the system in elastic range, while braces are performing in 

the plastic range. 

1.4 Thesis organization 

This thesis is organized in six chapters. The first chapter presents the introduction of re-

search generalities, objectives, methodology, and thesis organization. The second chapter 

summarizes the literature review on the past studies conducted on zipper frame structure 

and outrigger trusses, as well as the accuracy of the computer model developed in 
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Drain-2DX environment. The third chapter contains the design process of gravitational 

resisting system (gravity columns and beams), lateral resisting system (braces, columns, 

and beams of concentrically braced frame), zipper columns, and outrigger trusses based 

on the previous study conducted by Tremblay and Tirca (2003), Tirca and Chen (2012), 

and Hoenderkamp and Bakker (2003). The fourth chapter presents the selection of 

ground motion ensembles, the scaling process of the selected ground motions, and the 

seismic response of the 12- and 16-storey zipper braced frame with and without outrigger 

trusses under time-history nonlinear analyses by using Drain2DX. The computer output 

such as axial forces in zipper columns and lateral interstorey drift of buildings with and 

without outrigger trusses is provided in Chapter 5, as well as a detailed discussion re-

garding the behavior of the studied building structures under different ground motions. 

Finally, in the sixth chapter, conclusions and the recommendations of the future work are 

presented. 

 

 

 

 

 

 

 

 



P a g e  | 9 

 

CHAPTER TWO 

Literature Review 

2.1 Past studies on the Design of Concentrically Braced Frames with Zipper Col-

umns 

2.1.1 Generalities 

As one of the widely used seismic load resisting systems in Canada, chevron braced frame 

is able to provide high stiffness and moderate ductility by allowing the braces to buckle 

and/or yield in order to dissipate the input energy during ground motion excitations, while 

all other structural members such as: beams, columns, and connections behave in elastic 

range. However, under severe ground motion excitations, it is very likely to have storey 

mechanisms occurred, especially when the beams in concentrically braced frame is not 

designed to overcome the unbalanced forces generated by buckled braces.  

When lateral forces applied, braces elements initially provide both tensile and 

compressive resistance to balance the lateral effect. Generally, for brace members, the 

tensile capacity is greater than the compression capacity. When reaching its compressive 

capacity, the brace member buckles, and a plastic hinge is developed at its mid-length. As a 

result, a large displacement occurred. At this stage, since the brace section is fully plastic, 

its axial capacity reduces to accommodate a larger moment developed at the plastic hinge 
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location. Meanwhile, due to the loss in compression capacity of brace, the lateral force is 

transferred to the tensile brace, while a large unbalanced force is developed at the brace to 

beam intersection point. Nevertheless, beams sections in CBFs should be designed to ac-

commodate plastic hinge formation at their mid-span. Most likely, the beam will buckle 

and the weak storey mechanism is formed as illustrated in Figure 2.1. In this stage, the 

failure of one floor causes the failure of the entire system. As is shown in the graph of 

Figure 2.1, where the base shear, V, versus interstorey drift is depicted, the capacity of the 

system to withstand shear force diminishes while the lateral deformation is substantially 

increased. 

 

Figure 2.1Chevron braced frame behaviour (Bruneau, et al., 2005) 

In order to avoid the problems of beam failure, different studies have been carried out 

by researchers such as Khatib and Mahim (1988), Sabelli (2001), Tremblay and Robert 

(2001), and others. To avoid this type of failure, it was proposed to use strong beams, de-
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signed to carry the unbalanced force generated after buckling of brace occurred. However, 

according to this strategy, the braced frame system is still likely to form weak storey 

mechanism. 

To overcome the above design difficulty, (Khatibet al, 1988) proposed to link all 

beam-to-brace intersection points of adjacent floors and to transfer the unbalanced load to 

the vertical member called “zipper column”. In this way, the zipper members can behave 

either in tension or in compression and should be able to withstand the “zipper mechanism” 

formation, which implies buckling of braces successively. This unbalanced force trans-

ferred to the “zipper column” pushes the zipper in tension if the first buckled brace is lo-

cated at first floor and buckling of braces progress upward or pushes the zipper in com-

pression, if the brace of the roof floor buckles and buckling is propagated downward. 

Therefore, after brace buckled and the unbalance force is transferred to the zipper column, 

this member is able to re-distribute the transferred force to the braces located on the verge 

of buckling either at the floors above or below depending on the direction of brace buckling 

propagation. In this regard, the damage concentrated at one floor is spread along the 

structure height, involving more braces to sustain the remaining lateral loads after redis-

tribution.  

Thus, the zipper configuration is expected to improve the seismic performance of 

CBF systems and to overcome the problem of unbalance forces developed in chevron 
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braced frames. This proposed system is able to maintain a more uniform damage distri-

bution over the structure height and to develop a stable hysteresis behavior. In addition, 

besides offering a relatively good performance level in terms of storey drift and energy 

dissipation under earthquake excitations, the requirement of stiff beams should be avoided.  

In the Commentary of AISC Seismic Provisions for Structural Steel Building (AISC 

2002), the zipper steel frame system is recommended as a configuration which is able to 

improve the post-elastic seismic performance of chevron braced system. In Figure 2.2, the 

expected behavior and performance of zipper frame when the first brace buckles at ground 

floor level and zipper is loaded in tension is shown. 

 

Figure 2.2 Expected behaviors and performance of zipper frame (Nouri, Imani Kalesar, 

& Ameli, 2009) 

2.1.2 Tension Zipper strut approach 

According to Khatib and Mahin (1988), the zipper effect is triggered when the structure is 

deflected in the shape of the first vibration mode. The brace member at the ground floor 
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buckles firstly and triggers tensile forces in the above zipper column, which causes the 

upper floor brace to buckle. The same process is gradually propagated upwards. Never-

theless, based on this design approach, zipper columns are proportioned to carry only 

tensile forces, which means that always the first buckled brace is at the ground floor. In 

addition, in order to have the zipper braced frame system deflected in the first mode, it 

requires braces on one half-span of the braced frame to buckle, then, after ground motion 

reversed sign, the remaining half-span braces will buckle. In this case, the tensile forces in 

zipper columns can be calculated as the summation of all vertical components of the un-

balanced loads resulted from internal forces developed in braces. 

Moreover, corresponding to the limitations of tension zipper strut, Khatib and Mahin 

(1988) pointed out several questions regarding the system design and behaviour: 

 “What happen if the buckling of braces initiates from other stories instead of the first 

storey?” 

 “Could the zipper elements be activated in compression instead of tension?” 

 “What if the structure is not in a first mode deflected shape when the zipper effect is 

activated?” 

 “How to proportion the braces to maximize the effectiveness of zipper effect?” 

 “How to choose the relative stiffness of the zipper elements and beams?” 
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To date, several researchers proposed versions of ZBF systems by trying to fit the 

response of the above questions in the proposed design guidelines: Sabelli (2001), Trem-

blay and Tirca (2003), Yang and Leon (2003). 

2.1.3 Weak Zipper strut approach 

To prevent the formation of weak storey mechanism and pursuit a uniform drift distribu-

tion along the building height, a design method called “weak zipper strut approach” is 

proposed by R. Sabelli (2001). According to his proposal, the design of brace members 

should follow the same code requirements as provided for CBF’s braces. He recommended 

that the compressive and tensile capacity of zipper columns must reach the strength of 

braces located at the level below. Moreover, the inelastic demand in both cases when 

zipper columns act in tension and compression should be considered in design. 

After applying the weak zipper strut approach in a 3- and a 6-storey zipper braced 

frames, R. Sabelli (2001) concluded that by having zipper column installed, the interstorey 

drift demand is more uniformly distributed than that in a chevron braced frames with 

strong beams. Between the two studied frames, the 3-storey zipper frame shows better 

seismic performance that the 6-storey frame, and match the expected behavior of zipper 

braced frame. Brace members have buckled at all floor levels and drifts are nearly equal 

developed at each floor. On the other hand, for the 6-storey frame, several discrepancies 

have been observed. Instead of deflecting on the first mode, the deformed shape of the 
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6-storey frame approximated the shape of the second mode of vibration. In addition, there 

are significant buckling and tension yielding observed in zipper columns of the 6-storey 

frame, which was judged inconsistent with the expected performance of zipper braced 

frame. The behavior of a chevron braced frame with weak zipper columns is shown below 

in Figure 2.3.  

 

Figure 2.3 Behavior of zipper braced frame system with weak zipper column (Tirca & 

Tremblay, 2004): a) zipper yields in tension; b) zipper buckles in compression 

2.1.4 Strong Zipper strut approach 

To limit the inelastic behavior within braces, Tremblay and Tirca (2003) proposed another 

design method with the aim of maintaining the zipper columns to behave elastically under 

severe ground motions. Based on the proposed method, a 4-, 8- and 12-storey zipper braced 

frames have been designed and studied. The results regarding the inelastic behavior of 

aforementioned braced frames have shown that the zipper mechanism can be developed 
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either in tension or in compression, and these two critical scenarios can be treated sepa-

rately. For the scenario of zipper acting in tension, the brace buckling initiates at the bottom 

storey and propagates upward in the frame. Therefore, zipper columns are subjected to 

tensile forces due to unbalanced vertical forces resulted from the subsequent buckling of 

braces as shown in Figure 2.4 a). On the other hand, for the scenario of zipper acting in 

compression, the first brace buckled at the top floor, and then propagates downward. In this 

case, the unbalance vertical forces are transmitted from braces to the mid-span of the 

beams, and eventually transferred to zipper columns as compression forces (Figure 2.4 b). 

 

Figure 2.4 Behavior of zipper braced frame system with strong zipper columns (Tirca & 

Tremblay, 2004) brace buckling initiated a) at the base; b) at the roof. 

Under these scenarios, zipper columns are designed to carry the unbalance load 

generated due to the buckling of brace members. Therefore, two scenarios have been 

proposed: zipper in tension when brace buckles initiated at the ground floor and zipper in 

compression when braces buckles initiated at the top floor of the structure. In both cases, 
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the zipper struts are designed to carry either the maximum tensile force or compressive 

force which is expected to be transferred and is depended on the buckling/post-buckling 

and tensile capacity of braces. In Figure 2.5, the two buckling scenarios are shown under 

the sequential triangular load pattern distribution. 

 

Figure 2.5 Transfer mechanisms and lateral load distributions adoptedto design the 

zippers when brace buckling initiating at the: a) upper floors; b) lower floors (Tirca & 

Tremblay, 2004) 

Under the circumstance of zipper columns behaving in elastic stage (strong zipper), 

the design method proposed by Tremblay and Tirca (2003) is able to estimate the maxi-

mum tensile and compressive force envelop developed in zipper columns under various 

ground motion excitations. 

Furthermore, several assumptions have been made in this research to make the detail 

calculations of the maximum compressive forces in zipper columns feasible. Some of them 

follow Khatib and Mahin’s assumptions when the idea of zipper frame was arisen. The 

applied assumptions are listed below: 
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 The applied lateral load is assumed to vary linearly from a maximum value reached 

at the roof level to zero at the level below the studied level (triangular shape); 

 Plastic hinges are assumed to form at the mid-length of the beams where the buckled 

braces are connected; 

 Braces are assumed to maintain their probable compressive strength, Cu  on the 

verge of buckling, and their strength will drop to the post-buckling capacity, Cu’ right 

after the buckling occurs; 

 It is also assumed that the compressive force transmitted downward through the 

zipper column of the studied level is carried completely by the compressive braces at 

the level below. Therefore, when the zipper column of the studied level reaches its 

maximum compressive force, the compression brace at the floor below will be upon 

buckling, i.e. the compressive force in the brace reaches its probable compressive 

capacity, Cu, as shown in Figure 2.5 a). 

Meanwhile, to calculate the maximum tensile forces in the zipper columns, Tz, the 

following assumptions are made: 

 The lateral load is assumed to vary linearly from a maximum value at the first floor 

(when the tensile force developed in the brace of the first floor is smaller or equal to 

the probable yielding force, Tu, the corresponding force in the compressive brace 

reaches the probable post buckling load Cu’ and all braces belonging to the tier under 

study reach a force  Cu) to zero at the floor located above the study level. 
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 Plastic hinges form at the mid-span length of  the beams located above the buckled 

braces; 

 The zipper column of each storey is designed to carry the cumulated difference of the 

tensile force developed in the brace versus the probable post-buckling force Cu’ on 

the subjected storey (Figure 2.5 b). 

To summarize, the proposed method is able to estimate the zipper column loads and 

their elastic seismic behaviors. Under crustal ground motions, inelastic responses are ob-

served in all studied structures. However, under the near-field and Cascadia (subduction) 

ground motions, dynamic instability may occur in the 12-storey building after the for-

mation of a full zipper mechanism. This study has underlined the requirements of future 

research and the validation of the proposed design method against different pattern loads 

distribution over the building height, beside the considered sequential triangular pattern. 

2.1.5 Suspended Zipper strut approach 

Simultaneously with the research carried out by the aforementioned researchers, Roberto 

Leon and Yang (2003) from Georgia Institute of Technology, have proposed a modified 

zipper braced frame called “suspended zipper frame”. The modified system consists of a 

zipper frame system with a hat truss located at the top floor level. The purpose of having 

this modification is to keep the top level braces behaving in elastic range and to avoid the 

formation of a full-height zipper mechanism. In this approach, the failure is defined when 

the partial- height zipper mechanism is formed.  
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In a suspended zipper frame, the top level braces remain in elastic range, while all 

other compression braces in other stories have buckled. The function of the suspended 

zipper columns is to transfer the unbalanced vertical loads developed due to the braces 

buckling at floors below and to support the beams at their mid-span. As a result, beams can 

be designed to form plastic hinge at mid-span. Therefore, significant savings in the amount 

of steel is made for sizing beams to perform in the plastic range. Meanwhile, the system has 

a clear force path which makes a capacity design for all the structural members straight 

forward. The configuration and expected behavior of suspended zipper frame is shown in 

Figure 2.6. 

 

Figure 2.6 Behaviour of ZBF with suspended zipperstrut (Yang, Leon, & DesRoches, 

2008) 

In their research, Leon and Yang aimed to prevent the formation of full-height 

mechanism, and especially they focused on the case of brace buckling at lower stories. 

During the process of forming partial-height zipper mechanism, the hat truss helps to re-

direct the unbalanced forces into the exterior columns which transfer the forces back to the 

base. 
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The loading path of suspended zipper braced frame is well defined.  Because the 

zipper struts transfer all the unbalanced forces to the top storey, the members of the hat 

truss are designed to behave elastically and thus, larger sections are required. In addition, 

along with the increase of the number of stories, the amount of forces carried by the hat 

truss can be substantially increased. In that case, the cross-sections of hat truss members 

became unacceptable large, which creates construction challenges and decreases the 

cost-efficiency of the system. Therefore, the suspended zipper frame structure is limited by 

the height of the building or in other words, by the number of stories. 

2.2 Past studies on high-rise buildings with outrigger and belt truss system 

2.2.1 Need for High-rise buildings 

The design of high-rise buildings relays on many factors such as economics, aes-

thetics, technology, municipal regulations, and politics. Among them, the economic aspect 

is always the primary governing factor. Along with the economic demand and the world-

wide architectural trend, an innovative high rise building structural system is needed. In 

this light, some innovative structural systems are: tubes, mega-frames, core-and-outrigger 

systems, artificially damped structures, mixed steel-concrete systems and others (Ali & 

Moon, 2007). 
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2.2.2 Generalities regarding the outrigger and belt systems 

The outrigger truss system was applied in the Place Victoria Office tower in Montreal in 

1965. Since then, the outrigger concept has been widely used in the design of high rise 

buildings. In outrigger structures, “outriggers” are used to connect exterior columns at the 

outboard of the building to the lateral load resisting core which can be either shear wall or 

braced frame. This approach mobilizes the axial strength and stiffness of exterior columns 

to provide (Taranath B. , 1975) resistance to the overturning moment caused by lateral 

forces. Meanwhile, by adding outrigger trusses the overall stiffness of the structure in-

creases. However, the conventional outrigger trusses have disadvantages such that 

space-planning limitations and the requirement of developing special details for connect-

ing these trusses to the structural system. 

The development of outrigger braced frame system started in the ‘70s. Thus, Tara-

nath (1974) examined the optimum location of a single belt truss added to the structural 

system with the aim to reduce the building’s drift under the wind load and has presented a 

simple method of analysis. He also concluded that the optimum location of the belt truss is 

at 0.445 times the building height measured from the top. McNabb et al (1975) verified 

Taranath’s (1974) procedure and recommended the optimum location of two outrigger 

trusses. He investigated the controlling factors of drift reduction in outrigger structure and 

stated that the optimum locations for two outriggers added to the braced frame system 

should be 0.312 and 0.685 times the building height, respectively, measured from the top 
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of the building. Later on, Smith at al. (1991) proposed simple approximate guidelines for 

determining the location of the outriggers for preliminary analysis of outrigger braced 

frames. 

In the above investigations, it is assumed that under the wind loading, the flexural 

rigidity of the core and axial rigidity of the perimeter columns are uniform along the 

building height, and the lateral force is also uniformly distributed along the building height. 

However, years before, Rutenberg et al (1987) found that the above mentioned parameters 

are not uniform along the building height, when a structure with outrigger trusses is con-

sidered. Later on, Hoenderkamp et al (2003) presented a simple method of analysis and 

recommended it to be used for the preliminary design of high-rise braced frame with out-

rigger trusses under lateral loading. Further, Hoenderkamp et al (2008) investigated the 

optimum location of the second outrigger by considering the location of the first outrigger 

truss at the top floor. All of the above studies clearly show that the location of the outrig-

gers has a significant contribution regarding drift. 

Traditionally, the outrigger trusses directly connect the earthquake resisting core 

(shear wall or braced frame) to the adjacent and exterior columns as is shown in Figure 2.7. 

