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ABSTRACT

A Framework for Soft Real-time Analysis in OLAP Systems

Omer Baluch

OLAP systems are designed to quickly answer multi-dimensional queries against large

data warehouse systems. Constructing data cubes and their associated indexes is time

consuming and computationally expensive, and for this reason, data cubes are only

refreshed periodically. Increasingly, organizations are demanding for both historical

and predictive analysis based on the most current data. This trend has also placed the

requirement on OLAP systems to merge updates at a much faster rate than before.

In this thesis, we propose a framework for OLAP systems that enables updates to

be merged with data cubes in soft real-time. We apply a strategy of local partitioning

of the data cube, and maintain a “hot” partition for each materialized view to merge

update data. We augment this strategy by applying multi-core processing using the

OpenMP library to accelerate data cube construction and query resolution.

Experiments using a data cube with 10,000,000 tuples and an update set of

100,000 tuples show that our framework achieves a 99% performance improvement

updating the data cube, a 76% performance increase when constructing a new data

cube, and a 72% performance increase when resolving a range query against a data

cube with 1,000,000 tuples.
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Chapter 1

Introduction

Organizations all over the world are collecting data at an unprecedented pace and

storing it in large databases. It is no longer unusual to hear of terabyte size databases,

and there are documented examples of databases that have exceeded a petabyte [68].

As an example, in 2009, Yahoo! [3] reported having over 6 petabytes of data in their

Everest system and expected to pass the 10 petabyte threshold by the end of that

same year.

The data is collected from diverse sources such as retail sales transactions, online

browsing activity, social networking sites, scientific research, or even sensors [6][26]

[47]. Much of this data is managed and stored using an online transaction processing

system (OLTP). Relational database management systems (RDBMS) [49] are an ex-

ample of OLTP systems, and are primarily designed to handle a large volume of small

transactions efficiently. The data collected by these systems is described as primitive

data because the main purpose of these systems is to keep a record of transactions,

and not to analyze the collected data [43]. Current RDBMS are based primarily on

the relational model described by Codd [14].

As the size of databases has grown over the years, organizations have been eager

1
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to analyze the data to extract information from it that will assist them in their

decision making process. One method is to copy the data from the RDBMS into a

data warehouse (DW) system , and then transform it using a decision support system

(DSS) [20]. The transformed data produced by a DSS is refered to as derived data

because it is used to make management decisions, or to derive an answer to a question

based on certain facts [43]. A few examples of DSS are Business Intelligence (BI)

tools that include online analytical processing (OLAP) tools, data mining software,

and expert systems.

A DW is considered to be a historical snapshot of the operational database, and

is a separate entity from the operational database [49]. Traditionally, the data from

the RDBMS was loaded into the DW either weekly or even nightly, usually when the

RDBMS was offline. The reason for this is that the data needs to be transformed

through a process called ETL (Extract-Transform-Load), so that data from hetero-

geounous RDBMS sources is made uniform in the DW. Due to the high volume of

data that needs to be transformed, the enormous burden on the operational database

made it difficult to keep the RDBMS system online and at the same time upload the

data into the DW [50].

OLAP systems are designed to quickly answer multi-dimensional queries against

large DW systems. Based on the multidimensional data cube data structure [38],

aggregrate values such as sum and averages are pre-computed using the data in the

DW, and stored in the data cube. Users retrieve the values by locating the intersection

of the specified dimensions. Constructing data cubes and their associated indexes is

time consuming and computationally expensive [12]. For this reason, data cubes are

only refreshed periodically.
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Increasingly, organizations are demanding for both historical and predictive anal-

ysis based on the most current data. In order to respond to this demand, DW tech-

nologies have moved towards real time updates. Changes in the RDBMS are being

pushed into the data warehouse at a much faster rate than before. Instead of weekly

or even daily updates, changes from the transactional system are being continuously

pushed into the data warehouse [5]. This trend has also placed the requirement on

OLAP systems to merge updates at a much faster rate than before.

Sidera is a parallel OLAP server developed by Eavis that runs on a commodity

cluster [29]. It exploits the clustering properties of the Hilbert space filling curve to

achieve balanced data cube partitioning across the nodes in the cluster. Indexes are

built using the R-tree data structure [28][40] and both the data and indexes are com-

pressed using Hilbert Tuple Differential Coding(HTDC) [27]. The HTDC compression

allows up to 90% compression of the distributed datacube, as well as up to 98% com-

pression for the R-tree indexes [27]. Sidera also supports multi-dimensional caching,

hierarchy-aware query resolution, and approximate query answering [30][31][32].

HTDC compression is a computationally expensive operation. Because complete

materialized views must be decompressed before merging updates, the run-time for

updating the data cube is almost as high as that for building the data cube. Query

resolution times also suffer because blocks containing matching tuples must be de-

compressed in order to retrieve the tuples. Thus, the information contained in the

data cubes quickly looses its effectiveness because updates cannot be merged fast

enough without affecting system performance and user experience.

In this thesis, we propose a modified architecture for the Sidera OLAP server

that enables updates to be merged with the data cube in soft real-time. We apply
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a strategy of local partitioning of the data cube, and maintain a “hot” partition for

each materialized view to merge update data. We augment this strategy by applying

multi-core processing to the HTDC compression and decompression stages in both

the indexer and query engine. This allows us to reduce the time required to merge

updates and therefore increase the frequency at which the data cube can be refreshed,

while improving the run-times for building the data cubes and query resolution. As

far as we know, no research has yet explored a local partitioning strategy and multi-

core processing in an OLAP server that uses HTDC compression such as Sidera to

achieve soft real-time updates.

The rest of this chapter provides an overview of the work done to implement

soft-real time updates in Sidera, and explains how the thesis is organised.

1.1 Overview of Research

The research presented in this thesis focuses on the modifications done to the ar-

chitecture of the Sidera OLAP server to allow it to merge updates in soft real-time.

More specifically, the following changes were applied to the indexer and query engine,

which are the two key components of Sidera that generate, update and query the

data cube.

1.1.1 Local Partitioning of the Data Cube

We implemented local partitioning of the data cube and compressed each partition

using HTDC compression. Each partition has an Linear Breath First (LBF) R-tree

index [28] which is also compressed. A partition table is used to keep track of the

number of partition per materialized view. We implemented the indexer to run on
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a single node in order to obtain measurable results. We also used Hilbert packing

to distribute the tuples across the partitions. This minimized the number of blocks

retrieved from disk when resolving a user query.

1.1.2 Using a “hot” Partition for Fast Merging of Updates

For each materialized view, a “hot” partition is used to merge updates. As the “hot”

partition reaches a certain size, it is capped and a new “hot” partition is started.

Since merging updates is a computationally expensive operation, the “hot” partition

was limited to a certain size. A side effect of merging updates with a “hot” partition

is the introduction of duplicate tuples. For this reason, the query engine was modified

to remove duplicate tuples and aggregate measures on the fly.

1.1.3 Using Multi-core Processing

Exploiting the processing capabilities of multi-core processors, we implemented shared

memory parallelism in both the indexer and the query engine to handle computation-

ally expensive operations such as Hilbert conversions, compression and decompres-

sion, and sorting. The OpenMP library was used to incrementally add multi-core

processing to the Sidera code base.

An analysis of the Sidera codebase showed that certain time consuming operations

consisted of a large number of manipulations of tuple data. Transformations such as

converting multi-dimensional tuples to Hilbert indexes can be done independently

from one another, which made them ideally suited for parallel processing. Using the

pre-processor directives supplied by the OpenMP library, we divided these repetitive

operatons into disjoint sets and distributed the work across multi-cores. The OpenMP

library was also used to control the number of threads available to our system, as well
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as general thread management such as initialization and cleanup.

1.1.4 Replacing the Buffering Subsystem

The original Sidera indexer and query engine include a buffering subsystem that uses

a series of intermediate files when converting data from one form such as multidi-

mensional tuples to another form such as Hilbert indexes. This adds significant I/O

overhead to both the indexer and the query engine, and coupled with overlapping

I/O read and write calls, makes it difficult to parallelize on a single disk system.

We replaced the original file based buffering subsystem with an in-memory buffer-

ing subsystem. Materialized views are read sequentially into memory, and all in-

termediate transformations are done in memory and are fully parallelized. When

the transformations are completed, the results are written back sequentially to disk,

minimizing read and write calls, as well as the number of disk seeks.

1.2 Thesis Organization

The thesis is organized as follows

• Chapter 2 explains the key concepts behind the Sidera OLAP server as well

data partitioning and multi-core processing. These will serve as a basis to

understanding the ideas presented in the thesis.

• Chapter 3 begins with a brief overview of the Sidera architecture, followed by

a more detailed description of the indexer and the query engine. For each

component, we describe the original algorithms, and then describe the changes

we made to achieve soft real-time updates. This includes implementing the

local partitioning strategy, maintaining a “hot” partition for merging updates,
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and adapting the query engine to aggregate duplicate records on the fly. The

chapter also explains how we replaced the file based buffering subsystem with

an in-memory based buffering subsystem, and how the indexer and the query

engine were modifed to run on a single system with multiple multi-core CPUs.

• Chapter 4 describes the conditions under which we tested the modified archi-

tecture and discusses the results we obtained by running the testcases.

• Chapter 5 presents our conclusions based on the results we obtained in Chapter

4. We also provide a discussion on the limitations we encountered during our

implementation, and suggestions for future work based on our research.



Chapter 2

Background

2.1 Introduction

Decision support systems (DSS) have been around for several decades and are used

to transform data into information with the eventual goal of supporting some type of

decision making process within an organization.

Business Intelligence (BI) is a term used to describe a type of data-driven DSS

that focuses on doing historical and predictive analysis of business data in order to

support corporate decision making.

BI systems are assembled using several components that allow accurate and quick

processing of large volumes of data, and presenting the results to the users in a timely

and easy to understand fashion [20]. Central to the BI architecture are the data ware-

house (DW), Online Analytical Processing (OLAP) tools, and the BI presentation

layer. Figure 2.1 illustrates the BI architecture.

In a competitive world, making decisions based on the most recent available data

has become increasingly important. There is a growing demand by organizations for

BI tools that generate reports based on the most up-to-date operational data. In this

thesis, we describe the modifications we made to an OLAP server that uses Hilbert

8
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Figure 2.1: The Business Intelligence (BI) Architecture.

Tuple Differential Coding (HTDC) compression to enable updates to be merged in

soft real-time without decreasing system performance.

The rest of this chapter presents the concepts necessary to understand the solution

proposed in this thesis. We begin with a discussion on DW and OLAP, specifically

maintaining OLAP data cubes. Next, we continue with a discussion on Hilbert space

filling curves, Hilbert tuple differential coding (HTDC) compression, packed Hilbert

r-trees, and data partitioning strategies. Finally, we provide an overview of parallel

programming, multi-core programming and soft real-time systems.

2.2 Data Warehousing

Data warehouses (DW) are the foundation upon which many DSS are constructed.

Primitive data from heterogenous Online Transactional Processing (OLTP) systems

is collected, transformed and stored in a DW. Aside from BI tools, DW systems are

also used by other DSS such as data mining tools and expert systems.

A key feature of DW is how the data is structured. Instead of following Codd’s
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rules [14] for table normalization, data in a DW is stored in a large fact table and a

limited number of dimension tables provide context to the fact table. This structure

is refered to as a star schema. Figure 2.2 shows an example of a star schema. A more

normalized structure called the snowflake schema is also sometimes used.

There are several reasons why BI tools do not execute directly using data from

OLTP systems. The most important one is peformance. OLTP systems are designed

primarily to handle a large volume of queries that affect a small number of records,

whereas BI tools usually deal with a small number of queries that process a large

volume of records or data [1]. Therefore, running BI queries against the OLTP systems

result in degraged performance [12].

New data from the OLTP system is merged periodically with the DW. As the fact

table becomes larger over time, merging new tuples and rebuilding indexes become

increasingly expensive. For this reason, new data from the OLTP system is normally

pushed into the DW only monthly, weekly or daily [48][64]. This implies that data

in the DW never represents the most current data in the OLTP system, and users

running reports on top of the DW warehouse using OLAP tools will almost never

obtain information based on the most recent snapshot of the OLTP system. We say

that the data in a traditional DW is stale with regards to the OLTP system. Several

strategies have been proposed to increase the update frequencies between the OLTP

system and the DW.

Scheduling strategies have been proposed to minimize the DW staleness [37][5][36].

Scheduling algorithms trigger a refresh cycle when the fact table reaches a certain

staleness threshold. Along the same lines, [51] mentions a strategy to track the

staleness of the data in the DW with respect to the performance degradation if the
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Figure 2.2: The Star Schema.

DW was synchronized with the OLTP.

Others have looked at methods to allow updates to be incrementally merged with

the DW while it remains online. In [63], using table replication and temporary tables

was proposed to speed up merging update data.

