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ABSTRACT 
 

Effect of Pressure and Temperature on Electrical 
Conductivity of CNT-PEEK Composites 

 
Mohammad Mohiuddin, Ph.D. 
Concordia University, 2012 
 

This thesis investigates the effect of pressure and temperature on electrical conductivity 

of CNT-PEEK composites. The nanocomposites were manufactured using a co-rotating 

intermeshing twin screw extruder and the samples of required size and shape were 

fabricated by compression molding. Electrical properties of the nanocomposite samples 

were measured by Dielectric Analyzer (DEA) and a detailed analysis is presented in the 

framework of percolation theory. It was identified that nanotube contact resistance due to 

the formation of a thin insulating polymer layer around carbon nanotubes plays an 

important role in determining the overall conductivity of the samples. Detailed analysis 

of this contact resistance is presented based on experimental results in combination with 

theoretical models.  

To investigate the effect of temperature and pressure on electrical conductivity, highly 

conductive samples with three different nanotube weight concentrations (8%, 9% and 

10%) were selected. Metallic coatings (gold/silver epoxy) are conventionally used as 

electrodes to measure electrical conductivity at ordinary temperature and pressure. To 

measure electrical conductivity of these samples at elevated pressure and temperature, a 

new technique was developed to measure DC electrical conductivity by introducing a 

conductive copper mesh. Change of electrical conductivity of the samples was 

iii 
 



investigated under application of high compression, high temperature and a combination 

of both. Conduction mechanisms for both pressure and temperature were discussed on the 

basis of experimental findings. It was found that electrical conductivity increases up to a 

certain level due to application of both pressure and temperature. The effect was more 

significant at lower pressure and temperature. In the case of repeated loading-unloading 

and heating-cooling cycles, hysteresis and electrical set were observed. The pressure 

always acts favorably in increasing electrical conductivity while the effect of temperature 

was found to be complex, controlled by parameters that counteract each other, especially 

when it was heated above the glass transition temperature and the nanotube content was 

high. Two possible mechanisms, namely, ‘conduction by electron transport (nanotube 

contact)’ and ‘conduction by electron tunneling’ were identified to explain such 

contradicting behavior. Sensitivity of the samples was also checked for possible 

application as sensor. 
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Chapter 1  

Introduction

1.1 General 

After Ijima’s identification of multi walled carbon nanotubes (MWCNTs) in 1991 [1], a 

huge interest in CNTs has been sparked by their extraordinary intrinsic properties. 

Because of their nanoscale dimensions, exceptionally high electrical and thermal 

conductivities, low density, high tensile strength and Young’s modulus, MWCNTs have 

attracted considerable attention from both academic and technological areas to be an ideal 

filler material for polymeric composites [2]. Since polymeric composites are multi-phase 

systems, their properties can be tailored by modification of the polymer and amount of 

fillers. Research in exploiting their unique physical properties such as high electrical 

conductivity has been intensive for multifunctional applications in the last few decades. 

A number of factors, such as uniform dispersion of CNTs, their purity and alignment in 

the expected directions are the biggest hurdles in preparing such conductive composites. 

For large scale applications, despite all challenges in processing highly conductive 

composites, their potential as the best filler material continues to be a dominant 

motivation for further research in this field. Manufacture of conductive nanocomposites 

having capability in sensing and actuating under varying conditions of environment such 

as pressure and temperature is, therefore, an emerging need in many industrial 

applications.  
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1.2 Background and relevant literature 

1.2.1 Electrical properties of CNTs 

 

Three different kinds of CNTs are produced: single walled CNTs (SWCNTs), double 

walled CNTs (DWCNTs) and multi walled CNTs (MWCNTs). MWCNTs are the coaxial 

assembly of SWCNT cylinders rolled up with one another. Based on chirality and 

diameters, they are classified as chiral, armchair and zigzag. Chirality or twist of CNTs is 

the main characteristic that strongly determines electrical and other properties. According 

to the chirality, CNTs can be either metallic or semiconducting in nature. The exceptional 

electrical properties of CNTs are due to their one-dimensional character and uncommon 

electronic structure [3]. They possess extremely low electrical resistance. Electrical 

resistance is due to the collisions with defects in the crystal structure of a material when 

an electron flows. This defect can be a defect in the crystal structure, or vibration or 

impurity of an atom; electrons get deflected from their path because of such collisions 

and this scattering produces electrical resistance. But peculiarly, electrons in CNTs are 

not easily scattered due to their small diameter and very high length to diameter (aspect) 

ratio. Another peculiarity is that electrons in CNTs can move only forward and backward 

(1-D character). Only backscattering (moving forward and backward) can generate 

electrical resistance in CNTs. Backscattering occurs under the circumstances of strong 

collisions and it is very less likely to happen in case of CNTs. Thus due to very small 

possibilities of scattering, electrons in CNTs have extremely low electrical resistance. 

CNTs can be produced by many techniques of which (i) Chemical Vapor Deposition 

(CVD), (ii) Arc discharge and (iii) Laser Ablation methods are very common. 

2 
 



1.2.2 Polymer nanocomposites  

A composite material is a combination of two or more physically or chemically dissimilar 

materials separated by an interface in order to obtain specific characteristics or properties 

that were not there before. Two major constituents of composite materials are filler 

(reinforcement) and matrix. Based on the type of matrix, they are categorized into 

polymer matrix, ceramic matrix and metal matrix composites. A polymer nanocomposite 

is a class of polymer composites when at least one of the dimensions of the filler material 

is in the order of nanometer. Most commonly used nanomaterials are nanoclays, carbon 

nanofibers (CNFs) and carbon nanotubes (CNTs). Combination of nanomaterials’ 

excellent characteristics such as high electrical and thermal properties, low concentration 

necessary to produce a high synergistic effect in composite properties etc. together with 

advanced processing technique has made them the most sought after materials for a wide 

range of applications [4]. Since the focus of this thesis is using carbon nanotubes as the 

reinforcing agent, the following sections present a brief review of polymer 

nanocomposite processing and their electrical properties. 

1.2.3 Processing of thermoplastic polymer nanocomposites  

Properties of polymer nanocomposites depend on the type of nanotubes, their aspect 

ratios, dispersion and orientation into the matrix [5]. Ajayan et al. [6] first mixed CNTs in 

epoxy in 1994 to prepare nanocomposites. After that, a number of fabrication methods 

using CNTs were developed and most of them focused on improving the nanotube 

dispersion to obtain composites with improved properties. Three general methods to 

process the thermoplastic composites are solution blending, melt blending and in-situ 

polymerization technique. Melt blending in the liquid state is commercially much more 
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attractive than the other two, as it is environmentally sound since no solvents are required, 

and gives freedom to end use manufacturers, and minimizes capital costs due to its 

compatibility with existing processes. In fact, nanocomposites can be made by using a 

number of shear devices, e.g. extruders, mixers, ultrasonicators. Of these melt-processing 

techniques, twin-screw extruder is the most appropriate one for high performance 

thermoplastic resins like PEEK. A co-rotating intermeshing twin screw configuration is 

usually accepted as an effective tool to achieve a high degree of dispersion and distribution of 

nanoparticles in molten polymers [7]. 

 
Literature reveals that common methods of solution mixing/casting [8-10]  and in-situ 

polymerization [9-11] are widely reported while coagulation [12], electrospinning [13], 

latex technology [14] , melt-mixing [15-18] are reported in a limited number. Shear 

intensive melt mixing is a simple, large scale processing technique that is probably the 

most straightforward route to manufacture thermoplastic nanocomposites [19]. Melt 

mixing of CNTs into thermoplastic polymers using conventional processing techniques, 

particularly twin screw extrusion, has been used to prepare a wide range of nanotube 

polymer blends, including matrices such as polyethylene [16], polypropylene [18], poly 

(ethylene terephthalate) [20], poly carbonate [17], poly amide [21].  

1.2.4 Challenges in processing nanocomposites 

The effective utilization of carbon nanotubes in advanced composite applications is 

strongly dependent on two main factors: (a) alignment of CNTs in the expected direction 

and (b) homogeneous/uniform dispersion of CNTs throughout the matrix without 

reducing their intrinsic aspect ratio.  
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1.2.4.1 Alignment of CNTs 

Since CNTs conduct along their length, alignment is a factor that needs to be considered 

in improving directional anisotropic electrical properties. Due to their small sizes, it is 

extremely difficult to align nanotubes in polymer materials in a manner accomplished in 

traditional short carbon fiber (SCF) composites. Lack of control of their orientation 

reduces the effectiveness of nanotube reinforcement in composites whether for structural 

or functional performance [22]. During processing, application of magnetic field, AC and 

DC electric field, spinning the melt in expected direction are some possible ways to 

improve the nanotube alignment.  

1.2.4.2 Uniform dispersion 

Uniform dispersion of nanotubes in a polymer matrix is an issue that must be considered. 

Because of their high aspect ratio, physical entanglements of the tubes, substantial van 

der Waals attractive interactions arising at nanoscale (0.5 eV/nm) [23], lower surface 

energy of the nanotube clusters than that of corresponding collection of individual 

nanotubes, CNTs tend to agglomerate  and form aggregates of different sizes which 

makes their uniform dispersion difficult. The challenge specially comes when the 

nanotube loading is high. During mixing with a polymer matrix, nanotubes usually 

experience high shear forces which cause a substantial drop of aspect ratio. Thus, there 

should be a tradeoff between high aspect ratio and homogenous dispersion. Quantitative 

characterization of dispersion of CNTs is also a difficult task. Direct microscopic 

observation and indirect estimative methods are the two main approaches. Dynamic 

rheological measurements and measurement of electrical conductivity are two indirect 

estimative methods to characterize the degree of nanotube dispersion in polymer 
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matrices. The later one is based on the fact that higher electrical conductivity is obtained 

with better CNT dispersion as more conducting paths are formed. Uniform dispersion 

depends on the types of polymer, polymer properties especially viscosity and the 

interaction between polymer and nanotubes.  

1.2.4.3 Methods of uniform dispersion  

Dispersion of CNTs in a polymer matrix is primarily dependent on the processing 

methods used. Solution blending, functionalization, ultrasonication and surfactant 

wrapping, high shear mixing are some of the methods that help in achieving uniform 

dispersion of nanotubes, but only with small nanotube loadings (less than 5 wt%) [24].  

Solution-blending can result in a comparatively fine dispersion of CNTs [25]. Carbon 

nanotubes are firstly suspended in water or an organic solvent with the help of a 

surfactant or copolymer, and then a matrix is mixed with the suspended solution to 

prepare the composites. This is not a suitable technique for many thermoplastic matrices 

because of poor compatibility of copolymers with the host polymer. Moreover, 

involvement of too many organic solvents is not desirable in large scale production. 

Chemical modification on the carbon nanotube surface, i.e., functionalization at defect 

sites is an alternative way to improve dispersion of CNTs. An active group such as 

carboxylic acid or a polymer is introduced onto the surface of CNTs [16] which improves 

the solubility of CNTs into the polymer and thus processability of composites. But when 

the electrical conductivity of the composites is under consideration, such chemical 

functionalization may result in a poor electrical conductivity because of structural change 

of CNTs arising from chemical reaction.  
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The dispersion of carbon nanotubes in solvents or polymers with the help of a surfactant 

or a copolymer is another important method that does not contain any chemical reaction. 

In a single-step solubilization scheme, nanotubes are mixed with surfactants in low-

power, high-frequency sonicators, and the scheme enhances the disaggregation of 

bundles with dramatically reduced nanotube breakage [16]. However, to prepare 

nanotube–polymer composites with a homogeneous dispersion of nanotubes, the 

polymers are required to be water-soluble. In other words, even though CNTs can be 

dispersed in water with the help of surfactants or copolymers, it is still difficult to 

uniformly disperse CNTs into a thermoplastic polymer matrix. 

Direct mixing using mechanical, shear or ultrasonic techniques is usually used to mix 

carbon nanotubes into low viscosity thermosetting resins (like epoxy). Therefore, for high 

viscosity PEEK matrix (viscosity of PEEK at zero shear and 370°C is 687 Pa.sec [26] 

while viscosity of honey at zero shear and 25°C is about 10 Pa.sec), ultrasonication is not 

a suitable technique for its mixing. 

High shear melt mixing is usually carried out when the nanoparticles are in solid and the 

polymer matrix is in liquid or powder form [27]. Under these conditions, high shear 

mixing breaks the initial (primary) aggregates and disperses the nanotubes into the 

polymer matrix. However, when mixed with a high temperature polymer matrix (like 

PEEK, PEKK etc.), the achievement of fully homogeneous dispersion of CNTs by melt-

mixing is still an unresolved challenge. Depending on the processing equipment and the 

nature of the polymer matrix, such melt-mixing operation often leads to the formation of 

undesirable (secondary) agglomerates within the final blends. In order to remove these 

agglomerates, further high shear stresses are required. In addition, the magnitude of 

7 
 



shearing action is intensified if the polymer to which CNTs are added has high viscosity. 

PEEK, the polymer used in this study, is one of the highest viscosity thermoplastic 

polymers. Therefore, PEEK exerts high shear stress on CNTs during mixing which can 

cause extensive breakage of CNTs. Consequently, nanotubes undergo severe damage 

which reduces their aspect ratio [18] and electrical performance of the final composites is 

thus compromised.  

1.3 Percolation theory and percolation threshold 

Electrical conductivity of polymer composites filled with conductive fillers is strongly 

dependent on filler concentration, . At low concentrations, the distance between 

conductive fillers is larger than their size. Electrical conductivity in such composite 

systems shows a non-linear increase with increase in filler concentrations up to certain 

limit, called the ‘percolation threshold ( c)’. Below this critical concentration (  < c), 

there is no obvious conductive path throughout the matrix due to sufficient gaps between 

the fillers; the fillers are just randomly dispersed in the matrix as isolated individuals. 

Thus, electrical properties of the whole composites are governed by the properties of 

insulating matrix. In this region, with increasing filler concentration, local clusters are 

formed which do not show any significant effect on electrical conductivity. At the 

percolation threshold, a continuous three-dimensional conductive network of connected 

fillers is formed through the matrix and a small increase in filler content results in a rapid 

increase in conductivity of the composite. Above this percolation threshold (  > c), 

electrical conductivity of the composite depends on the conductive networks formed by 

the fillers. Since the conductive networks are already present in the system, further 

increase in filler concentration is just similar to an increase in the diameter of a 
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conductive wire, thus the conductivity will increase marginally against the increase in 

filler concentration. 

 
Broadbent and Hammersley [28] first introduced the term "percolation theory" in 1957 to 

show how random properties of a ‘medium’ influence the spread of a ‘fluid’ through it. 

Using a geometrical and statistical approach, initially they solved fluid flow problems on 

the determination of the percolation thresholds in simple two and three-dimensional 

geometries. They considered two types of percolations: site percolation and bond 

percolation. In site percolation, all the sites in a lattice are either occupied or empty; and 

in bond percolation, all the sites in a lattice are occupied, but are either connected or not. 

Stauffer and Aharony [29, 30] calculated the values of percolation threshold for different 

lattices presented in Table 1.1.  

 
Table 1.1 Percolation Thresholds in two and three-dimensional lattices [30] 

Dimension Lattice 
Site percolation 

threshold 

Bond percolation 

threshold 

2 

Honeycomb (6) 0.696 0.653 

Triangular (3) 0.500 0.347 

Square (4) 0.593 0.500 

Diamond (4) 0.428 0.388 

3 
Simple Cubic (6) 0.312 0.249 

Body Centered Cubic (8) 0.245 0.179 

Face Centered Cubic (12) 0.198 0.119 

 
Percolation theory has been applied to many diverse applications, including spread of 

disease in a population, flow through a porous medium, quarks in nuclear matter, and 

variable range hopping in amorphous semiconductors [31]. Over the last few decades, 
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percolation theory has been successfully applied to interpret the electrical conductivity of 

random mixtures of conductors and insulators [32]. The change in electrical conductivity 

( ) above the percolation threshold follows a power law of the form developed by 

Kirkpatrick [32] and Stauffer [29]:  

 
t

f c cfor (1.1) 

 

where f  is the intrinsic electrical conductivity of the filler,  is the concentration of 

conductive filler, c is the percolation threshold and t is an exponent reflecting the 

dimensionality of the composite. This equation is valid at concentrations above the 

percolation threshold, i.e., when  > c. Application of this equation and further 

discussion is presented in chapter 3. 

1.3.1 Regimes of percolation threshold 

Percolation behavior of conductive CNT networks can be categorized into two regimes: a 

kinetic/rheological percolation threshold at lower CNT concentration and a statistical/ 

electrical percolation threshold at higher CNT concentration. The difference between 

them can be explained with the help of following two different viewpoints: (i) inter-

nanotube distances required for electrical or rheological percolation (ii) formation of an 

insulating polymer layer around CNTs.  

 
(i) Assuming that electron hopping applies to the electrical conductivity of nanotube–

polymer composites, then required inter-nanotube distance has to be less than 5 nm for 

the composites to be electrically conductive (electrical percolation) [33]. However, when 

the inter-nanotube distance becomes smaller than the radius of gyration of the polymer 

chains i.e. inter-nanotube distance is comparable to the diameter of random coils of the 
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polymer chains, which is approximately more than 10 nm, the regions of restricted 

polymer chain motion begin to interact (rheological percolation) [12]. An infinite 

network of conducting connected paths is then established which causes a rapid increase 

in electrical conductivity of the composites. 

 
(ii) On the other hand, there exists a possibility of formation of an adsorbed polymer 

layer around individual carbon nanotubes, which reduces the number of electrical 

contacts between the nanotubes, whereas the adsorbed polymer layer may have a slight 

influence on the rheological properties [34]. Therefore, electrical percolation threshold 

for a given nanotube–polymer system needs high loading level of nanotubes than 

rheological percolation threshold.  

1.4 Electrical properties of polymer nanocomposites 

The investigation of electrical properties of CNT reinforced polymer composites has been 

a challenging and interesting topic for researchers. Because of conductive fillers in an 

insulating matrix, the existence of a percolated network is an unambiguous criterion. 

Therefore, electrical properties of the conducting polymer nanocomposites are often 

analyzed in terms of percolation theory. Due to their exceptional electronic properties in 

combination with high aspect ratio (l/d = length to diameter ratio >1000), the addition of 

small amounts of CNTs in an insulating polymer matrix increases the overall electrical 

conductivity of the composites by several orders of magnitude when a three-dimensional 

conductive network above the percolation threshold is formed.  This threshold amount of 

CNTs should be as small as possible in the composites while fulfilling its electrical 

requirements, otherwise the mixing process becomes difficult and the final cost of the 
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composites becomes high. Sandler et al. [35] first noticed the ultra-low threshold of 

approximately 0.005 wt% in epoxy-based nanocomposites. Moisala et al. [36] also found 

the same (0.005 wt%) percolation threshold using MWCNTs in epoxy, but a much higher 

threshold (0.05 wt% – 0.23 wt%) using SWCNTs in the same matrix. On the other hand, 

Yoshino et al. [37] reported a high value of the percolation threshold of 12 wt% for 

MWCNT-PAT composites. Thus, a wide range in the percolation threshold and hence 

electrical conductivity of nanocomposites can be observed from the results published by 

many authors, which can be due to some factors, including fabrication route of CNTs, 

their purification, functionalization, degree and level of dispersion, nature and properties 

of the host polymer, manufacturing techniques of composites etc. The electrical 

conductivity of polymer nanocomposites is also affected by CNTs' waviness [38], contact 

resistance at junctions between CNT–CNT and CNT–polymer due to the formation of 

thin insulating polymer layers around CNTs [39-44]. Evaluation and optimization of each 

these parameters are essential in understanding the electrical properties of 

nanocomposites. The effects of various parameters on electrical properties of different 

polymer systems are discussed in the following sections.  

 

1.4.1 Effect of type of nanotubes 

The percolation threshold of polymer nanocomposites depends on the type of nanotubes 

(SWCNTs, DWCNTs and MWCNTs) and the surface treatment (purification, oxidation). 

Threshold values from around 0.06 wt% for arc discharge MWCNTs in PVA [45] to 

around 5 wt% for oxidized catalytic MWCNTs in PVA [34] have been reported. An 

extensive experimental study on the electrical conductivity of CNT-epoxy composites 

was made by Gojny et al. [46] to investigate the effect of types of nanotubes, surface 
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functionalization, nanotube concentration, their aspect ratio, dispersibility and specific 

surface area. 

 

In a review, Bauhofer and Kovacs [47] listed 100 publications which report 147 

experimental results on electrical percolation threshold of CNTs and the resulting 

conductivity in different polymer systems. They summarized the published data based on 

many parameters like CNT type, synthesis method, treatment, dimensionality, polymer 

type, dispersion methods, composite processing methods, entanglement and non-

entanglement of the nanotubes.  

 

 

Figure 1.1: Maximum conductivities versus respective CNT concentration in different 

polymer composites [47].  
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Figure 1.1 shows the maximum conductivity obtained for different polymers using 

different types of nanotubes (entangled SWCNT, entangled and non entangled MWCNT, 

unknown state of SWCNTs and MWCNTs). Different nanotubes impart different amount 

of conduction to the composites because of their different inherent natures. Non-

entangled CNTs gave much higher (50 times) composite conductivities than entangled 

ones. Two possible explanations for this difference were mentioned: either entangled 

CNTs could not be dispersed homogeneously or the intrinsic conductivities of entangled 

and non-entangled CNTs differed by a factor of 50. They also found an indirect 

proportional relation between maximum conductivity reached for a given CNT 

concentration and the percolation threshold.  

1.4.2 Effect of nanotube quality and dispersion 

A detailed study on the electrical conductivity of polystyrene (PS) nanocomposites using 

industrially produced MWCNT powders (denoted as IPCNTs) and vertically aligned 

MWCNT films grown in-house by thermal CVD was presented by Grossiord et al. [48]. 

They found two times higher electrical conductivity and five times lower percolation 

threshold in the same PS nanocomposites using MWCNT films compared to MWCNT 

powders, although both sets of the composites showed uniform and stable dispersion in 

the polymer. The higher performance of MWCNT film based composites was attributed 

to their aspect ratios which were about 3 times higher than those of MWCNT powders. 

This was owing to the better structural quality of CNTs from vertically aligned films. 

Thus, aspect ratios of the CNTs and their intrinsic quality play a role in determining the 

electrical conductivity of the final composites.  
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Ramasubramanium et al. [49] investigated the effect of dispersion of CNTs using poly 

(phenyleneethynylene) (PPE) functionalized SWCNTs on the electrical properties of PS 

and Polycarbonate (PC) composites. At 7 wt% of SWCNT concentration, they found 

electrical conductivity of 7 S/m for PS composites and 4.81 × 102 S/m for PC composites. 

Their study reveals that polymer matrix plays an important role in dispersion of 

nanotubes and in electrical conductivity of the composites. 

 

1.4.3 Effect of nanotube alignment 

Choi et al. [50] reported the contribution of nanotube alignment to the improvement of 

electrical conductivity of CNT-polymer composites. They explained that a more efficient 

percolation path in the parallel direction and/or decrease of disorder by alignment of 

nanotubes was responsible for this improvement. But the opposite result was presented 

by Du et al. [51] where they claimed to obtain significantly lower electrical conductivity 

with aligned CNTs than that with unaligned CNTs with the same nanotube concentration 

in the same polymer matrix. This contradiction was later explained by Behnam et al. [52] 

who theoretically investigated the effects of CNT alignment on percolation resistivity 

using a Monte Carlo Simulation. Their conclusion was “Minimum resistivity occurred for 

a partially aligned rather than a perfectly aligned nanotube film”. Li et al. [53] also drew 

a similar conclusion based on their simulation result that, the highest electrical 

conductivity can be obtained when the alignment angle (with respect to the direction of 

conductivity measurement) is about 70°~80°. Further alignment tends to reduce the 

conductivity, because at such alignment, CNTs do not touch each other and there is no 

network for electron conduction. This explanation supports the experimental results 

obtained by Du et al. [54] in another analysis. Therefore, the best result in terms of 
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electrical conductivity can be obtained when the nanotubes are slightly aligned. 

Concentration of CNTs and viscosity of the polymer also plays a role in determining 

nanotube alignment. Nanotube alignment, especially when the nanotube concentration is 

small, affects the anisotropy of conductivity, but the effect of nanotube alignment 

becomes weaker at large nanotube concentrations [55]. 

 

1.4.4 Effect of processing conditions 

Using CNT based epoxy composites; Kovacs et al. [56] studied the effect of production 

method, dimensionality and entanglement state of CNTs and preparation of 

nanocomposite samples on their electrical conductivity. They used aligned and non-

entangled MWCNTs processed by Aerosol Chemical Vapor Deposition (ACVD) and 

Catalytic Chemical Vapor Deposition (CCVD) and varied each parameter while keeping 

others constant to assess its effect. Their studies showed that initial conductivity of the 

nanotubes did not play any role in improving the electrical conductivity of the 

composites. Formation of a thin insulating polymer layer between CNTs that blocks their 

conduction path was attributed to this effect. They also found that at higher 

concentrations, entanglement of nanotubes improved the electrical conductivity of 

composites. Grossiord et al. [57] also studied the effect of processing parameters on 

electrical conductivity using CNT-PS composites. They found higher electrical 

conductivity and lower percolation threshold by changing the processing conditions, such 

as increasing the time and temperature of compression. 
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1.4.5 Effect of physical properties of filler 

Based on an excluded volume analysis made by Celzard et al. [58], the percolation 

threshold of a composite should decrease with increasing filler aspect ratio. For 

MWCNT-epoxy composites, Bai et al. [59] found decreasing percolation threshold with 

increasing CNT length, but Martin et al. [60] found an opposite result. The explanation 

given by Bauhofer et al. [47] for this inconsistency is that Bai et al. obtained 

electrical/statistical threshold while Martin et al. obtained rheological/kinetic threshold.  

Available theoretical analysis cannot take into account the movement of filler particles 

and hence predict only the dependence of the statistical threshold on the filler aspect 

ratio.  Narkis and Vaxman [61] also showed that the conductivity of a polymer composite 

is highly dependent on filler aspect ratio. Using carbon fiber, they found that higher 

conductivity can be achieved at higher aspect ratio. Therefore, filler attrition should be 

minimized during processing of the composites. After investigation of SCF-NBR 

composites, Pramanik et al. [62] suggested that inter-particle contact is more likely when 

surface to volume ratio of the carbon fiber is high, which gives rise to higher electrical 

conductivity and hence lower percolation threshold. 

 

1.4.6 Nature and properties of polymer 

The percolation threshold can be minimized and electrical conductivity of the composites 

can be optimized by a right choice of host polymer, because it affects the behavior of 

fillers in the composite during the processing stage. Polarity, viscosity and degree of 

crystallization of the polymer etc. are some criteria of the choice of polymer. 
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1.4.6.1 Polarity of polymer 

Miyasaka et al. [63] investigated electrical conductivity of composites with respect to 

percolation threshold of fillers using different types of polymer matrices. They found 

higher percolation threshold for polymers with higher polarity. A similar correlation has 

also been demonstrated in [64] between electrical conductivity of composites and polarity 

of the polymer. However, a contradictory relationship of polymer polarity and 

percolation threshold was shown by Sau et al. [65] in their study using ethylene-

propylenediene monomer rubber (EPDM)/acrylonitrile butadiene rubber (NBR)/their 

blends and acetylene black systems. Usually, EPDM and NBR are considered as non-

polar and highly polar polymers respectively. But EPDM- acetylene black systems 

exhibited higher critical concentration than NBR-acetylene black systems.  

1.4.6.2 Viscosity of polymer 

Percolation threshold and hence electrical conductivity are also affected by viscosity of 

the polymer [66]. Diffusivity of CNTs in the polymer depends on the polymer viscosity 

as it determines the extent of reorganization of CNTs within a given amount of time. 

