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Abstract

Under Uncertainty Trust Estimation in Multi-Valued Settings

Sina Honari

Social networking sites have developed considerably during the past couple of years. However,

few websites exploit the potentials of combining the social networking sites with online markets.

This, in turn, would help users to distinguish and engage into interaction with other unknown, yet

trustworthy, users in the market. In this thesis, we develop a model to estimate the trust of unknown

agents in a multi-agent system where agents engage into business-oriented interactions with each

other. The proposed trust model estimates the degree of trustworthiness of an unknown target agent

through the information acquired from a group of advisor agents, who had direct interactions with

the target agent. This problem is addressed when: (1) the trust of both advisor and target agents

is subject to some uncertainty; (2) the advisor agents are self-interested and provide misleading

accounts of their past experiences with the target agents; and (3) the outcome of each interaction

between the agents is multi-valued.

We use possibility distributions to model trust with respect to its uncertainties thanks to its

potential capability of modeling uncertainty arisen from both variability and ignorance. Moreover,

we propose trust estimation models to approximate the degree of trustworthiness of an unknown

target agent in the two following problems: (1) in the first problem, the advisor agents are assumed

to be unknown and have an unknown level of trustworthiness; and (2) in the second problem,

however, some interactions are carried out with the advisor agents and their trust distributions are

modeled. In addition, a certainty metric is proposed in the possibilistic domain, measuring the

confidence of an agent in the reports of its advisors which considers the consistency in the advisors’

reported information and the advisors’ degree of trustworthiness. Finally, we validate the proposed
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approaches through extensive experiments in various settings.

iv



Acknowledgments

Accomplishing this research was not an easy task from the beginning. I had to deal with different

challenges regarding problem definition, improving my technical knowledge, acquiring the scientific

methodologies required to address the problem and finally proposing our approaches to solve the

problem. This research could not have been accomplished without the contribution and sincere help

of many people, whom I thankfully gratitude.

Thank God for giving me the power and wisdom to fulfill my obligations which was bestowed

upon me during this time, and indeed, throughout my entire life without whom I could not have

made it so far.

I would like to express my deepest gratitude to my supervisors Dr. Brigitte Jaumard and Dr.

Jamal Bentahar for their continuous support and constructive guidance during my master program.

I really appreciate their timeless devotion, precious contribution, and sincere consideration of my

problems.

My special thanks goes to my friends Babak, Maziar and Ali for their continuous help and

guidance during my master studies. I would also like to thank my lab-mates, colleagues and friends

for their support who made my master studies a delightful and constructive experience.

Finally, I would like to dedicate this thesis to my parents. I tremendously appreciate their

support and encouragement throughout my life. I am and will always be grateful to them. I would

also like to specially thank my sisters, Sahar and Sanaz, for encouraging me to accomplish my plans.

v



Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Context of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Possibility Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Literature Review 17

3.1 Trust and Reputation Models Without Uncertainty . . . . . . . . . . . . . . . . . . . 17

3.1.1 Sporas and Histos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3.1.3 Multi-Dimensional Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 FIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.5 Maintenance Based Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Uncertainty in Trust and Reputation Models . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Multi-Dimensional Trust for Heterogeneous Contracts . . . . . . . . . . . . . 21

3.2.2 Referral System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Interval-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 Subjective Logic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 Evidence-Based Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.6 A Personalized Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.7 Travos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.8 BLADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Technical Tools 30

4.1 Fusion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Classical Fusion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Fusion Rules Involving Trust of the Sources . . . . . . . . . . . . . . . . . . . 34

4.2 Probability to Possibility Transformation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Ordering Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Dubois and Prade’s Transformation . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Inferring a Possibility Distribution from Empirical Data . . . . . . . . . . . . . . . . 41

4.3.1 Measuring Confidence Intervals for Multinomial Proportions . . . . . . . . . 42

4.3.2 Generating a Possibility Distribution from Confidence Intervals . . . . . . . . 43

5 Under Uncertainty Trust Estimation 46

5.1 Multi-Agent Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Trust Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Internal Probability Distribution of an Agent’s Trust . . . . . . . . . . . . . . 49

vii



5.1.3 Interaction between Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.4 Building Possibility Distribution of Trust . . . . . . . . . . . . . . . . . . . . 51

5.1.5 Manipulation of the Possibility Distributions . . . . . . . . . . . . . . . . . . 52

5.1.6 Game Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Estimating a Target Agent’s Distribution of Trust . . . . . . . . . . . . . . . . . . . 55

5.2.1 Trust Estimation Through Unknown Agents . . . . . . . . . . . . . . . . . . . 56

5.2.2 Trust Estimation Through Known Agents . . . . . . . . . . . . . . . . . . . . 56

5.3 Measuring Certainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Measuring Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Measuring Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Certainty Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Simulation Results and Analysis 73

6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Metric I - Information Level of a Possibility Distribution . . . . . . . . . . . . 74

6.1.2 Metric II - Estimated Error of Target Possibility Distribution . . . . . . . . . 75

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Experiments Using the Manipulation Algorithm I . . . . . . . . . . . . . . . . 77

6.2.2 Experiments Using the Manipulation Algorithm II . . . . . . . . . . . . . . . 88

6.3 Conclusions of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusion and Future Work 99

7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



List of Figures

1 Multi-agent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Network of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Internal Probability Distribution of Agent a . . . . . . . . . . . . . . . . . . . . . . . 50

4 Modifying Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Modifying Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Network of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Experiment 1 - Algorithm I, |A| = 30, NoI = 50 - Metric I . . . . . . . . . . . . . . 80

8 Experiment 1 - Algorithm I, |A| = 30, NoI = 50 - Metric EE . . . . . . . . . . . . . 80

9 Experiment 1 - Algorithm I, |A| = 30, NoI = 50 - Comparison of the Selected Results 82

10 Experiment 2 - Algorithm I, |A| = 30, NoI = 20 - Metric I . . . . . . . . . . . . . . 83

11 Experiment 2 - Algorithm I, |A| = 30, NoI = 20 - Metric EE . . . . . . . . . . . . . 83

12 Experiment 2 - Algorithm I, |A| = 30, NoI = 20 - Comparison of the Selected Results 84

13 Experiment 3 - Algorithm I, |A| = 10, NoI = 20 - Metric I . . . . . . . . . . . . . . 85

14 Experiment 3 - Algorithm I, |A| = 10, NoI = 20 - Metric EE . . . . . . . . . . . . . 85

15 Experiment 3 - Algorithm I, |A| = 10, NoI = 20 - Comparison of the Selected Results 86

16 Experiment 4 - Algorithm I, |A| = 5, NoI = 10 - Metric I . . . . . . . . . . . . . . . 87

17 Experiment 4 - Algorithm I, |A| = 5, NoI = 10 - Metric EE . . . . . . . . . . . . . . 87

18 Experiment 4 - Algorithm I, |A| = 5, NoI = 10 - Comparison of the Selected Results 88

19 Experiment 5 - Algorithm II, |A| = 30, NoI = 50 - Metric I . . . . . . . . . . . . . . 89

ix



20 Experiment 5 - Algorithm II, |A| = 30, NoI = 50 - Metric EE . . . . . . . . . . . . . 89

21 Experiment 5 - Algorithm II, |A| = 30, NoI = 50 - Comparison of the Selected Results 90

22 Experiment 6 - Algorithm II, |A| = 30, NoI = 20 - Metric I . . . . . . . . . . . . . . 90

23 Experiment 6 - Algorithm II, |A| = 30, NoI = 20 - Metric EE . . . . . . . . . . . . . 91

24 Experiment 6 - Algorithm II, |A| = 30, NoI = 20 - Comparison of the Selected Results 91

25 Experiment 7 - Algorithm II, |A| = 10, NoI = 20 - Metric I . . . . . . . . . . . . . . 92

26 Experiment 7 - Algorithm II, |A| = 10, NoI = 20 - Metric EE . . . . . . . . . . . . . 92

27 Experiment 7 - Algorithm II, |A| = 10, NoI = 20 - Comparison of the Selected Results 93

28 Experiment 8 - Algorithm II, |A| = 5, NoI = 10 - Metric I . . . . . . . . . . . . . . . 94

29 Experiment 8 - Algorithm II, |A| = 5, NoI = 10 - Metric EE . . . . . . . . . . . . . 94

30 Experiment 8 - Algorithm II, |A| = 5, NoI = 10 - Comparison of the Selected Results 95

x



List of Tables

1 Confidence Intervals in Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 The reported values of agents ai, i ∈ {1, 2, 3, 4} corresponding to the x values of

Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 The trust values of τas→ai
, i ∈ {1, 2, 3, 4} corresponding to the x values of Figure 5 . 71

4 Distribution of Agents in Figures 7 to 12 and Figures 19 to 24 . . . . . . . . . . . . . 78

5 Distribution of Agents in Figures 13 to 15 and Figures 25 to 27 . . . . . . . . . . . . 83

6 Distribution of Agents in Figures 16 to 18 and Figures 28 to 30 . . . . . . . . . . . . 86

xi



Chapter 1

Introduction

1.1 Context of Research

Social networking sites have become the preferred venue for social interactions. Despite the fact that

social networks are ubiquitous on the Internet, only few websites exploit the potential of combining

user communities and online marketplaces. The reason is that users do not know which other users

to trust, which makes them suspicious of engaging in online business, in particular if many unknown

other parties are involved. This situation, however, can be alleviated by developing trust metrics such

that an agent can assess and identify trustworthy agents. An agent, indeed, can acquire information

about unknown agents of interest (target agents) through other agents in the network (which we

refer to as advisors) who have already interacted with one of the target agents. Estimation of the

degree of trustworthiness of a target agent, in turn, would help an agent to decide whether or not

to engage in an interaction with that target agent. This problem gets more challenging when: (1)

the advisors are self-interested and may not report honestly about target agents; and (2) the degree

of trustworthiness of both advisor and target agents is subject to uncertainty. The uncertainty,

considered in this thesis, is driven from lack of adequate information on advisor and target agents’

trust and variability in their degree of trustworthiness. The variability in an agent’s trust has
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the consequence of the agent’s trustworthy behavior in some interactions and its untrustworthy

behavior in other interactions such that the prediction of the agent’s degree of trustworthiness

becomes challenging for future interactions.

1.2 Problem Statement

In this thesis, we develop a trust model for estimating the trust of a target agent, who is unknown,

through the information acquired from a group of advisor agents who had direct experience with

the target agent. Figure 1 illustrates the multi-agent system studied in this thesis. As shown in this

figure, an evaluator agent (namely as) wants to decide whether or not to interact with an unknown

target agent (namely ad). On this purpose, it acquires information from its advisors in set A (set

A consists of agents a1 to an) who have already interacted with agent ad. Through the acquired

information from the agents in set A, agent as models the trust of agent ad. Consequently, as

can have a prior estimation on the degree of trustworthiness of agent ad before engaging in any

interactions with it.

Figure 1: Multi-agent System

The trust model developed in this thesis, which measure the degree of trustworthiness of the

target agent ad, is in the following context:

• There is uncertainty in the degree of trustworthiness of both advisor and target agents. The

uncertainty is risen from: (1) ignorance about advisor and target agents; and (2) variability in

the degree of trustworthiness of both advisor and target agents. Ignorance is due to insufficient

1Without loss of generality, in our model, agents as and ad are not in the set A. However, in a more general
approach each agent may ask a group of agents about an agent unknown to him. Moreover, we assume the agents in
the set A are willing to share information with as about the target agent ad.
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information about advisor and target agents. Variability, on the other hand, is due to diversity

in degree of trustworthiness of the advisor and target agents. Indeed, variability in trust of

an agent means that the agent’s degree of trustworthiness may change from one interaction to

another, which would make its degree of trustworthiness hard to predict for future interactions.

• The advisor agents are self-interested and may not report honestly to the evaluator agent as

about their past experience with the target agent ad.

• The domain of trust is multi-valued. After each interaction between every pair of connected

agents in Figure 1, say agent α and agent β, α rates the trustworthiness of β by giving it a

rating chosen out of a discrete set of trust values. For example, if the domain of trust values

has five elements, agent α can rate β by giving it a value from one to five.

In this context, we address two different problems:

1. In the first problem, we assume the advisor agents are unknown to agent as and as acquires

information from its advisors on the trust of agent ad. Then, agent as models the trust

distribution of ad through information acquired from its advisors which have unknown degree

of trustworthiness. In this problem, it is not clear to what extent a piece of information given

by an advisor in A can be relied upon.

