

Arbitrary Keyword Spotting in Handwritten Documents

Mehdi Haji

A Thesis

In The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

March 2012

© Mehdi Haji, 2012

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Mehdi Haji

Entitled: Arbitrary Keyword Spotting in Handwritten Documents

and submitted in partial fulfillment of the requirements for the degree of

 DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

 __Chair
 Dr. A. Hamou-Lhadj

 __External Examiner
 Dr. R. Plamondon

 __External to Program
 Dr. N. Kharma

 __Examiner
 Dr. S. Bergler

 __Examiner
 Dr. L. Kosseim

 __Examiner
 Dr. D. Ponson

 __Thesis Co-Supervisor
 Dr. T.D. Bui

 __Thesis Co-Supervisor
 Dr. C.Y. Suen

Approved by ___
 Dr. V. Haarslev, Graduate Program Director

April 17, 2012 ___

 Dr. Robin A.L. Drew, Dean
 Faculty of Engineering & Computer Science

iii

ABSTRACT

Arbitrary Keyword Spotting in Handwritten Documents

Mehdi Haji, Ph.D. (Computer Science)

Concordia University, 2012

 Despite the existence of electronic media in today’s world, a considerable amount of

written communications is in paper form such as books, bank cheques, contracts, etc.

There is an increasing demand for the automation of information extraction,

classification, search, and retrieval of documents. The goal of this research is to develop a

complete methodology for the spotting of arbitrary keywords in handwritten document

images.

We propose a top-down approach to the spotting of keywords in document images. Our

approach is composed of two major steps: segmentation and decision. In the former, we

generate the word hypotheses. In the latter, we decide whether a generated word

hypothesis is a specific keyword or not. We carry out the decision step through a two-

level classification where first, we assign an input image to a keyword or non-keyword

class; and then transcribe the image if it is passed as a keyword. By reducing the problem

from the image domain to the text domain, we do not only address the search problem in

handwritten documents, but also the classification and retrieval, without the need for the

transcription of the whole document image.

The main contribution of this thesis is the development of a generalized minimum edit

distance for handwritten words, and to prove that this distance is equivalent to an Ergodic

iv

Hidden Markov Model (EHMM). To the best of our knowledge, this work is the first to

present an exact 2D model for the temporal information in handwriting while satisfying

practical constraints.

Some other contributions of this research include: 1) removal of page margins based on

corner detection in projection profiles; 2) removal of noise patterns in handwritten images

using expectation maximization and fuzzy inference systems; 3) extraction of text lines

based on fast Fourier-based steerable filtering; 4) segmentation of characters based on

skeletal graphs; and 5) merging of broken characters based on graph partitioning.

Our experiments with a benchmark database of handwritten English documents and a

real-world collection of handwritten French documents indicate that, even without any

word/document-level training, our results are comparable with two state-of-the-art word

spotting systems for English and French documents.

v

Acknowledgments

I would like to thank my supervisors Dr. Tien D. Bui and Dr. Ching Y. Suen from whom

I learnt invaluable lessons during my doctoral program, both in pattern recognition and

image processing classes, and in our numerous research discussions in the past five years.

I would like to thank Dr. Dominique Ponson, the Vice President, Research and

Development, of IMDS Software, the industrial partner and sponsor of this research

work. Thank you Dominique for believing in my work, and for all your encouraging

words and brilliant ideas.

I am grateful to the MITACS and NSERC of Canada for financial support of this research

through the MITACS Accelerate Award and the CRD grant.

I would like to thank my thesis committee members, Dr. Nematollaah Shiri, Dr. Leila

Kosseim, Dr. Sabine Bergler, Dr. Nawwaf Kharma and Dr. Rejean Plamondon for their

constructive feedback and invaluable comments on my thesis.

I am indebted to all the CENPARMI and Computer Science and Software Engineering

Department staff for their constant support and assistance during my doctoral studies at

Concordia University, especially Mr. Nicola Nobile, Ms. Marleah Blom, Ms. Halina

Monkiewicz and Ms. Massy Joulani. I will never forget your kindness.

I would like to thank my dear friends Dr. Omid Jahromi, Dr. Ali Fall and Mr. Amin

Sharifi for their invaluable insights and encouragements in the past five years.

Finally, I would like to pay tribute to my family. Thank you mom and dad. You deserve

endless thanks for all you have done for me. I would also like to say a special thank you

vi

to my brother Dr. Amir Haji whose keen theoretical insights have always helped me to

broaden my ways of approaching new problems.

vii

Table of Content

Chapter 1 ... 1
Introduction ... 1

1.1 Problem Statement .. 1
1.1.1 Characteristics of Unconstrained Handwritten Document 3

1.2 Overview of Document Classification Methodology ... 4
1.2.1 Background .. 5

1.2.1.1 Pre-processing ... 7
1.2.1.2 Page Segmentation .. 9
1.2.1.3 Word Spotting ... 10

1.2.1.3.1 Proposed Approach .. 15
Chapter 2 ... 17

Margin Removal and Global Skew Correction ... 17
2.1 Introduction ... 17
2.2 Document Margin Removal and Skew Correction Using Projection Profiles ... 20

2.2.1 Margin Removal for Straight Pages ... 21
2.2.2 Margin Removal for Skewed Pages ... 24

2.3 Experimental Results .. 30
Chapter 3 ... 32

Structural Noise Removal Using Fuzzy Inference Systems ... 32
3.1 Introduction ... 32
3.2 Review of Fuzzy Logic ... 33

3.2.1 Fuzzy Sets .. 34
3.2.2 Fuzzy Operators ... 35
3.2.3 Fuzzy Rules .. 36
3.2.4 Fuzzy Inference System ... 36

3.3 Structural Noise Removal Using FIS .. 38
3.3.1 Feature Extraction .. 39
3.3.2 Specification of FIS ... 40

3.3.2.1 Rule Base for Detection of Dots and Small Noises 43
3.3.2.2 Rule Base for Detection of Dashes ... 45

3.4 Experimental Results .. 46
Chapter 4 ... 48

Line and Word Segmentation ... 48
4.1 Introduction ... 48

4.1.1 Background .. 49
4.2 Line Extraction Based on Fast Fourier-Based Steerable Filtering...................... 52

4.2.1 Fast Fourier-based Steerable Filtering ... 52
4.2.1.1 Computation of FFT in φ-direction using Linear Interpolation 55
4.2.1.2 Computation of FFT in φ-direction using Nearest-Neighbor
Interpolation .. 57

4.2.2 Computing Line Maps by Fast Oriented Anisotropic Gaussian Filtering ... 60
4.3 Word Segmentation Based on Fast Oriented Anisotropic Gaussian Filtering 63

Chapter 5 ... 67

viii

Character Segmentation .. 67
5.1 Introduction ... 67
5.2 Character Segmentation Based on Background Skeletal Graphs 69

5.2.1. Terminology of the Character Segmentation Algorithm 69
5.2.2 Description of the Character Segmentation Algorithm 70

5.3 Handling Over-segmentation and Under-Segmentation 72
5.3.1 Character Merging Based on Graph Partitioning... 73

5.3.1.1 Neighbourhood relation .. 75
5.3.1.2 Graph Partitioning .. 76

5.3.2 Detection of Under-segmented Pairs of Handwritten Characters Using
Fuzzy Inference System .. 81

5.3.2.1 Average Number of Transition (ANT) Features 83
5.3.2.2 Fuzzy Inference System (FIS) .. 85
5.3.2.3 Experimental Results .. 88

Chapter 6 ... 90
Cursive Character Recognition ... 90

6.1 Introduction ... 90
6.2 Artificial Neural Network for Handwritten Character Recognition 95

6.2.1. Feature Extraction ... 95
6.2.2. Training ... 96

6.3 Perturbation Method for Character Recognition ... 97
6.3.1 Transformation Operators .. 98
6.3.2 Combination of Classifiers .. 99

6.3.2.1 Modified Borda Count .. 100
6.4 Experimental Results .. 102

Chapter 7 ... 104
Generalized Minimum Edit Distance for Handwritten Words 104

7.1 Introduction ... 104
7.2 Classical Minimum Edit Distance .. 105
7.3 Generalized Minimum Edit Distance .. 106

7.3.1 Default Cost Functions .. 108
7.4 Modeling Generalized Minimum Edit Distance Using HMMs 109

7.4.1 Hidden Markov Models ... 110
7.4.1.1 Three Fundamental Problems for HMMs ... 111
7.4.1.2 Topologies of HMMs .. 112

7.4.2 Modeling Generalized Minimum Edit Distance Using GEHMMs............ 115
7.4.2.1 Initial and Transition Probabilities.. 116
7.4.2.2 Observation Probabilities .. 117
7.4.2.3 Decoding: Recognition of Handwritten Words Using the GEHMM
Model .. 121

7.4.3 Incorporating A Priori Knowledge to GEHMMs for Handwritten Word
Recognition ... 121

7.4.3.1 Adding Knowledge about the Lexicon ... 122
Chapter 8 ... 126

Experimental Results, Future Work and Conclusion .. 126
8.1 Outline of Keyword Spotting System and Design of Experiments 126

ix

8.1.1 Separation of Keywords from Non-keywords ... 127
8.2 Training Data .. 133
8.3 Test Data ... 136
8.4 Experiments .. 138

8.4.1 Word-Level Experiments ... 138
8.4.1.1. Word Recognition Experiments ... 139
8.4.1.2. Word Spotting Experiments ... 145

8.4.1.2.1 Closed-Lexicon Word Spotting Experiments 149
8.4.1.2.2 Open-Lexicon Word Spotting Experiments................................. 152

8.4.2 Document-Level Experiments ... 152
8.5 Future Work .. 157
8.6 Conclusion .. 158

List of Publications ... 161
Appendix ... 162

A1. Rule Base for Detection of Dots and Small Noises ... 162
A2. Rule Base for Detection of Dashes .. 165

References ... 170

x

List of Figures

Figure 1.1 Samples of unconstrained handwritten documents with simple to moderate
layouts. .. 2
Figure 1.2 Samples of unconstrained handwritten documents with complex layouts. 4
Figure 1.3 High-level block diagram of document classification methodology. 5

Figure 2.1 Examples of documents images with margins. ... 19
Figure 2.2 A document image with margin and the corresponding vertical and horizontal
projection profiles. .. 20
Figure 2.3 A document image with margin and the corresponding AKC2 curves and the
result of margin removal algorithm. ... 23
Figure 2.4 A skewed document page with margin and the corresponding vertical and
horizontal projection profiles. ... 25
Figure 2.5 Trapezoids corresponding to vertical and horizontal projection profiles of a
skewed document page with margin. .. 25
Figure 2.6 An axis-aligned rectangle tilted to the left and to the right by the same angle.
... 26

Figure 3.1 Examples of membership functions defined on variable orientation. 34
Figure 3.2 Fuzzy sets defined on variables Normalized Y-COG and Aspect Ratio. 40
Figure 3.3 Fuzzy sets defined on variables normalized height and normalized width. 42
Figure 3.4 Fuzzy sets defined on variables compactness and orientation. 43
Figure 3.5 Result of applying the FIS-based noise removal filter to a handwritten word. 45
Figure 3.6 Samples of handwritten text with guideline noise. .. 47

Figure 4.1 Linear interpolation for the computation of the FFT in a certain direction. Here
the size of the filter is 7, and the orientation is 30˚. Green pixels correspond to the
coordinates that are rounded down to the closest column index, and blue pixels
correspond to the coordinates that are rounded up to the closest column index. 56
Figure 4.2 Down-sampling corresponding to nearest-neighbor interpolation when the line
angle is less than 45° (a), and when it is more than 45° (b). .. 58
Figure 4.3 Some diagonals of an image corresponding to φ = 30˚ and Df = 2. 59
Figure 4.4 Line segmentation algorithm based on FFS filtering. 62
Figure 4.5 Result of applying the line extraction algorithm using FFS filters to a
handwritten document with multiple skewed lines. (a) input document image. (b) image
(a) after margin removal and global skew correction. (c) Line map obtained by applying
FFS filters to the image and adding the outputs together. (d) image (c) after binarization.
(e) image (d) after post-processing. .. 62
Figure 4.6 Robust line fitting versus least square line fitting in presence of outliers. 63

xi

Figure 4.7 Example of a handwritten line where the space between characters of the same
word is wider than the space between two neighbouring words. 64
Figure 4.8 Output of line and word segmentation algorithms for a handwritten French
document. .. 65
Figure 4.9 Output of line and word segmentation algorithms for a handwritten English
document. .. 66

Figure 5.1 Samples of handwritten words with a lot of overlapping between characters. 68
Figure 5.2 Results of applying main steps of character segmentation algorithm to a
handwritten word. ... 71
Figure 5.3 Explicit character segmentation algorithm using background skeletal graph. 72
Figure 5.4 Samples of handwritten words that can have more than one transcription. 74
Figure 5.5 Example of a neighbourhood graph corresponding to a handwritten word. ... 76
Figure 5.6 Merging algorithm for sequence of connected components based on graph
partitioning. ... 81
Figure 5.7 Samples of handwritten pairs of characters without deep enough skeletal
branches on segmentation paths.. 82
Figure 5.8 Three basic membership functions for the definition of fuzzy sets................. 85
Figure 5.9 Samples from database of handwritten characters for evaluation of under-
segmented detection method. .. 88
Figure 5.10 Samples of under-segmented pairs of handwritten characters that are
correctly classified by under-segmented detection method. ... 89
Figure 5.11 Samples of handwritten characters that are misclassified by under-segmented
detection method. .. 89

Figure 6.1 Fuzziness in handwriting. Examples of letters from NIST SD19 database
which may be confused with each other. .. 91
Figure 6.2 Samples of handwritten words from the IAM database with letters that are
difficult to recognize correctly in isolation. .. 92
Figure 6.3 Block diagram of perturbation-based classification versus standard
classification. .. 97
Figure 6.4 Block diagram of general perturbation-based classification. 99

Figure 7.1 Examples of HMMs with (a and b) and without (c) topological constraints. 113
Figure 7.2 GEHMM corresponding to the generalized minimum edit distance defined by
Equation (7.2) ... 116
Figure 7.3 159-state enhanced GEHMM model for word recognition. 124
Figure 7.4 Decomposition of the character substitution state based on the character
trigram model. ... 125

Figure 8.1 Two major modules of keyword spotting system and levels of experiments.126
Figure 8.2 Two major approaches to recognition-based keyword spotting. 128
Figure 8.3 Examples of local minima/maxima contour points of handwritten words. ... 130
Figure 8.4 Samples of synthesized images for two words ‘adhesion’ and ‘resiliation’. 134
Figure 8.5 Samples of handwritten words from the IAM database. 135
Figure 8.6 Samples of handwritten forms from the IAM database................................. 136

xii

Figure 8.7 Samples of handwritten mails from our French documents database. 137
Figure 8.8 Average keyword spotting performance in terms of precision-recall curves. 155
Figure 8.9 Sample output of proposed word spotting system for a handwritten document
from the database of incoming mails. ... 156

1

Chapter 1

Introduction

1.1 Problem Statement

Despite the existence of electronic media in today’s world, a considerable amount of

written communications are in paper form such as books, advertisements, bank cheques,

contracts, etc. The quantity of paper documents that must be processed by human is

growing every day. There is an increasing demand for document image processing and

understanding such as automation of information extraction, classification, search, and

retrieval of documents.

The goal of our research is to develop a complete methodology for automatic

retrieval/classification of collections of images of unconstrained documents based on the

presence of one or several keywords which can be specified by the user. Keyword spotting

is the core problem in search/retrieval /classification applications, and as such it has

attracted considerable interest by academia and industry in recent years. It should be

mentioned that for clean printed documents the problem could be considered solved at

least in theory. However, the difficulty lies in dealing with documents that are noisy and

contain unstructured and handwritten material [MGB09]. We will propose a keyword

spotting algorithm that enables the user to automatically retrieve/classify the documents

2

that contain, for example, a person/company’s name or any other arbitrary word from a

collection of scanned handwritten documents.

(a) (b) (c)

(d) (e) (f)

Figure 1.1 Samples of unconstrained handwritten documents with simple to moderate layouts.

To the best of our knowledge, to date there is no system capable of classifying

unconstrained document images based on arbitrary text keywords with an acceptable

performance for real-world applications. Recently there has been some success in limited

domains such as mail processing or searching in handwritten medical forms [MGB09].

3

However in such applications, the structure of the document is fixed and the lexicon is

usually limited and small. The emphasis of our research is to search in unconstrained

documents with arbitrary keywords.

1.1.1 Characteristics of Unconstrained Handwritten Document

In general, an unconstrained handwritten document can have the following characteristics:

a) the text is often densely written and the text items are not well-separated. Adjacent

lines may be connected and the distance between neighbouring words may be less than the

gap between characters of the same word; b) aside from text, usually there are other types

of items present in the document such as underlines, signatures, barcodes, graphics, logos

etc. c) the document may contain a combination of handwritten and machine-printed

materials which need different types of processing; d) the text lines may not be always

straight and they do not always have a single global skew angle; e) different text areas may

have different font sizes; f) the text items may be connected to each other or to non-text

items by noise, scratches, tables, rule/margin lines or background textures; g) the

document may have non-uniform illumination. This is especially true for aged and

historical documents; h) Characters may be broken due to noise, poor contrast, non-

uniform ink, and/or scanning artefacts; i) The words may be slanted especially in

handwriting (i.e. vertical strokes of the text may deviate from the vertical direction), and

the slant is not uniform across the text and/or for the same word. Figure 1.1 shows samples

of unconstrained documents with simple to complex layouts, and Figure 1.2 shows

samples with complex layouts.

4

(a) (b) (c)

Figure 1.2 Samples of unconstrained handwritten documents with complex layouts.

1.2 Overview of Document Classification Methodology

The three major components of a document image classification system are document

segmentation, word matching, and information retrieval (Figure 1.3).

Document segmentation algorithms are concerned with dividing a document image into its

constituent parts. In general, a document may be composed of various types of items other

than text such as margins, graphics, logos, barcodes, signatures, tables etc. In our

application, we process the textual contents of the documents. Therefore, it is logical to

view the document segmentation module as being composed of a pre-processing step

which is responsible for removing any items but text, followed by line extraction and word

segmentation steps. After generating a set of word candidates, we must compare each one

with the set of template keywords and if there is a match, we will spot the location of the

word in the document image, and perhaps assign the whole document image to a certain

category based on the posterior probabilities of the detected keywords.

5

Figure 1.3 High-level block diagram of document classification methodology.

In the following, we will explore in greater depth the three major modules of document

classification systems, namely page segmentation, word matching, and information

retrieval. We will also present a literature survey of each module and we will describe the

proposed research and methodology that we will use to tackle the challenges therein.

1.2.1 Background

Handwritten document retrieval strategies can be broadly divided into two categories:

template-based and recognition-based. The recognition-based approaches can be further

divided into algorithms based on OCR correction and algorithms based on modified

information retrieval models [GCB09]. Template-based approaches aim at solving the

retrieval problem by comparing the image data with a set of template images

corresponding to the keywords. On the other hand, recognition-based approaches aim at

solving the retrieval problem by partially or fully transcribing the document image and

then doing the retrieval in the text domain. Any approach has its advantages and

Collection of input
document images

List of user-
defined keywords

Page Segmentation

Word Matching

Information
Retrieval

Retrieved documents

6

disadvantages. Generally speaking, template-based approaches are more suited for

document images with complex layouts. However, there are two major downsides. Firstly,

the matching process is slow. Secondly and more importantly we need to have a set of

representative sample images for any keyword that may be searched for, and this restricts

the area of applicability of the system. On the other hand, the main advantage of

recognition-based approaches is that they obviate the need for the collection of training

samples for keywords. However, the disadvantage of recognition-based approaches is that

they require the segmentation of the document image into its constituent lines, words and

characters which involve challenging problems as we will see in subsequent chapters.

In our application, we are interested in the retrieval of documents that may contain any

arbitrary keywords, such as a person/company’s name. Therefore, our proposed

methodology will be based on recognition-based approaches. There are two main

approaches to word recognition: holistic [vdZSH08, LRM04] and non-holistic (a.k.a.

analytic) [EYSSG99, KSS05]. In the former, which is more straightforward, a database of

training samples is needed for each word (keyword). Therefore, we are faced with the

same problem as in the template-based approaches, that it is not always possible to

compile a large enough training database for all possible keywords. Consequently, the

main idea behind our proposed methodology is to use non-holistic methods. We extract the

text lines, segmented them into their constituent words and then letters. We dynamically

build models for keywords based upon trained models of handwritten characters.

Therefore, in our proposed general keyword spotting methodology, the word matching

consists of character segmentation and character recognition.

7

1.2.1.1 Pre-processing

The pre-processing step is composed of two procedures: margin removal and noise

removal. We will begin with margin removal. Document images which are obtained from

scanners or photocopiers usually have a black margin which interferes with subsequent

stages of document layout analysis and page segmentation algorithms. Therefore, it is

necessary to remove these margins before any subsequent stages in a document processing

application.

There are a few works which have addressed the problem of document margin removal.

Manmatha and Rothfeder in [MR05] have proposed a novel method using scale spaces for

segmenting words in handwritten documents, where in a pre-processing stage, they have

used the basic technique of projection profiles for the detection of document margins. It is

quite straightforward to find the margins from the projection profiles when the document

is not tilted and the page is a perfectly straight rectangle. But this is not always the case.

The page may be skewed, and it may not be a perfect rectangle, meaning the corners may

not be right angles and even the page sides may not be perfect straight. cuts. Also, any of

the four margins may be present or not. The basic technique discussed in [MR05], is not

able to handle these cases. A more advanced algorithm is presented in [FWL02], which is

based on a top-down approach. The image is first split by finding possible boundaries

between connected blocks, and then the regions corresponding to marginal noise are

identified and removed based upon shape length and location of the split blocks. This

algorithm is able to remove marginal noise from skewed pages, but it cannot correct the

page skew. Moreover, it does not find the page borders, i.e. it just removes the marginal

8

noise and if portions of a neighboring page are present in the image, they will be left

untouched.

In our application, we need to find the page borders and correct the skew we eventually

want to display the location of the detected keywords on the original document image. We

have devised an algorithm for document margin removal based on the detection of

document corners from projection profiles [HBS09]. This algorithm does not make any

restrictive assumptions regarding the input document image to be processed. It neither

needs all four margins to be present nor requires the corners to be right angles. In the case

of the tilted documents, it is able to detect and correct the skew. We will discuss margin

removal in more detail in Chapter 2.

Noise removal is the first step of any image processing and computer vision system, and

we have given particular attention to it because the presence of noise complicates all the

subsequent steps of a document processing system. We present an effective method based

on fuzzy inference systems for removal of structural noise from document images.

Structural noise is a type of noise that is not an artifact but rather a part of the data that is

undesirable, for example when we want to recognize a handwritten word in a text line, the

comma that separates the word from the following word is considered as structural noise.

Structural noise is application-dependent and usually defined by some linguistic rules and

qualitative terms which are imprecise in nature. Therefore, we utilized fuzzy logic which is

a tool for handling imprecision and qualitative knowledge. We will talk about structural

noise removal using fuzzy inference systems in Chapter 3.

9

1.2.1.2 Page Segmentation

After removal noise, we have to detect and separate the text lines. Due to intrinsic

challenges of unconstrained documents, this problem has remained unresolved and thus,

many different approaches to segmenting lines and words have been proposed so far

[LGPH09]. These segmentation approaches usually make two key assumptions: 1) the gap

between neighbouring text lines is significant; and 2) the text lines are reasonably straight,

or else they have a single global skew angle. These assumptions are not always valid for

unconstraint handwritten documents. According to our experiments, the method of

steerable directional local profile [SSG09] produces the best results for our database of

unconstrained document images. However, this method is based on the Adaptive Local

Connectivity Map (ALCM) filtering [SSG05] which is computed by convolution in time-

domain, and consequently it is slow. In order to overcome the slowness problem, we

computed the connectivity map by using anisotropic Gaussian filters [ASW03].

Once the text lines are extracted, we have to segment words on the same text line. The

difficulty here is rooted in the fact that in handwritten documents, inter-word-spacing is

sometimes wider than the intra-word-spacing and thus it is not always possible to segment

the document at the word level perfectly using geometrical information only. Many

different approaches to segmenting words are proposed so far. We may categorize word

segmentation algorithms to either top-down, bottom-up or hybrid ones. According to our

experiments, the scale-space algorithm [MR05] gives promising for unconstrained

handwritten documents. As in the line extraction, we compute the scale space by using

anisotropic Gaussian filters. Therefore, we devise a unified approach to line extraction and

10

word segmentation based upon anisotropic Gaussian filters. We will explore these

algorithms in greater depth in Chapter 4.

1.2.1.3 Word Spotting

Having generated a set of candidates for image segments that represent words, the next

task is to decide whether or not each one corresponds to a given text keyword. This is the

core problem in document classification and retrieval. The detection of keywords fulfills

two purposes in documents. It determines by means of a computer program whether or not

a scanned document image contains a text keyword and optionally, spots the instances of

the keyword in the document image. Many different approaches to word recognition and

word spotting have been proposed so far.

A handwritten word spotting method based on biologically inspired features is proposed in

[vdZSH08]. The authors use a holistic recognition approach based on simple k-Nearest

Neighbor (k-NN) classifiers. The theory behind this word recognition model is based on a

model of the visual cortex proposed by Serre et al. [SWB+07]. This model follows the

organization of visual cortex in primates which is hierarchical, aiming to build invariance

to position and scale first and then to viewpoint and other transformations. The advantage

of the biologically inspired features is that they alleviate the need for large number of

training samples for each word. According to the experiments reported in [vdZSH08], an

accuracy rate of around 53% can be achieved for a lexicon of size 2099 for the words with

10 or less training samples. However, in order to achieve a higher accuracy, more training

samples are needed. The accuracy of the system rises to 89% for the words with 50 or

more training samples. To collect this amount of data, especially in real-time applications,

11

is cumbersome and not practical. As the authors point out, the intrinsic disadvantage of

this method, as any holistic classification is the large number of classes that need to be

trained. Moreover, there is no reuse of shape knowledge such as is the case in

concatenated character-based HMMs. The authors believe that a considerable

improvement in recognition performance is expected by applying character or syllable-

based HMM models in conjunction with their locally invariant features.

Another holistic approach to word spotting is proposed in [KAA+00]. This system uses a

line-oriented search strategy where each document image is considered as a sequence of

text lines, each of which is represented by an ordered sequence of columns. Using this

approach, the problem of segmenting the text into individual words is avoided. This

system uses a template-based matching, meaning that there is no training. However, the

problem of collecting template models still remains, that is we have to have enough

number of representative samples for each class. The template matching is based on profile

features and Dynamic Time Warping (DTW). Given that enough number of training

samples is available, this system achieves a moderate performance of 40% at low false

positive rates.

A template-free spotting keyword spotting system is proposed in [FFB10]. This system is

derived from a novel unconstrained handwritten word recognition engine which is based

on Bidirectional Long Short-Term Memory (BLSTM) neural networks [GLF+09]. The

BLSTM neural networks are a type of recurrent neural networks specifically designed for

sequence labeling tasks where it is difficult to find the boundaries between the constituent

parts of the data and there are long-range contextual dependencies between the data. Using

the BLSTM neural networks it is possible to have access to past and future context, which

12

is not available using ordinary left-to-right HMMs. According to the experiments carried

out on large lexica containing 20,000 to 30,000 words, this neural-network-based

recognition system achieves a recognition rate of around 74%, significantly outperforming

some state-of-the-art HMM-based recognition systems. The word spotting system based

on BLSTM neural networks uses a token passing algorithm in order to compute the

matching score between a sequence of letter probabilities and sequence of text characters.

This word spotting system achieves an average precision rate of 82.8% and a high

precision rate of 95% at 50% recall on a lexicon of size 4,000 words.

A segmentation-free word spotting method is proposed in [LLE07]. Segmentation free

methods are particularly useful for processing historical manuscripts where the document

is degraded or has a complex layout, and the text is densely written. In this method the

authors have proposed differential features that are compared using a cohesive elastic

matching method. This matching method is based on Zones of Interest (ZOIs) in order to

match only the informative parts of the words. Feature selection based on ZOIs overcomes

the incompetence of correlation-based methods when directly applied on the grey levels.

Aside from providing a better matching capability for handwriting, a main advantage of

this method is less computation time compared to naïve matching methods. Furthermore,

there is no need to gather a training database. However, the user has to provide one image

of the word which is going to be spotted, and the image must be selected from the same set

of documents in order for the matching algorithm to achieve a good performance. In this

regard, this word-spotting system resembles a Content-Based Image Retrieval (CBIR)

system. The authors have tested their system on two small databases of Latin and Semitic

13

manuscripts. The system achieves a precision and recall rate of around 60-80% depending

on the level noise and degradation in the document and variations in the writing styles.

A probabilistic method for keyword retrieval in handwritten document images is proposed

in [CBG09]. This method addresses the problem of imperfect word segmentation by

modeling segmentation errors as probabilities and integrating these probabilities into the

word spotting algorithm. The word segmentation probabilities are obtained by modeling

the conditional distribution of distance features of word gaps. The word recognition

probabilities are obtained from the distances returned by a lexicon-driven word recognition

engine [KG97]. Then, the segmentation and the recognition probabilities are combined in a

probabilistic model of word spotting. The lexicon-driven word recognition engine

segments a word image into character hypotheses by finding all possible locations of the

ligatures connecting any two characters. This is done using a contour-based analysis.

Then, the distance between the word image and an entry in the lexicon is computed by

enumerating all possible segmentations of the word image and finding the one that has the

overall minimum distance. Finally, the distances from the recognition engine are converted

into probabilities using the Universal Background Model (UBM) [RQD00]. The authors

have tested their method on database of medical forms. Automatic processing of medical

forms is a challenging task due to the poor image quality and wide range of keywords used

(in order of 50,000 words). By comparing their method to two state-of-the-art word

spotting systems based on template matching, the authors concluded that an improvement

of 2.5% to 3.8% (in terms of mean average precision) is obtained by using word

segmentation probabilities in the similarity measurement. However, the word spotting

14

performance on this challenging database is still very low. The system achieves a precision

rate of less than 15% at 10% recall, and a mean average precision of 4.7%.