High percolation threshold is obtained with a high viscosity polymer matrix. Earlier it 

was mentioned for CNT composites that the structure of CNTs degrades due to the high 

shearing action experienced during the mixing process. The higher is the viscosity of the 

polymer, the higher is the shearing force experienced by the CNT aggregates and thus the 

greater is the degree of CNT-structure breakdown. Consequently, the formation of a 

conductive three dimensional network throughout the matrix is more difficult and occurs 

at a higher concentration. A similar trend was also found true for carbon fiber filled 

systems [65].  
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1.4.6.3 Degree of polymer crystallization 

Generally in semicrystalline polymers, CNT aggregates tend to concentrate in amorphous 

regions due to short-distance order of molecular structure in contrast to the crystals 

having long-distance order. As a result, the percolation concentration in semicrystalline 

systems should be lower than that in amorphous polymers. Narkis and Vaxman [61] 

studied electrical resistivity of high density polyethylene (HDPE) mixed with conductive 

carbon blacks and reported that polymer crystallization plays an important role in 

obtaining electrical conductivity.  

1.5 Theoretical studies on electrical conductivity of polymer composites 

In addition to the experimental works, a significant number of theoretical investigations 

were also made on the electrical conductivity of polymer composites. Using a continuum 

theory, Kyrylyuk and Schoot [67] predicted the effect of polydispersity, bending 

flexibility and attractive interactions between CNTs on the electrical conductivity of 

nanotube polymer systems. They discussed that formation of a CNT network is 

dependent on electron tunneling distance between the CNTs which in turn depends on the 

properties of the polymer and CNTs.  Li et al. [38, 39] as well as Li and Chou [39, 53, 68, 

69] have examined the contributing factors to electrical conductivity of nanocomposites 

and performed Monte Carlo simulation of the percolation threshold. In their modeling, 

some of the key issues were to identify filler contact status, establish a wavy nanotube 

network, determine the percolation threshold and modeling the contact resistance. 
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1.5.1 Effect of nanotube alignment  

As mentioned earlier, Behnam et al. [52] and Li et al. [53] investigated the effect of 

nanotube alignment on electrical conductivity above the percolation threshold using 

three-dimensional Monte Carlo simulation and explained the experimental results 

reported by Choi et al. [50] and Du et al. [51]. White et al. [70] also found similar results 

in terms of filler alignment in their study of the effect of alignment and concentration of 

fillers on the electrical conductivity of composites. Using a random resistor model and 

filler aspect ratio of 10, 20 and 80, they showed that fillers with higher aspect ratio gave 

wider range of concentration and filler orientation compared to those of the fillers with 

lower aspect ratio to achieve same level of electrical conductivity. 

1.5.2 Effect of contact resistance and tunneling resistance 

Contact resistance and intrinsic electrical conductivity of CNTs are the most important 

factors in developing highly conductive composites. The contact resistance between 

metallic–metallic and semiconducting–semiconducting CNTs can be close to 100–400 

k  and two orders higher for metallic–semiconducting CNTs [71]. Contact resistance 

between CNTs can vary from 100 k  to 3.4 M  [40] and an insulating polymer layer 

between CNTs further increases this contact resistance ( 1013 ) [44] by making electron 

tunneling difficult when the polymer thickness is considerably high [72]. 

 

Li et al. [39] theoretically investigated the effect of nanotube–nanotube contact resistance 

and tunneling resistance on electrical conductivity of CNT-epoxy and CNT-alumina 

composites. Their results showed (Figure 1.2) that with the increase of insulating 

thickness layer, tunneling resistance increases rapidly. An increase in diameter resulted in 

a moderate effect of decrease in tunneling resistance. 
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Figure 1.2: Effect of thickness of insulating layer on tunneling resistance [39]. 

 

Electrical conductivity of the composites was also strongly affected by tunneling 

resistance. Their simulation results showed that highest allowable thickness of the 

insulating layer can be 1.8 nm for tunneling and proved that tunneling resistance plays a 

dominant role in determining the properties of nanocomposites as compared to the 

intrinsic resistance of CNTs in CNT mats.  

1.5.3 Effect of nanotube waviness 

Waviness of CNTs affects percolation threshold and hence electrical conductivity 

because of dominant role of contact resistance. Assuming a constant contact resistance 

for all contacts and a uniform thickness of insulating film for a homogeneous and ideal 

dispersion of nanotubes in the matrix, Li et al. [38] investigated the effect of nanotube 

waviness on electrical conductivity. Their results shown in Figure 1.3 (a) indicates that 

the conductivity of composites increases with nanotube concentration for different curl 
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ratios of nanotubes and electrical conductivity of composites with wavy nanotubes is 

much lower than that of composites with straight nanotubes. Two neighboring wavy 

nanotubes dispersed in a polymer matrix tend to have a higher chance of contacting each 

other at more contact points than straight nanotubes. As a result, the contact resistance in 

the case of wavy nanotubes is higher than that of straight nanotubes which affects the 

overall conductivity of the composites. Shown in Figure 1.3 (b), electrical conductivity 

gradually decreases with increasing nanotube curl ratio for a given nanotube 

concentration. This decrease of conductivity is due to the increase of nanotube waviness 

which was also confirmed by the numerical simulation results of Dalmas et al.[73].  

(a) (b) 

Figure 1.3: Effect of nanotube waviness on electrical conductivity of composites [38].   

(Here Rc denotes contact resistance) 

 

However, from percolation point of view, wavy nanotubes having contact points more 

than straight nanotubes should help to reduce dependence on tunneling and as such, it 

should provide increased conductivity for the composites. 
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1.6 Application of CNT composites 

CNTs when mixed with a polymer matrix produce a low percolation threshold and a high 

electrical conductivity while retaining other mechanical properties – that cannot be 

obtained with any other filler. A number of research work using SWCNTs and MWCNTs 

as reinforcing fillers with thermoplastic polymers (e.g. PP, PS, PMMA, nylon 12) have 

been conducted in the last few years. CNTs find their applications as conductive filler in 

thermoplastics across the field of automotive, aerospace, electronics, sensors, hydrogen 

storage, space research, pharmaceuticals and so on. In multifunctional polymeric 

composites, they can be used as pressure and temperature dependent resistors, over 

temperature protection devices etc. They can be used as sensing and actuating element 

where the ambient pressure and temperature are not constant. Their dependence of 

electrical conductivity for conductive thermoplastic composites is an omnipresent but 

complicated phenomenon. It has been the topic of research for many authors. According 

to the rate of decrease or increase in resistivity with pressure and temperature, different 

behaviours are observed. Depending on the type of polymer, concentration of fillers and 

their properties, the temperature coefficient (TC) of resistance can be positive (PTC), 

negative (NTC) or zero (OTC). Similarly, pressure coefficient of resistance may be 

positive (PPC), negative (NPC) or zero. The combined result of several processes that the 

composites undergo at high pressure and temperature determines this coefficient. The 

number of filler particle contact, thermal expansion of polymer matrix and filler particle, 

the modulus of polymer matrix etc. are the important factors contributing to those 

processes. Several other phenomena are also simultaneously operative in the system 

which can cause a decrease in electrical resistance (increase in conductivity):  
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(i) Flocculation: rearrangement of filler particle leading to the formation of further 

conductive networks (of woolly cloudlike aggregations) during heating, and  

(ii) Thermal emission: High temperature electron emission between two filler aggregates 

separated by a small distance (but distance of separation is not equivalent to their 

physical contact) 

Usually the polymer matrix expands more than the conductive filler and their differential 

thermal expansion results in an increase of distance between conductive fillers, thus 

making the electron tunneling more difficult. The modulus of the polymer matrix plays 

an opposite role in this case, i.e. a polymer with lower modulus expands more and vice 

versa against temperature.  

Several authors investigated the effect of pressure and temperature on the electrical 

conductivity of rubber composites, polymer composites and some of their works were 

specially focused on the application of composites as pressure sensors and temperature 

sensors. For example, Sau et al. [65] in their investigation found that the volume 

resistivity of all fiber-rubber composites increases with increase in temperature and the 

change in volume resistivity during heating and cooling cycle leads to the phenomena of 

electrical hysteresis and electrical set. They also measured the change in electrical 

conductivity of CB-rubber composites subjected to different modes of pre-strain [74]. 

Das et al. [75] studied the effect of processing parameters like mixing time, rotor speed, 

mixing temperature, vulcanization time and pressure and service conditions like applied 

pressure and temperature on the electrical resistivity of rubber based composites. They 

used carbon black and short carbon fiber (SCF) as the filler material in their study. 
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According to their result, the temperature dependence of volume resistivity of conductive 

CB-filled composites showed a negative temperature co-efficient (NTC) and SCF-filled 

composites showed a positive temperature co-efficient (PTC). Electrical resistivity 

decreased with increasing applied pressure up to a certain level for all CB-filled 

composites except EPDM based CB composites whereas electrical resistivity of SCF- 

filled composites increased with increasing applied pressure. 

Carmona and Amarti [76] experimentally showed that electrical anisotropy of 

unidirectional composites varies with temperature and pressure. Their main observation 

was that as the fiber volume concentration increases, the change of relative anisotropy 

undergoes opposite variations when temperature or pressure is increased. The effect of 

polymer molecular weight on the percolation threshold of PEO-Carbon composite and 

incremental sensor temperature effects on PEO-Carbon sensor response were investigated 

by Holmer  et al. [77]. They showed a correlation between polymer molecular weight and 

percolation threshold and also observed sensor properties as a function of temperature at 

different carbon loadings. Further literature reviews are categorically provided in 

chapters 5 and 6. 

1.7 Rationale and objectives of the thesis 

Surveying of the literature shows that most of the research in the field of nanocomposites 

reports the use of CNTs in composites containing thermosetting resins (especially epoxy), 

elastomers (e.g. natural rubber, SBS) and thermoplastics (e.g. poly ethylene, 

polypropylene, polycarbonate) and these are mostly concerned with mechanical or 

thermo-mechanical properties. Electrical properties of these systems, specifically with 
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high performance thermoplastics have scarcely been investigated and their potential has 

not yet been fully harnessed. A fundamental understanding of electrical conductivity of 

composites with embedded carbon nanotubes is necessary. Therefore, the objectives of 

this thesis are:  

(i) an investigation on how systematic incorporation of CNTs in thermoplastics 

(specifically PEEK) and the resulting electrical conductivity  response to an applied 

electric field,  

(ii) identification and evaluation of the parameters influencing this response, and  

(iii) the fundamental understanding of the mechanisms determining this response and 

their verification.  

Despite the availability of mechanisms to explain the behaviour of such conductive 

polymer composites filled with nanotubes, there are some areas that lack sufficient 

explanation and examination. True understanding of the phenomena involved in the 

effect of pressure and temperature on electrical conductivity is one of them. A convincing 

explanation of PTC and NTC effect especially with a varying concentration of nanotube 

and different polymer systems at temperatures above the glass transition temperature is 

not available.  

This thesis addresses the above by developing electrically conductive polymer 

composites made of MWCNTs and thermoplastic polymer PEEK and by analyzing both 

experimentally and theoretically the change in their electrical conductivity under 

application of high pressure and temperature. Special emphasis is given to understand the 

basic parameters and their effect towards this change in conductivity. 
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1.8 Organization of the thesis 

Chapter 1 describes the scope and objectives of this dissertation with some highlights of 

nanocomposites’ background and their applications. Processing techniques, challenges in 

manufacturing nanocomposites and factors affecting their electrical properties are also 

presented with relevant references. 

Materials used in this study, experimental aspects and preparation of nanocomposite 

samples, optimum processing parameters and characterization of the samples by scanning 

electron microscopy are addressed in chapter 2. 

Chapter 3 presents an elaborate study and analysis of electrical and dielectric properties 

of nanocomposites obtained by Impedance spectroscopy measurement in the light of 

percolation theory. 

Chapter 4 presents an estimation of contact resistance in combination with tunneling 

resistance by different models. It shows a detailed analysis how nanotube film thickness 

affects the tunneling resistance and hence electrical conductivity of the nanocomposite 

samples. 

Chapter 5 is based on the experimental results of the electrical conductivity under 

application of compression. Contribution of nanotube film thickness in increasing 

electrical conductivity is highlighted. 

Chapter 6 elaborates the effect of temperature on electrical conductivity of these 

conductive composites. Analysis of conduction mechanism and effect of parameters 
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involved in conduction are also presented. Effect of temperature when it is combined 

with pressure is also investigated.  

Finally, the findings of this thesis are summarized in chapter 7 with conclusion, 

contribution and recommendations for possible future work.  



Chapter 2  

Materials and Experiments 
 

2.1 Introduction 

In many applications the need for materials with high temperature resistance and high 

strength is gradually increasing. Thermoplastics are attractive for their high strain to 

break, ability to thermoform, indefinite shelf life and light weight, but they are not strong 

and tough like metals and other conventional engineering materials. Reinforcement of 

thermoplastics with nanoparticles can improve the strength and rigidity of the resulting 

composites.  

 

Poly ether ether ketone (PEEK) is a high performance engineering thermoplastic with a 

high glass transition and melting temperatures, excellent mechanical properties, and good 

solvent and abrasion resistance. Due to molecular rigidity of its repeat unit, its semi 

crystalline nature admits it to the orientation processes to provide high strength over a 

wide range of temperatures. It shows a unique combination of thermal stability, chemical 

inertness, high wear resistance and friction coefficient. It can be compression molded, 

extruded or injection molded using conventional equipment at sufficiently high 

processing temperatures (  350°C ~ 400°C). It has been used in wide range of 

applications such as medicine, electronics, telecommunication and transport industries 

(automobiles and aerospace) [78]. PEEK is sometimes used in space applications to 

replace aluminum because of its excellent performance at high temperatures. However, 

adverse processing conditions and comparatively higher cost limit the use of this resin to 

some extent in commercial applications. On the other hand, because of their intrinsically 

29 
 



superior properties, improvements in both rheological and composite properties might be 

obtained at lower concentrations of carbon nanotubes (CNTs) among other nanoparticles, 

while retaining their large aspect ratio. Since PEEK is a high cost, high performance 

polymer, improvements obtained by adding CNTs are relatively cost-effective. 

Since the electrical properties of CNTs are dependent on the nanotube diameter, number 

of concentric shell and chirality, electrical properties of the nanocomposites can 

conveniently be adjusted by selecting proper parameters [79]. The intrinsic conductivity 

of carbon nanotubes in this regard plays an important role and is the upper limit for 

electrical conductivity of the composites. Diez-Pascual et al. [80, 81] demonstrated that 

properties of PEEK can significantly be improved by the addition of SWCNTs. Gojny et 

al. [46] showed that MWCNTs offer the highest potential for enhancement of electrical 

conductivity. In this study, MWCNTs were chosen to mix in PEEK, because they are 

generally conducting, comparatively easier to disperse in PEEK due to much lower 

absorption energy than that of single walled carbon nanotubes (SWCNTs).  

2.2 Materials 

Poly ether ether ketone (PEEK) powder purchased from Good Fellow, England was used 

as polymer matrix and multi walled carbon nanotubes (MWCNTs) Bay tubes C150P    

(C-purity  95 wt%, synthesized by chemical vapor deposition) purchased from Bayer 

Material Science, Germany was used as the filler to fabricate the samples. Both 

MWCNTs and PEEK were used ‘as received’ without any further treatment in this study. 

Their properties are given in the following Table 2.1 and Table 2.2. 
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Table 2.1: Physical properties of PEEK (Supplier’s data) 

Mass Density 1.263 g/cm3 
Average Powder size 80 micron ( m) 
Young’s Modulus, E 3.7 ~ 4.0 GPa 
Poisson’s ratio,  0.4 
Co-efficient of thermal expansion (CTE) 25 m/m°C 
Glass Transition Temperature (Tg) 143~146°C 
Melting Temperature (Tm) 350~390°C 
Electrical resistivity ( ) 1015 ~ 4.9 × 1016 -cm 
Relative permittivity ( r) 2.8~3.3 @ 103 Hz 

 

Table 2.2: Physical properties of MWCNTs (Supplier’s data unless otherwise stated) 

Mass Density 2.2 g/cm3 
Young’s Modulus 1.0 ~ 1.2 TPa 
Poisson’s ratio,            0.07 From reference [82] 
Electrical conductivity 102 ~ 105  S/cm 
Length 1 ~ >10 m 
Outer diameter  13 ~ 16 nm 
Inner diameter  4 nm 

2.3 Choice of manufacturing technique 

Considering the relative advantages and disadvantages of the all methods mentioned in 

1.2.4.3 for improving CNT dispersion, high shear melt mixing was simply adopted to 

manufacture nanocomposite samples for this study without any further 

mechanical/chemical treatment of the nanotube and PEEK. This is because, melt-mixing 

is a practical and industrially-relevant process as it allows the manufacture of either semi-

finished (extrusion) or finished (injection-molded) parts, independently of volume and 

complexity [33]. It is particularly desirable because the process is fast, simple, 

inexpensive, free of solvents and contaminants and available in the plastic industries [83]. 
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2.4 Determination of optimum processing parameters 

In high shear melt mixing, three parameters are considered to be important in 

manufacturing composite samples possessing high electrical conductivity, namely mixing 

temperature, rotor speed and mixing time. To determine the optimum magnitude of one 

single processing parameter, mixing was done while keeping other parameters constant. 

Three different concentrations (2 wt%, 3 wt% and 3.4 wt% were arbitrarily selected) of 

CNTs are mixed with PEEK to determine the optimum point of those processing 

parameters. Based on material properties, equipment specification and literature data, 

several values for each of the parameters were selected. For mixing temperature: 360°C, 

370°C, 380°C and 390°C, for rotor speed: 80 rpm, 100 rpm and 120 rpm, for mixing 

time: 10 min, 15 min, 20 min and 25 min were selected. The melting and high 

temperature shear mixing was carried out in a laboratory scale Torque Rheometry system 

Brabender Intelli-Torque Plasti-Corder (type IT 7150). To achieve uniform dispersion of 

nanotubes, helical shaped twin screw extruders were used in the mixing machine. 

The irregular shaped extrudates of CNT-PEEK melt were cooled very quickly and milled 

at room temperature and then dried in an oven at 100°C for 3 hours to remove the 

moisture. Then it was processed in a Wabash compression molding machine at 380°C 

with compaction load of 10 tons and a holding time of 15 minutes using a rectangular 

stainless steel plate of 152.4 mm × 152.4 mm × 1.4 mm with six holes of 25.4 mm 

diameter. This produces six samples having 25.4 mm diameter and 1.4 mm thickness at a 

time. Cooling of the samples were progressively done first by air (slow cooling rate, from 

380°C to 175°C), then by air and water (medium cooling rate, 175°C to 90°C ) and 

finally by water (fast cooling rate, from 90°C to room temperature). After cooling and 
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solidification, the samples were removed from the mold, polished and checked for 

electrical conductivity using an Agilent High Resistance meter (Model 4339B). This 

model is designed for measuring very high resistance and related parameters of insulating 

materials. All measurements were made at 1.0 Volt. The instrument was calibrated 

according to the manufacturer’s recommendations before use. 

2.4.1 Mixing temperature 

2 wt%, 3 wt%  and 3.4 wt% of CNTs were mixed with PEEK and melted in the 

Brabender at 360°C, 370°C, 380°C and 390°C at constant rotor speed of 80 rpm and 

mixing time of 15 min. Then following the procedure mentioned above, the samples’ 

electrical conductivity was checked.  
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Figure 2.1: Electrical conductivity as a function of mixing temperature. 
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Figure 2.1 shows the mixing temperature vs. Electrical conductivity. Electrical 

conductivity gradually increases with increasing mixing temperature from 360°C to 

380°C and then it becomes almost constant. With the increase in mixing temperature, the 

viscosity of PEEK decreases which results in less shear of CNTs during mixing. 

Therefore, increase in mixing temperature favours the formation of the conductive 

network. At 380°C and above, the saturation point of electrical conductivity has been 

reached. Further increase in temperature may cause thermal degradation of the polymer 

and substantial decrease of electrical conductivity.  

2.4.2 Rotor speed 

The same concentrations of CNTs were again mixed with PEEK and melted in the 

Brabender at 80 rpm, 100 rpm and 120 rpm at a constant mixing temperature of 380°C 

and a mixing time of 15 min.  
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Figure 2.2: Electrical conductivity as a function of rotor speed.  
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The samples thus obtained are presented in Figure 2.2 in terms of their electrical 

conductivity vs. rotor speed. It has been observed that for all the samples, electrical 

conductivity moderately increases when rotor speed increases from 80 to 100 rpm at 

constant mixing time and temperature, but beyond 100 rpm, conductivity decreases. It 

can be argued that with the initial increase of rotor speed, CNT aggregates undergo 

breakage sufficient to form the conductive network, but further increase of rotor speed 

beyond 100 rpm leads to appreciable breakdown of CNT-structure due to high shearing 

action. As a result, nanotube aspect ratio decreases causing a drop in electrical 

conductivity. 

2.4.3 Mixing time 

The same concentrations of CNTs were mixed with PEEK and melted in the Brabender 

for 10 min, 15 min, 20 min and 25 min at a constant rotor speed of 100 rpm and a mixing 

temperature of 380°C. The effect of mixing time on electrical conductivity is similar to 

that of rotor speed as shown in Figure 2.3. Initially electrical conductivity increases with 

increasing mixing time from 10 to 20 minutes. Initially mixing facilitates better 

distribution and dispersion of CNTs into PEEK and causes breakdown of primary 

agglomerates, the eventual result of which is the increase in electrical conductivity. But 

further increase in mixing time causes (i) reduction of nanotube aspect ratio along with 

gradual increase in inter-nanotube distance due to the breakdown of continuous 

conducting network that was initially formed and (ii) formation of secondary 

agglomerates. As a result, electrical conductivity of the system decreases. 
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Figure 2.3: Electrical conductivity as a function of mixing time. 

 

In the above discussion, electrical conductivity of the composites was found to be 

nonlinearly dependent on the processing parameters. It was observed that processing 

conditions affect the formation of conductive network favourably or adversely and thus 

have a positive or negative effect on the conductivity. The highest electrical conductivity 

was obtained for the processing conditions of mixing temperature 380°C, rotor speed 100 

rpm and mixing time 20 minutes, thus they are considered to be optimum processing 

parameters for the rest of the analysis. 

2.5 Preparation of nanocomposite samples 

After determination of the optimum processing parameters, different weight 

concentrations of CNTs (p) ranging from 1% to 10% were mechanically mixed with 
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PEEK to prepare nanocomposite samples for the next investigation. Volume 

concentrations of CNTs ( ) were calculated using the equation  

1 f

m

p

p p
 (2.1)

 

where f = density of CNTs and m = density of PEEK extracted from Table 2.1 & Table 

2.2 respectively. It was melted in the Brabender at 380°C at rotor speed of 100 rpm for 20 

minutes and then processed according to the procedure described in the previous section 

2.4. The measurement of electrical conductivity of the samples was made according to 

the procedure described later in section 5.2.2. 

2.6 Scanning Electron Microscopy (SEM) 

The SEM observations of fractured surfaces of composites containing different 

concentrations of CNTs were made using a Hitachi S-4700 scanning electron microscope 

in order to correlate the morphology of the samples with electrical conductivity. The 

samples were subjected to brittle fracture in liquid nitrogen and the fractured surfaces 

were sputter-coated with a thin layer of gold before observation. Figure 2.4 shows the 

morphology and dispersion of pure PEEK and PEEK composites containing 3.5, 3.6, 8, 9 

and 10 wt% of CNTs for same magnification and scale (1 m).  

In semicrystalline materials, amorphous state is in general more disorderly than 

crystalline state. There is more empty space in the amorphous region as compared to the 

crystalline region. As such, it is easier for foreign particles to enter the amorphous region. 
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(a) Pure PEEK (b) 3.5 wt% CNT-PEEK 

(c) 3.6 wt% CNT-PEEK (d) 8 wt% CNT-PEEK 

(e) 9 wt% CNT-PEEK (f) 10 wt% CNT-PEEK 

 
Figure 2.4: SEM Micrographs of fracture surface of PEEK containing different 

concentrations of CNTs. 
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For pure PEEK shown in Figure 2.4(a), there appear to be grains surrounded by the 

boundaries. Similar observation is made in Figure 2.4(d), (e) and (f). However, the 

granular structure does not appear in Figures 2.4 (b) and (c). These two figures 

correspond to the amount of CNTs at percolation. One possible explanation for this is 

that at percolation, there is a good dispersion of CNTs such that the grain structure 

disappears. At higher loading of CNTs, the excess amount of CNTs concentrates more in 

the grain boundaries. This makes the grain boundaries thicker (compare between Figure 

2.4 (a) and Figures 2.4 (d), (e) and (f)).  

2.7 Variability in electrical conductivity as a function of CNT 

concentration 
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Figure 2.5: Variation of Electrical Conductivity of CNT-PEEK composites for different 

wt% of CNTs. 
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During the fabrication of samples by compression molding, six samples were 

manufactured at a time in one batch. Several batches for each concentration of CNTs 

were made to check the variability of electrical conductivity of the samples.  

 
Figure 2.5 shows the variation of electrical conductivity for one representative batch with 

different weight concentrations (from 1% to 10%) of CNTs mixed in PEEK. At the same 

mixing condition, as the amount of CNTs was increased, average deviation of magnitude 

of electrical conductivity from the mean value was found to be decreasing. For example, 

typical values of standard deviation of electrical conductivity were 90% for 2 wt% CNTs, 

68% for 3 wt% CNTs, 61.5% for 4 wt% CNTs, 47% for 6 wt% CNTs, 45%  for 7 wt% 

CNTs, 40% for 8 wt% CNTs, 37% for 9 wt% CNTs and 35% for 10 wt% CNTs.  From 

the samples of all batches together, at least three samples having minimum difference in 

magnitude in their electrical conductivity were chosen for the next study of electrical 

characterization and the effect of pressure and temperature on electrical conductivity. 



Chapter 3  

Electrical Properties of CNT-PEEK Composites 

3.1 Introduction 

Conductive filler particles are incorporated into an insulating polymer matrix mainly to 

produce conductive composites. The fillers play an important role in improving 

mechanical, electrical and thermal properties of polymer composites. Electrical properties 

of the composites may vary from those of the insulating matrix to those of conducting 

filler depending on filler concentration, property of the fillers and dispersion of the fillers 

into the polymer matrix. The conductive fillers increase the overall electrical conductivity 

and dielectric properties by several orders of magnitude when a continuous conductive 

network develops throughout the matrix above a critical concentration of fillers 

(percolation threshold). Below this percolation threshold, conducting fillers are dispersed 

as isolated clusters, whereas above the percolation threshold, filler clusters begin to 

connect to each other to form a three-dimensional conductive network [84]. Transition 

from isolated clusters to connected network of conducting filler is called the percolation 

transition [85]. 

Many studies on the electrical properties of thermoplastic polymer matrix composites 

filled with CNTs and other nanofillers have been reported in the literature. For example, 

Liang and Tjong [84] presented the results of electrical properties of melt compounded 

MWCNT-low density polyethylene (LDPE) as a function of CNT volume concentration, 

frequency and temperature. Logakis et al. extensively analyzed the frequency dependent 

electrical and dielectric properties of melt processed CNT reinforced Poly Methyl 
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Methacrylate (PMMA) [83] and polyamide [86] composites. Yu et al. [87] manufactured 

polypropylene based MWCNT and bariam titanate (BT) nanocomposites by melt 

compounding and showed that electrical conductivity increases by 6 orders of magnitude 

at 102 Hz when MWCNT loading increases from 3 wt%  to 5 wt%. Surface modification 

of CNT by titanate coupling agent greatly improves the electrical conductivity and 

reduces the percolation threshold of PP nanocomposites. They also observed a significant 

improvement in dielectric properties of PP/BT nanocomposites with incorporation of 

MWCNT. Ounaies et al. [88] discussed percolation issues for SWCNT-Polyimide 

composites (prepared by in-situ polymerization with sonication) through a combination 

of experimental and computational methods. Dai et al. [89] used very well aligned 

SWCNT in PMMA matrix to investigate mechanical, thermal and electrical properties. 