2. In the second problem, we assume that agent as has interacted with the advisor agents in

set A. Therefore, agent as models the trust of the advisor agents in A through usage of the

empirical values as has acquired in its direct interactions with the agents in A. Later, when as

wants to measure the trust of the target agent ad, it considers the degree of trustworthiness

of the advisor agents. This, in turn, would help as figure out to what extent the information

received from each agent in A about the target agent ad is reliable.

1.3 Contribution of the Thesis

The contributions of this thesis are manifold. Here we provide an overview of them:
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• The first contribution of this thesis is deployment of possibility theory to address the uncer-

tainty in the aforementioned problem context. As discussed later, possibility is a strong tool

for representing uncertainties arisen from insufficient knowledge and also variability. It also

provides strong tools ( e.g., fusion rules) for aggregating information acquired from different

sources.

• The main contributions of this thesis is modeling the trust distribution of a target agent

through information acquired from the advisor agents. A target agent’s trust is estimated in

two different problems: (1) when the advisor agents are unknown; and (2) when the advisor

agents are known. In the latter problem, two different approaches are proposed:

1. In the first approach, a methodology is proposed to merge possibility distributions rep-

resenting the trust of agents at successive levels in a multi-agent system. In other words,

we merge the trust distributions of an agent in its advisors with the trust distribution of

the advisor agents in a target agent. More specifically, we merge the following possibility

distributions:

(a) The possibility distributions of agent as’s trust in its advisors.

(b) The possibility distributions of the advisor agents’s trust in the target agent ad.

These two possibility distributions represent the trust of different entities. While the

former represents the trust distribution of the advisor agents, the latter demonstrates

the trust distribution of the target agent ad.

2. In the second approach, a single trust value, representing the trust of an agent in its

advisors is measured which is estimated from the direct experience of an agent with its

advisors. This value, then, is employed in the fusion rules to measure the trust of a

target agent.

• The third contribution of this thesis, is measuring a certainty value over the information

acquired by agent as from its advisors. The information received by agent as from each one

of its advisors is a possibility distribution representing the trust of that advisor in the target
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agent ad. The certainty metric developed here is aimed to represent the confidence of agent

as in the quality of information received from its advisors. The certainty metric considers

both the inconsistency among the advisors’ reported possibility distributions and the degree

of trustworthiness of the advisors. The certainty value differs from trust in the sense that trust

represents the degree of reliability of an agent as measured or estimated by another agent while

the certainty value represents the degree of reliability of the information acquired from the

entire advisor agents which considers both the consistency in the information and the degree

of trustworthiness of the advisor agents.

• Finally, we develop two metrics to evaluate the estimated possibility distribution of a target

agent. The first metric is the information level of a possibility distribution which measures

the degree of information provided in a possibility distribution. The second metric measures

the approximated error of the estimated possibility distribution of agent ad. On this purpose,

this metric measures the difference between the true and estimated possibility distributions of

the target agent ad.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, the background information is provided. It explains

concepts of trust, agent, multi-agent systems, uncertainty and possibility theory.

Chapter 3 makes a comprehensive review of trust and reputation models developed both with or

without consideration of uncertainty.

Chapter 4 briefly covers the technical tools developed by other researchers which are used in our

model. This chapter provides an overview of fusion rules, probability to possibility transformation

technique and the process of inferring a possibility distribution from empirical data.

Chapter 5 contains the main contribution of the thesis. In this chapter, our proposed method-

ologies for modeling the trust distribution of a target agent is discussed. The estimation of a target

agent’s trust is developed when: (1) the advisor agents are unknown to agent as; and (2) the advisor

5



agents are known to agent as. Finally, a certainty metric measuring the confidence of agent as in

the quality of information acquired from its advisor is developed and analyzed in this chapter.

Chapter 6 contains the simulation results evaluating our proposed tools in comprehensive experi-

ments. The experiments aim to validate our proposed approaches in different context settings. This

chapter first introduces two evaluation metrics and then presents the experimental results.

Finally, Chapter 7 contains the conclusions of the thesis and discusses our future works.
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Chapter 2

Background

This section provides the basic definitions of the core concepts used in the thesis. The definitions

of the following terms are provided: trust, agent, multi-agent systems, uncertainty and possibility

theory.

2.1 Trust

“trust is a term with many meanings” [1]. It has been given various definitions in different domains

[2, 3]. Trust has been defined and used in economy [4, 5], sociology [6, 7], philosophy [8], psychology

[9,10], management [11,12], political [13] and cognitive sciences [14]. For example, in sociology and

economics, trust is typically defined as follows:

• Sociology. Trust is “a social relationship in which principals–for whatever reason or state

of mind–invest resources, authority, or responsibility in another to act on their behalf for

some uncertain future return” [6]. Trust exists [7] in a social system where the members

act according to some norms and are secure in their expected futures through presence of

other members in the society. Therein, trust is analyzed in a social context asking how the

existence/betrayal of trust would benefit/harm the individuals in the society.
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• Economy. Trust is the degree of confidence that the other party of an exchange will not take

advantage of one’s susceptible vulnerabilities [4]. In economy, trust is the key for successful

exchanges where trust is considered as the degree of risk that the trusting party is willing to

take with respect to the exchange partner. As described by Barney and Hansen “An exchange

partner is trustworthy when it is worthy of the trust of others. An exchange party worthy of the

trust is one which will not exploit others’ exchange vulnerabilities . . . Trust is an attribute of a

relationship between exchange parties, trustworthiness is an attribute of individual exchange

partners” [5].

In a general sense, trust is the degree of belief that a future phenomenon will be experienced as it

is expected. For instance, we go to work trusting that the transportation system is reliable enough

to get us to work which is driven by our expectation of the transportation system. Another example

can be the banking system: we put our money in a bank trusting that it does not steal our money

nor it would go bankrupt and we can get our money back whenever we wish. As described in [15]

“trust is strongly linked to confidence in something, be it the person to be trusted, the environment,

or whatever it is that the desirable outcome is contingent upon”. Such general definitions of trust

are applicable to a wide range of domains. Some authors, instead, define trust by addressing the

interactions between the entities, especially in a society. As described in [16], trust is “the expectation

or the belief that a party will act benignly and cooperatively with the trusting party”. Thereupon,

trust is defined as a relation between the two entities involved in it. These entities are referred to

as the trustor and trustee. More specifically,

• Trustor. The entity who trusts the other party by taking the risk of being better off if the

trust is being honored or worse-off if the trust is being betrayed.

• Trustee. The entity whom is being trusted. The trustee can either honor the trust by acting

honestly or betray the trust by acting opportunistically.

Considering such relations between a trustor and a trustee, trust can be defined as “the extent

to which the trustor is willing to take the risk of trust being abused by the trustee” [17].
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Some researchers modeled trust [18, 19] as the degree of belief that the trustee supports the

trustor’s plan. In these models, trust is a triplet consisting of belief, disbelief and uncertainty where

trust, distrust and uncertainty arises when:

• Trust: belief (in a good outcome) is high, disbelief (or belief in a bad outcome) is low, and

uncertainty is low. In this case, there is a high belief that trust will be honored by the trustee.

• Distrust: belief is low, disbelief is high, and uncertainty is low. In this case, there is a high

disbelief that the trustee will honor trust.

• Lack of both trust and distrust: belief is low, disbelief is low, and uncertainty is high. In

such a case, the trustor does not know whether the trustee is trustworthiness or not and to

what extent the trust will be honored or abused.

In such a model, lack of trust is interpreted either as distrust in the trustee or uncertainty

about the trustee. Moreover, increase of either trust or distrust in the trustee would increase the

certainty on the trustee’s degree of trustworthiness meaning that the trustor has more confidence

on how trustworthy the trustee is. Regarding such view, trust is considered as “confident positive

expectations regarding another’s conduct” [20] and distrust as “confident negative expectations

regarding another’s conduct” where increase of either trust or distrust accumulates certainty on

trustee’s conduct.

In this thesis, we define trust as a relation between a trustor and a trustee which is the extent

to which the trustee honors trust and acts cooperatively and benevolently with the trustor.

2.2 Agent

The same as trust, there are different definitions for an agent. “Agents do things, they act: that is

why they are called agents” [21]. This is a very primitive definition of an agent which can categorize

even many trivial applications or even products in the category of agents. For example, even a very

basic Java code can be considered as an agent regarding this definition. Recent literature provide

more comprehensive definition of the agents and describe them based on their expected features.
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As defined in [22] “an agent is a computer system that is situated in some environment, and is

capable of autonomous action in this environment in order to meet its delegated objectives”. In this

definition, the emphasis is made on situatedness and autonomy as the main features of an agent.

Another definition is provided in [23] where Wooldridge and Jennings describe an agent as an entity

whose actions are autonomous and rational, where these two features carry the following meanings:

• Autonomy. Autonomy means that an agent’s actions are independent of direct human (or

other) intervention or influence.

• Rationality. Rationality is mainly concerned with maximization of an agent’s rewards or

performance considering some ‘valuation function’. Reward is the immediate feedback received

after completing an action which is commonly in the form of a number. Valuation function

specifies how to maximize an agent’s rewards in the long run. In other words, considering

future actions and rewards of an agent, valuation function indicates what is good for the agent

in the foreseeable future.

Although autonomy and rationality are the expected characteristics of an agent, these features

are yet weak criteria for being an agent. As exemplified in [23], even a transistor can be called an

agent which is consistent with this definition.

Wooldridge [24] [page 32] distinguishes between an agent and an intelligent agent arguing the

latter is capable of flexible autonomous actions in order to meet its objectives, where flexibility

implies the three following notions:

• Reactivity. The agent is capable of perceiving the environment and respond to it in a timely

manner to satisfy its own goals.

• Pro-activeness. Intelligent agents make the goal-oriented initiatives in order to fulfill their

own objectives.

• Social ability. Intelligent agents have the capability of interacting with other agents to fulfill

their own objectives.
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In a more generalized and comprehensive definition [25], an agent is an entity subject to beliefs,

desires, goals, etc. In such a definition an agent is an intentional system [26] with human character-

istics such as knowledge, desires, beliefs, intentions, commitments and goals. These characteristics

are categorized [23] as information attitudes and pro-attitudes of an agent:

• Information Attitude. Consists of what an agent knows about the world it belongs to.

Knowledge and beliefs are in this category.

• Pro-Attitudes. Consists of what drives an agent towards its actions. Desires, intentions,

commitments and goals are all part of this category.

In this thesis, we consider the above definition where an agent has human characteristics like

knowledge, desires, intentions and goals. We assume the agents in our model are goal oriented

and the manipulation of information by them is a consequence of their intentional behavior which

satisfies their overall goal.

2.3 Multi-Agent Systems

Multi-Agent Systems (MAS) are distributed systems composed of several independent agents where

each agent either cooperates with other agents (to reach a shared objective or contribute to goal of

other agents) or only pursues its own objectives. D’Inverno and Luck [27] define MAS as “typically

distributed systems in which several distinct components, each of which is an independent problem-

solving agent come together to form some coherent whole”. While some features such as “having a

distributed system” and “contributing to the goal of the system” are emphasized in this definition,

MAS are categorized differently based on the goal of the agents and their degree of cooperation.

Moreover, communication and exchange of information with other agents is a key property of MAS.

Each agent communicates and exchanges with other agents in an environment or society in order to

accomplish its own goals or contribute to the goals of the system. With respect to the environment

in MAS, the following properties are usually assumed [24]:

1. Multi-agent environments should provide an infrastructure facilitating communication and
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interaction among agents.

2. Multi-agent environments are typically open and have no central designer.

3. Multi-agent environments contain autonomous agents which can be either cooperative or

self-interested.

In such systems, the question is how these agents relate to one another and what the entire

system does fulfill? Considering the cooperation level, MAS are categorized into two types [28],

independent and cooperative:

• Independent MAS. A multi-agent system is independent when each agent pursues its own

agenda [29]. It such systems, agents are self-interested perusing their own goals where they

tend to compete against each other instead of cooperating.

• Cooperative MAS. A multi-agent system is cooperative when collaboration with other

agents in the system is compatible with agent’s objectives [28]. In such systems each agent

satisfies either or both of the following conditions:

1. The agents pursue a common goal.

2. Each agent performs actions which in addition to its own goals satisfy the goals of other

agents.

Compositional MAS [30] are a specific form of cooperative MAS, in which each agent fulfills a

specific task such that the composition of the tasks carried out by the entire agents accomplishes

the overall goal of system.