Finally, another strategy is parallel DW. According to [48], the Extract-Transform-

Load (ETL) process, which assembles data from heterogenous sources into the DW,

consumes up to 70% of the processing time in a DW. In [70], the authors explain how

the ETL process offers the possibility to implement both task and data parallelism

and proceed to provide a framework for parallel ETL programming. Their results

show that by investing a few more cpu cycles to implement their framework, it can

significantly reduce the wall-clock time of an ETL process.

2.3 OLAP

Online analytical processing (OLAP) tools allow multi-dimensional queries against a

DW to be answered quickly. This is done by pre-computing aggregates and storing
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Figure 2.3: An OLAP Data Cube with 3 Dimensions.

the results in a data structure called the data cube [38]. Figure 2.3 shows a data cube

with 3 dimensions. Given that a fact table in a DW has d dimensions {A1,A2,A3, ...

Ad}, then pre-computing the aggregate for every dimension combination results in

2d cuboids. Together, these cuboids constitute the data cube. We also refer to these

cuboids as materialized views, or simply as views.

User queries are resolved quickly by identifying the view that contains the pre-

computed aggregate value for the specified dimensions and retrieving the value from

the view. For a DW with a very large fact table, using a materialized view is faster

than computing the aggregate values at query time.

OLAP tools have presented several challenges since their appearance. Data cubes

require additional storage. For example, a DW fact table with 8 dimension tables

will generate 28 = 1024 cuboids that must be stored on disk. Furthermore, certain

dimension combinations produce views that are almost or even completely empty
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leading to wasted storage space because space must still be allocated for these views

[67].

Cube construction is also a computationally expensive and time consuming oper-

ation. Like the DW, data cubes are traditionally refreshed monthly, weekly, or even

daily, leading to the same staleness problem as in the DW.

An important component of OLAP servers are indexes, especially if the data cubes

are stored on disk. R-trees or structures derived from the R-tree have emerged as a

popular choice for multi-dimentional indexing [40][62][65][7][45][46][28]. We provide

more details on a variation called the packed Hilbert R-tree data structure a little

further in this chapter.

Parallel OLAP servers have been constructed on commodity clusters. These par-

tition the data cube across the nodes in the cluster thereby distributing the work load

among multiple machines [24][21][22][23]. Chen et al. [72][10][13] have demonstrated

how large ROLAP data cubes can be constructed in parallel. These OLAP servers

are built using a shared nothing parallel architecture because it has been shown to

be more scalable compared to the more complex shared everything architecture. Fur-

thermore, most of this research was done at a time when commodity computers were

generally comprised of a one single core processor.

Other research has focused on strategies that minimize the number of materialized

views that need to be constructed as well as the space required to store them on disk.

Dehne et al. [25][23] have demonstrated that a partial data cube can be constructed

and outlined parallel algorithms that reduced the cost of constructing the date cube

from 20% to 70% compared to using naive methods. A partial data cube means that

only a subset of the 2d materialized views need to be constructed and stored.
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Sismanis et al. [67][66] have proposed the Dwarf cube, a highly compressed struc-

ture that stores pre-computed aggregate values and allows cube manipulation such as

querying, rollup and drilldown. They have succeeded in compressing a petabyte cube

to 2.3GB in 20 minutes, resulting in a 1:400000 reduction in size. Finally, Eavis and

Cueva [27] have proposed a framework for compressing data cubes and their indexes

using Hilbert Tuple Differential Coding (HTDC) compression, achieving compression

rates of more that 90% for the data cubes, and up to 98% for their associated packed

Hilbert R-tree indexes.

2.4 Hilbert Space-filling Curve

A space filling curve is a non-differentiable curve whose range [0,1] passes through

every point in an N-dimensional space. It can also be described as a continuous,

bijective function that maps every point from a unit interval [0,1] to a unique point in

an N-dimensional unit hypercube [0,1]N. The first space filling curves were described

by Giuseppe Piano and space-filling curves that map a unit interval to a 2-dimensional

space [0,1]2 are known as Peano curves [59]. Peano curves are also fractals with a

fractal dimension of 2.

We focus on two properties about space filling curves that are important to the

material presented in this thesis. First, the transformation from a N-dimensional

hyperspace to a space filling curve is said to apply a total order to the points in the

hyperspace. This means that the transformation is reflexive, antisymmetric, transi-

tive, and trichotomous.

Second, space filling curves preserve the locality of multi-dimensional points when

they are mapped to the single dimension curve. This means that points that are
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(a) Z-order Curve (b) Gray Code Curve (c) Hilbert Curve

Figure 2.4: Examples of Space Filling Curves.

spacially close to each other in the N-dimension hypercube are mapped to points on

the space filling curve that are close to each other. The level of clustering varies

depending on the space filling curve [54].

There are many different space filling curves. Three important space filling curves

are the Z-order curve [57], Gray code curve based on the Gray code [41], and the

Hilbert curve [42]. An example of each are shown in Figure 2.4.

Among space filling curves, the Hilbert curve has been demonstrated to have

superior clustering properties over other curves such as z-order and Gray code [44][54].

Moon et al. [54] provide the following notation 2.1 to describe successive iterations

of Hilbert curves:

Hd
k : [0, 2kd − 1]→ [0, 2k − 1]d (2.1)

where d is the number of dimensions in the hyperspace and k denotes the kth-order

(or iteration) of the curve. Figure 2.5 shows the first four orders (or interations) of

the Hilbert curve.

In Sections 2.5 and 2.6, we explain how these two properties of Hilbert space filling
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Figure 2.5: First Four Orders of the Hilbert Curve.

curves are used to used to achieve block level compression for the OLAP data cube

and indexes, and to construct R-tree indexes that minimize the number of disk blocks

accessed during query resolution.

2.5 Hilbert Tuple Differential Coding (HTDC)

Hilbert tuple differential coding (HTDC) is a form of compression that is based on

the Hilbert space curve that allows the data cube as well as the R-tree indexes to be

compressed. This reduces the storage space required for both the data cube and the

indexes.

HTDC relies on the total ordering imposed when points from a d -dimensional

space is transformed to a Hibert space filling curve of length sd. It was described by

Eavis and Cueva [27], and it is a variation of the technique called Tuple Differential

Coding described by Ng and Ravishankar [58]. The following is a summary of the

technique.

Assume a relation R =< A1, A2, ..., Ad >, where Ai is a dimension with car-

dinality |Ai| for i = {1, 2, 3, ..., d}. R represents a multi-dimensional space where

the dimensions are used to specify the points in the space, and an individual tu-

ple ϕ(a1, a2, ..., ad) is a point in the space. The transformation proposed by Ng and
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Ravishankar imposes a lexicographic ordering to the tuples in R by the mapping

function:

ϕ : R → NR (2.2)

where NR = {0, 1, ..., ‖R‖ − 1} and ‖R‖ is defined as follows:

‖R‖ =
∏d

i=1
Ai : ϕ(a1, a2, ..., ad)

=
∑d

i=1
(ai

d∏
j=i+1

|Aj|)
(2.3)

Once the tuples have been transformed to their ordinal values using the mapping

function 2.2, the ordinals are sorted in ascending order. The compression process

starts by storing the first ordinal in the first block, and then storing the differences

between subsequent tuples. This is defined as the difference between tuples ϕi −

ϕi−1, where 0 < i ≤ |R|. The differences are saved in the block using run length

encoding (RLE). Since differences are small and require a small number of bits to

encode them, Ng and Ravishankar have reported a 68% compression ratio. Note

that the compression ratio for larger relations will be higher since the differences

between tuples will be smaller, leading to smaller number of bits required to save the

differences.

Eavis and Cueva proposed a similar technique, but where the mapping function

applies a Hilbert order on the ordinals produced in the transformation stage. If we

assume a space with d dimensions, we can transform it to

CHIL : {1, 2, ..., sd} → {1, 2, ..., s}d (2.4)
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Figure 2.6: First Four Orders of the Hilbert Curve.

where a single multidimensional tuple ϕ(a1, a2, ..., ad) = CHIL(a1, a2, ..., ad).

Figure 2.6(a) shows a 2 dimensional Hilbert space where each dimension has a

cardinality of 4. This space maps to 16 unique values on the Hilbert space filling curve.

As an example, assume three tuples in the relation R with the tuples CHIL(1, 2),

CHIL(1, 4), CHIL(3, 3). These are shows as points on the Figure 2.6(a).

The first step would be to transform the three tuples to a Hilbert ordinal. Again,

looking at Figure 2.6(a), CHIL(1, 2) maps to 4, CHIL(1, 4) maps to 6, and CHIL(3, 3)

maps to 9. After this, we sort the Hilbert ordinals in ascending order.

The first value stored in a compressed block will be 4. This is stored as a full

integer value, requiring 32 bits on most platforms. For the next value, we calculate

the different ρ = 6− 4 = 2. Since we can express 2 as 10 in binary format, we remove

all leading zeros and use only 2 bits to store the difference, saving 30 bits if we assume

that an integer would require 32 bits. The next difference is calculated ρ = 9−6 = 3.

Again, 3 is 11 in binary format, and we only need 2 bits and we save 30 bits. If we

were to store multidimensional values, then we would need to store the (x,y) values

of the coordinates, requiring 2 x 32 = 64 bits. So for the first tuple, which is stored
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uncompressed, we save 32 bits since we only store one value. For the differences, we

save 62 bits for each coordinate. Eavis and Cueva have reported compression ratios

of more than 90% for data files, and up to 98% for the indexes.

Since the Hilbert transformation is a bijective function, compressed blocks can

be decompressed to retrieve the original multidimensional tuples. Furthermore, since

the first tuple in each disk block is stored uncompressed, decompression can be done

at the block level. When resolving a user query, only the blocks containing tuples

that satisfy the query parameters need to be retrieved and decompressed.

2.6 Hilbert R-tree Indexing

The R-tree structure was first proposed by Guttman [40] as a solution for indexing

topological and cartological databases. The problem was that geographical loca-

tions usually have at least two coordinates, and structures such as B-trees and ISAM

indexes were inadequate because they ordered keys along a single dimensions. Multi-

dimensional indexes such as Quad-tree [33], k-d trees [8], or the K-D-B tree [60] were

also not sufficient because they either assumed a static database, which means that

it was difficult to merge updates, or they performed poorly on range queries. The

following is a quick overview of the R-tree.

In the R-tree, a leaf node is identified as (I, tuple-identifier) where tuple-identifier

is a pointer to an object stored the database, and I defines a d -dimensional bounding

box that encloses the database object. We can also say that I = (I1, I2, ..., Id) where

Ii holds the maximum and minimum value of that object for the dimension i.

Non-leaf nodes are constructed by adding entries in the form (I, child-pointer),

where child-pointer is a pointer to either a leaf node, or to another non-leaf node.
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(a) Bounding Boxes. (b) After Construction.

Figure 2.7: The R-tree.

I defines the d -dimensional bounding box that encloses every bounding box in the

child node.

Using Figure 2.7(a), we illustrate how an R-tree is constructed recursively from

the leaf level up to the root node. Rectangles R8 to R19 are leaf-nodes and point

to multidimensional tuples in the database. We start by constructing the non-leaf

node R3, which encompasses nodes R8 and R9. We continue with node-leaf node

R4, which encompasses nodes R10 and R11. We continue this process until we have

grouped all the leaf level rectangles into the non-leaf rectangles R4 to R7. We repeat

this process and regroup R3 to R5 inside R1, and nodes R6 and R7 inside R2. Finally,

R1 and R2 are grouped inside the root node. Figure 2.7(b) shows the R-tree after

construction. Searching for an object or a range of objects is accomplished using a

depth-first search algorithm starting with the root node.

Starting with the assumption that most multidimensional databases are static,

Rossopoulos and Leifker [62] provide a method for a “packed” R-tree so that there

is minimal number of bounding box overlap and thus reduce dead-space. Instead of

maintaining between m and M number of entries per non-leaf nodes, their method

fills every node with M rectangle. This produces a very shallow but broad R-tree and
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improves search queries. This is done without compromising the dynamic nature of

R-tree.

Faloutsos and Kamel [45][46] push this idea further and first apply Hilbert ordering

to the multidimensional database object before packing and constructing the R-tree.

The clustering properties of the Hilbert space filling curve describe in Section 2.4

ensure that database objects that are spatially close together will be grouped in

the same non-leaf node. They report better perfomance especially for skewed data

distribution that better reflect real world situations.

The depth first search algorithms used for searching R-trees does not specify the

order in which matching blocks are read from disk, and can lead to significant disk

trashing due to high number of seeks. Eavis and Cueva [28] introduce the LBF R-tree

in , including a linear breath first search (LBFS) algorithm that guarantees that blocks

are read sequentially from a file, and degrades to a linear scan of the database in the

worst case situation. Their algorithm minimizes the number of seeks a disk must

perform, which is one of the major factors contributing disk latency. Accordingly,

the LBF R-tree has been shown to reduce disk seeks by more than 50% compared to

other R-trees.

