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ABSTRACT 

Managing Supply for Construction Project with Uncertain Starting Date 

Azadeh Mobtaker 

There is a growing interest in supply management systems in today’s competitive 

business environment. Importance of implementing supply management systems 

especially in home construction industry is due to the fact that several risks arising from 

different sources can adversely affect the project financially or its timely completion. 

Some risks of construction projects are out of managers’ control while other risks such as 

supply related ones can usually be controlled and directed by effective managerial tactics.  

In this thesis, we address the supplier selection problem (SSP) in wood-base construction 

projects in the presence of project commencement uncertainties. The project could be 

delayed for any reason and thus materials required for the project may not be needed on 

the promised date, however, pursuing the supplier for new delivery date may not be easy 

and without risk. Accepting the delivery before the project commencement date will be 

again a costly option because of the high holding cost. In this thesis, we present two 

problem cases and present heuristic based solution approaches. In the first case we 

assume that price of the product increases with the delay. In the second case we assume 

that promised quantity at the agreed price reduces with the delay. The proposed 

approaches are tested on the randomly generated data set and compared with the optimal 

solutions. 
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The problems considered in this research are novel and the proposed approaches deal 

with the important and common risks in construction industry in order to achieve a robust 

supply chain. The solution approaches presented in this thesis can be applied to different 

industries to improve the quality and efficiency of supplier-buyer collaborations. 
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Chapter 1: 

Introduction 

1.1 Background 

In construction supply chain, there can be several risks associated with exogenous events 

such as delays in permit, inspection, material quality, supply and labor availability, etc. 

These events disrupt efficient functioning of supply chain. Some of these events are 

controllable. On the other hand there are several uncertainties due to factors like political 

issues, governmental regulations, changes in market, technological improvements and so 

on which are difficult to control.  

Resource availability and work availability are two common limitations that constrain 

construction progress. Work availability limitations are usually expressed by internal or 

external dependencies in a construction project. Since these dependencies are related to 

the nature of work, normally the project manager is not able to control them.  In contrast, 

resource availability limitations can be controlled by a project manager by means of 

resource plans and managerial decisions. It seems that construction management is 

nothing but resource management which leads to a huge number of resource management 

and procurement studies (Park 2005). 
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1.2 Problem Statement 

In some industries raw material and supplies are required for a short duration, in which 

long term commitment with suppliers does not seem a wise decision. Moreover suppliers 

usually aren’t interested in increasing their production capacity because of either absence 

of long term relationships or technical constraints. For example in wood-frame house 

construction projects, wooden material is supplied from forestry industry, in which 

suppliers cannot augment their capacity due to technical constraints. Forests are owned 

by several suppliers with limited number of trees. A desirable requirement (with 

particular quantity, quality, etc.) may not be met by one supplier due to either limited 

capacity or reserved capacity for other clients. Consequently, it is inevitable for the buyer 

companies (e.g. sawmills/furniture companies) to buy from multiple suppliers in order to 

maintain competition and avoid various risks such as price, quality and delivery 

uncertainties (Awasthi et al., 2009).  

Additionally, studies have recommended that “single sourcing is a dominant strategy only 

when supplier capacities are large relative to the product demand and when the firm does 

not obtain diversification benefits. In other cases multiple sourcing is an optimal   

sourcing strategy” (Burke et al., 2007).  

In engineering, procurement and construction (EPC) industries, supply cost is a big 

portion of total expenses of a company. So having enough supply at the right time is 

crucial to complete the construction project on time and within the budget i.e. appropriate 

supply management and specifically supplier selection and quantity allocation 
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methodologies are effective to improve the project performance indicators like cost and 

time and supply chain efficiency in general. 

In today’s highly competitive market, an effective supplier selection process and closer 

collaboration among buyers and suppliers are needed. In order to cope with market 

volatility and diversity, buyers have to establish and manage relatively flexible 

collaboration with the suppliers to be able to deal with unexpected market demands and 

thus reduce the dependence on the vendor (Ganesan, 1994).  

Suppliers usually offer attractive deals like better price and quality while they add some 

restrictions to their contracts such as minimum order size, limited capacity, lead time, etc. 

The minimum order size is mainly for economies of scale (to cover transportation and 

production set ups cost). The limitation on maximum acceptable quantity by the supplier 

is basically due to production or transportation capacities. These constraints make 

supplier selection problem (SSP) more challenging and complicated. 

Supplier selection in construction industry differs from manufacturing industry. Usually 

manufacturing companies face uncertain product demand from their customers. These 

companies should apply supplier selection methods well-suited for stochastic demand 

conditions; on the other hand demand in the construction projects can be considered 

stable and known (similar to make-to-order system) but due to various unexpected events 

the starting date of a specific phase of project may vary; so delivery time of material is 

subject to change. Consequently, proper suppliers should be selected to ensure 

availability of required material at building under condition of uncertain delivery time. 
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1.3 Thesis Contributions 

The problem considered in this research is a supplier selection and quantity allocation 

problem. We assumed deterministic conditions for demand quantity, while delivery time 

of material is not certain due to some unexpected events. Based on the vendors’ reaction 

towards these uncertainties in the delivery time, we explore two different situations. 

These situations are Supplier Selection with Buyer Penalty for a Delay (SSPD) and 

Supplier Selection with Quantity Reduction for a Buyer Delay (SSQRD). Heuristic 

approaches are proposed. The results of solution approaches are provided and compared 

to the optimal solution to evaluate the performance of proposed approaches. As far as we 

know, this aspect has not been considered before and our work is a novel study in this 

area. 

1.4 Organization of the thesis 

The first chapter contains a brief introduction of construction supply chain and supplier 

selection problem (SSP). The remainder of this research is organized as follows. In 

chapter 2 we investigate how resource management and procurement problem has been 

approached in literature by different researchers. Chapter 3 and chapter 4 demonstrate 

two supplier selection problems addressed in this thesis and the solution approaches. In 

conclusions and future works chapter we summarize the contributions of this thesis and 

we propose several future research directions. Finally the references and the appendixes 

complete the thesis. 
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Chapter 2: 

Literature review 

Nowadays project managers realize how risks associated with supply can have a huge 

influence on total cost of projects. Especially in construction industries, availability of 

resources at right time and with enough quantity is crucial in order to complete a project 

on time and within the budget. This shows the importance of supply risk management 

and supplier selection decisions.  

Normally, supply risk management methods in a construction project, are categorized in 

two general groups: resource utilization optimization models and supplier selection 

models. Studies in the field of supply usage optimization lead to mathematical 

formulation for supply usage and show how resource (supply) planning can affect the 

project performance. Also applying more efficient supplier selection methods can 

decrease risks associated with supplies especially in the presence of supply chain 

uncertainties. Using appropriate supplier selection approaches is advantageous in 

engineering, procurement and construction (EPC) industries with high complexity plus 

high value of supplies. In literature we will review studies on these two perspectives of 

supply risk management. 

  

http://dictionary.reference.com/browse/advantageous
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Figure 2.1 illustrates how the literature review chapter is structured. 
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2.1 Resource utilization approaches 

Park (2004) investigated the effect of resource coverage on schedule and cost 

performance of a construction project and evaluated the tradeoffs between these two 

performance factors. A system dynamic model is presented, and then by changing 

resource coverage scenarios from the base and running the model, the effect of resource 

coverage on project performance indices is examined. Park clarified policy implications 

such as: project performance does not change linearly relative to resource coverage; 

schedule performance is more sensitive to resource coverage than cost performance, and 

decreasing resource coverage does not always lead to project cost saving which is due to 

cost associate with the increase in idling of workforce when there is lack of material. 

Caron et al. (1998) worked on supply management approaches in an Engineering, 

Procurement and Construction (EPC) industry. The main question in that research was: 

“How much material should be available at the site at a given time in order to guarantee a 

desired level of protection against interruptions due to the shortage of materials?” 

Caron et al. (1998) proposed a stochastic model to plan delivery of material at building 

site. Although the model is not a detailed delivery plan in terms of delivery lots and 

delivery time, it identifies requirements that a delivery plan should meet to ensure the 

continuity of a construction process.  

Nowadays, due to significant role of purchasing in profitability of a company, purchasing 

decisions have become more important and companies are becoming more and more 

dependent on their suppliers, therefore impact of poor decision making appears to be 

more severe. For instance, in industrial companies, purchasing share in the total turnover 
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is between 50% - 90% (Telgen, 1994). So decisions regarding selecting suppliers are 

determinants of these organizations’ financial success. In the next part we review some of 

the studies in the field of supplier selection. 

2.2 Supplier selection approaches 

2.2.1 Qualitative approaches 

Qualitative approaches are used in lack of numerical data. In the case of supplier 

selection, often it is not possible to quantify parameters such as service quality level, 

reliability, flexibility, customer relationship, etc.; therefore, qualitative approaches are 

used. Examples of few qualitative approaches are Analytic Hierarchy Process (AHP), 

TOPSIS, or fuzzy logic based approaches. 

