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Abstract

The research presented here has the potential to dramatically change how GNSS re-

ceivers capture and process signals, opening up new applications which are not suitable

for existing navigation receivers. As opposed to existing GNSS receivers which con-

tinually process the incoming signals, this technique allows for strict management of

the incoming data and position estimation outputs. This management is well suited

for applications which are required to remain off or in a low power state for long and

intermittent periods.

It has been demonstrated that a position can be estimated in a GPS receiver using

only submillisecond code phase measurements, as opposed to complete pseudoranges.

This technique is referred to as Time-free and requires a coarse estimate of time, an a

priori estimate of the receiver position and GPS satellite ephemeris information. How-

ever, this technique has previously required the a priori position knowledge to be less

than approximately 100 km from the user. This is often an application limiting restraint

which we overcome with the new combination technique proposed here.

A combined Doppler time free navigation method which requires no knowledge of

the a priori receiver position is developed. A position is first estimated with no a priori

knowledge of the receiver position using only Doppler measurements. The accuracy of

this estimate is not useful for navigation, but it is within the initialization requirements

of the Time-free positioning method. This combined technique therefore eliminates a

cumbersome requirement and improves the effectiveness of receivers being designed

using short bursts of data and software radio processing techniques.
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Chapter 1

Introduction

1.1 History of Satellite Navigation

Navigation has been a human concern for a number of centuries. Navigation can be

loosely defined as the guidance of a vehicle or person from one location to another

[2] . Initially navigation was primarily for sea-faring vessels. However, the invention

of aircraft and motor vehicles in the 20th century has made navigation increasingly

important in air and land travel. Whereas in the past navigation was mostly based on

where one had come from and where they were headed, navigation in the modern sense

is based on where exactly on the Earth one is, in relation to a certain reference location.

The commencement of the space age in 1957 with the launching of the Soviet Sput-

nik I satellite brought new opportunities in the development of navigation systems [3].

It was discovered that the orbit of Sputnik I could be determined from a single ground

station at a known location using the pattern of Doppler shifts received from the satel-

lite. This led to the development of Transit by the United States which was a Doppler

based satellite navigation system. Between four and seven satellites in low altitude orbit

and transmitting at 150 Mz and 400 MHz where used in this system. Only one satellite

was in view at a single time, and there were 100 minutes between successive passes of

the satellites. Receivers recorded the satellite’s Doppler shift as well as a navigation
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message giving the position of the satellite for a period of between 10 and 20 minutes

of the satellite pass. The Doppler shift and navigation message where then used to com-

pute the 2D position of a stationary or slow moving user. Transit was initially used by

the US Navy and was then later used in a few civil applications, namely maritime and

geodesy [3]. The Soviet Union also developed two Doppler-based satellite navigation

systems. Parus for the Soviet Navy and Tsikada for merchant ships [3].

The next space-based navigation system in the US was the Global Positioning Sys-

tem (GPS), which was borne out of the success of Transit. GPS benefited from ad-

vancements in technology and as a result is an entirely different system. Whereas the

positioning method used by Transit was Doppler, the positioning method used by GPS

is range-based. Range-based positioning is a kind of trilateration.

Figure 1.1: Trilateration positioning method
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In trilateration, a receiver determines its position by measuring its distance from

a number of signal transmitting stations. This measured distance is a radius around

the transmitting station, and the intersection of the radii of multiple stations gives the

receiver position. Figure 1.1 shows the 2-dimensional view of trilateration as viewed

from above. The intersection of the radii of the three transmitting stations is the estimate

of the receiver’s position. In the case of GPS, the transmitting stations are satellites, and

instead of 2-dimensional circles, we have spheres. The three spheres intersect at two

points, one point above the GPS constellation and one point on or near the Earth’s

surface. Although two points of intersection causes some ambiguity as to where the

receiver is positioned, the ambiguity is easily resolved because the receiver is assumed

to be close to the Earth’s surface.

The time of transmission of the signal and the time of reception of the signal are

used to determine travel time of the signal. Since the speed of propagation of the signal

is known, it is used in conjunction with the travel time to determine the distance from

the receiver to the transmitting station. Advancements in clock technology allowed

the transmission of time-synchronized signals from GPS satellites. Spread spectrum

technology ensures that the signals from the satellites can be transmitted simultaneously

at the same radio frequency. This is done by modulating the data from each satellite with

a unique sequence of pulses called a pseudorandom number (PRN) code. The advent of

integrated circuits in the 1970s enabled the design of smaller portable receivers further

enhancing the usefulness of GPS as a navigation system. Medium Earth Orbit (MEO),

which is between 5000km and 20000km, was chosen for the satellites as it provides an

optimum balance of launch costs, number of satellites in the constellation required for

proper coverage and effects of the Earth’s atmosphere and gravitational field [3].

Currently (March 2012), GPS consists of a constellation of 32 satellites that orbit

the Earth every 12 hours [4]. The availability of the full constellation varies from time

to time due to technical issues [5]. Up to date information of the current state of the

constellation can be found at the Navigation Center website that is run by the United
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States Coast Guard [6]. GPS has a vast array of applications amongst both civilian

and military users. Applications of Global Satellite Navigation Systems (GNSS) are

discussed in 1.2.

There are similar satellite navigation systems operational or under development

by other countries. GLONASS is a global satellite navigation system developed by

Russia. According to Russia’s Federal Space Agency Information-Analytical Center,

GLONASS currently has a constellation of 31 satellites of which 24 are operational

[7]. Unlike GPS which uses code division multiple access (CDMA), GLONASS uses

frequency division multiple access in which all satellites transmit the same PRN code

but at different frequencies [3].

The European Union is currently developing Galileo which is expected to have 27

operational satellites and 3 spares once it is fully deployed [8]. It also uses spread

spectrum communications like GPS but with additional binary offset carrier (BOC)

modulation of the carrier.

Other countries also have regional satellite navigation systems such as BeiDou de-

veloped by China, Quasi-Zenith Satellite System under development by Japan and the

planned IRNSS by India [1].

1.2 GNSS Applications

GNSS has varied applications. Gleason and Gebre-Egziabher propose a set of cate-

gories for the applications of GNSS in [1] . GNSS is used for navigation in aviation,

automobiles, space vehicles, marine transport as well as by people on foot. Other ap-

plications include remote sensing, geodesy and surveying

Pedestrians and hikers form a huge category of GNSS receiver users, with GNSS

receivers being integrated into mobile phone handsets. GNSS receivers are useful to

hikers who can use them to find their way in unknown terrain. City pedestrians also

use GNSS receivers with regional datums to find their way through city streets. This
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latter application of GNSS receivers is also used by drivers to find their way to specific

addresses in cities. The driver simply keys in an address into the receiver and the re-

ceiver uses the regional datum in conjunction with local maps and other data sources to

determine the location of the address as well as provide directions of how to get there.

The application is however not limited to cities but can also be used for long journeys

in which the receivers give directions of highways to follow.

In marine transport, GNSS receivers are used for navigation of the vessels either

by using the automatic pilot or manually. GNSS is particularly useful as a method

for primary navigation in the open seas within the areas of coverage. Not only are

the vessels able to find their way from one port to another, but they are also able to

determine where they are at sea.

In civil aviation, GNSS receivers are used as a secondary navigation aid in both

flight and landing. Though GNSS can achieve reasonable accuracy for flight, aviation

has got strict requirements on reliability making it impossible to use GNSS as a primary

navigation aid except in oceanic flight and remote areas where there is no ground navi-

gation network, as discussed in chapter 10 of [1]. GNSS is therefore used in conjunction

with augmentation systems to detect anomalies in the navigation solution provided.

1.3 Limitations of Traditional GPS Processing Methods

The general idea underlying GPS is finding a user’s position by the solution of a system

of equations with four unknowns. These unknowns are position in X, position in Y,

position in Z and a receiver clock offset. Four unknowns can only be solved by at least

four equations and so, at least 4 satellites have to be visible for a user to determine their

position by solving the system of equations. The formation of these equations however

also includes other data elements. These elements are satellite ephemeris data which

is information of the satellite position and satellite clock, transmission time of the GPS

signal, reception time and error elements related to the transmission and reception of
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the signal. Satellite ephemeris and transmission time are carried on the GPS signal. The

traditional method of obtaining this data is to first acquire the satellite signal, track the

signal and finally decode the transmit time in the satellite navigation data as shown in

figure 1.2 [3].

Figure 1.2: Stages in the processing of a GPS signal

The traditional method of acquisition, tracking and decoding information results in

a large amount of data that has to be handled by the receiver in order to get to the point

of being able to solve for the system of equations and hence perform a position fix.

As an example, consider the fastGPS software-defined receiver coupled with the

SiGe GN3S sampler as it’s RF front-end and downconverter [1]. The GN3S readme

states that for 40 seconds of data, the SiGe GN3S sampler creates a file of about 625

MB [9]. It is clear that a large amount of data has to be processed for a relatively short

period of captured signal. Section 1.4 proposes a technique of allowing position fixes

to be obtained with shorter data sets.

Another drawback of the acquire, track and decode method in traditional GPS is the

considerable amount of time it takes to obtain all the ephemeris data required to perform

a position solution for the user, once acquisition and tracking have occurred. This is due

to the structure of the navigation data in the GPS signal and the low transmission rate

of the navigation data itself. In a worst-case scenario, the user might have to wait for

as long as 36 seconds from the beginning of acquisition before all the ephemeris data

required to determine an initial position fix is available. This initial position solution

determination is called time to first fix (TTFF) [10].

At the moment, the two factors that lead to this wait time, low data transmission rate
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and signal structure, currently cannot be eliminated for GPS L1. The structure of the

GPS signal is such that it carries the satellite ephemeris. Currently, a position cannot be

found without satellite ephemeris.

The solution to the requirement of obtaining ephemeris data is to acquire the ephemeris

externally from a different source and then store it at the receiver. This method is called

assisted-GPS (A-GPS) and is relatively easy to implement in a receiver [10]. A-GPS is

discussed in section 2.4.

With the ephemeris stored at the receiver, there still exists the problem of having to

decode the time from the GPS signal. This is solved by a positioning technique pro-

posed by Peterson et al that is able to provide a position fix without having to decode

time from the GPS signal [11]. This technique however has the disadvantage of re-

quiring knowledge of the receiver position to within a certain unknown accuracy of the

truth. This challenge will be addressed in section 1.4.

1.4 Contributions of this Research

In traditional GPS receivers, assistance data can be stored at the receiver hence allowing

the receiver to perform position estimation without having to decode ephemeris from

the satellite and by extension shortening the data set required to perform the position

fix. The length of this data set can also be further shortened when Time-free Positioning

is used, since the receiver does not require to decode the time from the GPS signal.

This research aims at using Time-free Positioning while mitigating its drawbacks

by initializing it using the Doppler Positioning Algorithm proposed by Hill [12]. The

main drawback of the Time-free Positioning Algorithm is its requirement of an a priori

receiver position knowledge to a restrictive degree of accuracy. Lannelongue and Pablos

state that this accuracy should be to within 100 km of the truth [13]. This research

therefore seeks to discover what this accuracy is, by performing experiments. The a

priori receiver position requirement is then solved by first obtaining the receiver position
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estimate using a Doppler Positioning technique and feeding this position obtained into

the Time-free Positioning module. At low receiver dynamics, the Doppler Positioning

Algorithm is able to provide a position estimate that should be accurate to within 100 km

as required by the Time-free Positioning Algorithm. Therefore this research proposes

a method to remove the a priori position requirement from the Time-free Positioning

Algorithm.