In this example illustrated by R.S. Nair (1998), two sets of double split-X outrigger trusses 

developed over three storey levels and located at the mid- and top-height of the building are 

added to connect the core to the exterior columns. 
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Figure 2.7 A tall building with conventional outrigger trusses (R.S.Nair, 1998) 

Depending on the design demand, the height and location of the outrigger truss can 

be various. Thus, shallower and deeper trusses can be used in different configurations and 

the number of outriggers over the height of the building can also vary from one to three or 

even more, depending on building height and wind or earthquake forces. 

In order to enhance the lateral resisting performance, the subjected building has to 

possess enough stiffness that can be achieved by minimizing the overturning moment 

caused by lateral loads. As illustrated in Figure 2.8, when lateral loads are applied to the 

structure, the outrigger trusses restrain the rotation of the core and convert part of the 

overturning moment developed in the core as a vertical couple which triggers axial forces 

in the exterior columns. This behavioural characteristic is illustrated by Buyukozturk and 

Gunes (2004) as well and is shown in Figure 2.9. Therefore, the input energy from the 

lateral load will be then dissipated by shortening and elongation of the columns as well as 
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deformation of trusses. This effect will reduce the bending moment (overturning moment) 

in the shear wall or braced frame from the outrigger level to the base, and it will eventually 

reduce the horizontal deflections of the structure.  

 

Figure 2.8 Forces transfer in conventional outrigger trusses (R.S.Nair, 1998) 

However, regarding the use of conventional outriggers, several shortcomings have 

been pointed out by (R.S.Nair, 1998): 

 The space occupied by the diagonal trusses implies functional limits at the floors at 

which the outrigger trusses are located. 

 

Figure 2.9 Deformed shapes of CBF in High-rise building with outrigger trusses 

(Buyukozturk & Gunes, 2004) 
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 Conventional outrigger trusses placed inside the structure normally have an impact 

in the architectural space. 

 Connections of the outrigger trusses to the shear wall require special design, which 

may end with designing a complicated mechanism. 

 In most cases, under gravity load, the shortening of the core and the exterior columns 

is not equal. By adding outrigger trusses, these are able to restrain the difference of 

shortening between the core and the exterior columns, while are overcoming larger 

stresses. For structural system design, stiff and large cross-sections are required 

which implicitly cause the loss of cost-efficiency characteristic.  

2.2.3 Analytical method of finding the optimum outrigger truss location 

As noted above, Taranath (1974, 1975) has proposed a simplified method of analysis for 

the outrigger braced frame structures. He assumed that belt or outrigger trusses have infi-

nite bending stiffness. In addition, he found an optimum location for the belt or outrigger 

trusses and concluded that finding this location is a significant factor which influences the 

reduction of the lateral drift. 

In order to study the optimum location of belt trusses belonging to an outrigger 

braced frame, Taranath (1974) made an analytical model, which is illustrated in Figure 

2.10. The outrigger truss was located at a distance x from the top, and a compatibility 

method was applied to find the optimum location of this single truss configuration.  
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Figure 2.10 Analytical Model for studying the optimum location of a single outrigger 

truss (Taranath B. , 1974) 

The method consists of matching the rotation of lateral resisting core with that of the ex-

terior gravity columns. From the compatibility relation, the restoring moment Mx at the 

location of the outrigger is evaluated. Furthermore, the deflection of the lateral resisting 

core at the top floor level due to the restoring couple is calculated and maximized using the 

principles of calculus. The solution of the mathematic derivation gives an optimum value 

of x at which the deflection of the lateral resisting core is minimized, and this location x is 

defined as the optimum location for single outrigger truss configuration in terms of drift 

control. Thus, the optimum location was found as being x = 0.445L which means that the 
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best location for adding the outrigger truss is at 0.445 times the building height measured 

from the top.  

Furthermore, Taranath (2010) gave some recommendations for the optimum loca-

tions of a single and more outrigger trusses shown in Figure 2.11 by using the principle of 

minimizing the interstorey drift: 

 The optimum location of a single outrigger truss is not at the top level. The reduction 

in drift by adding a top truss can be about 50%. On the other hand, the reduction in 

drift by having the truss at the mid height is about 75%. However, combining the 

serviceability and architectural requirements, the benefits of placing the truss at the 

top are still preferable. 

 For a two-outrigger structure, there are a few options regarding the optimum location. 

Practically, the optimum drift reduction can be achieved when the outriggers are 

added at locations completely different from the theoretical optimum locations under 

various circumstances. Therefore, the engineer and architect may have alternative 

options in choosing the outrigger locations. Theoretically, Taranath mentioned that 

the optimum location for two outriggers is: 1/3 and 2/3 of the building heights. For a 

three-outrigger structure, the optimum locations should be at the one-quarter, 

one-half, and three-quarter heights, and so on. Generally, for an economical design, 
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the outriggers should be placed at (1/n+1), (2/n+1), (3/n+1), (4/n+1),…, (n/n+1) 

height locations, where n is the number of outrigger trusses.   

 

Figure 2.11 Optimum locations for different outrigger trusses locations, a) single truss, 

b) two trusses, c) three trusses, d) four trusses (Taranath B. , 2010) 

2.2.4 Graphical method of optimum location of outrigger and belt truss system 

Based on the same compatibility method in which the rotations of the lateral resisting core 

at the outrigger levels are matched with the rotations of the corresponding outriggers, 

Bryan Stafford (1991) developed a graphical method in order to find the optimum location 

of outrrigger and/or belt truss systems.  

According to Stafford (1991), the number of compatibility equations is related to the 

degree of redundancy. He considered that a single outrigger structure has one degree of 

redundancy; a two outrigger case is twice redundant, and so on. The compatibility equa-

tions state the equivalence of the rotation of the lateral resisting core to the outriggers. 
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Meanwhile, the rotation of the lateral resisting core is expressed in terms of its bending 

deformation, and the rotation of the outriggers is represented by the axial deformation of 

exterior columns and the bending deformation of outriggers. 

Following a similar concept, Stafford (1991) developed a set of non-dimensional 

parameters α and β which expressed the core-to-column and core-to-outrigger rigidities, 

respectively. Involving the relation of lateral deflection of outriggers, the above two pa-

rameters can be combined into a single parameter, ω. The parameter ω is non-dimensional 

and represents a characteristic structural parameter for a uniform structure with flexible 

outriggers. He also states that with all other structural properties remaining constant, there 

is a reduction in ω as the outrigger’s flexural stiffness increased, and that ω increases as the 

axial stiffness of the column increased. Therefore, for a range of values of ω, the results of 

optimum location can be graphically plotted. Thus, for any configuration of outrigger 

structure having specific element properties, ω can be calculated and used for determining 

the optimum location for the outriggers in terms of minimizing lateral drift. The graphs of 

ω vs. outrigger locations for different number of outrigger configuration are given in 

Figure 2.12. 
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Figure 2.12 Optimum locations for outriggers: a) single outrigger, b) two outriggers, c) 

three outriggers, d) four outriggers (Bryan Stafford Smith, 1991) 

2.2.5 The concept of virtual outrigger system with belt truss 

With the aim of eliminating the aforementioned drawbacks of conventional outrigger 

systems, Stafford Smith, M Cruvellier, and MJ Nollet (1996) proposed a modified design 

of outrigger system called “Virtual outrigger truss” (offset outrigger truss). Unlike the 

conventional outrigger concept, which has the outrigger trusses connected to the core and 

the outboard columns in order to transfer the overturning moment from the lateral resisting 

core to exterior columns in the form of vertical couple, in the “virtual” outrigger system, 
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the same process is achieved without considering outrigger trusses as the connection be-

tween the core and exterior columns.  

The basic idea behind the virtual outrigger concept is to make use of floor dia-

phragms in company with perimeter belted trusses. The floor diaphragms are typically very 

stiff and strong in their own plane and are designed to transfer moment in the form of a 

horizontal couple from the core to trusses. Then, the belt trusses convert the horizontal 

couples into vertical direction and uniformly distribute the vertical couples in the exterior 

columns on the perimeter of the structure. Eventually, the exterior columns transfer the 

vertical couples to the base.  

Figure 2.13 shows an elevation view of the same building illustrated in Figure 2.10, 

except that in this case, there are belt trusses on the perimeter to increase the building 

stiffness, while the core is in the middle part of the building.  

 

Figure 2.13 “Virtual” outrigger building with a belt truss (R.S.Nair, 1998) 
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The process of converting part of the overturning moment developed in the core, into 

a vertical couple and transferred to the exterior columns is shown in Figure 2.14. Both top 

and bottom flanges of the belt trusses participate to constrain the rotation of the core; 

therefore, part of the bending moment generated in the core is converted into a horizontal 

couple and carried by the floor diaphragm (Figure 2.14a). After that, this horizontal couple 

is then converted by the belted truss into vertical forces and is transferred to the exterior 

columns (Figure 2.14b). 

 

 

Figure 2.14 Forces transferred by using belt trusses as virtual outriggers (R.S.Nair, 

1998) 
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By using the above modified system, R.S.Nair (1998) stated the following benefits: 

 There are no space required to pass trusses between the core and the external col-

umns. 

 There are fewer constraints at the location of exterior columns. Since the requirement 

of having larger exterior columns which are connected to the core by vertical out-

riggers is not needed in the virtual outrigger system.  

 All exterior columns participate in resisting overturning moment. 

 There is not special type of connection to join the outrigger trusses to the core. 

 Complications caused by differential shortening of the core and the outrigger col-

umns are avoided.  

2.3 Studying the use of computer program ------Drain-2DX 

DRAIN-2DX is a general purpose computer program for static and dynamic analysis of 

plane structures. It is capable of performing either nonlinear static or dynamic analyses. 

For dynamic analysis, it considers ground accelerations, ground displacements, imposed 

dynamic loads (e.g., wind), and specified initial velocities (e.g., impulse loading). More-

over, both static and dynamic loads can be applied in any sequence.  

Drain-2DX uses analytical models to simulate the inelastic behavior of structural 

members. Depending on the purposes, particular element type is implemented in 

Drain-2DX, for instance, element type 02 is used to simulate the inelastic behavior of 
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beam-column members, and element type 05 is used for modeling inelastic behavior of 

brace members. Therefore, the setup of Drain-2DX model is a straight-forward process due 

to the aforementioned feature. 

Drain-2DX has been widely used in the field of structural analysis since the ‘80s. The 

previous studies of zipper frame structure presented by Sabelli (2001), Tirca and Tremblay 

(2004), as well as Yang and Leon (2003), were all conducted in Drain-2DX. 
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CHAPTER THREE 

Design Methodology of Zipper Braced Frame and Outrigger Trusses 

The zipper braced frame (ZBF) structure is designed based on the strong zipper approach 

proposed by Tremblay and Tirca (2003). The ZBF system is defined as a concentrically 

braced frame in chevron-bracing configuration to which a vertical member, labeled zip-

per column, is added with the aim to join the beams of two adjacent floors at the 

beam-to-brace intersection point. Thus, by adding zipper columns, several braces are 

triggered to yield and buckle almost simultaneously, while the formation of storey 

mechanism is prevented. However, previous studies recommended to limit the height of 

this system at 12-storey. To overcome this drawback, in this study, the author proposes to 

add an outrigger or belt truss to the existing ZBF system, while the design of the outrig-

ger truss followed the concept of displacement compatibility method proposed by 

Stafford & Salim (1981) and the graphic method developed by Hoenderkamp & Bakker 

(2003). In this study, design is conducted in agreement with the NBCC 2005 and 

S16-2009 provisions.  
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3.1 Design methodology of Zipper braced frame structure 

According to Tremblay and Tirca (2003), the design of zipper braced frame follows the 

procedure given below: 

 In the first step, the CBF members such as: braces, beams, and columns are de-

signed;  

 In the second step, all zipper columns are designed as tension-compression mem-

bers, which must be proportioned to behave elastically while carrying forces trans-

ferred from braces and adjacent zippers. 

3.1.1 Calculation and distribution of seismic forces 

In the preliminary design, the equivalent static force procedure is applied to calculate the 

seismic forces. According to the NBCC 2005, the base shear, V is a function of design 

spectral acceleration value, S(Ta), the high mode factor, Mv, the importance factor, IE, the 

building weight, W, the ductility-related force modification factor, Rd, and the over-

strength-related force modification factor, Ro. By combining all the above parameters, the 

base shear equation is given below: 

                 ⁄                       (3.1) 

For a seismic force resisting system (SFRS) designed with Rd  1.5, the NBCC2005 

also requires that V shall not be less than: 
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                       ⁄                   (3.2) 

and not larger than: 

       
 

 
              ⁄                     (3.3) 

In addition, for a building with a fundamental period larger than 0.7s, the seismic force 

shall be distributed in such a way that a portion is concentrated at the roof level, Ft, and 

the reminding amount (V-Ft) is distributed along the building height. Thus, Ft = 0.07TaV 

but should not exceed 0.25V. The distribution of the base shear force is illustrated in Fig-

ure 3.1 and is based on the following equation: 

Fi = (V-Ft) Wihi/ ∑       
                     (3.4) 

where hn is the total height of the structure; Fi and Wi are the storey force and seismic 

weight of the i
th

 floor, respectively; and hi, is the height of the i
th

 floor measured from the 

ground floor level.  

 

Figure 3.1The distribution of seismic forces 
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3.1.2 Design of braces in chevron configuration 

Brace members resist the combination of storey shear, Fi and gravity load component 

transferred from the above storey to the CBF’s columns in agreement with the NBCC 

2005 loading combination: 1.0E + 1.0DL +0.5LL + 0.25SL. Based on this design re-

quirement, the storey shear in the i
th 

floor is equally distributed among the tensile and 

compressive brace as follows: 

Tf(i) =Cf(i) = Vi/(2                            (3.5) 

Following the design regulation, the compressive and tensile resistance of braces 

should be larger than the factored loads, while the Cr and Tr are given below 

                                        (3.6) 

                                     (3.7) 

where, A is the cross-sectional area of the brace member; Fy is the strength of steel mate-

rial, n= 1.34 for hot-rolled, fabricated structural sections, and hollow structural sections 

manufactured according to CSA Standard G40.20, Class C (cold-formed 

non-stress-relieved) and λ is the slenderness ratio. 

3.1.3 Design of beams and columns in concentrically braced frame 

The beams and columns in CBF shall be designed by applying the capacity design con-

cept.  

 Beam design 
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The beams in braced frames are not only carrying gravity loads from the floor, but also 

an extra portion of load transferred from the braces in the same floor. Therefore, depend-

ing on braces buckled or not, two scenarios should be considered: 

- In the first scenario, braces have buckled and beam has lost its support from the 

braces. In this case, the beam should carry the entire gravity component DL+0.5LL 

without considering braces support. In addition, it should carry the axial load de-

veloped when the compressive brace reached the probable post-buckling strength 

Cu
’
 = 0.2AFyRy, and the tensile brace may reach the probable yielding strength Tu = 

ARyFy. 

- In the second scenario, braces are on the verge of buckling and support beams at 

their mid-span. The compression braces reach their probable compressive strength 

Cu = 1.2(Ry/ϕ)Cr whit Ry = 1.1 and ϕ = 0.9 and the tensile braces have their proba-

ble tensile strength as Tu = ARyFy. 

 Column design 

In this study, columns of CBF are designed as continuous columns over two adja-

cent stories and should be proportioned to resist the gravity load in addition to the vertical 

projection of braces capacity in compression. Herein, the vertical projection of tensile 

forces acts as uplift forces. In addition, a fraction of bending moment computed as 

0.2ZFy must be considered in interaction to the axial force, where Z is the plastic section 

modulus of the column section. 
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3.1.4 Design of zipper columns 

For zipper columns design, two scenarios are considered. Thus, to design zippers loaded 

in tension, it is assumed that brace buckling is initiated at the ground floor level and 

buckling is propagating upward. Similarly, to design zippers acting in compression, it is 

considered that the first buckling brace is located at the most upper floor and propagates 

downward. With the aim to simplify the design, two assumptions are made: 

 For simplicity, plastic hinges are assumed to form at the mid-span of the beams 

where the buckled braces are connected; 

 It is also assumed that braces maintain their compressive strength constantly as Cu 

until they buckled. If the brace buckles at ground floor level and buckling is propa-

gating upward, at the level of calculation the brace reaches its buckling strength, 

braces below have reached their post-buckling strength while braces in the remain-

ing upper floors are still able to develop their compressive capacity while support-

ing the zipper column. 

In this study, the selected structures are a 12-storey and a 16-storey building located 

in Victoria, BC. Based on the concept presented above, two scenarios of brace buckling 

are considered to capture the maximum tensile and compressive force developed in zip-

per columns. In general, for the 12- and 16-storey buildings the higher modes effect will 

influence the ZBF behaviour. However, it is uncertain which of these two scenarios nor-
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mally happens during an earthquake; moreover, for most of the time both cases can be 

encountered during the same ground motion excitation. Therefore, for plotting the zipper 

force envelope in tension and compression, both scenarios are required.  

For the first scenario, buckling is initiated at the first floor and the unbalanced force 

is transfer to the zipper column located at the lower floor while all other members remain 

in the elastic range. Thus, the attached zipper column behaves in tension and it pushes the 

compressive brace belonging to the floor above to buckle successively. To summarize, 

after the compression brace of the ground floor has buckled, its compressive strength 

equates the probable post-buckling compression strength, Cu,1 while the corresponding 

tensile brace doesn’t reach yet its probable tensile strength, Tu,1. Therefore, the unbal-

anced force developed when a brace reaches Tb,1 and the other Cu,1 is transferred to the 

attached beam which hinges in bending while the zipper attached from the above is load-

ed in tension. This type of load transferring mechanism is propagated above. Thus, the 

tensile force developed in the zipper column of the second floor is calculated as:  

                                                (3.8) 

where, θ1 is the angle between brace member and the horizontal line; Mp1 is the plastic 

moment of the attached beam and 4Mp,1/Lb is the applied concentrated force correspond-

ing to the development of Mp1. Successively, the computed tensile force triggered in zip-
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per Tz,2 is transferred to the zipper above as Tz,3, while forcing the corresponding brace to 

buckle: 

                                               (3.9) 

Following Khatib et al.’s concept (1988), after the first brace of the ground floor level has 

buckled, the buckling of braces will propagate upward, and all braces in the compression 

side will reach the verge of buckling almost simultaneously. Therefore, to draw the ten-

sile force envelope, (N-1) cases must be evaluated, where N is the total number of stories.  