Since variety of measures should be taken into account for supplier selection problems, 

they are mostly complex for purchasing managers to analyze. Analytic Hierarchy Process 

(AHP) can be used as a supplier selection tool; this method reduces the complex 

decisions to a series of one-to-one comparisons, and then synthesizes results based on a 

hierarchical structure (Wu et.al, 2006). Fuzzy Analytic Hierarchy Process (FAHP) is also 

utilized by Kahraman et al. (2003) to select the best supplier firm providing the most 

satisfaction for the criteria determined. 

Lee (2010) used Fuzzy Analytic Hierarchy Process (FAHP) model to integrate benefits, 

opportunities, costs and risks (BOCR) concept while considering all the factors that 

positively or negatively are affecting the supplier-buyer relationship.  
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Punniyamoorthy et al. (2011) used structural equation modeling and Fuzzy Analytic 

Hierarchy Process (FAHP) technique for supplier selection based on a survey of 151 

respondents. Zeydan et al. (2011) explored supplier selection problem in two steps, first 

by use of Fuzzy AHP and Fuzzy TOPSIS suppliers are evaluated, second Data 

Envelopment Analysis methodology is utilized. Bhattacharya et al. (2010) integrated 

Analytic Hierarchy Process (AHP) with Quality Function Deployment (QFD) and Cost 

Factor Measure (CFM) to select suppliers in a multi-objective system where most of the 

objectives are in conflict with each other. Amid et al. (2010) developed a weighted max-

min fuzzy model to overcome the vagueness of input information and importance level of 

different criteria in a supplier selection process. An Analytic Hierarchy Process (AHP) is 

also used to determine the weights of decision factors. 

Tsai et al. (2010) investigated attribute-based ant colony system (AACS) to construct a 

better way to select the appropriate supplier in dynamic business environment. 

Azadeh and Alem (2010) proposed a decision making system to select the best way of 

selecting suppliers among three common methods: Data Envelopment Analysis (DEA), 

Fuzzy Data Envelopment Analysis (FDEA) and Chance Constraint Data Envelopment 

Analysis (CCDEA). Saen (2010) used Data Envelopment Analysis (DEA) for supplier 

selection and defined a way to incorporate the preferences of decision makers in the 

supplier selection process, while it is possible to have some factors with both input and 

output roles in the selection process. Dash Wu et al. (2010) proposed a fuzzy multi-

objective programming model to select suppliers with considerations of risk factors. 

Sanayei et al. (2010) investigated supplier selection as a multiple criteria decision making 

(MCDM) problem. In order to solve this problem, the authors used linguistic values to 
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examine the weights for different criteria. These values can be defined as triangular fuzzy 

numbers. Finally, the researchers proposed a hierarchy multiple criteria decision making 

(MCDM) model based on fuzzy sets theory and VIKOR method. 

Hassanzadeh et al. (2010) used SWOT (Strengths, Weaknesses, Opportunities and 

Threats) technique and then fuzzy logic and triangular fuzzy numbers are integrated with 

SWOT analysis to evaluate suppliers. Demand was assumed to be a fuzzy number. Fuzzy 

linear programming model was used to determine the quantity to be bought from each 

supplier. 

Also some conceptualized studies have been done in the area of supply chain flexibility. 

For instance, Gosling et al. (2010) explored a method to deal with high uncertainty level 

in construction environment. In that research supply chain flexibility is defined with two 

factors: sourcing and vendor flexibility. Gosling et al. (2010) concluded that an 

appropriate level of supply chain flexibility can be achieved by balancing vendor and 

sourcing flexibility with maintaining a pool of suppliers in each of following three 

categories: framework agreement suppliers, preferred suppliers and approved suppliers. 

Since the vagueness of information about decision criteria in a supplier selection system 

is an issue for decision makers, Zhang et al. (2010) proposed an approach based on vague 

sets group decision.  

2.2.2 Quantitative approaches 

Quantitative approaches are most commonly used when numerical data is available. Most 

of the studies in the area of supplier selection emphasize on optimal quantity allocation. 

Factors such as demand quantity and lead time can be considered either stochastic or 
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deterministic in the process of supplier selection. Then in this review we divide the 

studies in two main groups of deterministic conditions and stochastic conditions. In the 

deterministic case demand quantity and lead time are known and fixed. In the stochastic 

situation, mentioned factors are subject to change and may vary over time. 

Also suppliers may have limited capacity or unlimited capacity. In the first case, it is 

assumed that the supplier has limited capacity while in the second case, supplier is able to 

provide requested quantity for any demand.   

Deterministic conditions 

Chauhan and Proth (2003) explored supplier selection problem with fixed demand for 

two different situations: a manufacturing unit with several providers and multi-providers 

for multi-manufacturing units. In their study, each supplier quotes a fixed setup cost plus 

a concave increasing cost of the quantity delivered. The authors proposed a heuristic 

algorithm based on properties of an optimal solution to allocate appropriate quantities to 

the suppliers which should be within a maximum and minimum range. Burke et al. 

(2008) studied the same problem as Chauhan and Proth (2003) but instead of considering 

a fixed setup cost plus concave quantity discount for suppliers, Burke et al. (2008) 

studied three different pricing schemes including linear discounts, incremental units 

discounts and all units discounts. Burke et al. (2008) proposed a heuristic model to solve 

the problem.  

Chauhan et al. (2005) proposed an optimal algorithm based on dynamic programming for 

supplier selection problem (SSP) for single buyer. 
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Burke et al. (2008) considered a procurement problem where suppliers offer concave 

quantity discounts. Authors solved the continuous knapsack problem by minimization of 

a sum of separable concave functions. Burke et al. (2008) identify several solvable 

special cases of the defined NP-hard procurement problem, and proposed an 

approximation scheme for the general problem. 

Burke et al. (2008) studied a problem motivated by a purchasing organization that source 

from a set of suppliers, in which each supplier offers an incremental quantity discount 

purchase price structure. The objective is to obtain required supply at minimum cost. 

Authors solved this allocating order quantities problem by minimizing the sum of 

separable piecewise linear concave cost functions. A branch and bound algorithm was 

developed to reach the optimal solution. 

Glock (2010) studied an integrated inventory system for a supply network, in order to 

minimize total system cost. Glock (2010) assumed deterministic conditions for all the 

parameters over time and proposed a heuristic model. 

In a typical optimization problem there is one objective, but some time we may have 

multiple objectives of conflicting nature like objectives effective in supplier selection 

process and therefore managers explore the tradeoffs among the goals. Multi-objective 

methods are used in this case, which makes the decision maker able to incorporate his 

own experiences in supplier selection while there isn’t such an opportunity for him in 

methods with an optimal solution; also the decision maker can easier see the effects of 

policy constraints (which purchasing department can directly influence) on the final 

selection. To deal with such problems where the objectives are in conflict with each 



13 
 

other, we cannot find a solution that is optimal for all the objectives, so the term “optimal 

solution” will be replaced by “non-inferior” or non-dominant solution in which 

improving one objective will lead to degradation of at least another objective. There are 

two methods to provide non-inferior solutions: weighting method and constraint method. 

Weber and Current (1991) utilized the weighting method with a mixed-integer program 

to deal with three objectives: cost, delivery and quality. Also the authors put constraints 

on demand satisfaction (inequality), each supplier’s capacity, and number of suppliers in 

deterministic demand conditions. Eventually “value paths” method is utilized to 

demonstrate the tradeoffs between objectives. 

A single item, multi-supplier system with fixed demand, price-quantity discount 

considerations, suppliers’ capacities constraints has been explored by Chang (2006). The 

author proposed a series of linearization strategies to obtain the global optimal values and 

used a mixed integer optimization approach to solve the procurement problem. Sawik 

(2010) explored supplier selection problem for a custom company in a make to order 

environment. He considered three factors in selection process such as: price, quality of 

custom parts and reliability of on time delivery. Business volume discount is also 

considered and a mixed integer program was proposed to solve the problem. Rezaei and 

Davoodi (2010) studied a multi-product, multi-supplier and multi-objective (cost, quality 

and service level) supplier selection problem and proposed two multi-objective mixed 

integer nonlinear models. Mendoza and Ventura (2010) investigated a system of supplier 

selection and inventory management to optimize the entire system. A mixed integer 

nonlinear programming model is used that gives an optimal inventory policy while 
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allocating appropriate quantity to chosen suppliers. The authors assumed a single-product 

case and constant demand rate. 

Kokangul and Susuz (2010) utilized hierarchy process and non-linear integer and multi-

objective programming with consideration supplier capacity, total budget and quantity 

discount constraints; while the objective functions  were maximizing the total value of 

purchase (TVP), minimizing the total cost of purchase (TCP) or maximizing TVP and 

minimizing TCP simultaneously. 

