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ABSTRACT 

Strategies for Untargeted Biomarker Discovery in Biological Fluids 

Michel Boisvert, Ph. D. 

Concordia University, 2012 

 

The health status of an organism modulates the dynamic and complex interplay of 

biochemical species that make-up the body and fluids of the organism.  As such, these 

biological fluids are routinely used for diagnostic testing, yet they are often not used to 

their full potential. For instance, amniotic fluid (AF), the fluid that surrounds the fetus 

during gestation, is collected primarily for genetic testing from women with identified 

risk factors. The AF proteome and/or metabolome are seldom considered and represent a 

largely untapped wealth of relevant clinical information. Extensive, multi-analyte data 

can be collected from biological samples with modern analytical instrumentation. 

However, sophisticated data preprocessing and analysis (i.e. chemometrics) are required 

to reveal the relationships between the biochemical signals and the health status. This 

thesis seeks to demonstrate that untargeted biomarker discovery strategies can be 

efficiently applied to the task of finding novel biomarkers and complement the traditional 

hypothesis driven approaches. 

In the work underlying this thesis, a chemometric data analysis strategy was developed to 

search for biomarkers in capillary electrophoresis (CE) separations data. The absorbance 

data from amniotic fluid samples (n=107) collected at 15 weeks gestation, at 195 +/- 4 

nm, was normalized, time aligned with Correlation Optimized Warping and reduced to a 

smaller number of variables by Haar transformation. The reduced data was then classified 

into normal or abnormal health classes by using a Bayes classifier algorithm.  
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The chemometric data analysis was first employed to find biomarkers of gestational 

diabetes mellitus (GDM) and revealed that human serum albumin (HSA) could predict 

the early onset of disease. The same approach was successfully used to identify cases of 

large-for-gestational age (LGA) with the same AF CE-UV data. It was also employed for 

the classification of embryos with high and low reproductive potential using in vitro 

fertilization (IVF) culture media analyzed by CE-UV.  

Overall, a chemometric method was developed to perform untargeted biomarker 

discovery in biological samples and provide new means to detect GDM pregnancies, 

LGA neonates and viable embryos in IVF. The method was successful at identifying 

biomarkers of interest and showed high flexibility and transferability to other biological 

fluids. 
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Chapter 1  

Introduction 

The term biomarker is a contraction of the two words biological and marker and refers to 

any biological species (protein, peptide or small molecule) that has predictive power 

towards a particular biological state/outcome, such as a disease. A significant focus of 

clinical research, as evidenced by the large number of publications, has been the 

discovery and validation of biomarkers with the primary aim of facilitating disease 

diagnosis.  The problem encountered in biomarker discovery is that any of the multitude 

of species present in the biological system is a potential biomarker, but only a very few 

are. Modern science has developed a few effective strategies that can be applied to 

biomarker discovery. This thesis seeks to demonstrate that untargeted biomarker 

discovery strategies could be applied to find novel biomarkers in amniotic fluid separated 

by capillary electrophoresis. 

The primary motivation that fuels biomarker discovery efforts is the hope that early 

detection of a disease will allow treatment to begin earlier. This is believed to help 

mitigate the negative consequence of the disease and will ultimately lead to better health 

outcomes. From a societal point of view, early disease detection can also translate into a 

reduced burden on the health care system by lowering costs associated with illnesses.  

Additionally, discovering new biomarkers should reveal new and important information 

about a particular disease and its progression, which can then help researchers better 

understand it.   
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While each disease is a unique biological and physiological progression from health to 

illness, it is important to appreciate that there is a latency period when the disease is 

active but may not be displaying overt symptoms. This usually causes a multitude of 

alterations to the normal biological/physiological pathways. These alterations can have a 

profound impact on the genetic and biochemical profile of a patient. Unfortunately, by 

the time that overt symptoms present, the disease is well underway. Finding biological 

indicators of a disease when the disease is well advanced is useful in understanding its 

progression and impacts, but not necessarily helpful in predicting its onset. Finding useful 

biomarkers indicative of the early stages of a disease is non-trivial since patients may not 

be afflicted with obvious symptoms, so why would biological samples be collected from 

these people? Fortunately, for researchers, many people have established risk factors for 

the disease under investigation and are enrolled in medical studies as will be seen in this 

thesis for the amniotic fluid chapters. 

The medical literature is replete with examples of single biomarkers used to detect a 

disease. Perhaps one of the most famous biomarkers is the prostate specific antigen 

(PSA). As originally applied by physicians, results showing abnormal levels of PSA were 

sufficient to confirm a diagnosis of prostate cancer. Another example of a powerful and 

common biomarker is glucose. Diabetes can be diagnosed, or at least confirmed, based on 

fasting blood glucose levels. However, using just one biomarker for the determination of 

a disease has the potential for misdiagnosis. The inherently high “biological” variability 

in the concentration of those species, from individual to individual, and over time within 

a single individual is difficult to overcome.  
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The prostate specific antigen case is worth discussing further as there has been some 

controversy concerning its proper use and its evolution as a biomarker [1]. A serum PSA 

level above 3-4 ng/mL is sufficient cause for further testing such as a prostate biopsy. 

The controversy emanates from two studies that have not been able to establish a net 

benefit in screening for PSA [2, 3]. Part of the problem is that prostate cancer is not the 

only cause of elevated PSA in serum; other diseases such as benign prostatic hyperplasia 

(BPH) can cause elevated PSA. In 2009, Sarrats et al. showed that PSA has several 

subforms (we will later re-define this term as protein isoforms) and that the amount of 

one subform compared to the others can be indicative of PSA or BPH [4]. The key point 

is that it is risky to establish a diagnosis based on a single measurement as there can be 

varied cause for one abnormal measurement. 

Continuing with the second example, diabetes is essentially a disease where the body is 

unable to properly manage glucose and therefore high blood glucose is a sign of diabetes. 

No matter what, high blood glucose is a sign that the patient’s metabolism is not 

functioning properly, yet it gives little indication as to why. What type of diabetes is 

present? More tests are required to establish a clear diagnosis. Furthermore, by the time 

the blood glucose is at the level where diabetes is diagnosed, many biochemical pathways 

are already affected and damage to organs already underway. When glucose levels are 

used in an attempt to predict the early signs of diabetes (prediabetes) the results are not 

very reliable and may fail to detect diabetes up to 50% of the time [5]. This begs the 

question: are there better, more reliable biomarkers of diabetes that can provide early 

detection of the disease? 



4 

 

Diseases, whether they be triggered by pathogens, genetic anomalies, age or poor health, 

can initiate and modulate a complex series of biological and biochemical processes 

within the organism.  This leads to the realisation that more than one biochemical species 

will be modulated by the disease. Thus, a multimarker approach is warranted to improve 

the efficacy of disease prediction and identification. The rationale for a multimarker 

approach for diagnosis is that it can improve the chances of early disease detection by 

combining risk factors and multiple biomarkers. This approach has been applied to 

various diseases, or abnormal health statuses, yielding minimal improvements for the 

prediction of cardiovascular events [6], but some notable improvement for prediction of 

gestational diabetes mellitus [7] or large-for-gestational age neonates [8]. Ultimately, the 

viability of this approach remains to be proven. To do so, novel biomarkers need to be 

found and evaluated, not only for their diagnostic value, but also to evaluate if their use 

actually improves the clinical outcome [9]. 

The traditional approach to biomarker discovery is to use a hypothesis driven approach 

where sophisticated knowledge of the biological system is used to determine if a chosen 

(bio)chemical species should be tested to assess its predictive value for a specific 

condition, e.g. is blood glucose predictive of diabetes? This approach comes at the risk of 

missing previously unknown biochemical relationships and limits finding markers to 

those few species investigated or which science has some level of knowledge.  However, 

the level of sophistication attained by the modern biological human model [10] is a 

testament to the effectiveness of hypothesis driven approaches. Yet hypothesis driven 

approach shows some limitations when the number of genetic (genes 2x10
4
; mRNAs 

>10
6
), proteomic (proteins >10

6
; modified proteins >10

7
) and metabolic (3x10

3
) 
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components [11] in the human body are considered. Of course, many possibilities can be 

eliminated based on the current state of biomedical knowledge, yet there remains a 

considerable number of unknown species and species with unknown functions [12, 13]. 

Those unknown species simply cannot be investigated efficiently using hypothesis driven 

approaches. The proposed solution to this limitation of the hypothesis driven approach is 

to employ untargeted biomarker discovery strategies to search through the complexity of 

biological samples for useful disease biomarkers [14]. For this approach to be successful 

experiments are designed in such a way as to maximize the number of species detected 

quantitatively to generate large datasets that can be used to compare healthy and disease 

states for distinctive profiles. 

The challenge in untargeted biomarker discovery lies in managing and analyzing the 

large datasets produced with this form of experimentation. Chemometrics is a field of 

chemistry concerned with relating measurements made on a chemical system, or process, 

to the state of the system by employing statistical or mathematical methods. These 

methods can be employed to improve the quality of the data collected (experimental 

design [15], optimization of experimental parameters [16], signal processing [17]) and 

the extraction of relevant information from the collected data [18, 19] (pattern 

recognition, modeling and multivariate calibration). As modern analytical 

instrumentation becomes more and more sophisticated, the data generated by them 

becomes information rich and complex. It also becomes less and less practical, and even 

feasible, to analyze data “manually”. This is particularly true for biological sample 

analysis where genetic, proteomic and metabolomic species are present in great number 

and diversity.  It also demands instruments that have large linear dynamic ranges and low 
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limits of detection that can measure a large portion of the species present in a sample. 

Obviously, chemometrics becomes an indispensable part of the data analysis to extract 

the relevant information from these datasets and is going to be more and more prevalent 

in bioanalytical chemistry in general [20]. 

The remainder of the Introduction is divided in three sections: capillary electrophoresis, 

chemometrics and a description of amniotic fluid. The very basic concepts of capillary 

electrophoresis (CE) will first be described with an emphasis on one of the most vexing 

difficulties encountered in CE which is migration time variations. Then, the 

chemometrics section will provide a conceptual explanation of the chemometrics data 

treatment methods employed.  This also includes data preprocessing techniques such as 

correlation optimized warping (COW) that overcomes the aforementioned migration time 

variations. The Haar wavelet transform (HT), the genetic algorithm (GA) optimization 

routine, and the Bayesian classification processes will then be introduced within the 

context of identifying normal and abnormal states (samples). The last section will provide 

an overview of amniotic fluid (AF), the biological sample of primary interest in this 

study, with particular focus on the current state of knowledge of AF biomarkers. The 

Introduction was designed to provide sufficient background knowledge to understand the 

core thesis work that is presented in the next four chapters as readers might not have 

expert knowledge of all three subjects.   

1.1  Analytical/Instrumental strategies for biological samples 

Biological samples contain complex mixtures of analytes: thousands of proteins, 

nutrients, salts, hormones, etc. Instruments capable of measuring a significant cross-

section of such complex samples and outputting data representative of the sample 
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complexity are highly desired for biomarker discovery. Ideally, the instrument should 

also be simple, easy to use, cost efficient and relatively unbiased. Capillary 

electrophoresis (CE) is particularly appealing because it meets these criteria. 

The following sections will review the many different phenomena that give rise to a 

separation in CE and also the processes that interfere and degrade the separation.  

However, to ease the reader into the complexity of a CE analysis a very simplistic 

overview is presented in Figure 1 where an ideal separation is subjected to increasing 

realistic processes. If we imagine the CE separation of a simple two component mixture 

where all band broadening and non-ideal processes were turned off, the resulting CE 

separation would look like the top trace in Figure 1.  The peaks are fully resolved and 

have a peak profile identical to the injection plug. The unfortunate reality is that many 

processes contribute to band broadening, non-ideal peak shape and variations in the 

separation profile as suggested by the text in Figure 1 and explained in greater detail in 

the following text. All of these undesirable processes complicate the analysis and pose 

problems for the development of chemometric approaches to analysing CE data sets. 
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Figure 1: An “ideal” separation transitioning to a more realistic separation. An ideal separation is depicted in 

trace 1, followed in trace 2 by a separation where only diffusion contributes to band broadening. In trace 3, 

diffusion and molecular interactions explain increased band broadening. Peak shape distortions are added in 

trace 4a due to non-equilibrium processes. Migration time shift from one sample to the next is depicted in trace 

4b.  In trace 5, the typical repeatability of the same sample run n times shows that there are run-to-run 

variations. In trace 6, the electrophoretic data has been time aligned to largely remove migration time shifts and 
allow for subsequent chemometric data processing. 
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1.1.1 Capillary Electrophoresis 

Capillary electrophoresis is an established technique for the analysis of biological 

fluids [21-23]. The following sub-sections are intended to provide basic concepts in CE 

and explain what gives rise to peak width and migration time variations. Minimizing the 

sources of variation is critical to the success of the following data analysis steps described 

in section 1.2.  

1.1.1.1 The Capillary Electrophoresis Instrument 

A CE instrument requires surprisingly few components to operate. It begins with a power 

supply capable of generating a potential difference ranging from 0 to 30 kilovolts. This 

difference in potential is applied across an electrolyte-filled quartz capillary with each 

end in electrolyte filled reservoirs. The capillary has an inner diameter that is usually less 

than 200 µm to minimize Joule heating and is usually coated with polyimide, but Teflon
®

 

or polymethacrylate coatings are available for specialized applications. The primary 

function of the coating is to impart flexibility and strength to an otherwise fragile quartz 

capillary. The electrical circuit is closed by platinum electrodes immersed in the two 

liquid reservoirs containing the background electrolyte (BGE), i.e. buffer and additives. 

The content of the buffer reservoirs is introduced into the capillary to control the pH and 

to generate the electroosmotic flow (EOF). The importance of the BGE and the cause of 

EOF are explained later in the text. Temperature control of capillary is critical to 

minimize the effects of Joule heating on the separation. This can be achieved by either 

ambient or forced air, or preferably liquid cooling. Finally some form of detection is 

required. Typical detectors include, but are not limited to, UV absorbance, mass 
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spectrometry (MS), amperometric, fluorescence (intrinsic or laser induced (LIF)). These 

components come together into an instrument that is represented by the diagram of a CE-

UV in Figure 2 below. 

 

Figure 2: Typical components of a capillary electrophoresis instrument. The ends of a capillary are submerged 

into buffer containing vials. A potential can be applied across the capillary with a high voltage power supply. 

The protective coating can be removed to produce a detection window. In some cases, a pressure unit can be 
used for pressure injections, to pressurize vials during separation and/or to generate a pressure driven flow.  

 

1.1.1.2 Sample introduction 

Sample can be introduced into the capillary through electrokinetic injection or by 

hydrodynamic means.  In electrokinetic injection, the inlet of the capillary is placed in the 
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sample vial and an injection voltage is applied allowing the EOF, with a smaller analyte 

mobility contribution, to dictate the mass of sample introduced into the capillary.  

Electrokinetic injections find routine use in CE analysis. However, the volume of sample 

introduced into the capillary critically depends on the EOF and the physio-chemical 

properties of the sample and are thus subject significant variations with biological 

samples.  One of the more popular methods of introducing a less biased sample is to use 

hydrodynamic injection either by applying a pressure to the sample vial or by using a 

siphoning process. The instrument used for this work operates by applying a small 

pressure to the sealed sample vial. For hydrodynamic injection, Poiseuille’s equation 

relates the injected volume   to the sample`s physical parameters and the pressure 

differential  

  
        

     
 

Equation 1 

 

   is the pressure difference across the capillary,   is the radius of the capillary,   is the 

time,   is the viscosity and   is the length of the capillary. The reproducibility of the 

injection can be compromised by poor reproducibility of the pressure generating 

mechanism and the quality of the components that seal the pressurized sample vial. 

Viscosity differences between samples and concentration changes as the sample 

evaporates can prove to be significant source of injection volume variation. In the 

particular case of protein containing samples, viscosity can increase significantly with 

increasing protein content and thus cause a decrease in the volume of sample introduced 

into the capillary. This obviously affects the amount of analyte injected (peak area), but 



12 

 

also the starting position of those analytes in the capillary (migration time). Pressure 

injections are generally preferred to electrokinetic injection when dealing with samples of 

variable ionic strength and protein concentration because of the better precision of the 

former.  

1.1.1.3 Capillary Zone Electrophoresis and Electrophoretic Mobility 

Once injected onto the capillary, ionic species will migrate to the appropriate electrode 

when the separation potential is applied across the capillary. The migration of ionic 

species is due to a process called electrophoresis where the ion’s migration velocity is 

referred to as the electrophoretic mobility (µ). The Debye-Huckel-Henry theory provides 

an acceptable approximation of the electrophoretic mobilities for species in CE: 

  
 

    
 

Equation 2 

 

where q is the charge of the ionic species, η is the viscosity of the buffer and r is the 

Stokes’ radius of the analyte defined as,  

  
   

     
  

Equation 3 

here    is the diffusion coefficient for the analyte,   is the temperature and    is 

Boltzmann’s constant. As the size and structural complexity of an analyte molecule 

increases, the use of the Stokes’ radius becomes inappropriate since the analyte molecule 

does not necessarily adopt a simple spherical shape. Additive and counterion effects can 

also cause structural changes to the analyte and thus make the spherical approximation 
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deviate enough to invalidate Equation 2. Nevertheless, the approximation allows for a 

representative depiction of what occurs during a separation in simple CE systems. 

In CE, convention holds that the normal mode has the polarity of the inlet electrode as 

positive and that of the outlet as negative. This is represented above in Figure 2 and below 

in Figure 3. When a potential is applied across the capillary, the analytes migrate 

according to their individual electrophoretic mobilities. With normal polarity, we would 

expect to detect only the cations, but in practice all species (negative, neutral and 

positive) pass the detector when high pH buffers are used as BGE. In addition to the 

electrophoretic mobility of the analyte, there is another process called electroosmotic 

flow (EOF) that occurs.  The EOF causes a bulk flow of solvent towards the detector 

under the conditions stated above. The next section will provide a more detailed account 

of the EOF. 

 

Figure 3: Ideal CE separation in normal mode. At t0, the sample mixture is introduced into the capillary. 

During the separation (tx), the components of the mixture become more and more resolved. They will be ordered 

according to charge-to-volume ratios. Once all the components have passed the detector they are well resolved 
from one another. 
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1.1.1.4 The Electroosmotic Flow 

Helmholtz was first to describe EOF in a series of experiments conducted in the 1870s 

[24]. His interest revolved around the ionic properties of silica, more specifically the 

anionic nature of silica at the interface between the silica and an aqueous solution. When 

he applied an electric field he observed a net flow of solution towards the cathode. Since 

Helmholtz’s discovery, EOF has been extensively investigated. Figure 4 shows the 

arrangement of ions about the capillary wall that gives rise to the EOF. The silanol 

groups at the silica/buffer interface are readily deprotonated in high pH BGE because the 

pKa is around 5.3-6.3 [25] and results in a fixed anionic surface. The charged capillary 

wall then attracts cations to counter-balance the excess negative charge in several layers. 

The first layer formed by the cations is the fixed Stern layer beyond which the charge 

density of cations decreases exponentially as the distance from the capillary wall 

increases. Beyond the Stern layer, a second, more diffuse layer called the Gouy layer is 

formed. In the diffuse layer, the cations (and their hydration shell) are free to migrate 

towards the cathode under the applied electric field. Friction between the mobile cations 

and the bulk solvent causes a net flow of the entire contents of the capillary towards the 

cathode. It is critical to note that the “pumping action” originates at the wall which results 

in plug-like flow that minimizes band broadening. 
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Figure 4: Representation of the charge distribution on the capillary wall. The capillary wall will have protonated 

and deprotonated silanols depending on the pH of the buffer used. A fixed layer of counter ions (cations here) 

will form the Stern layer. Beyond that a second layer will form composed of both anions and cations, this layer is 
called the diffuse double layer. 

The magnitude of the EOF increases as the pH increases, since the silica has a broad pKa, 

but plateaus at pH 8-9 [26]. The magnitude of EOF is also affected by the ionic strength 

of the BGE; as the charge density at the capillary wall increases the EOF increases. The 

zeta potential,  , can be used to relate the effects of charge density (   at the boundary 

between fixed and mobile ions (where the relative motion occurs), and the EOF  

  
  

   
 

Equation 4 
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here   is the distance from the capillary wall where the double layer ends, i.e. the double 

layer thickness,    is the permittivity of a vacuum and   the dielectric constant of the 

solution. It is important to realize that   is not the ionic strength of the solution and in 

fact   is inversely proportional to the ionic strength. The zeta potential can be used to 

define the     . 

     
    

 
 

Equation 5 

Equation 5 shows that the magnitude of the EOF is proportional to the   and thus  , and 

inversely proportional to the viscosity of the solution. Now that EOF has been 

introduced, it can be accounted for in the calculation of the effective velocity for analytes 

in CE,  

                        
Equation 6 

in this expression     is the electrophoretic mobility and      is the mobility due to the 

EOF. To make an analogy with HPLC, the electroosmotic flow can be seen as the 

equivalent of an electric field-driven pump and replaces the pressure-driven flow that all 

species in the capillary experience equally; the electrophoretic mobility is the species 

specific property that allows the separation of different molecules whereas it is the 

partitioning mechanisms that govern the extent with which different molecules interact 

with, and are retained onto, the various stationary phases available in HPLC. 

Barring more complex interactions between the BGE and other additives in the CE run 

buffer, the migration order in normal mode CE can be explained by the q/V ratio. At one 

end of the continuum species that have one or several positive charges and a small 
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volume will migrate to the detector the first since both forces, the µEP and µEOF, are being 

applied in the same direction. These will be followed by the detection of species with 

smaller and smaller q/V ratios. Finally the other end of the continuum is reached when 

negatively charged species pass the detector last as the two forces (µEP and µEOF) are now 

working in opposite in directions. It is worth noting that if a negative molecule has µEP > 

µEOF, then it will never pass the detector. Luckily, µEOF is significantly larger than most 

µEP. Controlling the EOF becomes critical since it not only has an impact on the 

separation time, but also on whether or not a species of interest will ever make it to the 

detector. Unfortunately, many factors can influence the EOF and, as a result, variation in 

the EOF accounts for a large portion of the variation inherent to CE separations with 

respect to migration time as will be shown below. 

 

1.1.1.5 Sources of Variation in CE 

Generating quality CE data requires a good understanding of the major sources of 

variation associated with not only the technique, but the sample analyzed as well.  Peak 

width variations and migrations time variations will be explored next since they can have 

the most important impact on the quality of the data. The experimental conditions can be 

optimized to minimize the effect on the data quality or to make it possible to use data 

preprocessing strategies to correct (see COW section) for the unwanted variations. 
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1.1.1.5.1 Peak width variations 

It is important to identify and understand the major sources of variance relevant to CE 

and how these can be controlled and minimized. To achieve this goal the most 

appropriate parameter to consider is the Height Equivalent of a Theoretical Plate (HETP).  

     
 

 
 

    
 

 
 Equation 7 

This equation conveniently allows for various components contributing to the total 

variance to be expressed as a series of additive error terms provided that all the dispersive 

phenomena affecting the total variance act independently from each other. The more 

important dispersive phenomena operating in CE are longitudinal diffusion, temperature 

effects (Joule heating), variation in sample introduction and analyte interaction with the 

capillary wall such as adsorption. All of these can be summed to account for the total 

variance: 

    
       

    
      

       
  

Equation 8 

Usually, the band broadening due to diffusion, temperature and sample introduction are 

insignificant compared to the contribution due to solute-wall interaction in the context of 

biological samples due to the propensity of proteins to interact with the capillary surface. 

Therefore, only the contribution of the last term will be discussed. 

Analyte-wall interactions can have a significant impact on the observed peak shape and 

its width (variance). The specific interactions can be hard to predict and identify as it is 

not always possible to know every species present in a sample and also as adsorption 

arises from complex interactions between the multitudes of species in solution and the 
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capillary wall [27, 28]. In general, the contribution to the total variance from wall 

interaction involving small or anionic molecules are not significant but when proteins are 

analyzed by CE the variance introduced by the analyte-wall interactions can be quite 

important and can easily rival or supersede the variance coming from all other sources of 

bandbroadening. It is possible to modify the surface of the capillary to minimize analyte 

interaction with the wall as described in an extensive literature [27, 28]. However, since 

in this study no wall coating was employed, only the interaction of proteins with 

uncoated capillary will be discussed. 

Proteins are complex molecules composed of amino acid chains of varying size and 

conformation. The protein exposed backbone and pendant side chains, all have the 

potential for interaction with the capillary wall. The interaction can be governed by 

electrostatic interactions, van der Waals forces and hydrophobic effects depending on the 

species present in sample, the background electrolytes, additives, the pH of the solution 

and the temperature [25]. The pH is of particular interest as it governs the charge state of 

the protein and the wall.  It can also affect the protein conformation which influences the 

hydrodynamic volume. It is convenient to define three relevant scenarios where: (i) pH = 

pI; (ii) pH < pI; (iii) pH > pI and we assume that the capillary wall still carries a negative 

charge. In the first scenario, the (non-electrostatic) adsorption of proteins to hydrophilic 

surfaces is most pronounced when the pH of the solution is close to the pI of the protein 

because the protein approaches a zero net charge thus minimizing protein/protein lateral 

repulsion on the surface. Adjusting the pH above or below the pI can, in some cases, 

reduce protein adsorption, but it generally does not completely prevent it. In the second
 

scenario, electrostatic attraction between the surface and the protein does increase 
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adsorption, but the lateral electrostatic repulsion between adsorbed proteins explains why 

this scenario shows a net reduction of adsorbed proteins compared to the first scenario. In 

the third scenario, silica and protein will both be negatively charged causing reduced 

protein adsorption due to protein/wall and adsorbed protein/protein electrostatic 

repulsion. However, it is still possible to have some adsorption as proteins can have 

localized positive charges that can interact with the surface.  