In this thesis, we consider an independent multi-agent system where the agents are self-interested

and pursue their own objectives. Note that throughout the exchange of information between the

agents, an agent can help other agents’ achieve their goals when such cooperation is in conformance

to the agent’s objectives. This may put our multi-agent system on the border of independent and

cooperative MAS; however, we consider our system to be more on the independent side than on the

cooperative one.
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2.4 Uncertainty

As for trust, there are different definitions and interpretations of uncertainty [31]. The differences in

the definition and understanding of uncertainty are due to different points of view of objectivists (who

consider that uncertainty is driven from the system under study) and subjectivists (who consider

that uncertainty is associated with the degree of belief of the observer or its knowledge). Dubois

considers two types of uncertainty [32]:

• Variability. This type of uncertainty is “subject to intrinsic variability” [32]. In this case,

the uncertainty is due to the fluxing behavior of the system under study which makes it

indeterminate for accurate measurement. An example can be the weather temperature in a

city like Montreal. This type of uncertainty is objective arising from the stochastic behavior

of the system under study, which is not driven from the judgment or view of the observer [33].

• Ignorance. The type of uncertainty is “totally deterministic but anyway ill-known” [32].

In this case, uncertainty arises from lack of information about the system under study. An

example can be a number of ants in a complex colony which is deterministic but unknown.

This sort of uncertainty is subjective [33] driven from lack of an individual or an entity’s

knowledge of the system.

Uncertainty may also emerge from a combination of variability and ignorance where there is

insufficient knowledge on a quantity that has a fluxing and non-deterministic nature. This case

usually arises from situations when the observations are poor due to lack of proper measurements

and there is alteration in the system under study.

The variability and ignorance should be addressed differently [32]. While ignorance can be

addressed by more study, variability arises from the nature of the system under study which is

independent of our knowledge about the system. However, ignorance may remain in cases when

additional information cannot be acquired either due to lack of access to the system or the difficulty

of its measurement (e.g., the number of ants in a complex ant colony).
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The uncertainty that we address in this thesis is a combination of both ignorance and variability.

We will discuss it in more details in the following chapters where we provide more details on our

research.

Probability theory is too normative to consider all aspects of uncertainty according to [34].

The uncertainty driven from variability can be modeled by using a unique probability distribution

[32,33]; however, the uncertainty driven from lack of knowledge cannot be modeled by a probability

distribution. In this type of uncertainty, the probability of events is unclear, except maybe their

lower and upper bounds. The uncertainty driven from lack of knowledge can be represented by either

interval analysis or possibility theory [34]. Interval analysis is not a single probability distribution;

rather it is a region within which the true probability distribution most probably lies.

We used possibility theory as it is capable of addressing both types of uncertainty (the uncertainty

driven from variability and the uncertainty driven from ignorance) [31]. In addition, as mentioned

in [32], it is the simplest theory for addressing incomplete information (ignorance). These are the

main factors guiding us to use the possibility theory for addressing uncertainty in this thesis. We

elaborate the advantage of possibility theory in more details in the following chapters.

2.5 Possibility Theory

Possibility theory is one of the current theories for addressing uncertainty. It was first introduced by

Zadeh [35] as a graded semantics for representing linguistic terms such as “today will possibly rain”.

This representation had close links to fuzzy sets where the possibility of an element was introduced

as the degree of membership of that element in a set. Zadeh considers probability and possibility as

the tools that give human the “ability to reason in approximate terms”.

Possibility theory has been developed further by Dubois and Prade [32, 36] where the relation

between probability and possibility theories have been discussed and elaborated. Possibility theory

is one of the current uncertainty theories devoted to handle incomplete information. As stated

by Dubois and Prade [32], possibility theory is a “simple approach to reasoning with imprecise
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probabilities”. It is powerful enough to represent different sorts of information such as numbers,

intervals, consonant (nested) random sets and linguistic information. There are four meanings for

the term ‘possibility’ [32]:

• Feasibility: Here, the term ‘possible’ refers to the easiness of fulfillment of a task, or satisfying

the constraints of a problem. For example, the expression of “solving this problem is possible”

implies the feasibility of solving the problem.

• Plausibility: In this case, the term ‘possible’ indicates the likelihood of an event to occur. It

is expressed in sentences such as “it is possible that the bus comes on time” which indicates

the likelihood of the arrival of bus on time.

• Consistency with the available information: In this case, the term ‘possible’ is used

when a proposition does not contradict with available information. It is implied in expressions

such as “it is possible that the cat has opened the door”. This meaning of possibility is logical,

which is an “all-or-nothing” [32] version of plausibility.

• Deontic: In this case, the term ‘possible’ means allowed or permitted by the law. For example,

“it is possible to park my car here”.

Considering the logical view of possibility, it measures the degree of plausibility of an event. The

dual of possibility is necessity [36], which measures the degree of certainty of an event. While the

possibility value measures the degree of plausibility of an event, the necessity value measures the

degree of certainty over an event. This leads to presentation of possibility theory commonly in form

of possibility and necessity values.

Suppose some quantity x ranges on a set U in which the elements in U are mutually exclusive,

meaning that only one element in the domain of U is the true value. The possibility value of

each element u ∈ U indicates the degree of plausibility that element u is the true value of x. The

possibility distribution [32], defined over a set U, gives each element u ∈ U a value in [0, 1], which

indicates its possibility value. The possibility value of element u is represented by π(u). Having

π(u) = 0 means that event u is impossible while having π(u) = 1 means that element u is usual,
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normal, unsurprising. This is a much weaker representation of the degree of plausibility of element

u compared to a probability distribution. An element having a possibility value between 0 and 1

(0 < π(u) < 1) is interpreted as being partially possible and partially impossible. Unlike probability

distribution in which the total sum of the probabilities of elements in the set U should sum up to

one, there is no upper bound considering the sum of possibility of the elements of U. Each element

u ∈ U can indeed have a maximum possibility of one. However, the normalization in the possibility

domain is satisfied by having at least one element in U that has a possibility of one. This is due to

the fact that at least one element in the domain is the true value which should be totally possible.

Otherwise, if all elements in U have a possibility less than one the meaning is logically at odds

implying that all of them are partially impossible. More formally, a possibility distribution defined

over a set U should satisfy:

0 ≤ Π(u) ≤ 1 ∀u ∈ U (1)

∃u ∈ U : Π(u) = 1. (2)

Finally, the possibility distribution defined over a set U is represented as:

Π : U → [0, 1] wheremax
u∈U

Π(u) = 1 (3)

In this chapter, we provided a brief description of the concepts used in this thesis in order to

familiarize the reader with the overall context of the thesis. In the next chapter, we concentrate

more on the details of our research and we review the researches closely related to our own.
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Chapter 3

Literature Review

In this chapter, we review relevant literature in the domains of trust, reputation, and uncertainty,

which are related to our model.

3.1 Trust and Reputation Models Without Uncertainty

First, we review the works accomplished in trust and reputation models that do not address uncer-

tainty. Considerable research has been accomplished in multi-agent systems representing models of

trust and reputation, a detailed overview of which is provided in [37]. In reputation models, an ag-

gregation of opinions of agents towards an individual agent is publicly maintained. In trust models,

on the other hand, the focus is mainly on the private trust measurement by an agent towards other

agents in the system. In this section, we review some of the trust and reputation models which are

close to our own.

3.1.1 Sporas and Histos

In Sporas [38,39], the reputation of a user can be evaluated and rated by other users in the system.

Sporas provides a mechanism for capturing the changes in the behavior of each user over time. In

this model, the reputation of a user, say ui, giving a rating to another user, say uj , is considered such
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that the extent of influence of user ui on the reputation update of user uj is based on ui’s reputation.

The higher the ui’s reputation, the higher its influence on the update of uj ’s reputation. In [38,39]

the authors also introduce the Histos reputation model where a user ui acquires information from

other users in the web of trust about the reputation of a target user uj . On this purpose, the most

recent paths from ui to uj are found 1 and the reputation of uj is measured based on the ratings2

and reputation of the agents in the selected paths from ui to uj . However, in both Sporas and Histos

models, it is implicitly assumed that an agent’s reputation is a fixed unknown value at each given

time. Consequently, it does not address the variability in an agent’s reputation.

3.1.2 Regret

Regret is another reputation model presented in [40] which describes different dimensions of reputa-

tion including “individual dimension”, “social dimension”, and “ontological dimension”.

Individual dimension is measured through consideration of previous direct interactions with an

agent in which the time recency of each interaction is addressed. Considering the social dimension,

it is assumed that each agent belongs to a social group. In order to measure the reputation of an

agent j in group Gj by agent i in group Gi the following aspects of reputation are measured:

• The reputation of agent j measured by agent i in direct interactions between them.

• The reputation of the agents of group Gj as directly experienced and measured by agent i.

• The reputation of agent j as measured by the agents of group Gi in mutual direct interactions

with agent j.

• The reputation of the agents of group Gj as measured by the members of group Gi.

These four aspects of reputation in the social context are combined in order to measure the

1A path from user u1 to user un is a sequence of users (u1, u2, . . . , un) such that considering each pair of users
(ui, ui+1), user ui had direct experience with user ui+1. Here, a path is the same as a path in a tree. If we denote
the nodes of a tree as the users and create an edge between every pair of users who had direct experience, a path is
a sequence of vertices where each vertex is connected directly by an edge to the next vertex. In Sporas, the time of
the most recent interaction between every pair of agents is considered. Consequently if there are several paths from
user u1 to un, the path is selected in which the agents in the path have made more recent interactions compared to
the other paths.

2A rating is a value given by a trustor agent to a trustee agent in an interaction between the trustor and trustee
agents which indicates the degree of satisfaction of the trustor agent in that interaction. For example, in a one to five
rating scale, one and five indicate the lowest and the highest satisfaction levels, respectively.
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reputation of agent j by agent i.

In ontological dimension, different aspects of reputation that are important for a model (e.g.

delivery date, product quality) are considered. In general, in the Regret model, the focal emphasis

for measuring a target agent’s reputation is put on the target agent’s social status and also on the

aspects of reputation important for a given model (time, quality, etc). However, this model does not

address the possibility of receiving erroneous information by agents whose opinions are considered

on the target agent.

3.1.3 Multi-Dimensional Trust

Griffiths [41] presents a multi-dimensional trust containing dimensions such as success, cost, timelines

and quality where each dimension is updated over time based on the contract outcomes. The focus

in this work is on the possible criteria that is required to build a trust model. In addition, the trust

measured here is based on direct interactions. How the trust and reputation of an agent can be

propagated and measured in a network of agents is not addressed.

3.1.4 FIRE

FIRE [16] measures the trust of a target agent considering “interaction trust”, “role-based trust”,

“witness reputation” and “certified reputation”. Here is a short description of these aspects:

• Interaction trust. Previous history of interactions with the target agent is considered by

the evaluator agent.

• Role-based trust. This type of trust is domain specific and is based on the role of the target

agent or the relationship between the target agent and the estimator agent. For example, an

agent may trust any agent belonging to a group or certified by an organization.

• Witness reputation. The agents who had direct interactions with the target agent share

their experience with the evaluator agent.
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• Certified reputation. This aspect of trust is based on the references that the target agent

introduces to the evaluator agent in order to certify its behavior.

These four trust components are integrated to measure the trust of a target agent. The FIRE

model is based on two assumptions:

• Assumption 1. Agents are willing to share their experiences with others agents.

• Assumption 2. Agents are truthful when exchanging information with each other.

The second assumption is much stronger compared to the first one which is less likely in real

world scenarios. In addition, although the underlying trust of an agent is assumed to have a normal

distribution, the estimated trust is a single value instead of a distribution. A distribution con-

tributes more information compared to a single value. Moreover, a single value cannot represent the

uncertainty associated with the occurrence of each element of the trust domain.

3.1.5 Maintenance Based Trust

A maintenance based trust (MBT) is introduced in [42] where an online learning methodology is

proposed to: (1) estimate the trustworthiness of the target agents; and (2) update and evaluate the

degree of trustworthiness of the advisor agents. The MDB model considers two issues:

1. Online learning of a target agent’s trust: In this aspect, both direct and indirect interactions

with a target agent is considered to measure its agent’s degree of trustworthiness. While

the direct interactions happen between the evaluator and the target agents, the indirect

interactions either are based on the information acquired from the network of trustee, known

by the evaluator agent, or from the referees provided by the target agent. This aspect of trust

considers both the number of interactions and the time recency of the interactions occurred

between the agents.