Peng and Sun [90] synthesized highly aligned CNT composites using high quality CNT 

arrays in PMMA, polystyrene (PS) and PEEK matrices and obtained much improved 

electrical conductivities (10 S/cm, 13.3 S/cm and 22 S/cm respectively) at room 

temperature. Khattari et al. [91] recently published their work on dielectric properties of 

MWCNT-PMMA composites using impedance spectroscopy technique in the frequency 

range of 10 to 105 Hz and in the temperature range of 30°C-110°C at different CNT 

concentrations. They obtained percolation threshold to be between 8.5 wt% and 10 wt% 

and explained the results by space charge polarization effect.  Zheng et al. [92] presented 

a comparative results of electrical and dielectric properties of PMMA nanocomposites 

using CB, graphite and expanded graphite (EG) particles as filler materials. They found 

percolation threshold of 1.0 wt% with EG and 3.5 wt% with graphite while CB-PMMA 

composites required about 8 wt%. Using EG, Li et al. [93] investigated the frequency and 
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temperature dependences of electrical and dielectric properties of PVDF composites in a 

wide range of frequencies (102 to 108 Hz). They described the charge transport of 

percolating EG-PVDF system in terms of percolation and biased random walk (BRW) 

approach. More investigations on electrical and dielectric behaviours of PVDF 

composites were recently made by El Shafee et al. [94] using MWCNTs and Xu et al. 

[95] using CB and metal powders (Ni, Zn and W). George et al. [96] developed different 

nanocomposites with Ethylene Vinyl Acetate (EVA) as base matrix and EG, MWCNT 

and CNF as conducting fillers and studied the pressure dependence of their electrical and 

dielectric properties. In a similar investigation, Zhang and his colleagues [97] measured 

electrical conductivity and dielectric properties of three-dimensional polyvinyl alcohol 

(PVA)-MWCNT composites. They explained the dielectric behavior near the percolation 

threshold using intercluster polarization and anomalous diffusion. The influences of DC 

conductivity and interfacial polarization on dielectric relaxation process and the 

correlation between the dielectric behaviours and the molecular motions were also 

investigated.   

A survey of literature reveals that only a limited number of studies on CNT-PEEK 

composites prepared by melt mixing has so far been done even though this method has 

widely been used in other thermoplastic matrices. Bangarusampath and his group [19, 33] 

recently published their work on rheology and properties of CNT-PEEK composites. 

They examined strain dependence, frequency dependence and temperature dependence of 

viscoelastic behaviour of the composites by dynamic shear rheological measurements. In 

addition, they measured melt strength and elongational viscosity to investigate 

elongational response of the composites. A brief discussion on electrical conductivity and 
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thermal/mechanical properties with some experimental results was also presented. To the 

best of knowledge, this is the only work so far available in the literature referring to the 

electrical properties of melt-processed CNT-PEEK composites; however a detailed 

analysis of electrical and dielectric properties is missing in their study. In this chapter, 

electrical and dielectric properties of CNT-PEEK composites at room temperature were 

extensively examined. Their percolation behavior is discussed in light of experimental 

observations and theoretical predictions for better understanding of the parameters 

affecting both AC and DC responses. Some fundamental aspects regarding critical 

volume fraction and percolation parameters are discussed to improve the ability to design 

better composites with incorporation of CNTs. 

3.1.2 Background 

Macroscopic conductivity and permittivity of a percolating system are given by * = ' + 

i '' and * = ' + i '' respectively. The frequency dependence of AC conductivity at 

constant temperature follows power law behaviour and the real part of the complex 

conductivity can be expressed by the Jonscher’s equation known as the Universal 

Dynamic Response (UDR) [98]: 

0 0 1
u

u
dc ac

c

B  

 

(3.1)

where  = 2 f is the angular frequency, 0 = dc =  (at 0) corresponds to the dc 

conductivity of the system, B is a temperature dependent constant and u is an exponent 

dependent on both frequency and temperature. The value of u varies between 0.5 and 1.0 

[99] and its value increases with decreasing temperature and increasing frequency [100].  
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Both theoretical and experimental works show that near the critical concentration c, the 

DC conductivity and static permittivity follow the power laws as [32]: 

, 0 q
dc f c cf for

or

 
 
            (3.2)

, 0 t
dc f c cf f  

 
(3.3)

, 0 q
s dc m c cf for  

 
(3.4)

where f is the measurement frequency, f is the conductivity of filler,  is the volume 

concentration of filler, c is the percolation threshold, m is the dielectric constant of 

matrix, s is the static permittivity of composites. The critical exponents t, q, q' are 

assumed to be universal constants [29, 32, 101, 102]. 

3.2 Experimental 

3.2.1 Measurement of electrical properties 

The electrical properties were investigated by means of impedance spectroscopy using a 

dielectric analyzer (TA Instrument DEA 2970) in ceramic parallel plate mode. The 

experiments were performed at room temperature and at testing frequencies ranging from 

1 to 105 Hz. Nitrogen gas at a flowing rate of 500 ml/min was used to provide an inert 

atmosphere. The samples were placed between two gold electrodes. A low amplitude 

sinusoidal voltage (Vapplied) was applied, creating an alternating electric field. This 

produces polarization in the sample, which oscillates at the same frequency as the electric 

field, but has a phase angle shift ( ). The current (Imeasured) through the sample was 

measured to get the AC conductivity given by 
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(3.5)

 
where z is the thickness and A is the surface area of the sample. 

3.3 Results and discussion 

To investigate the percolation of CNTs in PEEK, electrical conductivity, ac was 

measured as a function of frequency for the composites at different CNT concentrations. 

For each concentration, at least three samples were examined and the result was 

reproducible with minimum standard deviation less than 10%. Figure 3.1 shows the real 

part of the complex electrical conductivity, ' (AC conductivity) as a function of 

frequency for pure PEEK and nanocomposites with different CNT concentrations 

measured at room temperature.  

 
Depending on the concentration of CNTs, three distinct regions are observed:  

 
(i) Insulating region: Pure PEEK and composites containing up to 3.5 wt% of CNTs 

showed a typical insulating behavior where AC conductivity is frequency dependent in 

the frequency range studied with an almost identical slope on a log-log scale. The 

composite with 3.5 wt% has a shift of its conductivity more than two orders of magnitude 

compared to the pure PEEK.  

 
A transition from insulating to conducting phase known as ‘percolation threshold’ (pc) 

was observed between 3.5 wt% and 3.6 wt% of CNTs where a sharp increase in 

conductivity of about three orders of magnitude was noticed. At this transition region, the 

jump observed in electrical conductivity is due to the space charge polarization which can 
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be attributed to accumulation and release of charge carriers (electrons) at the interfaces 

between regions with significantly different conductivities and permittivities (Maxwell-

Wagner-Sillars (MWS) relaxation), such as CNT and PEEK.  
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Figure 3.1: AC conductivity of CNT-PEEK composites as a function of frequency for the 

samples indicated in the legend. 

 
(ii) Semi-conducting region: Composites with 3.6 wt% CNTs exhibit semi-conducting 

behavior with a DC plateau, corresponding to DC conductivity ( dc), where ' is 

independent of frequency. This DC plateau bends off at some crossover frequency (fc or 

c), also known as critical frequency or onset frequency, above which i.e. for f > fc (  > 

c) conductivity increases according to power law. The critical frequency was measured 
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at which AC conductivity reaches 110% of dc [45]. The independence of frequency, 

which is a characteristic of conductive materials, is extended in the whole frequency 

range as the amount of CNTs further increases. From 3.6 wt% to 7 wt% of CNTs, the 

same behavior was observed with a shift of crossover frequency fc to higher frequencies 

with increasing CNT concentration.  

 
(iii) Conducting region: A transition from semiconducting to fully conducting phase has 

been observed at 7 wt% of CNTs which can be termed as ‘conduction threshold’. For 

higher CNT concentrations (  7 wt%), the crossover frequency disappeared, conductivity 

became saturated of frequency and the composite showed fully conducting behavior over 

the entire range of frequency studied.   

 

In equation (3.1) the first component ( dc) refers to ionic/electronic conductivity while 

the second part comes out of polarization (restricted movement) of permanent 

dipoles/induced dipoles and accumulation and release of interfacial charges [103]. With 

the increase of frequency, total conductivity increases because of this polarization. 

However, the effect of actual mobility of dipole and induced dipole mainly depends on 

relaxation phenomenon. MWS relaxation becomes more significant at lower frequency of 

applied electric field, but when dc becomes predominant, the polarization part becomes 

insignificant. Above the percolation threshold (above 3.5 wt% in the present case), a 

continuous conductive network starts to form with many conducting CNTs coming close 

to each other giving appreciable rise in electrical conductivity. The free flow of charged 

particles through the continuous conductive network just formed in the system governs 

the electrical conductivity. In these composites (3.6 wt% – 7.0 wt% CNT-PEEK), 

frequency independent conductivity at low frequencies is due to the resistive conduction 
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through the bulk composites, while frequency dependent conductivity at high frequencies 

is due to the capacitance of the host polymer PEEK between CNTs [103]. At high 

frequencies, electrons get excited so that they can hop from one CNT to the next thereby 

increasing conductivity. As the CNT concentration increases, the gap between two 

neighboring CNTs decreases and thus formation of conducting paths minimizes the 

hopping effect which is observed from the cross-over frequencies. At relatively high 

frequencies, this hopping prevails until 7 wt% of CNTs.  
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        Figure 3.2: Dielectric constant of CNT-PEEK composites as a function of frequency 

Figure 3.2 shows the variations of ' (the real part of the complex dielectric constant or 

permittivity:  = ' – i ") of CNT-PEEK composites as a function of frequencies at room 

temperature. As expected, the variational tendency of dielectric constant with frequency 
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is the opposite of electrical conductivity. The bulk conductivity of pure PEEK is very 

low, less than 10–14 S/cm and hence it shows a dielectric response with increasing 

frequency as expected for insulating materials. The addition of up to 3.5 wt% CNTs has 

no significant effect on the electrical response. For concentrations of CNTs up to 3.5 

wt%, the dielectric constant of the composites is independent of frequency at room 

temperature and mainly determined by PEEK. The dielectric constant increases 

dramatically when CNT concentration approaches to the percolation threshold. The value 

of dielectric constant reaches from 17.17 to 148.6 at 1 Hz when the CNT concentration 

increases from 3.5 wt% to 3.6 wt%. It is nearly 46 times higher than that of virgin PEEK. 

This enhancement of dielectric constant near the percolation threshold can be explained 

in terms of minicapacitor effect consisting of conducting clusters of CNTs separated by 

thin insulating polymer layers [104]. In addition, polarization effects among the clusters 

further improves their electric charge storage. This high dielectric behavior can be used in 

manufacturing high charge storage devices [105]. The dielectric constant increases with 

increasing concentration of CNTs and reaches higher value at lower frequencies. For 

higher values of dielectric constant above the percolation limit, since total conductivity is 

governed by DC conductivity due to the free flow of large number of electrons through 

the continuous network available in the system and the mobility of electrons increases 

with an increase of the frequency of applied electric field, dielectric relaxation becomes 

evident at elevated frequencies, resulting in a decrease of the dielectric constant. Again 

for conductive systems at higher frequencies, polarization effect becomes insignificant 

because of the dominance of electronic conduction and hence a phase mis-match of 

interfacial polarization of composites to the external electric field occurs which causes a 
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decrease in dielectric constant [106]. One of the advantages of this kind of composites is 

weak dependence of dielectric constant in the low frequency range [107].  

 
The conductivity spectra shown in Figure 3.1 and the permittivity spectra shown in         

Figure 3.2 can be quantitatively analyzed in terms of percolation theory. According to 

this theory [85], the frequency dependence of electrical conductivity, ' (f) and dielectric 

constant, ' (f) near the percolation threshold can be expressed as: 

, u
cf p  (3.6)

, v
cf p  (3.7)

 
where  = 2 f is the angular frequency, u, v are critical exponents and theoretically,  u + 

v = 1 [108]. Since AC conductivity as shown in equation (3.1) can be regarded as 

combination of DC conductivity ( f  0 Hz) caused by migrating charge carriers and 

frequency induced dielectric dispersion, a large DC conductivity caused by formation of 

conducting path-way significantly dominates the transport behavior in a wide frequency 

range as seen in the plateau region in Figure 3.1. Below the percolation threshold, dc is 

very small and can often be neglected.  

 
Two different mechanisms namely, intercluster polarization (u = 0.72, v = 0.28) and 

anomalous charge carrier diffusion (u = 0.58, v = 0.42) have been proposed to explain the 

behavior of effective conductivity and permittivity of such a three dimensional random 

mixture [29, 100-102, 104]. To examine the suitability of those models, u and v were 

calculated for representative samples of 3.5 wt% and 3.6 wt% of CNT-PEEK composites 

in the vicinity of the percolation threshold. Figures 3.3(a) and 3.3 (b) show the best fit of 

frequency dependent conductivity of 3.5 wt% and 3.6 wt% samples fitted to equations 
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(3.6) and (3.1) respectively, while Figures 3.4 (a) and 3.4 (b) show the best fit of 

corresponding  dielectric constants for these nanocomposites fitted to equation (3.7). 
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Figure 3.3 : Best fit of frequency 

dependent conductivity for (a) 3.5 wt% 

CNT-PEEK and (b) 3.6 wt% CNT-PEEK 

according to equation (3.6). 

 Figure 3.4 : Best fit of frequency 

dependent dielectric constant for (a) 3.5 

wt% CNT-PEEK and (b) 3.6 wt% CNT-

PEEK according to equation (3.7). 
 

As seen in Figures 3.3(a) and 3.4(a) for 3.5 wt% CNT-PEEK composite, the electrical 

conductivity in the tested frequency region gives a critical exponent (u) of 0.9914 ± 

0.0052 and the dielectric constant (curve fitted only in high frequency region) of this 

composite gives a critical exponent (v) of 0.0547 ± 0.0006 . It is because the influence of 

frequency prevails or the dipolar polarizations of composites lose the response to electric 

fields in the high frequency region and the analyzed value in this region according to 
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equation (3.7) is therefore much more precise to predict the frequency dependence of 

dielectric constant [93]. In Figure 3.3 (b) in the case of 3.6 wt% CNT-PEEK composite, 

the combined effect of dc and f  is clearly seen.  Above fc, the influence of frequency on 

conductivity becomes significant. The critical value u derived by using equation (3.1) is 

0.81. A decrease of u from 0.9914 to 0.81 can be attributed to the effect of large DC 

conductivity which results in the plateau region of the curve. Accordingly, the dielectric 

constant for 3.6 wt% CNT-PEEK composite shows much more frequency dependence 

and hence the derived critical value v = 0.142 is little larger than that of 3.5 wt% CNT-

PEEK composite. The values of u + v for 3.5 wt% and 3.6 wt% CNT composites are 

1.0461 and 0.952, respectively and for higher wt% of CNTs, this sum value gradually 

decreases. Deviance of this (u + v) value from the theoretical value of 1 indicates the 

inappropriateness of the use of percolation theory to interpret the real composites with 

filler concentration far away from the percolation threshold (pc). Therefore, it can be said 

that the investigated real CNT-PEEK composites (from 8 wt% to 10 wt% CNTs) do not 

closely correspond to the proposed mechanisms (incluster polarization or anomalous 

diffusion inside cluster).  

 
To determine the values of dc, fc and u, a nonlinear curve fitting [109] was applied to the 

experimental curves of Figure 3.1 according to the modified form of equation (3.1) as  

                 
( )

    

dc c
u

dc c
c

f f
f f f ff

 
 

           (3.8)

The first part of above equation implies that, for composites below pc (and hence fc), dc 

can be determined from ac versus f response by simply extrapolating the values to f  0 

Hz. In the same way, dc can be obtained from ' versus f curves. Correspondingly, the 
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temperature dependent parameter B can be obtained by applying the AC universal law 

(equation (3.1)). The values of dc, dc, u, v, B and fc of nanocomposites investigated are 

listed in Table 3.1. 

Table 3.1: Parameters indicating the frequency dependence of electrical and dielectric 

properties of CNT-PEEK Composites 
 

p 
(wt%)  

 
(vol%) 

dc 
(S/cm) 

 

fc  
(Hz) 

 
u B dc v 

0 0 2.07 × 10-15 -- 1.039 ± 0.031 2.97 × 10-16 3.259 -- 

1 0.58 8.09 × 10-15 -- 1.038 ± 0.026 2.98 × 10-16 4.759 -- 

2 1.16 1.27 × 10-14 -- 1.075 ± 0.022 1.55 × 10-15 6.288 -- 

3 1.75 1.80 × 10-14 -- 1.099 ± 0.017 1.88 × 10-15 7.648 -- 

3.2 1.86 6.97 × 10-14 -- 1.119 ± 0.023 5.68 × 10-15 9.7325 -- 

3.4 1.98 4.43 × 10-13 -- 0.99 ± 0.021 5.52 × 10-14 10.963 -- 

3.5 2.04 5.62 × 10-13 -- 0.991 ± 0.005 8.07 × 10-14 17.17 0.055±0.001 

3.6 2.1 2.49 × 10-10 8 0.81 ± 0.002 1.03 × 10-11 148.62 0.142±0.07 

3.7 2.16 7.82 × 10-10 40 0.78 ± 0.015 1.03 × 10-11 
Not 

determined 

Not 

determined 

3.8 2.22 4.3 × 10-9 100 0.76 ± 0.001 3.19 × 10-11 ,, ,, 

3.9 2.28 1.11 × 10-8 400 0.74 ± 0.001 3.31 × 10-11 ,, ,, 

4 2.34 5.08 × 10-8 1,000 0.71 ± 0.002 1.01 × 10-10 ,, ,, 

5 2.93 1.76 × 10-7 8,000 0.652 ± 0.005 1.71 × 10-10 ,, ,, 

6 3.54 5.41 × 10-7 20,000 0.583 ± 0.03 6.21 × 10-10 ,, ,, 

7 4.14 1.89 × 10-6 50,000 0.53 ± 0.05 2.42 × 10-9 ,, ,, 

8 4.76 8.29 × 10-6 -- -- -- ,, ,, 

9 5.37 9.66 × 10-6 -- -- -- ,, ,, 

10 6.0 1.36 × 10-5 -- -- -- ,, ,, 
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3.3.1 Scaling law of electrical conductivity 

Extrapolated values of dc (Table 3.1, Figure 3.1) obtained from the fitting procedure 

described above are plotted in Figures 3.5 and 3.6 . It shows a sharp increase in electrical 

conductivity when the CNT concentration reaches 2.1 vol% (3.6 wt%). An obvious 

abrupt increase in electrical conductivity values was observed between 3.5 wt% and 3.6 

wt% where the conductivity changed from 5.62 × 10–13 S/cm to 2.49 × 10–10 S/cm. At this 

concentration of CNTs, a very high percentage of electrons are permitted to flow through 

the sample at the applied electric field due to interconnected physical paths formed by the 

nanotubes. This electrical conductivity is about five orders of magnitude higher than that 

of pure PEEK (2.07 × 10 15 S/cm).  

 

In order to get the exact value of c, the experimental dc data of Table 3.1 were fitted for 

(  – c) to the well known scaling law given by equation (3.3). The best linear fit for     

dc vs. (  – c) data on a log-log scale was obtained for c = 2.05 ± 0.01 vol% (3.53 wt%)  

and t = 2.517 ± 0.119 (Figure 3.5). The data points of the solid curve on Figure 3.5 were 

calculated from equation (3.3) using the above fit values of c and t. 

 
As seen in Figure 3.5, the power law dependence of the conductivity with CNT 

concentration is obeyed about two orders of magnitude above the threshold for the 

calculated fit values. It proves that conductivity of the composites at room temperature is 

controlled by percolating network of CNTs [110].  A similar linear fit of the conductivity 

data fitted to the log log plot (inset in Figure 3.6) of power law given by equation (3.2) 

yields the exponent q' 1.305±0.144. 
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Figure 3.5: Electrical conductivity ( dc) as a function of reduced volume concentration   

(  – c). Inset shows the best linear fit at c = 2.05 vol% and t = 2.517. 
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Figure 3.6: Electrical conductivity ( dc) as a function of volume concentration ( ).     

Inset shows the best linear fit at for  < c and q' = 1.305. 
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3.3.1.1 Discussion on percolation and percolation threshold 

It is well known that the formation of continuous CNT networks is responsible for 

percolation in insulating polymer matrices. In general, statistical percolation refers to a 

situation where randomly distributed filler particles form conducting paths by their direct 

physical contact and it does not directly describe the conductivity increase due to the 

percolation behavior of conducting particles, but merely the amount of particles of a 

given size needed to form infinite clusters of particles which are in contact with each 

other. The magnitude of conductivity improvement through percolation is determined by 

whether the particles include an insulating layer or not and its possible thickness. On the 

other hand, in kinetic percolation, filler particles can move freely, interact with each other 

via polymer chains and thus form a conducting network at much lower filler 

concentration than that of statistical percolation. Such filler movement can easily be 

produced by diffusion, convection, shearing etc. in most of the thermoset matrices 

because of its lower viscosity than thermoplastic matrices. Consequently, statistical (or 

higher) percolation is more typically observed in thermoplastic systems in line with 

excluded volume expectations [47, 111]. Especially for non spherical fillers, the 

percolation threshold is discussed in terms of excluded volume theory. Assuming the 

CNTs as randomly oriented cylinders with volume V = d2 l /4 and aspect ratio  = l/d, 

total excluded volume <Vex>  d l2 /2 can be correlated to the theoretical percolation 

threshold, c through the following equation [112, 113]: 

c
ex

V C d
V l

C           (3.9)

 

where C is a constant. Taking C equal to 1.0 [114], 0.7 [58], 0.6 [44] and 0.5 [112] and 

using aspect ratio  1000, the theoretically expected c is found to be 0.1 vol%, 0.07 
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vol%, 0.06 vol% and 0.05 vol% respectively. Percolation thresholds lower than c  0.1 

vol% are mainly due to the kinetic percolation which allows movement and reaggregation 

of filler particles as mentioned above and such lower percolation is typically observed in 

thermoset systems [35, 115, 116]. This value is significantly lower compared to the value 

of 2.05 vol% (3.53 wt%) obtained from scaling law of percolation for this thermoplastic 

PEEK system. This theoretically lower value of c can be regarded as a rough estimation 

only and not as the absolute lower limit of c as the percolation theory is a statistic model 

and it does not take into account the dynamics of network formation or any polymer–

filler and filler–filler interactions [83, 117]. 

For melt processed composite systems, both lower and higher percolation thresholds than 

what was obtained in this research were reported by many researchers. Some of their 

results are given below in Table 3.2. 

Table 3.2: Percolation thresholds of melt processed thermoplastic nanocomposites 

Filler Matrix Percolation 
threshold Reference Comments 

MWCNT PA6 1.7 vol% Logakis et al. [86] Less than 
percolation 
threshold of 
this study 
(2.05 vol% or 
3.5 wt% of 
MWCNT) 

MWCNT PMMA 0.5 vol% Logakis et al. [83] 

MWCNT PEEK 1.3 wt% Bangarusampath et al. [33] 

MWCNT PVDF 2.5 wt% Hong & Hwang [118] 

MWCNT PVDF 3.8 vol% Li et al. [119] 
More than 
percolation 
threshold of 
this study 
(2.05 vol% or 
3.5 wt% of 
MWCNT) 

SWCNT PVDF 4 wt% Zhang et al. [16] 

Expanded 
Graphite PVDF > 6 wt% Li et al. [93] 

MWCNT Polyimide >7 wt% Zhu et al. [8] 

MWCNT PMMA 8.5 ~ 10 wt% Khattari et al.[91] 
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In the literature  it has been reported that the percolation threshold lies in a wide range of 

weight concentrations of CNTs, depending on the type of polymer of both thermoset [35] 

and thermoplastics [45], processing technique and the type of CNTs used. Bauhofer et al. 

[47] in their recent review reported a wide range of percolation threshold from 0.0021 

wt% to 12 wt% of CNTs. Based on their observations, electrical percolation for 

thermoplastic systems usually occurs at around 1.0 wt% ~ 5.0 wt% [19]. Thus the 

percolation threshold obtained for CNT-PEEK system is (pc  3.5 wt%) within the range 

reported by other researchers for similar material system and processing technique. 

Electrical percolation of nanotube filled composites critically depends on geometry of 

nanotubes (aspect ratio), nanotube concentrations, properties of host polymer and 

processing methods, and eventually on the dispersion of nanotubes in the matrix. Lower 

percolation thresholds are obtained because of kinetically stabilized networks formed by 

nanotube aggregates [47] and higher percolation thresholds are obtained when CNTs are 

coated or grafted with polymer, limiting the inter-nanotube contacts or when CNTs are 

highly aligned [34]. When CNTs are used as conducting fillers, a lower percolation 

threshold is theoretically expected because of their strong anisotropy, high aspect ratio 

and thin diameter. However processing route for fabricating nanocomposites, specifically 

harsh melt processing has a detrimental effect on percolation threshold and hence 

electrical performance of the eventual composites. In the present study, ‘as-produced’ 

CNTs were used which are usually in an agglomerated state. When dry powder of CNTs 

were directly mixed with PEEK powder and mechanically stirred, aggregates of CNT 

were not properly disentangled. In order to remove these agglomerates, high shear forces 

were applied in the twin screw extruder to overcome both the van der Waals interactions 
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of individual nanotubes and the mechanical entanglements. Such high shear force can 

break the nanotubes and reduce their aspect ratio [18] resulting in a higher percolation 

threshold. 

3.3.1.2 Discussion on critical exponent ‘t’ 

According to theoretical predictions [29, 102] of the scaling law of percolation given by 

equation (3.3), the critical exponent t is independent of material and has a theoretical 

value t0  1.6 ~ 2.0 for three dimensional, and 1.0 ~ 1.3 for two dimensional systems. 

Several experimental investigations were in good agreement with equation (3.3), but the 

critical exponent t is not universal in many practical systems. The exponent t (  2.517) 

obtained in the present study is higher than the theoretically expected value (t  2) for a 

statistical percolation network in three dimensions. In the literature, even higher values of 

t have been reported before for thermoplastic systems, such as 8.4 for melt processed 

CNT-PEEK composites [86], 8.0 for polyethylene/polyoxymethylene blends filled with 

iron particles [120], 6.27 for graphite-polyethylene composites [121], 3.8 for melt mixed 

CNT-polycarbonate composites [17] etc. Kovacs et al. [111] carried out the experiment 

for CNT-epoxy system and observed two percolation thresholds, suggesting a change in t 

from low values ( 1.7) in the case of lower (kinetic) percolation threshold to high values 

( 2.3) for higher (statistical) percolation threshold. Weber et al. [30]  reported 

experimental values of t between 1.3 and 3.1 for different matrix and reinforcement 

systems. These high values of t are responsible for a gradual rather than the expected 

steep increase of dc with filler concentration [86]. Since nanotubes are possibly coated 

with a thin polymer layer which acts as a potential barrier to inter-nanotube hopping, 

electrical conductivity is achieved by tunneling between nanotubes, giving rise to the 
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non-conventional percolation model, called the tunneling percolation system and in that 

case, as proposed by Balberg [122], a wide inter-particle distance distribution or specific 

distributions of both conducting and non-conducting phases [123] can lead to non-

universal and material dependent high t values. In addition, statistical percolation theory 

holds good only for ideal systems satisfying some prerequisite conditions: the particles 

must be spherical, monodisperse (means same size and shape) and have an isotropic 

conductivity. If any of these conditions is not satisfied, the value of t obtained from 

experimental results will deviate from the theoretical one, but in some cases, it is not 

clear which condition is not satisfied. Due to the variation in CNT properties, i.e. length, 

diameter, waviness, entanglement etc., CNT-polymer systems are far away from being 

ideal systems. Again, lower percolation thresholds are produced kinetically which makes 

the application of statistical percolation theory questionable [47]. 