Another contribution is the investigation and documentation of the conditions for

and limitations of both the Doppler Positioning and Time-free Positioning Algorithms.

In this research, the performance of the Doppler Positioning algorithm will be investi-

gated with respect to satellite geometry for the whole GPS constellation by simulating

over a complete day. The effect of receiver dynamics on Doppler Positioning will also

be investigated and a receiver velocity limit determined. The a priori time error degra-

dation of Doppler Positioning accuracy will also be investigated.

The a priori coarse time error and a priori position error effect on Time-free Posi-

tioning will be investigated. Currently only one published work does analysis of time

and position error effect on Time-free Positioning [13]. This research will investigate

convergence of the algorithm based on the two aforementioned parameters.

The application of this research will target GNSS users whose dynamics are low.

This category includes animal tracking, pedestrians, hikers, bikers and low velocity

surface marine vessels.

It should be noted that the techniques developed in this research can find use in high

receiver dynamics scenarios when the longer new PRN codes are considered and when

the Doppler Positioning algorithm is implemented with inertial aiding. These cases are

however not investigated in this research.
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Chapter 2

Background

2.1 GPS Signal Overview

The GPS signal is described in the ISP-GPS-200D specification [14] . The compo-

nents of the signal described are carrier, ranging code and navigation data. The GPS

carrier signals are transmitted on L-band frequencies denoted L1 at 1.57542 GHz, L2

at 1.2276 GHz and L5 at 1.17645 GHz. The L1 carrier transmits two signals, one for

civil users and another for military users. The L2 carrier contains a military signal only.

The L5 signal is a safety of life signal whose carrier signal is located in the protected

Aeronautical Radionavigation Service (ARNS) band [15].

The L1 civil signal is modulated with a navigation message which has been mod-

ulated by a coarse acquisition code. Figure 2.1 shows how the civil GPS L1 signal is

created.
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Figure 2.1: Modulation of the GPS L1 C/A signal

The code transmitted on the L1 frequency is a pseudorandom sequence called a

coarse acquisition (PRN C/A) code, which is actually a Gold code. Each satellite has

got its own unique PRN C/A code. The codes ensure that all satellites can transmit at

the same frequency and still be identified by receivers. The PRN codes 1023 bits long

and are repeated every millisecond hence giving them a frequency of 1023 MHz.

Figure 2.2: PRN code repeats in GPS satellite transmission

When a GPS signal is received by a receiver, it will usually not be at the L1 fre-

quency of 1.57542GHz but will appear to be at a slightly higher or slightly lower fre-

quency. This is due to the movement of the satellites causing Doppler shift of the signal.

The received signal C/A code will also not be at an integer code phase boundary but
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will have shifted by a fractional value to a non-integer boundary. This is due to the

distance and clock dependent time delay between the time of transmission of the signal

and its reception.

2.2 GNSS Receivers

2.2.1 GNSS Receiver Structure and Operation

GNSS receivers can either be hardware receivers or software-defined receivers. Hard-

ware receivers are normally based on application specific integrated circuits (ASICs)

but they can be based on field-programmable gate arrays (FPGAs). ASICs have a fixed

hardware configuration whereas FPGAs have some flexibility in the hardware configu-

ration. Figure 2.3 shows the block diagram of a generic GNSS receiver.

Figure 2.3: A general GNSS receiver block diagram (Adapted from [1] with permis-

sion)
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The first stage is the capturing of the signals by a suitable antenna. This antenna

is normally a right hand circularly polarized (RHCP) antenna in the case of GPS since

GPS signals are RHCP [14]. Once the signals are captured, they are amplified and

downconverted to a suitable intermediate frequency (IF) by the RF frontend.

Once the signal is sampled at IF, each individual satellite’s transmission has to be

discovered in a process called acquisition. Acquisition involves doing a correlation

of the signal with each satellite’s PRN C/A code. As mentioned in section 2.1 , each

satellite PRN code is a unique sequence. Therefore, during acquisition these PRN codes

allow for currently visible satellites to be ”detected”. The aim of acquisition is to find

the frequency and phase at which each satellite signal is located. In GPS, a search range

of 2 kHz is searched in steps (of 500 Hz for example) to find the Doppler frequency of

the satellite. Each frequency step is then searched for all code phase delays.

The output of acquisition is then sent to a tracking unit which as its name suggests

tracks the satellite signal in frequency, carrier phase and code phase delay. Acquisition

only gives a rough estimate of the signal Doppler and code phase, but tracking provides

further accuracy. This involves determining the Doppler frequency, carrier phase and

code delay of a signal and adjusting the receiver accordingly so that the receiver is

locked onto the received signal. The receiver generated signal and the received signal

have to be locked in frequency, phase and code delay.

Once this lock has been achieved, the ”in-phase prompt correlator accumulations

of the tracking module are used to decode the signal navigation data” [1]. In order

to achieve this, the position of a navigation data bit is first determined by looking at-

tempting to determine a phase change in the data samples from the tracking module.

Once a navigation data bit has been found, the receiver tries to determine the start of a

subframe.

The next step after determining the start of a subframe is determining the time of

transmission of the subframe. This also is decoded from the subframe, as each satellite

embeds a time of transmission of the next subframe before transmission of a subframe.
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With the time of transmission, the satellite can now start measuring pseudoranges by

subtracting the time of transmission from the receiver time and multiplying by the speed

of light. A pseudorange is the estimated distance between a satellite and a receiver. This

measurement will have errors in it which include: satellite clock error, receiver clock

error, ionospheric error, tropospheric error and other unmodelled errors.

The receiver then decodes the satellite ephemeris from the navigation data. In the

GPS case, satellite ephemeris are Keplerian elements which are used to determine the

position, velocity and time (PVT) of a satellite. The ephemeris are used in conjunction

with the measured pseudoranges to determine the receivers position which is then output

to a user interface. This is explained in more detail in section 2.3.

2.2.2 GNSS Receiver and Simulator Used in this Research

In this thesis, the series of blocks from signal acquisition to receiver PVT estimation

of the general GNSS receiver of figure 2.3 form the open source fastGPS software-

defined GPS receiver. This receiver was developed by Morgan Quiqley, Pieter Abbeel

and Scott Gleason. It is an open-source software-defined GPS receiver that provides a

suitable platform on which to test and implement the ideas in this thesis.

It should be noted that there are other software-defined GNSS receivers. Akos et

al designed a MATLAB based software-defined GPS receiver that performs positioning

using the GPS L1 captured by a simple front-end [16].Heckler and Garrison designed

the C++ based Purdue software receiver (PSR) for research and teaching purposes [17].

Ledvina, Psiaki et al also designed a real-time L1 software receiver that is interoperable

GPS and Galileo [18]. fastGPS is chosen for use in this research because of its ease

of reconfiguration by changing the source code which allows easy and quick testing of

algorithms. It also has faster execution speed compared to MATLAB-based software

defined GNSS receivers. fastGPS also allows access to raw measurements such as

Doppler and code phase enabling easy investigation of various aspects of GPS receiver
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operation.

Two choices for the front-end are available: the SiGe GN3S Sampler and the USRP2.

The SiGe GN3S Sampler was developed by the GNSS Lab at the University of Colorado

and SiGe [19]. It is an ASIC-based RF front end which downconverts GPS signals to

an intermediate frequency (IF) of 4.1304MHz at a sampling rate of 16.3676 Megasam-

ples/second. The USRP2 developed by Ettus Research LLC is an FPGA-based RF

front-end with adjustable downconversion and and sampling rates [20].

A GPS simulator is also used to test algorithms developed in this thesis. The GNSS

Simulator developed by Scott Gleason and found in the DVD that accompanies refer-

ence [1] is able to simulate GPS satelllites with either a terrestrial or space GPS receiver.

The simulator is useful for investigation of the effect of receiver dynamics on the algo-

rithms developed, since varied scenarios of receiver dynamics can be tested.

One other notable GNSS simulator is the Software Defined Navigator (SDN) de-

veloped at Ecole de Technologie Superieure (ETS) in Montreal Canada [21]. It was

created for rapid prototyping of hybrid GPS/Galileo receivers.

2.3 GPS Positioning

In this research, vector quantities are represented in bold font while scalar quantities

are represented in normal font. In addition, estimated values are represented as a letter

overlaid with a caret (ˆ).

2.3.1 Least Squares Technique

Having done an overview of general GNSS receivers, the specific case of GPS posi-

tion estimation will now be described. This section thus describes the ”Least Squares

technique” of position, velocity and time (PVT) estimation.

As was mentioned in section 1.1 distances from transmitting satellites are used to

find the location of a receiver. These distances are known as pseudoranges in GNSS.

14



According to Misra and Enge, the pseudorange measurement of a satellite can be mod-

eled as [3]:

ρ i = ri(t, t − τ)+ c[δ tu −δ t i(t − τ)]+ Ii(t)+T i(t)+ ε i(t) (2.1)

Where:

ρ i = Pseudorange measurement for satellite i in meters

t = Time of signal reception in seconds

ri(t, t − τ) = True pseudorange in meters between the receiver at time t and the

satellite at time of transmission t − τ

τ = Delay in seconds between the time of transmission of the signal

from a satellite and the time of reception at the receiver

c = Speed of light in meters/second

δ tu = Receiver clock bias from GPS time in meters

δ t i(t − τ) = Satellite clock offset in meters

Ii(t) = Propagation delay due to the Earth’s ionosphere in meters

T i(t) = Propagation delay due to the Earth’s troposphere in meters

ε i(t) = Other errors in meters

As suggested by Gleason and Gebre-Egziabher, equation 2.1 can be simplified by ap-

plying the known satellite clock error correction, grouping all the error terms into one

term and omitting the references to time[1]:

ρ i
c = ri + cδ tu + ε i

A (2.2)
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The true pseudorange is defined as the magnitude of the vector between the receiver

and the satellite:

ri = ||Si
c −Uc|| (2.3)

Where:

Uc = True receiver position in Cartesian coordinates

Si
c = True satellite position in Cartesian coordinates

Equation 2.3 is then substituted into equation 2.2 and the receiver clock error term

is renamed:

ρ i
c = ||Si

c −Uc||+b+ ε i
A (2.4)

Where:

b = Receiver clock error

Equation 2.4 shows how the corrected pseudorange is related to the receiver’s posi-

tion and clock error. The equation has 4 unknowns: the receiver position in Cartesian

coordinates (x,y and z) and the receiver clock error b. Therefore, at least 4 equations

are required to solve for these unknowns. This means at least 4 corrected pseudorange

equations are required which translates to at least 4 satellites in view as shown in figure

2.4.
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Figure 2.4: Determination of a GPS receiver’s position using 4 satellites

The estimation of the receiver position and clock error is done by linearizing the

pseudorange measurements around an a priori guess of the receiver position and re-

ceiver clock offset. The estimated pseudorange based on the receiver position guess

and clock offset guess is given by:

ρ̂ i = ||Si
c − Ûc||+ b̂ (2.5)

Where:

Ûc = Receiver position guess

b̂ = Receiver clock error guess

The estimated pseudorange in equation 2.5 is then subtracted from the corrected

measured pseudorange:
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δρ i = ρ i
c − ρ̂ i (2.6a)

δρ i = ||Si
c −Uc||+b+ ε i

A − (||Si
c − Ûc||+ b̂) (2.6b)

Equation 2.6 is further modified by considering the fact that the difference between

||Si
c −Uc|| and ||Si

c − Ûc|| is an unknown receiver position correction δUc and the dif-

ference between b and b̂ is an unknown clock bias correction δb:

δρ i = ||Si
c − Ûc −δUc||+δb+ ε i

A −||Si
c − Ûc|| (2.7)

Taylor series expansion is then applied to equation 2.7 and only up to the first order

terms taken to give:

δρ i =
Si

c − Ûc

||Si
c − Ûc||

•δUc +δb+ ε i
A (2.8a)

δρ i = −Li•δUc +δb+ ε i
A (2.8b)

Where:

L = Line of sight unit vector between satellite i and the a priori re-

ceiver position

As was previously mentioned, at least 4 satellites are required to solve for the posi-

tion of a receiver. Therefore, 4 or more of equation 2.8 are required. These equations

are used to build a system of equations represented in matrix form as:
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δρ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 − ρ̂0

ρ1 − ρ̂1

...