2.7 Data Partitioning

Database partition has been a feature of many commercial databases such as IBM

DB2 [16], Oracle [19] and SQL server [18]. Data partitioning means that the data in

a database or even just a table is separated into different disjoint subtables. Parti-

tioning tables helps manage the tables more easily and also speeds up performance

in environments where the partitions can be manipulated in parallel.
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Agrawal et al. [2] describe two major ways of partitioning database tables.

• Horizontal Partitioning breaks tables across rows using a partitioning strat-

egy such as range partitioning or hash partitioning. The rows may still reside

in one single table, but a separate index is then built for each partition. Shard-

ing is a technique where a database table is horizontally partitioned and each

partition resides on a separate logical or physical server. Each server has a copy

of the database schema, and no longer needs to be aware of the other servers.

• Vertical Partitioning breaks tables into disjoint sets of columns, and each set

is assigned to a subtable. The only column that is repeated in every subtable

is the key column.

2.8 Parallel Computing

Parallel computing allows multiple program instructions to be executed simultane-

ously on separate processing units. This is done by dividing instructions and data into

discrete units and then distributing them across the processing units for execution.

Parallel systems include various different architectures such as computers each with

a single core processor connected together using a network, a single computer with

multiple processors connected together by a bus, or a combination of both. More

recent architectures also include processors that contain multiple processing units

called cores in a single chip.

Physical limits such as power consumption and heat dissipation have placed a

limit on the developement of single core processor architectures, leading processor

manufacturers to switch to multi-core architures [17]. Cost per instructions is lower
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for multi-core processors because they can execute more instructions at lower clock

frequencies, which lowers the power consumption.

A common method of classifying parallel architectures is based on Flynn’s tax-

onomy [35][34], which was introduced in the 1960s. It divides the architecture based

on Instructions and Data, either of which can be Single or Multiple. Another com-

mon method for classifying parallel architectures separates parallel systems into two

distinct groups. The following is a brief description of the two groups.

• Shared-memory systems, which are also refered to as “shared-everything”

systems, have multiple processing units that access the same global address

space and connect to the same memory using a shared bus. Any change to a

memory location affects all processors. We also define shared-memory systems

as having either Uniform Memory Access (UMA) or Non Uniform Memory

Acess (NUMA), depending on how the memory is organized in the system. In

the first case, each processor can access any memory location with the same

latency. In the second, each processor can access certain memory locations

faster than other locations.

An advantage of shared-memory systems is that data sharing is fast and uni-

form. Disadvantages include problems with scalability because traffic on a

shared bus ncreases geometrically with the number of processing cores. Cache

coherency also adds complexity to this architecture because each processing unit

has access to a private cache which is not always synchronized with the shared

memory. When a processing carries out an instruction that affects a shared

variable, another processing unit may attempt to change the same variable be-

fore the cache value of the first processing unit is written back to memory. This
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is more apparent in NUMA architectures. We define a NUMA architecture that

can handle cache coherency as cache coherent NUMA, or cc-NUMA [11].

• Distributed memory systems, which are also refered to “shared-nothing” sys-

tems, have multiple processing units that each have access to their private

global address space. The processing units must use a message passing proto-

col to communicate with each other. This architecture is more scalable than

shared-memory systems, and is easy to assemble using commodity off-the-shelf

processors and an Ethernet network with TCP/IP for communications. An-

other advantage of these systems is that there is no need to maintain cache

coherency since each processor has exclusive access to its memory.

2.9 Parallel Programming Models

Modern processors implement techniques such as bit level and instruction level par-

allelism that enable more instructions to be executed per clock cycle, but in order to

take full advantage of a parallel computer system, developers must explicitely design

their applications to run in parallel. There are two important types of parallelism.

• In task parallelism, separate tasks or functions can be executed on separate

processing units. One of the challenges of task parallelism is how to distribute

work evenly across processing units.

• In data parallelism, a large data set is partitioned into smaller disjoint sets

such that each set can be processed independently from the other. These can

then be distributed to separate processing units and the same instructions are

carried on each disjoint set. An example would an operation on a matrix.
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Designing and implementing parallel programs is difficult and often result in bugs

that are difficult to detect because these bugs are related to thread timing. Program-

mers must also manage access to shared resources (critical sections) and must also

coordinate communication between the various executation cores. For this reason,

several parallel programming models have been developed over the years to abstract

many of the painful tasks when programming parallel applications.

• Shared-memory model (threads model)

In this model, the programmer is presented with a uniform memory model,

although physical memory could be located on separate physical machines.

Parallel execution is achieved by using threads which execute instructions in

parallel. Threads access the same memory, and the programmer is responsible

for ensuring that data is not corrupted or incorrect because of race conditions,

and against deadlocks when using locks and semaphores. APIs built on this

model are Posix threads [9], OpenMP [69], Unified Parallel C [71], X10 [15] and

OpenCL [39].

• Message-passing model (distributed memory model)

In this model, the programmer is presented with a separate memory model for

each processing unit, and the programmer must use a message passing protocol

to exchange information between the processing units. The Message Passing

Interface (MPI) API [53] is now the de-facto library used for message passing

when developing applications for distributed memory systems. It is still the

responsibility of the programmer to identify the parallel components, and to

structure the application to run on parallel systems. In many cases, APIs such
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as OpenMP and MPI can be mixed to create applications that take advantage

of both models.

2.10 Evaluating Parallel Applications

Simply running a sequential application on a parallel system with p processing units

does not always results in p times speedup. The application must first be restructured

so that instructions are distributed across the processing units. We define the speedup

achieved as follows [52]:

Speedup =
Execution time on 1 processor

Execution time on p processors
(2.5)

The top part of the expression (2.5) represents the sequential execution time and

the bottom part the parallel execution time. Under ideal conditions, we would like the

parallel execution time to be equal to 1
p
× sequential execution time. In other words,

we would like the speedup to be equal to p. This means that the more processor we

allocate to the application, the faster it will execute.

Two factors limit the speedup we can achieve. The first factor is the ratio be-

tween the time a program spends executing code that is inherently sequential, i.e.

cannot be executed in parallel, and executing code that executes in parallel. The

second factor that affects speedup is the the overhead associated with managing par-

allel applications such as thread managements and communication between executing

units.

To compute the speedup achieved when using p processors to execute a parallel
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application, Amdahl proposed an expression which is now known as Amdahl’s law [4].

After profiling an application, we define S as the fraction of time it spends executing

code that cannot be executed in parallel, and (1−S) as the fraction of time it spends

executing code that can be execute in parallel. Then, Amdahl’s law defines speedup

on p processors as follows:

Speedup =
1

S + (1−S)
p

(2.6)

Amdahl’s law provides a close estimate to the speedup achieved when a parallel

application is run on p processors. It can also be used to estimate an upper bound

on the speedup that can be achieved. Assume an infinite number of processors are

allocated to the application, then

Speedup = lim
p→∞

1

S + (1−S)
p

=
1

S
(2.7)

This means that the maximum speedup that can achieved when running an ap-

plication on a parallel system is related to the fraction of time is spends running

instructions that can only run sequentially.

2.11 Multi-core Programming

Back in 1965, Moore [56] predicted that the number of components in an integrated

circuit roughly doubled every two years. This is known as Moore’s law, which states

that the processing speed and the storage capacity of computer systems doubles every

18 months. Processor development has adhered to this trend by increasing the number
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of transistors on a single chip and by reducing the size of the transistors allowing more

transistors to be packed per unit area. By the end of the 1990s, cpu manufacturers

had realized that physical limitations such as power usage and heat dissipation made

it increasingly difficult to pack more transistors per unit area. In order to continue

increasing performance, the focus shifted to multi-core cpu architectures. These are

single chips with multiple executing units or core packed together. This has allowed

the net number of intructions executed to be increased by executing them in parallel.

The processor itself could run at a lower frequency, but the effective speed was the

sum of the instructions run on all the cores.

There are several ways for a system to take advantage of the multiple cores avail-

able. The first way is for the operating system to schedule a separate application to

run on each core. For example, while a user is encoding video using one core, the

virus scan application can run on the other core. In single core cpus, the operat-

ing system would have to context switch and allocate a time slice for each of these

applications. The other way is if an application process has multiple threads, then

two or more threads can run on separate cores. But in order for this happen, it is

up to the application to create the threads and ensure that resources are accessed

appropriately. This means that the application developer must explicitely design the

application to be multi-threaded.

2.12 OpenMP

OpenMP stands for Open Multi-Processing and it is a multi-platform shared mem-

ory multi-programming API that allows application developers to implement multi-

threaded applications without directly using libraries such as Pthreads. In fact,
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OpenMP use Pthreads behind the scenes, but abstracts a lot of details away from the

user. This is done by providing the programmer with a set pre-precessor directives

that allow multiple threads to be spawned when sections can be processed in parallel.

There are also directives that allow to define shared variables and also the private

variables for the separate threads. When a parallel section is completed, the API

takes care of either removing the threads, or by returning them to the thread pool,

where they can be recycled for another parallel section.

The API also provide contructs for declaring barriers and other synchronization

points, as well as allowing the programmer to decide the number of threads to use. It

follows a model where the main thread can fork multiple slave threads to do work on

a parallel section before joining back to the main thread. This is a classic example of

the fork-join model. Slave threads can either do the same work but each on a different

part of the data (data parallelism), or each execute a separate task (task parallelism).

OpenMP is used to parallelize code across multiple cores on a single cpu, or

across multiple cpus but on a machine or a cluster that runs a single OS. It does not

distribute work across independant machines, like MPI does. For this reason, it is

not uncommon to see OpenMP used alongside MPI in many parallel and distributed

applications.

OpenMP has many advantages over Pthreads. The API is much simpler and

makes it easier to implement multi-threading without the complexity of Pthreads.

The pre-processor directives can be added to non-multithreaded programs to convert

them to multi-threaded programs without having to re-write the structure of the

program. This is referred to incremental parallelism. When adding Pthreads to a

non-parallel program, the structure must often be re-written. Platforms with non
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OpenMP capable compilers can still compile the code because the compiler directives

are simple flagged as warnings. The binary that is produced executes the parallel

sections using a single thread.

2.13 Soft Real-time Updates

Real time computing consists of software and hardware that perform a task and

can guarantee a certain deadline. We can define two different kinds of real-time

computing, based on what happens if the deadline is not met.

Hard: if the deadline is not met, this leads to a system failure because the deadline

is mission critical. As an example, certain critical subsystems in a nuclear plant must

repond to changes within a determined period of time. Failure do so may lead to

catastrophic results, and therefore deadlines are critical.

Soft: results are still useful after the deadline has been missed but not as useful

as before the deadline, For example, a stock analysis program. The longer it takes to

calculate the results, the price of the stock may rise or decrease and cause the investor

to loose money.

In trying to implement any type of real-time application, it is important to un-

derstand the deadlines, whether the application can continue if the deadline is not

met, and what the results mean to the user if the deadline is not met.
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Soft Real-time OLAP

3.1 Introduction

To achieve soft real-time OLAP, updates from the data warehouse must be merged

with the data cube without taking the system offline or decreasing query resolution

times.

This chapter describes a modifed architecture for the Sidera OLAP server that

enables updates to be merged in soft real-time. Our architecture is designed to run

on a single machine and exploits the multi-core architecture of newer systems for

parallel processing. Our architecture is based on the design of the original Sidera

OLAP server, but it has been adapted to run on a single machine, transitioning from

a distributed architecture to a shared-memory architecture. We will explain in Chapter

5 how our shared-memory version of Sidera could be incorporated with the original

architecture to add multiple levels of parallelism to Sidera. Our modifications were

done to the Sidera indexer and query engine.

We begin with a brief overview of the original Sidera architecture that uses Hilbert

Tuple Differential Coding (HTDC) compression. This is followed by a description of

31
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a modified version of the indexer that partitions materialized views into local parti-

tions and uses the “hot” partition mechanism to merge recent updates without taking

the system offline or compromising system performance. The modified architecture

also exploits multi-core processing, where possible, to increase performance and dis-

tribute processing loads across the available processor cores. The new architecture

also replaces the older file based buffering subsystem with a faster in-memory based

buffering subsystem, and introduces controlled I/O to ensure that files are read or

written sequentially to minimize disk seeks.

We end the chapter with a description of the original Sidera query engine followed

by the modified architecture. Distributing data across multiple partitions, as well as

using a “hot” partition for merging updates puts an extra burden on the query engine.

This is because updates are merged only with the tuples in the “hot” partition, which

leads to potential duplicate tuples with respect to tuples that are in partitions other

than the “hot” partition. For this reason, the query engine must be able to aggregate

duplicate tuples on the fly without degrading query resolution times.