Thus, it can be concluded that the critical exponent ‘t’ of the present composite system is 

in reasonable agreement with both experimental results reported in the literature and 

theoretical predictions. 

3.3.1.3 Discussion on ‘ f’ 

The value of constant f in the scaling law (equation (3.3)) refers to the intrinsic electrical 

conductivity of CNTs ( 104 S/cm). By extrapolation to   100% (Figure 3.5), a 

significantly lower value (4.3 × 10–2 S/cm) was achieved which is six orders of 

magnitude lower than expected. As mentioned above, around the individual carbon 

nanotube walls in polymer composites, a thin polymer layer forms in solution phase. This 

layer is responsible for the solubility of nanotubes in composite solutions. The formation 

of such polymer layers prevents the direct physical contact between adjacent carbon 
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nanotubes, resulting in lower effective conductivity. Logakis et al. [124] and McCarthy et 

al. [125] showed the formation of such insulating polymer layers in the case of melt 

processed CNT-polyamide and CNT-PmPV composites respectively. Such insulating 

layers give rise to the phenomenon of tunneling. According to percolation theory, 

conductive paths are formed by CNTs in direct contact, but in the case of tunneling, a 

contact resistance due to a thin insulating polymer layer exists within the conductive path 

between two CNTs and conduction of electrons can occur only by hopping from one 

nanotube to a neighboring one when the inter-particle distance between CNTs is only few 

nanometers. A critical distance of less than 5 nm ( 1.8 nm reported by Li et al.[39]) is 

required for this electron hopping or tunneling at which electrons can easily jump across 

the gap separating individual nanotubes. The value of f in this analysis is low because 

CNTs do not form this conductive network by physical contact. It is reasonable to believe 

that at a higher CNT loading, a second threshold would be obtained when the CNTs can 

make the network by direct physical contact, eliminating the contact resistance [88]. Such 

second threshold was not prominent in the present case of CNT-PEEK system.  

3.3.2 Scaling law of dielectric constant 

The variation of dielectric constant in the neighborhood of c follows the scaling law 

given by equation (3.4). Figure 3.7 shows the extrapolated values of dielectric constant, 

dc with CNT volume concentration for CNT-PEEK composites.  

The best linear fit of dielectric constant data to the power law using equation (3.4) gives q 

= 0.428 ± 0.057. Universality of the percolation theory suggests that the dielectric 

constant should exhibit the same power law dependence on volume fraction below c 

which requires that q  q'. 
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Figure 3.7: Dielectric constant as a function of CNT volume concentration. 

Inset shows the best fit of dc vs. ( c – ). 

 
However, this is not always observed in practical continuum system. In the present case, 

q obtained by equation (3.4) is different than q' obtained by equation (3.2). Such different 

values of q and q' were previously reported by Wang and Dang [105] for CNT-PVDF 

composites, Wu and McLachlan [114] for graphite-boron nitride system.  

3.3.3 Scaling law of critical frequency 

 

The critical frequency fc observed in the AC investigation of conductivity provides an 

advantage of checking percolation threshold. It follows the same scaling law of 

percolation theory with volume concentration of filler [126] showing the similar 

dependence like dc given in equation (3.3): 
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c cf for c

c

 
 

(3.10)
 

where  is a scaling exponent. The fc values listed in Table 3.1 are plotted in Figure 3.8 

against the CNT volume concentrations. The best linear fit of fc vs. (  – c) data 

according to equation (3.10) (straight line in the inset of Figure 3.8) gives c = 2.059 ± 

0.02 vol% and  = 2.446 ± 0.118. These values are very similar, obtained from equation 

(3.3). It has also been reported that fc has the relationship with dc above c by a scaling 

power law [99, 127]: 

c dcf for  
 

(3.11)
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Figure 3.8: Best fit of critical frequency fc vs. CNT volume concentration (  – c).     

Inset shows the relationship between fc and dc  
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The inset in Figure 3.8 shows that the experimental data well obeys the above equation 

for an exponent  = 0.982 ± 0.042. From equations (3.10) and (3.11), a relationship of 

dc c  can be established which corresponds to the classical percolation given 

by equation (3.3). Accordingly, t = /  = 2.446/0.982 = 2.49. This value is close to 2.51 

obtained directly from classical percolation equation (3.3). 

3.4 Summary 

Electrically conductive MWCNT reinforced PEEK composites were manufactured by 

melt processing technique and their electrical and dielectric properties were investigated 

in a wide range of frequencies (1 to 105) at room temperature. The conductivity in these 

composites results from the formation of a continuous conductive path in the polymer 

matrix by the CNTs. A jump of electrical conductivity was observed at lower frequency 

when the concentration of CNTs increased from 3.5 wt% to 3.6 wt%. The results shows 

that conductivity is frequency dependent below the percolation threshold,  frequency 

independent above percolation threshold, equal to dc conductivity below a critical 

frequency fc, whereas it follows a power law above fc. The dielectric constant of the 

composites has been significantly increased in the neighborhood of percolation threshold. 

The dielectric constant showed the opposite behavior as expected with frequency, it was 

frequency independent below the percolation threshold and dependent above percolation 

threshold with obvious dielectric relaxation at higher frequencies. Following the well 

known scaling law of percolation theory, the electrical percolation threshold was 

determined to be c = 2.05 vol% CNTs with a critical exponent t = 2.517 and q = 0.428 

from dc and dielectric constant respectively, extrapolated from AC results. A similar 
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value of c and t were independently determined from fc using a similar scaling law. In 

general, the electrical and dielectric properties of PEEK can be improved by addition of 

CNTs and these kinds of composites can be used for practical applications in many 

electrical devices. 



Chapter 4  

Estimation of Contact Resistance and its Effect on 
Electrical Conductivity of CNT-PEEK Composites 

4.1 Introduction 

CNTs dispersed in insulating polymer matrix can dramatically increase the electrical 

conductivity of the composites. Electrical conductivity of a composite strongly depends 

on CNT concentration, morphology of nanotube network and the number of nanotube 

contact points. Some other factors like size, geometric shape and hardness of the 

conductive fillers, filler distribution, properties of host matrix and processing methods 

can also influence the conductivity and percolation [128-133]. Experimental electrical 

conductivities typically range from 10–7 S/cm to 10–4 S/cm for nanotube concentrations 

above percolation threshold [45, 134] while intrinsic electrical conductivity of individual 

CNTs are essentially in the order of 102 to 105 S/cm [25, 135-137] in  the longitudinal 

direction and 100 S/cm in the transverse direction [138]. A large spread of electrical 

conductivity reflects the complex nature of CNT-based conductive composites that 

cannot be explained only by increased nanotube content. Measured electrical 

conductivity above the percolation threshold should theoretically tend to the intrinsic 

conductivity of CNTs. The large discrepancy on average in the order of 1010 S/cm is, 

therefore, the motivation in this chapter to calculate the contact resistance between 

individual CNTs embedded within polymer matrix.  

 
Calculation of contact resistance is complicated, because contact resistance in an actual 

composite material may be affected by a number of factors, such as the type of 
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nanotubes, nanotube diameter, contact area, tunnelling gap (thickness of insulating film) 

at contact points and matrix material filling that tunnelling gap. For a specific contact, it 

is often difficult to know the thickness of an insulating film and to determine the exact 

value of the contact resistance.  

 
Several attempts have been made to calculate contact resistance of CNT-based polymer 

composites. Theoretical calculations [40] demonstrated that contact resistance between 

nanotubes can vary from 100 k  to 3.4 M  and is strongly dependent on atomic 

structures in the contact region and the structural relaxation of the nanotubes. By fitting 

their simulation results to the experimental data of other researchers, Foygel et al. [44] 

estimated the contact resistance between carbon nanotubes in composites to be in the 

order of 1013  and suggested that the high resistance was caused by tunnelling-type 

contacts between the CNTs belonging to the percolation cluster. Kovacs et al.[111], 

based on their experimental observations, developed a simple relation between sample 

conductivity (that can be measured) and the filler concentration for the region above 

statistical percolation threshold to estimate the inter-particle contact resistance inside a 

polymer matrix (that cannot be measured, but affects the effective conductivity). They 

applied their calculations to the conductivity measurements published by other groups.  

 
Phenomenon of contact resistance becomes more complex when a thin insulating layer 

forms between the contact points of junction nanotubes. Formation of such insulating 

polymer layers were previously reported in the case of melt processed CNT-polyamide 

[124] and CNT-PmPV [125] composites. Kilbride et al. [45] also found significantly 

lower electrical conductivity than expected in the study of their CNT-PmPV and CNT-
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PVA thin films. They suggested that conduction in composite films was dominated by 

electric tunneling and a thick coating of polymer around nanotubes results in poor 

electrical conductivity.  

 
This chapter reports studies on calculation of contact resistance for CNT-PEEK 

composites by the Holm-Kirschstein and Simmons' model and comparing the results with 

those obtained using Kovacs' model. The same experimental data presented in chapter 3 

were used for the present calculation and analysis. The equation for electrical 

conductivity of composites was obtained using the model described by Allaoui et al. 

[115].  

 

4.2 Tunneling contact model 

Previously the formation of insulating polymer layers which limits the physical contact 

between carbon nanotubes and thus lowers the electrical conductivity was discussed. In 

the presence of such an insulating film, electrons must enter the conduction band of the 

insulator, i.e. they must possess sufficient energy to cross the insulating barrier, a process 

known as thermoionic emission. According to classical physics, electrons cannot 

penetrate through the barrier unless the electron energy is equal to or more than the 

height of the interfacial barrier. But according to quantum mechanics, there exists a finite 

(nonzero) probability to find an electron on the other side of the film and the electrons 

can cross this insulating barrier by a ‘‘tunnel effect’’ depending on the size and shape of 

the barrier encountered by electrons, usually if the insulating film is sufficiently small    

(< 5 nm). To explain conductive behavior of such composites using the tunnel effect, 

Allaoui [115] evaluated the thickness of this thin film by modeling the composite as a 
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stacking of layers, each layer consisting of a number of contacts. They derived the 

equation of electrical conductivity of the composite from the view point of resistor 

network and assumed that (i) in each layer, the network is perfectly three dimensionally 

random and all contacts participate in the conduction (they did not take into account 

aggregation and dead-end branches of carbon nanotubes, the latter may have a limited 

effect). (ii) All resistors have the same resistance, that is, they did not take into account 

the distribution of CNT diameter or variation of insulating film thickness.  

 
A schematic of the model is shown in Figure 4.1. The resistance of one layer is that of a 

network of parallel resistors. Each resistor has the same resistance, noted as Rcontact and 

represents the contact resistance between the CNTs with a matrix film in their vicinity 

along with the segment of CNTs between contacts. The thickness of one layer is assumed 

to be equal to the distance between two contacts, noted as , which is equal to twice the 

nanotube diameter plus inter-nanotube spacing. The inter-nanotube spacing, i.e. gap 

between two adjacent CNTs can be in the range between 0 to the largest possible 

thickness of insulating film that allows the tunneling percolation of electrons. A 

composite sample of thickness z is therefore a stacking of M (= z/ ) layers (in series). 

The electrical resistance of the composite is obtained by 

contactRzR
N

 (4.1) 

 
where N is the number of contacts (in parallel) in one layer. Considering a composite 

sample of surface area A, the electrical conductivity is thus  
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contact contact

z n A z n
R A z R A R

 
 

(4.2)

 
where n is the number of contacts per unit volume in a three-dimensional random fiber 

network given by van Wyk [139] as 
2

3

4n
d

 with  the volume fraction of fibers and d 

their diameter. 
 

 

 

Figure 4.1: Schematic of the model of resistor network to calculate composite resistance 

[39, 140]. 

 

The average contact distance  in the network is given [139, 141] as  
8

d

     
 

 
Finally, the electrical conductivity of the composite is simply  
 

1
16 contactd R

    (4.3)
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In a percolating network of carbon nanotubes, two sources of resistance can be 

recognized, one is the intrinsic ohmic resistance along the carbon nanotube itself, and the 

other is the tunnelling resistance determined by the thickness of the insulating matrix 

layer around CNTs. Thus, total contact resistance is considered to be the sum of nanotube 

contact resistance without an insulating thin film (i.e. constriction resistance/resistance of 

the CNT portion between two contacts) noted as Rc and the resistance from the electric 

tunneling effect due to the matrix film, i.e. Rcontact = Rc + Rt 

 
The electrical resistance of the CNT portion between two contacts in the network is 

calculated by 

2
1 1

2
4

c
cnt cnt

R
d d

1  
 

(4.4)

 

where cnt is the electrical conductivity of CNTs given in Table 2.2. 

Tunneling resistance depends on material, thickness and surface area of the insulating 

layer. CNTs are assumed to be straight and randomly dispersed in the matrix. For 

simplicity of the analysis, CNTs at a contact point in the network can be assumed to be 

overlapping/crossing at right angles and not penetrating with each other i.e. there is no 

thickness variation along the section. Accordingly, contact surface area Scontact of 

insulating film is equal to that of a CNT–CNT contact obtained by square of a side equal 

to the diameter of a CNT, i.e. Scontact = d2. Therefore,  

2
t

tR
d

 
 

(4.5)

                                                                                                         

where t  is the tunneling resistivity of the matrix film in -cm2 (not to be confused with 

volume resistivity in -cm). 
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Combining equations (4.3), (4.4) and (4.5), final expression of electrical conductivity of 

the composite can be written as  

2

16 16 16
1

2
tcontact t c

cnt

d d d
R R R

d d

 (4.6)

 

Volume concentrations of CNTs ( ) were calculated using the equation (2.1).   

4.3 Calculation of contact resistance  

4.3.1 Holm-Kirschstein model 

Based on quantum considerations, Holm-Kirschstein [72, 142] derived the following 

equation for low voltages to calculate the tunnel resistivity in -cm2: 

22 210
2 1

XY
t

X e
XY

 
 

(4.7)
    

with 5X  7.32 10  s
0

7.2  and 6
0

10Y  1.265 10  
rs

 
 

(4.8)

                                                                              

4.3.2 Simmons' model 

Simmons [143] derived a formula for tunneling current density through a potential barrier 

of a rectangular shape between two similar electrodes separated by a thin insulating film 

of uniform thickness. The analysis presented in [143] was for low temperatures, where 

the thermal current was neglected and thus electron transport between the electrodes was 

restricted to the tunnel effect. Neglecting the variation of barrier height along the 

thickness of the film, the current density (J) for a voltage drop Vi across the contact area 

of crossing CNTs can be expressed as: 
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 for Vi < 0  (4.12)

 
The voltage drop Vi across the film of thickness s, surface area Scontact and capacitance C 

is given by 

0r contactSC
s

i
e eV  

 
 (4.13)

  
In the above expressions,  stands for the height of the rectangular barrier, e denotes unit 

electric charge passing through the film, r is the relative permittivity of matrix and 0  

8.85×10–12 F/m denotes the absolute permittivity of vacuum. Units of J is in Ampere/cm2, 

 and Vi are in Volt, s, s1 and s2 are in Å. Tunneling resistivity is then obtained as 

i
t

V
J

 
 
 (4.14)

 

                                                                                                              

Using above two models given by equations (4.7) and (4.14), the tunnel resistivity was 

calculated.  In the calculation,  0 was taken approximately equal to the work function of 

CNTs (  4.80~4.95 eV) [144], relative permittivity (dielectric constant) of insulating 

PEEK, r  3.3 and an average CNT diameter d = 10 nm. Substituting equation (4.7) or 

(4.14) in equation (4.6), the composite conductivity,  was obtained as a function of film 
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thickness (s) and volume concentration of CNTs ( ).  As can be seen from equation (4.9) 

the relation between current and voltage is non linear. Therefore, it is not possible to 

derive an explicit relation for the tunnel resistance. Moreover, since  and s are 

functions of voltage drop, the tunnel resistance is non-ohmic and decreases with 

increasing voltage. It is understood that the gap between adjacent nanotubes is most 

likely to decrease when the nanotube volume concentration is increased and thus the 

corresponding tunnel resistance and contact resistance also decrease. But in practice, it is 

difficult to predict the relationship between the insulating film thickness and nanotube 

volume concentration. In conventional particle composites, the average spacing between 

particles may be estimated from the matrix volume fraction assuming a pattern of particle 

packing. However, in nanotube-based composites, especially conductive composites, the 

pattern of particle packing does not apply because of the very small nanotube content. To 

address this issue, Li et al. [53] proposed the assumption that the film thickness follows a 

normal distribution and they found it to be reasonable in their analysis. Considering all 

those facts, the film thickness is assumed to vary with the CNT volume concentration 

following a power law dependence [115]; s = K  with K and  are two free parameters. 

The experimental data were fitted to equation (4.6) and K and  were evaluated using the 

two different models for tunnel resistivity; Holm-Kirschstein model and Simmons' 

model. 
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 4.3.3 Discussion on results by Holm-Kirschstein and Simmons' models 

The experimental data and the fitting curves for the best fit of K and  are shown in 

Figure 4.2. The values of fitting parameters indicated on the graph are quite similar. 

Although the two fitting curves are superimposed, Simmons took into account the true 

shape of the potential while Holm-Kirschstein assumed an approximate parabolic form. A 

kink or bend is observed in the plot which arises due to the nonlinear relationship 

between current and voltage.  
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Figure 4.2: Electrical conductivity as a function of CNT volume concentration. The solid 

and dotted lines are fit to equation (4.6). 
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Figure 4.3: Thickness of the insulating film as a function of nanotube volume 

concentration. 

 
Figure 4.3 represents the insulating PEEK film thickness obtained by using the values of 

the fitting parameters of both Holm-Kirschstein model and Simmons' model as a function 

of nanotube volume concentration. It has been observed that film thickness decreases 

with increase in CNT volume concentration. The Holm-Kirschstein model predicts a 

comparatively lower film thickness than the Simmons' model at certain volume 

concentration. The difference in film thickness predicted by the two models gradually 

increases up to the percolation threshold ( c = 2.05 vol%) where the maximum difference 

is about 2.266 Å and then gradually decreases (2.2 Å at 6 vol% ) but the trend is quite 

similar. 
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Almost similar observations were also noticed in Figures 4.4 and 4.5 where electrical 

conductivity and tunneling resistance respectively are plotted against the film thickness. 

For the same film thickness, Simmons' model predicts higher electrical conductivity and 

lower tunneling resistance than those predicted by Holm-Kirschstein model. Differences 

in the values of electrical conductivity between the two models increase with decreasing 

film thickness up to a certain limit and then decreases (Figure 4.4), but their difference in 

tunneling resistance remains almost same for all nanotube concentration (Figure 4.5). It is 

seen that insulating film thickness between crossing CNTs plays a significant role in the 

tunneling resistance, which increases rapidly with increasing layer thickness. When the 

thickness is about 11 Å (1.1 nm) tunneling resistance is in the order of 1010  (Holm’s 

model in Figure 4.5) which is several orders of magnitude larger than the contact 

resistance between carbon nanotubes without any insulating film. Another important 

observation is that a sudden rise in electrical conductivity was obvious near the 

percolation threshold where the film thickness is predicted to be about 17 Å by Simmons' 

model and 14.5 Å by Holm-Kirschstein model (indicated by dashed line and solid line 

respectively in Figure 4.4). Since Simmons' model is more refined than the Holm’s 

model, 17 Å can be considered to be the threshold value (maximum possible insulating 

film thickness) of inter-nanotube gap for the occurrence of electron tunneling. This value 

is very close to 1.8 nm ( 18Å) previously reported by Li et al. [39] for CNT-epoxy and 

CNT-alumina composites. 
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Figure 4.5: Tunneling resistance as a function of insulating PEEK film thickness. 
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4.3.4 Kovacs' model 

For homogeneously dispersed, rigid and immobile particles of cylindrical shape, the 

following equation was derived [111]: 
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Figure 4.6: log-log plot of electrical conductivity vs. weight concentration. 

   

2 1

2 .
2 .

x

sample
c t

l p
r R R

  (4.15)
 

                                                                               where sample is the measured conductivity of the sample, p is the filler weight 

concentration, l is the length of the particle, r and Rc are the radius and resistance of a 

single particle, Rt is the tunnel resistance of its contact to the next particle and x is an 

exponent. Equating 2x+1 to the slope of log sample vs log p plot (Figure 4.6) above the 

percolation threshold and then solving equation (4.15) with the help of known 

parameters: length and radius of filler particle and resistance as well as conductivity and 
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concentration values at a single data point, Rc and Rt can be calculated for all 

concentration values. In the present calculation, values of d = 2r = 10 nm, l = 1000 nm 

and cnt = 104 S/cm were used for an individual CNT. 
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Figure 4.7: Contact resistance as a function of CNT volume concentration. 

4.3.5 Discussion on contact resistance 

Figure 4.7 shows a comparative picture of contact resistances obtained by the above 

discussed three models as a function of CNT volume concentration. As expected, contact 

resistance decreases with increase of CNT volume concentration. Similar to the tunneling 

resistance, Holm Kirschstein model predicts higher contact resistance than Simmons' 

model and with the increase of nanotube concentration, their difference gradually 
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increases. Among the three models, Kovacs' model gives the lowest estimate of contact 

resistance. In the case of Kovacs' model, contact resistance is almost constant (in the 

order of 1010 ) above the percolation limit with a trend of increase for higher CNT 

volume concentrations. The observed high values of Rcontact indicate the existence of an 

insulating polymer layer which prevents the direct physical contact between nanotubes. 

Because of such a layer, the conductivity phenomenon becomes complex.  
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Figure 4.8: Effect of contact resistance on the electrical conductivity of nanotube 

composites. 

As seen in Figure 4.8, there is a sharp jump of electrical conductivity at the vicinity of the 

percolation threshold and then gradually increases with increasing CNT concentrations. 

A sharp linear decrease of contact resistance was observed in the neighborhood of 
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percolation threshold in Kovacs' model which is more than two orders of magnitude 

compared with Holm-Kirschstein or Simmons' model. While graphs obtained by Holm-

Kirschstein model and Simmons' model follow the same pattern, graph by Kovacs' model 

behaves differently from them. This different behaviour results from the fact that Kovacs' 

model does not accurately account for electron tunneling across the thin film formed 

between CNTs. However, at region of higher CNT concentrations, both contact resistance 

and electrical conductivity anticipated by three different models are almost comparable.  

4.4 Summary 

(1) By employing Holm-Kirschstein equation, Simmons' equation and Kovacs' equation, 

contact resistances of crossing CNTs with an insulating layer in between were calculated. 

(2) Holm-Kirschstein model predicts lower film thickness, lower electrical conductivity, 

higher tunneling resistance and higher contact resistance than Simmons' model. 

 (3) Maximum tunneling distance in this composite system was predicted to be 14.5 Å by 

Holm-Kirschstein model and 17Å by Simmons' model. This value (17Å) is very close to 

the previously reported one of 18 Å [39].  

(4) Kovacs' model estimates significantly lower contact resistance than Holm’s or 

Simmons' model, because it does not take into account the effect of electron tunneling 

accurately. 



Chapter 5  

Effect of Pressure on Electrical Conductivity of 
CNT-PEEK Composites 

5.1 Introduction 

Extensive research has been carried out to take advantage of the outstanding properties of 

CNTs, especially in the field of aerospace, electrical, biomedical and computer science, 

the efforts for the application of CNTs have been very active. Enhancement of the 

electrical conductivity of polymers by mixing them with multi walled carbon nanotubes 

(MWCNTs) has found significant applications in newer areas such as electronic 

equipment, pressure sensitive switches, important strategic materials such as 

Electromagnetic Interference (EMI)/Radio Frequency Interference (RFI) shielding in 

computer and cellular phone housing. Future air vehicles are likely to adopt 

sensor/actuator embedded composites for structural health monitoring to reduce their 

maintenance cost. Such materials known as ‘smart materials’ can identify a change in the 

environment and respond to it by performing both sensing and actuation. The usual 

stimuli are pressure, temperature, electricity, vibration etc. whereas the useful responses 

are changes of conductivity, heating, mechanical/acoustic damping etc.[145].  

CNT-filled conductive polymeric composites can be used as sensing elements in many 

engineering applications such as biomedical industry, automotive industry, food industry, 

environmental monitoring, agriculture and fishing industry, manufacturing industry, 

security and others [146]. Their electrical conductivity changes with application of 

external pressure. Many authors published their works on the changes of electrical 
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resistance or conductivity under the effect of external pressure. A brief review of the 

previous works is summarized below:  

5.1.1 Rubber composites 

Pedroni and his co-workers [147] prepared samples of conducting elastomeric composites 

based on MWCNTs and SBS block copolymers by using a solution casting technique and 

evaluated their electrical conductivity and mechanical properties. They claim that by the 

addition of MWCNTs, they have produced conductive elastomers with the lowest 

percolation threshold reported so far which imply that these materials could be used as 

charge dissipaters in electronic equipment and EMI shielding. Their results also show 

that MWCNTs act as a reinforcing agent which overcomes the plasticizer effect observed 

for polymeric dispersant agent, leading to an overall improvement in the mechanical 

properties. 

Taya et al. [148] analyzed the piezoresistive behavior of a conductive short fiber–

elastomer matrix composite by applying a percolation model. They applied fiber 

reorientation model to the composite system to predict the relation between the applied 

finite strain and the reorientation of conductive short fibers. Their results show that 

threshold fiber volume fraction increases as the applied strain increases and initially 

conductive composite becomes non-conductive around the critical strain, exhibiting a 

switching behavior.  

Pramanik et al. [149] studied the resistivity and mechanical properties of nitrile-rubber 

based conductive composites filled with short carbon fibers (SCFs) and mixed filler 

system (SCF and CB). They found an appreciable effect of static extensional strain on the 
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tensile modulus and electrical resistivity of the composites where electrical resistivity 

decreases with increasing fiber concentration in the matrix and also with increased 

proportions of particulate CB in the filler-blend composition.  

Yoshimura et al. [150] developed spring-shaped carbon microcoils (CMCs) embedded in 

silicone rubber and claimed that CMC–silicone rubber composites stand a good chance in 

making tactile sensors because of their high sensitivity. They also investigated 

mechanical and electrical properties of composites involving CMCs. 

5.1.2 Polymer composites 

Influence of unidirectional pressure on the electrical conductivity of carbon black filled 

polyethylene was examined by Wang and his team members [151]. In their analysis, they 

used High Density Polyethylene (HDPE) and applied various pressures along the 

thickness direction of the samples at constant ambient temperature. Using three different 

weight concentrations (10%, 12.5% and 15%) of CB, they found that at a low pressure 

the conductivity of CB–HDPE compounds decreases with the increase of pressures, 

reached a minimum value, then increased with the further increase of pressure. The 

conductivity was not very sensitive to the pressure in the high concentration CB-

containing composite.  

Yongliang and his group [152] also conducted similar experiments to investigate the 

piezoresistive behavior of carbon black filled poly (methyl vinyl siloxane) (PMVS) 

vulcanites under uniaxial compression. At CB weight fractions (p) slightly above the 

percolation threshold (pc), they found that electrical resistance first increased with 

pressure and then turned to decrease at a critical compressive stress, thus exhibiting a 
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positive pressure coefficient of resistance (PPCR) and a negative pressure coefficient of 

resistance (NPCR) respectively. They also noticed that effect of NPCR was strong and 

the effect PPCR was weak when p >> pc . They related the PPCR-NPCR transition 

process to true stress believing that change in microstructure in the percolating network, 

i.e. breakdown and reformation of infinite conducting clusters under pressure were 

responsible for the uniaxial piezoresistance and plastic deformation of the filled 

vulcanites. 

