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ABSTRACT 

 

Arbitrary Keyword Spotting in Handwritten Documents 

 

Mehdi Haji, Ph.D. (Computer Science) 

Concordia University, 2012 

 

        Despite the existence of electronic media in today’s world, a considerable amount of 

written communications is in paper form such as books, bank cheques, contracts, etc. 

There is an increasing demand for the automation of information extraction, 

classification, search, and retrieval of documents. The goal of this research is to develop a 

complete methodology for the spotting of arbitrary keywords in handwritten document 

images.  

We propose a top-down approach to the spotting of keywords in document images. Our 

approach is composed of two major steps: segmentation and decision.  In the former, we 

generate the word hypotheses. In the latter, we decide whether a generated word 

hypothesis is a specific keyword or not. We carry out the decision step through a two-

level classification where first, we assign an input image to a keyword or non-keyword 

class; and then transcribe the image if it is passed as a keyword. By reducing the problem 

from the image domain to the text domain, we do not only address the search problem in 

handwritten documents, but also the classification and retrieval, without the need for the 

transcription of the whole document image. 

The main contribution of this thesis is the development of a generalized minimum edit 

distance for handwritten words, and to prove that this distance is equivalent to an Ergodic 
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Hidden Markov Model (EHMM). To the best of our knowledge, this work is the first to 

present an exact 2D model for the temporal information in handwriting while satisfying 

practical constraints.  

Some other contributions of this research include: 1) removal of page margins based on 

corner detection in projection profiles; 2) removal of noise patterns in handwritten images 

using expectation maximization and fuzzy inference systems; 3) extraction of text lines 

based on fast Fourier-based steerable filtering; 4) segmentation of characters based on 

skeletal graphs; and 5) merging of broken characters based on graph partitioning. 

Our experiments with a benchmark database of handwritten English documents and a 

real-world collection of handwritten French documents indicate that, even without any 

word/document-level training, our results are comparable with two state-of-the-art word 

spotting systems for English and French documents. 
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Chapter 1 

Introduction 

 

 

1.1 Problem Statement 

Despite the existence of electronic media in today’s world, a considerable amount of 

written communications are in paper form such as books, advertisements, bank cheques, 

contracts, etc. The quantity of paper documents that must be processed by human is 

growing every day. There is an increasing demand for document image processing and 

understanding such as automation of information extraction, classification, search, and 

retrieval of documents.  

The goal of our research is to develop a complete methodology for automatic 

retrieval/classification of collections of images of unconstrained documents based on the 

presence of one or several keywords which can be specified by the user. Keyword spotting 

is the core problem in search/retrieval /classification applications, and as such it has 

attracted considerable interest by academia and industry in recent years. It should be 

mentioned that for clean printed documents the problem could be considered solved at 

least in theory. However, the difficulty lies in dealing with documents that are noisy and 

contain unstructured and handwritten material [MGB09]. We will propose a keyword 

spotting algorithm that enables the user to automatically retrieve/classify the documents 
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that contain, for example, a person/company’s name or any other arbitrary word from a 

collection of scanned handwritten documents.  

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 1.1 Samples of unconstrained handwritten documents with simple to moderate layouts. 

 

To the best of our knowledge, to date there is no system capable of classifying 

unconstrained document images based on arbitrary text keywords with an acceptable 

performance for real-world applications. Recently there has been some success in limited 

domains such as mail processing or searching in handwritten medical forms [MGB09]. 
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However in such applications, the structure of the document is fixed and the lexicon is 

usually limited and small. The emphasis of our research is to search in unconstrained 

documents with arbitrary keywords.  

 

1.1.1 Characteristics of Unconstrained Handwritten Document 

In general, an unconstrained handwritten document can have the following characteristics: 

a) the text is often densely written and the text items are not well-separated.  Adjacent 

lines may be connected and the distance between neighbouring words may be less than the 

gap between characters of the same word; b) aside from text, usually there are other types 

of items present in the document such as underlines, signatures, barcodes, graphics, logos 

etc.  c) the document may contain a combination of handwritten and machine-printed 

materials which need different types of processing; d) the text lines may not be always 

straight and they do not always have a single global skew angle; e) different text areas may 

have different font sizes; f) the text items may be connected to each other or to non-text 

items by noise, scratches, tables, rule/margin lines or background textures; g) the 

document may have non-uniform illumination. This is especially true for aged and 

historical documents; h) Characters may be broken due to noise, poor contrast, non-

uniform ink, and/or scanning artefacts; i) The words may be slanted especially in 

handwriting (i.e. vertical strokes of the text may deviate from the vertical direction), and 

the slant is not uniform across the text and/or for the same word. Figure 1.1 shows samples 

of unconstrained documents with simple to complex layouts, and Figure 1.2 shows 

samples with complex layouts.  
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(a) (b) (c) 

Figure 1.2 Samples of unconstrained handwritten documents with complex layouts. 

 

1.2 Overview of Document Classification Methodology 

The three major components of a document image classification system are document 

segmentation, word matching, and information retrieval (Figure 1.3).  

Document segmentation algorithms are concerned with dividing a document image into its 

constituent parts. In general, a document may be composed of various types of items other 

than text such as margins, graphics, logos, barcodes, signatures, tables etc. In our 

application, we process the textual contents of the documents. Therefore, it is logical to 

view the document segmentation module as being composed of a pre-processing step 

which is responsible for removing any items but text, followed by line extraction and word 

segmentation steps. After generating a set of word candidates, we must compare each one 

with the set of template keywords and if there is a match, we will spot the location of the 

word in the document image, and perhaps assign the whole document image to a certain 

category based on the posterior probabilities of the detected keywords. 
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Figure 1.3 High-level block diagram of document classification methodology. 

 

In the following, we will explore in greater depth the three major modules of document 

classification systems, namely page segmentation, word matching, and information 

retrieval. We will also present a literature survey of each module and we will describe the 

proposed research and methodology that we will use to tackle the challenges therein.  

 

1.2.1 Background 

Handwritten document retrieval strategies can be broadly divided into two categories: 

template-based and recognition-based. The recognition-based approaches can be further 

divided into algorithms based on OCR correction and algorithms based on modified 

information retrieval models [GCB09]. Template-based approaches aim at solving the 

retrieval problem by comparing the image data with a set of template images 

corresponding to the keywords. On the other hand, recognition-based approaches aim at 

solving the retrieval problem by partially or fully transcribing the document image and 

then doing the retrieval in the text domain. Any approach has its advantages and 

Collection of input 
document images 

List of user-
defined keywords 

 
Page Segmentation 

 
Word Matching 

Information 
Retrieval 

Retrieved documents 
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disadvantages. Generally speaking, template-based approaches are more suited for 

document images with complex layouts. However, there are two major downsides. Firstly, 

the matching process is slow. Secondly and more importantly we need to have a set of 

representative sample images for any keyword that may be searched for, and this restricts 

the area of applicability of the system. On the other hand, the main advantage of 

recognition-based approaches is that they obviate the need for the collection of training 

samples for keywords. However, the disadvantage of recognition-based approaches is that 

they require the segmentation of the document image into its constituent lines, words and 

characters which involve challenging problems as we will see in subsequent chapters.  

In our application, we are interested in the retrieval of documents that may contain any 

arbitrary keywords, such as a person/company’s name. Therefore, our proposed 

methodology will be based on recognition-based approaches. There are two main 

approaches to word recognition: holistic [vdZSH08, LRM04] and non-holistic (a.k.a. 

analytic) [EYSSG99, KSS05]. In the former, which is more straightforward, a database of 

training samples is needed for each word (keyword). Therefore, we are faced with the 

same problem as in the template-based approaches, that it is not always possible to 

compile a large enough training database for all possible keywords. Consequently, the 

main idea behind our proposed methodology is to use non-holistic methods. We extract the 

text lines, segmented them into their constituent words and then letters. We dynamically 

build models for keywords based upon trained models of handwritten characters. 

Therefore, in our proposed general keyword spotting methodology, the word matching 

consists of character segmentation and character recognition.  
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1.2.1.1 Pre-processing 

The pre-processing step is composed of two procedures: margin removal and noise 

removal. We will begin with margin removal. Document images which are obtained from 

scanners or photocopiers usually have a black margin which interferes with subsequent 

stages of document layout analysis and page segmentation algorithms. Therefore, it is 

necessary to remove these margins before any subsequent stages in a document processing 

application. 

There are a few works which have addressed the problem of document margin removal. 

Manmatha and Rothfeder in [MR05] have proposed a novel method using scale spaces for 

segmenting words in handwritten documents, where in a pre-processing stage, they have 

used the basic technique of projection profiles for the detection of document margins. It is 

quite straightforward to find the margins from the projection profiles when the document 

is not tilted and the page is a perfectly straight rectangle. But this is not always the case. 

The page may be skewed, and it may not be a perfect rectangle, meaning the corners may 

not be right angles and even the page sides may not be perfect straight. cuts. Also, any of 

the four margins may be present or not. The basic technique discussed in [MR05], is not 

able to handle these cases. A more advanced algorithm is presented in [FWL02], which is 

based on a top-down approach. The image is first split by finding possible boundaries 

between connected blocks, and then the regions corresponding to marginal noise are 

identified and removed based upon shape length and location of the split blocks. This 

algorithm is able to remove marginal noise from skewed pages, but it cannot correct the 

page skew. Moreover, it does not find the page borders, i.e. it just removes the marginal 
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noise and if portions of a neighboring page are present in the image, they will be left 

untouched. 

In our application, we need to find the page borders and correct the skew we eventually 

want to display the location of the detected keywords on the original document image.  We 

have devised an algorithm for document margin removal based on the detection of 

document corners from projection profiles [HBS09]. This algorithm does not make any 

restrictive assumptions regarding the input document image to be processed. It neither 

needs all four margins to be present nor requires the corners to be right angles. In the case 

of the tilted documents, it is able to detect and correct the skew. We will discuss margin 

removal in more detail in Chapter 2. 

Noise removal is the first step of any image processing and computer vision system, and 

we have given particular attention to it because the presence of noise complicates all the 

subsequent steps of a document processing system. We present an effective method based 

on fuzzy inference systems for removal of structural noise from document images. 

Structural noise is a type of noise that is not an artifact but rather a part of the data that is 

undesirable, for example when we want to recognize a handwritten word in a text line, the 

comma that separates the word from the following word is considered as structural noise. 

Structural noise is application-dependent and usually defined by some linguistic rules and 

qualitative terms which are imprecise in nature. Therefore, we utilized fuzzy logic which is 

a tool for handling imprecision and qualitative knowledge. We will talk about structural 

noise removal using fuzzy inference systems in Chapter 3. 
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1.2.1.2 Page Segmentation 

After removal noise, we have to detect and separate the text lines. Due to intrinsic 

challenges of unconstrained documents, this problem has remained unresolved and thus, 

many different approaches to segmenting lines and words have been proposed so far 

[LGPH09]. These segmentation approaches usually make two key assumptions: 1) the gap 

between neighbouring text lines is significant; and 2) the text lines are reasonably straight, 

or else they have a single global skew angle. These assumptions are not always valid for 

unconstraint handwritten documents. According to our experiments, the method of 

steerable directional local profile [SSG09] produces the best results for our database of 

unconstrained document images. However, this method is based on the Adaptive Local 

Connectivity Map (ALCM) filtering [SSG05] which is computed by convolution in time-

domain, and consequently it is slow. In order to overcome the slowness problem, we 

computed the connectivity map by using anisotropic Gaussian filters [ASW03]. 

Once the text lines are extracted, we have to segment words on the same text line. The 

difficulty here is rooted in the fact that in handwritten documents, inter-word-spacing is 

sometimes wider than the intra-word-spacing and thus it is not always possible to segment 

the document at the word level perfectly using geometrical information only. Many 

different approaches to segmenting words are proposed so far. We may categorize word 

segmentation algorithms to either top-down, bottom-up or hybrid ones. According to our 

experiments, the scale-space algorithm [MR05] gives promising for unconstrained 

handwritten documents. As in the line extraction, we compute the scale space by using 

anisotropic Gaussian filters. Therefore, we devise a unified approach to line extraction and 
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word segmentation based upon anisotropic Gaussian filters. We will explore these 

algorithms in greater depth in Chapter 4. 

 

1.2.1.3 Word Spotting 

Having generated a set of candidates for image segments that represent words, the next 

task is to decide whether or not each one corresponds to a given text keyword. This is the 

core problem in document classification and retrieval. The detection of keywords fulfills 

two purposes in documents. It determines by means of a computer program whether or not 

a scanned document image contains a text keyword and optionally, spots the instances of 

the keyword in the document image. Many different approaches to word recognition and 

word spotting have been proposed so far. 

A handwritten word spotting method based on biologically inspired features is proposed in 

[vdZSH08]. The authors use a holistic recognition approach based on simple k-Nearest 

Neighbor (k-NN) classifiers. The theory behind this word recognition model is based on a 

model of the visual cortex proposed by Serre et al. [SWB+07]. This model follows the 

organization of visual cortex in primates which is hierarchical, aiming to build invariance 

to position and scale first and then to viewpoint and other transformations. The advantage 

of the biologically inspired features is that they alleviate the need for large number of 

training samples for each word. According to the experiments reported in [vdZSH08], an 

accuracy rate of around 53% can be achieved for a lexicon of size 2099 for the words with 

10 or less training samples. However, in order to achieve a higher accuracy, more training 

samples are needed. The accuracy of the system rises to 89% for the words with 50 or 

more training samples. To collect this amount of data, especially in real-time applications, 
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is cumbersome and not practical. As the authors point out, the intrinsic disadvantage of 

this method, as any holistic classification is the large number of classes that need to be 

trained. Moreover, there is no reuse of shape knowledge such as is the case in 

concatenated character-based HMMs. The authors believe that a considerable 

improvement in recognition performance is expected by applying character or syllable- 

based HMM models in conjunction with their locally invariant features.  

Another holistic approach to word spotting is proposed in [KAA+00]. This system uses a 

line-oriented search strategy where each document image is considered as a sequence of 

text lines, each of which is represented by an ordered sequence of columns. Using this 

approach, the problem of segmenting the text into individual words is avoided. This 

system uses a template-based matching, meaning that there is no training. However, the 

problem of collecting template models still remains, that is we have to have enough 

number of representative samples for each class. The template matching is based on profile 

features and Dynamic Time Warping (DTW). Given that enough number of training 

samples is available, this system achieves a moderate performance of 40% at low false 

positive rates. 

A template-free spotting keyword spotting system is proposed in [FFB10]. This system is 

derived from a novel unconstrained handwritten word recognition engine which is based 

on Bidirectional Long Short-Term Memory (BLSTM) neural networks [GLF+09]. The 

BLSTM neural networks are a type of recurrent neural networks specifically designed for 

sequence labeling tasks where it is difficult to find the boundaries between the constituent 

parts of the data and there are long-range contextual dependencies between the data. Using 

the BLSTM neural networks it is possible to have access to past and future context, which 
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is not available using ordinary left-to-right HMMs. According to the experiments carried 

out on large lexica containing 20,000 to 30,000 words, this neural-network-based 

recognition system achieves a recognition rate of around 74%, significantly outperforming 

some state-of-the-art HMM-based recognition systems. The word spotting system based 

on BLSTM neural networks uses a token passing algorithm in order to compute the 

matching score between a sequence of letter probabilities and sequence of text characters. 

This word spotting system achieves an average precision rate of 82.8% and a high 

precision rate of 95% at 50% recall on a lexicon of size 4,000 words. 

A segmentation-free word spotting method is proposed in [LLE07]. Segmentation free 

methods are particularly useful for processing historical manuscripts where the document 

is degraded or has a complex layout, and the text is densely written. In this method the 

authors have proposed differential features that are compared using a cohesive elastic 

matching method. This matching method is based on Zones of Interest (ZOIs) in order to 

match only the informative parts of the words. Feature selection based on ZOIs overcomes 

the incompetence of correlation-based methods when directly applied on the grey levels. 

Aside from providing a better matching capability for handwriting, a main advantage of 

this method is less computation time compared to naïve matching methods. Furthermore, 

there is no need to gather a training database. However, the user has to provide one image 

of the word which is going to be spotted, and the image must be selected from the same set 

of documents in order for the matching algorithm to achieve a good performance. In this 

regard, this word-spotting system resembles a Content-Based Image Retrieval (CBIR) 

system. The authors have tested their system on two small databases of Latin and Semitic 
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manuscripts. The system achieves a precision and recall rate of around 60-80% depending 

on the level noise and degradation in the document and variations in the writing styles.  

A probabilistic method for keyword retrieval in handwritten document images is proposed 

in [CBG09]. This method addresses the problem of imperfect word segmentation by 

modeling segmentation errors as probabilities and integrating these probabilities into the 

word spotting algorithm. The word segmentation probabilities are obtained by modeling 

the conditional distribution of distance features of word gaps. The word recognition 

probabilities are obtained from the distances returned by a lexicon-driven word recognition 

engine [KG97]. Then, the segmentation and the recognition probabilities are combined in a 

probabilistic model of word spotting. The lexicon-driven word recognition engine 

segments a word image into character hypotheses by finding all possible locations of the 

ligatures connecting any two characters. This is done using a contour-based analysis. 

Then, the distance between the word image and an entry in the lexicon is computed by 

enumerating all possible segmentations of the word image and finding the one that has the 

overall minimum distance. Finally, the distances from the recognition engine are converted 

into probabilities using the Universal Background Model (UBM) [RQD00]. The authors 

have tested their method on database of medical forms. Automatic processing of medical 

forms is a challenging task due to the poor image quality and wide range of keywords used 

(in order of 50,000 words). By comparing their method to two state-of-the-art word 

spotting systems based on template matching, the authors concluded that an improvement 

of 2.5% to 3.8% (in terms of mean average precision) is obtained by using word 

segmentation probabilities in the similarity measurement. However, the word spotting 
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performance on this challenging database is still very low. The system achieves a precision 

rate of less than 15% at 10% recall, and a mean average precision of 4.7%. 

A retrieval system for machine-printed documents is proposed in [ZEP10]. This method 

falls in the category of template-based techniques that use word images as queries. 

However, there is no need for collecting training samples because for machine-printed 

documents, a query image can be automatically generated from the input query by using a 

font that has characteristics similar to the estimated characteristics of the characters in the 

document image. The matching is performed at the word-level using a set of shape 

features; consequently there is no need for recognition of individual characters. The 

distances between images is simply computed in the feature space using the Minkowski 

distance of order 1 (a.k.a. L1 distance). The authors have tested their system on a collection 

of 100 document images. These document images are artificially created by rendering 

various texts as images and then adding different amounts of noise to them. The retrieval 

system achieves a mean precision rate of 87.8% at a 99.26% recall. Although the 

artificially generated collection of documents does not reflect the challenges of real-world 

documents, it can still show the effectiveness of the proposed system. The authors have 

utilized a state-of-the-art OCR software in order to transcribe the document images so as to 

do the retrieval in the text domain. Compared to the spotting-based retrieval system, the 

performance of the transcription-based retrieval system is considerably lower with a 

precision rate of 76.7% at a 58.4% recall. 

Another OCR-free retrieval method for machine-printed documents is proposed in 

[MDES09]. Based on extensive experiments carried out on two real-world databases of 

English and Arabic documents, the authors show the capability of their matching-based 
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technique in language-independent document retrieval. However, the performance of the 

system is lower compared to corresponding transcription-based retrieval systems. The 

matching-based retrieval system achieves a mean average precision of 23% on the Arabic 

documents, compared to 38% achieved by the transcription-based retrieval system. This 

result is contrary to the result of [ZEP10] that suggests matching-based retrieval is more 

effective than OCR-based retrieval. Therefore in this sense, we can say that there is “no 

free lunch” in document retrieval. Whether OCR-based retrieval is better than OCR-free 

retrieval depends on the set of documents, features, classification methods etc. 

 

1.2.1.3.1 Proposed Approach 

Our approach to spotting arbitrary keywords in handwritten documents is based on a 

generalized minimum edit distance. This distance computes the cost of the conversion of a 

sequence of images (of characters) to any arbitrary sequence of characters. Therefore, we 

developed a character segmentation algorithm for cursive text, which is based on the 

analysis of background skeletal graphs. The main function of the algorithm is to obtain the 

branches that correspond to possible segmentation paths from the graph corresponding to 

the skeleton of the word background. Over-segmentation and under-segmentation errors 

are two inherent sources of performance degradation in any character segmentation 

algorithm. In order to handle these problems, we developed a merging algorithm for over-

segmented and broken characters, and a fuzzy inference system for detection of under-

segmented pairs of handwritten characters. We will present the character segmentation 

algorithm in greater depth in Chapter 5.  
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Having segmented a word image into its constituent characters (or sub-characters), we 

need to decide whether or not the word image represent a keyword. For this purpose, we 

developed a generalized minimum edit distance. Furthermore, we proved that this distance 

is equivalent to an Ergodic Hidden Markov Model (EHMM) therefore we were able to 

optimize the free parameters of the distance using the well-established HMM training 

algorithms. This generalized distance enables us to assign the whole document image to a 

certain category, or sort all the document images in the collection in order of relevance to 

the input keywords. The main contribution of our approach is that it provides an exact 

model for the temporal information present in the handwriting with a feasible number of 

states. To the best of our knowledge, this is the first work to present an exact 2D model for 

handwritten words while satisfying practical constraints. 

We will discuss our cursive character recognition approach in Chapter 6, followed by the 

generalized edit distance in Chapter 7. Finally, we will present our experimental results in 

Chapter 8. 
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Chapter 2 

Margin Removal and Global Skew Correction 

 

 

2.1 Introduction 

Document images obtained from scanners or photocopiers usually have a black margin 

which interferes with subsequent stages of page segmentation algorithms. Thus, the 

margins must be removed at the initial stage of a document processing application. This 

chapter presents an algorithm which we have developed for document margin removal 

based upon the detection of document corners from projection profiles. The algorithm 

does not make any restrictive assumptions regarding the input document image to be 

processed. It neither needs all four margins to be present nor needs the corners to be right 

angles. In the case of the tilted documents, it is able to detect and correct the skew. In our 

experiments, the algorithm was successfully applied to all document images in our 

databases of French document images which contain more than six hundred images with 

different types of layouts, noise, and intensity levels.  

Document processing technologies are concerned with the use of computers for 

automatic processing of different kinds of media containing text data. Examples of the 

applications are Optical Character Recognition (OCR), digital searchable libraries, 

document image retrieval, postal address recognition, bank cheque processing and so on. 

In most of these applications, the source of data is an image of a document coming from a 
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scanner or a photocopier. During the process of scanning or photocopying, an artifact, 

which we simply refer to as margin, is added to the image. These black margins are not 

only a useless piece of data and unpleasant when the page is reproduced (reprinted), but 

also can interfere with the subsequent stages of document layout analysis and page 

segmentation algorithms. Therefore, it is desirable or necessary to remove these margins 

before any subsequent stages in a document processing application. Despite its practical 

significance, this problem is often overlooked or not discussed thoroughly in papers. 

There are only a few studies which have addressed the problem of document margin 

removal. Manmatha and Rothfeder in [MR05] have proposed a novel method using scale 

spaces for segmenting words in handwritten documents wherein they have used the basic 

technique of projection profiles for the detection of document margins. It is easy to obtain 

the margins from the projection profiles when the document is not tilted and the page is a 

perfectly straight rectangle. But as shown in Fig. 2.1, this is not always the case. The 

page may be skewed, and it may not be a perfect rectangle. Also, any of the four margins 

may be present or not. The basic technique discussed in [MR05], is not able to handle 

these cases. Peerawit and Kawtrakul in [PK04] have proposed a marginal noise removal 

method based upon edge detection. They have used the edge density property of the noise 

and text areas to detect the border between them. This method is designed to remove left 

and right margins only, and is incapable of handling skewed pages.  
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(a) (b) (c) 

Figure 2.1 Examples of documents images with margins. 

 

In [FWL02], Fan et al. have proposed a top-down approach to margin removal. Firstly, 

the image is divided by locating possible boundaries between connected blocks. Next, the 

regions corresponding to marginal noise are identified by applying some heuristics based 

upon shape length and location of the split blocks and finally these regions are removed. 

Fan et al.’s algorithm is able to remove marginal noise from skewed pages, but it cannot 

correct the page skew. Moreover, it does not find the page borders, i.e. it only removes 

the marginal noise and if portions of a neighboring page are present in the image, they 

will not be removed.  

In [SvBKB07, SvBKB08], Shafait et al. have used a geometric matching algorithm to 

find the optimal page frame. Their method is based on extraction and labeling of 

connected components at the first stage. Text lines and text zones must be identified prior 

to margin detection. However, extracting text lines from a page is a challenging task, 

especially for unconstrained handwritten types of documents [DPB09, LZD+08b]. In 

fact, Shafait et al.’s algorithm is designed for machine printed documents. Moreover, it 

assumes the page frame is an axis-aligned rectangle (i.e. again, it cannot handle skewed 

pages).  
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In [NSK07], Stamatopoulos et al. have proposed a border detection algorithm for camera 

document images. Their method is based upon projection profiles combined with a 

connected component labeling process. But again, it needs the document skew to be 

corrected prior to margin removal.  

There are several other published works concerning the problem of margin removal 

[LTW96, CLLT02, ZT01], but to the best of our knowledge, the algorithm we present 

here is the first to address the problem of margin removal in presence of document skew. 

 

   

(a) Input Document Image (b) Vertical Projection Profile (c) Horizontal Projection Profile 

Figure 2.2 A document image with margin and the corresponding vertical and horizontal projection 

profiles. 

 

2.2 Document Margin Removal and Skew Correction Using Projection 

Profiles 

In this section we explain the margin removal algorithm, starting with the case of straight 

pages and then generalizing it to handle skewed pages. 
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2.2.1 Margin Removal for Straight Pages 

The basic function of the algorithm is to find the corners which correspond to the page 

margins from the projection profiles of the input image. For a straight page, the left-most 

and right-most sharp corners in the horizontal profile of the image correspond to the left 

and right margins, and the left-most and right-most sharp corners in the vertical profile of 

the image correspond to the upper and lower margins (Fig. 2.2). Carrying out this task 

may appear simple, however the difficulty of implementation lies in corner detection, 

which is one of the most studied and open problems in computer vision. But in our case, 

by searching for the corners in 1-D projection profiles, rather than a 2-D image, we 

encounter a problem which can be easily solved.  