2. Online learning of an advisor agent’s trust: When the evaluator agent interacts with the target

agent and observes its true value, the evaluator agent updates the degree of trustworthiness

of the advisor agents (network of trustees and referees) based on their provided feedback.
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To this end, an optimization algorithm for trust adjustment is proposed where the trust of

honest and dishonest advisors are increased and decrease respectively with respect to an error

threshold. In addition to this optimization part, a maintenance process is proposed to measure

the overall trust trend of an advisor agent based on its current trust values measured by the

optimization part. The maintenance process is aimed at measuring a unified and consistent

trust value of an advisor agent based on its recent provided ratings. Consequently, this model

distinguishes the trustworthy advisors and relies more on the information received from them

for more accurate future evaluations.

All models in this section do not address uncertainty. Uncertainty is one of the aspects that our

trust model aims to address.

3.2 Uncertainty in Trust and Reputation Models

In all of the trust and reputation literature presented in Section 3.1 the uncertainty in the trust of

an agent is not modeled. We now review the works which address uncertainty.

3.2.1 Multi-Dimensional Trust for Heterogeneous Contracts

Reece et al. [43] present a multi-dimensional trust model in which the reputation reports of advisors

are combined to measure multi-dimensional contracts. Each contract dimension corresponds to a

service (e.g., video, audio, data service, etc.) and has a binary value (successful or unsuccessful). The

contract dimensions are subject to correlated failure (e.g., due to shared resources or infrastructure)

where the failure of one dimension may lead to failure of another. In this model, each advisor

agent has observed a subset of dimensions and the main focus is to combine the advisors’ reported

heterogeneous subsets to model all dimensions of a contract. On this purpose, Kalman filter is

applied for data fusion to combine heterogeneous contract observations. Moreover, the probability

of having each service successfully delivered is estimated. Later, the uncertainty and correlations

between these probabilities are measured in a covariance matrix.
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This model is mainly concentrated on fusing information received from advisor agents who had

direct observations over a subset of services (incomplete information) to derive a complete picture

on all trust dimensions of a target agent. In this reputation model, when the reports of other agents

are provided, the notion of having manipulated information provided by malicious agents is ignored,

which makes the model less realistic in open environments.

3.2.2 Referral System

Yu and Singh [44] introduce belief functions measuring the probability of trust, distrust and un-

certainty of an agent’s quality of service. The rating given to each interaction between agents is a

member of a discrete set of values in the interval of [0, 1]. In this model, the reported belief functions

of the witness agents is merged in order to get the probability of trust, distrust and uncertainty of

the target agent. The uncertainty measured in this work is equal to the frequency of the interac-

tion results in which the agent’s performance is neither highly trustworthy nor highly untrustworthy

which can be inferred as lack of both trust and distrust in the target agent. However, the uncertainty

that we capture in our model is due to the variability in the target agent’s degree of trustworthiness

and lack of adequate information about the target agent. We do not consider uncertainty as lack

of trust or distrust, but the variability in the degree of trustworthiness of the agent and insufficient

knowledge on it. This, in turn, makes the target agent’s degree of trustworthiness hard to predict

for future interactions. In addition, in [44] when the witness reports are gathered, the possibility of

having malicious agents providing falsified reports is not considered.

3.2.3 Interval-Based Approach

Ben-Naim and Prade [45] present a trust model based on interval-based approach. In this model,

the ratings given on a trustee are real numbers in [0, 1]. These numbers are then summarized in an

interval to represent the past behavior of the trustee. The derived interval demonstrates a region

within [0, 1] in which the ratings were mostly concentrated. However, it does not consider the
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manipulation of information and assumes the information acquired on the trustee agent is reliable.

3.2.4 Subjective Logic Approach

In [19], Jøsang provides a probabilistic computational model measuring belief, disbelief and un-

certainty out of binary interactions (positive or negative). In this approach, belief, disbelief and

uncertainty sums up to one. Moreover, uncertainty represents imperfect knowledge (ignorance)

whereas belief and disbelief represent certainty on the system under study. Let r and s be the num-

ber of positive and negative events, then belief (b), disbelief (d) and uncertainty (u) are measured

as:

b =
r

r + s+ 1
; d =

s

r + s+ 1
; u =

1

r + s+ 1
. (4)

Jøsang also elaborates how belief, disbelief and uncertainty is propagated by agents. If agent

A’s opinion on agent B is represented by ωA
B = {bAB , d

A
B , u

A
B} and B ’s opinion on a proposition p is

represented as ωB
p = {bBp , d

B
p , u

B
p }, then agent A’s opinion about proposition p is measured as:

bAB
p = bABb

B
p ; dAB

p = bABd
B
p ; uAB

p = dAB + uA
B + bABu

B
p . (5)

In this approach, the belief of agent A in proposition p (bAB
p ) is a multiplication of agent A’s belief

in B (bAB) with agent B ’s belief in proposition p (bBp ). Moreover, Agent A’s disbelief in proposition

p (dAB
p ) is a multiplication of agent A’s belief in B (bAB) with agent B ’s disbelief in p (bBp ). As

can be observed, the belief and disbelief of agent A in proposition p is based on its degree of belief

in the recommender agent B. Uncertainty of agent A in proposition p is derived from agent A’s

disbelief and uncertainty in agent B plus the multiplication of bAB and bBp . This model has a number

of shortcomings. As mentioned in [46] “it must be assumed that the agents in the chain do not

change their behavior”. In other words, this model does not consider the variability in an agent’s

behavior. Despite the fact that agent A has an opinion on agent B ’s trust, which in turn impacts
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agent A’s opinion model on p, there is no assumption of manipulation of information by agent B.

Indeed, agent B reports its opinion model on agent p without modification. Consequently, it is not

clear how the opinion model of proposition p should be measured in the presence of manipulation of

information. In addition, this model is based on binary domain of events (each interaction is either

positive or negative) which is a restriction case of more generalized scenarios where each interaction

is multi-valued.

As explained in [18], this model correctly increases certainty by increasing the confirmatory evi-

dence (for a fixed ratio of positive to negative interactions, higher number of evidence, or equivalently

interactions, increases certainty); however, this model mistakenly increases certainty in the presence

of conflicting evidence. For example, if all of the interactions are positive or all of them are negative

the same certainty value is measured as in the case where the evidence is equally split among the

positive and negative interactions. In the latter case, the certainty should be less since the target

entity’s trustworthiness is more unclear since it demonstrates neither absolute trustworthiness nor

absolute untrustworthiness.

3.2.5 Evidence-Based Trust

Wang and Singh [18] provide another probabilistic computational model measuring belief, disbelief

and uncertainty from binary interactions (either positive or negative). Similar to the proposed model

of Jøsang in [19], Wang and Singh [18] measure a single value for each one of belief, disbelief and

uncertainty in the interval of [0, 1] such that the sum of them equals one. The model formulates

a probability density function measuring the probability of having a positive experience with the

target agent. Then, the mean absolute deviation of the difference between this distribution and the

uniform distribution is measured to derive the certainty value. The certainty value measured in this

approach considers the following two characteristics.

• Effect of Evidence. Certainty increases by increase in evidence. In other words, given the

same ratio of positive to negative events, higher evidence (higher number of provided events)
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would increase certainty.

• Effect of Conflict. Certainty decreases by increase in the degree of conflict. More specifically,

given a fixed number of evidence (fixed number of positive and negative events), the more the

number of positive and negative events become equal, the more conflict exists in the evidence,

and therefore the less would be the certainty. For example, consider a scenario where Bob

deals with Alain 4 times or receives fully trustworthy reports on Alain from 4 witnesses. The

evidence would be between 0 to 4 positive experiences. The certainty is higher if the evidence is

0 (all experiences are negative) or 4 (all experiences are positive) compared to the cases where

the number of positive events are among these 2 extreme ends (the evidence contains both

positive and negative experiences). This is due to the fact that in the former cases, Alain’s

trustworthiness is more predictable (completely trustworthy or completely untrustworthy) and

therefore the certainty about the degree of trustworthiness that would be experienced in a

future interaction would be higher. The model of Jøsang [19] yields the same certainty value

of 0.8 for all these cases, which does not consider the conflict in the information.

Both models described in [19] and [18] are designed for binary domains of events in which each

interaction is either positive or negative. This, in turn, is a limited case of a more generalized multi-

valued domains where each interaction can take a value chosen out of a discrete set of events. The

work presented in [18] can represent the deviation in the degree of trustworthiness of an agent through

the probability-certainty density function (PCDF). However, it cannot demonstrate the uncertainty

risen from lack of information. This is a shortcoming of probabilistic models compared to possibilistic

models. In addition, the evidence-based trust measured here is based on the information provided

by trustworthy sources. It is not clear how, in presence of inaccurate reports provided by other

agents, trust can be measured.
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3.2.6 A Personalized Approach

A personalized approach is presented in [47] where the reputation of an advisor is modeled by a

buyer agent based on the accuracy of its provided ratings for commonly rated sellers. In this model,

the reputation of an advisor is measured from the previous ratings that both the buyer and advisor

agents have given to the commonly rated sellers. Indeed, it is assumed that both advisor and buyer

agents have rated a group of sellers where each rating is binary. Then, the ratings given to each

seller are partitioned into time windows. If the rating provided by the advisor agent on a seller

agent at a given time window matches the one of the buyer, then it is considered as a positive rating

experience by the advisor. Otherwise, it is considered as a negative rating experience. Finally, based

on the ratio of the positive rating experiences to the total number of experiences the trustworthiness

of the advisor is measured. This constitutes the buyer’s private reputation of the advisor. In this

model, if a buyer agent does not have adequate experience with an advisor, in addition to the private

reputation, it considers the public reputation of the advisor. The public reputation of an advisor

represents the public’s opinion on that advisor. The trustworthiness of the advisor is measured by

combining the weighted private and public reputations where the weights of these reputations are

based on the degree of reliability of the private reputation.

This work also measures the buyer’s private reputation of a seller, based on the buyer’s own

experience with the seller. If the buyer’s experience with the seller is not adequate, it can rely

on the ratings provided by the advisor agents in which case the public reputation of the seller is

considered. Finally, the trustworthiness of the seller is measured by combining its private and public

reputations. This model considers the manipulation of information (unfair ratings). In addition, it

addresses the changes in an agent’s (seller or advisor) trustworthiness by giving each interaction a

time-related weight. However, it does not model the uncertainty in an agent’s behavior due to lack

of information. Moreover, in this model, each event is binary (either positive or negative) which is

more restrictive compared to multi-valued events.
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3.2.7 Travos

Teacy et al. present Travos [48], which considers both manipulation of information and uncertainty.

Travos measures the trust and reputation of the agents in the presence of inaccurate information

sources. Moreover, the result of each inter-agent interaction is binary (successful or unsuccessful),

which is based upon the underlying probability that an agent fulfills its obligations. The binary

domain of events, in turn, have facilitated the usage of beta probability density function to constitute

the probability of having a successful interaction with the target agent in the future. The expected

value of the beta distribution is considered as the trust of the target agent. Then, a confidence is

measured for this trust value such that it lies within an acceptable margin of error. If the confidence

value, which is measured in the direct experience, is low Travos seeks information from witness

agents. After receiving information from witness agents, Travos interacts with the target agent

and compares its observation with the received information from the witness agents. Thereupon,

it measures the probability that the report of a witness agent supports the true probability of the

target agent. If the reports of a witness are biased, Travos gives it less influence for future trust

measurement of a target agent.

While this model has a strong probabilistic approach and covers many issues, it is yet restricted

to binary domain of events where each interaction is either successful or unsuccessful. Our work

generalizes this aspect by considering a multi-valued domain. Moreover, we use possibility theory

which is a flexible and strong tool to address uncertainty and at the same time it is applicable to

multi-valued domains.

3.2.8 BLADE

BLADE [49] is a Bayesian Reputation model which addresses subjectivity and deception of the

advisor agents. The subjectivity considers the specific view of an advisor which may differ from the

buyer’s view. For instance, if a buyer evaluates the quality of certain product as high, the advisor’s

view about the product may be normal. Another example can be the delivery date of a product.
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In a buyer’s view a product delivered up to one day after the deadline can still be on time while

an advisor may consider it as a delay. Deception, on the other hand, arises from the advisor’s

intentional falsification of information which does not comply with its real opinion.

Although subjectivity and deception are different concepts, they are addressed together. In order

to address subjectivity and deception, BLADE uses a Bayesian Network (BN) to learn seller features

and the advisor evaluation functions. The Bayesian learning approach deals with deception and

subjectivity without resorting to heuristics or filtering untrustworthy advisors. In this approach, a

buyer interacts with a seller over a number of interactions and, meanwhile, receives information from

advisors about that seller. Using the acquired information, the buyer models the seller’s features

(e.g., time, condition of the goods). The buyer also models the advisor evaluation functions through

the information acquired from the advisor on a seller’s features. In addition, a dynamic Bayesian

network is proposed to adapt to the advisor and seller’s behavioral changes over time.