Chen et al. [153] investigated time-dependence of piezoresistance, reproducibility and 

stability of the piezoresistive behavior for high density polyethylene (HDPE)–foliated 

graphite (FG) nanocomposites. Their experimental results show that relative resistance 

decreases with time under a lower fixed pressure, whereas the composite resistance 

increases with time under a higher fixed pressure. They also observed that electrical 

response with time under compression is sharper at higher fixed pressures and lower FG 

concentrations. 

Qu and Wong [154] also experimentally investigated time dependent piezoresistive 

properties of conductive polymer composites. Using a melt compounding method, they 

prepared samples from expanded graphite reinforced polypropylene modified by maleic 

anhydride and found that resistivity decreased rapidly with compressive stress of less 

than 10 MPa, reached a plateau value at a higher compressive stress from 10 MPa to 30 

MPa and then slightly increased with the increase in the stress beyond 30 MPa. Their 

results also showed that electrical resistivity decreased significantly with time under high 

mechanical stress while it increased slightly at a compressive stress of 31 MPa.  
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In an interesting study by Kchit and Bossis [155], piezoresistivity of magnetorheological 

elastomers (are smart materials made by aligning magnetic microparticles inside a liquid 

polymer before the curing process has started. Once cured, the composite presents new 

properties such as a large change of elasticity when applying a magnetic field) are 

analyzed. They observed power law decrease of the resistivity versus pressure when the 

particles inside the matrix are in contact and exponential decrease of the resistivity versus 

pressure when the particles inside the matrix are not in contact. They explained both 

behaviours with the help of tunnel effect on the area of contact. 

By means of an analytic solution of piezoresistive stress co-efficient based on percolation 

like power law of resistivity, Wang et al. [156] showed that for the composite materials 

where Young’s modulus of the insulating matrix phase is much less than that of 

conducting phase, the piezoresistive stress co-efficient (given by  = 

/ lnd d
dP dP

where  is the resitivity) depends (decreases) on the applied stress (P) 

reversely (i.e. follows log  vs. log P plot) at lower stresses and logarithmically (i.e. 

follows   vs. log P plot) at higher stresses at the percolation threshold. They 

demonstrated that the prediction of the model agrees well with experimental results of 

carbon reinforced polymer (epoxy and polyurethane) composites and polymer derived 

ceramics (silicon carbonitride). 

Pham and his group [157] recently worked on development of strain sensors using 

MWCNTs and thermoplastic matrix PMMA. They found a wide range of sensitivity 

which is comparable to the conventional resistance-type strain gauges. They claim that 

numerous potential military and industrial applications of their developed strain sensor 
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are available ranging from macroscopic to nano-scale devices. They also developed a 

semi-empirical model based on percolation theory to identify the relationship between 

applied strain and sensitivity factor. 

Park and his team [158] developed MWCNT film using Polyethylene Oxide (PEO) as the 

polymer matrix. In their experiments, the unique characteristics in macro scale 

deformation-dependent electrical resistance change for different volume fractions imply 

that MWCNT-PEO composite films can be used as tunable strain sensors and for 

application into systems such as embedded sensors in composite structures.  

Wang et al. [159] developed a novel route to fabricate a new flexible force sensor using 

carbon composites that consist of micro carbon particles as conductive matrix, silicone 

rubber as the insulating matrix and elastomer fillers as the elastic matrix. The force 

sensor not only shows a gradual change in electrical resistivity with applied quasi-static 

pressure, but also measures the changes of compression stress relaxation in soft substrates 

under it. Since their samples were flexible and thin (1.2 mm) enough to be adhered on the 

measured soft substrates, they estimated the result of relaxation to be obtained directly 

instead of presumption from sample testing. 

5.1.3 Application of conductive composites as pressure sensors 

Hussain and others [160] fabricated a new pressure sensitive composite by dispersing 

homogeneously conductive carbon particles in an insulating silicone rubber matrix which 

showed a gradual change in electrical resistivity with applied pressure within the 

percolation threshold region at a constant temperature. They observed a significant 

improvement in successive measuring of resistivity variation when composites were 
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fabricated in hexane solvent media. To control the resistivity variation and to improve 

mechanical properties of the composites, they dispersed nano sized Al2O3 and suggested 

that, this material can uniquely be used as pressure sensors for robot applications. 

Flandin and his team [161] presented a 3D numerical simulation of electrical properties 

of polymer nanocomposites. They showed that a.c. electrical properties measurements 

under large strain, strongly contrasted in the view point of their electrical and mechanical 

properties, can be used as an effective tool to monitor in situ the damage of composites 

made of electrically conductive fillers dispersed in an insulating matrix.  

Compounding natural rubber (NR) and carbon black (CB), Job and his group [162] 

prepared high electrical conductivity composites where the electrical conductivity 

changes from 10–11 S/cm to 10–2 S/cm depending on the concentrations of CB in the 

composite. According to their claim, the linear and reversible dependence of the 

conductivity on the pressure in the range from 0 to 1.6 MPa is a warranty that these 

composites can be used as pressure sensors in orthopedic areas. 

Knite et al. [163] used polyisoprene and carbon black to fabricate conductive 

nanocomposites that could be used as tensile strain and pressure sensor materials. The 

maximum sensitivity of the nanocomposites they made was observed in the vicinity of 

the transition of electro-conductive percolation and it exhibited a very weak semi-

conductor like temperature dependence of resistance as tenso-resistive and piezo-resistive 

effects were practically thermally stable in the region of 20°C –70°C. 

Sinha et al. [146] in a review presented the distinct physical, electronic and mechanical 

properties of CNT to highlight the present and future research and development work in 

the area of carbon nanotube sensors for real-world applications.  
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Mahmoud et al. [164] experimentally investigated conductive acrylonitrile butadiene 

rubber (NBR) compound filled with different concentrations of fast extrusion furnace 

(FEF) black. They found the most sensitive to compressive strain samples in the region of 

percolation phase transition which is about 65 phr. The piezoresistive effects of all of 

their samples were practically thermally stable within the interval of 24°C –35°C.  

Effects of instantaneous compression pressure on electrical resistance during compressive 

stress relaxation were experimentally studied by Wang and his co-workers [165]. They 

used carbon black powder as the conductive phase and room temperature vulcanized 

silicone rubber as the insulating matrix and found that a sudden increment of composite 

resistance increases with the increase of instantaneous compression pressure. They also 

made a very thin (1.25μm) flexible pressure sensor array [166] to calculate nonlinear 

error, hysteresis error, repeatability error, resolution, time drift, temperature drift and 

moisture drift. The area, the thickness, and the number of sensing elements of the 

pressure sensor proposed can be adjusted according to different requirements in other 

engineering applications, such as the artificial skin, the finger-tip haptics of the robot.  

Recently Wang et al. [167] studied piezoresistance of a MWCNT filled silicone rubber 

composite under uniaxial pressure to estimate the effects of carboxyl radical group on 

their electrical resistance. They showed that active carboxyl radical on MWCNTs can 

effectively improve the homogeneous distribution and alignment of conductive paths in 

the composite thereby producing positive piezoresistance with improved sensitivity, 

sensing range and sensing linearity for pressure.  
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According to Dharap et al. [168] existing conventional sensors such as strain gauges are 

discrete point and fixed directional sensors, and are separate from the material or 

structure that is being monitored; hence, not embedded in the material level. To 

overcome this limitation, they developed a CNT film by using randomly oriented bundles 

of SWCNT for strain sensing on the macro scale. Their experimental results are very 

encouraging and indicate the potential for multidirectional and multiple location strain 

sensors on the macro scale due to the isotropic properties of SWCNT films. 

Wu et al. [169] showed that hydrostatic pressure can induce radial deformation, and 

therefore electrical transition of SWCNTs which provides a basis for designing nanoscale 

tunable pressure sensors.  

A significant number of papers have been published over the last 20 years on 

piezoelectric and pyro-electric polymers, especially on poly vinylidene fluoride (PVDF). 

Recent investigations in this field have been directed to understanding the nature of 

ferroelectricity exhibited by PVDF and its copolymers [170]. Li et al. [55] published a 

paper elaborating a thorough review of sensors and actuators based on carbon nanotubes 

and their composites. 

To date, most of the studies on sensing material investigated electrical properties of 

composites made of SWCNT, CB, CMC as conducting element in elastomeric rubber 

materials, Polyvylidene fluoride (PVDF) as matrix [150, 151, 169]. However, there is 

limited application of most of the research outcomes and some pressure sensors based on 

those material still needs to be improved or adjusted to meet specific requirements of 

engineering application. Possibility of using advanced thermoplastic materials e.g. PEEK, 
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PMMA as matrix and MWCNTs as filler material to develop pressure sensing element 

has rarely been attempted.  

The change of electrical resistance (or conductivity) of the composites with pressure 

depends on the polymer characteristics such as aggregate structure, on structures of CNT 

fillers and on the interaction between the polymer and the filler. In this chapter, the 

change of electrical conductivity of thermoplastic composites made of MWCNTs and 

PEEK for different CNT loadings with high compression pressure is investigated. The 

effect on insulating film thickness on the change of electrical conductivity is also 

presented. A simple model based on compression is developed to explain the change in 

electrical resistance with the application of pressure. 

5.2 Experimental 

5.2.1 Sample preparation 

Nanocomposite samples were prepared according to the procedure described in chapter 2. 

At low weight concentrations of CNTs, even though the material is conductive, there is 

significant variation in conductivity. Measurement of AC conductivity by DEA (Figure 

3.1) shows that for the samples with 8 wt% – 10 wt% of CNTs, electrical conductivity 

was frequency independent over the entire range of frequency studied. Therefore, further 

investigation of the effect of temperature and pressure on electrical conductivity was 

carried out only on samples of these three weight concentration: 8 wt%, 9 wt% and 10 

wt% of CNTs. 
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5.2.2 DC measurement of electrical conductivity 

The DC measurement of electrical conductivity was done in the following two different 

ways depending on the magnitude of the samples' volume resistivity:  

 
(i) Electrical volume resistivity of the composites with resistivity  108

 -cm was 

measured using an Agilent high resistance meter (Model 4339B). From volume resistivity 

and geometry of the sample, electrical resistance R was calculated using the equation  

zR
A  (5.1)

And electrical conductivity,  (in S/cm) was calculated by  

1  
 
 (5.2)

where z is the thickness in cm, A is the cross sectional area in cm2,  is the volume 

resistivity of the sample in -cm.  

(ii) When samples’ volume resistivity was below the limit of Agilent high resistance 

meter (< 108
 -cm), electrical resistance across the thickness of the sample was measured 

by using a Fluke digital multimeter, which can measure resistances up to 100 M . The 

sample electrical conductivity,  (in S/cm) was then calculated according to the following 

equation  

z
R A

 
 
 (5.3)

where z = sample thickness in cm,  R = Sample Resistance in ohm and A = cross-

sectional area of the sample in cm2 
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The electrical resistance measured by the Fluke digital multimeter, R consists of 

following three components: 

 

R = Rsample + Rcontact + Rwires  

 
A metallic hook was connected to a highly conductive copper wire of short length (about 

300 mm) so that magnitudes of the component Rwires is much smaller than the other terms 

and can be ignored. Contact resistance (Rcontact) plays a significant role relative to the 

overall specimen resistance. Contact resistance depends on contact area, contact gap, type 

of junction (metallic–metallic or metallic–semiconducting) etc. Conventionally metallic 

coats (like silver-epoxy, gold-epoxy etc.) are used as electrodes for better electrical 

connection and to minimize contact resistance. The present investigation is desired to be 

carried out at high temperatures (up to 140°C) and pressures (up to 40 MPa). Under such 

high pressure and temperature, the contact points might be expanded as metallic epoxy 

coats might become softened which affects the measurement of actual sample resistance.  

To overcome this situation and to get repeatable result, conductive copper mesh was 

selected as an alternative electrode for high temperature and pressure application. The 

mesh was impregnated on both surfaces of the samples (Figure 5.1a) by pressing them in 

the Wabash hot press at 340°C for one minute with a small compaction pressure of ½ ton. 

  

 
(a) 

 
(b) 

 

Figure 5.1: CNT-PEEK samples (a) with copper mesh, (b) with silver-epoxy paste. 

 

95 
 



To impregnate the copper mesh onto the round shaped CNT-PEEK sample, a very thin 

film of same wt% of CNTs and PEEK was used on top and bottom of the sample so that 

the copper mesh is impregnated permanently and does not move laterally during the 

compression experiment. With this arrangement, the contact resistance does not change 

under application of compression and temperature. As such, for comparison purposes, the 

effect of the contact resistance on different samples can be factored out. Electrical wires 

are connected to the copper meshes for electrical resistance measurement.  

 
A comparison of dc electrical conductivity ( dc) data obtained by AC measurement (done 

by DEA) and DC measurement (done by either Agilent High Resistance meter or Fluke 

digital multimeter) is presented in Table 5.1. The differences in the values are quite 

acceptable for higher wt% of CNT samples under the investigation in this chapter and in 

the next chapter. Conductivity obtained by DEA is larger in most samples than that 

obtained by DC measurements. With the increase of CNT concentration, conductivity by 

DC measurement approaches to that of DEA. This is because the number of nanotube 

contacts increases with increasing nanotube concentration and many conductive paths 

become available. As a result, potential charge carriers travelling through the network 

follows the paths which avoid larger barriers [45]. 
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Table 5.1: Comparison of electrical conductivity obtained by AC measurement and DC  

measurement 

wt% of 

CNT 

dc (S/cm) obtained by 

AC measurement 

(DEA) 

dc (S/cm) obtained by 

DC measurement 

(Agilent meter/Fluke 

Digital multi meter)  

% difference 

1.0 8.09 × 10-15 7.38 × 10-15 8.80 

2.0 1.27 × 10-14 1.16 × 10-14 8.93 

3.0 1.80 × 10-14 1.63 × 10-14 9.14 

3.1 3.58 × 10-14 3.16 × 10-14 11.70 

3.2 6.97 × 10-14 6.30 × 10-14 9.50 

3.3 1.34 × 10-13 1.23 × 10-13 7.85 

3.4 4.43 × 10-13 4.00 × 10-13 9.74 

3.5 5.62 × 10-13 5.18 × 10-13 7.72 

3.6 2.49 × 10-10 2.26 × 10-10 9.09 

3.7 7.82 × 10-10 7.10 × 10-10 9.12 

3.8 4.30 × 10-9 3.92 × 10-9 8.86 

3.9 1.11 × 10-8 9.87 × 10-9 10.97 

4.0 5.08 × 10-8 4.68 × 10-8 7.97 

5.0 1.76 × 10-7 1.59 × 10-7 9.31 

6.0 5.41 × 10-7 4.97 × 10-7 8.06 

7.0 1.89 × 10-6 1.75 × 10-6 7.67 

8.0 8.29 × 10-6 8.21 × 10-6 1.00 

9.0 9.66 × 10-6 9.86 × 10-6 2.01 

10.0 1.36 × 10-5 1.27 × 10-5 6.64 

 
 
To check the accuracy of the Fluke digital multimeter, measurements of voltage-current   

(Vi-I) relationship were made at room temperature using a Keithley 6220DC precision 

current source and a Keithley 2182A voltmeter and presented in Figure 5.2 for 
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conductive samples with CNT concentration 8 wt% to 10 wt%. From the slope of the 

linear fit and geometry of the sample, the electrical conductivity was calculated and 

presented in Table 5.2 to compare with those obtained from the measurement of Fluke 

digital multimeter. The results are in good agreement with accuracy more than 99%.  
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Figure 5.2: Vi-I characteristics of the composite samples. 

 
Table 5.2: Comparison of electrical conductivity measured at room temperature using 

fluke digital multimeter and Precision current source/voltmeter (Vi-I measurement) 

wt% of CNT  (by Fluke digital 
multimeter) S/cm 

 (by Vi-I measurement) 
S/cm 

8 8.31 × 10–6 8.29 × 10–6 
9 9.86 × 10–6 9.92 × 10–6 
10 1.27 × 10–5 1.23 × 10–5 

 

For comparison purpose, a few room temperature electrical conductivity measurements 

were performed using silver epoxy paste (Figure 5.1b) as electrodes to verify the results 

obtained with copper meshes. Table 5.3 shows the comparison of electrical conductivity 
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of samples obtained at room temperature using copper mesh and silver epoxy paste as 

electrodes. The difference between them is less than 6%. This can be due to variation of 

contact resistance from sample to sample.  

Table 5.3: Comparison of electrical conductivity measured at room temperature using 

copper mesh and silver epoxy paste as electrodes 

wt% of 
CNT 

 (by copper mesh) 
S/cm 

 (by silver epoxy 
paste) S/cm % of difference 

8 8.31 × 10–6 8.65 × 10–6 4.1 
9 9.86 × 10–6 1.03 × 10–5 4.5 
10 1.27 × 10–5 1.34 × 10–5 5.5 

 

5.2.3 Mechanical properties of CNT-PEEK composites 

In order to study the effect of pressure on electrical conductivity of CNT-PEEK 

composites by applying compression load, the mechanical properties of the composites 

should be known. Ogasawara et al. [171] recently published their experimental results on 

mechanical properties of CNT-PEEK composites. The relevant mechanical properties are 

presented in the following Table 5.4. 

Table 5.4: Mechanical properties of CNT-PEEK composites [171] 
 

Mechanical Properties 
 

Pure PEEK 9 wt% CNT-PEEK 

Young’s  modulus, E (GPa) 4.2 6.3 

Yield stress (MPa) 68 69 
 

The yield stress has been found almost same for pure PEEK and PEEK-CNT composites. 

To avoid the yielding of the CNT-PEEK composite samples under present investigation, 

a pressure (40 MPa) which is much less than the above yield stress has been selected as 

the highest level of pressure.  
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5.2.4 Testing of samples 

A schematic of the test set up is shown in Figure 5.3. The samples were compressed by 

applying a pressure from zero to 40 MPa in increments of 2 MPa using an MTS testing 

machine. Using a program in the MTS machine, the pressure (2 MPa) was increased by 

ramping at intervals of 2 minutes and after each increment of load, the pressure level was 

kept constant for an additional 5 minutes so that fluctuation of the experimental data is 

minimized. The sample resistance was measured across the thickness of the sample using 

a Fluke digital multimeter, which can measure resistances up to 100 M . Deformation of 

the sample in the thickness direction was recorded at each loading. After one cycle of 

loading up to 40 MPa, the unloading was done following the same procedure in the 

reverse direction and the corresponding data of electrical resistance and deformation were 

recorded. This loading-unloading was repeated several times to check the hysteresis of 

electrical resistance data. For each pressure level of both loading and unloading, 

deformation of the sample was taken into account to find sample thickness, z and to 

calculate the corresponding electrical conductivity.   

 

Figure 5.3: Schematic diagram of the experimental set up. 
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5.2.5 Dynamic Mechanical Analysis (DMA) 

Dynamic Mechanical Analysis (DMA) of nanocomposite sample was performed with a 

TA instruments dynamic mechanical analyzer (DMA 983) at a fixed frequency of 1 Hz 

and at oscillation amplitude of 0.5 mm. The temperature range was 0 to 250°C with a 

heating rate of 5 °C/min.  

5.3 Results and discussion 

5.3.1 Effect of pressure 

The electrical conductivity data reported here is the average of three samples of each 

nanotube concentration and is reproducible within 2% variation. The variation of 

electrical conductivity of samples containing three different weight concentrations of 

CNTs at different pressures are shown in Figure 5.4.  
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Figure 5.4: Electrical conductivity vs. applied pressure at room temperature (20°C). 
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Electrical conductivity increases sharply with increasing applied pressure up to a certain 

level and further increase in applied pressure has only a marginal effect on the change in 

conductivity. This variation in electrical conductivity with pressure follows a similar 

pattern at different CNT concentrations. At room temperature, the effect of pressure is 

more pronounced at lower pressure range than that at higher pressure range for all the 

samples. With the increase of pressure, rate of increase of electrical conductivity (slope 

of  vs. P) decreases. Therefore, there exists a critical pressure below which an 

appreciable change in conductivity takes place and the samples act as pressure sensitive 

conductive composites. Beyond this critical value of pressure, the composite samples do 

not behave like an efficient sensor as the change in conductivity with increase in pressure 

is small. The range of this critical pressure is found to be almost same, but the range of 

conductivity variation is found to be different for the samples of different CNT 

concentrations studied here. For example, over the same range of pressure variation from 

0 to 40 MPa, the magnitude of change in conductivity is highest for 8 wt% CNT samples 

(8.25 × 10–6 S/cm to 1.836 × 10–5 S/cm) while the magnitude is lowest for 10 wt% CNT 

samples (1.23 × 10–5 S/cm to 2.49 × 10–5 S/cm). 

5.3.2 Loading-unloading cycle 

The effect of loading-unloading cycle on the electrical conductivity of different samples 

at room temperature is shown in Figure 5.5. It is found that for all samples conductivity 

increases with the increase of number of cycles, but the loading and unloading cycles do 

not follow the same route. The change of electrical conductivity in the unloading cycle is 

very marginal at upper pressure region (above 20 MPa) while at lower pressure region, 
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Figure 5.5: Comparison of loading-unloading curves of 8 wt% – 10 wt% CNT-PEEK 

composites at room temperature (20°C). 

 
 
this change is appreciable. Thus, a difference between initial conductivity and final 

conductivity before the loading and after the unloading cycle is observed which can be 

termed as ‘electrical set’. This electrical set gradually decreases with the increase of 

nanotube concentration, but the rate of decrease is very nominal. Relative to the initial 

conductivity, the magnitude of electrical set in first loading-unloading cycle in Figure 5.5 

was calculated to be 19.64%, 16.67% and 12.5% for 8 wt%, 9 wt% and 10 wt% CNT-

PEEK composites respectively. In the case of repeated loading-unloading cycle (Figures 

5.6, 5.7 & 5.8) where results for only 1st and 2nd cycles are shown) of a particular sample, 

electrical set decreases rapidly and after second cycle, it becomes very marginal.  
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Figure 5.6: Repeated loading-unloading of 8 wt% CNT-PEEK composites at room 

temperature (20°C). 

 
 
The electrical hysteresis (i.e. difference between areas under conductivity vs. pressure 

curves for loading and unloading) was also found to be higher in the first loading-

unloading cycle for all samples than the second one, but this hysteresis was found to be 

of similar magnitude for all concentrations of nanotube in their identical loading-

unloading cycle. For example, in first loading-unloading cycle, hysteresis (area enclosed 

by the 1st loading-unloading curves in conductivity vs. pressure graphs) for 8 wt%, 9 wt% 

and 10 wt% CNT samples are almost same by observation. Therefore, it indicates that for 

these highly conductive composites, nanotube content has very little effect on the change 

of electrical conductivity under subsequent compression loading-unloading cycle.  
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Figure 5.7: Repeated loading-unloading of 9 wt% CNT-PEEK composites at room 

temperature (20°C). 

 
Again electrical conductivity also increases after each repeated loading-unloading cycles. 

At 40 MPa, for example for 8 wt% CNT samples (Figure 5.6), the conductivity after first 

cycle is 9.87 × 10–6 S/cm and after second cycle it is 1.11 × 10–5 S/cm. The difference 

between these two values gradually decreases for 9 wt% and 10 wt% CNT samples 

(Figures 5.7 & 5.8). It suggests that during first loading-unloading cycle, the system has 

attained a somewhat stabilized electrical network, which remains unaffected during 

further loading-unloading cycles. On successive loading-unloading, formation of new 

conducting paths and breakdown of existing conducting paths balance each other and 

thus composite conductivity becomes almost stable. 
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Figure 5.8: Repeated loading-unloading of 10 wt% CNT-PEEK composites at room 

temperature (20°C). 

 

Explanation of such behavior mentioned above lies in the fact that the intrinsic structure 

of the material changes due to the bulk deformation of the sample caused by external 

compression. In other words, when a compression is exerted on polymer composites 

filled with conductive CNTs, it causes movement of the polymer chains which in turn 

affects the nanotube structure. The change in electrical conductivity of the samples 

during deformation comes partially from nanotube displacement which affects the 

conducting paths in the material. Since nanotube and polymer molecules are interlinked 

in these highly conductive composites, the change in their electrical conductivities with 

applied pressure is determined by three simultaneous processes operative in the system:   
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(i) Compression leads to the formation of new conducting paths or redistribution of 

existing conducting paths because of nanotube orientation in the direction perpendicular 

to the applied load.  

(ii) Compression can cause a substantial decrease of inter-nanotube distance. When this 

distance is sufficiently small, electrons can hop easily because of inter-nanotube contact. 

(iii) Sufficiently high compression can cause a decrease in CNT–CNT contact resistance 

by squeezing out the matrix from the inter-nanotube gap. As such, CNT–CNT contact 

resistance with the presence of thin matrix film (in the order of 1013  [44]) becomes 

direct CNT–CNT contact resistance (in the order of k -M  [40]). 

Since above the percolation threshold, the electrical conductivity of the composites are 

controlled by the conductivity of the CNTs and the quantity and quality of their physical 

contacts, the above mentioned three processes play the dominant role in determining the 

change of overall conductivity of the composites under compression. Furthermore, the 

structure of the CNT network created by van der Waals forces is unstable and 

compression can change the unstable structure to a stable one by making unrecoverable 

changes to the conductive network. Therefore with the increase of compression cycles, 

structure of CNT network becomes steady and the relation between composite 

conductivity and applied pressure becomes stable as shown in the graphs (Figures 5.6, 5.7 

& 5.8). 

5.4 Theoretical considerations 

The electrical conductivity of conductive CNT based polymer composite materials 

depends on several factors including the amount of nanotube, type of polymer matrix, 
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prehistory of the sample, applied pressure and temperature. Under application of pressure 

or temperature, the mechanism of charge transport has a strong effect on the behavior of 

conductivity. The commonly used mechanisms are conductivity through direct contact 

between nanotubes and tunneling or hopping through the polymer film separating 

adjacent CNTs. At a certain volume fraction of CNTs, the inter-particle gap between 

CNTs become small enough to come close to or touch each other so that one to three 

dimensional continuous structures of conducting network be formed (Figure 5.9).  
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Figure 5.9: Formation of three dimensional conductive paths in CNT-PEEK composites 

without any externally applied pressure [160, 172]. 
 

As a result, contact effect or tunneling effect occurs and the local conductive path is 

formed in the insulating PEEK matrix. When external pressure is applied on the 

composites, the local conductive path can easily penetrate into the insulating matrix, thus 

forming effective conductive path. When the pressure is released, this conductive path is 
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discontinued. Figure 5.10 shows a schematic view of the formation of such conductive 

paths under the application of external pressure. With applied pressure, the conductive 

path is established at a lower volume fraction of CNTs than that of composites without 

applied pressure.  

  

Figure 5.10: Formation of conductive paths in CNT-PEEK composites under externally 

applied pressure [160]. 

 

  

  (a) Shell Structure (b) Local and effective conductive path 
 

Figure 5.11: Schematic diagram for the inner structure of CNT-PEEK composites [173].  

 
Wang et al. [173]  described the above phenomenon by a shell structure model as shown 

in Figure 5.11. According to this model applied to CNT-PEEK composite, phase A is a 

PEEK molecule chain with active micro-Brownian motion, which is not absorbed by 

CNTs; Phase B is a PEEK molecule chain, the motion of which has been restricted by 
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phase A; Phase C is macro PEEK molecule chain and is absorbed on the surface of CNTs 

to form a thin insulating layer; Phase D is a CNT. Elastic phases A and B are attached to 

Phase C, which acts as a framework, forming a 3-D network composed of CNTs and 

PEEK molecules. The schematic view of the local conductive path and effective 

conductive path are shown in  Figure 5.11(b). 

5.4.1 Derivation of piezoresistance model 

A phenomenon of changing electrical resistance of a material due to applied mechanical 

stress is called piezoresistance. The piezoresistive effect differs from the piezoelectric 

effect in the sense that the piezoresistive effect only causes a change in resistance; it does 

not produce any electric potential. In conducting composites the total resistance is a 

function of both the resistance through each conducting particle and the polymer matrix. 