3.2 Sidera Overview

Sidera is a paralllel OLAP server that runs on a commodity cluster running the Linux

operationg system. It is based on a distributed parallel architecture, where each node

functions independently from the others. A Parallel Service Interface (PSI) layer

is responsible for coordinating the activities between the nodes. The PSI is build

using the standard Message Passing Interface (MPI) API, and abstracts much of the

complexity in coordinating communcation between the nodes. Figure 3.1 from [29]

shows an overview of the Sidera architecture.
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Figure 3.1: The Sidera Architecture.

Each node in the cluster participates in sorting, compression, partitioning, distri-

bution, indexing, and query resolution. Although one of the node is designated as the

frontend node, its role is restricted to receiving queries from the user and forwarding

them to the backend nodes. This eliminates bottlenecks that are often associated

with parallel architectures that rely on a central node for process management.

Sidera uses a Hilbert space filling curve to partition data cubes and distributes

them across the cluster. The Hilbert space filling curve has been shown to provide bet-

ter locality-preservation in discrete multi-dimensional spaces than other space filling

curves such as z-order or Gray code. For this reason, it is ideally suited for achieving

optimal load balancing when partitioning data cubes across multiple nodes.
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Indexes are based on the packed LBF Hilbert R-tree data structure, which are

better suited for multi-dimentional indexing than data structures such as bitmaps or

B+trees, which are traditionally used in relational databases.

Data cubes as well as indexes are compressed using Hilbert Tuple Differential

Coding (HTDC) compression that achieves almost 90% compression ratio [27].

Sidera also supports hierarchical representation, multi-dimensional query caching

and approximate query answering.

Sidera follows a series of basic steps to transform and distribute the data cube

across the cluster, and then to contruct the HTDC compressed views and indexes.

Each step is carried out in parallel, with every backend node participating and using

the PSI layer to coordinate the process.

Query resolution works with the same principle. Each backend node holds a par-

tition of any given view, and participates in locating tuples that may match the query

parameters. Using the PSI layer to coordinate the process, the backend nodes retrieve

matching tuples and work together to merge their local results before returning the

final result set to the frontend node.

3.3 The Indexer

The original Sidera indexer algorithm is divided into three stages. In the first stage,

each backend node prepares a materialized view by converting the tuples into their

corresponding Hilbert indexes and then sorting the view in ascending Hilbert order.

In the second stage, the backend node stripes the view to create n partitions, where

n is the number of backend nodes in the cluster. It then proceeds to send a partition
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to every node including itself, and at the same time receives partitions of other ma-

terialized views from the remaining backend nodes. In the third stage, each backend

node creates a local HTDC compressed view using the partition it has received in

stage two, and builds a compressed Hilbert R-tree index for that view. Stages one to

three are repeated until every materialized view has been partitioned and distributed

across the cluster.

Stages one and three do not require the PSI layer and run in parallel on each

backend node, but stage two depends on the PSI layer to synchronize the distribution

of partitions between the nodes. We will now use algorithm 1 to explain the three

stages more in detail.

Lines 1 to 9 carry out setup work such as declaring certain variables required

by the algorithm, as well as gathering some information about the cluster. We also

use the PSI layer to determine which node in the cluster has the highest number of

materialized views. This will determine how many times we will cycle through the

main part of the algorithm.

Stage one starts at line 10 and runs until line 20. Here, variables required for

coordinating the distribution are declared and assigned initial values. If this node

has a materialized view to distribute in this round, the tuples are converted to

Hilbert indexes, sorted in ascending order and partitioned. Although the calls to

ConvertToHilbertIndex(V [i]) and sortHilbertAscending(VH [i]) appear to

be both one step processes, they are built on the file based buffering subsystem used

in the original Sidera architecture. We will elaborate more on the buffering subsystem

in the next section, and explain how we replaced it with an in-memory subsystem to

accelerate processing time.
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Algorithm 1 Sidera Indexer

Require: Minimal set of materialized views distributed across the cluster.
Ensure: Each backend node has a partition of every view in the minimal set.

1: V ← minimal set of materialized views
2: VH ← minimal set of material views in Hilbert format. . empty at this point
3: viewCount← size(V )
4: viewCountList← empty list
5: maxV iewCount← 0
6: n← number of backend nodes in cluster
7: id← id for this node in the cluster
8: AllGather(viewCountList,viewCount,n) . through PSI layer get the

maxViewCount from every node into viewCountList
9: maxV iewCount← max(viewCountList)

10: for i = 1→ maxV iewCount do
11: toReceive← false

12: toSend← false

13: sendTo← 1
14: receiveFrom← 1
15: if i ≤ viewCount then . check if this node has something to send
16: VH [i]← convertToHilbertIndex(V [i])
17: sortHilbertAscending(VH [i])
18: VP ← getPartitions(VH [i])
19: toSend← true

20: end if
21: for j = 1→ n do
22: send(toSend,sendTo) . through PSI layer
23: receive(toReceive, receiveFrom) . through PSI layer
24: if toSend == true then
25: sendPartition(VP [j], sendTo) . through PSI layer
26: end if
27: if toReceive == true then
28: buffer ← empty buffer to receive partition
29: buffer ← receivePartition(receiveFrom) . through PSI layer
30: createCompressedView(buffer)
31: buildCompressedIndex(buffer)
32: end if . continued on the next page...
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Algorithm 2 Sidera Indexer (continued)

33: sentTo← (sendTo+ 1) mod n
34: receiveFrom← (receiveFrom− 1)
35: if receiveFrom < 1 then
36: receiveFrom← n
37: end if
38: end for
39: end for

Starting at line 21 until line 38, the partitions are distributed across the cluster.

Although stage two is the distribution stage, stage three is overlapped with stage two

with the compression and index building steps taking place on lines 30 and 31.

Although every backend node repeats lines 10 to 39 until all the materialized

views have been distributed, not every node participates in sending and receiving. If

a node has less materialized views to send as the maxV iewCount, then it does not

send anything when it has processed all its views. Similarly, if a node is informed on

line 23 that a node will not receive a partition, it simply loops to the next round.

On line 18, partitioning is achieved by striping the view such that node j will

receive tuples (j, j + n, j + 2n, ...) where j is the node id and n is the number of

nodes in the cluster. Because of the locality preservation property of the Hilbert space

filling curve, tuples that satisfy the parameters of a range query along any dimension

usually have corresponding Hilbert indexes that are close together on the Hilbert

curve. This means that they are close together when Hilbert indexes are sorted in

order. This Hilbert striping strategy therefore ensures that for any given range query,

there is balanced distribution of work across the nodes in the cluster.

Algorithm 3 describes how updates are merged with the existing data cube. The

process is similar to Algorithm 1. A minimal set of materialized views are generated
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Algorithm 3 Sidera Indexer - Updates

Require: Minimal set of update views distributed across the cluster.
Ensure: Each backend node has merged updates with compressed views and rebuilt

compressed R-tree indexes.
1: VU ← set of update views
2: VH ← set of views in Hilbert format. . empty at this point
3: viewCount← size(VU)
4: viewCountList← empty list
5: maxV iewCount← 0
6: n← number of backend nodes in cluster
7: id← id for this node in the cluster
8: AllGather(viewCountList,viewCount,n) . through PSI layer get the

maxViewCount from every node into viewCountList
9: maxV iewCount← max(viewCountList)

10: for i = 1→ maxV iewCount do
11: toReceive← false

12: toSend← false

13: sendTo← 1
14: receiveFrom← 1
15: if i ≤ viewCount then . check if this node has something to send
16: VH [i]← convertToHilbertIndex(VU [i])
17: sortHilbertAscending(VH [i])
18: VP ← getPartitions(VH [i])
19: toSend← true

20: end if
21: for j = 1→ n do
22: send(toSend,sendTo) . through PSI layer
23: receive(toReceive, receiveFrom) . through PSI layer
24: if toSend == true then
25: sendPartition(VP [j], sendTo) . through PSI layer
26: end if
27: if toReceive == true then
28: buffer ← empty buffer to receive partition
29: buffer ← receivePartition(receiveFrom) . through PSI layer .

continued on the next page...
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Algorithm 4 Sidera Indexer - Updates (continued)

30: viewName← getViewName(buffer)
31: viewBuffer ← loadCompressedView(viewName) . decompresses

and loads stored view
32: mergeBuffer(viewBuffer,buffer) . merges updates in buffer into

viewBuffer
33: createCompressedView(viewBuffer)
34: buildCompressedIndex(viewBuffer)
35: end if
36: sentTo← (sendTo+ 1) mod n
37: receiveFrom← (receiveFrom− 1)
38: if receiveFrom < 1 then
39: receiveFrom← n
40: end if
41: end for
42: end for

that contain the aggregate values for the tuples in the update set, and these views

are partitioned and distributed across the cluster. For each update view partition a

backend node receives on line 29, the existing compressed view corresponding to that

update view must be loaded, decompressed and the updates merged with it. This

is reflected with three extra steps from line 30 to 32. Once the updates have been

merges, the view is compressed again and the index is rebuilt. The important and

time consuming property of the update algorithm is that the entire existing view

must be loaded and decompressed, and the update tuples must be merged with it.

Although materialized views are partitioned across the cluster, these partitions will

reach a significant size over time and system performance will decrease when merging

updates.

Eavis and Cueva [28] identify Hilbert sorting as the dominant cost in the construc-

tion of the LBF R-tree, and since the size of the update set is much smaller than the

size of the compressed view, |U | � |rdata|, the cost of merging updates is much smaller
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than building the entire data cube. Their update strategy follows the one proposed by

Roussopoulos in [61]. In practice, this is not the case because in order to rebuild the

compressed index (line 34 of the Algorithm 3), we require the multi-dimensional form

of each tuple. This requires every tuples from the compressed view to be converted

from their Hilbert index to multi-dimensional format, and this is a computationally

expensive operation. In fact, all conversions between multi-dimensional tuples and

their respective Hilbert indexes are expensive, and we describe later in this chapter

how we leverage multi-core processing to reduce the processing time.

3.4 Indexer Buffering Subsystem

The original Sidera architecture uses a file based buffering subsystem, which allows

it to stream data from large views on older systems that have restricted Random

Access Memory (RAM). The process of converting a non compressed view to the

final HTDC compressed view goes through several intermediate transformations. For

each transformation, an intermediate file is generated, which becomes the input for

the next transformation. Figure 3.2 shows the four major transformations that the

file based buffering subsystem handles.

Figure 3.2: Buffering Subsystem - Intermediate Files

The first transformation consists of converting tuples with multi-dimensional co-

ordinates in data file (.dat) into the non-aligned Hilbert unligned format (.nhu). The
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(.nhu) file contains the tuples as Hilbert indexes, but they are not yet sorted. Next,

we transform the tuples in (.nhu) format into aligned Hilbert sorted (.ahs) format.

In this file, the tuples are sorted in ascending Hilbert order, and the Hilbert in-

dexes are stored in a fixed byte format. The original Sidera system uses the GNU

Multi-Precision (MP) library to handle and store Hilbert indexes. For high dimension

spaces, primitive data types such as long may be too small to hold certain Hilbert

indexes. Let d be the number of dimensions in a hyper-space, and S is the largest car-

dinality of any of the axis, then the length of the Hilbert space filling curve is defined

as Sd. Essentially, this means that the size of the largest Hilbert index generated by

the transformation is Sd. If we take a view with six dimensions, and the cardinality

of the largest dimension is 5000. Then the highest possible Hilbert index that can be

generate is 50006, and this number cannot be stored in a long datatype.

The GNU MP library allows integers of arbitrary size to be stored and manipu-

lated. It does this by allocating as many bytes as required to store an integer. This

also means that Hilbert indexes stored in GNU MP data types may occupy different

number of bytes in memory. The problem arises when the indexes are distributed

across the cluster. The PSI layer is built on top of the Message Passing Interface

(MPI) API, and requires data types in an array to be of fixed size. For this reason,

the Hilbert indexes stored in GNU MP data types must first be transformed into

fixed size data types. This is what the transformation from (.nhu) to (.ahs) does.

The transformation from (.ahs) to non-aligned Hilbert ordered (.nho) ordered

converts the fixed size data types back to GNU MP data types. The only difference

between the (.nhu) and the (.nho) is that the Hilbert indexes in the latter are sorted

in ascending Hilbert order. Finally, the last transformation is from (.nho) to Hilbert
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Figure 3.3: File Based Buffering Subsystem

tuple differential coding (.htdc) format, which is the format used by Sidera to store

compressed materialized views. After the transformation from (.dat) format to (.htdc)

has completed, the intermediate files are delete by the system.

Another way that the original file based buffering subsystem contributes to the

Sidera indexer latency is by streaming data one block at a time. Figure 3.3 shows

how tuples from the (.dat) file are transformed and stored stored in the (.nhu) format

file.