In BLADE, each feature of a seller can take a finite number of discrete values. For example,

the product quality feature can take values of highly-satisfactory, satisfactory, normal and poor. In

addition, in this model, a seller’s behavior is not necessarily deterministic and can change from one

interaction to another. Indeed, a seller’s behavior is drawn from a multinomial distribution. Conse-

quently, the uncertainty arising from variability is considered in BLADE. However, the uncertainty

due to ignorance is not modeled in BLADE. This is a shortcoming of probabilistic models which

cannot demonstrate the uncertainty arising from ignorance.

In this chapter, we reviewed trust models that address uncertainty and the ones that do not. We

provided a brief overview of each model and mentioned the shortcoming of each model compared

to the model that we are going to propose in this thesis. We consider, Travos and BLADE as

the closest models to our own. Travos is restricted to binary events while BLADE considers a

multi-valued ratings. Both approaches consider uncertainty and both employ probability theory

to model uncertainty. Their proposed uncertainty handles variability. However, the probabilistic

models have a shortcoming in addressing uncertainty driven from ignorance. In our proposed model,
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we use possibility theory since it is capable of addressing both types of uncertainty (ignorance and

variability).
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Chapter 4

Technical Tools

In this chapter, we describe the technical tools that we employ in our model. These tools have been

developed by other researchers and we use them in order to build our trust estimation model in a

possibilistic domain. On this purpose, we review the literature that provides these technical tools

and we further present a brief overview of each tool.

4.1 Fusion Rules

In possibility theory, fusion rules aggregate information from different sources. In other words, fu-

sion rules facilitate combining different observations made on an entity (for example observation of

n sensors monitoring a variable) when the information may be conflicting, imprecise and uncertain.

Fusion rules are represented with a function F : [0, 1]
n
→ [0, 1] in which the information taken from

n sources are aggregated to derive a single output. Both the inputs and output of this function are

within the interval [0, 1], which makes them suitable for addressing trust since trust is usually rep-

resented in the same interval. In our multi-agent platform the fusion rules are used to aggregate the

possibility distributions acquired from the agents in the set A. Each acquired possibility distribution

represents the trust distribution of the target agent ad as measured and reported by an agent a ∈ A.

Consequently, the fusion rules facilitate merging the information reported on the target agent ad in
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order to derive a unified distribution on ad. In this section, we elaborate on the fusion rules applied

in our model.

4.1.1 Classical Fusion Rules

Intersection and Union [50] are among the most widely used rules in possibility domain. These rules

are equivalent to the t-norm and t-conorm functions in fuzzy theory [51]. Moreover, they assume

the information is coming from sources of unknown dependence or non-interaction. In other words,

it is not clear whether the sources have exchanged information about the system under study before

reporting the information or not. The intersection or conjunctive rule is used when the sources are

considered reliable. The output of this fusion rule represents the information that all sources agree

upon. In the context of our trust model, let τ be a trust rating from the set T of all ratings and

Πi(τ) be the possibility of the trust rating τ received from source i (note that possibility is a function

Π : T → [0, 1] as defined in Section 2.5), then the intersection rule on possibility distributions received

from n sources is represented as:

Π⋂(τ) = min
i∈{1,...,n}

Πi(τ) ∀τ ∈ T. (6)

The intersection rule considers the minimum possibility value for each trust rating τ .

After applying the intersection rule, the subsequent possibility distribution should be normalized.

This is due to the fact that the resulting possibility distribution may not satisfy the following two

conditions, which should be met by each possibility distribution to be considered normalized:

• The possibility value of every trust rating τ ∈ T should fall into [0, 1].

• The possibility value of at least one trust rating in T should be equal to 1. In other words,

∃τ ∈ T : Π(τ) = 1

Let Π̃(τ), τ ∈ T represent a non-normalized possibility distribution. Either of the following

formulas [51] generates a normalized possibility distribution Π(τ):
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normalization 1: Π(τ) = Π̃(τ)/h, (7)

normalization 2: Π(τ) = Π̃(τ) + 1− h, (8)

where h = max
τ∈T

Π̃(τ). (9)

Normalization 1 is not defined in the case of absolute contradiction when the value of h is equal

to 0. The value of h measured in (9) indicates the degree of contradiction among the sources. If h

equals 1, the sources have agreement while if h equals 0, then the sources have absolute disagreement.

Union [50] or disjunctive rule is another fusion rule which is among the most applied ones. It

is utilized when there is a belief that some information sources are trustworthy, but it is not clear

which sources are trustworthy and which sources are not [52]. The union rule is represented as:

Π⋃(τ) = max
i∈{1,...,n}

Πi(τ) ∀τ ∈ T. (10)

Union rule considers the maximum possibility value for each trust rating τ . Unlike the intersec-

tion rule, the union rule reflects all of the information provided by all of the sources even if they

are contradictory. If only one source provides a piece of information that the other sources do not

agree upon, that piece is included in the possibility distribution resulting from the union rule. Con-

sequently, the final possibility distribution may converge to the uniform distribution, if each piece

of information is recommended by at least one agent. The closer the consequent distribution is to

the uniform distribution, the more ignorance exists on the target entity. This is due to the fact

that the uniform distribution contributes no information as all of the trust ratings in T have the

same possibility of 1. In the context of possibility distributions, a uniform distribution is termed

as “complete ignorance” [53]. The union rule does not require a normalization process, assuming

the distributions are normalized before applying the fusion rule. This is due to the fact that each

possibility distribution reported by source i, (1 ≤ i ≤ n) satisfies ∃τ ∈T: Π(τ) = 1. Therefore,
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this value is maintained in the subsequent distribution of the union rule which would maintain its

normalization.

The intersection and the union rules lead to two extreme points of a spectrum. In the former only

the information that all sources agree upon is maintained, while in the latter all pieces of information

are reflected. In order to take a midway approach, the mean of the data can be considered. The

mean rule [54] is constructed as follows:

Πµ(τ) = (1/n)
∑

i∈{1,...,n}

Πi(τ) ∀τ ∈ T. (11)

By applying the mean rule, the final possibility distribution is an average of the possibility

distributions provided by all of the n sources. Consequently, all of the sources have the same influence

on the result of the mean fusion rule. After applying the mean rule, normalization is needed. This

is due to the fact that the normalization of the possibility distributions of the n sources are not

necessarily maintained in the derived possibility distribution after applying the mean rule.

Representation of the Fusion Rules in Our Multi-Agent Platform: In our model, the

sources of information are the agents of a set A and the information received from each agent is

a possibility distribution on a target agent’s trust. Assume an agent, say as, receives a possibility

distribution from each agent a ∈ A and let Πa→ad(τ), ∀τ ∈ T be the possibility distribution reported

by agent a indicating its trust in a target agent, say ad. Then, the intersection fusion rule applied

on these possibility distributions is represented as:

intersection [50] : Π
⋂

as→ad(τ) = min
a∈A

Πa→ad(τ) ∀τ ∈ T (12)

where Π
⋂

as→ad(τ), ∀τ ∈ T represents the possibility distribution of agent as’s trust in agent ad as

measured by the intersection rule.

Similarly, union and mean rules can be measured in our model. Having the same set of distri-

butions (Πa→ad(τ), ∀τ ∈ T, a ∈ A), received from the agents in A, the union and mean rules are

33



represented respectively as follows:

union [50] : Π
⋃

as→ad(τ) = max
a∈A

Πa→ad(τ) ∀τ ∈ T. (13)

mean [54] : Πµ
as→ad(τ) = (1/|A|)

∑

a∈A

Πa→ad(τ) ∀τ ∈ T. (14)

In (13), Π
⋃

as→ad(τ), ∀τ ∈ T represents the trust distribution of agent as in ad as measured by the

union rule. Similarly, Πµ
as→ad(τ), ∀τ ∈ T is the trust distribution of agent as in ad derived from the

mean rule which is represented in (14).

4.1.2 Fusion Rules Involving Trust of the Sources

In Section 4.1.1, we reviewed three commonly employed fusion rules, which do not take into account

the trust of the information sources. However, in realistic settings, entities are distinguished based

on their degree of trustworthiness. Thereupon, the information provided by these sources should be

taken into consideration based on their honesty and accuracy. Through such consideration of the

degree of trustworthiness of the information sources (which in our model corresponds to the advisor

agents), the subsequent possibility distribution measured for the target agent ad would be enhanced.

In this approach, the influence of each information source depends on its degree of trustworthiness.

In our multi-agent platform, the information sources are the advisor agents in the set A. Indeed,

each advisor agent a ∈ A reports a possibility distribution about the trust of the target agent ad.

The fusion rules introduced in this section facilitate aggregating the possibility distributions acquired

from the agents in A with respect to the degree of trustworthiness of the advisor agents. The derived

possibility distribution from the fusion rules, represents the trust distribution of the target agent ad.

In this section, we review the most commonly used fusion rules involving the trust of the information

sources.

In our model, agent as, receives a possibility distribution Πa→ad(τ), ∀τ ∈ T from each agent a ∈ A

representing the trust distribution of agent a in the target agent ad. Moreover, let τas→a ∈ [0, 1]

denote a scalar value of agent as’s trust in agent a. By scalar, we mean that τas→a can only hold a
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single value but not a set of values (e.g., a distribution). In this section, we review the fusion rules

that consider the trust of agent as in each agent a ∈ A. The subsequent possibility distribution

denoted by ΠX
as→ad(τ), ∀τ ∈ T (X ∈ {T, Y,DP})1, which is derived from a fusion rule, represents

as’s trust in ad.

We explore three fusion rules, among the most commonly used. The first one is the trade-off

rule [54], which builds a weighted mean of the possibility distributions:

trade-off [54] : ΠT
as→ad(τ) =

∑

a∈A

ωa ×Πa→ad(τ) ∀τ ∈ T (15)

where ωa = τas→a/
∑

a∈A

τas→a

ΠT
as→ad(τ), ∀τ ∈ T indicates the possibility distribution of as’s trust in ad measured through the

trade-off rule. Note that the trade-off rule considers all of the possibility distributions reported by

the agents in A. However, the degree of influence of the possibility distribution of Πa→ad(τ), ∀τ ∈ T

on final distribution of ΠT
as→ad(τ), ∀τ ∈ T is weighted by the normalized trust of agent as in each

agent a , which is ωa.

The next two fusion rules belong to a family of rules which first modify the possibility distribution

of Πa→ad(τ), ∀τ ∈ T based on the trust value associated with it, τas→a, and then apply the intersec-

tion rule on them. Therein, if τas→a = 1, Πa→ad(τ), ∀τ ∈ T remains unchanged, meaning that agent

as’s full trust in a results in total acceptance of the possibility distribution Πa→ad(τ), ∀τ ∈ T reported

by a. The closer τas→a gets to zero, the less trustworthy is agent a and therefore the less reliable

is its report. When the trust in agent a decreases, its reported distribution of Πa→ad(τ), ∀τ ∈ T

moves towards the uniform distribution. In the context of possibility distributions, a uniform dis-

tribution provides no information as all trust values in domain T are considered equally possible. It

is acknowledged as “complete ignorance” [53]. Consequently, when τas→a decreases, the possibility

1T, Y and DP respectively stand for Trade-off, Yager and Dubois-Prade fusion rules which are introduced later in
this section.
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distribution Πa→ad(τ), ∀τ ∈ T provided by an agent a moves more towards a uniform distribution,

and thereupon its information level is decreased. Consequently, its reported information gets more

neglected. In this context, we selected two fusion rules which we refer to as Trust Modified (TM)

rules.

Yager [55]: ΠY
as→ad(τ) = min

a∈A
[τas→a ×Πa→ad + 1− τas→a] , ∀τ ∈ T. (16)

Dubois and Prade [56]: ΠDP
as→ad(τ) = min

a∈A
[max(Πa→ad , 1− τas→a)] , ∀τ ∈ T. (17)

In Yager’s fusion rule, the possibility of each trust value of τ moves towards a uniform distribution

as much as (1−τas→a), which is the extent to which the agent a is not trusted. In Dubois and Prade’s

fusion rule, when an agent’s trust declines, the max operator would more likely select 1− τas→a and,

hence, the information in Πa→ad(τ), ∀τ ∈ T reported by a is ignored. The higher the value of

1− τas→a, the more the distribution of Πa→ad(τ), ∀τ ∈ T converges towards a uniform one.

The possibility distribution reported by each agent a ∈ A is first transformed by using a TM rule.