A retrieval system for machine-printed documents is proposed in [ZEP10]. This method

falls in the category of template-based techniques that use word images as queries.

However, there is no need for collecting training samples because for machine-printed

documents, a query image can be automatically generated from the input query by using a

font that has characteristics similar to the estimated characteristics of the characters in the

document image. The matching is performed at the word-level using a set of shape

features; consequently there is no need for recognition of individual characters. The

distances between images is simply computed in the feature space using the Minkowski

distance of order 1 (a.k.a. L1 distance). The authors have tested their system on a collection

of 100 document images. These document images are artificially created by rendering

various texts as images and then adding different amounts of noise to them. The retrieval

system achieves a mean precision rate of 87.8% at a 99.26% recall. Although the

artificially generated collection of documents does not reflect the challenges of real-world

documents, it can still show the effectiveness of the proposed system. The authors have

utilized a state-of-the-art OCR software in order to transcribe the document images so as to

do the retrieval in the text domain. Compared to the spotting-based retrieval system, the

performance of the transcription-based retrieval system is considerably lower with a

precision rate of 76.7% at a 58.4% recall.

Another OCR-free retrieval method for machine-printed documents is proposed in

[MDES09]. Based on extensive experiments carried out on two real-world databases of

English and Arabic documents, the authors show the capability of their matching-based

15

technique in language-independent document retrieval. However, the performance of the

system is lower compared to corresponding transcription-based retrieval systems. The

matching-based retrieval system achieves a mean average precision of 23% on the Arabic

documents, compared to 38% achieved by the transcription-based retrieval system. This

result is contrary to the result of [ZEP10] that suggests matching-based retrieval is more

effective than OCR-based retrieval. Therefore in this sense, we can say that there is “no

free lunch” in document retrieval. Whether OCR-based retrieval is better than OCR-free

retrieval depends on the set of documents, features, classification methods etc.

1.2.1.3.1 Proposed Approach

Our approach to spotting arbitrary keywords in handwritten documents is based on a

generalized minimum edit distance. This distance computes the cost of the conversion of a

sequence of images (of characters) to any arbitrary sequence of characters. Therefore, we

developed a character segmentation algorithm for cursive text, which is based on the

analysis of background skeletal graphs. The main function of the algorithm is to obtain the

branches that correspond to possible segmentation paths from the graph corresponding to

the skeleton of the word background. Over-segmentation and under-segmentation errors

are two inherent sources of performance degradation in any character segmentation

algorithm. In order to handle these problems, we developed a merging algorithm for over-

segmented and broken characters, and a fuzzy inference system for detection of under-

segmented pairs of handwritten characters. We will present the character segmentation

algorithm in greater depth in Chapter 5.

16

Having segmented a word image into its constituent characters (or sub-characters), we

need to decide whether or not the word image represent a keyword. For this purpose, we

developed a generalized minimum edit distance. Furthermore, we proved that this distance

is equivalent to an Ergodic Hidden Markov Model (EHMM) therefore we were able to

optimize the free parameters of the distance using the well-established HMM training

algorithms. This generalized distance enables us to assign the whole document image to a

certain category, or sort all the document images in the collection in order of relevance to

the input keywords. The main contribution of our approach is that it provides an exact

model for the temporal information present in the handwriting with a feasible number of

states. To the best of our knowledge, this is the first work to present an exact 2D model for

handwritten words while satisfying practical constraints.

We will discuss our cursive character recognition approach in Chapter 6, followed by the

generalized edit distance in Chapter 7. Finally, we will present our experimental results in

Chapter 8.

17

Chapter 2

Margin Removal and Global Skew Correction

2.1 Introduction

Document images obtained from scanners or photocopiers usually have a black margin

which interferes with subsequent stages of page segmentation algorithms. Thus, the

margins must be removed at the initial stage of a document processing application. This

chapter presents an algorithm which we have developed for document margin removal

based upon the detection of document corners from projection profiles. The algorithm

does not make any restrictive assumptions regarding the input document image to be

processed. It neither needs all four margins to be present nor needs the corners to be right

angles. In the case of the tilted documents, it is able to detect and correct the skew. In our

experiments, the algorithm was successfully applied to all document images in our

databases of French document images which contain more than six hundred images with

different types of layouts, noise, and intensity levels.

Document processing technologies are concerned with the use of computers for

automatic processing of different kinds of media containing text data. Examples of the

applications are Optical Character Recognition (OCR), digital searchable libraries,

document image retrieval, postal address recognition, bank cheque processing and so on.

In most of these applications, the source of data is an image of a document coming from a

18

scanner or a photocopier. During the process of scanning or photocopying, an artifact,

which we simply refer to as margin, is added to the image. These black margins are not

only a useless piece of data and unpleasant when the page is reproduced (reprinted), but

also can interfere with the subsequent stages of document layout analysis and page

segmentation algorithms. Therefore, it is desirable or necessary to remove these margins

before any subsequent stages in a document processing application. Despite its practical

significance, this problem is often overlooked or not discussed thoroughly in papers.

There are only a few studies which have addressed the problem of document margin

removal. Manmatha and Rothfeder in [MR05] have proposed a novel method using scale

spaces for segmenting words in handwritten documents wherein they have used the basic

technique of projection profiles for the detection of document margins. It is easy to obtain

the margins from the projection profiles when the document is not tilted and the page is a

perfectly straight rectangle. But as shown in Fig. 2.1, this is not always the case. The

page may be skewed, and it may not be a perfect rectangle. Also, any of the four margins

may be present or not. The basic technique discussed in [MR05], is not able to handle

these cases. Peerawit and Kawtrakul in [PK04] have proposed a marginal noise removal

method based upon edge detection. They have used the edge density property of the noise

and text areas to detect the border between them. This method is designed to remove left

and right margins only, and is incapable of handling skewed pages.

19

(a) (b) (c)

Figure 2.1 Examples of documents images with margins.

In [FWL02], Fan et al. have proposed a top-down approach to margin removal. Firstly,

the image is divided by locating possible boundaries between connected blocks. Next, the

regions corresponding to marginal noise are identified by applying some heuristics based

upon shape length and location of the split blocks and finally these regions are removed.

Fan et al.’s algorithm is able to remove marginal noise from skewed pages, but it cannot

correct the page skew. Moreover, it does not find the page borders, i.e. it only removes

the marginal noise and if portions of a neighboring page are present in the image, they

will not be removed.

In [SvBKB07, SvBKB08], Shafait et al. have used a geometric matching algorithm to

find the optimal page frame. Their method is based on extraction and labeling of

connected components at the first stage. Text lines and text zones must be identified prior

to margin detection. However, extracting text lines from a page is a challenging task,

especially for unconstrained handwritten types of documents [DPB09, LZD+08b]. In

fact, Shafait et al.’s algorithm is designed for machine printed documents. Moreover, it

assumes the page frame is an axis-aligned rectangle (i.e. again, it cannot handle skewed

pages).

20

In [NSK07], Stamatopoulos et al. have proposed a border detection algorithm for camera

document images. Their method is based upon projection profiles combined with a

connected component labeling process. But again, it needs the document skew to be

corrected prior to margin removal.

There are several other published works concerning the problem of margin removal

[LTW96, CLLT02, ZT01], but to the best of our knowledge, the algorithm we present

here is the first to address the problem of margin removal in presence of document skew.

(a) Input Document Image (b) Vertical Projection Profile (c) Horizontal Projection Profile

Figure 2.2 A document image with margin and the corresponding vertical and horizontal projection

profiles.

2.2 Document Margin Removal and Skew Correction Using Projection

Profiles

In this section we explain the margin removal algorithm, starting with the case of straight

pages and then generalizing it to handle skewed pages.

21

2.2.1 Margin Removal for Straight Pages

The basic function of the algorithm is to find the corners which correspond to the page

margins from the projection profiles of the input image. For a straight page, the left-most

and right-most sharp corners in the horizontal profile of the image correspond to the left

and right margins, and the left-most and right-most sharp corners in the vertical profile of

the image correspond to the upper and lower margins (Fig. 2.2). Carrying out this task

may appear simple, however the difficulty of implementation lies in corner detection,

which is one of the most studied and open problems in computer vision. But in our case,

by searching for the corners in 1-D projection profiles, rather than a 2-D image, we

encounter a problem which can be easily solved.

Much research has been conducted upon the subject of corner detection in computer

vision literature. This research can be broadly classified into two categories: grey-level

and boundary-based [SLYT07]. In the first category, corners are found by using corner

templates or computing the gradient at edge pixels. In the second category, corners are

found by analyzing the properties of boundary pixels. For our case, we have chosen a

boundary-based approach because we want to obtain corners from 1-D profiles which

correspond to the document boundaries. We use a modification of the K-Cosine measure

presented in [SLYT07] which is a new and robust algorithm for position, orientation, and

scale invariant boundary-based corner detection for 2-D images.

The K-Cosine measure for a set of boundary points S = { Pi | i = 1, 2, …, m } is defined

for each point i as follows:

||)(||.||)(||
)().(cos)(
KbKa

KbKaKc
ii

ii
ii rr

rr

== θ

(2.1)

22

Where iKii PPKa
rrr

−= +)(and iKii PPKb
rrr

−= −)(are the two vectors connecting the point i to the

Kth point before and after it, and θi denotes the angle between these two vectors.

Therefore, K-cosine provides a measure of the curvature of boundary points over a region

of support specified by K.

The overall performance of the 2-D corner detection algorithm based on the K-Cosine

measure greatly depends on K. In [SLYT07], a careful analysis and a method of choosing

a proper value for K is discussed, which is based on some geometric properties of the

input set of boundary points. But, in our simplified 1-D version of the problem, where we

are looking for corners in 1-D profiles, even a fixed value of K will work fine. Because,

firstly, the corners of interest are almost right angles, secondly, they are located near the

left and right ends of the boundary (i.e. projection profile), thirdly, there is only zero or

one corners at each end (depending on whether or not the margin is present).

As the value of K is fixed in our application, we modify the definition of the K-Cosine

measure in order to make sure that the corner detection scheme is robust against profile

noise. We simply use a low-pass filtering which can be implemented as an averaging

operation. More precisely, for each point of a projection profile, now we take the average

of the K-Cosine measure over a local neighborhood of K. This new curvature measure is

defined as follows:

∑
=

=
2/3

2/
)(1)(

K

Kk
ii kc

K
KC

(2.2)

Having defined the curvature measure, we apply it to all points of the projection profile to

obtain the corresponding Averaged K-Cosine Curvature Curve (AKC2). Now, the first

23

zero-crossings of AKC2, scanning from left to right and right to left, correspond to the

left and right corners of the projection profile. This is due to the fact that K-Cosine values

vary between –1 = cos(π) and 1 = cos(0), and thus the AKC2 curve has to cross the axis

at the left and right rising edges of the corresponding profile . Please note that, even if the

projection profile is not an exact rectangle function (i.e. it does not have 90-degree

corners), the AKC2 curve still has two zero crossings which correspond to the left and

right (or top and bottom) margins. Fig. 2.3 shows the document image of Fig. 2.2 with

the corresponding AKC2 curves which determine the four margins of the image and the

final result of margin removal.

(a) Input Document Image (b) Vertical AKC2 Curve

(c) Horizontal AKC2 Curve (d) Result of Margin Removal Algorithm

Figure 2.3 A document image with margin and the corresponding AKC2 curves and the result of

margin removal algorithm.

24

2.2.2 Margin Removal for Skewed Pages

For skewed pages we observe that horizontal and vertical projection profiles have an

isosceles trapezoidal shape as shown in Fig. 2.4. In this case, we need to estimate the base

angle of the corresponding trapezoid to be able to correct the page skew. Let Tvpp(I) and

Thpp(I) denote the trapezoids corresponding to the vertical and horizontal projection

profiles of the input document image I respectively. The base angle of Tvpp which is the

angle that the two non-parallel sides of it make with vertical axis, or equivalently, the

base angle of Thpp which is the angle that the two non-parallel sides of it make with

horizontal axis is equal to the page skew angle.

In order to estimate the base angle, we use the same technique discussed in the previous

section for finding corners in projection profiles. However in this case, we need all the

four corners (i.e. the four vertices of the corresponding trapezoid).

Let V1, V2, V3 and V4 denote the four vertices of Tvpp, and H1, H2, H3 and H4 denote the

four vertices of Thpp as shown in Fig. 2.5. V2 and V3, and H2 and H3 can be found from

the corresponding AKC2 curves, exactly the same way we did in the previous section.

However, for H1 and H4, and V1 and V4, it should be noted that these corners may be very

close to, or exactly lie on, the two ends (boundaries) of the corresponding profiles.

Therefore, the AKC2 may not provide an appropriate measure of curvature to find them.

We can easily handle this boundary problem by padding the profiles with enough (> K)

number of zeros, corresponding to fictitious black margins on the four sides of the input

document image.

25

(a) Input Document Image (b) Vertical Projection Profile (c) Horizontal Proj. Profile

Figure 2.4 A skewed document page with margin and the corresponding vertical and horizontal

projection profiles.

(a) Tvpp (b) Thpp

Figure 2.5 Trapezoids corresponding to vertical and horizontal projection profiles of a skewed

document page with margin.

Having obtained the coordinates of the vertices of Thpp and Tvpp, we can calculate the

absolute value of the page skew angle, but not the sign of it. As shown in Fig. 2.6, an

axis-aligned rectangle when tilted to the left and to the right by the same skew angle θ,

result in the same horizontal and the same vertical projection profiles. The proof is trivial

by noting that the areas of the triangles 121 TLL ′and 221 SRR ′ ; 343 TLL ′and 443 SRR ′ ;

441 TLL ′and 141 SRR ′ ; and 232 TLL ′and 332 SRR ′ are equal by symmetry; and so are the areas of

the parallelograms 4224 LTLT ′′ and 1331 SRSR ′′ ; and 3311 TLTL ′′ and 4422 RSRS ′′ . Where 1T′ is the

26

intersection of the line segments L1T1 and L2L3; 2T′ is the intersection of the line segments

L2T2 and L3L4; 3T′ is the intersection of the line segments L3T3 and L1L4; and 4T′ is the

intersection of the line segments L4T4 and L1L2; and similarly for 1S′ , 2S′ , 3S′ and 4S′ .

(a) (b)

Figure 2.6 An axis-aligned rectangle tilted to the left and to the right by the same angle.

In Fig. 2.6, the inner rectangle P1P2P3P4 can correspond to the bounding box of a page of

document without skew and margin. Then, the rectangles L1L2L3L4 and R1R2R3R4 are the

skewed versions of it, and the triangles I1L1L2, I2L2L3, I3L3L4, I4L4L1, I1R1R4, I2R2R1,

I3R3R2 and I4R4R3 correspond to the black (dark) margins around the page.

In our problem, given the horizontal and vertical projection profiles, we want to find the

page corners (i.e. the coordinates of the rectangle P1P2P3P4). We do this by first obtaining

the coordinates of L1L2L3L4 and R1R2R3R4 and then determining the sign of the skew

angle. Let V1x, V2x, V3x and V4x be the indices of the four columns of the image

corresponding to the four corners of the vertical projection profile as shown in Fig.

2.5(a). Let H1y, H2y, H3y and H4y be the indices of the four rows of the image

corresponding to the four corners of the horizontal projection profile as shown in Fig.

2.5(b). Now, when L1L2L3L4 and R1R2R3R4 correspond to the left-skewed and right-

skewed versions of the image, from Fig. 2.6, we can easily see:

27

L1x = R4x = V4x

L4x = R1x = V1x

L2x = R3x = V2x

L3x = R2x = V3x

L2y = R1y = H1y

L1y = R2y = H2y

L3y = R4y = H3y

L4y = R3y = H4y

(2.3)

Or,

L1 = (V4x, H2y)

 L2 = (V2x, H1y)

L3 = (V3x, H3y)

L4 = (V1x, H4y)

R1 = (V1x, H1y)

R2 = (V3x, H2y)

R3 = (V2x, H4y)

R4 = (V4x, H3y)

(2.4)

Therefore we have obtained the coordinates of the skewed versions of the page from the

projection profiles of it. Now, it is straightforward to calculate the absolute value of the

skew angle θ. From Fig. 2.6, obviously we can obtain the absolute value of θ, by

computing the slope of any of the eight sides of the rectangles L1L2L3L4 and R1R2R3R4.

But as we pointed out earlier, the projection profiles are noisy and the page may not be a

28

perfect rectangle; consequently, the coordinates of the skewed rectangles that we obtain

from the above set of equations are estimates and not exact. Therefore, we make use of

all the eight sides of the two rectangles to obtain the Maximum Likelihood (ML) estimate

for the absolute value of θ:

⎭
⎬
⎫

−
−

+
−

−
+

−
−

+
−

−

+
−
−

+
−

−
+

−
−

+
−

−

⎩
⎨
⎧

=

−−−−

−−−−

)(tan)(tan)(tan)(tan

)(tan)(tan)(tan)(tan
8
1

41

411

34

341

23

231

12

121

41

411

34

341

23

231

12

121

yy

xx

xx

yy

yy

xx

xx

yy

yy

xx

xx

yy

yy

xx

xx

yy

RR
RR

RR
RR

RR
RR

RR
RR

LL
LL

LL
LL

LL
LL

LL
LL

θ

(2.5)

As we mentioned earlier, from the projection profiles we cannot determine the sign of the

skew angle. Therefore, we need another source of information to resolve the ambiguity of

whether L1L2L3L4 or R1R2R3R4 corresponds to the true bounding box of the page. We use

the fact that the local deviation of image pixels along the two sides (left and right, or up

and down) of any of the four borders of the page is “high”, and any border of the page

corresponds to one side of the true bounding box. More precisely, the deviation of image

pixels along the two sides of a line segment belonging to the true bounding box is

“higher” than the other candidate line segment belonging to the other bounding box. Let

ALDw(I, L) be the Average Local Deviation function which maps an area of the image I

specified by the line segment L and thickness w to an integer in [0, 255], assuming the

input image is an 8-bit grayscale one. The output of the function is the average of the

absolute differences of the sum of w image pixels on the left and right, or top and bottom,

along the line segment. If the line slope is great than 1, meaning the line segment is more

vertical than horizontal, we look at the left and right side of it for computing the local

deviation. Otherwise, the line slope is less than 1, meaning the line segment is more

29

horizontal than vertical, we look at the top and bottom of it for computing the local

deviation. Let { Li | i = 1, 2, ..., n } be the set of coordinates of the image pixels

corresponding to the line segment L. We obtain these coordinates by using the

Bresenham's line algorithm [Bre65]. Now, the function ALDw(I, L) can be formally

defined as follows:

⎟⎟
⎠

⎞
+−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−

++−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−
⎜⎜
⎝

⎛
=

∑∑∑∑

∑∑∑∑

= == =

= == =

n

i

w

t
ixiy

n

i

w

t
ixiy

yny

xnx

n

i

w

t
ixiy

n

i

w

t
ixiy

xnx

yny
w

LtLILtLI
LL
LL

H

tLLItLLI
LL
LL

H
nw

1 11 11

1

1 11 11

1

),(),(1

),(),(1.
.
1)L,I(ALD

(2.6)

Where H(x) is the Heaviside step function.

Having defined the ALD function, we can check which of the rectangles L1L2L3L4 or

R1R2R3R4 corresponds to the true bounding box of the page. If L1L2L3L4 is the true

bounding box, then ALDw(I, L1L2) is higher than ALDw(I, R1R2), and vice versa. The

same proposition holds true for the other three pairs of sides: L2L3 and R2R3, L3L4 and

R3R4, and L4L1 and R4R1. As we do not assume the document page must have perfectly

straight borders (look at the top border of the document page of Fig. 2.1(c) for example),

we use all the four propositions to calculate the sign of the skew angle by taking a simple

majority vote. We never encountered a case of a draw in our experiments. But if it

happens, for example when the ALD function for two sides of L1L2L3L4 is higher than

the two corresponding sides of R1R2R3R4 and is lower for the other two sides, it is either

because 1) the skew angle is too small, and so we do not need to correct the skew at all,

30

or 2) the page borders are very jagged, in which case we can try a larger value for w, for

example we can multiply it by 2, and then calculate the ALD propositions again.

Having obtained the absolute value of the skew angle and the sign of it, we can correct

the page skew by rotating the image by –θ around the center of the page which is the

intersection of the diagonals of the bounding box.

The coordinates of the bounding box after skew correction, P1, P2, P3 and P4 (according to

the naming convention of Fig. 2.6), determine the page margins. We again use the ML

estimates:

2/)(margin left 41 xx PP += (2.7)

2/)(margin right 32 xx PP += (2.8)

2/)(margin top 21 yy PP += (2.9)

2/)(margin bottom 43 yy PP += (2.10)

2.3 Experimental Results

We tested our proposed algorithm on a database containing 156 French document images

with different types of margin noise, layouts and background/foreground intensity levels.

As only a small percentage of the documents were skewed (21 documents in total), we

added some artificially generated skewed document images to the database by randomly

selecting a set of the real documents and rotating each one by a random angle within –π/6

to π/6. There were 57 of these artificially skewed samples so we obtained an equal

31

number of straight and skewed document images. With K = 30 and w = 10 fixed

throughout all the experiments, our proposed algorithm successfully estimated the skew

angle (with a standard deviation of less than 0.25 degrees) and removed margins in all

cases. It should be mentioned that the algorithm performance is not very sensitive to the

values of K and w. We expect the algorithm to have the same performance for a wide

range of values for these two parameters.

In summary, in this chapter, we proposed a document margin removal algorithm based on

corner detection in projection profiles. The algorithm does not need the input page to be a

perfect and axis-aligned rectangle; meaning that it can handle skewed, non-right-angled

corners, or jagged page borders which are the cases that we may encounter in the

processing of real-world documents.

32

Chapter 3

Structural Noise Removal Using Fuzzy Inference Systems

3.1 Introduction

There are two types of noise that we have to handle when working with handwritten

documents: statistical and structural. Low-level noise is a statistical artifact that is

introduced by the involved equipment, for example during the scanning process. Structural

noise is not an artifact but rather a part of the data that is undesirable, for example when

we want to recognize a handwritten word in a text line, the comma that separates the word

from the following word is considered as structural noise. There are a lot of different

approaches to reducing (or removing) low-level statistical noise from images [CB05,

ZJ10]. However, structural noise removal depends on the specific application, and

obviously the inherent constraints and settings of each problem may call for different

treatments. What is structural noise and needs to be removed is usually defined by some

linguistic rules and qualitative terms which are imprecise in nature. For example, if we

want to remove the separator dots (‘.’) from a text line but keep the dots that belong to the

characters (‘i’ and ‘j’), we decide based on a rule that uses a piece of knowledge that a

separator dot should appear near the baseline.

Fuzzy logic is a form of logic derived from fuzzy set theory to deal with variables and

reasoning that are approximate. Fuzzy inference systems (FISs) which are rule-based

33

systems based on fuzzy variables have been successfully applied to many fields such as

expert systems, data classification, decision making, computer vision and automatic

control [JS97, OC02]. One main advantage of fuzzy variables and fuzzy rules is that they

facilitate the expression of rules and facts that are easily understandable for humans.

Furthermore, it is easy to modify a fuzzy inference system by inserting and deleting rules,

meaning that there is no need to create a new system from scratch. In order to train a fuzzy

inference system, it is possible to start with a few rules that are designed by human expert

and then fine-tune the parameters of the FIS over a set of training (validation) data.

In this chapter, we will present the process of designing a FIS for removal of structural

noise from images. We will start by building an FIS which can distinguish small noises

from character dots and then will show how to extend the system for other types of

structural noise such as background line noise versus dashes etc. Finally, we will show the

effectiveness of the rule-based noise removal system by some experimental results carried

out on real-world images.

3.2 Review of Fuzzy Logic

In this section we present a brief review of fuzzy logic. However, we encourage the reader

to refer to a textbook on the subject [JS97, Neg04] for further information. Fuzzy logic is

an extension of classical (binary) logic that uses a continuous range of truth degrees in the

real interval [0, 1], rather than the strict values of 0 and 1. In order to introduce fuzzy

logic, first we define the concept of fuzzy sets.

34

3.2.1 Fuzzy Sets

A fuzzy set is a set whose elements have degrees of membership in the real interval [0, 1].

In classical set theory, an element either belongs to a set or not. The membership of an

element x in a set A, in classical logic, is defined by an indicator function (a.k.a.

characteristic function). The value of the indicator function is 1 when x A, and 0 when x

 A. In fuzzy logic, the degree of membership of an element in a set is indicated by a value

in the real interval [0, 1]. This extension allows the gradual assessment of the membership

of elements in a set.

The function that defines the degree of membership of an element x in a set A is mA(x), and

therefore we denote the fuzzy set by the pair (A, mA(x)), or A(x) for short.

Example. Let x be the orientation (in degrees) of a 2D shape S. We can define the fuzzy

sets HORIZONTAL and VERTICAL on x by the triangular membership functions as

given in Figure 3.1.

(a) Membership function for the set horizontal (b) Membership function for the set vertical

Figure 3.1 Examples of membership functions defined on variable orientation.

When the orientation x is 0° or 180°, it is fully included in the fuzzy set HORIZONTAL,

and it is not included in the set VERTICAL. When x is 90°, it is fully included in the set

1

 0 45 90 135 180

HORIZONTAL

 0 45 90 135 180

1

VERTICAL

35

VERTICAL, and not included in the set HORIZONTAL. For these three values (0°, 90°,

180°), the memberships can be defined by the classical notion of set as well. However,

when x is 22.5° for example, then its degree of membership to the set HORIZONTAL is

0.5, which can be interpreted as somewhat horizontal in linguistic terms.

3.2.2 Fuzzy Operators

The basic operations defined on crisp sets, namely intersection (AND), union (OR) and

complement (NOT), can be generalized to fuzzy sets. The generalization to fuzzy sets can

be achieved in more than one possible way. The most widely used fuzzy set operations

that we will use in this work are called standard operations. The three standard fuzzy

operations are standard fuzzy intersection, standard fuzzy union, and standard fuzzy

complement.

Let A(x) and B(x) denote two fuzzy sets, that is the degree to which x belongs to A is mA(x),

and the degree to which x belongs to B is mB(x).

The standard fuzzy complement for set A(x) denoted by cA(x) is defined as 1 – mA(x).

The standard fuzzy intersection for two set A(x) and B(x) denoted by (A ∩ B)(x) is defined

as min[mA(x), mB(x)].

The standard fuzzy union for two set A(x) and B(x) denoted by (A ∪ B)(x) is defined as

max[mA(x), mB(x)].

36

3.2.3 Fuzzy Rules

In fuzzy logic, we represent logic rules by a collection of IF-THEN statements. Each

statement has the general form of IF P THEN Q, where the antecedent P is a single or

compound fuzzy assignment statement, and so is Q. A single assignment statement has the

general form of “x is Ai” and a compound assignment statement is constructed from single

assignments and set operations for example “orientation is HORIZONTAL AND height is

HIGH”. As can be seen, fuzzy rules facilitate the representation of linguistic rules. In order

to make the representation of such rules even easier, we use fuzzy hedges, which are

equivalent of the adverbs in natural languages. The most common types of fuzzy hedges

are “very” and “somewhat” which are defined as follows. Let (A, mA(x)) denote a fuzzy set

defined on the universe of discourse x, then:

[]2
very very)()(where))(,very ()(very xmxmxmAxA AAA =≡

[] 2/1
somewhat somewhat)()(where))(,somewhat ()(somewhat xmxmxmAxA AAA =≡

Of course there is more than one possible way to define these hedges. The purpose of

“very” is to concentrate the membership function, the purpose of “somewhat” is to dilate

the membership function.

3.2.4 Fuzzy Inference System

The process of definition of the mapping from a given set of inputs to a set of outputs

using fuzzy logic is called fuzzy inference. The relation between the set of inputs and

37

outputs is defined by fuzzy IF-THEN rules as explained in the previous section. The set of

fuzzy rules combined with a method of fuzzy inference is called Fuzzy Inference System

(FIS). There are two major types of FIS systems: Mamdani-type and Sugeno-type, of

which the former one is the most commonly used and the one that we use in this work.

Mamdani’s inference method is based on “MIN-MAX” operations, therefore sometimes

Mamdani’s inference method is referred to as MIN-MAX inference.

The first step in Mamdani’s inference is to compute the degree of membership of each

input variable xi to all fuzzy sets that are defined on it. This step is called input

fuzzification. Next, we compute the truth degree or the value of antecedent of each rule in

the rule base. When P is a single assignment (i.e. orientation is HORIZONTAL), the value

of antecedent is simply the value of the corresponding membership function. When P is a

compound assignment statement (i.e. orientation is HORIZONTAL AND height is

SHORT), the value of antecedent is obtained by applying the MIN (for AND) and MAX

(for OR) operators to the truth degrees of each part of P. For example, if the truth degree

(i.e. membership value) of “orientation is HORIZONTAL” is 0.7, and the truth degree of

“height is SHORT” is 0.9, then the antecedent value of the rule “IF orientation is

HORIZONTAL AND height is SHORT THEN …” is min(0.7, 0.9) = 0.7.

After obtaining the value of antecedent, we compute the consequent membership function

for each rule. This process is called fuzzy implication. In Mamdani’s inference, the

implication operator is MIN. The MIN operator limits the membership function of the

consequent to the value of antecedent. Formally, let P be the antecedent, vP(x) be the value

of antecedent, and))(,()(xmQxQ Q≡ be the consequent. Then, the membership function

of the consequent Q is defined to be min(vP(x), mQ(x)).

38

The next step is to aggregate the conclusions, that are the membership functions of the

consequents of all rules in the rule base. In Mamdani’s inference, the aggregation operator

is MAX, which is the standard fuzzy union operator. When we have more than one rule

defining the relation between the input variables and an output variable, in fuzzy logic, all

rules are fired (with different degrees of strength) and hence they collaborate to define the

value of the output. As the rules are independent, and they are all equally important, the

combination of them is defined as the union. As we mentioned in the previous section, in

standard fuzzy, union can be obtained by the MAX operator.