ρ i − ρ̂ i

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−L0
x −L0

y −L0
z 1

−L1
x −L1

y −L1
z 1

...
...

...
...

−Li
x −Li

y −Li
z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

δx

δy

δ z

δb

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

ε0
A

ε1
A

...

ε i
A

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.9)

Equation 2.9 is of the form Gx̃ = δρ and can now be solved as follows:

x̃ = (GTG)−1GTδρ (2.10)

Where:

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−L0
x −L0

y −L0
z 1

−L1
x −L1

y −L1
z 1

...
...

...
...

−Li
x −Li

y −Li
z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

x̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

δx

δy

δ z

δb

∣∣∣∣∣∣∣∣∣∣∣∣∣

It should be noted that the error terms in equation 2.9 are included for mathematical

completeness and hence only exist as hidden terms in the measurements in the solution

in equation 2.10. Equation 2.10 is in a form that can allow determination of solutions for

an overdetermined case. An overdetermined case is when more than the required four

satellites are available to perform a position estimate. This is normally advantageous as

it allows for better satellite geometry. Equation 2.10 is then solved iteratively in order

to produce an accurate solution for the receiver position and clock bias estimates.
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2.3.2 Dilution of Precision

The accuracy of the position estimate of a GPS receiver is dependent on the satellite

geometry of the visible satellites. The satellite geometry is the arrangement in the sky

of the visible satellites. The geometry matrix G of the GPS solution formula is used to

create the dilution of precision (DOP) matrix H whose major axis is used to determine

the quality of the satellite geometry [1].

H = (GTG)−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H11 − − −

− H22 − −

− − H33 −

− − − H44

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.11)

The measure of the satellite geometry, geometric dilution of precision (GDOP), is

thus defined:

HGDOP =
√

H11 +H22 +H33 +H44 (2.12)

In this research, GDOP will be used in conjunction with mean position error to

give a better understanding of the performance of the algorithms developed in terms of

position accuracy. GDOP greatly affects position accuracy and hence has to be included

as part of the analysis.

2.4 Assisted GNSS

Assisted GNSS, as its name suggests, is a method of aiding the operation of a GNSS

receiver. Several kinds of assistance techniques exist for acquisition, tracking and nav-

igation, but this research concentrates only on assistance techniques for navigation.
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Navigation assistance is shown in figure 2.3. It has the effect of eliminating the need

for the ”Nav Data Synch” block and the ”Nav Data Decode” block.

In normal GPS navigation, the receiver has to decode satellite ephemeris from the

signal received from the satellite. This ephemeris is contained in the first 3 subframes

of a GPS frame. Satellite ephemeris contains orbital parameters that can be used to

calculate the satellite position and velocity at a given epoch. Satellite clock error terms

are also included in the ephemeris and are used in calculating satellite clock error at the

time epoch. Satellite ephemeris is needed in the navigation equations for receiver PVT

estimation. However, decoding ephemeris from the satellite signal takes time because

the receiver must not only determine the beginning of a subframe, but must also capture

the signal at subframe 1. If the receiver captures the signal at subframe 3, it must wait

another 2 subframes (4 and 5) for the next subframe 1 to be transmitted.

Therefore, to save time required to decode ephemeris from the satellite signal, the

receiver can obtain the ephemeris from a different source and store it at the receiver.

Figure 2.5 shows an example of one such assisted GNSS (AGNSS) configuration.
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Figure 2.5: An example assisted GNSS configuration

In this configuration, the receiver receives assistance data, which includes the satel-

lite ephemeris and satellite clock correction parameters, from a location other than the

satellite itself. In the case of GPS receivers in mobile phones, it is common for the

receiver to receive the assistance data via the mobile phone network. GPS receivers can

also be connected to the internet to download satellite assistance data from such sites as

the International GNSS Service (IGS) [22]. Ephemeris downloaded from such sources

tends to be valid for a limited time.

Once the receiver has assistance data locally stored, it is freed from the burden of

having to decode ephemeris and satellite clock correction parameters from the satellite.

The receiver needs only to decode time of week (TOW) and measure the C/A code phase

from the satellite signal in order to determine the time of transmission of a sample.

This time of transmission is then used to obtain the satellite positions and velocities
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from the locally stored ephemeris. It should be noted that the assistance data provides

satellite orbital parameters at regular time intervals and hence most often the parameters

have to be propagated for times of transmission which are between these intervals. In

the IGS case, the assistance data is actually provided in actual satellite positions and

velocities every 15 minutes [23]. These values have to be propagated for times that are

in between these 15 minute intervals. The receiver therefore has to have some kind of

orbit propagator. Assistance data from the IGS can be propagated using the algorithm

by Schenewerk [24].

2.5 Doppler Positioning

As mentioned in section 1.4, Doppler positioning can be a used to estimate a receiver

position without having a priori knowledge of the receiver position. It’s main drawback

is that it is inaccurate especially for receivers with high dynamics. However the method

proposed by Jonathan Hill provides a position estimate of a receiver that is accurate

enough to initiate Time-free positioning [12].

This technique is based on determining Doppler offsets of the various visible satel-

lites and using these Doppler measurements with satellite velocity, satellite position and

an estimated initial receiver position to build a system of equations. The system of equa-

tions has four unknowns, which are receiver X position, receiver Y position, receiver Z

position and receiver clock rate error. This system of equations is solved recursively as

shown in chapter 3 to find the values of the unknowns.

It should be noted that Doppler positioning can operate without decoding ephemeris

from the satellite. However, the requirement of the satellite position and satellite veloc-

ity suggests that ephemeris is still needed. There is where the assisted GPS comes in.

Ephemeris data obtained from a different location must be available at the receiver. It is

from this assistance data that the GNSS receiver will obtain the satellite locations and

velocities.
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In order to obtain the correct satellite locations and velocities, the GNSS receiver

should have a reasonable time accuracy. Time accuracy is important because if the re-

ceiver has an incorrect clock, it will compute erroneous satellite locations and velocities

from the assistance data. This will in turn lead to incorrect calculated pseudoranges as

the satellites are not where they are supposed to be in the sky.

The time accuracy requirement must not be too stringent. If it is too stringent, it

renders the method difficult to perform. This is because one of the strategies of making

receivers cheap and hence available to many users is by using low cost clocks. There-

fore a time accuracy limit that can be considered ”reasonable” for use with Doppler

Positioning must be determined. This accuracy limit must also be well within the reach

of modern low cost clocks that can be found in general purpose receivers.

As was mentioned before, Doppler Positioning is known to be inaccurate, especially

when the receiver is moving [12]. It is therefore necessary to investigate the effects of

receiver velocity. This will enable a threshold velocity to be determined such that when

the receiver is moving at velocities above the threshold, the position estimation results

are considered untrustworthy.

The derivation and further discussion of Doppler Positioning is found in chapter 3.

2.6 Time Free Positioning

Time-free positioning, as the name suggests, is a method of estimating a GPS receiver’s

position without having access to the true GPS time of transmission from the satellite.

This implies that just like Doppler Positioning, Time-free Positioning does not require

to decode transmitted satellite ephemeris. It too uses the assisted GPS technique of

having satellite ephemeris stored at the receiver and requires a reasonable time accuracy

to make use of this assistance data.

Time-free Positioning uses code phase measurements to reconstruct observed pseu-

doranges. Code phase is the ”distance” by which a replica PRN code at the receiver is
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a submillisecond value which only provides a fractional part of the full observed pseu-

dorange. The rest of the observed pseudorange is an unknown integer value between

64 and 89 ms. The determination of the full observed pseudorange in Time-free Posi-

tioning involves guessing the value of this integer millisecond. The integer millisecond

count is an ambiguity in the exact observed pseudorange determination. A technique

therefore has to be found to predict the millisecond integer count accurately, and if this

prediction is not sufficiently accurate, measures have to be put in place to identify and

correct it.

Just like in Doppler Positioning, the time estimate in Time-free Positioning is used

to determine satellite locations from the assistance data. These satellite locations are

used in conjuction with an estimated receiver position to estimate pseudoranges. Ac-

cording to Lannelongue and Pablos, this estimated receiver location must be within 100

km of the truth while the initialization coarse time should be within 60 seconds of the

truth for the algorithm to work [13]. The validity of these two limits will be investigated

in chapter 4.

Once observed and estimated pseudoranges have been determined, the receiver po-

sition can be estimated iteratively using a least squares method as shown in section 2.3.

The derivation and further discussion of Time-free Positioning is found in chapter 4.
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Chapter 3

Doppler Positioning

In this work, vector quantities will be represented in bold font while scalar quantities

will be represented in normal font. In addition, estimated values are represented as a

letter overlaid with a caret (ˆ) and a dot product with a bold dot (•).

3.1 Heritage Algorithm

In creating a Doppler positioning method, the key is to develop a system of equations

that can be used to find the unknowns of position (in x, y and z) and clock frequency.

Doppler frequency is a quantity that is represented in hertz. However, it can also be

represented in meters per second (velocity). The relationship between satellite velocity

and Doppler frequency is exploited to develop this system of equations. In this chapter,

the Doppler positioning method proposed by Hill is first derived, a modification is made

to his method, and the resulting system of equations presented [12].
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Jonathan Hill starts by defining Vi to be the velocity difference between satellite i

and the receiver [12] :

Vi = Si
v −Uv (3.1)

Where:

Vi = Velocity difference between satellite i and the receiver

Si
v = Velocity of satellite i obtained from A-GPS data at time of signal reception

Uv = Velocity of the receiver

The velocity of the receiver is assumed to be zero to eliminate for three velocity un-

knowns in x, y and z.

Next Hill defines a normalized line of sight vector L, pointing from the satellite

position Si
c to the estimated receiver position Uc:

Li =
Ûc −Si

c

||Ûc −Si
c||

(3.2)

Where:

Li = Unit vector pointing from satellite position to receiver position (Normal-

ized line of sight vector)

Ûc = Estimated Receiver Position

Si
c = Position of satellite i obtained from A-GPS data

Equation 3.1 and equation 4.8 are combined to get the projection of the difference be-

tween the satellite velocity and the receiver velocity along the normalized view vector,

which is in fact the pseudorange rate:

ρ̇ i = Vi •
Ûc −Si

c

||Ûc −Si
c||

(3.3)

Where:

ρ̇ i = Pseudorange rate
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However, the Doppler shift equation is given by:

Fr = Ft

(
1+

ρ̇ i

c

)
= Ft +∆Fr (3.4)

Where:

Fr = Frequency received by the receiver

Ft = Frequency transmitted by the satellite

∆Fr = Doppler offset

From equation 3.4 it can be seen that the pseudorange rate is actually the Doppler fre-

quency of the satellite in terms of speed.