The consequences of protein adsorption to the capillary wall in CE are migration time 

shifts, peak tailing and, in some cases, loss of protein due to permanent adhesion to the 

capillary wall, all of which can cause variation in the detected peak area.  

1.1.1.5.2 Migration time variations 

Migration time fluctuations, both between and within runs, result in misalignments and 

peak distortions when data from run-to-run is compared. Minimizing this type of 

variation is critical if sophisticated data analyses are going to be used. To use CE data 

effectively requires time aligned data. The most important source of migration time 

variation is EOF fluctuation. It was shown above that many parameters influence the 

EOF such as pH, ionic strength, electric field strength, viscosity, all of which are a 

function of temperature. Additionally, capillary surface and geometry, presence of 

surfactants or organic modifiers can all affect the EOF. It becomes clear why controlling 

the EOF is not an easy task since many of the parameters that influences the EOF are 

interrelated. Equation 6 shows that the effective velocity of analytes in CE is due to both 

the EOF and the specific electrophoretic mobilities of each analyte. Contributors to 

migration time variations will be presented in order of importance from lowest to highest. 
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The very first equation introduced dealt with was the electrophoretic mobility. Equation 2 

can be deceivingly simple, but in practice many parameters can influence the viscosity of 

the solution used for the separation as well as the charge and volume of analytes, 

especially for proteins. In Equation 9 below, the factors that modulate each of the terms 

are introduced into Equation 2. Thus, temperature (T), solvent (S) used, dissolved analyte 

(DA; concentration, type (molecular weight and composition)), background electrolyte 

(BGE) concentrations can all affect the viscosity of the solution. The charge on a protein 

can be influenced by pH because of the many ionisable sites on proteins with different 

pKa’s. Oxidative modifications (Ox) can also alter the charge on the protein by adding 

new, or modifying existing, ionisable sites on a protein. Temperature is also a factor, as 

the ionization constants are a function of temperature. Additionally, under certain 

conditions, proteins can unfold and become denatured (D), thus exposing new ionisable 

sites which alters the pI. The extent to which a protein will be denatured depends on 

temperature, solvents present, pH, ionic strength, presence of additives and separation 

time.  

Similarly, the analyte hydrodynamic volume can be influenced by all the factors 

influencing protein denaturation that were mentioned above, which further changes the 

protein’s interactions with the solvent to name a few. A more realistic Equation 2 should 

begin to look like, 

    
         

                             
 

Equation 9 

Equation 5 shows the parameters influencing the EOF. The viscosity is influenced by the 

same parameters as    . Equation 4 and Equation 5 related the ionic strength (IS) to the 
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EOF. As ionic strength increases, the interaction between the capillary wall and the 

cations weaken, in turn diminishing the charge density and with it  . Changes in pH can 

modulate the charge density adjacent to the capillary wall by increasing or decreasing the 

charge density of the capillary wall itself, i.e. deprotonate or protonate the silanols. 

Additives, modifiers and type of ions used can all have an important effect on  . 

Additionally, the pKa of silanol groups decrease with increased temperature, thus 

increasing the zeta potential. For protein containing samples the major concern is with 

protein adsorption (PA) to the capillary wall as discussed above. This wall coating can 

mask the capillary wall, introduce new hydrophilic or hydrophobic properties to the wall 

that can cause analyte retention, but also introduce new and different charge density to 

the wall. This heterogeneity of the capillary wall causes migration time shifts and band 

broadening. When all these factors come together, Equation 5 becomes 

     
                     

             
 

Equation 10 

  Substituting Equation 9 and Equation 10 into Equation 6 gives an overall portrait of the 

apparent analyte velocity, 

    
         

                             
 

                     

             
    

Equation 11 

Considerable efforts should be put in minimizing variation in both peak area and 

migration time to maximize the quality of the data acquired. Yet, despite the analyst’s 

best precautions, there will still be some migration time variations from sample-to-sample 

and from run-to-run. Fortunately, there are mathematical ways to correct for misaligned 

electropherograms and these will be discussed in the chemometrics part of the 
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Introduction below. The success of time alignment strategies rely largely on making sure 

that experimental factors contributing to migration time variations are controlled leaving 

only small migration time corrections to be done.  Generally, this assumption can be met 

with careful experimental design and execution. 

1.2  Data analysis strategies (Chemometrics) 

The use of statistics is widespread, from very sophisticated applications in modern 

physics, economics and epidemiology to trivial applications in sales, such as product 

placement in local grocery stores. It is hard to imagine a day without some reference to 

results of some sort of statistical analysis: census data, risk factors for such and such 

disease, latest polls for an upcoming election. The fact is, data is all around us and 

accumulating at an overwhelming rate. So much so that the cover of “The Economist” in 

February 2010 was entitled “The data deluge” [29]. They reported that the amount of data 

being acquired, transmitted, analyzed is astronomical. In 2005, 150 exabytes of data were 

generated whereas in 2010, 1 200 exabytes of generated data was projected at the time of 

publication (February 2010). Finding ways of storing all this data is challenge enough, let 

alone finding the resources to analyze the produce data. 

Analytical chemistry is in no way spared from this trend. The best example of a 

demanding technique, in terms of data generation, is mass spectrometry. Modern 

instrumentation can output hundreds of gigabytes of data per day. The need for efficient 

and accurate methods to sift through raw analytical data and find the relevant information 

is quite real. In chemistry, the term chemometrics was selected to describe the statistical 

models and methods inspired from statistics and adapted for this specific field of Science. 

Chemometrics focuses on three main themes: experimental design, calibration and 



24 

 

multivariate analysis. The important concept needed to understand the data processing 

and analysis tools employed in this thesis will be introduced in the following section with 

a bias toward CE. 

1.2.1 Preprocessing strategies 

Data preprocessing can be defined as a means to prepare, correct and/or transform data in 

such a way that artifacts are removed rationally and parsimoniously to enable efficient 

and accurate chemometric data modeling. The term artifact here refers to undesired 

alteration in the data, such as baseline offsets and migration time shifts. In the context of 

this thesis, three basic preprocessing steps are required: baseline correction, migration 

time correction and data reduction.  Baseline corrections are a routine step in most 

analytical data treatment whether discussing chromatographic, electrophoretic, 

spectroscopic or spectrometric data. The different ways to correct for this type of artifact 

will be considered first. Migration time shifts are also commonly observed in 

chromatography and capillary electrophoresis, yet mathematical means of correcting this 

type of artifact are not as well known, so a more in-depth introduction will be presented. 

Finally, the preprocessing section will conclude with an explanation of the data pre-

processing strategies that allow reduction in data complexity. 

1.2.1.1 Data alignment prior to multivariate analysis 

A pre-requisite of multivariate data modeling is that each element of a data array (in this 

case the signal from a specific species measured at a particular migration time or index) 

have corresponding elements at matching index position (here migration times) across 

respective data arrays from all the samples being analyzed. Many of the chemometric 

tools for data analysis have been developed for spectroscopic data where it is often safe 
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to assume that all of the data is aligned with respect to wavelength because of the high 

wavelength reproducibility of spectrometer. For data obtained by CE, that assumption 

cannot be made in the time axis. In the CE section above, the many parameters that can 

contribute to variation in the migration time such as pH, ionic strength, electric field 

strength, sample viscosity, temperature, etc. were described. Even after careful 

experimental control of these parameters, there are still some inevitable variations that 

will result in migration time shifts. Figure 5 highlights the problem of comparing poorly 

aligned electropherograms. The same analyte present in both samples and thus in both 

electropherograms is not giving rise to a signal at the same index value (or migration 

time). 

 

Figure 5: Misaligned and aligned CE profiles. On the left, the green and blue traces are offset from one another 

causing the signal from the same analyte to show up a different index values. The unaligned samples cannot be 

compared to each other based on index values. On the right, the blue and green signals have been aligned thus 
making it possible to compare the signals of each trace at given an index value.   

 

When comparing integrated peak areas in a typical “manual” data analysis there is a sort 

of “hidden time alignment” that is done, viz. the operator makes a qualitative judgement 

about peak location, integrates the peak and assigns the value to a table corresponding to 
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a particular species independent of the actual migration time. In these situations, where a 

handful of individual samples are analyzed one at a time, the whole indexing problem is 

trivial. But when multiple data arrays are combined into higher order arrays for 

multivariate data analysis, the misalignment problem is far from trivial and often 

precludes the use of multivariate analyses on the entire data matrix. 

1.2.1.1.1 Notation 

Before time alignment routines are explained, the notation and the definition of terms 

used must be clearly stated. Since the data requiring preprocessing is obtained from CE, 

the electropherogram will be used instead of the more general term measurement vector. 

As such, migration time will be used to refer to the direction along which analyte migrate 

and upon which alignment is carried out. Similarly, each data point along that axis will 

have an index value that will be referred to as the time index. Scalars are depicted as 

lowercase italicized letters (e.g.  ); row vectors and electropherograms are represented as 

bolded lowercase letters (e.g.  ); bold capital letters are used for data matrices (e.g.  ). 

To express an individual element of  , the following notation will be used,       , while 

a range of values for the indices are as such:         and        . 

Correlation optimized warping involves the alignment of the time axis between a sample 

electropherogram and reference electropherogram. A sample electropherogram is written 

as such          and the target/reference is           where     ,    being the time 

index in data points. 

Any time alignment routine can be understood as a process that requires the 

transformation of the time axis of a sample electropherogram in a way that best matches a 
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reference electropherogram. This time axis transformation can be expressed with a 

warping function      . Since not all points of sample electropherogram    ) are present 

in the new index obtained from the warping function, the scalar value in the new index 

can be interpolated from    to produce the aligned electropherogram          in a way 

that maximizes the similarity between the sample and the reference     . Equation 12 

expresses the problem 

                       
Equation 12 

 

Certainly the simplest way to align electrophoretic data is by making use of an internal 

standard to normalize migration time. In this case, the analyst would have included some 

standard that does not interfere with the analytes of interest and also migrates as a clearly 

resolved peak. The migration time of the standard can be used to rescale the time axis 

into a migration time ratio,    [30] 

   
  

   
 

Equation 13 

here    is the migration time at a specific index value,     is the migration time of the 

internal standard. Here, instead of using a reference index, all profiles would be projected 

on a common time axis, 

                  Equation 14 

   
  

   
    

  

   
  

 
Equation 15 

             Equation 16 
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When used as a warping function,    provides a linear correction to generate a warped 

sample electropherogram. The electropherograms should show a considerable 

improvement with regards to time alignment when this ratio is used. This type of 

approach has several advantages. It can account for run-to-run variations in the EOF as 

long as the EOF remains constant throughout each individual run. It is also simple to 

implement and understand, but it fails to correct fluctuations of the EOF that occur within 

a run or any other non-linear source of migration time variation which often occur in 

analyses of complex samples.  

The literature provides a few different solutions for more complex time alignment 

problems. The algorithms used to time align can be compared and contrasted based on 

three characteristics: definition of the warping path/function (parametric or non-

parametric); the metric used to determine optimum alignment (e.g. Euclidean 

distance [31], correlation coefficient [31, 32], sum of squares of the difference between 

sample and reference [33]; and optimization algorithm to select optimized warping path. 

The main time alignment techniques are presented in Table 1, but given the space 

constraints only Correlation Optimized Warping will be discussed.  
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Table 1: Selected time alignment techniques successfully applied to chromatography and/or capillary 
electrophoresis. 

Technique name (acronym) Alignment metric User input 

Correlation Optimized 

Warping (COW) 

Pearson’s Correlation 

Coefficient 

Reference profile, segment 

length, slack size 

Dynamic Time Warping 

(DTW) 
Euclidean distance 

Reference profile, local 

continuity constraints, 

weighing function 

Parametric Time Warping 

(PTW) 

Sum of squares of the 

residuals 

Reference profile, Warping 

function coefficient 

Semi-parametric Time 

Warping (SPW) 

Sum of squares of the 

residuals 

Reference profile, Warping 

function coefficient, 

number of B-splines, 

penalty term 

 

All of these approaches have been shown to work with separations data; COW will be 

explained in more detail since it is the time alignment routine providing the best quality 

of alignment with a reasonable amount of computational time. Semi-parametric time 

warping has been shown to be an excellent competitor, especially in terms of alignment 

speeds, but it is much more complex and does not provide significant advantages over 

COW [31, 33, 34]. 

1.2.1.1.2 Correlation Optimized Warping 

Nielsen et al. [32] first proposed COW as a solution to correct for retention time 

fluctuations observed in chromatographic data. Correlation Optimized Warping is 

conceptually simple; the details of the process are presented in the following paragraphs.  

Time alignment is achieved by breaking down the sample data vector (chromatographic 

or electrophoretic profile) into segments. The algorithm then produces a new set of 

segments by linearly stretching, compressing or keeping the original segment. The best 

combination of these segments is then selected so as to maximize the overall correlation 
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coefficient to the target reference profile. COW requires that the user selects the window 

size (segment length) and the slack (flexibility) parameters before it searches for the 

optimal warping path.  

To illustrate how COW functions, one potential warping path will be described. Consider 

the simple synthetic separations data in Figure 6, the first peaks in both profiles are 

simply offset from one another, while the last peaks are offset but also of slightly 

different width. 

 

Figure 6: Example of misaligned profiles. On top (blue trace) is the reference profile to which the bottom trace 
(in green) is to be aligned to. 

The COW algorithm divides the profile in several segments (S1, S2, S3...) and only 

allows the segment to be stretched/contracted by a maximum amount of “slack”. In this 

case the segment length is set to 20 and the slack parameter is set to 2. In the example, 

the top profile is the reference and the bottom is the sample profile.   

The first peak in the sample profile (Peak 1, Figure 6) is offset by -2 time units. 

Correction of this misalignment can be obtained by stretching/contracting the baseline 
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(SPS1) ahead of the peak of interest. This leaves the peak unaltered, but “slides” it along 

the baseline. In order to obtain an offset of 2 points to the right, the first 18 point segment 

in the sample profile (SPS1) must be stretched by 2 points. This is accomplished by 

setting the boundaries of this segment to 1 and 18 (i.e. using a -2 slack). This 18 point 

segment is then stretched to match the segment size of the reference, i.e. 20. The second 

segment in the unaligned sample profile starts at data point 19 and ends at 38. It does not 

need to be stretched or contracted since the optimum solution is to offset this segment. 

When this segment is positioned after the first warped segment, its index value has now 

changed from 19 to 21 bringing Peak 1into alignment with the reference.  

 

Figure 7: Representation of how COW aligns a profile to a reference by stretching and contracting segments of 

the entire electropherogram shown in Figure 6. Here the electropherograms are composed of 100 data points, 
the window size is 20, the slack parameter is 2. 

The misalignment of Peak 2 is closer to an offset of 3 data points. Additionally, in this 

example, Peak 2 in the sample profile is slightly wider compared to Peak 2 in the 

reference. This makes the alignment of Peak 2 a bit more complex. Conceptually, the 

overall process can be broken into the effects of the changes that occur in each segment. 

When Segment 1 is stretched, it slides Peak 2 to the right (by 2 points). When Segment 3 
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is stretched, it increases the translation to the right (an additional 2 points). When 

Segment 4 is contracted, it narrows the peak, improving the correlation to the reference 

peak, and partially shifts the peak to the left. Finally, when the last segment is contracted 

the new warped profile is now the correct overall length. 

The example above depicts one possible warping path that allows for an improvement in 

the overall alignment of a profile with respect to a reference. In reality, with these 

parameters, COW would evaluate a total of 381 possible warping paths and select the 

optimal warping path on the basis of maximizing the correlation of the warped path to the 

reference path. For each segment, the correlation coefficient (CC) is calculated as shown 

in Equation 17 for the second segment from Figure 7 as an example, 

 

Equation 17 

 

The correlation coefficient is a good measure of the alignment between two profiles as its 

value is maximized when the traces have both the same shape and are aligned in time. In 

COW, a correlation coefficient is calculated for each warped sample/reference segment 

pair. The warping path that has the greatest sum of correlation coefficients is selected as 

the best warping path.  

Dynamic programming is utilized to find this optimal warping path. A detailed 

description of this optimization routine is outside the scope of this thesis. More 

information about optimization using dynamic programming can be found in the 
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literature [31, 32]. Briefly, dynamic programming finds the optimal warping path by 

calculating every possible combination of allowed warped segments based on the two 

parameters: segment size and slack. After COW alignment, the entire electropherogram 

can be further preprocessed or directly compared to each other with chemometrics data 

analysis methods to search for patterns in the data set. 

1.2.1.2 Data reduction (i.e. Haar wavelet transform)  

After time alignment, the data can be investigated to find the best measured variables that 

can estimate the dependent variables (in this thesis, birth outcomes/reproductive 

potential). It is possible to use the signals from single migration times as variables, but 

using integrated migration time windows is more appropriate since each species migrates 

as a peak over the course of several seconds. Using a window provides a general 

improvement in the signal-to-noise ratio, this has been shown in the spectroscopy 

literature [35].  Furthermore, the number of measured variables to sample number ratio is 

greatly diminished, reducing the complexity of the computational task and risk of 

overfitting the data.  

Wavelet transforms can be used as preprocessing techniques to reduce the number of 

variables incorporated in the analysis by simplifying the data. This data reduction also 

often improves the model generated and reduces the time required to generate the model. 

The simplest wavelet, the Haar wavelet, is frequently employed to avoid the troublesome, 

and sometimes, arbitrary selection of an appropriate wavelet family for a particular 

problem. Moreover, this wavelet transform offers the added benefit of simple 

implementation.   
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Figure 8: Examples of the Haar Wavelets. On the top left is the father wavelet, below are the son wavelets which 

are scaled down and offset versions of the father wavelet. On the right is the mother wavelet and similarly below 
the daughter wavelets. 

Wavelet transforms are similar to Fourier transforms in that they transform the data and 

project it onto a given basis set. An important difference is that wavelet transforms use 

wavelet functions as opposed to the sine and cosine functions that the Fourier transform 

employs. The Haar wavelet is a simple mathematical construct and choosing a discrete 

wavelet transform (DWT) over a continuous one simplifies the implementation even 

further. The DWT can be defined for data defined over a range 0 ≤ x < 1 by: 

       
            

           
  Equation 18 

      

 
 
 

 
            

 

 

     
 

 
     

           

  Equation 19 
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Equation 20 

where the subscript   and   represent the scaling and the translation respectively. The 

essence of the Haar transform is decomposing data into a weighted sum of      ,   and 

 . The weightings are referred to as the “wavelet coefficients”. For the father wavelet  , 

the coefficient is obtained by integrating the signal over the entire span of the data. 

Similarly, for the mother wavelet  , the first half of the data is integrated and subtracted 

from the integrated value of the second half of the data span. Daughter and son wavelets 

are simply scaled down versions of the parent wavelet with offsets. It becomes apparent 

that the son wavelets behave as a low-pass filter and contain the approximated data while 

the daughter wavelets behave has high-pass filters and contain the fine details of the data. 

Figure 9 shows algorithmically how the HT can be implemented. The initial data,   , is 

divided in into two blocks of coefficients. On the left block,   , contains the coefficient 

for the son wavelets which constitute the first level approximation of the data, whereas 

the right block,   , contains the coefficient for the daughter wavelets. The process is then 

repeated with the    block which is further divided into    and    until the maximal 

number of dilations/separations   is reached (from Equation 20).  
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Figure 9: Overview of the discrete wavelet transform by use of the pyramid algorithm [36]. On each level the 

signal is decomposed into the low- and high-frequency components. On each level, the high frequency 

component contains the detail and the low frequency component contains the approximated signal. Each level 

decomposes the approximate signal further into low- and high-frequency components. 

It is possible to simplify even further this process by using scaled down and shifted 

versions of the father wavelet, the previously mentioned son wavelets: 

                                               
Equation 21 

In this case, the HT would decompose a dataset with   data points into weighted sums of 

a father wavelet and      son wavelets. If a dataset contained 4 data points for 

example, the resulting HT would be: 

                                              . This is particularly well 

suited for electrophoretic data since it corresponds to sets of integration windows ranging 

from the entire profile to individual data points. 
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1.2.2 Multivariate data analysis (modeling) 

1.2.2.1 Bayesian decision theory Classification Strategies 

Bayesian decision theory is often used for pattern recognition. Many other areas such as 

economics, social sciences and artificial intelligence have long been using Bayesian 

statistics. Only recently have chemical and biological applications been sought for such 

models [37-41]. It is possible to build a model to properly classify into groups of given 

data sets. Here, the different Haar wavelets represent features of the system. The best 

classification solution will be that which finds the most distinct characteristics of each 

group by selecting the informative Haar wavelets. Similarly to the univariate normal 

distribution, the multivariate distribution will use the average measurement of a feature 

and the variance of that measurement as parameters in a Gaussian function to calculate 

the probability that a sample is part of a group defined by multivariate Gaussian 

distributions. The resulting probability of belonging to one group or another is used to 

designate the labelling of a sample into a group. Assignment is based on the highest 

probability of belonging to a group as opposed to the other.  If a number of Haar wavelets 

are retained as being predictive for the classification, we only need to consider the 

features of these given wavelets to adequately classify each sample as belonging to their 

respective classes ultimately giving a parsimonious model. 

In this study, Normal distribution is assumed. This means that values for optimal 

variables (wavelets) will be used to generate the parameters describing Gaussian 

distributions for each group used in the classification. This will be shown with a 

univariate example first. To obtain proper classification between two states, e.g. normal 

and abnormal, the variable selected should show a good clustering of values for this 
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variable within a group while showing a good separation of these same values between 

two groups as depicted in Figure 10. 

 

Figure 10: Example of Bayesian decision theory used to classify into two groups with a univariate Gaussian 

model. A single wavelet (red rectangle) is used to generate two probability distributions, one for each group. The 

green circles represent Variable 1 values for the normal group and the orange squares represent the same 
Variable’s values for the abnormal group. 

It is possible to calculate the means ( ) and standard deviations ( ) for each group with a 

set of calibration data according to the values of  . Any new analyzed sample can then be 

compared to those two groups using the Gaussian equation: 

      
   

 

     
 
 
      

    
Equation 22 

The probability density of a sample being in one group, or the other, can be calculated 

and the sample classified on the basis of which group has the highest probability. So far 

univariate models were discussed, yet it is possible to include two or more variables to 
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generate multivariate Gaussian models. In this case a more general form of the Gaussian 

equation may be used, but the process is essentially the same. Figure 11 shows an 

example of bivariate distributions. 

 

Figure 11: Example of Bayesian decision theory used to classify into two groups with a bivariate Gaussian 
model. Two wavelets (red rectangles) are used to generate two probability distributions, one for each group. 

In a process just like for the univariate models, it is possible to calculate the means ( ), 

but in this case, a covariance matrix ( ) is required. Here again, any new analyzed sample 

can then be compared to the two groups using the multivariate Gaussian equation: 

        
 

         
  

 
 
              

 
Equation 23 

where   is the dimension of the data and     represents the determinant of the covariance 

matrix. The previously calculated parameters are used to determine the probability of 
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being in one group or the other and here again a sample will be classified into the group 

for which it has the highest probability density. 

1.2.3 Optimization  

Traditionally, selecting the best variable(s) to model or monitor processes of any type is 

done with a priori knowledge: a specific wavelength can be selected because it is known 

to reflect a reaction of interest; the peak area with a specific elution time corresponds to a 

molecule involved in an biochemical pathway of interest; and the list can go on and on. 

The obvious benefits of this route are that it is simple to understand and manage, and that 

the selection of variables of interest resides on sound scientific premises. Biological 

systems are particularly complex, the processes of interest are dynamic and most often 

involve multifactorial (multianalyte) contributions to a specific outcome. The 

consequence of making decisions based solely on the current state of scientific 

knowledge of a system is that variables of unknown relevance are not included in the 

modeling, or in the data acquisition step, even though they might be playing a significant 

role. Unfortunately, for practical reasons, only subsets of variables are considered since 

including all measured variables can be extremely time consuming when the number of 

components present in a system is overwhelmingly large. Nevertheless, the significant 

increases in desktop computer processing power makes it feasible, in some situations, to 

investigate all possible permutations and combinations of measured variables.  

1.2.3.1 Using all permutations and combinations of variables 

Evaluating all possible permutations and combinations of variables for a particular 

system is not particularly hard or complicated; it is, however, very time consuming. The 

main issue is whether achieving this can be done considering the memory constraints of 
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the computer used and if searching through all the possible scenarios can be completed in 

a reasonable amount of time.  