The last step in Mamdani’s inference is defuzzification. Defuzzification is the process of

transforming a fuzzy set into a single crisp value. In function approximation or decision

problems, the output typically has to be expressed by a single value. For example, in

fuzzy-based denoising, we want to eventually decide whether or not a connected

component in image is a small noise that needs to be removed. There are many different

methods of defuzzification including Center of Gravity (COG), Center of Area (COA),

Middle of Maximum (MOM) etc. In this work, we use the COG which is one of the most

popular defuzzification methods. Formally, let (A, mA(x)) be a fuzzy set defined on the

universe of discourse x, then the defuzzified value of the set A, using the COG method, is

defined to be [] []∫∫)(/)(xmxxm AA , which is the x-coordinate of the center of gravity of the

membership function.

3.3 Structural Noise Removal Using FIS

We have devised a fuzzy inference system for the detection of structural noise from binary

images. We define the structural noise as any type of noise that is not an artifact, but

39

actually a part of the image. Consequently, we cannot expect to remove the structural

noise by a general purpose image denoising operator such as a Gaussian filter. The

structural noise is subjective and usually defined by some linguistic rules. What is noise is

one application may be an important part of data in another application. For example,

commas may be considered as structural noise in a word spotting application, however

they may be important in a text-to-speech application.

In this section, we firstly present the FIS that we have developed for distinguishing the

small noises from character dots, and then we will show how to extend the system for

other types of structural noises such as commas, dashes, etc.

3.3.1 Feature Extraction

In order to decide whether a connected component in a binary image is a separator or

noise, we have to extract some properties (features) from the connected component. Then

we construct the FIS systems so that they compute the degree of truth of a connected

component being a dot, small noise, dash etc. based on the values of the features.

The features that we need to extract from a connected component in order to decide

whether it is a dot or small noise could be as simple as: height, width, aspect ratio (defined

as the ratio of height to width) and y-coordinate of the center of gravity (which can

measure how close the connected component is to the upper baseline). However, for the

detection of the other separators from more complex shapes, we add three more features:

orientation, eccentricity, and compactness. Eccentricity is an indication of elongation

[GW07], and compactness is an indication of solidness and convexity which is defined as

follows.

40

Let B be a binary shape, for an arbitrary axis L, the compactness of B is defined as the

average of density of shape pixels over all lines along the axis. The density of a shape for a

given line is defined as the number of shape pixels lying on the line over the distance

between the two farthest boundary-points (i.e. intersections of the line and the shape). We

define the compactness of a shape as the average of compactness for horizontal and

vertical axes.

Therefore we have 7 features in total. In order to facilitate the definition of the fuzzy sets,

we want the values of the feature to be independent from the size and coordinate system of

the image. Therefore, we normalize the height, width and y-coordinate of the center of

gravity by the height of the image (i.e. number of rows when the image is represented by a

raster data structure).

3.3.2 Specification of FIS

In this section, first we present the fuzzy sets that we define on each feature, and then we

give the rule base for the detection of separators and small noises.

(a) Fuzzy sets defined on Normalized Y-COG (b) Fuzzy set defined on Aspect Ratio

Figure 3.2 Fuzzy sets defined on variables Normalized Y-COG and Aspect Ratio.

The number of fuzzy sets that we define on an input variable depends on the context

knowledge and how we are going to define the rules. This number is usually between 1

A
spect R

atio

 AROUND_1
1

0 0.5 1 2 0 0.25 0.5 0.75 1.0

BOTTOM TOP N
orm

alized
Y

-C
oordinate of

C
enter of G

ravity

1

41

and 4. For example, in order to determine whether a small dot belongs to a character, a

human expert uses a linguistic rule such as: “if the dot is near the top of the image then it

most likely belongs to a character”. Therefore, in this case, only one or two fuzzy sets

will be enough: TOP ≡ near the top of the image, and BOTTOM ≡ near the bottom of the

image. The fuzzy sets that we define on each shape feature are given in Table 3.1.

Table 3.1 Fuzzy sets defined on shape features.

Feature Fuzzy sets

Normalized Y-coordinate of Center of Gravity TOP, BOTTOM

Aspect Ratio AROUND_1

Normalized Height SMALL_COMPARED_TO_NASW,

EQUAL_TO_NASW,

LARGE_COMPARED_TO_NASW,

SMALL, MEDIUM, HIGH

Normalized Width SMALL_COMPARED_TO_NASW,

EQUAL_TO_NASW,

LARGE_COMPARED_TO_NASW,

SMALL, MEDIUM, HIGH

Orientation HORIZONTAL, VERTICAL, DIAGONAL_LEFT,

DIAGONAL_RIGHT

Eccentricity SMALL, MEDIUM, HIGH

Compactness SMALL, MEDIUM, HIGH

Fig. 3.2(a) shows the fuzzy sets TOP and BOTTOM that we define on the feature y-

coordinate of the center of gravity (YCOG). On the feature Aspect Ratio (AR), we only

define one fuzzy set: ARONUD_1, which defines how close the aspect ratio is to unity.

The membership function mAROUND_1(x) is shown in Fig. 3.2(b). It is a triangular with the

42

value of 1 at x = 1 which linearly goes to 0 at x = 0.5 and x = 2, which means that the

aspect ratio is not around 1 when the height is two times larger than the width, or the

width is two times larger than the height.

In order to decide whether a small connected component is noise or part of the text, we

have to have an estimate for the Average Stroke Width (ASW). For a binary image B, we

take the median of run-lengths of black (text) pixels in all rows and all columns of the

input image as an estimate for ASW:

ASWB = median(length(RH) ∪ length(RV)).

 where RH = {black runs in all rows of B} and RV = {black runs in all columns of B}.

Figure 3.3 Fuzzy sets defined on variables normalized height and normalized width.

The size (height and width) of a dot that is part of the text is close to the stroke width.

Therefore, we define three fuzzy sets on the normalized height and normalized width of a

connected component to specify how small, equal or large these features are compared to

the Normalized ASW (NASW). These fuzzy sets are called SMALL COMPARED TO

NASW, EQUAL TO NASW and LARGE COMPARED TO NASW as shown in Fig.

3.3. Aside from these three fuzzy sets, we also define the three fuzzy sets of SMALL,

MEDIM and LARGE as shown in Fig. 3.4(a). In fuzzy applications, these are the most

typical fuzzy sets that we define on a real variable in the interval [0, 1]. In our

N
orm

alized
H

eight / W
idth

SMALL_COMPARED_TO_NASW EQUAL_TO_NASW LARGE_COMPARED_TO_NASW

1

0 0.25 0.5 1.0 2.0 3.0 4.0

43

application, we define the same fuzzy sets on the input variables eccentricity and

compactness. Finally, we define the four fuzzy sets of HORIZONTAL, VERTICAL,

DIAGONAL LEFT and DIAGONAL RIGHT on orientation as shown in Fig. 3.4(b).

(a) Fuzzy set defined on Compactness (b) Fuzzy set defined on Orientation

Figure 3.4 Fuzzy sets defined on variables compactness and orientation.

The rule base for the detection of each separator consists of a set of intuitively-designed

linguistic rules. We start with the rule base for the detection of dots and small noises.

3.3.2.1 Rule Base for Detection of Dots and Small Noises

We define the rule base for the detection of dots and small noises to be composed of rules

of the following form:

IF (Normalized Height is ...) AND (Normalized Width is ...) AND

 (Normalized YCOG is ...) AND (Aspect Ratio is ...) AND

 (Eccentricity is ...) AND (Compactness is ...) AND

 (Orientation is ...) THEN

 (Dot is ...) AND (Small Noise is ...);

0 0.25 0.5 0.75 1.0

LOW MEDIUM HIGH C
O

M
PA

C
N

ESS

O
R

IEN
TA

TIO
N

 0 45 90 135 180

HORIZONTAL VERTICAL HORIZONTAL
 DIAGONAL L DIAGONAL R

44

Of course, the antecedent of a rule of this form does not need to contain all parts of the

conjunction. We start by defining the two basic cases where 1) small noises are likely and

character dots are unlikely; and 2) character dots are likely and small noises are unlikely.

The fuzzy rules corresponding to these two basic cases are as follows:

Rule 1 := IF (Normalized Height is SMALL_COMPARED_TO_NASW) AND

(Normalized Width is SMALL_COMPARED_TO_NASW) THEN (Dot is LOW) AND

(Small Noise is HIGH);

Rule 2 := IF (Normalized Height is EQUAL_TO_NASW) AND (Normalized Width

is EQUAL_COMPARED_TO_NASW) THEN (Dot is HIGH) AND (Small Noise is LOW);

Now, we can refine these rules by adding more knowledge about the location of the

connected component. We know that if a small connected component appears near the

bottom of the image, it is less likely to be a character dot, compared to when it appears

near the top of the image. Therefore, based on the location of the connected component,

we can decompose Rule 1 into two rules and modify Rule 2 as follows:

Rule 1-1 := IF (Normalized Height is SMALL_COMPARED_TO_NASW) AND

(Normalized Width is SMALL_COMPARED_TO_NASW) AND (Normalized YCOG is

BOTTOM) THEN (Dot is very LOW) AND (Small Noise is very HIGH);

Rule 1-2 := IF (Normalized Height is SMALL_COMPARED_TO_NASW) AND

(Normalized Width is SMALL_COMPARED_TO_NASW) AND (Normalized YCOG is not

BOTTOM) THEN (Dot is somewhat LOW) AND (Small Noise is somewhat HIGH);

45

Rule 2 := IF (Normalized Height is EQUAL_TO_NASW) AND (Normalized Width

is EQUAL_COMPARED_TO_NASW) AND (Normalized YCOG is not BOTTOM) THEN (Dot

is very HIGH) AND (Small Noise is very LOW);

Where we have used the fuzzy hedges “very”/“somewhat” to increase/decrease the

emphasis on their corresponding fuzzy sets. We can further refine these rules using more

features such as aspect ratio and compactness. The complete rule base for the detection of

dots and small noises is given in Appendix A1.

3.3.2.2 Rule Base for Detection of Dashes

A character dash (‘-‘) is intuitively defined as an elongated shape that is almost horizontal,

whose height is small, and whose width is medium (compared to average width of

characters). The process of the definition of the rule base for the detection of dashes is

similar to that of dots and small noises. We start with a few basic rules and then gradually

refine them by adding more knowledge. The complete rule base for the detection of dashes

is given in Appendix A2.

truth(noise) = 0.67, truth(dot) = 0.48

truth(noise) = 0.32, truth(dot) = 0.81

truth(noise) = 0.11, truth(dot) = 0.11

truth(noise) = 0.81, truth(dot) = 0.32

truth(noise) = 0.67, truth(dot) = 0.32

truth(noise) = 0.11, truth(dot) = 0.11

truth(noise) = 0.11, truth(dot) = 0.11

truth(noise) = 0.67, truth(dot) = 0.32

Figure 3.5 Result of applying the FIS-based noise removal filter to a handwritten word.

46

3.4 Experimental Results

In this section, we show the result of applying the FIS-based noise removal filter to some

images of handwritten words. For an input document image, first we remove the margins.

Next, we extract lines and binarize each line separately. Next, we estimate the average

stroke width (ASW) locally, and extract the feature set for each connected component.

Finally, we apply the FIS for detection of dots and small noises to each connected

component C and we defuzzify the output to obtain the degree of truth of the connected

component being a dot (Tdot) and a small noise (Tnoise). We remove the connected

component if it satisfies two conditions: 1) it is noise and 2) it is more noise than dot. In

order to decide if a connected component is noise, we look at the degree of truth Tnoise,

which is a value between 0 and 1. Therefore, in the absence of any further information, if

Tnoise is higher than 0.5, we should take the connected component as noise.

Figure 3.5 shows the degrees of truth of dot and noise for each connected component of a

handwritten word. Using the FIS-based noise removal filter, we are able to keep the dot

that belongs to the word and remove all other noises. Of course, this filter is only designed

for small noises and dots; therefore we cannot use it to remove other types of structural

noise such as background lines. Figure 3.6 shows samples of handwritten text with

guideline noise. We refer to background lines on ruled papers as guideline noise. These

lines are typically used as guidelines to help the user keep their writing consistent.

47

(a) (b)

Figure 3.6 Samples of handwritten text with guideline noise.

The guidelines are usually printed in light colors, i.e. lighter than the ink that is used in

pens. Therefore, in most cases we are able to remove the guidelines with proper

binarization. However, in certain situations the binarization algorithm may not able to

remove the guidelines, for example when we apply a global binarization operator to the

whole document. In such cases, we may still be able to remove the guidelines by a FIS-

based noise removal filter. The rule-base for the FIS for the removal of guidelines is

similar to the rule base for the detection of dashes that we discussed in section 3.3.2.2.

48

Chapter 4

Line and Word Segmentation

4.1 Introduction

Lines and words are building blocks of text. In document processing applications, we

often need to divide a document into its constituent lines, and sometimes we need to

further divide each line into its constituent words. Although both line segmentation and

word segmentation in unconstrained documents can be considered as open-problems,

generally speaking extracting lines from a document is more straightforward. The reason

is that the text lines are almost well-defined based on geometrical information. However,

words are not as well-defined. In handwritten documents, inter-word-spacing is

sometimes wider than the intra-word-spacing and thus it is not always possible to

segment the document at the word level perfectly using geometrical information only.

Fortunately, perfect word segmentation is not always necessary. The level of details we

have to divide a document into depends on the specific application and method. In some

applications such as template-based approaches to word spotting, there is even no need to

segment the document at line level. We devise a top-down approach to word spotting,

where we need to extract the text lines and words or sub-words. In the following, first we

present a literature survey on line and word segmentation algorithms. Then we describe

the theory of fast Fourier-based steerable filtering that our line and word segmentation

49

methods are based on. Finally we present our line and word segmentation algorithm

along with some experimental results.

4.1.1 Background

Due to intrinsic challenges of unconstrained documents, this problem has remained

unresolved and thus, many different approaches to segmenting lines and words have been

proposed so far [LSZT07, Kav10, DPB09, LGPH09]. Line segmentation approaches

usually make two key assumptions: 1) the gap between neighboring text lines is

significant; and 2) the text lines are reasonably straight, or else they have a single global

skew angle. Word segmentation approaches usually make two key assumptions: 1) the

gap between neighboring words is wider than the gap between characters belonging to

the same word; 2) neighboring words are not connected together; in other words, any

connected component of text belongs to only one word.

These assumptions are not always valid for handwritten documents. However, in most

cases they are valid for documents with simple to moderate types of layouts.

It must be noted that a majority of the classical algorithms in the document processing

literature are specifically developed for machine-printed types of documents [EDC97,

SPJ97, NSV92], and not surprisingly they cannot provide an acceptable performance for

unconstrained handwritten documents. Previously, there was a greater interest in

processing machine-printed documents, but recently a new trend has developed to move

beyond traditional machine-printed methodologies to deal with unconstrained documents

as well. The basic ideas upon which these new algorithms are built are more or less the

same considering the fact that several simplifying assumptions such as parallel lines of

50

text are not valid anymore. Moreover, this calls for more sophisticated pre-processing and

post-processing techniques.

In [NSV92], a top-down segmentation method based on projection profiles is proposed.

This method can only handle machine-printed documents because it is based on the

assumptions of parallel text lines and large intra-line gaps. In a more recent study [PD03],

the basic projection profiles technique is extended to deal with slightly curved lines of

text. The idea is to form areas of text wherein the lines are parallel and then segment

them using horizontal projection profile technique. The document spectrum method

[O’G93] is a classic example of a bottom-up segmentation algorithm. It works by

connecting neighboring connected components based on the geometric relationship

between a fixed number of nearest neighbors. Docspectrum achieves good results for

machine-printed as well as handwritten documents with slightly curved lines. Another

bottom-up algorithm is [LSF94] based upon the three Gestalt criteria of proximity,

similarity and direction continuity for perceptual grouping of connected components to

text lines. General curve extraction techniques based on the Hough transform have also

been used for text line detection [LGH07], [LSHF95]. Recently an almost real-time

implementation of Hough transform has been developed [FO08]. However, sophisticated

post-processing techniques are still needed for extraction of text lines after computing the

transform. A partial-contour-following-based method to detect the separating lines is

proposed in [ZTMR01]. The text slant is first detected and text line numbers are

evaluated using partial projection. Next, a partial contour following for each line is

performed in two opposite directions and finally, the adjacent lines are separated.

Smearing is a common technique used in page segmentation algorithms. In [SSG05], the

51

authors have used the so-called Adaptive Local Connectivity Map (ALCM) which is a

transformation operator replacing each pixel by the value of the sum of neighboring

pixels within a horizontal distance. After smearing the image with this operator and then

binarizing it, the connected components of the resultant image will correspond to

candidate lines of text. A more elaborate algorithm using the ALCM technique is

[KB06], where the authors have used pre-processing and post-processing steps to remove

rule/margin lines and break connected text regions containing more than one line.

The general image segmentation method of level sets has recently been utilized in the

realm of document image processing. In the algorithm proposed in [LZD+08a], after

estimating a probability map for text lines, the level set method is applied to determine

the boundary of neighboring text lines. This method is script-independent and doesn’t

require the neighboring lines to be absolutely parallel and straight. However, it is

computationally demanding and perhaps not suitable for applications where speed is a

major concern. Moreover, the segmentation results depend on the number of boundary

evolution steps as pointed out in [DPB09]. The authors in [DPB09] have proposed the

use of the Mumford-Shah (MS) model for text line segmentation because the text area

only consists of two uniform regions, wherein the piecewise constant approximation of

the MS model well suits the segmentation task. An advantage of the MS-based model

over [LZD+08a] is that it segments the lines by minimizing the MS energy functional and

thus unlike [LZD+08a] the results do not depend on the number of evolution steps.

52

4.2 Line Extraction Based on Fast Fourier-Based Steerable Filtering

We developed a new line extraction method based on Fast Fourier-based Steerable (FFS)

filtering. The algorithm is composed of two stages: fast filtering and local skew

correction. In the following, first we present the theory of FFS filtering. Then, we

describe the line map computation and post-processing steps of our line segmentation

algorithm.

4.2.1 Fast Fourier-based Steerable Filtering

For the extraction of the text lines based on filtering the two obvious choices for the

kernel are box and Gaussian. If we use a box kernel, the output of the filtering is, by

definition, the so called Adaptive Local Connectivity Map (ALCM) which is proposed by

Shi et al. [SSG05]. According to the ICDAR 2009 Handwriting Segmentation Contest

[GSL09], the ALCM-based algorithm is the best line segmentation algorithm for

handwritten documents. However, in the original paper [SSG05], the authors

implemented the ALCM by convolution in spatial domain. Here, we compute the map

using FFS filtering which is based on the decomposition of the filter and Fast Fourier

Transform (FFT) operations, resulting in significant speedup over the conventional

convolution in spatial domain.

Another possible choice for the kernel is a Gaussian. Gaussian kernels are among the

most commonly used kernels in image processing due to their desirable properties from

both theoretical and computational point of view. The general case of an anisotropic

Gaussian filter in two dimensions is defined by:

53

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

=
2

2

2

2

22

..2
1),;,(yx

yx

yx
yx eyxG σσ

σσπ
σσ

(4.1)

Where σx is the standard deviation along the x-axis, and σy is the standard deviation along

the y-axis. This filter is axis-aligned, and thus can be used to analyze fairly horizontal or

vertical structures. In order to analyze structures with arbitrary orientations, we have to

“steer” (orient) the filter at arbitrary orientations. In [FA91] an efficient architecture is

proposed to synthesize filters of arbitrary orientations from linear combinations of basis

filters. However, according to this framework, no exact basis exists for rotating an

anisotropic Gaussian. The existence of basis filters is important from a computing

perspective. It is well known that direct implementation of filtering by convolution in

spatial domain is slow, particularly in higher dimensions. If we can decompose a 2D filter

as a liner combination of a set of 1D filters, we can compute the result of the filtering

with much less calculation time. In [ASW03], the authors showed the decomposition of

an oriented anisotropic Gaussian filter in two Gaussian line filters in non-orthogonal

directions.

The general case of an oriented anisotropic Gaussian filter in two dimensions is obtained

by rotating the basic filter defined in (4.1) by the desired angle θ. Let’s denote the

oriented anisotropic Gaussian filter by Gθ(u, v, σu, σv, θ). We can define Gθ as follows:

2

2

2

2
.

2
1.

2
1

.2
1*

.2
1),,;,(vu

v

v

u

u
vu eevuG σσ

θ σπσπ
θσσ

−−

=

(4.2)

Where “*” denotes convolution, and the relation between the two coordinate systems x-y

and u-v is given as follows:

54

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

v
u

θθ
θθ

cossin
sincos

(4.3)

As can be seen, the filter is separated in u and v directions. However, this separation does

not form a convenient basis from a computational perspective. We need to decompose the

filter along the horizontal or vertical direction. The solution proposed in [ASW03]

decomposes the filter along the x-direction and another direction as follows:

2

2

2

2
.

2
1

.
2
1

.2
1*

.2
1),,;,(ϕσ

ϕ

σ
ϕθ σπσπ
θσσ

tx

x
x eeyxG x

−−

=

(4.4)

This equation represents a Gaussian filtering along the x-direction, followed by a

Gaussian filtering along a line t = x cosφ + y sinφ. It can be shown that the standard

deviations σx and σφ, and the intercept of the line tanφ are computed as follows:

θσθσ

σσ
σ

2222 cossin

.

vu

vu
x

+
=

(4.5)

θσθσ
ϕ

σϕ
2222 cossin

sin
1

vu +=

(4.6)

θθσσ
θσθσϕ

sincos)(
cossintan 22

2222

vu

vu

−
+

=

(4.7)

55

In the original paper [ASW03], the authors propose two implementations of Equation

(4.4): one based on conventional convolution, and the other one based on recursive filters

[JVVYV98]. In our work, we perform the filtering using FFT.

The computation of the FFT in the x-direction is straightforward. However, for the

computation of the FFT in the φ-direction, we need to do interpolation because a point on

the line may not necessarily lie on an image pixel. The authors in [ASW03] used linear

interpolation. However, we will use nearest-neighbor interpolation in our approach

because it facilitates the computation of the FFT as explained in the following.

4.2.1.1 Computation of FFT in -direction using Linear Interpolation

In spatial domain, filtering along the line t with intercept μ = tanφ is achieved by

[ASW03]:

⎣ ⎦
]),/[],/[(],[],[

2/

1
0 jyjxgjyjxgwyxgwyxg x

M

j
xjx +++−−+= ∑

=

μμθ

(4.8)

Where gx[x,y] is the input image filtered with the x-filter, and wj is the filter kernel for

half the sampled Gaussian from 0 to ⎣ ⎦2/M .

The coordinates y ± j exactly lie on an image pixel, however the coordinates x ± j / μ

coordinate may fall between two image pixels. In order to solve this problem, the authors

in [ASW03] compute the value of the pixel of interest by the linear interpolation of the

two neighboring pixels. Therefore, Equation (4.8) becomes:

56

⎣ ⎦
⎣ ⎦

⎣ ⎦

⎡ ⎤ ⎡ ⎤

⎣ ⎦
⎣ ⎦

⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎣ ⎦

}.],/[],/[{).1(

]},/[],/[{.],[

]},/[).1(],/[).1(

],/[.],/[.{],[],[

2/

1

2/

1
0

2/

1
0

∑

∑

∑

=

=

=

+++−−−

++++−−+=

−+−+−−−

++++−−+=

M

j
xxj

x

M

j
xjx

xx

x

M

j
xjx

jyjxgjyjxgwa

jyjxgjyjxgwayxgw

jyjxgajyjxga

jyjxgajyjxgawyxgwyxg

μμ

μμ

μμ

μμθ

 (4.9)

where a is the interpolation factor.

Figure 4.1 Linear interpolation for the computation of the FFT in a certain direction. Here the size of

the filter is 7, and the orientation is 30˚. Green pixels correspond to the coordinates that are rounded

down to the closest column index, and blue pixels correspond to the coordinates that are rounded up

to the closest column index.

According to Equation (4.9), filtering in the φ-direction can be achieved by two FFT

operations, where each one is computed for a sequence of gray values at integer

coordinates (Fig. 4.1). However, this formulation requires us to compute the coordinates

of the integer pixels for each pixel of the image separately. In other words, it is desirable

to compute the FFT along every diagonal (in the φ-direction) of the image only once and

then use the FFT coefficients for the computation of the filtering (in the φ-direction). As

we will show in the next section we can achieve this purpose by using nearest-neighbor

interpolation rather than linear interpolation.

57

4.2.1.2 Computation of FFT in -direction using Nearest-Neighbor Interpolation

In Fig. 4.1, it is easy to see that an approximation to the line the φ-direction can be

achieved by starting from the left-most pixel of the line and skipping every other pixel

until the other end of the line. Therefore, using nearest-neighbor interpolation rather than

linear interpolation, Equation (4.9) reduces to:

⎣ ⎦
⎣ ⎦

⎡ ⎤]},/[],/[{],[],[
2/

1
0 jyjxgjyjxgwyxgwyxg x

M

j
xjx +++−−+= ∑

=

μμθ

(4.10)

The advantage of Equation (4.10) lies in the fact that the pixels approximating the line are

symmetric around the central pixel. Therefore, the filtering along the line in the φ-

direction can be computed by down-sampling followed by the FFT along the

corresponding diagonal of the image. In the example shown in Fig. 4.1, we picked out

every other pixel, therefore the down-sampling factor is 2. In general, the down-sampling

factor Df is defined by the following equation:

⎪⎩

⎪
⎨
⎧

≥≥

<<
=

o

o

45or ,1if)round(
45or,1if)/1(round

ϕμμ

ϕμμ
fD

 (4.11)

This equation simply states that if the line is more horizontal than vertical (i.e. φ < 45°)

we down-sample along the horizontal direction, and similarly, if the line is more vertical

than horizontal (i.e. φ ≥ 45°) we down-sample along the vertical direction (Fig. 4.2).

Another advantage of using nearest-neighbor interpolation is now clear. The down-

sampling factor is an integer which further reduces the complexity of the computations.

58

In general, if the down-sampling factor is not an integer but rather a rational fraction, the

down-sampling operation can be implemented by two sampling operations: an integer up-

sampling followed by an integer down-sampling.

(a) (b)

Figure 4.2 Down-sampling corresponding to nearest-neighbor interpolation when the line angle is

less than 45°° (a), and when it is more than 45° (b).

Having described the down-sampling operation, we present the procedure to perform the

convolution in φ-direction using the FFT as follows. First, we define the μ-diagonals of

an image. A φ-diagonal of an image is a diagonal corresponding to the filter angle φ and

the down-sampling factor Df. For φ < 45°, we obtain a φ-diagonal by starting from a pixel

on the left-most column or the top-most row and then going Df pixels to the right and 1

pixel to the bottom until we reach the right-most column or the bottom-most row of the

image (Fig. 4.3). Similarly, for φ ≥ 45°, we obtain a φ-diagonal by starting from a pixel

on the left-most column or the top-most row and then going Df pixels to the bottom and

1 pixel to the right until we reach the right-most column or the bottom-most row of the

image.

59

Figure 4.3 Some diagonals of an image corresponding to φ = 30˚ and Df = 2.

Now we use the following property of the down-sampling theorem in the discrete Fourier

domain [Bra99]. Let x(n) be a discrete signal of length N in time domain, let C(ω) be the

Discrete Time Fourier Transform (DTFT) of x(n). Let x(Mn) be the down-sampled

version of x(n) corresponding to a down-sampling factor of M. Then the DTFT of x(Mn)

denoted by Cd(ω) have the following relation with C(ω):

∑
−

=

+=
1

0
)(1)(

M

l
d LlkC

M
kC

(4.12)

Where L = N / M, and k = 0, 1, …, L – 1.

A numerical example is given below.

Let x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] be the original signal. Let the down-sampling

factor be 3. The down-sampled version of the signal denoted by xd is obtained by picking

out every 3 sample: xd = [1, 4, 7, 10].

The discrete Fourier transform of the original signal x denoted by cx is computed as

follows:

60

cx(0) = 78, cx(1) = –6 + 22.3923i, cx(2) = –6 + 10.3923i, cx(3) = –6 + 6i, cx(4) = –6 +

3.4641i, cx(5) = –6 + 1.6077i, cx(6) = –6, cx(7) = –6 – 1.6077i, cx(8) = –6 – 3.4641i, cx(9)

= –6 – 6i, cx(10) = –6 – 10.3923i, cx(11) = –6 – 22.3923i.

The discrete Fourier transform of the down-sampled version of the signal xd denoted by

cxd is computed as follows:

cxd(0) = 22, cxd(1) = –6 + 6i, cxd(2) = –6, cxd(3) = –6 – 6i.

Now, we can see that the following relations hold:

cxd(0) = 1/3 × { cx(0) + cx(4) + cx(8) } = 1/3 × { 78 – 6 + 3.4641i –6 – 3.4641i } = 22.

cxd(1) = 1/3 × { cx(1) + cx(5) + cx(9) } = 1/3 × { –6 + 22.3923i – 6 + 1.6077i – 6 – 6i } = –

6 + 6i.

cxd(2) = 1/3 × { cx(2) + cx(6) + cx(10) } = 1/3 × { –6 + 10.3923i – 6 – 6 – 10.3923i } = –6.

cxd(3) = 1/3 × { cx(3) + cx(7) + cx(11) } = 1/3 × { –6 + 6i – 6 – 1.6077i – 6 – 22.3923i } =

–6 – 6i.

4.2.2 Computing Line Maps by Fast Oriented Anisotropic Gaussian

Filtering

Having defined the FFS filtering, we compute the line map as follows. Firstly, we pre-

process the input image. The pre-processing step involves 1) removing the margins from

the page, and 2) correcting the global skew. Remember from the previous chapter that our

proposed margin removal algorithm also corrects the global skew of the document.

Secondly, we apply a set of FFS filters to the image and add the outputs together. The

61

reason why we use a set of filters rather than only one horizontal filter is that the text

lines in handwritten documents may have multiple skew angles. Therefore, we steer the

filters at all possible orientations that the text lines may exist. Thirdly, we binarize the

resultant filtered image from the previous step order to obtain the binarized line map.

Fourthly, we post-process the binarized line map; and fifthly and finally we obtain the

locations of the text lines. The post-processing step involves 1) removing thin connected

components in the binarized map that correspond to background noise, and 2) filling the

remaining connected components vertically. The vertical filling operation is defined as

finding the upper and lower profile of a connected component and then filling all the

background pixels within any point on the upper profile and its corresponding point on

the lower profile. The formal description of the line extraction algorithm is given in Fig.

4.4.