Much research has been conducted upon the subject of corner detection in computer 

vision literature. This research can be broadly classified into two categories: grey-level 

and boundary-based [SLYT07]. In the first category, corners are found by using corner 

templates or computing the gradient at edge pixels. In the second category, corners are 

found by analyzing the properties of boundary pixels. For our case, we have chosen a 

boundary-based approach because we want to obtain corners from 1-D profiles which 

correspond to the document boundaries. We use a modification of the K-Cosine measure 

presented in [SLYT07] which is a new and robust algorithm for position, orientation, and 

scale invariant boundary-based corner detection for 2-D images.  

The K-Cosine measure for a set of boundary points S = { Pi | i = 1, 2, …, m } is defined 

for each point i as follows: 
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Where iKii PPKa
rrr

−= +)(  and iKii PPKb
rrr

−= −)(  are the two vectors connecting the point i to the 

Kth point before and after it, and θi denotes the angle between these two vectors. 

Therefore, K-cosine provides a measure of the curvature of boundary points over a region 

of support specified by K. 

The overall performance of the 2-D corner detection algorithm based on the K-Cosine 

measure greatly depends on K. In [SLYT07], a careful analysis and a method of choosing 

a proper value for K is discussed, which is based on some geometric properties of the 

input set of boundary points. But, in our simplified 1-D version of the problem, where we 

are looking for corners in 1-D profiles, even a fixed value of K will work fine. Because, 

firstly, the corners of interest are almost right angles, secondly, they are located near the 

left and right ends of the boundary (i.e. projection profile), thirdly, there is only zero or 

one corners at each end (depending on whether or not the margin is present).  

As the value of K is fixed in our application, we modify the definition of the K-Cosine 

measure in order to make sure that the corner detection scheme is robust against profile 

noise. We simply use a low-pass filtering which can be implemented as an averaging 

operation. More precisely, for each point of a projection profile, now we take the average 

of the K-Cosine measure over a local neighborhood of K. This new curvature measure is 

defined as follows:  
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Having defined the curvature measure, we apply it to all points of the projection profile to 

obtain the corresponding Averaged K-Cosine Curvature Curve (AKC2). Now, the first 
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zero-crossings of AKC2, scanning from left to right and right to left, correspond to the 

left and right corners of the projection profile. This is due to the fact that K-Cosine values 

vary between –1 = cos(π) and 1 = cos(0), and thus the AKC2 curve has to cross the axis 

at the left and right rising edges of the corresponding profile . Please note that, even if the 

projection profile is not an exact rectangle function (i.e. it does not have 90-degree 

corners), the AKC2 curve still has two zero crossings which correspond to the left and 

right (or top and bottom) margins. Fig. 2.3 shows the document image of Fig. 2.2 with 

the corresponding AKC2 curves which determine the four margins of the image and the 

final result of margin removal. 

  

(a) Input Document Image (b) Vertical AKC2 Curve 

  

(c) Horizontal AKC2 Curve (d) Result of Margin Removal Algorithm 

Figure 2.3 A document image with margin and the corresponding AKC2 curves and the result of 

margin removal algorithm. 
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2.2.2 Margin Removal for Skewed Pages 

For skewed pages we observe that horizontal and vertical projection profiles have an 

isosceles trapezoidal shape as shown in Fig. 2.4. In this case, we need to estimate the base 

angle of the corresponding trapezoid to be able to correct the page skew. Let Tvpp(I) and 

Thpp(I) denote the trapezoids corresponding to the vertical and horizontal projection 

profiles of the input document image I respectively. The base angle of Tvpp which is the 

angle that the two non-parallel sides of it make with vertical axis, or equivalently, the 

base angle of Thpp which is the angle that the two non-parallel sides of it make with 

horizontal axis is equal to the page skew angle. 

In order to estimate the base angle, we use the same technique discussed in the previous 

section for finding corners in projection profiles. However in this case, we need all the 

four corners (i.e. the four vertices of the corresponding trapezoid). 

Let V1, V2, V3 and V4 denote the four vertices of Tvpp, and H1, H2, H3 and H4 denote the 

four vertices of Thpp as shown in Fig. 2.5. V2 and V3, and H2 and H3 can be found from 

the corresponding AKC2 curves, exactly the same way we did in the previous section. 

However, for H1 and H4, and V1 and V4, it should be noted that these corners may be very 

close to, or exactly lie on, the two ends (boundaries) of the corresponding profiles. 

Therefore, the AKC2 may not provide an appropriate measure of curvature to find them. 

We can easily handle this boundary problem by padding the profiles with enough (> K) 

number of zeros, corresponding to fictitious black margins on the four sides of the input 

document image. 
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(a) Input Document Image (b) Vertical Projection Profile (c) Horizontal Proj. Profile 

Figure 2.4 A skewed document page with margin and the corresponding vertical and horizontal 

projection profiles. 

 

 

 

  

(a) Tvpp (b) Thpp 

Figure 2.5 Trapezoids corresponding to vertical and horizontal projection profiles of a skewed 

document page with margin. 

 

Having obtained the coordinates of the vertices of Thpp and Tvpp, we can calculate the 

absolute value of the page skew angle, but not the sign of it. As shown in Fig. 2.6, an 

axis-aligned rectangle when tilted to the left and to the right by the same skew angle θ, 

result in the same horizontal and the same vertical projection profiles. The proof is trivial 

by noting that the areas of the triangles 121 TLL ′and 221 SRR ′ ; 343 TLL ′and 443 SRR ′ ; 

441 TLL ′and 141 SRR ′ ; and 232 TLL ′and 332 SRR ′  are equal by symmetry; and so are the areas of 

the parallelograms 4224 LTLT ′′ and 1331 SRSR ′′ ; and 3311 TLTL ′′  and 4422 RSRS ′′ . Where 1T′  is the 
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intersection of the line segments L1T1 and L2L3; 2T′  is the intersection of the line segments 

L2T2 and L3L4; 3T′  is the intersection of the line segments L3T3 and L1L4; and 4T′  is the 

intersection of the line segments L4T4 and L1L2; and similarly for 1S′ , 2S′ , 3S′  and 4S′ . 

  

(a) (b) 

Figure 2.6 An axis-aligned rectangle tilted to the left and to the right by the same angle. 

 

In Fig. 2.6, the inner rectangle P1P2P3P4 can correspond to the bounding box of a page of 

document without skew and margin. Then, the rectangles L1L2L3L4 and R1R2R3R4 are the 

skewed versions of it, and the triangles I1L1L2, I2L2L3, I3L3L4, I4L4L1, I1R1R4, I2R2R1, 

I3R3R2 and I4R4R3 correspond to the black (dark) margins around the page. 

In our problem, given the horizontal and vertical projection profiles, we want to find the 

page corners (i.e. the coordinates of the rectangle P1P2P3P4). We do this by first obtaining 

the coordinates of L1L2L3L4 and R1R2R3R4 and then determining the sign of the skew 

angle. Let V1x, V2x, V3x and V4x be the indices of the four columns of the image 

corresponding to the four corners of the vertical projection profile as shown in Fig. 

2.5(a). Let H1y, H2y, H3y and H4y be the indices of the four rows of the image 

corresponding to the four corners of the horizontal projection profile as shown in Fig. 

2.5(b). Now, when L1L2L3L4 and R1R2R3R4 correspond to the left-skewed and right-

skewed versions of the image, from Fig. 2.6, we can easily see: 
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L1x = R4x = V4x 

L4x = R1x = V1x 

L2x = R3x = V2x 

L3x = R2x = V3x 

L2y = R1y = H1y 

L1y = R2y = H2y 

L3y = R4y = H3y 

L4y = R3y = H4y 

 

 

 

 

 

 

 

(2.3) 

Or, 

L1 = (V4x, H2y) 

 L2 = (V2x, H1y) 

L3 = (V3x, H3y) 

L4 = (V1x, H4y) 

R1 = (V1x, H1y) 

R2 = (V3x, H2y) 

R3 = (V2x, H4y) 

R4 = (V4x, H3y) 

 

 

 

 

 

 

 

(2.4) 

 

Therefore we have obtained the coordinates of the skewed versions of the page from the 

projection profiles of it. Now, it is straightforward to calculate the absolute value of the 

skew angle θ. From Fig. 2.6, obviously we can obtain the absolute value of θ, by 

computing the slope of any of the eight sides of the rectangles L1L2L3L4 and R1R2R3R4. 

But as we pointed out earlier, the projection profiles are noisy and the page may not be a 
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perfect rectangle; consequently, the coordinates of the skewed rectangles that we obtain 

from the above set of equations are estimates and not exact. Therefore, we make use of 

all the eight sides of the two rectangles to obtain the Maximum Likelihood (ML) estimate 

for the absolute value of θ: 
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(2.5) 

 

As we mentioned earlier, from the projection profiles we cannot determine the sign of the 

skew angle. Therefore, we need another source of information to resolve the ambiguity of 

whether L1L2L3L4 or R1R2R3R4 corresponds to the true bounding box of the page. We use 

the fact that the local deviation of image pixels along the two sides (left and right, or up 

and down) of any of the four borders of the page is “high”, and any border of the page 

corresponds to one side of the true bounding box. More precisely, the deviation of image 

pixels along the two sides of a line segment belonging to the true bounding box is 

“higher” than the other candidate line segment belonging to the other bounding box. Let 

ALDw(I, L) be the Average Local Deviation function which maps an area of the image I 

specified by the line segment L and thickness w to an integer in [0, 255], assuming the 

input image is an 8-bit grayscale one. The output of the function is the average of the 

absolute differences of the sum of w image pixels on the left and right, or top and bottom, 

along the line segment. If the line slope is great than 1, meaning the line segment is more 

vertical than horizontal, we look at the left and right side of it for computing the local 

deviation. Otherwise, the line slope is less than 1, meaning the line segment is more 
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horizontal than vertical, we look at the top and bottom of it for computing the local 

deviation. Let { Li | i = 1, 2, ..., n } be the set of coordinates of the image pixels 

corresponding to the line segment L. We obtain these coordinates by using the 

Bresenham's line algorithm [Bre65]. Now, the function ALDw(I, L) can be formally 

defined as follows:  
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(2.6) 

 

Where H(x) is the Heaviside step function.  

Having defined the ALD function, we can check which of the rectangles L1L2L3L4 or 

R1R2R3R4 corresponds to the true bounding box of the page. If L1L2L3L4 is the true 

bounding box, then ALDw(I, L1L2) is higher than ALDw(I, R1R2), and vice versa. The 

same proposition holds true for the other three pairs of sides: L2L3 and R2R3, L3L4 and 

R3R4, and L4L1 and R4R1. As we do not assume the document page must have perfectly 

straight borders (look at the top border of the document page of Fig. 2.1(c) for example), 

we use all the four propositions to calculate the sign of the skew angle by taking a simple 

majority vote. We never encountered a case of a draw in our experiments. But if it 

happens, for example when the ALD function for two sides of L1L2L3L4 is higher than 

the two corresponding sides of R1R2R3R4 and is lower for the other two sides, it is either 

because 1) the skew angle is too small, and so we do not need to correct the skew at all, 
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or 2) the page borders are very jagged, in which case we can try a larger value for w, for 

example we can multiply it by 2, and then calculate the ALD propositions again.  

Having obtained the absolute value of the skew angle and the sign of it, we can correct 

the page skew by rotating the image by –θ around the center of the page which is the 

intersection of the diagonals of the bounding box.  

The coordinates of the bounding box after skew correction, P1, P2, P3 and P4 (according to 

the naming convention of Fig. 2.6), determine the page margins. We again use the ML 

estimates: 

 

2/)( margin left 41 xx PP +=  (2.7) 

 

2/)( margin right 32 xx PP +=  (2.8) 

 

2/)( margin  top 21 yy PP +=  (2.9) 

 

2/)( margin  bottom 43 yy PP +=  (2.10) 

 

2.3 Experimental Results 

We tested our proposed algorithm on a database containing 156 French document images 

with different types of margin noise, layouts and background/foreground intensity levels. 

As only a small percentage of the documents were skewed (21 documents in total), we 

added some artificially generated skewed document images to the database by randomly 

selecting a set of the real documents and rotating each one by a random angle within –π/6 

to π/6. There were 57 of these artificially skewed samples so we obtained an equal 
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number of straight and skewed document images. With K = 30 and w = 10 fixed 

throughout all the experiments, our proposed algorithm successfully estimated the skew 

angle (with a standard deviation of less than 0.25 degrees) and removed margins in all 

cases. It should be mentioned that the algorithm performance is not very sensitive to the 

values of K and w. We expect the algorithm to have the same performance for a wide 

range of values for these two parameters. 

In summary, in this chapter, we proposed a document margin removal algorithm based on 

corner detection in projection profiles. The algorithm does not need the input page to be a 

perfect and axis-aligned rectangle; meaning that it can handle skewed, non-right-angled 

corners, or jagged page borders which are the cases that we may encounter in the 

processing of real-world documents. 
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Chapter 3 

Structural Noise Removal Using Fuzzy Inference Systems 

 

 

3.1 Introduction 

There are two types of noise that we have to handle when working with handwritten 

documents: statistical and structural. Low-level noise is a statistical artifact that is 

introduced by the involved equipment, for example during the scanning process. Structural 

noise is not an artifact but rather a part of the data that is undesirable, for example when 

we want to recognize a handwritten word in a text line, the comma that separates the word 

from the following word is considered as structural noise. There are a lot of different 

approaches to reducing (or removing) low-level statistical noise from images [CB05, 

ZJ10]. However, structural noise removal depends on the specific application, and 

obviously the inherent constraints and settings of each problem may call for different 

treatments. What is structural noise and needs to be removed is usually defined by some 

linguistic rules and qualitative terms which are imprecise in nature. For example, if we 

want to remove the separator dots (‘.’) from a text line but keep the dots that belong to the 

characters (‘i’ and ‘j’), we decide based on a rule that uses a piece of knowledge that a 

separator dot should appear near the baseline.  

Fuzzy logic is a form of logic derived from fuzzy set theory to deal with variables and 

reasoning that are approximate. Fuzzy inference systems (FISs) which are rule-based 
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systems based on fuzzy variables have been successfully applied to many fields such as 

expert systems, data classification, decision making, computer vision and automatic 

control [JS97, OC02]. One main advantage of fuzzy variables and fuzzy rules is that they 

facilitate the expression of rules and facts that are easily understandable for humans. 

Furthermore, it is easy to modify a fuzzy inference system by inserting and deleting rules, 

meaning that there is no need to create a new system from scratch. In order to train a fuzzy 

inference system, it is possible to start with a few rules that are designed by human expert 

and then fine-tune the parameters of the FIS over a set of training (validation) data.  

In this chapter, we will present the process of designing a FIS for removal of structural 

noise from images. We will start by building an FIS which can distinguish small noises 

from character dots and then will show how to extend the system for other types of 

structural noise such as background line noise versus dashes etc. Finally, we will show the 

effectiveness of the rule-based noise removal system by some experimental results carried 

out on real-world images.  

 

3.2 Review of Fuzzy Logic 

In this section we present a brief review of fuzzy logic. However, we encourage the reader 

to refer to a textbook on the subject [JS97, Neg04] for further information. Fuzzy logic is 

an extension of classical (binary) logic that uses a continuous range of truth degrees in the 

real interval [0, 1], rather than the strict values of 0 and 1. In order to introduce fuzzy 

logic, first we define the concept of fuzzy sets.  
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3.2.1 Fuzzy Sets 

A fuzzy set is a set whose elements have degrees of membership in the real interval [0, 1]. 

In classical set theory, an element either belongs to a set or not. The membership of an 

element x in a set A, in classical logic, is defined by an indicator function (a.k.a. 

characteristic function). The value of the indicator function is 1 when x  A, and 0 when x 

 A. In fuzzy logic, the degree of membership of an element in a set is indicated by a value 

in the real interval [0, 1]. This extension allows the gradual assessment of the membership 

of elements in a set.  

The function that defines the degree of membership of an element x in a set A is mA(x), and 

therefore we denote the fuzzy set by the pair (A, mA(x)), or A(x) for short. 

 

 

Example. Let x be the orientation (in degrees) of a 2D shape S. We can define the fuzzy 

sets HORIZONTAL and VERTICAL on x by the triangular membership functions as 

given in Figure 3.1. 

 

 

 

(a) Membership function for the set horizontal         (b) Membership function for the set vertical 

Figure 3.1 Examples of membership functions defined on variable orientation. 

 

When the orientation x is 0° or 180°, it is fully included in the fuzzy set HORIZONTAL, 

and it is not included in the set VERTICAL. When x is 90°, it is fully included in the set 

1 

  0              45                90              135              180 

HORIZONTAL 

  0              45                90              135              180 

1 

VERTICAL 
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VERTICAL, and not included in the set HORIZONTAL. For these three values (0°, 90°, 

180°), the memberships can be defined by the classical notion of set as well. However, 

when x is 22.5° for example, then its degree of membership to the set HORIZONTAL is 

0.5, which can be interpreted as somewhat horizontal in linguistic terms.  

 

3.2.2 Fuzzy Operators 

The basic operations defined on crisp sets, namely intersection (AND), union (OR) and 

complement (NOT), can be generalized to fuzzy sets.  The generalization to fuzzy sets can 

be achieved in more than one possible way. The most widely used fuzzy set operations 

that we will use in this work are called standard operations. The three standard fuzzy 

operations are standard fuzzy intersection, standard fuzzy union, and standard fuzzy 

complement.  

Let A(x) and B(x) denote two fuzzy sets, that is the degree to which x belongs to A is mA(x), 

and the degree to which x belongs to B is mB(x).  

The standard fuzzy complement for set A(x) denoted by cA(x) is defined as 1 – mA(x). 

The standard fuzzy intersection for two set A(x) and B(x) denoted by (A ∩ B)(x) is defined 

as min[ mA(x), mB(x) ]. 

The standard fuzzy union for two set A(x) and B(x) denoted by (A ∪ B)(x) is defined as 

max[ mA(x), mB(x) ]. 
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3.2.3 Fuzzy Rules 

In fuzzy logic, we represent logic rules by a collection of IF-THEN statements. Each 

statement has the general form of IF P THEN Q, where the antecedent P is a single or 

compound fuzzy assignment statement, and so is Q. A single assignment statement has the 

general form of “x is Ai” and a compound assignment statement is constructed from single 

assignments and set operations for example “orientation is HORIZONTAL AND height is 

HIGH”. As can be seen, fuzzy rules facilitate the representation of linguistic rules. In order 

to make the representation of such rules even easier, we use fuzzy hedges, which are 

equivalent of the adverbs in natural languages. The most common types of fuzzy hedges 

are “very” and “somewhat” which are defined as follows. Let (A, mA(x)) denote a fuzzy set 

defined on the universe of discourse x, then: 

 

[ ]2
very very )()(  where))(,very ()(very xmxmxmAxA AAA =≡  

[ ] 2/1
somewhat somewhat )()(  where))(,somewhat ()(somewhat xmxmxmAxA AAA =≡  

 

Of course there is more than one possible way to define these hedges. The purpose of 

“very” is to concentrate the membership function, the purpose of “somewhat” is to dilate 

the membership function.  

 

3.2.4 Fuzzy Inference System  

The process of definition of the mapping from a given set of inputs to a set of outputs 

using fuzzy logic is called fuzzy inference. The relation between the set of inputs and 
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outputs is defined by fuzzy IF-THEN rules as explained in the previous section. The set of 

fuzzy rules combined with a method of fuzzy inference is called Fuzzy Inference System 

(FIS). There are two major types of FIS systems: Mamdani-type and Sugeno-type, of 

which the former one is the most commonly used and the one that we use in this work.  

Mamdani’s inference method is based on “MIN-MAX” operations, therefore sometimes 

Mamdani’s inference method is referred to as MIN-MAX inference.  

The first step in Mamdani’s inference is to compute the degree of membership of each 

input variable xi to all fuzzy sets that are defined on it. This step is called input 

fuzzification. Next, we compute the truth degree or the value of antecedent of each rule in 

the rule base. When P is a single assignment (i.e. orientation is HORIZONTAL), the value 

of antecedent is simply the value of the corresponding membership function. When P is a 

compound assignment statement (i.e. orientation is HORIZONTAL AND height is 

SHORT), the value of antecedent is obtained by applying the MIN (for AND) and MAX 

(for OR) operators to the truth degrees of each part of P. For example, if the truth degree 

(i.e. membership value) of “orientation is HORIZONTAL” is 0.7, and the truth degree of 

“height is SHORT” is 0.9, then the antecedent value of the rule “IF orientation is 

HORIZONTAL AND height is SHORT THEN …” is min(0.7, 0.9) = 0.7. 

After obtaining the value of antecedent, we compute the consequent membership function 

for each rule. This process is called fuzzy implication. In Mamdani’s inference, the 

implication operator is MIN. The MIN operator limits the membership function of the 

consequent to the value of antecedent. Formally, let P be the antecedent, vP(x) be the value 

of antecedent, and  ))(,()( xmQxQ Q≡ be the consequent. Then, the membership function 

of the consequent Q is defined to be min(vP(x), mQ(x)). 
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The next step is to aggregate the conclusions, that are the membership functions of the 

consequents of all rules in the rule base. In Mamdani’s inference, the aggregation operator 

is MAX, which is the standard fuzzy union operator. When we have more than one rule 

defining the relation between the input variables and an output variable, in fuzzy logic, all 

rules are fired (with different degrees of strength) and hence they collaborate to define the 

value of the output. As the rules are independent, and they are all equally important, the 

combination of them is defined as the union. As we mentioned in the previous section, in 

standard fuzzy, union can be obtained by the MAX operator. 

The last step in Mamdani’s inference is defuzzification. Defuzzification is the process of 

transforming a fuzzy set into a single crisp value. In function approximation or decision 

problems, the output typically has to be expressed by a single value. For example, in 

fuzzy-based denoising, we want to eventually decide whether or not a connected 

component in image is a small noise that needs to be removed. There are many different 

methods of defuzzification including Center of Gravity (COG), Center of Area (COA), 

Middle of Maximum (MOM) etc. In this work, we use the COG which is one of the most 

popular defuzzification methods. Formally, let (A, mA(x)) be a fuzzy set defined on the 

universe of discourse x, then the defuzzified value of the set A, using the COG method, is 

defined to be [ ] [ ]∫∫ )(/)( xmxxm AA , which is the x-coordinate of the center of gravity of the 

membership function. 

 

3.3 Structural Noise Removal Using FIS 

We have devised a fuzzy inference system for the detection of structural noise from binary 

images. We define the structural noise as any type of noise that is not an artifact, but 
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actually a part of the image. Consequently, we cannot expect to remove the structural 

noise by a general purpose image denoising operator such as a Gaussian filter. The 

structural noise is subjective and usually defined by some linguistic rules. What is noise is 

one application may be an important part of data in another application. For example, 

commas may be considered as structural noise in a word spotting application, however 

they may be important in a text-to-speech application.  

In this section, we firstly present the FIS that we have developed for distinguishing the 

small noises from character dots, and then we will show how to extend the system for 

other types of structural noises such as commas, dashes, etc. 

 

3.3.1 Feature Extraction 

In order to decide whether a connected component in a binary image is a separator or 

noise, we have to extract some properties (features) from the connected component. Then 

we construct the FIS systems so that they compute the degree of truth of a connected 

component being a dot, small noise, dash etc. based on the values of the features.  

The features that we need to extract from a connected component in order to decide 

whether it is a dot or small noise could be as simple as: height, width, aspect ratio (defined 

as the ratio of height to width) and y-coordinate of the center of gravity (which can 

measure how close the connected component is to the upper baseline). However, for the 

detection of the other separators from more complex shapes, we add three more features: 

orientation, eccentricity, and compactness. Eccentricity is an indication of elongation 

[GW07], and compactness is an indication of solidness and convexity which is defined as 

follows. 
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Let B be a binary shape, for an arbitrary axis L, the compactness of B is defined as the 

average of density of shape pixels over all lines along the axis. The density of a shape for a 

given line is defined as the number of shape pixels lying on the line over the distance 

between the two farthest boundary-points (i.e. intersections of the line and the shape). We 

define the compactness of a shape as the average of compactness for horizontal and 

vertical axes.  

Therefore we have 7 features in total. In order to facilitate the definition of the fuzzy sets, 

we want the values of the feature to be independent from the size and coordinate system of 

the image.  Therefore, we normalize the height, width and y-coordinate of the center of 

gravity by the height of the image (i.e. number of rows when the image is represented by a 

raster data structure).  

 

3.3.2 Specification of FIS 

In this section, first we present the fuzzy sets that we define on each feature, and then we 

give the rule base for the detection of separators and small noises.  

 

 

 

(a) Fuzzy sets defined on Normalized Y-COG (b) Fuzzy set defined on Aspect Ratio 

Figure 3.2 Fuzzy sets defined on variables Normalized Y-COG and Aspect Ratio. 

 

The number of fuzzy sets that we define on an input variable depends on the context 

knowledge and how we are going to define the rules. This number is usually between 1 
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and 4. For example, in order to determine whether a small dot belongs to a character, a 

human expert uses a linguistic rule such as: “if the dot is near the top of the image then it 

most likely belongs to a character”. Therefore, in this case, only one or two fuzzy sets 

will be enough: TOP ≡ near the top of the image, and BOTTOM ≡ near the bottom of the 

image. The fuzzy sets that we define on each shape feature are given in Table 3.1. 

 

Table 3.1 Fuzzy sets defined on shape features. 

Feature Fuzzy sets 

Normalized Y-coordinate of Center of Gravity TOP, BOTTOM 

Aspect Ratio AROUND_1 

Normalized Height SMALL_COMPARED_TO_NASW,  

EQUAL_TO_NASW,  

LARGE_COMPARED_TO_NASW, 

SMALL, MEDIUM, HIGH 

Normalized Width SMALL_COMPARED_TO_NASW,  

EQUAL_TO_NASW,  

LARGE_COMPARED_TO_NASW, 

SMALL, MEDIUM, HIGH 

Orientation HORIZONTAL, VERTICAL, DIAGONAL_LEFT, 

DIAGONAL_RIGHT 

Eccentricity SMALL, MEDIUM, HIGH 

Compactness SMALL, MEDIUM, HIGH 

 

Fig. 3.2(a) shows the fuzzy sets TOP and BOTTOM that we define on the feature y-

coordinate of the center of gravity (YCOG). On the feature Aspect Ratio (AR), we only 

define one fuzzy set: ARONUD_1, which defines how close the aspect ratio is to unity. 