A block is read from the first format, transformed and then written to the next

format. This cycle is repeated until every block from the first format has been pro-

cessed.

Although allowing older systems to process larger files sizes, the file based buffering

subsystem also has a negative impact on the run-time. It forces the application to

execute a large number of disk operations because (a) each block is individually read

and written, requiring two I/O calls for each block, (b) it must create a series of
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intermediate files and (c) reading from one file and directly writing to another file

forces the disk to perform seek operations. These all contribute to increase the run-

time of the original Sidera server.

In our modified architecture, we have replaced the file based buffering subsystem

with a bi-directional in-memory subsystem. Figure 3.4 provides an abstract view

of how this subsystem functions. For each materialized view, the view is first read

sequentially from the (.dat) format into memory and all transformations take place

in memory. At the end of the last transformation, the compressed view in (.htdc)

format is written sequentially onto disk. All read and write calls are issued as a single

call.

This approach reduces the number of I/O calls to a minimum and eliminates the

disk seek operations incurred when overlapping I/O operations were issued for two

separate files. Our subsystem can do transformations in both directions, making it

also suitable for the Sidera query engine, which is explained a little further in this

chapter.

3.5 Indexer with Local Partitioning

We now present a single process indexer for Sidera that locally partitions materialized

views. Based on the original architecture of the Sidera indexer, it stores partitions

on the same machine instead of distributing them across the cluster. We explain a

little further in this chapter how we leverage multi-core processing to achieve parallel

processing on a single machine. Effectively, our modifications transform Sidera from

a distributed architecture to a shared-memory architecture. We propose in Chapter 5

a design to retro-fit this shared-memory version of Sidera into the original distributed
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Figure 3.4: Bi-directional In-memory Subsystem

architecture to achieve multi-level parallelism in the Sidera OLAP server. Algorithm 5

presents the core algorithm of the indexer when the data cube is compressed and

indexed.

From line 1 to 5, the algorithm prepares the necessary structures for processing.

The number of partitions p can be any value such that p ≥ 1. In the distributed

version of Sidera, the number of partitions was dependent on the number of nodes n

in the cluster. In the shared-memory version, this is no longer the case.

Line 4 declares a buffer that is the in-memory subsystem described in Section 3.4.

All transformation and partitioning tasks are performed by this structure. Another

data structure, called the partition table is declared on line 5. The partition table

stores information about each view, such as number of partitions, maximum partition

size and if a “hot” partition exists on disk. At the end of the indexer process on line

15, the partition table is written to disk. This file will be used later by the indexer to
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Algorithm 5 Sidera Indexer with Local Partitioning

Require: Minimal set of materialized views on a single machine.
Ensure: Each view has been partitioned, compressed and has an Hilbert R-tree

index.
1: V ← minimal set of materialized views
2: viewCount← size(V )
3: p← number of partitions to generate
4: BI ← in-memory subsystem . The in-memory subsystem takes care of

transformations and partitioning once the view is loaded
5: TP ← partition table . Holds information about views and partitions
6: for i = 1→ viewCount do
7: load(BI , V [i])
8: VP ← getPartitions(BI)
9: for j = 1→ p do

10: createCompressedView(VP [j])
11: buildCompressedIndex(VP [j])
12: updatePartitionTable(TP ,VP )
13: end for
14: end for
15: writeToDisk(TP ) . write partition table to disk
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merge updates and by the query engine to quickly determine the number of partitions

to query and if “hot” partitions exists, or whether a new “hot” partition should be

created.

From line 6 to line 14, each view is loaded, transformed, compressed and the

R-tree index is build. The process is the same for every materialized view.

Finally, we note that I/O read calls are restricted to line 7 where the entire view

file is loaded in one read operation, line 10 where the compressed view is written in

one operation, line 12 where the compressed index is written in one operation, and

line 15, when the partition table is written to disk.

3.6 The Partition Table

As mentioned in the previous section, the partition table is a simple structure that

keeps tracks of materialized views, partitions, “hot” partitions, and the maximum

size before capping a “hot” partition. The table is initially create and stored when

the data cube is first generated, and it is updated by the update process. The query

engine also relies on the partition table to determine how many partitions to query

and whether it should search for a “hot” partition during query resolution.

3.7 Tuple Distribution on a Shared-memory Ar-

chitecture

In the distributed memory Sidera architecture, partitioning is achieved by striping

the view such that node j will receive tuples (j, j + n, j + 2n, ...) where j is the

node id and n is the number of nodes in the cluster. This is done to ensure that there

is a balanced work distribution during query resolution. We refer to this as Hilbert
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striping. In a shared-memory architecture, we are more interested in minimizing

the number of blocks retrieved during query resolution. Once the blocks are loaded

in memory, they can be distributed among the processing cores because each block

is compressed at the block level and can be decompressed independently. Hilbert

striping would make our architecture produce slower query times by spreading out

the tuples in a range query across many blocks. For this reason, our shared-memory

architecture compresses Hilbert indexes that are close together in the same block

instead of striping them into different blocks. We refer to this strategy as Hilbert

packing.

3.8 Merging Updates and the“hot” Partition

When merging updates, the modified architecture begins with a set of update views.

Each update view is sequentially loaded in the in-memory buffer, and the tuples

are converted to Hilbert indexes and sorted in ascending order. The algorithm then

tries to locate the compressed “hot” partition corresponding to the update view. If

a “hot” partition is found, it is loaded and decompressed. The Hilbert indexes of

the update view are merged with those of the “hot” partition, and then they are

re-compressed and saved to disk as the “hot” partition. If the number of the tuples

in the “hot” partition exceeds the maximum allowed, the “hot” partition is capped

with the maximum number of tuples, and the remaining tuples are stored in a new

“hot” partition. If the indexer cannot find a “hot” partition, it simply starts a new

one with the tuples in the update view. This is a repeated for every update view in

the update set. Algorithm 6 shows how updates are merged with the “hot” partition

in the Sidera indexer.
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Algorithm 6 Sidera Indexer with Local Partitioning - Updates

Require: Set of updates views on a single machine.
Ensure: Each view has been partitioned, compressed and has an Hilbert R-tree

index.
1: U ← set of update views
2: viewCount← size(U)
3: BI ← in-memory subsystem . The in-memory subsystem takes care of

transformations and merging buffers
4: TP ← loadPartitionTable . load partition table from disk
5: for i = 1→ viewCount do
6: load(BI , U [i])
7: viewName← getViewName(buffer)
8: maxTuples← getMaxPartitionSize
9: if hotPartitionExist(viewName) == true then

10: hotPartBuffer ← loadHotPartition(viewName) . decompresses and
loads hot partition for this view

11: mergeBuffer(BI ,hotPartBuffer) . merges tuples in hotPartBuffer

with updates in BI

12: end if
13: VP ← getPartitions(BI , maxTuples) . We cap a partition if it has

number of tuples = maxTuples
14: for j = 1→ p do
15: if j == p & size(VP [j]) < maxTuples then . last partition not full.

We create a compressedhot partition
16: createHotPartition(VP [j])
17: buildHotPartitionIndex(VP [j])
18: else
19: createCompressedView(VP [j])
20: buildCompressedIndex(VP [j])
21: end if
22: updatePartitionTable(TP ,VP )
23: end for
24: end for
25: writeToDisk(TP ) . write partition table with updates to disk
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Lines 1 to 4 execute set up tasks, which includes loading the partition table.

The partition table holds information about existing materialized views, how many

partitions per view and what is the maximum number of tuples the “hot” partition

of any view can hold. From line 5 to line 24, the update views are merged with the

“hot” partition. Lines 6 to 8 load the update view, and partition information on that

view is obtained from the partition table. If a “hot” partition already exits, lines 10

to 11 execute and the “hot” partition is loaded and merged with the tuples of the

update view.

We then retrieve on line 13 a set of partitions from the in-memory buffer. It auto-

matically determines how many capped partitions should be created and how many

remaining tuples should be pushed into the “hot” partition. The HTDC compression

and index building for each partition is done from line 15 to line 23. Note that if the

last partition in the partition set has less tuples than the maximum number of tuples

retrieved on line 8, then the partition is marked as a “hot” partition. Otherwise, all

partitions are created as capped partitions. Finally, the updated partition table is

stored to disk on line 25, and it is ready for the next round of updates.

The update algorithm for the modified architecture is very close to the update

algorithm of the original architecture, except that we now merge with the “hot”

partition instead of the entire view. By restricting the size of the “hot” partition to

a maximum number of tuples, we enforce an upper bound on the merge time. In

the original Sidera indexer, the stored view becomes larger with time as updates are

merged, and the merge time increases linearly as the size of the view increases. A

negative effect of capping partitions as is done in our architecture is that the partitions

created after the initial data cube was built may contain duplicate tuples since the
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Figure 3.5: Run-time by Stages for Indexer with Partitioning

merge process only merges with the “hot” partition. For this reason, the modified

query engine presented a little later in this chapter has to aggregrate tuples on the

fly, which increases the query resolution time. We also explain later how we use

multi-core processing in the modified query engine to mitigate this.

3.9 Indexer with Multi-core Processing

Before adding multi-core processing to the Sidera indexer, we first profiled the run-

time of our indexer with local partitioning that was described in Section 3.5. Fig-

ure 3.5 shows a distributation of the run-time for the major stages of the indexer.

The run-time was measured by using a single materialized view with 5 dimensions,

1,000,000 tuples, and a skew factor of 0.1.
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The profile shows that run-time is dominated by the Coordinate To Hilbert and

the Sort Time stages. Together, they constitute almost 89% of the total run-time.

Both of these stages take place in the in-memory buffering subsystem described in

Section 3.4. The Coordinate To Hilbert stage converts tuples in coordinate format to

their respective Hilbert indexes. Each conversion is an independent step, so converting

an array of tuples can be done in parallel. The Sort Time stage sorts the Hilbert

indexes generated in Coordinate To Hilbert in ascending order. This is done using a

basic qsort algorithm. To take advantage of multi-core processing, we apply a parallel

sample sort algorithm that was adapted for a shared-memory architecture.

We examine the next important stages with respect to run-time. The Miscel-

leneous encompasses all run-time related to initializing the GNU MP variables used

to hold Hilbert indexes, creating partitions, calculating cardinalities, and calculating

the Hilbert differences that are used by the HTDC compression. These are tasks per-

formed by the in-memory buffering subsystem. Of these, the GNU MP initialization

can be parallelized because each initialization is independent from the other.

The Compress to HTDC cannot be parallelized because the process does not know

beforehand how many tuples in Hilbert index format can be compressed in a block

until the compressed block is created. So sequentially compressed blocks must wait

until the block before them is ready before proceeding.

The I/O Read and the I/O Write stages are difficult to parallelize on a single

disk platform. We have already minimized the I/O by using the in-memory buffering

structure, and performing read and write operations for entire files instead of one

block at a time. This minimizes the number of I/O calls and the number of disk

seeks. Performing parallel operations would require specialized hardware such as a
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disk array with parallel I/O support.

Finally, the Build Index stage has a negligeable effect on the run-time, and the

overhead of parallelizing this stage would far outweigh any benefits gained from it.

We now present the algorithms implemented within the in-memory buffering sub-

system that execute the coordinate to Hilbert conversion as well as the Hilbert as-

cending sort with multi-core processing.

HIlbert conversions are implemented using Hilbert transformation libraries devel-

oped by Moore [55]. Since each conversion is an independent operation, we extended

Doug Moore’s libraries to be thread safe, and implemented a parallel algorithm to per-

form the conversions. Algorithm 7 shows the transformation from multi-dimensional

tuples to Hilbert indexes with multi-core processing. The main thread executes lines

1 to 4. At line 5, the main thread forks and spawns the threads that will run in

parallel. Lines 6 to 11 are executed by each thread, where each thread transforms

n
coreCount

tuples, where n is the number of tuples in a view, and coreCount is the

number of threads used in the parallel section.

Multi-core processing starts at line 5 and ends at line 12. The OpenMP library

handles the fork and join operations, as well as work distribution. The number of

threads used for multi-core processing section may be the same as the number of

physical cores, but this is not necessary. It can be any number specified by the

process.

In Algorithm 8, we present a parallel sample sort algorithm. The array of unsorted

Hilbert indexes H is partitioned into n partitions, where n is the number of threads.

Each thread uses qsort to sort its partition in ascending order. Once this is done, each

thread select n− 1 indexes from its sorted partition, and these are brought together
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Algorithm 7 Convert Tuples to Hilbert Indexes - Multi-core Processing

Require: A set of tuples in coordinate format.
Ensure: A set of corresponding Hilbert indexes.