Note that Step 2 of the algorithm we could use the distributive property of convolution

over addition. However, then the obtained kernel is not necessarily an oriented

anisotropic Gaussian (the set of anisotropic Gaussians at different orientations is not

closed under addition).

In our experiments, we only used 3 anisotropic Gaussian filters (N=3), at θ = -10.0, 0.0

and 10.0 degrees, because the orientations of skewed text lines in our document images

always fall within this range. Increasing the angular resolution (i.e. number of filters) did

not affect the performance of the algorithm in terms of the localization of the text lines.

We set σv to 15, which is around half the average height of the text lines in our database.

We take the aspect ratio (i.e. σv / σu) of the anisotropic Gaussians to be 1/8, which is

62

around half the average aspect ratio of the text lines in our database. Thereby, σu is set to

120.

Algorithm LINESEGMENTATION(I)
Input. A document image I.
Output. A set of bounding boxes B indicating the locations of the text lines in I.

Step 1. Pre-processing:

Step 1.1 Remove margins from I.
Step 1.2 Correct global skew of I.

Step 2. F ← Gθ1*I + Gθ2 *I + … + GθN *I
 where “*” denotes convolution and,
 Gθ1, Gθ2, …, GθN are a set of anisotropic Gaussian filters oriented at θ1, θ2, … θN.
Step 3. Binarize F.
Step 4. Post-processing:

Step 4.1. Remove thin connected components in F.
Step 4.2. Vertically fill the connected components in F.

Step 5. B ← Bounding boxes of the connected components in F.

Figure 4.4 Line segmentation algorithm based on FFS filtering.

(a) (b) (c) (d) (e)

Figure 4.5 Result of applying the line extraction algorithm using FFS filters to a handwritten

document with multiple skewed lines. (a) input document image. (b) image (a) after margin removal

and global skew correction. (c) Line map obtained by applying FFS filters to the image and adding

the outputs together. (d) image (c) after binarization. (e) image (d) after post-processing.

63

Fig. 4.5 shows the result of applying the line extraction algorithm to a handwritten

document. As can be seen, the connected components in the binarized FFS map

correspond to the text lines.

Figure 4.6 Robust line fitting versus least square line fitting in presence of outliers.

In order to facilitate the processing for the subsequent steps of the word spotting system,

we perform a local skew correction inside the bounding box corresponding to each text

line. We correct the local skew by the robust line fitting technique [PTVF07]. In robust

line fitting, we maximize the probability of the data given the model rather than

minimizing the squared sum of errors that is done in least-square fitting. For straight line

fitting, the probability of the data given the model is defined as follows:

P(data | model) ∏
−

=

Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−∝
1

0

2

})(
2
1{exp

N

i

ii yxyy
σ

(4.13)

When the data points are noisy, the robust line fitting gives a better fit than the least

square because it is tailored to be less sensitive to outliers (Fig. 4.6).

4.3 Word Segmentation Based on Fast Oriented Anisotropic Gaussian

Filtering

Once the text lines are extracted, we have to segment words on the same text line. Word

segmentation in handwritten document is a difficult task because inter-word-spacing is

least square fit robust fit

64

sometimes wider than the intra-word-spacing (Fig. 4.7). Thus, it is not always possible to

segment the document at the word level perfectly using geometrical information only.

Figure 4.7 Example of a handwritten line where the space between characters of the same word is

wider than the space between two neighbouring words.

Many different approaches to segmenting words are proposed so far. We may categorize

word segmentation algorithms to either top-down, bottom-up or hybrid ones. We

experimented with well-known algorithms from each category, and we concluded that the

scale-space algorithm proposed by Manmatha and Rothfeder [MR05] gives the best

results for our collection of unconstrained handwritten documents. We carry out the

word segmentation task by an enhanced version of the scale-space algorithm. We obtain

the scale-space using derivatives of fast anisotropic Gaussian filters implemented in the

Fourier domain. Therefore, our approach to word segmentation is based on the same

theory that we introduced for the extraction of lines. There are only two minor

differences here. First, we do not need to steer the Gaussians at different orientations

because words within a skew corrected line are reasonably straight, and moreover the

aspect ratio of a word (ratio between its width to its height) is much less than that of a

text line. Second, we have to use two Gaussian filtering operations in order to compute

the Laplacian of Gaussian (LoG) operator. This is explained in more details in the

following.

65

The scale-space is computed by convolving the image with a kernel that is the sum

unmixed second partial derivates of a Gaussian (in the x and y directions) [MR05]:

),;,(),;,(),;,(yxyyyxxxyx yxGyxGyxL σσσσσσ += (4.14)

Figure 4.8 Output of line and word segmentation algorithms for a handwritten French document.

This operator is called Laplacian of Gaussian (LoG) filtering. It can be shown that the

LoG operator can be approximated by the difference of two standard Gaussian filtering:

)
22

(

2

)
22

(

)
22

(

2

2

2

2

22

22

2

22

2

2

2

2

2

2

2

2

2

11

)
22

(11),;,(

yxyx

yx

K
y

K
x

yx

yx

yx

yx

yxyx
yx

e
K

e

eyxyxL

σσσσ

σσ

σσπσπσ

σσσπσ
σσ

+−+−

+−

−≈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−≈

(4.15)

This equation actually subtracts a wide Gaussian from a narrow Gaussian in order to

approximate the second partial derivative.

66

Figure 4.9 Output of line and word segmentation algorithms for a handwritten English document.

The output of the word segmentation algorithm for a handwritten French document, as

applied to each line of text separately, is shown in Figure 4.8, where the word hypotheses

are represented with different colors. The text lines are extracted by the FFS filtering that

we described in the previous section. Another sample output is shown in Figure 4.9 for a

handwritten English document from the IAM database.

67

Chapter 5

Character Segmentation

5.1 Introduction

As we mentioned earlier, the main goal of this research is to develop a methodology for

spotting arbitrary keywords. Therefore, we cannot rely on holistic word recognition

approaches, because it is not possible to compile a large enough training database for all

possible keywords. Consequently, our main approach is to use non-holistic (analytical)

recognition methods, and so for general keyword detection, we need to either implicitly

or explicitly divide each word into its constituent letters. This task is done by a character

segmentation algorithm.

Most of the conventional character segmentation methods in the literature are based on

the analysis of projection profiles or candidate segmentation points, where in either case

the 2D information in the image is not taken advantage of effectively [RMKI09, HAI07].

The segmentation paths generated are usually obtained without taking into account the

constraints on character shapes and neighboring characters. One fundamental assumption

in these algorithms is that characters are separable by vertical lines (after slant

correction). This assumption is correct for machine-printed and simple cursive text, but

not for complicated styles of handwriting. In general, where there is considerable amount

of overlapping between neighboring characters, they are not separable by straight lines.

Samples of handwritten words with high overlapping are given in Fig. 5.1. In such cases,

68

application of a typical character segmentation algorithm would result in some damaged

characters (i.e. some characters with missing parts and some characters with parts from

neighboring characters).

We have developed a new character segmentation algorithm based on background

skeletal graphs. Our proposed character segmentation algorithm is based on 2D data

structures that correspond to arbitrary regions of the image, where any arbitrary character

shapes can be circumscribed by a region or a sequence of regions. Consequently, the

algorithm is capable of finding the perfect boundaries of a character no matter how much

overlapping it may have with neighboring characters. Aside from the character

segmentation, the character merging algorithm (which will be discussed later in this

chapter) is benefited from the 2D representation. Incorporation of the context knowledge

about characters to the merging algorithm is intuitive when we use data structures that

correspond to characters or sub-characters.

Figure 5.1 Samples of handwritten words with a lot of overlapping between characters.

Any character segmentation algorithm, be it implicit or explicit, needs more than only

geometrical information in the word image in order to segment it perfectly. In other

words, it is not always possible to perfectly segment a word image into its constituent

69

characters without knowing the corresponding transcription. The reason is that a word

image may represent more than one transcription. Therefore, we have to segment the

input word in all possible ways and then resolve the ambiguity using the context, which is

a lexicon in the simplest form. In order to generate all valid segmentation hypotheses, we

developed a new merging algorithm which is based on graph partitioning.

In the rest of this chapter, firstly we present the terminology and detailed description of

the character segmentation algorithm and next the character merging algorithm. We will

give illustrative examples as well as pseudo code for each algorithm.

5.2 Character Segmentation Based on Background Skeletal Graphs

Our proposed approach to the segmentation of handwritten words is based on background

skeletal graphs. A background skeletal graph is a geometric (location aware) graph

corresponding to the skeleton of the background of the image. The main function of the

algorithm is to keep the edges of the skeletal graph that correspond to possible

segmentation paths. The decision whether or not an edge of the graph may correspond to a

segmentation path is made based on the orientation, length and location of the edge.

Before presenting the formal description of the algorithm, we will define the terminology

that we are going to use.

5.2.1. Terminology of the Character Segmentation Algorithm

Let G(V,E) be the skeletal graph corresponding to the background of the input word image

I. G is a location-aware geometric graph where along with the neighborhood information,

70

we keep the coordinates of vertices and consequently the orientations of the edges. Then,

we have the following definitions:

End-point: An end-point is defined as a vertex v∈V with a degree of 1.

Junction-point: A junction-point is defined as a vertex v∈V with a degree of greater than

2 (which is either 3 or 4 when the image is represented by a raster data structure).

Branch: A branch is defined as an edge e∈E starting from a junction-point and ending in

an end-point.

Curve: A curve is an edge e∈E staring from an end-point and ending in an end-point.

Downward/Upward branch: A downward/upward branch is a branch whose start vertex

lies on the upper/lower part of the graph.

EPD: An EPD denotes the end-point of a downward branch.

EPU: An EPU denotes the end-point of an upward branch.

BEPD: A BEPD denotes the branch corresponding to an EPD which goes below the

baseline of the image.

BEPU: A BEPU denotes the branch corresponding to an EPU which goes above the

baseline of the image.

5.2.2 Description of the Character Segmentation Algorithm

Having defined the terminology, we present the high level description of the character

segmentation algorithm is as follows. The first step is pre-processing which includes

binarization followed by removal of isolated dots that are noise. Next, we compute the

skeleton of the background of the image and the skeletal graph corresponding to it.

71

(a) input image (b) after slant correction and thresholding

(c) after vertically filling of all CCs. (d) skeleton of background of (c)

(e) after removing short E2J curves (f) After connecting BBEPDs and ABEPUs to skeleton

(g) (h)

Figure 5.2 Results of applying main steps of character segmentation algorithm to a handwritten

word.

As can be seen in Fig. 5.2, the branches of the skeletal graph correspond to the possible

segmentation paths. Therefore, in order to form the character (or sub-characters) regions of

the image from the skeletal graph, we apply the following rules in order: 1) we remove all

curves and all short branches of the skeletal graph, because they do not correspond to any

segmentation path; 2) for each BEPD of the graph, we connect it to the nearest point on the

skeletal graph that is below the baseline; 3) for each BEPU of the graph, we connect it to

the nearest point on the skeletal graph that is above the baseline; and 4) we remove all the

remaining branches of the graph. The results of the main steps of the algorithm as applied

72

to a handwritten word is shown in Fig. 5.2. The pseudo code of the algorithm is given in

Fig. 5.3.

Algorithm EXPLICITCHARACTERSEGMENTATION(I)
Input. A binary/grayscale image I representing a machine-printed or handwritten word.
Output. A list of regions corresponding to characters or sub-characters of I.

Step 1. Preprocessing:

Step 1.1. Correct slant of I.
 Step 1.2. Binarize I.
 Step 1.3. Vertically fill inside each connected component of I.
 Step 1.4. Remove isolated dots in I.
Step 2. Skeletonization:
 S ← Skeleton of background of I.
Step 3. Formation of segmentation paths:
 Step 3.1. G(V,E) ← Geometric (location aware) graph corresponding to S.
 Step 3.2. Remove all short branches from G.
 Step 3.3. for each e ∈ E
 do if e is a BEPD
 then connect e to the nearest skeleton point below it.

 else if e is a BEPU
 then connect e to the nearest skeleton point above it.
Step 3.4. Remove all remaining curves from G.

Figure 5.3 Explicit character segmentation algorithm using background skeletal graph.

5.3 Handling Over-segmentation and Under-Segmentation

The performance of a character segmentation algorithm is dropped by over-segmentation

and under-segmentation errors. The output of our region-based segmentation algorithm is

a list of disjoint regions corresponding to areas of image. We define over-segmentation as

when there is more than one region whose union corresponds to one character. We define

under-segmentation as when there is one region that corresponds to more than one

character. For handling over-segmentation errors, we devise a merging method based on

graph partitioning, and for detecting under-segmentation errors, we propose a

73

classification method based on fuzzy inference systems. In the following sections, we

will present the descriptions of these two methods.

5.3.1 Character Merging Based on Graph Partitioning

Over-segmentation is unavoidable without recognition. In other words, an explicit

character segmentation algorithm, without knowing what a character is, may have to

over-segment it. Moreover, sometimes we have intrinsic over-segmented characters

which are due to noise, abrupt ink changes, binarization, or even the writing style.

Indeed, certain characters are composed of more than one region: a main body and an

accent or some dots. In handwriting it is not always trivial to decide to which neighboring

character a dot or accent belongs to.

We devise a novel merging algorithm for handling broken characters which is based on

graph partitioning with a heuristic search. This merging algorithm can be applied as a

treatment step after character segmentation and before recognition. The algorithm is

briefly explained in the following paragraphs.

Assume that we have an input sequence of connected components where we know each

one corresponds to either a character or a piece of a character. We need to merge some

pieces in order to form a sequence of characters out of the input sequence of characters

and sub-characters. This problem may appear easy at a first glance, however as we will

show, in general it is a NP-complete problem. Simply, the number of possible ways to

form a sequence of characters out of a sequence of broken characters can be too many.

Without knowing what the sequence means, we don’t know how to merge the broken

characters. This is a chicken-egg dilemma which one way to overcome is to generate all

74

the possible hypotheses in the segmentation phase and then resolve the ambiguity using

the context. For handwriting recognition, the context needed to find the most likely

candidate among the possible hypotheses is usually a dictionary of words. However, in

general a dictionary alone is not enough and we need to employ a language model as

well. Fig. 5.4 shows samples of handwritten words that may have more than one

transcription. Therefore, over-segmentation is unavoidable without recognition/context,

and the segmentation algorithm has to generate all the possible hypotheses.

(a) clear or dear (b) man or won

Figure 5.4 Samples of handwritten words that can have more than one transcription.

The basic idea of the algorithm is to define a graph corresponding to the word image and

then obtain the partitions of the graph that represent the different ways that the character

pieces can be merged. Since graph partitioning is NP-complete and it is practically

impossible to generate and then evaluate all the partitions, we develop a heuristic that can

efficiently limit the search space to more promising partitions. Like any other heuristic

search, theoretically the best solution is not guaranteed, however a good solution always

is as we will show later on.

In the following, first we will define the neighborhood relation by which we obtain the

neighborhood graph. Then, we will present the graph partitioning algorithm.

75

5.3.1.1 Neighbourhood relation

The input to the merging algorithm is a sequence of connected components S = {s0 ,s1, ...,

sN-1} where each one corresponds to either a character or a piece of a character. We want

to merge some mergeable connected components of S in order to create sequences of a

certain smaller size. Therefore, we need to define a neighbourhood relation on the

sequence in order to determine whether or not two connected components (in general two

sequences of connected components) are mergeable. We consider two connected

components to be neighbours if they are close or have enough vertical overlapping. To be

more precise, two connected components si and sj are neighbours if the distance between

them is below a certain threshold Dmax, or if the amount of overlapping between their

projections on the x-axis is above a certain threshold Omin. The distance between two

connected components is defined as the minimum of the Euclidean distances between any

two of their respective points. The performance of the algorithm is not sensitive to the

values for these thresholds. A typical value for Dmax would be 5 pixels, and a typical

value for Omin would be 50%. The higher the value for Dmax, and the lower the value for

Omin, the more flexibility the algorithm has to merge the connected components.

Having defined the neighbourhood relation, we create the graph G(V,E) from the

sequence of connected components S, where each node vi ∈V corresponds to one

connected component si, and for each pair of neighbouring connected components si and

sj, there is an each edge eij = <vi, vj>.

Fig. 5.5 shows an example of a neighbourhood graph corresponding to a handwritten

word.

76

(a) handwritten word (b) neighbourhood graph corresponding to (a)

Figure 5.5 Example of a neighbourhood graph corresponding to a handwritten word.

The neighbourhood graph determines how the connected components in the sequence

should be merged. Having created the neighbourhood graph G(V,E) , we partition it into k

parts V1, V2,..., Vk where the vertices in each partition determine the corresponding

connected components that will be merged. In general, the number of parts k is between 1

(in which case all connected components will be merged together) to the number of

vertices |V| = |S| (in which case no merging will be performed). However, in most cases

we can limit the range of k. The number of parts is equal to the number of letters/digits of

the word/numeral image, which can be estimated. Let Aavg be the average aspect ratio

(height to width ratio) for the characters, then for an word/numeral image I with Ih rows

and Iw columns, the average number of characters nchars is Aavg * Iw / Ih. In order to

eliminate the estimation errors, in our experiments we set k = nchars – 3 to nchars + 3. It

should be mentioned that in some applications such as word spotting, the value of k is

known exactly, because we are going to spot a specific keyword with a known length in a

document.

5.3.1.2 Graph Partitioning

Having defined the neighbourhood graph G, we compute the partitions of G in order to

find the mergeable connected components of S. However, we cannot simply compute all

1 2 3 4

5

77

the possible partitions and then evaluate them and choose the good ones, because the

number of partitions is combinatorial in the number of nodes of the graph. For a complete

graph with n nodes, the number of partitions is the n’th Bell number denoted by Bn. Even

for small size problems the search space is too large to be exhausted*. Therefore, we need

a way to prune such a large space of partitions. In other words, we want to generate a

small set of partitions that is guaranteed to include the good partitions.

Our solution to this problem is a bottom-up one by using a heuristic to guide the search.

We start with the trivial partition of size n = |V| where each node (corresponding to a

connected component) is in one and only one partition. Then, we reduce the number of

partitions by 1 at each iteration by merging all mergeable partitions and then keep the

good ones for the next iteration. The good partitions are those ones with the highest

scores. The score of a partition is a measure of how likely the corresponding sequence of

connected components can be a sequence of characters. We use two properties of text in

order to define the measure. First, connected components (corresponding to letters or

digits) have more or less the same width. Second, there is not much overlapping between

connected components as the text is written horizontally. Therefore, we want a measure

that favours sequences having with more regularity and less overlapping over sequences

with less regularity and more overlapping.

The regularity measure that we define is based on the Arithmetic Mean-Geometric Mean

(AM-GM) inequality which states that for any list of n non-negative real numbers x0, x1,

..., xn-1 we have:

* To get an idea, even for a small value for n such as 15, the number of partitions is as large as B15 =
1,382,958,545.

78

n
n

n xxx
n

xxx
110

110 ...
−

− ⋅⋅⋅⋅≥
+++

(5.1)

and that equality holds if and only if we have x0 = x1 = ... = xn-1. A geometric

interpretation of the AM-GM inequality is that, for n = 2, a square has the largest area

among all rectangles with equal perimeter. In general, an n-cube has the largest volume

among all n-dimensional boxes with the same edge length sum.

Let W = {w0, w1, ..., wn-1} be the widths of a sequence of connected components S, if we

consider these wi’s as edge lengths of an n-dimensional box, then the sequence of

connected component that is the most regular (in terms of widths) is an n-dimensional

box which has the largest volume. Therefore, for a list of widths W, we define the

regularity measure as follows:

R(W) =
()ni

i

i

n

ii w

w
w

w
w

w
w

w

∑
∏

∑∑∑
=⋅⋅⋅ −110 ... (5.2)

Note that we have divided each width wi by the sum of the widths in order to normalize

the perimeter to 1. Thus, the maximum of R(W) is
nn

1 which is reached when w0 = w1 =

... = wn-1. Since we want to combine R(w) with other measures for the computation of the

total measure, we divide it by the maximum to derive the normalized regularity measure

RNorm:

RNorm(W) =
()n

i

in

w

w
n

∑
∏⋅ (5.3)

79

Now, obviously we have 0 < RNorm(W) ≤ 1. However, in practice we implement RNorm(W)

by taking logarithm of both sides in order to avoid overflows. Therefore, we re-write

Equation (5) as follows:

RNorm(W) =))ln()ln()ln(exp(∑ ∑−+ ii wnwnn (5.4)

RNorm(W) measures how regular a sequence of connected components is in terms of their

widths. In order to quantify the amount of vertical overlapping between connected

components, first we define the percentage of the overlapping Op between two line

segments Li and Lj as follows:

.

 versa.or vice inside completely isif1

commonin segment line theis whereoverlap some haveandif
||||

||2
overlap.nohaveandif0

),(,
,

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
=

ji

jiji
ji

ji

ji

jip

LL

LLL
LL

L
LL

LLO

(5.5)

For a set of line segments L = {L0, L1, ..., Ln-1}, we define the normalized total amount of

overlapping as follows:

Op(L) = ∑∑
−

=

−

+=−

2

0

1

1
),(.

)1(
2 n

i

n

ij
jip LLO

nn
 (5.6)

which is the average amount of overlapping between all pairs of line segments in L. The

minimum of Op(L) is 0 when there is no overlapping between any pairs of line segments,

and the maximum is 1 when all pairs have complete overlapping.

Now, in order to define the score SG of a neighbourhood graph G, we combine RNorm(W)

and Op(L) in the following way:

80

SG = RNorm(W) × (1 - Op(L)) (5.7)

The maximum of SG is 1, which is reached when the bounding boxes corresponding to

the partitions have all the same width and there is no vertical overlapping between any

pairs of bounding boxes.

Having defined the score for neighbourhood graphs, we describe the graph partitioning

algorithm as given in Fig. 5.6. The order of the algorithm is O(N × |E| × (|V| - Nmin)),

where |E| is the number of edges of the neighbourhood graph G0, which is the number of

pairs of connected components of S that are neighbours according to the neighbourhood

relation; |V| is the number of vertices of G0; Nmin is the desired minimum number of

connected components in an output sequence of connected components; and N is the

number of best graphs that are kept at each level of the search. In our experiments we set

N = 50.

81

Algorithm MERGECONNECTEDCOMPONENTS(S, Nmin, Nmax)
Input. A sequence of connected components S corresponding to characters or sub-characters.
Output. A set of output sequence of connected components W with sizes of ≥ Nmin and ≤Nmax.

Step 1. Q ←{}
Step 2. Define of neighbourhood relation R.
Step 3. G0(V0, E0) ← the neighbourhood graph corresponding to S.
 where |V0| = |S| and |E0| = number of pairs of connected components of S which are neighbours
according to R.
Step 4. Q ← PARTITIONGRAPH({G0}, Q, Nmin, Nmax).
Step 5. W ← Set of sequence of connected components corresponding to Q.
Step 6. return W.

Algorithm PARTITIONGRAPH(P, Q, Nmin, Nmax)
Input. A set of partitioned graphs P where the partitions of each graph determine the connected components
of S that are merged together.
Output. A set of partitioned graphs Q with sizes of ≥ Nmin and ≤Nmax.

Step 1. Initialize an empty list of N-best partitioned graphs TN (for the next level of search).
Step 2. for each partitioned graph G(V,E) ∈ P
 do if |V| < Nmin
 then continue.
 else if Nmin ≤ |V| ≤ Nmax
 then Q ← Q {G}.
 if Nmin == |V|
 then continue. (* no more merging is needed *)
 for each edge e ∈ E
 do merge the two end partitions (i.e. two end sets of vertices) of e to make
 a new partitioned graph Gnew.
 Insert Gnew to TN.
Step 3. Compute the score of each partitioned graph TN using Equation (5.7) and keep the N-best ones.
Step 4. PARTITIONGRAPH(TN, Q, Nmin, Nmax)
Step 5. return Q.

Figure 5.6 Merging algorithm for sequence of connected components based on graph partitioning.

5.3.2 Detection of Under-segmented Pairs of Handwritten Characters

Using Fuzzy Inference System

Under-segmented characters are the other type of error in the output of an explicit

character segmentation algorithm. In our algorithm, under-segmented errors are the

82

results of branches of the skeletal graph that are not deep enough to form a segmentation

path. This may happen where neighboring characters are too close together, due to the

writing style or improper binarization. Fig. 5.7 shows samples of handwritten pairs of

characters without deep enough skeletal branches on segmentation paths.

(a) Pe (b) ex (c) oo/00 (d) an

Figure 5.7 Samples of handwritten pairs of characters without deep enough skeletal branches on

segmentation paths.

It is important to detect under-segmented characters as they will adversely affect the

process of word recognition and consequently spotting. This is due to the fact that the

output of a character classifier for a pair of characters that it has not been trained for is

unpredictable.

For the detection of under-segmented pairs of characters we devise a classifier based on a

Fuzzy Inference System (FIS) using a set of features called Average Number of

Transitions (ANTs) that we specifically design for this classification task. In the

following, we will describe the ANT features and then the rule-base for the FIS. Finally,

we will present the database that we created for the evaluation of our method and show

the effectiveness of our approach.

83

5.3.2.1 Average Number of Transition (ANT) Features

By looking at the under-segmented pairs, some of which are shown Fig. 5.7, we notice

that the basic feature that distinguishes a binary image that represents more than one

character from a binary image that represents one character (or part of a character) is the

number of gaps in the image. The more gaps an image has, the likelier it is an under-

segmented pair of characters.

The number of gaps in a row (or column) of a binary image is actually the number of

transitions between black and white runs in that row (or column). Therefore, in order to

estimate the average number of gaps for the whole image, we compute the average of

transitions between black and white runs over all rows and columns of the image. We are

able to distinguish most characters from under-segmented characters by counting the

number of horizontal gaps only. However, for few characters such as ‘m’/‘M’ and

‘w’/‘W’ whose average number of horizontal gaps is 2 or more, we have to make the

decision based on the number of horizontal and vertical gaps. The average number of

vertical gaps for these characters is 0, which can separate them from a pair of under-

segmented O’s (Fig. 5.7(c)) whose average number of vertical gaps is 1.

We formally define the ANT features as follows. Let IM×N denote a binary image with M

rows and N columns that represents part of a character, a character or a sequence of

characters. Let Ri denote the i‘th row, and Cj denote the j’th column of I where 0 ≤ i ≤ M

– 1, and 0 ≤ j ≤ N – 1.

We define a salient white run in a row (or column) of an image as a long-enough

sequence of white pixels that is surrounded by two long-enough sequences of black

84

pixels on each side. A run is considered as long-enough if its length is greater than or

equal to a threshold. We use two thresholds, one for white runs and the other one for

black runs. Let LRi
W(TW, TB) denote the number of salient white runs in Ri where TW is the

threshold for white runs, and TB is the threshold for black runs. We use these thresholds

so as the average number of gaps is not sensitive to short runs that may correspond to

noise. Assuming that in the binary image I, the background is represented by white pixels

and the text is represented by black pixels, a reasonable value for TB would be

somewhere between the minimum stroke width and average stroke width. In our

experiments, we obtained the best classification results with TB = 2, which means that the

classification is not too sensitive to the value that we choose for TB as long as we make

sure that the value is smaller than the average stroke width. For TW, we choose a range of

values and then compute the average of LRi
W(TW, TB) over this range.

Let TWmin be the minimum and TWmax be maximum in the range of values for TW. Then, we

define the average number of gaps GRi in the i’th row of I as follows:

GRi = ()1/),(minmax

max

min

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

WW

T

TT
BW

W
Ri TTTTL

W

WW

(5.8)

In our experiments, we set TWmin to 2, and TWmax to 4.

Having defined the average number of gaps, we define the set of features as follows:

FR01: Normalized number of rows with 0 or 1 gaps.

FR2+: Normalized number of rows with 2 or more gaps.

FR3+: Normalized number of rows with 3 or more gaps.

FC0: Normalized number of columns with 0 gaps.

85

FC1: Normalized number of columns with 1 gap.

FC3+: Normalized number of columns with 3 or more gaps.

Where we normalize a number by dividing it by the length of the dimension that it is

computed for, which is the number of rows of the image for FR features, and the number

of columns of the image for FC features.

Besides these transition-based features, we define the Aspect Ratio (AR) of the image as

the last feature:

FAR: ratio of the height of the image (M) to its width (N).

5.3.2.2 Fuzzy Inference System (FIS)

Having defined the features, we need to define the fuzzy sets on each feature. The three

basic membership functions for the definition of the fuzzy sets are given below.

Triangular: a triangle defined by the x-coordinates of the three vertices as shown in Fig.

5.8(a).

ShoulderLeft: a trapezoid that extends to -∞, thereby defined by the x-coordinates of the

two vertices of the right boundary as shown in Fig. 5.8(b).

ShoulderRight: a trapezoid that extends to +∞, thereby defined by the x-coordinates of

the two vertices of the left boundary as shown in Fig. 5.8(c).

(a) (b) (c)

Figure 5.8 Three basic membership functions for the definition of fuzzy sets.

 a b c

1

Triangular(x)
a,b,c

x a b

1

ShoulderLeft(x)
a,b

x a b

1

ShoulderRight(x)
a,b

x

86

Table 5.1 Fuzzy sets defined on shape features.

Variable Fuzzy sets

FR01 HIGH := ShoulderRight 0.95, 1.0

FR2+ HIGH := ShoulderRight 0.1, 0.2

FR3+ HIGH := ShoulderRight 0.01, 0.02

TOO_HIGH := ShoulderRight 0.3, 0.6

FC0 HIGH := ShoulderRight 0.95, 1.0

FC1 HIGH := ShoulderRight 0.3, 0.6

FC3+ HIGH := ShoulderRight 0.1, 0.2

FAR LOW := ShoulderLeft 0.2, 0.33

HIGH := ShoulderRight 2.0, 3.5

UnderSegmented LOW := ShoulderLeft 0.25, 0.5

MEDIUM := Triangular 0.25, 0.5, 0.75

HIGH := ShoulderRight 0.5, 0.75

TOO_HIGH := ShoulderRight 0.75, 0.85

The fuzzy sets that we define on each variable (the seven features and the output

variable) are given in Table 5.1.

The complete rule base for the under-segmented detection FIS is defined as follows.

Rule #1. if FC3+ is HIGH then Undersegmented is HIGH.