The membership function mAROUND_1(x) is shown in Fig. 3.2(b). It is a triangular with the 
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value of 1 at x = 1 which linearly goes to 0 at x = 0.5 and x = 2, which means that the 

aspect ratio is not around 1 when the height is two times larger than the width, or the 

width is two times larger than the height.  

In order to decide whether a small connected component is noise or part of the text, we 

have to have an estimate for the Average Stroke Width (ASW). For a binary image B, we 

take the median of run-lengths of black (text) pixels in all rows and all columns of the 

input image as an estimate for ASW: 

 

ASWB = median( length(RH) ∪ length(RV) ). 

        where RH = {black runs in all rows of B} and RV = {black runs in all columns of B}. 

 

 

Figure 3.3 Fuzzy sets defined on variables normalized height and normalized width. 

 

The size (height and width) of a dot that is part of the text is close to the stroke width. 

Therefore, we define three fuzzy sets on the normalized height and normalized width of a 

connected component to specify how small, equal or large these features are compared to 

the Normalized ASW (NASW). These fuzzy sets are called SMALL COMPARED TO 

NASW, EQUAL TO NASW and LARGE COMPARED TO NASW as shown in Fig. 

3.3. Aside from these three fuzzy sets, we also define the three fuzzy sets of SMALL, 

MEDIM and LARGE as shown in Fig. 3.4(a). In fuzzy applications, these are the most 

typical fuzzy sets that we define on a real variable in the interval [0, 1]. In our 
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application, we define the same fuzzy sets on the input variables eccentricity and 

compactness. Finally, we define the four fuzzy sets of HORIZONTAL, VERTICAL, 

DIAGONAL LEFT and DIAGONAL RIGHT on orientation as shown in Fig. 3.4(b).  

 

 

 

 

(a) Fuzzy set defined on Compactness (b) Fuzzy set defined on Orientation 

Figure 3.4 Fuzzy sets defined on variables compactness and orientation. 

 

The rule base for the detection of each separator consists of a set of intuitively-designed 

linguistic rules. We start with the rule base for the detection of dots and small noises. 

 

3.3.2.1 Rule Base for Detection of Dots and Small Noises 

We define the rule base for the detection of dots and small noises to be composed of rules 

of the following form:  

 

IF (Normalized Height is ...) AND (Normalized Width is ...) AND  

   (Normalized YCOG is ...) AND (Aspect Ratio is ...) AND  

   (Eccentricity is ...) AND (Compactness is ...) AND 

   (Orientation is ...) THEN  

       (Dot is ...) AND (Small Noise is ...); 
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Of course, the antecedent of a rule of this form does not need to contain all parts of the 

conjunction. We start by defining the two basic cases where 1) small noises are likely and 

character dots are unlikely; and 2) character dots are likely and small noises are unlikely. 

The fuzzy rules corresponding to these two basic cases are as follows: 

 

Rule 1 := IF (Normalized Height is SMALL_COMPARED_TO_NASW) AND 

(Normalized Width is SMALL_COMPARED_TO_NASW) THEN (Dot is LOW) AND 

(Small Noise is HIGH); 

 

Rule 2 := IF (Normalized Height is EQUAL_TO_NASW) AND (Normalized Width 

is EQUAL_COMPARED_TO_NASW) THEN (Dot is HIGH) AND (Small Noise is LOW); 

 

Now, we can refine these rules by adding more knowledge about the location of the 

connected component. We know that if a small connected component appears near the 

bottom of the image, it is less likely to be a character dot, compared to when it appears 

near the top of the image. Therefore, based on the location of the connected component, 

we can decompose Rule 1 into two rules and modify Rule 2 as follows: 

 

Rule 1-1 := IF (Normalized Height is SMALL_COMPARED_TO_NASW) AND 

(Normalized Width is SMALL_COMPARED_TO_NASW) AND (Normalized YCOG is 

BOTTOM) THEN (Dot is very LOW) AND (Small Noise is very HIGH); 

 

Rule 1-2 := IF (Normalized Height is SMALL_COMPARED_TO_NASW) AND 

(Normalized Width is SMALL_COMPARED_TO_NASW) AND (Normalized YCOG is not 

BOTTOM) THEN (Dot is somewhat LOW) AND (Small Noise is somewhat HIGH); 
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Rule 2 := IF (Normalized Height is EQUAL_TO_NASW) AND (Normalized Width 

is EQUAL_COMPARED_TO_NASW) AND (Normalized YCOG is not BOTTOM) THEN (Dot 

is very HIGH) AND (Small Noise is very LOW); 

 

Where we have used the fuzzy hedges “very”/“somewhat” to increase/decrease the 

emphasis on their corresponding fuzzy sets. We can further refine these rules using more 

features such as aspect ratio and compactness. The complete rule base for the detection of 

dots and small noises is given in Appendix A1. 

 

3.3.2.2 Rule Base for Detection of Dashes 

A character dash (‘-‘) is intuitively defined as an elongated shape that is almost horizontal, 

whose height is small, and whose width is medium (compared to average width of 

characters). The process of the definition of the rule base for the detection of dashes is 

similar to that of dots and small noises. We start with a few basic rules and then gradually 

refine them by adding more knowledge. The complete rule base for the detection of dashes 

is given in Appendix A2. 

 

truth(noise) = 0.67, truth(dot) = 0.48 

truth(noise) = 0.32, truth(dot) = 0.81 

truth(noise) = 0.11, truth(dot) = 0.11 

truth(noise) = 0.81, truth(dot) = 0.32 

truth(noise) = 0.67, truth(dot) = 0.32 

truth(noise) = 0.11, truth(dot) = 0.11 

truth(noise) = 0.11, truth(dot) = 0.11 

truth(noise) = 0.67, truth(dot) = 0.32 

Figure 3.5 Result of applying the FIS-based noise removal filter to a handwritten word. 
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3.4 Experimental Results 

In this section, we show the result of applying the FIS-based noise removal filter to some 

images of handwritten words. For an input document image, first we remove the margins. 

Next, we extract lines and binarize each line separately. Next, we estimate the average 

stroke width (ASW) locally, and extract the feature set for each connected component. 

Finally, we apply the FIS for detection of dots and small noises to each connected 

component C and we defuzzify the output to obtain the degree of truth of the connected 

component being a dot (Tdot) and a small noise (Tnoise). We remove the connected 

component if it satisfies two conditions: 1) it is noise and 2) it is more noise than dot. In 

order to decide if a connected component is noise, we look at the degree of truth Tnoise, 

which is a value between 0 and 1. Therefore, in the absence of any further information, if 

Tnoise is higher than 0.5, we should take the connected component as noise.  

Figure 3.5 shows the degrees of truth of dot and noise for each connected component of a 

handwritten word. Using the FIS-based noise removal filter, we are able to keep the dot 

that belongs to the word and remove all other noises. Of course, this filter is only designed 

for small noises and dots; therefore we cannot use it to remove other types of structural 

noise such as background lines. Figure 3.6 shows samples of handwritten text with 

guideline noise. We refer to background lines on ruled papers as guideline noise. These 

lines are typically used as guidelines to help the user keep their writing consistent.  
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(a) (b) 

Figure 3.6 Samples of handwritten text with guideline noise. 

 

The guidelines are usually printed in light colors, i.e. lighter than the ink that is used in 

pens. Therefore, in most cases we are able to remove the guidelines with proper 

binarization. However, in certain situations the binarization algorithm may not able to 

remove the guidelines, for example when we apply a global binarization operator to the 

whole document. In such cases, we may still be able to remove the guidelines by a FIS-

based noise removal filter. The rule-base for the FIS for the removal of guidelines is 

similar to the rule base for the detection of dashes that we discussed in section 3.3.2.2. 
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Chapter 4 

Line and Word Segmentation 

 

 

4.1 Introduction 

Lines and words are building blocks of text. In document processing applications, we 

often need to divide a document into its constituent lines, and sometimes we need to 

further divide each line into its constituent words. Although both line segmentation and 

word segmentation in unconstrained documents can be considered as open-problems, 

generally speaking extracting lines from a document is more straightforward. The reason 

is that the text lines are almost well-defined based on geometrical information. However, 

words are not as well-defined. In handwritten documents, inter-word-spacing is 

sometimes wider than the intra-word-spacing and thus it is not always possible to 

segment the document at the word level perfectly using geometrical information only. 

Fortunately, perfect word segmentation is not always necessary. The level of details we 

have to divide a document into depends on the specific application and method. In some 

applications such as template-based approaches to word spotting, there is even no need to 

segment the document at line level. We devise a top-down approach to word spotting, 

where we need to extract the text lines and words or sub-words. In the following, first we 

present a literature survey on line and word segmentation algorithms. Then we describe 

the theory of fast Fourier-based steerable filtering that our line and word segmentation 
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methods are based on. Finally we present our line and word segmentation algorithm 

along with some experimental results. 

 

4.1.1 Background 

Due to intrinsic challenges of unconstrained documents, this problem has remained 

unresolved and thus, many different approaches to segmenting lines and words have been 

proposed so far [LSZT07, Kav10, DPB09, LGPH09]. Line segmentation approaches 

usually make two key assumptions: 1) the gap between neighboring text lines is 

significant; and 2) the text lines are reasonably straight, or else they have a single global 

skew angle. Word segmentation approaches usually make two key assumptions: 1) the 

gap between neighboring words is wider than the gap between characters belonging to 

the same word; 2) neighboring words are not connected together; in other words, any 

connected component of text belongs to only one word. 

These assumptions are not always valid for handwritten documents. However, in most 

cases they are valid for documents with simple to moderate types of layouts.  

It must be noted that a majority of the classical algorithms in the document processing 

literature are specifically developed for machine-printed types of documents [EDC97, 

SPJ97, NSV92], and not surprisingly they cannot provide an acceptable performance for 

unconstrained handwritten documents. Previously, there was a greater interest in 

processing machine-printed documents, but recently a new trend has developed to move 

beyond traditional machine-printed methodologies to deal with unconstrained documents 

as well. The basic ideas upon which these new algorithms are built are more or less the 

same considering the fact that several simplifying assumptions such as parallel lines of 



50 
 

text are not valid anymore. Moreover, this calls for more sophisticated pre-processing and 

post-processing techniques. 

In [NSV92], a top-down segmentation method based on projection profiles is proposed. 

This method can only handle machine-printed documents because it is based on the 

assumptions of parallel text lines and large intra-line gaps. In a more recent study [PD03], 

the basic projection profiles technique is extended to deal with slightly curved lines of 

text. The idea is to form areas of text wherein the lines are parallel and then segment 

them using horizontal projection profile technique. The document spectrum method 

[O’G93] is a classic example of a bottom-up segmentation algorithm. It works by 

connecting neighboring connected components based on the geometric relationship 

between a fixed number of nearest neighbors. Docspectrum achieves good results for 

machine-printed as well as handwritten documents with slightly curved lines. Another 

bottom-up algorithm is [LSF94] based upon the three Gestalt criteria of proximity, 

similarity and direction continuity for perceptual grouping of connected components to 

text lines. General curve extraction techniques based on the Hough transform have also 

been used for text line detection [LGH07], [LSHF95]. Recently an almost real-time 

implementation of Hough transform has been developed [FO08]. However, sophisticated 

post-processing techniques are still needed for extraction of text lines after computing the 

transform. A partial-contour-following-based method to detect the separating lines is 

proposed in [ZTMR01]. The text slant is first detected and text line numbers are 

evaluated using partial projection. Next, a partial contour following for each line is 

performed in two opposite directions and finally, the adjacent lines are separated. 

Smearing is a common technique used in page segmentation algorithms. In [SSG05], the 
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authors have used the so-called Adaptive Local Connectivity Map (ALCM) which is a 

transformation operator replacing each pixel by the value of the sum of neighboring 

pixels within a horizontal distance. After smearing the image with this operator and then 

binarizing it, the connected components of the resultant image will correspond to 

candidate lines of text. A more elaborate algorithm using the ALCM technique is 

[KB06], where the authors have used pre-processing and post-processing steps to remove 

rule/margin lines and break connected text regions containing more than one line. 

The general image segmentation method of level sets has recently been utilized in the 

realm of document image processing. In the algorithm proposed in [LZD+08a], after 

estimating a probability map for text lines, the level set method is applied to determine 

the boundary of neighboring text lines. This method is script-independent and doesn’t 

require the neighboring lines to be absolutely parallel and straight. However, it is 

computationally demanding and perhaps not suitable for applications where speed is a 

major concern. Moreover, the segmentation results depend on the number of boundary 

evolution steps as pointed out in [DPB09]. The authors in [DPB09] have proposed the 

use of the Mumford-Shah (MS) model for text line segmentation because the text area 

only consists of two uniform regions, wherein the piecewise constant approximation of 

the MS model well suits the segmentation task. An advantage of the MS-based model 

over [LZD+08a] is that it segments the lines by minimizing the MS energy functional and 

thus unlike [LZD+08a] the results do not depend on the number of evolution steps. 
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4.2 Line Extraction Based on Fast Fourier-Based Steerable Filtering 

We developed a new line extraction method based on Fast Fourier-based Steerable (FFS) 

filtering. The algorithm is composed of two stages: fast filtering and local skew 

correction. In the following, first we present the theory of FFS filtering. Then, we 

describe the line map computation and post-processing steps of our line segmentation 

algorithm. 

 

4.2.1 Fast Fourier-based Steerable Filtering 

For the extraction of the text lines based on filtering the two obvious choices for the 

kernel are box and Gaussian. If we use a box kernel, the output of the filtering is, by 

definition, the so called Adaptive Local Connectivity Map (ALCM) which is proposed by 

Shi et al. [SSG05]. According to the ICDAR 2009 Handwriting Segmentation Contest 

[GSL09], the ALCM-based algorithm is the best line segmentation algorithm for 

handwritten documents. However, in the original paper [SSG05], the authors 

implemented the ALCM by convolution in spatial domain. Here, we compute the map 

using FFS filtering which is based on the decomposition of the filter and Fast Fourier 

Transform (FFT) operations, resulting in significant speedup over the conventional 

convolution in spatial domain. 

Another possible choice for the kernel is a Gaussian. Gaussian kernels are among the 

most commonly used kernels in image processing due to their desirable properties from 

both theoretical and computational point of view. The general case of an anisotropic 

Gaussian filter in two dimensions is defined by: 
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Where σx is the standard deviation along the x-axis, and σy is the standard deviation along 

the y-axis. This filter is axis-aligned, and thus can be used to analyze fairly horizontal or 

vertical structures. In order to analyze structures with arbitrary orientations, we have to 

“steer” (orient) the filter at arbitrary orientations. In [FA91] an efficient architecture is 

proposed to synthesize filters of arbitrary orientations from linear combinations of basis 

filters. However, according to this framework, no exact basis exists for rotating an 

anisotropic Gaussian. The existence of basis filters is important from a computing 

perspective. It is well known that direct implementation of filtering by convolution in 

spatial domain is slow, particularly in higher dimensions. If we can decompose a 2D filter 

as a liner combination of a set of 1D filters, we can compute the result of the filtering 

with much less calculation time. In [ASW03], the authors showed the decomposition of 

an oriented anisotropic Gaussian filter in two Gaussian line filters in non-orthogonal 

directions. 

The general case of an oriented anisotropic Gaussian filter in two dimensions is obtained 

by rotating the basic filter defined in (4.1) by the desired angle θ. Let’s denote the 

oriented anisotropic Gaussian filter by Gθ(u, v, σu, σv, θ). We can define Gθ as follows: 
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Where “*” denotes convolution, and the relation between the two coordinate systems x-y 

and u-v is given as follows: 
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(4.3) 

 

As can be seen, the filter is separated in u and v directions. However, this separation does 

not form a convenient basis from a computational perspective. We need to decompose the 

filter along the horizontal or vertical direction. The solution proposed in [ASW03] 

decomposes the filter along the x-direction and another direction as follows: 
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(4.4) 

This equation represents a Gaussian filtering along the x-direction, followed by a 

Gaussian filtering along a line t = x cosφ + y sinφ. It can be shown that the standard 

deviations σx and σφ, and the intercept of the line tanφ are computed as follows: 
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In the original paper [ASW03], the authors propose two implementations of Equation 

(4.4): one based on conventional convolution, and the other one based on recursive filters 

[JVVYV98]. In our work, we perform the filtering using FFT. 

The computation of the FFT in the x-direction is straightforward. However, for the 

computation of the FFT in the φ-direction, we need to do interpolation because a point on 

the line may not necessarily lie on an image pixel. The authors in [ASW03] used linear 

interpolation. However, we will use nearest-neighbor interpolation in our approach 

because it facilitates the computation of the FFT as explained in the following. 

 

4.2.1.1 Computation of FFT in -direction using Linear Interpolation 

In spatial domain, filtering along the line t with intercept μ = tanφ is achieved by 

[ASW03]: 
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(4.8) 

Where gx[x,y] is the input image filtered with the x-filter, and wj is the filter kernel for 

half the sampled Gaussian from 0 to ⎣ ⎦2/M . 

The coordinates y ± j exactly lie on an image pixel, however the coordinates x ± j / μ 

coordinate may fall between two image pixels. In order to solve this problem, the authors 

in [ASW03] compute the value of the pixel of interest by the linear interpolation of the 

two neighboring pixels. Therefore, Equation (4.8) becomes: 
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where a is the interpolation factor.  

 

 

Figure 4.1 Linear interpolation for the computation of the FFT in a certain direction. Here the size of 

the filter is 7, and the orientation is 30˚. Green pixels correspond to the coordinates that are rounded 

down to the closest column index, and blue pixels correspond to the coordinates that are rounded up 

to the closest column index. 

 

According to Equation (4.9), filtering in the φ-direction can be achieved by two FFT 

operations, where each one is computed for a sequence of gray values at integer 

coordinates (Fig. 4.1). However, this formulation requires us to compute the coordinates 

of the integer pixels for each pixel of the image separately. In other words, it is desirable 

to compute the FFT along every diagonal (in the φ-direction) of the image only once and 

then use the FFT coefficients for the computation of the filtering (in the φ-direction). As 

we will show in the next section we can achieve this purpose by using nearest-neighbor 

interpolation rather than linear interpolation. 
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4.2.1.2 Computation of FFT in -direction using Nearest-Neighbor Interpolation 

In Fig. 4.1, it is easy to see that an approximation to the line the φ-direction can be 

achieved by starting from the left-most pixel of the line and skipping every other pixel 

until the other end of the line. Therefore, using nearest-neighbor interpolation rather than 

linear interpolation, Equation (4.9) reduces to: 
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(4.10) 

The advantage of Equation (4.10) lies in the fact that the pixels approximating the line are 

symmetric around the central pixel. Therefore, the filtering along the line in the φ-

direction can be computed by down-sampling followed by the FFT along the 

corresponding diagonal of the image. In the example shown in Fig. 4.1, we picked out 

every other pixel, therefore the down-sampling factor is 2. In general, the down-sampling 

factor Df is defined by the following equation: 
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      (4.11) 

This equation simply states that if the line is more horizontal than vertical (i.e. φ < 45°) 

we down-sample along the horizontal direction, and similarly, if the line is more vertical 

than horizontal (i.e. φ ≥ 45°) we down-sample along the vertical direction (Fig. 4.2). 

Another advantage of using nearest-neighbor interpolation is now clear. The down-

sampling factor is an integer which further reduces the complexity of the computations. 
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In general, if the down-sampling factor is not an integer but rather a rational fraction, the 

down-sampling operation can be implemented by two sampling operations: an integer up-

sampling followed by an integer down-sampling.  

 

 

 

 
 

(a) (b) 

Figure 4.2 Down-sampling corresponding to nearest-neighbor interpolation when the line angle is 

less than 45°° (a), and when it is more than 45° (b). 

 

Having described the down-sampling operation, we present the procedure to perform the 

convolution in φ-direction using the FFT as follows. First, we define the μ-diagonals of 

an image. A φ-diagonal of an image is a diagonal corresponding to the filter angle φ and 

the down-sampling factor Df. For φ < 45°, we obtain a φ-diagonal by starting from a pixel 

on the left-most column or the top-most row and then going Df  pixels to the right and 1 

pixel to the bottom until we reach the right-most column or the bottom-most row of the 

image (Fig. 4.3). Similarly, for φ ≥ 45°, we obtain a φ-diagonal by starting from a pixel 

on the left-most column or the top-most row and then going Df  pixels to the bottom and 

1 pixel to the right until we reach the right-most column or the bottom-most row of the 

image. 
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Figure 4.3 Some diagonals of an image corresponding to φ = 30˚ and Df = 2. 

 

Now we use the following property of the down-sampling theorem in the discrete Fourier 

domain [Bra99]. Let x(n) be a discrete signal of length N in time domain, let C(ω) be the 

Discrete Time Fourier Transform (DTFT) of x(n). Let x(Mn) be the down-sampled 

version of x(n) corresponding to a down-sampling factor of M. Then the DTFT of x(Mn) 

denoted by Cd(ω) have the following relation with C(ω): 
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Where L = N / M, and k = 0, 1, …, L – 1. 

 

A numerical example is given below.  

Let x = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ] be the original signal. Let the down-sampling 

factor be 3. The down-sampled version of the signal denoted by xd is obtained by picking 

out every 3 sample:  xd = [ 1, 4, 7, 10 ]. 

The discrete Fourier transform of the original signal x denoted by cx is computed as 

follows: 
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cx(0) = 78, cx(1) = –6 + 22.3923i, cx(2) = –6 + 10.3923i, cx(3) = –6 + 6i,  cx(4) = –6 + 

3.4641i, cx(5) = –6 + 1.6077i, cx(6) = –6, cx(7) = –6 – 1.6077i, cx(8) = –6 – 3.4641i, cx(9) 

= –6 – 6i,  cx(10) = –6 – 10.3923i, cx(11) = –6 – 22.3923i. 

The discrete Fourier transform of the down-sampled version of the signal xd denoted by 

cxd is computed as follows: 

cxd(0) = 22, cxd(1) = –6 + 6i, cxd(2) = –6, cxd(3) = –6 – 6i. 

 

Now, we can see that the following relations hold: 

cxd(0) = 1/3 × { cx(0) + cx(4) + cx(8) } = 1/3 × { 78 – 6 + 3.4641i –6 – 3.4641i } = 22. 

cxd(1) = 1/3 × { cx(1) + cx(5) + cx(9) } = 1/3 × { –6 + 22.3923i – 6 + 1.6077i – 6 – 6i } = –

6 + 6i. 

cxd(2) = 1/3 × { cx(2) + cx(6) + cx(10) } = 1/3 × { –6 + 10.3923i – 6 – 6 – 10.3923i } = –6. 

cxd(3) = 1/3 × { cx(3) + cx(7) + cx(11) } = 1/3 × { –6 + 6i – 6 – 1.6077i – 6 – 22.3923i } = 

–6 – 6i. 

 

4.2.2 Computing Line Maps by Fast Oriented Anisotropic Gaussian 

Filtering 

Having defined the FFS filtering, we compute the line map as follows. Firstly, we pre-

process the input image. The pre-processing step involves 1) removing the margins from 

the page, and 2) correcting the global skew. Remember from the previous chapter that our 

proposed margin removal algorithm also corrects the global skew of the document. 

Secondly, we apply a set of FFS filters to the image and add the outputs together. The 
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reason why we use a set of filters rather than only one horizontal filter is that the text 

lines in handwritten documents may have multiple skew angles. Therefore, we steer the 

filters at all possible orientations that the text lines may exist. Thirdly, we binarize the 

resultant filtered image from the previous step order to obtain the binarized line map. 

Fourthly, we post-process the binarized line map; and fifthly and finally we obtain the 

locations of the text lines. The post-processing step involves 1) removing thin connected 

components in the binarized map that correspond to background noise, and 2) filling the 

remaining connected components vertically. The vertical filling operation is defined as 

finding the upper and lower profile of a connected component and then filling all the 

background pixels within any point on the upper profile and its corresponding point on 

the lower profile. The formal description of the line extraction algorithm is given in Fig. 

4.4. 

Note that Step 2 of the algorithm we could use the distributive property of convolution 

over addition. However, then the obtained kernel is not necessarily an oriented 

anisotropic Gaussian (the set of anisotropic Gaussians at different orientations is not 

closed under addition).  

In our experiments, we only used 3 anisotropic Gaussian filters (N=3), at θ = -10.0, 0.0 

and 10.0 degrees, because the orientations of skewed text lines in our document images 

always fall within this range. Increasing the angular resolution (i.e. number of filters) did 

not affect the performance of the algorithm in terms of the localization of the text lines. 

We set σv to 15, which is around half the average height of the text lines in our database. 

We take the aspect ratio (i.e. σv / σu) of the anisotropic Gaussians to be 1/8, which is 
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around half the average aspect ratio of the text lines in our database. Thereby, σu is set to 

120. 

 
Algorithm LINESEGMENTATION(I) 
Input. A document image I.  
Output. A set of bounding boxes B indicating the locations of the text lines in I. 
 
Step 1. Pre-processing: 

Step 1.1 Remove margins from I. 
Step 1.2 Correct global skew of I. 

Step 2. F ← Gθ1*I + Gθ2 *I + … + GθN *I 
           where “*” denotes convolution and, 
                       Gθ1, Gθ2, …, GθN are a set of anisotropic Gaussian filters oriented at θ1, θ2, … θN. 
Step 3. Binarize F. 
Step 4. Post-processing: 

Step 4.1. Remove thin connected components in F. 
Step 4.2. Vertically fill the connected components in F. 

Step 5. B ← Bounding boxes of the connected components in F. 
 
 

Figure 4.4 Line segmentation algorithm based on FFS filtering. 

 

 

 

     

(a) (b) (c) (d) (e) 

Figure 4.5 Result of applying the line extraction algorithm using FFS filters to a handwritten 

document with multiple skewed lines. (a) input document image. (b) image (a) after margin removal 

and global skew correction. (c) Line map obtained by applying FFS filters to the image and adding 

the outputs together. (d) image (c) after binarization. (e) image (d) after post-processing. 
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Fig. 4.5 shows the result of applying the line extraction algorithm to a handwritten 

document. As can be seen, the connected components in the binarized FFS map 

correspond to the text lines.  