The COW algorithm, which was introduced above, employs an optimization method that 

evaluates all possible allowed warping paths using dynamic programming. It can find a 

solution relatively quickly, in roughly 20 seconds, when working with electropherograms 

of 4800 points (window size of 20; slack of 2).   

When the problem to be optimized involves a large number of samples, above about 100, 

and a much larger number of variables, above 1000, this type of brute force method is 

simply no longer feasible. The memory requirements surpass the available memory of the 

computer and/or solving the problem would take months. Instead, optimization methods 

that find optimal solution(s) by searching only part of the whole variable space have to be 

employed. 

1.2.3.2 Genetic algorithm  

Genetic algorithms [42, 43] (GA) are stochastic optimization methods that do not attempt 

to predict (like derivative based or simplex methods) the direction of the optimum in the 

variable space during the model creation  process. Conceptually, this approach mimics 

natural selection and evolutionary processes. GA have shown themselves to be excellent 

choices for parameter optimization in complex data. One of the main advantages is that 

they avoid being trapped in local minima by randomly generating initial parameters, 

unlike predictive approaches.   

The first step of a GA optimization is the encoding of each variable’s index (i.e. Haar 

wavelet number, which in turn represents a specific time window in the 
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electropherogram) into a binary bit string known as the chromosome. A variable, or 

combinations of variables, is randomly selected and evaluated for its fitness, i.e. 

evaluated by the objective function selected for the optimization. The best results are kept 

to form a population (or gene pool) and are subjected to genetic operators in the hopes 

improving the current solution. Crossover and mutation are the commonly used operators 

to generate the next population. Crossover is similar to mating where the best members of 

a population can exchange genetic material, i.e. exchange good variables to potentially 

form a better combination of variables. Mutations are rather simple to implement in GA 

because of the binary encoding. Changing the value of a single bit changes the index 

value and thus points to a new variable. Genetic operations create a new generation that 

undergoes the same process to find the best combination(s) of variable. This is repeated 

until a predefined stopping criterion is met. 

1.2.4 Model validation 

The risk of over-fitting a data set and finding chance correlations between the variables 

and the outcomes is relatively high when the number of samples is low and the number of 

variables is high. Even if the number of variables is reduced to a manageable size with 

data rank reduction strategies, such as using Haar transform model, validation is 

important. The ideal situation, when the number of samples analyzed is sufficiently high 

that the model may be tested with a full validation. This involves generating the model 

with 2/3 to 3/4 of the sample data set. The remainder of the sample data set is used to 

evaluate the quality of the model. If the model is good, it will be able to predict 

adequately the dependent variable of interest using the validation data.  



43 

 

In some situations, it is not possible to do a full validation because the number of samples 

available to generate the model is too small. In such cases, a leave-one-out cross-

validation may be employed to generate the model. In this case, all but one sample is 

used to generate the model and the remaining sample is used for validation. This process 

is repeated iteratively through all of the dataset until each sample as undergone the leave 

one out once. The best model is the one that will have adequately predicted the greatest 

number of left out samples. 

1.3  The sample 

One of the great challenges for the analyst is the analysis of biological samples. Intimate 

knowledge of the sample is important and often dictates which analytical strategies can 

be employed. Simple samples, with few components or interfering species, might not 

need very sophisticated analytical approaches. Unfortunately, biological samples seldom 

fall into this category because of the great concentration dynamic range and bewildering 

diversity of endogenous and exogenous biochemical species present. For example, 

genetic material (DNA and RNA) may be present from only a few copies per sample 

while proteinaceous species (proteins, enzymes and peptides) span concentration ranges 

from milli- through to zeptomolar. Small molecules (sugars, vitamins, hormones, fatty 

acids, etc.) and ionic species (metals and salts) also cover a broad range of 

concentrations. These compounds also have extremely diverse physico-chemical 

properties ranging from ionic, polar to hydrophobic with very different 

spectrophotometric and mass-spectrometric activities. This makes it virtually impossible 

to devise a single analytical method that can simultaneously detect every component in a 

sample. A further complication is that biological samples are often only available in small 
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amounts (e.g. cerebrospinal fluid). Thus maximizing the number of species (and 

information) detected per sample is highly desirable. The majority of this thesis will 

focus on amniotic fluid as the sample, so the following section presents a review of the 

limited amniotic fluid biochemical literature. Where possible, literature from other 

biological fluids, mostly serum and urine, which are believed to be similar to amniotic 

fluid, will be used to help fill some gaps in the current state of knowledge concerning 

amniotic fluid. 

1.3.1 Amniotic fluid 

Amniotic fluid (AF), the fluid that surrounds the fetus during gestation, is a complex and 

dynamic environment that changes as the pregnancy progresses. AF serves three main 

functions: nourishment, protection and waste repository. The nutrients and growth factors 

present in AF facilitate fetal growth. AF provides mechanical cushioning against impact 

and contains antimicrobial effectors that protect the fetus from infection. Diffusion across 

fetal membranes and fetal urination largely accounts for the fetal contribution to amniotic 

fluid, but this varies during gestation. To avoid going into excessive detail, the review of 

the origins and composition of AF will be limited to the first half of gestation since all of 

the samples discussed in this thesis are from routine amniocentesis, which is typically 

carried out around the 15
th
 week of gestation. 

1.3.1.1 The origins and development of AF during gestation 

Initially, the water component of AF originates from maternal plasma.  Hydrostatic and 

osmotic forces drive diffusion into the amniotic fluid. As the placenta and fetus develop, 

water and solutes enter the AF primarily via the placenta. Skin keratinisation, beginning 

at week 19 and completed at week 25, effectively halts water and solute diffusion through 
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the fetal skin. However, the surfaces of the amnion, placenta and umbilical cord remain 

permeable to water and its solutes. The permeability of the various membranes involved 

introduces a molecular weight bias towards small molecules compared to serum.  

 

 

Figure 12: DaVinci's depiction of the womb on the left and amniotic fluid exchange pathways on the right. 

Around the 8
th
 week of gestation, the kidneys become functional and produce urine, 

which also coincides with fetal swallowing. At this early stage of gestation, neither 

swallowing nor urination affect significantly the content of AF, but as gestation draws to 

a close, they have a significant effect.  
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1.3.1.2 Amniotic fluid content 

Amniotic fluid has not attracted significant biochemical attention in the past. This lack of 

interest has left amniotic fluid a poorly characterized and misunderstood biological fluid. 

This has changed in the last 10 years as published studies have begun to reveal the 

complex and dynamic nature of amniotic fluid. The previous section has hinted that early 

to mid-gestation amniotic fluid is not simply urine. In fact, around the 15
th
 week of 

gestation, fetal urine contributes minimally to the amniotic fluid. Cho et al. [44] showed 

that the amniotic fluid proteome is very similar to the plasma proteome when considering 

the most abundant proteins (see Table 2).  

Table 2: Fifteen highest abundance proteins in amniotic fluid compared to the fifteen most abundant proteins in 
the plasma proteome [44].  In bold are proteins that are found in high abundance in only one of the two fluids  

Amniotic Fluid Proteome Plasma proteome 

Albumin Albumin 

Immunoglobulins Immunoglobulins 

Fribronectin Serotransferrin 

Serotransferrin Fibrinogen 

Complement C3 α1-microglobulin 

α1-antitrypsin α1-antitrypsin 

Ceruloplasmin Complement C3 

α-fetoprotein Haptoglobulin 

Vitamin D-binding protein Apolipoprotein A-I 

Periostin Apolipoprotein B 

Apolipoprotein A-I α1-acid glycoprotein 

Antithrombin III Lipoprotein 

Transforming growth factor β
i
 Factor H 

α1-microglobulin Ceruloplasmin 

plasminogen Complement C4 
i
 Transforming growth factor β-induced protein ig-h3 precursor 

The same study reports the putative identification of 842 distinct proteins in amniotic 

fluid spanning from low to high abundances using a multidimensional HPLC MS/MS 

analysis of amniotic fluid protein digests. Several groups [45-49] have reported a similar 
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diversity in the amniotic fluid proteome with some reported having identified close to 

1000 distinct proteins depending on the stringency of the protein identification criteria. 

Most of these proteomic analyses of amniotic fluid have been protein surveys and have 

not focused on searching for biomarkers in amniotic fluid. Despite the similarities with 

serum, it is important to mention the discrimination of AF proteins according to 

molecular weight caused by the passive filtration across various membranes as mention 

above. This gives rise to a log/linear relationship between the protein concentration in AF 

compared to serum and the molecular weight as can be seen in Figure 13. 

 

Figure 13: Relationship between the log concentration ratios of protein present in AF over those in serum with 
respect to protein molecular weight. This figure was adapted from Johnson et al. [50]. 

Proteins are not the only biologically important species present in amniotic fluid. Of 

considerable interest is establishing the metabolite profiles of biological fluids. This is no 

simple task as most biological fluids have more than a thousand metabolic species (of 
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endogenous and exogenous sources) that are biologically relevant plus their degradation 

products. AF is no different. A great variety of biochemical species have been reported to 

be present, yet the coverage of the AF metabolic profile is incomplete. Here, it is 

noteworthy to recall that the mother, the placenta and the fetus all contribute to the AF 

content. The metabonomic analysis of AF, despite the challenges, shows the potential of 

uncovering novel biomarkers useful for prenatal diagnoses. Establishing a comprehensive 

list of all the metabolites present in AF is not only outside of the scope of this thesis, but 

still also outside of the reach of science at the moment.  

Modern analytical instrumentation has provided an opportunity to bring us closer to an 

understanding of the biochemical profile of amniotic fluid. The current state of progress 

of biomarker discovery in AF, as it pertains to prenatal diagnosis, will be reviewed in the 

next section. 

1.3.2 Prenatal diagnosis 

Recently, the gestational window between weeks 11 to 13 as been identified as of great 

interest towards assessing the initial prenatal care and the required follow-ups [51]. In 

this time window, most major aneuploidies can be identified by combining maternal 

characteristics, ultrasonography results and maternal blood tests. Aside from genetic 

anomalies, the same combination of maternal characteristics and history with biophysical 

and biochemical testing can help assess the patient-specific risk for a variety of 

pregnancy complications, such as preterm delivery, preeclampsia, gestational diabetes, 

fetal growth restriction and macrosomia [51].  
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In practice, genetic testing, sonography and risk factors based on maternal characteristics 

constitute the main prenatal diagnostic tools. Good biomarkers of abnormal pregnancy 

are, to say the least, scarce. The next section will review biochemical markers of various 

abnormal fetal outcomes. The obvious places to search for these markers are biological 

fluids, such as maternal blood, AF and fetal blood. Maternal blood can be seen as the 

least invasive biofluid sample to obtain. Unfortunately, it is the farthest removed from the 

fetal compartment and, as such, might not contain as precise and accurate information 

about the health status of the fetus. Amniocentesis or fetal blood sampling are considered 

invasive to very invasive and are carried out when risk factors warrant these more risky 

procedures. Amniocentesis is carried on a relatively routine basis as more and more 

women are having children at later stage of their lives. Although certainly not risk free, it 

is a sampling method much less risky than fetal blood sampling and can still provide 

important genetic information regarding the fetal health status. Before the week 11 to 13 

gestational window becomes an integral part of prenatal care practice, significant 

breakthroughs into biochemical markers of abnormal fetal development and gestational 

outcome have to occur.  

1.3.2.1 Birth outcomes and abnormal fetal/maternal health statuses 

Amniocentesis has typically been performed to screen for genetic disorders such as 

Down’s syndrome. Yet there is a great potential to search for markers of other types of 

disorders, such as metabolic disorders or birth outcomes associated with complications 

such as low birth weights, macrosomia, pre- and post-mature births. These are 

represented in Figure 14 and will be defined briefly below. 
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Figure 14: Birth weights categories and birth weight corrected for gestational age categories.  Note that 

percentile lines are very approximate and only serve to give a sense of the SGA, AGA and LGA groupings. This 
figure was adapted [52].  

Premature births (preterm) are defined as birth occurring prior the 37
th
 week of gestation 

and are the leading cause of perinatal death. Post-mature births, birth after the 42
nd

 week 

of gestation, are also of concern, but are typically less preoccupying since labor may be 

induced to prevent such late births. While problematic, advancements in neonatal 

medicine have improved dramatically the survival rate of either problematic gestational 

age at birth.  
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Birth weight categories, at birth, are also of interests. Low birth weights (LBW; < 2500 g) 

are generally associated with retarded fetal growth. Using the LBW classification leads to 

problems since birth weights are dependent on the gestational age at birth. For example, a 

preterm birth will very likely be LBW, but might not be as concerning as a LBW born on 

the 41
st
 week of gestation. Birth weight categories corrected for gestational age are more 

appropriate to use as they account for the continuing growth during gestation. Typically, 

three important categories emerge from this type of classification. Small-for-gestational-

age (SGA) neonates are defined as having a birth weight below the 10
th

 percentile for a 

given gestational age at birth. SGA births are problematic as they are associated with 

greater risks of perinatal death and handicaps [53]. These risks can be reduced when SGA 

is identified antepartum [54].  

Macrosomia traditionally refers to a birth weight greater than 4000 or 4500 g but, more 

recently has been defined as large-for-gestational age (LGA) [8]. LGA is similarly 

defined to SGA, but includes neonates with a birth weight above the 90
th

 percentile for 

the gestational age at birth. This fetal condition increases the risks of fetal injuries at 

birth, such as shoulder dystocia, brachial plexus or facial nerve injuries, fractures of the 

humerus or the clavicle and even birth asphyxia [8]. The mother is at increased risk of 

trauma to the birth canal and LGA births often warrant a Caesarean section. Additionally, 

LGA pregnancies are often associated with gestational diabetes mellitus (GDM) 

pregnancies. 

GDM is a maternal condition similar to diabetes albeit slightly less severe, or rather less 

advanced than diabetes. It is defined as “any degree of glucose intolerance with onset, or 

first recognition, during pregnancy” [55, 56]. GDM is associated with risks to the fetus 
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and to the mother. Stillbirth, congenital malformations, macrosomia, birth injury, 

perinatal mortality and postnatal adaptation problems (e.g. hypoglycaemia) are all more 

common as a result of GDM pregnancies. Mothers show higher risk of developing 

diabetes if GDM is diagnosed during the pregnancy.  

There are other abnormal pregnancy outcomes which affect maternal or fetal health 

statuses, but these are not strictly relevant to this study. The focus of the following 

section will be on, for the most part, biomarkers of SGA, LGA and GDM. 

1.3.2.2 Biomarkers indicative of SGA, LGA or GDM 

Above, it was mentioned that “good” biomarkers of abnormal pregnancy outcome are 

scarce, but this does not mean that the literature is devoid of papers on the subject. The 

correlation between fetal outcome and biochemical measurements has been demonstrated 

in the literature. Markers indicative of the onset of SGA, LGA or GDM have been sought 

in maternal serum, in umbilical cord blood and in AF however, studies have shown a 

predilection towards SGA. 

Kwiterovich et al. reported that higher triglyceride and apolipoprotein B levels and 

decreased high density lipoprotein cholesterol and apolipoprotein A-I levels in cord blood 

were correlated with infants born as SGA compared to a control group of AGA 

infants [57]. Concentrations of mitochondrial DNA from umbilical cord tissue 

normalized to maternal white blood cell nuclear DNA were significantly lower in cases 

of SGA and LGA [58]. First trimester maternal serum showed that low levels of 

pregnancy-associated plasma protein A (PAPP-A) and high levels of α-fetoprotein [59] 

are associated with SGA. Corroborating this study, low levels of PAPP-A were also 
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shown to increase the risk of SGA [59, 60]. Low levels of metastin found in first 

trimester maternal serum also point to a SGA perinatal outcome [61]. Another study used 

a composite metric combining fetal nuchal translucency thickness with maternal serum 

concentration of free β-human chrionic gonadotrophin (β-hCG) and PAPP-A to predict 

SGA births [62]. Placental growth factor (PLGF), placental protein 13 (PP13) and 

A Disintegrin And Metalloprotease (ADAM12) are all present in first-trimester maternal 

serum in lower concentrations [53]. 

Fasting levels of insulin and C-peptide in maternal serum at 24 to 30 weeks gestation 

could differentiate LGA and AGA outcomes [63]. Decreased maternal serum α-

fetoprotein [64] and elevated vitamin E [65] levels in early gestation were shown to be 

associated with LGA outcomes. Lower cord blood adiponectin levels combined with 

elevated insulin and leptin levels were found for LGA infants versus AGA control 

infants [66]. Recently, first-trimester maternal serum adiponectin levels were found to be 

lower for cases of macrosomia. 

Markers of GDM often overlap with those of LGA since many GDM pregnancies 

produce LGA neonates. Plasma glucose and HbA1c, markers of diabetes, also serve as 

markers of GDM during gestation [67]. Maternal serum levels of insulin regulatory 

species, such as decreased adiponectin [68] or increased leptin [69], have been shown to 

coincide with GDM. Sex hormone binding globulin [70], C-reactive protein [71] and 

placental amino acid transporters [72] also showed altered levels in GDM and are 

potential biomarkers. Here also, composite biochemical and biophysical metrics offers a 

way to detect GDM by combining maternal serum sex-hormone-binding globulin 

(SHBG), adeponectin and maternal characteristics [7]. 
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AF biomarkers have received much less attention, but IGF BP1 [73], homocysteine [74] 

and methionine [75] have shown to be associated with infant birth weight. Elevated 

glucose in second trimester amniotic fluid was shown to be indicative of GDM [76]. 

These markers have all been discovered using hypothesis driven strategies. 

Despite the few studies involving the search of biomarkers in AF, this biological fluid 

shows a high potential for biomarker discovery because of its proximity to the fetal 

compartment as well as the maternal compartment. Additionally, the AF proteome and 

metabolome are becoming increasingly studied and known. 

1.4  Thesis structure 

The Introduction was designed to provide sufficient background knowledge to understand 

the core thesis work that is presented in the next four chapters.  The following chapters 

are in manuscript form and each will be preceded with a short foreword that explains the 

manuscript’s status as well as supplementary information to prepare the reader for the 

chapter.  For the purposes of the overall thesis work, all of the AF samples were analyzed 

by CE prior to any chemometric data analysis and so, chronologically the GDM (Chapter 

2) and LGA (Chapter 4) represent experimental work carried out at the same time.  

However, Chapter 3 presents the logical extension to the GDM work which is the follow-

up experiments where the oxidation status of the human serum albumin recovered from 

AF is presented.  Chapter 4 involves work carried out on in vitro fertilization media. This 

chapter shows another successful application of the chemometric analysis of CE data and 

speaks to the transferability of the tools developed to other biological sample/outcome 

type problems. Additional material is presented in Appendices I, II, III and IV to support 
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and more fully describe the work presented in the manuscript chapters as they are written 

with a clinical audience in mind.  
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 Statement of contributions 

Michel Boisvert carried-out the mass spectrometric analysis and processed the 

electropherogram data using the genetic algorithm for both AF and IVF studies. The 

algorithm used for the data analysis was written by Michel Boisvert, except for COW and 

the algorithm provided by David H. Burns (see below). All the efforts to identify the 

unknown small molecule predictive of LGA were also done by Michel Boisvert. 

Tao Gao (M.Sc. research assistant), Nadine Zablith (M.Sc. research assistant) and Celine 

Lacroix (undergraduate research assistant) collected the capillary electrophoresis data and 

performed all electrophoresis experiments for the AF study. 

Wei Lin (M.Sc. research assistant) collected the capillary electrophoresis data and 

performed all electrophoresis experiments for the IVF study. 

David H. Burns (professor in department of chemistry at McGill University) provided the 

genetic algorithm and Bayesian classification program, as well as intellectual input to 

experiment design and data interpretation. 
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 Foreword to Chapter 2 

Chapter 2 and Chapter 4 pertain to the analysis of AF by CE whereby the data is analyzed 

with chemometric tools to link the sample content to maternal or fetal disease/condition. 

These two chapters are to be submitted for publication as companion papers to 

Biomarkers in Medicine, a journal designed for a broad audience from researchers to 

clinicians. Because of this, the data analysis is not described in great details within the 

papers. The Introduction chapter gave mathematical and conceptual explanations of the 

chemometric data analysis routines used for preprocessing and processing of the 

electrophoretic data. Appendix I gives more details about the experimental parameters 

used.  

For more detailed explanations of individual chemometric steps should read the 

following references: 

 COW: Nielsen 1998[32] and Tomasi 2004 [31] 

 HAAR and Genetic algorithm employed: Gributs 2006 [43] and Jang 1997 [42] 

 Bayesian statistics in medicine: Ashby 2006 [77] 

.  



58 

 

Chapter 2  

Prediction of Gestational Diabetes Mellitus Based on an Analysis of 

Amniotic Fluid by Capillary Electrophoresis  
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2.1 Abstract  

Aims: To detect gestational diabetes mellitus biomarkers in human amniotic fluid 

collected for age-related genetic testing at 15 weeks gestation using capillary 

electrophoresis and a sophisticated data analysis methodology. 

Materials & Methods: Amniotic fluid samples obtained from mothers undergoing 

routine amniocentesis were separated by capillary electrophoresis.  Data were aligned 

using correlation optimized warping, reduced by Haar wavelet transformation and 

samples were classified using a genetic algorithm.  The best model maximized the 

sensitivity and specificity by evaluating a Bayesian statistical model of the data and 

employed a leave-one-out cross-validation strategy.  

Results Gestational diabetes mellitus (GDM, n=14) was distinguished from non-GDM 

(n=95) with 86% sensitivity and 99% specificity using two wavelets.  These wavelets 

were located in the unresolved protein region and on the edge of the maternally derived 

albumin peak.  

Conclusions: Gestational diabetes is a maternal pathology however it was shown that it 

alters the biochemical profile of amniotic fluid.  These changes can be detected at 15 

weeks gestation whereas testing for gestational diabetes is normally carried out at 24-28 

weeks and suggests that GDM onset occurs early in gestation.   

 

Keywords: amniotic fluid, gestational diabetes mellitus, capillary electrophoresis, 

biomarkers of abnormal pregnancy.  
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2.2 Introduction  

The Barker hypothesis, also known as fetal programming, posits that the environment of 

the growing fetus has direct impacts not only on fetal development but also has lifetime 

repercussions [78-83].  Studies show that abnormal fetal growth can be linked to future 

health complications such as increased risk of cardiovascular diseases [79-81], type 2 

diabetes [82], dyslipidaemia, obesity and metabolic syndrome [80, 83].  There is also 

growing evidence that epigenetic modifications may be carried through to subsequent 

generations with the possibility of increased intergenerational health risks [84].  Early 

discovery of abnormal fetal development may also be commensurate with treatment and 

mitigation of the perinatal [85] and long term negative health impacts [86-88]. 

An important complication that can occur during pregnancy is gestational diabetes 

mellitus which is defined as a glucose intolerance during pregnancy [89].  Generally it 

affects 3-8% of all pregnancies in North-America and its prevalence is on the rise [90].  

The risk of GDM is increased for women that are 25 years or older, above normal weight, 

a history of abnormal glucose tolerance, members of ethnic groups with a high 

prevalence of diabetes or have close relatives with diabetes [14].  Short term 

complications include macrosomia, hypoglycemia and possible respiratory distress 

syndrome [91].  Infants born of GDM pregnancies are at elevated risk of developing 

obesity and type 2 diabetes and their associated complications [92].  The mother with 

GDM also faces increased risk of developing type 2 diabetes [93] and is at greater risk of 

cardiovascular disease [92]. Hyperglycemia also is known to increase oxidative stress and 

cause oxidative damage to proteins and lipids primarily [94]. 
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GDM is routinely diagnosed through a combination of risk assessments and the oral 

glucose tolerance test (OGTT) [95] at 24-28 weeks.  The test involves fasting for at least 

8 hours, ingesting 100 g of glucose and tracking plasma glucose values.  A GDM 

diagnosis is made when at least two of the following values are found: fasting ≥95 mg/dl, 

1h ≥180 mg/dl, 2h ≥155 mg/dl, 3h ≥140 mg/dl.  Using the fasting plasma glucose levels 

criterion (≥95 mg/dl) the sensitivity and specificity are 58.02% and 68.91% [96], 

respectively. If perturbations in the glucose metabolism can be observed in weeks 24-28 

other metabolic perturbations may be present in AF not only in this time window but also 

prior to week 24. 

At this time the majority of reported markers of GDM involve altered protein levels with 

only a few small molecules being associated with GDM. Plasma glucose and HbA1c, 

markers of diabetes, also serve as markers of GDM during gestation [67]. Maternal serum 

levels of insulin regulatory species, such as decreased adiponectin [68] or increased leptin 

[69], have been shown to coincide with GDM.  Sex hormone binding globulin [70], C-

reactive protein [71] and placental amino acid transporters [72] also showed altered levels 

in GDM and are potential biomarkers.  However, there are no generally accepted AF 

biomarkers for the early detection of GDM. During fetal development, the biochemical 

state of both mother and fetus is continuously changing, which complicates detecting 

abnormal biochemical profiles. Despite this increased variation, abnormal development 

should result in a different growth trajectory and, with the right approach, a differentiable 

biochemical profile with respect to normal fetal development.   