Combination of analytic hierarchy process (AHP) and goal programming (GP) has been 

utilized in a study by Kull & Talluri (2008) as a tool for strategic supplier selection in the 

presence of risk measures and product life cycle considerations. Also Jolai et al. (2010) 

studied supplier selection and order allocation problem in a fuzzy environment. First 

suppliers are evaluated by use of fuzzy MCDM, fuzzy AHP and modified fuzzy TOPSIS; 

then with help of goal programming method the problem has been modeled in a mixed 

integer linear program.  

Woo and Saghiri (2010) defined a supplier selection problem as a multiple-objective 

decision making problem under uncertainty and proposed a fuzzy multiple-objective 

mixed-integer programming model to assign quantity to each supplier. The authors 

assumed three main stage of the supply chain: the purchasing organization, suppliers, and 

third-party logistics providers. This was a multiple-product problem in which suppliers 

had limited capacity. 

Ebrahim et al. (2010) approached vendor selection problem as a multi-criteria decision 

making problem with consideration of different discount schemes (such as all unit-cost, 
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incremental discount, and total business volume discount) on the unit price at the same 

time. Suppliers’ capacity and demand constraints are also considered. As a result of their 

study, a scatter search algorithm is proposed while using the branch and bound method. 

Yeh and Chuang (2010) studied supplier selection problem in a multi-product, multi-

stage supply chain. In their study a multi-objective genetic algorithm is used to reach a 

balance among four conflicting objectives such as cost, time, product quality and green 

criteria; capacity constraint and constant market demand had been assumed. 

Micheli et al. (2009) found out that combination of total cost of ownership (TCO) 

approach and supplier-specific guidelines for immediate and later interventions will lead 

to some “present total cost profiles” (PTCP) which include the variability and the single 

value of total cost for each intervention for every supplier that can be used for decision 

makers to subjectively utilize their related experiences to make the best decision.  

Wan and Beil (2009) studied how to choose a qualified supplier to win a contract by use 

of a combination of request-for-quotes (RFQ) reverse auction and supplier qualification 

screening. The authors explored how well determining the level of qualification prior and 

after auction can decrease total expected procurement cost. The authors utilized 

mathematical programming techniques to compute the expected prequalification, auction 

and post qualification costs and by the use of mathematical methods, the optimal auction 

is achieved. 

There are a few researches with unrestricted supply conditions. For instance, Keskin et al. 

(2010) studied a supplier selection and quantity allocation problem with fixed demand for 
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a multi-store firm and single-product; the authors proposed an integrated vendor selection 

and inventory optimization model by use of a mixed integer nonlinear programming. 

Stochastic conditions 

In opposite of deterministic conditions in supplier selection process, procurement 

problems can be explored when some conditions such as demand quantity, delivery time 

and lead time are subject to change. These circumstances are closer to real-world 

conditions, therefore approaches towards them usually lead to more robust supply chain 

partnerships. 

Abginehchi and Zanjirani Farahani (2010) investigated multiple-supplier, single-item 

inventory systems with random lead-times and both constant and probabilistic demand. 

By the use of a mathematical model the researchers determined the reorder level and 

quantity allocation for each supplier to minimize cost including ordering, procurement, 

inventory holding and shortage cost. 

For a single-item, multi-supplier system, Chang et al. (2006) considered fixed demand 

and variable lead-time, price-quantity discount (PQD) and resource constraints. To solve 

this problem a mixed integer approach was used to minimize cost. The cost function 

included total periodic purchasing with PQD, ordering, holding, and lead-time crashing 

cost. 

In modern supply chains, lots of uncertainties and variations are related to demand 

quantity and supply lead-times which high lights the importance of flexibility in vendor 

selection process. Flexibility can be defined as robustness of buyer-supplier relationship 
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under changing supply conditions. Das and Abdel-Malek (2003) formulated a measure 

for flexibility as a function of varying order quantities and varying supply lead-times. 

Some of common criteria in supplier selection are cost, quality, delivery and flexibility. 

Liao and Rittscher (2007) made a summation of four functions for cost including 

expected purchasing cost, demand quantity increase penalty, demand quantity decrease 

penalty and demand timing decrease penalty; also for flexibility Liao and Rittscher used 

Das and Abdel-Malek (2003) flexibility measurement formulation and finally for quality 

and delivery, quality rejection rate and late delivery rate were evaluated. Two equality 

and inequality constraints were associated with demand satisfaction and capacity 

constraints respectively. Since dealing with equality constraints in multi-objective 

problems is relatively difficult, a problem specific operator Demand along with genetic 

algorithm method has been used to solve the problem. 

Zhang and Zhang (2010) explored supplier selection and purchase problem with 

uncertain demand quantity. The authors assumed minimum and maximum constraint on 

the order quantity for each supplier. The objective was to minimize the total cost. It was 

assumed that at the time of signing the contract with suppliers, buyer does not know the 

certain amount of demand. If the buyer orders more than the realized demand, the excess 

stock causes a holding cost or on the other hand if order quantity is less than the real 

demand, a penalty cost is incurred. So several cost types have been considered including 

selection, purchase, holding and shortage costs. Finally the problem was modeled by a 

Mixed Integer Program (MIP). 

Jafari et al. (2010) investigated the supplier selection and quantity allocation problem in 

two evaluation and allocation phases: first a data envelopment analysis (DEA) model is 
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used with consideration of several factors like cost, time and quality (ordering and 

transportation costs are inputs for the DEA model  while lead-time mean and variance 

(lead-time is assumed to be a stochastic variable), and supplier quality score are output 

variables in the DEA model); second a multi-objective mixed integer programming 

model had been developed to minimize the total costs and maximize the overall 

efficiencies. Also it was assumed each supplier has a limited capacity. 

Shi and Zhang (2010) combined multi-product acquisition and pricing problems where 

there is uncertain demand, budget constraint and supplier quantity discount. A mixed 

integer non-linear program is used to model this problem. 

 Awasthi et al. (2009) used a similar heuristic method to Chauhan and Proth (2003) for 

supplier selection problem while facing stochastic demand with fixed product price. 

Burke et al. (2007) also studied supplier selection problem with uncertain demand and 

consideration of suppliers’ capacities and cost, product price, firm inventory costs and 

historical supplier reliabilities. Authors proposed an optimal approach in the case where a 

set of selected suppliers with limitations on minimum order size, must supply to a buyer 

facing uncertain demand. The main difference of their work and Awasthi et al. (2009) is 

that Burke et al. (2007) only assigned quantities to the suppliers who must supply a 

positive quantity while Awasthi et al. (2009) identify and allocate the suppliers. 

Li and Zabinsky (2009) incorporated uncertainties in demand and supplier capacity in the 

supplier selection process. These uncertainties are captured by scenarios or with a 

probability distribution in two models: a stochastic programming (SP) model and a 

chance-constraint programming (CCP) model have been proposed to find minimal set of 
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suppliers and order quantities with consideration of business volume discounts. Quality, 

delivery and cost (including purchasing, transportation and inventory costs) are the 

objectives considered in these models. Moreover, in order to analyze the tradeoffs 

between cost, risk of not meeting the demand and number of suppliers, multi-parametric 

programming techniques have been utilized. 

At the end of this section we are going to review a few papers regarding supplier-buyer 

relationship and risk management in construction industry. 

Yates (1993) demonstrated development of the delay analysis system program for 

construction industry, its purpose, technical parameters and the program output. 

In a research by Odeh and Battaineh (2002) the results of a survey has been analyzed to 

identify the most important causes of delay in construction projects with traditional type 

contracts from the view point of construction contractors and consultants. As the result of 

this analysis owner interference, inadequate contractor experience, financing and 

payments, labor productivity, slow decision making, improper planning, and 

subcontractors are indicated among the top ten most important factors. 

Sweis et al. (2008) explored the causes of construction delays in residential projects. In 

this research the data was collected in a survey conducted to residential projects 

consultant engineers, contractors, and owners, and interviews with senior professionals in 

the field. As the result of this study factors like financial difficulties faced by the 

contractor and too many change orders by the owner are the leading causes of 

construction delay.  
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Assef and Al-Hejji (2006) did a survey on time performance of construction projects. The 

most common cause of delay identified by contractors, consultants and owners was 

“change order”. 

In a research by Luu et al. (2009), it is described that how Bayesian belief network 

(BBN) is applied to quantify the probability of construction project delays in a 

developing country. A questionnaire survey of 166 professionals has been conducted. A 

belief network system has been modeled and this model has been validated by using two 

realistic case studies. The result of this study has shown that financial difficulties of 

owners and contractors, contractor’s inadequate experience, and shortage of materials are 

the main causes of delay on construction projects in Vietnam. 

Baloi and Price (2003) identified major global risk factors affecting cost performance of a 

construction project. Different decision-making technologies such as classical 

management science techniques and DSSs, KBSs were explored and evaluated. In this 

study Baloi and Price show that Fuzzy Set Theory is a viable technology for modeling, 

assessing and managing global risk factors affecting construction cost performance. 