Assuming that the resistance of the matrix is constant everywhere, the resistance of the 

paths perpendicular to the current flow may be neglected, and, thus, the number of 

conducting particles between electrodes becomes a factor in this relationship, as well as 

the number of conducting paths. Reproducing the Figure 4.1 here in  Figure 5.12, the 

total resistance can then be described by [72, 131] 

2

1
2

t c t c t cM R MR M R R MR
N N N a a

  (5.4)

 
where R is the composite resistance, Rt and t are  the tunnel resistance and tunnel 

resistivity between two adjacent particles, Rc and c are the constriction resistance and 

constriction resistivity across one particle, a is the radius of contact area, M is the number 

of particles forming one conducting path and N is the total number of conducting paths. 
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When the inter-particle separation is very large, no current flows through the inter-

particle separation [174]. But if the separation is small, the tunneling current may flow 

through the separation. According to the analyses of Simmons [143, 175-177] the 

tunneling current J at low applied voltage is given by 

Applied pressure

C
urrent flow

Electrode

Conducting path

Polymer Matrix

Conducting filler

 

 

Conducting filler 

Insulating gapTunnel

 
        

                           (a)          (b) 
Figure 5.12: Schematic of the formation of conducting paths under applied pressure [140] 
 
 

23 2 4, exp
2 i
m e sJ s V m
s h h

2   
 

(5.5)

 
where m and e are the electron mass and charge respectively, h Plank’s constant, Vi the 

applied voltage, s the thickness of the insulating film, and  the height of the potential 

barrier between the adjacent particles that can be obtained by the subtraction of 

polymer’s work function from the conductor’s. Because the electron tunneling 

probability depends on the insulating barrier thickness, it is considered that practically all 

the tunneling occurs within the small surface areas. Thus, as shown in Figure 5.12(b), s in 

equation (5.5) equals the separation between the surfaces of two adjacent particles, which 

is the least distance between the particles. 
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Using equations (5.4) and (5.5) tunneling resistance Rt can be obtained as  

 

2

2 2 2 2

1 2 4, e
3 2

t i
t

V h s sR s m
a a J ha e m

xp 2  
 
 (5.6)

 
The resistance of the composites depends on the nature of the contact between adjacent 

particles. The total resistance is the sum of the constriction resistance and tunnel 

resistance [142]. As the conductivity of the conducting particle is very large compared 

with that of the polymer matrix, the constriction resistance (resistance across the 

conducting particle) can be neglected (Rc  0). Then substitution of equation (5.6) into 

equation (5.4) gives 

2

2 2

2 4, exp
3 2

M h s sR s m
N ha e m

2   (5.7)

 
Using this equation, the composite resistance can be theoretically calculated. 
 
 
When the conducting particles are not in contact and separated by a thin polymer film 

(Figure 5.12(b)), the resistance (only tunnel resistance in this case) given by above 

equation (5.7) is not constant, because the inter-particle distance s changes with pressure.  

Let us assume that initially N0 conducting paths are available and if all M particles in 

each of N0 conducting paths are separated with the same initial thickness s0, then the total 

initial resistance of the composite can be calculated as: 

2
0 0

0 0 2 2
0 0

2 4( , ) exp 2
3 2

h s sMR s m
N ha e m

 
 
   (5.8)

 
Under compression, if the inter-particle separation decreases from s0 to s and the 

resistance changes from R0 to R: 
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where 
2
0
2 1a

a
, 4 2m

h
 and 0

0
g

s
s

s  is the local strain between two adjacent 

particles. This local strain is supposed to be proportional to the macroscopic strain: 

g  where   1 is a parameter to be determined by fitting experimental data. 

Assuming  =1 and    s0 = A0 (a constant),  

0
0

0

1 expNR A
R N

 
 
 (5.10)

 
If the applied pressure is uniaxial, the separation s can be expressed as follows: 

0 01 1 Ps s s
E

  (5.11)

 
where  is the strain of the polymer matrix, P is the applied pressure and E is the 

compressive modulus of the polymer matrix. 

The separation s under high compression is calculated as  

0 0
0

1 1 zs s s
z

  (5.12)
 

 
where  is the compressive strain of the matrix, z the deformation of composite sample, 

and z0 the initial thickness of the sample. Substitution of equation (5.12) into equation 

(5.10) yields 

0
0

0 0

ln ln ln 1NR z A
R N z z0

z   (5.13)
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Now let us consider two situations: 

(a) During tunneling of conducting particles, the number of conducting paths remains 

unchanged, i.e. N = N0.Then the first term on the right hand side of equation (5.13) 

becomes zero. As shown in Figure 5.13 (dotted line), the experimental data obtained on 

samples of 9 wt% CNT-PEEK composites at room temperature with R0 = 2800 ohm is 

compared to equation (5.13) under this situation. It is seen that the model of the tunneling 

current does not describe the experimental data very well. The fitted curve shown was 

obtained with A0 = 5.962379. 

(b) Suppose that the high rate of the decrease of R/R0 at larger deformations z/z0 is 

related to redistribution of the conducting network, i.e. the number of initial conducting 

paths N0 increases to N. To fit the curve, it can be assumed that 

2 3

0
0 0 0 0

exp z z z zN N A B C D
z z z z

4

 
 
 

 
(5.14)

 

where A, B, C and D are constants. 

By rearranging and taking logarithm,  

2 3 4

0

z0

0 0 0

ln N z z zA B C D
N z z z z

  (5.15)

 

Substitution of equation (5.15) to equation (5.13) gives 

 
2 3 4

0

R z z z z z z
z0

0 0 0 0 0 0

ln ln 1 A A B C D
R z z z z z

 
 
 (5.16)

 

Using logarithmic expansion series 
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Equation (5.16) can be simplified as 
 

2 3 4

0

z

0 0 0 0

ln R z z zA B C D
R z z z z

  (5.18)

 
Using curve fitting to obtain A', B', C' and D', the same experimental data with R0 = 2800 

ohm compared to equation (5.18) are shown in Figure 5.13 (solid line). A good 

agreement between the theoretical and experimental curves is achieved at  

A B = –35.815,  = 2732.972, C  = –57638.503, D  = 344345.842  
 
Here, the first co-efficient (A') is an indicative of nanotube separation distance (A'  

f( s)) and the other three terms signify the redistribution of conducting paths. 
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Figure 5.13: Experimental data of 9 wt% CNT-PEEK samples compared to          

equation (5.13) (tunneling, N = N0) and equation (5.18) (tunneling & redistribution). 
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As described in Table 2.1 and Table 2.2, the Young’s modulus of CNTs is about 300 

times higher than that of pure PEEK, therefore CNTs can be regarded as almost 

incompressible compared with PEEK and the application of external compression may 

theoretically induce translation and rotation of CNTs that causes redistribution of 

conducting paths and a change of electrical conductivity of one single effective 

conductive path and the number of the effective conductive paths [173]. Scanning 

electron micrograph of 9 wt% CNT-PEEK sample after compression shown in Figure 

5.14 confirms this redistribution of CNTs. With addition of CNTs, plastic deformation is 

increased, only the pull out of matrix is visible after compression on the fractured surface 

as compared with Figure 2.4 (e). 

 

Figure 5.14: SEM micrograph of 9 wt% CNT-PEEK sample after compression. 
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5.4.2 Mechanism of change in electrical resistance 

According to [173], changes in effective conductive path may occur as follows: 

 
1. Change in One Effective Conductive Path: The uniaxial pressure makes the gaps 

between two adjacent CNTs smaller, decreasing the electrical resistance of one effective 

conductive path. The electrical resistance of one single effective conductive path is 

described by equation (5.7) 

As shown in equation (5.7), the decrease of s, caused by uniaxial pressure causes a 

decrease in R, i.e. the gaps between CNTs becomes smaller and smaller during 

compression, leading to the increase of the tunneling current and consequently the 

resistance of one single effective conductive path decreases. 

2. Formation of Effective Conductive Paths: As the compressive pressure goes on 

increasing, the inter-particle distance between adjacent CNTs goes on decreasing which 

leads to the formation of new effective conductive paths. 

3. Redistribution of Effective Conductive paths: CNTs are incompressible compared with 

PEEK; therefore, compression can induce translation and rotation of a CNT. Because of 

transverse slippage, CNTs can be reoriented and redistributed within the matrix. This 

effect might have two opposite phenomena:  

(a) The effective conductive paths can be destroyed or the number of conductive paths 

can be decreased, 

(b) Because of the redistribution of CNTs, more effective conductive paths can be 

formed. 
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The changes (1), (2) and 3(b) contribute to the decreasing tendency of composite 

resistance as in the present case of CNT-PEEK composites, while the change 3(a) 

contributes to the increase in composite resistance as mostly observed in the cases of 

rubber matrix composite [74, 178]  

In conducting composites the total electrical conductivity is a function of both the 

resistance of each conducting particle and of the polymer matrix. Since the conductivity 

of a conducting particle is very high compared to that of polymer matrix, the resistance 

across the conducting particle can be neglected. When the inter-particle separation is very 

large, no current flows through the inter-particle separation, but if the separation is small, 

the tunneling current may flow through the separation [173].  

5.4.3 Parameters affecting the electrical conductivity of CNT composites 

CNTs can be assumed to have a rod like geometry. For a better understanding of the 

change of electrical conductivity of CNT composites, four different parameters are taken 

into consideration and analyzed in this section: (a) change of volume of the sample, (b) 

change of angle of an individual CNT, (c) change of electrical property of an individual 

CNT and (d) change of tunneling distance between CNTs.  

Let us consider a unit volume of CNT-PEEK composite sample having Lx, Ly and Lz as 

the initial length, width and thickness respectively. The unit volume contains a CNT of 

length l before the compression is applied.  
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5.4.3.1 Change of volume of the sample  

When a thin composite sample is compressed, the geometry of the sample changes 

resulting in a corresponding change in its volume and hence affects the volume 

concentration of CNTs ( ). The initial volume of the composite sample is given by 

Lz

Lx

Ly Matrix

CNT

        
 
                     

 
 

(a) before compression (b) after compression 

Figure 5.15: Unit volume of CNT-PEEK composite under compression. 

   x y zV L L L  (5.19)

 
It is assumed that application of compressive force along Z direction causes a change in 

the dimension of the unit volume and shear force (along X and Y direction) causes a 

change in the shape of the unit volume. Under compression, the dimension along Z 

direction decreases while incremental uniaxial tension occurs along the X and Y direction 

and the corresponding changes in the orientation and location of the CNT are taken into 

consideration by following affine transformation as shown in the Figure 5.15 where (a) 

and (b) denote respectively the configuration before and after incremental compression 

strain z. An affine transformation or affine map between two vector spaces consists of a 

linear transformation followed by a translation, i.e. under the external loading the length 
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components of the CNT change by the same ratio as the corresponding dimension of the 

matrix. This assumption can be justified from the fact that although the Young’s modulus 

of an individual CNT is about 300 times higher than that of pure PEEK, the Young’s 

modulus of 9% CNT-PEEK composites shown in Table 5.4 is only 1.5 times higher than 

that of pure PEEK. 

Therefore, changes of length in each direction as a function of incremental strain can be 

expressed as 

1x x z zL L x   (5.20)

1y y z z yL L (5.21)

1z z zL L (5.22)

 
Similarly the centre co-ordinates (X, Y, Z) of the CNT are changed to 

1 z z xx x (5.23)

1 z z yy y (5.24)

1 zz z (5.25)

 
where the xL , yL ,  are the current dimensions of the CNT after compression by z; zx 

and zy are the Poisson’s ratio of the film in X direction and Y direction respectively. The 

changed volume can simply be expressed by combining the above three equations  

zL

V = 1 1 1x y z x y z z z x z z y zL L L L L L (5.26)

 
Dividing the equation (5.26) by equation (5.19), the normalized volume is obtained as 

V = 1 1 1
V z z x z z y z  (5.27)
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Figure 5.16: Volume change of 9 wt% CNT-PEEK composite under uniaxial 

compression strain. 

 
Poisson’s ratio of PEEK at room temperature is taken as 0.4 (Table 2.1). The normalized 

volume was calculated by using equation (5.27) and plotted in the Figure 5.16 as a 

function of strain z along Z direction. From the graph shown in Figure 5.16, for 9 wt% 

CNT-PEEK sample, highest value of changed volume corresponding to lowest 0.0515 

strain is 90.98% and lowest value of changed volume corresponding to highest 0.0764 

strain is 86.8% of original volume. 

 
It can be concluded that the total volume of the CNT-PEEK sample decreases under the 

application of compression which decreases the percolation threshold, c and increases 

electrical conductivity,  as predicted by the percolation-based scaling rule (equation 

(3.9) and equation (3.3) respectively in chapter 3). The analysis presented above provides 

an estimate whether this volume change under compression is strong enough or not to 
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change the overall electrical conductivity. For 9 wt% CNT-PEEK sample at 0.0764 strain 

corresponding to 40 MPa applied pressure and changed volume 86.8% of original 

volume, the changed percolation threshold 'c is calculated using equation 3.9. Then 

using the value of f (4.3 × 10–2  S/cm) and t (2.517) in equation (3.3),  is obtained to be  

9.957 × 10–6 S/cm which is only 0.9% more than the unstressed sample. Thus, the 

contribution in the change of electrical conductivity made by volume change of the 

sample is negligible.  

5.4.3.2 Change of angle of an individual CNT 

The direction cosines of a vector are merely the cosines of the angles that the vector 

makes with the X, Y, and Z axes, respectively.  These angles are labeled as  (angle with 

the X axis),  (angle with the Y axis) and  (angle with the Z axis) as shown in Figure 

5.17. 

 

 

Figure 5.17: Different angles of a CNT in 3-D co-ordinate axes 
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The change of angle of a CNT inside the matrix under uniaxial compression can be 

studied with respect to the chosen co-ordinate system in three-dimensional consideration, 

where a CNT can have the abovementioned three different angles ( : azimuthal angle, : 

angle between Y axis and the CNT and : angle between Z axis and the CNT). 

 
The change of angle of a CNT can be calculated using the equations derived by Taya et 

al. [148]. Before compression, length components of a CNT in Cartesian co-ordinates can 

be expressed as 

sin cosxl l  (5.28)

sin sinyl l  (5.29)

coszl l  (5.30)
 
where li (i = X, Y, Z) are the length of the CNT rod and  and  are the angles before 

compression. 

For compressive normal component of load along Z axis 

The length components of the CNT rod due to compressive strain can be written as 

sin cosxl l  (5.31)

sin sinyl l  (5.32)

coszl l  (5.33)
 

where  (i = X, Y, Z) are the length of the CNT rod and il  and  are the angles after 

compression. 

For shear component of load along negative X axis 

The length components of the CNT rod due to compressive strain can be written as 
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sin cosxl l  (5.34)

sin sinyl l  (5.35)

coszl l  (5.36)
 

where  (i = X, Y, Z) are the length of the CNT rod and il  and  are the angles after 

compression. 

For shear component of load along negative Y axis 

The length components of the CNT rod due to compressive strain can be written as 

sin cosxl l  (5.37)

sin sinyl l  (5.38)

coszl l  (5.39)
 

where  (i = X, Y, Z) are the length of the CNT rod and il  and  are the angles after 

compression. 

Applying affine transformation assuming proportional change in L and l,   

, ,i i

i i

L l i x y z
L l

 (5.40)

 
By applying this relationship of equation (5.40) to the equations (5.20) – (5.22), (5.28) –

(5.30) and (5.31) – (5.39), the following relations are obtained 

sin cos1
sin cos

x x
z z x

x x

L l l
L l l

 (5.41)

sin sin1
sin sin

y y
z z y

y y

L l l
L l l  (5.42)

cos1
cos

z z
z

z z

L l l
L l l  (5.43)
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By using equations (5.41) – (5.43), the reorientation angles of a CNT after compression 

are derived as 

1 1
tan tan

1
z z y

z z x

 (5.44)

1
1 sin

tan tan
1 sin

z z y

z
 

(5.45)

 
The relative angle changes for both angles are plotted in Figure 5.18 from 0 to /2. Here, 

assuming CNT-PEEK composite as a homogeneous isotropic material, same value of 0.4 

was used for both zx and zy. The strains of 0, 0.05151, 0.068 and 0.07641 indicated in 

the legend of the Figure 5.18 correspond to the applied experimental pressures of 0, 2 

MPa, 24 MPa and 40 MPa respectively. 
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Figure 5.18: Change of Angle of a CNT in PEEK induced by compression. 

From the above graphs (Figure 5.18), it is seen that azimuthal angle,  does not change at 

all when the external compression load is applied along Z axis, while the angle between Z 

axis and the CNT changes slightly. This change of angle is related to the parameters of 

equation (3.3) affecting c and contributes in the increase of electrical conductivity. 

125 
 



Qualitatively, it can be said that because of compression, randomness in angle 

distribution decreases which in turn can decrease c and thus it can increase the value of 

 in equation (3.3).  

In the above analysis, the modulus of elasticity of polymer matrix was not considered. To 

investigate the effect of modulus of polymer, a Finite Element Analysis in ANSYS 12 

has been carried out using the technique of representative volume element (RVE) 

modeling. Based on continuum mechanics, RVE modeling predicts the effective 

properties of randomly distributed heterogeneous materials by considering a given 

volume of microstructure. Using the concept of RVE and simulating a single CNT and its 

surrounding matrix, Liu and Chen [179] showed the accuracy and feasibility of 

evaluating material properties.   

 

 
 
Figure 5.19: Schematic of RVE and boundary conditions for finite element analysis. 
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A RVE of 100 nm × 100 nm × 20 nm was considered where a single CNT of length 

70.71 nm and diameter 10 nm surrounded by PEEK matrix was assumed to be inclined at 

an arbitrary initial angle of 45° with Z axis. The material constants are extracted from 

Table 2.1 and Table 2.2. The schematic of the RVE and the boundary conditions are 

shown in Figure 5.19.  

(a) Applied pressure 2 MPa 
(strain = 0.0515) 

(b) Applied pressure 24 MPa (strain = 0.068) 
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Figure 5.20: Finite element analysis showing the effect of modulus of polymer matrix on 

CNT's rotation. 
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The analysis was done in static mode using element ‘solid45’ for both CNT and PEEK. 

Distributed pressures of 2 MPa, 24 MPa and 40 MPa corresponding to the compressive 

strains of 0.0515, 0.068 and 0.0764 respectively were applied on the RVE. The resulting 

deformations together with undeformed shape of the CNT are shown in Figure 5.20 (a) to 

(c).  

To calculate the angular rotation with respect to Z axis, two central nodes on both ends of 

the nanotube were selected. Using the geometry of deformed and undeformed shape, the 

calculated values of angle ( ) between Z axis and the CNT are compared in Figure 5.20 

(d) with those presented in Figure 5.18. The effect of the modulus of elasticity of PEEK 

on the rotation of CNT shown in Figure 5.20 (d) can be discussed in terms of percent 

change of angle,  with respect to its initial value. For the presented result of 

uncompressed initial angle,  = 45° = 0.785392 rad, the percent change are given below 

in Table 5.5  

Table 5.5: Comparison of change of angle ( ) without matrix and with matrix 

Applied Pressure 
(MPa) 

 
Strain 

Change in  
(without matrix) by 

analysis 

Change in  

(with matrix) by FEM 

2 0.0515 4.66% 0.35% 

24 0.0680 6.18% 0.83% 

40 0.0764 6.96% 1.18% 

 

It can be seen that the polymer matrix opposes the rotation of CNT in the direction of 

applied pressure. The amount of this restriction depends on the magnitude of its modulus 

of elasticity. PEEK is a considerably stiff material with high modulus of elasticity 
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(3.7~4.0 GPa). To compute overall conductivity of the composite, the rotation of CNT 

inside PEEK can be neglected. Thus, angle change phenomena indicated in the Figures 

5.18 and 5.20 is not strong enough to change the overall electrical conductivity of the 

CNT-PEEK sample under compression. 

5.4.3.3 Change of electrical property of an individual CNT 

Cao et al. [180] experimentally measured electrical properties of single walled carbon 

nanotubes (SWCNTs) under stretching and their report shows that the electrical 

conductivity of metallic SWCNTs vary linearly with a small finite slope. In the present 

study, only multi walled carbon nanotubes (MWCNTs) were used which are simply 

composed of multiple numbers of concentric SWCNT. Therefore, it is reasonable to 

assume that most MWCNTs are insensitive to external strain and in the present analysis; 

the effect of change of intrinsic electrical conductivity due to external compression is 

ignored. Thus, the bulk electrical conductivity of CNT-PEEK composite film is not 

affected by the intrinsic conductivity change of an individual MWCNT inside the matrix. 

5.4.3.4 Change of tunneling distance between CNTs 

Carbon nanotubes inside the matrix can be regarded as a network of conductors. There 

are two primary components of electrical resistance of the network, namely the intrinsic 

electrical resistance of an individual CNT (Rc) and the tunneling resistance (Rt) between 

two adjacent CNTs. Since the first component has been ignored under external strain as 

discussed in the previous section, the second one i.e. tunneling resistance is thought to be 

the major parameter affecting the electrical properties. 
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For polymer nanocomposites, Yasuoka et al. [181] approximated Simmons' equation of 

tunneling resistance Rt by factoring out of the constant term 2
3

 from equation (5.6) as 

2
0

2 2
0

4 2
exp

2t

s mh sR
ha e m  (5.46)

 
where 0 is the work function of a CNT with other constants and symbols same as given 

in equation (5.6). The tunneling resistance ratio after and before compression is given as 

0
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 (5.47)

 
where the subscript 0 represent the uncompressed state of the sample. 

The new distance s between two CNTs due to uniaxial compression loading can be 

written from equation (5.12) as 

0 0

1s z
s z  (5.48)

0 0
0

zs s s
z  (5.49)

  
Substitution of the above two expressions into equation (5.47), 

0

0
0

0 0

41 exp 2t

t

R s zz m
R z z h  (5.50)

                                                                    In this equation, Plank’s constant, h = 6.62 × 10–34 J.s, Mass of an electron, m = 9.11 × 

10–31 Kg and Work function of a CNT, 

 

0   4.8 ~ 4.95 eV [144]. 

Equation (5.50) shows that under the application of compressive strain , tunneling 

resistance decreases exponentially with original distance s0 between two CNTs. In high 

volume fraction composites, because of closer packing, the initial distance between two 
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adjacent CNTs is smaller than that in low volume fraction composites; therefore, the 

applied strain vs. resistance behaviour can be quite different for high volume and low 

volume fraction composite films. Using the procedure described in chapter 4, the initial 

distance between two CNTs rods can be correlated to volume fraction by assuming a 

power law s0 = K . Putting the value of constants K and , s0 for different CNT loadings 

and then tunnel resistance Rt for different  values under applied compression can be 

calculated. The following Figure 5.21 shows relative resistance (Rt/Rt0) for 8 wt%, 9 wt% 

and 10 wt% CNT-PEEK composites calculated by using above mentioned constants, 

equation (5.50) and the fitting parameters obtained by Simmons' model (equations (4.6), 

(4.9) – (4.14)) in chapter 4. From the graph, it is seen that contact resistance decreases 

drastically by about 3 orders of magnitude after applying the first load of 2 MPa. For 

example in the case of 9 wt% CNT-PEEK composites, Rt/Rt0 decreases from 1.0 to 1.72 

× 10–3 when pressure increases from zero to 2 MPa. Subsequent application of load 

gradually decreases the contact resistance in an exponential pattern. At the highest load of 

experiment (40 MPa), Rt/Rt0 is in the order of 10–5. Among the three samples, initial 

distance between two CNTs is highest in 8 wt% CNT (1.33Å) and lowest in 10 wt% CNT 

sample (1.29Å), thereby possessing highest and lowest initial contact resistances 

respectively. Under the application of pressure, contact resistances decrease and the 

difference between new contact resistances among the samples is very marginal. 

Accordingly, in Figure 5.21, lowest value of Rt/Rt0 for 8 wt% CNT and highest value of 

Rt/Rt0 for 10 wt% CNT composites are observed. It also implies that concentration of 

carbon nanotubes has very marginal effect in the change of contact resistance of highly 

conductive composites under pressure. Application of compression load causes the 
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polymer chains to move which in turn affects the movement of CNT network and 

eventually CNTs get closer to each other. As a result, tunneling resistance and hence 

contact resistance decreases with increase in pressure. The ultimate result is an increase 

in electrical conductivity.  

It is now understood that out of four parameters [(a) change of volume of the sample, (b) 

change of angle of an individual CNT, (c) change of electrical property of an individual 

CNT and (d) change of tunneling distance between CNTs], the effect of tunneling 

distance is more significant while the effect of the other three’s is almost negligible. 
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Figure 5.21: Relative contact resistance against applied pressure for 8 wt% – 10 wt% 

CNT-PEEK composites. 

 
Earlier it was mentioned that two processes play an important role on the electrical 

conductivity at the same time when pressure is applied: One is the tunneling distance/gap 

among the CNT aggregates that becomes smaller due to compression accompanied by the 
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decrease of contact resistance and hence increase of electrical conductivity and the other 

is the conductive pathways which are re-established due to the orientation of the plane. 

These two processes would assist each other, so the electrical conductivity should be 

determined by the net result of these two different processes. When the pressure is 

completely removed, the conductive pathways are temporarily interrupted and gap 

between CNTs may restore to its original value and the conductivity of the samples 

decreases. Relaxation of CNTs also has effect in this process. However, since PEEK is 

considerably a stiff material, this relaxation is not very significant. 

5.5 Development of pressure model 

A simple semi-empirical mathematical model has been developed to correlate the 

experimental data of electrical resistance under the effect of compression.  

z

P
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Pi Pf

zf

          (a)                (b) (c) 

Figure 5.22: Schematic of a composite sample under applied pressure. 

 

Let us consider a small sample of thickness z and cross sectional area A. At two different 

pressures Pi and Pf, the electrical resistances are given by 

iR i iz
A  (5.51)

fR f fz
A  (5.52)
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where i and f are the resistivity and zi and zf are the thicknesses of the sample at two 

pressures Pi and Pf shown in Figure 5.22.  

 
Dividing equation (5.52) by equation (5.51) 

f
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Pz z z
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 (5.53)

 
Since the resistivity  is not strongly dependent on pressure, to simplify the analysis, for 

the same temperature, this material property can be assumed to be constant. After 

simplification, 

f
f i

i

E P
R R

E P  (5.54)
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Figure 5.23: Dynamic Mechanical Analysis (DMA) of 9 wt% CNT-PEEK Composites. 
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Figure 5.24: Comparison of electrical resistance of 9 wt% CNT-PEEK composites at 

room temperature obtained by experiment and the proposed model. 

 

In equation (5.54), modulus of elasticity, E was taken from the results of Dynamic 

Mechanical Analysis (DMA) carried out from room temperature to 250°C as shown in 

Figure 5.23. Typical value of E at room temperature as obtained from this analysis is 

3149 MPa. Electrical resistances (in ohm) at room temperature with respect to applied 

pressure (in MPa) for 9 wt% CNT-PEEK sample are calculated using equation (5.54) and 

compared with the experimental data shown in Figure 5.24. The results obtained by the 

simple model are in good agreement with those obtained by experiment. 
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5.6 Summary 

1. Electrical conductivity increases with increasing pressure up to a certain level and after 

that the increase is very marginal. 

 
2.  Electrical conductivity increases in the case of repeated loading-unloading cycles. 

Electrical hysteresis and electrical set gradually decreases on successive loading-

unloading cycles. Nanotube content does not have significant effect on this electrical set 

and electrical hysteresis. 

 
3. Applied pressure reduces the gap between carbon nanotubes which causes the increase 

in electrical conductivity. Applied pressure causes an increase (redistribution) of the 

number of conducting paths. 