This paper will show that analysis of early second trimester whole AF by capillary 

electrophoresis coupled with Haar transformed data and Bayesian analysis provides a 



62 

 

simple means to survey the AF for underlying differences in AF composition associated 

with GDM.  

2.3 Materials & Methods  

2.3.1 Samples 

Pregnant women undergoing routine amniocentesis
 
between 12-20 gestational weeks at 

St. Mary’s Hospital Center in Montreal, Canada
 
were invited to participate in this study.  

Ethical approval was obtained from McGill University and St Mary’s Hospital Centre, 

and signed consents allowed
 
collection of amniotic fluid at Montreal Children’s

 
Hospital 

once genetic testing was completed.  The AF samples were stored at –85ºC until 

analyzed.  Application of
 
inclusion criteria (singleton pregnancy) and exclusion criteria

 

(multiple births, genetic anomalies) resulted in
 

109 mother-infant pairs for
 

whom 

amniotic fluid samples were analyzed and for whom birth outcomes were available.  

From questionnaires
 

and maternal obstetrical chart review, maternal characteristics 

including maternal
 

age, height, prepregnancy weight, smoking status, parity, 

amniocentesis week and infant characteristics such as birthing method, gender, birth 

weight and gestational age were obtained.  Gestational age was uniformly
 
calculated on 

the basis of physicians’ estimates using
 
last menstrual period.  Birth outcome was 

determined using a new birth-weight-for-gestational-age-categorization that is based on 

gestational age and gender [97]. 

2.3.2 Data collection and processing 

The details of the data collection and processing are provided in the following paragraphs 

after this brief outline.  The AF samples were separated by capillary electrophoresis.   
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Data preprocessing required the time alignment of the electrophoretic data with 

correlation optimized warping and data reduction with a Haar wavelet transform.  Data 

processing was accomplished with a Bayesian classification strategy. 

Capillary electrophoresis was retained as the most appropriate method for the separation 

of AF’s major components because of its potential for fast, highly efficient and 

automated sample analysis that can accommodate minute amounts of sample.  All CE 

separations were performed on a Beckman Coulter P/ACE Series MDQ capillary 

electrophoresis system (Beckman, Fullerton, CA) using Beckman 32 Karat Software 

Version 5.0 for instrument control, data acquisition and analysis.  Data were collected at 

4 Hz with a photodiode array (PDA) detector covering the 190-350 nm spectral range.  

Untreated fused silica capillary (75 µm i.d., 360 µm o.d.) purchased from Polymicro 

Technologies (Phoenix, AZ, US) was cut to 60 cm in length with a window at 50 cm 

from the inlet. The capillary was conditioned between runs by sequentially flushing for 3 

minutes at 1.4 bar followed by a 1 minute wait at 0 bar with 5 mM SDS then 100 mM 

NaOH.  The capillary was then rinsed and filled with the separation buffer (2 minutes at 

1.4 bar) and conditioned under 25 kV for 1 minute (0 bar).  At the beginning of each day 

a similar conditioning step was performed except the pressure rinses were 5 minutes and 

the waits were 2 minutes.  All prepared solutions were filtered through 0.45 µm syringe 

filters and degassed before use.  Prior to separation, randomly selected frozen (-85°C) AF 

samples were thawed in an ice-water bath and diluted 1:1 (v/v) with 0.5 mg/ml thiamine 

in water as an internal standard [98].  Samples were injected hydrodynamically (10 s, 

34.5 mbar) and separated using 75 mM borate, 0.8 mM EDTA pH 9.27 buffer at 25 kV 

for 20 minutes with the temperature set at 28°C.   
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Data preprocessing is a critical step where raw data are prepared into a suitable format for 

subsequent data analysis. It can refer to simple steps such as normalization and baseline 

correction or to more sophisticated data transformation steps. Guidelines exist for data 

preprocessing steps that should be applied to separation data prior to chemometric 

analysis [21, 31, 32, 99].  In this study, the data were baseline corrected by baseline 

subtraction and normalized to the peak height of albumin.  One of the established 

limitations of CE is migration time variations due to fluctuations in the electroosmotic 

flow velocity that result in peak area distortions.  These issues were minimized by using 

the accepted practice of dividing the CE signal (at any given time) by its corresponding 

migration time [21, 99].   

To further prepare the data, the electropherograms were time aligned using correlation 

optimized warping (COW) [31, 32].  The COW algorithm decomposes an 

electropherogram into small windows that can undergo a constrained stretching or 

contraction in such a way that the time aligned electropherograms show a major 

improvement in the alignment of their main features compared to a model target 

electropherogram.  In this case, the electropherograms were aligned to the first sample in 

the data set as a reference electropherogram since all of the AF electropherograms had a 

high degree of similarity in terms of presence of peaks [31].  The COW window and 

slack (stretching/contracting) parameters were set to 20 and 2 data time points (5 and 

0.5 s worth of data) respectively based on using a window of at least ½ the width of the 

smallest peak, which was 15 data time points and the smallest slack to achieve proper 

alignment.  Visually, the alignment of prominent peaks (not shown) was much better and 
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the global correlation coefficients of the sample electropherogram to the target 

electropherogram typically improved from 0.78 to 0.96 [100]. 

The final preprocessing step involved a Haar wavelet transformation of the data that 

denoised and compressed/simplified the data.  The son Haar wavelet is a square wave 

that can be used to decompose the data into integration windows of allowed widths (2, 4, 

8, … , 2
n
).  For the purpose of the Haar transformation, an 8.5 min (2048 data point) slice 

of the electropherogram was subjected to the Haar transform where with the first 256 

wavelets being retained.  

The goal of this data analysis was to build a statistical model that successfully 

differentiated the GDM from non-GDM samples using a minimum number of variables 

(wavelets).  Bayesian statistics, as applied to classification problems [101], are well-

established and have already been applied to a variety of fields.  For an in depth review of 

Bayesian statistics in medicine readers are directed to a review by Ashby in 2006 [77].  

For this study, a Bayesian classification strategy was used to classify samples into one of 

two outcomes: GDM or non-GDM. 

A common strategy employed in Bayesian classification problems, to minimize the time 

required to find the best classification model, involves the use of optimization methods.  

The computational time required to systematically build models with all possible wavelet 

combinations would have been considerable.  Instead, a genetic algorithm, which avoids 

human variable selection bias, was used to optimize wavelet selection while reducing 

computational time [102].  Implementation of the genetic algorithm is detailed 

elsewhere [43]. 
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In the Bayesian strategy, each test sample was classified on the basis of proximity to the 

known class means via a posteriori calculation and the class probabilities from a priori 

information (12.7% for GDM and 87.3% for non-GDM).  Inclusion of additional 

variables (wavelets) in the model was based on the general principle that a parsimonious 

model that uses fewer variables is more robust and should be chosen unless the addition 

of another variable increases the success of the model significantly.  The best model 

maximized the sum of the sensitivity (true positive rate) and the specificity (true negative 

rate) for the classification based on a full leave-one-out cross-validation strategy [101].  

Based on the calculated means and standard deviations for each group P values were 

calculated using student’s t-test. A random permutation test was done to determine if the 

classification model, using the identified variables, is statistically different than models 

obtained with random permutation of outcomes using the student t-test as the test 

statistic. A total of 75000 models with randomized outcomes were generated to determine 

a population mean and standard deviation. 

2.4 Results   

In this study, the average age (37.8 ± 2.3 years) of the participants was 8.5 years older 

than the Canadian national average maternal age.  Out of the 109 newborns, 55 were 

male and 54 were female.  The prevalence of GDM pregnancy (GDM, n=14; non-GDM, 

n= 95) in the group was 12.7% vs. 2-9% [103] for the population at large.  Of those GDM 

pregnancies, 14% of the women were obese (BMI > 30) and an additional 28% were 

overweight (BMI >25) but not obese, therefore 58% were of normal weight.   

The ethnic composition of the study group consisted of 62% Caucasian, 21% Asian, 7% 

African, 3% Middle Eastern, 6% Hispanic and 1% other.  The population contained 15% 
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smokers.  Amniocentesis was carried-out at 15.1 ± 0.9 weeks with an average gestational 

age at birth of 39.1 ± 1.9 weeks and average birth weight of 3439 ± 671g.   

The CE separation provided a fast, easy method of measuring the AF protein profile with 

all useful peaks detected in less than 10 minutes [104]. Repeated measurements of a 

pooled AF sample yielded 11 to 16 % relative standard deviation (RSD) in peak areas 

and 2.1 to 3.0 % RSD in migration times which necessitated the corrections for 

electroosmotic flow and area normalization.  However, the AF in the study population 

had about 37-43% RSD on peak areas suggesting that the inherent biological variations 

were much larger than the error associated with the separation process. 

Initially, the CE data were examined without normalization but no significant differences 

between GDM and non-GDM samples were found.  Only when the data were as 

normalized was it possible to differentiate these maternal states suggesting that it is the 

relative distributions of the proteins and other biochemical species that give rise to the 

differences detected here.   

By applying the genetic algorithm and Bayesian classification to the transformed data, 

the best model allowed for the differentiation of GDM samples from non-gestational 

diabetes samples using two wavelets with 86% sensitivity (2 false negatives) and 99% 

specificity (1 false positive) with a calculated P value of 0.001 as illustrated in Figure 15. 

The first of the two wavelets selected is located between the transferrin peak and an 

unknown partially resolved peak doublet [98].  In this region, multiple proteins co-

migrated therefore conclusive identification was not possible without on-line mass 

spectrometric detection. The second selected wavelet corresponded to the albumin peak.  
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For GDM, the numerical magnitude of the first wavelet increased while the magnitude of 

the second wavelet decreased. This model was validated using a full leave-one out 

strategy was equivalent to a blinded study design.  Based on the random permutation test 

the null hypothesis was rejected for α=0.05, meaning the classification model obtained 

above is statistically different from the population of models generated, using the same 

variables, with random permutation of outcomes suggesting that the classification model 

obtained is not likely to be due to chance alone.   

 

Figure 15: Using 2 variables (wavelets) on the albumin peak, the Bayesian algorithm can correctly classify all 
cases of GDM (14) and the non-GDM (95). Selected wavelets on electropherogram at 195±5 nm of AMF 

 

2.5 Discussion 

Amniotic fluid constitutes an important part of the growing fetus’ environment during 

gestation.  The dynamic nature of pregnancy (e.g. AF volume, maternal metabolism, 
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body size, health status) and fetal growth (e.g. fetal swallowing and urination, skin 

keratinization, fetal weight etc.) all affect both the biochemical profile and overall 

concentrations of biochemical species.  In early gestation, the majority of AF proteins are 

maternal in origin.  However, the extent of the exchange between amniotic fluid and the 

fetus is considerable until the skin keratinizes at week 22-26 [105].  At the 15
th
 week of 

gestation, the AF is a dynamic biochemical system, as such the data processing and 

analysis strategies must be flexible and robust.   

The first selected wavelet corresponds to a valley point between the transferrin and an 

unresolved doublet peak in the protein band.  This region may have been selected since 

any subtle changes in the migration times of any species surrounding that migration time 

window would have considerable impact on the value of this wavelet.  Peaks on either 

side of the valley may influence the amplitude of the wavelet but, it is also possible that 

an unresolved species that underlies the electropherogram directly modulates the 

amplitude of the wavelet.  Given that the first wavelet region corresponds to a mixture of 

co-migrating proteins no MS analysis was attempted.  However, the fact that it was 

detectable by UV absorbance, suggests that it is a high abundance protein rather than the 

more difficult to detect minor, or trace, level species.  

The second selected wavelet is in the leading edge of the electrophoretic peak associated 

with albumin, the protein with the highest concentration in AF (see Figure 15.) and 

serum.  Albumin performs many important functions in the circulatory system [106] with 

control of osmotic pressure, transportation of small molecules and drugs and buffering of 

oxidative stress being amongst the most important.  Diabetes is known to be a disease of 

both hyperglycemia and increased oxidative stress which results in protein modification.  
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These modifications could shift the pI of HSA and also induce conformational changes in 

the protein structure [107] both of which will modulate the electrophoretic mobility and 

result in an altered peak profile, as detected here. 

The main in-vivo hyperglycemia associated protein modification is non-enzymatic 

glycation primarily at a lysine residue.  On the other hand, oxidative stress associated 

modifications are more diverse but in albumin are primarily the oxidation of cysteine and 

disulfide oxidation.  The literature [107-111]  and measurements in AF [112] have 

identified that albumin’s cysteine 34, an in-vivo redox active thiol that is responsible for 

albumin’s oxidative buffering capacity, is the most susceptible to oxidation.  Identified 

oxidative modifications include, cysteinylation, oxidation to sulfenic, sulfinic and finally 

sulfonic acid [113].  In 2005, a paper by Bar-Or et al. showed that in cases of intrauterine 

growth restriction (IUGR) oxidative cysteinylation of maternal serum albumin was 

approximately double that of normal pregnancies.  They argued that the low placental 

blood flow of IUGR establishes a state of elevated oxidative stress that results in 

increased oxidation of maternal serum albumin to the cysteinylated form [108].  Other 

modifications have been observed in-vitro but have yet to be confirmed in-vivo or in AF.  

There are many unidentified modifications that we have observed in AF but the 

increasing power of mass spectrometry should provide greater insight into these albumin 

isoforms and their biological relevancy.  

In the case of diabetes, induced protein modifications are significant because these 

changes can alter albumin’s structure and function [109-111].  Glycation of serum 

albumin is certainly expected to be higher in cases of GDM but our recent MS analysis of 

AF HSA did not reveal any significant differences between GDM and non-GDM [112].  
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In that study, we found that increased irreversible oxidation of HSA’s cysteine 34 was 

present for GDM while levels of cysteinylated cysteine 34 were lower.  Increased HSA 

glycation may still be occurring under GDM pregnancies, however glycation is a slower 

biological reaction [114] than oxidation of albumin’s free thiol.  Additionally, the extent  

to which proteins are glycated is controlled by the glucose concentration and the protein’s 

half-life [115]. Glucose concentration in AF is 4-5 mg/mL [116], lower than the 7-8 

mg/mL found in serum, so the extent of glycation should be less. As for HSA’s half-life 

in AF, very little is known and thus it is hard to speculate further on the possibility of 

increased glycation of AF HSA for GDM pregnancies but at the 15
th

 week of gestation 

AF albumin is believed to originate predominantly from the maternal circulation [117].  

This implies that the changes to albumin that we have observed may actually be 

reflecting changes of maternal serum albumin caused by GDM prior to the 15
th
 week of 

gestation.   

2.6 Conclusions 

Using capillary electrophoresis, appropriate data normalization, multivariate analysis and 

classification allowed GDM to be differentiated from non-GDM on the basis of selected 

AF electrophoretic regions.  In this study, we obtained an 86% sensitivity and 99% 

specificity with AF collected at 15 weeks gestation.   Albumin was identified and is a 

likely target of oxidative modifications known to occur in GDM AF [112] but may 

actually be of maternal origin.   

Realization that significant biochemical changes are already underway at 15 weeks 

gestation may also imply that fetal programming is occurring well in advance of the 

second trimester. Early detection of GDM offers the possibility of remedial action and 
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detection 8-12 weeks earlier using the current strategy should provide additional time to 

provide a more effective treatment such as change of diet or insulin treatment, both 

shown to be effective controls of GDM [118]. 

2.7 Future Perspectives 

Amniotic fluid has significant potential as a pool of both birth outcome and maternal 

biomarkers and requires further investigation.  However, the implication of maternal 

albumin in differentiating GDM from non-GDM pregnancies suggests that maternal 

proteins may be a more direct and better source of GDM biomarkers.  Sampling maternal 

serum proteins would also have the significant advantage of being much less invasive 

than amniocentesis sampling and thus much easier to obtain.  It can also be drawn at any 

time during the pregnancy and may allow for earlier prediction, and monitoring, of 

abnormal pregnancy status.  

 

2.8 Summary points  

 Specific changes to the electrophoretic profile of AF allowed differentiation of 

GDM from non-GDM pregnancies during the early second trimester. 

 A simple CE method and sophisticated data analysis and processing methods 

allowed these species to be located in the electropherogram with high sensitivities 

and specificities. 

 A two wavelet model located on HSA and in the unresolved protein region 

classified GDM and non-GDM with 86% sensitivity and 99% specificity.   

 Due to sample to sample biological variations, and variations in the experimental 

procedure, the procedure required area normalization and time alignment. 

 In this study, Haar transformation and a genetic algorithm allowed the biomarker 

species to be efficiently located in the data set. 
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 Foreword to Chapter 3: Albumin and the oxidation of albumin 

One of the important results from Chapter 2 is that HSA is linked to GDM. More 

specifically a region of the HSA peak is predictive of GDM. Unfortunately, the CE-UV 

method employed was unable to provide sufficient insight about why this specific region 

of HSA is selected and not another. What complicates the matter is that some proteins are 

prone to chemical modifications that can alter their migration behaviour in CE. The 

specific chemical modification of a common protein backbone produces what is 

commonly referred to as an isoform of this protein. Thus one protein can have a whole 

family of isoforms that have very similar physico-chemical properties but with sufficient 

differences to cause alterations in the peak shape, the peak area and the migration time of 

a protein peak in CE. 

In parallel to our CE work on AF, one of our collaborators (DH Burns) was also carrying-

out studies of AF using NIR and Raman spectroscopy (unpublished work). He observed 

that GDM samples showed signs of increased oxidation. Based on the CE and 

spectroscopic results and the fact that HSA is particularly sensitive to oxidation, it was 

conjectured that AF HSA may show differences between GDM and non-GDM samples 

particularly with respect to the distribution of albumin oxidation isoforms. 

To establish if there are GDM related differences in the AF HSA required a better 

understanding of HSA, and its modifications, in AF in comparison with the reported HSA 

isoforms present in serum. Unlike serum HSA, the HSA isoforms found in AF are not 

well characterized or described in the literature. This likely due to the assumption that 

they are one and the same, yet HSA in serum and HSA in AF are subject to environments 

with different chemical potential. 
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Appendix II reports the details of this preliminary HSA characterization work and set the 

stage for the work that resulted in the publication presented in Chapter 3. To the best of 

our knowledge, this is the first detailed study of AF HSA and was presented at several 

international conferences. The synopsis of Appendix II is that AF HSA displays a 

distribution of isoforms that is different than serum HSA. The most striking difference is 

that AF HSA showed signs of severe oxidative modification when compared to serum 

HSA. This encouraged testing the hypothesis that AF HSA would show a different 

pattern of oxidation in GDM pregnancies compared to normal pregnancies.  

Chapter 3 presents the study comparing the specific differences in isoform distributions 

between GDM and non-GDM HSA and has been published in Analytical Chemistry in 

2010 [112]. 
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3.1 Abstract  

Gestational Diabetes Mellitus (GDM) is a state of hyperglycaemia and increased 

oxidative stress with onset during pregnancy.  Human serum albumin (HSA) was 

extracted from 26 GDM and 26 nonGDM amniotic fluid samples collected at 15 weeks 

gestation and analysed by mass spectrometry.  The majority of all albumin isoforms were 

oxidized with the cysteinylated HSA as the base peak in the deconvoluted spectrum.  The 

HSA peak areas, from a control sample, had 36% RSD across the six experimental days, 

but using the relative isoform distribution improved the precision to 3-6%.  The results 

show that the relative contribution of permanently oxidized HSA was greater (P=0.002) 

and reversibly oxidized HSA was lower (P=0.006) for GDM compared to nonGDM in 

the samples measured.  This implies that the path towards GDM has been set prior to 15 

weeks gestation and results in increased protein oxidation. 
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3.2 Introduction 

Gestational Diabetes Mellitus (GDM) is a state of hyperglycaemia arising during 

gestation that generally affects 3-8% of all pregnancies in North-America.  Its prevalence 

is on the rise [90].  Left untreated, GDM can lead to diabetes for the mother and also 

increases the risks of fetal morbidity and perinatal complications [91].  Offspring from a 

GDM pregnancy are also at increased risk of developing glucose intolerance and 

diabetes [92].  Both hyperglycaemia and the increased oxidative stress associated with 

hyperglycaemia can result in excessive post-translational protein modification that can 

impair protein function [119] and alter biochemical signalling [120].  It is important to 

appreciate that even relatively small chemical modifications (e.g. phosphorylation, 

glycation, oxidation, alkylation) can cause biochemical cascades that result in important 

biological consequences [121].  Abnormal distributions of protein isoforms are known to 

occur in a variety of pathological states and can be used for the diagnosis, or prognosis of 

Alzheimer’s, cardiovascular and autoimmune diseases as well as cancers [122-125].  

There is some ambiguity as to the precise definition of isoform [124], but in the context 

of this paper we will define isoforms as a protein and its various post-translational 

modifications.   

One of the difficulties in isoform analysis is that the post-translational modifications 

often result in subtle physio-chemical changes to the protein (e.g. tertiary structure, 

hydrophobicity, charge, molecular weight etc.) that may be difficult to characterize 

analytically.  Common instrumental methods of isoform analysis include HPLC [126], 

SDS PAGE, capillary electrophoresis (CE) [127] and capillary isoelectric focusing 

(cIEF) [128].  Separations based methods such as HPLC, SDS PAGE and CE typically 
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lack the resolving power to separate multiple isoforms simultaneously, especially when 

the modifications result in minute changes in hydrophobicity, charge and molecular 

weight.  Capillary isoelectric focusing provides high resolution separations of isoforms 

based on small pI differences but reproducibility and conclusive identification of the 

modifications remain problematic [128].  The analytical technology with the greatest 

isoform identification potential is mass spectrometry (MS) [129, 130], especially when 

coupled with reversed-phase LC.  Both CE and cIEF MS couplings are possible but 

difficult since common CE background electrolytes, many CE additives and cIEF 

ampholytes cause ion suppression and are problematic with electrospray ionization 

(ESI) [128]. Isoform analysis with SDS PAGE is used, but the low speed, semi-

quantitative nature, high level of labour and low reproducibility of SDS PAGE make this 

route unappealing [131].  

Modern MS is a versatile and powerful analytical technique that routinely achieves the 

mass accuracies required for isoform analysis.  For example, the mass accuracies for 

time-of-flight MS are below 5-20 ppm and Orbitrap instruments are capable of better 

than one ppm error, while ion cyclotron resonance mass analysers achieve sub-ppm 

levels [132].  However, analytical limitations for some of these types of mass analysers 

include restricted dynamic range and, more importantly, poor quantitative accuracy due 

to lack of signal reproducibility.  Quantitative accuracy can be improved by various 

strategies that revolve around isotope-based quantification such as absolute quantification 

by adding isotope-labeled peptides (AQUA) [133], absolute quantification by isotope 

labelled protein standards (PSAQ) [134] and isobaric tagging for relative and absolute 

quantitation (iTRAQ) [135, 136].  These methods use labelled analyte protein or peptide 
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as an internal reference to overcome variations in ionization efficiency and the analytical 

methodology.  In some cases, partial least squares calibration can be used to compensate 

for instrumental non-linearity, as reported for the absolute quantification of bovine serum 

albumin on a single quadrupole MS (LOD 17 ng, root mean square error in prediction of 

127 ng) [137]. 

However, when attempting to establish a correlation between isoforms and a pathological 

state, quantitative isoform analysis may not be strictly required.  Instead, the relative 

distribution of the MS signals can be a useful metric of the actual biological distribution. 

In order for a normalized approach to work, the ionization efficiencies should the same 

for the various protein isoforms under study. For large proteins, and their respective 

isoforms, we can reasonably expect that the ionization efficiencies are the same. Human 

serum albumin (HSA) is the most abundant protein in amniotic fluid [98] and can 

undergo several oxidative modifications in response to oxidative stress [138, 139].  In the 

present work, the relative distributions of human serum albumin (HSA) isoform signals 

from human amniotic fluid were compared between diagnosed GDM and non-GDM. 

3.3 Experimental Section 

Amniotic Fluid Samples.  Pregnant women undergoing routine amniocentesis between 

12-20 gestational weeks (mean 15 wks) at St. Mary’s Hospital Center in Montreal, 

Canada were invited to participate in this study.  Ethical approval was obtained and 

signed consents allowed collection of amniotic fluid from Montreal Children’s Hospital 

once genetic testing was completed.  The AF samples were stored at –85ºC until 

analyzed.  Application of inclusion criteria (singleton pregnancy) and exclusion criteria 

(multiple births, genetic anomalies) resulted in 26 AF samples with GDM that were 
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matched to 26 samples without GDM on the basis of gender and birth weight corrected 

for gestational age for a total of 52 samples that were analyzed.  A pooled amniotic fluid 

sample was prepared and used as a control by mixing ten AF samples followed by 

aliquotting and freezing.  

HSA Isolation and Desalting.  Amniotic fluid samples were thawed on wet ice prior to 

HSA isolation with AlbuminOUT™ (Genotech Biosciences, Maryland Heights, MO, 

USA) albumin affinity spin columns.  To ensure maximum recovery, 400 µL of AF (≈1.6 

mg of HSA) was loaded onto the spin column which the manufacturer claims has a 2 mg 

HSA capacity.  The HSA was eluted with 200 µL of the manufacturer’s NaCl elution 

buffer (1-1.5 M) according to the protocol provided with the AlbuminOUT kit.  Samples 

were desalted and washed using 30 kDa NMWCO Ultrafree centrifugal filters (Millipore) 

using five 500 µL DDW washes and recovered in ≈50 µL.  The desalted HSA was then 

diluted to 100 µL with DDW and stored at -85ºC until MS analysis. 