ρ̇ i =
∆Fr

Ft
c (3.5)

Where:

ρ̇ i = Doppler frequency of the satellite in terms of speed (pseudorange rate)

c = Speed of light

This Doppler frequency can be represented in terms of θ as shown in figure 3.1 (a):
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Figure 3.1: Isolines of constant Doppler frequency

θ is the angle between the direction of the Doppler frequency and the vector of the

difference between the satellite velocity and receiver velocity. The equation defining

figure 3.1 is given by:

ρ̇ i = ||Vi||cosθ (3.6)

From figure 3.1 it can be seen that ρ̇ forms a cone of which the circumference of the

circular base is a locus of points of constant Doppler frequency. The cone represents the

Doppler shift of just one satellite. The intersection of the circumferences of the circular

bases of a sufficient number of such cones will be an estimate of the position of the

receiver. This is an example of trilateration as discussed in section 1.1.

However, satellite measurements are always plagued by errors, the dominant of

which is the receiver clock. When this error is taken into account, equation 3.3 becomes:

ρ̇ i = Vi •
Ûc −Si

c

||Ûc −Si
c||

+ ḃ (3.7)

Where:

ḃ = Clock frequency error
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Equation 3.7 is then re-arranged as shown below

ρ̇ i||Ûc −Si
c|| = Vi •

(
Ûc −Si

c

)
+ ḃ||Ûc −Si

c|| (3.8a)

Ûc •Vi = Si
c •Vi + ρ̇ i||Ûc −Si

c||− ḃ||Ûc −Si
c|| (3.8b)

At this point, Hill suggests the addition of ḃ||Si
c|| to both sides of equation 3.8 . This

gives [12] :

Ûc •Vi + ḃ||Si
c|| = Si

c •Vi + ρ̇ i||Ûc −Si
c||+ ḃ||Si

c||− ḃ||Ûc −Si
c||

Ûc •Vi + ḃ||Si
c|| = Si

c •Vi + ρ̇ i||Ûc −Si
c||+ ḃ

(
||Si

c||− ||Ûc −Si
c||

)
(3.9)

Although Hill’s equation (equation 3.9 ) now has the unknowns on the left-hand side, the

clock frequency error still has a term on the right-hand side of the equation. Equation

3.9 is just for one satellite. A number of satellites define a system of equations Gx̃ = B

where G is a matrix, x̃ is an error vector and B is a vector. G, x̃, and B are defined as

follows:

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣

V 0
x V 0

y V 0
z ||S0

c ||

V 1
x V 1

y V 1
z ||S1

c ||

...
...

...
...

V i
x V i

y V i
z ||Si

c||

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.10)

x̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ũcx

Ũcy

Ũcz

˜̇b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.11)

B(x̃) = Si
c •Vi + ρ̇ i||Ûc −Si

c||+ ḃ
(
||Si

c||− ||Ûc −Si
c||

)
(3.12)

Where:
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x̃ = Updated position and clock error terms for each iteration of the recursive

solution.

The system of equations Gx̃ = B can be solved using x̃ = (G)−1B if only 4 satellites are

involved in the solution. However, for an overdetermined case (more than 4 satellites)

the following equation is required:

x̃ = (GTG)−1GTB (3.13)

This solution is performed recursively. The receiver position Ûc and magnitude of

the vector pointing from the satellite position to the receiver position ||Ûc−Si
c|| change

with each iteration. Ûc should converge closer to the true position with each iteration.

3.2 Algorithm Modification

Equations 3.10 through 3.12 are the actual implementation of Hill’s algorithm [12].

This research however modifies Hill’s algorithm slightly. The modification is done to

produce a simpler formulation by moving terms rather than Hill’s version of adding

terms which was found to be slightly more complex.

Modification of this algorithm starts from equation 3.8. The clock frequency error

term ḃ||Ûc −Si
c|| is moved to the left-hand side of the equation instead of adding a new

term.

Ûc •Vi + ḃ||Ûc −Si
c|| = Si

c •Vi + ρ̇ i||Ûc −Si
c|| (3.14)
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The G matrix for a system of equations based on equation 3.14 becomes:

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣

V 0
x V 0

y V 0
z ||Ûc −S0

c ||

V 1
x V 1

y V 1
z ||Ûc −S1

c ||

...
...

...
...

V i
x V i

y V i
z ||Ûc −Si

c||

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.15)

The x vector remains the same while the B vector changes to:

B(x̃) = Si
c •Vi + ρ̇ i||Ûc −Si

c|| (3.16)

The system of equations is still solved recursively using equation 3.13. The differ-

ence between this method and Hill’s method is that all clock terms are consolidated on

the left hand side of the equation.

The theory of the algorithm is now fully developed. This theoretical algorithm will

now be tested. Section 3.3 describes the methods used to test the algorithm.

3.3 Test Methodology

The algorithm is tested on two main types of data sets: simulated data and over-the-air

(OTA) GPS data.

3.3.1 Simulated Data

From equation 3.1 it can be seen that the velocity of the receiver directly influences the

derivation of the Doppler Positioning solution. Therefore the impact of this velocity on

the convergence and accuracy of the solution has to be investigated. This allows us to

meet the goals set out in section 1.4: to understand the limits of the Doppler Positioning

algorithm and hence be able to suitably integrate it with the Time-free algorithm. To do

this, three scenarios are created on which to test the Doppler Positioning Algorithm:

33



1. Stationary receiver

2. Slow moving receiver

3. Receiver with increasing velocity

The stationary receiver scenario enables the assessment of the accuracy of the po-

sition estimate with zero velocity. A velocity that is close to that of a person on foot

or a cyclist is then chosen to see by how much the accuracy is impacted. Finally the

increasing velocity scenario is used to determine how the position solution degrades

with increasing velocity. A GNSS simulator provides an easy and convenient method

of investigating these scenarios. The GNSS Simulator, which is a software GNSS sim-

ulator, is used to perform these simulations in this research [1]. It allows simulation of

varied receiver dynamics over a variety of time periods. Quick analysis of the algorithm

is therefore made possible.

For each scenario two-line satellite orbital elements provided by NORAD (North

American Aerospace Defense Command) collected on four separate days are used to

create four different test cases [26]. In the stationary receiver scenario, four sets of

24 hours are simulated using four sets of two-line elements (TLEs). This is done by

downloading new TLEs for the GPS constellation everyday for four days. Testing the

algorithm in this way provides varied geometries in order to capture performance of the

algorithm in a variety of conditions.

The 24 hour period is chosen because it is known that GPS satellites have an orbital

period of 12 hours. Therefore the 24 hours ensures that many possible satellite geome-

tries are tested during the scenario. Best case, worst case and average performance of

the algorithm can therefore be determined over 4 full days of simulation.

For the slow moving receiver and receiver with increasing velocity, the receiver is

set to move in one specific compass point direction (North, South, East and West) for

the four different days. The velocity of the receiver is then increased from 5 m/s up to

40 m/s in steps of 5 m/s. Each velocity is maintained for 20 minutes and data is sampled
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every minute. The slow moving receiver also has a simulated time of 24 hours like the

stationary receiver. However, the increasing velocity receiver only has a simulated time

of 2 hours 40 minutes. This is however sufficient to investigate the effect of velocity on

the algorithm.

3.3.2 Over-the-Air GPS Data

The SiGe GN3S sampler is used to capture an over the air (OTA) GPS signal for a

duration of about 40 seconds. The SiGe GN3S sampler downconverts the GPS L1 to

an intermediate frequency (IF) of 4.1304 MHz and then samples the signal at 16.3676

Megasamples/s. This IF GPS signal is stored in a file and subsequently processed by

the fastGPS software receiver.

fastGPS is a single frequency software receiver programmed in C [1]. It can provide

position solution with or without assistance data. This research however uses it in A-

GPS mode with locally stored ephemeris. fastGPS is first run in normal mode to obtain

a position from the OTA GP RF data using the Least Squares technique.

The fastGPS code is then modified to implement the version of Doppler Position-

ing derived in section 3.2. The position obtained by Least Squares is then chosen as

the reference position and the file is once again processed in fastGPS in Doppler Posi-

tioning mode. The positions obtained by Doppler Positioning are then compared to the

reference position.

3.4 Doppler Positioning Results

3.4.1 Simulated data

Stationary Receiver

The simulated position for the stationary receiver was chosen to be 45.499◦ N, 73.595◦

W at a height of 156.56 meters above sea level. This simulated position is a location in
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Parc Mont Royal in Montreal Canada.

Once the scenario has been simulated in The GNSS Simulator, the generated data

is fed into a MATLAB script that performs Doppler Positioning and plots the results in

East North (EN) format.

Figure 3.2: East North Position for a Stationary Receiver Over a 24 Hour Period Starting

9:16 am April 19, 2011

Figure 3.2 is the East North positions relative to the true position for data simulated

on the first set of 24 hours for the stationary receiver. It can be seen that the error in

the receiver position never goes above 10 km. This is well within the 100 km threshold

suggested by Lannelongue and Pablos in [13] that is required for a position to be used to

initialize the Time-free positioning algorithm. Throughout the 24 hour period, the error

is largely less than 4 km except in a few cases. The largest error in the position was

further investigated and was found to correspond to an increase in geometric dilution of

precision (GDOP). GDOP is a statistical indication of how accurate a position solution

is, depending on the satellite geometry. A higher GDOP value shows that the position

solution is less accurate due to poor satellite geometry whereas a lower value of GDOP
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shows that the position solution is more accurate due to good satellite geometry.

Figure 3.3: GDOP and number of satellites visible for stationary receiver test case 1

Figure 3.3 shows the relationship between number of satellites and GDOP for the

stationary receiver case. In majority of the cases, a reduction in number of satellites

leads to an increase in GDOP (though this may not always be the case).

Though their plots are not shown, all test case simulations for the stationary receiver

showed roughly similar position solutions over their respective 24 hour periods.

Slow Moving Receiver

A starting point similar to the position of the stationary receiver was chosen for the

slow moving receiver. The receiver was then simulated as moving southwards at a

velocity of 1.5 m/s. These receiver dynamics correspond to a user walking on foot and

using a handheld GPS receiver. A MATLAB script is again used to perform Doppler

Positioning on the simulated data, and the results are plotted.
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Figure 3.4: Doppler Positioning Solution Error for a Slow Moving Receiver Moving

Southwards as from 9:16 am on April 19, 2011

Figure 3.4 is the error magnitude for data simulated on the first set of 24 hours

for the slow moving receiver. This time period corresponds exactly to the time period

during which the stationary receiver data was simulated. This means that the exact

movement of satellites and hence corresponding GDOP is calculated at each time step.

The error magnitudes for the slow moving receiver are however worse than those of

the stationary receiver, with a maximum peak of 50 km. This peak corresponds to

an increase in GDOP similar to that which was observed for the stationary receiver in

figure 3.3. This is because the simulation of the stationary receiver and the slow moving

receiver is over the same time period, with the exact same satellite geometries.

Increasing Velocity Receiver

The increasing velocity receiver was also simulated as starting from the same location as

the stationary receiver. The initial velocity was 0 m/s but after 2 seconds of simulation

time, the velocity was increased to 5 m/s and thereafter was increased by 5 m/s every

20 minutes for a period of 160 minutes of simulation time. This was to ensure that a
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sufficient range of velocities was tested.

Figure 3.5: Doppler Positioning Solution Error for a Receiver with Increasing Velocity

Moving Southwards at 9:16 am on April 19, 2011

From figure 3.5, it can be seen that the error magnitude increases with each increase

in velocity. This is due to the fact that the algorithm used for position determination is

dependent on receiver velocity, which was assumed to be zero. Therefore, each increase

in velocity means that the assumed velocity of zero is more and more disparate from

the true velocity.