On the other hand, for the second scenario which evaluates the maximum compres-

sion forces in zipper, brace buckling initiates at the top level of the building and propa-

gates downward. In this case, the maximum compressive forces in zipper columns can be 

calculated by applying the similar procedure as for determining the tension force enve-

lope. 

3.2 The influence of pattern load selection on the preliminary design of zipper 

columns 

According to FEMA356 (2000), different lateral load patterns influence the magnitude of 

forces triggered in zippers. Therefore, in order to estimate the probable compressive and 

tensile forces developed in zippers of the studied buildings, four different load patterns 
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(Triangular, Sequential Triangular, Parabolic, Sequential Parabolic) are considered in this 

study.  

To achieve more accurate results concerning the finding of the maximum tension and 

compression forces developed in zipper columns, the four lateral load patterns mentioned 

above are used in this study.  

According to FEMA356 (2000), the lateral load Fx applied at any floor level x shall 

be determined in accordance with the following two equations: 

                                 (3.10) 

    
    

 

∑     
  

   

                        (3.11) 

Herein, Cvx is the vertical distribution vector; k is a coefficient which is k = 2 for T> 2.5s 

and k= 1.0 for T ≤ 2.5 s. For intermediate values, k is calculated by linear interpolation. 

In addition, V is the design base shear, wi is the building weight at the i
th 

floor, wx is the 

weight of the x
th

 floor, while hi and hx is the height from the base to the i
th

 floor and x
th

 

floor, respectively. 

Depending on the value of k, the vertical distribution vectors can be calculated and 

plotted as in Figure. 3.2.  
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Figure 3.2 Vertical distribution vectors of lateral forces with different k (Chen, 2011) 

In this study, two conventional load distribution patterns: as triangular (LP –T) and 

parabolic (LP – P) are applied and are shown in Figure 3.3. In addition, two sequential 

loading distribution patterns are added: LP – ST and LP – SP to the full height load dis-

tribution pattern: LP – T and LP – P. 

 

Figure 3.3 Lateral force distribution vectors (Chen, 2011) 

 LP-ST: Sequential Triangular load pattern 

As mentioned earlier in this chapter, the employment of the LP-ST distributed load pat-

tern is similar to that used by Tremblay and Tirca (2003), as well as Chen (2011). For 

S
to

re
y

 

Value of Cvx 
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both scenarios defined by zippers acting in tension and in compression, the linear distri-

bution of internal forces is proportioned to the ratio Fi/F1 and Fi/Fn respectively. In addi-

tion, these forces are limited to the summation of horizontal projections of the probable 

buckling strength, Cu and post-buckling strength, C’u of braces, as well as the afferent 

tensile force of the corresponding brace. The sequential triangular load pattern of both 

scenarios is shown in Figure 3.4.  

 

Figure 3.4 Load pattern LP-ST: a) buckling initiates at top; b) buckling initiates at 

bottom (Chen, 2011) 

For example, when the brace buckling initiates at the first floor of the 12-storey 

ZBF building, the load distribution vectors corresponding to the LP-ST pattern should 



P a g e  | 47 

be{((2/2*F1)/F1 = 1.00), ((1/2*F1)/F1 = 0.50), 0.0, 0.0,…,0.0}, and when the buckling of 

braces propagates to the second floor, the load distribution vectors changed to 

{((3/3F1)/F1= 1.00), ((2/3*F1)/F1= 0.66), ((1/3*F1)/F1= 0.33), 0.0, 0.0,….0.0}. Thus, 

when buckling of braces propagates at the i
th

 floor, a general expression of the distribu-

tion vectors is: {((i+1)/ (i+1)*F1)/F1, (I/(i+1)*F1)/F1,((i-1)/(i+1)*F1)/F1, …(1/(i+1)*F1/F1, 

0.0, …0,0}. All the above exemplifications are based on the scenario in which the first 

buckling brace is intercepted at the ground floor and zipper columns act in tension (see 

Tables 3.2 and 3.4). For the second scenario when zippers act in compression, the LP-ST 

distribution vectors are given in the Tables 3.1 and 3.3 for the 16-storey building. 

Table 3.1 Sequential Triangular distribution vectors for assessing the compressive force 

in zippers of 12-storey building 

 St. of brace buckled 

Storey No. 
12

th
 11

th
 10

th
 9

th
 8

th
 7

th
 6

th
 5

th
 4

th
 3

th
 2

nd
 

12 1 1 1 1 1 1 1 1 1 1 1 

11 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.91 0.917 

10 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.81 0.833 

9 0 0 0.25 0.4 0.5 0.57 0.63 0.67 0.7 0.73 0.750 

8 0 0 0 0.2 0.33 0.43 0.5 0.556 0.6 0.64 0.667 

7 0 0 0 0 0.17 0.29 0.38 0.444 0.5 0.545 0.583 

6 0 0 0 0 0 0.14 0.25 0.333 0.4 0.455 0.500 

5 0 0 0 0 0 0 0.13 0.222 0.3 0.364 0.417 

4 0 0 0 0 0 0 0 0.111 0.2 0.273 0.333 

3 0 0 0 0 0 0 0 0 0.1 0.182 0.250 

2 0 0 0 0 0 0 0 0 0 0.091 0.167 

1 0 0 0 0 0 0 0 0 0 0 0.083 
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Table 3.2 Sequential Triangular distribution vectors for assessing the tensile force in 

zippers of 12-storey building 

         St. of brace buckled 

Story No. 
1

st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 

12 0 0 0 0 0 0 0 0 0 0 0.083 

11 0 0 0 0 0 0 0 0 0 0.091 0.167 

10 0 0 0 0 0 0 0 0 0.1 0.182 0.25 

9 0 0 0 0 0 0 0 0.111 0.2 0.273 0.333 

8 0 0 0 0 0 0 0.13 0.222 0.3 0.364 0.417 

7 0 0 0 0 0 0.14 0.25 0.333 0.4 0.455 0.5 

6 0 0 0 0 0.17 0.29 0.38 0.444 0.5 0.545 0.583 

5 0 0 0 0.2 0.33 0.43 0.5 0.556 0.6 0.64 0.667 

4 0 0 0.25 0.4 0.5 0.57 0.63 0.67 0.7 0.73 0.75 

3 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.81 0.833 

2 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.91 0.917 

1 1 1 1 1 1 1 1 1 1 1 1 
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Table 3.3 Sequential Triangular distribution vectors for assessing the compression force 

in zippers of 16-storey building 

St. of brace 

buckled 

 

Story No. 

16
th
 15

th
 14

th
 13

th
 12

th
 11

th
 10

th
 9

th
 8

th
 7

th
 6

th
 5

th
 4

th
 3

th
 2

nd
 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

15 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.91 0.917 0.923 0.93 0.93 0.94 

14 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.81 0.833 0.846 0.86 0.87 0.88 

13 0 0 0.25 0.4 0.5 0.57 0.63 0.67 0.7 0.73 0.75 0.769 0.79 0.8 0.81 

12 0 0 0 0.2 0.33 0.43 0.5 0.556 0.6 0.64 0.667 0.692 0.71 0.73 0.75 

11 0 0 0 0 0.17 0.29 0.38 0.444 0.5 0.545 0.583 0.615 0.64 0.67 0.69 

10 0 0 0 0 0 0.14 0.25 0.333 0.4 0.455 0.5 0.538 0.57 0.6 0.63 

9 0 0 0 0 0 0 0.13 0.222 0.3 0.364 0.417 0.462 0.5 0.53 0.56 

8 0 0 0 0 0 0 0 0.111 0.2 0.273 0.333 0.385 0.43 0.47 0.5 

7 0 0 0 0 0 0 0 0 0.1 0.182 0.25 0.308 0.36 0.4 0.44 

6 0 0 0 0 0 0 0 0 0 0.091 0.167 0.231 0.29 0.33 0.38 

5 0 0 0 0 0 0 0 0 0 0 0.083 0.154 0.21 0.27 0.31 

4 0 0 0 0 0 0 0 0 0 0 0 0.077 0.14 0.2 0.25 

3 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 0.19 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 
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Table 3.4 Sequential Triangular distribution vectors for assessing the tensile force in 

zippers of 16-storey building 

St. of brace 

buckled 

 

Story No. 

1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 12

th
 13

th
 14

th
 15

th
 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 

14 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 0.19 

13 0 0 0 0 0 0 0 0 0 0 0 0.077 0.14 0.2 0.25 

12 0 0 0 0 0 0 0 0 0 0 0.083 0.154 0.21 0.27 0.31 

11 0 0 0 0 0 0 0 0 0 0.091 0.167 0.231 0.29 0.33 0.38 

10 0 0 0 0 0 0 0 0 0.1 0.182 0.25 0.308 0.36 0.4 0.44 

9 0 0 0 0 0 0 0 0.111 0.2 0.273 0.333 0.385 0.43 0.47 0.5 

8 0 0 0 0 0 0 0.13 0.222 0.3 0.364 0.417 0.462 0.5 0.53 0.56 

7 0 0 0 0 0 0.14 0.25 0.333 0.4 0.455 0.5 0.538 0.57 0.6 0.63 

6 0 0 0 0 0.17 0.29 0.38 0.444 0.5 0.545 0.583 0.615 0.64 0.67 0.69 

5 0 0 0 0.2 0.33 0.43 0.5 0.556 0.6 0.64 0.667 0.692 0.71 0.73 0.75 

4 0 0 0.25 0.4 0.5 0.57 0.63 0.67 0.7 0.73 0.75 0.769 0.79 0.8 0.81 

3 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.81 0.833 0.846 0.86 0.87 0.88 

2 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.91 0.917 0.923 0.93 0.93 0.94 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 LP-SP: Sequential Parabolic load pattern 

This pattern load depicts a parabolic distribution applied in sequences as described above 

for the LP-ST pattern. Thus, the values of lateral forces decrease from maximum to zero 

along a sequential height of the building where stories with buckled braces are assumed 

to be intercepted. To assess the development of compression forces in zippers it is as-

sumed that the first brace buckles at the top floor and buckling of braces propagates 

downward, while for the tensile forces estimation it is assumed that buckling of the first 

brace is initiated at the bottom floor and evolves upward as shown in Figure 3.5. To cal-
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culate the distribution vectors Cvx, equation 3.11 is applied and the unknown exponent 

factor, k is related to the fundamental period of the structure, T1. According to NBCC 

2005, T1 can be calculated as given bellow: 

T1 = 0.025hN                                     (3.12) 

where, hN is the total height of the structure. According to NBCC 2005, if the fundamen-

tal period of the structure calculated from a dynamic analysis is equal to or greater than 

2T1, it will be taken as 2T1. For the 12-storey building studied, hN is 45.6 meter and  

 

Figure 3.5 Load pattern LP-SP: a) buckling of braces initiates at top; b) buckling of 

braces initiates at the bottom (Chen, 2011) 
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T1= 2.28 s, therefore, k= 1.89. For the 16-storey building, hN is 60.8 meter, T1 = 3.04 s 

and k = 2. The detailed LP-SP distribution vectors for both scenarios applied to the 12- 

and 16-storey buildings are summarized in Tables 3.5 to 3.8. 

Table 3.5 Sequential Parabolic distribution vectors for assessing the compressive force in 

zippers of 12-storey building 

   St. of brace buckled 

Story No. 
12

th
 11

th
 10

th
 9

th
 8

th
 7

th
 6

th
 5

th
 4

th
 3

th
 2

nd
 

12 1 1 1 1 1 1 1 1 1 1 1 

11 0.5 0.67 0.75 0.8 0.83 0.86 0.875 0.89 0.9 0.91 0.917 

10 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.81 0.833 

9 0 0 0.25 0.4 0.5 0.57 0.625 0.67 0.7 0.73 0.75 

8 0 0 0 0.2 0.33 0.43 0.5 0.556 0.6 0.64 0.667 

7 0 0 0 0 0.17 0.29 0.375 0.444 0.5 0.545 0.583 

6 0 0 0 0 0 0.14 0.25 0.333 0.4 0.455 0.5 

5 0 0 0 0 0 0 0.125 0.222 0.3 0.364 0.417 

4 0 0 0 0 0 0 0 0.111 0.2 0.273 0.333 

3 0 0 0 0 0 0 0 0 0.1 0.182 0.25 

2 0 0 0 0 0 0 0 0 0 0.091 0.167 

1 0 0 0 0 0 0 0 0 0 0 0.083 
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Table 3.6 Sequential Parabolic distribution vectors forassessing the tensile force in 

zippers of 12-storey building 

St. of brace buckled 

Story No. 
1

st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 

12 0 0 0 0 0 0 0 0 0 0 0.083 

11 0 0 0 0 0 0 0 0 0 0.091 0.167 

10 0 0 0 0 0 0 0 0 0.1 0.182 0.25 

9 0 0 0 0 0 0 0 0.111 0.2 0.273 0.333 

8 0 0 0 0 0 0 0.125 0.222 0.3 0.364 0.417 

7 0 0 0 0 0 0.14 0.25 0.333 0.4 0.455 0.5 

6 0 0 0 0 0.17 0.29 0.375 0.444 0.5 0.545 0.583 

5 0 0 0 0.2 0.33 0.43 0.5 0.556 0.6 0.64 0.667 

4 0 0 0.25 0.4 0.5 0.57 0.625 0.67 0.7 0.73 0.75 

3 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.81 0.833 

2 0.5 0.67 0.75 0.8 0.83 0.86 0.875 0.89 0.9 0.91 0.917 

1 1 1 1 1 1 1 1 1 1 1 1 

 

Table 3.7 Sequential Parabolic distribution vectors for assessing the compressive force in 

zippers of 16-storey building 

St.of brace 

buckled 

St No. 

16
th
 15

th
 14

th
 13

th
 12

th
 11

th
 10

th
 9

th
 8

th
 7

th
 6

th
 5

th
 4

th
 3

th
 2

nd
 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

15 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.9 0.92 0.92 0.93 0.93 0.94 

14 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.8 0.83 0.85 0.86 0.87 0.88 

13 0 0 0.25 0.4 0.5 0.57 0.63 0.67 0.7 0.7 0.75 0.77 0.79 0.80 0.81 

12 0 0 0 0.2 0.33 0.43 0.50 0.56 0.6 0.6 0.67 0.69 0.71 0.73 0.75 

11 0 0 0 0 0.17 0.29 0.38 0.44 0.5 0.5 0.58 0.62 0.64 0.67 0.69 

10 0 0 0 0 0 0.14 0.25 0.33 0.4 0.5 0.50 0.54 0.57 0.60 0.63 

9 0 0 0 0 0 0 0.13 0.22 0.3 0.4 0.42 0.46 0.50 0.53 0.56 

8 0 0 0 0 0 0 0 0.11 0.2 0.3 0.33 0.38 0.43 0.47 0.50 

7 0 0 0 0 0 0 0 0 0.1 0.2 0.25 0.31 0.36 0.40 0.44 

6 0 0 0 0 0 0 0 0 0 0.1 0.17 0.23 0.29 0.33 0.38 

5 0 0 0 0 0 0 0 0 0 0 0.08 0.15 0.21 0.27 0.31 

4 0 0 0 0 0 0 0 0 0 0 0 0.08 0.14 0.20 0.25 

3 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 0.19 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 
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Table 3.8 Sequential Parabolic distribution factors for assessing the tensile force in 

zippers of 16-storey building 

 LP-T: Triangular load pattern 

It is assumed a triangular distribution pattern load along the height of the structure. 

 LP-P: Parabolic load pattern 

A parabolic load distribution pattern can be considered as the case of braces buckled in 

all stories, and the same process of LP-SP can be applied to determine the distribution 

vectors for this particular case. As mentioned in previous section, this lateral force distri-

bution is related to the fundamental period of the structure, respectively to the stiffness 

and masses distribution over the structure height. This parabolic pattern load distribution 

St. of brace   

buckled 

St. No. 

1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 10

th
 11

th
 12

th
 13

th
 14

th
 15

th
 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 

14 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.13 0.19 

13 0 0 0 0 0 0 0 0 0 0 0 0.08 0.14 0.20 0.25 

12 0 0 0 0 0 0 0 0 0 0 0.08 0.15 0.21 0.27 0.31 

11 0 0 0 0 0 0 0 0 0 0.1 0.17 0.23 0.29 0.33 0.38 

10 0 0 0 0 0 0 0 0 0.1 0.2 0.25 0.31 0.36 0.40 0.44 

9 0 0 0 0 0 0 0 0.11 0.2 0.3 0.33 0.38 0.43 0.47 0.50 

8 0 0 0 0 0 0 0.13 0.22 0.3 0.4 0.42 0.46 0.50 0.53 0.56 

7 0 0 0 0 0 0.14 0.25 0.33 0.4 0.5 0.50 0.54 0.57 0.60 0.63 

6 0 0 0 0 0.17 0.29 0.38 0.44 0.5 0.5 0.58 0.62 0.64 0.67 0.69 

5 0 0 0 0.2 0.33 0.43 0.50 0.56 0.6 0.6 0.67 0.69 0.71 0.73 0.75 

4 0 0 0.25 0.4 0.5 0.57 0.63 0.67 0.7 0.7 0.75 0.77 0.79 0.80 0.81 

3 0 0.33 0.5 0.6 0.67 0.71 0.75 0.78 0.8 0.8 0.83 0.85 0.86 0.87 0.88 

2 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.9 0.92 0.92 0.93 0.93 0.94 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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considers the inelastic behavior of the ZBF system which is influenced by the stiffness 

provided by braces, masses and building height, as well as the contribution of the higher 

modes effects. 