2.3 Conclusion 

Supply risk management studies can be narrowed down in two categories: supply 

utilization methods and supplier selection methods. Also these studies can be categorized 

in the two groups of qualitative studies and quantitative studies. In some quantitative 

approaches demand and lead time were assumed to be stochastic; while other studies 

considered these factors are deterministic. Suppliers’ capacity was assumed to be limited 
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in most of the researches, although there are some studies that did not consider any 

constraint on suppliers’ capacity.   

As far as we know, uncertainty in starting date of a phase in construction projects was not 

studied in any previous research. Since it is necessary to have enough material on time at 

building site in order to complete a project successfully, we were motivated to investigate 

the effect of uncertainty in starting date of a phase of a construction project on the 

supplier selection process and explore how severely this type of uncertainty can affect the 

project progress and success. 
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Chapter 3: 

Supplier Selection with Buyer Penalty for 

a Delay (SSPD)  
 

3.1 SSPD Definition  

In construction projects, predicting starting time of an activity with certainty is difficult 

while successful completion of such projects highly depends on availability of required 

resources at building site on time. Then managing supply risk is crucial for completing 

the project on time and within budget.  This work considers one such case where project 

start date is uncertain and demand will be managed by a right team of suppliers. 

Due to delicate construction items and limited or no safe storage space at the open 

construction sites, project managers prefer to receive items very close to project starting 

date. In other words if the project get delayed, project manager postpones the scheduled 

delivery date. But in reality suppliers have restricted production and storage capacities 

and may have more than one client. In the event of project delay, for some suppliers, it 

may not be viable to deliver promised quantity at a later date.  Moreover, the price of 

commodities are volatile and stocking the materials for later use incurs holding costs and 

therefore suppliers may offer either a new price (higher than the promised price) or may 

reduce promised quantity as a penalty for not accepting the delivery on the agreed date.  
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The case in which suppliers offer a new pricing scheme as a penalty for the delay (SSPD) 

is considered in this chapter. The objective in SSPD is to select a set of suppliers, from a 

pool of pre-qualified suppliers, which minimizes the expected purchasing cost. 

3.2 Assumptions 

We consider a building contractor (e.g. wooden home constructor) who wants to buy raw 

material from a set of suppliers. These suppliers are assumed to be prequalified in 

different aspects of supplier’s business such as financial strength, management approach 

and capability, technical ability, quality etc. The goal is to select a group of suppliers that 

together can fulfill the demand at a minimum possible cost. We assumed that the demand 

is known and fixed. The delivery lead time is fixed and is assumed to be same for all 

suppliers. We also assume that the contractor knows the probability distribution (  ) of 

the project delay or the expected starting date of the project. Normally building 

construction is done in several phases. In this work we assume that that these suppliers 

are providing material for a single phase. All the suppliers are providing the same 

material with characteristics acceptable to buyer i.e. suppliers cannot be discriminated 

w.r.t. the quality of material.   

In this chapter we consider the first case where suppliers quote different price, per unit, 

for different delays. We consider   delay scenarios    . Suppliers provide the buyer 

(constructor) with the modified price regarding each delay scenario    . Since, every 

supplier has limitations on minimum order size and maximum order size, selection of 

more than one supplier is imperative.  Since, we assume that suppliers supply the material 

very close to the project starting date, even in the case of delay; we do not consider 
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inventory holding costs. We assume transportation costs are included in the prices quoted 

by the suppliers.  

This approach will help constructor (buyer) to select a set of suppliers and decide how 

much to order from each of the selected suppliers.  

3.3 Mathematical Formulation of SSPD 

A set of suppliers   {       } can deliver raw material to the site of a construction 

project. In the current construction phase demand quantity is constant and equal to  . 

There are two constraints that apply to any supplier    : 

 The minimum quantity that supplier   prepares to deliver for economical reason 

is denoted by   . 

 The maximum quantity that supplier   is able to deliver due to restrictions in 

production capacity, or reserved capacity for other customers and restricted time 

lines. This quantity is denoted by   . 

Thus, the quantity   ,     delivered to the building site is such that 

   { }          

In this chapter we suppose suppliers’ prices are discrete function of delay. The price 

quoted per unit by supplier     for delay scenario     is denoted by     .  

Also the discrete probability distribution function for delay     is known. 
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Table 3.1: Description of parameters and decision variables of SSPD 

Table 3.1 summarizes the notations used in mathematical formulation of SSPD.  

The mathematical formulation of SSPD is presented as follows:   

Objective: 

SSPD:      inimize       ∑∑        
      

                                                                                   

Subject to: 

∑  

   

                                                                                                                                             

                                                                                                                                                                                     

             

    {   }                                                                                                                                  

                                                                                                              

Parameters and Decision 

Variables 
Description 

      
Minimum and maximum restriction on order size 

imposed by supplier   

  Demand 

   Quantity ordered from     supplier 

     Price quoted per unit  by supplier   for delay scenario   

  Set of suppliers         

  Set of delay scenarios          

  Discrete probability distribution function for delay   
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The objective is to select order quantity,    corresponding to supplier   to minimize the 

expected total purchasing cost (3.1). Constraint (3.2) is to assure that the summation of 

ordered quantities is equal to demand; constraint (3.3) makes sure that the order quantity, 

for a selected supplier, lies between the corresponding minimum order size    and the 

maximum permitted   . Equation (3.4) is used to define binary variables,     which ensure 

that either a supplier delivers a quantity or do not supply at all. 

3.4 Basic results  

Proposition1: 

The problem       is NP-hard even if all suppliers are quoting the same unit-selling-

price. 

Proof: 

The proof we present here is on the line to the proof presented in Chauhan et al. (2002). 

Assume that a polynomial time algorithm exists for     . Now consider the special case 

of problem      where delivery time of material is certain and each supplier supplies a 

single quantity i.e. minimum order quantity, say   , is equal to   . In this case each 

supplier either supplies    or nothing     {    } . Furthermore, because of the unique 

selling price the whole problem reduces to selecting a combination of suppliers who can 

supply, collectively,   units where   is the given demand quantity. Now the remaining 

problem can be expressed as follows:  

∑    
   

                                                                                                                                        

file:///C:/Users/Azadeh%20Mobtaker/AppData/Roaming/Microsoft/Word/Papers%20&%20Literature%20Review/Done/Awasthi,%20Chauhan,..._2009_Supplier%20selection%20problem%20for%20a%20single%20manufacturing%20unit%20under%20stochastic%20demand.pdf
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   {   }                                                                                                                                   

This problem is NP-hard since the partition problem (Garey and Johnson, 1979) is a 

special case of (3.5) and (3.6).   

Proposition2: 

In an optimal solution to      at most one supplier may not satisfy the following  

    { }  {     } . 

Description:  

Assume that in an optimal solution supply correspond to two suppliers  and  , is such 

that the condition of Proposition 2 is not satisfied i.e.          and          . 

Based on the objective function we have defined in equation 3.1, we denote the 

coefficient of order quantity    with   : 

  ∑      
   

                                                                                                                                  

Now consider coefficients    and   , one of the following can exist: 

                           

Assume that the first case is true and therefore increasing the order size of 

supplier   by   units     ,      (           ) and reducing the order size of 

supplier   by   units will improve the solution. We can follow the same approach in the 

other cases. In the case that      , either of supplier        can obtain a value of 

restrictions on order sizes. This completes the description.    
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3.5 Solution Approach for SSPD  

Since SSPD is a NP-hard problem it is less likely that an exact algorithm could guarantee 

a polynomial run time. This encouraged us to focus on an efficient solution approach 

which could propose a good solution, if not optimal, in an acceptable run time.    

In this chapter, we propose two heuristic algorithms in order to find efficient solution for 

SSPD. These algorithms are explained comprehensively in the following pages, also 

more detailed explanation is provided in Appendix A. 

Algorithm SS-1 

Please refer to Table 3.1 for description of parameters and decision variables mentioned 

in SS-1. 

Part 1 

Arrange suppliers in ascending order of their expected prices. Let us denote the ordered 

providers by        . Consider   as a variable which will be updated, and 

initialize     . 

Expected prices are calculated as follows: 

     
 ∑       

   

              

1. For            

1.1. If      , then  

(a) Set       . 

(b) Compute        . 
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1.2. If           , then 

(a) Set     . 

(b) Compute cost of assignment and stop. 

1.3.  If      ,  

(a)      and go to part 2. 

2. End of loop   

Part 2 

3. For               

3.1. Allocate    to supplier   

3.2. Assign the remaining quantity among suppliers {       } in the most economical 

way; this involves part 1 of the algorithm again (see appendix A). 

3.3. If the assignment is successful, compute the cost for the assignment. Keep the 

assignment in the memory if the cost of this assignment is better than all previous 

assignments. 

Proposition 3: 

If the algorithm terminates at 1.2 b (without entering part 2) the solution is optimal. 

Proof:  

In such cases the solution always satisfies the Proposition 2. Since the suppliers are 

arranged in the increasing order of their price, the solution obtained is the minimum cost 

solution. 
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Algorithm SS-2  

In this section we introduce another heuristic algorithm (SS-2) for supplier selection 

problem with buyer penalty for a delay.  