Then, an intersection of these possibility distributions is taken. In (16) and (17), the intersection

corresponds to the min operator.

Let Πtm
a∈ad(τ), ∀τ ∈ T represent either ΠDP

as→ad(τ) or ΠY
as→ad(τ), which indicates the modified

distribution of agent a’s report by virtue of a TM rule. The possibility distribution Πtm
as→ad(τ), ∀τ ∈ T

is then normalized to represent the possibility distribution of agent as’s trust in ad. As mentioned

above in (16) and (17), the intersection is represented by the min operator. However, in general,

in this family of fusion rules, the reported possibility distributions of agents in the set A are first

modified. The modification keeps the reported distribution of a trustworthy agent intact and makes

the reported distribution of a complete distrusted agent converge to a uniform distribution. Then,

an intersection of the modified distributions is considered. Since the reported distributions of more

trustworthy agents are less modified, they have a higher degree of influence on the consequent
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possibility distribution derived from the intersection process.

We selected the above fusion rules based on their common usage in the literature and our as-

sumption of unknown dependence of the sources meaning that it is not known whether the sources

have exchanged information or not. We considered both extreme fusion rules (e.g., union and in-

tersection) and moderate fusion rule (e.g., the mean rule). A description of the suitability criteria

of some of the fusion rules is presented in [52]. The selection of more specific fusion rules for our

model will be accomplished in future work.

4.2 Probability to Possibility Transformation

In this section, we present the transformation procedure of a probability distribution to a possibility

distribution. This is of interest in our model when we transform the underlying (true) probability

distribution of a target agent’s trust to a possibility distribution in order to compare it with the

estimated possibility distribution of the target agent’s trust. The estimated possibility distribution

of the target agent ad is the distribution measured through the information acquired from the advisor

agents. This is discussed in more details in Section 6.1.2. We use the transformation rules of Dubois

et al. in [57, 58]. We provide a brief review of the transformations rules of [57, 58] based on the

descriptions presented in [59]. In this section, we first elaborate the ordering relations and then

discuss the transformation rules.

4.2.1 Ordering Relations

A binary relation on set U is a subset of the Cartesian product U2. Let u, v and w be elements of

set U where uRv indicates that u is in relation with v. A relation R is:

• transitive if ∀(u, v, w) ∈ U3, uRv and vRw ⇒ uRw;

• antisymmetric if ∀(u, v) ∈ U2, uRv and vRu⇒ u = v;

• irreflexive if ∀(u, v) ∈ U2, uRv ⇒ u 6= v;

• complete if ∀(u, v) ∈ U2, u 6= v ⇒ uRv or vRu.
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An antisymmetric and transitive relation is considered a partial order relation. An irreflexive

partial order is said to be strict. A transitive, antisymmetric and complete relation is a linear order

relation. An irreflexive linear order relation is said to be a strict linear order relation. A linear

relation ℓ is compatible with a partial ordered relation ρ if and only if ρ ⊆ ℓ. In this case, ℓ is noted

as a linear extension of ρ.

4.2.2 Dubois and Prade’s Transformation

Consider a discrete domain Ω = {ω1, ω2, . . . , ωk} containing k elements where P denotes the unknown

probability distribution of a random variable X on the set Ω in which pi = P (ωi).

Zadeh [35] first mentioned the relation between probability and possibility by noting that what

is probable should be possible. Later, Dubios and Prade [34, 60] presented this statement in the

following form:

P (A) ≤ π(A) ∀A ⊆ Ω (18)

where P (A) and π(A) are the probability and possibility of a subset A in the domain Ω. Therefore,

π dominates P . Dubois and Prade [57,58] added the following strong order preservation constraint:

pi < pj ⇔ πi < πj ∀i, j ∈ {1, . . . , k}. (19)

where pi = P (ωi) and πi = π(ωi) are respectively the probability and possibility of element ωi ∈ Ω.

We now look for the most specific possibility distribution satisfying constraints (18) and (19). Note

that the possibility distribution of π is more specific than π′ having satisfied:

π(ωi) ≤ π′(ωi) ∀i ∈ {1, . . . , k}. (20)

Having pi 6= pj , ∀i 6= j, let ℓ be a strict linear order on Ω = {ω1, ω2, . . . , ωk} such that:
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ωi <ℓ ωj ⇔ pi < pj . (21)

This means that if ωi and ωj are ordered by ℓ, then the corresponding probability of P (ωi) is

smaller than the one of P (ωj). Let σ be a permutation on the indices {1, . . . , k} to satisfy the strict

linear order ℓ such that pσ(1) < pσ(2) < · · · < pσ(k). It satisfies the following:

ωσ(i) <ℓ ωσ(j) ⇔ pσ(i) < pσ(j). (22)

Example 1. Assume the elements of set Ω have the following probability values:

p1 = 0.25, p2 = 0.3, p3 = 0.35, and p4 = 0.1. Here, we have ω4 <ℓ ω1 <ℓ ω2 <ℓ ω3 which gives

p4 < p1 < p2 < p3. By applying the permutation σ on the indices of {1, 2, 3, 4}, the values of

σ(1) = 4, σ(2) = 1, σ(3) = 2, σ(4) = 3 are derived. In this case, ωσ(1) <ℓ ωσ(2) <ℓ ωσ(3) <ℓ ωσ(4)

which indicates pσ(1) < pσ(2) < pσ(3) < pσ(4).

The permutation has a function of σ(x) = y, x, y ∈ {1, . . . , k} where ωσ(x) is the x’th element in

the ordered list ℓ and has an index y in the set of Ω. In example 1, σ(2) = 1 means that the second

element in ℓ has index 1 in Ω. In order to know the ranking of an element ωi in the ordered list ℓ,

we need to get the inverse function σ. The permutation function of σ is bijective and the inverse

of permutation function σ−1(y) = x gives the rank of each ωy ∈ Ω in the ascending ordered list ℓ

which is x. In other words, element with index y in the unordered set of {p1, p2, . . . , py, . . . , pk} has

a ranking of x in the ascending ordered set of {pσ(1), pσ(2), . . . , pσ(x), . . . , pσ(k)}.

Example 2. Assuming the elements of Ω have the probability values of p1 = 0.25, p2 = 0.3, p3 =

0.4, p4 = 0.05, p2 has rank 3 in the ordered list of pσ(1) = 0.05, pσ(2) = 0.25, pσ(3) = 0.3, pσ(4) = 0.4

where we have σ−1(1) = 2, σ−1(2) = 3, σ−1(3) = 4, σ−1(4) = 1.

Considering the inverse permutation σ−1, the most specific possibility distribution satisfying

constraints (18) and (19) can be constructed. Thereupon, Dubois and Prade’s transformation of
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probability to possibility is represented as follows:

πi =
∑

{j|σ−1(j)≤σ−1(i)}

pj . (23)

where σ−1(j) ≤ σ−1(i) means that element ωj ∈ Ω is ranked less than ωi in the ascending ordered

set of (pσ(1), pσ(2), . . . , pσ(k)) and therefore the probability of P (ωj) is smaller than P (ωi).

Example 3. Assume the elements of set Ω have the probabilities provided in Example 1. Applying

(23) yields the following possibility values:

π1 = p1 + p4 = 0.25 + 0.1 = 0.35,

π2 = p2 + p1 + p4 = 0.3 + 0.25 + 0.1 = 0.65,

π3 = p3 + p2 + p1 + p4 = 0.35 + 0.3 + 0.25 + 0.1 = 1,

π4 = p4 = 0.1.

Equation (23) can be used only when all probability values in P are pairwise different are identi-

cal). If at least two probabilities in P are the same, then there is no strict linear order on Ω. Instead,

there is a partial order ρ on Ω. This partial order can be represented by a set of compatible linear

orders Λ(ρ) = {ℓl, l = 1, . . . , L}. Each linear order ℓl of Λ(ρ) can be associated with a permutation

σl on Ω such that:

ωσl(i) <ℓl ωσl(j) ⇔ pσl(i) ≤ pσl(j). (24)

In this case, the most specific possibility distribution on the probability set of {p1, p2, . . . , pk} is

obtained by taking the maximum of all possible permutations in Λ(ρ):

πi = max
l=1,...,L

∑

{j|σ−1

l
(j)≤σ−1

l
(i)}

pj . (25)

Example 4. Assume the probabilities of set P are: p1 = 0.3, p2 = 0.3, p3 = 0.35, and p4 = 0.05.

Then, there are two possible permutations: σ1(1) = 4, σ1(2) = 1, σ1(3) = 2, σ1(4) = 3 and
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σ2(1) = 4, σ2(2) = 2, σ2(3) = 1, σ2(4) = 3. In permutation σ1, we have σ−1
1 (1) = 2, σ−1

1 (2) =

3, σ−1
1 (3) = 4, σ−1

1 (4) = 1. In permutation σ2, we have σ
−1
1 (1) = 3, σ−1

1 (2) = 2, σ−1
1 (3) = 4, σ−1

1 (4) =

1. Applying (25) yields the following possibility values:

π1 = max(p1 + p4, p1 + p2 + p4) = max(0.35, 0.65) = 0.65,

π2 = max(p1 + p2 + p4, p2 + p4) = max(0.65, 0.35) = 0.65,

π3 = p4 + p1 + p2 + p3 = 0.05 + 0.3 + 0.3 + 0.35 = 1,

π4 = p4 = 0.05.

In the above example, p1 = p2 resulted in π1 = π2 which should be satisfied in order to have

strong order preservation.

4.3 Inferring a Possibility Distribution from Empirical Data

In this section, we provide a brief overview of the research accomplished in [59] which measures

a possibility distribution out of empirical data. This measurement is used in the thesis, where a

possibility distribution is constructed out of the interactions made with an agent in order to model

the agent’s possibility distribution of trust. This measurement is used for every pair of connected

agents that have made direct interactions. Indeed, for every pair of connected agents, the trustor

agent measures the possibility distribution of the trustee agent out of the empirical interactions

it has made with the trustee agent. The measured possibility distribution represents the trust

distribution of the trustee agent. The model described here is not the only model for measuring a

possibility distribution. When there are very few measurements (which in our model is the number

of interactions), the model presented in [61] can be used. However, the model presented in [59] can

be used when the number of interaction is not necessarily few.

Suppose that a total of N samples over the space of Ω = {ω1, ω2, . . . , ωk} is generated ac-

cording to an underlying probability distribution P (in which pi = P (ωi)) where the number of
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observation of the elements in the set Ω equals to n = (n1, n2, . . . , nk). The classical approach

of measuring a probability distribution out of the observations of vector n is to get the frequency

vector f = (f1, f2, . . . , fk) in which fi = ni/N and then apply the Dubois and Prade transformation

as given by equation (25). However, this approach does not consider the uncertainty driven from

the sampling procedure. In order to consider such uncertainty, confidence interval on each element

ωi ∈ {ω1, ω2, . . . , ωk} should be measured instead of its frequency.

A confidence interval on a parameter at a given level α contains the true value with a probability

of 1 − α, where α ∈ [0, 1] is a small nonnegative value close to zero. In the approach proposed

in [59], first the bounds (upper and lower bounds) of pi, i ∈ {1, . . . , k} are estimated (by using

the confidence intervals on multinomial proportions), and then the possibility values are measured

from these intervals. The procedure satisfies that in at least 100(1 − α)% of the cases the derived

possibility distribution dominates the true probability. In other words:

P (π(A) ≥ P (A) ∀A ⊆ Ω) ≥ 1− α (26)

where π(A) is the measured possibility value from the empirical data and P (A) is the unknown but

constant probability value of event A.

4.3.1 Measuring Confidence Intervals for Multinomial Proportions

Simultaneous confidence intervals are measured for multinomial proportions with a joint confidence

level of 1−α. The goal is to find a confidence region Cn in the parameter space {p = (p1, p2, . . . , pk) ∈

[0; 1]K |
∑K

i=1 pi = 1} which is the Cartesian product of K intervals [p−1 , p
+
1 ] × · · · × [p−K , p+K ] such

that P (p ∈ Cn) ≥ 1− α. Note that p−i and p+i respectively refer to the lower and upper bounds of

the interval that the probability value pi can fall into, where i ∈ {1, . . . , k}.