3.3 Design methodology of outrigger trusses 

As mentioned in Chapter 2, the design of the outrigger truss elements follows the dis-

placement compatibility method initially proposed by Stafford and Salim (1981) and later 

developed by Hoenderkamp and Bakker (2003). By matching the overall rotation of 

braced frame with that of outrigger trusses, the top level displacement expression can be 

computed and limited to the code requirement. Thus, the outrigger truss elements must 

bring sufficient lateral stiffness to reduce the lateral building deflection. 

Prior to the preliminary design of outrigger trusses, the authors of the proposed de-

sign method (Stafford and Salim, 1981 and Hoenderkamp and Bakker, 2003) have con-

sidered several assumptions as follow: 

 The structure is linearly elastic. 

 Only axial forces are induced in the columns. 

 The outriggers are rigidly connected to the braced frame and pin connected to exte-

rior columns. 

 The section properties of the braced frame and columns are uniform through their 

height. 
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About the last assumption, according to Stafford Smith and Coull (1991), the fac-

tors of concern for a preliminary analysis are predominantly influenced by the structural 

properties assigned to the lowest floors region. Although it was mentioned (Smith & 

Coull, Tall building Structures: Analysis and Design, 1991) that an analysis of a structure 

with uniform cross-sections having the properties computed for the lowest region of the 

actual structure, gives sufficient accurate results, in this study, the properties of braces, 

beams and columns sections resulted from design are considered.  

3.3.1 Calculation of rotations in outrigger belted braced frame 

The preliminary design method that was early proposed by Stafford & Salim(1981) is 

employed. Referring to their research, it has been shown that the lateral deflection of an 

outrigger braced concrete shear wall can be represented by a single bending stiffness pa-

rameter, and the deformation due to shear forces can be neglected. Later on Hoender-

kamp and Snijder (2000) pointed out that the racking shear deformation should be also 

included in the analysis. They extended the research and replaced the concrete shear wall 

with steel braced frame, while the system was labeled outrigger belted braced frame. By 

adding the outriggers, reverse rotations are generated. The restraining moment will caus-

es reverse bending and racking shear rotation in the braced frame as illustrated in Figure 

3.6. Compatible rotations are developed in outriggers due to the restraining moment, Mr 

and restraining shear Fr developed in outriggers. Moreover, the exterior columns are ac-
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tivated to provide reverse rigid body rotation due to their shortening and lengthening un-

der axial loading Fa. The equations for rotation and deflection calculation of ZBF with 

outrigger trusses are given below. 

 

Figure 3.6 Free body diagram of outrigger belted braced frame (Hoenderkamp & 

Bakker, 2003) 

3.3.1.1 Rotations of the braced frame 

The main contribution to the lateral deflection of the braced frame is the bending 

rotation computed directly under the lateral loads which are considered uniformly dis-

tributed, w, along the structure height. Accordingly to the method proposed by Hoender-

karp and Bakker (2003), the braced frame is considered as a cantilever beam with a 

length H and bending stiffness EIt. The bending rotation is developed due to the axial 

strain developed in the ZBF’s columns and is expressed as: 
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                      (3.13) 

where x is the distance between the top to the central line of the outrigger. The bending 

stiffness of the brace frame is: 

        
                         (3.14) 

where Aa is the cross-sectional area of the columns in the braced frame at the outrigger 

level, and c is the span of the braced frame. 

The bending rotation is accompanied by the racking shear rotation which is de-

veloped due to the axial strain encountered in braces of ZBF. The expression of racking 

shear rotation is: 

       
  

   
                          (3.15) 

where GAt is the racking shear stiffness of the braced frame and is computed as per Fig-

ure 3.7 and the equation (3.16), given below. 

 

Figure 3.7 Individual segment of the braced frame (after (Hoenderkamp & Bakker, 2003) 

    
     

    

   
 

   
 

     
 

    

                       (3.16) 
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Herein, a1, d1, and h1 are the relevant dimension of the braced frame, Ad1 is the 

cross-sectional area of the brace sections and Ab1 is the cross-sectional area of the top and 

bottom beams as shown in Figure 3.7. 

As illustrated in Figure 3.6, the outrigger action causes a restraining moment in 

the brace frame, Mr that can be expressed as: 

Mr = Fa x (2b +c) = Fa x 2l                   (3.17) 

where Fa is the restraining force in the exterior columns, l is the distance from exterior 

columns to the central-line of the braced frame, b is the distance from exterior column to 

the braced frame interface, and c is the width of the braced frame.  

Therefore, the reverse rotation of braced frame caused by restraining moment, Mr 

can be calculated by analogy with a vertical cantilever beam subjected to Mr at the loca-

tion of outriggers as given below: 

         
       

   
                      (3.18) 

In addition, the racking shear rotation in the braced frame due to the restraining 

moment, Mr, is determined as follow: 

         
  

      
                       (3.19) 

where the dimensionless parameter is   
 

 
. 
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Therefore, by adding the bending and shear rotation of braced frame and sub-

tracted the bending and racking shear rotation due to the restrained moment, Mr, the to-

tal rotation of the braced frame at the outrigger level is: 

   
        

    
 

  

   
 

       

   
 

  

      
             (3.20) 

3.3.1.2 Rotations of outriggers 

Two outriggers are employed in line with the ZBF system, such that the ZBF system is 

located in the middle part as is shown in Figure 3.6. In general the height of the outrigger 

truss is equal to storey height, h, and each truss panel is formed by a single diagonal as 

shown in Figure 3.9. Thus, there are two truss panels in the right and left of the braced 

frame.  

Referring to Figure 3.8, for the two outrigger panels added at each side of the braced 

frame, the bending rotation due to the restraining forces Fr is expressed as: 

        
   

      
                        (3.21) 

where, EIo is the bending stiffness of the outrigger. It can be calculated as: 

    
      

 
                         (3.22) 

where, Ab2 is the cross-sectional area of the top and bottom chord of the outrigger truss. 
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Figure 3.8 Outrigger bending and shear deformations of the ZBF with outrigger truss 

The restraining force, Fr causes axial strain in the diagonals of the outrigger trusses, 

and the generated axial strain in these diagonals implies the shear rotations, expressed 

below: 

        
  

      
                        (3.23) 

where, GAo is the total racking shear stiffness of all the segments of two outriggers and 

can be calculated as per Equations 3.24 and 3.25. 
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Figure 3.9 Individual panels of the outrigger truss (after (Hoenderkamp & Bakker, 2003) 

    ∑    
 
                           (3.24) 

    
  

    

  
 

   
 

  
 

   

                         (3.25) 

In Eq. 3.24, s represents the total number of panels in the two outriggers and GAi is 

the racking shear stiffness of a single panel of length a2 as shown in Figure 3.9. The ex-

pression of GAi as illustrated in Figure 3.9 is given in Equation 3.25. Besides the rotation 

caused by the lateral force, restraining moment and restraining shear, three rigid body 

rotations contribute to the total rotation of the outriggers, while the combined effect is 

shown in Figure 3.10.  
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Figure 3.10 Rigid body rotations of outriggers (Hoenderkamp & Bakker, 2003) 

The shortening and lengthening of columns in braced frame occurred due to lateral 

loading, which caused reverse rotation of outrigger trusses which is calculated as: 

                   
       

  
   

        

    
 

 

  
       (3.26) 

The second rigid body rotation is caused by axial strain developed in the ZBF’s 

columns due to the restraining moment Mr. In this case the outriggers rotate clockwise 

and the ZBF counterclockwise as per Figure 3.10, while the rotation is given below: 

           
       

   
 

 

  
                     (3.27) 

The third rigid body rotation results due to the shortening and lengthening of the 

exterior columns when subjected to the restraining force Fa. The expression is given in 

Eq. (3.28). 



P a g e  | 64 

        
        

   
                       (3.28) 

The stiffness EIc is the bending stiffness of the exterior columns and can be determined 

as:  

         
                          (3.29) 

where Ac is the cross-sectional area of the exterior column. 

Therefore, the total rotation of the outriggers can be expressed as: 

   
   

      
 

  

      
 {

        

    
} {

 

  
}  {

      

   
} {

 

  
}  

        

   
   (3.30) 

3.3.2 Compatibility of rotations 

The compatibility of rotations is achieved by matching the rotation of the outrigger,r, 

with the total rotation of the braced frame t on the center-line of outriggers. 

                                 (3.31) 

Substitutes the two sides of the above equation by Equations (3.20) and (3.30) yields to: 

        

    
 

  

    
 

       

   
 

  

      
 

   

       
 

  

      
 

       

   
   (3.32) 

Apparently, the only unknown in Equation (3.32) is the restraining moment Mr. By solv-

ing this equation and also inducing two characteristic parameters, Sv and Sh which are 

given in equations (3.33) and (3.34), the expression of restraining moment Mr is set as per 

equation (3.35).  

   
 

   
 

 

   
                          (3.33) 
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                    (3.34) 

   {
        

    
 

  

    
}  

 

           
                (3.35) 

Therefore, the top level deflection can be calculated as: 

     
   

    
 

   

    
 

    
     

    
 

  

    
               (3.36) 

In equation (3.36), the first two terms in the right side are the lateral deflection at 

the top level due to bending and racking shear resulted directly from the lateral forces, the 

third term is a combination of lateral deflection at outrigger level caused by restraining 

moment Mr and rotation at outrigger level. The last term represents a horizontal deflec-

tion in the ZBF over the storey height at the outrigger level. 

The process of selecting outrigger truss sections is based on equation (3.36). By 

setting the top level displacement as the code limit (2.5% storey height), the restraining 

moment Mr can be solved. After that, using the compatibility equation (3.32), the only 

unknown is the cross-sectional area of the outrigger truss elements. These characteristics 

are necessary to compute the demanded stiffness in order to control the top level drift be-

low the code limit.  

3.4 Preliminary design of zipper braced frame structure and outrigger truss 

As mentioned in the previous Chapters, a 12- and 16-storey building with and without 

outrigger trusses, as shown in Figure 3.11 were selected for analysis. 
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3.4.1 Building description 

The plan view of the studied building is shown in Figure 3.11. The structures were as-

sumed to be located on a firm ground site in Victoria, BC, Canada. The occupancy of the 

building is considered as office building, therefore, the live load is considered as 2.4 kPa ac-

cording to NBCC 2005 requirement. The live load on the roof level is considered as being the 

snow load which is calculated as 1.48 kPa. The dead load is considered as 3.4 kPa at the roof 

level, and 4.5kPa at the floor level.  

 

Figure 3.11 Plan view of the studied building 

3.4.2 Preliminary design of zipper braced frame 

The zipper braced frame is assumed to be at the same performance level as the moder-

ately ductile concentrically braced frames, type MD (Moderately Ductile). Therefore, the 

ductility related force modification factor, Rd, which reflects the capability of the struc-
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ture to dissipated energy through inelastic incursions, is considered as Rd =3 and the 

over-strength related force modification factor Ro is 1.3. The higher modes effect factor, 

Mv is calculated based on the building fundamental period. The analytical model of the 

frame is shown in Figure 3.12. Gravity columns taking into account the P-delta effect 

were added to the model. The gravity columns are connected to the frame through rigid 

links which transfer only the lateral force to the frame. 

 

Figure 3.12 Computer model of the 12- and 16-storey ZBF system with outrigger trusses 

 

The braces, beams and columns were designed in Phase I, following the NBCC 2005 re-

quirements. The designed sections are shown in Tables 3.9 and 3.10. 
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Table 3.9 Phase I: Member sections of the 12-storey building 

Storey Braces Beams Columns 

12 HSS127x127x8.0 W360x39 W200x  52 

11 HSS152x152x8.0 W360x51 W200x  52 

10 HSS152x152x9.5 W360x51 W310x107 

9 HSS178x178x9.5 W360x51 W310x107 

8 HSS178x178x9.5 W360x51 W310x202 

7 HSS178x178x13 W360x57 W310x202 

6 HSS203x203x 9.5 W360x57 WWF350x263 

5 HSS203x203x 9.5 W360x57 WWF350x263 

4 HSS203x203x  13 W360x64 WWF450x409 

3 HSS203x203x  13 W360x64 WWF450x409 

2 HSS203x203x  13 W360x64 WWF550x503 

1 HSS203x203x  13 W360x64 WWF550x503 

As for preliminary design, a comparison between the zipper forces envelopes as 

calculated from each one of the four considered load distribution patterns applied on the 

12- and 16-storey building without outrigger trusses is shown in Figure 3.13. 

 

Figure 3.13 Axial force envelopes developed in zippers of the 12- and 16-storey building 

without outrrigers under load patterns: LP-ST; LP-SP; LP-T and LP-P 
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Table 3.10 Phase I: Member sections of the 16-storey building 

 

When the load distribution pattern LP-SP for the 12-storey is considered, the enve-

lope of the axial compressive force is too large and the axial tension force is relatively too 

small. This trend is similar for the 16-storey as well. On the other hand, a similar enve-

lope was obtained under the consideration of the LP-T pattern. In light of this, these load 

distribution patterns LP-SP and LP-T were not selected for design. The remaining load 

distribution patterns, potentially to be used in the zipper column design, are LP-ST (se-

quential triangular) and LP-P (parabolic). In the compression side for both 12- and 

16-storey buildings, the larger force is generated under the LP-ST pattern than under the 

Storey Braces Beams Columns 

16 HSS152x152x9.5 W360x33 W310x74 

15 HSS178x178x8.0 W360x51 W310x74 

14 HSS178x178x9.5 W360x51 W310x158 

13 HSS178x178x13 W360x57 W310x158 

12 HSS178x178x13 W360x57 W360x262 

11 HSS203x203x13 W360x64 W360x262 

10 HSS203x203x13 W360x64 WWF450x409 

9 HSS203x203x13 W360x64 WWF450x409 

8 HSS203x203x13 W360x64 WWF500x561 

7 HSS203x203x13 W360x72 WWF500x561 

6 HSS203x203x13 W360x72 WWF550x721 

5 HSS254x254x13 W360x91 WWF550x721 

4 HSS254x254x13 W360x91 WWF650x864 

3 HSS254x254x13 W360x91 WWF650x864 

2 HSS254x254x13 W360x91 WWF650x864 

1 HSS254x254x13 W360x91 WWF650x864 
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LP-P pattern. It is noted that these two envelopes overlapped at the lower half of the 

structure and slowly diverged in the upper part. In the tension side, for the 12-storey 

building, the LP-ST pattern and the LP-P pattern are very close, but still LP-P pattern is 

slightly larger in the middle floors and is proposed for design. Regarding the 16-storey 

building, the axial tensile force envelope of zipper columns is larger under the LP-P pat-

tern than that under the LP-ST pattern. Thus, it is concluded that the LP-ST pattern is 

recommended to be considered for designing the zipper columns under the axial com-

pressive envelope and the LP-P for the tensile envelope. Preliminary designs of zippers 

are carried out following the methodology discussed in this chapter, and the sections 

chosen are as shown in Table 3.11. 

3.4.3 Preliminary design of outrigger truss 

As mentioned early in this chapter, the preliminary analysis method of outrigger truss is 

based on a compatibility concept. According to this method, by matching the rotations of 

the braced frame and outriggers, the top level deflection of the building can be calculated 

by using equation (3.36). Inspired by this, having all other parameters unchanged but set-

ting a limit of the top level deflection, it is possible to conduct a reverse derivation to de-

termine the cross-sectional area of the outrigger truss such that it provides sufficient 

stiffness to reduce the deflection at the top floor level. 
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Table 3.11 Zipper column sections for 12- and16-storey buildings 

Storey Zippercolumns– 16storey bldg. Zipper columns – 12storey 

bldg. 

16 W310x60  

15 W310x86  

14 W310x129  

13 W310x143  

12 W360x179 HSS152x152x8.0 

11 W360x216 HSS178x178x13 

10 W360x262 HSS254x254x13 

9 W360x314 HSS305x305x13 

8 W360x314 (2) HSS254x254x 13* 

7 W360x347 (2) HSS254x254x 13* 

6 W360x347 (2) HSS254x254x 13* 

5 W360x314 (2) HSS254x254x 13* 

4 W360x262 (2) HSS254x254x 13* 

3 W360x216 (2) HSS254x254x9.5* 

2 W310x143 HSS305x305x 13 

1 - - 

* Built-up sections 

 

Referring to equation (3.36), the only parameters associated to the properties of 

outrigger truss members is the structural characteristic parameter, Sh (Eq. 3.34). If Sh is 

known, by using Equations (3.24) and (3.25), the cross-sectional area of outrigger truss 

members, Ad2 can be calculated. Therefore, the top level deflection is set as the code lim-

it, which is 2.5%hs and the Mr is calculated from equation (3.36). 

Rewrite equation 3.36 as below: 
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(     )

    
 

 

    
              (3.37) 

where “ 
   

    
 

   

    
     ” is the required reduction of the top level deflection, ∆top. 

According to Hoenderkamp and Bakker (2003), the first two terms of the right side 

of equation 3.37 represents the free deflection at the top level of the building. In this 

study, the aforementioned two terms: 
   

    
 

   

    
 are replaced by the values of top level 

deflection outputed from Drain-2Dx models. Taking the maximum values for 

consideration,  the free displacement at the top level of subjected buildings, yfree is equal 

to 1.150m for 12-storey building without outriggers; and is equal to 1.543m for 16-storey 

building without outriggers. Therefore, the required reduction of top deflection, ∆top can 

be calculated.  

Meanwhile, rewrite Equation (3.35) as below, 

{
 

           
}     {

        

    
 

  

    
}              (3.38) 

Since Mr is calculated in equation 3.37, by using equation 3.14for EIt, equation 3.16 for 

GAt, and equation 3.33 for Sv, the only unknown is Sh in equation 3.34. Therefore, Sh can 

be solved.  