Rule #2. if FAR is not HIGH and FR3+ is TOO_HIGH then Undersegmented is

TOO_HIGH.

87

Rule #3. if FAR is HIGH and FR01 is HIGH and FC3+ is not HIGH then

Undersegmented is very LOW.

Rule #4. if FAR is HIGH and FR01 is HIGH and FC3+ is HIGH then

Undersegmented is LOW.

Rule #5. if FAR is HIGH and FR01 is not HIGH then Undersegmented is

MEDIUM.

Rule #6. if FAR is LOW and FR01 is not HIGH then Undersegmented is HIGH.

Rule #7. if FAR is LOW and FR01 is HIGH and FC3+ is not HIGH then

Undersegmented is MEDIUM.

Rule #8. if FAR is LOW and FR01 is HIGH and FC3+ is HIGH then

Undersegmented is somewhat HIGH.

Rule #9. if FAR is not LOW and FAR is not HIGH and FR01 is HIGH then

Undersegmented is LOW.

Rule #10. if FAR is not LOW and FAR is not HIGH and FR01 is not HIGH and

(FR2+ is HIGH or FR3+ is HIGH) then Undersegmented is HIGH.

Rule #11. if FAR is not LOW and FAR is not HIGH and FR01 is not HIGH and

(FR2+ is not HIGH and FR3+ is not HIGH) then Undersegmented is MEDIUM

88

5.3.2.3 Experimental Results

For the evaluation of our under-segmented detection approach we created a database of

handwritten characters. Each image in the database is either part of a character (over-

segmented), one character (perfectly-segmented), or more than one char (under-

segmented). The corresponding label for each image is the integer that best describes the

number of characters in the image. That is 0 for an over-segmented character, 1 for a

perfectly-segmented character, and 2 or more for an under-segmented sequence of

characters.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

over-segmented perfectly-segmented and under-segmented

Figure 5.9 Samples from database of handwritten characters for evaluation of under-segmented

detection method.

We automatically generated the images by applying the character segmentation algorithm

to a randomly selected subset of words from the IAM database. Out of all segmented

images, we chose 2000 over-segmented characters, 2000 perfectly-segmented characters

and 12000 under-segmented sequences of characters. Next, we used our under-segmented

detection method to automatically label the images, and finally we examined all the

samples manually and corrected the labeling mistakes. Some samples of the images in

this database are shown in Fig. 5.9.

The FIS-based classifier achieves a correct classification rate of %96 on this database.

The correct classification rate for over-segmented and perfectly segmented samples is

89

%96.6, and for under-segmented samples is %95.5. It should be noted that these rates are

approximations to the real performance of the system which can be higher. In

handwriting, we can find many shapes that can be considered as one or two characters

(Fig. 5.9(f-h)). In such cases, it is better to segment (or over-segment) the shape, because

we will have to resolve the ambiguity using recognition/context.

Figure 5.10 Samples of under-segmented pairs of handwritten characters that are correctly classified

by under-segmented detection method.

Fig. 5.10 shows samples of under-segmented pairs of handwritten characters that are

correctly classified by fuzzy inference system. Fig. 5.11 shows some samples that are

misclassified.

Figure 5.11 Samples of handwritten characters that are misclassified by under-segmented detection

method.

90

Chapter 6

Cursive Character Recognition

6.1 Introduction

Recognition of printed characters using computers has been one of the first and most

successful applications of pattern recognition. Optical Character Recognition (OCR) has

been an active field of research for more than three decades. There are hundreds of

hundreds of approaches proposed to recognition of machine-printed and handwritten

characters for different scripts [CSSJ09]. For machine-printed Latin scripts, the problem

can be considered as already solved at least when the level of noise is low [Fuj08]. On

applications where clear imaging is available typical recognition rates for machine-

printed characters exceed 99%. However, the difficulty is in dealing with handwritten

characters (and also when the images are noisy). The difficulty of the recognition of

handwritten characters lies in the fact that there can be as many handwriting styles as

there are people. In fact, it is widely believed that each individual’s handwriting is unique

to themselves. In the discipline of forensic science, handwriting identification, which is

the study of the identification or verification of the writer of a given handwritten

document, is based on the principle that the handwritings of no two people are exactly

alike. This means that the number of forms that a handwritten character can take is too

many, making the recognition a difficult task even for humans.

91

‘a’ or ‘c’?

‘e’ or ‘c’?

‘a’ or ‘Q’?

‘e’ or ‘R’?

‘A’ or ‘H’?

‘g’ or ‘y’?

‘A’ or ‘R’?

‘H’ or ‘M’?

‘a’ or ‘u?

‘H’ or ‘N’?

‘a’ or ‘w’?

‘J’ or ‘I’?

‘b’ or ‘s’?

‘J’ or ‘N’?

‘b’ or ‘G’?

‘J’ or ‘s’?

‘b’ or ‘o’?

‘k’/’K’ or ‘R’?

‘c’ or ‘L’?

‘n’/N’ or

‘m’/M’?

‘c’ or ‘o’?

‘n’/’N’ or ‘w’?

‘d’ or ‘J’?

‘p’/’P’ or ‘f’?

‘d’ or ‘o’?

‘r’ or ‘T’?

‘D’ or ‘O’?

‘r’ or ‘v’/’V’?

‘D’ or ‘P’?

‘r’ or ‘y’/’Y’?

Figure 6.1 Fuzziness in handwriting. Examples of letters from NIST SD19 database which may be

confused with each other.

92

Fig. 6.1 shows examples of pairs of letters from NIST SD 19 database [GBC+94] which

may be confused with each other. According to our analysis on this database, there are 29

pairs of letters (lower case and upper case) which in some handwritten styles may be

confused with each other. Fig. 6.1 shows samples of these confusing pairs of characters:

<‘a’, ‘c’>, <‘a’, ‘Q’>, <‘A’, ‘H’>, <‘A’, ‘R’>, <‘a’, ‘u’>, <‘a’, ‘w’>, <‘b’, ‘s’>, <‘b’,

‘G’>, <‘b’, ‘o’>, <‘c’, ‘L’>, <‘c’, ‘o’>, <‘d’, ‘J’>, <‘d’/’D’, ‘o’/‘O’>, <‘D’, ‘P’>, <‘e’,

‘c’>, <‘e’, ‘R’>, <‘g’, ‘y’>, <‘H’, ‘M’>, <‘H’, ‘N’>, <‘J’, ‘I’>, <‘J’, ‘N’>, <‘J’, ‘s’>,

<‘k’/‘K’, ‘R’>, <‘n’/‘N’, ‘m’/ ‘M’>, <‘n’/‘N’, ‘W’>, <‘p’/‘P’, ‘f’ >, <‘r’, ‘T’>, <‘r’, ‘v’/

‘V’>, <‘r’, ‘y’/ ‘Y’>.

The samples shown in Fig. 6.1 are isolated letters in the sense that during the collection

of the database participants were asked to write these letters separately within special

forms. The problem is more challenging when the letters are written cursively. Fig. 6.2

shows samples of handwritten words from the IAM database [MB02] with letters that are

difficult to recognize correctly in isolation.

 These two letters are almost identical, The pair ‘ch’ can be recognized as ‘di’, ‘ai’, ‘cu’, ‘ou’, ‘on’, ‘om’ etc.

 whereas one is ‘f’ and the other is ‘t’.

Figure 6.2 Samples of handwritten words from the IAM database with letters that are difficult to

recognize correctly in isolation.

Despite the inherit challenges in handwritten characters, there has been considerable

success in handwritten OCR systems. For isolated handwritten letters, the performance of

93

state-of-the-art techniques reported on standard databases of such as NIST SD 19 is

around 95% to 96.82% [CSSJ09, MCS06]. For cursive handwritten letters, the state-of-

the-art word recognition engines are reported to have a recognition rate of around 73.51%

to 88.10% at character level [KBJO10, GLF+09]. Of course, a lower recognition rate at

characters level does not necessarily correspond to a lower recognition rate at word level,

partly because not all combinations of characters corresponds to lexicon entries. Despite

the lower performance of recognition engines for cursive letters, the state-of-the-art

handwritten word recognition approaches have achieved impressively high performances

of around 72.11%-74.9% on very large lexicons (10,000 to 100,000 words) [GLF+09].

Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) have been the

most successful classification paradigms for isolated character recognition. In

benchmarking tests carried out on standard databases of handwritten letters and digits, the

highest recognition rates are often achieved by variations of ANNs and SVMs, closely

followed by Hidden Markov Models (HMMs) [CSSJ09, MCS06]. Which classifier is the

best for a specific application depends on the nature of the data under consideration, and

other factors including preprocessing of the data, representation of the data in the feature

space, etc. New theoretical insights indicate that some of the best-established

classification paradigms such as SVMs and Radial Basis Function (RBF) ANNs can be

formulated in a way to have exactly the same or highly similar functionality [FKSO10].

Then, the difference will only be between the optimization (learning) algorithms used to

find the parameters for a specific classifier. However, according to the No Free Lunch

(NFL) theorem, there is no single learning algorithm that works best on all supervised

learning problems [DHS00, HP02]. A recent research done a standard database of

94

handwritten digits [CMGS10] can be served as tangible evidence of the validity of the

NFL theory in the realm of character recognition. It is shown that plain multi-layer

perceptrons trained with the traditional back-propagation algorithm achieve one of the

highest recognition rates ever reported for isolated handwritten digits1.

In the light of the NFL theorem, perhaps the most straightforward way of overcoming the

inherent weaknesses of single classification approaches is to combine them. Ensemble

methods in statistics and machine learning refer to the methods of combining several

weak classifiers in an attempt to make a stronger classifier. It has been empirically shown

that in many classification problems an ensemble of classifiers tend to yield better results

than only one classifier [Rok10].

In this chapter we present our approach to cursive character recognition which is based

on input perturbation and classifier combination. For each input pattern, firstly, we

generate a few versions of it slightly different in shape, and then we recognize each one

by an ensemble of neural networks. The idea behind the input perturbation is to make the

classification more robust by submitting several slightly distorted versions of an input

pattern along with the original pattern to a classifier and then combining the outputs.

Ideally, from the classifier point of view, a slightly distorted version of a pattern is the

same as the original pattern, and we should not gain any advantage by combining the

classification results. However, in practice neither the process of feature extraction nor

the classification is perfect. It has been shown that the perturbation method can improve

the classification performance in challenging problems such as digit recognition [HB97].

In this chapter, we show that a considerably more challenging problem (56 vs. 10 classes)

can benefit from the same method. To the best of our knowledge this is the first time that

1 A strikingly low error rate of 0.35% on the MNIST database.

95

the perturbation method is applied to cursive character recognition and it is proved to be

successful in increasing the classification performance. We perform the classification

using a classifier combination method based on a modified Borda count. Furthermore, we

devise a new weight update formula in order to counteract the tendency of the neural

networks to over-fit the training data. Our experimental results show that the ensemble of

neural networks trained with the new weight update formula in conjunction with the input

perturbation improves the recognition rate for handwritten cursive characters.

6.2 Artificial Neural Network for Handwritten Character Recognition

Our character recognition engine is based upon a feed forward neural network with an

enhanced training method which dynamically penalizes the weights of the neurons in

order to improve the generalization performance. In the following, firstly we will briefly

describe the feature set that we extracted from characters and then the training

mechanism.

6.2.1. Feature Extraction

We extracted 363 features from each character image. These features include basic

geometrical features, horizontal and vertical histogram features, Zernike moments

[HK06], Fourier features, chain codes, and local gradient histogram features [RSP09a]

extracted from different zones of the input image.

96

6.2.2. Training

The architecture of our neural network was a 3-layer feed-forward with 363 neurons in

the input layer, 130 neurons in the first hidden layer, 50 neurons in the second hidden

layer, and 26 output neurons. The activation function for each neuron was a sigmoid

ranging from 0 to 1. We used the back-propagation learning algorithm with momentum

and regularization which we implemented by a weight penalization scheme.

In back-propagation learning with momentum, the weight update formula for each weight

is defined as below:

)1(
)(

.)(−Δ+
∂
∂

−=Δ tw
tw

Etw i
i

i αρ (6.1)

Where E is the error, and ρ and α are the learning rates.

It is well know that in order to guarantee good generalization ability, the number of

degrees of freedom or the number of weights must be considerably smaller than the

amount of information available for training. Regularization is common method for

avoiding over-training or improving generalization ability. We implemented a

regularization strategy by the so called weight decay scheme. We added a weight

penalization term to the weight update rule (Equation 6.1) which led to the following

weight-update rule:

∑
−

=−
+

−−Δ+
∂
∂

−=Δ 1

0

||
1

11

1)1(
)(

.)(
jN

i
ji

j

i
i

i

w
N

tw
tw

Etw λαρ (6.2)

Therefore, we penalized each weight by an amount which is related to the sum of weights

of the connections which are going to the same neuron. Our experiments performed on an

unseen data verify that this penalization scheme improves the recognition performance.

97

(a) standard classification

(b) perturbation-based classification

Figure 6.3 Block diagram of perturbation-based classification versus standard classification.

6.3 Perturbation Method for Character Recognition

Perturbation method is a way of boosting performance in classifiers [HB97, VB08].

Based on the assumption that an input pattern is distorted by a certain set of geometrical

transformations, the perturbation method reduces the effect of distortion by classification

of distorted versions of the input pattern. We chose a set of geometric transformations,

such as rotation, slant, erosion, dilation, etc. Ideally, this set must contain all the possible

transformations that may deform an input pattern. In order to classify an input pattern, we

apply all the geometric transformations in the set to the pattern and then classify each

distorted version separately, and finally combine the result of classifications. The

Classifier Input Pattern
Classification

Results

Classifier

Classifier

Classifier

Transformation Operator #1

Transformation Operator #2

Transformation Operator #N

Input Pattern

Combiner

Classification
Results

98

combination of classifier can be done by a fusion technique [BB08] such as majority

voting.

A high-level block diagram of the perturbation method versus standard classification is

given in Fig. 6.3. Note that in the basic perturbation method, the same classifier is used

for all distorted (actually, anti-distorted) versions of the input pattern. However, in

general we can use different classifiers in combination with different sets of

transformation operators. The block diagram of the general perturbation-based

classification is shown in Fig. 6.4.

6.3.1 Transformation Operators

In the current implementation, we have used eight transformation operators as listed

below.

1. Identity transformation (returns the original pattern).

2. Rotation to the right by a random angle between 1˚ to 3˚.

3. Rotation to the right by a random angle between 4˚ to 6˚.

4. Rotation to the left by a random angle between 1˚ to 3˚.

5. Rotation to the left by a random angle between 4˚ to 6˚.

6. Stroke width normalization.

7. Horizontal dilation by a 1 x 3 structuring element.

8. Vertical dilation by a 3 x 1 structuring element.

Stroke width normalization is done by computing the skeleton of the pattern and the

dilating it by a 3 x 3 structuring element. Based on our experiments which will be

99

summarized at the end of this section, this set of transformation consistently results in a

gain in recognition performance. However, it could be interesting to experiment with

some other geometrical transforms such as shrink, perspective and slant.

Figure 6.4 Block diagram of general perturbation-based classification.

6.3.2 Combination of Classifiers

There are several different approaches to the combination of classifiers hypotheses

[VGC01]. Borda count is one of the most popular methods of combining rankings, thanks

to its simplicity and effectiveness. Several variants of Borda count have been proposed in

the pattern recognition community [vES00]. In our perturbation-based recognition

approach, we utilize the modified Borda count proposed in [VGC01]. In [VGC01] the

authors showed the effectiveness of the modified Borda count in word recognition.

However, here we apply the method at character level. Our experimental results show

that the modified Borda count as a method of combining character classifiers, improves

the overall recognition rate at word level. A summary of the modified Borda count is

given below.

Classification
Results

Classifier #1

Classifier #2

Classifier #N

Set of Transformation Operators #1

Set of Transformation Operators #2

Set of Transformation Operators #N

Input Pattern

Combiner

100

6.3.2.1 Modified Borda Count

The Borda count is a rank-based election method. In classifiers combination, we can

consider each classifier as a voter, and each class as a candidate. Therefore, each

classifier provides a ranking of classes, assuming that we use probabilistic or ranked

classifiers. In the conventional Borda count, the winner is determined by giving each

candidate a certain number of points corresponding to the position where it is ranked by

each voter. Once all votes have been counted the candidate with the most points is the

winner. The main advantage of conventional Borda count is that no voter can dominate

the final decision. However, in classification problems the major disadvantage of the

conventional Borda is that it ignores the confidence scores produced by different

classifiers.

In order to overcome the disadvantage of the conventional method, the modified Borda

adds three components to the conventional decision making process as follows:

1) The rank of a candidate is a percentage which is determined by the rank of the

candidate among the top N candidates. Whereas in the conventional Borda, the

rank of a candidate is the number of candidates that stand below it. The

percentage-based rank in the modified Borda is calculated as follows:

Rank(C) =
⎪⎩

⎪
⎨
⎧

otherwise0

candidates top theamong is if)candidates in top of(position - 1 NC
N

NC

(6.3)

101

Where C denotes a candidate (i.e. class), and position of C is a zero-based index.

Therefore, for N = 5 for example, the rank of the first candidate is 1, the rank of

the second candidate is 1 – 1 / 5 = 0.8, and so on.

2) The percentage-based rank of a candidate is further adjusted by the confidence

score that is assigned to the candidate by a voter (i.e. classifier). Let CSC denote

the confidence score assigned to the candidate C. Then, assuming that the

confidence score has a value in the range [0, 1], we simply adjust the percentage-

based rank as follows:

RankCA(C) = Rank(C) × CSC. (6.4)

3) The confidence-adjusted rank (i.e. RankCS) that comes from each voter is further

modified by a degree of credibility of the voter. The degree of credibility has a

similar effect to the weight parameter in the weighted Borda count. In the simplest

form, we can take the recognition rate of a classifier (computed on a validation

set) as its degree of credibility. Then, we adjust the confidence-adjusted rank in

order to obtain the total rank of a candidate as follows:

RankTotal(C) = RankCA(C) × Dcr (6.5)

Where Dcr denotes the degree of credibility of the voter.

The result of the election is obtained by adding up the total ranks that each candidate

receives from all the voters.

102

6.4 Experimental Results

We verified the effectiveness of our character recognition approach by performing

experiments on a dataset of handwritten characters that is composed of isolated characters

and cursive characters. We took the isolated characters from the standard NIST SD 19

database [GBC+94], and we generated the cursive characters by applying by applying our

character segmentation algorithm to the IAM database of handwritten words [MB02] and

manually removing under-segmented and over-segmented characters.

We chose 930 samples for each class of character, and used 2/3 for training and the

remaining 1/3 for testing. The division of the data into training and test parts was based

on a random sampling. We carried out our experiments on 5 different random divisions

of the data into training and test parts. The results reported in the following are the

average of these 5 sets of experiments.

Table 6.1 Correct classification rate for database of handwritten characters

Classification Rate

Baseline

Classification

(1 neural network)

Input perturbation

(8 transforms)

Classifier

Combination

(ensemble of 5 NNs)

Input perturbation +

Classifier

Combination

with weight decay 82.31 87.23 88.15 92.71

w/out weight decay 81.40 87.23 87.62 92.63

We obtained the highest classification rate when we used the input perturbation method

(8 transforms) in conjunction with the classifier combination (5 neural networks). The

classification rate in this case was around 92.7%, which was higher than when we only

103

used the perturbation or the classifier combination alone. Table 6.1 summarizes these

results. As we can see in all cases, the classification rate that we obtain by the either the

perturbation method or the ensemble or both is considerably higher than the baseline

classification (only one neural network without input perturbation). We can also see that

the weight decay formula slightly improves the classification rate, especially when used

in isolation.

104

Chapter 7

Generalized Minimum Edit Distance for Handwritten Words

7.1 Introduction

For the classification of document images based on arbitrary text queries, as we

mentioned earlier, there are three general strategies. The first strategy is to transcribe the

document image into text and then apply information retrieval techniques in the text

domain. This approach is not efficient because the performance of the existing

recognition techniques is not adequate for unconstrained handwritten documents

[CBG09]. The second strategy is based on template matching methods by which we can

compute the distance between images representing words. However, for this strategy to

be applicable and effective, we need to have a set of handwritten images, at least 10 to 50

according to [vdZSH08], with different writing styles corresponding to each query word.

Obviously, to collect a database of handwritten words for all possible query words is not

feasible. The third strategy is based on analytical recognition methods that are the best

suited for our application.

The main advantage of analytical recognition methods is their ability to recognize words

based on character models, thereby obviating the need for having a database of

handwritten words. In our application, we are interested to know how far a word image

(i.e. an image representing a word) is from a text keyword. In other words, we wish to

105

find a distance function between word images and text keywords. For this purpose, we

use a variation of the edit distance (a.k.a. the Levenshtein distance). The edit distance is a

widely used measure of string similarity which was originally proposed for character

strings with applications in spelling correction [Dam64]. However, since then many

different variations of the basic edit distance have been proposed and applied to various

problems including DNA analysis, fraud detection, pattern recognition etc. [DT10, OS06,

Wei04, SM02, SKS96].

In the following, firstly we will briefly explain the classical edit distance where both

sequences are character strings. Secondly, we will describe the extension of the edit

distance for the case where one sequence is a character string and the other sequence is an

image. Thirdly, we will show how to model the proposed edit distance by a Hidden

Markov Model (HMM). Consequently, we will show that the costs for the edit operations

can be learnt using the Expectation Maximization (EM) algorithm. Fourthly, we will

present how to incorporate a priori knowledge into the edit distance using HMMs.

7.2 Classical Minimum Edit Distance

Let ∑ be a finite alphabet and ∑* be the set of all finite strings over ∑. Let x = x1x2…xn

and y = y1y2…ym be two arbitrary strings of ∑* of length n = |x| and m = |y| respectively.

Let R+ be the set of nonnegative real numbers.

A string distance between x and y is characterized by a pair (∑, coste) where coste : E →

R+ is the primitive cost function, and E = Esubstitute Einsert Edelete is the alphabet of

primitive edit operations. Esubstitute = ∑ × ∑ is the set of substitutions, Einsert = {ɛ} × ∑ is

the set of insertions, and Edelete = ∑ × {ɛ} is the set of deletions. Each such pair (∑, coste)

106

induces a distance function d: ∑* × ∑*→ R+ that maps a pair of strings to a nonnegative

real value. The minimum edit distance d(x,y) between two strings x ∑*and y ∑* is

defined by the following recursive equation:

⎪
⎩

⎪
⎨

⎧

′′′=′′′+

′′′=′′′+

′′′=′′′=′′′′′′+
=

ybyyyyxdb
xaxxyxxda

ybyyxaxxyyxxdba
yxd

e

e

e

 ere wh),(),(cost
 ere wh),(),(cost

 and where),(),(cost
min),(

ε
ε

(7.1)

It should be noted that in the original version of the edit distance proposed by

Levenshtein the cost of substitution, insertion and deletion is 1. However, as we see in

Equation (7.1) these costs can be modeled by a function and they do not need to be the

same. The calculation of Equation (7.1) can be done using dynamic programming in

O(mn) time and space [WL75]. However, depending on the application, the distance can

be calculated in a shorter time. For example, if we know that the distance between the

two strings is small, then using lazy evaluation the equation can be calculated in O(m.(1 +

d)) time, where d is the minimum edit distance [All92].

7.3 Generalized Minimum Edit Distance

In general, the alphabets that the two strings are defined on do not need to be the same.

That is, we can define the minimum edit distance for two arbitrary strings x = x1x2…xn

and y = y1y2…ym where xi ∑ for 1 ≤ i ≤ n and yj Ѱ for 1 ≤ j ≤ m.

In our application, we are interested in defining the distance between a sequence of

characters x and a sequence of image regions y that is the output of that character

segmentation algorithm. Therefore, an edit distance between the two sequences x and y is

107

characterized by a 4-tuple (∑, Ѱ, Ɲ, coste) where ∑ denotes the set of characters, Ѱ

denotes the set of image regions, Ɲ is the neighborhood graph for the regions, and coste :

E → R+ is the primitive cost function which maps a primitive edit operation e E to a

real value.

As discussed earlier, the character segmentation algorithm has to over-segment certain

characters without using the context knowledge. In order to handle over-segmentation,

we add a set of merging operations to the set of basic edit operations. As we know that

the character segmentation algorithm may over-segment a character into up to three

regions, we only need to define two merging operations, where one merges two

neighboring regions, and the other one merges three neighboring regions together.

Therefore, we define the alphabet of primitive edit operations as follows:

 E = Ec|ɛ Eɛ|r Ec|r Ec|rr Ec|rrr where

Ec|ɛ = ∑ × {ɛ} is the set of character insertions;

Eɛ|r = {ɛ} × ∑ is the set of region insertions;

Ec|r = ∑ × Ѱ is the set of substitutions of regions by characters;

Ec|rr = ∑ × Ѱ is the set of substitutions of 2-tuple of neighboring regions by characters;

and

Ec|rrr = ∑ × Ѱ is the set of substitutions of 3-tuple of neighboring regions by characters.

Using these primitive edit operations, one can transform a sequence of characters to a

sequence of image regions by either inserting a character, or inserting a region, or

replacing a character by a region, or replacing a character by two neighboring regions, or

replacing a character by three neighboring regions, and combinations of these operations.

108

The generalized minimum edit distance d(x,y) between a sequence of characters x

∑*and a sequence of image regions y Ѱ * is defined by the following recursive equation:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

′′′=′′′=′′′′′′+

′′′=′′′=′′′′′′+

′′′=′′′=′′′′′′+

′′′=′′′+

′′′=′′′+

=

yrstyyxaxxyyxxdrsta
yrsyyxaxxyyxxdrsa

yryyxaxxyyxxdra
yryyyyxdr
xaxxyxxda

yxd

e

e

e

e

e

 and where),(),(cost
 and where),(),(cost
 and where),(),(cost

 here w),(),(cost
 here w),(),(cost

min),(
ε
ε

(7.2)

where characters are indicated by a and b, sequences of characters are indicated by x′ and

x″, image regions are indicated by r, s, and t, and sequences of image regions are

indicated by y′ and y″.

7.3.1 Default Cost Functions

In the original version of the edit distance for character strings, the default cost function

is 1, i.e. the cost of inserting a character, deleting a character or substituting a character

by another character is 1. In the generalized edit distance which is defined between a

sequence of characters and a sequence of image, we define the default cost functions in a

similar way. We set the default cost of inserting a region equal to the default cost of

inserting a character equal to 1. However, for the substitution operations, we obtain the

cost by the ensemble of neural networks. Let’s denote the ensemble of neural networks

by Ω. Assuming the we use probabilistic classifiers, the process of feature extraction,

recognition and voting can be modeled by a function that maps a pair of region and

character to a real number in the range [0, 1], that is: Ω: Ѱ × ∑ → [0, 1], where Ѱ is the

set of image regions, and ∑ is the set of characters.

109

Therefore, in order to determine the cost of substituting a region r Ѱ by character ci
∑, we recognize the region by the ensemble of neural networks and set the cost as

follows:

coste(ci, r) = 1 – Ω(r, ci) (7.3)

Therefore, ideally when the region represents the character the cost is 0, and otherwise

the cost is 1. The recursive definition of the generalized edit distance (Equation (7.2))

based on the default cost functions is rewritten as follows:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

′′′=′′′=′′′′′′+−

′′′=′′′=′′′′′′+−

′′′=′′′=′′′′′′+−

′′′=′′′+

′′′=′′′+

=

yrstyyxaxxyyxxdarstΩ
yrsyyxaxxyyxxdarsΩ
yryyxaxxyyxxdarΩ

yryyyyxd
xaxxyxxd

yxd

 and where),(),(1
 and where),(),(1
 and where),(),(1

 here w),(1
 here w),(1

min),(

(7.4)

7.4 Modeling Generalized Minimum Edit Distance Using HMMs

In this section we will show how to model the generalized edit distance that we

introduced in the previous section by a HMM. The advantage of modeling the distance by

using HMMs is twofold. First, we have a straightforward way to incorporate domain

knowledge into the model. Second, we can learn the cost functions using training data.

In the following, we will briefly introduce the terminology of HMMs and their three

fundamental problems, namely likelihood, decoding and learning. We will discuss the

solution to each problem and how it is related to our application.

110

7.4.1 Hidden Markov Models

A HMM is a statistical tool to model a system that is assumed to be a Markov chain with

unobserved (i.e. hidden) states. A Markov chain is a random process for which the

Markov property2 holds and the number of states that the process can be in is finite or

countable. Therefore, a HMM can actually be considered as a nondeterministic Finite

State Machine (FSM) where each state is associated with a random function. Within a

discrete period of time t, the model is assumed to be in some state and generates an

observation by a random function of the state. Based on the transition probability of the

current state, the underlying Markov chain changes to another state at time t+1. The state

sequence that the model passes through is unknown, only some probabilistic function of

the state sequence that is the observations produced by the random function of each state

can be seen. A HMM is characterized by the following elements:

 N: The number of states of the model (7.5)

 S = {s1, s2, ..., sN}: The set of states (7.6)

 ∏ = { πi = P(si at t = 1)}: The initial state probabilities (7.7)

 A = {aij = P(sj at t+1 | si at t)}: The state transition probabilities (7.8)

 M: The number of observation symbols (7.9)

2 In simple terms, the Markov property states that the next state depends only on the current state and not
on the past.

111

 V = {v1, v2, ..., vM}: The set of possible observation symbols (7.10)

 B = {bi(vk) = P(vk at t | si at t}: The symbol emission probabilities (7.11)

 Ot V: The observed symbol at time t (7.12)

 T: The length of observation sequence (7.13)

 λ = (A, B, ∏): The compact notation to denote the HMM. (7.14)

With the following three constraints on initial probabilities, transition probabilities and

observation probabilities:

∑
=

=
N

i
i

1
1π

(7.15)

ia
N

j
ij ∀=∑

=

,1
1

(7.16)

ivb
M

k
ki ∀=∑

=

,1)(
1

(7.17)

7.4.1.1 Three Fundamental Problems for HMMs

Most applications of HMMs need to solve the following problems:

112

Problem 1: Likelihood - Given a model λ = (A, B, ∏), how do we efficiently compute

P(O | λ), that is the probability of occurrence of the observation sequence O = O1, O2, ...,

OT.