 

Figure 4.6 Robust line fitting versus least square line fitting in presence of outliers. 

 

In order to facilitate the processing for the subsequent steps of the word spotting system, 

we perform a local skew correction inside the bounding box corresponding to each text 

line. We correct the local skew by the robust line fitting technique [PTVF07]. In robust 

line fitting, we maximize the probability of the data given the model rather than 

minimizing the squared sum of errors that is done in least-square fitting. For straight line 

fitting, the probability of the data given the model is defined as follows: 
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(4.13) 

When the data points are noisy, the robust line fitting gives a better fit than the least 

square because it is tailored to be less sensitive to outliers (Fig. 4.6). 

 

4.3 Word Segmentation Based on Fast Oriented Anisotropic Gaussian 

Filtering 

Once the text lines are extracted, we have to segment words on the same text line. Word 

segmentation in handwritten document is a difficult task because inter-word-spacing is 

least square fit robust fit 
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sometimes wider than the intra-word-spacing (Fig. 4.7). Thus, it is not always possible to 

segment the document at the word level perfectly using geometrical information only.  

 

 

Figure 4.7 Example of a handwritten line where the space between characters of the same word is 

wider than the space between two neighbouring words. 

 

Many different approaches to segmenting words are proposed so far. We may categorize 

word segmentation algorithms to either top-down, bottom-up or hybrid ones. We 

experimented with well-known algorithms from each category, and we concluded that the 

scale-space algorithm proposed by Manmatha and Rothfeder [MR05] gives the best 

results for our collection of unconstrained handwritten documents.  We carry out the 

word segmentation task by an enhanced version of the scale-space algorithm. We obtain 

the scale-space using derivatives of fast anisotropic Gaussian filters implemented in the 

Fourier domain. Therefore, our approach to word segmentation is based on the same 

theory that we introduced for the extraction of lines. There are only two minor 

differences here. First, we do not need to steer the Gaussians at different orientations 

because words within a skew corrected line are reasonably straight, and moreover the 

aspect ratio of a word (ratio between its width to its height) is much less than that of a 

text line. Second, we have to use two Gaussian filtering operations in order to compute 

the Laplacian of Gaussian (LoG) operator. This is explained in more details in the 

following. 
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The scale-space is computed by convolving the image with a kernel that is the sum 

unmixed second partial derivates of a Gaussian (in the x and y directions) [MR05]: 

),;,(),;,(),;,( yxyyyxxxyx yxGyxGyxL σσσσσσ +=  (4.14) 

 

 

Figure 4.8 Output of line and word segmentation algorithms for a handwritten French document. 

 

This operator is called Laplacian of Gaussian (LoG) filtering. It can be shown that the 

LoG operator can be approximated by the difference of two standard Gaussian filtering: 
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(4.15) 

 

This equation actually subtracts a wide Gaussian from a narrow Gaussian in order to 

approximate the second partial derivative. 
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Figure 4.9 Output of line and word segmentation algorithms for a handwritten English document. 

 

The output of the word segmentation algorithm for a handwritten French document, as 

applied to each line of text separately, is shown in Figure 4.8, where the word hypotheses 

are represented with different colors. The text lines are extracted by the FFS filtering that 

we described in the previous section. Another sample output is shown in Figure 4.9 for a 

handwritten English document from the IAM database.  
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Chapter 5 

Character Segmentation 

 

 

5.1 Introduction  

As we mentioned earlier, the main goal of this research is to develop a methodology for 

spotting arbitrary keywords. Therefore, we cannot rely on holistic word recognition 

approaches, because it is not possible to compile a large enough training database for all 

possible keywords. Consequently, our main approach is to use non-holistic (analytical) 

recognition methods, and so for general keyword detection, we need to either implicitly 

or explicitly divide each word into its constituent letters. This task is done by a character 

segmentation algorithm.  

Most of the conventional character segmentation methods in the literature are based on 

the analysis of projection profiles or candidate segmentation points, where in either case 

the 2D information in the image is not taken advantage of effectively [RMKI09, HAI07]. 

The segmentation paths generated are usually obtained without taking into account the 

constraints on character shapes and neighboring characters. One fundamental assumption 

in these algorithms is that characters are separable by vertical lines (after slant 

correction). This assumption is correct for machine-printed and simple cursive text, but 

not for complicated styles of handwriting. In general, where there is considerable amount 

of overlapping between neighboring characters, they are not separable by straight lines. 

Samples of handwritten words with high overlapping are given in Fig. 5.1. In such cases, 
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application of a typical character segmentation algorithm would result in some damaged 

characters (i.e. some characters with missing parts and some characters with parts from 

neighboring characters).  

We have developed a new character segmentation algorithm based on background 

skeletal graphs. Our proposed character segmentation algorithm is based on 2D data 

structures that correspond to arbitrary regions of the image, where any arbitrary character 

shapes can be circumscribed by a region or a sequence of regions. Consequently, the 

algorithm is capable of finding the perfect boundaries of a character no matter how much 

overlapping it may have with neighboring characters. Aside from the character 

segmentation, the character merging algorithm (which will be discussed later in this 

chapter) is benefited from the 2D representation. Incorporation of the context knowledge 

about characters to the merging algorithm is intuitive when we use data structures that 

correspond to characters or sub-characters.  

 

                          

 

        

Figure 5.1 Samples of handwritten words with a lot of overlapping between characters. 

 

Any character segmentation algorithm, be it implicit or explicit, needs more than only 

geometrical information in the word image in order to segment it perfectly. In other 

words, it is not always possible to perfectly segment a word image into its constituent 
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characters without knowing the corresponding transcription. The reason is that a word 

image may represent more than one transcription. Therefore, we have to segment the 

input word in all possible ways and then resolve the ambiguity using the context, which is 

a lexicon in the simplest form. In order to generate all valid segmentation hypotheses, we 

developed a new merging algorithm which is based on graph partitioning.  

In the rest of this chapter, firstly we present the terminology and detailed description of 

the character segmentation algorithm and next the character merging algorithm. We will 

give illustrative examples as well as pseudo code for each algorithm. 

 

5.2 Character Segmentation Based on Background Skeletal Graphs 

Our proposed approach to the segmentation of handwritten words is based on background 

skeletal graphs. A background skeletal graph is a geometric (location aware) graph 

corresponding to the skeleton of the background of the image. The main function of the 

algorithm is to keep the edges of the skeletal graph that correspond to possible 

segmentation paths. The decision whether or not an edge of the graph may correspond to a 

segmentation path is made based on the orientation, length and location of the edge. 

Before presenting the formal description of the algorithm, we will define the terminology 

that we are going to use. 

 

5.2.1. Terminology of the Character Segmentation Algorithm 

Let G(V,E) be the skeletal graph corresponding to the background of the input word image 

I. G is a location-aware geometric graph where along with the neighborhood information, 
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we keep the coordinates of vertices and consequently the orientations of the edges. Then, 

we have the following definitions:  

 

End-point: An end-point is defined as a vertex v∈V with a degree of 1.  

Junction-point: A junction-point is defined as a vertex v∈V with a degree of greater than 

2 (which is either 3 or 4 when the image is represented by a raster data structure).  

Branch: A branch is defined as an edge e∈E starting from a junction-point and ending in 

an end-point.  

Curve: A curve is an edge e∈E staring from an end-point and ending in an end-point.  

Downward/Upward branch: A downward/upward branch is a branch whose start vertex 

lies on the upper/lower part of the graph.  

EPD: An EPD denotes the end-point of a downward branch. 

EPU: An EPU denotes the end-point of an upward branch. 

BEPD: A BEPD denotes the branch corresponding to an EPD which goes below the 

baseline of the image.  

BEPU: A BEPU denotes the branch corresponding to an EPU which goes above the 

baseline of the image.  

 

5.2.2 Description of the Character Segmentation Algorithm 

Having defined the terminology, we present the high level description of the character 

segmentation algorithm is as follows. The first step is pre-processing which includes 

binarization followed by removal of isolated dots that are noise. Next, we compute the 

skeleton of the background of the image and the skeletal graph corresponding to it.  
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(a) input image (b) after slant correction and thresholding 

  

(c) after vertically filling of all CCs. (d) skeleton of background of (c) 

  

(e) after removing short E2J curves (f) After connecting BBEPDs and ABEPUs to skeleton 

  

(g)  (h) 

Figure 5.2 Results of applying main steps of character segmentation algorithm to a handwritten 

word. 

 

As can be seen in Fig. 5.2, the branches of the skeletal graph correspond to the possible 

segmentation paths. Therefore, in order to form the character (or sub-characters) regions of 

the image from the skeletal graph, we apply the following rules in order: 1) we remove all 

curves and all short branches of the skeletal graph, because they do not correspond to any 

segmentation path; 2) for each BEPD of the graph, we connect it to the nearest point on the 

skeletal graph that is below the baseline; 3) for each BEPU of the graph, we connect it to 

the nearest point on the skeletal graph that is above the baseline; and 4) we remove all the 

remaining branches of the graph. The results of the main steps of the algorithm as applied 
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to a handwritten word is shown in Fig. 5.2. The pseudo code of the algorithm is given in 

Fig. 5.3. 

 
Algorithm EXPLICITCHARACTERSEGMENTATION(I) 
Input. A binary/grayscale image I representing a machine-printed or handwritten word. 
Output. A list of regions corresponding to characters or sub-characters of I. 
 
Step 1. Preprocessing: 

Step 1.1. Correct slant of I. 
 Step 1.2. Binarize I. 
 Step 1.3. Vertically fill inside each connected component of I. 
 Step 1.4. Remove isolated dots in I. 
Step 2. Skeletonization: 
 S ← Skeleton of background of I. 
Step 3. Formation of segmentation paths: 
 Step 3.1. G(V,E) ← Geometric (location aware) graph corresponding to S. 
 Step 3.2. Remove all short branches from G. 
 Step 3.3. for each e ∈  E 
                                 do if e is a BEPD 
                                          then connect e to the nearest skeleton point below it. 

                         else if e is a BEPU 
                             then connect e to the nearest skeleton point above it. 
Step 3.4. Remove all remaining curves from G. 

 
 

Figure 5.3 Explicit character segmentation algorithm using background skeletal graph. 

 

5.3 Handling Over-segmentation and Under-Segmentation 

The performance of a character segmentation algorithm is dropped by over-segmentation 

and under-segmentation errors. The output of our region-based segmentation algorithm is 

a list of disjoint regions corresponding to areas of image. We define over-segmentation as 

when there is more than one region whose union corresponds to one character. We define 

under-segmentation as when there is one region that corresponds to more than one 

character. For handling over-segmentation errors, we devise a merging method based on 

graph partitioning, and for detecting under-segmentation errors, we propose a 
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classification method based on fuzzy inference systems. In the following sections, we 

will present the descriptions of these two methods. 

 

5.3.1 Character Merging Based on Graph Partitioning 

Over-segmentation is unavoidable without recognition. In other words, an explicit 

character segmentation algorithm, without knowing what a character is, may have to 

over-segment it. Moreover, sometimes we have intrinsic over-segmented characters 

which are due to noise, abrupt ink changes, binarization, or even the writing style. 

Indeed, certain characters are composed of more than one region: a main body and an 

accent or some dots. In handwriting it is not always trivial to decide to which neighboring 

character a dot or accent belongs to.  

We devise a novel merging algorithm for handling broken characters which is based on 

graph partitioning with a heuristic search. This merging algorithm can be applied as a 

treatment step after character segmentation and before recognition. The algorithm is 

briefly explained in the following paragraphs. 

Assume that we have an input sequence of connected components where we know each 

one corresponds to either a character or a piece of a character. We need to merge some 

pieces in order to form a sequence of characters out of the input sequence of characters 

and sub-characters. This problem may appear easy at a first glance, however as we will 

show, in general it is a NP-complete problem. Simply, the number of possible ways to 

form a sequence of characters out of a sequence of broken characters can be too many. 

Without knowing what the sequence means, we don’t know how to merge the broken 

characters. This is a chicken-egg dilemma which one way to overcome is to generate all 
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the possible hypotheses in the segmentation phase and then resolve the ambiguity using 

the context.  For handwriting recognition, the context needed to find the most likely 

candidate among the possible hypotheses is usually a dictionary of words. However, in 

general a dictionary alone is not enough and we need to employ a language model as 

well. Fig. 5.4 shows samples of handwritten words that may have more than one 

transcription. Therefore, over-segmentation is unavoidable without recognition/context, 

and the segmentation algorithm has to generate all the possible hypotheses. 

 

 
 

(a) clear or dear (b) man or won 

Figure 5.4 Samples of handwritten words that can have more than one transcription. 

 

The basic idea of the algorithm is to define a graph corresponding to the word image and 

then obtain the partitions of the graph that represent the different ways that the character 

pieces can be merged. Since graph partitioning is NP-complete and it is practically 

impossible to generate and then evaluate all the partitions, we develop a heuristic that can 

efficiently limit the search space to more promising partitions. Like any other heuristic 

search, theoretically the best solution is not guaranteed, however a good solution always 

is as we will show later on.  

In the following, first we will define the neighborhood relation by which we obtain the 

neighborhood graph. Then, we will present the graph partitioning algorithm. 
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5.3.1.1 Neighbourhood relation 

The input to the merging algorithm is a sequence of connected components S = {s0 ,s1, ..., 

sN-1} where each one corresponds to either a character or a piece of a character. We want 

to merge some mergeable connected components of S in order to create sequences of a 

certain smaller size. Therefore, we need to define a neighbourhood relation on the 

sequence in order to determine whether or not two connected components (in general two 

sequences of connected components) are mergeable. We consider two connected 

components to be neighbours if they are close or have enough vertical overlapping. To be 

more precise, two connected components si and sj are neighbours if the distance between 

them is below a certain threshold Dmax, or if the amount of overlapping between their 

projections on the x-axis is above a certain threshold Omin. The distance between two 

connected components is defined as the minimum of the Euclidean distances between any 

two of their respective points. The performance of the algorithm is not sensitive to the 

values for these thresholds. A typical value for Dmax would be 5 pixels, and a typical 

value for Omin would be 50%. The higher the value for Dmax, and the lower the value for 

Omin, the more flexibility the algorithm has to merge the connected components.  

Having defined the neighbourhood relation, we create the graph G(V,E) from the 

sequence of connected components S, where each node vi ∈V corresponds to one 

connected component si, and for each pair of neighbouring connected components si and 

sj, there is an each edge eij = <vi, vj>.  

Fig. 5.5 shows an example of a neighbourhood graph corresponding to a handwritten 

word.  

 



76 
 

 

 

(a) handwritten word (b) neighbourhood graph corresponding to (a) 

Figure 5.5 Example of a neighbourhood graph corresponding to a handwritten word. 

 

The neighbourhood graph determines how the connected components in the sequence 

should be merged. Having created the neighbourhood graph G(V,E) , we partition it into k 

parts V1, V2,..., Vk where the vertices in each partition determine the corresponding 

connected components that will be merged. In general, the number of parts k is between 1 

(in which case all connected components will be merged together) to the number of 

vertices |V| = |S| (in which case no merging will be performed). However, in most cases 

we can limit the range of k. The number of parts is equal to the number of letters/digits of 

the word/numeral image, which can be estimated. Let Aavg be the average aspect ratio 

(height to width ratio) for the characters, then for an word/numeral image I with Ih rows 

and Iw columns, the average number of characters nchars is Aavg * Iw / Ih. In order to 

eliminate the estimation errors, in our experiments we set k = nchars – 3 to nchars + 3. It 

should be mentioned that in some applications such as word spotting, the value of k is 

known exactly, because we are going to spot a specific keyword with a known length in a 

document.  

 

5.3.1.2  Graph Partitioning 

Having defined the neighbourhood graph G, we compute the partitions of G in order to 

find the mergeable connected components of S. However, we cannot simply compute all 

1 2 3 4 

5 
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the possible partitions and then evaluate them and choose the good ones, because the 

number of partitions is combinatorial in the number of nodes of the graph. For a complete 

graph with n nodes, the number of partitions is the n’th Bell number denoted by Bn. Even 

for small size problems the search space is too large to be exhausted*. Therefore, we need 

a way to prune such a large space of partitions. In other words, we want to generate a 

small set of partitions that is guaranteed to include the good partitions.  

Our solution to this problem is a bottom-up one by using a heuristic to guide the search. 

We start with the trivial partition of size n = |V| where each node (corresponding to a 

connected component) is in one and only one partition. Then, we reduce the number of 

partitions by 1 at each iteration by merging all mergeable partitions and then keep the 

good ones for the next iteration. The good partitions are those ones with the highest 

scores. The score of a partition is a measure of how likely the corresponding sequence of 

connected components can be a sequence of characters. We use two properties of text in 

order to define the measure. First, connected components (corresponding to letters or 

digits) have more or less the same width. Second, there is not much overlapping between 

connected components as the text is written horizontally. Therefore, we want a measure 

that favours sequences having with more regularity and less overlapping over sequences 

with less regularity and more overlapping.  

The regularity measure that we define is based on the Arithmetic Mean-Geometric Mean 

(AM-GM) inequality which states that for any list of n non-negative real numbers x0, x1, 

..., xn-1 we have: 

 

                                                 
* To get an idea, even for a small value for n such as 15, the number of partitions is as large as B15 = 
1,382,958,545. 



78 
 

n
n

n xxx
n

xxx
110

110 ...
−

− ⋅⋅⋅⋅≥
+++  

(5.1) 

 

and that equality holds if and only if we have x0 = x1 = ... = xn-1. A geometric 

interpretation of the AM-GM inequality is that, for n = 2, a square has the largest area 

among all rectangles with equal perimeter. In general, an n-cube has the largest volume 

among all n-dimensional boxes with the same edge length sum.  

Let W = {w0, w1, ..., wn-1} be the widths of a sequence of connected components S, if we 

consider these wi’s as edge lengths of an n-dimensional box, then the sequence of 

connected component that is the most regular (in terms of widths) is an n-dimensional 

box which has the largest volume. Therefore, for a list of widths W, we define the 

regularity measure as follows: 

 

R(W) = 
( )ni

i

i

n

ii w

w
w

w
w

w
w

w

∑
∏

∑∑∑
=⋅⋅⋅ −110 ...  (5.2) 

 

Note that we have divided each width wi by the sum of the widths in order to normalize 

the perimeter to 1. Thus, the maximum of R(W) is 
nn

1  which is reached when w0 = w1 = 

... = wn-1. Since we want to combine R(w) with other measures for the computation of the 

total measure, we divide it by the maximum to derive the normalized regularity measure 

RNorm: 

RNorm(W) = 
( )n
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w

w
n

∑
∏⋅  (5.3) 
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Now, obviously we have 0 < RNorm(W) ≤ 1. However, in practice we implement RNorm(W) 

by taking logarithm of both sides in order to avoid overflows. Therefore, we re-write 

Equation (5) as follows: 

 

RNorm(W) = ))ln()ln()ln(exp( ∑ ∑−+ ii wnwnn  (5.4) 

 

RNorm(W) measures how regular a sequence of connected components is in terms of their 

widths. In order to quantify the amount of vertical overlapping between connected 

components, first we define the percentage of the overlapping Op between two line 

segments Li and Lj as follows:  
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(5.5) 

For a set of line segments L = {L0, L1, ..., Ln-1}, we define the normalized total amount of 

overlapping as follows: 
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which is the average amount of overlapping between all pairs of line segments in L. The 

minimum of Op(L) is 0 when there is no overlapping between any pairs of line segments, 

and the maximum is 1 when all pairs have complete overlapping.  

Now, in order to define the score SG of a neighbourhood graph G, we combine RNorm(W) 

and Op(L) in the following way: 
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SG = RNorm(W) × ( 1 - Op(L) ) (5.7) 

 

The maximum of SG is 1, which is reached when the bounding boxes corresponding to 

the partitions have all the same width and there is no vertical overlapping between any 

pairs of bounding boxes. 

Having defined the score for neighbourhood graphs, we describe the graph partitioning 

algorithm as given in Fig. 5.6. The order of the algorithm is O( N × |E| × (|V| - Nmin) ), 

where |E| is the number of edges of the neighbourhood graph G0, which is the number of 

pairs of connected components of S that are neighbours according to the neighbourhood 

relation; |V| is the number of vertices of G0; Nmin is the desired minimum number of 

connected components in an output sequence of connected components; and N is the 

number of best graphs  that are kept at each level of the search. In our experiments we set 

N = 50. 
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Algorithm MERGECONNECTEDCOMPONENTS(S, Nmin, Nmax) 
Input. A sequence of connected components S corresponding to characters or sub-characters.  
Output. A set of output sequence of connected components W with sizes of ≥ Nmin and ≤Nmax. 
 
Step 1. Q ←{} 
Step 2. Define of neighbourhood relation R.  
Step 3. G0(V0, E0) ← the neighbourhood graph corresponding to S. 
           where |V0| = |S| and |E0| = number of pairs of connected components of S which are neighbours 
according to R. 
Step 4. Q  ← PARTITIONGRAPH( {G0}, Q, Nmin, Nmax ). 
Step 5. W ← Set of sequence of connected components corresponding to Q. 
Step 6. return W. 
 
Algorithm PARTITIONGRAPH( P, Q, Nmin, Nmax ) 
Input. A set of partitioned graphs P where the partitions of each graph determine the connected components 
of S that are merged together.  
Output. A set of partitioned graphs Q with sizes of ≥ Nmin and ≤Nmax. 
 
Step 1. Initialize an empty list of N-best partitioned graphs TN (for the next level of search).  
Step 2. for each partitioned graph G(V,E) ∈ P  
                do if |V| < Nmin  
                          then continue. 
                      else if Nmin ≤ |V| ≤ Nmax 
                                  then Q ← Q  {G}.  
                                           if Nmin == |V| 
                                               then continue. (* no more merging is needed *) 
                      for each edge e ∈ E  
                          do merge the two end partitions (i.e. two end sets of vertices) of e to make  
                                a new partitioned graph Gnew. 
                                Insert Gnew to TN. 
Step 3. Compute the score of each partitioned graph TN using Equation (5.7) and keep the N-best ones. 
Step 4. PARTITIONGRAPH( TN, Q, Nmin, Nmax ) 
Step 5. return Q. 
 
 

Figure 5.6 Merging algorithm for sequence of connected components based on graph partitioning. 

 

5.3.2 Detection of Under-segmented Pairs of Handwritten Characters 

Using Fuzzy Inference System 

Under-segmented characters are the other type of error in the output of an explicit 

character segmentation algorithm. In our algorithm, under-segmented errors are the 
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results of branches of the skeletal graph that are not deep enough to form a segmentation 

path. This may happen where neighboring characters are too close together, due to the 

writing style or improper binarization. Fig. 5.7 shows samples of handwritten pairs of 

characters without deep enough skeletal branches on segmentation paths. 

 

 

   

 

 

 

 

 

 

 

 

(a) Pe (b) ex (c) oo/00 (d) an 

Figure 5.7 Samples of handwritten pairs of characters without deep enough skeletal branches on 

segmentation paths. 

 

It is important to detect under-segmented characters as they will adversely affect the 

process of word recognition and consequently spotting. This is due to the fact that the 

output of a character classifier for a pair of characters that it has not been trained for is 

unpredictable.  

For the detection of under-segmented pairs of characters we devise a classifier based on a 

Fuzzy Inference System (FIS) using a set of features called Average Number of 

Transitions (ANTs) that we specifically design for this classification task. In the 

following, we will describe the ANT features and then the rule-base for the FIS. Finally, 

we will present the database that we created for the evaluation of our method and show 

the effectiveness of our approach.  
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5.3.2.1 Average Number of Transition (ANT) Features 

By looking at the under-segmented pairs, some of which are shown Fig. 5.7, we notice 

that the basic feature that distinguishes a binary image that represents more than one 

character from a binary image that represents one character (or part of a character) is the 

number of gaps in the image. The more gaps an image has, the likelier it is an under-

segmented pair of characters. 

The number of gaps in a row (or column) of a binary image is actually the number of 

transitions between black and white runs in that row (or column). Therefore, in order to 

estimate the average number of gaps for the whole image, we compute the average of 

transitions between black and white runs over all rows and columns of the image. We are 

able to distinguish most characters from under-segmented characters by counting the 

number of horizontal gaps only. However, for few characters such as ‘m’/‘M’ and 

‘w’/‘W’ whose average number of horizontal gaps is 2 or more, we have to make the 

decision based on the number of horizontal and vertical gaps. The average number of 

vertical gaps for these characters is 0, which can separate them from a pair of under-

segmented O’s (Fig. 5.7(c)) whose average number of vertical gaps is 1. 

We formally define the ANT features as follows. Let IM×N denote a binary image with M 

rows and N columns that represents part of a character, a character or a sequence of 

characters. Let Ri denote the i‘th row, and Cj denote the j’th column of I where 0 ≤ i ≤ M 

– 1, and 0 ≤ j ≤ N – 1.  

We define a salient white run in a row (or column) of an image as a long-enough 

sequence of white pixels that is surrounded by two long-enough sequences of black 
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pixels on each side. A run is considered as long-enough if its length is greater than or 

equal to a threshold. We use two thresholds, one for white runs and the other one for 

black runs. Let LRi
W(TW, TB) denote the number of salient white runs in Ri where TW is the 

threshold for white runs, and TB is the threshold for black runs. We use these thresholds 

so as the average number of gaps is not sensitive to short runs that may correspond to 

noise. Assuming that in the binary image I, the background is represented by white pixels 

and the text is represented by black pixels, a reasonable value for TB would be 

somewhere between the minimum stroke width and average stroke width. In our 

experiments, we obtained the best classification results with TB = 2, which means that the 

classification is not too sensitive to the value that we choose for TB as long as we make 

sure that the value is smaller than the average stroke width. For TW, we choose a range of 

values and then compute the average of LRi
W(TW, TB) over this range.  

Let TWmin be the minimum and TWmax be maximum in the range of values for TW. Then, we 

define the average number of gaps GRi in the i’th row of I as follows: 

GRi = ( )1/),( minmax
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(5.8) 

In our experiments, we set TWmin to 2, and TWmax to 4. 