Therefore, rewrite equation 3.34 as below, 

    
 

       
 

     
 

 

    
 
                   (3.39) 
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After Sh is found from equation (3.38), the total racking shear stiffness of two outriggers, 

GA0 can be calculated by using equations(3.39) and (3.24). Thus, the racking shear 

stiffness of individual outrigger segment, GAi can be found. 

Eventually, rewrite equation 3.25 as below, 

    
  

 

  
    

   
  

  
 

   

                      (3.40) 

Because GAi is calculated in equation 3.39, by using equation 3.40, the cross-sectional 

area of outriggers, Ad2 can be determined from equation (3.40). 

The aforementioned design parameters of outrigger truss members are summarized 

in Table 3.12 given below. 

Table 3.12 Design parameters of outrigger truss  

storey cases 
ytop 

Free 

delfection 

at the top 

level, yfree 

Required 

deflection 

reduction, 

∆top 

Restraining 

moment, 

Mr 

Sh GAo Ad 

[m] [m] [m] [kN*m]   [mm
2
] 

12 Top-truss 1.14 1.15 0.01 2.67E+03 5.44E-07 1.06E+06 4556.33 

16 Top truss 1.52 1.543 0.023 5.15E+03 4.78E-07 1.31E+06 5954.27 

Mid-truss 1.52 1.543 0.023 7.21E+03 5.30E-07 5.32E+05 2055.32 

Two truss 1.52 1.543 
0.0115 2.57E+03 1.14E-06 2.14E+05 775.72 

0.0115 3.61E+03 1.13E-06 1.84E+05 663.29 

 

Moreover, the preliminary design sections of outrigger trusses are given in Table 3.13. 
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Table 3.13 Outrigger truss sections for 12- and 16-storey buildings 

Storey Cases 
Outrigger  truss sections 

External truss pannel  Internal truss pannel 

12 Top truss HSS152x152x9.5 HSS152x152x9.5 

16 Top truss HSS203x203x8.0 HSS203x203x8.0 

Two trusses HSS152x152x9.5 HSS152x152x9.5 

HSS152x152x9.5 HSS152x152x9.5 

3.5 Design summary 

The seismic design and buildings characteristics are presented in Table 3.16. The periods 

of vibration in the first three modes T1, T2 and T3, computed from the elastic dynamic 

analysis by using the modal response spectrum method as implemented in ETABS are 

given in Table 3.16. Also, the periods of vibration in the first three modes T1, T2, and T3 

resulted from a nonlinear time-history analysis conducted by using finite element program: 

Drain-2DX are given in the same table. A good correlation between the structure periods 

computed in Drain-2DX, ETABS, and the equivalent static procedure was observed. As is 

shown in Table 3.16, for the 12-storey building, the difference between the design fun-

damental period Ta and that computed in Drain-2DX, T1, is around 15%, but decreases to 

7.5% after adding one outrigger truss at the roof level. For the 16-storey building, the 

difference between Ta and T1 is 19%, and decreases to 11% after adding one outrigger truss 

at the roof level. Then, by adding one more outrigger truss at the mid-height of the building, 

the difference decreases to 1.2%.  
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To summarize, the member sections of the 12- and 16-storey buildings with and 

without outrigger trusses are shown below in Tables 3.14 and 3.15. 

Table 3.14 Member sections of the 12-storey building 

Storey Braces Beams Columns Zippers Outriggers 

12 HSS127x127x8.0 W360x39 W200x52 HSS152x152x8.0 HSS152x152x9.5 

11 HSS152x152x8.0 W360x51 W200x52 HSS178x178x 13  

10 HSS152x152x9.5 W360x51 W310x107 HSS254x254x 13  

9 HSS178x178x9.5 W360x51 W310x107 HSS305x305x 13  

8 HSS178x178x9.5 W360x51 W310x202 (2) HSS254x254x13**  

7 HSS178x178x 13 W360x57 W310x202 (2) HSS254x254x13**  

6 HSS203x203 9.5 W360x57 WWF350x263 (2) HSS254x254x13**  

5 HSS203x203x9.5 W360x57 WWF350x263 (2) HSS254x254x13**  

4 HSS203x203x 13 W360x64 WWF450x409 (2) HSS254x254x13**  

3 HSS203x203x 13 W360x64 WWF450x409 (2)HSS254x254x9.5**  

2 HSS203x203x 13 W360x64 WWF550x503 HSS305x305x 13  

1 HSS203x203x 13 W360x64 WWF550x503 -  

** Built-up section 
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Table 3.15 Member sections of the 16-storey building 

Storey Braces* Beams Columns Zippers 
Outriggers* 

Top Two 

16 HSS152x9.5 W360x33 W310x74 W310x60 HSS203x8.0 HSS152x9.5 

15 HSS178x8.0 W360x51 W310x74 W310x86   

14 HSS178x9.5 W360x51 W310x158 W310x129   

13 HSS178x 13 W360x57 W310x158 W310x143   

12 HSS178x 13 W360x57 W360x262 W360x179   

11 HSS203x 13 W360x64 W360x262 W360x216   

10 HSS203x 13 W360x64 WWF450x409 W360x262   

9 HSS203x 13 W360x64 WWF450x409 W360x314   

8 HSS203x 13 W360x64 WWF500x561 W360x314  HSS152x9.5 

7 HSS203x 13 W360x72 WWF500x561 W360x347   

6 HSS203x 13 W360x72 WWF550x721 W360x347   

5 HSS254x 13 W360x91 WWF550x721 W360x314   

4 HSS254x 13 W360x91 WWF650x864 W360x262   

3 HSS254x 13 W360x91 WWF650x864 W360x216   

2 HSS254x 13 W360x91 WWF650x864 W310x143   

1 HSS254x 13 W360x91 WWF650x864 -   

*Square tubular sections: width x thickness 

Table 3.16 Seismic design and buildings characteristics 

Storey 

Equivalent static force procedure Dynamic analysis 

Height W Ta S(Ta) V/frame Ft/frame ETABS Drain-2DX 

[m] [kN] [s] [g] [kN] [kN] 
T1 

[s] 

T2 

[s] 

T3 

[s] 

T1 

[s] 

T2 

[s] 

T3 

[s] 
T1/Ta 

12-ZBF 45.6 87035 2.28 0.17 2490 397 2.508 0.797 0.418 2.61 0.802 0.427 1.145 

12 ZBF-RT 45.6 87105 2.28 0.17 2491 398 2.399 0.725 0.391 2.45 0.745 0.4 1.074 

16 ZBF 60.8 116525 3.04 0.13 3334 709 3.471 1.047 0.531 3.615 1.053 0.551 1.189 

16 ZBF-RT 60.8 116595 3.04 0.13 3336 710 3.369 0.971 0.515 3.38 0.981 0.524 1.112 

16 ZBF-RT&M 60.8 116719 3.04 0.13 3339 710 2.916 0.964 0.474 3.077 0.981 0.5 1.012 
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CHAPTER FOUR 

Nonlinear Time-History Analysis of ZBF Building Structures with and 

without Outrigger Trusses 

The studied 12- and 16-storey zipper braced frame (ZBF) structures are designed and il-

lustrated in Chapter 3.According to Tremblay and Tirca (2003), when the higher modes 

effect influences the ZBF behaviour, large axial force is triggered in zipper columns at 

upper floors and dynamic instability may occur after the full-height zipper mechanism is 

formed. Therefore, to improve the seismic performance of ZBF structures, it is proposed to 

add an outrigger truss at the roof level. However, the location of outrigger truss could be 

optimized such that a uniform distribution of interstorey drift over the structure height is 

obtained. In this light, researchers have proposed (Hoenderkamp et al., 2003) to select the 

optimum location for outrigger trusses among the upper one third floors. In this study, the 

design of the outrigger truss is conducted by applying the compatibility concept proposed 

by Taranath (1974) and by using the graphical method developed by Hoenderkamp 

(2003).The purpose of this study is not extended to find the optimal location of outrigger 

trusses added to the 12- and 16-storey ZBF systems, but to analyze the response of the ZBF 

system when outrigger trusses are added to the external zipper braced frame as shown in 

Figure 3.11. Regarding this, the 12-storey ZBF system equipped with outriggers at the roof 
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level is labeled ZBF–RT; the 16-storey ZBF equipped with roof trusses is labeled ZBF–RT 

and the 16-storey ZBF system equipped with outriggers at the roof floor level and at 

building mid-height is labeler ZBF–M&RT. To study the seismic response of the designed 

ZBFs with and without outrigger trusses located in Victoria, BC, three ensembles of 

seismic ground motions such as: crustal, subduction and near-field with forward directivity 

are considered, while the total number of selected records is 21. Thus, each one of the three 

ensembles contains seven ground motions. A detailed description of the analytical models 

is provided and the results of nonlinear time-history dynamic analysis are presented in this 

chapter. All nonlinear time-history analyses were conducted using the Drain 2DX software 

(Sabelli 2001,Tirca & Tremblay 2003, Leon & Yang 2003,Chen, 2011, and Tirca & Chen 

2012), although Chen (2011) has considered Drain 2DX and OpenSees softtware. 

4.1 Zipper braced frame & Outrigger truss modeling 

The Zipper braced frame system was proposed by Khatib and Mahin (1988) with the aim to 

improve the behavior of CBFs that are usually prone to soft-storey mechanism formation. 

As noted in Chapter 2, there are differences between the design method initially proposed 

by Tremblay and Tirca (2003) and Leon and Yang (2003). In the first case, the zipper 

column was designed to behave in elastic range, while in the second case a truss was added 

at the top of the structures, the top floor braces were designed to respond in elastic range 

and zipper columns were allowed to yield in tension. In this study, the design method 
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proposed by Tremblay and Tirca (2003) and later on refined by Chen (2011) and Tirca and 

Chen (2012) is employed. 

Prior to numerical modeling of ZBF with and without outrigger trusses, the follow-

ing assumptions have been made: 

 For simplicity, the building sample has a symmetrical layout as given in Figure 3.11 

and the accidental in plan torsion was omitted. 

 In Drain 2DX, the zipper braced frame is modeled as a 2D frame. Therefore, the 

out-of-plane buckling of brace elements was neglected. 

 To take into account the effect of the overall stiffness, all gravity columns belonging 

to half of the building (there are two ZBF systems in the N-S direction and two in the 

E-W direction) were also considered in the 2D layout of the braced frame. These 

gravity columns were connected to the braced frame through rigid links.  

 All the connections within the structures are assumed to be pin connections, which 

include the brace end connections, beam to column connections, column ends con-

nections. However, columns were considered continue over two stories. 

 The outrigger truss members are pin-connected to the external gravity columns and 

columns of ZBF system. 

Thus, the mathematical model of the ZBF system is illustrated in Figure 4.1 and the model of 

ZBF system equipped with outrigger trusses is shown in Figure 4.2. 
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Figure 4.1 Model of the ZBF system in Drain 2DX 

 

Figure 4.2 Model of the ZBF system equipped with outrigger trusses in Drain 2DX 

4.2 Selection and scaling procedure of ground motions 

4.2.1 Ground motion selection 

As stated above, seven ground motions were selected for each ensemble. This number of 

records is in agreement with ASCE/SEI –7 procedure and it allows users to consider the 

mean response of the studied structures. It is mentioned that the crustal and subduction 

ensemble characterize the seismic hazard of Victoria region. Herein, the near-field en-

semble is added for the comparison purpose. Moreover, it is also suggested that selecting 

records by their acceleration spectral shape close to the design spectral acceleration de-



P a g e  | 81 

mand may further increase the accuracy and efficiency of the procedure (Reyes & Kalkan, 

2011). 

In this light, the crustal ensemble contains records selected from moderate to large 

crustal earthquakes with magnitude ranged from M6.5 to M7.5 and source-to-site distances 

ranged from low to intermediate. All records were selected from the PEER database 

(http://peer.berkeley.edu/peer_ground_motion_database). The subduction ensemble is 

composed of 6 records selected from the mega-thrust Tohoku earthquake (March 11, 2011) 

and one simulated record (Atkinson and Maccis, 2010). As noted by Atkinson (2009), a 

potential mega-trust earthquake with magnitude ranged from M8 to M9 and longer dura-

tion (around 300 s) may happen in the Cascadia subduction zone. The Near-field group 

consists of 7 ground motions characterized by pulse effect and forward directivity. In this 

study, the 7 crustal records were selected from a group of 21 randomly chosen Californian 

records, the 6 subduction records were selected from a group of 18 Tohoku records and the 

simulated record from 6 artificial ground motions as proposed by Atkinson and Macias 

(2009). The artificial subduction record was adjusted against the strong Japan’s subduction 

ground motions recorded during the M8.3 Tokachi Oki earthquake, occurred on September 

23th, 2003 (Atkinson and Macias, 2009). Although the simulations made for distances 

larger than 84 km from the fault and firm soil conditions (site class C) are characterized by 

low (~0.1g) peak ground acceleration (PGA), these selected ground motions contains 

larger energy content and have long durations. Records selected from Tohoku earthquake 

http://peer.berkeley.edu/peer_ground_motion_database
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show PGA=~0.15g at epicentral distances around 350 km and higher PGA=~0.6g at dis-

tances larger than 100 km. The near-field ensemble is composed of 7 near-field records that 

were selected among a group of 12 records. 

According to Reyes and Kalkan (2011), the selection of ground motions was made 

such that to minimize the discrepancy between the scaled spectrum of each record and the 

uniform hazard spectrum over the period of interest (0.2T1~1.5T1). The relevant charac-

teristics such as magnitude – Mw, the hypocentral distance – R, the peak ground acceler-

ation – PGA, the peak ground velocity – PGV, the PGV/PGA ratio as a measure of the 

frequency content, the Trifunac duration – td, and the total duration of the selected records 

– t,are summarized in Table 4.1.  
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Table 4.1 Ground motion characteristics 

No. Event Mw 
R 

(km) 
Station 

Comp. 

(degree) 

PGA 

(g) 

PGV 

(m/s) 

   

   
 

td 

(s) 

t 

(s) 

Crustal ground motions 

C1 Oct.18, 1989Loma Prieta 6.93 19.9 
Anderson Dam Down-

str. 
250 0.244 0.203 0.83 10.51 40.00 

C2 Oct.18, 1989Loma Prieta 6.93 19.3 Presidio 90 0.200 0.320 1.60 5.70 30.00 

C3 
Oct.15, 1979Imperial 

Valley 
6.53 15.2 Cerro Prieto 147 0.170 0.120 0.71 19.70 63.74 

C4 Jan.17, 1994 Northridge 6.70 17.3 St. Monica City Hall 360 0.369 0.253 0.68 10.72 40.00 

C5 Jan.17, 1994 Northridge 6.70 20.1 
Castaic, Old Ridge 

Route 
90 0.568 0.520 0.92 9.10 40.00 

C6 
Apr.25, 1992  

Cape Mendacino 
7.00 40.2 Eureka 90 0.178 0.280 1.57 18.80 89.00 

C7 
Apr.131949 Western 

Wash. 
7.10 76.0 Olympia Test Lab 86 0.280 0.170 0.61 18.80 89.06 

Near-field ground motions 

N1 Jan.17,1995 Kobe 6.9 0.6 JMA 90 0.83 0.92 1.08 8.38 48.00 

N2 Jan.17,1995 Kobe 6.9 1.5 Takatori 90 0.61 1.27 2.08 9.94 40.96 

N3 Jan.17,1994 Northridge 6.7 7.1 Rinaldi 228 0.84 1.75 2.02 7.05 14.95 

N4 Jan.17,1994 Northridge 6.7 7.2 Newhall 90 0.58 1.18 2.03 5.92 60.00 

N5 Jan.17,1994 Northridge 6.7 9.9 Sylmar County Hosp. 90 0.65 1.08 1.62 7.08 60.00 

N6 Jan.17,1994 Northridge 6.7 6.4 
Sylmar Converter Sta-

tion 
52 0.60 1.22 2.03 11.99 44.00 

N7 Dec.23,1985 Nahanni, 6.8 2.5 Site 1 10 0.98 0.46 0.50 7.90 20.56 

Subduction ground motions 

S1 March11, 2011 Tohoku 9.0 156.0 IWT007E E-W 0.66 0.29 0.44 80.96 300.0 

S2 March11, 2011 Tohoku 9.0 201.0 FKSH19N N-S 0.61 1.27 2.08 89.07 300.0 

S3 March11, 2011 Tohoku 9.0 272.0 IBRH16E E-W 0.57 0.31 0.55 66.91 300.0 

S4 March11, 2011 Tohoku 9.0 357.0 CHB001N N-S 0.14 0.28 2.00 83.78 300.0 

S5 March11, 2011 Tohoku 9.0 376.0 TKY027E E-W 0.16 0.28 1.90 93.75 300.0 

S6 March11, 2011 Tohoku 9.0 380.0 TKY026E E-W 0.16 0.28 1.90 99.06 300.0 

S7 Simulated Cascadia 9.0 84.0 VIC084E E-W 0.10 0.28 2.80 38.06 262.0 
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4.2.2 Scaling ground motions 

The selected ground motions are required to be scaled to match the design spectrum in a 

period range between 0.2T1 and 1.5T1, where T1 is the fundamental period of the structure. 