The results also show a large degradation in position estimation 120 minutes into

the simulation. This degradation is due to a low elevation satellite contributing to the

Doppler position solution. Low elevation satellites tend to have larger Doppler errors

than high elevation satellites. In The GNSS Simulator, the errors modeled are iono-

spheric errors, tropospheric errors, Gaussian random noise and a constant bias for each

satellite [1]. These errors affect Doppler receiver positioning depending on elevation.
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Hill explains how these large Doppler errors contribute to the receiver positioning

using equation 3.17:

∆θ =
−∆ρ̇ i

||Si
v||sin(θ)

(3.17)

Where:

∆θ = Radial error contribution to receiver position

ρ̇ i = Error in Doppler frequency.

θ = Elevation angle.

Equation 3.17 shows that for high elevations θ , the radial error ∆θ will be small whereas,

for low elevations, the radial error will be large.

3.4.2 Over the Air GPS Data

Stationary Receiver with Receiver Time Accurate to 2 seconds

Over the air (OTA) GPS signals were captured using the SiGe GN3S Sampler at Parc

Mont Royal in Montreal Canada. This data was processed in the C based fastGPS

software receiver using the least squares positioning technique and the position obtained

was used as the reference (”true”) position for the Doppler Positioning data.

The OTA GPS data was then fed into an implementation of Doppler positioning in

C in fastGPS which generated position estimates in a text file. These position estimates

where loaded into MATLAB and converted to East North positions which where then

plotted as seen in figure 3.6. The position results obtained were also compared to those

of a hand-held Garmin GPS receiver.
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Figure 3.6: East North Position for a Stationary Receiver at 6:04 pm October 28, 2010

From figure 3.6 it can be seen that the largest error is less than 2 km. This value

is obtained after the tracking loops have settled. Before the tracking loops settle, a

maximum error somewhere between 20 and 25 km is obtained. A total of 173 runs of

the Doppler Positioning algorithm were done by the fastGPS receiver as it processed

data over a 35 second period. In this scenario, a priori time was accurate to within 2

seconds.

Stationary Receiver with Receiver Time Error up to 5 minutes

The same OTA GPS signal captured at Mont Royal is used to investigate the effect

of a priori receiver time error on the Doppler Positioning algorithm. A Monte-Carlo

simulation is run by adding a random error up to a maximum of 5 minutes to the a

priori receiver time.
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Figure 3.7: East North Position for a Stationary Receiver at 6:04 pm October 28, 2010

with a Maximum Time Error of 5 Minutes

Figure 3.6 shows the results of adding random time errors to the a priori receiver

time when performing Doppler positioning. It shows that position error in kilometers

increases almost linearly with a priori time error.

An a priori time error of 3 minutes or more induces a 100 km or more position error

in the position estimate. This a priori time error will be compared to the a priori time

error requirements of Time-free positioning in chapter 4.

The results in figure 3.7 show that the relationship between a priori time error and

position error magnitude is nearly linear. This could be due to the fact that the Doppler

positioning algorithm is directly dependent on clock frequency rather than on clock

error itself.
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3.5 Summary

The simulations and collected OTA GPS data show that Doppler Positioning provides a

position estimate with an error in the order of tens of kilometers for stationary and slow

moving receivers. The Monte Carlo a priori time error simulations show that a position

accuracy to the same order can be maintained by keeping the a priori time accurate

to within 3 minutes. In chapter 4, the a priori position and time accuracy required

for Time-free positioning will be assessed to better understand how to implement a

combined algorithm.
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Chapter 4

Time-free Positioning

4.1 Introduction

As was mentioned in section 1.4, a receiver normally requires a large amount of data

to be processed before a navigation solution can be performed. Doppler Positioning

can provide a position estimate of a receiver soon after acquisition of satellites has been

accomplished. Unfortunately Doppler Positioning is not accurate enough to be of use

on its own. In the tests carried out in this research, Doppler Positioning yielded position

estimates that were accurate to several hundreds of meters at best but often significantly

more in non-ideal cases. Therefore a method is required to improve accuracy and yet

still maintain the reduced processing workload for a GPS receiver. One such candidate

is Time-free Positioning which was first proposed in 1995 by Peterson, Hartnett and

Ottoman in [11], expounded in 1998 by Lannelongue and Pablos in [13] and further de-

veloped in 2009 by Van Diggelen in [10]. Notations of various quantities are borrowed

from both [13] and [10] in this research.

In Time-free Positioning, the position of a receiver is estimated without knowledge

of the precise time of transmission of a GPS signal. This automatically removes the

need to extract the time of week (TOW) from the navigation data. An a priori guess

of both receiver position and time and assistance ephemeris have to be provided to the
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algorithm to provide a position solution.

This research will developed a Time-free positioning algorithm and demonstrate

what estimated a priori position and time accuracies are required for the convergence of

the algorithm.

4.2 Heritage Algorithm

Peterson, Hartnett and Ottman start by defining a time measure which they call time of

arrival (TOA) [11]. Time of arrival is the time at which a GPS signal arrives at a receiver.

The pseudorange equation for Time-free positioning is based on the difference between

the observed time of arrival TOA and the assumed time of arrival TOAg, modulo 1ms.

Lannelongue and Pablos relate TOA to and assumed TOA to true time and coarse time

using the equation:

TOA−TOAg = t − tg [1 ms] (4.1)

Where:

TOA = Observed time of arrival

TOAg = Assumed time of arrival

t = True time

tg = Coarse time, estimate of t

The observed TOA is obtained from the millisecond code phase measurements of

the receiver whereas the assumed TOA is the receiver time at reception of the signal.

Coarse time tg was a term created by Peterson, Hartnett and Ottman, which will be

explained later. The observed TOA is a fractional measurement and not a complete

one. This is the code phase measurement and is used as a fractional pseudorange. This

fractional pseudorange is described as a submillisecond pseudorange by Van Diggelen

in [10] since it is a fractional value of a millisecond for GPS L1 C/A. This research
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employs both fractional and submillisecond terminologies.

To obtain a full observed pseudorange, the submillisecond pseudorange is added to

an integer millisecond count as follows:

ρ = N +α (4.2)

Where:

ρ = Complete observed pseudorange in milliseconds

N = Millisecond integer count

α = fractional pseudorange/submillisecond pseudorange

The millisecond integer count is however not available and has to be estimated,

given only the fractional pseudorange. The method employed is dependent on the esti-

mated pseudorange which is obtained using coarse time. If the fractional pseudorange is

close to a millisecond integer boundary, additional bias can lead to the estimation of the

wrong millisecond integer count due to a roll-over of the integer. The additional bias is

termed common bias and a method of mitigating their effects will be presented. The es-

timated pseudoranges will therefore be defined first and the full observed pseudoranges

developed thereafter.

The requirements for the Time-free algorithm are assistance ephemeris and satellite

clock terms and a priori receiver position and coarse time estimates. To determine the

estimated pseudoranges, satellite positions at the a priori guess of coarse time are ex-

tracted from the assistance ephemeris data and then subtracted from the a priori receiver

position estimate.
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ρ̂ i(̂tg) = ||Ûc(̂tg)− Ŝi
c(̂tg)|| (4.3)

Where:

ρ̂ i(̂tg) = Estimated pseudorange of satellite i at estimated coarse time

Ûc(̂tg) = Estimated receiver position at estimated coarse time

Ŝi
c(̂tg) = Satellite Position at obtained from A-GPS data at estimated coarse

time

However, this estimated pseudorange is not accurate enough for use without apply-

ing corrections. A few manipulations have to be done on it in order to produce a more

accurate predicted pseudorange. First, an estimated time of transmission is determined

from the estimated coarse time t̂g:

t̂tx = t̂g −
ρ̂ i(̂tg)

c
(4.4)

Where:

t̂tx = Estimated time of transmission

c = Speed of light

This estimated time of transmission t̂tx is used to again extract satellite positions

from ephemeris data. The accuracy of these extracted satellite positions is then fur-

ther improved by accounting for the Earth’s rotation during signal transmission. To

compensate for the Earth’s rotation, the time of flight of the signal is determined:

τ =
||Ûc(̂tg)− Ŝi

c(̂ttx)||

c
(4.5)

Where:

Ûc(̂tg) = Estimated receiver position

Ŝi
c(̂ttx) = Satellite Position obtained from A-GPS data at estimated time of trans-

mission
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The time of flight of the signal is then combined with the rate of right ascension of

Earth rotation in a transformation matrix which is applied to the satellite positions:

Ŝi
c corrected(̂ttx) =

∣∣∣∣∣∣∣∣∣∣

cos τΩ̇ sin τΩ̇ 0

-sin τΩ̇ cos τΩ̇ 0

0 0 1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

Ŝi
cx(̂ttx)

Ŝi
cy(̂ttx)

Ŝi
cz(̂ttx)

∣∣∣∣∣∣∣∣∣∣

(4.6)

Where:

Ŝi
c corrected(̂ttx) = Position of satellite i at estimated transmission time and

corrected for the Earth’s rotation

Ω̇ = Rate of right ascension

The predicted pseudorange is calculated thus:

ρ̂ i = ||Ûc(̂tg)− Ŝi
c corrected(̂ttx)|| (4.7)

This predicted pseudorange takes into account the receiver position at the estimated

coarse time, satellite positions at estimated time of transmission, and the Earth’s rotation

during the transmission of the GPS signal.

Next, just like in regular navigation using the least squares technique, the normal-

ized line of sight vector L is defined , pointing from the estimated satellite position

Ŝi
c corrected(̂ttx) to the estimated receiver position Ûc(̂tg):

Li =
Ûc(̂tg)− Ŝi

c corrected(̂ttx)

||Ûc(̂tg)− Ŝi
c corrected(̂ttx)||

(4.8)

Where:

Li = Unit vector pointing from satellite position to the a priori receiver position

(Normalized line of sight vector)

Line of sight vectors from the satellites and difference between observed pseudorange

and estimated pseudoranges are used to create an equation that linearizes pseudoranges

around a rough estimate of receiver position in order to provide a position solution. This
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equation is the basic GPS position solution equation and is shown below [1]:

Li
xδx+Li

yδy+Li
zδ z+δb = ρ i − ρ̂ i (4.9)

Where:

δx = Difference between true receiver x position and estimated receiver x

position: x− x̂

δy = Difference between true receiver y position and estimated receiver y

position: y− ŷ

δ z = Difference between true receiver z position and estimated receiver z

position: z− ẑ

δb = Common bias (receiver clock error and other common delays)

ρ i = Observed pseudorange from satellite i

ρ̂ i = Estimated pseudorange from satellite i

However, equation 4.9 is not complete. Coarse time tg is used to determine an

estimated pseudorange, but equation 4.9 does not account for the error in the estimated

pseudorange due to the coarse time tg. Coarse time tg is a guess of the GPS time and

is used to determine the estimated time of transmission t̂tx. Since tg is a guess, it is not

accurate. It therefore follows that estimated time of transmission t̂tx is also not accurate,

leading to incorrect determination of the satellite position and the satellite clock error

[10].
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Figure 4.1: Incorrect determination of satellite positions due to the error in the assumed

time of arrival

From figure 4.1 it can be seen that the error in tg causes satellites to appear in po-

sitions where they are not. Due to the position of the satellites in the sky and their

movement, each satellite is affected by tg by differing amounts leading to each satellite

having its own value of t̂tx that is different for the others. Both Peterson, Hartnett and

Ottoman in [11] and Lannelongue and Pablos in [13] concur that the error in the coarse

time (assumed time of arrival) tg is accounted for by the pseudorange rate from the

satellite to the receiver. Van Diggelen goes one step further to mathematically derive

how the contribution of the pseudorange rate comes about from the error in the coarse

time [10].