Having defined the average number of gaps, we define the set of features as follows: 

 

FR01: Normalized number of rows with 0 or 1 gaps. 

FR2+: Normalized number of rows with 2 or more gaps. 

FR3+: Normalized number of rows with 3 or more gaps. 

FC0: Normalized number of columns with 0 gaps. 
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FC1: Normalized number of columns with 1 gap. 

FC3+: Normalized number of columns with 3 or more gaps. 

Where we normalize a number by dividing it by the length of the dimension that it is 

computed for, which is the number of rows of the image for FR features, and the number 

of columns of the image for FC features. 

Besides these transition-based features, we define the Aspect Ratio (AR) of the image as 

the last feature: 

FAR: ratio of the height of the image (M) to its width (N). 

 

5.3.2.2 Fuzzy Inference System (FIS) 

Having defined the features, we need to define the fuzzy sets on each feature. The three 

basic membership functions for the definition of the fuzzy sets are given below. 

 

Triangular: a triangle defined by the x-coordinates of the three vertices as shown in Fig. 

5.8(a). 

ShoulderLeft: a trapezoid that extends to -∞, thereby defined by the x-coordinates of the 

two vertices of the right boundary as shown in Fig. 5.8(b). 

ShoulderRight: a trapezoid that extends to +∞, thereby defined by the x-coordinates of 

the two vertices of the left boundary as shown in Fig. 5.8(c). 

 

(a) (b) (c) 

Figure 5.8 Three basic membership functions for the definition of fuzzy sets. 

              a              b             c 

1 

Triangular(x) 
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x                              a              b 
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ShoulderRight(x) 
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Table 5.1 Fuzzy sets defined on shape features. 

Variable Fuzzy sets 

FR01 HIGH := ShoulderRight 0.95, 1.0 

FR2+ HIGH := ShoulderRight 0.1, 0.2 

FR3+ HIGH := ShoulderRight 0.01, 0.02 

TOO_HIGH := ShoulderRight 0.3, 0.6 

FC0 HIGH := ShoulderRight 0.95, 1.0 

FC1 HIGH := ShoulderRight 0.3, 0.6 

FC3+ HIGH := ShoulderRight 0.1, 0.2 

FAR LOW := ShoulderLeft 0.2, 0.33 

HIGH := ShoulderRight 2.0, 3.5 

UnderSegmented LOW := ShoulderLeft 0.25, 0.5 

MEDIUM := Triangular 0.25, 0.5, 0.75 

HIGH := ShoulderRight 0.5, 0.75 

TOO_HIGH := ShoulderRight 0.75, 0.85 

 

The fuzzy sets that we define on each variable (the seven features and the output 

variable) are given in Table 5.1. 

 

The complete rule base for the under-segmented detection FIS is defined as follows. 

 

Rule #1. if FC3+ is HIGH then Undersegmented is HIGH.  

 

Rule #2. if FAR is not HIGH and FR3+ is TOO_HIGH then Undersegmented is 

TOO_HIGH. 
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Rule #3. if FAR is HIGH and FR01 is HIGH and FC3+ is not HIGH then 

Undersegmented is very LOW. 

 

Rule #4. if FAR is HIGH and FR01 is HIGH and FC3+ is HIGH then 

Undersegmented is LOW. 

 

Rule #5. if FAR is HIGH and FR01 is not HIGH then Undersegmented is 

MEDIUM. 

 

Rule #6. if FAR is LOW and FR01 is not HIGH then Undersegmented is HIGH. 

 

Rule #7. if FAR is LOW and FR01 is HIGH and FC3+ is not HIGH then 

Undersegmented is MEDIUM. 

 

Rule #8. if FAR is LOW and FR01 is HIGH and FC3+ is HIGH then 

Undersegmented is somewhat HIGH. 

 

Rule #9. if FAR is not LOW and FAR is not HIGH and FR01 is HIGH then 

Undersegmented is LOW. 

 

Rule #10. if FAR is not LOW and FAR is not HIGH and FR01 is not HIGH and 

( FR2+ is HIGH or FR3+ is HIGH ) then Undersegmented is HIGH. 

 

Rule #11. if FAR is not LOW and FAR is not HIGH and FR01 is not HIGH and  

( FR2+ is not HIGH and FR3+ is not HIGH ) then Undersegmented is MEDIUM 
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5.3.2.3 Experimental Results 

For the evaluation of our under-segmented detection approach we created a database of 

handwritten characters. Each image in the database is either part of a character (over-

segmented), one character (perfectly-segmented), or more than one char (under-

segmented). The corresponding label for each image is the integer that best describes the 

number of characters in the image. That is 0 for an over-segmented character, 1 for a 

perfectly-segmented character, and 2 or more for an under-segmented sequence of 

characters.  

 
 

 
 

   
  

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

over-segmented perfectly-segmented and under-segmented 

Figure 5.9 Samples from database of handwritten characters for evaluation of under-segmented 

detection method. 

 

We automatically generated the images by applying the character segmentation algorithm 

to a randomly selected subset of words from the IAM database. Out of all segmented 

images, we chose 2000 over-segmented characters, 2000 perfectly-segmented characters 

and 12000 under-segmented sequences of characters. Next, we used our under-segmented 

detection method to automatically label the images, and finally we examined all the 

samples manually and corrected the labeling mistakes. Some samples of the images in 

this database are shown in Fig. 5.9. 

The FIS-based classifier achieves a correct classification rate of %96 on this database. 

The correct classification rate for over-segmented and perfectly segmented samples is 



89 
 

%96.6, and for under-segmented samples is %95.5. It should be noted that these rates are 

approximations to the real performance of the system which can be higher. In 

handwriting, we can find many shapes that can be considered as one or two characters 

(Fig. 5.9(f-h)). In such cases, it is better to segment (or over-segment) the shape, because 

we will have to resolve the ambiguity using recognition/context.  

 

                       

Figure 5.10 Samples of under-segmented pairs of handwritten characters that are correctly classified 

by under-segmented detection method. 

 

Fig. 5.10 shows samples of under-segmented pairs of handwritten characters that are 

correctly classified by fuzzy inference system. Fig. 5.11 shows some samples that are 

misclassified. 

                           

Figure 5.11 Samples of handwritten characters that are misclassified by under-segmented detection 

method. 
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Chapter 6 

Cursive Character Recognition 

 

 

6.1 Introduction 

Recognition of printed characters using computers has been one of the first and most 

successful applications of pattern recognition. Optical Character Recognition (OCR) has 

been an active field of research for more than three decades. There are hundreds of 

hundreds of approaches proposed to recognition of machine-printed and handwritten 

characters for different scripts [CSSJ09]. For machine-printed Latin scripts, the problem 

can be considered as already solved at least when the level of noise is low [Fuj08]. On 

applications where clear imaging is available typical recognition rates for machine-

printed characters exceed 99%. However, the difficulty is in dealing with handwritten 

characters (and also when the images are noisy). The difficulty of the recognition of 

handwritten characters lies in the fact that there can be as many handwriting styles as 

there are people. In fact, it is widely believed that each individual’s handwriting is unique 

to themselves. In the discipline of forensic science, handwriting identification, which is 

the study of the identification or verification of the writer of a given handwritten 

document, is based on the principle that the handwritings of no two people are exactly 

alike. This means that the number of forms that a handwritten character can take is too 

many, making the recognition a difficult task even for humans.  
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‘a’ or ‘c’? 
       

‘e’ or ‘c’? 
     

‘a’ or ‘Q’? 
       

‘e’ or ‘R’? 

    

‘A’ or ‘H’? 
       

‘g’ or ‘y’? 

   

‘A’ or ‘R’? 
       

‘H’ or ‘M’? 
     

‘a’ or ‘u? 
       

‘H’ or ‘N’? 

   

‘a’ or ‘w’? 
   

‘J’ or ‘I’? 

   

‘b’ or ‘s’? 

   

‘J’ or ‘N’? 

   

‘b’ or ‘G’? 
       

‘J’ or ‘s’? 

    

‘b’ or ‘o’? 

   

‘k’/’K’ or ‘R’? 

   

‘c’ or ‘L’? 
   

‘n’/N’ or 

‘m’/M’?    

‘c’ or ‘o’? 
    

‘n’/’N’ or ‘w’? 
   

‘d’ or ‘J’? 
         

‘p’/’P’ or ‘f’? 

    

‘d’ or ‘o’? 

    

‘r’ or ‘T’? 

    

‘D’ or ‘O’? 
    

‘r’ or ‘v’/’V’? 
    

‘D’ or ‘P’? 
       

‘r’ or ‘y’/’Y’? 

    

Figure 6.1 Fuzziness in handwriting. Examples of letters from NIST SD19 database which may be 

confused with each other. 
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Fig. 6.1 shows examples of pairs of letters from NIST SD 19 database [GBC+94] which 

may be confused with each other. According to our analysis on this database, there are 29 

pairs of letters (lower case and upper case) which in some handwritten styles may be 

confused with each other. Fig.  6.1 shows samples of these confusing pairs of characters: 

<‘a’, ‘c’>, <‘a’, ‘Q’>, <‘A’, ‘H’>, <‘A’, ‘R’>, <‘a’, ‘u’>, <‘a’, ‘w’>, <‘b’, ‘s’>, <‘b’, 

‘G’>, <‘b’, ‘o’>, <‘c’, ‘L’>, <‘c’, ‘o’>, <‘d’, ‘J’>, <‘d’/’D’, ‘o’/‘O’>, <‘D’, ‘P’>, <‘e’, 

‘c’>, <‘e’, ‘R’>, <‘g’, ‘y’>, <‘H’, ‘M’>, <‘H’, ‘N’>, <‘J’, ‘I’>, <‘J’, ‘N’>, <‘J’, ‘s’>, 

<‘k’/‘K’, ‘R’>, <‘n’/‘N’, ‘m’/ ‘M’>, <‘n’/‘N’, ‘W’>, <‘p’/‘P’, ‘f’ >, <‘r’, ‘T’>, <‘r’, ‘v’/ 

‘V’>, <‘r’, ‘y’/ ‘Y’>. 

The samples shown in Fig. 6.1 are isolated letters in the sense that during the collection 

of the database participants were asked to write these letters separately within special 

forms. The problem is more challenging when the letters are written cursively. Fig. 6.2 

shows samples of handwritten words from the IAM database [MB02] with letters that are 

difficult to recognize correctly in isolation. 

  

             

  These two letters are almost identical,          The pair ‘ch’ can be recognized as ‘di’, ‘ai’, ‘cu’, ‘ou’, ‘on’, ‘om’ etc. 

  whereas one is ‘f’ and the other is ‘t’. 

Figure 6.2 Samples of handwritten words from the IAM database with letters that are difficult to 

recognize correctly in isolation. 

 

Despite the inherit challenges in handwritten characters, there has been considerable 

success in handwritten OCR systems. For isolated handwritten letters, the performance of 
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state-of-the-art techniques reported on standard databases of such as NIST SD 19 is 

around 95% to 96.82% [CSSJ09, MCS06]. For cursive handwritten letters, the state-of-

the-art word recognition engines are reported to have a recognition rate of around 73.51% 

to 88.10% at character level [KBJO10, GLF+09]. Of course, a lower recognition rate at 

characters level does not necessarily correspond to a lower recognition rate at word level, 

partly because not all combinations of characters corresponds to lexicon entries. Despite 

the lower performance of recognition engines for cursive letters, the state-of-the-art 

handwritten word recognition approaches have achieved impressively high performances 

of around 72.11%-74.9% on very large lexicons (10,000 to 100,000 words) [GLF+09]. 

Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) have been the 

most successful classification paradigms for isolated character recognition. In 

benchmarking tests carried out on standard databases of handwritten letters and digits, the 

highest recognition rates are often achieved by variations of ANNs and SVMs, closely 

followed by Hidden Markov Models (HMMs) [CSSJ09, MCS06]. Which classifier is the 

best for a specific application depends on the nature of the data under consideration, and 

other factors including preprocessing of the data, representation of the data in the feature 

space, etc. New theoretical insights indicate that some of the best-established 

classification paradigms such as SVMs and Radial Basis Function (RBF) ANNs can be 

formulated in a way to have exactly the same or highly similar functionality [FKSO10]. 

Then, the difference will only be between the optimization (learning) algorithms used to 

find the parameters for a specific classifier. However, according to the No Free Lunch 

(NFL) theorem, there is no single learning algorithm that works best on all supervised 

learning problems [DHS00, HP02]. A recent research done a standard database of 
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handwritten digits [CMGS10] can be served as tangible evidence of the validity of the 

NFL theory in the realm of character recognition. It is shown that plain multi-layer 

perceptrons trained with the traditional back-propagation algorithm achieve one of the 

highest recognition rates ever reported for isolated handwritten digits1.  

In the light of the NFL theorem, perhaps the most straightforward way of overcoming the 

inherent weaknesses of single classification approaches is to combine them. Ensemble 

methods in statistics and machine learning refer to the methods of combining several 

weak classifiers in an attempt to make a stronger classifier. It has been empirically shown 

that in many classification problems an ensemble of classifiers tend to yield better results 

than only one classifier [Rok10]. 

In this chapter we present our approach to cursive character recognition which is based 

on input perturbation and classifier combination. For each input pattern, firstly, we 

generate a few versions of it slightly different in shape, and then we recognize each one 

by an ensemble of neural networks.  The idea behind the input perturbation is to make the 

classification more robust by submitting several slightly distorted versions of an input 

pattern along with the original pattern to a classifier and then combining the outputs. 

Ideally, from the classifier point of view, a slightly distorted version of a pattern is the 

same as the original pattern, and we should not gain any advantage by combining the 

classification results. However, in practice neither the process of feature extraction nor 

the classification is perfect.  It has been shown that the perturbation method can improve 

the classification performance in challenging problems such as digit recognition [HB97]. 

In this chapter, we show that a considerably more challenging problem (56 vs. 10 classes) 

can benefit from the same method. To the best of our knowledge this is the first time that 
                                                 
1 A strikingly low error rate of 0.35% on the MNIST database. 
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the perturbation method is applied to cursive character recognition and it is proved to be 

successful in increasing the classification performance. We perform the classification 

using a classifier combination method based on a modified Borda count. Furthermore, we 

devise a new weight update formula in order to counteract the tendency of the neural 

networks to over-fit the training data. Our experimental results show that the ensemble of 

neural networks trained with the new weight update formula in conjunction with the input 

perturbation improves the recognition rate for handwritten cursive characters. 

 

6.2 Artificial Neural Network for Handwritten Character Recognition 

Our character recognition engine is based upon a feed forward neural network with an 

enhanced training method which dynamically penalizes the weights of the neurons in 

order to improve the generalization performance. In the following, firstly we will briefly 

describe the feature set that we extracted from characters and then the training 

mechanism. 

 

6.2.1. Feature Extraction 

We extracted 363 features from each character image. These features include basic 

geometrical features, horizontal and vertical histogram features, Zernike moments 

[HK06], Fourier features, chain codes, and local gradient histogram features [RSP09a] 

extracted from different zones of the input image.  
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6.2.2. Training 

The architecture of our neural network was a 3-layer feed-forward with 363 neurons in 

the input layer, 130 neurons in the first hidden layer, 50 neurons in the second hidden 

layer, and 26 output neurons. The activation function for each neuron was a sigmoid 

ranging from 0 to 1. We used the back-propagation learning algorithm with momentum 

and regularization which we implemented by a weight penalization scheme.  

In back-propagation learning with momentum, the weight update formula for each weight 

is defined as below: 
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Where E is the error, and ρ and α are the learning rates.  

It is well know that in order to guarantee good generalization ability, the number of 

degrees of freedom or the number of weights must be considerably smaller than the 

amount of information available for training. Regularization is common method for 

avoiding over-training or improving generalization ability. We implemented a 

regularization strategy by the so called weight decay scheme. We added a weight 

penalization term to the weight update rule (Equation 6.1) which led to the following 

weight-update rule: 
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Therefore, we penalized each weight by an amount which is related to the sum of weights 

of the connections which are going to the same neuron. Our experiments performed on an 

unseen data verify that this penalization scheme improves the recognition performance. 
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(a) standard classification 

 

 

 

 

 

 

(b) perturbation-based classification 

Figure 6.3 Block diagram of perturbation-based classification versus standard classification. 

 

6.3 Perturbation Method for Character Recognition 

Perturbation method is a way of boosting performance in classifiers [HB97, VB08]. 

Based on the assumption that an input pattern is distorted by a certain set of geometrical 

transformations, the perturbation method reduces the effect of distortion by classification 

of distorted versions of the input pattern. We chose a set of geometric transformations, 

such as rotation, slant, erosion, dilation, etc. Ideally, this set must contain all the possible 

transformations that may deform an input pattern. In order to classify an input pattern, we 

apply all the geometric transformations in the set to the pattern and then classify each 

distorted version separately, and finally combine the result of classifications. The 

Classifier Input Pattern 
Classification  

Results 

Classifier 

Classifier 

Classifier 

Transformation Operator #1 

Transformation Operator #2 

Transformation Operator #N 

Input Pattern 
 
Combiner 

Classification  
Results 
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combination of classifier can be done by a fusion technique [BB08] such as majority 

voting.  

A high-level block diagram of the perturbation method versus standard classification is 

given in Fig. 6.3. Note that in the basic perturbation method, the same classifier is used 

for all distorted (actually, anti-distorted) versions of the input pattern. However, in 

general we can use different classifiers in combination with different sets of 

transformation operators. The block diagram of the general perturbation-based 

classification is shown in Fig. 6.4. 

 

6.3.1 Transformation Operators 

In the current implementation, we have used eight transformation operators as listed 

below.  

1. Identity transformation (returns the original pattern). 

2. Rotation to the right by a random angle between 1˚ to 3˚. 

3. Rotation to the right by a random angle between 4˚ to 6˚. 

4. Rotation to the left by a random angle between 1˚ to 3˚. 

5. Rotation to the left by a random angle between 4˚ to 6˚. 

6. Stroke width normalization. 

7. Horizontal dilation by a 1 x 3 structuring element. 

8. Vertical dilation by a 3 x 1 structuring element. 

 

Stroke width normalization is done by computing the skeleton of the pattern and the 

dilating it by a 3 x 3 structuring element. Based on our experiments which will be 
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summarized at the end of this section, this set of transformation consistently results in a 

gain in recognition performance. However, it could be interesting to experiment with 

some other geometrical transforms such as shrink, perspective and slant. 

 

 

 

 

 

 

 

Figure 6.4 Block diagram of general perturbation-based classification. 

 

6.3.2 Combination of Classifiers 

There are several different approaches to the combination of classifiers hypotheses 

[VGC01]. Borda count is one of the most popular methods of combining rankings, thanks 

to its simplicity and effectiveness. Several variants of Borda count have been proposed in 

the pattern recognition community [vES00]. In our perturbation-based recognition 

approach, we utilize the modified Borda count proposed in [VGC01]. In [VGC01] the 

authors showed the effectiveness of the modified Borda count in word recognition. 

However, here we apply the method at character level. Our experimental results show 

that the modified Borda count as a method of combining character classifiers, improves 

the overall recognition rate at word level. A summary of the modified Borda count is 

given below. 

Classification  
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6.3.2.1 Modified Borda Count 

The Borda count is a rank-based election method. In classifiers combination, we can 

consider each classifier as a voter, and each class as a candidate. Therefore, each 

classifier provides a ranking of classes, assuming that we use probabilistic or ranked 

classifiers. In the conventional Borda count, the winner is determined by giving each 

candidate a certain number of points corresponding to the position where it is ranked by 

each voter. Once all votes have been counted the candidate with the most points is the 

winner. The main advantage of conventional Borda count is that no voter can dominate 

the final decision. However, in classification problems the major disadvantage of the 

conventional Borda is that it ignores the confidence scores produced by different 

classifiers.  

In order to overcome the disadvantage of the conventional method, the modified Borda 

adds three components to the conventional decision making process as follows:  

 

1) The rank of a candidate is a percentage which is determined by the rank of the 

candidate among the top N candidates. Whereas in the conventional Borda, the 

rank of a candidate is the number of candidates that stand below it. The 

percentage-based rank in the modified Borda is calculated as follows: 

 

Rank(C) = 
⎪⎩

⎪
⎨
⎧

otherwise0

candidates   top theamong is  if      )candidates  in top  of(position  - 1 NC
N

NC
 

 

(6.3) 
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Where C denotes a candidate (i.e. class), and position of C is a zero-based index. 

Therefore, for N = 5 for example, the rank of the first candidate is 1, the rank of 

the second candidate is 1 – 1 / 5 = 0.8, and so on. 

2) The percentage-based rank of a candidate is further adjusted by the confidence 

score that is assigned to the candidate by a voter (i.e. classifier). Let CSC denote 

the confidence score assigned to the candidate C. Then, assuming that the 

confidence score has a value in the range [0, 1], we simply adjust the percentage-

based rank as follows: 

 

RankCA(C) = Rank(C) × CSC. (6.4) 

 

3) The confidence-adjusted rank (i.e. RankCS) that comes from each voter is further 

modified by a degree of credibility of the voter. The degree of credibility has a 

similar effect to the weight parameter in the weighted Borda count. In the simplest 

form, we can take the recognition rate of a classifier (computed on a validation 

set) as its degree of credibility. Then, we adjust the confidence-adjusted rank in 

order to obtain the total rank of a candidate as follows: 

 

RankTotal(C) = RankCA(C) × Dcr (6.5) 

Where Dcr denotes the degree of credibility of the voter. 

 

The result of the election is obtained by adding up the total ranks that each candidate 

receives from all the voters. 
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6.4 Experimental Results 

We verified the effectiveness of our character recognition approach by performing 

experiments on a dataset of handwritten characters that is composed of isolated characters 

and cursive characters. We took the isolated characters from the standard NIST SD 19 

database [GBC+94], and we generated the cursive characters by applying by applying our 

character segmentation algorithm to the IAM database of handwritten words [MB02] and 

manually removing under-segmented and over-segmented characters.  

We chose 930 samples for each class of character, and used 2/3 for training and the 

remaining 1/3 for testing. The division of the data into training and test parts was based 

on a random sampling. We carried out our experiments on 5 different random divisions 

of the data into training and test parts. The results reported in the following are the 

average of these 5 sets of experiments. 

 

Table 6.1 Correct classification rate for database of handwritten characters 

 

Classification Rate 

 

Baseline 

Classification 

(1 neural network) 

Input perturbation 

(8 transforms) 

Classifier 

Combination 

(ensemble of 5 NNs) 

Input perturbation + 

Classifier 

Combination 

with weight decay 82.31 87.23 88.15 92.71 

w/out weight decay 81.40 87.23 87.62 92.63 

 

We obtained the highest classification rate when we used the input perturbation method 

(8 transforms) in conjunction with the classifier combination (5 neural networks). The 

classification rate in this case was around 92.7%, which was higher than when we only 
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used the perturbation or the classifier combination alone. Table 6.1 summarizes these 

results. As we can see in all cases, the classification rate that we obtain by the either the 

perturbation method or the ensemble or both is considerably higher than the baseline 

classification (only one neural network without input perturbation). We can also see that 

the weight decay formula slightly improves the classification rate, especially when used 

in isolation. 
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Chapter 7 

Generalized Minimum Edit Distance for Handwritten Words 

 

 

7.1 Introduction 

For the classification of document images based on arbitrary text queries, as we 

mentioned earlier, there are three general strategies. The first strategy is to transcribe the 

document image into text and then apply information retrieval techniques in the text 

domain. This approach is not efficient because the performance of the existing 

recognition techniques is not adequate for unconstrained handwritten documents 

[CBG09].  The second strategy is based on template matching methods by which we can 

compute the distance between images representing words. However, for this strategy to 

be applicable and effective, we need to have a set of handwritten images, at least 10 to 50 

according to [vdZSH08], with different writing styles corresponding to each query word. 

Obviously, to collect a database of handwritten words for all possible query words is not 

feasible. The third strategy is based on analytical recognition methods that are the best 

suited for our application.  

The main advantage of analytical recognition methods is their ability to recognize words 

based on character models, thereby obviating the need for having a database of 

handwritten words. In our application, we are interested to know how far a word image 

(i.e. an image representing a word) is from a text keyword. In other words, we wish to 
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find a distance function between word images and text keywords. For this purpose, we 

use a variation of the edit distance (a.k.a. the Levenshtein distance). The edit distance is a 

widely used measure of string similarity which was originally proposed for character 

strings with applications in spelling correction [Dam64].  However, since then many 

different variations of the basic edit distance have been proposed and applied to various 

problems including DNA analysis, fraud detection, pattern recognition etc. [DT10, OS06, 

Wei04, SM02, SKS96]. 

In the following, firstly we will briefly explain the classical edit distance where both 

sequences are character strings. Secondly, we will describe the extension of the edit 

distance for the case where one sequence is a character string and the other sequence is an 

image. Thirdly, we will show how to model the proposed edit distance by a Hidden 

Markov Model (HMM). Consequently, we will show that the costs for the edit operations 

can be learnt using the Expectation Maximization (EM) algorithm. Fourthly, we will 

present how to incorporate a priori knowledge into the edit distance using HMMs.  

 

7.2 Classical Minimum Edit Distance 

Let ∑ be a finite alphabet and ∑* be the set of all finite strings over ∑. Let x = x1x2…xn 

and y = y1y2…ym be two arbitrary strings of ∑* of length n = |x| and m = |y| respectively. 

Let R+ be the set of nonnegative real numbers.  

A string distance between x and y is characterized by a pair (∑, coste) where coste : E → 

R+ is the primitive cost function, and E = Esubstitute  Einsert  Edelete is the alphabet of 

primitive edit operations. Esubstitute = ∑ × ∑ is the set of substitutions, Einsert = {ɛ} × ∑ is 

the set of insertions, and Edelete = ∑ × {ɛ} is the set of deletions. Each such pair (∑, coste) 
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induces a distance function d: ∑* × ∑*→ R+ that maps a pair of strings to a nonnegative 

real value. The minimum edit distance d(x,y) between two strings x  ∑*and y  ∑* is 

defined by the following recursive equation: 
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⎨

⎧
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(7.1) 

 

It should be noted that in the original version of the edit distance proposed by 

Levenshtein the cost of substitution, insertion and deletion is 1. However, as we see in 

Equation (7.1) these costs can be modeled by a function and they do not need to be the 

same. The calculation of Equation (7.1) can be done using dynamic programming in 

O(mn) time and space [WL75]. However, depending on the application, the distance can 

be calculated in a shorter time. For example, if we know that the distance between the 

two strings is small, then using lazy evaluation the equation can be calculated in O(m.(1 + 

d)) time, where d is the minimum edit distance [All92]. 