Mass Spectrometry.  The HSA samples were thawed on wet ice.  One µL of the HSA 

sample (≈16 µg) was injected, desalted and separated on a Waters CapLC system at 2 

µl/min using a NanoEase C18 trap column with a 16 minute linear gradient from 100% A 

(97%H2O/3%ACN/0.1%FA) to 90% B (3%H2O/97%ACN/0.1%FA).  A Waters Q-Tof2 

system was used for MS detection using nano-electrospray ionization with a capillary 

voltage of 3.5 kV and a cone energy of 35 V.  A mass accuracy of <20 ppm was 

determined by measuring by mass calibration using Glu-Fib peptide. 

Data Analysis.  Peaks corresponding to various HSA isoforms were integrated using 

MassLynx v.4.0 after deconvolution of the raw spectra over the m/z range of 1200 to 
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1650 with the MaxEnt1 algorithm.  Data were analyzed in both Excel and MATLAB 7 

(The Mathworks Inc., Natick, MA, USA).  The fractional composition was calculated by 

dividing the isoform’s integrated peak area by the total peak area.  Student’s t tests with a 

significance threshold set at P = 0.05 were used to compare GDM and nonGDM results. 

3.4 Results and Discussion 

Modern MS is a powerful analytical technique capable of rapid on-line protein isoform 

analysis, but sample preparation is critical to fulfilling MS’s potential.  We found that 

residual sample salts introduced excessive ionization suppression that led to poor 

reproducibility and low signal to noise ratios.  To prevent this, it was necessary to desalt 

and wash the HSA sample both on the centrifugal filter and by using the NanoEase trap 

column.  Using the trap column as the final sample preparation stage also allowed 

effective solvent exchange to improve ESI efficiency.  These measures produced high 

quality spectra and Figure 16 shows a deconvoluted spectrum of a pooled AF HSA 

sample where several isoforms of HSA have been identified.  Quantitative protein MS of 

biological samples is difficult due to significant variations in sample preparation, 

ionization efficiency and instrumental sensitivity.  When the integrated albumin area, for 

all isoforms, was calculated from a single pooled sample measured in duplicate on the six 

experimental days a reproducibility of 36% was found.  From this same sample data, 

reproducibilities of 4.9% and 2.7% were found for Ratio 1 and Ratio 3 respectively, as 

explained below.  Pooled samples prepared each day, and measured in duplicate, yielded 

reproducibilities of 6.0% & 2.7% RSD for these same measures.  The improved precision 

associated with using the relative measurements illustrates the benefits of this strategy 

and minimizes both instrumental and sample preparation error. 
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Figure 16 shows that the HSA in 2
nd

 trimester pooled amniotic fluid is extensively 

modified; 11-13 prominent peaks were observed as baseline resolved, or as partly 

resolved peaks depending on the sample.  However, the most striking feature of Figure 16 

is that the base peak was not from reduced, or mercapto-albumin (66,437 Da, labelled as 

HSA–SH in Figure 16) but rather from an oxidized species: cysteinylated HSA.  This 

modification occurs from the oxidation of HSA’s free thiol [113] (cysteine 34) by S-

cysteinylation giving a new isoform (HSA–cys) with a molecular weight of 66,556Da (Δ 

m/z +119). 
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Figure 16: Deconvoluted ESI-MS spectrum of a pooled AF HSA sample showing the main protein modifications 

observed (top).  Each peak has been lettered and the fractional areas are reported in Table 3.  In the bottom left 

panel is the equation for Ratio 1 and a boxplot representation of the results comparing GDM and nonGDM with 

respect to Irreversible HSA oxidation.  In the bottom right panel is the equation for Ratio 3 and a boxplot 
representation of the results comparing GDM and nonGDM with respect to cysteinylated HSA. 

Other typical, in-vivo, modifications to the cysteine 34 thiol include oxidation to sulfenic 

acid (Δ m/z +16, HSA–SOH, not observed), to sulfinic acid (Δ m/z +32, HSA–SO2H, 

observed), to sulfonic acid (Δ m/z +48, HSA–SO3H, observed) and the S-cysteinylation 

(Δ m/z +119, HSA–cys, observed).  In addition to cysteine 34 modification, one or more 

of HSA’s disulfide bonds were oxidized resulting in di-sulfenic (Δ m/z +34, not 

observed), sulfinic with di-sulfenic acid (Δ m/z +66, (HOS)2–HSA–SO2H observed) and 

di-sulfonic acids (Δ m/z +98, not observed).  Bar-Or recently identified that after 

disulfide oxidation, cysteine (cys487) can undergo selective and irreversible oxidation to 

dehydroalanine due to the proximity of basic arginine residues (arg484 and arg485) in-
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vivo independent of the oxidation status of Cys34 (Δ m/z -34, HSA[DHA], observed and 

Δ m/z +85 HSA[DHA]-cys, observed) [140, 141].  Glycation by hexoses [142] (Δ m/z 

+161, HSA–hexose, observed) is also a common modification that was observed on AF 

HSA.  To the best of our knowledge, these data provides the first detailed examination of 

intact amniotic fluid HSA protein isoforms by MS.   

Mercapto-albumin is normally the predominant isoform (70-80%) in serum HSA [129, 

130, 143, 144], but this was not the case for AF HSA where the mercapto-albumin was a 

minor peak compared to the oxidized isoforms and only contributed 7.5% to the total area 

(Table 3).  There is some evidence to suggest that amniotic fluid is oxic at 15 weeks 

gestation [145], and normal pregnancy is associated with elevated oxidative stress [146] 

for both mother and the fetus and may result in increased oxidative protein modification.  

In maternal serum there are several mechanisms/pathways (e.g. glutaredoxin and 

thioredoxin) [147, 148] that reduce some forms of oxidized albumin (i.e. HSA-cys) to 

maintain the predominance of the reduced isoform.  The activity of these two enzymes 

has not been reported in AF but thioredoxin was detected in an AF proteome 

analysis [149].  The placenta is a significant source of AF albumin and elevated levels of 

placental thioredoxin were measured in pre-eclamptic pregnancies but its effect on AF 

albumin is unknown [150].  The more highly oxidized HSA thiols (e.g. HSA-SO2H, 

HSA-SO3H etc.) are considered irreversibly oxidized, even in serum.   

Given that GDM is a condition of elevated oxidative stress we investigated the 

correlations between oxidized HSA, non-oxidized HSA and GDM.  Initially we believed 

that it would be necessary to use a paired t-test and selected our samples accordingly but 

this was unnecessary and all values correspond to conventional t-tests with a P of 0.05 for 
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significance.  Statistical analysis of individual HSA isoform peaks did not reveal any 

statistically significant differences between GDM and nonGDM mothers (Table 3) with 

the exception of the potentially reversibly oxidized cysteinylated HSA (peak g, Table 3).  

Peaks c, d and e are only partially resolved and the choice of the limits for peak 

integration are subjective.  From a biochemical point of view, these three HSA isoforms 

contain irreversibly oxidized cys34 and can be justifiably grouped together.  In this case 

the statistical analysis corresponding to all irreversibly oxidized cys34 was significantly 

greater for GDM than for nonGDM mothers as illustrated by Ratios 1 and 2 (Table 4).  In 

a similar fashion, the potentially reversibly oxidized HSA, where at least one thiol was 

cysteinylated were significantly lower in AF of GDM compared to nonGDM mothers 

(Ratios 3 and 4, Table 4).  In general, including the dehydroalanine species did not 

improve discrimination of GDM from nonGDM (Ratios 2 and 4) but the biological 

significance of this observation is unknown.  At the very least, the loss of a disulfide 

bridge will alter HSA’s conformation in a non-reversible way.  The opposite trends of the 

irreversibly and reversibly oxidized HSA warranted investigation using linear 

combinations of these values which also proved to be significantly different between the 

groups (Ratios 5, 6 and 7).  Interestingly, using just the mercapto-albumin (HSA-SH) did 

not produce any significant discrimination between GDM and nonGDM (P = 0.15).   
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Table 3: Calculation of relative isoform distributions of HSA in AF and corresponding P value for GDM (n=26) compared to nonGDM (n=26). 

Peak HSA isoforms 
Mass difference from 

HSA-SH (66437 Da) 
P value 

Fraction of total 

nonGDM 

mean (SD) 

Fraction of total  

GDM 

mean (SD) 

a HSA[DHA] -34 0.88 0.030 (0.003) 0.030 (0.004) 

b HSA-SH 0 0.15 0.075 (0.016) 0.083 (0.019) 

c HSA–SO2H +32 0.33 0.009 (0.004) 0.011 (0.006) 

d HSA–SO3H +48 0.08 0.053 (0.007) 0.058 (0.012) 

e (HOS)2–HSA–SO2H +66 0.13 0.005 (0.003) 0.069 (0.004) 

f HSA[DHA]-cys +85 0.81 0.080 (0.009) 0.081 (0.007) 

g HSA–cys +119 0.01 0.393 (0.019) 0.377 (0.02) 

h HSA–hexose +161 0.41 0.117 (0.006) 0.120 (0.009) 

i Unknown +177 0.69 0.0058 (0.006) 0.0066 (0.008) 

j Unknown +187 0.97 0.051 (0.012) 0.051 (0.011) 

k cys-HSA–(SO3H)2 +222 0.22 0.050 (0.011) 0.047 (0.008) 

l Unknown +250 0.91 0.033 (0.014) 0.033 (0.013) 

m Unknown +276 0.93 0.078 (0.03) 0.078 (0.03) 
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Table 4: Calculation of relative isoform distributions and linear combinations of oxidized HSA in AF and corresponding P values for GDM compared to 
nonGDM. 

Irreversibly oxidized HSA 

Linear combinations of peaks P value 

Fraction of total 

nonGDM 

mean (SD) 

Fraction of total  

GDM 

mean (SD) 

Ratio 1 = c+d+e 0.002 0.068 (0.006) 0.076 (0.015) 

Ratio 2 = a+c+d+e+f 0.05 0.179 (0.015) 0.187 (0.016) 

Reversibly oxidized HSA 

Ratio 3 = g+k 0.006 0.443 (0.019) 0.424 (0.026) 

Ratio 4 = f+g+k 0.03 0.523 (0.025) 0.506 (0.027) 

Other combinations 

Ratio 5 = (g+k)-(c+d+e)  0.001 0.374 (0.019) 0.349 (0.03) 

Ratio 6 = (f+g+k)-(c+d+e) 0.004 0.455 (0.025) 0.429 (0.03) 

Ratio 7 = (g+k)-(a+c+d+e) 0.004 0.343 (0.021) 0.318 (0.036) 
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These results show that AF HSA is highly oxidized and that the increased oxidative 

stress associated with GDM alters AF albumin towards the irreversibly oxidized 

isoforms.  Corroborating this concept is a proteomic study of preeclampsia, another 

pregnancy condition of elevated oxidative stress, in which significantly elevated levels of 

oxidized momomeric transthyretin were found in AF at 16 weeks gestation [151].  In 

another study, Bar-Or found that maternal serum HSA, at 30 weeks gestation, was 

predominantly oxidized as the cysteinylated isoform in intrauterine growth restricted 

(IUGR) cases, another disease resulting in elevated oxidative stress [141]. It is significant 

to note that prior to the second trimester, most AF proteins are primarily maternal in 

origin [152, 153] so the AF measurements presented here may constitute a proxy 

measurement for maternal serum HSA oxidation. 

Currently, only genetic testing is performed during routine amniocentesis, however, our 

results suggest that AF is an underutilised source of biochemical information and could 

be useful for early diagnosis of oxidative stress related conditions and may be specific for 

detection of GDM.  Currently, the accepted method of diagnosing GDM is via the fasting 

plasma glucose level criterion (≥95 mg/dl) and is carried-out at 24-28 weeks gestation but 

only provides 58% and 69% sensitivity and specificity [154].  Our work shows that GDM 

can be differentiated from nonGDM at 15 weeks gestation and implies that the path 

towards GDM has been set prior to the second trimester.  However, the high level of 

expertise required for the MS analysis, and the limited separation of GDM vs. nonGDM 

(Figure 1, bottom panels) would limit the application of the current approach as a 

clinically relevant diagnostic test.  Alternative approaches to quantitatively probe the 

oxidation state of HSA’s cys34 are being investigated.  As suggested by Bar-Or’s results, 
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direct measurements of maternal serum HSA oxidation might provide an even better, and 

less invasive, method of assessing pregnancy associated oxidative stress and may have 

the potential for detection of GDM but this requires further investigation. 

We have developed an easy and rapid method of assessing the albumin isoform 

distribution in AF but this same strategy should be applicable to a wider variety of 

proteins and sample types.  Protein isolation, either through the AlbuminOut cartridges or 

other immuno purification systems and extensive desalting are critical to signal 

reproducibility but are easy to perform.  The sample preparation costs are modest 

(≈$8/sample) and many samples can be prepared in parallel.  Using the relative 

distribution of the deconvoluted protein spectrum overcomes the difficulties of 

quantitative sample preparation and mass spectrometry and is useful for monitoring 

alterations in isoform distribution in pathological conditions. 
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 Postscript to Chapter 3: Statistical significance of results 

 At the time that this thesis was examined, Chapter 3 was already a published paper and, 

according to the Thesis Guidelines, the text should not be modified. A random 

permutation test was identified as being beneficial in validating the significance of the 

results.  To this end, a total of 1000 randomized outcomes were considered, using the 

same variables as reported in Table 4, to determine a population mean and standard 

deviation for each of the entries in Table 4.  

Based on the random permutation test the null hypothesis was rejected for α=0.05, 

meaning the classification model obtained above is statistically different from the 

population of models generated with random permutation of outcomes suggesting that the 

classification model obtained is not likely to be due to chance alone. 
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 Foreword to Chapter 4: From GDM to LGA 

Chronologically, the CE-GDM experimental work was carried-out at the same time as the 

following CE-LGA research however, logically it has been presented separately since 

LGA and GDM are different physiological conditions.  LGA pertains to fetal growth and 

development whereas, GDM is a maternal health condition that arises during pregnancy. 

It has been suggested that there is a link between the two as the incidence of LGA 

neonates is greater in GDM pregnancies. Several studies have implicated GDM as a risk 

factor of LGA neonates [155, 156] and as such may lead to similarities/overlap in the 

predictors of GDM and LGA.  

Chapter 4 will show that the same HSA region in the AF electropherogram as in Chapter 

2 (albumin) combined with an unknown small molecule can be used to correctly classify 

LGA and AGA neonates. Furthermore, one of the unpublished outcomes from the MS-

GDM work (Chapter 3) was that a difference in the HSA isoform distribution was 

observed between the LGA and non-LGA samples but the number of samples was not 

sufficient for publication (LGA n=6, AGA n=46). The isoform distribution was also 

different between the LGA-GDM (n=3) and the LGA non-GDM (n=3). 

Again Chapter 2 and 4 are to be submitted together as companion papers to Biomarkers 

in Medicine. 
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4.1 Abstract  

Aims: To identify using capillary electrophoresis (CE) and chemometrics early 

biomarkers in human amniotic fluid (AF) of large-for gestational-age (LGA) infants  

Materials & Methods: Second trimester AF samples, obtained from mothers undergoing 

age-related amniocentesis (~15 wks gestation), were analyzed by CE.  Electropherogram 

data were aligned using correlation optimized warping and reduced by Haar wavelet 

transformation.  A genetic algorithm using a Bayesian evaluation function and a leave-

one-out cross-validation strategy for two birth outcomes: appropriate- versus large-for-

gestational age infants (AGA vs LGA).  

Results: Large-for-gestational age (LGA, n=23) was distinguished from appropriate-for-

gestational age (AGA, n=86) with a sensitivity of 100% and a specificity of 98% using 

only two wavelets.  The first wavelet associated with albumin and the second wavelet 

with an unknown small molecule.  

Conclusions: The approach developed herein allows LGA fetuses to be metabolically 

distinguished from AGA fetuses early in pregnancy and indicates that birth of a LGA 

infant is already associated with an altered biochemical profile by the second trimester.  

 

 

Keywords: amniotic fluid, large for gestational age, capillary electrophoresis, biomarkers 

of abnormal fetal development 
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4.2 Introduction  

Studies show that abnormal fetal growth including low birth weight and intrauterine 

growth retardation, both indicators of intrauterine adversity, can be linked to increased 

risk of cardiovascular diseases [79, 80], type 2 diabetes [82], dyslipidaemia, obesity and 

metabolic syndrome [80, 83]. Similarly, reports show that LGA neonates also have 

increased risk for developing obesity, metabolic syndrome, diabetes and cardiovascular 

diseases [157]. For both these abnormal perinatal outcomes, evidence is emerging of 

epigenetic modifications in utero that may be intergenerational [84, 158]. With evidence 

for in utero fetal programming, there is growing concern that earlier diagnosis is required 

if we are to mitigate against the increasing incidence of obesity, type 2 diabetes, 

hypertension and metabolic syndrome in future generations [86].   

Some correlations between infant birth weight and biochemical measurements using 

maternal serum or cord blood and a few using amniotic fluid have been reported.  In first 

trimester maternal serum, low concentrations of pregnancy-associated plasma protein A 

(PAPP-A) and high levels of α-fetoprotein [59, 60] as well as low concentrations of 

metastin [61] have been associated with SGA.  For LGA infants, decreased maternal 

serum α-fetoprotein [64] and elevated vitamin E in early gestation [65] and higher fasting 

concentrations of C-peptide at 24 to 30 weeks gestation were able to differentiate LGA 

and AGA outcomes [63].  Using cord blood, investigators have reported lower 

mitochondrial DNA in cases of SGA and LGA [58] and higher triglyceride and 

apolipoprotein B and lower HDL-cholesterol and apolipoprotein A-I in SGA compared to 

AGA infants [57]. In LGA infants, lower cord blood adiponectin combined with elevated 

insulin and leptin have been reported [66].  Several AF species have also been associated 
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with birth weight outcomes: total protein inversely with SGA [159], insulin positively 

with LGA [160],  higher IGF BP1 and IGFBP 3 with SGA and LGA respectively[73], 

uric acid [161], homocysteine [74] and methionine [75]. Recently, mass spectrometry has 

been employed to measure AF composition, but this work has focused primarily on 

cataloguing the proteome rather than finding biomarkers of abnormal fetal growth.  Most 

reports rely on 2D-PAGE and spot analysis [45, 162] and/or liquid fractionation 

methodologies [163, 164] to achieve sufficient resolution to survey the AF proteome.  

In North America, women at an elevated risk of abnormal pregnancy may undergo 

amniocentesis for genetic testing early in the second trimester. Once tested the amniotic 

fluid is often discarded. Amniotic fluid is a complex fluid that originates from both 

maternal and fetal sources, and has been underutilized in the quest of finding important 

biomarkers of fetal growth and development. Since amniotic fluid is a complex biological 

sample with a dynamically changing composition that contains 98% water and metabolic 

species that are necessary for, and by-products of, important reproductive biological 

processes (e.g. proteins, salts, glucose, uric acid etc.), it deserves further investigation as 

a potential pool for biomarkers.  Moreover, there is a pressing need in prenatal care for 

the early identification of large-for-gestational age infants.  In many countries, including 

US, Canada, Denmark and Finland, there has been an increase in the number of infants 

with birth weights > 4000g and > 90
th
 percentile [165-168]. In this report, we 

demonstrate that capillary zone electrophoresis, one of the simplest of the separation 

techniques, coupled with a chemometric approach using Haar transformed data and 

Bayesian analysis provides a simple means of surveying 2
nd

 trimester AF for underlying 

differences in AF composition associated with birth of large-for-gestational-age infants.   
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4.3 Materials & Methods  

Amniotic fluid collection and sample storage were the same as in the companion paper 

(Chapter 3 in this thesis).  Briefly, 109 mother-infant pairs were available and infants 

were classified as LGA (n=23) and AGA (n= 86). To classify LGA and AGA infants, we 

used birth weights that were greater than the 90% for gender and gestational age; AGA 

infants were defined as those >10% and <90% [168]. All CE separations, reagents and 

data processing steps were also identical to those used in the companion paper (Chapter 2 

in this thesis). The Haar transformed dataset and known fetal LGA/AGA status were 

analysed using the genetic algorithm to select for the best combination of variables 

(wavelets) based on evaluation of a Bayesian benefit function as described earlier. 

4.4 Results 

The women included in this study mothers were undergoing age-related amniocentesis 

and therefore were older (37.8 ± 2.3) than the Canadian national average (29.3 yrs) and 

had a slightly higher prevalence of LGA births (19%) compared with the 10% reported in 

2006 [169].  Of the LGA births, 29% also had GDM diagnosed during the pregnancy. 

Fifteen percent were smokers; 38% had BMIs within the normal range (BMI 20-24.9 

kg/m
2
); 48% were overweight (BMI >25 kg/m

2
) and 14% were obese (BMI>30kg/m

2
).  

Ethnicities were as follows: 62% Caucasian, 21% Asian, 7% African, 3% Middle 

Eastern, 6% Hispanic and 1% other.  Amniocentesis was carried-out at 15.1 ± 0.9 weeks 

with an average gestational age at birth of 39.1 ± 1.9 weeks and average birth weight of 

3439 ± 671g.  Average birth weight for the LGA infants was 4248 g and for the AGA 

infants was 3310 g. Of the 109 newborns, 55 were male and 54 were female.  
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CE separation provided a fast, easy method of measuring the AF biochemical profile with 

all useful peaks detected in less than 10 minutes [104]. Repeated measurements of a 

pooled AF sample yielded 11 to 16 % relative standard deviation (RSD) in peak areas 

and 2.1 to 3.0 % RSD in migration times and necessitated the corrections for 

electroosmotic flow and area normalization.   The genetic algorithm and Bayesian 

classification algorithm differentiated LGA (n=23) from AGA (n=86) using two wavelets 

selected from the 256 wavelets that represented the electropherogram with a sensitivity of 

100% and a specificity of 98% (Figure 17, P = 0.0003).  The model was validated using a 

full leave-one out strategy and was equivalent to a blinded study design. Also, based on 

the random permutation test, the null hypothesis was rejected for α=0.05, meaning the 

classification model obtained above is statistically different from the population of 

models generated with random permutation of outcomes and suggesting that the 

classification model obtained is not likely to be due to chance alone. 
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Figure 17 shows an electropherogram (blue trace) and the 2 wavelets (red rectangles) used to build the 

predictive model for classification of LGA vs. AGA.  The inset is a box plot with AGA values in blue circles and 
LGA in red squares. 

 

The selected wavelets were integrals of the regions in the electropherogram shown in 

Figure 17. The first wavelet corresponded to a region on the leading side of the albumin 

peak.  The numerical magnitude of the first wavelet decreased for LGA. The second peak 

corresponded to a small negatively charged species.  The magnitude of the second 

wavelet increased in LGA infants.   

4.5 Discussion 

Amniotic fluid is a dynamically changing fluid that originates from multiple sources 

including transudation through the amnion from maternal plasma, through the fetal 

nasopharyngeal oral and lacrymal secretions, through unkeratinized fetal skin and 



100 

 

through the developing fetal kidney [170]. However, pregnancy continually modifies the 

biochemical profile and the overall concentration of most biochemical species in 

amniotic fluid. Prior to our investigation, several studies had reported individual 

differences in biochemical species in cord blood and maternal serum between LGA and 

AGA infants [58, 63-66, 73-75, 160, 161].  However these were for single analytes at 

different developmental stages.  Our contention had been that a multivariate analysis of a 

single AF sample could be used reliability to assess the health of the mother-fetus dyad 

throughout pregnancy.  Our results using capillary electophoresis of second trimester 

amniotic fluid collected at 15.1 ± 0.9 weeks gestation for the differentiation of LGA from 

AGA infants showed a high degree of selectivity and sensitivity (100% sensitivity and 

98% specificity) when the model was built using 2 wavelets.  This is much earlier then 

the current LGA prediction by means of sonographic measurements taken during the 3
rd

 

trimester [171-173]. Inclusion of additional variables (wavelets) was rejected since it did 

not improve the classification significantly. The two wavelets selected correspond to two 

potential biomarker species for birth of an LGA infant.  

The first selected wavelet is part of the electrophoretic peak nominally associated with 

albumin, the protein with the highest concentration in AF. Albumin is the one of the most 

abundant proteins in AF and performs multiple functions, including nutrient source 

through fetal swallowing and as anti-oxidant.  In a previous study of HSA in AF we 

observed 13 distinct masses [112] associated with AF HSA while Bar-Or illustrated 10 

HSA isoforms [108] from maternal plasma.  The significance of HSA as a potential 

biomarker is discussed in the companion paper (Chapter 2) where HSA was found to also 

be linked to GDM.  An accelerated metabolic activity is expected for both LGA and 
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GDM.  The decrease in this wavelet’s amplitude in LGA indicates a change in the 

electrophoretic profile of HSA, possibly from protein conformational changes and/or 

from chemical modifications.  Given our previous experience with GDM, a reasonable 

hypothesis is that the electrophoretic changes may be related to increased HSA oxidation 

and consequent reduction of the leading half of the albumin peak.  However, this needs to 

be verified via mass spectrometry. 