The bounds of the confidence intervals are measured based on [62]. Let us consider:

A = χ2(1− α/K, 1) +N (27)
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where χ2(1− α/K, 1) is the quantile of order 1− α/K of chi-square distribution with one degree of

freedom and N =
∑K

i=1 ni is the total number of observations over all k elements in Ω. The bounds

of the simultaneous confidence intervals are then measured as:

[
p−i , p

+
i

]
=

[
Bi −∆

1/2
i

2A
,
Bi +∆

1/2
i

2A

]
, ∀i ∈ {1, . . . , k} (28)

where:

Bi = χ2(1− α/K, 1) + 2ni; ∆i = B2
i − 4ACi; Ci =

n2
i

N
. (29)

Example 5. Assume the true (underlying) probability over set Ω = {ω1, ω2, ω3, ω4} is p =

(0.2, 0.35, 0.4, 0.05). Suppose 100 data sample is randomly generated without knowing the true

probability distribution in this distribution. The randomly generated values have the frequencies of

18, 45, 35 and 2 for ω1 to ω4, respectively. Having α = 0.1, the probability bounds measured for

sample data is demonstrated in Table 1.

i 1 2 3 4

p−i 0.10 0.34 0.25 0

p+i 0.28 0.56 0.46 0.08

Table 1: Confidence Intervals in Example 5

4.3.2 Generating a Possibility Distribution from Confidence Intervals

After measuring the bounds of the confidence intervals, the problem of measuring a possibility distri-

bution from empirical data can be reformulated as finding the most specific possibility distribution

that dominates every probability distribution defined by pi ∈
[
p−i , p

+
i

]
, ∀i ∈ {1, . . . , k}. The

most specific possibility distribution for the above measured intervals can be measured through the

probability to possibility transformation described in Section 4.2.
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Let ρ indicate the partial order induced by the intervals [pi] =
[
p−i , p

+
i

]
such that

ωi <ρ ωj ⇔ p+i < p−j . (30)

where there are a total of L compatible linear extensions of Λ(ρ) = {ℓl, l = 1, . . . , L}. Based on the

descriptions of Section 4.2, each linear extension corresponds to one permutation. Therefore, there

are a total of L permutations of {σl, l = 1, . . . , L}.

For each possible permutation σl associated with each linear order in Λ(ρ), and each element ωi,

the following linear program (LP) should be solved:

πσl

i = max
{j|σ−1

l
(j)≤σ−1

l
(i)}

pj . (31)

under the following constraints:

K∑

i=1

pk = 1, (32)

p−k ≤ pk ≤ p+k ∀k ∈ {1, . . . ,K}, (33)

pσl(1) ≤ pσl(2) ≤ · · · ≤ pσl(K). (34)

After considering all L permutations of {σl, l = 1, . . . , L} and solving the above LP for each

class ωi in each permutation of σl, the distribution dominating all the distributions of πσl

i should be

taken:

πi = max
l=1,L

πσl

i , ∀i ∈ {1, . . . ,K}. (35)

If the confidence intervals used here are measured based on equation (28) with confidence interval

of 1 − α, then the formula of (35) derives the most specific possibility distribution that dominates

all of the compatible probability measured. Therefore, it satisfies property (26).

The above procedure explores all linear extensions of Λ(ρ) and solves each linear program which

becomes computationally complex when K grows (say K ≥ 10). The authors in [59] provide a more
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simplified computational procedure to derive the possibility values measured in (35) while reducing

its complexity. On this purpose, the following steps are taken:

• first, all linear extensions are grouped in separate subsets;

• then, the best solution in each subset is found;

• finally, it is shown the exploration of each solution in each subset in not necessary.

The possibility values derived in (35) are accurate. These steps just reduce the complexity of

the values measured in (35). More elaboration on these steps are provided in [59].

In this chapter, we provided a brief overview of the technical tools developed by other researchers.

We use these tools in our trust model (which is introduced in the next chapter) in order to construct

a trust estimation model for our platform. The main purpose of using the technical tools described

in this chapter is to develop a possibilistic trust model in the context that we have already intro-

duced. The context includes: (1) addressing uncertainty arisen from both variability and ignorance;

(2) considering a platform where agents are self-interested and manipulate the information before

reporting it to other agents; and (3) The trust domain is multi-valued. In the next chapter, we

elaborate our model.
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Chapter 5

Under Uncertainty Trust

Estimation

In social networks, estimation of the degree of trustworthiness of a target agent through the infor-

mation acquired from a group of advisor agents, who had direct interactions with the target agent, is

challenging. The estimation gets more difficult when, in addition, there is some uncertainty in both

advisor and target agents’ trust. In this chapter, we estimate the trust of the target agent when: (1)

there is uncertainty arisen from both variability and ignorance in the degree of trustworthiness of

advisor and target agents; (2) the advisor agents are self-interested and provide misleading accounts

of their past experiences with the target agents; and (3) the outcome of each interaction between

the agents that have direct interaction is multi-valued.

In this thesis, we study a model where a set A = {a1, a2, . . . , an} of n agents 1 (e.g., customers)

have made a given number of interactions with a target agent (e.g., service provider), say agent ad. A

new agent, say agent as, gets information from A about the agent ad. We consider the agents of the

set A as the advisor agents of as. ad is referred to as the target agent whose degree of trustworthiness

is evaluated by agent as. Estimating the degree of trustworthiness of the target agent ad helps as

1In our trust model, we assume that the set of A is nonzero.
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decide whether or not to interact with ad. Figure 2 illustrates the network of agents that we study

in this thesis. For any pair of connected agents, an agent at the tail of an arrow is a trustor, i.e.,

trusts the other agent, and the agent at the head of the arrow is a trustee whom is trusted.

Figure 2: Network of Agents

We consider two different problems in this thesis:

• In the first problem, we assume that agent ad and the agents in set A are unknown to as.

Agent as receives information from each agent a ∈ A on the degree of trustworthiness of ad.

In this problem, as cannot distinguish the degree of trustworthiness of each advisor agent

and therefore the information received from each agent a is subject to an unknown degree of

reliability. By using the acquired information from the agents in A, as estimates the degree of

trustworthiness of the target agent ad. We call the approach used to address this problem the

unknown agents approach.

• In the second problem, we assume that as relatively knows the agents of set A and has

accomplished a number of interactions with them. Therein, as can distinguish the agents

in A based on their degree of trustworthiness and can differentiate the information received

from them based on their trustworthiness. Finally, as predicts the trust distribution of ad

considering both the information received from the agents in A and their trustworthiness. We

propose two approaches for this problem. In the first approach, we merge two successive sets of

possibility distributions, namely the possibility distributions of agent as’s trust in the advisor

agents and the possibility distributions of the advisor agents’ trust in agent ad. We call this

approach the successive merging approach. In the second approach, a single value representing

the trust of agent as in each advisor is measured and then the fusion rules are used to merged
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the possibility distributions reported by the advisor agents on the trust of the agent ad. We

name this approach the single trust approach. These two approaches are described in more

details later in this chapter. Finally, in this problem, the degree of certainty of as on the

information acquired form set A of agents is also measured.

Figure 2 shows the network of agents that we study in both problems. The link between the

agents of set A and agent ad demonstrates the flow of interactions among every pair of connected

agents (a ∈ A, ad). However, the arrows connecting as to each agent a ∈ A have different meanings

in the above problems. In the first one, they are considered as transfer of information from the

trustee agent a to the trustor agent as. The transferred information is the trust distribution of the

target agent ad as reported by the agent a. In the second problem, on the other hand, each link

indicates that interactions have been carried out among every pair of trustor and trustee agents

(a ∈ A, ad), while at the same time it implies the transfer of information between the pair, the same

as in the first problem.

In this chapter, in order to alleviate the notations, we simplify the notation of a possibility

distribution ΠX(τ), ∀τ ∈ T to ΠX where (X ∈ {as → a, a→ ad, as → ad}) and we indicate the

possibility value of a trust rating τ by ΠX(τ). Note that in this chapter whatever we borrow from

the chapter of technical tools (chapter 4) is developed by other researchers and we reuse them in

our trust model. The rest of the materials in this chapter are contributions of this thesis.

The rest of this chapter is structured as follows. First, we detail the platform of our multi-agent

system in Section 5.1. Then, in Section 5.2, we propose our model for the trust estimation of the

target agent in both scenarios described above, which are described in Sections 5.2.1 and 5.2.2,

respectively. Finally, in Section 5.3, we explain our prosed model for measuring certainty over the

information acquired from the set A of agents.
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5.1 Multi-Agent Platform

In the rest of this section, we present the components that build the multi-agent environment and the

motivation behind each choice. We first discuss the set of trust values (Section 5.1.1). Then, we talk

about the agent’s internal trust distribution (Section 5.1.2) and the interactions among the agents

(Section 5.1.3). Later, we describe the formation of the possibility distribution of an agent’s trust

(Section 5.1.4) out of its empirical interactions and the potential algorithms for the manipulation

of information by the agents in A before reporting it to agent as (Section 5.1.5). Finally, the game

scenario in this thesis is discussed (Section 5.1.6).

5.1.1 Trust Values

Service providers ask customers to provide their feedback on the received services commonly in form

of a rating selected from a multi-valued set. A multi-valued set is a set which has more than one

element yet the number of elements are finite. The selected rating indicates a customer’s degree of

satisfaction or, in other words, its degree of trust in the provider’s service. Since the majority of user

surveys are carried out through multi-valued sets (e.g., e-bay, amazon, IMDB), in which users can

select a rating out of a set, we use a multi-valued set for our trust domain. We define a multi-valued

set of trust ratings denoted by T , with τ being the lowest, τ being the highest and |T | representing

the number of trust ratings1. All trust ratings are within [0, 1] and they can take any value in this

range. However, if the trust ratings are distributed in equal intervals, the ith trust rating will be

equal to: (i− 1)/(|T | − 1) for i = 1, 2, . . . , |T |. For example, if |T | = 5, then the set of trust ratings

is {0, 0.25, 0.5, 0.75, 1}.

5.1.2 Internal Probability Distribution of an Agent’s Trust

In our multi-agent platform, each agent is associated with an internal probability distribution of

trust, which is only known to the agent itself. This allows modeling a rather specific and yet

1In our trust model, we assume that the set of T is nonzero.
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not deterministic degree of trustworthiness in that agent which is subject to some uncertainty. The

uncertainty is due to the variability in the degree of trustworthiness of the agent which is a consequent

of having nonzero values for each element in the probability distribution. In this distribution, each

trust rating τ is given a probability of occurrence. This means that at each iteration, the degree

of trustworthiness of the agent may be driven from any nonzero trust rating value in the domain.

However, the chance of occurrence of each trust rating is proportional to it’s probability. In order

to model a distribution, given its minimum, maximum, peak, degree of skewness and peakness, we

use a form of beta distribution called modified Pert distribution [63]. It can be replaced by any

distribution that provides the above mentioned parameters. Well known distributions, e.g., normal

distribution, are not employed as they do not allow positive or negative skewness of the distribution.

In a modified Pert distribution, the peak of the distribution, which is denoted by τpeaka , has the

highest probability of occurrence. This means that while the predominant behavior of the agent is

driven by τpeaka and the trust ratings next to it, there is a small probability that the agent does not

follow its dominant behavior. Figure 3 demonstrates an example of the internal trust distribution

of an agent. The closer the peak of the internal distribution to τ , the more trustworthy the agent is

and vice-versa.

Figure 3: Internal Probability Distribution of Agent a
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5.1.3 Interaction between Agents

When an agent rates another agent’s degree of trustworthiness, its rating depends not only on that

agent’s degree of trustworthiness but also on the rater’s personal point of view. In this thesis, we

just model an agent’s degree of trustworthiness. In each interaction, a trustor agent, say α, requests

a service from a trustee agent, say β. Agent β should provide a service in correspondence with its

degree of trustworthiness, which is represented by its internal trust distribution. On this purpose,

a random value from the domain of T of agent β is generated by using its internal probability

distribution of trust. The peak of the internal trust distribution, τpeaka , has the highest probability

of selection while other trust ratings in T have a relatively smaller probability to be chosen. This

will produce a mostly specific and yet not deterministic value. Agent β reports the generated value

to α which α considers as the degree of trustworthiness of β in that interaction.1

5.1.4 Building Possibility Distribution of Trust

Upon completion of a number of interactions between a trustor agent, α, and a trustee agent, β,

agent α can model the internal trust distribution of β, by usage of the values received from β

throughout their interactions. We use possibility distributions in order to model α’s trust with

respect to the uncertainty associated with: (1) the variability in the degree of trustworthiness of β;

and (2) the lack of adequate information on agent β’s trust (ignorance) due to insufficient number of

interactions among α and β. As described in Chapter 2 (Section 2.5), possibility distributions can

represent the degree of possibility of each element in the domain, which in our model corresponds

to trust rating τ ∈ T . A possibility distribution is defined as: Π : T → [0, 1] with max
τ∈T

Π(τ) = 1.