Problem 2: Decoding - Given the observation sequence O and a model λ, how do we

choose a state sequence S = s1, s2, ..., sT so that P (O, S | λ), the joint probability of the

observation sequence O = O1, O2, ..., OT and the state sequence S = s1, s2, ..., sT given the

model, is maximized. In other words, we want to find a state sequence that best explains

the observation.

Problem 3: Training - Given the observation sequence O, how do we adjust the model

parameters λ = (A, B, ∏) so that P (O | λ) or P (O, S | λ) is maximized. In other words, we

want to find a model that best explains the observed data.

The solution to the likelihood problem is given by the so-called forward or the backward

algorithm. The solution to the decoding problem is given by the Viterbi algorithm, and

the solution to the learning problem is given by the segmental K-means or Baum-Welch

algorithm [Rab89].

7.4.1.2 Topologies of HMMs

The structure of the state transition matrix A determines the topology of the HMM.

Through the use of topologies we can incorporate domain knowledge in the HMM. In

classification, the topology of the HMM is a determining factor in performance of the

system [AMCS04]. One of the most widely used topologies in speech/text recognition is

the so called Left-to-Right (LR) or Bakis model in which lower numbered states account

for observations occurring prior to higher numbered states. The temporal order in LR-

113

HMMs is imposed by introducing structural zeros to the model in the form of the

constraint ∏ = {1, 0, ..., 0} and aij = 0, i > j meaning that the model begins at the first (i.e.

left most) state and at each time instant it can only proceed to the same or a higher

numbered state. As a further constraint, in LR-HMM the number of forward jumps at

each state is usually limited in order to restrict large state changes, i.e. aij = 0, j > i + ∆ for

some fixed ∆.

Figure 7.1 shows two LR-HMMs, one with limited maximum forward jumps and the

other one without, versus a fully-connected HMM where each state in the model is

reachable from any state within one transition. Fully-connected HMMs are also known as

ergodic HMMs.

(a) A 5-state Left-to-Right HMM

(b) A 5-state Left-to-Right HMM with a maximum relative forward

jump of 2

(c) A 5-state fully connected

HMM.

Figure 7.1 Examples of HMMs with (a and b) and without (c) topological constraints.

LR topologies are the most straightforward models for 1D temporal signals such as

speech. However, the image data is represented by a 2D matrix, where the temporal

information is lost. The typical sliding window approach, where a narrow window is

moved on the image from left to right (or vice versa), aims at recovering the temporal

information from the 2D matrix representing the handwriting. Of course, when the

114

handwriting is written cursively with a considerable amount of slant and overlapping

between neighboring characters, the sliding window approach cannot provide a good 1D

representation for the underlying 2D signal. In order to obviate this problem, multi-

stream HMMs [KPBH10], 2D-HMMs and their variations [KA94, LNG00, CK04] have

been proposed.

2D HMMs are natural extensions of traditional HMMs for 2D signals. However, it can be

shown that when a 2D-HMM is modeled by an equivalent 1D-HMM, the number of

states is exponential [MMMH00], which means that the order of the decoding and

learning algorithms is not polynomial anymore, but exponential. In order to reduce the

complexity of 2D-HMMs, some authors have proposed topologies that are not fully-

connected but rather composed of loosely-coupled super-states3. Each super-state is

usually a LR-HMM, and the complete model is formed by linking these super-states.

These models are called Pseudo 2D-HMMs (P2D-HMMs) [KA94, CK04]. Given that the

number of connections between the inner states of a super-state and the inner states of

another super-state is zero or few, the order of the states required for the P2D-HMM is

polynomial. For modeling images, a typical approach based on P2D-HMMs is to model

each row of the image by one super-state, which is based on the unrealistic assumption

that the states sequence in each row is independent of the states sequences of its

neighboring rows. The reduction in the complexity of P2D-HMMs is obtained at the cost

of over-simplifying the model which is sometimes based on unrealistic assumptions.

The HMM model that we will propose in the next section is a Generalized HMM

(GHMM) with an ergodic topology. The main property of the GHMM that we will utilize

3 A system is said to be a loosely coupled when each of its components has little or no knowledge of the
definitions of other separate components.

115

is the relaxation of the additivity constraint of probability measures [MG00]. The

advantage of our Generalized Ergodic HMM (GEHMM) over P2D-HMMs is to provide

an exact model for the temporal information present in the handwriting with a feasible

number of states.

7.4.2 Modeling Generalized Minimum Edit Distance Using GEHMMs

The direct extension of minimum edit distance or Dynamic Time Warping (DTW)

methods to images when applied at pixel level is not efficient. This is due to the fact that

the underlying Markov models are 2D-HMMs or P2D-HMMs which are either non-

practical or over-simplified in general.

In our proposed approach, the observation sequence is not image pixels, but rather image

regions that correspond to characters or sub-characters. Thus, we can build a model

whose states logically correspond to the edit operations (insertion, substitution and

merging). Consequently, the number of states will be constant and small. Fig. 7.2 shows

the HMM corresponding to the generalized minimum edit distance defined by Equation

(7.2), where the five edit operations are models by five states: Sedit = { s1, s2, s3, s4, s5}

with s1 := e|R, s2 := C|e, s3 := C|R, s4 := C|RR and s5 := C|RRR.

116

e|R: insert region

C|e: insert character

C|R: substitute a character by a region

C|RR: substitute a character by two neighboring regions

C|RRR: substitute a character by three neighboring

regions

Figure 7.2 GEHMM corresponding to the generalized minimum edit distance defined by Equation

(7.2)

The output alphabet in this model is the set of image regions that is O = R = { fi(x, y) | fi:

characteristic function corresponding to region ri }. We have assumed that the input

image is binary; therefore we can represent a region by a characteristic function.

Formally, for a binary image with M rows and N columns, an arbitrary image region ri is

denoted by the characteristic function fi: X × Y → {0, 1} where x X, y Y, X := {0, 1,

…, M – 1} and Y := {0, 1, …, N – 1}, and fi(x, y) is 1 if (x, y) ri, and 0 otherwise.

7.4.2.1 Initial and Transition Probabilities

In the beginning, we can use any edit operation equally likely, thus the initial

probabilities are the same: πi = 1/5, 1 ≤ i ≤ 5.

117

Then, we can use any edit operation equally likely, thus the transition probabilities in

each and every state are the same: P(si | sj) = 1/6, 1 ≤ i, j ≤ 5. Note that from each edit

state we can go to the final state (“end”), therefore we have 5 + 1 = 6 in the denominator.

7.4.2.2 Observation Probabilities

In the substitution state (s3 := C|R), the probability of observing a region ri is the

maximum probability that a character can describe ri, which is determined by the

ensemble of neural networks:

P(observing ri as a single character | s = s3) = max Ω(ri, c), c C (7.18)

Obviously, we are not only interested in computing the distance but also in recognizing

the image, thus we keep the character that best describes the region as well (i.e.

c
i cr),(maxarg Ω).

The probability of observing 2-tuples of neighboring regions in s4 := C|RR, and the

probability of observing 3-tuples of neighboring regions in s5 := C|RRR, is defined in a

similar way. However, we also have to take the neighborhood relations between regions

into account. In state s4, the probability of observing region ri and region rj as a single

character is defined as follows:

 P(observing ri rj as a single character | s = s4) =

 max {P(ri and rj being neighbor and mergeable) . Ω(ri rj, c)}, c C

(7.19)

118

We calculate the probability of two regions being neighbor and mergeable as follows:

 P(ri and rj being neighbor and mergeable) =

 P(ri and rj being mergeable | ri and rj being neighbor) .

 P(ri and rj being neighbor).

(7.20)

The probability of two regions being neighbors is defined by the neighborhood graph Ɲ:

P(ri and rj being neighbor) = N(i, j) (7.21)

Where N is the weighted adjacency matrix corresponding to Ɲ. Note that, in general, the

neighborhood graph is a weighted graph with weights between 0 and 1. This allows for

any two regions to be considered neighbors with a degree of truth between 0 and 1, rather

than being either neighbor or not neighbor.

Assuming that the ensemble of classifiers is able to reject an input pattern that does not

belong to any classes, we can merge any two regions given that they are neighbors. That

is:

P(ri and rj being mergeable | ri and rj being neighbor) = 1 (7.22)

Therefore, we rewrite Equation (7.19) as follows:

 P(observing ri rj as a single character | s = s4) =

119

 max { N(i ,j) . Ω(ri rj, c) }, c C (7.23)

In state s5, the probability of observing regions ri , rj and rk as a single character,

assuming that any three regions are mergeable given that they are neighbors, is similarly

calculated as follows:

 P(observing ri rj rk as a single character | s = s5) =

 max{P(ri and rj and rk being neighbor and mergeable).Ω(ri rj rk, c)} =

 max { P(ri and rj and rk being neighbor) . Ω(ri rj rk, c) }, c C

(7.24)

We define the probability of three regions being neighbors in terms of the probability of

two regions being neighbors as follows:

 P(ri and rj and rk being neighbors) =

 max {

 P(ri and rj being neighbors) . P(ri and rk being neighbors),

 P(ri and rj being neighbors) . P(rj and rk being neighbors),

 P(ri and rk being neighbors) . P(rj and rk being neighbors) }.

(7.25)

It is straightforward to extend Equation (7.24) to the case of more than three regions if

necessary. In general, the probability of n regions being neighbors, given that the

probability of any two pairs of regions being neighbors is known, is a Minimum

120

Spanning Tree (MST) problem that can be solved by a number of classical algorithms

including Kruskal’s [KvT05].

The region insertion state (s1 := e|R) is to model regions that do not correspond to any

characters. These are extra regions that correspond to background noise, misspellings or

parts of characters from upper or lower text lines. By default, we assume that a region is

equally likely to be extra or not, that is we set the probability of observing any region in

s1 to 0.5.

Similarly, the character insertion state (s2 := C|e) is to model characters that do not

correspond to any regions. This region allows for a handwritten word with some missing

characters to be matched with a lexicon entry. A study of common misspellings shows

that a double strike is the most likely cause of a missing character; that is where people

forget to add the second character of a double character. As the likelihood of a double

character occurring in a word is low, we can conclude that the likelihood of a character

being absent in a word is much lower than the likelihood of it being present. By default,

we set the probability of observing the empty region (denoted by the symbol e) in s2 to

0.1. The probability of observing any non-empty region r R – {e} in s2 is 0. For the

purpose of decoding that we will explain in the next section, we keep the inserted

character in this state. In this basic model, we assume that all characters are equally likely

to be inserted. However, later on we will show that how these likelihoods can be learnt

from training data, so for example the insertion of character ‘l’ is more likely than ‘z’.

Note that the definitions of observation probabilities as above requires the model to be a

GHMM [MG00] because the observation probabilities in each state do not sum to 1.

121

7.4.2.3 Decoding: Recognition of Handwritten Words Using the GEHMM Model

Having defined the initial, transition and observation probabilities, we can use the model

to recognize a handwritten word that is represented by a sequence of regions. The

transcription of the handwritten word is simply obtained by decoding; i.e. finding the

sequence of states that best describes the observation sequence. As mentioned in the

previous section, every state corresponds to a character, except for the insert region state

(s1 := e|R). We can assume that s1 corresponds to the empty character. Thus, the

transcription of the handwritten word is obtained by concatenating the characters that

correspond to the most likely state sequence.

7.4.3 Incorporating A Priori Knowledge to GEHMMs for Handwritten Word

Recognition

The GEHMM model that we introduced in the previous section is a versatile tool for the

recognition of handwritten words. However, the basic 5-state model of Fig. 7.2 does not

have any knowledge about the lexicon. In this section, we will show that through the use

of more states, we can incorporate into the model a priori knowledge about the lexicon,

spelling errors and noise.

The number of states that we need to represent the a priori knowledge is proportional to

the size of the alphabet. The first version that we propose has 159 states, and the more

elaborate version has 315 states. Therefore, compared to the basic model, the number of

states is considerably higher, however still constant and manageable.

122

7.4.3.1 Adding Knowledge about the Lexicon

Character n-gram models provide the most straightforward way to incorporate knowledge

about the lexicon into a Markov model. A character n-gram is a subsequence of n

characters from a given sequence of characters. A character n-gram model is a

probabilistic model for predicting the next character in such a sequence. In general, n-

gram models can be used for any sequences from a finite alphabet. N-gram models have

been widely used in statistical natural language processing, compression, speech and

handwriting recognition [MS99].

The most widely used n-gram models are based on the shortest n-grams (n = 1, 2 and 3)

that are referred to as unigrams (n = 1), bigrams (n = 2) and trigrams (n = 3). In our

application, we only use unigram and bigram models. In the following, we will describe

how to obtain character unigram and bigram models based on a lexicon.

Formally, the task of predicting the next character can be stated as estimating the

probability function P:

P(cn | c1, c2, …, cn-1) =
),...,,(

),,...,,(

121

121

−

−

n

nn

cccP
ccccP , ci C

(7.26)

In other words, we wish to use the history of the previous items (i.e. characters) to predict

the next item.

Let Count(c1 c2 … cn-1) be the frequency of the sequence c1c2 …cn-1, and Count(c1 c2 …

cn) be the frequency of the sequence c1c2…cn in the training data (i.e. lexicon). Now, the

Maximum Likelihood Estimate (MLE) estimate for the probability of a certain n-gram

c1c2…cn is defined as follows:

123

P(c1, c2, …, cn) =
N

cccCount n)...,(21 , ci C

(7.27)

Where N is total number of all n-grams appearing in the training data. The MLE estimate

for the conditional probability function P is defined as follows:

PMLE(cn | c1, c2, …, cn-1) =
)...(
)...,(

21

121

n

n

cccCount
cccCount − , ci C

(7.28)

In particular, using the MLE estimates the character unigram model is defined as follows:

PMLE(ci) =
lexicon in the wordsofnumber total

character with startinglexicon in the wordsofnumber ic , ci C

(7.29)

And the character bigram model is defined as follows:

PMLE(ci|cj) =
lexicons in the wordsallin of occurances ofnumber total

lexicon in the wordsallin of occurances ofnumber

j

ij

c
cc , ci, cj C

(7.30)

The unigram model specifies the initial probabilities and the bigram model specifies the

transition probabilities in the GEHMM model.

The character unigram model estimates the probability of observing a certain character in

the beginning of a word, which is the initial probability of going to a state that represent

the character in the GEHMM model. The character bigram model estimates the

probability of observing a certain character given that the previous character is known,

124

which is the transition probability of going from the state that represents the previous

character to the state that represents the desired character.

Figure 7.3 159-state enhanced GEHMM model for word recognition.

According to the above discussion, in order to include the unigram and bigram models

into the GEHMM model, we have to have a separate state for any character. Therefore,

each character state (s1, s2, s3 and s4) in the 5-state model of Figure 7.2 has to be

decomposed to 26 states. We also decompose the region insertion state (s1) into a few

states which allows for the model to impose a constraint on the number of regions that

can be inserted consecutively. We assume that in the process of matching a word with a

sequence of image regions, the insertion of 3 regions in a row and the insertion of more

than 3 regions in a row are equally unlikely events. Therefore, we decompose s1 into 3

states. We can impose the same constraint on the character insertion state (s2). Therefore,

125

the character insertion state (s2) in the 5-state model has to be decomposed into 3 × 26 =

78 states. Fig. 7.3 shows the whole model that is composed of 6 × 26 + 3 = 159 states.

Figure 7.4 Decomposition of the character substitution state based on the character trigram model.

If we wish to incorporate more knowledge about the lexicon into the model, we can use

character trigram models at the cost of more states. In order to represent the trigram

model, each character state (s1, s2, s3 and s4) in the 5-state model of Figure 7.2 has to be

decomposed to 2 × 26 = 52 states because we need to be able to show a history of size 2

(i.e. all possible pairs of characters). The decomposition of the character substitution state

based on the character trigram model is shown in Fig. 7.4. Therefore, the GEHMM model

based on the character trigram model will have 6 × 2 × 26 + 3 = 315 states.

126

Chapter 8

Experimental Results, Future Work and Conclusion

8.1 Outline of Keyword Spotting System and Design of Experiments

In this chapter, we present an experimental analysis of the proposed keyword spotting

system over a collection of real-world documents. The keyword spotting system is

composed of two major parts: segmentation and decision. In the former, we generate the

word hypotheses. In the latter, we decide whether a generated word hypothesis is a

keyword or not (Fig. 8.1).

Figure 8.1 Two major modules of keyword spotting system and levels of experiments.

In order to gain a better insight into the performance of the keyword spotting system, we

conduct two types of experiments: word-level and document-level. In the word-level

experiments, we assume that we have already generated the word hypotheses out of

Segmentation
(Denoising, Line extraction, Word Segmentation)

Decision
(Non-keywords Detection/Keyword Recognition)

word hypotheses input image

spotted keywords

word-level experiments

document-level experiments

127

which we wish to separate keyword from non-keyword. In the document-level

experiments, we evaluate the performance of the segmentation and decision steps

combined.

8.1.1 Separation of Keywords from Non-keywords

It has been shown through numerous studies that the recognition performance of word

recognition engines is inversely proportional to the size of the lexicon [KSS05, Fuj08,

GLF+09]. State-of-the-art handwriting recognition algorithms achieve very high

performances on small size lexica (several tens of words). However, they achieve poorly

on large size lexica (tens of thousands of words). In a word spotting application, the

lexicon that is used in the documents may be large or even unlimited, because there are

always identifiers (personal/city names), typos, etc. that we may not have seen before.

However, the lexicon of keywords that we are interested in processing is limited and

small (between one to a few tens of words). Therefore, the recognition problem in the

word spotting context can be greatly simplified given that we can separate non-keywords

from keywords with an acceptable accuracy.

In other words, in the word spotting context, we can think of the word recognition

problem as a two-level classification. In one level, we decide whether the input image is a

keyword or not, which is a binary classification task. In the other level, we classify the

input image to one of the keyword classes given that we know it is a keyword. Therefore,

recognition-based approaches to keyword spotting can be divided into two major

categories depending on whether we perform keyword/non-keyword classification before

or after keyword recognition as shown in Fig. 8.2.

128

(a) rejection-first (b) rejection-last

Figure 8.2 Two major approaches to recognition-based keyword spotting.

The basic idea behind rejection-first approaches is to firstly detect and remove word

candidates that are unlikely to be keywords, and secondly, recognize the surviving

candidates using the keyword recognition algorithm. The keyword/non-keyword

classification is based on some global features such as word profiles. In some recent word

spotting systems [RSP09b], such simple features as word lengths have been used. It must

be noted that the use of coarse global features only allow for the pruning of non-

keywords that are significantly different in shape than keywords. In such cases, the

keyword recognition algorithm must have the capability of handling Out-Of-Vocabulary

(OOV) inputs, or otherwise, those non-keywords that pass the first step would be

inevitably classified as keywords (i.e. false positives).

In rejection-last approaches, the rejection of non-keywords is postponed to the last step of

recognition. The input image which could be either a keyword or a non-keyword is sent

to the keyword classifier. If the keyword classifier has a separate class for OOV inputs,

the non-keyword input is (hopefully) assigned to the OOV class. Otherwise, the non-

input input

non-keyword
Keyword Recognition

non-keyword

keyword

Keyword Recognition

Verification/Rejection

keyword

Keyword/Non-Keyword
Classification

129

keyword input is assigned to a keyword class. The basic idea behind rejection-last

approaches is that a non-keyword that is classified as a keyword normally gets a lower

confidence score by the recognition engine, compared to the average confidence score of

valid samples of that keyword class.

The problem of keyword/non-keyword separation has traditionally been approached by

simplistic methods. Most word spotting systems encompass some pruning techniques

based on global features and/or some rejection schemes based on confidence scores

thresholding [RSP09b, FFMB12]. We are not aware of any systematic study on the extent

to which standard machine learning approaches can be useful in the separation of a set of

keywords from a set of non-keywords that belong to an open lexicon where we may not

have seen all lexicon entries in advance. We hope that the research results that we present

in this chapter would shed some light on this topic.

The four major approaches to keyword/non-keyword separation that we study are as

follows:

1) Binary Classification based on Global Features:

In this approach, we represent the input image by a set of global features and then

classify the image as keyword or non-keyword using a standard binary classification

algorithm. The results of previous research works show that the most successful feature

extraction methods for holistic handwriting recognition are based on gradient features

and Gabor filters [LNSF04, Liu07, WDL05] Gradient-based features have also been

successfully utilized in word spotting systems [RP08]. Therefore, we experimented with

both gradient-based features and Gabor-based features. As for the classification

130

algorithm, we experimented with the Support Vector Machine (SVM) method with

linear, polynomial and Radial Basis Function (RBF) kernels.

2) Binary Classification based on Local Features:

In this approach, we represent the input image by a set of local features that are

dependent on the geometrical or temporal aspect of the image. As such, the number of

features may be different from one image to another. Consequently, classification

algorithms based on local features require distance functions that are defined on

sequences (i.e. variable-length vectors).

An example of a local feature extraction method for cursive handwriting is given in

[xDKSP05], where a word image is represented by the set of maxima points on the upper

external contour and the set of minima points on the lower external contour of the image

(Fig. 8.3). Therefore, the number of features is proportional to the length of the image.

Normally, the longer the word, the more features we need to describe it.

(a) ‘a’ (b) ‘cart’ (c) ‘salutations’

Figure 8.3 Examples of local minima/maxima contour points of handwritten words.

The most widely-used ways of comparing sequences of different lengths are based on

generative models such as Hidden Markov Model (HMM), or optimal alignment methods

such as Dynamic Time Warping (DTW) or the Generalized Minimum Edit (GME)

distance that we introduced in the previous chapter. In our first set of experiments, we use

131

the local minima/maxima features [xDKSP05] along with the DTW distance. We

experimented with both the classical unconstraint version of the DTW and a modified

version that adds a locality constraint [SC78].

Although local/temporal features provide a sensible way of representing signals,

classification based on sequences requires more elaborate techniques than classification

based on fixed-length vectors. The most straightforward classification algorithm based

on sequence distance functions is the K-Nearest Neighbor (K-NN) classifier that we will

use for the purpose of these experiments. We must note that the K-NN algorithm is a type

of lazy learning which generally requires the computation of the distance from a new

sample to all training samples at the run time, and thus it is not efficient in terms of

memory and speed.

Later, we will discuss how to replace the K-NN classifier with more efficient

classification methods using Kernel Methods (KMs). KMs provide an elegant approach

to the processing of arbitrary data structures. Using suitable kernels, classical

classification methods, such as perceptrons, that were originally designed for the

processing of fixed-length vectors can be readily applied to other common types of data

such sequences, trees and etc.

3) Generalized Minimum Edit Distance Thresholding:

 In this approach, we model the keywords individually (one model per keyword). The

keyword model is based on the Generalized Minimum Edit Distance (GMED) that we

presented in the previous chapter. Then, we learn two distance distributions for each

keyword using a validation set: one distance distribution for all samples of the keyword

132

and one distance distribution for all samples of all other words, where all distances are

computed using the corresponding keyword model. Then, for a new image, we compute

the distance against each keyword model and then classify the image as keyword or non-

keyword based on whether the distance is closer to the keyword distribution or non-

keyword distribution.

Since in this approach we model the keywords separately, it might happen that two (or

more) different keyword models classify the same input image as keyword. Therefore, we

must have an arbitration strategy to settle the conflict in such cases. There are two main

strategies: exactly-one arbitration and at-least-one arbitration. In the exactly-one

arbitration, we accept the input image as keyword if it is accepted by exactly one

keyword model In the at-least-one arbitration, we accept the input image as keyword if it

is accepted by at least one keyword model, assigning it to the keyword class with the

minimum distance. Generally speaking, using the exactly-one arbitration strategy, the

word spotting system would achieve a lower false positive rate at the cost of a higher

false negative rate; on the other hand, using the at-least-one arbitration strategy the

system would achieve a lower false negative rate at the cost of a higher false positive

rate.

4) Normalized Probability Thresholding based on Universal Background Models:

 This approach is an extension of distance/likelihood thresholding approaches. The idea is

to learn one Universal Background Model (UBM) for all words along with individual

models for keywords, and then use the universal model to normalize the raw score

(distance or likelihood) that is obtained from specific keyword models.

133

The idea of universal or cohort models for score normalization has long been studied in

the speech recognition community [RDL+92, RQD00]. However, it was not until

recently that the UBM technique was introduced to the realm of keyword spotting

[RSP09b].

In [RSP09b], the authors proposed Gaussian Mixture Models (GMMs) for the modeling

of the universal lexicon. In this model, each keyword is modeled separately using a left-

to-right HMM. At the classification time, the score obtained from a keyword HMM is

divided by the universal score that is computed by the universal GMM; if the resultant

normalized score exceeds a threshold, the image is accepted as keyword. Again, since

keywords are modeled separately, we need an arbitration strategy as we discussed before.

We will experiment with both exactly-one and at-least-one strategies.

Finally, it must be noted that the universal lexicon does not need to be modeled by

GMMs. The reason that the authors in [RSP09b] use GMMs is their low memory and

computational requirements compared to HMMs; remembering that a GMM is a special

case of a HMM with only one state. In terms of classification performance, the

experimentations carried out in [RSP09b] show that GMMs and HMMs result in more or

less the same performance for the modeling of the universal lexicon. Our experiments

also verify these results, meaning that GMMs provide an efficient approach to the

modeling of large amount of universal data.

8.2 Training Data

The ultimate objective of our research is the spotting of user-specified keywords in real-

world handwritten documents. Consequently, as mentioned earlier, we cannot rely on a

134

database of training images for all possible keywords. Therefore, we devised the GME

distance which is an analytical approach to recognition that requires trained models of

handwritten character. For the training of character models and adjusting the cost

parameters of the GME distance we used the NIST SD 19 [GBC+94] and the IAM

databases [MB02] (more details in Chapter 6 and 7). Therefore, the GME distance

provides a similarity measure between an arbitrary text keyword and a word image

without the need for further training on a specific lexicon/dataset.

(a) ‘adhesion’ (b) ‘resiliation’

Figure 8.4 Samples of synthesized images for two words ‘adhesion’ and ‘resiliation’.

However, for the training of the keyword/non-keyword classification schemes that we

discussed in the previous section, we do require word-level training data. Even if we use

an analytical recognition algorithm based on sub-character/character models along with a

threshold-based approach to the rejection of non-keywords (approach 3 and 4 above), we

still need a validation dataset of keyword samples and non-keyword samples in order to

tune the rejection/acceptance thresholds for each keyword. In order to address this

problem, we created a word image synthesizer that generates image samples for an

arbitrary word based on handwritten fonts. For this purpose, we collected 184

135

handwritten fonts for the web. Fig. 8.4 shows samples of synthesized images for two

words ‘adhesion’ (membership) and ‘resiliation’ (cancellation) that are among keywords

that we want to spot in our collection of French documents.

 (a) ‘many’ (b) ‘said’ (c) ‘solo’ (d) ‘spokesman’

 (e) ‘central’ (f) ‘Government’ (g) ‘they’ (h) ‘down’

 (i) ‘said’ (j) ‘forward’ (k) ‘nominees’ (l) ‘enlivened’

Figure 8.5 Samples of handwritten words from the IAM database.

136

(a) (b) (c)

(d) (e) (f)

Figure 8.6 Samples of handwritten forms from the IAM database.

8.3 Test Data

For the word-level experiments, we use the IAM database of handwritten words that

since its creation has served as a standard database for the evaluation of handwriting

recognition systems in the research community. Although the IAM database is a

controlled database meaning that it is collected by asking people to fill out specific forms,

the level of variation and noise in the handwritten words in it are more or less close to

that of real-world unconstrained handwriting. Fig. 8.5 show samples of handwritten

words from the IAM database.

137

(a) (b) (c)

(d) (e) (f)

Figure 8.7 Samples of handwritten mails from our French documents database.

For the document-level experiments, however, as can be seen in Fig. 8.6, the simple

controlled layout of the IAM documents may not reflect all the challenges that we may

encounter in the processing of real-world handwritten documents, such as non-uniform

skew and touching lines that we discussed in Chapter 1. Therefore, aside from the IAM

database, we carried out our document-level experiments on a proprietary database of

real-world French documents4. All samples in this database are real-world handwritten

mails that are submitted to the customer-support department of a company by its wide-

range of clients from France and French-speaking Africa. The task of the word spotting

system is to find certain keywords, and then direct the customer request to the responsible

4 This database belongs to IMDS Software, the key industrial partner and sponsor of this research project.
For more information, please visit: www.imds-world.com.

138

department accordingly. Examples of keywords of interest in this application are:

“resiliation” (cancellation), “adhesion” (membership), “contrat” (contract), “chomage”

(unemployment), “santé” (health) and etc. Fig. 8.7 show samples of handwritten mails

from our French documents database, where the personal information are pixelated to

protect the customer identity.

8.4 Experiments

In the following, we will present our experimental results on the English and French test

databases described above. We start with the word-level experiments and then move on

to the document-level experiments. Along the way, we compare and contrast our results

with state-of-the-art word spotting systems for both the English [FFMB12] and French

[RSPSL10] languages.

8.4.1 Word-Level Experiments

We divide our word-level experimental results into two categories: word recognition and

word spotting. In the former, our goal is to analyze the performance of our proposed

approach along with some other popular methods for the recognition of small size lexica;

that make up the keyword sets. In the latter, the focus of our experiments is the

separation and recognition of a small set of known keyword classes from a large or open

set of non-keywords.

139

8.4.1.1. Word Recognition Experiments

In order to evaluate the performance of the GME distance approach to the recognition of

handwritten words, we carried out several sets of experiments on the IAM database. In

order to keep the evaluation process as unbiased as possible, in the following

experiments, we did not use the part of the IAM database that was already used for the

generation of the cursive characters database and the training of the underlying cursive

character models as described in Chapter 6.

Table 8.1 Average recognition rate of the GME approach over several test subsets of IAM.