The second selected wavelet corresponds to an unidentified late migrating peak similar to 

those that have been observed in cerebrospinal fluid and serum CE separations [174]. The 

exact nature of this small molecule is hard to determine. From the migration behaviour in 

CE the species has to be a small molecule capable of carrying 2 negative charges. Several 

potential candidates have been investigated by mass spectrometry combined with CE 

spiking experiments but none so far correspond to the unknown molecule.  Identifying 

unknown metabolites represent a significant challenge [175, 176] as MS spectral library 

that are publicly available are few [177, 178] and often contain limited numbers of 

metabolites in their databases. For instance, the HMDB returns only 19 metabolites (last 

searched on Jan 13, 2012) present in AF and so far none of them have corresponded to 

the unknown small molecule.  

Proteomic analyses, especially of low abundance proteins, are very popular in biomarker 

discovery but have only recently been applied to amniotic fluid constituents [45, 162-

164].  However, the present study highlights the importance of giving consideration to 

small molecule metabolites as valuable sources of biomarkers of fetal growth 

progression. It is worth noting that even relatively high abundance species, such as those 

that can be detected by UV absorbance, can provide high sensitivities and selectivities.  
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Obvious LGA metabolites to consider are those involved in production of energy such as 

carbohydrates and the glycolysis products, fatty acids, and products of amino acid 

degradation all of which feed into the citric acid cycle and the urea cycle. Establishing the 

normal concentration range of metabolites present in AF is of high clinical interest for 

screening, or diagnosis, of metabolic disorders.  Only a few initial studies have 

determined the normal metabolic profile in AF [179-183].  

This paper is the second in a pair of companion papers.  In the first paper (presented as 

Chapter 2 in this thesis), biomarkers of gestational diabetes, a maternal pathology, were 

determined.  In this paper, the same analytical and data analysis methods were used to 

determine biomarkers of large-for-gestational-age (LGA), a fetal pathology.  Many LGA 

births are believed to be the result of poorly controlled gestational diabetes 

pregnancies [76, 184, 185] and as such should present a similar biochemical fingerprint 

as GDM in AF.  In this study, only 29% of all neonates born LGA had mothers who had 

been diagnosed with GDM. This percentage is suggestive that metabolic aberrations 

associated with GDM do not underscore all cases of LGA. Also, it is interesting that one 

of the two species associated with LGA (albumin) was also used to characterize GDM 

(Chapter 2 and 3). Given that LGA and GDM analyses showed some overlap, yet had 

distinct wavelets, suggested to us that there are both similar and distinct metabolic 

pathways contributing to both conditions.  We conclude, given the results of these two 

companion papers, that amniotic fluid metabolic profile that is present in pregnancies 

leading to an LGA infant has a metabolic fingerprint that is distinctive from GDM’s 

fingerprint even though both of these conditions co-occur. 
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4.6 Conclusions 

In conclusion, AF is a complex biological sample that has significant potential as a pool 

for biomarkers of abnormal fetal development.  Using capillary electrophoresis, 

appropriate data normalization, multivariate analysis and classification allowed specific 

pregnancy outcomes to be associated with selected electrophoretic peaks or regions.  The 

method developed here allowed LGA fetuses to be distinguished from AGA fetuses early 

in the second trimester, which is much in advance of current diagnosis using sonography 

later in pregnancy [171-173] when intervention is impractical or impossible.  Further 

studies could identify definitive AF factors that may provide an important early window 

into the metabolomics of the developing fetus. 

4.7 Future Perspectives 

Given our findings, AF collected at the time of routine amniocentesis contains early 

biomarkers of LGA. However, increasing the resolution of the separation (e.g. 2-D 

chromatography) and combining it with on-line mass spectrometric detection would 

allow much more biochemical information to be extracted from the AF and expand the 

potential for biomarker discovery.  A paired maternal blood-serum and AF study could 

provide an excellent means to find biomarkers of abnormal fetal development present in 

both biological fluids with the ultimate aim of developing non-invasive (to the fetus) 

assays that could be applied to the broader pregnant population, not just those undergoing 

routine amniocentesis. This should ultimately lead to earlier intervention strategies that 

would minimize the incidence of lifetime complications associated with birth of a LGA 

infant. 
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4.8 Summary points 

 The proximity of AF to the fetus and the direct exchange of biochemical species 

between AF, mother, placenta and the fetus makes AF a good source of potential 

biomarkers of abnormal fetal growth due to either fetal or maternal causes.  

Results suggest that early second trimester AF is an underutilized biofluid for 

assessing the progression of fetal growth.   

 A simple CE method and sophisticated data analysis and processing methods 

allowed specific biomarkers of LGA to be identified in AF early in the second 

trimester.  

 Due to sample to sample biological variations, and variations in the experimental 

procedure, the procedure required area normalization and time alignment but Haar 

transformation and a genetic algorithm allowed the biomarker species to be 

located in the data set efficiently. 

 Two wavelets, one on the leading edge of HSA and one associated with 

negatively charged small molecule were able to distinguish LGA from AGA with 

a sensitivity of 100% and specificity of 98%. 
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 Postscript to Chapter 4: The unanswered question. 

The previous chapter has left the obvious question of the identity of the small molecule 

associated with LGA unanswered.  The identity of this species was pursued but the 

difficulty of specific identification was not resolved. Determining the identity of 

biomarkers of interest in data driven approaches can prove to be very difficult. It is very 

often the bottle-neck for this type of experimental design. The complexity of biological 

samples such as AF introduces significant challenges with respect to the isolation and 

characterization of a putative biomarker. In this case, the CE buffer added another layer 

of complexity as it interfered with MS analysis of the sample. Additionally, the UV 

profile (absorbance from 190 to 210 nm) made it difficult to develop isolation methods 

by HPLC-UV with MS compatible buffers as these almost always require some sort of 

small volatile organic acid such as formic or acetic acid. These acids absorb strongly in 

the same UV region. 

Appendix III details the approaches and efforts employed to determine the identity of the 

unknown small molecule present in AF that is predictive of LGA. 
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 Foreword to Chapter 5: Testing the approach on another biological 

fluid.  

While the work with AF was underway a unique opportunity arose to use the techniques 

that had been developed for AF with culture media that is used for in-vitro fertilization 

(IVF). The volume of IVF media available was limited (~20 µL) and made a CE 

approach a logical choice. From a sample point of view AF and IVF media show many 

similarities as they contain the salts, nutrients, amino acids and proteins required for the 

proper development of the embryo. Yet IVF media is a much “cleaner” and simpler 

sample as its initial content is known (synthetic biological media) and since the 

metabolically active embryo may alter its content during culture. Lastly, the incubation of 

the embryo in the IVF media is done under very well controlled culture conditions that 

help to minimize sources of variation. 

The high cost and low success rate (~33%) generate high interest in research involved 

with IVF as more and more couples resort to assisted reproductions such as IVF to have a 

child. The reader may be unfamiliar with IVF so a brief introduction is presented here as 

it would not be relevant material for publication and is not included in the manuscript that 

forms Chapter 5. 

When a woman is unable to become pregnant through natural conception she can resort 

to assisted reproduction technology (ART) such as IVF. The process can be broken down 

into 5 steps. 

Step1:  Egg production is stimulated with fertility drugs which cause the ovaries to 

produce several eggs instead of the usual one egg per month. Blood tests are done in this 
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step to monitor hormone levels while transvaginal ultrasound exams are performed 

regularly to examine the ovaries. 

Step 2:  Once the eggs have developed, they are retrieved by follicular aspiration which is 

an outpatient procedure that can be done in the doctor’s office. Guided by ultrasound the 

health care provider introduces a small needle through the vagina into each ovary to 

retrieve the eggs. 

Step 3: The insemination and fertilization of the morphologically best quality eggs is 

carried by first placing the eggs and the man’s sperm together. After a few hours the 

sperm will enter the egg (fertilization). In some cases the sperm can be injected directly 

into the egg to enhance the probability of fertilization. 

Step 4:  Once the egg is fertilized it will begin to divide and is now an embryo. Under 

normal conditions the embryo will have several cells actively dividing for the next 5 

days.  During this stage, embryos with high reproductive potential are actively 

metabolizing and dividing. 

Step 5:  The best embryo(s) are selected and placed inside the womb by passing a 

catheter containing the embryo(s) into the vagina and through the cervix. Pregnancy 

results when an embryo successfully implants to the lining of the womb and begins to 

grow. 

A recent meta-analysis [186] showed that single embryo transfers (SET) result in more at 

term singleton deliveries compared to double embryo transfers (DET). Although, the 

initial pregnancy rate is higher in DET, the pregnancy rates for SET and DET become 

similar if additional frozen single embryo transfer cycles are included. This is important 
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since ART-associated multiple pregnancies often lead to preterm deliveries. This 

increases the risk of perinatal complication and places an increased burden on health care 

systems [187]. 

For a more detailed treatment of the IVF process and ART in general, the reader is 

directed to a book section on infertility in Comprehensive Gynecology by Kaltz [188]. 

In Chapter 5, the biological sample used is the spent culture media from Step 4. The 

media is analyzed with a similar approach as for the AF and is used to predict whether or 

not an embryo from a single embryo transfer will implant successfully or not. 
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 BACKGROUND: Accurate assessment of embryo reproductive potential is critical for 

assisted reproduction and widespread adoption of single-embryo transfer (SET).  Embryo 

metabolic activity alters the IVF culture media’s composition through nutrient 

consumption but also can modify it via oxidative processes.  In this study we investigated 

if culture media albumin modification, as revealed by sub-micellar capillary zone 

electrophoresis and mass spectrometry, is correlated to fetal cardiac activity as a measure 

of embryo reproductive potential. 

METHODS:  In-vitro cultured embryos were selected on the basis of routine 

morphological assessment and transferred on Day 3.  The spent culture media from 127 

SET patients was analysed by sub-micellar SDS capillary zone electrophoresis and 15 

additional SET culture media samples were analysed by mass spectrometry.  An optimal 

predictive model of embryo reproductive potential was developed from the 

electrophoretic data using a genetic algorithm and Bayesian classification program.  The 

relative distribution of albumin isoforms was characterized from the mass spectrometry 

data. 

RESULTS: The sub-micellar capillary zone electrophoresis separation produced partial 

resolution of three albumin species, possibly of different oxidative states, which were 

correlated to the embryo’s reproductive potential.  The genetic algorithm selected two 

regions in the albumin peaks to generate a model that yielded 91.6% sensitivity and 

100% specificity.  Mass spectrometry revealed that culture media albumin is distributed 

into at least 10 isoforms and is appreciably oxidized during culture but there is 
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significantly less albumin oxidation for embryos that had high reproductive potential 

(p = 0.04).  

CONCLUSIONS: Albumin profiling, by sub-micellar capillary zone electrophoresis, of 

spent embryo culture media provides a means to identify the reproductive potential of 

embryos.  Embryos with high reproductive potential were associated with decreased IVF 

culture media albumin oxidation. 

Keywords:  in-vitro fertilization, embryo reproductive potential, capillary 

electrophoresis, oxidative stress, Single Embryo Transfer  
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5.1 Introduction 

Infertility is defined as the failure to conceive after 12 months of properly timed, 

unprotected intercourse and is estimated to affect up to 15% of reproductive age 

couples [189, 190].  Several assisted reproductive technologies (ART) have been 

developed to augment reproduction success, with in-vitro fertilization (IVF) being one of 

the most important.  At present 1–3% of children born in developed countries are 

conceived through ART [191].  However, the World Collaborative Report on ART 

highlighted that the average pregnancy rate was 28.2%, with high-risk multiple fetus 

pregnancies occurring 28.3% of the time [192-194].  Single embryo transfers (SET) 

minimize the risk of multiple fetus pregnancy complications [195] and are becoming 

increasingly common in the US [192, 194], have become conditionally recommended in 

Canada [196] and are common practice in some European countries [197].  However, for 

SET to gain widespread adoption, methodologies to accurately characterize the 

reproductive potential of individual embryos are needed [198].  Non-invasive methods 

have been hailed as the path forward towards routine embryo quality assessment while 

posing minimal risks to the embryo [199, 200]. 

Evaluation of embryo morphology and cleavage rate [201] has been shown to be related 

to implantation [202-204] and is widely practiced for selecting the embryos with the best 

implantation potential.  However, persistently low pregnancy rates highlight the 

limitations of these assessments and have spurred interest in alternative strategies to 

evaluate the reproductive potential of an embryo.  Non-invasive measurements of the 

culture media are yielding useful predictors of reproductive potential [205].  Currently, 

much of the focus is directed towards assessment of media nutrient consumption.  For 
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example, increased glucose metabolism seems to be an indicator of embryo 

developmental potential and viability [206, 207].  Amino acid metabolic activity appears 

to be lower in viable embryos compared to those that arrest [207, 208], while DNA 

damage elevates blastocyst amino acid metabolism [209].  Pyruvate uptake has been 

reported by some to increase with embryos that develop to blastocyst stage [206, 210, 

211]
,
 but contradictory evidence [212, 213]

 
leaves the predictive usefulness of this species 

unclear.   

Also important is the role of oxidative stress in the IVF setting which has been 

comprehensively reviewed by duPlessis [214].  Reactive oxygen species, mainly free 

radicals, are not highly specific in their reactivity and can modify a wide range of 

biochemicals.  Protein, amino acid and lipid oxidation has been extensively studied and 

linked to a wide range of adult pathologies [215-217].  The presence of cumulus cells 

improved blastocyst formation and first cleavage rates in bovine IVF and offered a 

measure of oocyte protection from exposure to hydrogen peroxide [218].  The activity 

levels of superoxide dismutase, a powerful anti-oxidant, were seven times higher in 

porcine follicular fluid than fetal bovine serum.  Oocytes cultured in media supplemented 

with 10% porcine follicular fluid showed little DNA damage, lower intracellular 

glutathione and continued meiotic progression compared to non-supplemented media.  

When superoxide dismutase activity was selectively blocked, cell damage and reduced 

blastocyst formation occurred even in the supplemented media suggesting that oxidative 

stress and reactive oxygen species can significantly alter the reproductive potential of 

embryos [219]. 
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For the purposes of this paper, HSA oxidation is of particular interest since this protein is 

used as an IVF media supplement and is a potent antioxidant due to a free cysteine 

(cys34).  Protein thiols are preferred targets for in-vivo and in-vitro oxidation, both 

reversible and irreversible, resulting in multiple protein isoforms [220-223].  Oxidized 

HSA isoforms have been shown to be altered conformationally with greater hydrophobic 

region exposure [224, 225] and impaired ligand binding [221] and may be prooxidant 

under specific in-vitro conditions [226].  

In IVF culture, supplementing the media with recombinant human albumin has been 

shown to reduce the rates of apoptosis, nitric oxide (NO) generation and to improve fetal 

mouse development compared to media with human serum albumin (HSA) or polyvinyl 

alcohol [227] although, no significant difference was found in human culture [228].  Both 

bovine serum albumin and reduced glutathione were responsible for increased porcine 

blastocyst formation suggesting the involvement of a protective antioxidant 

mechanism [229]. 

Characterizing the oxidatively modified proteins can be difficult because the 

modifications often result in subtle physio-chemical changes to the protein (e.g. tertiary 

structure, hydrophobicity, charge, molecular weight, etc.).  Instrumental strategies to 

characterise isoforms include HPLC [126], SDS PAGE, capillary isoelectric focusing 

(cIEF) [128], capillary electrophoresis (CE) [127] and mass spectrometry. 

Capillary electrophoresis, a simple, quantitative, high efficiency separation technique that 

finds extensive use in separations of biological samples [230, 231] features speed of 

separation, non-destructive analysis and low mass detection limits.  Separation in CE 
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occurs via differences in analyte charge to hydrodynamic volume and can provide 

information on analyte conformation.  The minute sample requirements of CE have led to 

increasing use in single-cell analyses of protein expression, nitric oxide release [232], 

organelle characterization [233, 234], and nucleic acids (mRNA and DNA) [235, 236].  

Given its suitability to such measurements, it is surprising that there have been only a few 

reports of utilizing CE to investigate embryo protein expression patterns using either 

single [237] or multi-dimensional strategies [238].  By carrying-out CE separations with 

sub-micellar concentrations of sodium dodecyl sulfate (SDS), protein unfolding and 

conformations can be subtly probed [239, 240],
 
but this cannot provide conclusive 

identification of specific protein modifications.  The analytical technology with the 

greatest isoform identification potential is mass spectrometry (MS) [129, 130] due to the 

high mass accuracies and resolutions achieved [132].  However, intact protein MS is 

limited in its ability to quantitatively measure proteins with high precision.  Some of 

these difficulties with quantitative MS can be overcome by normalization of the 

individual isoform MS signals to the total signal from all isoforms.  This in turn enables 

correlations between changes in isoform distribution and a pathological state to be 

investigated, as has been demonstrated by Bar-Or [108] and our work with amniotic 

fluid [241]. 

In this report, sub-micellar SDS capillary electrophoresis was used as a rapid non-

invasive method to investigate modifications of albumin in the spent culture media as a 

surrogate marker for embryo reproductive potential.  Positive results from the CE study 

prompted further investigation of specific oxidative albumin modifications of IVF media 

and changes to the albumin isoform distribution by mass spectrometry. 
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5.2 Experimental 

5.2.1 Patient population and stimulation protocol 

The ethics review committees of Concordia, McGill and VU University medical center 

gave approval for this study.  Patients (n=127 for the CE study and 14 for the MS study) 

under 38 years of age, or with positive response to previous IVF or intra-cytoplasmic 

sperm injection (ICSI) treatment, underwent controlled ovarian hyperstimulation using a 

‘long’ protocol with Decapeptyl (Ferring, Copenhagen, Denmark), a GnRH agonist and 

Gonal F (Serono, Geneva, Switzerland), Puregon (Schering Plough, Oss, the 

Netherlands) or Menopur (Ferring) gonadotropins.  A short GnRH agonist protocol was 

administered to women over 38 years or those that had a poor response previously. 

Vaginal ultrasonography and serum estradiol was used to monitor ovarian response.  

10000 IU of human chorionic gonadotrophine (Pregnyl, Schering Plough, Oss, the 

Netherlands) was administered sub-cutaneously when there was at least one follicle ≥18 

mm and three or more follicles ≥16 mm.  Ultrasonographic directed oocyte retrieval was 

performed 36 hours later. 

5.2.2 Embryo culture procedure 

Insemination of the oocyte was initiated 40 hours after hCG injection using either IVF 

and/or ICSI procedures.  Fertilization was scored 16-18 hours after insemination.  

Embryos were cultured individually in 25 µl pre-equilibrated drops of IVF media.  

Embryo-free control drops of media were also incubated at the same time.  Individual 

embryos with the highest number of blastomeres and the least fragmentation were 

transferred on Day 3 after oocyte retrieval.  After transfer, the spent media drops and 
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control drops, were immediately frozen.  Positive pregnancy was defined as fetal cardiac 

activity (FCA) at 12 weeks gestation.  For the CE study human tubal fluid (Lonza, 

Belgium) plus 10% protein solution, (Sanquin, the Netherlands) was used as the media 

(HTF+) while for the MS study SAGE cleavage IVF media (sIVF) (SAGE In Vitro 

Fertilization, Inc., Trumbull, CT 06611 USA) was used. 

5.2.3 Capillary electrophoresis 

Electropherograms were collected at 190 and 198 nm (5 nm bandwidth) at 4 Hz using a 

Beckman Coulter P/ACE MDQ capillary electrophoresis system (Fullerton, CA, USA).  

Fused silica capillary (60 cm in length, window at 50 cm, 100 µm inside diameter, 365 

µm outside diameter) was from Polymicro Technologies (Phoenix, AZ, USA).  The 

capillary was prepared for each sample injection by filling with borate buffer (2 minutes 

at 1.4 bar) and conditioned under 25 kV for 1 minute (0 bar).  Frozen HTF+ culture 

media samples were selected randomly and thawed in ice-water, diluted with 2 volumes 

of water and injected hydrodynamically (34.5 mbar, 10 s).  Samples were separated by 

applying 25 kV, at 20ºC, with 75mM borate, pH 9.25 and 5 mM sodium dodecyl sulphate 

(SDS) buffer as the background electrolyte.  The capillary was conditioned in-between 

runs by flushing for 1 minute at 1.4 bar followed by a 0.5 minute wait at 0 bar with 5 mM 

SDS then 100 mM NaOH.  All prepared solutions were filtered (0.45 µm) and degassed. 

Commercial IVF media (G-1-3 PLUS, Vitrolife, Englewood, CO, USA) was used for 

method development, optimization and subjected to ten -85 ºC freeze-thaw cycles to 

determine effects of freezing.  
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5.2.4 Mass Spectrometry 

Stock sIVF media, control drops and spent media drops were thawed on wet ice and low 

molecular weight species, including salts, were removed from a 15 µl sample using a 

30 kDa nominal molecular weight cut-off Ultrafree centrifugal filter (Millipore, Billerica, 

MA, USA).  The samples were rinsed with water five times and the albumin recovered in 

20 µl of water.  An aliquot of the HSA isolate (1 µl) was loaded onto a Waters NanoEase 

C18 trap column and eluted with a 16 minute linear gradient from 100% A (97% H2O/3% 

acetonitrile/0.1% formic acid) to 90% B (3% H2O/97% acetonitrile/0.1% formic acid) at 

2 µl/min.  Mass spectra were collected on a Waters Q-Tof2 system by nano-electrospray 

ionization with the capillary voltage set at 3.5 kV and a cone energy of 35V.  The 

MaxEnt1 algorithm (MassLynx v. 4.0), over the 1200 to 1650 m/z range of the raw 

spectra, was used to calculate the deconvoluted spectrum of HSA. 

5.2.5 Data processing 

All of the CE data processing procedures were carried-out using Matlab (The MathWorks 

Inc., MA USA).  The separation window, containing the sample related peaks, from 6.5 

to 11 minutes was extracted from the electropherogram.  All of the electropherograms 

were normalized to a maximum of 1 and aligned to the first sample in the dataset as a 

reference electropherogram using correlation optimized warping (COW) with window 

and slack parameters set to 20 and 2 points (5 and 0.5 seconds worth of data) 

respectively [32, 242].
  
The COW aligned data was then Haar wavelet transformed from 

the 1024 data points that encompassed the eluted species, to 256 wavelets [43].  The 

transformed dataset and FCA outcomes were analysed using a genetic algorithm and 

Bayesian statistical model program described in detail elsewhere [43]. Briefly, individual 
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models were built with 2-5 variables created from an initial population of 75 randomly 

selected variables out of the 256 possible variables (wavelets).  The fitness of the 

individual model was evaluated using a full leave-one-out cross-validation strategy to 

generate the sensitivity and specificity values.  Models with the highest combined 

sensitivity and specificity were retained and evolved through 300 generations to yield the 

optimal model. 

The MS data was processed by deconvolution of the raw spectra using the MaxEnt1 

algorithm and peaks corresponding to various HSA isoforms were integrated.  The 

isoform fractional composition was calculated by dividing each isoform’s integrated peak 

area by the total albumin peak area.  Statistical analysis of the isoform distribution was 

carried out in Matlab with a significance threshold set at p = 0.05. A random permutation 

test was done to determine if the results of the student t-test obtained are statistically 

different than student t-test calculated with random permutation of outcomes. A total of 

1000 randomized outcomes were considered, for each of the entries in Table 5 below, to 

determine a population mean and standard deviation.   

5.3 Results 

The SDS concentration in the CE background electrolyte was the most important variable 

to the overall separation.  Figure 18 shows that at 5 mM SDS, albumin was partially 

resolved into three species while at lower concentrations of SDS, albumin migrated as a 

single peak, or a poorly resolved set of peaks (e.g. 3 mM in Figure 18). 
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Figure 18: Electropherograms of unused (Vitrolife) media solutions separated with different amounts of SDS in 

the background electrolyte on a 65 cm capillary.  The buffer was 75 mM borate with 3.5 mM (bottom trace), 5 
mM (middle), and 10 mM (top) SDS.  Traces were offset by 0.1 AU for clarity. 
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Whereas, at concentrations just above the critical micellar concentration (CMC) of 6-7 

mM resulted in irreproducible separations (e.g. 10 mM as shown). The optimal SDS 

concentration was 5 mM.  Borate concentration was also varied, but at concentrations 

lower than 50 mM peak broadening was found while at concentrations higher the 75 mM 

there was little improvement in peak shape and the separation was slower (data not 

shown).  The highest resolution separation, in 75 mM borate and 5 mM SDS, was 

observed with a capillary temperature of 20 ºC.  Higher temperatures resulted in faster 

separations but with significantly lower resolution of the albumin species (data not 

shown).  The optimized sub-micellar CZE separation produced a rapid separation with all 

species migrating in less than 11 minutes.  The most prominent feature in the 

electropherogram was the albumin but some amino acids and media ingredients were 

reliably detected and identified in the unused media (see Figure 19) but were below the 

detection limit in the spent media.  Subjecting the media to multiple freeze-thaw cycles 

produced no detectable effects on the separation profile. 
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Figure 19: An electropherogram of unused media diluted with two volumes of distilled water and injected 

hydrodynamically onto the capillary.  The separation was carried-out at 25 kV using 75 mM borate + 5 mM 

SDS at pH 9.25 and measured at 195 +/- 5 nm.  Locations of some known media ingredients noted on the 

electropherogram were determined from spiking experiments.  Inset shows part of a spent media 

electropherogram with the two regions selected by the genetic algorithm, in red, as being predictive of 
implantation. 