1: V ← a view with tuples
2: H ← empty set of Hilbert indexes
3: d← number of coordinate tuples in V
4: coreCount← number of threads used
5: . Start multi-core processing here
6: q ← core id
7: for i = 1→ d do
8: if i mod coreCount == q then
9: convert tuple V [i] to Hilbert index and set into H[i]

10: end if
11: end for
12: . End multi-core processing here

in an array of size n(n− 1). This array is sorted, and n− 1 indexes are again selected

at regular intervals. These values act like the “pivot” value in qsort.

Next, each threads scans it sorted partition. Values that are less than S1, where

S is the array containing n− 1 indexes, are sent to core 1. Values that are less than

S2 but greater than or equal to S1 are sent to core 2, and so on. Since each core scans

through a sorted partition, the lists received by each core are also sorted and only

require merging.

At the end of the step, each core has a sorted partition of Hilbert indexes, such

that all values on core 1 are less than S1, all values on core 2 are less than S2 but

greater than or equal to S1 and so on. The array H is now sorted in ascending order.

3.10 Query Engine

The original Sidery query engine algorithm has two phases. The first phase starts

when a backend node receives the query parameters from the frontend. The Linear
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Algorithm 8 Parallel Sample Sort with Multi-core Processing

Require: An array of unsorted Hilbert indexes.
Ensure: An array of sorted Hilbert indexes.

1: Start Sequential Processing
2: H ← array of unsorted Hilbert indexes
3: numIndexes ← size(H)
4: coreCount← number of processing cores
5: sortSize← numIndexes÷ coreCount
6: Start Parallel Processing on n cores
7: coreId ← core id of this core
8: startIndex coreId ← (coreId - 1) × sortSize
9: endIndex coreId ← coreId × sortSize

10: qsort(H, startIndex, endIndex )
11: ScoreId ← (coreCount - 1) values from H between startIndex and endIndex at

regular intervals
12: B ← empty list buffer
13: for i = 1→ coreCount do
14: B ← append(Si)
15: end for
16: qsort(B)
17: Sg ← (coreCount - 1) values from B at regular intervals
18: P ← array of size coreCount of lists
19: for i = 1→ sortSize do
20: T ← getTupleAt(H,i + startIndex)
21: for j = (p− 1)→ 1 do downto
22: if T > Sg[j] then
23: pushback(Pj, T )
24: break inner for loop
25: end if
26: end for
27: end for
28: for i = 1→ coreCount do
29: recordCount← size(Ri, i)
30: for j = 1→ recordCount do
31: T ← Ri[j]
32: pushback(Rg,T )
33: end for
34: end for
35: RETURN Rg
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Breath First Search (LBFS) algorithm traverses the R-tree index. Every time a leaf

node is reached, the corresponding data block is located and loaded from the HTDC

compressed view file. The block is then decompressed and the tuples in the block

are checked sequentially to see if any satisfy the query parameters. Valid tuples

are added to the result set. This process continues until the LBFS algorithm has

completed traversing the index. Algorithm 9 presents phase 1 of the original query

engine.

Phase 1 is carried out independently on each backend node without requiring the

PSI layer. At the end of the phase 1, each backend node has a local result set that is

ready to be merged with the result sets of the other nodes. A careful examination of

algorithm 9 shows that both the compressed index file as well as the compressed view

file are read from file one block at a time. For large files, especially compressed view

files, this translates to a large number of I/O calls. A second characteristic of this

algorithm is that I/O calls to read from the index file are overlapped with the I/O calls

to read from the view file. Alternatively reading from the index file and view file forces

the disk to seek constantly. Furthermore, both the decompressIndexBlock and

decompressDataBlock procedures take place in memory and each compressed

block can be decompressed independently from the other blocks.

In the second phase of the original query engine, each backend node starts with a

local result set, and using the PSI layer, the backend nodes sort and merge the local

result sets, aggregating duplicate values when necessary, and return an aggregated

global result set.

Using a parallel sample sort algorithm, each backend node first sorts its local

result set using the qsort algorithm and then creates an array S with (p− 1) sample
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Algorithm 9 Query Engine - Phase 1

Require: User query, corresponding HTDC compressed view and R-tree index.
Ensure: Result set with tuples that correspond to parameters in user query.

1: Fd ← HTDC compressed view corresponding to query parameters
2: Fi ← HTDC compressed R-tree index corresponding to query parameters
3: Q← empty queue
4: B ← readBlock(Fi)
5: decompressIndexBlock(B)
6: R← empty result set
7: enqueue(B,Q)
8: while Q is not empty do
9: B ← dequeue(Q)

10: if isLeafNode(B) then
11: OFFSET ← getOffset(B)
12: seek(Fd,OFFSET )
13: D ← readBlock(Fd)
14: decompressDataBlock(D)
15: tuples← getTupleCount(D)
16: for i = 1→ tuples do
17: T ← getTuple(D,i)
18: if T matches query parameters then
19: add(T ,R)
20: end if
21: end for
22: else
23: children← getChildCount(B)
24: for i = 1→ children do
25: child← getChildEntry(B,i)
26: if child bounding satisfies query parameters then
27: OFFSET ← getOffset(child)
28: seek(Fi,OFFSET )
29: C ← readBlock(Fi)
30: decompressIndexBlock(C)
31: enqueue(C,Q)
32: end if
33: end for
34: end if
35: end while
36: RETURN R
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Algorithm 10 Query Engine - Phase 2 (Parallel Sample Sort)

Require: p unsorted recordsets R where p is the backend node count.
Ensure: merged and sorted global recordset RG

1: Rp ← unsorted local recordset on node p
2: Rg ← empty global recordset
3: qsort(Rp)
4: Si ← (p - 1) values from Rp at regular intervals
5: B ← empty list buffer
6: for i = 1→ p do
7: B ← append(Si)
8: end for
9: qsort(B)

10: Sg ← (p - 1) values from B at regular intervals
11: P ← array of size p of lists
12: recordCount← size(Rp)
13: for i = 1→ recordCount do
14: T ← getTuple(Rp,i)
15: for j = (p− 1)→ 1 do
16: if T > Sg[j] then
17: pushback(Pj, T )
18: break inner for loop
19: end if
20: end for
21: end for
22: for i = 1→ p do
23: recordCount← size(Ri, i)
24: for j = 1→ recordCount do
25: T ← Ri[j]
26: pushback(Rg,T )
27: end for
28: end for
29: RETURN Rg
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values where p is the number of nodes in the cluster. The values selected are exactly

p intervals apart. Each node then broadcasts its values to the rest of the cluster using

the PSI layer such that each backend node ends up with a list with the sample values

from every node. This list is sorted using qsort and the array S is populated again

by selecting (p− 1) for the sorted list. In the next step, each node scans through its

recordset and identifies every tuple that is less than S1 and transmits the tuples to

node 1, then every tuples less than S2 but greater than or equal to S1 to node 2 and so

on. The last node receives every tuple that is greater than or equal to Sp−1. The list

of tuples that are transmitted between nodes are already sorted, so when receiving a

list of tuples from another node, a backend node simple merges it with the tuples it

already has in its buffer. The final step to phase 2 is assembling the local lists into a

single global recordset from node 1 to node p by appending them sequentially using

the PSI layer and delivering the results to the frontend node.

3.11 Query with Partition

We now present the modified query engine that handles partitions and uses a in-

memory buffering system. The key to the modified query engine is that each major

action is separated into distinct steps, which makes it simpler to apply multi-core

processing. In this section, we describe the query engine without multi-core process-

ing, and like the Sidera indexer, it has been adapted to run on a single node. The

PSI layer has been removed. Instead of the sample sort algorithm, we use a simple

qsort and aggregate duplicate tuples. We will re-implement the sample algorithm

with multi-core processing in the next section.

We identify the distinct steps as I/O reads, Linear Breath First Search (LBFS),
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data decompression and tuple matching, and finally merging result sets. The I/O

reads are further devided into reading the index file and reading the view file. The

most important is separating the I/O from the other processing steps. We use an

in-memory buffer to load the compressed index file. We traverse the index using

the LBFS, keeping a list of the leaf nodes that satisfy the query parameters. Once

the LBFS algorithm has identified all potential view blocks, we load the blocks in a

sequential manner. Once all the blocks are loaded in memory, they are decompressed

and searched for matching tuples. This minimizes the number of disk calls and also

the number of seeks, both major contributors to long run-times. Algorithm 11 shows

the five distinct steps in the modified algorithm. We expand on process data blocks

and merge result sets in algorithms 12 and 13 since these are the two steps that will

also be implemented with multi-core processing.

Algorithm 11 Query Engine - Modified

Require: User query, corresponding HTDC compressed view and R-tree index.
Ensure: Merged and Sorted Global Recordset RG

1: Load Indexes
2: LBF Search
3: Load Data Blocks
4: Process Data Blocks
5: Merge Result Sets

3.12 Query Engine with Multi-core Processing

After modifying the query engine to run on a single backend node and to process par-

titions, we now turn our attention to multi-core processing. The steps in our modified

architecture that we could adapt to multi-core processing were process data blocks and

merge result sets. In algorithm 14, we take advantage of the fact that view blocks are
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Algorithm 12 Query Engine - Process Data Blocks

Require: List of matching data blocks loaded in memory
Ensure: Recordset of matching tuples.

1: D ← list of matching blocks loaded in memory
2: R← empty result set
3: blockCount← size(D)
4: for i = 1→ blockCount do
5: B ← dequeue(D)
6: decompressDataBlock(B)
7: tuples← getTupleCount(D)
8: for j = 1→ tuples do
9: T ← getTuple(B,i)

10: if T matches query parameters then
11: add(T ,R)
12: end if
13: end for
14: end for
15: return R

Algorithm 13 Query Engine - Merge Result Sets

Require: Recordset of tuples.
Ensure: Recordset of tuples sorted and duplicates aggregated.

1: R← recordset of tuples. . from Process Data Blocks procedure
2: Ragg ← empty recordset.
3: qsort(R)
4: recordCount← size(R)
5: Tprev ← getTuple(R, 1)
6: for i = 2→ recordCount do
7: Tnext ← getTuple(R,i)
8: if Tprev == Tnext then
9: Tprev.measure+ = Tnext.measure

10: else
11: pushback(Ragg,Tprev)
12: Tprev ← Tnext
13: end if
14: end for
15: return Ragg
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compressed using a block level compression framework (HTDC compression) and we

distribute blocks among the threads and let each tread return a local result set. Next

in algorithm 15, we implement a sample sort to replace the qsort.

Algorithm 14 Query Engine - Process Data Blocks with Multi-core Processing

Require: List of matching data blocks loaded in memory
Ensure: Local recordset of matching tuples for blocks processed by the thread.

1: D ← list of matching blocks loaded in memory. . from previous steps
2: RL ← empty local result set
3: blockCount← size(D)
4: coreCount← number of cores used to process blocks
5: id← getThreadID
6: for i = 1→ blockCount do
7: if i mod coreCount == id then
8: B ← dequeue(D)
9: decompressDataBlock(B)

10: tuples← getTupleCount(D)
11: for j = 1→ tuples do
12: T ← getTuple(B,i)
13: if T matches query parameters then
14: add(T ,RL)
15: end if
16: end for
17: end if
18: end for
19: return RL
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Algorithm 15 Query Engine - Merge Result Sets with Multi-core Processing

Require: coreCount unsorted recordsets R where coreCount is the number of cores
used in Algorithm 14

Ensure: merged and sorted global recordset RG

1: p← core id of this core
2: Rp ← unsorted local recordset for this core
3: Rg ← empty global recordset
4: qsort(Rp)
5: Si ← (p - 1) values from Rp at regular intervals
6: B ← empty list buffer
7: for i = 1→ p do
8: B ← append(Si)
9: end for

10: qsort(B)
11: Sg ← (p - 1) values from B at regular intervals
12: P ← array of size p of lists
13: recordCount← size(Rp)
14: for i = 1→ recordCount do
15: T ← getTuple(Rp,i)
16: for j = (p− 1)→ 1 do
17: if T > Sg[j] then
18: pushback(Pj, T )
19: break inner for loop
20: end if
21: end for
22: end for
23: for i = 1→ p do
24: recordCount← size(Ri, i)
25: for j = 1→ recordCount do
26: T ← Ri[j]
27: pushback(Rg,T )
28: end for
29: end for
30: RETURN Rg
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Results

4.1 Hardware and Software Specifications

The experiments were run on a custom system comprised of a single AMD Opteron R©

6172 processor with a cpu core frequency of 2100 MHz. This processor has a total of

12 physical cores, a dedicated 128K L1 cache for each core, a dedicated 512K L2 cache

for each core, and a 12MB L3 cache is also shared between the cores. The server is

also equiped with 24 GiB of RAM, and 8 Serial ATA hard drives of 1 TiB in RAID 5

configuration. The server is part of a heterogenous 20 server cluster called the Sidera

cluster. The test machine is designated as the front end node of the cluster.