Several scaling procedures could be found in literature: (Kalkan & Chopra 2010; 

Kalkan & Chopra 2011, Baker 2010). In addition to the mentioned procedures, the NBCC 

2005 requires that the scale ground motions to fit the ordinate of the uniform hazard 

spectrum, UHS which corresponds to the fundamental period S(T1), as well as the UHS 

should match or be above of all points corresponding to higher modes. In this study the 

ASCE/SEI -7 procedure is adopted. Accordingly, the mean obtained from at least 7 ac-

celeration spectra must fit the UHS over the period of interest 0.2T1 – 1.5T1. The boundary 

of the shorter period means higher modes, while the boundary of the longer period means 

the degradation of stiffness due to the building’s incursions in the plastic range. In addition, 

Beyer and Bommer (2007) have suggested selecting only one record’s component for an-

alyzing a 2-D building’s model. As mentioned earlier in this chapter, 21 crustal Californian 

records were ranked based on the fundamental period of the studied buildings and in ac-

cordance to Reyes and Kalkan methodology (2010). Thus, the fundamental periods of the 

12-storey ZBF and 12-storey ZBF-RT is T1 = 2.61s and T1 = 2.45s respectively. For the 

16-storey ZBF building, the fundamental period is T1 = 3.615s, and for the 16-storey 

ZBF-RT and ZBF-M&RT the fundamental period is T1 = 3.378s and T1= 3.1s, respec-

tively. By using Reyes and Kalkan methodology, the record with the lowest scaling factor 
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is ranked the highest. The fundamental periods of each configuration in 12- and 16-storey 

ZBF are shown in Table 4.2. The scaled spectrums of the selected ground motions are 

plotted together with the UHS for Victoria region and are illustrated in Figure 4.3 and 4.4 

for the 12-storey building and in Figures 4.5 to 4.7 for the 16-storey building. Meanwhile, 

for each ground motion ensemble, the mean of the scaled response spectrums is also il-

lustrated in the plots. In addition, the scaling factors (SF) for the selected ground motions 

of 12-storey and 16-storey are given in Table 4.3 and Table 4.4. 

Table 4.2 The fundamental periods of 12- and 16-storey ZBF with different 

configurations of outrigger trusses 

Type of Building Type of configuration Fundamental period, T1(s) 

12-storey 
ZBF 2.61 

ZBF-RT 2.45 

16-storey 

ZBF 3.61 

ZBF-RT 3.38 

ZBF-M&RT 3.08 

 

 

Figure 4.3 Design and scaled acceleration response spectrum for the 12-storey ZBF 

building 
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Figure 4.4 Design and scaled response spectrum of the selected accelerograms for 

12storey ZBF-RT building 

 

Figure 4.5 Design and scaled response spectrum of the selected accelerograms for the 

16-storey ZBF building 

 

Figure 4.6 Design and scaled response spectrum of the selected accelerograms for 

16-storey ZBF-RT building 
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Figure 4.7 Design and scaled response spectrum of the selected accelerograms for 

16-storey ZBF-M&RT building 

Table 4.3 Scaling factors of selected ground motions for analyzing the 12-storey 

buildings 

No. Event 

12-storey ZBF bldg. 12-storey ZBF-RT bldg. 

Trange:0.52 – 3.92s Trange:0.49 – 3.68s 

SF PGA(g) SF PGA(g) 

C1 Anderson Dam, Loma Prieta 2.325 0.567 1.886 0.494 

C2 Presidio, Loma Prieta 2.355 0.472 2.073 0.422 

C3 Cerro Prieto, Imperial Valley 3.698 0.639 3.073 0.541 

C4 St. Monica City Hall Northridge 1.989 0.734 1.760 0.666 

C5 Castaic Old Ridge R., Northridge 0.981 0.627 0.986 0.569 

C6 Eureka, Cape Mendacino 2.482 0.447 2.299 0.408 

C7 Olympia Test Lab, West. Wash 2.618(2.346)* 0.742 2.324 0.661 

S1 IWT007E, Tohoku 1.685 1.112 1.519 1.002 

S2 FKSH19N, Tohoku 1.031 0.629 0.934 0.570 

S3 IBRH16E, Tohoku 1.957(1.607)* 1.115 1.923(1.753)* 1.096 

S4 CHB001N, Tohoku 2.173(1.373)* 0.304 2.229(1.489)* 0.312 

S5 TKY027E, Tohoku 1.895(0.955)* 0.303 1.952(1.052)* 0.312 

S6 TKY026E, Tohoku 2.012(0.907)* 0.322 2.009(1.209)* 0.321 

S7 VIC084E,simulated 3.753(1.753)* 0.375 3.808(1.733)* 0.381 

N1 JMA, Kobe 0.516 0.442 0.476 0.403 

N2 Takatori, Kobe 0.494 0.305 0.466(0.422)* 0.284 

N3 Rinaldi, Northridge 0.461 0.387 0.423 0.358 

N4 New Hall, Northridge 0.891 0.526 0.823 0.478 

N5 Sylmar C. Hosp., Northrige 0.857 0.577 0.796 0.522 

N6 Sylmar Conv.St., Northrige 0.545 0.349 0.539 0.324 

N7 Site 1, Nahanni 1.670 1.656 1.508 1.498 

( )* rescaled ground motions 
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Table 4.4 Scaling factors of selected ground motions for analyzing the 16-storey building 

No. Event 

16-storey 

ZBF bldg. 

16-storey 

ZBF-RT bldg. 

16-storey 

ZBF-M&RT bldg. 

Trange: 

0.72 – 5.42s 

Trange: 

0.68 – 5.07s 

Trange: 

0.62 – 4.62s 

SF PGA(g) SF PGA(g) SF PGA(g) 

C1 Anderson Dam, Loma Prieta 2.773 0.677 2.666 0.677 2.520 0.615 

C2 Presidio, Loma Prieta 2.124 0.425 2.140 0.425 2.269 0.454 

C3 Cerro Prieto, Imperial Valley 4.687 (3.834*) 0.797 
4.521 

(3.738)* 
0.797 

4.127 

(3.973)* 
0.702 

C4 St. Monica City Hall Northridge 1.845 0.681 1.845 0.681 1.919 0.708 

C5 Castaic Old Ridge R., Northridge 1.003 0.570 1.010 0.570 1.067 0.606 

C6 Eureka, Cape Mendacino 
2.126 

(1.526)* 
0.378 

2.202 

(1.607)* 
0.378 

2.386 

(1.616)* 
0.425 

C7 Olympia Test Lab, West. Wash 
2.910 

(2.66)* 
0.815 

2.947 

(2.75)* 
0.815 

2.824 

(2.304)* 
0.791 

S1 IWT007E, Tohoku 
2.789 

(1.789)* 
1.841 

2.620 

(1.739)* 
1.729 

2.354 

(1.629)* 
1.553 

S2 FKSH19N, Tohoku 
1.818 

(1.100)* 
1.109 

1.561 

(1.051)* 
0.952 

1.301 

(1.055)* 
0.794 

S3 IBRH16E, Tohoku 2.193 1.250 2.157 1.230 2.101 1.197 

S4 CHB001N, Tohoku 
1.836 

(1.176)* 
0.257 

1.875 

(1.443)* 
0.263 

1.957 

(1.691)* 
0.274 

S5 TKY027E, Tohoku 
1.553 

(1.093)* 
0.248 

1.606 

(1.133)* 
0.257 

1.692 

(1.170)* 
0.271 

S6 TKY026E, Tohoku 
1.668 

(1.198)* 
0.267 

1.736 

(1.183)* 
0.278 

1.831 

(1.274)* 
0.293 

S7 VIC084E, simulated 
3.886 

(1.936)* 
0.389 

4.012 

(2.032)* 
0.401 

4.080 

(2.056)* 
0.408 

N1 JMA, Kobe 0.540  0.448 0.531 0.441 0.531 0.441 

N2 Takatori, Kobe 0.456  0.278 0.465 0.283 0.480 0.293 

N3 Rinaldi, Northridge 0.456  0.383 0.455 0.382 0.458 0.385 

N4 New Hall, Northridge 1.028  0.596 1.030 0.598 1.012 0.587 

N5 Sylmar C. Hosp., Northrige 0.938  0.610 0.945 0.614 0.942 0.613 

N6 Sylmar Conv.St., Northrige 
0.563 

(0.493)* 
 0.338 

0.563 

(0.443)* 
0.338 

0.573 

(0.470)* 
0.344 

N7 Site 1, Nahanni 1.872  1.835 1.847 1.810 1.798 1.762 

( )* rescaled ground motions 
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4.3 Numerical analyses using Drain-2DX 

4.3.1 Modeling in Drain-2DX 

In this study, the Drain-2DX models are built up by using three types of finite elements: 

Element 01, Element 02, and Element 05. 

Element 01 is a simple elastic truss element which is used for modeling of truss 

members. In this study, it is used to model the diagonals of the outrigger trusses added to 

the ZBF structures. This element has two alternative modes of inelastic behavior which are 

1) yielding in both tension and compression, and 2) yielding in tension but elastic buckling 

in compression. The latter mode is considered in the models of this study. 

Element 02 is a simple inelastic beam-column element which is used to simulate the 

behavior of steel beams and beam-column members. The element is made up of an elastic 

beam segment and two rigid-plastic hinges at its ends. All plastic deformations are con-

centrated within the plastic hinges. This element is assigned for modeling beams and 

columns. 

Element 05 is a refined physical theory brace model developed by Ikeda and Mahin 

(1986), which achieved efficiency by combining analytical formulations describing plastic 

hinge behaviour with empirical formula developed based on a study of experimental data. 

Element 05 was calibrated by Ikeda and Mahin based on experimental test results. How-

ever, these parameters were recalibrated to match the hysteresis behaviour of braces with 
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hollow sections based on previous experimental tests results (Chen, 2011). This element 

was used to model both braces and zipper columns. 

In this study, a 3% Rayleigh damping was assigned to the model. All the zipper 

columns and braces are pin connected to the gusset plate. The P-delta effect has been 

considered for both ZBF columns and gravity columns. The elevation of the computer 

model is illustrated in Figures 4.1 and 4.2. 

4.3.2 Drain 2DX results 

The seismic performance of the studied buildings is sensitive to the ground motions charac-

teristics such as: the frequency content, the ratio of PGV/PGA, and the duration. For instance, 

under crustal ground motions, the maximum tensile forces in zipper columns were triggered in 

the lower part of the building (e.g. the 4th and the 5th floor), while the maximum compressive 

forces in zipper columns was developed at the upper floors of the buildings (e.g. 8th ~ 9th floors 

for the 12-storey and the 13th ~ 15th floor for the 16-storey). Regarding the behavior of building 

structures under the subduction ground motion ensemble, it was observed a large seismic 

demand at the lower part of the building, were zipper columns are acting in tension and transfer 

the tensile force upwards. Whereas, for near-field ground motions, the largest demand applied 

at the upper part of the buildings; therefore, the zipper columns act in compression while 

triggering forces downwards. Moreover, as mentioned in Chapter 3, in order to capture the 

axial force envelope used for preliminary design of zipper columns, several lateral load dis-

tribution pattern were considered. By analyzing the tension and compression envelopes from 
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each load pattern, sequential triangular distribution (LP-ST) is chosen as the compression 

envelope and parabolic distribution (LP-P) is chosen as the tension envelope for design. This 

selection is also in agreement with the refined design envelopes proposed by Chen (2011)   

and Tirca and Chen (2012). The maximum and the mean axial force envelopes developed in 

zipper columns of the 12- and 16-storey buildings computed in the N-S direction is shown in 

Figures 4.8 and 4.9. The maximum and the mean interstorey drift of the 12- and 16-storey ZBF 

under the selected ground motions is plotted in Figures 4.10 and 4.11. 

 

Figure 4.8 Axial force in zipper columns obtained from nonlinear  time-history analyses 

of 12-storey building with and without outrigger trusses: a) Crustal, b) Subduction, c) 

Near-field 
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Figure 4.9 Axial force in zipper columns obtained from nonlinear time-history analyses 

of 16-storey buildings with and without outrigger truss: a) Crustal, b) Subduction, c) 

Near-field 

Referring to Figures 4.8 and 4.9, the mean values of axial forces developed in zipper 

columns are within the design envelope in both tension and compression side. Furthermore, 

by observing the difference of the mean values of zipper forces before and after adding 

outrigger trusses, as expected, the amount of axial load transferred to the zipper column 

increases which indicate that adding outrigger trusses the lateral resistance of the ZBF 

system increases as well. To address the concern raised by Tremblay and Tirca (2003) 
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about the higher modes effect activation, the mean envelopes of zipper forces developed in 

the ZBF-RT system has diminished the probability of full-height zipper mechanism for-

mation. In addition, the lateral deformations are substantially reduced especially for the 

16-storey building as shown in Figures 4.10 and 4.11 for the N-S direction. Thus, by 

adding outrigger trusses, it provides extra lateral stiffness and activates exterior gravity 

columns to participate in resisting the applied lateral loads.  

 

Figure 4.10 Computed interstorey drift for 12-storey building with and without outrigger 

truss, a) Crustal; b) Subduction; c) Near-field 
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Figure 4.11 Computed interstorey drift for 16-storey building with and without outrigger 

truss, a) Crustal; b) Subduction; c) Near-field 

As illustrated in Figures 4.10 and 4.11, by adding outrigger trusses to the ZBF system, 

a more uniform distribution of the interstorey drift along the building height is observed. 

Under all selected ground motions, the mean values of the interstorey drifts for the 12- and 

16-storey buildings without outrigger trusses are larger than 2.5%hs at upper floors (e.g. 

4%hs for the 12-storey and ~ 5%hs for the 16-storey, where hs is the storey height). In 

addition, the 16-storey building experienced larger interstorey drift values at the 1
st
 and 2

nd
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floor level, which are in the range of 2.5%hs to 4%hs. Thus, byadding top outrigger trusses 

to the 12-storey building in both N-S and E-W direction, the interstorey drift is within the 

code acceptance (< 2.5%hs). Regarding the 16-storey building with top outrigger trusses 

(ZBF-RT), under the crustal ground motions ensemble, the interstorey drift is within the 

code limit along the building height. However, this is not the case under the subduction and 

near-field ground motions. In this case, is required either to find an optimum floor location 

for the outrigger trusses (between the 12- and 15- floor) or to add outrigger trusses at two 

floor levels as the top and the 8
th

 floor (mid-height). 

Details concerning the behavior of the aforementioned structures are given in 

Chapter 5. 
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CHAPTER FIVE 

Comparative Study of Time-History Response of ZBF Building 

Structures with and without Outrigger Trusses under various Ground 

Motions 

To investigate the behaviour of low-, middle-, and high-rise seismic resistant ZBF build-

ings, record-to-record examination of inelastic response is required. In this study, as a 

measure of ground motion intensity, the PGV/PGA ratio (shown in Table 4.1) is used for 

identifying different intensity levels of the selected ground motions and studying the in-

fluence of ground motions on the inelastic response of the buildings. From high to low 

PGV/PGA ratio, three records are selected from each of the ground motion ensembles. 

Therefore, C2, C6, and C4 were selected from the crustal ensemble; S7, S4, and S2 were 

selected from subduction ensemble; and N6, N1, and N7 were selected from near-field 

ensemble. In this study, the importance of PGV/PGA ratio and the period cycles was also 

observed. For example, the N6 and N1 record have the same PGA; however, the PGV/PGA 

ratio and the period cycles of N6 are twice larger than that of N1. Also, for cases like C2 

and C6 which has the same PGA and PGV/PGA ratios but have different period cycles, the 

applied lateral demand can also be different. Thus, ground motions characterized by sim-

ilar PGA but large PGV/PGA ratio and large-period cycles may input high demand into the 
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structure. To emphasize the influence of ground motions and building height on the seis-

mic response of ZBF buildings, 3 x 3 case studies are carried out for each building sub-

jected to crustal, subduction and near-field records selected to cover a large, intermediate 

and low PGV/PGA ratio. The time-history diagram of the selected ground motions are 

shown in Figure 5.1. The same explanatory approach was considered by Tirca and Chen 

(2012). 

 

Figure 5.1 Selected records ranked on descended PGV/PGA ratio: a) crustal; b) 

subduction; c) near-field 

In this study the full-height zipper mechanism is defined when the first brace 

buckling starts either at the bottom floor or the roof level and propagates either upwards or 

downwards. Thus, when all compression braces reached the post-buckling strength, all 

tensile braces with few exceptions reached yielding and all ZBF beams have hinged, the 

full-height zipper mechanism is formed.  
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The failure status is reached when the lateral loads keep increasing after the 

full-height zipper mechanism is formed. Shortly, braces reached failure, as well as the 

attached beams. Theoretically, the dynamic instability is reached when under constant 

lateral loading the deflected shape continuously increases under the effect of gravity loads.  

5.1 Seismic response of the 12-storey ZBF building 

As shown in Figure 4.10, under crustal ground motions, the mean interstorey drift values 

of the 12-storey ZBF are equally distributed over the building height except for the 11
th 

storey where the interstorey drift is 1.86%. Due to the higher modes effect, a larger de-

mand is found at the upper floors. Under the near-field ground motions, the mean enve-

lope of the interstorey drifts is completely within the code limit, and the peak value is 

captured at the top floor where the value is 1.73%hs. Under subduction ground motions, 

the mean interstorey drift value reaches 2.74%hs at the 11
th 

floor that exceed the code 

limit. 

Regarding the development of axial force in the zipper columns, as shown in Figure 

4.8, the tensile forces in zipper columns are larger than the compressive forces under the 

crustal and subduction ground motions. However, under near-field ground motions, the 

axial demand in zipper columns is larger in compression than in tension. The maximum 

tensile and compressive axial force design envelopes are validated against the 

time-history ZBF response under the selected 21 ground motions. Thus, the chosen lateral 

pattern load distribution used to build the axial force design envelopes provided an accu-
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rate prediction of axial forces demanded in zipper columns of the 12-storey ZBF build-

ing. 