 

In the 127 SET samples analysed by CE, the overall pregnancy rate was 28.4% with no 

multiple pregnancies.  After data alignment, normalization and Haar transformation, the 

genetic algorithm produced a model, using full leave one out cross validation, with 

relative embryo viability scores that correlated to the embyro’s reproductive potential.  A 

model using two wavelets in albumin’s third peak, as shown in Figure 19, was deemed to 

be the most parsimonious with 33 true positives, 91 true negatives, 0 false positives and 3 

false negatives yielding a 91.6% sensitivity and 100% specificity.  The mean relative 
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viability scores (and standard deviation) developed by the model were: 0.534 (0.133) for 

the positive and 0.482 (0.0484) for the negative SET results.  Figure 20 illustrates the 

classification results in a box plot format. 

  

Figure 20: Box and whisker plot of two wavelet model showing differentiation of non-implanted (circles) and 
implanted (squares) embryos.  See text for details of interpretation. 
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Figure 21 shows the deconvoluted mass spectrum of albumin in sIVF media with known 

HSA modifications labelled.  Similar spectra were obtained from the HTF+ and VitroLife 

G-1-3 PLUS, (Vitrolife, Englewood, CO, USA) media but with different peak intensities 

(data not shown).  In the sIVF samples, reduced or mercapto-albumin (HSA-SH) was 

expected at a mass of 66437 Da and was observed at an apparent mass of 66436 Da (peak 

f Figure 4) well within the 20 ppm mass error of the measurement.  Observed, and 

identified, albumin modifications included oxidation of one of HSA’s thiols to sulfinic 

acid (Δ m/z +32, HSA-SO2H, peak g) and S-cysteinylation (Δ m/z +119, HSA-cys, peak 

k) [113].  Also observed was oxidation of a disulfide to produce HSA with a sulfinic acid 

and with di-sulfenic acids (Δ m/z +66, (HOS)2–HSA–SO2H, peak h) and S-cysteinylation 

with di-sulfonic acid (Δ m/z +222, cys-HSA–(SO3H)2, peak n).  Additionally, S-

cysteinylation of the dehydroxyanaline isoform of HSA recently reported by Bar-Or et al. 

was observed (Δ m/z +85, HSA[DHA]-cys, peak i) [108]. Glycation of albumin by 

hexoses (Δ m/z +161, HSA-hexose, peak l) was also observed.   
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Figure 21: Deconvoluted mass spectrum of albumin isolated from IVF media.  Protein masses were calculated 
using maximum entropy deconvolution.  See text for peak identification. 

 

In the 14 SET samples subjected to MS analysis, the pregnancy rate was 43%.  Analysis 

of the percentage isoform distribution of the sIVF stock media (not subjected to culture 

conditions) showed that only 17.8±0.7% (n=5) was mercapto-albumin (peak f) whereas 

cysteinylated (peaks k+n) and irreversibly oxidized albumin (peaks g+h) made-up 

20.8±0.4% and 13.4±0.3% respectively.  One-way ANOVA also revealed a statistically 

significant difference in the level of irreversible oxidation between the stock media 

(13.4±0.3%), the control (14.8±0.3%) and spent media (14.3±0.4%) (p = 0.000005).  We 

examined if single, or combinations (sums, products, ratios) of isoforms yielded 

significant differences between embryos that implanted and those that did not.  Inverse 

least-squares (ILS) was also evaluated with the multiple parameter models.  The models 

with the fewest number of peaks required to achieve significance (p < 0.05) are shown.  
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The simplest ILS model that achieved significance is shown only when the peaks differ 

from those found with non-ILS models. 

In the first round of analyses, only peaks from identified HSA species (e.g. peaks f, g, h, 

i, k, l and n) were used to build the models and are summarized in Table 5. In the second 

round of analyses, all of the peaks detected in Figure 21 were used to build the models 

and are summarized in Table 6.  

Based on the random permutation test the null hypothesis was rejected for α=0.05 for the 

peak combination of peaks g and h, meaning the classification model obtained above is 

statistically different from the population of models generated with a random permutation 

of outcomes and the classification model obtained is not likely to be due to chance alone.  

The other entries in Tables 5 and 6 were not subjected to the permutation due to time 

constraints and will be the subject of future work prior to publication of these results. 
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Table 5 : Statistical analysis results of identified peaks based on calculations using the normalized MS peak areas. 

Model 

type 

 Identified 

peaks from 

Figure 21 

Parameter 

calculated from 

the normalized 

areas 

 (implant) 

Parameter calculated 

from the normalized 

areas  

(non-implant) 

Standard 

deviation  

(implant) 

Standard deviation 

(non-implant) 

 

p-value 

Single 

peak* 

h 0.009 0.012 0.001 0.002 0.06    

Sum of 

peaks and 

t-test 

g + h 0.140 0.145 0.002 0.005 0.04 

Two 

peaks, ILS 

and t-test 

h & n 0.3 0.8 0.2 0.3 0.01 

Product 

and t-test 

h * k 0.0020 0.0024 0.0001 0.0004 0.04 

Ratio and 

t-test 

h / n 0.48 0.61 0.09 0.10 0.02 

* The statistical model using a single peak did not achieve p < 0.05 but is included here for comparative purposes 

only. 
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Table 6: Statistical analysis results of all peaks based on calculations using the normalized MS peak areas. 

Model type Peaks from 

Figure 21 

Parameter 

calculated 

from the 

normalized 

areas 

 (implant) 

Parameter 

calculated 

from the 

normalized 

areas  

(non-implant) 

Standard 

deviation  

(implant) 

Standard 

deviation 

(non-implant) 

 

p-value 

Single peak d 0.063 0.066 0.001 0.002 0.009 

Sum of peaks 

and t-test 

d + h 0.072 0.077 0.002 0.004 0.007 

Two peaks, 

ILS and t-test 

d & p 0.3 0.8 0.2 0.3 0.003 

Product and t-

test 

d * g 0.0082 0.0088 0.0002 0.0005 0.01 

Ratio and t-

test 

h / o 0.7 1.0 0.1 0.3 0.02 
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5.4 Discussion 

In this study, capillary electrophoresis, with a sub-micellar detergent background 

electrolyte, provided a simple and rapid method of characterizing the spent IVF media.  

Several amino acids and other media ingredients were visible in the electropherogram 

(Figure 19) of the stock media but many were below detectable levels, especially in the 

spent media.  In particular, the amino acids correlated to reproductive potential 

(asparagine, leucine, glycine [243], and glutamate [244]) were either not well-resolved 

from other amino acids or were below detectable levels with these separation conditions.  

Albumin was the most prominent feature in the electropherogram and was partially 

resolved into three peaks by the surfactant.  Sodium dodecyl sulfate acts on proteins by 

binding to accessible positive and hydrophobic regions.  At high concentrations, SDS 

denatures proteins but, at sub-micellar concentrations the proteins are not completely 

denatured and the various protein conformations can be probed by CE [245, 246].  In the 

present case, albumin-SDS binding gave rise to increased differences in the charge to 

hydrodynamic volume ratio and improved the electrophoretic selectivity over non-SDS 

containing electrolytes. 

Using the HTF+ media separation data, the genetic algorithm selected two regions of the 

partially resolved albumin as being correlated to, and hence predictive of, FCA and 

reproductive potential.  Inclusion of additional variables/wavelets in the model did not 

significantly improve the results (i.e. sensitivity and specificity) and were rejected.  

Normalization of the electropherogram data to the peak maximum (of albumin) discounts 

the possibility that the observed effect was due to changing albumin concentration but 

was rather a change in the relative distribution of the albumin species as resolved by sub-
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micellular CE.  Identification of the exact albumin species selected by the genetic 

algorithm would require further analysis.  One route to such an identification is by CE 

with on-line mass spectrometric detection but both the SDS and borate buffer are known 

to cause severe ionization suppression in mass spectrometry [247, 248].  Alternatively, 

multiple fraction collection, dialysis and MS analysis is in principle a viable route to 

identification of the specific modification(s) but is very time consuming due to the very 

small volumes injected. However, the later migrating peaks in CE are associated with 

more negatively charged species such as those that have been oxidized.  In albumin, the 

most readily oxidized amino acid is Cysteine 34 but oxidation of any of the 17 disulfide 

bridges could also produce acidic isoforms. 

We speculated that an oxidative modification of HSA seemed likely given albumin’s high 

concentration and susceptibility to oxidative modification.  Previous work with near 

infrared spectroscopy also implicated an oxidative mechanism but was unable to identify 

the specific biochemical species involved [249].  Instead of pursuing a challenging CE-

based strategy for identification of albumin’s in-vitro modification we decided a direct 

measurement of albumin’s isoforms by MS was warranted.  However, by the time we had 

developed the MS technique the IVF culture protocol at VU had changed to using the 

Sage media [241].  Nonetheless, we found that all of the commercial media (VitroLife G-

3, Sage Cleavage media and the HTF+) all showed a similar number of HSA isoforms 

and an oxidized albumin base peak in the stock media mass spectrum.  A similar 

predominance has been observed in other pharmalogical preparations [223] containing 

albumin and contrasts with serum where mercapto-albumin is normally the predominant 

isoform (70-80% of all albumin) [129, 130, 143, 144] Both “reversible” (cysteinylated) 
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and “irreversible” oxidative (e.g. sulfinic acid) modifications of albumin were observed, 

however, in IVF culture media, all oxidation is expected to be irreversible in practice 

since neither glutaredoxin nor thioredoxin, the enzymes responsible for reducing mixed 

disulfides in-vivo, were present in the media [147, 148, 250]. 

Media cultured with an embryo showed less irreversible oxidation than the control drops 

highlighting that embryos employ active antioxidant processes [250-252] but 

significantly higher levels of irreversible oxidation were found in the samples where 

implantation did not occur.  This suggests that incompetent embryos were less capable of 

mounting an antioxidant response to the cumulative oxidative insult brought about by the 

metabolic processes and culture conditions [214].  This may result in inactivation of key 

enzymes [253], protein oxidation, modification of nucleic acids and depletion of finite 

stocks of antioxidants [254].  Results from the examination of the best combinations of 

isoforms to differentiate between embryos with high and low reproductive potential also 

highlighted the importance of oxidative stress. Table 5 shows that when the statistical 

analysis was restricted to the peaks that have been identified, only oxidized HSA 

isoforms appeared in the models (irreversibly oxidized peaks h, n and g and reversibly 

oxidized peak k). It is also noteworthy that the irreversibly oxidized HSA associated with 

peak h achieved a p = 0.056 when evaluated by the t-test.  When the statistical analysis 

was expanded to include all the peaks shown in Figure 21, Peak d was significant by 

itself and was included in nearly all the combinations as shown in Table 6.  The 

biological significance of these results is unclear as peaks d, p and o require 

identification.  In general, statistical analyses with greater numbers of parameters and/or 

using ILS yielded smaller p values than those reported in both tables; however, given the 
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small number of measurements (14) the models with the fewest parameters to achieve 

significance are shown.  

In summary, the commercial media used in IVF have many different formulations but 

they all attempt to meet the metabolic needs of the developing embryo [255].  Media 

formulations supplemented with albumin all displayed characteristic patterns of 

modifications due to oxidation but this was modulated by the embryo.  These 

modifications resulted in differences in the electrophoretic profile, using sub-micellar 

separation conditions, and provided a simple and objective method of assessing the 

reproductive potential of an embryo with high sensitivity and specificity.  The specific 

HSA isoforms were evaluated directly by MS and statistical analysis suggested an 

oxidative stress mechanism that resulted in selective HSA modifications. In both the CE 

and MS analyses, use of the relative albumin signal rather than the absolute values was 

necessary and should be robust in the face of varying culture media compositions and 

experimental variations. 

Non-invasive assessment of embryo reproductive potential is crucial for the continued 

development of ART and minimizing the risks of multiple fetus pregnancy.  Only when 

the embryologist is armed with a reliable method of assessing reproductive potential, can 

accurate decisions be made about which specific embryos should be transferred.   
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Chapter 6  

Conclusions  

A chemometric method was developed to perform untargeted biomarker discovery in 

biological samples. The underlying goals were to maximize the information extracted 

from biological samples and search for biomarkers in an unbiased way. The method was 

designed in such a way that the analysis process required minimal user input to achieve 

successful classification and potential biomarker discovery. Variables/species of interest 

were further investigated to determine the nature of the biochemical species giving rise to 

the corresponding signal. Identification of putative biomarkers found in untargeted 

experimental design is one of the greatest challenges for this approach. Biological 

samples are complex by nature, containing genomic, proteomic and metabolic species in 

great numbers and diversity. This work gives an indication of what can be achieved, but 

represents a small fraction of the potential of such untargeted approaches towards 

biomarker discovery. 

Modern analytical instrumentation can process large numbers of samples and produce 

information rich data sets. The traditional data analysis strategies employed by analytical 

chemists do not allow for efficient data processing. To analyze these large datasets, data 

preprocessing and processing strategies appropriate for separation science data need to be 

employed. 

Simple peak integration, a mainstay in analytical chemistry, misses a large part of 

information present in data where multiple species contribute to the signal (peak) such as 

collected with CE. The problem is that the electrophoretic profile showed characteristics 
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that were not compatible with pattern recognition and data mining chemometrics. The 

application of COW to the electrophoretic data made it possible to proceed with further 

chemometric data processing, classification and to locate potential biomarkers.   

The Haar transform proved to be a very convenient and efficient way of compressing the 

electrophoretic data into a manageable number of variables for the genetic algorithm and 

Bayesian classification routine. Other data simplification or transforms are certainly 

viable and can accomplish the same task, but the square wave has the significant 

advantage that interpretation of the selected region is unambiguous.  

The most exciting outcome of the Bayesian classification strategy is the successful 

differentiation of GDM from non-GDM, AGA from LGA and, for the IVF study, 

between implanted and non-implanted embryos. Furthermore, important biological 

findings came from the investigation into the chemical nature of retained variables. This 

tends to show that the same strategy could be applied to a wider variety of 

sample/outcome pairs to facilitate the design of new diagnostic tests, but also to reveal 

important biomarkers. 

Untargeted biomarker discovery strategies can be seen as a way to cast a much larger net 

by designing the data generation process to maximize the number of analytically detected 

species. This allows a maximal number of species to be tested with regards to a possible 

link with the disease and, as such, includes all detected species as potential biomarkers, 

regardless of a priori biological knowledge of the sample or the investigated 

disease/outcome. In practice, it is the number of signals that are maximized, signals for 

which the corresponding biochemical species may not be identified/known. 
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Characterizing and identifying molecules that are potential biomarkers is the current 

bottleneck for this type of strategy. This is exemplified by the efforts to identify the 

unknown small molecule relevant to predicting LGA (Chapter 4 and Appendix III). 

Designing separation methods with the idea of maximizing the chances of identifying the 

source of all signals present appears to be crucial for biomarker discovery. And so, in 

addition to the classic resolution/separation time optimization, and considerations with 

regards to sufficient resolution with respect to chemometric data analysis, the optimized 

separation conditions should be compatible with current molecular characterization tools. 

Indeed, MS and NMR are excellent tools to identify and characterize molecules, but 

require sample matrices that can be incompatible with the separation of biological fluids 

by CE. Thus, the samples, buffers and additives used should not only be evaluated with 

respect to the quality of the separation, but also with the risks of interfering with 

identification by MS and/or NMR.   

In this study, capillary electrophoresis was successfully employed to search for 

biomarkers in AF. The separation provided sufficient resolution to separate, or partially 

separate, the major UV absorbing components in AF and produce quality data. The major 

disadvantage with CE lies in the above mentioned point involving the identification of 

unknowns of interest. Yet, it has the potential of being used as a diagnostic tool as it is 

less expensive than HPLC and can more readily be miniaturized into a small point-of-

care type of instrument, a so-call lab-on-a-chip. 

Human serum albumin in AF appears to be an important predictor for both GDM and 

LGA. In GDM, the increased oxidative stress associated with hyperglycemia was 
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reflected by an increased level of irreversible oxidation of HSA and relative decrease in 

levels of cysteinylated HSA. This may be the reason for the difference in the CE signals 

for the AF HSA peak for samples with and without GDM. Changes in the distribution of 

the HSA isoforms present is expected to induce migration shifts and peak shape 

distortions. 

In the IVF spent media analysis, the oxidation levels of HSA were again important. Both 

the CE-UV and MS analysis of the media indicates that the environment of the embryo is 

modified during the embryo culture. Additionally, the HSA oxidation profile of the spent 

media was different for samples where the implantation was successful and produced a 

positive fetal cardiac activity assessment. This is particularly important as it indicates that 

signs of successful implantation are already present in the IVF media before the fertilized 

egg is returned to the womb. 

Human serum albumin is a marker of oxidative stress as shown by the MS analysis of AF 

HSA and of the HSA in IVF media. It does not appear to be specific to GDM as this has 

been reported elsewhere [108, 256] for other diseases. Nevertheless, determining the 

relative abundance of HSA isoforms, more specifically those indicative of oxidation, 

could be a very useful clinical diagnostic measurement, especially when combined with 

other biochemical measurements and risk factors. 

Gestational diabetes mellitus is detectable around the 15
th

 week of gestation using 

oxidized HSA as a marker. Both GDM and LGA are detectable by week 15 using the CE 

analysis method. Yet currently, screening for GDM is done around the 26
th

 week of 

gestation and screening for LGA is done with sonography much later in pregnancy [171-
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173]. In both cases, it could be possible to detect and diagnose these conditions earlier 

and take appropriate action to mitigate the consequences of each condition. 

Untargeted biomarker discovery is a powerful strategy to survey biofluids for important 

biomarkers of disease/abnormal conditions especially when only a few biomarkers have 

been identified. Yet, for this approach to be accepted, it cannot, and should not, be seen 

as a standalone solution to biomarker discovery. Signal(s)/species identified as being a 

biomarker(s) of a certain disease need to be tested and validated by separate 

corroborating experiments. To provide convincing evidence, biomarker discovery 

experiment should include not only the untargeted survey portion, but also a 

complementary hypothesis driven portion to confirm biomarkers identified during the 

first portion. 
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Chapter 7  

Future Work 

The most pressing future work involves the characterization of the unknown small 

molecule involved with predicting LGA. This will be briefly discussed in the next 

section. The following sections will cover the long term future works that are directly 

spawned from this thesis and will be outlined as future projects that others could pursue.  

7.1.1 Characterization of unknown small molecule in amniotic fluid 

Continued investigation of filtered AF (<5kDa) is preferred to simplify the sample and 

eliminate protein interferences with the separation. Efforts already taken in this direction 

are described in Appendix III. Work has begun to optimize the CE separation of the low 

molecular weight fraction (LMWf) of AF. Collecting peaks with improved resolution 

could eliminate some of the comigrating peak that can be collected into the same fraction 

as that of the peak of interest, thus simplifying the MS characterization of all species 

found in the fraction. 

The most viable and useful option at the moment is the development of a HPLC-UV 

method to separate the LMWf of AF. A HPLC method could be used for the 

identification of the unknown molecule from the LGA study and would be useful for 

future experiments on AF (see the following section). Injections in HPLC have 

approximately 1000 times larger volume than in CE and by consequence have 1000 times 

more mass of analytes per injection and thus larger mass of analyte collected in each 

fraction. To locate the fraction in which the unknown is present, collected fractions can 

be analyzed by CE. Only the fraction that gives rise to a CE signal with the appropriate 
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migration time (such as in Figure 17) would then be analyzed by MS. The increase mass 

of unknown may also make NMR a possible characterization tool. 

In parallel, literature and metabolite databases are continuously revisited for new 

candidate molecules that show physico-chemical properties that correspond to the CE 

migration time should be investigated. On the basis of this literature work, CE spiking 

experiments can be used to confirm or eliminate candidate molecules. 

Alternatively, developing a CE-MS method in negative mode (MS) [257, 258] would 

provide direct detection and characterization of analytes present in the LMWf of AF. This 

would be highly informative and of great interest, yet CE-MS is not as well established as 

LC-MS and the current MS facilities at Concordia University are not well equipped for 

coupling of CE to MS.  

7.1.2 Paired serum/AF samples 

One of the obvious limitations of the AF experiments is that amniocentesis comes with 

increased risk to the fetus and, as such, is only performed when the benefits outweigh the 

risks. Maternal serum offers a potential window into the fetal compartment, as exchanges 

between the fetal and maternal compartment go both ways. The Bar-Or paper on 

IUGR [108] is an example of this. It would be extremely interesting to look at paired 

samples of maternal blood and AF, perhaps even maternal urine, to see if biomarkers 

present in AF are quantitatively detectable in maternal fluids obtained at the same time by 

much less invasive methods (blood and urine sampling). This is a considerable task to 

manage since would it requires handling, acquiring data and analyzing data for a large 

numbers of paired samples.  
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Each biofluid should be prepared in a similar fashion, except for blood as it is preferable 

to work with the serum fraction of blood. There is a net advantage to fractionating 

samples into categories in terms of molecular weight as metabolites and proteins require 

different separation conditions. As such each type of biofluid could be filtered into 2 or 3 

fractions: LMW (<5 kDa or even <1 kDa), medium molecular weights (MMW; >5 kDa 

and <60 kDa) and above, high molecular weight (HMW; >60 kDa). Beyond this step, it 

would be worth considering further sample preparation steps depending on what type of 

instrumental analysis are to be carried out. 

Proper sample storing, labeling and aliquoting are critical. It may seem trivial, but large 

scale studies with several different instrument operators can get quickly get chaotic. 

Storing is pretty obvious, although special thought should be put into organizing and 

centralizing all aliquots and samples. Labeling should follow a basic scheme, such as 

“principal investigator initials”-“operator initials”-“sample number (at least 4 digits)”. 

Finally, determining the number of aliquots and volumes required per sample is 

important. Here are some examples of approximate volumes that should be set aside: for 

CE about 10-20 µL/aliquot; for HPLC 20-40 µL/aliquot; for HSA isolation ~400 

µL/aliquot (AF) or ~40 µL/aliquot (serum). 

The choices of possible instrumental analysis for such samples are fairly large, especially 

when considering the possible combinations of separation science instruments and 

detectors. I would consider CE again as it requires very small volumes and minimal new 

method optimization. Yet, it would be difficult to choose CE over HPLC as HPLC offers 

a more robust and reproducible separation and would provide new information. More 

reproducible data means simpler data preprocessing and less noisy data. Additionally, 
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HPLC is very easily coupled to a MS making it a very appealing choice for direct 

characterization of unknowns. Selecting an appropriate stationary phase might take some 

optimization for the small molecules, but for proteins, a C8 stationary phase should 

provide sufficient retention for the water soluble proteins that compose the MMW and 

HMW fractions. Efforts should be made in the method development step to interface the 

HPLC to MS and try to characterize the high abundance molecules before the analysis of 

samples begins on a large scale. 

As for detection, using UV detection offers some important advantages over MS or 

fluorescence detection in terms of simplicity, costs and reproducibility, but comes at the 

cost of higher limits of detection. The lower detection limits of MS and fluorescence 

detection should give rise to increased chemical rank in the data set, which is good in 

itself for untargeted biomarker discovery, but it can introduce increased noise and a much 

higher variable to sample ratio. 

The data analysis steps do not necessarily need to change. All the algorithms developed 

and used for this thesis could be applied to any data generated by CE or HPLC. That 

being said, once quality data is obtained, a great variety of chemometric data analysis 

routines can be applied to the data set to find interesting patterns or to test new routines 

against real data. Some possible modification/improvements of the current sets of 

chemometric data analysis routines are suggested below. 

Again, this is a large and demanding undertaking, but the information gained from each 

type of biofluid on its own is worth the effort, not to mention the potential to learn from 

the comparison between each fluid. Furthermore, analyzing all these types of fluids as 
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one large project should take less time than having each type of sample as a segregated 

project. 

7.1.3 Longitutinal study on maternal serum 

The previous section discussed the possibility of paired analysis of different biological 

fluids drawn once. Another interesting angle is to consider maternal serum drawn at 

different times during the pregnancy and try to establish patterns, not only between 

groups with different conditions, but also in time. All of the considerations in the 

previous section with respect to sample handling and preparation, data generation, data 

analysis apply. 

7.1.4 HSA isoform analysis 

One of the important findings of this thesis work is that HSA is a proxy for the oxidative 

status of a biological media (AF and IVF media). Future work along this line of 

investigation can involve: (1) a refinement of the method for the determination of 

abundance or relative abundance of HSA isoforms; (2) application of the current method 

to other biofluids, such as cerebrospinal fluid or biofluids of animal origins that contain 

albumin; and (3) extension of the approach to other proteins that can be used as markers 

of oxidative stress in a biological sample. 