 Model Cost Functions Test Lexicon Size
10 20 50 100

 5-state

 Default 91.0 83.6 80.4 74.3
 Trained 92.1 84.7 81.3 75.7
 Adapted 92.4 85.1 81.7 76.2

 159-state

 Default 93.0 86.8 82.1 77.0
 Trained 93.4 87.2 82.7 77.6
 Adapted 94.1 87.7 82.8 77.8

 315-state

 Default 93.0 87.5 82.6 77.4
 Trained 93.5 88.1 83.1 78.0
 Adapted 94.3 88.7 83.5 78.5

The GME approach to word recognition can be used with or without the training of the

associated cost functions as we discussed in Chapter 7. In fact, using the default cost

functions we can accomplish word-level recognition without the need for word-level

training data. However, given that word-level training data are available, we can optimize

the cost functions for a specific distribution of data using the hidden Markov model

framework. The model can be trained using a wide range of handwriting samples from

different writers or it can be further adapted for a specific person by using their

140

handwriting samples. In the following, the former model will be referred to as “trained”,

and the latter model will be referred to as “trained/adapted”, or simple “adapted”.

Moreover, the GME model may or may not use the lexicon knowledge. The three

variations that we discussed in the previous chapter are the basic 5-state model (without

knowledge of the lexicon), the 159-state model (with unigram and bigram knowledge of

the lexicon) and the 315-state model (with unigram, bigram and trigram knowledge of the

lexicon).

Table 8.1 shows the average recognition rate of the GME approach over several test

subsets of the IAM database with different lexicon sizes. Again, for the trained and

adapted models, the training and test subsets are completely disjoint.

The reason we limited the lexicon size to 100 words is that in a typical word spotting

application, the lexicon of interest contains only a few tens of keyword. In the French

keyword spotting application that we mentioned in the previous section, the keyword

lexicon contains 48 keywords. The number of effective classes is even smaller; because

among these keywords, we have conjugations and plural forms; for example “contrat”

(contract) and “contrats” (contracts), or “résilier” (cancel) and “résiliee” (cancelled)

which essentially indicate the same class/action. This means that if the recognition

algorithm mistakes “contrat” for “contrats” or vice versa, it is not counted as an error

from the word spotting view point, because they belong to the same keyword family.

However, in the word recognition experiments that we summarize in this section, we

simply treat all words as separate classes; so for example, in the test sets of the IAM

database, we have “American” and “Americans” as two different classes.

141

The recognition results summarized in Table 8.1 indicate that adding the trigram

knowledge to the model slightly improves the recognition results over the

unigram/bigram model, which is in turn better than the basic model without any

knowledge about the lexicon. The performance difference between the trigram-based

models and the unigram/bigram-based models is 0.5% on average. However, the

performance difference between the unigram/bigram-based models and the basic models

without the lexicon knowledge is around 2.0% on average. This means that the major

recognition improvement is obtained by virtue of the unigram/bigram knowledge. In

summary, the most elaborate model (with adaptation given that a writer’s handwriting is

available) improves the recognition rate over the model basic model (without

training/adaptation) from 3.1% to 5.1%. It is interesting to note that the GME approach

can achieve an acceptable word recognition performance without any training at the

word-level.

Table 8.2 Average recognition rate of the GME approach over several test subsets of IAM without

perturbation-based character recognition.

 Model Cost Functions Test Lexicon Size
10 20 50 100

 5-state

 Default 90.1 81.1 76.3 69.1
 Trained 90.9 82.0 77.2 70.2
 Adapted 91.5 82.3 77.5 70.8

 159-state

 Default 92.1 84.1 77.9 71.5
 Trained 92.4 84.6 78.6 72.1
 Adapted 93.0 85.2 78.7 72.3

 315-state

 Default 92.3 85.1 78.5 72.1
 Trained 92.6 85.7 79.3 72.9
 Adapted 92.2 86.2 79.6 73.4

142

One advantage of the GME model is that it can be combined with any character

recognition algorithm. The results that we summarized in Table 8.1 were obtained using

the perturbation-based cursive character recognition algorithm that we described in

Chapter 6. In order to show the effectiveness of the perturbation-based approach in the

context of word recognition, we repeated the same experiments as in Table 8.1 but

without character perturbation. The results are summarized in Table 8.2. As can be seen,

the perturbation-based character recognition improves the word recognition performance

in all cases, by 1% (for the smallest lexicon) to 5% (for the largest lexicon). The average

recognition improvement due to the perturbation is 3.3%.

Table 8.3 Average recognition rate of implemented handwritten word recognition algorithms several

test subsets of IAM.

 Model Training

Test Lexicon Size
10 20 50 100

 LR-D-HMM

 Trained 83.1 78.2 70.5 63.3
 Adapted 83.9 79.1 71.2 64.1

 LR-C-HMM

 Trained 84.5 82.0 71.8 65.5
 Adapted 85.3 82.7 72.2 66.1

 MS-HMM

 Trained 86.7 83.2 78.9 75.7
 Adapted 87.4 84.1 80.6 76.9

 P2D-HMM

 Trained 87.2 84.0 80.4 77.1
 Adapted 88.1 84.9 82.0 78.0

 GME

(EHMM +
 NN ensemble)

 5-state

 Default 91.0 83.6 80.4 74.3
 Trained 92.1 84.7 81.3 75.7
 Adapted 92.4 85.1 81.7 76.2

 159-state

 Default 93.0 86.8 82.1 77.0
 Trained 93.4 87.2 82.7 77.6
 Adapted 94.1 87.7 82.8 77.8

 315-state

 Default 93.0 87.5 82.6 77.4
 Trained 93.5 88.1 83.1 78.0
 Adapted 94.3 88.7 83.5 78.5

143

In order to put our results into perspective, we experimented with several popular HMM-

based approaches to word recognition. A direct comparison of the results we presented in

Table 8.1 and published works is not quite meaningful; because first of all, not all public

databases define a standard training and test sets (the IAM database is an example);

second, different word recognition algorithms use different pre-processing/post-

processing techniques that may considerably affect the performance, even with the same

training and testing sets of the same database; and third, the evaluation criteria may not

be the same. Therefore, in order to see how the proposed 2D GME approach compares

with traditional HMM-based approaches, we carried out our experiments on the same

training and test sets based on our implementation of these algorithms with the same pre-

processing steps for all algorithms.

The four common pre-processing steps include: 1) image height normalization; 2) stroke-

width normalization based on skeletonization [ZS84] followed by dilation; 3 and 4) skew

correction and slant correction based on horizontal and vertical projection profiles.

Currently, we do not apply any post-processing techniques such as lexicon reduction or

verification based on language models. The handwriting recognition algorithms that we

experimented with include: 1) Left-to-Right Discrete HMM (LR-D-HMM) [CLK95]; 2)

Left-to-Right Continuous HMM (LR-C-HMM) [RSP09b]; 3) Multi-Stream HMM (MS-

HMM) [KPBH10]; and Pseudo 2D-HMM (P2D-HMM) [KA94]. The experimental

results are shown in Table 8.3., where we copied the GME results from Table 8.1 for the

sake of comparison. As can be seen, the GME approach based on a 159-state or 315-state

EHMM and ensemble of neural networks significantly outperforms the other HMM-

based approaches on small lexica. However, as the size of the lexicon grows, the GME

144

approach, which is based on an exact 2D model, and the P2D-HMM show almost the

same performance. The interesting observation is that all the three HMM models that use

some kind of 2D information, namely MS, P2D, and GME, outperform LR HMMs in all

cases, particularly when the lexicon grows.

Although, the focus of this research is not to recognize large size lexica, it is worth

mentioning that our manual inspection of misrecognized words shows that the major

source of the error, is due to the difficulties in the recognition of curve characters. As we

mentioned in Chapter 6, the amount of variations in cursive forms of characters is so high

that in order for the classifier to resolve the ambiguity, it will have assign an unknown

input shape to all possible character classes. The right sequence of characters is then

chosen by using a larger context; that is, in the simplest form, a lexicon of words which

acts as a constraint over the sequence of character hypotheses. However, as the lexicon

size increases, the chance of a sequence of shapes being matched against more than one

valid sequence of characters (i.e. lexicon entry) also increases, which in general, results

in lower top-1 recognition rates for words.

It should be emphasized that the word recognition results that we presented above are

based on an exact (all or nothing) evaluation criterion; meaning that the output of the

word recognition algorithm is considered correct if and only if the top-1 word recognition

hypothesis and the ground truth transcription of the input word image match character by

character for all character positions. In [GLF+09] the authors have presented a word

recognition system based on a new recurrent neural network architecture that achieves a

reported word recognition rate of 73.3% to 74.9% over very large lexica of words (~5000

145

to 20000). However, these results are based on an approximate evaluation criterion which

the authors refer to as word accuracy:

)
riptionsset transc test oflength total

deletions onssubstituti insertions1(100accuracy word ++
−×=

(8.1)

Therefore, for example if the word “Americans” is recognized as “American”, based on

the approximate criterion that is used in [GLF+09], the calculated performance is 100×(1-

1/9) ≈ 88.9%. However, based on the exact criterion that we use, the calculated

performance is 0% in this example.

8.4.1.2. Word Spotting Experiments

In the word spotting experiments we analyze a more general problem than in the previous

section. We are not only interested in the recognition of keywords, but also in the

detection (separation) of non-keywords from keywords. In section 8.1.1, we examined

several major approaches to keyword/non-keyword detection. In the following we

analyze the performance of these methods based on two sets of experiments. In the first

set, we assume the global lexicon is “closed”, that is all non-keyword classes are known.

In the second set, we drop the closed-lexicon assumption; that is we assume that there is

always a chance of seeing a non-keyword that is outside the global lexicon that we know.

This case, which we will refer to as “open” lexicon experiments, allows us to gain a

better understanding of how word spotting algorithms would perform in real-world

situations where there are always special names and typos that we must not spot as

keywords.

146

In should be mentioned that the evaluation criteria in word spotting experiments in

different from word recognition experiments. In a word spotting application, that is an

example of an Information Retrieval (IR) process on scanned documents, we are looking

for a “truth” that is the keywords of interests in the input documents; and we ideally want

the algorithm to return “the truth, only the truth, and nothing but the truth”. In IR

applications, this correctness measure is stated in terms of True Positive (TP), True

Negative (TN), False Positive (FP) and False Negative (FN) rate. The definition of each

of these terms in our word spotting application is as follows:

TP rate: the percentage of keywords that are correctly spotted by the algorithm.

TN rate: the percentage of non-keywords that are correctly not spotted by the

algorithm.

FP rate: the percentage of non-keywords that are incorrectly spotted by the

algorithm.

FN rate: the percentage of keywords that are incorrectly not spotted by the

algorithm.

The ideal performance is equivalent of a TP rate of 100%, a TN rate of 100%, a FP rate

of 0% and a FN rate of 0%. TP rate and FN rate sum to 1, therefore we only need one of

these quantities to obtain the other. Similarly, for TN rate and FP rate. Thus, we need a

pair of quantities to state the performance of a word spotting algorithm. One quantity

(either TP or FN) states how well the algorithm performs in the retrieval of relevant

information (i.e. keywords), and the other quantity (either TN or FP) states how well the

147

algorithm performs in the filtering of irrelevant information (non-keywords). Sometimes,

it is preferred to state the performance in terms of a precision-recall pair. Precision states

the probability that a (randomly selected) spotted word is relevant. Recall states the

probability that a (randomly selected) keyword is spotted. In terms of TP, TN, FP and

FN:

FP TP
TPprecision
+

=

(8.2)

FN TP
TPrecall
+

=

(8.3)

The ideal performance is equivalent of a precision rate of 100% and a recall rate of

100%. In order to see how far the performance of a word spotting algorithm is from the

ideal performance, and thus be able to compare different algorithms, it is often easier to

state the performance by a single quantity, rather than a pair of quantities. Numerous

measures in the IR literature have been proposed for this purpose. Our experimental

results are based on the so-called F-measure (a.k.a. F-score) that is one of the most

popular measures for expressing the precision-recall pair as a single number. The basic

form of the F-measure, denoted by F1 or simply F, is defined as the harmonic mean of

precision and recall:

recallprecision
recallprecision.2.F
+

=

(8.4)

This basic form of F-measure treats precision and recall as equally important. However,

in some applications, it may be preferable to attach more importance to precision than

148

recall or vice verse. Therefore, the general form of the F-measure, denoted by Fβ, is

defined as follows:

recall.precision
recallprecision..)(1F 2

2

+
+=

β
ββ

(8.5)

The value of β determines whether we want to give more importance to precision or

recall. With β > 1, we give β times as much importance to recall as precision, and with β

< 1, we give 1 / β times as much importance to precision as recall. With β = 1, we arrive

at the basic or the balanced form of the F-measure.

In real world IR applications, normally as the precision rate increases the recall rate

decreases and vice versa. In the extreme case, we can achieve a perfect recall by spotting

all words (keywords and non-keywords), and on the other hand, we can achieve a

faultless precision by spotting no words. Therefore, it is important to make a sensible

compromise between precision and recall based on the application requirements.

In our case, the client prefers more accurate processing of a smaller amount of documents

over a less accurate processing of a larger amount of documents. In terms of precision

and recall, better precision is more important than better recall. For this reason, aside

from the balanced F-measure, we report our results in terms of F0.5 measure as well (β =

0.5 resulting in an evaluation criterion with precision being 2 times more important than

recall).

149

Table 8.4 Average performance of binary classification approaches to keyword/non-keyword

separation over closed lexica for different sizes of keywords and non-keywords.

Classification
Approach

Keywords/Non-keywords Sets

1 keyword vs.
50 non-keywords

5 keywords vs.

500 non-keywords

20 keyword vs.

1000 non-keywords

50 keyword vs.

5000 non-keywords

P R F F0.5 P R F F0.5 P R F F0.5 P R F F0.5
Global Binary

SVM+Gradient

90.1

91.8

90.9

90.4

83.3

80.9

82.1

82.8

59.1

63.1

61.0

59.9

52.7

57.8

55.1

53.6

Global Binary

SVM+Gabor

92.5

90.7

91.6

92.1

85.1

81.2

83.1

84.3

60.7

61.0

60.9

60.8

52.7

59.1

55.7

53.9

Local Binary

KNN+LMM

98.2

97.4

97.8

98.0

97.5

94.3

95.9

96.8

95.2

94.6

94.9

95.1

93.6

90.1

91.8

92.9

GMED
Thresholding

OR

99.1

99.5

99.3

99.2

97.1

93.5

95.2

96.4

88.2

82.7

85.4

87.0

85.0

80.9

82.9

84.1

XOR

99.8

99.1

99.4

99.7

98.0

93.4

95.6

97.0

89.9

82.5

86.0

88.3

86.3

80.1

83.1

85.0

UBM
Thresholding

OR

98.8

99.5

99.1

98.9

97.5

94.0

95.7

96.7

91.3

88.0

89.6

90.6

90.2

84.7

87.4

89.0

XOR

99.5

99.2

99.4

99.4

97.9

93.6

95.7

97.0

92.1

87.2

89.6

91.1

91.3

83.5

87.2

89.6

8.4.1.2.1 Closed-Lexicon Word Spotting Experiments

We carried out our closed-lexicon experiments on several randomly selected subsets of

the IAM database with different sizes for the keywords and non-keywords sets. The

results are summarized in Table 8.4 for four experimental cases ranging from small-size

keywords set/small-size non-keywords set to modest-size keywords set/large-size non-

keywords set. In each case, we repeated the experiments for 5 randomly selected sets of

keywords and non-keywords; thus every number reported in Table 8.4 is the average

value of 5 independent experiments. For the thresholding-based approaches (GMED and

150

UBM), the arbitration strategy is denoted by OR ≡ at-least-one, and XOR ≡ exactly-one

rules as described in Section 8.1.1.

As can be seen, the poorest performances are associated with the global binary

approaches where we model all keywords by one model and all non-keywords by another

model; while the highest performances are associated with model-based approaches

where we model each keyword separately. The conjecture that local approaches, in this

particular binary classification problem, work better than global approaches is supported

by the fact that the highest performance is achieved by the KNN approach. By keeping all

training samples of all keywords and non-keywords, the KNN approach provides the

most elaborate and accurate keyword/non-keyword separation model; however, needless

to mention, the KNN classifier entails high memory and computation requirements that

limit its practicality. According to Table 8.4, the second best performance is associated

with the UBM thresholding approach, which is consistently better than the GME

thresholding, particularly for larger sets of keywords and non-keywords. The higher

performance of the UBM approach is attributed to the so-called filler or negative model

for non-keywords, which is missing in the simple GME thresholding approach where we

model the keywords only.

In summary, if we have n training samples belonging to a family of N keywords, and m

training samples belonging to a family of M non-keywords, the KNN approach, which

results in the best performance, is composed of n + m models (i.e. exemplars). The UBM

thresholding approach, which has the second best performance, is composed of N + 1

models (N keyword models + 1 non-keyword model). The GME thresholding approach,

which has the third best performance, is composed of N models. And the two global

151

binary approaches, which lead to the lowest performances, are composed of 1 model

each.

Table 8.5. Average performance of binary classification approaches to keyword/non-keyword

separation over open lexica for different sizes of keywords and non-keywords.

Classification
Approach

Keywords/Non-keywords Sets

Train

1 keyword vs.
50 non-keywords

5 keywords vs.
500 non-keywords

20 keyword vs.
1000 non-keywords

50 keyword vs.
5000 non-keywords

Test

1 keyword vs.
50 non-keywords
+ 1000 OOV non-

keywords

5 keywords vs.
500 non-keywords
+ 2000 OOV non-

keywords

20 keyword vs.
1000 non-keywords
+ 5000 OOV non-

keywords

50 keyword vs.
5000 non-keywords
+ 5000 OOV non-

keywords
P R F F0.5 P R F F0.5 P R F F0.5 P R F F0.5

Global Binary

SVM+Gradient

78.1

83.4

80.7

79.1

79.6

80.4

80.0

79.8

54.7

63.0

58.6

56.2

49.9

57.0

53.2

51.2

Global Binary

SVM+Gabor

79.4

80.2

79.8

79.5

80.0

80.8

80.4

80.2

56.2

59.9

58.0

56.9

50.4

58.7

54.2

51.9

Local Binary

KNN+LMM

90.9

96.5

93.6

92.0

93.0

94.1

93.5

93.2

93.4

94.1

93.7

93.5

91.2

89.8

90.5

90.9

GMED
Thresholding

OR

92.1

95.1

93.6

92.7

93.0

95.1

94.0

93.4

85.3

80.6

82.9

84.3

82.2

80.6

81.4

81.9

XOR

94.5

91.7

93.1

93.9

94.2

92.6

93.4

93.9

86.8

80.0

83.3

85.3

83.9

79.8

81.8

83.0

UBM
Thresholding

OR

92.0

95.5

93.7

92.7

94.2

95.7

94.9

94.5

90.9

86.9

88.9

90.1

89.7

82.6

86.0

88.2

XOR

94.0

93.6

93.8

93.9

94.5

95.4

94.9

94.7

91.0

85.4

88.1

89.8

90.1

81.9

85.8

88.3

152

8.4.1.2.2 Open-Lexicon Word Spotting Experiments

The results of the open-lexicon experiments are summarized in Table 8.5. All settings are

the same as the closed-lexicon experiments, except for the test sets. In each experiment,

the lexicon of the test set is a super set of the lexicon of the corresponding training set

(for non-keywords). Therefore, we can gain an understanding of the ability of each

classifier in the rejection of unseen irrelevant information (i.e. OOV non-keywords).

In terms of the classification performance, we observe the same trend in Table 8.5 as in

the closed-lexicon experiments, with the KNN approach again resulting in the best

performance for larger lexica.

However, as is expected, the performance measures in open-lexicon experiments are

slightly lower that the corresponding closed-lexicon experiments. The reason is obviously

OOV non-keywords that have similar features to the already seen keyword instances. In a

real-world word spotting application, once these OOV non-keywords are detected, we

can add them to the non-keyword lexicon and re-train (refine) the keyword/non-keyword

classifier consequently. The automatic generation of image samples that we discussed in

Section 8.2, serves this purpose as it obviates the need for the manual gathering of real

handwritten samples for new words.

8.4.2 Document-Level Experiments

As we mentioned before, the purpose of document-level experiments is to give us an idea

of the average performance of the word spotting system at the document level. In more

tangible terms, we are interested to estimate the chance of reliably hitting a given

keyword in a given document under real-world circumstances.

153

Based on our modular approach to word spotting, we can obtain a rough estimate of the

document-level performance by multiplying the performances of the two major modules

of the system. These two major modules are segmentation and decision, where the

decision module itself is composed of two sub-modules: keyword/non-keyword

classification and keyword recognition. Roughly speaking, we can achieve a performance

of ~90% in each of these three independent units; therefore in theory, the overall

performance is expected to be around 90%^3 ≈ 72%.

However, in practice, firstly, there are many other factors that may affect the

performance, and secondly, as we mentioned before, most often there is a compromise

that has to be made between the quality (precision) and the quantity (recall) of automatic

processing. Therefore, it is more insightful to express the average performance in terms

of quality and quantity rather than a single number.

Table 8.6 List of keywords for French keyword spotting experiments.

Adhère

adhérer

adhésion

adhérent

adhérents

adhérente

Résilier

résiliée

résiliation

Clore chômage

Cesser Financier

financièrs

financière

financières

stoppée

stopper Annulé

annuler

annulations

Santé

Radié

radiée

radier

décès

décédé

décéder

décédée

Abonné

abonnement

abonnements

Arrêt

arrêté

arrêter

arrêtée

Rayer

Résilie Romper contrat

154

We already saw samples of handwritten documents from the IAM English database and

our proprietary French database in Fig. 8.6 and 8.7. In order to assess the overall

performance of the word spotting algorithm, we choose 100 documents from each

database. For the IAM database, we randomly chose 5 subsets of the lexicon as the

keyword sets, and therefore we carried out 5 independent experiments to assess the

average word spotting performance. For the French database, the set of keywords are

given in Table 8.6. These are mostly “action” words, as we described earlier, that the

customer service of the company wishes to spot in the clients’ mails. It should be

mentioned that it often happens that certain keywords appear more than once in a

document; for example if a keyword appears in the title of the document, it will appear in

the body as well. Typically, it is unnecessary to spot all instances of a keyword in a

document. In other words, if the algorithm hits only one instance of a keyword within a

document, then the missing instances of the keyword should not count as false negatives.

However, it the following results, we treat different instances of a keyword within a

document as independent entities. This will lead to a less biased estimate of the word

spotting performance, and consequently a more meaningful comparison with other

methods.

The average precision-recall curves for the IAM database of English forms and our

collection of real-world French mails are shown in Fig. 8.8. The maximum F-measure on

the IAM database is 74.7%, while the maximum F-measure on the French mails is 73.9%.

As we mentioned before, the main difference between the IAM database of forms and the

French collection of mails is the controlled vs. uncontrolled writing environment that

155

mainly affects the document layout. Therefore, these results imply that the average

performance is only slightly compromised (~1%) by the uncontrolled writing

environment of the real-world handwritten mails.

Precision vs. Recall

Recall
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Precision vs. Recall

Recall
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) IAM English forms (b) Real-world French mails

Figure 8.8 Average keyword spotting performance in terms of precision-recall curves.

Our results, even without any word/document-level training, are comparable with two

state-of-the-art word spotting systems for English [FFMB12] and French [RSPSL10]

documents. Both systems use a portion of the groundtruth database for the

training/adaptation of the underlying recognition models. In [FFMB12], the authors have

also utilized a bigram language model, which equips the keyword spotting system with

more context knowledge. Again we must emphasize that a direct comparison of

published results is not quite meaningful. But in order to get a general idea of how these

algorithms perform, we briefly mention their main results. In [RSPSL10], the authors

report an average false rejection rate of 40% and an average a false acceptance rate of

0.26%. This means that the algorithm retrieves 60% of the keywords correctly, while it

156

returns 26 out of every 10,000 non-keywords by mistake. In some of our experiments

using the KNN+LMM approach, we could achieve a false positive rate of as low as 5 out

of 10,000 non-keywords at almost the same true positive rate (~58%). In [FFMB12], the

authors report average precision rates of 41% to 94% on different databases under a

variety of settings for writer adaptation and language models. The average precision rate

of our proposed algorithm is 59.6% on the IAM database, and 56.7% on the French mails

collection, which can be considered as a competent performance in view of the fact that

we used no parts of the documents collection for the adjustment or adaptation of the word

spotting algorithm.

Figure 8.9 Sample output of proposed word spotting system for a handwritten document from the

database of incoming mails.

#false positives: 0
#false negatives: 0

keywords of interest:

 “resiliation”
 “adherent”
 “contrat”

157

Our proposed keyword spotting algorithm is integrated into AD’DOC IIM, The

Automated Document Capture Solution of IMDS Software5. The average processing time

for a typical handwritten mail (Fig. 8.7), including all the steps from noise removal to

keyword recognition, is around 2-3 seconds on a Pentium 4 2.4 GHz PC, depending on

the size of the document (i.e. the number of words). It must be mentioned that, although

all the algorithms are implemented in C++, the major objective of the first phase of the

development was obviously the correctness of the algorithms rather speed optimization.

The current implementation is single-threaded, and obviously does not use the full

capacity of now prevalent multi-core processors. Our modular approach easily supports

parallel processing; as the text lines are independent, we can carry out the two major

operations (word segmentation and keyword detection/recognition) within each line of

text concurrently. We expect the processing time would be improved by a factor of 4 to 8

times (~0.25 to 0.75 sec per document) after the code is optimized for speed.

8.5 Future Work

The research on keyword spotting constitutes a broad category of disciplines from image

processing, computational geometry, pattern recognition and machine learning to statistic

decision theory, information retrieval and language modeling. Roughly speaking, the

state-of-the-art performance of general keyword spotting systems is around 50-60%,

which means that the problem of automatic keyword spotting has still a long way to go

before reaching maturity.

5 For more information about AD’DOC IIM please visit www.imds-world.com/en/software.html

158

Based on the current state of our work, we propose the following areas as the future

directions for the keyword spotting research:

 Investigation of geometrical perturbation models for handwritten fonts.

 Development of adaptation techniques for generative models of handwriting.

 Synthesis of training data for arbitrary words based on generative models of

handwriting.

 Investigation of online learning methods in the context of binary keyword/non-

keyword classification for arbitrary keywords.

 Analysis of one-class learning methods (i.e. one-class SVM) for the separation of

limited sets of keywords from unlimited sets of non-keywords.

 Study and development of robust features for cursive handwritten characters.

 Development of dual learning techniques for addressing the inherent problem of

fuzziness in handwritten character shapes.

 Combination of local and global techniques for the improvement of the

recognition of handwritten words.

 Investigation of template-based and segmentation-free keyword spotting methods

for complex layout and unconstrained documents.

8.6 Conclusion

Keyword spotting is the core problem in search, classification and retrieval of document

images. We presented a top-down approach to the spotting of arbitrary keywords in

handwritten document images. The main goal of our approach was the development of a

159

methodology for the automatic processing of real-world documents with a reliable

performance without the need for the manual gathering of real handwritten samples for

new words or the manual adjustment of the underlying algorithms for new datasets. To

this end, we studied the challenges that we encounter in the processing of real-world

documents and we proposed efficient algorithms to address the three major problems

encompassing keyword spotting, namely, denoising, line/word segmentation and

keyword detection/recognition.

The main contribution of our work was the development of a generalized minimum edit

distance for handwritten words. We showed this distance is equivalent to an Ergodic

Hidden Markov Model (EHMM), therefore we were able to use the standard Expectation

Maximization (EM)-based optimization algorithms for the adjustment of the associated

cost functions of the proposed distance. The main advantage of our approach was to

provide an exact model for the temporal information present in the handwriting with a

feasible number of states (less than a few hundred). To the best of our knowledge, this is

the first work to present an exact 2D model for handwritten words while satisfying

practical constraints. Other contributions of this research were the development of eight

algorithms as follows:

1) Removal of page margins based on corner detection in projection profiles. For further

information, please see [HBS09].

2) Removal of noise patterns in handwritten images using expectation maximization and

fuzzy inference systems, which is the extension of the noise removal method that we

discussed in Chapter 3. For further information, please see [HBS12].

160

3) Extraction of text lines and words based on Fast Fourier-based Steerable (FFS)

filtering.

4) Development of a statistical hypothesis testing method based on Markov chains and

HMMs for word segmentation algorithms. For further information, please see [HSB+12].

5) Segmentation of characters based on skeletal graphs.

6) Detection of under-segmented characters using fuzzy inference systems.

7) Merging of broken characters based on graph partitioning. For further information,

please see [HBS11].

8) Recognition of handwritten cursive characters based on input perturbation and

classification combination.

We carried out extensive experiments on a benchmark database of handwritten English

documents and a real-world collection of handwritten French documents. The results

indicate that even without any word/document-level training, our proposed approach

provides a competent performance which is comparable with two state-of-the-art word

spotting systems for English and French documents.

161

List of Publications

Below is a list of papers published or under consideration based on my thesis:

Mehdi Haji, Tien D. Bui and Ching Y. Suen, “Removal of Noise Patterns in Handwritten

Document Images Using Expectation Maximization and Fuzzy Inference Systems,”

Pattern Recognition, 2012. (under second review)

Mehdi Haji , Kalyan A. Sahoo, Tien D. Bui, Ching Y. Suen and Dominique Ponson,

“Statistical Hypothesis Testing for Handwritten Word Segmentation Algorithms,” 2012

International Conference on Frontiers in Handwriting Recognition (ICFHR-2012).

(submitted)

Mehdi Haji, T. D. Bui and C. Y. Suen, “Automatic extraction of numeric strings in

unconstrained handwritten document images,” Document Recognition and Retrieval

XVIII, Proceedings of SPIE, Volume 7874, Jan. 2011.

Mehdi Haji , Tien D. Bui, C. Y. Suen, “Simultaneous Document Margin Removal and

Skew Correction Based on Corner Detection in Projection Profiles,” Image Analysis and

Processing , Lecture Notes in Computer Science, Volume 5716/2009, 2009.

162

Appendix

A1. Rule Base for Detection of Dots and Small Noises

Rule #1. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM then Dot

is very LOW and Small Noise is very HIGH.

Rule #2. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is

MEDIUM and Small Noise is HIGH.

Rule #3. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is

AROUND_1 then Dot is LOW and Small Noise is MEDIUM.

Rule #4. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is

not AROUND_1 then Dot is LOW and Small Noise is LOW.

Rule #5. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is

AROUND_1 then Dot is HIGH and Small Noise is MEDIUM.

Rule #6. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is

not AROUND_1 then Dot is MEDIUM and Small Noise is MEDIUM.

163

Rule #7. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is LARGE_COMPARED_TO_NASW and Normalized YCOG is BOTTOM then Dot

is very LOW and Small Noise is LOW.