 
4. Under application of pressure, effect of tunneling distance is significant in increasing 

electrical conductivity, while the effects of change of volume of the sample, change of 

angle of an individual CNT and change of electrical property of an individual CNT are 

negligible.  

 
5. The proposed semi-empirical pressure model is verified well by the experimental data.



Chapter 6  

Effect of Temperature on Electrical Conductivity of 
CNT-PEEK Composites 

6.1 Introduction 

One of the important properties of electrically conductive composites is the temperature 

coefficient effect which means that electrical resistivity of the composites either increases 

(Positive Temperature Coefficient, PTC) or decreases (Negative Temperature 

Coefficient, NTC) during the heating process. Apart from the conventional application in 

semiconducting materials for dissipation of static electricity, these conductive materials 

have found widespread applications including heating elements, self-regulating heaters, 

gas sensors, switching materials, over-current protectors [145]. In a changing temperature 

environment, stabilization of conductive composites is also important. Hou et al. [182] 

studied the stabilization performance of conductive carbon black (CB) filled conductive 

polymer composites. A large number of authors published their work on temperature 

dependence of electrical conductivity and conduction mechanism for polymer 

composites, rubber composites, metal matrix composites etc. In this chapter, discussion 

on a few representative polymeric composite systems made of thermoplastic matrices 

will be presented.  

 
Zhang et al. [183] studied the temperature dependence of electrical properties of Carbon 

Black (CB) filled Ultra High Molecular Weight Polyethylene (UHMWPE) composites 

prepared by hot compaction. Using two different molecular weight UHMWPE, they 

reported that (i) The percolation threshold of these composites decreases with the 
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increase of molecular weight of UHMWPE and with the decrease of particle size of CB, 

(ii) PTC effect of the CB-filled lower (145 million) UHMWPE composite decreases with 

increase of CB size, (iii) for higher (630 million) UHMWPE, no NTC effect was 

observed above percolation threshold, but two PTC effects were observed; first one was 

near the melting temperature (Tm) of polymer and second one was at a very high 

temperature (210 °C). By repeating the measurement on several heating-cooling cycles, 

they found that second PTC effect disappeared after the first heating-cooling cycle and 

the resistivity at room temperature increased with the number of cycles and thus they 

concluded that at higher temperature, reduction of viscosity and hence increased 

intermixing of UHMWPE and CB particles were attributed to the second PTC.  

 
Natsuki et al. [184] investigated the influence of CNT concentration on electrical 

resistivity as a function of temperature using VGCF/UPR and VGNF/UPR 

nanocomposites made by solvent evaporation method. They reported a sharp increase in 

electrical resistivity (PTC) with strong temperature dependence near the percolation limit 

of 1 wt% of VGNF. But with the increase of thermal cycles, electrical resistivity 

decreased which was attributed to the thermal stabilization of CNFs within the polymer 

matrix. In their study, weak temperature dependence was noticed at temperatures close to 

the melting temperature. PTC effects of VGNF/UPR composites showed higher stability 

than those of VGCF/UPR composites. 

 
Li et al. [119] investigated the temperature dependence of electrical conductivity of 

pristine and oxidized MWCNT-PVDF composites and reported that transition 

temperature (Tt) from PTC to NTC of the oxidized MWCNT-PVDF composites shifted 
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to a higher temperature which was attributed to the chemical functionalization of CNTs. 

With the increase in temperature, they found a subsequent number of increase and 

decrease of dielectric constant of those composites generating a ‘wavy’ phenomenon. 

Interfacial polarization effect was considered to be the cause of such behaviour.  

 
Nakamura and Tomimura [185] obtained PTC and NTC in their study of temperature 

dependence of electrical resistivity of CB-PE composites below and above percolation 

threshold respectively. They explained PTC with tunneling conduction model by 

incorporating the effect of thermal expansion of the composites into the tunneling gap 

and NTC by a combination of both tunneling conduction and thermally activated 

electrical conduction. 

 
Hindermann-Bischoff and Ehrburger-Dolle [186] reported that electrical resistivity of CB 

filled HDPE increased (PTC) significantly when composites were heated to the melting 

temperature of the matrix. Since an expansion of polymer matrix during heating 

increased the gaps between CB particles, a sufficient amount of CB particles were 

required to ensure that the gaps between CB particles were small enough to allow 

electron tunneling. Lisunova et al [187] also observed same PTC effect for MWCNT-

UHMWPE in the region of temperatures higher than melting point.  

 
Logakis et al. [86] studied frequency and temperature dependence of electrical 

conductivity of CNT-polyamide composites for various concentrations of CNTs (for 

samples both below and above percolation threshold) as well as pure PA6. They reported 

a steeper increase of electrical conductivity above glass transition temperature (Tg) than 

that below glass transition temperature (Tg) regardless of nanotube content and hence 
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suggested that conductivity of conductive samples above Tg is governed by the motion of 

polymeric chains as it is in the case of non conductive samples [188]. A different 

explanation was given by Bin et al. [189] to describe a similar behavior obtained in their 

study of MWCNT-UHMWPE composites by reasoning that when heated to/above 

melting point, mobility of polymer molecules increases and their active movement and 

rearrangement enhances nanotube to nanotube contact, thereby increasing the 

conductivity of composites. They pointed out that thermal expansion of polymer was 

insignificant to disrupt the conduction between nanotubes and mobility of the polymer 

was controlled by CNTs.  

 
The above review of literature shows that strong interests prevail among the researchers 

to explore and understand the phenomena of temperature dependence of electrical 

conductivity of composites. However, a close observation reveals that most of these 

researches on polymeric composites were done using polymers of low glass transition 

temperature and low modulus. For example, Tg of PE is –120°C, PVDF –35°C, PA 50°C 

etc. In terms of their electrical conductivity, to understand the behaviour of CNT 

composites using high modulus and high Tg thermoplastic polymer for high temperature 

application has rarely been attempted. At high temperatures, some factors like nanotube 

content, thin insulating film, thermal expansion and modulus of matrix, mobility/activity 

of electrons below or above Tg etc. make the phenomenon quite complex. 

In this chapter, focus will be given on the variation of electrical conductivity of the 

composites for different CNT loadings with temperature for heating and cooling, 

conduction mechanism and how those are affected by above mentioned factors.  
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6.2 Experimental 

6.2.1 Testing of samples 

To determine the electrical conductivity at elevated temperatures, the entire electrode 

system was placed in a confined mica insulated aluminium band heater where the 

temperature could be monitored and controlled over the range 20°C – 500°C. Heat was 

supplied to the surfaces of the heater as well as to the sample by a programmable i-series 

Temperature/Process controller from Omega Engineering Inc. USA. The heater was 

covered with insulating material to prevent heat loss to the surroundings by convection 

heat transfer (Figure 6.1). Temperature was increased from room temperature (20°C) to 

140°C at intervals of 5°C. Each temperature level was kept constant for 5 minutes to get 

stable readings of sample resistance. 

To examine the combined effect of temperature and pressure on electrical conductivity, 

the above procedure was repeated while the samples were being compressed using an 

MTS testing machine. The details are described in section 5.2.4. 

Programmable 
Temperature 
Controller

Fluke 
Digital 

Multimeter
Power

Thermal Insulation

Upper plate of Al heater

Lower plate of Al heater

CNT-PEEK Sample
Copper Mesh

 

Figure 6.1: Schematic of the Experimental Set-up. 
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6.2.2 Investigation of the effect of Joule heating 

Due to the increase of conductivity at elevated temperatures, there is a possibility of 

further temperature increase due to Joule heating, also known as resistive heating or 

Ohmic heating. Because of heating, thermal emission of electrons between two separated 

CNTs (when their distance of separation is small, but not equivalent to physical contact) 

increases, leading to an increase in conductivity. To investigate the effect of Joule 

heating, the sample temperature was measured using a K-type thermocouple attached 

directly to the sample and compared with the oven temperature. This measurement was 

repeated several times for different wt% of CNT-PEEK composites and reproducible 

results were obtained. As shown in Figure 6.2, a slope equal to 1 indicates that 

thermocouple temperature is same as the oven temperature which proves that Joule 

heating in the present case has no effect on increasing conductivity. 

20 40 60 80 100 120 140 160
20

40

60

80

100

120

140

160

 Experimental
 Linear fit

 

Th
er

m
oc

ou
pl

e 
te

m
pe

ra
tu

re
 (°

C
)

Oven temperature (°C)

±0.004 

y = a + b*x
a = 1.023 ±0.392 
b = 1.007

  
Figure 6.2: Plot of thermocouple temperature versus oven temperature. 
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6.2.3 Thermo Mechanical Analysis (TMA) 

Thermo Mechanical Analysis (TMA) of the nanocomposite samples containing 8 wt%, 9 

wt% and 10 wt% CNTs was performed with a TA instrument (TMA Q400) in penetration 

mode with 5mN load by ramp method. The temperature range was 20°C to 140°C with a 

heating rate of 3 °C/min. 

6.2.4 Thermal analysis (DSC) 

The crystallization and melting behaviour of pure PEEK and its composites were 

investigated by Differential Scanning Calorimetry (DSC) using TA instruments, DSC 

Q200-2211 in the temperature range of 40~380°C at a heating rate of 10°C/min. Samples 

varying from 9.9 to 11.5 mg were placed and sealed in open Aluminum Hermitic pans. A 

constant nitrogen flow of 50 ml/min was used to purge the instrument. Before starting the 

test, the instrument was calibrated according to the manufacturer’s recommendation. 

The transition temperatures were taken as the peak maximum or minimum in the 

calorimetric curves. For pure PEEK and CNT-PEEK composites, the degree of 

crystallinity was calculated using the following relation: 

100m c
c

m X

Q Q
X

w Q
 

 
(6.1)

 
where Xc is the degree of crystallinity expressed in percentage, Qm and Qc are the 

experimentally obtained melting and crystallization enthalpies respectively, wm is the 

weight fraction of PEEK  in the composites and QX  130 J/g [190, 191] is the 

extrapolated value of enthalpy corresponding to the melting of a 100% crystalline PEEK 

sample. 
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6.3 Results and discussion 

The experiments were performed for at least three samples for each of the 8 wt%, 9 wt% 

and 10 wt% of CNTs and their average results have been presented in this section.  

6.3.1 Thermo-mechanical properties 
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Figure 6.3: Relative change of composite sample thickness with temperature. Inset shows 

TMA of a representative 9 wt% CNT-PEEK sample.
 

 
Using the Thermo Mechanical Analysis (TMA), ratios of thermal expansion of the 

samples along the thickness direction ( z) to their initial thickness (z0) were calculated. 

As shown in Figure 6.3, the relative change of z/z0 at most of the temperatures of 

experiment was found to be in the order of 10-4 and hence in calculation of electrical 

conductivity using equation (5.3), the thickness variation due to thermal expansion of the 
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samples was ignored and a constant sample thickness was assumed for all temperatures 

during the experiments. Discussion on these results will mainly focus on effect of 

temperature on electrical conductivity of CNT-PEEK composites for both heating and 

cooling.  

6.3.2 Thermal properties 

 

Figure 6.4 shows the DSC thermograms of pure PEEK and CNT-PEEK composites. 

These curves are the first heating scans of the matrix and the composites. An exothermic 

peak at about 160°C indicating the glass transition point (Tg) and an endothermic peak at 

about 340°C indicating the melting point (Tm) are clearly seen.  
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Figure 6.4: DSC thermograms of PEEK and the CNT-PEEK composites. 
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An exotherm was expected to appear at a temperature above the glass transition 

temperature (Tg), because semicrystalline polymers above Tg attain sufficient molecular 

mobility and as a result, they wiggle and squirm and try to move into an ordered 

arrangement. When polymer chains are in such crystalline arrangement, they give off 

heat. But in the present case, such exothermic peak does not exist due to the previous 

thermal history of the samples during their manufacturing process. This means that the 

polymer chains are already mostly ordered. At melting point (Tm), these chains come out 

of their ordered arrangements and begin to move around freely. The melting peak 

decreases by the addition of CNTs which indicates an effective association between 

PEEK and CNTs. The melting enthalpies (Qm) were calculated as the normalized integral 

of melting peak from DSC thermograms, crystallization enthalpies (Qc) were taken to be 

zero as there is no crystallization exotherm and accordingly the percent crystallinity was 

calculated for pure PEEK and CNT-PEEK composites using equation (6.1). The glass 

transition and melting temperatures, the melting enthalpies and the calculated percent 

crystallinity are listed below in Table 6.1. 

Table 6.1: Thermal properties of PEEK and CNT-PEEK composites obtained by DSC 

Sample 
Glass Transition 

Temperature, Tg (°C) 
Melting 

Temperature, 
Tm (°C) 

Melting 
enthalpy, 
Qm (J/g) 

Degree of 
crystallinity 

Xc (%) Onset Ave. Offset 

Pure PEEK 144.1 146 149.1 344.5 47.71 36.7 

8 wt% CNT-PEEK 154.8 162.8 174.6 338.44 34.95 29.22 

9 wt% CNT-PEEK 153.2 162.3 172.4 338.35 32.85 27.77 

10 wt% CNT-PEEK 149.9 151 158 335.65 28.87 24.68 
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The data presented in Table 6.1 shows that with an increase in CNT concentrations, the 

glass transition temperatures (Tg), the melting enthalpies (Qm) and the degree of 

crystallinity decrease, and there is no significant change in the melting temperatures (Tm). 

These observations are unusual and intriguing, because CNTs usually act as nucleating 

agent [192, 193] which increases the rate of crystallinity by simultaneously starting 

nucleation at multiple points. This unusual behavior can be explained in terms of 

confinement effect [194] that the CNT network imposes a confinement or barrier on 

polymer chain diffusion which slows down the overall phase transformation process. 

Similar observations were also reported by Sandler et al. [195] and Diez-Pascual et al. 

[81] on DSC analysis of CNF-PEEK and SWCNT-PEEK composites, respectively. 

6.3.3 Effect of temperature 

To understand the charge transport mechanism in the nanocomposites under 

consideration, the temperature dependence of electrical conductivity in three different 

weight concentrations of CNT samples were investigated where the fluctuations of 

conductivity data among a number of same weight concentrations of CNT samples were 

minimum and repeatability of the results was satisfactory. Variations of electrical 

conductivity with temperature for 8 wt% – 10 wt % CNT-PEEK samples are presented in 

Figure 6.5. It reveals that, while the electrical conductivity increases with increase in 

temperature, the trend of electrical conductivity is concave downward for 8 wt% CNT-

PEEK while those for 10 wt% CNT-PEEK is concave upward with the increasing 

temperature. This phenomenon can be attributed to the complex combination of the effect 

of temperature and the effect of increasing number of CNT contacts.  
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Figure 6.5: Electrical conductivity of samples of 8 wt% – 10 wt% of CNTs at different 

temperatures. 

For samples with 8 wt% CNTs 

According to the tunneling mechanism, electrons tend to jump from nanotube to 

nanotube across the gap made of polymeric material. With increasing temperature, this 

gap will increase, which makes the jumping of the electrons more difficult. However the 

increase of the gap depends on the stiffness of the polymeric material. Increasing the 

temperature tends to reduce the modulus (stiffness) of the polymer and correspondingly 

enlarge the tunneling gap. This enlargement of the gap reduces the effect of the increase 

in electronic activities due to temperature increase. The concave downward shape of the 8 

wt% CNT curve can be explained by the rapid reduction in modulus of the polymer 

material at higher temperatures. 
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For samples with 10 wt% CNTs 

For these samples, the amount of CNTs is high and there are significant numbers of 

contacts between the CNTs, and the polymeric gap is smaller (as compared to samples 

containing 8 wt% CNTs). When the number of electrical contacts is sufficiently large, the 

conduction by electronic movement is dominant as compared to the tunneling 

mechanism. Increasing temperature tends to increase the electronic movement, thus 

resulting in higher electrical conductivity. This can be used to explain the concave-

upward shape of the 10 wt% CNT curve. 

For samples with 9 wt% CNTs 

The amount of CNTs in these samples is intermediate between those of 8 wt% and 10 

wt% CNTs. The curve is straight indicating that the effects of reducing polymer stiffness 

(thus enlarging the gap and reducing conductivity) and increasing electronic movement in 

the CNTs balance out over the temperature range.  

6.3.3.1 Heating-cooling curves 

The experimental data of electrical conductivity for heating and cooling cycles of 8 wt% 

– 10 wt% CNT-PEEK composites are shown Figure 6.6. It is noted that heating and 

cooling curves in the  = f(T) plots do not follow the same path, as a result electrical 

hysteresis (i.e. the difference between the areas of electrical conductivity-temperature 

curves) has been generated. The initial and final conductivity at room temperature after 

the heating and cooling cycles are found to be different and this difference is termed as 

‘electrical set’ in a similar fashion of the loading and unloading cycles described in 

chapter 5. As shown in Figure 6.6, the electrical set gradually decreases with increasing 
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wt% of CNTs. A small increase in electrical conductivity is observed during the cooling 

cycle. In the heating cycle, electrical conductivity increases because of increased electron 

activity at higher temperature. On cooling, conductive CNT fillers may re-agglomerate 

which can be the cause of higher conductivity, as compared to heating. The total 

contribution of all these processes on electrical conductivity is more than the effect of 

conductive network breakdown process due to differential thermal expansion of polymer 

network and CNT aggregates [65]. For higher concentration CNT composites, conducting 

CNTs are available in greater number and their average distance is much less. As a result, 

process of agglomeration or electron activity becomes less significant, because only a 

few more conducting networks will effectively be added to the large number of networks 

already present in the system. 
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Figure 6.6: Electrical Conductivity vs. temperature during 1st heating-cooling cycle of          

8 wt% – 10 wt% CNT-PEEK composites. 
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When polymer composites are used as thermistors for electrical heating, they are 

subjected to repeated thermal cycles, and it becomes necessary to understand how 

electrical conductivity changes with repeated thermal cycles. The changes of conductivity 

during repeated heating-cooling cycle for 8 wt% – 10 wt% CNT-PEEK samples are 

shown in Figures 6.7, 6.8 and 6.9. It is observed that the electrical set is higher in the first 

heating-cooling cycle than that in the second heating-cooling cycle for all CNT 

concentrations. It progressively decreases and becomes almost zero after the third cycle 

onwards. The electrical hysteresis decreases progressively for repeated heating-cooling 

cycles. The change in electrical conductivity with temperature during the heating-cooling 

cycle is not completely reversible in nature, which may be due to some irreversible 

changes in conducting networks, i.e. the change in conducting network occurs during the 

heating cycle, but not completely recoverable during the cooling [65]. The conductivity 

increases after each cycle of heating and cooling for which same explanation as above 

can be applied. In addition, conductivity also increases after repeated cycles, for example, 

at 140°C during the first cycle, conductivity for 9 wt% (Figure 6.8) CNT-PEEK sample is 

3.07 × 10–5 S/cm while during the second and third cycle, the conductivity is 4.19 × 10–5 

S/cm and 4.85 × 10–5 S/cm respectively. This increase of conductivity after repeated 

cycles of heating and cooling can be attributed to the redistribution of CNTs which 

ensures better conducting networks. The increase is also influenced by the concentration 

of CNTs. For 8 wt%, 9 wt% and 10 wt% CNT composites (Figures 6.7, 6.8 and 6.9) at 

140°C, electrical conductivity increases during the second cycle by about 39%, 36% and 

30% compared with first cycle, but during the third cycle this increment is smaller (18%, 

16% and 15% respectively compared with second cycle). 
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Figure 6.7: Repeated heating-cooling curves for 8 wt% CNT-PEEK composites. 
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Figure 6.8: Repeated heating-cooling curves for 9 wt% CNT-PEEK composites. 
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Figure 6.9: Repeated heating-cooling curves for 10 wt% CNT-PEEK composites. 

 
Irrespective of CNT concentration, with the increase in number of heating and cooling 

cycles, hysteresis decreases, formation and breakdown of conducting networks become 

less prominent and eventually the conductivity becomes almost stable. 

6.4 Charge transport mechanism 

Electrical conduction through composites with a random distribution of conductive fillers 

is generally discussed by three main theories:  

(a) Conduction path theory  

Principle of conduction path theory lies in the fact that when dispersed in a non-

conducting matrix, conducting fillers establish a few continuous conductive paths and 

through this path, electrons move from one end to the other under an applied electrical 
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field. This movement of electrons causes electrical conduction. Thus, the formation of a 

conducting network through physical contacts of conductive particles is essential. 

Formation of such conductive network is more probable at the critical concentration, i.e., 

percolation limit [196]. 

(b) Electron tunnelling theory 

According to this theory, electrical conduction is believed to take place not only by inter-

particle contact but also by electrons being able to jump (hop) across a gap or tunnel 

through energy barriers between conducting elements in the polymer matrix. There is a 

maximum value for these gaps which was estimated to be 1.7 nm in chapter 4. 

(c) Electric field radiation theory 

When conducting elements are separated by a gap of a few nanometres [197], it is 

believed that an emission current is caused to flow under a high electric field. The basic 

difference between this theory and the two other theories is that,  conduction path theory 

and tunnelling theory describe the conduction as ohmic in nature, while electron field 

radiation theory describe a non-ohmic conduction behaviour for the system. Electric field 

radiation theory is believed to be valid at concentrations less than the critical limit [198]. 

However, the actual conduction mechanism in CNT reinforced polymer composites is 

quite complex in nature. The net result may be due to a combined effect of different 

mechanisms. 

 
Since the present composite systems are well above the percolation limit, electrical 

conduction is more realistic to be explained by the conduction path theory as mentioned 

above in mechanism (a). But at the same time, nanotubes are possibly coated with thin 
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polymer film which acts as a potential barrier to inter-nanotube conduction; therefore 

electrical conduction is also limited by tunneling between nanotubes. Several models 

have been proposed to explain the electrical conductivity mechanisms in polymer 

composites. Fluctuation-induced tunneling (FIT), Arrhenius Conduction etc. are well 

pronounced among them.  

6.4.1 Fluctuation Induced Tunneling (FIT)   

The FIT model introduced by Sheng et al. [199] takes into account tunneling through 

potential barriers of varying height due to local temperature fluctuations. According to 

this model, electrical conduction of disordered systems is dominated by electron transfer 

between large conducting segments rather than by hopping between localized sites [200] 

and electrical conductivity below the glass transition temperature (Tg) is predicted by 

1
0 g

0

exp , T  TT
T T  

(6.2)

 

with 0
1 8

c

B

sAT
k

 and 1
0

2TT
s

where 2

2m
h

 and 0
4
e s

, 0  is a pre- 

exponential factor, m and e are electron mass and charge, respectively,  is the initial 

potential barrier height, s is the inter-particle gap and Ac is the area of the capacitance 

formed by the junction. In this equation, T1 can be regarded as the temperature below 

which conduction is dominated by the charge tunneling through the barrier (T1 can be due 

to the energy required to move an electron across the insulating gap between the CNTs), 

T0 as the temperature above which the thermally activated conduction over the barrier 

begins to occur.  
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Figure 6.10: Fitting of Electrical conductivity to FIT model for 8 wt% – 10 wt%         

CNT-PEEK samples. 

Fitting of equation (6.2) to the experimental data (solid line in Figure 6.10) gives the 

following values of T1, T0 and 0' listed in Table 6.2:  

Table 6.2: Coefficients of determination in FIT model 

Samples T1 (K) T0 (K) 0' (S/cm) 

8 wt% CNT-PEEK 2216.33 121.61 1.71 × 10–3 

9 wt% CNT-PEEK 1592.24 61.98 2.27 × 10–3 

10 wt% CNT-PEEK 1367.53 36.71 2.41 × 10–3 
 

These values are higher than the previously reported values for poly (ethylene 

terephthalate)/carbon black composites [126] and CNT-polyamide composites [86], but it 

is not surprising because these coefficients are strongly dependent of many parameters, 
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such as nature of the polymer, structure of conductive filler, filler content, sample 

processing etc.[199]. 

The above equation (6.2) describing FIT model can be written in the form [201] 

0 exp 2 T s  (6.3)
 

where 2

2 T
T

m
h

  

with 2

2
0

161
T

B

c

k T
A

 is the temperature modified barrier height.  

Thus, equation (6.3) represents a tunneling process and the electrical conductivity is 

envisioned as a tunneling conductivity where the potential barrier height decreases with 

increasing temperature. At a constant temperature, equation (6.3) can be rewritten as [45] 

ln s  (6.4)

 
For a random homogeneous distribution of CNTs in insulating matrix, the composite 

conductivity can be described by the behavior of a single tunnel junction and the average 

distance (s) among the CNTs can be assumed to be proportional to p–1/3 [202, 203]. 

Therefore, the conductivity data should follow the rule given by 

1/3ln p  
(6.5)

 
A weak indication in favour of FIT model is shown in Figure 6.11 by linear relationship 

between ln( ) and p–1/3 where p is the weight concentration of the filler, but this 

indication is very strong for the samples with CNT concentrations below percolation 

threshold (inset in Figure 6.11). The experimental results of temperature dependence of 

conductivity are also closely reproducible by the general conduction model.                                               
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Figure 6.11: linear relationship of ln  vs. p–1/3 

Therefore, possible limitations of the present analysis by FIT model can be emphasized 

based on the following two observations:  

(i) Conductivity below the percolation threshold is well explained by tunneling 

conduction mechanism where homogeneously distributed particles are not yet in physical 

contact and obey the rule given by equation (6.5) [45, 121] whereas the present analysis 

is limited to samples far above percolation threshold. 

 (ii) FIT model is applicable only at sufficiently low temperatures [204] and is 

inappropriate above room temperatures [205] whereas, these experiments were carried 

out above room temperatures up to 140°C.  
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6.4.2 General conduction mechanism 

A satisfactory result was obtained by fitting the experimental data to the general 

Arrhenius conduction activation model, which is commonly used to characterize the band 

conduction: 

 
0 exp cond

B

E
k T  (6.6)

 
where  is the electrical conductivity in S/cm, Econd is the activation energy for the 

conductivity, kB is the Boltzman constant, 0  is the pre-exponential factor and T is the 

temperature on the absolute scale (K).  
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Figure 6.12: Plot of the logarithm of conductivity versus the reciprocal of temperature 

(1/T) for 8 wt% – 10 wt% CNT-PEEK composite samples. 
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The linear best fit graph of log conductivity versus 1/T (K–1) shows a continuous linear 

curve for 8 wt% and 9 wt% CNT-PEEK composites (Figure 6.12) which indicates one 

activation energy for the hopping process, while  = f(1/T) plot for 10 wt% CNT-PEEK 

sample has two slopes at two distinct temperature regions, one at the lower temperature 

range (20°C–60°C) and the other at higher temperature range (60°C–140°C) which 

indicates two activation energies for two different temperature regions (Figure 6.13).  
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Figure 6.13: Plot of the logarithm of conductivity versus the reciprocal of temperature 

(1/T) for 10 wt% CNT-PEEK composite sample showing two slopes. 

 
The pre-exponential factor ´0 and activation energy Econd calculated by fitting the plot to 

equation (6.6) are presented in Table 6.3. Lower activation energy has been noticed in 

higher wt% of CNT composites as expected. The average value of pre exponential factor 

0  is slightly higher for 10 wt% CNT-PEEK than that for 9 wt% CNT-PEEK while the 

value is individually less in both upper and lower temperature regions. 
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Table 6.3: Constants obtained from curve fitted to equation (6.6) 

Sample ´0 (S/cm) Econd (eV) 

8 wt% CNT-PEEK 5.12 × 10–4 1.04 × 10–4 

9 wt% CNT-PEEK 4.65 × 10–4 9.88 × 10–5 

10 wt% CNT-PEEK 4.83 × 10–4 9.64 × 10–5 

 
For 10 wt% CNT-PEEK sample, it has been found that activation energy is 

comparatively higher at higher temperature region than that at the lower temperature 

region. Similar behavior has also been observed in previous investigations for carbon 

fiber-filled [65] and CNT-filled [206] elastomeric composites and CNT-polyamide 

composites [86]. No explanation was provided for this increased activation energy at 

higher temperature region. The conduction mechanism may be influenced by some other 

unknown factors in this region. More investigation can be carried out to explore this 

phenomenon. 