In algorithm SS-2 for each delay scenario, first we arrange suppliers in increasing order 

of their quoted unit prices, then by using similar method of SS-1 the best solution for 

each delay scenario will be computed and finally we will select the solution with 

minimum cost. 

In brief algorithm SS-2 consists of the following steps: 

1. For each delay scenario    ,  

1.1 Arrange suppliers in ascending order of their unit prices for delay scenario  . 

1.2 Use algorithm SS-1 to compute the best assignment say   . 

1.3 Compute the expected cost of the assignment    and if it is less than cost of all 

previous assignments, keep the assignment in the memory as the best assignment. 
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3.6 Illustration  

Illustration of algorithm SS-1 

In this section, the proposed algorithm SS-1 is illustrated through an example of 6 

suppliers and 1 buyer. Table 3.2 provides the data used in this example: number of 

suppliers    , number of delay scenarios    , demand quantity    , probability of each 

delay scenario        , suppliers’ quoted prices for each delay scenario         

  and    , minimum and maximum order sizes acceptable by suppliers   and      

  . 

             

                            

                                                    

                                                    

                                                    

                                                  

                                                   

                                                    

                                2 

                                    

Table 3.2: Data of SSPD example 

Here we give details on how SS-1 solves this example of six suppliers.  

Suppliers’ expected prices are calculated as follows: 

i.e. supplier1      expected price is equal to 

     
 ∑       

   

 

     
=                                                         
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Supplier’s 

number     
Expected price 

1 10.96 

2 11.33 

3 11.37 

4 12.27 

5 12.41 

6 12.88 

Table 3.3: Expected prices of suppliers in SSPD example 

Table 3.3 shows the suppliers arranged in ascending order of their expected prices. 

Algorithm SS-1 starts assigning quantities as follows: 

1)             

2)                                 

3)     ;                          

4)             

When the remaining demand quantity       is less than the minimum limit on order 

quantity of next cheapest supplier      , SS-1 enters part 2.  

In part 2 of SS-1 four cases are investigated. First SS-1 selects    as an obligatory 

supplier (algorithm SS-1 buys at least    units from   ). This case will result in quantity 

allocation #1 in Table 3.4. In the second case SS-1 picks    as an obligatory supplier and 

then by means of part 1 on algorithm SS-1 quantity allocation #2 in Table 3.4 is achieved. 

In the same manner quantity allocations #3 and #4 are obtained in Table 3.4. 

For more clarification we will explain how SS-1 obtains quantity allocations #1 in Table 

3.4. 
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Now SS-1 enters part 2 (see appendix A): 

5) Initialize         

6) Allocate    to supplier          . 

7) Calculate the flexibility for supplier                      

                 .  

8) Compute                .  

9) Call the algorithm SS-1 with following additional conditions 

Allocate      among supplier {   } using part 1 of algorithm SS-1. 

10)                             

11)          

Since               ; we adjust      in               . Then we 

compute the cost of the assignment                   and keep it if the cost is better 

than previous allocations (if any). 

Similar procedure will be followed when we select each supplier   {     } as an 

obligatory supplier and then solutions #2 to #4 (Table 3.4) will be achieved. 

Finally the quantity allocation with minimum cost among all 4 solutions (see Table 3.4) 

is selected as the final result of algorithm SS-1                                . 
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Table 3.4 provides quantity allocations checked by SS-1. 

# 
Quantity Allocations obtained by means of algorithm SS-1 

Supplier1 Supplier2 Supplier3 Supplier4 Supplier5 Supplier6 

1 52 0 25 0 0 0 

2 52 0 0 25 0 0 

3 52 20 0 0 5 0 

4 52 20 0 0 0 5 

               Table 3.4: Quantity allocations obtained from SS-1 

Illustration of algorithm SS-2 

In order to solve this example by means of algorithm SS-2, for each delay scenario    , 

arrange suppliers in ascending order of their quoted unit prices and then apply algorithm 

SS-1 to get the best allocation for the specific delay scenario  . Calculate total expected 

cost for each successful quantity allocation and compare it with previous allocation and 

keep the minimum. Eventually the allocation with the minimum total cost (  

                            .) would be the final solution of algorithm SS-2 for this 

example. 

In this example the results obtained by use of SS-1 and SS-2 are same as optimal 

solution. 

3.7 Experimentation 

In order to evaluate the performance of two proposed algorithms SS-1 and SS-2, 1300 

experiments have been done; the results of these two algorithms have been compared 

with optimal solution. The two algorithms SS-1 and SS-2 in companion with optimal 

solution algorithm have been modeled by a C++ program written in Visual Studio 2008.  
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All required data including supplier quoted-unit-selling prices for each delay scenarios, 

order size limitations, delay scenario probabilities and demand quantity have been 

generated randomly in Visual Studio C++, in the random data generation part the method 

used to generate random data is explained. 

Several tests have been conducted starting with problem size 3 (number of suppliers is 

equal to three) till problem size 15. For each problem size (number of suppliers), 100 

tests are done. 

Relative error of each experiment is calculated as follows: 

Relative Error for SS1 result in percentage   

                                    

                        
                                                              

Similar formula is used in order to calculate the relative error of algorithm SS-2 results. 

And finally the mean relative error of each problem size is calculated as follows: 

 ean Relative Error  (∑               

   

   

)                                                                   

Standard deviation of relative errors of 100 experiments is computed for every problem 

size using the following formula: 

Standard Deviation of Relative Error  √
 

   
 ∑     ̅  
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In the standard deviation formula,   stands for number of experiments (here   is equal to 

100).    is the relative error of experiment #  calculated by equation #3.8, and  ̅ indicates 

mean relative error of 100 tests calculated by formula #3.9. 

Random data generation 

(i) Number of delay scenarios     is a random number between two and five.  

(ii) Probability of each scenario is generated randomly using the following 

formula: 

            ∑  

   

   

  

(iii) Also for minimum acceptable order quantities (  ) we have generated random 

integer numbers between zero and 20 and each maximum acceptable order 

quantities (  ) is equal to    plus an integer random number between five 

and 25. 

(iv) In order to generate quoted unit prices        randomly we followed next steps: 

Initialize         (Consider a function called                       

which generates a random number between   and  ). 

For every supplier    : 

1)                                     

2)            

Then for each delay scenario    : 

3)                                           
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(v) Demand quantity     is an integer random number between summation of all 

         and sum of all         : 

       ∑  

   

 ∑  

   

  

By means of above explained methods, we generated random data and ran the C++ 

program for SS-1, SS-2 and Optimal algorithms one hundred times for every problem 

size. Table 3.5 provides the mean relative error and standard deviation for each problem 

size (from 3 to 15) using SS-1 and SS-2.  
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Number 

of 

Suppliers 

Mean Relative 

Error SS-1 (%) 

Standard 

Deviation of 

Relative Error 

SS-1 

Mean Relative 

Error SS-2 

(%) 

Standard 

Deviation of 

Relative Error 

SS-2  

3 0 0 0 0 

4 0.00517 0.05174 0.01846 0.18464 

5 0 0 0.00653 0.06527 

6 0.01094 0.09919 0.01042 0.09882 

7 0.01081 0.05399 0.02902 0.14834 

8 0.01461 0.07618 0.02939 0.27538 

9 0.03747 0.20348 0.01103 0.06984 

10 0.01235 0.08647 0.0451 0.17401 

11 0.01095 0.07368 0.06303 0.28514 

12 0.02555 0.22256 0.09858 0.38802 

13 0.01399 0.09734 0.06155 0.20913 

14 0.02629 0.14651 0.08368 0.33231 

15 0.00131 0.01314 0.05213 0.21153 

Table 3.5: Mean relative error and standard deviation of relative error for SS-1 and SS-2 

experiments 

Both approaches are quite effective in obtaining a very good solution (mean relative error 

is less than 1%), however it seems SS-1 is offering much closer solutions to optimal 

solution than SS-2 (Table 3.5 and Figure 3.1) based on randomly generated problems. In 

algorithm SS-1 we allocate quantities based on the expected price which could be 

misleading and it is possible that expected price may leave some good/competitive 

suppliers out the selection system. In other words both algorithms have their own 

importance. 
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Also the following table shows the mean relative error for SS-1 and SS-2. 

Mean Relative Error (%) 

SS-1 0.013 

SS-2 0.039 

Table 3.6: Mean relative error for results of SS-1 and SS-2 algorithms  

Table 3.6 shows the result of algorithm SS-1 on average lead to lower relative error than 

the results from using algorithm SS-2.  

 

Figure 3.1: Mean relative error of SS-1 and SS-2 

3.8 Conclusion 

Lots of construction projects in Canada are timber frame and log house constructions, in 

which wood is the main supply. Normally in forestry industry, wood suppliers own 

limited number of trees of specific species in a forest. So due to limited capacity suppliers 
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set a limit on maximum order size they can provide, while for the economies of scale 

they only accept orders above a minimum limit. 