The software components relevant to our experiments:

• CentOS Linux Release 6.0 using kernel 2.6.32.71.el6.x86 64, and GNOME 2.28.2

for the UI

• gcc/g++ version 4.4.4.2010726

• stdlibc++ version

• OpenMP v3.0 for x86 64 architecture

63
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The development tools relevant to our experiments:

• Eclipse IDE for Parallel Application Developer version Indigo Service Release 1

• PTP Parallel Tools Platform version 5.04.201111121445

• Subsclipse 1.6.18

• Eclipse CDT 8.0.0.201109151620

• NOMACHINE NX server for Linux version 3.2.0-74-SVN OS

• NOMACHINE NX client for Windows Version 3.4.0-7

The data sets and queries used for the experiments were generated using custom

generator tools. The data set generator tool allowed us to specify the number of

dimensions, the cardinality for each dimension, the number of tuples to generate,

and a zipfian skew between 0 and 1. The skew ensures that the generated data

is not simply randomly distributed, but rather follows a more “real life” scenario,

which means that there exist clusters of tuples in the data sets. For each experiment,

a collection of 10 data sets and update sets were generated, and the run-time was

determined by calculating the average of the collection. Similarly, for each query

engine experiment, a collection of 10 queries were generated, and the run-time was

determined by calculating the average of the collection.

4.2 Building and Updating the Datacube and In-

dexes

The first set of experiments are designed to test the Sidera indexer. Specifically, we

measure the time it takes to build an HTDC compressed data cube and indexes, as



65

well as updating the data cube with an update set. The tests include running the

indexer without partitioning and multi-core to create a baseline measurement with

a series of generated data sets, and then running the indexer with partitioning and

multi-core processing enabled against the same data sets. The goal is to evaluate the

performance of the indexer with partitioning and multi-core processing with respect

to the baseline measurements.

4.2.1 Varying Number of Records

In this test, we generated three data sets with 6 dimensions, and a skew of 0.1. The

three data sets consists of a 100,000, 1,000,000 and 10,000,000 tuples respectively.

The number of threads used for multi-core processing was set to 12, the number of

initial partitions created was 4 when partitioning was used. The maximum size of

the “hot” partition was 21000 tuples. The update sets were 1% the size of the data

sets, i.e. when using the 1,000,000 tuples data set, we generated an update set with

10,000 tuples.

Run-times in Seconds
Tuples No Partitioning Partitioning Part. with Multi-core
100,000 0.8304 0.8375 0.3278
1,000,000 8.2569 9.3445 2.3094
10,000,000 87.6562 101.6653 20.6765

Table 4.1: Indexer Build Run-times using Data Sets of Different Sizes.

The results for building the data cube and indexes are shown in Table 4.1. The

indexer with partitioning and without multi-core processing is slightly slower than

the baseline indexer, which does not use partitioning. Figure 4.1(a) shows that the

performance difference increases as the data set gets largers. When using a data set

with 10,000,000 tuples, we see an almost 16% increase in run-time.
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Run-times in Seconds
Tuples Update Set No Partitioning Partitioning Part. with Multi-core
100,000 1,000 0.7896 0.02649 0.1812
1,000,000 10,000 7.4658 0.1538 0.1865
10,000,000 100,000 74.8119 1.5534 0.4983

Table 4.2: Indexer Update Run-times using Data Sets of Different Sizes.

The indexer with partitioning and multi-core processing performs better that the

baseline. The results show a performance increase of over 76% when using a data

set with 10,000,000 tuples. Figure 4.1(a) also indicate that as the data sets become

larger, the indexer with partitioning and multi-core processing offers better speedup

with respect to the baseline.

The results for updating the data cube and indexes are presented in Table 4.2.

When pushing updates into the data cube, both indexers with partitioning perform

better than the baseline. When the original recordset and the update set are smaller,

the indexer with partitioning and without multi-core processing provides the best

performance. As the original data set and the update set becomes larger, the indexer

with partitioning and multi-core processing offers the best performance.

With an original data set of 10,000,000 tuples, an update set of 100,000 tuples,

the indexer with partitioning shows more than a 97% performance increase over the

baseline. Under the same conditions, the indexer with partitioning and multi-core pro-

cessing has more than a 99% increase when compared to the baseline. Furthermore,

Figure 4.1(b) shows that both indexers with partitioning perform better compared

than the baseline as the size of the original recordset and update set increases.
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Figure 4.1: Indexer Run-times using Recordsets of Varying Number of Tuples.

Run-times in Seconds
Dimensions No Partitioning Partitioning Part. with Multi-core
4 8.0751 8.5765 2.0507
6 8.2569 9.3445 2.3095
8 10.2716 10.8595 2.8905

Table 4.3: Indexer Build Run-times using Different Number of Dimensions.

4.2.2 Varying Number of Dimensions

In this test, we generated three data sets with the same specifications as those de-

scribed in Section 4.2.1, with the difference that we vary the number the number of

dimensions instead of the number of tuples. Our data sets have dimensions 4, 6 and

8 respectively. All three recordsets have 1,000,000 tuples.

The results for building the data cube and indexes are given in Table 4.3. For

each indexer, the run-time increases slightly as the number of dimensions increases.

Figure 4.2(a) shows that the indexer using partitioning and not using multi-core

processing does not perform as well as the baseline indexer, but the indexer with

both partitioning and multi-core processing has better performance for all three data

sets.
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Run-times in Seconds
Dimensions No Partitioning Partitioning Part. with Multi-core
4 6.6862 0.1430 0.1592
6 7.4658 0.1538 0.1865
8 8.3623 0.1789 0.2153

Table 4.4: Indexer Update Run-times using Recordsets with Varying Dimensions.
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Figure 4.2: Indexer Run-times using Recordsets with Varying Dimensions.

When using a data set with 6 dimensions, we see a 13% increase in run-time when

using partitioning without multi-core processing compared to the baseline. Applying

multi-core processing, the results show over 72% performance increase compared to

the baseline.

The results for updating the data cube and indexes are presented in Table 4.4.

Using an original data set with 6 dimensions, the indexer using partitioning and

not using multi-core processing has a 98% performance increase compared to the

baseline indexer. The indexer with partitioning and multi-core processing provided a

97% increase when compared to the baseline. Refering to Figure 4.2(b), we see that

both indexers with partitioning demonstrate that using a “hot” partition for merging

updates provides performance improvement over the original Sidera indexer.
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4.2.3 Varying Number of Threads

For this test, we generated three data sets with 6 dimensions, 1,000,000 tuples, and

a skew of 0.1. An update set with 10,000 tuples was also generated. The number of

initial partitions was 4 when partitioning was used, and the maximum size of the “hot”

partition was 21000 tuples. The number of threads used for multi-core processing was

varied between 1 and 48 threads. The number of physical cores available on our test

system was 12.

Run-times in Seconds
# Threads No Partitioning Part. with Multi-core

1 10.6413 11.4553
4 10.2551 4.9785
8 10.5166 3.4352
16 10.4474 2.8926
24 10.1198 2.4787
36 10.5146 2.7698
48 10.6756 2.8742

Table 4.5: Indexer Build Run-times using Different Number of Threads.

The results for building the data cube and indexes, presented in Table 4.5, show

that partitioning with multi-core processing reaches maximum speedup when the

number of threads used is 24, which is twice the number of physical cores available.

After this, the processing time increases slightly again. When using 24 threads,

the performance increase achieved by the indexer using partitioning and multi-core

processing is over 75% compared to the baseline indexer. Figure 4.3(a) shows the

build process for both indexers as the number of thread is varied. We also note

here that there is a steep increase in performance when the number of threads was

increased from 1 to 8, but after that point, the performance only increases slightly.

The results for updating the data cube and indexes are presented in Table 4.6. The
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Run-times in Seconds
# Threads No Partitioning Part. with Multi-core

1 8.0121 0.2421
4 8.3538 0.1757
8 8.4230 0.1653
16 8.3126 0.1663
24 8.3420 0.1550
36 8.3710 0.1765
48 8.3999 0.1965

Table 4.6: Indexer Update Run-times using Different Number of Threads.
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Figure 4.3: Indexer Run-times using Varying Number of Threads.

indexer with partitioning and multi-threading shows a minimum performance increase

of 97% when compared to the baseline. Optimal performance is reached when the

number of threads is equal to the number of physical cores in the system, but the run-

time for most thread count is very close. This indicates that the performance increase

is achieved by using a “hot” partition and merging updates with this partition and

not the entire data cube.
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4.2.4 Varying Number of Partitions

In the next set of experiments, we are interested in measuring how partitions affect

the indexer. Specifically, we would like to see how the number of partitions affects the

indexers with partitioning. Our generated data set consists of 6 dimensions, 1,000,000

tuples, and a skew of 0.1. An update set with 10,000 tuple was also generated.

Run-times in Seconds
# Partitions Partitioning Part. with Multi-core
1 9.3286 2.2648
2 9.1507 2.1656
4 9.0371 2.1860
8 9.2973 2.4996
16 9.2784 2.2543
32 9.3367 2.5240
64 9.3379 2.5313

Table 4.7: Indexer Build Run-times using Different Number of Initial Partitions.

The results for building the data cube and indexes are shows in Table 4.7. Chang-

ing the number of partitions has minimal effect for each indexer. That is, the indexer

using only partitioning shows a constant run-time, and the same applies to the in-

dexer using partitioning and multi-core processing. The latter shows a performance

increase of least 72% compared to the indexer without multi-core processing.

The results for updating the data cube and indexes are presented in Table 4.8.

The run-time increases for both indexers, but the indexer using only partitioning

outperforms the indexer using both partitioning and multi-core processing.

4.2.5 Varying the Size of the “hot” Partition

The goal of these experiments is to determine the effect the size of the “hot” partition

has on indexer run-times when updates are merged with the data cube. We generated
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Run-times in Seconds
# Partitions Partitioning Part. with Multi-core
1 0.1474 0.1971
2 0.1535 0.1653
4 0.1535 0.1608
8 0.1490 0.1607
16 0.1491 0.1617
32 0.1550 0.1627
64 0.1551 0.1691

Table 4.8: Indexer Update Run-times using Different Number of Initial Partitions.
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Figure 4.4: Indexer Run-times using Varying Number of Partitions.
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“hot” Partition Size (Run-times in Seconds)
Update Iteration 6,500 10,000 20,000 50,000

1 0.1648 0.1703 0.1595 0.4152
2 0.3031 0.1631 0.1687 0.6062
3 0.3069 0.1656 0.1686 0.7635
4 0.2972 0.1663 0.1654 0.9178
5 0.3168 0.1689 0.1607 1.0793
6 0.3154 0.1745 0.1675 0.4501
7 0.3219 0.1668 0.1664 0.5816
8 0.3230 0.1693 0.1692 0.7040
9 0.3194 0.1726 0.1663 0.8465
10 0.3194 0.1584 0.1594 0.9711
11 0.3364 0.1585 0.1533 0.3318
12 0.3309 0.1584 0.1664 0.4907

Table 4.9: Non Multi-core Indexer Update Run-times using “hot” Partitions of Var-
ious Sizes.

a data set with 6 dimensions, 1,000,000 tuples, and a skew of 0.1. The update set

consisted of 20,000 tuples. For multi-core processing, we used 12 threads on a system

with 12 physical cores.

The results for updating the data cube and indexes for the indexer using parti-

tioning but no multi-core processing are given in Table 4.9. The best performance

was achieved when the update set was multiple of the “hot” partition size. In this

case, the “hot” partition sizes of 10,000 and 20,000 provide optimum performance

because for every update iteration, the partitions are filled and capped. This means

that during the next update iteration, the new “hot” partition is empty, and therefore

does not require any merging with the update set. When using a “hot” partition size

of 6500, the first iteration of the update set will produce an optimum run-time, but

subsequent updates will have decreased performance because the “hot” partition is
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“hot” Partition Size (Run-times in Seconds)
Update Iteration 6,500 10,000 20,000 50,000

1 0.1497 0.1732 0.1616 0.2524
2 0.2122 0.1598 0.1711 0.3337
3 0.2068 0.1673 0.1628 0.3850
4 0.2120 0.1686 0.1620 0.4452
5 0.2140 0.1603 0.1706 0.4962
6 0.2305 0.1708 0.1584 0.2619
7 0.2122 0.2038 0.1576 0.3049
8 0.2052 0.1934 0.1586 0.3597
9 0.2022 0.1697 0.1581 0.4252
10 0.2126 0.1663 0.1707 0.4532
11 0.2203 0.1627 0.1638 0.2169
12 0.2179 0.1646 0.1630 0.2833

Table 4.10: Multi-core Indexer Update Run-times using “hot” Partitions of Various
Sizes.

not empty.

“hot” partition sizes larger than the update lead to a run-time increase until the

partition is capped and a new “hot” partition is started. This is seen in Figure 4.5(a)

when then “hot” partition size is set to 100,000 tuples.