ρ̂ i(̂ttx)− ρ̂ i(ttx) = ρ̂ i(̂ttx)− ρ̂ i(̂ttx +δ tg)

= ρ̇ iδ tg

(4.10)
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Where:

δ t i
g = Difference between estimated coarse time and true coarse for satellite i

ttx = True time of transmission

t̂tx = Estimated time of transmission

ρ̇ i = Pseudorange rate of satellite i

It has already been shown from equation 3.3 to equation 3.5 that pseudorange rate

can be derived from satellite Doppler frequency. Satellite Doppler frequencies are used

in calculating the pseudorange rates since they are already available from the receiver

tracking loops.

Equation 3.5 is thus restated:

ρ̇ i =
∆Fr

Ft
c (4.11)

Where:

ρ̇ i = Pseudorange rate

∆Fr = Doppler frequency received by the receiver

Ft = Frequency transmitted by the satellite
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Equation 4.10 is then combined with equation 4.9 to create the pseudorange differ-

ence equation for Time-free positioning.

Li
xδx+Li

yδy+Li
zδ z+δb+ ρ̇ iδ tg = ρ i − ρ̂ i (4.12)

Where:

δx = Difference between true receiver x position and estimated receiver x

position: x− x̂

δy = Difference between true receiver y position and estimated receiver y

position: y− ŷ

δ z = Difference between true receiver z position and estimated receiver z

position: z− ẑ

δb = Common bias (receiver clock error and other common delays)

ρ̇ i = Pseudorange rate of satellite i

δ t i
g = Difference between estimated coarse time and true coarse time

ρ i = Observed pseudorange from satellite i

ρ̂ i = Estimated pseudorange from satellite i

For several satellites, equation 4.12 forms a system of equations which is compactly

represented as Gx = δρ and where G, x and δρ are defined as follows:
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G =

∣∣∣∣∣∣∣∣∣∣∣∣∣

L0
x L0

y L0
z 1 ρ̇0

L1
x L1

y L1
z 1 ρ̇1

...
...

...
...

...

Li
x Li

y Li
z 1 ρ̇ i

∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.13a)

x =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δx

δy

δ z

δb

δ tg

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.13b)

δρ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 − ρ̂0

ρ1 − ρ̂1

...

ρ i − ρ̂ i

∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.13c)

It should be noted that equation 4.12 is in units of meters unlike equation 4.1 which

is in millisecond integers. Addition of the coarse time term tg means that the Time-free

positioning pseudorange difference equation has 5 unknowns which necessitates that 5

satellites instead of 4 are required to perform a position solution.

Equation 4.12 in the form Gx = δρ and can therefore be solved iteratively until the

correction values δx, δy, δ z are less than a certain threshold value. The solution for the

overdetermined case is given by:

x = (GTG)−1GTδρ (4.14)
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4.3 Determining the Time-free (Observed) Pseudorange

Although equation 4.12 is complete, one part of its derivation has not yet been dis-

cussed. This is the determination of the Time-free (observed) pseudorange. As shown

in equation 4.2, the full observed pseudorange is the addition of the submillisecond

pseudorange and the integer millisecond count. Since the GPS L1 C/A repeates be-

tween 64 and 89 times for a pseudorange, the integer millisecond count N is not known

and hence has to be determined. This is a tricky task to accomplish since in Time-free

positioning, the time of transmission of the satellite signal is not available. Also, Time-

free positioning requires a submillisecond pseudorange, whereas the GPS receiver pro-

vides a submillisecond code phase. The submillisecond code phase available from the

receiver has to be reversed to obtain the submillisecond pseudorange. Consider figure

4.2 that shows how time of transmission of a sample is determined in traditional GPS.

Figure 4.2: Determination of time of transmission in normal GPS
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The earliest received sample in figure 4.2 is at time TOW (rightmost side of the

diagram) whereas the current sample has its time of transmission at time code phase

(leftmost side of the diagram). Therefore in order to calculate the time of transmission

of the current sample, TOW is used as a reference point in the past. A number of 20 ms

epoch bit times, 1 ms epoch bit codes and a submillisecond code phase are then added

to the TOW in order to obtain time of transmission.

ttx
i = t i

TOW +Xt i
20ms +Yt i

1ms + t i
cp (4.15)

Where:

ttx
i = Time of transmission of sample

t i
TOW = Time of Week (TOW). Time of transmission of subframe

t i
20ms = 20 ms epoch

X = Number of 20 ms epoch repeats

t i
1ms = 1 ms epoch

Y = Number of 1 ms epoch repeats

t i
cp = Submillisecond code phase

The observed pseudorange is then calculated once the time of transmission of the

sample has been determined

ρ i = (trx − ttx
i)c (4.16)

Where:

ρ i = Observed pseudorange

trx = Time of signal reception

c = Speed of light

Consider now figure 4.3 which shows the components of a Time-free pseudorange

in milliseconds, as well as how time of reception of a sample would normally be calcu-

lated.
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Figure 4.3: Determination of the Time-free pseudorange and its relationship to satellite

transmission time

From figure 4.3, it can be seen that the measured pseudorange includes an unknown

common bias b, a millisecond integer count N, and a submillisecond pseudorange α .

However, in Time free positioning, only the code phase measurement is available at the

receiver. The Time-free submillisecond pseudorange is inversely related to the tracked

code phase as shown in 4.3. The Time-free submillisecond pseudorange is therefore

determined by subtracting the tracked code phase from one.

α i = 1− t i
cp (4.17)

Where:

t i
cp = Submillisecond code phase

α i = Fractional pseudorange/submillisecond pseudorange from satellite i to

the receiver

From 4.3 it should also be noted that there is a common bias b in the full observed

pseudorange determination whose effects will be discussed later

Now that the code phase has been obtained in the correct format, the integer count

N has to be calculated. An easy approach to obtain N is by using the predicted pseu-
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dorange ρ̂ i as was previously mentioned. If the a priori conditions have been met, then

the predicted pseudorange should be at most half a code chip (or 150 km) in error when

compared to the true pseudorange. Therefore a logical way to go about determination

of the millisecond integer count N for each satellite is:

Ni = round
(
ρ̂ i −α i

)
(4.18)

Unfortunately, there is a hidden pitfall in this technique. If the true value of a frac-

tional pseudorange is close to a millisecond integer, then the addition of the unknown

commmon bias to the full pseudorange (N + fractional pseudorange ) has the effect of

rolling over the full pseudorange to the next millisecond integer (N + 1 + fractional

pseudorange) [10].

Figure 4.4: Occurence of a millisecond integer roll-over due to addition a common bias

to a true fractional pseudorange lying close to an integer millisecond

Consider an example as shown in figure 4.4 in which the true pseudorange is 72.93

ms. The millisecond integer count is 72 and the submillisecond pseudorange is 0.93

ms. It can clearly be seen that the the submillisecond pseudorange is close to an integer

value. If the unknown common bias in the measured pseudorange is 0.2 ms, then the

measured full pseudorange will be 72.93 ms + 0.2 ms = 73.13 ms. The millisecond

integer count is now 73 instead of 72 and hence a millisecond integer roll-over is said to
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have occurred. A millisecond rollover in the measured pseudorange introduces an error

in the position solution that is in the range of about 300 km.

Once the integer millisecond count N has been estimated, the observed pseudorange

for each satellite is determined as the last required piece of equation 4.12:

ρ i = Ni +α i +∆t i
sat (4.19)

Where:

∆t i
sat = Clock error for satellite i

The pseudorange difference equation for Time-free Positioning is now complete and

is restated again in equation 4.20:

Li
xδx+Li

yδy+Li
zδ z+ cδb+ ρ̇ iδ tg = ρ i − ρ̂ i (4.20)

4.4 Correcting Integer Roll-overs

The occurence of millisecond integer roll-overs can lead to incorrect Time-free pseu-

doranges being applied in equation 4.20. When this occurs, the Time-free pseudorange

differs with the unknown true pseudorange between the satellite and the receiver by one

code chip, which is about 300 km. Lannelongue and Pablos in [13] and Van Diggelen

in [10] propose techniques of dealing with this problem.

To mitigate the effect of the millisecond integer roll-over, Lannelongue and Pablos

suggest that the Time-free pseudorange from one satellite be chosen to be a reference

point about which all other Time-free pseudoranges are clustered such that all the pseu-

doranges are within half a code chip (0.5 ms) of each other [13].

Van Diggelen also suggests using the pseudorange of one of the satellites as a ref-

erence point. However, he uses the reference satellite to determine integer millisecond
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count N of all other satellites, after which he determines the Time-free pseudoranges

using equation 4.19. A formal equation to do this is derived in [10].

This research takes an approach similar to that used by Lannelongue and Pablos

[13], but with some differences. In our approach, equation 4.12 is used as a starting

point, then corrective action is taken on resulting values, and finally the equation is

solved. Below is the summary steps used in our approach:

1. Determine the Time-free pseudoranges using ρ i = Ni +α i +∆t i
sat .

2. Obtain the differences between the Time-free pseudoranges and the predicted

pseudoranges.

3. Sort the pseudorange differences in ascending order.

4. Compare all the pseudorange differences against the first pseudorange difference.

5. Adjust any pseudorange differences that have values greater than 150,000 km less

than or more than the reference pseudorange difference.

Initially, all the Time-free pseudoranges are determined using equation 4.19. The

difference of the observed and predicted pseudoranges δρ i is then determined. Below

is an example of a set of pseudorange difference values in meters:

δρ i = ρ i − ρ̂ i

149035.31759698

448592.40845498

448964.30594639

449103.36740229

449052.55073474

148875.77063919

148723.57033195

448791.53666085

149142.52695797

The pseudorange difference values are then sorted in ascending order.
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148723.57033195

148875.77063919

149035.31759698

149142.52695797

448592.40845498

448791.53666085

448964.30594639

449052.55073474

449103.36740229

After sorting the values, the smallest pseudorange difference value is selected as a

reference value denoted δρre f . In the case of the example values, this is 148723.57033195

meters. This pseudorange difference value corresponds to the satellite that has the least

error in its Time-free pseudorange.

Each of the other pseudorange differences δρ i is compared against the reference

value δρre f . It is expected that the difference between δρ i and δρre f should be no

more than half a code chip.

||δρ i −δρre f || <
rcode

2
(4.21)

Where:

rcode = Length of 1ms PRN code, which is about 300km

If ||δρ i − δρre f || is more than half a code chip, then the absolute value of δρ i is

adjusted by one chip as shown in equation 4.22 below:

if (δρ i −δρre f >
rcode

2
) then

δρ i = δρ i − rcode

if (δρ i −δρre f < −
rcode

2
) then

δρ i = δρ i + rcode

(4.22)
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From our example values, the last 5 values of the sorted δρ is clearly show that a

millisecond integer roll-over occurred in the determination of observed pseudoranges

of the satellites associated with these measurements.