A very common risk threatening the success of a construction project is an unexpected 

delay in a phase of the project. As a result of such delays and in order to have the 

required material at the right time (exactly when they are required), it is necessary to 

update the delivery time for the suppliers. In this case suppliers will charge the 

construction company a higher price because they may have bear inventory cost to meet 

the new schedule. 

In supplier selection literature some authors presented qualitative approaches like 

Analytic Hierarchy Process (AHP), TOPSIS, etc. while other researchers studied 

optimization and allocation models. As opposed to deterministic demand conditions, in 

some researches the effect of uncertainty (stochastic demand, stochastic lead time) was 

taken into account in the selection of suppliers.  

As far as we know there is not any study that considers the effect of uncertainty in staring 

date of a construction project phase in the supplier selection process. This motivates us to 

integrate uncertainty in starting date of a project and the fact that suppliers accept order 

sizes in specific ranges into the supplier selection process. Result of this integration is 

presented in the form of a mixed integer linear programming (MILP) problem (SSPD) in 

section 3.3.  

After formulating SSPD mathematically the computational complexity of this problem is 

explored; and SSPD is proved to be a NP-hard problem in Proposition 1. Most likely 
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there is no polynomial time algorithm to solve SSPD; therefore we focused on 

developing efficient heuristic approaches.  

Moreover a feature of optimal solution is introduced in Proposition 2 as a guideline for 

designing proper heuristic algorithms. 

In order to solve SSPD, two heuristic algorithms are proposed: Supplier Selection-1 and 

Supplier Selection-2. Also, for evaluating these algorithms an optimal solution algorithm 

is designed. The optimal solution algorithm explores all possible solutions for a given 

problem; for a problem of   suppliers the optimal algorithm will search among       

possible solutions to find the most economical quantity allocation. The optimal solution 

algorithm is an exponential time algorithm. Complexity of proposed algorithms SS-1 and 

SS-2 is much less than the optimal approach. In most of the cases (simple problems), the 

proposed algorithms find solutions in   computational steps, but in worst case the 

number of steps required is   .  

Algorithms are tested on the randomly generated data set and the results are compared 

with the optimal solution. In most of the cases the average error is less than 1%. From the 

solution quality, we can conclude that algorithms are capable of obtaining solutions very 

close to the optimal solutions. 
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Chapter 4: 

 

Supplier Selection with Quantity 

Reduction for a Buyer Delay (SSQRD) 

4.1 SSQRD Definition 

A typical construction project involves several activities performed in different phases. 

For instance in one phase the project team will build the walls of a house and in the next 

phase they build the roof and so on. So starting one phase can depend on completion of 

previous phases. Then delay in any phase is detrimental to subsequent phases.  

Procurement of construction material constitutes an essential activity in each phase. In 

order to have a successful construction project both timely and financially, it is necessary 

to have required material for each phase exactly at the beginning of that phase when they 

are required. Due to the uncertainty associated with commencement of each phase, a 

special procurement agreement should be negotiated with suppliers. 

In the event of delay in a project phase a project manager may ask the suppliers to deliver 

raw material at a new schedule to synchronize the project progress with delivery of 

product. The case in which suppliers decrease the promised quantity as a penalty for the 

delay (SSQRD) is studied in this chapter. The objective in SSQRD is to select a set of 

suppliers, from a pool of pre-qualified suppliers, which minimizes the expected 

purchasing cost. 
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In this chapter we investigate how decreasing the signed quantity by suppliers after the 

event of delay can affect the purchasing decision making at the time of signing a contract 

with suppliers.  

In the section 4.2, we describe the assumptions made for supplier selection problem with 

quantity reduction for a buyer delay (SSQRD). Part 4.3 defines the SSQRD problem 

mathematically. We provide the basic propositions of our study in section 4.4. The 

solution approach for SSQRD is presented in section 4.5 and it has been demonstrated in 

an example in part 4.6. The experimentation result for SSQRD is provided in section 4.7, 

and finally the conclusion of this chapter is summarized in section 4.8. 

4.2 Assumptions 

It is assumed that a set of pre-qualified suppliers are available to supply required material 

at a building site. These suppliers have met the preliminary selection criteria such as 

financial stability, technical capability and support, reputation in the industry, quality etc. 

If because of delay in the project, the total quantity delivered by the selected suppliers is 

less than the demand, it is assumed that the remaining quantity will be acquired from the 

market albeit at a higher price. For simplicity, we assume market has no limitations on 

order quantity and its price is fixed. The goal is to acquire specific quantities from a 

group of suppliers and buy the remaining quantity from market at a minimum possible 

cost. 

We assume that demand is known and fixed. Delivery lead time is assumed to be fixed 

and is the same for all suppliers. We also assume that the building contractor (buyer) 

knows the probability distribution     of the project delay or the expected starting date of 



44 
 

the project. Moreover in this research we assume that suppliers under consideration are 

associated with only one phase of the construction project. It is assumed that suppliers 

provide material with the same acceptable quality level.  

The suppliers may impose restrictions on the minimum and the maximum order size. The 

unit selling price quoted by any supplier is fixed and may differ from each other.   

In this chapter we consider the case where supplier reduces the promised quantity, with a 

known factor, as project delays. We consider   delay scenarios   . Suppliers provide the 

buyer (constructor) with the reduction factor (      ) of promised quantity regarding 

each delay scenario    . In SSQRD, we consider a discrete distribution for project 

delay and therefore the suppliers’ quantity reduction functions are discrete as well.  

The objective for SSQRD is to minimize the expected purchasing cost. The purchasing 

cost only includes the mean cost that the buyer pays to the suppliers. It is assumed that 

suppliers are able to deliver material very close to project starting date, so inventory cost 

is excluded. We also assume transportation cost is included in the suppliers’ quoted unit 

prices. 
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4.3 Mathematical Formulation of SSQRD 

A set of suppliers   {       } can deliver raw material to the site of a construction 

project. In the current construction phase demand quantity is constant and equal to  . 

There are two constraints that apply to any supplier    : 

 The minimum quantity that supplier   prepares to deliver for economical reason 

is denoted by   . 

 The maximum quantity that supplier   is able to deliver due to restrictions on the 

production capacity. This quantity is denoted by   . 

Thus, the quantity   ,     delivered to the building site is such that 

   { }          

For delay scenario     in delivery time of material, supplier     will decrease the 

promised quantity by a reduction factor       . The price quoted per unit by supplier 

    is denoted by    and is fixed. If the set of selected suppliers are not able to satisfy 

the demand, the contractor (buyer) will fulfill the missing quantity from the market at 

price      where          . 

The discrete probability distribution function for delay     is known. 
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The following table summarizes the notations used in the problem formulation:   

Table 4.1: Description of parameters and decision variables of SSQRD 

The mathematical formulation of SSQRD is presented as follows: 

Objective: 

SSQRD:   inimize    ∑   ∑                

      

                                                           

Subject to: 

∑       

   

                                                                                                                     

                                                                                                                                  

Parameters and Decision 

Variables 
Description 

      
Min and Max restriction on order size imposed by 

supplier   

  Demand 

   Quantity ordered from     supplier 

     Quantity ordered from market in scenario   

   Price quoted per unit  by supplier   

   Market price per unit  

  Set of suppliers         

  Set of   delay scenarios         

     1-reduction factor of supplier   for delay scenario   

  Discrete probability distribution function for delay 
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    {   }                                                                                                                                                                                              

In SSQRD, the objective is to select order quantity,    corresponding to supplier   for 

minimizing the expected total purchasing cost (4.1). Constraint (4.2) is to assure that sum 

of ordered quantities is at least equal to demand quantity; Constraint (4.3) makes sure that 

the order quantity,    for a selected supplier, lies between the corresponding minimum 

order size    and the maximum permitted   . Constraints (4.4) impose the restrictions on 

the value of variables    .  

4.4 Basic results  

In the case of continuous probability distribution, following propositions can be 

observed: 

Proposition1: 

For SSQRD, in the case of single supplier with unit price  , we show the optimal order 

quantity     should satisfy the following condition: 

∫       

   
 

 

 
  

    
   or    Probability (  

   

 
)  

  

    
    

Proof: 

Consider a single supplier that decreases the agreed quantity by   units in the event of 

each delay scenario (  is a linear reduction factor and its unit is unit of quantity/time 

unit). 
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The buyer has signed a contract for delivery of   units of product at the agreed delivery 

time.   is the appropriate quantity to cover the delay   
   

 
. In other words   is 

sufficient to absorb the demand delay of   periods. 

For simplicity of the mathematical calculation, we assumed that the probability 

distribution function is a continuous function of delay and denoted by     . We assumed 

     follows any continuous distribution functions. 

The cost   expresses the cost of excess product as well as cost of product shortage. 