Rule #8. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized

Width is LARGE_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is

LOW and Small Noise is LOW.

Rule #9. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is

AROUND_1 then Dot is LOW and Small Noise is HIGH.

Rule #10. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is

not AROUND_1 then Dot is VERY LOW and Small Noise is MEDIUM.

Rule #11. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

SMALL_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is HIGH and

Small Noise is MEDIUM.

Rule #12. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is AROUND_1

then Dot is LOW and Small Noise is MEDIUM.

Rule #13. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is not

AROUND_1 then Dot is very LOW and Small Noise is LOW

164

Rule #14. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is AROUND_1

then Dot is very HIGH and Small Noise is very LOW.

Rule #15. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is not

AROUND_1 then Dot is somewhat HIGH and Small Noise is very LOW.

Rule #16. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

LARGE_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is

AROUND_1 then Dot is LOW and Small Noise is LOW.

Rule #17. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

LARGE_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is

not AROUND_1 then Dot is very LOW and Small Noise is very LOW.

Rule #18. if Normalized Height is EQUAL_TO_NASW and Normalized Width is

LARGE_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is MEDIUM and

Small Noise is very LOW.

Rule #19. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM then Dot

is very LOW and Small Noise is very LOW.

Rule #20. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is

LOW and Small Noise is very LOW.

165

Rule #21. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is BOTTOM then Dot is very

LOW and Small Noise is very LOW.

Rule #22. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is

AROUND_1 then Dot is HIGH and Small Noise is very LOW.

Rule #23. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is

not AROUND_1 then Dot is LOW and Small Noise is very LOW

Rule #24. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized

Width is LARGE_COMPARED_TO_NASW then Dot is very LOW and Small Noise is

very LOW.

A2. Rule Base for Detection of Dashes

Rule #1. if Normalized Height is LOW and Normalized Width is MEDIUM and

Denseness is LOW and Eccentricity is not HIGH then Dash is LOW.

Rule #2. if Normalized Height is LOW and Normalized Width is MEDIUM and

Denseness is LOW and Eccentricity is HIGH and Orientation is not

HORIZONTAL then Dash is MEDIUM.

Rule #3. if Normalized Height is LOW and Normalized Width is MEDIUM and

Denseness is LOW and Eccentricity is HIGH and Orientation is HORIZONTAL

then Dash is somewhat HIGH.

166

Rule #4. if Normalized Height is LOW and Normalized Width is MEDIUM and

Denseness is not LOW and Eccentricity is not HIGH then Dash is MEDIUM.

Rule #5. if Normalized Height is LOW and Normalized Width is MEDIUM and

Denseness is not LOW and Eccentricity is HIGH and Orientation is not

HORIZONTAL then Dash is MEDIUM.

Rule #6. if Normalized Height is LOW and Normalized Width is MEDIUM and

Denseness is not LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is HIGH.

Rule #7. if Normalized Height is LOW and Normalized Width is not MEDIUM

and Denseness is LOW and Eccentricity is not HIGH then Dash is very LOW.

Rule #8. if Normalized Height is LOW and Normalized Width is not MEDIUM

and Denseness is LOW and Eccentricity is HIGH and Orientation is not

HORIZONTAL then Dash is very LOW.

Rule #9. if Normalized Height is LOW and Normalized Width is not MEDIUM

and Denseness is LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is MEDIUM.

Rule #10. if Normalized Height is LOW and Normalized Width is not MEDIUM

and Denseness is not LOW and Eccentricity is not HIGH then Dash is very

LOW.

167

Rule #11. if Normalized Height is LOW and Normalized Width is not MEDIUM

and Denseness is not LOW and Eccentricity is HIGH and Orientation is not

HORIZONTAL then Dash is LOW.

Rule #12. if Normalized Height is LOW and Normalized Width is not MEDIUM

and Denseness is not LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is MEDIUM.

Rule #13. if Normalized Height is MEDIUM and Normalized Width is MEDIUM

and Denseness is LOW and Eccentricity is not HIGH then Dash is very LOW.

Rule #14. if Normalized Height is MEDIUM and Normalized Width is MEDIUM

and Denseness is LOW and Eccentricity is HIGH and Orientation is not

HORIZONTAL then Dash is LOW.

Rule #15. if Normalized Height is MEDIUM and Normalized Width is MEDIUM

and Denseness is LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is MEDIUM.

Rule #16. if Normalized Height is MEDIUM and Normalized Width is MEDIUM

and Denseness is not LOW and Eccentricity is not HIGH then Dash is LOW.

Rule #17. if Normalized Height is MEDIUM and Normalized Width is MEDIUM

and Denseness is not LOW and Eccentricity is HIGH and Orientation is not

HORIZONTAL then Dash is LOW.

168

Rule #18. if Normalized Height is MEDIUM and Normalized Width is MEDIUM

and Denseness is not LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is MEDIUM.

Rule #19. if Normalized Height is MEDIUM and Normalized Width is not

MEDIUM and Denseness is LOW and Eccentricity is not HIGH then Dash is

very LOW.

Rule #20. if Normalized Height is MEDIUM and Normalized Width is not

MEDIUM and Denseness is LOW and Eccentricity is HIGH and Orientation is

not HORIZONTAL then Dash is very LOW.

Rule #21. if Normalized Height is MEDIUM and Normalized Width is not

MEDIUM and Denseness is LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is LOW.

Rule #22. if Normalized Height is MEDIUM and Normalized Width is not

MEDIUM and Denseness is not LOW and Eccentricity is not HIGH then Dash

is very LOW.

Rule #23. if Normalized Height is MEDIUM and Normalized Width is not

MEDIUM and Denseness is not LOW and Eccentricity is HIGH and Orientation

is not HORIZONTAL then Dash is very LOW.

Rule #24. if Normalized Height is MEDIUM and Normalized Width is not

MEDIUM and Denseness is not LOW and Eccentricity is HIGH and Orientation

is HORIZONTAL then Dash is LOW.

169

Rule #24. if Normalized Height is HIGH and Normalized Width is MEDIUM

and Denseness is not LOW and Eccentricity is HIGH and Orientation is

HORIZONTAL then Dash is LOW.

Rule #25. if Normalized Height is HIGH and not (Normalized Width is

MEDIUM and Denseness is not LOW and Eccentricity is HIGH and Orientation

is HORIZONTAL) then Dash is very LOW.

170

References

[All92] L. Allison. Lazy dynamic-programming can be eager. Inf. Process. Lett.,

43:207–212, September 1992.

[AMCS04] K. T. Abou-Moustafa, M. Cheriet, and C. Y. Suen. On the structure of

hidden markov models. Pattern Recognition Letters, 25(8):923 – 931, 2004.

[ASW03] Jan-Mark Geusebroek Arnold, Arnold W. M. Smeulders, and Joost

Van De Weijer. Fast anisotropic gauss filtering. IEEE Transactions on Image Processing,

12:2003, 2003.

[BB08] Roman Bertolami and Horst Bunke. Hidden markov model-based

ensemble methods for offline handwritten text line recognition. Pattern Recognition,

41(11):3452 – 3460, 2008.

[Bra99] Ronald N. Bracewell. The Fourier Transform & Its Applications.

McGraw-Hill Science/Engineering/Math; 3 edition, 1999.

[Bre65] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM

System Journal, 4(1):25–30, 1965.

[CB05] Dongwook Cho and Tien D. Bui. Multivariate statistical modeling for

image denoising using wavelet transforms. Signal Processing: Image Communication,

20(1):77 – 89, 2005.

[CBG09] Huaigu Cao, Anurag Bhardwaj, and Venu Govindaraju. A probabilistic

method for keyword retrieval in handwritten document images. Pattern Recognition,

42(12):3374–3382, 2009.

171

[CK04] Beom-Joon Cho and Jin H. Kim. Print keyword spotting with dynamically

synthesized pseudo 2d hmms. Pattern Recognition Letters, 25(9):999 – 1011, 2004.

[CLK95] Wongyu Cho, Seong-Whan Lee, and Jin H. Kim. Modeling and

recognition of cursive words with hidden markov models. Pattern Recognition,

28(12):1941 – 1953, 1995.

[CLLT02] L. Cinque, S. Levialdi, L. Lombardi, and S. Tanimoto. Segmentation of

page images having artifacts of photocopying and scanning. Pattern Recognition,

35(5):1167 – 1177, 2002.

[CMGS10] Dan C. Ciresan, Ueli Meier, Luca M. Gambardella, and Juergen

Schmidhuber. Deep big simple neural nets excel on handwritten digit recognition. March

2010.

[CSSJ09] Paulo R. Cavalin, Robert Sabourin, Ching Y. Suen, and Alceu S. Britto Jr.

Evaluation of incremental learning algorithms for hmm in the recognition of

alphanumeric characters. Pattern Recognition, 42(12):3241 – 3253, 2009. New Frontiers

in Handwriting Recognition.

[Dam64] Fred J. Damerau. A technique for computer detection and correction of

spelling errors. Commun. ACM, 7:171–176, March 1964.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern

Classification (2nd Edition). Wiley-Interscience, 2000.

[DPB09] Xiaojun Du, Wumo Pan, and Tien D. Bui. Text line segmentation in

handwritten documents using mumford-shah model. Pattern Recogn., 42(12):3136–3145,

2009.

172

[DT10] Mohammad Reza Daliri and Vincent Torre. Shape recognition based on

kernel-edit distance. Computer Vision and Image Understanding, 114(10):1097 – 1103,

2010.

[EDC97] Kamran Etemad, David Doermann, and Rama Chellappa. Multiscale

segmentation of unstructured document pages using soft decision integration. IEEE

Trans. Pattern Anal. Mach. Intell., 19:92–96, January 1997.

[EYSSG99] A. El-Yacoubi, R. Sabourin, C. Y. Suen, and M. Gilloux. An hmm-based

approach for off-line unconstrained handwritten word modeling and recognition. IEEE

Trans. Pattern Anal. Mach. Intell., 21(8):752–760, 1999.

[FA91] William T. Freeman and Edward H. Adelson. The design and use of

steerable filters. IEEE Trans. Pattern Anal. Mach. Intell., 13:891–906, September 1991.

[FFB10] Volkmar Frinken, Andreas Fischer, and Horst Bunke. A novel word

spotting algorithm using bidirectional long short-term memory neural networks. In

Friedhelm Schwenker and Neamat El Gayar, editors, Artificial Neural Networks in

Pattern Recognition, volume 5998 of Lecture Notes in Computer Science, pages 185–

196. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-12159-3_17.

[FFMB12] Volkmar Frinken, Andreas Fischer, R. Manmatha, and Horst Bunke. A

novel word spotting method based on recurrent neural networks. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 34(2):211–224, feb. 2012.

[FKSO10] Dominik Fisch, Bernhard Kühbeck, Bernhard Sick, and Seppo J. Ovaska.

So near and yet so far: New insight into properties of some well-known classifier

paradigms. Information Sciences, 180(18):3381 – 3401, 2010.

173

[FO08] Leandro A. F. Fernandes and Manuel M. Oliveira. Real-time line detection

through an improved hough transform voting scheme. Pattern Recogn., 41:299–314,

January 2008.

[Fuj08] Hiromichi Fujisawa. Forty years of research in character and document

recognition-an industrial perspective. Pattern Recogn., 41(8):2435–2446, 2008.

[FWL02] Kuo-Chin Fan, Yuan-Kai Wang, and Tsann-Ran Lay. Marginal noise

removal of document images. Pattern Recognition, 35(11):2593 – 2611, 2002.

[GBC+94] Michael D. Garris, James L. Blue, Gerald T. Candela, Gerald T. C,

Darrin L. Dimmick, Jon Geist, Patrick J. Grother, Stanley A. Janet, and Charles L.

Wilson. Nist form-based handprint recognition system. Technical report, Technical

Report NISTIR 5469 and CD-ROM, National Institute of Standards and Technology,

1994.

[GCB09] Venu Govindaraju, Huaigu Cao, and Anurag Bhardwaj. Handwritten

document retrieval strategies. In AND ’09: Proceedings of The Third Workshop on

Analytics for Noisy Unstructured Text Data, pages 3–7, New York, NY, USA, 2009.

ACM.

[GLF+09] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and

J. Schmidhuber. A novel connectionist system for unconstrained handwriting recognition.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(5):855 –868, may.

2009.

[GSL09] Basilis Gatos, Nikolaos Stamatopoulos, and Georgios Louloudis. Icdar

2009 handwriting segmentation contest. In Proceedings of the 2009 10th International

174

Conference on Document Analysis and Recognition, ICDAR ’09, pages 1393–1397,

Washington, DC, USA, 2009. IEEE Computer Society.

[GW07] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd

Edition). Prentice Hall, 2007.

[HAI07] T. Hamamura, T. Akagi, and B. Irie. An analytic word recognition

algorithm using a posteriori probability. Document Analysis and Recognition,

International Conference on, 2:669–673, 2007.

[HB97] Thien M. Ha and Horst Bunke. Off-line, handwritten numeral recognition

by perturbation method. IEEE Trans. Pattern Anal. Mach. Intell., 19(5):535–539, 1997.

[HBS09] M. Mehdi Haji, Tien D. Bui, and Ching Y. Suen. Simultaneous document

margin removal and skew correction based on corner detection in projection profiles. In

ICIAP ’09: Proceedings of the 15th International Conference on Image Analysis and

Processing, pages 1025–1034, Berlin, Heidelberg, 2009. Springer-Verlag.

[HBS11] Mehdi Haji, T. D. Bui and C. Y. Suen, “Automatic extraction of numeric

strings in unconstrained handwritten document images,” Document Recognition and

Retrieval XVIII, Proceedings of SPIE, Volume 7874, Jan. 2011.

[HBS12] Mehdi Haji, Tien D. Bui and Ching Y. Suen, “Removal of Noise Patterns

in Handwritten Document Images Using Expectation Maximization and Fuzzy Inference

Systems,” Pattern Recognition, 2012. (under second review)

[HK06] Sun-Kyoo Hwang and Whoi-Yul Kim. A novel approach to the fast

computation of zernike moments. Pattern Recogn., 39(11):2065–2076, 2006.

175

[HP02] Y.C. Ho and D.L. Pepyne. Simple explanation of the no-free-lunch

theorem and its implications. Journal of Optimization Theory and Applications, 115:549–

570, 2002. 10.1023/A:1021251113462.

[HSB+12] Mehdi Haji , Kalyan A. Sahoo, Tien D. Bui, Ching Y. Suen and

Dominique Ponson, “Statistical Hypothesis Testing for Handwritten Word Segmentation

Algorithms,” 2012 International Conference on Frontiers in Handwriting Recognition

(ICFHR-2012). (submitted)

[JS97] J.-S. R. Jang and C.-T. Sun. Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997.

[JVVYV98] Lucas J Van Vliet, Ian T. Young, and Piet W. Verbeek. Recursive

gaussian derivative filters. In Proceedings of the 14th International Conference on

Pattern Recognition-Volume 1 - Volume 1, ICPR ’98, pages 509–514, Washington, DC,

USA, 1998. IEEE Computer Society.

[KA94] Shyh-Shiaw Kuo and O.E. Agazzi. Keyword spotting in poorly printed

documents using pseudo 2-d hidden markov models. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 16(8):842 –848, August 1994.

[KAA+00] A. Kolcz, J. Alspector, M. Augusteijn, R. Carlson, and G. Viorel Popescu.

A line-oriented approach to word spotting in handwritten documents. Pattern Analysis &

Applications, 3:153–168, 2000. 10.1007/s100440070020.

[Kav10] Ergina Kavallieratou. Text line detection and segmentation: uneven skew

angles and hill-and-dale writing. In Proceedings of the 2010 ACM Symposium on Applied

Computing, SAC ’10, pages 59–60, New York, NY, USA, 2010. ACM.

176

[KB06] D.J. Kennard and W.A. Barrett. Separating lines of text in free-form

handwritten historical documents. In Document Image Analysis for Libraries, 2006.

DIAL ’06. Second International Conference on, pages 12 pp. –23, april 2006.

[KBJO10] Alessandro L. Koerich, Alceu de S. Britto Jr., and Luiz Eduardo S. de

Oliveira. Verification of unconstrained handwritten words at character level. In Frontiers

in Handwriting Recognition (ICFHR), 2010 International Conference on, pages 39 –44,

2010.

[KG97] Gyeonghwan Kim and Venu Govindaraju. A lexicon driven approach to

handwritten word recognition for real-time applications. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19:366–379, 1997.

[KPBH10] Yousri Kessentini, Thierry Paquet, and AbdelMajid Ben Hamadou. Off-

line handwritten word recognition using multi-stream hidden markov models. Pattern

Recogn. Lett., 31(1):60–70, 2010.

[KSS05] Alessandro L. Koerich, Robert Sabourin, and Ching Y. Suen. Recognition

and verification of unconstrained handwritten words. IEEE Trans. Pattern Anal. Mach.

Intell., 27(10):1509–1522, 2005.

[KvT05] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2005.

[LGH07] G. Louloudis, B. Gatos, and C. Halatsis. Text line detection in

unconstrained handwritten documents using a block-based hough transform approach. In

Proceedings of the Ninth International Conference on Document Analysis and

Recognition - Volume 02, ICDAR ’07, pages 599–603, Washington, DC, USA, 2007.

IEEE Computer Society.

177

[LGPH09] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis. Text line and word

segmentation of handwritten documents. Pattern Recognition, 42(12):3169 – 3183, 2009.

New Frontiers in Handwriting Recognition.

[Liu07] Cheng-Lin Liu. Normalization-cooperated gradient feature extraction for

handwritten character recognition. IEEE Trans. Pattern Anal. Mach. Intell., 29(8):1465–

1469, 2007.

[LLE07] Yann Leydier, Frank Lebourgeois, and Hubert Emptoz. Text search for

medieval manuscript images. Pattern Recognition, 40(12):3552 – 3567, 2007.

[LNG00] Jia Li, A. Najmi, and R.M. Gray. Image classification by a two-

dimensional hidden markov model. Signal Processing, IEEE Transactions on, 48(2):517

–533, February 2000.

[LNSF04] Cheng-Lin Liu, Kazuki Nakashima, Hiroshi Sako, and Hiromichi

Fujisawa. Handwritten digit recognition: investigation of normalization and feature

extraction techniques. Pattern Recognition, 37(2):265–279, February 2004.

[LRM04] V. Lavrenko, T.M. Rath, and R. Manmatha. Holistic word recognition for

handwritten historical documents. pages 278 – 287, 2004.

[LSF94] L. Likforman-Sulem and C. Faure. Advances in Handwriting and Drawing

: a multidisciplinary approach, chapter Extracting text lines in handwritten documents by

perceptual grouping, pages 21–38. Europia, 1994.

[LSHF95] L. Likforman-Sulem, A. Hanimyan, and C. Faure. A hough based

algorithm for extracting text lines in handwritten documents. In Proceedings of the Third

International Conference on Document Analysis and Recognition (Volume 2) - Volume 2,

ICDAR ’95, pages 774–, Washington, DC, USA, 1995. IEEE Computer Society.

178

[LSZT07] Laurence Likforman-Sulem, Abderrazak Zahour, and Bruno Taconet. Text

line segmentation of historical documents: a survey. Int. J. Doc. Anal. Recognit., 9:123–

138, April 2007.

[LTW96] D. X. Le, G. R. Thoma, and H. Wechsler. Automated borders detection

and adaptive segmentation for binary document images. In Proceedings of the

International Conference on Pattern Recognition (ICPR ’96) Volume III-Volume 7276 -

Volume 7276, ICPR ’96, pages 737–, Washington, DC, USA, 1996. IEEE Computer

Society.

[LZD+08a] Yi Li, Yefeng Zheng, D. Doermann, S. Jaeger, and Yi Li. Script-

independent text line segmentation in freestyle handwritten documents. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 30(8):1313 –1329, aug. 2008.

[LZD+08b] Yi Li, Yefeng Zheng, David Doermann, Stefan Jaeger, and Yi Li. Script-

independent text line segmentation in freestyle handwritten documents. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 30:1313–1329, 2008.

[MB02] U.-V. Marti and H. Bunke. The iam-database: an english sentence

database for offline handwriting recognition. International Journal on Document

Analysis and Recognition, 5(1):39–46, 2002.

[MCS06] Jonathan Milgram, Mohamed Cheriet, and Robert Sabourin. One against

one or one against all: Which one is better for handwriting recognition with svms? In

Guy Lorette, editor, Tenth International Workshop on Frontiers in Handwriting

Recognition, La Baule (France), 10 2006. Universite de Rennes, Suvisoft.

[MDES09] Walid Magdy, Kareem Darwish, and Motaz El-Saban. Efficient language-

independent retrieval of printed documents without ocr. In Jussi Karlgren, Jorma Tarhio,

179

and Heikki Hyyrö, editors, String Processing and Information Retrieval, volume 5721 of

Lecture Notes in Computer Science, pages 334–343. Springer Berlin / Heidelberg, 2009.

10.1007/978-3-642-03784-9_33.

[MG00] M.A. Mohamed and P. Gader. Generalized hidden markov models. i.

theoretical frameworks. Fuzzy Systems, IEEE Transactions on, 8(1):67 –81, February

2000.

[MGB09] Robert Milewski, Venu Govindaraju, and Anurag Bhardwaj. Automatic

recognition of handwritten medical forms for search engines. International Journal on

Document Analysis and Recognition, 11:203–218, 2009. 10.1007/s10032-008-0077-1.

[MMMH00] B. Merialdo, S. Marchand-Maillet, and B. Huet. Approximate viterbi

decoding for 2d-hidden markov models. In Acoustics, Speech, and Signal Processing,

2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference on, volume 6,

pages 2147 –2150 vol.4, 2000.

[MR05] R. Manmatha and Jamie L. Rothfeder. A scale space approach for

automatically segmenting words from historical handwritten documents. IEEE Trans.

Pattern Anal. Mach. Intell., 27(8):1212–1225, 2005.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical

Natural Language Processing. MIT Press, 1999.

[Neg04] Michael Negnevitsky. Artificial Intelligence: A Guide to Intelligent

Systems (2nd Edition). Addison Wesley, 2004.

[NSK07] B. Gatos N. Stamatopoulos and A. Kesidis. Automatic borders detection

of camera document images. In 2nd International Workshop on Camera-Based

Document Analysis and Recognition (CBDAR’07), Curitiba, Brazil, 2007.

180

[NSV92] George Nagy, Sharad Seth, and Mahesh Viswanathan. A prototype

document image analysis system for technical journals. Computer, 25:10–22, July 1992.

[OC02] Frank Hoffmann Luis Magdalena Oscar Cordon, Francisco Herrera.

Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases

(Advances in Fuzzy Systems - Applications & Theory). World Scientific Publishing

Company, 2002.

[O’G93] L. O’Gorman. The document spectrum for page layout analysis. IEEE

Trans. Pattern Anal. Mach. Intell., 15:1162–1173, November 1993.

[OS06] Jose Oncina and Marc Sebban. Learning stochastic edit distance:

Application in handwritten character recognition. Pattern Recognition, 39(9):1575 –

1587, 2006.

[PD03] U. Pal and Sagarika Datta. Segmentation of bangla unconstrained

handwritten text. In Proceedings of the Seventh International Conference on Document

Analysis and Recognition - Volume 2, ICDAR ’03, pages 1128–, Washington, DC, USA,

2003. IEEE Computer Society.

[PK04] W. Peerawit and A. Kawtrakul. Marginal noise removal from document

images using edge density. In 4th Information and Computer Engineering Postgraduate

Workshop, Phuket, Thailand, 2004.

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge

University Press, 3 edition, August 2007.

181

[Rab89] L.R. Rabiner. A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2):257 –286, February

1989.

[RDL+92] Aaron E. Rosenberg, Joel DeLong, Chin-Hui Lee, Biing-Hwang Juang,

and Frank K. Soong. The use of cohort normalized scores for speaker verification. In

Proceedings of the International Conference on Spoken Language Processing

(ICSLP’92), pages 599–602, 1992.

[RMKI09] Amjad Rehman, Dzulkifli Mohamad, Fajri Kurniawan, and Mohammad

Ilays. Performance analysis of segmentation approach for cursive handwriting on

benchmark database. Computer Systems and Applications, ACS/IEEE International

Conference on, 0:265–270, 2009.

[Rok10] Lior Rokach. Ensemble-based classifiers. Artif. Intell. Rev., 33:1–39,

February 2010.

[RP08] Jose A. Rodriguez and Florent Perronnin. Local gradient histogram

features for word spotting in unconstrained handwritten documents. In Proceedings of the

1st International Conference on Handwriting Recognition (ICFHR’08), August 2008.

[RQD00] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker

verification using adapted gaussian mixture models. Digital Signal Processing, 10(1-

3):19 – 41, 2000.

[RSP09a] J.A. Rodriguez-Serrano and F. Perronnin. Handwritten word image

retrieval with synthesized typed queries. pages 351 –355, jul. 2009.

182

[RSP09b] Jose A. Rodriguez-Serrano and Florent Perronnin. Handwritten word-

spotting using hidden markov models and universal vocabularies. Pattern Recognition,

42(9):2106–2116, 2009.

[RSPSL10] Jose A. Rodriguez-Serrano, Florent Perronnin, Gemma Sanchez, and

Josep Llados. Unsupervised writer adaptation of whole-word hmms with application to

word-spotting. Pattern Recognition Letters, 31(8):742–749, 2010.

[SC78] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for

spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 26:43–49, 1978.

[SKS96] Giovanni Seni, V. Kripásundar, and Rohini K. Srihari. Generalizing edit

distance to incorporate domain information: Handwritten text recognition as a case study.

Pattern Recognition, 29(3):405 – 414, 1996.

[SLYT07] Te-Hsiu Sun, Chih-Chung Lo, Po-Shen Yu, and Fang-Chih Tien.

Boundary-based corner detection using k-cosine. pages 1106 –1111, oct. 2007.

[SM02] Klaus U. Schulz and Stoyan Mihov. Fast string correction with levenshtein

automata. International Journal on Document Analysis and Recognition, 5:67–85, 2002.

10.1007/s10032-002-0082-8.

[SPJ97] Anikó Simon, Jean-Christophe Pret, and A. Peter Johnson. A fast

algorithm for bottom-up document layout analysis. IEEE Trans. Pattern Anal. Mach.

Intell., 19:273–277, March 1997.

[SSG05] Zhixin Shi, Srirangaraj Setlur, and Venu Govindaraju. Text extraction

from gray scale historical document images using adaptive local connectivity map. In

183

ICDAR ’05: Proceedings of the Eighth International Conference on Document Analysis

and Recognition, pages 794–798, Washington, DC, USA, 2005. IEEE Computer Society.

[SSG09] Zhixin Shi, Srirangaraj Setlur, and Venu Govindaraju. A steerable

directional local profile technique for extraction of handwritten arabic text lines. In

ICDAR ’09: Proceedings of the 2009 10th International Conference on Document

Analysis and Recognition, pages 176–180, Washington, DC, USA, 2009. IEEE Computer

Society.

[SvBKB07] Faisal Shafait, Joost van Beusekom, Daniel Keysers, and Thomas Breuel.

Page frame detection for marginal noise removal from scanned documents. In Bjarne

Ersbøll and Kim Pedersen, editors, Image Analysis, volume 4522 of Lecture Notes in

Computer Science, pages 651–660. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-

540-73040-8_66.

[SvBKB08] Faisal Shafait, Joost van Beusekom, Daniel Keysers, and Thomas Breuel.

Document cleanup using page frame detection. International Journal on Document

Analysis and Recognition, 11:81–96, 2008. 10.1007/s10032-008-0071-7.

[SWB+07] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and

Tomaso Poggio. Robust object recognition with cortex-like mechanisms. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29:411–426, 2007.

[VB08] Tamás Varga and Horst Bunke. Perturbation models for generating

synthetic training data in handwriting recognition. In Simone Marinai and Hiromichi

Fujisawa, editors, Machine Learning in Document Analysis and Recognition, volume 90

of Studies in Computational Intelligence, pages 333–360. Springer Berlin / Heidelberg,

2008. 10.1007/978-3-540-76280-5_13.

184

[vdZSH08] T. van der Zant, L. Schomaker, and K. Haak. Handwritten-word spotting

using biologically inspired features. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 30(11):1945 –1957, nov. 2008.

[vES00] Merijn van Erp and Lambert Schomaker. Variants of the borda count

method for combining ranked classifier hypotheses. In Seventh International Workshop

on Frontiers in Handwriting Recognition, pages 443–452, 2000.

[VGC01] B. Verma, P. Gader, and W. Chen. Fusion of multiple handwritten word

recognition techniques. Pattern Recognition Letters, 22(9):991 – 998, 2001.

[WDL05] Xuewen Wang, Xiaoqing Ding, and Changsong Liu. Gabor filters-based

feature extraction for character recognition. Pattern Recognition, 38(3):369 – 379, 2005.

[Wei04] Jie Wei. Markov edit distance. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 26(3):311 –321, 2004.

[WL75] Robert A. Wagner and Roy Lowrance. An extension of the string-to-string

correction problem. J. ACM, 22:177–183, April 1975.

[xDKSP05] Jian xiong Dong, Adam Krzyzak, Ching Y. Suen, and Dominique Ponson.

Low-level cursive word representation based on geometric decomposition. In

International Conference on Machine Learning and Data Mining (MLDM’05), pages

590–599, 2005.

[ZEP10] Konstantinos Zagoris, Kavallieratou Ergina, and Nikos Papamarkos. A

document image retrieval system. Engineering Applications of Artificial Intelligence,

23(6):872–879, 2010.

[ZJ10] Xin Zhang and Xili Jing. Image denoising in contourlet domain based on a

normal inverse gaussian prior. Digit. Signal Process., 20(5):1439–1446, 2010.

185

[ZS84] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital

patterns. Commun. ACM, 27:236–239, March 1984.

[ZT01] Zheng Zhang and Chew Lim Tan. Recovery of distorted document images

from bound volumes. Document Analysis and Recognition, International Conference on,

0:0429, 2001.

[ZTMR01] A. Zahour, B. Taconet, P. Mercy, and S. Ramdane. Arabic hand-written

text-line extraction. In Document Analysis and Recognition, 2001. Proceedings. Sixth

International Conference on, pages 281 –285, 2001.