As shown for exemplification in Figure 5.2, the deformed shapes of the 12-storey 

building are subjected to ground motions C2, C6, and C4 that have different PGV/PGA 

ratios. In this respect, the largest ratio (1.6) occurred for C2 and C6, while C4 is charac-

terized by a smaller ratio (0.68). As demonstrated by Tirca and Chen (2012), the seismic 

demand increases for larger PGV/PGA ratios. Thus, under the C2, the brace buckling and 

yielding was propagated in less than 0.35s from the 12
th

 to the 1
st
 floor. Braces that 

reached buckling are located at the right half-span of the ZBF and the location of the 7 

yielding braces was in the left half-span. When the 12-storey building was subjected to 

the scaled ground motion C6, the studied building almost reaches the failure status. The 

first brace buckling happens at the bottom floor, but not develops in a strict order. After 

all the braces buckled or yielded, beam hinges form simultaneously in all the floors, and 

the building eventually deflected in the 3
rd

 vibration mode. The higher modes were also 

captured under the ground motion C4. The brace buckling is initiated at the top level; 

however, buckling of braces is not propagated in a strict order, but the structure deflected 

in the 2
nd

 vibration mode. 

Similarly, under the near-field ground motions, the first brace buckling is captured 

either at the bottom or the top floor where larger interstorey drift demand is developed. 
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The time-history response of braces buckling and beams hinging under the N6, N1 and 

N7 records is illustrated in Figure 5.3.  

 

Figure 5.2 Time-history response of brace buckling and beam hinging for 12-storey 

building without outrigger truss under motions C2, C4, and C6 (  the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○ yielding of brace) 

Under motion N6, bucking of braces initiated at the top level and progressed downward 

until the bottom floor in only 0.31 s. When ground motion reversed, braces belonging to 

the other half-span reached buckling starting from the bottom and progressing toward the 
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top. After almost all braces have buckled and a few reached yielding, beams started 

hinging in all the floors from top to bottom. Thus, the 12-storey building has reached the 

collapse status while subjected to 88% of the scaled ground motionN6. Also, under the 

ground motion N7, the collapse status is reached when the building was subjected to 96% 

of the scaled ground motion. The first brace buckling occurs at the ground floor and  

 

Figure 5.3 Time-history response of brace buckling and beam hinging for 12-storey 

building without outrigger truss under motions N1, N6, and N7 (  the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○ yielding of brace) 
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propagates upward. Similarly, all beams of the 12-storey building are hinged during the 

N7 ground motion excitation. The building response under the ground motion N1 shows 

larger lateral force demand imposed at lower floors. Thus, 9 braces in the left half-span 

buckled, and 7 braces in the right half-span have reached yielding. Most of the buckling 

and yielding happened in the lower 7 floors of the building.  

Under subduction ground motions, the higher modes of the 12-storey building are 

also activated. The time history of braces buckling and beams hinging resulted under mo-

tions S2, S4, and S7 is showed in Figure 5.4. Within this ensemble, four ground motions 

characterized by large PGV/PGA ratio (S4 to S7) drove the 12-storey building to collapse. 

Regarding with this, the studied building is able to carry about 70% of S4, S5, S6 and 53% 

of the S7 demand. Under motion S7, the 12-storey building reaches the failure status 

when subjected to 47% of the scaled ground motion. The first brace buckling occurs at 

the top floor at 109.8 s and progresses downward almost simultaneously. Within 1.1s, all 

braces on the right half-span buckled from the 12
th

 to 2
nd

 floor. After ground motion re-

versed, the buckling of braces starts from the bottom floor level and propagates upward 

but not in sequence. After all braces buckled or yielded, beam hinges start to form at all 

floors. Under ground motion S4, the 12-storey building also reaches the failure status 

while subjected to 63% of the scaled ground motion. The first buckled brace was inter-

cepted at the ground floor and in both half-spans buckling of braces propagated upward. 

After that, the beam hinging starts from the bottom to the top floor level. Under the S2 
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ground motion, half of braces have either buckled or yielded. However, braced belonging 

to the 5
th

 floor remained to behave in elastic range. The first brace buckling has initiated 

at the ground floor and buckling of braces progresses upward. 

 

Figure 5.4 Time-history response of brace buckling and beam hinging for 12-storey 

building without outrigger truss under motions S2, S4, and S7 (  the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○yielding of brace) 
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5.2 Seismic response of the 12-storey ZBF-RT building 

Referring to Figure 4.10 which illustrates the interstorey drift envelope of the 12-storey 

building with roof outrigger trusses, the mean interstorey values under crustal ground 

motions are below the code limit at all floor and are uniformly distributed along the 

building height. After adding one outrigger truss at the top floor level to each ZBF frame, 

the roof displacements is substantially reduced and the upper stories experience larger 

lateral demand in term of interstorey drifts than the lower stories. The peak mean value of 

interstorey drift is captured at the 11
th

 floor and is 1.49%hs. Under the near-field ground 

motions, the mean envelope of interstorey drift is still within the code limit, 2.5%hs. The 

interstorey drift values are uniformly distributed except that is concentrated at the 11
th

 

floor which is (1.52%hs). Under Subduction ground motions, the seismic response of the 

12-storey ZBF with roof truss is more stable than that resulted for the structure without 

outrigger trusses. Thus, we can summarize that roof outrigger trusses control the inter-

storey drift and make the upper part of the structure stiffer. Thus, larger axial forces in 

zippers are triggered at the upper tier of the building. In this regard, the peak mean inter-

storey drift value decreases from 2.74%hs to 1.47%hs, while this peak has migrated from 

the 11
th

 floor to the 9
th

 floor.  

Moreover, in Figure 4.8, under Near-field ground motions, the axial demand of 

zipper columns is larger in compression than in tension. Whereas, the tensile forces in 

zipper columns are larger than compressive forces under the Crustal and Subduction 
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ground motions. In addition, a summary of all mean values of axial forces developed in 

zipper columns of the 12-storey ZBF with outrigger trusses under all the selected ground 

motions indicates that the compressive demand is generally higher than the tensile de-

mand in zipper columns. It also shows that the axial force in zipper columns are generally 

increased after adding one outrigger truss. The above two findings tells  us that by add-

ing roof outrigger trusses in the structural system of the 12-storey ZBF, the system is able 

to carry a larger axial load in zipper column, and the lateral resistance of the studied 

building is increased.  

Figure 5.5, illustrates the deformed shape of the 12-storey building with roof out-

rigger trusses subjected to ground motions C2, C6, and C4. Under ground motion C2, the 

induced forces drive the building in the nonlinear range while deflecting the braced frame 

in the 3
st
 vibration mode. Comparing the response to that resulted for ZBF without out-

rigger trusses, the brace buckling is still initiated at the top level, and 10 brace members 

reached buckling successively in less than 1.14 s, while buckling is propagating down-

ward. In addition, in the 1
st 

and 3
rd

 floors, braces remain to behave elastically in compar-

ison with the ZBF system without outriggers. A more stable response is captured under 

ground motions C4 and C6. Thus, under ground motion C4, the first brace buckling oc-

curs at the top level and propagates downward until the 7
th

 floor. Also, buckling of braces 

occurs at the 1
st
 and 2

nd
 floors as well. However, with the participation of the outrigger 

truss, the number of brace buckling and yielding is substantially decreased. The percent-
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age of the buckled braces drops from 58% to 42%, and the total percentage of buckled 

and yielded braces drops from 83% to 64.5%. Under the ground motion C6, the brace 

buckling starts at the top floor level and propagates to the 5
th

 floor within 1.5s (from 

9.76s to 11.22s). Moreover, the percentage of buckled braces drops from 90.6% to 58%, 

and the total percentage of buckled and yielded braces drops from 100% to 62.5%.  

 

Figure 5.5 Time-history response of brace buckling and beam hinging for 12-storey 

building with roof outrigger trusses under motions C2, C4, and C6( the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○ yielding of brace) 

The time-history response of braces buckling and beams hinging under ground mo-

tions N6, N1 and N7 is illustrated in Figure 5.6. As mentioned before, without adding the 
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outrigger truss, the studied building reaches the full-height zipper mechanism under 

ground motions N6 and N7. However, after adding one roof outrigger truss, the building 

is able to carry forces developed under the scaled ground motionsN6. The buckling of 

braces initiated at the top floor level and progressed downward until the bottom floor.  

 

Figure 5.6 Time-history response of brace buckling and beam hinging for 12-storey 

building with one outrigger truss under motions N1, N6, and N7( the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○ yielding of brace) 

The percentage of the buckled braces decreases from 75% to 67% and the number of 

beam hinges decreases from 12 to 7%. Under ground motion N7, the first brace buckling 

occurred at the 2
nd

 floor and then it propagates upward. Comparing to the case without 



P a g e  | 108 

outrigger trusses, the percentage of brace buckling decreases from 50% to 46%, and the 

total number of buckled and yielded braces decreases from 100% to 62.5%. In addition, 

there is no beam hinging observed. The building response under ground motion N1 

shows larger lateral demand at lower floors. Thus, five brace members in the left 

half-span have buckled, and five of the braces in the right half-span yielded. Also, the 

buckling and yielding mostly occurred from the 2
nd 

to the 4
th

 floor of the building and the 

number of floors remaining in elastic increases from 3 to 6.  

Under ground motions S2, S4 and S7, the history of braces buckling and beams 

hinging is showed in Figure 5.7. Under ground motion S7, the studied building reaches 

the failure status when subjected to 45.5% of the scaled ground motion. The first brace 

still buckles at the top floor level and brace buckling propagates downward until the 

ground floor within 1.4s. Under the S4 ground motion, the studied building reaches the 

failure status when subjected to 66.8% of the scaled ground motion. The first brace buck-

ling occurs at the second floor, and after all the braces buckled or yields, beam hinges 

form in all the stories. Under ground motion S2, the brace buckling starts at the bottom 

floor, and 28.13% of braces have either buckled or yielded. Comparing to the case with-

out outrigger truss, the seismic performances are similar between them. 

 



P a g e  | 109 

 

Figure 5.7 Time-history response of brace buckling and beam hinging for 12-storey 

building with one outrigger truss under motions S2, S4, and S7( the first buckled brace; 

● subsequently buckled brace and beam hinging; ○ yielding of brace) 

5.3 The behavior of roof outrigger trusses added to the 12-storey building 

The geometrical configuration of diagonals in outrigger trusses has an important impact in 

design if the analyzed elevation supports secondary beams. Regarding this, under the 

gravity load component, diagonals of outriggers could be subjected to tension or to com-

pression. If the geometry chosen for outrigger diagonals is prone to development of tensile 

forces, as is shown in Figure 5.8a, the system is cost-efficient. The axial forces developed 

in diagonals from the gravity load component (DL+0.5LL) are shown in Figure 5.8b. For 
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comparison purpose, a geometrical configuration of diagonals loaded in compression from 

the gravity load component (DL +0.5LL) is shown in Figure 5.9. As is expected, the axial 

force in the internal outrigger panels is almost twice that that in the external outrigger 

panel. If the time-history loading is applied to the structures in addition to the gravity 

component, as is shown in Figure 5.8, the forces developed are larger in tension than in  

 

Figure 5.8 Outrigger truss configuration 1 and axial loads developed in the outrigger 

diagnals under the gravity component 
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Figure 5.9 Outrigger truss configuration 2 and the axial loads developed in the outrigger 

diagonals under the gravity component 

compression. Time-series of axial force developed in diagonal of roof outriggers under the 

crustal ground motion C2 are shown in Figure 5.10a for the external panel and in Figure 

5.10b for the internal panel. In addition, the maximum value reached under the C4 and C6 

ground motions is also indicated in the graph.  
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Figure 5.10 Time-history axial load in outrigger truss elements: a) exterior panel T1-e 

and b) interior panel T1-i under ground motion C2 

The time-history series of axial force developed in diagonal of outriggers under the sub-

duction ground motion S4 and near-field ground motion N6 is shown in Figures 5.11 and 

5.12 
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Figure 5.11 Time-history axial load in outrigger truss elements: a) exterior panel, T1-e 

and b) interior panel T1-i under ground motion S4. 

The deflected shape of the entire elevation under the crustal ground motion C2 is shown in 

Figure 5.13. 
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Figure 5.12 Time-history axial load in outrigger truss elements: a) exterior pane T1-e 

and b) interior pane T1-i under ground motion N6 

 

Figure 5.13 Deformed shape of the 12-storey ZBF-RT under ground motion C2 
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5.4 Seismic response of the 16-storey ZBF building 

 The interstorey drift envelope of the 16-storey ZBF without outrigger truss is presented 

in Figure 4.11. Under crustal ground motions, large lateral drift demand is intercepted at 

the upper stories, and the peak mean value of interstorey drift is obtained at the 15
th 

floor 

as 2.92%hs which is higher than the code limit. Also, under Near-field ground motions, 

the peak mean value of interstorey drift is 2.16%hs at the 15
th 

floor. UnderSubduction 

ground motions, the peak mean value of interstorey drift value is 3.13%hs at the 15
th 

sto-

rey which also exceed the code limit. 

As is shown in Figure 4.9, under Crustal and Near-field ground motions, the axial 

demand of the zipper columns is larger in compression than in tension. However, under 

Subduction ground motions, the tensile forces in zipper columns are larger than the com-

pressive forces. By considering all ground motions, the peak mean values of tensile forc-

es are observed at the upper floors, and that of compressive forces are captured in the 

lower stories. In general, under Subduction ground motions the axial demand is larger in 

compression than in tension. 

In Figure 5.14, the deformed shape of the 16-storey building under ground motions 

C2, C6, and C4 are shown. Ground motion C2 induced forces that drive the building in 

the nonlinear range while deflecting in the 3
rd

 vibration mode. The first brace buckling is 

captured at the top level and buckling progresses downward in less than 2.57 s from the 

16
th

 to the 1
st
 floor. When the 16-storey building was subjected to 84% of the scaled mo-
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tion C6, the failure status is reached. The first brace buckling occurs at the top level at 

9.72s, and propagates from top to bottom in less than 0.84 s (from t = 9.72s to 10.56s). 

The beam hinges start to form at 10.66s and then has develop in all the floors. The higher 

modes were also captured under the C4 ground motion when building deflected in the 3
rd

 

vibration mode and buckling of braces has occurred at all floors with 4 exceptions. 

Moreover, in 8 out of the 16 floors, both brace members belonging to the same floor have 

reached either buckling and yielding or only buckling after the ground motion reversed. 

The first brace buckling occurs at the top floor level. However, brace buckling is not de-

veloped in a consecutive sequence.  



P a g e  | 117 

 

Figure 5.14 Time-history response of brace buckling and beam hinging for 16-storey 

building without outrigger truss under motions C2, C4, and C6( the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○ yielding of brace) 

The time-history response of braces buckling and beams hinging under ground mo-

tions N6, N1 and N7 is illustrated in Figure 5.15. Under ground motion N6, the studied 

building reaches the failure status when subjected to 87.6% of the scaled ground motion. 

The brace buckling is initiated at the top level, and propagates to the ground level in 

1.64s. All beams hinged after the brace buckling and yielding occurred. Under ground 
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motion N7, the 16-storey building reached the failure status while subjected to 100% of 

the scaled ground motion.  

 

Figure 5.15 Time-history response of brace buckling and beam hinging for 16-storey 

building without outrigger truss under motions N1, N6, and N7( the first buckled 

brace; ● subsequently buckled brace and beam hinging; ○ yielding of brace) 

The brace buckling starts at the ground floor and then propagates upward. All 

braces reached either buckling or yielding and beams formed hinges in all the floors. The 
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building response under the N1 ground motion shows large demand in the upper floors. 

The brace buckling is initiated at the top floor level, and then propagates from the 16
th

 to 

the 10
th

 floor. Almost simultaneously, the buckling also starts developing from the 5
th

 to 

the 1
st
 floor. After the ground motion excitation, there are 3 floors that are still perform-

ing in elastic range. 

The higher modes of the 16-storey building are also activated under Subduction ground 

motions. Thus, under ground motions S2, S4 and S7, the history of braces buckling and 

beams hinging is showed in Figure 5.16. The building reaches the failure status when 

subjected to 50% of the scaled motion S7. The first brace buckles at the top floor level at 

110.7 s and progresses downward almost simultaneously. Within 0.4s, all brace members 

of the left half span have buckled from the top to the bottom level. After all braces have 

buckled or yielded, the beam hinging develops at all floors. Under the S4 ground motion, 

the 16-storey building reached the failure status. The first brace buckling was intercepted 

at the 3
rd

 floor, and propagates upward. In the studied building, 87.5% of braces have 

buckled, and plastic hinges formed in all the beams of the ZBF. Under the S2 ground mo-

tion, the failure status is also reached. The first brace buckling is captured at the bottom 

level. Similar to the situation under motion S4, all brace members buckled and all beams 

formed plastic hinges.  
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Figure 5.16 Time-history response of brace buckling and beam hinging for 16-storey 

building without outrigger truss under motions S2, S4, and S7( the first buckled brace; 

● subsequently buckled brace and beam hinging; ○ yielding of brace) 

5.5 Seismic response of the 16-storey ZBF-RT building 

The seismic performance of the 16-storey building with one outrigger truss added at the 

roof is also studied. Thus, under crustal ground motions, the mean interstorey drift values 
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were below to the code limit. Since the top floor is belted by the outrigger truss and due 

to the higher modes effect, the maximum seismic demand is shifted to the 15
th

 floor, and 

the peak mean value of the drift on that floor decreases from 2.92%hs to 1.85%hs. Under 

Near-field ground motions, the mean values of interstorey drift are distributed in a similar 

pattern as under the Crustal ground motions. The peak mean value of interstorey drift is 

1.63% at the 15th floor which is less than 2.16%hs resulted from the case of no truss. 

Under Subduction ground motions, the peak mean value of interstoreydrift decreases 

from 2.13%hs to 1.32%hs, and it is captured at the 14
th

 floor instead of the 15
th

 floor pre-

viously. 