Also the order quantity   satisfies the following constraint:     

  ∫                

   
 

 

 ∫                 

 

   
 

 

  

  
 

 

 
   ∫        

   
 

 

   

 

 
   ∫          

 

   
 

 

  

  
   (For first order optimality condition)  

∫        

   
 

 

 ∫         

 

   
 

   

 ∫       

   
 

 

   

[
 
 
 
 

  ∫       

   
 

 
]
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      ∫       

   
 

 

    

 

∫       

   
 

 

 
  

    
 

Observations: 

I. In the case of single supplier problem, if market price is equal to supplier’s 

price       , then we have to buy enough quantity to cover the periods which 

brings the cumulative probability up to 50%. 

     

∫       

   
 

 

 
  

    
     

II. If the product of interest is much more expensive in market than buying it from 

supplier, then we have to buy enough quantity to cover all the possible delays. 

     

∫       

   
 

 

 
  

    
   

 

III. In the case of multiple suppliers, if suppliers’ quoted prices have been arranged in 

ascending order as follows           , then 
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∫       

    
 

 

 
  

     
    

∫       

    
 

 

 
  

     
    

Since      then         

Since the effective price must be between    and   , the optimal order quantity 

should cover delays which brings the cumulative probability to   , where 

        . 

IV. Consider there are two suppliers with the same price        only one supplier 

will be selected and      , then the quantity we order from supplier        

should be always greater than the quantity we order from supplier 2    . 

Proof: 

Optimal order quantity must satisfy the following relation: 

∫       

   
 

 

 
  

    
 

Let’s assume         i.e.         , then: 

∫       

    
  

 

 ∫       

    
  

 

 
  

    
 

This implies 
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 is a positive constant. Since market price is always bigger than supplier’s price: 

       . The right hand side of the above equation is positive so the left hand 

side should be positive, and thus      . 

4.5 Solution Approach for SSQRD 

In this chapter, we propose a heuristic algorithm in order to find efficient solution for 

SSQRD. Based on proposition 1 and the observations obtained in section 4.4, we develop 

a heuristic algorithm to select and assign suppliers in order to minimize total expected 

cost.  

Next the proposed algorithm is explained comprehensively and more detail explanation is 

provided in Appendix B. 
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Algorithm SS-3 

The following figure illustrates the basic structure of algorithm SS-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Structure of SS-3 methodology 

SSQRD 

Delay 

scenario1 

Delay 

scenario2 
Delay 

scenario k 

Optimal 

solution of 

scenario1 

Optimal 

solution of 

scenario2 

 

Optimal 

solution of 

scenario k 

One of the above solutions that correspond to minimum 

total cost is selected as the final solution for the problem 
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Part 1 

First arrange suppliers based on their effective unit prices. Effective unit price for 

supplier   is calculated as follows: 

Compute the expected supply      for supplier   as minimum between demand quantity 

    and supplier   maximum acceptable order size     . 

                   

Then calculate the effective unit price        as follows: 

       ∑  (                (      )    )

   

      

In the next step, based on observation III, we determine the delay scenarios that we have 

to examine say     .  

Define    . 

In this approach we assume market as         supplier with no limitation on minimum 

and maximum order size. 

For each delay scenario     compute the following: 

1 For             

1.1 If  
 

    
    then  

(a) Set          . 

(b) Compute               . 

1.2 If  
 

    
        , then 

(a) Set    
 

    
 . 

(b) Compute cost of assignment and stop. 
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1.3 If  
 

    
    , 

(a)       and go to Part2. 

2. End of loop  . 

Part 2 

3. For                 

3.1. Allocate    to supplier   

3.2. Assign the remaining quantity among suppliers {      } in the most economical 

way; this involves part 1 of the algorithm again (see appendix B). 

3.3. If the assignment is successful, compute the cost for the assignment. Keep the 

assignment in the memory if the cost of this assignment is better than all previous 

assignments. 

4.6 Illustration 

In order to explain comprehensively how algorithm SS-3 works an example of seven 

suppliers and one buyer is solved in this section.  

Table 4.2 includes the data of this example: number of suppliers    , number of delay 

scenarios    , demand quantity    , probability of each delay scenario        , market 

price    , suppliers’ quoted prices        , one minus reduction factor of each 

supplier for each delay scenario in percentage           and      and suppliers’ 

minimum and maximum acceptable order sizes   and         . 
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                               2,      

                                          

Table 4.2: Data of SSQRD example 

SS-3 first arranges suppliers in ascending order of the effective unit prices, which are 

computed as follows: 

For each supplier      follow the next procedure: 

Compute the expected supply for supplier   as the minimum of   and   . Then calculate 

the total effective cost of ordering the expected supply from supplier   . 

Then calculate the unit effective price of supplier   , by dividing the total cost over the 

expected supply. 

For instance the effective unit price of supplier1 is calculated as follows: 

Expected supply   inimum        

Expected supply   inimum            
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Effective unit price
1

                           

                            

                            

                            

Effective unit price
1
       

Supplier’s 

number    
Effective unit price 

1 4.597 

2 5.1776 

3 5.976 

4 6.2335 

5 6.8016 

6 7.08065 

7 7.6519 

Table 4.3: Effective unit prices of suppliers in SSQRD example 

Table 4.3 shows the effective unit prices for all seven suppliers. Suppliers are arranged in 

ascending order of the effective unit prices. 

Then based on the result of observation III for SSQRD, SS-3 determines which delay 

scenarios have to be examined. 

The minimum and maximum quoted unit prices are      and      . Then 
  

     
 

     and 
  

     
     . Probability of delay scenarios #1, 2 and 3 collectively covers 

0.71. Delay scenarios that collectively cover a probability of 0.59 are scenarios #1, 2 and 

3. So based on observation III we have to investigate scenarios   {        }.  
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Algorithm SS-3 starts solving the problem in case of scenario1 as follows: 

1)        

2)                                  

3)                                  

4)                                 

5)            

When condition          happens algorithm SS-3 enters part 2. 

In part2, for every supplier   {         } algorithm SS-3 allocates    to supplier   

and then SS-3 allocates the remaining demand among suppliers   {       } in the 

most economical way. This process leads to five quantity allocations for the first delay 

scenario as presented in Table 4.4. 
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Quantity Allocations obtained by means of algorithm SS-3 

Supplier# 1 2 3 4 5 6 7 8 
Expected 

Cost 

S
ce

n
a
ri

o
 1

 
14 29 6 7 0 0 0 0 293.9989 

14 26 0 0 16 0 0 0 307.8012 

14 29 0 0 0 13 0 0 306.5569 

14 29 0 0 0 0 13 0 313.9831 

14 29 10 0 0 0 0 3 304.268 

S
ce

n
a
ri

o
 2

 

14 29 10 10.3902 0 0 0 0 288.7823 

S
ce

n
a
ri

o
 3

 14 29 10 0 19.583 0 0 0 316.1397 

14 29 10 7.054 0 12 0 0 316.4331 

14 29 10 12 0 0 9.1578 0 323.2594 

14 29 10 12 0 0 0 5.22 291.83 

Table 4.4: Quantity allocations obtained from SS-3  

In the same way quantity allocations for scenarios    and     are obtained and listed in the 

Table 4.4. In this example the solution that SS-3 gets is same as optimal solution. The 

optimal solution is                               and the total cost is equal to 

288.7823. 
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4.7 Experimentation 

We conducted two set of experiments:  

First set of experiments 

In a set of 600 randomly generated experiments for SSQRD, 88.6% of the cases the 

optimal solution for SSQRD is an optimal solution for one of the delay scenarios. 

These experiments have been run in Visual Studio C++ 2008 for a range of 4-15 

suppliers. For each number of suppliers, 50 tests were generated. 

Random data generation 

All the data of these experiments have been generated randomly. The following 

paragraphs explain how the random data have been generated: 

(i) Number of delay scenarios is a randomly generated number between two and 

five.  

(ii) Probability of each delay scenario is a random number between zero and one 

minus the summation of probabilities of all previous delay scenarios (if any): 

             ∑  

   

   

  

(iii)  Reduction factor of all suppliers for the first delay scenario is equal to zero. 

For each supplier the reduction factor for delay scenario   {       } is 

randomly generated between the successive previous scenario reduction factor 

and one. 
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(iv)  Each supplier’s minimum order size    is a random number between zero 

and 20. Maximum order size of supplier   is equal to summation of   with a 

random number between five and 25. 

(v) Demand quantity is generated randomly between summation of all minimum 

acceptable order sizes      and summation of all maximum acceptable order 

sizes     . 

(vi)  Supplier  ’s quoted unit price      is equal to the price of previous successive 

supplier        plus a random number between 0.5 and five. 

Consider a function called                       which generates a 

random number between   and  . Initialize variable        , this variable 

will be updated. 

For    : 

1)                                     

2)          

 

(vii) Market price is equal to a randomly generated number between the maximum 

unit price      and multiplication of that to three      . 
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Second set of experiments 

In this section, we perform the numerical experimentation in order to evaluate 

performance of algorithm SS-3. 1300 random problems were generated and solved by 

means of SS-3, and then the results were compared with the optimal solutions of each 

problem.  

The exact algorithm is modeled by linking a C++ program in Visual Studio 2008 to 

ILOG CPLEX 11.2 software. Also the proposed algorithm SS-3 is modeled by a C++ 

program in Visual Studio 2008.   