148723.57033195

148875.77063919

149035.31759698

149142.52695797

448592.40845498

448791.53666085

448964.30594639

449052.55073474

449103.36740229

These δρ is are adjusted downwards by one code chip to give values that are in

agreement with the reference measurement.
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148723.57033195

148875.77063919

149035.31759698

149142.52695797

148592.408454980

148791.536660850

148964.305946390

149052.550734740

149103.367402290

Once all the δρ i values are correctly adjusted, the Time-free equation 4.20 which is

of the form Gx = δρ can be solved recursively for the overdetermined case as follows:

x = (GTG)−1GTδρ (4.23)

It should be noted however, that the pseudorange difference adjustment technique

herein developed can still work for a case in which the rolled-over pseudorange differ-

ence is used as a reference and all other pseudorange differences are aligned to it. In the

example values provided, if 449103.36740229 meters was used as a reference value and

all other values aligned to it, equation 4.23 would still converge to the correct solution.

This is because any extra bias is common and corrected as a clock error.

The Time-free positioning algorithm is now considered to be complete. In the suc-

ceeding sections, tests are developed and run on the algorithm to investigate its perfor-

mance.

4.5 Test Methodology

The algorithm is implemented in fastGPS and tested on the same over the air (OTA)

GPS data for a stationary receiver in Parc Mont Royal Montreal, Canada that was used

to test the Doppler Positioning algorithm. It is also tested on data sets from the UK and

the USA, supplied with [1]. For these data sets, the accuracy of the position solution
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is also compared against GDOP to show how geometry impacts performance of the

algorithm.

Monte-Carlo simulations are then programmed and run in fastGPS to investigate the

behavior of the algorithm over a range of simultaneous a priori receiver position errors

and receiver time errors. fastGPS is used since it is C-based and hence has much faster

execution than MATLAB, making it suitable for performing a large number of Mont

Carlo simulations. The Monte Carlo setup involves using the available OTA data sets

as a source of real code phase measurements and using the mean position of the Least

Squares position solution of the data set as the reference position. Random position

errors measuring upto 200 km are added to the reference position in the Earth centered

Earth fixed (ECEF) reference system and the resulting values are used as initialization

position inputs to the algorithm. Random time errors of upto 2 minutes and 30 seconds

are also added to the initialization coarse time and fed into the Time-free algorithm.

About 2,000 Monte Carlo simulation runs are done and the results of both convergent

and non-convergent solutions plotted.
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4.6 Time-free Positioning Results

4.6.1 Stationary Receiver with Receiver Time Accurate to 2 sec-

onds

Once again the OTA GPS signal captured at Parc Mont Royal in Montreal Canada was

used. Figure 4.5 shows the position of the receiver within the park.

Figure 4.5: Google Earth Position for a Stationary Receiver at 6:04 pm on October 28,

2010 at Parc Mont Royal

This data was processed normally and the position obtained was used as the refer-

ence position for the Time-free Positioning East North data as seen in figure 4.6.
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Figure 4.6: East North Position for a Stationary Receiver at 6:04 pm October 28, 2010

Additional OTA GPS data sets for a stationary receiver were fed into the Time-free

Positioning algorithm and the results of the mean position error and average GDOP are

tabulated in table 4.1.

Location Date Mean Error (meters) Avg GDOP

Guildford UK May 15 2008 3.8883 2.3517

Stanford USA May 16 2008 13.6723 5.9972

Savannah USA September 23 2009 6.6460 2.1125

Mont Royal Canada October 20 2010 8.2625 3.5807

Table 4.1: Mean position error and GDOP for OTA GPS data sets used with the fastGPS

software receiver

From the results in figure 4.6, and table 4.1, it can be seen that acceptable accuracy

of less than 10 meters is achieveable with the Time-free Positioning algorithm.

4.6.2 Monte Carlo Simulations

In this experiment, random errors were added to the initial receiver position and receiver

time estimates in fastGPS. The Time-free algorithm was run and the results dumped in

a text file. A plot of the results was then made in MATLAB to illustrate when the
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algorithm had converged for the approximately 2,000 test cases. The mean of the Least

Squares position solution was used as the truth. The results are shown in figure 4.7.

Figure 4.7: Time-free Positioning Convergence as a Function of a Priori Receiver Posi-

tion Error and Receiver Time Error

In figure 4.7, the blue spots indicate convergence for the specified a priori receiver

position error and receiver time error while the red spots indicate divergence of the

Time-free algorithm. The results show that the Time-free Positioning algorithm con-

verged with an a priori receiver position that is in error to the tune of 100 km, as long

as the receiver time has very small error. Alternatively, the algorithm converged with

a time error of up to 2 minutes as long as the a priori receiver position was highly

accurate.
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Figure 4.8: A priori error conditions and successful Time-free positioning estimates

using Monte Carlo Simulations

Figure 4.8 defines possible regions of convergence of the Time-free algorithm. These

regions of convergence are defined by drawing lines that demarcate the areas where no

divergence of the algorithm occurs. Two lines are drawn: one with a steep slope and

one with a gentle slope. The steep slope line defines the region of convergence for cases

where the receiver has high a priori position uncertainty but can obtain highly accurate

a priori coarse time estimates. The gentle slope line on the other hand is for receivers

that require less accurate a priori coarse time estimates but can have more reliable a

priori position estimates.
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4.7 Summary

In this chapter, the Time-free positioning algorithm was developed. A technique for

mitigating integer roll-overs was presented and the resulting algorithm was tested on

live GPS signals collected in various locations in North America and Europe. Monte

Carlo simulations where then performed on the Time-free algorithm to determine its

region of convergence.

Regions of convergence for a receiver using this algorithm can be defined by de-

ciding which quantity between a priori coarse time and a priori position estimate, the

receiver can accurately obtain. The recommended rule of thumb is to select compro-

mise limits. For example, figure 4.8 has two possible regions of convergence whose

boundaries intersect at a point. This intersection point corresponds to a priori position

estimate that is accurate to within 70km of the truth, and an a priori time that is accurate

to within 20 seconds of the truth. These are good compromise limits for many receivers.

Now that the Time-free algorithm is developed and tested, integration with the

Doppler positioning algorithm will be done in the next chapter. Integration of these

two algorithms will be based on results from chapters 3 and 4.
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Chapter 5

Time-free Positioning Initialized by

Doppler Positioning

In chapter 4, it was determined that Time-free Positioning requires an a priori position

estimate that is accurate to within 70 km of the true position and a receiver time that is

accurate to within 20 seconds, to have assured algorithm convergence. If this position

estimate error goes beyond 100 km, there is very high probability of divergence of the

algorithm even with accurate receiver time. Although a priori coarse time accuracy for

Time-free Positioning is theoretically expected to be at least 60 seconds [13], a coarse

time accuracy threshold of 20 seconds is selected for the version of Time-free Posi-

tioning in this research based on the results of the Monte Carlo simulations in chapter

4.

In chapter 3, it was discovered that Doppler Positioning gives an estimated position

that is accurate to within 70 km when the receiver is moving at speeds of 100 km/h

or less (see figure 3.5). It was also determined that Doppler Positioning gives position

estimates accurate to within 70 km from the true position for stationary receivers when

the time accuracy is maintained to within 3 minutes of the true time (see figure 3.7).

These limits where however found to be GDOP and satellite elevation dependent. Low

elevation satellites or poor GDOP where found to adversely affect the position solution
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causing poor Doppler positioning results even at low receiver dynamics.

Now that both Doppler Positioning and Time-free Positioning have been developed

and tested individually, a new method that combines the two can now be created.

5.1 Algorithm Development

Figure 5.1 shows the processing stages when Time-free Positioning is initialized by

Doppler Positioning.
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Figure 5.1: Processing stages in Time-free Positioning initialized by Doppler Position-

ing

From figure 5.1, it can be seen that initially 3 sets of input are required for the

Doppler Positioning algorithm: a priori time estimate, satellite Doppler measurements,

Ephemeris and satellite clock corrections. The satellite Dopplers are provided by the
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tracking function of the software receiver. The time estimate is obtained from the re-

ceivers clock whose accuracy should be within 20 seconds of the true GPS time. This

time constraint is more than sufficient for most receivers, but is chosen to allow for com-

plete confidence in the position solution obtained. The ephemeris and satellite clock

corrections are externally sent to the receiver to ensure that ephemeris from the satellite

signal is not needed.

Once the Doppler Positioning module has obtained a position solution, this position

solution is fed into the Time-free Positioning module. This position solution should be

accurate to within 70 km of the true position, for the Time-free Positioning Algorithm

to work consistently. Figure 3.5 shows that Doppler Positioning can produce a position

estimate accurate to 70 km if receiver speeds are below 100 km/h. However, cases of

poor satellite geometry can cause an accuracy poorer than 100 km to be obtained at

lower receiver velocities.

The Time-free Positioning Algorithm also requires an a priori coarse time estimate,

satellite ephemeris and code phase measurements. Just like in Doppler Positioning,

the a priori coarse time is obtained from the receiver clock. The same stringent time

accuracy is maintained for Time-free Positioning in order to ensure that there is a high

level of confidence in the position solution convergence. Ephemeris and satellite clock

corrections that are locally stored at the receiver also play the same role as in Doppler

Positioning.

The code phase measurements are the last inputs into the Time-free Positioning

module. They are obtained from the tracking module. It is from the code phase mea-

surements that the Time-free Positioning algorithm generates an observed pseudorange

as discussed in chapter 4.

Once the Time-free Positioning Algorithm is run once, its position solution can be

reused in subsequent runs of the algorithms. Checks are however put in place to ensure

that if the Time-free Positioning Algorithm diverges, its position estimate is not fed back

into the next run of the algorithm. Such checks include comparing the magnitude of the
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correction values of the Time-free algorithm and ensuring that the position magnitude

is not a very large value.

5.2 Test Methodology

The algorithm is tested on the OTA GPS data for a stationary receiver in Parc Mont

Royal Montreal, Canada that was used to test both the Doppler Positioning algorithm

and Time-free Algorithm. It is also tested on data sets from the UK and the USA, sup-

plied in [1]. Most of the data sets used are of at least 37 seconds. This would normally

be sufficient data to perform positioning with the least squares GPS positioning algo-

rithm using ephemeris data from the satellite signal itself. However, in all test cases,

ephemeris stored locally at the receiver is used.

East North (EN) graphs are plotted for all the data sets to assess the performance of

the combined algorithm. The EN locations are a method of quickly visually assessing

the performance of the algorithm. Statistical measures of mean, variance and standard

deviation are then calculated to assess the overall performance and accuracy of this

technique.

The combined algorithm error magnitudes are also compared against the normal

least squares algorithm. The least squares algorithm which is the most commonly used

in receivers provides a good benchmark against to compare the performance of the

combined Doppler Time-free positioning algorithm.

5.3 Combined Doppler Time-free Positioning Results

5.3.1 East North Plots of Stationary Receivers in Various Locations

Figure 5.2 to figure 5.5 show east north (EN) plots generated by the combined Doppler

Time-free positioning algorithm for a stationary receiver at various locations in North

America and Europe.
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Figure 5.2: Combined Doppler Time-free Positioning East North Location Plot of a

Stationary Receiver in Guildford UK on May 15, 2008

Figure 5.3: Combined Doppler Time-free Positioning East North Location Plot of a

Stationary Receiver in Stanford USA on May 16, 2008
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Figure 5.4: Combined Doppler Time-free Positioning East North Location Plot of a

Stationary Receiver in Savannah USA on September 23, 2009

Figure 5.5: Combined Doppler Time-free Positioning East North Location Plot of a

Stationary Receiver in Montreal Canada on October 20, 2010

In all the data sets, the true position was determined by taking the mean of the
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Location Mean Variance Standard Deviation

(meters) (meters)

Guildford UK 3.8883 2.8342 1.6835

Stanford USA 13.6723 13.8037 3.7153

Savannah USA 6.6460 7.2819 2.6985

Mont Royal Canada 8.2625 16.0656 4.0082

Table 5.1: Statistical measures of the position errors for the combined Doppler Time-

free positioning algorithm for the data sets used in fastGPS

positions obtained from the least squares solutions. The Guildford data set in figure 5.2

shows the best performance, with a mean position error of 3.8883 meters and a standard

deviation of 1.6835 over a 34 second period.