 

7.3 Generalized Minimum Edit Distance 

In general, the alphabets that the two strings are defined on do not need to be the same. 

That is, we can define the minimum edit distance for two arbitrary strings x = x1x2…xn 

and y = y1y2…ym where xi  ∑ for 1 ≤ i ≤ n and yj  Ѱ for 1 ≤ j ≤ m. 

In our application, we are interested in defining the distance between a sequence of 

characters x and a sequence of image regions y that is the output of that character 

segmentation algorithm. Therefore, an edit distance between the two sequences x and y is 
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characterized by a 4-tuple (∑, Ѱ, Ɲ, coste) where ∑ denotes the set of characters, Ѱ 

denotes the set of image regions, Ɲ is the neighborhood graph for the regions, and coste : 

E → R+ is the primitive cost function which maps a primitive edit operation e  E to a 

real value.  

As discussed earlier, the character segmentation algorithm has to over-segment certain 

characters without using the context knowledge. In order to handle over-segmentation, 

we add a set of merging operations to the set of basic edit operations. As we know that 

the character segmentation algorithm may over-segment a character into up to three 

regions, we only need to define two merging operations, where one merges two 

neighboring regions, and the other one merges three neighboring regions together. 

Therefore, we define the alphabet of primitive edit operations as follows: 

 E = Ec|ɛ  Eɛ|r  Ec|r  Ec|rr  Ec|rrr where 

Ec|ɛ = ∑ × {ɛ} is the set of character insertions; 

Eɛ|r = {ɛ} × ∑ is the set of region insertions; 

Ec|r = ∑ × Ѱ is the set of substitutions of regions by characters; 

Ec|rr = ∑ × Ѱ is the set of substitutions of 2-tuple of neighboring regions by characters; 

and 

Ec|rrr = ∑ × Ѱ is the set of substitutions of 3-tuple of neighboring regions by characters. 

 

Using these primitive edit operations, one can transform a sequence of characters to a 

sequence of image regions by either inserting a character, or inserting a region, or 

replacing a character by a region, or replacing a character by two neighboring regions, or 

replacing a character by three neighboring regions, and combinations of these operations. 
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The generalized minimum edit distance d(x,y) between a sequence of characters x  

∑*and a sequence of image regions y  Ѱ * is defined by the following recursive equation: 
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(7.2) 

 

where characters are indicated by a and b, sequences of characters are indicated by x′ and 

x″, image regions are indicated by r, s, and t, and sequences of image regions are 

indicated by y′ and y″. 

 

7.3.1 Default Cost Functions 

In the original version of the edit distance for character strings, the default cost function 

is 1, i.e. the cost of inserting a character, deleting a character or substituting a character 

by another character is 1. In the generalized edit distance which is defined between a 

sequence of characters and a sequence of image, we define the default cost functions in a 

similar way. We set the default cost of inserting a region equal to the default cost of 

inserting a character equal to 1. However, for the substitution operations, we obtain the 

cost by the ensemble of neural networks. Let’s denote the ensemble of neural networks 

by Ω. Assuming the we use probabilistic classifiers, the process of feature extraction, 

recognition and voting can be modeled by a function that maps a pair of region and 

character to a real number in the range [0, 1], that is: Ω: Ѱ × ∑ → [0, 1], where Ѱ is the 

set of image regions, and ∑ is the set of characters.  
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Therefore, in order to determine the cost of substituting a region r  Ѱ by character ci  
∑, we recognize the region by the ensemble of neural networks and set the cost as 

follows: 

coste( ci, r ) = 1 – Ω( r, ci ) (7.3) 

 

Therefore, ideally when the region represents the character the cost is 0, and otherwise 

the cost is 1. The recursive definition of the generalized edit distance (Equation (7.2)) 

based on the default cost functions is rewritten as follows: 
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(7.4) 

 

7.4 Modeling Generalized Minimum Edit Distance Using HMMs 

In this section we will show how to model the generalized edit distance that we 

introduced in the previous section by a HMM. The advantage of modeling the distance by 

using HMMs is twofold. First, we have a straightforward way to incorporate domain 

knowledge into the model. Second, we can learn the cost functions using training data. 

In the following, we will briefly introduce the terminology of HMMs and their three 

fundamental problems, namely likelihood, decoding and learning. We will discuss the 

solution to each problem and how it is related to our application.  
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7.4.1 Hidden Markov Models 

A HMM is a statistical tool to model a system that is assumed to be a Markov chain with 

unobserved (i.e. hidden) states. A Markov chain is a random process for which the 

Markov property2 holds and the number of states that the process can be in is finite or 

countable.  Therefore, a HMM can actually be considered as a nondeterministic Finite 

State Machine (FSM) where each state is associated with a random function. Within a 

discrete period of time t, the model is assumed to be in some state and generates an 

observation by a random function of the state. Based on the transition probability of the 

current state, the underlying Markov chain changes to another state at time t+1. The state 

sequence that the model passes through is unknown, only some probabilistic function of 

the state sequence that is the observations produced by the random function of each state 

can be seen. A HMM is characterized by the following elements: 

 

 

 N: The number of states of the model (7.5) 

 

 S = {s1, s2, ..., sN}: The set of states (7.6) 

 

 ∏ = { πi = P(si at t = 1)}: The initial state probabilities (7.7) 

 

 A = {aij = P(sj at t+1 | si at t)}: The state transition probabilities (7.8) 

 

 M: The number of observation symbols (7.9) 

                                                 
2 In simple terms, the Markov property states that the next state depends only on the current state and not 
on the past. 
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 V = {v1, v2, ..., vM}: The set of possible observation symbols (7.10) 

 

 B = {bi(vk) = P(vk at t | si at t}: The symbol emission probabilities (7.11) 

 

 Ot  V: The observed symbol at time t (7.12) 

 

 T: The length of observation sequence (7.13) 

 

 λ = (A, B, ∏): The compact notation to denote the HMM. (7.14) 

 

With the following three constraints on initial probabilities, transition probabilities and 

observation probabilities: 
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7.4.1.1 Three Fundamental Problems for HMMs 

Most applications of HMMs need to solve the following problems: 
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Problem 1: Likelihood - Given a model λ = (A, B, ∏), how do we efficiently compute 

P(O | λ), that is the probability of occurrence of the observation sequence  O = O1, O2, ..., 

OT. 

Problem 2: Decoding - Given the observation sequence O and a model λ, how do we 

choose a state sequence S = s1, s2, ..., sT so that P (O, S | λ), the joint probability of the 

observation sequence O = O1, O2, ..., OT and the state sequence S = s1, s2, ..., sT given the 

model, is maximized. In other words, we want to find a state sequence that best explains 

the observation. 

Problem 3: Training - Given the observation sequence O, how do we adjust the model 

parameters λ = (A, B, ∏) so that P (O | λ) or P (O, S | λ) is maximized. In other words, we 

want to find a model that best explains the observed data. 

The solution to the likelihood problem is given by the so-called forward or the backward 

algorithm. The solution to the decoding problem is given by the Viterbi algorithm, and 

the solution to the learning problem is given by the segmental K-means or Baum-Welch 

algorithm [Rab89]. 

 

7.4.1.2 Topologies of HMMs 

The structure of the state transition matrix A determines the topology of the HMM. 

Through the use of topologies we can incorporate domain knowledge in the HMM. In 

classification, the topology of the HMM is a determining factor in performance of the 

system [AMCS04].  One of the most widely used topologies in speech/text recognition is 

the so called Left-to-Right (LR) or Bakis model in which lower numbered states account 

for observations occurring prior to higher numbered states.  The temporal order in LR-
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HMMs is imposed by introducing structural zeros to the model in the form of the 

constraint ∏ = {1, 0, ..., 0} and aij = 0, i > j meaning that the model begins at the first (i.e. 

left most) state and at each time instant it can only proceed to the same or a higher 

numbered state. As a further constraint, in LR-HMM the number of forward jumps at 

each state is usually limited in order to restrict large state changes, i.e. aij = 0, j > i + ∆ for 

some fixed ∆. 

Figure 7.1 shows two LR-HMMs, one with limited maximum forward jumps and the 

other one without, versus a fully-connected HMM where each state in the model is 

reachable from any state within one transition. Fully-connected HMMs are also known as 

ergodic HMMs. 

 

 

(a) A 5-state Left-to-Right HMM 

 

(b) A 5-state Left-to-Right HMM with a maximum relative forward 

jump of 2 

(c) A 5-state fully connected 

HMM. 

Figure 7.1 Examples of HMMs with (a and b) and without (c) topological constraints. 

 

LR topologies are the most straightforward models for 1D temporal signals such as 

speech. However, the image data is represented by a 2D matrix, where the temporal 

information is lost. The typical sliding window approach, where a narrow window is 

moved on the image from left to right (or vice versa), aims at recovering the temporal 

information from the 2D matrix representing the handwriting. Of course, when the 
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handwriting is written cursively with a considerable amount of slant and overlapping 

between neighboring characters, the sliding window approach cannot provide a good 1D 

representation for the underlying 2D signal. In order to obviate this problem, multi-

stream HMMs [KPBH10], 2D-HMMs and their variations [KA94, LNG00, CK04] have 

been proposed.  

2D HMMs are natural extensions of traditional HMMs for 2D signals. However, it can be 

shown that when a 2D-HMM is modeled by an equivalent 1D-HMM, the number of 

states is exponential [MMMH00], which means that the order of the decoding and 

learning algorithms is not polynomial anymore, but exponential. In order to reduce the 

complexity of 2D-HMMs, some authors have proposed topologies that are not fully-

connected but rather composed of loosely-coupled super-states3. Each super-state is 

usually a LR-HMM, and the complete model is formed by linking these super-states. 

These models are called Pseudo 2D-HMMs (P2D-HMMs) [KA94, CK04]. Given that the 

number of connections between the inner states of a super-state and the inner states of 

another super-state is zero or few, the order of the states required for the P2D-HMM is 

polynomial. For modeling images, a typical approach based on P2D-HMMs is to model 

each row of the image by one super-state, which is based on the unrealistic assumption 

that the states sequence in each row is independent of the states sequences of its 

neighboring rows. The reduction in the complexity of P2D-HMMs is obtained at the cost 

of over-simplifying the model which is sometimes based on unrealistic assumptions.  

The HMM model that we will propose in the next section is a Generalized HMM 

(GHMM) with an ergodic topology. The main property of the GHMM that we will utilize 

                                                 
3 A system is said to be a loosely coupled when each of its components has little or no knowledge of the 
definitions of other separate components. 
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is the relaxation of the additivity constraint of probability measures [MG00]. The 

advantage of our Generalized Ergodic HMM (GEHMM) over P2D-HMMs is to provide 

an exact model for the temporal information present in the handwriting with a feasible 

number of states.  

 

7.4.2 Modeling Generalized Minimum Edit Distance Using GEHMMs 

The direct extension of minimum edit distance or Dynamic Time Warping (DTW) 

methods to images when applied at pixel level is not efficient. This is due to the fact that 

the underlying Markov models are 2D-HMMs or P2D-HMMs which are either non-

practical or over-simplified in general.  

In our proposed approach, the observation sequence is not image pixels, but rather image 

regions that correspond to characters or sub-characters. Thus, we can build a model 

whose states logically correspond to the edit operations (insertion, substitution and 

merging). Consequently, the number of states will be constant and small. Fig. 7.2 shows 

the HMM corresponding to the generalized minimum edit distance defined by Equation 

(7.2), where the five edit operations are models by five states: Sedit = { s1, s2, s3, s4, s5} 

with s1 := e|R, s2 := C|e, s3 := C|R, s4 := C|RR and s5 := C|RRR. 
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e|R: insert region 

C|e: insert character 

C|R: substitute a character by a region 

C|RR: substitute a character by two neighboring regions 

C|RRR: substitute a character by three neighboring 

regions 

Figure 7.2 GEHMM corresponding to the generalized minimum edit distance defined by Equation 

(7.2) 

 

The output alphabet in this model is the set of image regions that is O = R = { fi(x, y) | fi: 

characteristic function corresponding to region ri }. We have assumed that the input 

image is binary; therefore we can represent a region by a characteristic function. 

Formally, for a binary image with M rows and N columns, an arbitrary image region ri is 

denoted by the characteristic function fi: X × Y → {0, 1}  where x  X, y  Y,  X := {0, 1, 

…, M – 1} and Y := {0, 1, …, N – 1}, and fi(x, y) is 1 if (x, y)  ri, and 0 otherwise. 

 

7.4.2.1 Initial and Transition Probabilities 

In the beginning, we can use any edit operation equally likely, thus the initial 

probabilities are the same: πi = 1/5, 1 ≤ i ≤ 5.  
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Then, we can use any edit operation equally likely, thus the transition probabilities in 

each and every state are the same: P(si | sj) = 1/6, 1 ≤ i, j ≤ 5. Note that from each edit 

state we can go to the final state (“end”), therefore we have 5 + 1 = 6 in the denominator.  

 

7.4.2.2 Observation Probabilities 

In the substitution state (s3 := C|R), the probability of observing a region ri is the 

maximum probability that a character can describe ri, which is determined by the 

ensemble of neural networks: 

 

P( observing ri as a single character | s = s3 ) = max Ω( ri, c), c  C (7.18) 

 

Obviously, we are not only interested in computing the distance but also in recognizing 

the image, thus we keep the character that best describes the region as well (i.e. 

c
i cr ),(maxarg Ω ).  

The probability of observing 2-tuples of neighboring regions in s4 := C|RR, and the 

probability of observing 3-tuples of neighboring regions in s5 := C|RRR, is defined in a 

similar way. However, we also have to take the neighborhood relations between regions 

into account. In state s4, the probability of observing region ri and region rj as a single 

character is defined as follows: 

 

         P( observing ri  rj as a single character | s = s4 ) =  

               max {P(ri and rj being neighbor and mergeable) . Ω(ri  rj, c)}, c  C 

 

(7.19) 
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We calculate the probability of two regions being neighbor and mergeable as follows:  

                    P( ri and rj being neighbor and mergeable ) =  

                        P( ri and rj being mergeable | ri and rj being neighbor ) . 

                            P( ri and rj being neighbor ). 

 

 

(7.20) 

 

The probability of two regions being neighbors is defined by the neighborhood graph Ɲ: 

 

P( ri and rj being neighbor ) = N(i,  j) (7.21) 

 

Where N is the weighted adjacency matrix corresponding to Ɲ. Note that, in general, the 

neighborhood graph is a weighted graph with weights between 0 and 1. This allows for 

any two regions to be considered neighbors with a degree of truth between 0 and 1, rather 

than being either neighbor or not neighbor. 

Assuming that the ensemble of classifiers is able to reject an input pattern that does not 

belong to any classes, we can merge any two regions given that they are neighbors. That 

is: 

 

P( ri and rj being mergeable | ri and rj being neighbor ) = 1 (7.22) 

 

Therefore, we rewrite Equation (7.19) as follows: 

 

                    P( observing ri  rj as a single character | s = s4 ) =   
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                                        max { N(i ,j) . Ω(ri  rj, c) }, c  C (7.23) 

 

In state s5, the probability of observing regions ri , rj and rk as a single character, 

assuming that any three regions are mergeable given that they are neighbors, is similarly 

calculated as follows: 

 

                    P( observing ri  rj  rk as a single character | s = s5 ) =  

    max{P( ri and rj and rk being neighbor and mergeable ).Ω(ri  rj  rk, c)} = 

               max { P( ri and rj and rk being neighbor ) . Ω(ri  rj  rk, c) }, c  C 

 

 

(7.24) 

 

We define the probability of three regions being neighbors in terms of the probability of 

two regions being neighbors as follows: 

 

                 P( ri and rj and rk being neighbors ) =  

                     max { 

                         P( ri and rj being neighbors ) . P( ri and rk being neighbors ),  

                         P( ri and rj being neighbors ) . P( rj and rk being neighbors ), 

                         P( ri and rk being neighbors ) . P( rj and rk being neighbors ) }. 

 

 

 

 

(7.25) 

 

It is straightforward to extend Equation (7.24) to the case of more than three regions if 

necessary. In general, the probability of n regions being neighbors, given that the 

probability of any two pairs of regions being neighbors is known, is a Minimum 
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Spanning Tree (MST) problem that can be solved by a number of classical algorithms 

including Kruskal’s [KvT05]. 

The region insertion state (s1 := e|R) is to model regions that do not correspond to any 

characters. These are extra regions that correspond to background noise, misspellings or 

parts of characters from upper or lower text lines. By default, we assume that a region is 

equally likely to be extra or not, that is we set the probability of observing any region in 

s1 to 0.5.  

Similarly, the character insertion state (s2 := C|e) is to model characters that do not 

correspond to any regions. This region allows for a handwritten word with some missing 

characters to be matched with a lexicon entry. A study of common misspellings shows 

that a double strike is the most likely cause of a missing character; that is where people 

forget to add the second character of a double character. As the likelihood of a double 

character occurring in a word is low, we can conclude that the likelihood of a character 

being absent in a word is much lower than the likelihood of it being present. By default, 

we set the probability of observing the empty region (denoted by the symbol e) in s2 to 

0.1. The probability of observing any non-empty region r  R – {e} in s2 is 0. For the 

purpose of decoding that we will explain in the next section, we keep the inserted 

character in this state. In this basic model, we assume that all characters are equally likely 

to be inserted. However, later on we will show that how these likelihoods can be learnt 

from training data, so for example the insertion of character ‘l’ is more likely than ‘z’. 

Note that the definitions of observation probabilities as above requires the model to be a 

GHMM [MG00] because the observation probabilities in each state do not sum to 1. 
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7.4.2.3 Decoding: Recognition of Handwritten Words Using the GEHMM Model 

Having defined the initial, transition and observation probabilities, we can use the model 

to recognize a handwritten word that is represented by a sequence of regions. The 

transcription of the handwritten word is simply obtained by decoding; i.e. finding the 

sequence of states that best describes the observation sequence. As mentioned in the 

previous section, every state corresponds to a character, except for the insert region state 

(s1 := e|R). We can assume that s1 corresponds to the empty character. Thus, the 

transcription of the handwritten word is obtained by concatenating the characters that 

correspond to the most likely state sequence.  

 

7.4.3 Incorporating A Priori Knowledge to GEHMMs for Handwritten Word 

Recognition 

The GEHMM model that we introduced in the previous section is a versatile tool for the 

recognition of handwritten words. However, the basic 5-state model of Fig. 7.2 does not 

have any knowledge about the lexicon. In this section, we will show that through the use 

of more states, we can incorporate into the model a priori knowledge about the lexicon, 

spelling errors and noise.  

The number of states that we need to represent the a priori knowledge is proportional to 

the size of the alphabet. The first version that we propose has 159 states, and the more 

elaborate version has 315 states. Therefore, compared to the basic model, the number of 

states is considerably higher, however still constant and manageable. 
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7.4.3.1 Adding Knowledge about the Lexicon 

Character n-gram models provide the most straightforward way to incorporate knowledge 

about the lexicon into a Markov model. A character n-gram is a subsequence of n 

characters from a given sequence of characters. A character n-gram model is a 

probabilistic model for predicting the next character in such a sequence. In general, n-

gram models can be used for any sequences from a finite alphabet. N-gram models have 

been widely used in statistical natural language processing, compression, speech and 

handwriting recognition [MS99]. 

The most widely used n-gram models are based on the shortest n-grams (n = 1, 2 and 3) 

that are referred to as unigrams (n = 1), bigrams (n = 2) and trigrams (n = 3). In our 

application, we only use unigram and bigram models. In the following, we will describe 

how to obtain character unigram and bigram models based on a lexicon.  

Formally, the task of predicting the next character can be stated as estimating the 

probability function P: 

P( cn | c1, c2, …, cn-1) = 
),...,,(

),,...,,(

121

121

−

−

n

nn

cccP
ccccP , ci  C 

 

(7.26) 

 

In other words, we wish to use the history of the previous items (i.e. characters) to predict 

the next item.  

Let Count( c1 c2 … cn-1 ) be the frequency of the sequence c1c2 …cn-1, and Count( c1 c2 … 

cn ) be the frequency of the sequence c1c2…cn in the training data (i.e. lexicon).  Now, the 

Maximum Likelihood Estimate (MLE) estimate for the probability of a certain n-gram 

c1c2…cn is defined as follows: 
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P( c1, c2, …, cn ) = 
N

cccCount n )...,( 21 , ci  C 
 

(7.27) 

 

Where N is total number of all n-grams appearing in the training data. The MLE estimate 

for the conditional probability function P is defined as follows: 

PMLE( cn | c1, c2, …, cn-1) = 
)...(
)...,(

21

121

n

n

cccCount
cccCount − , ci  C 

 

(7.28) 

 

In particular, using the MLE estimates the character unigram model is defined as follows: 

PMLE(ci) = 
lexicon in the  wordsofnumber  total

character  with startinglexicon  in the  wordsofnumber ic , ci  C  

(7.29) 

 

And the character bigram model is defined as follows: 

 

PMLE( ci|cj ) = 
lexicons in the  wordsallin   of occurances ofnumber  total

lexicon in the  wordsallin   of occurances ofnumber 

j

ij

c
cc , ci, cj  C 

 

(7.30) 

 

The unigram model specifies the initial probabilities and the bigram model specifies the 

transition probabilities in the GEHMM model. 

The character unigram model estimates the probability of observing a certain character in 

the beginning of a word, which is the initial probability of going to a state that represent 

the character in the GEHMM model. The character bigram model estimates the 

probability of observing a certain character given that the previous character is known, 
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which is the transition probability of going from the state that represents the previous 

character to the state that represents the desired character.  

 

 

 
 

 

 

 
  

 
Figure 7.3 159-state enhanced GEHMM model for word recognition. 

 

According to the above discussion, in order to include the unigram and bigram models 

into the GEHMM model, we have to have a separate state for any character. Therefore, 

each character state (s1, s2, s3 and s4) in the 5-state model of Figure 7.2 has to be 

decomposed to 26 states. We also decompose the region insertion state (s1) into a few 

states which allows for the model to impose a constraint on the number of regions that 

can be inserted consecutively. We assume that in the process of matching a word with a 

sequence of image regions, the insertion of 3 regions in a row and the insertion of more 

than 3 regions in a row are equally unlikely events. Therefore, we decompose s1 into 3 

states. We can impose the same constraint on the character insertion state (s2). Therefore, 
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the character insertion state (s2) in the 5-state model has to be decomposed into 3 × 26 = 

78 states. Fig. 7.3 shows the whole model that is composed of 6 × 26 + 3 = 159 states. 

 

Figure 7.4 Decomposition of the character substitution state based on the character trigram model. 

 

If we wish to incorporate more knowledge about the lexicon into the model, we can use 

character trigram models at the cost of more states. In order to represent the trigram 

model, each character state (s1, s2, s3 and s4) in the 5-state model of Figure 7.2 has to be 

decomposed to 2 × 26 = 52 states because we need to be able to show a history of size 2 

(i.e. all possible pairs of characters). The decomposition of the character substitution state 

based on the character trigram model is shown in Fig. 7.4. Therefore, the GEHMM model 

based on the character trigram model will have 6 × 2 × 26 + 3 = 315 states. 
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Chapter 8 

Experimental Results, Future Work and Conclusion 

 

 

8.1 Outline of Keyword Spotting System and Design of Experiments 

In this chapter, we present an experimental analysis of the proposed keyword spotting 

system over a collection of real-world documents. The keyword spotting system is 

composed of two major parts: segmentation and decision. In the former, we generate the 

word hypotheses. In the latter, we decide whether a generated word hypothesis is a 

keyword or not (Fig. 8.1).  
 

Figure 8.1 Two major modules of keyword spotting system and levels of experiments. 

 

In order to gain a better insight into the performance of the keyword spotting system, we 

conduct two types of experiments: word-level and document-level. In the word-level 

experiments, we assume that we have already generated the word hypotheses out of 

Segmentation 
(Denoising, Line extraction, Word Segmentation) 

Decision 
(Non-keywords Detection/Keyword Recognition) 

word hypotheses input image 

spotted keywords 

word-level experiments 

document-level experiments 
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which we wish to separate keyword from non-keyword. In the document-level 

experiments, we evaluate the performance of the segmentation and decision steps 

combined.  

 

8.1.1 Separation of Keywords from Non-keywords  

It has been shown through numerous studies that the recognition performance of word 

recognition engines is inversely proportional to the size of the lexicon [KSS05, Fuj08, 

GLF+09]. State-of-the-art handwriting recognition algorithms achieve very high 

performances on small size lexica (several tens of words). However, they achieve poorly 

on large size lexica (tens of thousands of words). In a word spotting application, the 

lexicon that is used in the documents may be large or even unlimited, because there are 

always identifiers (personal/city names), typos, etc. that we may not have seen before. 

However, the lexicon of keywords that we are interested in processing is limited and 

small (between one to a few tens of words). Therefore, the recognition problem in the 

word spotting context can be greatly simplified given that we can separate non-keywords 

from keywords with an acceptable accuracy. 

In other words, in the word spotting context, we can think of the word recognition 

problem as a two-level classification. In one level, we decide whether the input image is a 

keyword or not, which is a binary classification task. In the other level, we classify the 

input image to one of the keyword classes given that we know it is a keyword. Therefore, 

recognition-based approaches to keyword spotting can be divided into two major 

categories depending on whether we perform keyword/non-keyword classification before 

or after keyword recognition as shown in Fig. 8.2. 
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(a) rejection-first (b) rejection-last 

Figure 8.2 Two major approaches to recognition-based keyword spotting. 

 

The basic idea behind rejection-first approaches is to firstly detect and remove word 

candidates that are unlikely to be keywords, and secondly, recognize the surviving 

candidates using the keyword recognition algorithm. The keyword/non-keyword 

classification is based on some global features such as word profiles. In some recent word 

spotting systems [RSP09b], such simple features as word lengths have been used. It must 

be noted that the use of coarse global features only allow for the pruning of non-

keywords that are significantly different in shape than keywords. In such cases, the 

keyword recognition algorithm must have the capability of handling Out-Of-Vocabulary 

(OOV) inputs, or otherwise, those non-keywords that pass the first step would be 

inevitably classified as keywords (i.e. false positives).  