From the above analysis, it is believed that above percolation threshold, the electrical 

charge transport is mostly dominated by metallic conduction through the conducting 

paths/networks formed by conducting CNTs. 

In order to incorporate temperature dependence of  above percolation limit, equation 

(3.3) and equation (6.6) can be combined as   

0 exp tcond
c

B

E
k T  

(6.7)

 
In equation (6.7) the value of c and exponent t are taken to be 2.05 vol% and 2.517 

determined by statistical analysis in chapter 3. The effect of thermal expansion on  is 

taken into account by  
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where 0 is the volume fraction at room temperature (assumed at 30°C), z (T) is the 

difference between thickness of the sample at T and the original thickness, z0 at 30°C. 

The relative change of z/z0 for the temperature range of 30°C ~140°C was obtained 

from Thermo Mechanical Analysis (TMA).  

 
Equation (6.7) is based on an assumption of thermally activated conduction process 

which requires that apparent activation energy Econd and pre-exponential factor 0 are 

independent of volume fraction,  in order to satisfy equation (6.6) with the universal 

scaling law of conductivity. The temperature dependence of ln[ (T)/( (T)– c)t] for three 

different weight concentrations of CNTs is shown in Figure 6.14.  
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Figure 6.14: Temperature dependence of electrical conductivity of samples with  > c in 

which effect of thermal expansion has been taken into account. 
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The value of activation energy is calculated from the slope of the linear fit of 

ln[ (T)/( (T)– c)t] vs. reciprocal of temperature (K–1). It is clear that plot of all three 

different concentrations of CNT samples are similar with identical slope. The average 

activation energy is estimated to be 1.05 × 10–5 eV which is close to the value obtained 

by Arrhenius conduction model [equation (6.6)].  Therefore, it can be concluded that 

temperature dependence of electrical conductivity above percolation limit of the present 

composite system can be explained by general conduction mechanism without violating 

universal scaling law of conductivity. 

6.5 Combined effect of temperature and pressure on electrical 

conductivity 

It is worthy to investigate the effect of temperature on electrical conductivity of the 

samples at different applied loads. Figures 6.15, 6.16 and 6.17 show the variation of 

electrical conductivity of 8 wt%, 9 wt% and 10 wt% CNT-PEEK composites respectively 

against temperatures of experiment up to 140°C for the compression loads from 0 to 40 

MPa. Electrical conductivity increases with increasing pressure. In the case of 8 wt% and 

9 wt% CNT samples, this increase is more or less same for all temperatures, but in the 

case of 10 wt% samples, the effect of pressure is more pronounced at lower temperatures 

than at higher temperatures. The curves are slightly concave downward for 8 wt% CNT 

and concave upward for 10 wt% CNT samples, while for 9 wt% CNT samples, these are 

almost straight. This behavior was previously explained in section 6.3.3. 
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Figure 6.15: Electrical conductivity of 8 wt% CNT-PEEK composites as a function 

temperature for different applied pressures [2, 4, 6, 8,….40 MPa]. 
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Figure 6.16: Electrical conductivity of 9 wt% CNT-PEEK composites as a function 

temperature for different applied pressures [2, 4, 6, 8,….40 MPa]. 
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Figure 6.17: Electrical conductivity of 10 wt% CNT-PEEK composites as a function 

temperature for different applied pressures [2, 4, 6, 8,….40 MPa]. 

 

To visualize the effect of temperature at room temperature and at 140°C at different 

pressures on the change of electrical conductivity, the Figure 5.4 is reproduced as shown 

below (Figure 6.18). The lower set of curves presents the results for room temperature, 

while the upper ones for 140oC. For both set of curves, it is observed that the slope of the 

curve gradually decreases with the increase of pressure and for 10 wt% CNT samples at 

140oC, this slope is almost zero at the highest applied pressure of 40 MPa. The 

differences in the decrease of the slopes for 8 wt%, 9 wt% and 10 wt% CNT samples are 

marginal. Comparison of the two sets of curves reveals that the electrical conductivity of 

the samples approach to its saturation level more quickly at higher temperature than at 

room temperature for the same applied pressure. Effect of nanotube concentration on 

approaching this saturation level of electrical conductivity for these highly conductive 

composites is not very strong.  
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Figure 6.18:  Electrical conductivity vs. Pressure at room temperature (20°C) and 140°C. 

 
Previously it was mentioned in section 5.3.1 that the samples behave like an efficient 

pressure sensor up to a certain pressure beyond. Similarly from Figure 6.18, it can be said 

that the samples can be used as temperature sensor up to a certain temperature as there is 

no appreciable change in electrical conductivity above that critical temperature. 

6.5.1 Explanation of the effect of temperature and pressure on electrical 

conductivity of CNT-polymer composites  

The effect of temperature on electrical conductivity of polymer composites is quite 

complex. According to the hopping or tunneling mechanism of charged particles (i.e. 

electrons) in the system, with increasing temperature, the thin gap between two adjacent 

conductive CNTs increases because of uneven thermal expansion coefficient of the 

polymer matrix and the CNTs. An expansion of polymer matrix during heating induces 
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greater mobility to the CNT particles, and thus the process of electron tunneling is 

enhanced. Accordingly, the probability of tunneling of electrons increases which is 

reflected in the significant increase of conductivity with temperature. The number of 

existing physical contacts among the CNT and formation of further conductive networks 

during heating are primarily responsible for this behavior. With the gradual increase of 

CNT loading, the presence of large number of CNT contacts ensures a much higher 

probability of tunneling. 

 
In composite materials, as mentioned earlier the temperature coefficient of resistivity is 

denoted as positive (PTC) when electrical resistivity of composite increases (electrical 

conductivity decreases) with the increase of temperature, or negative (NTC) when 

electrical resistivity of composite decreases (electrical conductivity increases) with the 

increase of temperature, or zero when electrical resistivity of composite remains constant 

with the change of temperature. The characteristic of each system depends on the 

concentration of filler and the nature of the polymers and the filler. As shown in Figures 

6.5, 6.15, 6.16 and 6.17, a negative temperature coefficient of resistivity (NTC effect) 

applies for the case of CNT-PEEK composites, that is, electrical conductivity of the 

composites increases during the heating process over a temperature range from room 

temperature to 140°C which is below the glass transition temperature of the matrix 

(144°C). The effect of temperature on electrical conductivity of this CNT-PEEK 

composite system above the glass transition temperature will be discussed later.  
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The effect of temperature and pressure on the electrical resistance of CNT-polymer 

composites may be explained based upon two main mechanisms responsible for electrical 

conductivity CNT-polymer composites. 

Conduction by electron transport (nanotube contact): The contacts between 

different CNTs provide the circuit for electrons to flow. At the percolation 

threshold, there is just sufficient contact for the material to be conductive. Above 

the percolation threshold, parameters that affect the number of contacts are: 

o Amount of fillers: More CNTs provide more contacts and higher electrical 

conductivity. This is evident in Figure 6.18. 

o Compression: Compression squeezes the CNTs together, giving better 

probability for contacts (Figures 6.15, 6.16 and 6.17). 

o There is a saturation phenomenon for both the amount of fillers and the 

level of compression. This means that the rate of increase of electrical 

conductivity is more at lower concentrations of CNTs and compression 

and the rate reduces as the concentrations of filler or compression are 

increased. This is because once full electrical conductivity is established; it 

becomes difficult to increase it.  

o Aspect ratio of fillers: The aspect ratio of the fillers has an important 

influence on the electrical conductivity. Larger aspect ratio increases 

electrical conductivity. Ansari et al. [207] studied the electrical 

conductivity of PVDF reinforced with two types of fillers. They found that 

Functionalized Graphene sheet (FGS)-PVDF system exhibited NTC while 

exfoliated graphite (EG)-PVDF system exhibits PTC. The explanation 

given is that FGS has higher aspect ratio than EG.  
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Conduction by electron tunneling: In addition to conduction by electron transport 

across contact points, conductivity in CNT-polymer system also occurs by 

electron tunneling across gaps between the CNTs. Conduction by electron 

tunneling depends on the length of the gap between the CNTs. The longer is the 

gap, the more difficult is the electron tunneling and the lower is the electrical 

conductivity. Parameters that affect the electron tunneling are: 

o The relative dominance between the number of contacts and the gaps 

between the CNTs. If the number of contacts is dominant then increase in 

temperature would increase in electron activity and this would increase the 

electrical conductivity. There should be a critical amount of contacts 

beyond which the gaps between the CNTs would become irrelevant. 

o The stiffness of the polymer material: In situations where there is a 

relatively small amount of fillers, the stiffness of the polymer material 

plays an important role. For material with higher stiffness, increasing in 

temperature may not produce large deformation of the gaps between 

CNTs, while the opposite holds true for material with lower stiffness.  

Work done in references [65, 186, 208-210] showed PTC. These 

experiments were performed above the glass transition temperature (Tg) of 

the polymers (Tg of Elastomer –70°C, PE –120°C, PVDF –35°C). The 

present investigation for CNT-PEEK composites was carried out below 

glass transition temperature, Tg (Tg of PEEK is 144°C) and NTC was 

obtained. However, Figure 6.18 shows that the NTC effect decreases with 

increasing temperature, due to the softening of the polymer at higher 

temperature.  
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From the above discussion, it was understood that the contribution of pressure on the 

electrical conductivity is always positive whether it is accompanied by temperature or 

not, i.e. applied pressure always increases electrical conductivity by narrowing the gaps 

between CNTs. It can be done either by electron transport (nanotube contact) or electron 

tunneling depending on the nanotube concentrations. But contribution of temperature 

towards the electrical conductivity can either be positive or negative or zero due to the 

involvement of other parameters mentioned above. Thus, combined effect of pressure and 

temperature on electrical conductivity is determined by their net contribution. 

 
To further investigate those parameters involved in the effect of temperature, experiments 

were done by heating the samples of 8 wt%, 9 wt% and 10 wt% above glass transition 

temperature up to 200°C. Similar experiments were also carried out on 3 wt%, 4 wt% and 

5 wt% CNT-PEEK samples. The results shown in the Figures 6.19 and 6.20 respectively 

are explained under the following two categories: 

 
Category 1: When a sufficiently large number of contacts are available in the 

conductive network  

 
It is presumed that PEEK composites made with 8 wt%, 9 wt% and 10 wt% CNTs are 

highly conductive with sufficiently large number of available nanotube contacts. From 

the graphs in Figure 6.19, the rate of increase of electrical conductivity with the increase 

of temperature gradually decreases. Thus, it can be said that electrical conductivity of 

those conductive samples after a certain temperature (it can be termed as saturation 

temperature), which is above glass transition temperature, is not much affected on further 

increasing temperature. Thus, the thermal expansion of the polymer matrix is not 

dominant enough to separate the CNTs or increase the gap between them. As a result, 
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electrical conductivity is fully controlled by physical contacts among CNTs. Application 

of compression in such case may increase the conductivity slightly until a saturation point 

has been reached. When the saturation point of electrical conductivity has already been 

reached, further increase in nanotube concentration, pressure and/or temperature do not 

make any significant change in the composite conductivity. 
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Figure 6.19: Electrical conductivity of 8 wt%, 9 wt% and 10 wt% CNT-PEEK 

composites from room temperature to 200°C (Tg of PEEK = 144°C). 

 
Category 2: When a sufficiently large number of contacts are NOT available in the 

network  
 
Figure 6.20 shows the electrical conductivity of 3 wt%, 4 wt% and 5 wt% CNT 

composites. These samples have lower number of nanotube contacts than those of 8 wt% 

– 10 wt% nanotubes and from previous DEA analysis (Figure 3.1), it can be assumed that 

they do not have sufficient nanotube contacts. 
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Figure 6.20: Electrical conductivity of 3 wt%, 4 wt% and 5 wt% CNT-PEEK composites 

from room temp to 200°C (Tg of PEEK = 144°C). 

 
A rise in electrical conductivity (NTC) of the composites up to a certain temperature and 

then a decrease in conductivity (PTC) were observed for these composite samples. At the 

beginning due to increase in temperature, the electron activity increases, resulting in an 

increase in conductivity. But since the number of nanotube contacts is not sufficiently 

large to maintain the solid intimate contact, after certain temperature, volumetric 

expansion of PEEK due to heat increases the gap between nanotubes and decreases the 

number of conductive pathways, resulting in a decrease in conductivity. This certain 

temperature is not necessarily the same for all concentrations, but it is near to the glass 

transition temperature (Tg) as observed. This temperature depends on the number of 

nanotube contacts and their gaps in between. It can be termed as transition temperature 
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(Tt) because at this temperature, behaviour of electrical conductivity changes from NTC 

to PTC. This transition temperature is higher for higher nanotube concentration and vice 

versa. Below Tt, nanotube contacts and their electron activity plays dominant role while 

above Tt, thermal expansion of polymer, nanotube gap and hence electron tunneling play 

the dominant role in determining electrical conductivity. At temperatures higher than Tt, 

crystalline phase of the polymer begins to become softened and gradually it transforms 

from semi-crystalline phase to rubbery phase. As a result, the fluidity of the polymer 

matrix increases and the CNTs at such high temperatures attain energy to overcome the 

potential barrier and lose their contact with each other. Number of conductive paths also 

decreases in such situation. Application of compression enhances the increase of 

conductivity below Tt, but above Tt, the total conductivity is determined by their net 

effect as temperature and pressure are opposing each other. Further increase of nanotube 

concentration has also similar effect as like as pressure until the solid continuous network 

of nanotubes are established at such elevated temperatures so as to fall into the first 

category described above. Based on the observations, all those parameters together with 

their effects are summarized below in Table 6.4.   
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Table 6.4: Summary of the effect of parameters on electrical conductivity of 

nanocomposites 

 With an increase in Parameters involved Electrical 
conductivity 

1.  Nanotube content 

nanotube gap: decreases 
electron activity: no effect 
number of conducting paths: increases 
 

increases up to a 
certain level, then 

might decrease 

2.  Pressure 
nanotube gap: decreases 
number of conducting paths: increases / 
redistributed 

increases up to 
saturation level 

3. Temperature   

when large number of 
nanotube contacts are 
available 

electron activity: increases 
nanotube gap: no significant change 
 

increases up to 
saturation level 

   

when large number of 
nanotube contacts are  
NOT available 

(i) below Tt: electron activity increases,  
nanotube gap: no significant change 
 
 

(ii) above Tt: electron activity increases,  
nanotube gap: increases 
number of conducting paths: decreases 
 

 
increases 

 
 
 

decreases 

4.  Modulus of Elasticity 
(stiffness) of polymer 

With the increase in temperature, rate of 
decrease of nanotube gap decreases 

depends on the 
level of 

temperature and 
nanotube content 

6.6 Application to sensor 

To examine how sensitive and to what extent the conductivity response will be after 

being stimulated by the change of pressure and temperature, the relative conductivity can 

be used to characterize the effect of temperature coefficient( T) and pressure co-efficient 

( P) given by: 

140

20

log C
T

C

 at different pressures (6.9)

40

0

log MPa
P

MPa

 at different temperatures (6.10)
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The temperature sensitivity and pressure sensitivity for the pressure and temperature 

ranges used throughout the experiment are shown in Figures 6.21 and 6.22 respectively. 
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Figure 6.21: Temperature sensitivity of CNT-PEEK samples at different pressures. 
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As expected the composite samples are highly sensitive at low pressure and low 

temperature regardless of their nanotube concentrations. Again, the samples are highly 

sensitive at lower nanotube concentration and less sensitive at higher nanotube 

concentration, but the range of sensitivity is higher for higher nanotube concentrations. 

Comparison of the above two graphs indicate that the CNT-PEEK samples under 

investigation are highly temperature sensitive than pressure sensitive. 

6.7 Summary 

1. Effect of Joule heating on increasing conductivity at elevated temperatures was 

investigated. The Joule heating was not significant in this study. 

 
2. Thermal expansion of the samples was measured in their thickness direction by 

Thermo Mechanical Analysis (TMA) and its effect was ignored in the calculation of 

electrical conductivity under the application of heat. 

 
3. Differential Scanning Calorimetry (DSC) shows that with the addition of extra CNTs, 

the glass transition temperatures (Tg), the melting enthalpies (Qm) and the amount of 

crystallinity of the samples decrease, and there is no significant change in the melting 

temperatures (Tm). This phenomenon was explained by confinement effect. 

 
4. Negative temperature coefficient of resistivity (NTC effect) has been observed in the 

case of CNT-PEEK composites, i.e. electrical conductivity of CNT-filled PEEK 

composite progressively increases with the increase of temperature up to the highest 

temperature of 140°C in these experiments. 
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5. Electrical set and electrical hysteresis were observed in the conductivity vs. 

temperature plot during heating and cooling cycle and this can be due to some 

irreversible change occurring in the conducting network system. 

 

6. Fluctuation induced tunneling (FIT) model does not satisfy the experimental data of 

these highly conductive composites, because the samples’ CNT concentration was above 

percolation threshold and the temperatures of experiments were far above the room 

temperature. 

 

7. Lower activation energy has been found for higher concentration of CNTs and for 

higher temperature region in the case of 10 wt% CNT-PEEK composite. 

 

8. With increase in temperature, electron mobility increases which causes higher 

electrical conductivity (electronic conduction), but at the same time, thin gap between 

CNTs becomes larger due to thermal expansion of PEEK which reduces the conductivity 

(electron tunneling). Composite’s electrical conductivity is determined by the net effect 

of these two opposite phenomena. Dominance of electronic conduction was observed in 

the case of higher concentration of CNTs because of sufficiently larger number of 

existing CNT contacts as compared to lower concentration of CNTs. On the other hand, 

electron tunneling was dominant in lower CNT concentrations where, enlargement of 

film gap reduces the effect of the increase in electronic activities due to increase in 

temperature. 

 

9. The analyzed composite samples were found to be more temperature sensitive than to 

be pressure sensitive. 



Chapter 7  

Summary, Conclusions, Contributions and 
Recommendations for Future Work 

7.1 Summary 

(1) Optimum process parameters of 100 rpm rotor speed, 380°C mixing temperature and 

20 minutes of mixing time were determined. 

(2) Nanocomposite samples were manufactured using PEEK and CNTs via high shear 

melt mixing technique. 

(3) Electrical and dielectric properties of the nanocomposite samples were investigated in 

a wide range of frequencies (1 to 105) at room temperature.  

(4) Percolation threshold was obtained when the concentration of CNTs increased from 

3.5 wt% to 3.6 wt%. The results show that conductivity is frequency dependent below the 

percolation threshold and frequency independent above percolation threshold. 

(5) With the increase of CNT concentration, the gap between two neighboring CNTs 

decreases and thus formation of conducting paths minimizes the hopping effect thus 

makes the sample more conductive. 

(6) Contact resistance of crossing CNTs with an insulating layer in between was 

calculated using different theoretical equations. 

(7) The highest tunneling distance in this composite system was found to be 17Å by 

Simmons' equation which is comparable to the previously reported one of 18 Å [39].  
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(8) Electrical conductivity increases with increasing pressure up to a certain level. A 

small increase was also observed for repeated loading unloading until stabilization.   

(9) Under application of compression, carbon nanotubes come closer to each other 

thereby reducing tunneling distance in between and conducting paths are redistributed. 

These are the two main causes of increase in electrical conductivity of composites when 

pressure is applied.  

(10) For highly conductive composites (conducting region), electrical conductivity 

increases significantly under application of heat until the glass transition temperature of 

the polymer matrix (PEEK). Above glass transition temperature, the rate of increase 

gradually decreases and eventually it becomes almost constant. Conduction by nanotube 

contact (electron transport) plays dominant role in this case. 

(11) For less conductive composites (insulating and semi-conducting regions), the 

electrical conductivity increases up to a certain temperature followed by a decrease. 

Electron tunneling plays dominant role over electron transport in this case. 

7.2 Conclusions 

Electrical properties of polymer nanocomposites can be improved by incorporating CNTs 

in the polymer matrix. Uniform dispersion, formation of conductive networks and thin 

insulating film around the CNTs are some of the key parameters that determine the 

electrical properties. Fabrication, processing and electrical properties of polymer 

nanocomposites were studied in this dissertation.  
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High temperature composites using MWCNTs as fillers and advanced thermoplastic 

polymer PEEK as matrix were fabricated by conventional melt processing technique with 

co- rotating intermeshing twin screw extruder. SEM micrographs showed that aggregates 

of CNT were formed around the grain boundary of semi crystalline PEEK. The boundary 

thickness increased with increase of CNT concentrations. Electrical properties of these 

nanocomposites were investigated at room temperature by impedance spectroscopy. A 

percolation threshold between 3.5 wt% to 3.6 wt% was observed when the electrical 

conductivity increased by several orders of magnitude. Frequency dependence (below 

percolation threshold) and frequency independence (3.6 wt% to 7 wt% of CNTs up to a 

critical frequency) of electrical conductivity were observed. The critical frequency 

disappeared for the samples containing 8 wt% or more CNTs indicating a fully 

conducting network. The AC and DC responses of the composites were analyzed in the 

light of percolation theory and the results were compared with those available in the 

literature. The estimated electrical conductivity for close to 100% CNT composites 

should theoretically be comparable to the intrinsic electrical conductivity of CNTs, but a 

large discrepancy in the order of 106 was observed which is due to the formation of thin 

insulating film around CNTs. It gives rise to the phenomenon of tunnel effect. The detail 

study of this tunnel effect based on theoretical models along with the experimental results 

showed that the maximum possible distance between two adjacent CNTs is about 1.7 nm 

for the electrons to jump across the tunnel. This value is close to 1.8 nm previously 

reported by Li et al. [39] using Monte Carlo simulation technique. 

Under application of high pressure (up to 40 MPa), the change of electrical conductivity 

was studied for highly conductive composites containing 8 wt% to 10 wt% CNTs. Instead 

180 
 



of conventional metallic coats, a new technique was developed to measure DC electrical 

conductivity at high pressure and temperature by introducing conductive copper mesh 

and its accuracy of measurement was satisfactory. This new technique opens door for 

future researchers to conduct experiments at high pressures and temperatures because of 

its simplicity and feasibility. Increase in electrical conductivity of the samples under 

compression was mainly due to (i) the decrease of tunneling distance and (ii) 

redistribution of number of conducting paths. Electrical conductivity increases up to a 

certain level of pressure and after that it becomes saturated with no significant change in 

electrical conductivity on further application of pressure. This observation was different 

than the results published by Wang et al. [151] for CB-HDPE system, Yongliang et al. 

[152] for CB-PMVS system etc. where they observed a transition from PPCR to NPCR. 

A simple pressure model was developed to relate electrical resistance and pressure which 

reproduces the experimental result within satisfactory agreement.  

While the pressure has acted favorably in increasing electrical conductivity, effect of 

temperature was found to be complex. The electrical conductivity increased with increase 

in temperatures up to a certain temperature near glass transition temperature. Above that 

transition temperature, electrical conductivity was found to decrease for less conductive 

samples, but it was almost constant without any significant change in electrical 

conductivity for highly conductive samples (containing 8 wt% to 10 wt% CNTs). Two 

possible mechanisms, namely (i) conduction by electron transport dominated by CNT 

contacts and (ii) conduction by electron tunneling dominated by tunneling distance 

between CNTs were proposed to explain such contradicting behavior. Coefficient of 

thermal expansion and modulus of the polymer matrix are also considered contributing 
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factor in the change of electrical conductivity. The result presented in this study was 

different than that obtained by Logakis et al. [86] and Bin et al.[189]. Logakis et al. [86] 

found a steeper increase in conductivity above glass transition temperature (Tg) than 

below Tg regardless of nanotube content while Bin et al. [189] found an increase in 

conductivity above melting point (Tm). Their explanation was given in terms of molecular 

activity that active motion of polymeric chain enhances the CNT–CNT contact causing 

an increase in electrical conductivity.  Sensitivity of the experimented samples showed 

that the samples were more temperature sensitive than to be pressure sensitive. 

7.3 Contributions and list of publications 

The major contributions of this research to the field of polymer nanocomposites are 

summarized as: 

This study is the first in the literature to manufacture electrically conductive CNT-

PEEK composites having capability of sensing for high pressure and temperature 

application. This is the first report on the effect of pressure and temperature on 

electrical conductivity of CNT-PEEK composites. 

Available theoretical models on tunneling contact are successfully verified by the 

experimental results obtained in this study. Maximum possible tunneling gap 

between CNTs was estimated to be 1.7 nm. 

In the literature of composites science, temperature dependence of electrical 

conductivity is usually believed to show either PTC or NTC regardless of filler 

content and temperature range. Two available explanations are:  (i) with the 

increase in temperature, polymer matrix expands more than the filler and thus 
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increased distance between filler particles causes a drop in electrical conductivity 

(PTC) and (ii) with the increase in temperature, electronic movement of the 

polymer molecules and filler particles increases and thus increased interaction 

among the molecules causes an increase in electrical conductivity (NTC). 

Based on the experimental results, a comprehensive explanation with proper 

identification of all possible contributing factors has been given. A general 

procedure has been proposed to explain temperature dependence and pressure 

dependence of electrical conductivity of polymer nanocomposites using the 

following parameters:  

(i) Nanotube contacts: depending on nanotube concentration, three distinct 

regions, namely, insulating region up to percolation threshold, semiconducting 

region (percolation threshold to conduction threshold) and conducting region 

(above conduction threshold) were identified. Higher concentration of nanotube 

gives more number of contacts and hence higher electrical conductivity. 

(ii) Pressure: Application of pressure in all three regions of conductivity 

mentioned above, reduces the nanotube to nanotube distance thereby reducing the 

tunneling resistance and increases the number of conducting paths due to 

redistribution of existing conducting particles. The resultant effect is an increase 

in electrical conductivity (NTC effect). 

(iii) Temperature: Electrical conductivity of composites in conducting region is 

governed by ‘conduction by nanotube contact’ rather than ‘conduction by 
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tunneling’ irrespective of temperature. Conductivity increases up to a saturation 

temperature and then it becomes stable (therefore, it always shows NTC effect).  

On the other hand, electrical conductivity of composites in insulating and semi-

conducting region is determined by the relative dominance of nanotube contact 

and tunneling. Up to a transition temperature, electrical conductivity is dominated 

by ‘conduction by nanotube contact’ (conductivity increases/NTC effect). Above 

this transition temperature, electrical conductivity is dominated by ‘conduction by 

tunneling’ (conductivity decreases/PTC effect).  
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1. M. Mohiuddin, S.V. Hoa. “Electrical Resistance of CNT-PEEK Composites under 
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2.  M. Mohiuddin, S.V. Hoa. “Temperature Dependent Electrical Conductivity of CNT-

PEEK Composites”, Composites Science and Technology, 2011, 72 (1), pp. 21–27. 
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7.4 Recommendations for future work 

In addition to the above findings of this research, the following is recommended to be 

done: 

(1) Study of the effect of nanotube quality, purity and initial conditions on the electrical 

conductivity of the composites. 

(2) An extensive theoretical analysis can be done by incorporating modulus of polymer 

material to get the contribution of the change of angle of an individual CNT towards the 

change of composite conductivity. 

(3) The effect of temperature on electrical conductivity above glass transition temperature 

using other high performance thermoplastic polymers (for example, PMMA, PEKK etc.) 

can be studied to verify the mechanism proposed in this thesis. 

(4) An equation to estimate the electrical conductivity of nanocomposites can be 

developed including different parameters and phenomenon, e.g. above and below glass 

transition temperature, above and below percolation threshold, high and low modulus 

polymer materials, applied pressure etc.  

(5) It might be interesting to further investigate the charge transport mechanism of this 

composite system below percolation threshold by extending the temperature range down 

to liquid helium temperatures. 
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