The worst performance on the other hand is observed in the Stanford data set in

figure 5.3 with a mean position error of 13.6723 meters and a standard deviation of

3.7153. In the Stanford results the majority of the receiver position estimations in the

EN plot are also offset to one side of the true position (0,0). This suggests poor satellite

geometry. The worse the satellite geometry, the higher the GDOP. The average GDOP

for the Stanford data is 5.9972 whereas the average GDOP for the Guildford data set is

2.3517.

5.3.2 Comparison of the Least Squares and the Combined Doppler

Time-free Positioning Algorithms

The position solution error magnitude performance of the Combined Doppler Time-

free Positioning algorithm is then compared to that of the least squares positioning

algorithm. It should be noted that the Combined Doppler Time-free Positioning is

not compared to carrier phase positioning or other high precision techniques used in

geodesy and surveying since those are not the intended applications of the algorithm.

The error magnitudes of all data sets are plotted to compare the Combined Doppler

Time-free Positioning algorithm to the normal GPS Positioning Algorithm in figure 5.6

to figure 5.9.
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Figure 5.6: Combined Doppler Time-free Positioning versus Assisted Least Squares

Error Magnitude Plots of a Stationary Receiver in Guildford UK

Figure 5.7: Combined Doppler Time-free Positioning versus Assisted Least Squares

Error Magnitude Plots of a Stationary Receiver in Stanford USA
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Figure 5.8: Combined Doppler Time-free Positioning versus Assisted Least Squares

Error Magnitude Plots of a Stationary Receiver in Savannah USA

Figure 5.9: Combined Doppler Time-free Positioning versus Assisted Least Squares

Error Magnitude Plots of a Stationary Receiver in Montreal Canada

The results in figure 5.6 to figure 5.9 instantly make obvious an advantage of the
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combined Doppler Time-free positioning algorithm over the Least Squares positioning

algorithm. This advantage is, being able to estimate the receiver position earlier. The

combined Doppler Time-free algorithm provides the first position estimate 8 seconds

earlier than the least squares positioning algorithm in the Guildford data set and 12

seconds earlier in the Stanford data set. However in all the data sets, combined Doppler

Time-free position determination begins at least 5 seconds after satellite acquisition.

This could be due to the non-optimized tracking loops in fastGPS that do not settle

quickly enough.

The estimated error magnitudes between the two algorithms are comparable in all

of the cases except in the Stanford data set case (figrue 5.7). In the Stanford case,

a difference in position error of almost 15 meters is occasionally observed between

the combined Doppler Time-free and the Least Squares positioning algorithms. The

comparability of performance of the two algorithms is further illustrated using statistical

measures pertinent to GPS as shown in tables 5.2 and 5.3.

Location DRMS 2DRMS CEP R95

(meters) (meters) (meters) (meters)

Guildford UK 2.002 4.0041 1.6684 3.3367

Stanford USA 6.6725 13.3449 5.5604 11.1208

Savannah USA 4.2614 8.5227 3.5511 7.1023

Mont Royal Canada 6.36 12.72 5.3 10.6

Table 5.2: GPS Statistical measures of the position errors for the combined Doppler

Time-free positioning algorithm for the data sets used in fastGPS

Location DRMS 2DRMS CEP R95

(meters) (meters) (meters) (meters)

Guildford UK 2.0819 4.1638 1.7349 3.4698

Stanford USA 18.1742 36.3485 15.1452 30.2904

Savannah USA 3.4741 6.9482 2.8951 5.7902

Mont Royal Canada 6.2555 12.5110 5.2129 10.4259

Table 5.3: GPS Statistical measures of the position errors for the least squares position-

ing algorithm for the data sets used in fastGPS
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As seen in tables 5.2 and 5.3, the performances of the two algorithms are comparable

except in the Stanford data set case. The statistical parameters shown are described in

[27] as follows:

Distance root mean square (drms)

If the distribution is close to a circle, it is the probability that 63% of the horizontal

error is within a circle of drms radius. If the distribution is elliptical (elongated), then

the probability increases to 69%

Twice the distance root mean square (2drms)

The probability that a horizontal error is within a circle of 2drms is between 95%

and 98% depending on whether the scatter points form a circle or an ellipse

Circular error probable (CEP)

The radius of a circle, centered at the true position, that contains 50% of the points

in the horizontal scatter plot.

Horizontal 95 percent accuracy (R95)

The radius of a circle, centered at the true position, that contains 95% of the points

in the horizontal scatter plot.

The positive results show that the Combined Doppler Time-free positioning works,

hence allowing time free positioning without having a priori knowledge of the receiver

position.
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Chapter 6

Conclusion

6.1 Conclusion

The live (OTA) signal results in chapter 5 show that the combined Doppler Time-free

Algorithm has acceptable performance for stationary receivers while the simulation re-

sults in chapter 3 show that it also works with low dynamics receivers. The algorithm

provides position estimates with error magnitudes of a few meters as shown by the

results in figures 5.6 to 5.9. Figures 5.6 to 5.9 also show that the algorithm has per-

formance (in terms of position error magnitude) comparable to that of the least squares

algorithm for stationary receivers. Figures 3.4 and 3.5 show that at low GPS receiver

dynamics, Doppler positioning can provide position estimates that are well within the

limits of position initialization for Time-free positioning.

The EN scatter plots in figures 5.2 to 5.5 and the statistical measures in table 5.1

show that there is also comparable accuracy of position estimates of a stationary re-

ceiver. In all the figures, position solutions of a stationary receiver performed over an

approximate 30 second period are closely clustered together and the standard devia-

tions listed in table 5.1 are reasonably low. This shows that the algorithm has consistent

performance, albeit contingent on satellite geometry.

It should however be noted that to achieve this kind of performance, previously
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determined a priori time estimate and the receiver velocity limits must be respected.

The a priori time estimate should have an error no greater than 20 seconds whereas the

receiver velocity should be no more than 100 km/h.

It was determined from figure 3.5 that Doppler Positioning can provide position

estimates with accuracy of 70 km or less if the receiver dynamics are less than 100

km/h. With 70km a priori position initialization, the Time-free Algorithm was found

to converge with a maximum a priori time initialization error of 20 seconds. Though

these were the limits chosen for this research, the results show that other combinations

of limits are possible. For example, with zero receiver dynamics, Doppler Positioning

can produce a position estimate that is less than 10 km in error. This allows Time-free

Positioning to converge with an a priori coarse time initialization of accuracy upto 2

minutes. A range of receiver dynamics and a priori coarse time initialization accuracy

limits are thus available for the implementation of the combined Doppler Time-free

Positioning Algorithm. These limits can be chosen based on the particular application.

The combined Doppler Time-free Positioning Algorithm has three notable advan-

tages. The first advantage is that it does not require receiver a priori position knowledge

like the heritage Time-free Positioning Algorithm. This opens up applications to the

combined Doppler Time-free Positioning Algorithm that had previously been imprac-

tical for Time-free positioning due to the a priori receiver position knowledge require-

ment.

The second advantage was observed in section 5.3 where the combined Doppler

Time-free Positioning Algorithm provided position estimates at least 8 seconds before

the normal GPS least squares positioning algorithm with ephemeris assistance. This is

due to the need for the normal assisted GPS positioning to decode time from the GPS

signal even though it has ephemeris available.

The lack of need for the combined Doppler Time-free Algorithm to decode time

from the GPS signal results in the third advantage that allows the meeting of one of the

main goals of the research as stated in section 1.4. This is the reduction of processing
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burden on software receivers. Not a single subframe has to be be processed in order to

obtain ephemeris.

Table 6.1 shows a summary of advantages and disadvantages of the Combined

Doppler Time-free Positioning Algorithm as compared to the normal GPS Least Squares

Positioning Algorithm.

Advantages Disadvantages

Does not require a priori position

knowledge of the receiver

Requires 5 satellites to estimate re-

ceiver position whereas the normal

GPS Positioning Algorithm requires 4

satellites

Provides an initial position solution

faster than the normal GPS Positioning

Algorithm

The algorithm accuracy and conver-

gence is dependent on receiver dynam-

ics

Reduces processing burden on the

GPS receiver

Table 6.1: Advantages and disadvantages of the combined Doppler Time-free Position-

ing Algorithm

6.2 Future Work

The combined Doppler Time-freee Positioning Algorithm can be further improved and

expanded. The accuracy of the Doppler Positioning section of the algorithm can be

improved by providing receiver velocity assistance to the algorithm. In the current

implementation of the algorithm, the receiver velocity is assumed to be zero and hence

accuracy of the position solution of the receiver degrades with higher receiver dynamics.

Inertial instruments can therefore be integrated into the receiver to provide the necessary

rate information as presented in chapter 1 of [28].

The Time-free Positioning section of the algorithm can be expanded to include other

GNSS signals. The current GNSS signals in use and those expected to be in operation

in the near future all use spread spectrum communications techniques. In many cases

pseudorandom codes of epochs longer than that of GPS L1 C/A code are favored. The
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length of a PRN epoch in GPS L1 C/A code is 1 ms which translates to about 300 km.

The algorithm developed in this research concluded that for GPS L1 C/A, a maximum a

priori receiver position error of 70 km is expected for the algorithm to work, with a rea-

sonable receiver time accuracy. Table 6.2 below shows the lengths of the pseudorandom

sequences of GNSS signals.

GNSS Signal Code Length (ms)

GPS L1 C/A 1

GPS L2 20

GPS L5 10

Galileo E1-B 4

Galileo E1-C 100

Galileo E5a-I 20

Galileo E5a-Q 100

Galileo E5b-I 4

Galileo E5b-Q 100

Table 6.2: Code lengths in milliseconds of various GNSS signals [8]

From table 6.2, we can see that the other GNSS signals have significantly longer

codes. This means that the a priori receiver initialization requirement for Time-free

Positioning can be increased to an accuracy of hundreds of kilometers. Figure 6.1

further illustrates the advantage of having a PRN sequence with a longer repeat interval.
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Figure 6.1: Millisecond integer ambiguity comparison of various GNSS PRN sequences

The GPS L1 C/A code with a 1 ms epoch has got an integer ambiguity of about

80 for a 24,000 km pseudorange. This ambiguity reduces to 20 with Galileo E1-B

which has a 4 ms epoch code, to 4 with GPS L2 which has a 20 ms epoch code and

finally to no ambiguity with Galileo E1-C which has a 100 ms epoch code. The Galileo

E1-C PRN code has a length of approximately 30,000 km which is longer than the

maximum pseudorange. Therefore for signals with long PRN sequence repeat intervals,

the combined Doppler Time-free Positioning Algorithm can be expanded to include

receivers with higher dynamics.
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Further work can also be done in expanding the combined Doppler Time-free Po-

sitioning Algorithm to hybrid GPS/Galileo receivers. Work done by Constantinescu,

Landry and Ilie in [29] and Eissfeller, Hein et al in [30] show that the accuracy of GNSS

positioning is increased by using a GPS/Galileo receiver. A hybrid receiver might have

the effect of increased accuracy for the combined Doppler Time-free Positioning Algo-

rithm. A combined GPS/Galileo constellation would also be advantageous for satellite

availability for the algorithm as it requires at least 5 satellites in view.
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