The same experiments were carried out using the indexer using partitioning and

multi-core processing, and presented in Table 4.10. The results are similar to those

obtained for the indexer without multi-core processing, but the overall processing time

has increased. We see this when we compare Figure 4.5(a) with Figure 4.5(b). This

is consistant with the results of previous experiments, where we see that updating

data cubes with 1,000,000 tuples using multi-core processing has a higher run-time

than when multi-core is not used.
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Figure 4.5: Varying the Size of the “hot” Partition.

4.3 Query Engine

We now turn our attention to query resolution. Here, we are interested in measuring

the effect of partitioning on query resolution times, and determining if multi-core

processing can help alleviate the extra processing required to merge result sets from

multiple partitions, and do duplicate elimination on the fly.

4.3.1 Single Tuple Query

We see the run-time for resolving a query that seeks only one tuple in the data cube.

Our test cases use six data cubes and their respective indexes, which were generated

using the indexer. The data cubes were generated using data sets with 10,000, 100,000

and 1,000,000 tuples respectively, where three data cubes were non partitioned, and

the remaining three were partitioned. The data sets consisted of 6 dimensions, and a

0.1 skew.

Table 4.11 shows the results of running a single tuple query using the query engine

against the non partitioned cubes, the partitioned cubes, and against the partioned
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Run-times in Seconds
Tuples No Partitioning Partitioning Part. with Multi-core
100,000 0.0129 0.0133 0.1262
1,000,000 0.0126 0.0126 0.1252
10,000,000 0.0138 0.0149 0.1096

Table 4.11: Query Engine - 1 Tuple Query.
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Figure 4.6: Query Returning a Single Tuple.

cube but using multi-core processing. We see that resolving a single tuple leads to very

similar run-times for non partitioned and partitioned cubes, but adding multi-core

processing leads to an increase in run-time. We see in Figure 4.6 that the run-time

for multi-core processing decreases as the size of the data cube increases, but it is still

slower than when multi-core processing is not used.

4.3.2 Range Query

Next, we look at the run-time for resolving a range query. We define a range query

as a query that returns a set of tuples located that are located close together in the

Hilbert space. Our test cases use six data cubes and their respective indexes that

were generated using the indexer. The data cubes were generated using data sets

with 10,000, 100,000 and 1,000,000 tuples respectively, where three data cubes were



77

 0

 2

 4

 6

 8

 10

 12

 14

0x100 1x106 2x106 3x106 4x106 5x106 6x106 7x106 8x106 9x106 1x107

R
un

tim
e 

in
 S

ec
on

ds

Number of Tuples

No Partitioning
Using Partitioning

Using Partitioning and Multicore Processing

Figure 4.7: Range Query.

non partitioned, and the remaining three were partitioned. The data sets consisted

of 6 dimensions, and a 0.1 skew.

Run-times in Seconds
Tuples No Partitioning Partitioning Part. with Multi-core
100,000 0.3418 0.3481 0.1486
1,000,000 2.0727 2.1042 0.5685
10,000,000 12.8237 13.4893 4.4163

Table 4.12: Query Engine - Range Query.

The results are presented in Table 4.12. Unlike the single tuple query, we see

that the query engine with multi-core processing resolves range queries more quickly

than both query engines without multi-core processing. In Figure 4.7, we also see that

partitioning leads to slightly higher run-time than non partitioning, when we compare

the query engine without partitioning and the query egine with only partitioning. For

a data cube with 1,000,000 tuples, the query engine with partitioning and multi-core

processing has a performance increase of at least 72%.
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Run-times in Seconds
Tuples No Partitioning Partitioning Part. with Multi-core
100,000 0.7195 0.8387 0.5685
1,000,000 7.0165 8.3011 5.2573
10,000,000 68.1275 82.3134 55.1430

Table 4.13: Query Engine - Pathologically Large Query.

4.3.3 Pathologically Large Query

In this section, we look at the run-time for resolving a pathologically large query. We

define a pathologically large query as a query that returns every tuple or almost every

tuple in the data cube. Our test cases use six data cubes and their respective indexes

that were generated using the indexer. The data cubes were generated using data

sets with 10,000, 100,000 and 1,000,000 tuples respectively, where three data cubes

non partitioned, and the remaining three were partitioned. The data sets consisted

of 6 dimensions, and a 0.1 skew. Our query returns every tuple in the data cubes.

The results are presented in Table 4.13. In this scenario, the query engine with

multi-core processing still performs better than the two other query engines, but the

performance increase is not as marked as in the results in Section 4.3.2. For a query

resolved against a data cube with 1,000,000 tuples, we only see a 13% decrease in

run-time. An explanation for this is the extra time required to merge the partitions

and to perform duplicate elimination, as well as large amount of sequential I/O.

4.3.4 Hilbert Packing vs. Hilbert Striping

Finally, we look at the effect of Hilbert packing versus Hilbert striping on the run-

time and also on disk performance. In Hilbert packing, we store Hilbert indexes that

are spatially close in the same data block on disk. In Hilbert striping, Hilbert indexes

that are spatially close are striped across the data blocks used to store the data cube.
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Figure 4.8: Pathologically Large Query.

Run-times in Seconds
Tuples Hilbert Packing Hilbert Striping
100,000 0.3541 0.4671
1,000,000 2.0887 2.9925
10,000,000 13.3868 17.0336

Table 4.14: Query Engine - Packing vs. Striping - Run-times.

Our test cases use six data cubes and their respective indexes that were generated

using the indexer. The data cubes were generated using data sets with 100,000,

1,000,000 and 10,000,000 tuples respectively, where three data cubes were stored

using Hilbert packing, and the remaining three using Hilbert striping. The data sets

consisted of 6 dimensions, and a 0.1 skew. We used the same range queries from

Section 4.3.2, and used the query engine with partitioning but without multi-core

processing.

The results with run-times are presented in Table 4.14. We see that when resolving

are range query on a data cube with 10,000,000 tuples, Hilbert packing leads to over

21% faster run-time, and Figure 4.9 shows that as the size of the data cube gets

larger, Hilbert packing provides better performance.

Next, we measure the number of blocks accessed when resolving the query. The
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Figure 4.9: Hilbert Packing vs. Hilbert Striping - Run-time.

Run-times in Seconds
Tuples Hilbert Packing Hilbert Striping
100,000 75 108
1,000,000 419 615
10,000,000 2449 3184

Table 4.15: Query Engine - Packing vs. Striping - Disk Accesses.
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Figure 4.10: Hilbert Packing vs. Hilbert Striping - Disk Accesses.
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Run-times in Seconds
Tuples Hilbert Packing Hilbert Striping
100,000 19 24
1,000,000 82 92
10,000,000 256 624

Table 4.16: Query Engine - Packing vs. Striping - Disk Seeks.
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Figure 4.11: Hilbert Packing vs. Hilbert Striping - Disk Seeks.

goal is to access the least number of blocks. The results for disk accesses are presented

in Table 4.15. Again, we see that Hilbert packing leads to 23% less data block accessed

compared to Hilbert striping, and Figure 4.10 shows that as the size of the data cube

gets larger, Hilbert packing provides better performance.

Finally, we measure the number of disk seeks when resolving the query. Disk seeks

usually forces the disk head to search for another location on the disk platter, and it

is an important factor leading to higher disk latency. Therefore, it is important to

minimize disk seeks. The results with disk seeks are presented in Table 4.16. Once

again, we see that Hilbert packing leads to 59% less disk seeks when compared to

Hilbert striping, and Figure 4.11 shows that as the size of the data cube gets larger,

Hilbert packing provides better performance.



Chapter 5

Conclusions

5.1 Summary

To achieve soft real-time analysis in OLAP, the data cube must be updated frequently

to reflect the most current state of the fact table in the DW, without negatively af-

fecting query resolution time or taking the system offline. In this thesis, we have

provided a framework that implements local partitioning and maintains a “hot” par-

tition to accelerate data cube updating. It also leverages multi-core processing to

improve runtimes for building the data cube, and query resolution, thereby improv-

ing the system performance for users while updates are being applied. The following

is a summary of the key improvements our framework has added to the Sidera server

that has enabled soft real-time OLAP.

• Soft Real-time Updates

Compared to baseline measurements using an indexer that does not generate

partitioned views, our framework shows over 99% in performance increase when

updating a data cube of 10,000,000 tuples with an update set of 100,000 tuples.

We also noted that as the size of the data cubes and the update sets became
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larger, the performance gain obtained using our framework increased. This

allows updates from the DW to be merged more frequently, thereby providing

users with data cubes that contain more up-to-date information.

Our experiments also indicated that multi-core processing had less effect on the

update process, but rather that the “hot” partitioning strategy was responsible

for the performance improvements because it limits the number of tuples from

the existing data cube that must be decompressed for merging. When the

data cube and the update sets are small, multi-core processing is slower than

the indexer without multi-core processing. As the number of tuples grows,

the benefits of parallel processing begin to outweigh the overhead of managing

multiple threads.

• Faster Data Cube Construction

Data cube construction benefits from multi-core processing because of the high

volume of Hilbert conversions. When building a data cube containing 10,000,000

tuples, our framework performed 76% faster than the baseline measurements.

Like the update process, the performance difference increases as the size of the

data cube becomes larger. Partitioning the data cube adds an overhead to

performance because mutiple compressed data and index files must be created.

We have also noted that when using multi-core processing, we see a steep gain

in performance when increasing the number of cores allocated to the process

from 1 to 8 cores, but after this point, the gains were less significant.

• Faster Query Resolution

We tested our framework using three query scenarios, namely the single tuple
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query, the range query and the pathologically large query. Of the three, the

most common type of query issued by users is the range query. The single

tuple query shows no marked difference in performance between the baseline

and the indexer implementing partitioning but without multi-core processing.

Multi-core processing had a negative impact on single tuple queries because the

overhead of managing multiple threads outweighs the performance gains.

Our framework provides a performance increase of at least 72% over the baseline

measurements when resolving a range query against a data cube with 1,000,000

tuples. Finally, the framework also performed better in pathologically large

queries, but since sequential I/O becomes the dominant cost, the performance

increase was limited to 25%.

• Multi-core Processing

Multi-core processing was added incrementally using the OpenMP library to

both the indexer and query engine. The greatest benefits from the multi-core

processing is seen when the initial data cube is generated by the indexer, as

well when resolving range queries.

• More Efficient I/O

I/O is a bottleneck in application performance. In our framework, the I/O is

optimized to perform the least number of disk seeks by reading and write sequen-

tial blocks. This was done by developing an in-memory buffering subsystem,

replacing the previous file based buffering subsystem. While the distributed-

memory Sidera server used Hilbert striping in order to achieve optimum load
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balance across the cluster, our framework uses Hilbert packing, which mini-

mizes the number disk blocks retrieved during range queries, thereby reducing

the runtime.

5.2 Future Work

As a final thought, we propose a few topics for future work based on the framework

presented in this thesis. These were not included in our research due to either time

constraints or lack of necessary hardware required for testing. We nevertheless feel

that these can be interesting avenues of research to improve the performance of OLAP

tools, specifically a server such as Sidera.

• Improving I/O Performance

Althouth it is possible to do parallel I/O by using barriers to ensure that only

one thread reads or writes to a file, it is nevertheless a self-defeating purpose. In

our architecture, we have separated the I/O output away from the other stages,

and read and write operations are done as sequential operations. This reduce

significantly the I/O time, which is probably the largest bottleneck in a system

such as Sidera.

Hardware assisted parallel I/O can assist in performing read and write opera-

tions in parallel while minimizing disk seeks. This would allow multiple views

to be processed in parallel during the build and update process. When resolving

queries, blocks from multiple files could be read simultaneously.

• Integrating Shared-memory OLAP Architecture with distributed-memory

architecture
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Our framework is constructed to enable parallel processing in Sidera on a sin-

gle machine, taking advantage of modern multi-core processors. To take full

advantage of parallel processing, our framework should be integrated into the

distributed Sidera server described in Section 3.2. Views would be partitioned

at the cluster level and using the PSI, they would striped and distributed across

the nodes. Each node would then locally partition the tuples further, and gen-

erate HTDC compressed views and indexes.

With the approach, the architecture would offer three levels of parallelism. Each

node would offer multiple cpus and each cpu would have multiple cores. A

finally, the cluster would offer multiple nodes.

• Improving Work Distribution across Cores

As the experimental results in Section 4.2.3 indicate, near maximum perfor-

mance for the build process is reached when aproximately 8 threads running on 8

cores perform the build process. After this point, dedicating more theads/cores

do not significantly improve the performance and could be utilized better when

performing other tasks. For systems with more than 8 physical cores, an op-

timization to our framework would be to process two or more separate ma-

terialized view simultaneously. Another optimization can include dedicating

a specific number of cores for data cube updates, and other cores for query

resolution.
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