In the early 1990s, Suzuki et al. [256] published a paper where they obtained a partially 

resolved triplet peak for HSA by HPLC on a proprietary Asahipak GS-520H column. 

They attributed these to the reduced form of HSA as well as to 2 unidentified oxidized 

forms of HSA. It would be interesting to use some form of separation that can resolve the 
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isoforms in the hopes of getting a better signal-to-noise for the MS detection, possibly 

iso-electric focusing. 

Alternatively, labeling strategies involving HSA’s cysteine 34 could be exploited to get a 

relative measurement of reversibly oxidized HSA. This could be achieved by complete 

oxidation of the remaining free thiols to ensure that no mercaptoalbumin remains in 

solution, followed by the displacement of the cysteines on cysteine 34 by a mass or 

fluorescent label. If a fluorescent label is used, a second label that will non-specifically 

target HSA could be used to determine the total HSA concentration, thus giving the 

relative abundance of reversible oxidation over the sum of all the HSA isoforms. 

Other proteins are susceptible to oxidation and might prove to be better markers of OS or 

more specific markers of a condition than HSA can be. Any free thiol containing protein, 

such as the α1-antitrypsin present in AF and serum, could be considered as a candidate 

biomarker for OS. 

7.1.5 Refining the chemometrics tools 

The code that allows for the chemometric data analysis strategies employed in this thesis 

can be used again with little modification. Nevertheless, there is room for improvement 

and added functionality. For the moment, it is not user friendly and requires significant 

understanding of computer programming and chemometrics to be correctly used. Work to 

simplify and clean up the algorithm employed would benefit present and future users as 

they may not always have the detailed knowledge of the code to benefit from it. 

The algorithm should be expanded to include more complex data preprocessing strategies 

for normalization, baseline and artifact correction. Additionally, adapting COW to align 
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multidimensional data would be highly beneficial in the context of ever larger 

multidimensional datasets from ever more sophisticated analytical instrumentation. Very 

recently (2011), a new algorithm that appears to perform better than COW was recently 

published and is referred to as icoshift [259]. It would be very interesting to employ this 

new algorithm and evaluate if it can improve the quality of the alignment. 

The Bayesian algorithm should be modified in different ways to account for the nature of 

the data. There is no guarantee that measurements cluster according to a normal 

distribution and as such log-normal, logistic, Poisson distribution, etc. could be explored 

in the classification model. The classification itself could be expanded to several groups 

(not only 2) as diseases are much more complex than present or absent. A case in point is 

the SGA, AGA and LGA classification of births.   

Finally, the genetic algorithm is indifferent to the benefit function it employs (currently 

Bayesian). There are several other relevant pattern recognition strategies that could be 

made available to the user and might be more appropriate depending on the classification 

problem at hand, such as principal component analysis, hierarchical clustering and k-

nearest neighbours to name but a few.  

It is an exciting time for untargeted biomarker discovery. The rapidly increasing 

sophistication of analytical instrumentation provides the means to more completely 

capture the complexity of biological samples and produce information rich data sets. The 

matching continual increase in computational power allows for these rich data sets to be 

analyzed by chemometric data analysis routines. Clearly, untargeted biomarker discovery 
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is a field in its infancy, but as it matures, it has the potential to identify novel biomarkers 

and open up new avenues of investigation in chemistry, biology and medicine. 
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Appendix I  

Methodological information to supplement Chapters 2 & 4 

1 Data import 

The PDA data were exported as an ascii tab delimited data file using the Beckman 32 

Karat Software’s built-in export utility. Each sample data was then imported into MatLab 

as 161 wavelengths by 4800 migration time points. 

2 Basic Preprocessing: baseline, dividing-by-time, normalization. 

Once the data were imported into MatLab, the basic preprocessing of the PDA data was 

applied. The first ten wavelengths (190 to 199 nm) were averaged and stored as a row 

vector.  A simple baseline subtraction then followed using the average signal value from 

index values 240 to 300 (60 to 75 seconds).  Next, each signal data point was divided by 

the migration time in seconds corresponding to the index for each data point (e.g. signal 

at index 240 = y, then y/60s gives the time corrected signal) [260]. Finally, the signal was 

normalized to the peak height of albumin. 

3 Correlation Optimized Warping 

The first 150 data points for each sample electropherogram were replaced with the value 

of the 151
st
  data point to remove the instrument auto-zero artifacts. Due to the high 

similarly of the profiles, the first electrogram in the dataset was selected to be the 

reference profile to which all the others were aligned. The window size was selected to be 

20 as per the recommendation made by Nielsen [32] in the original publication that 

window size should match that of the smallest peak in the profile. The slack parameter 
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was set to 2. Profiles that showed a global correlation coefficient of less than 0.9 when 

compared to the reference profile were excluded from further analysis.  

4 Haar Transform of the Data 

From the original 4800 migration time data points, a window of 2048 data points (900 to 

2947; 225s to 736.75s) was selected to undergo the discrete Haar wavelet transform (son 

wavelets). The first 256 wavelets were retained for further analysis. 

5 Genetic Algorithm Parameters 

The population size for each generation was set to 100. The number of variables that 

were used to build the model was set to 2, the cross-over rate was set to 1.0, the mutation 

rate was set at 0.15 and the variable index values were encoded with 12 bits. The GA was 

allowed to evolve over 300 generations. The benefit function using Bayesian decision 

theory is described next. 

6 Benefit Function of the Genetic Algorithm 

The fitness of variables selected by the GA was evaluated using accuracy of the leave-

one out classification into normal and abnormal groups using Bayesian decision theory. 

The accuracy was calculated by summing true positive and true negative over all 

samples. Two Gaussian distributions were constructed out of the calibration data by 

determining the centres and covariance matrices corresponding to each group’s 

distribution. The resulting parameters were used to determine the probability density of 

the left out sample to belong to one group or the other.  
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7 Random Permutation Test 

The data set was comprised of 109 samples and after the Haar wavelet transform, 256 

variables. This leaves a high potential for over fitting and generating models that can 

provide adequate classification of the data by chance. A random permutation test was 

employed to determine if the models obtained showed significant differences from 

models obtained from the random permutation of class labels. This is done by comparing 

the value of a test statistic (T) for the model generated with the correct class label to the 

distribution of this same test statistic calculated on a large number of random 

permutations of the class labels. If the number calculated T-values of random 

permutation is sufficiently large it will allow the use of a Z-test to evaluate if the T-value 

(T*) from the T-values generated from the random permutation of class labels. 

In this particular case the T-test employed was the student’s t-test. For both the LGA and 

GDM classifications a T* was calculated. To obtain the parameters for the Z-test, the 

genetic algorithm was modified to evaluate models produced from the random 

permutation of the class labels. The genetic algorithm would produce a new random 

permutation of class labels after each iteration. The algorithm was allowed to go through 

500 iterations, in each iterations 150 combinations of 2 variables were used to determine 

the T-values. 

For the GDM classification, 75000 T-values were obtained and the resulting   and   

were 0.0895 and 0.6349 respectively. The results of the Z-test for those parameters and 

with a T* of 2.3207 lead to the rejection of the null hypothesis (      ) and gave a p-

value of 0.017. 
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For the LGA classification, 75000 T-values were obtained and the resulting   and   were 

0.2087 and 0.8366 respectively. The results of the Z-test for those parameters and with a 

T* of 2.2868 lead to the rejection of the null hypothesis (      ) and gave a p-value of 

0.013. 

In both cases, the models with the correct class labels were shown to be statistically 

different from the distribution generated with the random permutation of class labels. 
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Appendix II  

Additional Results  

Chapter 2 and Chapter 4 show the results from the chemometric data analysis of AF 

separated by CE. Some additional results and information are included in this Appendix 

to complement results discussed in the above mentioned Chapters. These are the single 

variables results and bivariates plots for both GDM and LGA outcomes. 

1 Single variable result for GDM 

Using the same approach described in Chapter 2 and in Appendix I but with only one 

variable to generate the classification model. The results can be seen in Figure 22 below. 

In this case the retained wavelet is located on the transferring peak. The sensitivity is 

79% (3 false negatives) and the specificity is 100%. 

 

Figure 22: Using 1 variable (wavelet) on the transferrin peak, the Bayesian algorithm can classify with a 
sensitivity of 79% and specificity of 100%. Selected wavelets on electropherogram at 195±5 nm of AMF 
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2 Single variable result for LGA 

Using the same approach described in Chapter 2 and in Appendix I but with only one 

variable to generate the classification model. The results can be seen in Figure 23 below. 

In this case the retained wavelet is located on the transferring peak. The sensitivity is 

100%  and the specificity is 93% (6 false positives). 

 

Figure 23: Using 1 variable (wavelet) on the HSA peak, the Bayesian algorithm can classify with a sensitivity of 

100% and specificity of 93%. Selected wavelets on electropherogram at 195±5 nm of AMF 

 

3 Bivariate plot of the selected wavelet for GDM 

Figure 15 shows the selected wavelets and the resulting classification of GDM samples 

obtained when using those wavelets. To compliment Figure 15, a bivariate plot of the 

coefficient for the 2 wavelets used for the classification is shown below (Figure 24). 
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Figure 24: Scatter plot of GDM (in red) and non-GDM (in blue) AF samples. The x-axis corresponds to the 

coefficient for Wavelet 2 (HSA) and the y-axis corresponds to the coefficient for Wavelet 1 in the unresolved 
protein region. 

 

4 Bivariate plot of the selected wavelet for LGA 

Figure 15 shows the selected wavelets and the resulting classification of LGA samples 

obtained when using those wavelets. To compliment Figure 17, a bivariate plot of the 

coefficient for the 2 wavelets used for the classification is shown below (Figure 25). 
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Figure 25: Scatter plot of LGA (in red) and AGA (in blue) AF samples. The x-axis corresponds to the coefficient 
for Wavelet 1 (HSA) and the y-axis corresponds to the coefficient for Wavelet 2 (late migrating peak). 
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Appendix III  

Preliminary work on HSA 

1 Albumin isolation and trypsin digestion of albumin 

Frozen amniotic fluid samples were thawed on wet ice.  Albumin (~ 4 mg/ml) was 

isolated from 400 μL AF of with AlbuminOUT™ (Genotech Biosciences) albumin 

affinity spin columns. The retained albumin (~ 1.6 mg) was released from the affinity 

column with 200 μl the buffer provided with the kit (NaCl solution buffered at pH 7.2).  

The albumin fractions were desalted with ultrafree 5 kDa centrifugal filters (Millipore).  

The resulting solution was diluted to 100 μl with ddH2O water. 

Albumin (160 μg) was digested with trypsin (3.4 μg) in 100 μl NH4HCO3–NH4OH at pH 

8.5.  The digestion was allowed to proceed overnight at 37°C.  After digestion the 

solution was lyophilized for 2 h at 43°C.   

2 Intact proteins 

Undigested proteins were analyzed by direct infusion into ESI-MS at a flow rate of 2 

μl/min.  The isolated proteins were diluted into 70% ddH2O/30% ACN/0.1% FA (v/v/v) 

to give a protein concentration of at most 40 pmol/μl.  The spectra were obtained by 

scanning over the mass range: m/z = 600 to 2500.  The instrumental conditions were: 

positive ion mode; cone 40 V; capillary 3.5 kV; collision energy 10 V; desolvation 

temperature 150°C.   

A crude protein separation was done using Micromass capLC with a NanoEase C18 

guard column.  Flow rate was set at 2 ul/min with linear gradient of 3%/min increase of 
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solvent B (97% ACN/3%water/0.1%FA) with respect to solvent A (97% 

water/3%ACN/0.1%FA) from starting at 5% after 5 minutes to 90% after 35 minutes. 

The resulting raw spectrum was deconvoluted to obtain protein molecular weights (MW) 

that correspond to the various HSA isoform present shown in Figure 26. The base peak 

corresponds to the expected MW of cysteinylated HSA. 
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Figure 26: Raw and deconvoluted spectrum of HSA where cysteinylated HSA is the base peak in the spectrum. 
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3 HSA digestion 

Prior to MS analysis the digests were resuspended in 0.1% formic acid and 10 μl of this 

solution was diluted to 60 μl (4.8 pmol/μl). The HSA tryptic digests were analyzed with 

the same mass analyzer and CapLC system mentioned in the previous section.  The 

diluted digests (4.8 pmol/μl) solutions were injected (5 μl) on a Waters NanoEase column 

3 μm Atlantis dC18, 75 μm x 100 mm.  The flow rate was set at 6 μl/min with a 60 

minute linear gradient from 95% solvent A (same as above) to 65% solvent B (same as 

above) followed by a 10 minute wash with 90% solvent B.  The column was equilibrated 

with starting conditions for 20 minutes.  LC-MS/MS experiments were carried under the 

same conditions except for the collision energy which was raised from 10 V to 35 V 

when fragmentation was desired.      

The peptide fragment containing the cysteine 34 should contain the peptide segment with 

residues 21 to 41. The calculate mass for this peptide segment if cysteinlylated is 851.43 

for the triply charged fragment. This mass was indeed present in the spectrum in low 

abundance within 14 ppm of its calculated value (see Figure 27).  Figure 27 shows the 

initial spectrum.  
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Figure 27: HSA peptide fragment 21-41 with cysteinylated cysteine 34. 
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Further confirmation that the observed mass was that of the triply charge cysteinylated 

version of the HSA peptide fragment (21-41), MS/MS fragmentation was conducted on 

the 851.44 peak. The triply charged 851.44 generated the spectrum in Figure 28. The 

sequencing of the peptide fragment was carried out and yielded convincing evidence that 

the 851.44 peak was indeed that of cysteinylated cysteine 34 peptide segment of HSA. 

The sequencing of the peptide was done with the highest observed mass error of 20 ppm 

(see Table 7). 
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Figure 28: MS/MS spectrum of the triply charged 851.44 peak. 
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Table 7: Sequencing of the HSA fragment 21 to 41 containing cysteinylated cysteine 34. 

m/z Δ m/z AAs Calculated 

Δm/z 

(in ppm) 

Ion type 

2269.12 283.14 A+L+V 283.18 16 y19 +y20 

2156.00 113.12 I/L 113.08 19 y18 

2042.86 113.14 I/L 113.08 29 y17 

1824.80 218.06 A+F 218.09 16 y16 

1625.71 199.09 A+Q 199.10 3 y14 

1093.46 532.25 Y+L+Q+Q 532.26 8 y12 

871.43 222.03 C+Cys 222.01 20 y8 

498.27 373.16 P+F+E 373.16 4 y5 

  

D+H+V+K 479.25 6 y1+19.02u 
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Appendix IV  

Identification of unknown predictive of LGA 

Determining the identity of the molecule that gives rise to the second peak involved in 

the prediction of LGA is of great interest. A variety of strategies were investigated to 

obtain more information to identify the unknown molecule. The methods employed are 

outlined in this appendix. Amniotic fluid samples were separated by CE in a similar 

fashion as described previously except that a fraction collection step was included to 

collect the molecule to be identified. Fractions were then analyzed by MS under a variety 

of different conditions. Efforts to develop HPLC separation of AF were also pursued to 

isolate and identify the unknown. These will be described with more detail in the 

following sections. 

1 Fraction collection by capillary electrophoresis 

The AF sample was thawed on an ice water bath prior to separation and diluted 1:1 in 

ddH2O. In some cases, the AF was filtered through a 5 kDa molecular weight cut off 

centrifugal filter to collect the filtrate and eliminate the proteins from the sample. 

The separation conditions employed for the fraction collection are essentially the same as 

for the separation and are described in Chapter 2. Briefly, a 75 mM borate buffer with 0.8 

mM EDTA with a pH adjusted to 9.2 was used for the separation. The separation voltage 

was set to 25 kV for a 20 minute separation. The capillary was conditioned before each 

run by flushing a 5 mM SDS solution, followed by 100 mM NaOH and finally the run 

buffer was introduced. For each step, the solutions were flushed through the capillary for 
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2 minutes at 1.4 bar with a 1 minute wait in between. Prior to injection and separation, 

the capillary was equilibrated with the run buffer under a 25 kV voltage for one minute. 

The appropriate parameters to collect the CE fraction were calculated based on the 

apparent mobility of the unknown peak and the capillary dimensions. The migration time 

of the unknown is the time taken to reach the detector and not the time taken to exit the 

capillary. Therefore, the apparent mobility is used to determine the expected time when 

the unknown will exit the capillary as shown by the example below. 

The calculated time of exit from the capillary is used in the timed program to stop the CE 

separation and change the outlet vial to a collection vial containing 20 µL of ddH2O. 

Once the vial was in place, 1 psi was applied to the inlet to push the portion of the 

capillary content in which the unknown is present into the collection vial. Repeated AF 

separations (10 to 20 runs/vial) and thus CE fractions were collected together into the 

same vial to obtain sufficient mass of unknown for subsequent MS characterization steps. 

These steps were carried out for both the filtered and non-filtered samples. 

2 First approach: C18 trap column and positive mode ESI-QToF detection 

The pooled unknown containing fractions (5 µL) where injected onto a NanoEase C18 

trap column with a Waters CapLC system and directed into an ESI-QToF2 (Waters) mass 

spectrometer. The MS settings were: capillary voltage 3.3 kV, cone 35 V, collision 

energy 10 V, source temperature at 80 ºC and the desolvation temperature 150 ºC. The 

instrument was set to scan from 50 to 950 m/z in positive mode. The mobile phases used 

where A 0.1% formic acid in water and B 0.1% formic acid in acetonitrile. The gradient 
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was set to start at 20% and go to 60% B in 10 minutes at 1 µL/min followed by a steep 

increase to 90% B in 3 minutes at 2 µL/min. 

The resulting spectra were compared to MS solvent blank and to a CE solvent blank to 

eliminate peaks due to contaminants in any of those two potential sources. Only two 

masses appeared in the fractions, with m/z values of 432.28 and 226.18 coming out late 

and therefore showing fairly high hydrophobicity at this low pH. MS/MS of those two 

masses were conducted but did not provide sufficient information to characterize the 

molecules giving rise to those peaks. 

The initial decision to run in positive mode was based on the fact that the instrument as 

an order of magnitude more sensitivity in positive mode than negative mode. Yet the 

unknown is an anion under basic conditions, so it was important to consider running the 

MS investigations in negative mode with an anion exchange HPLC column. 

3 Second approach: AEX HPLC column and negative mode ESI-QToF detection 

The pooled fractions were analyzed on the same QToF2 instrument previously 

mentioned. A anion exchange column [Phenomenex Luna NH2, 5 µm, 15 cm, 4.6 cm ID] 

was used with an Agilent HP 1050 HPLC system. The MS settings were the following: 

capillary voltage 3.0 kV, cone 25 V, collision energy 10 V, source temperature 90 ºC and 

the desolvation temperature 250 ºC. The instrument was set to scan from 50 to 500 m/z in 

negative mode. The mobile phase used was 70% water with 5 mM ammonium acetate 

buffer at pH 5.3 and 30% acetonitrile.  

In this case, collected CE fractions, LMW AF fractions and blanks were compared to 

determine the peaks that were present in both the CE and LMW AF fractions, both not in 
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the blanks. Peaks of interest were then further analyzed to determine the exact mass and 

chemical formulae. Exact masses were used to search metabolite databases (HMDB [178] 

and METLIN [177]) and find the potential metabolites that had reasonable UV profiles 

and pKa’s while being likely present in AF. Those that were deemed relevant were 

purchased and spiked into AF to determine whether or not there migration time 

corresponded with that of the unknown species. The most relevant database hits are 

summarized in Table 8. 
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Table 8: Anions found in the collected AF fraction analyzed by HPLC-MS. 

[M-H]
-
 

(Th) 

Keep/reject reason Candidates
 

Biological 

location 

reference 

141.02 
UV profile does not 

match 
5-

Hydroxymethyluracil 

Urine  

Blood 

Guo et al. [261] 

Leyva et al. [262] 

195.00 

UV profile and 
charge to volume 

ratio appears correct 

Series of isomers: 
Galactonic acid, 

mannonate, gluconic 

acid and gulonic acid 

Urine Greter et al. [263] 

198.08 

UV profile ok but 

should carry 3 

negative charges 

and migrate slower 
than unknown 

O-phosporyl-L-
homoserine 

  

209.02 

UV profile and 

charge to volume 
ratio appears correct 

Series of isomers: 

Saccharic acid and 
mucic acid 

Urine 
Shoemaker et al. 

[264] 

262.68 
N/A No candidate fit the 

CE and UV data 

N/A N/A 

276.99 
N/A No known relevant 

metabolite at this 

value 

N/A N/A 

330.97 

N/A No known relevant 

metabolite at this 
value 

N/A N/A 

344.97 

3-4 negative 

charges and would 

migrate too late 

5-O-(1-

carboxyvinyl)-3-

phosphoshikimate 

  

407.28 

Not very soluble in 

water and at best at 

~2 µM 
concentration 

including all 

isomers 

Several possible 
cholic acid isomers 

Newborn blood 

Urine 

Bile 

Gustafsson et al. 

[265] 

Batta et al. [266] 

Tadano et al. 
[267] 

 

Mannoate, gluconic, gulonic and galactonic acids, as well as saccharic and mucic acid, 

were purchased from Sigma-Aldrich and used in spiking experiments to determine if any 

of them were the species corresponding to the unknown. Although the migration times 

were close, none of these candidates matched the migration time of the unknown. 
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4 Other spiking experiments 

With the MS experiment not yielding any definitive results and the fact that dioic acid did 

appear to have migration time that corresponds well with molecules having such 

functionalities, the main acids involved in the citric acid cycle were considered. They are 

expected to be present in AF and at sufficient concentrations to be detected by UV. Thus 

oxalic, oxalacetic, fumaric, 2-ketoglutaric, malic, methylmalonic, glutaric and citric acids 

were purchased from Sigma-Aldrich. These were used in spiking experiments to see if 

any of them had a corresponding migration time with the peak of interest. Unfortunately 

none of them showed a migration time that matched with the migration time of the 

unknown.  
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Appendix V  

Oxygenation study on MS profile of HSA 

In an effort to assess the effect of saturating levels of oxygen on HSA in IVF media used 

in Chapter 5, samples were exposed to O2. Additionally, to verify if small molecular 

weight species may have an impact on the media’s ability to buffer oxidative stress, 

aliquots of the media were filtered through 30 kDa centrifugal molecular weight cut-off 

filters to remove species below 30 kDa. Both filtered and unfiltered media were divided 

into 3 aliquots. These were exposed to O2 for 0 h, 1 h and overnight. All six samples were 

then analyzed by LC-MS to determine if any change in the ratio of HSA isoforms could 

be detected.  

Analysis of peak integration values normalized to the total area of HSA isoforms showed 

minimal, if any, differences between samples exposed to O2 for varied periods of time 

(Table 9). Only the freshly thawed sample showed any difference. Fresh media was 

injected at a HSA concentration of 90 μM whereas the others were at a HSA 

concentration of 150 μM. A concentration effect could account for the variation seen 

between fresh and O2 exposed samples. 

  



184 

 

Table 9: Effect of oxygen saturation of unfiltered media on relative abundance of HSA isoforms. 

HSA PTMs rdHSA 

HSA-

SO2H 

HSA-

2SO2H 

Sulfation Cys-HSA 

deoxi-

HSA 

Molecular Weight (Da) 66437.3 66467.5 66496 66520.8 66553.8 66587.2 

Δ MW 0 30.2 58.7 83.5 116.5 149.9 

        

Untreated 23.9% 16.7% 5.0% 10.7% 35.4% 8.2% 

Incubation 24h no O2 26.0% 13.2% 5.7% 9.6% 38.7% 6.8% 

1h O2+23h incubation 25.9% 12.7% 5.4% 9.0% 38.4% 8.7% 

24h O2 26.1% 13.2% 4.7% 8.1% 38.8% 9.2% 

        

Average 25.5% 13.9% 5.2% 9.3% 37.8% 8.2% 

Standard Deviation 1.0% 1.9% 0.4% 1.1% 1.6% 1.0% 

Relative error 4% 13% 9% 11% 4% 12% 

 

Similarly, the intact protein profile (spectra not shown) for the filtered sample do not 

show any differences with respect to the exposure time to O2. The data are summarized in 

Table 10. 
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Table 10: Effect of oxygen saturation of filtered media on relative abundance of HSA isoforms. 

HSA PTMs rdHSA 

HSA-

SO2H 

HSA-

2SO2H 

Sulfation Cys-HSA 

deoxi-

HSA 

Molecular Weight (Da) 66437.3 66467.5 66496 66520.8 66553.8 66587.2 

Δ MW 0 30.2 58.7 83.5 116.5 149.9 

        

Untreated 24.2% 15.2% 3.7% 10.4% 37% 9.0% 

Incubation 24h no O2 23.9% 12.5% 3.4% 9.5% 43% 8.1% 

1h O2+23h incubation 22.1% 13.2% 3.5% 10.3% 41% 9.9% 

24h O2 25.7% 13.2% 3.1% 9.3% 41% 7.9% 

        

Average 24.0% 13.5% 3.4% 9.9% 40.% 8.7% 

Standard Deviation 1.5% 1.2% 0.2% 0.6% 2% 0.9% 

Relative error 6% 8% 7% 6% 5% 11% 

 