Referring to Figure 4.9 and comparing to the case without outrigger truss, the mean 

values of axial forces in zipper columns are increased in all the floors. Under Crustal and 

Near-field ground motions, the axial force demand in zipper columns is larger in com-

pression than in tension. However, under Subduction ground motions, the tensile forces 

in zipper columns are larger than the compressive forces. Among all selected ground mo-

tions, the larger mean values of tensile forces are observed in the upper floors, and the 

larger values of compressive forces are captured in the lower floors. In general, there is 

larger axial demand in compression than in tension.  

In Figure 5.17, the deformed shape of the 16-storey building with roof outrigger 

trusses is depicted when subjected to ground motions C2, C4, and C6. Under ground mo-

tion C2, the induced forces drive the building in the nonlinear range while deflecting also 



P a g e  | 122 

in the 1
st
 vibration mode. Comparing to the case without outrigger trusses, brace buckling 

is also initiated at the top floor level. In addition, 11 brace members reached buckling 

successively from the 16
th

 to the 8
th

 floor within 1.44s. From the 1
st
 to the 7

th
 floor, braces 

remain to perform elastically. This behavior didn’t occur in the case without outriggers.  

 
Figure 5.17 Time-history response of brace buckling and beam hinging for 16-storey 

building with roof outrigger trusses under C2, C4, and C6 ( the first buckled brace; ● 

subsequently buckled brace and beam hinging; ○ yielding of brace) 
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Under ground motion C4, the large lateral demand is mostly carried up to the upper 

floors. The first brace buckling is captured at the top floor level, but doesn’t propagate in 

a consecutive sequence. Thus, comparing to the case without outrigger trusses, the seis-

mic performance is similar. Under C6 ground motion, the studied building reaches the 

failure status. The first brace buckling occurs at the top level, and propagates to the 5
th

 

floor in 1.08s. Beam hinges form in all the stories.  

The time-history response of braces buckling and beams hinging under the N6, N1 

and N7 records is illustrated in Figure 5.18. Under ground motions N6 and N7, the seis-

mic performance is more stable when roof outrigger trusses are added to the structural 

system of the 16-storey building. Under ground motion N6, the 16-storey building with 

roof outriggers reaches the failure status. The first brace buckling occurs at the top lev-

el,and propagates to the 5
th

 floor in 1.6s. Beam hinges form in all the stories. Under mo-

tion N7, the 16-storey with roof outriggers was able to respond to 100% of the scaled 

ground motion. The first brace buckling occurred at the 2
nd

 floor, but did not propagated 

subsequentially. Comparing to the case without outrigger trusses, under the N7 ground 

motion, the percentage of brace buckling decreases from 75% to 37.5%, and the total 

number of buckled and yielded braces decreases from 100% to 59.4%. Furthermore, there 

is no beam hinge formed, and the studied building didn’t reach the failed status. The 

building response under N1 ground motion shows large demand at upper floors. 
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Figure 5.18 Time-history response of brace buckling and beam hinging for 16-storey 

building with outrigger truss under motions N1, N6, and N7 ( the first buckled brace; ● 

subsequently buckled brace and beam hinging; ○ yielding of brace) 

Most of the brace buckling and yielding happens in the 8
th

 to 16
th

 floors. Generally, the 

16-storey building shows similar seismic response to that without outriggers. Under 

ground motions S2, S4 and S7, the history of braces buckling and beams hinging is 

showed in Figure 5.19. Under ground motion S2 the studied building reaches the failure 
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status when subjected to 67.32% of the scaled ground motion. The first brace buckling 

occurs at the 2
nd

 floor and beam hinges form in all the stories. Under ground motion S4, 

the studied building reaches the failure status when subjected to 76.96% of the scaled  

 

Figure 5.19 Time-history response of brace buckling and beam hinging for 16-storey 

building with outrigger truss under motions S2, S4, and S7 ( the first buckled brace; ● 

subsequently buckled brace and beam hinging; ○ yielding of brace) 

ground motion. The first brace buckling occurs at the top level, and propagated until the 

2
nd

 floor in 1.9s, while beam hinges form in all the stories. Under ground motion S7, the 
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studied building reaches the failure status when subjected to 50.65% of the scaled ground 

motion. The first brace buckling occurs at the top level, and developed to the 2
nd

 floor in 

0.3s. After all the braces are buckled and yielded, beam hinges are observed in all the 

stories. 

5.6 The behavior of outrigger trusses added to the roof floor level of the 16-storey 

building 

The time history time series of axial forces developed in the internal and external panel of 

the outrigger trusses diagonals is shown in Figure 5.20 under the C2 ground motion. 

 

5.7 Seismic response of the 16-storey ZBF-M&RT building 

With the participation of two outrigger trusses at the top floor and mid-height of the 

building, the studied building may achieve the expected seismic performance. Under 

crustal ground motions, the mean values of interstorey drifts in all stories is less than 

2.5%hs, and the peak interstorey drift value captured at the 15
th

 floor is1.36%hs. A similar 

response is obtained under the Near-field ground motions. Among all stories, there is no 

exceeding of the interstorey drift code limit. The peak mean value of the interstorey drift 

is observed at the 14
th

 floor and is 1.32%hs. Under Subduction ground motions, the 

maximum drift value is 1.56%hs and occurred at the 15
th

 floor.  
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Figure 5.20 Time-history axial load in outrigger truss elements: exterior pane T1-e and 

interior pane T1-i under motion C2 

In Figure 4.9 is shown the envelopes of the maximum and mean axial load devel-

oped in zipper columns of the 16-storey building with two outrigger trusses under the se-
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lected ground motions. Under Crustal and Near-field ground motions, the axial demand 

in zipper columns is larger in compression than in tension. 

During Subduction ground motions, the tensile forces triggered in zipper columns 

are larger than the compressive forces. By considering all ground motions, the peak mean 

values of tensile forces are observed at the lower floors and the peak values of compres-

sive forces are captured in the upper stories. In addition, the overall axial compression 

demand is higher than the axial tension demand and the axial force envelopes are inside 

the design envelopes. 

 Figure 5.21 illustrates the deformed shape of the 16-storey building with tow outrigger 

trusses when subjected to ground motions C2, C4, and C6. Under ground motion C2, the 

16-storey building deflected in the 1
st
 vibration mode. Comparing to the case with one 

outrigger truss, the brace buckling is also initiated at the top floor level and 11 braces 

have buckled successively from the 16
th

 to the 8
th 

floor within 1.25s. Besides, brace buck-

ling is also observed in the 2
nd

 and the 8
th 

floor. Comparing the response to the case with 

one outrigger truss, it is observed a stable response especially in the lower part of the 

building. Under ground motion C4, the larger lateral demand is still carried by the upper 

floors. The first brace buckling is captured at the top floor level, while the brace buckling 

does not progress subsequently. Comparing to the case with one outrigger truss, the seis-

mic base shear is slightly increased, while more braces behave elastically. Thus, the per-

centage of buckled and yielded brace member decreases from 68.75% to 63% and braces 
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belonging to six floors perform elastically versus braces belonging to four floors in the 

case with one outrigger truss. Under ground motion C6, the building reaches the failure 

status. The first brace buckling occurs at the top floor level and all beams are hinged. The 

time-history response of braces buckling and beams hinging under ground motions N6, 

N1 and N7 is illustrated in Figure 5.22. Under ground motions N6, the studied building 

reaches the failure status when subjected to 100% of the scaled ground motion. The 

bucking of braces initiates at the top floor level and progressed downward until the 7
th

 

floor in 1.58s. Under ground motion N7, the response is similar with that resulted in the 

case with one outrigger truss. Under ground motions S2, S4 and S7, the history of braces 

buckling and beams hinging is showed in Figure 5.23. Under ground motion S2, the 

studied building reaches the failure status when subjected to 81.09% of the scaled ground 

motion. The first brace buckling occurs at the ground floor and beam hinges were formed 

in all the stories. Under ground motion S4, the studied building reaches the failure status 

when subjected to 86.4% of the scaled ground motion. The first brace buckling occurs at 

the top floor level and propagated until the 2
nd

 floor, while beam hinges are formed in all 

the stories at the brace to beam intersection points. Under ground motion S7, the studied 

building reaches the failure status when subjected to 50.4% of the scaled ground motion. 

The first brace buckling occurs at the top floor level, and progressed downward until the 

2
nd

 floor in 7.9s. After all braces have buckled and yielded, beam hinges are observed to 

form in all floors. 
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Figure 5.21 Time-history response of brace buckling and beam hinging for 16-storey 

building with two outrigger trusses under C2, C4, and C6 ( the first buckled brace; ● 

subsequently buckled brace and beam hinging; ○ yielding of brace) 
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Figure 5.22 Time-history response of brace buckling and beam hinging for 16-storey 

building with two outrigger trusses under N1, N6, and N7 ( the first buckled brace; ● 

subsequently buckled brace and beam hinging; ○ yielding of brace) 
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Figure 5.23 Time-history response of brace buckling and beam hinging for 16-storey 

building with two outrigger trusses under S2, S4, and S7 ( the first buckled brace; ● 

subsequently buckled brace and beam hinging; ○ yielding of brace) 

5.8 The behavior of outrigger trusses added to the roof and the 8
th 

floor level of 

the 16-storey building 

The time history of axial forces developed in the panel of the top outrigger trusses under 

the C2 ground motions is shown in Figure 5.24 and in the panels of mid-height outrigger 

truss is shown in Figure 5.25. 
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Figure 5.24 Time-history axial load in diagonals of roof outrigger under ground motion 

C2: a) top exterior pane T1-e and b) top interior pane T1-I   
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Figure 5.25 Time-history axial load in in diagonals of mid-height outrigger under ground 

motion C2: a)  mid-height exterior pane T3-e, and mid-height interior pane T3-i 
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5.9 Summary of comparative study of seismic response of ZBF with and without 

outrigger trusses 

By conducting the non-linear dynamic analysis, the seismic performance of 12-storey and 

16-storey zipper braced frame structure with and without outrigger trusses are studied. 

The analytical results are discussed based on the parameters which are forces in zippers 

and the interstorey drift.  

The axial load in zipper columns is one of the primary indicators quantifying the 

seismic behavior of the studied building. As mentioned in Chapter two, the axial load in 

zipper columns result due to the unbalanced force caused due to buckling of braces. 

When large axial load is triggered in zipper columns, it means that a large input energy is 

absorbed into the ZBF structure. Referring to Figure 4.8, for the 12-storey building, the 

resulted axial demand in zipper columns are very close to the design envelopes. Compar-

ing the values of axial load after adding outrigger trusses, the forces in zipper columns of 

ZBF with roof outriggers is larger than that developed in zipper columns of ZBF without 

outriggers. By adding two outrigger trusses, the period of the building decreases and a 

slightly larger base shear force is developed. In Figure 4.9, it is shown that for the 

16-storey building, the design envelope of axial forces estimated to be triggered in zip-

pers is slightly over estimated in the compression side, however, gives a good estimation 

in tension side. Similar to the 12-storey building, by adding outrigger trusses, the amount 
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of axial load developed in zipper columns increases, and by adding more outrigger truss-

es, the axial load demand increases as well.  

Another quantified parameter is the interstorey drift. In Figures 4.10 and 4.11, the 

interstorey drift data of the 12-storey ZBF and 16-storey ZBF with and without outrigger 

trusses are summarized. To emphasize the interstorey drift parameter, in Figure 5.26 is 

shown that without outrigger trusses the mean values of interstorey drifts are below the 

code limit under the Crustal and Near-field ground motions ensembles. However, when 

applied strong ground motions like Subduction records, the interstorey drift become larg-

er than the code limit, 2.5%hs. By adding one outrigger truss at the roof floor level, under 

all three ground motion ensembles, the maximum interstorey drift satisfies the code limit. 

Under subduction ground motions, the peak mean value of the interstorey drift drops 

from 2.74%hs to 1.47%hs. In Figure 5.27, it shows that for the 16-storey ZBF, the mean 

values of interstorey drift are not satisfying the code limit under the Crustal and Subduc-

tion ground motion ensembles. By adding one outrigger truss at the top floor level, the 

response is more stable. Under Crustal ground motions, the interstorey drift decreases 

from 2.92%hs to 1.85%hs. Under Near-field ground motions, the mean value of drift ratio 

decreases from 2.16%hs to 1.7%hs and under Subduction ground motions, the mean value 

of interstorey drift drops from 3.13%hs to 2.19%hs. Furthermore, after adding a second 

truss, the interstorey drift is lower than the code limit. Under Crustal motions, the peak 

mean value of interstorey drift is 1.36%hs. Under Near-field motions, the result is similar, 
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and it is 1.32%hs. Under Subduction motions, the peak interstorey drift parameter is 

1.56%hs. Thus, after adding outrigger trusses, the structure became stiffer and can sup-

port the loads developed under the scaled ground motions. However, it seems that the 

scale factor is slightly larger for long periods and the design UHS should be revised for 

periods larger than 3s. 

Considering the aforementioned two parameters and also the history of brace buck-

ling and beam hinging presented in this chapter, it is concludes that the 16-storey zipper 

braced frame structures shows the activation of higher modes.  

 

 

Figure 5.26 Summary of interstorey drifts in 12-storey ZBF under all considered ground 

motions 

Future research should be carrying out in order to find the optimum location of 

added outrigger trusses in ZBF structure. In addition incremental dynamic analysis 

1.86% 
1.73% 

2.74% 

1.50% 1.52% 1.47% 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Crustal Near field Subduction

In
te

rs
to

re
y

 d
ri

ft
 (

%
h

s)
 

12s ZBF mean interstorey drift for all cases 

No truss Top truss

Code limit 



P a g e  | 138 

should be conducted in order to obtain the Incremental Dynamic Analysis (IDA) curves 

that are able to emphasize the reserve capacity of the building below the design demand. 

 

 

Figure 5.27 Summary of interstorey drifts in the 16-storey ZBF under all considered 

ground motions  
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CHAPTER SIX 

Conclusions and Future Work 

6.1 Conclusions 

As one of the widely used seismic force resisting systems in North America, chevron 

braced frame provides high stiffness and moderate ductility. However, under strong 

ground motion excitations, the structure is prone to storey mechanism formation and re-

duced energy dissipation capacity due to the concentration of damage within one floor. To 

overcome this drawback, an innovative system is to add a zipper column at the brace to 

beam intersection points with the aim of carrying the unbalanced force resulted from brace 

buckling.  Nevertheless, based on the previous work carried out by Tremblay and Tirca 

(2003), Chen (2011) and Tirca and Chen (2012), the dynamic instability effect may be 

triggered when the higher modes effect is activated. To improve the lateral capacity of 

zipper braced frame in taller building, in this study, it is proposed to add outrigger trusses 

and/or belt trusses to the zipper braced frame structure. 

This study is the first conducted with the aim to understand the behavior of high-rise 

zipper braced frame systems (16-storey) located in a high risk seismic zone, as Victoria, 

BC.  In order to overcame instability due to the activation of higher modes effect, in this 
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study it was proposed to add outrigger trusses at the roof floor level and at the roof and 

building mid-height.  

The design method employed for zipper columns is the method proposed by Tremblay 

and Tirca (2003) and refined by Tirca and Chen (2012). The axial force envelope triggered 

in zipper column in tension and compression is validated against time-history analyses. 

Thus, by designing zippers in compression, the LP-ST load pattern was considered and by 

designing zipper columns to act in tension, the LP-P pattern load is considered. The 

maximum forces developed in zippers under time-history analysis are lower than the de-

sign envelope even for the 16-storey building.  

In order to overcome large values of interstorey drift especially at the uppermost floors 

of the ZBF system, in this study, outrigger trusses are proposed to be added to the SFRS 

located in the external gridline. Based on steel beams configuration belonging to the floor 

or roof system, for example in the study, in one direction (N-S) larger axial forces are 

transfer in the diagonals of outriggers than those located in the E-W direction. 

 In this research, the design of the outrigger truss elements follows the concept of 

displacement compatibility method proposed by Stafford & Salim (1981) and the graphic 

method developed by Hoenderkamp & Bakker (2003). In addition, to optimize the size of 

outrigger truss diagonals, two outrigger trusses configurations were considered. It was 

found that the optimal configuration of outrigger truss diagonals is that when the diagonal 

are loaded in tension under the gravity load component. Thus, diagonals work as pre-stress 
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members and are designed to respond mostly in tension under all ground motions consid-

ered. 

The results of the nonlinear dynamic analyses presented in Chapter 4 and 5 have 

shown that for the 12-storey building, the interstorey drift ratio is well controlled when the 

studied buildings were subjected to Crustal and Near-field ground motions. However, 

when the strong excitations like Subduction ground motions is applied, the building cannot 

carry 100% the load resulted from scaled ground motions and large interstorey drift is 

observed.  

For the 16-storey ZBF with roof outrigger trusses building, the seismic response is 

more stable when outrigger trusses are added and is uniformly distributed along the 

building height. 

Regarding scaling ground motions, it is found that matching the minimum base shear 

force for high-rise building is too conservative. In addition, the design spectrum ordinate 

corresponding to 4.0 s is half that that corresponding to 2.0s. It seems that a ratio of 2 is too 

conservative in design. However the UHS should be revised for periods larger than 3s. 

Meanwhile, a new hazard spectrum curve should be proposed for subduction ground mo-

tions. 
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6.2 Future work 

As was mentioned in Chapter 4, future work should be done in finding the optimum 

location of outrigger trusses added in zipper braced frame structure. In addition, it is re-

quired to compute the optimum number of outrigger trusses required for a cost-efficient 

design. In this study, it was shown the impact of outrigger trusses on the seismic response 

of ZBF structures. Although, previous researchers investigated the optimum location of 

belt truss in concentrically braced frame, this work was mostly based on wind loading than 

on earthquake loading. However, the complexity of zipper braced frame system with out-

rigger trusses should be investigated in detail in order to achieve stable seismic response 

under different types of ground motions. 

Regarding the structural system efficiency, a relationship between the building 

height and the required number of outrigger trusses must be determined.   

Furthermore, incremental dynamic analysis curves should be computed toward an 

effective performance base design approach. 
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