One hundred randomly generated problems were solved for each problem size three to 

fifteen suppliers. Average of relative errors and standard deviation of the relative error 

were calculated.  

Random data generation 

All the random data generations have been done by Visual Studio C++ software. In the 

following paragraph it is explained how each set of data have been generated randomly. 

(i) Number of delay scenarios     is a random number between two and six.  

(ii) Probability of each delay scenario is a random number between zero and one 

minus the summation of probabilities of all previous delay scenarios (if any): 

             ∑  
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(iii) Minimum acceptable order quantities (  ) are integer numbers, generated 

randomly between zero and 10. Maximum acceptable order quantity of 

supplier   (  ) is equal to    plus a random integer number between 10 and 

25. 

(iv) In order to generate supplier   quoted unit price      randomly     , next 

steps were followed: 

Consider a function called                       which generates a 

random number between   and  . Initialize variable        , this variable 

will be updated. 

For    : 

3)                                         

4)          

(v) Market price is generated randomly as follows: 

                                          

(vi) Demand quantity     is an integer random number between summation of all 

         and sum of all         . 

(vii) Reduction factor          of all suppliers for the first delay scenario is equal 

to zero. For each supplier the reduction factor for delay scenario   

{       } is randomly generated between one and the successive previous 

scenario reduction factor. 
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One hundred experiments for each problem size are generated randomly based on the 

above mentioned methods. For each experiment relative error is calculated with the 

following formula: 

Relative Error of SS 3 result  in percentage    

Cost of SS.3 solution   Cost of optimal solution

Cost of optimal solution
 100 

Then the total average relative error is calculated: 

 ean Relative Error  (∑Relative Errori

   

   

)              

For each problem size, the standard deviation of one hundred experiments is computed as 

follows: 

Standard Deviation of Relative Errors  √
 

   
 ∑     ̅  

 

   

    

In the standard deviation formula,   stands for number of experiments (here   is equal to 

100).    is the relative error of experiment # , and  ̅ indicates mean relative error of 100 

tests. 
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Table 4.5 provides the mean relative error and standard deviation for each problem size 

(3-15) using SS-3.  

Number of 

Suppliers 
Mean Relative Error (%) Standard Deviation  

3 2.396346 7.946597 

4 1.751612 5.936568 

5 1.898349 6.695997 

6 2.177347 5.602607 

7 3.696116 9.184954 

8 2.451351 7.496033 

9 2.21378 5.2393 

10 2.609696 7.56612 

11 2.160598 7.048407 

12 2.902341 9.415888 

13 1.863592 5.694208 

14 1.449375 2.860838 

15 2.312779 4.946434 

Table 4.5: Mean relative error and standard deviation of relative error for SS-3 

experiments 

 

Figure 4.2: Mean relative error of SS-3 results 
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The total average relative error of algorithm SS-3 is equal to 2.3% (based on results 

showed in Table 4.5). Since the maximum mean relative error is 3.69% (which is less 

than 5% as showed in Figure 4.2), SS-3 proves to be efficient in providing solutions close 

to optimal solution. 

4.8 Conclusion 

In construction projects delay in any phase of a project threatens success of the whole 

project both financially and timely. Normally the share of supplies in the total turnover of 

a construction project is very high, and therefore it is very important to keep the 

purchasing cost of required supply to minimum possible. Moreover in the event of any 

delay in a project, project manager has to ask suppliers to provide the material at a later 

time. In SSQRD, the case where suppliers decrease the promised quantity when buyer 

asks for new delivery schedule is studied. SSQRD is expressed as a mixed integer linear 

programming problem (MILP). 

Based on 600 experiments with random data, it is observed that in 88% of cases the 

optimal solution to the problem is an optimal solution for one of the delay scenarios. Also 

observation III based on some approximation illustrates that we can select a number of 

delay scenarios that are most probable to give us the optimal solution.  

In order to get the optimal solution for this problem we formulated the MILP and solved 

it using IBM ILOG CPLEX 11.2. For problems with integer variables, CPLEX uses a 

branch and cut algorithm which solves a series of LP, sub-problems. Because a single 

mixed integer problem generates many sub-problems, even small mixed integer problems 
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can be computationally very intensive and require significant amounts of physical 

memory and time.  

The proposed approach is very fast and can be easily implemented using spreadsheet 

without using commercial optimization software. 

Examining the proposed algorithm SS-3 with 1300 randomly generated experiments 

resulted in a maximum average relative error of 3.7%. We assumed that the heuristic 

algorithm would be efficient if its maximum average relative error is less than 5%. Since 

3.7% is less than 5%, SS-3 is verified to be capable of providing economically acceptable 

solutions. Also the average relative error achieved by SS-3 is 2.3%, which is acceptable 

and cost-effective from business point of view.  
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Chapter 5: 

 

Conclusions and future works 

5.1 Summary  

In industries such as forestry industry, there can be several occasions when the preferred 

suppliers fail to provide required supply for a flexible timeline and buyer has to look for 

short term partnership with other suppliers. Usually suppliers have limitation on 

minimum order size for the economies of scales; they also may accept orders under a 

specific limit which can be due to commitments to other suppliers or limitation on the 

capacity. Supplier selection problem with limitation on minimum order size is a complex 

problem. Incorporating this problem with uncertainties in the supply chain makes this 

problem more complicated. This study focused on uncertainties linked to delivery date of 

material which is very common in construction industry. 

This research presents an approach to select required number of suppliers to fulfill future 

demand. This problem is computationally complex and the approach presented (based on 

the properties of the problem) could give a solution very close to the optimal solution. 

The experimental studies, on randomly generated data set, promise a consistent 

performance. The tool presented here could be very handy for managers who 

dynamically want to add/remove suppliers or modify quantities as the project progresses 

and demand changes. The approach presented here could be helpful in complex model 

where more than one product is required from the same supplier sets. The following 

figure summarizes the procedure of work done in this research: 
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Figure 5.1: Procedure followed in conducting this thesis research  
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5.2 Limitations and Future work 

In the current work we assume fixed price and single product. In reality suppliers give 

discounts on quantity. In future, model can be extended to incorporate various types of 

quantity discounts such as non-linear price discount. Moreover in future a fixed set up 

cost can be added to the cost function of suppliers.  

The model can also be extended to handle the cases where suppliers are associated with 

more than one consecutive phase (in our study we assumed that suppliers are associated 

with one phase of a construction project). 

The model can also be extended to handle multi-client i.e. selecting suppliers for various 

clients with a client specific minimum order size limitation. In the multi-client case the 

presented approach can be helpful in solving sub-problems (decomposition based 

approaches).  

Also in future the model can be extended to evaluate the situations where both cases of 

penalty and quantity reduction are offered by suppliers as a penalty for delays imposed by 

the buyer; and to find the most economical combination of suppliers.  

The proposed models can be evaluated in future on the basis of stochastic numbers 

generated with consideration of dependencies between market events and supplier 

conditions. 

In future the proposed model for SSQRD can be extended to consider the inventory 

holding cost in the cases where the buyer order more than demand quantity.  
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Advanced approaches such as bender decomposition could be investigated in future to 

develop exact algorithms. 
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Appendix A 

In algorithm SS-1 if the problem enters part 2, after allocating     to supplier   , SS-1 

will distribute the remaining demand           among suppliers           in the 

most economical way. 

The following steps assign the suppliers in the most economical way: 

For each supplier   {      }: 

1. Initialize         

2. Allocate    to supplier       . 

3. Calculate the flexibility for supplier                     .  

4. Compute       .  

5. Call the algorithm SS-1 with following additional conditions. 

Allocate   among supplier {         } using Part1 of algorithm SS-1. If the condition 

# 1.2 happens compute the cost for the assignment and continue. 

In the case of condition # 1.3: 

If        adjust   in            . Compute the cost of the assignment and keep it 

if the cost is better than previous allocations (if any). 

Note:   may be assigned to more than one supplier with the flexibility (that is       

  ). 
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Appendix B 

In algorithm SS-3 if the problem enters part 2, after allocating     to supplier   , SS-3 

will distribute the remaining demand                 among suppliers           

in the most economical way in the following steps:  

For each supplier   {        }: 

1. Initialize         

2. Allocate    to supplier       . 

3. Calculate the flexibility for supplier                         .  

4. Compute           .  

5. Call the algorithm SS-3 with following additional conditions 

Allocate   among supplier {         } using Part1 of algorithm SS-3. If the condition 

# 1.2 happens compute the cost for the assignment and continue. 

In the case of condition # 1.3: 

If        adjust   in          
 

    
. Compute the cost of the assignment and keep it 

if the cost is better than previous allocations (if any). 

And if       , this means we identify one more supplier which cannot accommodate 

the remaining amount of demand. We set this new supplier as   and follow again the 

same steps (1-5 of Appendix B). 

Note:   may be assigned to more than one supplier with the flexibility (that is       

  ). 