In rejection-last approaches, the rejection of non-keywords is postponed to the last step of 

recognition. The input image which could be either a keyword or a non-keyword is sent 

to the keyword classifier. If the keyword classifier has a separate class for OOV inputs, 

the non-keyword input is (hopefully) assigned to the OOV class. Otherwise, the non-

input input 

non-keyword 
Keyword Recognition 

non-keyword 

keyword 

Keyword Recognition 

Verification/Rejection 

keyword 

Keyword/Non-Keyword 
Classification 
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keyword input is assigned to a keyword class. The basic idea behind rejection-last 

approaches is that a non-keyword that is classified as a keyword normally gets a lower 

confidence score by the recognition engine, compared to the average confidence score of 

valid samples of that keyword class.  

The problem of keyword/non-keyword separation has traditionally been approached by 

simplistic methods. Most word spotting systems encompass some pruning techniques 

based on global features and/or some rejection schemes based on confidence scores 

thresholding [RSP09b, FFMB12]. We are not aware of any systematic study on the extent 

to which standard machine learning approaches can be useful in the separation of a set of 

keywords from a set of non-keywords that belong to an open lexicon where we may not 

have seen all lexicon entries in advance. We hope that the research results that we present 

in this chapter would shed some light on this topic. 

The four major approaches to keyword/non-keyword separation that we study are as 

follows: 

 

1) Binary Classification based on Global Features: 

In this approach, we represent the input image by a set of global features and then 

classify the image as keyword or non-keyword using a standard binary classification 

algorithm. The results of previous research works show that the most successful feature 

extraction methods for holistic handwriting recognition are based on gradient features 

and Gabor filters [LNSF04, Liu07, WDL05] Gradient-based features have also been 

successfully utilized in word spotting systems [RP08]. Therefore, we experimented with 

both gradient-based features and Gabor-based features. As for the classification 
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algorithm, we experimented with the Support Vector Machine (SVM) method with 

linear, polynomial and Radial Basis Function (RBF) kernels.  

  

2) Binary Classification based on Local Features: 

In this approach, we represent the input image by a set of local features that are 

dependent on the geometrical or temporal aspect of the image. As such, the number of 

features may be different from one image to another. Consequently, classification 

algorithms based on local features require distance functions that are defined on 

sequences (i.e. variable-length vectors).  

An example of a local feature extraction method for cursive handwriting is given in 

[xDKSP05], where a word image is represented by the set of maxima points on the upper 

external contour and the set of minima points on the lower external contour of the image 

(Fig. 8.3). Therefore, the number of features is proportional to the length of the image. 

Normally, the longer the word, the more features we need to describe it. 

 

 

 
 

(a) ‘a’ (b) ‘cart’ (c) ‘salutations’ 

Figure 8.3 Examples of local minima/maxima contour points of handwritten words. 

 

The most widely-used ways of comparing sequences of different lengths are based on 

generative models such as Hidden Markov Model (HMM), or optimal alignment methods 

such as Dynamic Time Warping (DTW) or the Generalized Minimum Edit (GME) 

distance that we introduced in the previous chapter. In our first set of experiments, we use 
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the local minima/maxima features [xDKSP05] along with the DTW distance. We 

experimented with both the classical unconstraint version of the DTW and a modified 

version that adds a locality constraint [SC78].  

Although local/temporal features provide a sensible way of representing signals, 

classification based on sequences requires more elaborate techniques than classification 

based on fixed-length vectors.  The most straightforward classification algorithm based 

on sequence distance functions is the K-Nearest Neighbor (K-NN) classifier that we will 

use for the purpose of these experiments. We must note that the K-NN algorithm is a type 

of lazy learning which generally requires the computation of the distance from a new 

sample to all training samples at the run time, and thus it is not efficient in terms of 

memory and speed.  

Later, we will discuss how to replace the K-NN classifier with more efficient 

classification methods using Kernel Methods (KMs). KMs provide an elegant approach 

to the processing of arbitrary data structures. Using suitable kernels, classical 

classification methods, such as perceptrons, that were originally designed for the 

processing of fixed-length vectors can be readily applied to other common types of data 

such sequences, trees and etc.  

 

3) Generalized Minimum Edit Distance Thresholding: 

    In this approach, we model the keywords individually (one model per keyword). The 

keyword model is based on the Generalized Minimum Edit Distance (GMED) that we 

presented in the previous chapter. Then, we learn two distance distributions for each 

keyword using a validation set: one distance distribution for all samples of the keyword 
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and one distance distribution for all samples of all other words, where all distances are 

computed using the corresponding keyword model. Then, for a new image, we compute 

the distance against each keyword model and then classify the image as keyword or non-

keyword based on whether the distance is closer to the keyword distribution or non-

keyword distribution.  

Since in this approach we model the keywords separately, it might happen that two (or 

more) different keyword models classify the same input image as keyword. Therefore, we 

must have an arbitration strategy to settle the conflict in such cases. There are two main 

strategies: exactly-one arbitration and at-least-one arbitration. In the exactly-one 

arbitration, we accept the input image as keyword if it is accepted by exactly one 

keyword model In the at-least-one arbitration, we accept the input image as keyword if it 

is accepted by at least one keyword model, assigning it to the keyword class with the 

minimum distance. Generally speaking, using the exactly-one arbitration strategy, the 

word spotting system would achieve a lower false positive rate at the cost of a higher 

false negative rate; on the other hand, using the at-least-one arbitration strategy the 

system would achieve a lower false negative rate at the cost of a higher false positive 

rate. 

 

4) Normalized Probability Thresholding based on Universal Background Models: 

 This approach is an extension of distance/likelihood thresholding approaches. The idea is 

to learn one Universal Background Model (UBM) for all words along with individual 

models for keywords, and then use the universal model to normalize the raw score 

(distance or likelihood) that is obtained from specific keyword models.  
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The idea of universal or cohort models for score normalization has long been studied in 

the speech recognition community [RDL+92, RQD00]. However, it was not until 

recently that the UBM technique was introduced to the realm of keyword spotting 

[RSP09b]. 

In [RSP09b], the authors proposed Gaussian Mixture Models (GMMs) for the modeling 

of the universal lexicon. In this model, each keyword is modeled separately using a left-

to-right HMM. At the classification time, the score obtained from a keyword HMM is 

divided by the universal score that is computed by the universal GMM; if the resultant 

normalized score exceeds a threshold, the image is accepted as keyword. Again, since 

keywords are modeled separately, we need an arbitration strategy as we discussed before. 

We will experiment with both exactly-one and at-least-one strategies.  

Finally, it must be noted that the universal lexicon does not need to be modeled by 

GMMs. The reason that the authors in [RSP09b] use GMMs is their low memory and 

computational requirements compared to HMMs; remembering that a GMM is a special 

case of a HMM with only one state. In terms of classification performance, the 

experimentations carried out in [RSP09b] show that GMMs and HMMs result in more or 

less the same performance for the modeling of the universal lexicon. Our experiments 

also verify these results, meaning that GMMs provide an efficient approach to the 

modeling of large amount of universal data. 

 

8.2 Training Data 

The ultimate objective of our research is the spotting of user-specified keywords in real-

world handwritten documents. Consequently, as mentioned earlier, we cannot rely on a 
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database of training images for all possible keywords. Therefore, we devised the GME 

distance which is an analytical approach to recognition that requires trained models of 

handwritten character. For the training of character models and adjusting the cost 

parameters of the GME distance we used the NIST SD 19 [GBC+94] and the IAM 

databases [MB02] (more details in Chapter 6 and 7). Therefore, the GME distance 

provides a similarity measure between an arbitrary text keyword and a word image 

without the need for further training on a specific lexicon/dataset.  

 

 

 

     

 

 

      

         

 

 

 

       

 

 

 

    

(a) ‘adhesion’ (b) ‘resiliation’ 

Figure 8.4 Samples of synthesized images for two words ‘adhesion’ and ‘resiliation’. 

 

However, for the training of the keyword/non-keyword classification schemes that we 

discussed in the previous section, we do require word-level training data. Even if we use 

an analytical recognition algorithm based on sub-character/character models along with a 

threshold-based approach to the rejection of non-keywords (approach 3 and 4 above), we 

still need a validation dataset of keyword samples and non-keyword samples in order to 

tune the rejection/acceptance thresholds for each keyword. In order to address this 

problem, we created a word image synthesizer that generates image samples for an 

arbitrary word based on handwritten fonts. For this purpose, we collected 184 
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handwritten fonts for the web. Fig. 8.4 shows samples of synthesized images for two 

words ‘adhesion’ (membership) and ‘resiliation’ (cancellation) that are among keywords 

that we want to spot in our collection of French documents. 

 

                                                   

                      (a) ‘many’                      (b) ‘said’             (c) ‘solo’                    (d) ‘spokesman’ 

 

                                                 

                   (e) ‘central’                   (f) ‘Government’                          (g) ‘they’               (h) ‘down’ 

 

                                       

              (i) ‘said’             (j) ‘forward’                  (k) ‘nominees’                           (l) ‘enlivened’ 

Figure 8.5 Samples of handwritten words from the IAM database. 
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(a) (b) (c) 

  

 

(d) (e) (f) 

Figure 8.6 Samples of handwritten forms from the IAM database. 

 

8.3 Test Data 

For the word-level experiments, we use the IAM database of handwritten words that 

since its creation has served as a standard database for the evaluation of handwriting 

recognition systems in the research community. Although the IAM database is a 

controlled database meaning that it is collected by asking people to fill out specific forms, 

the level of variation and noise in the handwritten words in it are more or less close to 

that of real-world unconstrained handwriting. Fig. 8.5 show samples of handwritten 

words from the IAM database.  
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(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 8.7 Samples of handwritten mails from our French documents database. 

 

For the document-level experiments, however, as can be seen in Fig. 8.6, the simple 

controlled layout of the IAM documents may not reflect all the challenges that we may 

encounter in the processing of real-world handwritten documents, such as non-uniform 

skew and touching lines that we discussed in Chapter 1. Therefore, aside from the IAM 

database, we carried out our document-level experiments on a proprietary database of 

real-world French documents4.  All samples in this database are real-world handwritten 

mails that are submitted to the customer-support department of a company by its wide-

range of clients from France and French-speaking Africa. The task of the word spotting 

system is to find certain keywords, and then direct the customer request to the responsible 

                                                 
4 This database belongs to IMDS Software, the key industrial partner and sponsor of this research project. 
For more information, please visit: www.imds-world.com. 
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department accordingly. Examples of keywords of interest in this application are: 

“resiliation” (cancellation), “adhesion” (membership), “contrat” (contract), “chomage” 

(unemployment), “santé” (health) and etc. Fig. 8.7 show samples of handwritten mails 

from our French documents database, where the personal information are pixelated to 

protect the customer identity. 

 

8.4 Experiments 

In the following, we will present our experimental results on the English and French test 

databases described above. We start with the word-level experiments and then move on 

to the document-level experiments. Along the way, we compare and contrast our results 

with state-of-the-art word spotting systems for both the English [FFMB12] and French 

[RSPSL10] languages.  

 

8.4.1 Word-Level Experiments 

We divide our word-level experimental results into two categories: word recognition and 

word spotting. In the former, our goal is to analyze the performance of our proposed 

approach along with some other popular methods for the recognition of small size lexica; 

that make up the keyword sets.  In the latter, the focus of our experiments is the 

separation and recognition of a small set of known keyword classes from a large or open 

set of non-keywords. 
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8.4.1.1. Word Recognition Experiments 

In order to evaluate the performance of the GME distance approach to the recognition of 

handwritten words, we carried out several sets of experiments on the IAM database. In 

order to keep the evaluation process as unbiased as possible, in the following 

experiments, we did not use the part of the IAM database that was already used for the 

generation of the cursive characters database and the training of the underlying cursive 

character models as described in Chapter 6.  

 

Table 8.1 Average recognition rate of the GME approach over several test subsets of IAM. 

 Model  Cost Functions Test Lexicon Size 
10 20 50 100 

 
 5-state 

 Default 91.0 83.6 80.4 74.3 
 Trained  92.1 84.7 81.3 75.7 
 Adapted 92.4 85.1 81.7 76.2 

 
 159-state 

 Default 93.0 86.8 82.1 77.0 
 Trained 93.4 87.2 82.7 77.6 
 Adapted 94.1 87.7 82.8 77.8 

 
 315-state 

 Default 93.0 87.5 82.6 77.4 
 Trained 93.5 88.1 83.1 78.0 
 Adapted 94.3 88.7 83.5 78.5 

 

The GME approach to word recognition can be used with or without the training of the 

associated cost functions as we discussed in Chapter 7. In fact, using the default cost 

functions we can accomplish word-level recognition without the need for word-level 

training data. However, given that word-level training data are available, we can optimize 

the cost functions for a specific distribution of data using the hidden Markov model 

framework. The model can be trained using a wide range of handwriting samples from 

different writers or it can be further adapted for a specific person by using their 
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handwriting samples. In the following, the former model will be referred to as “trained”, 

and the latter model will be referred to as “trained/adapted”, or simple “adapted”. 

Moreover, the GME model may or may not use the lexicon knowledge. The three 

variations that we discussed in the previous chapter are the basic 5-state model (without 

knowledge of the lexicon), the 159-state model (with unigram and bigram knowledge of 

the lexicon) and the 315-state model (with unigram, bigram and trigram knowledge of the 

lexicon).  

Table 8.1 shows the average recognition rate of the GME approach over several test 

subsets of the IAM database with different lexicon sizes. Again, for the trained and 

adapted models, the training and test subsets are completely disjoint. 

The reason we limited the lexicon size to 100 words is that in a typical word spotting 

application, the lexicon of interest contains only a few tens of keyword. In the French 

keyword spotting application that we mentioned in the previous section, the keyword 

lexicon contains 48 keywords. The number of effective classes is even smaller; because 

among these keywords, we have conjugations and plural forms; for example “contrat” 

(contract) and “contrats” (contracts), or “résilier” (cancel) and “résiliee” (cancelled) 

which essentially indicate the same class/action. This means that if the recognition 

algorithm mistakes “contrat” for “contrats” or vice versa, it is not counted as an error 

from the word spotting view point, because they belong to the same keyword family. 

However, in the word recognition experiments that we summarize in this section, we 

simply treat all words as separate classes; so for example, in the test sets of the IAM 

database, we have “American” and “Americans” as two different classes.  
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The recognition results summarized in Table 8.1 indicate that adding the trigram 

knowledge to the model slightly improves the recognition results over the 

unigram/bigram model, which is in turn better than the basic model without any 

knowledge about the lexicon. The performance difference between the trigram-based 

models and the unigram/bigram-based models is 0.5% on average. However, the 

performance difference between the unigram/bigram-based models and the basic models 

without the lexicon knowledge is around 2.0% on average. This means that the major 

recognition improvement is obtained by virtue of the unigram/bigram knowledge. In 

summary, the most elaborate model (with adaptation given that a writer’s handwriting is 

available) improves the recognition rate over the model basic model (without 

training/adaptation) from 3.1% to 5.1%. It is interesting to note that the GME approach 

can achieve an acceptable word recognition performance without any training at the 

word-level. 

 

Table 8.2 Average recognition rate of the GME approach over several test subsets of IAM without 

perturbation-based character recognition. 

 Model  Cost Functions Test Lexicon Size 
10 20 50 100 

 
 5-state 

 Default 90.1 81.1 76.3 69.1 
 Trained  90.9 82.0 77.2 70.2 
 Adapted 91.5 82.3 77.5 70.8 

 
 159-state 

 Default 92.1 84.1 77.9 71.5 
 Trained 92.4 84.6 78.6 72.1 
 Adapted 93.0 85.2 78.7 72.3 

 
 315-state 

 Default 92.3 85.1 78.5 72.1 
 Trained 92.6 85.7 79.3 72.9 
 Adapted 92.2 86.2 79.6 73.4 
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One advantage of the GME model is that it can be combined with any character 

recognition algorithm. The results that we summarized in Table 8.1 were obtained using 

the perturbation-based cursive character recognition algorithm that we described in 

Chapter 6. In order to show the effectiveness of the perturbation-based approach in the 

context of word recognition, we repeated the same experiments as in Table 8.1 but 

without character perturbation. The results are summarized in Table 8.2. As can be seen, 

the perturbation-based character recognition improves the word recognition performance 

in all cases, by 1% (for the smallest lexicon) to 5% (for the largest lexicon). The average 

recognition improvement due to the perturbation is 3.3%. 

 

Table 8.3 Average recognition rate of implemented handwritten word recognition algorithms several 

test subsets of IAM. 

 Model Training 
 

Test Lexicon Size 
10 20 50 100 

 LR-D-HMM 
 

 Trained 83.1 78.2 70.5 63.3 
 Adapted 83.9 79.1 71.2 64.1 

 LR-C-HMM 
 

 Trained 84.5 82.0 71.8 65.5 
 Adapted 85.3 82.7 72.2 66.1 

 MS-HMM 
 

 Trained 86.7 83.2 78.9 75.7 
 Adapted 87.4 84.1 80.6 76.9 

 P2D-HMM 
 

 Trained 87.2 84.0 80.4 77.1 
 Adapted 88.1 84.9 82.0 78.0 

 
 
 
 
 
 GME 
 
(EHMM +  
 NN  ensemble) 

 
 5-state 
 

 Default 91.0 83.6 80.4 74.3 
 Trained  92.1 84.7 81.3 75.7 
 Adapted 92.4 85.1 81.7 76.2 

 
 159-state 
 

 Default 93.0 86.8 82.1 77.0 
 Trained 93.4 87.2 82.7 77.6 
 Adapted 94.1 87.7 82.8 77.8 

 
 315-state 

 Default 93.0 87.5 82.6 77.4 
 Trained 93.5 88.1 83.1 78.0 
 Adapted 94.3 88.7 83.5 78.5 
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In order to put our results into perspective, we experimented with several popular HMM-

based approaches to word recognition. A direct comparison of the results we presented in 

Table 8.1 and published works is not quite meaningful; because first of all, not all public 

databases define a standard training and test sets (the IAM database is an example); 

second, different word recognition algorithms use different pre-processing/post-

processing techniques that may considerably affect the performance, even with the same 

training and testing sets of the same database; and third, the evaluation criteria may not 

be the same. Therefore, in order to see how the proposed 2D GME approach compares 

with traditional HMM-based approaches, we carried out our experiments on the same 

training and test sets based on our implementation of these algorithms with the same pre-

processing steps for all algorithms. 

The four common pre-processing steps include: 1) image height normalization; 2) stroke-

width normalization based on skeletonization [ZS84] followed by dilation; 3 and 4) skew 

correction and slant correction based on horizontal and vertical projection profiles. 

Currently, we do not apply any post-processing techniques such as lexicon reduction or 

verification based on language models. The handwriting recognition algorithms that we 

experimented with include: 1) Left-to-Right Discrete HMM (LR-D-HMM) [CLK95]; 2) 

Left-to-Right Continuous HMM (LR-C-HMM) [RSP09b]; 3) Multi-Stream HMM (MS-

HMM) [KPBH10]; and Pseudo 2D-HMM (P2D-HMM) [KA94]. The experimental 

results are shown in Table 8.3., where we copied the GME results from Table 8.1 for the 

sake of comparison. As can be seen, the GME approach based on a 159-state or 315-state 

EHMM and ensemble of neural networks significantly outperforms the other HMM-

based approaches on small lexica. However, as the size of the lexicon grows, the GME 
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approach, which is based on an exact 2D model, and the P2D-HMM show almost the 

same performance. The interesting observation is that all the three HMM models that use 

some kind of 2D information, namely MS, P2D, and GME, outperform LR HMMs in all 

cases, particularly when the lexicon grows.  

Although, the focus of this research is not to recognize large size lexica, it is worth 

mentioning that our manual inspection of misrecognized words shows that the major 

source of the error,  is due to the difficulties in the recognition of curve characters. As we 

mentioned in Chapter 6, the amount of variations in cursive forms of characters is so high 

that in order for the classifier to resolve the ambiguity, it will have assign an unknown 

input shape to all possible character classes. The right sequence of characters is then 

chosen by using a larger context; that is, in the simplest form, a lexicon of words which 

acts as a constraint over the sequence of character hypotheses. However, as the lexicon 

size increases, the chance of a sequence of shapes being matched against more than one 

valid sequence of characters (i.e. lexicon entry) also increases, which in general, results 

in lower top-1 recognition rates for words. 

It should be emphasized that the word recognition results that we presented above are 

based on an exact (all or nothing) evaluation criterion; meaning that the output of the 

word recognition algorithm is considered correct if and only if the top-1 word recognition 

hypothesis and the ground truth transcription of the input word image match character by 

character for all character positions.  In [GLF+09] the authors have presented a word 

recognition system based on a new recurrent neural network architecture that achieves a 

reported word recognition rate of 73.3% to 74.9% over very large lexica of words (~5000 
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to 20000). However, these results are based on an approximate evaluation criterion which 

the authors refer to as word accuracy:  

)
riptionsset transc test oflength  total

deletions  onssubstituti  insertions1(100accuracy word ++
−×=  

 
(8.1) 

 

Therefore, for example if the word “Americans” is recognized as “American”, based on 

the approximate criterion that is used in [GLF+09], the calculated performance is 100×(1-

1/9) ≈ 88.9%. However, based on the exact criterion that we use, the calculated 

performance is 0% in this example. 

 

8.4.1.2. Word Spotting Experiments 

In the word spotting experiments we analyze a more general problem than in the previous 

section. We are not only interested in the recognition of keywords, but also in the 

detection (separation) of non-keywords from keywords. In section 8.1.1, we examined 

several major approaches to keyword/non-keyword detection. In the following we 

analyze the performance of these methods based on two sets of experiments. In the first 

set, we assume the global lexicon is “closed”, that is all non-keyword classes are known. 

In the second set, we drop the closed-lexicon assumption; that is we assume that there is 

always a chance of seeing a non-keyword that is outside the global lexicon that we know. 

This case, which we will refer to as “open” lexicon experiments, allows us to gain a 

better understanding of how word spotting algorithms would perform in real-world 

situations where there are always special names and typos that we must not spot as 

keywords. 
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In should be mentioned that the evaluation criteria in word spotting experiments in 

different from word recognition experiments. In a word spotting application, that is an 

example of an Information Retrieval (IR) process on scanned documents, we are looking 

for a “truth” that is the keywords of interests in the input documents; and we ideally want 

the algorithm to return “the truth, only the truth, and nothing but the truth”. In IR 

applications, this correctness measure is stated in terms of True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN) rate. The definition of each 

of these terms in our word spotting application is as follows: 

 

TP rate: the percentage of keywords that are correctly spotted by the algorithm. 

TN rate: the percentage of non-keywords that are correctly not spotted by the 

algorithm. 

FP rate: the percentage of non-keywords that are incorrectly spotted by the 

algorithm. 

FN rate: the percentage of keywords that are incorrectly not spotted by the 

algorithm. 

 

The ideal performance is equivalent of a TP rate of 100%, a TN rate of 100%, a FP rate 

of 0% and a FN rate of 0%. TP rate and FN rate sum to 1, therefore we only need one of 

these quantities to obtain the other. Similarly, for TN rate and FP rate. Thus, we need a 

pair of quantities to state the performance of a word spotting algorithm. One quantity 

(either TP or FN) states how well the algorithm performs in the retrieval of relevant 

information (i.e. keywords), and the other quantity (either TN or FP) states how well the 
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algorithm performs in the filtering of irrelevant information (non-keywords). Sometimes, 

it is preferred to state the performance in terms of a precision-recall pair. Precision states 

the probability that a (randomly selected) spotted word is relevant. Recall states the 

probability that a (randomly selected) keyword is spotted. In terms of TP, TN, FP and 

FN: 

FP  TP
TPprecision
+

=  
 

(8.2) 

 

FN  TP
TPrecall
+

=  
 

(8.3) 

 

The ideal performance is equivalent of a precision rate of 100% and a recall rate of 

100%. In order to see how far the performance of a word spotting algorithm is from the 

ideal performance, and thus be able to compare different algorithms, it is often easier to 

state the performance by a single quantity, rather than a pair of quantities. Numerous 

measures in the IR literature have been proposed for this purpose. Our experimental 

results are based on the so-called F-measure (a.k.a. F-score) that is one of the most 

popular measures for expressing the precision-recall pair as a single number. The basic 

form of the F-measure, denoted by F1 or simply F, is defined as the harmonic mean of 

precision and recall: 

recallprecision
recallprecision.2.F
+

=  
 

(8.4) 
 

This basic form of F-measure treats precision and recall as equally important. However, 

in some applications, it may be preferable to attach more importance to precision than 
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recall or vice verse. Therefore, the general form of the F-measure, denoted by Fβ, is 

defined as follows: 

recall.precision
recallprecision..)(1F 2

2

+
+=

β
ββ  

 
(8.5) 

 

The value of β determines whether we want to give more importance to precision or 

recall. With β > 1, we give β times as much importance to recall as precision, and with β 

< 1, we give 1 / β times as much importance to precision as recall. With β = 1, we arrive 

at the basic or the balanced form of the F-measure. 

In real world IR applications, normally as the precision rate increases the recall rate 

decreases and vice versa. In the extreme case, we can achieve a perfect recall by spotting 

all words (keywords and non-keywords), and on the other hand, we can achieve a 

faultless precision by spotting no words. Therefore, it is important to make a sensible 

compromise between precision and recall based on the application requirements.  

In our case, the client prefers more accurate processing of a smaller amount of documents 

over a less accurate processing of a larger amount of documents. In terms of precision 

and recall, better precision is more important than better recall. For this reason, aside 

from the balanced F-measure, we report our results in terms of F0.5 measure as well (β = 

0.5 resulting in an evaluation criterion with precision being 2 times more important than 

recall). 

 

 

 

 



149 
 

Table 8.4 Average performance of binary classification approaches to keyword/non-keyword 

separation over closed lexica for different sizes of keywords and non-keywords. 

 
 
 
 

Classification 
Approach 

 
Keywords/Non-keywords Sets 

 
 

1 keyword vs. 
50 non-keywords 

 

 
5 keywords vs. 

500 non-keywords 

 
20 keyword vs. 

1000 non-keywords 

 
50 keyword vs. 

5000 non-keywords 

P R F F0.5 P R F F0.5 P R F F0.5 P R F F0.5 
Global Binary  
 
SVM+Gradient 

 
90.1 

 
91.8 

 

 
90.9 

 
90.4 

 
83.3 

 
80.9 

 
82.1 

 
82.8 

 
59.1 

 
63.1 

 
61.0 

 
59.9 

 
52.7 

 
57.8 

 
55.1 

 
53.6 

Global Binary  
 
SVM+Gabor 

 
92.5 

 
90.7 

 
91.6 

 
92.1 

 
85.1 

 
81.2 

 
83.1 

 
84.3 

 
60.7 

 
61.0 

 
60.9 

 
60.8 

 
52.7 

 
59.1 

 
55.7 

 
53.9 

Local Binary 
 
KNN+LMM 

 
98.2 

 
97.4 

 
97.8 

 
98.0 

 

 
97.5 

 
94.3 

 
95.9 

 
96.8 

 
95.2 

 
94.6 

 
94.9 

 
95.1 

 
93.6 

 
90.1 

 
91.8 

 
92.9 

 
 
GMED 
Thresholding 
 

 
OR 

 
99.1 

 

 
99.5 

 
99.3 

 
99.2 

 
97.1 

 
93.5 

 
95.2 

 
96.4 

 
88.2 

 
82.7 

 
85.4 

 
87.0 

 
85.0 

 
80.9 

 
82.9 

 
84.1 

 
XOR 

 

 
99.8 

 
99.1 

 
99.4 

 
99.7 

 
98.0 

 
93.4 

 
95.6 

 
97.0 

 
89.9 

 
82.5 

 
86.0 

 
88.3 

 
86.3 

 
80.1 

 
83.1 

 
85.0 

 
 
UBM 
Thresholding 
 

 
OR 

 
98.8 

 

 
99.5 

 
99.1 

 
98.9 

 
97.5 

 
94.0 

 
95.7 

 
96.7 

 
91.3 

 
88.0 

 
89.6 

 
90.6 

 
90.2 

 
84.7 

 
87.4 

 
89.0 

 
XOR 

 
99.5 

 

 
99.2 

 
99.4 

 
99.4 

 
97.9 

 
93.6 

 
95.7 

 
97.0 

 
92.1 

 
87.2 

 
89.6 

 
91.1 

 
91.3 

 
83.5 

 
87.2 

 
89.6 

 

8.4.1.2.1 Closed-Lexicon Word Spotting Experiments 

We carried out our closed-lexicon experiments on several randomly selected subsets of 

the IAM database with different sizes for the keywords and non-keywords sets. The 

results are summarized in Table 8.4 for four experimental cases ranging from small-size 

keywords set/small-size non-keywords set to modest-size keywords set/large-size non-

keywords set. In each case, we repeated the experiments for 5 randomly selected sets of 

keywords and non-keywords; thus every number reported in Table 8.4 is the average 

value of 5 independent experiments. For the thresholding-based approaches (GMED and 
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UBM), the arbitration strategy is denoted by OR ≡ at-least-one, and XOR ≡ exactly-one 

rules as described in Section 8.1.1. 

As can be seen, the poorest performances are associated with the global binary 

approaches where we model all keywords by one model and all non-keywords by another 

model; while the highest performances are associated with model-based approaches 

where we model each keyword separately. The conjecture that local approaches, in this 

particular binary classification problem, work better than global approaches is supported 

by the fact that the highest performance is achieved by the KNN approach. By keeping all 

training samples of all keywords and non-keywords, the KNN approach provides the 

most elaborate and accurate keyword/non-keyword separation model; however, needless 

to mention, the KNN classifier entails high memory and computation requirements that 

limit its practicality. According to Table 8.4, the second best performance is associated 

with the UBM thresholding approach, which is consistently better than the GME 

thresholding, particularly for larger sets of keywords and non-keywords. The higher 

performance of the UBM approach is attributed to the so-called filler or negative model 

for non-keywords, which is missing in the simple GME thresholding approach where we 

model the keywords only.  

In summary, if we have n training samples belonging to a family of N keywords, and m 

training samples belonging to a family of M non-keywords, the KNN approach, which 

results in the best performance, is composed of n + m models (i.e. exemplars). The UBM 

thresholding approach, which has the second best performance, is composed of N + 1 

models (N keyword models + 1 non-keyword model). The GME thresholding approach, 

which has the third best performance, is composed of N models. And the two global 
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binary approaches, which lead to the lowest performances, are composed of 1 model 

each. 

 

Table 8.5. Average performance of binary classification approaches to keyword/non-keyword 

separation over open lexica for different sizes of keywords and non-keywords. 

 
 
 
 

 
 
 
 
 

Classification 
Approach 

 
Keywords/Non-keywords Sets 

 
 

Train 
 

1 keyword vs. 
50 non-keywords 

5 keywords vs. 
500 non-keywords 

20 keyword vs. 
1000 non-keywords 

50 keyword vs. 
5000 non-keywords 

 

Test 
 

1 keyword vs. 
50 non-keywords 
+ 1000 OOV non-

keywords 

5 keywords vs. 
500 non-keywords 
+ 2000 OOV non-

keywords 

20 keyword vs. 
1000 non-keywords 
+ 5000 OOV non-

keywords 

50 keyword vs. 
5000 non-keywords 
+ 5000 OOV non-

keywords 
P R F F0.5 P R F F0.5 P R F F0.5 P R F F0.5 

Global Binary  
 
SVM+Gradient 

 
78.1 

 
83.4 

 
80.7 

 
79.1 

 
79.6 

 
80.4 

 
80.0 

 
79.8 

 
54.7 

 
63.0 

 
58.6 

 
56.2 

 
49.9 

 
57.0 

 
53.2 

 
51.2 

Global Binary  
 
SVM+Gabor 

 
79.4 

 
80.2 

 
79.8 

 
79.5 

 
80.0 

 
80.8 

 
80.4 

 
80.2 

 
56.2 

 
59.9 

 
58.0 

 
56.9 

 
50.4 

 
58.7 

 
54.2 

 
51.9 

Local Binary 
 
KNN+LMM 

 
90.9 

 
96.5 

 
93.6 

 
92.0 

 
93.0 

 
94.1 

 
93.5 

 
93.2 

 
93.4 

 
94.1 

 
93.7 

 
93.5 

 
91.2 

 
89.8 

 
90.5 

 
90.9 

 
 
GMED 
Thresholding 
 

 
OR 

 
92.1 

 

 
95.1 

 
93.6 

 
92.7 

 
93.0 

 
95.1 

 
94.0 

 
93.4 

 
85.3 

 
80.6 

 
82.9 

 
84.3 

 
82.2 

 
80.6 

 
81.4 

 
81.9 

 
XOR 

 

 
94.5 

 
91.7 

 
93.1 

 
93.9 

 
94.2 

 
92.6 

 
93.4 

 
93.9 

 
86.8 

 
80.0 

 
83.3 

 
85.3 

 
83.9 

 
79.8 

 
81.8 

 
83.0 

 
 
UBM 
Thresholding 
 

 
OR 

 
92.0 

 

 
95.5 

 
93.7 

 
92.7 

 
94.2 

 
95.7 

 
94.9 

 
94.5 

 
90.9 

 
86.9 

 
88.9 

 
90.1 

 
89.7 

 
82.6 

 
86.0 

 

 
88.2 

 
XOR 

 
94.0 

 

 
93.6 

 
93.8 

 
93.9 

 
94.5 

 
95.4 

 
94.9 

 
94.7 

 
91.0 

 
85.4 

 
88.1 

 
89.8 

 
90.1 

 
81.9 

 
85.8 

 
88.3 
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8.4.1.2.2 Open-Lexicon Word Spotting Experiments 

The results of the open-lexicon experiments are summarized in Table 8.5. All settings are 

the same as the closed-lexicon experiments, except for the test sets. In each experiment, 

the lexicon of the test set is a super set of the lexicon of the corresponding training set 

(for non-keywords). Therefore, we can gain an understanding of the ability of each 

classifier in the rejection of unseen irrelevant information (i.e. OOV non-keywords).  

In terms of the classification performance, we observe the same trend in Table 8.5 as in 

the closed-lexicon experiments, with the KNN approach again resulting in the best 

performance for larger lexica.  

However, as is expected, the performance measures in open-lexicon experiments are 

slightly lower that the corresponding closed-lexicon experiments. The reason is obviously 

OOV non-keywords that have similar features to the already seen keyword instances. In a 

real-world word spotting application, once these OOV non-keywords are detected, we 

can add them to the non-keyword lexicon and re-train (refine) the keyword/non-keyword 

classifier consequently. The automatic generation of image samples that we discussed in 

Section 8.2, serves this purpose as it obviates the need for the manual gathering of real 

handwritten samples for new words.  

 

8.4.2 Document-Level Experiments 

As we mentioned before, the purpose of document-level experiments is to give us an idea 

of the average performance of the word spotting system at the document level. In more 

tangible terms, we are interested to estimate the chance of reliably hitting a given 

keyword in a given document under real-world circumstances.  
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Based on our modular approach to word spotting, we can obtain a rough estimate of the 

document-level performance by multiplying the performances of the two major modules 

of the system. These two major modules are segmentation and decision, where the 

decision module itself is composed of two sub-modules: keyword/non-keyword 

classification and keyword recognition. Roughly speaking, we can achieve a performance 

of ~90% in each of these three independent units; therefore in theory, the overall 

performance is expected to be around 90%^3 ≈ 72%.  

However, in practice, firstly, there are many other factors that may affect the 

performance, and secondly, as we mentioned before, most often there is a compromise 

that has to be made between the quality (precision) and the quantity (recall) of automatic 

processing. Therefore, it is more insightful to express the average performance in terms 

of quality and quantity rather than a single number. 

 

Table 8.6 List of keywords for French keyword spotting experiments. 

Adhère 

adhérer 

adhésion 

adhérent 

adhérents 

adhérente 

Résilier 

résiliée 

résiliation 

Clore chômage 

Cesser Financier 

financièrs 

financière 

financières 

stoppée 

stopper Annulé 

annuler 

annulations 

Santé 

Radié 

radiée 

radier 

décès 

décédé 

décéder 

décédée 

Abonné 

abonnement 

abonnements 

Arrêt 

arrêté 

arrêter 

arrêtée 

Rayer 

Résilie Romper contrat 
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We already saw samples of handwritten documents from the IAM English database and 

our proprietary French database in Fig. 8.6 and 8.7. In order to assess the overall 

performance of the word spotting algorithm, we choose 100 documents from each 

database. For the IAM database, we randomly chose 5 subsets of the lexicon as the 

keyword sets, and therefore we carried out 5 independent experiments to assess the 

average word spotting performance. For the French database, the set of keywords are 

given in Table 8.6. These are mostly “action” words, as we described earlier, that the 

customer service of the company wishes to spot in the clients’ mails. It should be 

mentioned that it often happens that certain keywords appear more than once in a 

document; for example if a keyword appears in the title of the document, it will appear in 

the body as well. Typically, it is unnecessary to spot all instances of a keyword in a 

document. In other words, if the algorithm hits only one instance of a keyword within a 

document, then the missing instances of the keyword should not count as false negatives. 

However, it the following results, we treat different instances of a keyword within a 

document as independent entities. This will lead to a less biased estimate of the word 

spotting performance, and consequently a more meaningful comparison with other 

methods. 

The average precision-recall curves for the IAM database of English forms and our 

collection of real-world French mails are shown in Fig. 8.8. The maximum F-measure on 

the IAM database is 74.7%, while the maximum F-measure on the French mails is 73.9%. 

As we mentioned before, the main difference between the IAM database of forms and the 

French collection of mails is the controlled vs. uncontrolled writing environment that 
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mainly affects the document layout. Therefore, these results imply that the average 

performance is only slightly compromised (~1%) by the uncontrolled writing 

environment of the real-world handwritten mails.  

 

Precision vs. Recall
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0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

Precision vs. Recall

Recall
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

(a) IAM English forms (b) Real-world French mails 

Figure 8.8 Average keyword spotting performance in terms of precision-recall curves. 

 

Our results, even without any word/document-level training, are comparable with two 

state-of-the-art word spotting systems for English [FFMB12] and French [RSPSL10] 

documents. Both systems use a portion of the groundtruth database for the 

training/adaptation of the underlying recognition models. In [FFMB12], the authors have 

also utilized a bigram language model, which equips the keyword spotting system with 

more context knowledge. Again we must emphasize that a direct comparison of 

published results is not quite meaningful. But in order to get a general idea of how these 

algorithms perform, we briefly mention their main results. In [RSPSL10], the authors 

report an average false rejection rate of 40% and an average a false acceptance rate of 

0.26%. This means that the algorithm retrieves 60% of the keywords correctly, while it 
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returns 26 out of every 10,000 non-keywords by mistake. In some of our experiments 

using the KNN+LMM approach, we could achieve a false positive rate of as low as 5 out 

of 10,000 non-keywords at almost the same true positive rate (~58%). In [FFMB12], the 

authors report average precision rates of 41% to 94% on different databases under a 

variety of settings for writer adaptation and language models. The average precision rate 

of our proposed algorithm is 59.6% on the IAM database, and 56.7% on the French mails 

collection, which can be considered as a competent performance in view of the fact that 

we used no parts of the documents collection for the adjustment or adaptation of the word 

spotting algorithm.  

 

              
 
 

                                           
 
 

 

Figure 8.9 Sample output of proposed word spotting system for a handwritten document from the 

database of incoming mails. 

#false positives: 0 
#false negatives: 0 

 

keywords of interest: 
    
  “resiliation” 
  “adherent” 
  “contrat” 
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Our proposed keyword spotting algorithm is integrated into AD’DOC IIM, The 

Automated Document Capture Solution of IMDS Software5. The average processing time 

for a typical handwritten mail (Fig. 8.7), including all the steps from noise removal to 

keyword recognition, is around 2-3 seconds on a Pentium 4 2.4 GHz PC, depending on 

the size of the document (i.e. the number of words). It must be mentioned that, although 

all the algorithms are implemented in C++, the major objective of the first phase of the 

development was obviously the correctness of the algorithms rather speed optimization. 

The current implementation is single-threaded, and obviously does not use the full 

capacity of now prevalent multi-core processors. Our modular approach easily supports 

parallel processing; as the text lines are independent, we can carry out the two major 

operations (word segmentation and keyword detection/recognition) within each line of 

text concurrently. We expect the processing time would be improved by a factor of 4 to 8 

times (~0.25 to 0.75 sec per document) after the code is optimized for speed. 

 

8.5 Future Work 

The research on keyword spotting constitutes a broad category of disciplines from image 

processing, computational geometry, pattern recognition and machine learning to statistic 

decision theory, information retrieval and language modeling. Roughly speaking, the 

state-of-the-art performance of general keyword spotting systems is around 50-60%, 

which means that the problem of automatic keyword spotting has still a long way to go 

before reaching maturity.  

                                                 
5 For more information about AD’DOC IIM please visit www.imds-world.com/en/software.html 
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Based on the current state of our work, we propose the following areas as the future 

directions for the keyword spotting research: 

  

 Investigation of geometrical perturbation models for handwritten fonts. 

 Development of adaptation techniques for generative models of handwriting. 

  Synthesis of training data for arbitrary words based on generative models of 

handwriting. 

 Investigation of online learning methods in the context of binary keyword/non-

keyword classification for arbitrary keywords. 

 Analysis of one-class learning methods (i.e. one-class SVM) for the separation of 

limited sets of keywords from unlimited sets of non-keywords. 

 Study and development of robust features for cursive handwritten characters. 

 Development of dual learning techniques for addressing the inherent problem of 

fuzziness in handwritten character shapes.  

 Combination of local and global techniques for the improvement of the 

recognition of handwritten words. 

 Investigation of template-based and segmentation-free keyword spotting methods 

for complex layout and unconstrained documents. 

 

8.6 Conclusion 

Keyword spotting is the core problem in search, classification and retrieval of document 

images. We presented a top-down approach to the spotting of arbitrary keywords in 

handwritten document images. The main goal of our approach was the development of a 
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methodology for the automatic processing of real-world documents with a reliable 

performance without the need for the manual gathering of real handwritten samples for 

new words or the manual adjustment of the underlying algorithms for new datasets. To 

this end, we studied the challenges that we encounter in the processing of real-world 

documents and we proposed efficient algorithms to address the three major problems 

encompassing keyword spotting, namely, denoising, line/word segmentation and 

keyword detection/recognition.  

The main contribution of our work was the development of a generalized minimum edit 

distance for handwritten words. We showed this distance is equivalent to an Ergodic 

Hidden Markov Model (EHMM), therefore we were able to use the standard Expectation 

Maximization (EM)-based optimization algorithms for the adjustment of the associated 

cost functions of the proposed distance. The main advantage of our approach was to 

provide an exact model for the temporal information present in the handwriting with a 

feasible number of states (less than a few hundred). To the best of our knowledge, this is 

the first work to present an exact 2D model for handwritten words while satisfying 

practical constraints.  Other contributions of this research were the development of eight 

algorithms as follows:  

 

1) Removal of page margins based on corner detection in projection profiles. For further 

information, please see [HBS09]. 

2) Removal of noise patterns in handwritten images using expectation maximization and 

fuzzy inference systems, which is the extension of the noise removal method that we 

discussed in Chapter 3. For further information, please see [HBS12]. 
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3) Extraction of text lines and words based on Fast Fourier-based Steerable (FFS) 

filtering. 

4) Development of a statistical hypothesis testing method based on Markov chains and 

HMMs for word segmentation algorithms. For further information, please see [HSB+12]. 

5) Segmentation of characters based on skeletal graphs. 

6) Detection of under-segmented characters using fuzzy inference systems. 

7) Merging of broken characters based on graph partitioning. For further information, 

please see [HBS11]. 

8) Recognition of handwritten cursive characters based on input perturbation and 

classification combination.  

 

We carried out extensive experiments on a benchmark database of handwritten English 

documents and a real-world collection of handwritten French documents. The results 

indicate that even without any word/document-level training, our proposed approach 

provides a competent performance which is comparable with two state-of-the-art word 

spotting systems for English and French documents. 
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Appendix 
 

A1. Rule Base for Detection of Dots and Small Noises 
 

Rule #1. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM then Dot 

is very LOW and Small Noise is very HIGH. 

 

Rule #2. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is 

MEDIUM and Small Noise is HIGH. 

 

Rule #3. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is 

AROUND_1 then Dot is LOW and Small Noise is MEDIUM. 

 

Rule #4. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is 

not AROUND_1 then Dot is LOW and Small Noise is LOW. 

 

Rule #5. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is 

AROUND_1 then Dot is HIGH and Small Noise is MEDIUM. 

 

Rule #6. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is 

not AROUND_1 then Dot is MEDIUM and Small Noise is MEDIUM. 
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Rule #7. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is LARGE_COMPARED_TO_NASW and Normalized YCOG is BOTTOM then Dot 

is very LOW and Small Noise is LOW. 

 

Rule #8. if Normalized Height is SMALL_COMPARED_TO_NASW and Normalized 

Width is LARGE_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is 

LOW and Small Noise is LOW. 

 

Rule #9. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is 

AROUND_1 then Dot is LOW and Small Noise is HIGH. 

 

Rule #10. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is 

not AROUND_1 then Dot is VERY LOW and Small Noise is MEDIUM. 

 

Rule #11. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

SMALL_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is HIGH and 

Small Noise is MEDIUM. 

 

Rule #12. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is AROUND_1 

then Dot is LOW and Small Noise is MEDIUM. 

 

Rule #13. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

EQUAL_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is not 

AROUND_1 then Dot is very LOW and Small Noise is LOW 
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Rule #14. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is AROUND_1 

then Dot is very HIGH and Small Noise is very LOW. 

 

Rule #15. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is not 

AROUND_1 then Dot is somewhat HIGH and Small Noise is very LOW. 

 

Rule #16. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

LARGE_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is 

AROUND_1 then Dot is LOW and Small Noise is LOW. 

 

Rule #17. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

LARGE_COMPARED_TO_NASW and Normalized YCOG is BOTTOM and Aspect Ratio is 

not AROUND_1 then Dot is very LOW and Small Noise is very LOW. 

 

Rule #18. if Normalized Height is EQUAL_TO_NASW and Normalized Width is 

LARGE_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is MEDIUM and 

Small Noise is very LOW. 

 

Rule #19. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized 

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is BOTTOM then Dot 

is very LOW and Small Noise is very LOW. 

 

Rule #20. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized 

Width is SMALL_COMPARED_TO_NASW and Normalized YCOG is TOP then Dot is 

LOW and Small Noise is very LOW. 
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Rule #21. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is BOTTOM then Dot is very 

LOW and Small Noise is very LOW. 

 

Rule #22. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is 

AROUND_1 then Dot is HIGH and Small Noise is very LOW. 

 

Rule #23. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized 

Width is EQUAL_TO_NASW and Normalized YCOG is TOP and Aspect Ratio is 

not AROUND_1 then Dot is LOW and Small Noise is very LOW 

 

Rule #24. if Normalized Height is LARGE_COMPARED_TO_NASW and Normalized 

Width is LARGE_COMPARED_TO_NASW then Dot is very LOW and Small Noise is 

very LOW. 

 

A2. Rule Base for Detection of Dashes 
 

Rule #1. if Normalized Height is LOW and Normalized Width is MEDIUM and 

Denseness is LOW and Eccentricity is not HIGH then Dash is LOW. 

 

Rule #2. if Normalized Height is LOW and Normalized Width is MEDIUM and 

Denseness is LOW and Eccentricity is HIGH and Orientation is not 

HORIZONTAL then Dash is MEDIUM. 

 

Rule #3. if Normalized Height is LOW and Normalized Width is MEDIUM and 

Denseness is LOW and Eccentricity is HIGH and Orientation is HORIZONTAL 

then Dash is somewhat HIGH. 
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Rule #4. if Normalized Height is LOW and Normalized Width is MEDIUM and 

Denseness is not LOW and Eccentricity is not HIGH then Dash is MEDIUM. 

 

Rule #5. if Normalized Height is LOW and Normalized Width is MEDIUM and 

Denseness is not LOW and Eccentricity is HIGH and Orientation is not 

HORIZONTAL then Dash is MEDIUM. 

 

Rule #6. if Normalized Height is LOW and Normalized Width is MEDIUM and 

Denseness is not LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is HIGH. 

 

Rule #7. if Normalized Height is LOW and Normalized Width is not MEDIUM 

and Denseness is LOW and Eccentricity is not HIGH then Dash is very LOW. 

 

Rule #8. if Normalized Height is LOW and Normalized Width is not MEDIUM 

and Denseness is LOW and Eccentricity is HIGH and Orientation is not 

HORIZONTAL then Dash is very LOW. 

 

Rule #9. if Normalized Height is LOW and Normalized Width is not MEDIUM 

and Denseness is LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is MEDIUM. 

 

Rule #10. if Normalized Height is LOW and Normalized Width is not MEDIUM 

and Denseness is not LOW and Eccentricity is not HIGH then Dash is very 

LOW. 
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Rule #11. if Normalized Height is LOW and Normalized Width is not MEDIUM 

and Denseness is not LOW and Eccentricity is HIGH and Orientation is not 

HORIZONTAL then Dash is LOW. 

 

Rule #12. if Normalized Height is LOW and Normalized Width is not MEDIUM 

and Denseness is not LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is MEDIUM. 

 

Rule #13. if Normalized Height is MEDIUM and Normalized Width is MEDIUM 

and Denseness is LOW and Eccentricity is not HIGH then Dash is very LOW. 

 

Rule #14. if Normalized Height is MEDIUM and Normalized Width is MEDIUM 

and Denseness is LOW and Eccentricity is HIGH and Orientation is not 

HORIZONTAL then Dash is LOW. 

 

Rule #15. if Normalized Height is MEDIUM and Normalized Width is MEDIUM 

and Denseness is LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is MEDIUM. 

 

Rule #16. if Normalized Height is MEDIUM and Normalized Width is MEDIUM 

and Denseness is not LOW and Eccentricity is not HIGH then Dash is LOW. 

 

Rule #17. if Normalized Height is MEDIUM and Normalized Width is MEDIUM 

and Denseness is not LOW and Eccentricity is HIGH and Orientation is not 

HORIZONTAL then Dash is LOW. 
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Rule #18. if Normalized Height is MEDIUM and Normalized Width is MEDIUM 

and Denseness is not LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is MEDIUM. 

 

Rule #19. if Normalized Height is MEDIUM and Normalized Width is not 

MEDIUM and Denseness is LOW and Eccentricity is not HIGH then Dash is 

very LOW. 

 

Rule #20. if Normalized Height is MEDIUM and Normalized Width is not 

MEDIUM and Denseness is LOW and Eccentricity is HIGH and Orientation is 

not HORIZONTAL then Dash is very LOW. 

 

Rule #21. if Normalized Height is MEDIUM and Normalized Width is not 

MEDIUM and Denseness is LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is LOW. 

 

Rule #22. if Normalized Height is MEDIUM and Normalized Width is not 

MEDIUM and Denseness is not LOW and Eccentricity is not HIGH then Dash 

is very LOW. 

 

Rule #23. if Normalized Height is MEDIUM and Normalized Width is not 

MEDIUM and Denseness is not LOW and Eccentricity is HIGH and Orientation 

is not HORIZONTAL then Dash is very LOW. 

 

Rule #24. if Normalized Height is MEDIUM and Normalized Width is not 

MEDIUM and Denseness is not LOW and Eccentricity is HIGH and Orientation 

is HORIZONTAL then Dash is LOW. 
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Rule #24. if Normalized Height is HIGH and Normalized Width is MEDIUM 

and Denseness is not LOW and Eccentricity is HIGH and Orientation is 

HORIZONTAL then Dash is LOW. 

 

Rule #25. if Normalized Height is HIGH and not ( Normalized Width is 

MEDIUM and Denseness is not LOW and Eccentricity is HIGH and Orientation 

is HORIZONTAL ) then Dash is very LOW. 
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