The measured possibility distribution represents the trust distribution of agent β as perceived and

measured by agent α.

We apply the approach described in Section 4.3 to measure a possibility distribution from empir-

ical data given the desired confidence level. In this approach, first simultaneous confidence intervals

1In our trust model, if two agents are assumed to have interactions, their number of interactions is nonzero.
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for all trust ratings in the domain are measured by usage of the empirical data (which in our model

are derived from interaction among agents). Then, the possibility of each trust rating τ considering

the confidence intervals of all trust ratings in T is found.

5.1.5 Manipulation of the Possibility Distributions

An agent, say as, needs to acquire information about the degree of trustworthiness of agent ad

unknown to him. On this purpose, it acquires information from its advisors like a who have already

interacted with ad. Each agent a ∈ A is not necessarily truthful for reasons of self-interest, therefore

it may manipulate its possibility distribution of trust in ad before reporting it to as. The degree

of manipulation of information by an advisor a is based on its internal probability distribution of

trust. More specifically, if the internal trust distributions of agents a and a′ indicate that a’s degree

of trustworthiness is lower than a′, then the reported possibility distribution of a is more prone to

error than a′. Algorithms I and II are examples of the manipulation algorithms.

Manipulation Algorithm I

1: for τ ∈ T do

2: τ ′ ← random trust rating value from T , according to agent a ’s internal trust distribution

3: errorτ = 1− τ ′

4: Πa→ad(τ) = Π̂a→ad(τ) + errorτ

5: end for

Π̂a→ad is the possibility distribution of a’s trust in ad measured through their interactions and

Πa→ad is the manipulated possibility distributions.
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In algorithm I, for each trust rating τ ∈ T a random trust value, τ ′, is generated following the

internal trust distribution of a. For highly trustworthy agents, the randomly generated value τ ′ is

close to τ and the subsequent error (errorτ ) is close to 0. Therefore, the manipulation of Π̂a→ad(τ)

is insignificant. On the other hand, for highly untrustworthy agents, the value of τ ′ is close to τ and

consequently the derived error, errorτ , is close to 1. In such a case, the possibility value Π̂a→ad(τ)

is considerably modified causing noticeable change in the original values.

After measuring the distribution Πa→ad , it is normalized and then reported to as. We use the

normalization described in Chapter 4, Section 4.1.1.

Manipulation Algorithm II

1: for τ ∈ T do

2: τ ′ ← random trust rating value from T , according to agent a ’s internal trust distribution

3: max errorτ = 1− τ ′

4: errorτ = random value in [0,max errorτ ]

5: Πa→ad(τ) = Π̂a→ad(τ) + errorτ

6: end for

As for Algorithm I, in Algorithm II the distribution of Πa→ad is normalized before being reported

to as. In Algorithm I, the trust rating τpeaka and the trust values next to it have a high probability

of being selected. Therefore, the error added to Π̂a→ad may be neglected when the distribution

is normalized. However, in Algorithm II, an additional random selection value is added which is

selected uniformly from [0,max errorτ ] to curb the effect of normalization. More specifically, if

an agent is highly untrustworthy, the random trust value τ ′ is close to τ and thereupon the error
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value max errorτ is close to 1. This causes the uniformly generated value from [0,max errorτ ] to

be considerably random and unpredictable, which makes the derived possibility distribution highly

erroneous after normalization. On the other hand, if an agent is highly trustworthy, the error value of

max errorτ is close to τ and the random value generated from [0,max errorτ ] would be even smaller,

making the error of the final possibility distribution insignificant. While incorporating some random

processes, both algorithms manipulate the possibility distribution based on the agent’s degree of

trustworthiness causing the scale of manipulation of information by more trustworthy agents less

than untrustworthy agents and vice-versa. However, the second algorithm acts more randomly. We

design these algorithms to observe the extent of dependency of the derived results with respect to

the manipulation algorithms employed. In other words, we want to figure out the influence of the

manipulation algorithms on the accuracy of the target agent’s estimated trust.

5.1.6 Game Scenario

In this thesis, we study a model arising in social networks where each agent a in a set A =

{a1, a2, . . . , an} of n agents (agent as’s advisors) makes a number of interactions with the target

agent ad. In each interaction between an agent a ∈ A and the target agent ad, a trust rating τ ∈ T

is given to ad (as explained in Section 5.1.1). A number of interactions is carried out in the same

style between every pair of connected agents (a ∈ A, ad) (as explained in Section 5.1.3). When a

number of interactions is completed between these pairs of agents, by usage of the empirical data

derived throughout their interactions, a possibility distribution representing the trust of each agent

a ∈ A in ad is measured (as described in Section 5.1.4). Each agent in A, in turn, measures an

independent possibility distribution of trust through its own interactions with ad. The measured

possibility distribution indicates the trust of a in ad. When as wants to evaluate the level of trust-

worthiness of ad, (which is unknown to a), it acquires information from its advisors, the agents in

A, on the possibility distributions of ad’s trust. Agents in A are not necessarily truthful. Therefore,

through usage of the manipulation algorithms (Section 5.1.5), each agent a ∈ A manipulates its
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measured possibility distributions Π̂a→ad(τ), (∀a ∈ A) according to its degree of trustworthiness

and reports the manipulated distributions to as. Agent as uses the reported distributions Πa→ad(τ)

by each agent a ∈ A in order to estimate the possibility distribution of ad’s trust.

We study two problems in this thesis:

• In the first problem, the agents of the set A are unknown to as and their degree of trustwor-

thiness is unknown to as. In this case, as cannot distinguish the reliability of the information

received from each agent in A. This problem is discussed in Section 5.2.1.

• In the second problem, as makes a number of interactions with each agent a ∈ A. The

interactions carried out here are the same as the interactions between every pair (a ∈ A, ad)

as described above. After completing several interactions between every pair (as, a ∈ A), a

possibility distribution representing trust of as in each agent a ∈ A is measured out of the

empirical data acquired in their interactions. The instructions described in Section 5.1.4 are

employed for inferring such possibility distributions (the same as the possibility distributions

built by the agents of A on ad’s trust). The derived possibility distribution represents trust

of as in a ∈ A. In this problem, as measures the trust distribution of ad out of (1) the

trust distributions reported by the agents of the set A on ad’s trust, and (2) the degree of

trustworthiness of the agents in the set A as measured by as through direct interactions. This

problem is discussed in Section 5.2.2.

5.2 Estimating a Target Agent’s Distribution of Trust

As described in the previous section, we first explore trust estimation of ad when agents a ∈ A are

unknown to as (Section 5.2.1). Later, in Section 5.2.2, we measure trust distribution of ad when the

agents of set A are known to as.
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5.2.1 Trust Estimation Through Unknown Agents

In this approach, we explore the estimation of a target agent’s trust out of the distributions received

from a set of unknown agents. The agents of set A are assumed to be unknown here. We employ the

fusion rules described in Section 4.1.1 (Chapter 4) to aggregate the possibility distributions reported

by the agents in A, representing their trust in ad. Through usage of these fusion rules, the possibility

distribution of ad’s trust can be estimated. In fact, since the agents in A are unknown to as, their

reported distributions are not treated differently based on their degree of trustworthiness. However,

the fusion rules presented in Section 4.1.1 treat these distributions differently. The intersection rule

only considers the pieces of information that all of the agents agree upon while the union rule takes

into account all pieces of information received from all the agents in A. The trade-off rule, on the

other hand, has a midway approach giving each reported distribution equal influence on the final

distribution of ad’s trust. We explore the accuracy of the results obtained through these fusion

rules in the next chapter and observe the results generated from each rule. Therein, the results

are evaluated in correspondence with: (1) the degree of the trustworthiness of the agents in set A

(although it is unknown to as); (2) the number of interactions carried out between every pair of

connected agents as shown in Figure 2; and (3) the number of agents in set A.

5.2.2 Trust Estimation Through Known Agents

In this approach, we consider the fusion rules that we reviewed in Section 4.1.2. These fusion rules

consider the trust of the advisor agents while merging the possibility distributions received from

them. Based on these fusion rules, we propose two different approaches. The first approach is based

upon merging possibility distributions at different levels of a multi-agent network while the second

approach employs directly the fusion rules of Section 4.1.2. More specifically:

• In the first approach, we propose a new methodology for merging the following two sets of

possibility distributions: (1) The possibility distributions of as’s trust in agents of A; and (2)

the possibility distributions representing trust of A’s agents in the target agent ad. These two
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sets of possibility distributions represent trust distributions of different agents. The first set

represents trust in A’s agents (as measured by as) while the second set represents the trust in

ad (as measured and reported by the agents of A).

• In the second approach, we measure a single value of trust representing as’s trust in each agent

a of A. Then, we use the fusion rules presented in Section 4.1.2 for estimating the possibility

distribution of ad’s trust.

Note that except the fusion rules which are developed by other researchers (as described in

Chapter 4), the rest of the techniques, methodologies and equations developed in this section (for

both approaches) are contributions of this thesis.

A Trust Estimation Through Merging Successive Possibility Distributions

In this section, we propose a methodology for merging the possibility distribution of Πas→a (rep-

resenting the trust of as in its advisors) with the possibility distribution of Πa→ad (representing

the trust of A’s agents in ad). These two possibility distributions are associated with the trust of

entities at successive levels in a multi-agent system and hence giving it such a name. The former set

of distributions represent the trust of agents directly connected to as while the latter distributions

represents the trust of ad which is indirectly connected to as by its advisors. We first discuss possible

ways of merging two possibility distributions at such different levels of a multi-agent system, and

then, we explore possible ways of estimating the possibility distribution of ad.

• How Successive Possibility Distributions Can Be Merged? In order to perform such

a merging, we need to know how the distribution Πa→ad changes, depending on the characteristics

of the possibility distribution Πas→a. We distinguish the following cases for a proper merging of the

successive possibility distributions.

Particular Case: Consider a scenario where ∃!τ ′ , τ ≤ τ ′ ≤ τ and Πas→a =





1, τ = τ
′

0, otherwise

,

i.e., only one trust value is possible in domain T and the possibility of all other trust values is equal
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to 0. Then, trust of as in agent a can be associated with a single value τas→a = τ ′ and the fusion

rules described in Section 4.1.2 can be applied to get the possibility distribution Πas→ad .

Considering the TM fusion rules (DP and Yager), for each agent a, first the possibility distribution

Πa→ad is transformed based on the trust value τas→a = τ ′ as discussed in Section 4.1.2. Then, an

intersection of the transformed possibility distribution is taken and the resulting distribution is

normalized to get the possibility distribution Πas→ad .

General Case: For each agent a, we have a subset of trust ratings, which we refer to as TPos
a ,

such that:

1) TPos
a ⊂ T, (36)

2) If Πas→a(τ) > 0, then τ ∈ TPos
a , (37)

3) If Πas→a(τ) = 0, then τ ∈ {T − TPos
a }. (38)

Each trust rating value in TPos
a is possible. This means that the trust of as in a can possibly

take any value in TPos
a and consequently any trust rating τ ∈ TPos

a can be possibly associated with

τas→a. However, the higher the value Πas→a(τ), the higher the likelihood of occurrence of trust

rating τ ∈ TPos
a . We use the possibility distribution Πas→a to get the relative chance of happening

of each trust rating in TPos
a . In this approach, we give each trust rating τ , a Possibility Weight

(PW) equal to:

PW (τ) = Πas→a(τ)/
∑

τ ′∈TPos
a

Πas→a(τ ′). (39)

Higher value of PW (τ) implies more occurrences chance of the τ value. Hence, any trust rating

τ ∈ TPos
a is possible to be observed with a weight of PW (τ) and merged with Πa→ad using one of

the fusion rules.

Considering the General Case, there are a total of |A| = n agents and each agent a has a total of

|TPos
a | possible trust values. For a possible estimation of Πas→ad , we need to choose one trust rating
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of τ ∈ TPos
a for each agent a ∈ A. Having |A| = n agents and a total of |TPos

a | possible trust ratings

for each agent a ∈ A, we can generate a total of
∏
a∈A

|TPos
a | = K possible ways of getting the final

possibility of Πas→ad . This means that any distribution out of K distributions is possible. However,

they are not equally likely to happen. If agent as chooses trust rating τ1 ∈ TPos
a1

from agent a1,

τ2 ∈ TPos
a2

from agent a2, and finally τn for agent an ∈ TPos
an

, then the possibility distribution of

Πas→ad derived from these trust ratings has an Occurrence Probability(OP) of
n∏

i=1

PW (τi).

For every agent a, we have:
∑

τ∈TPos
a

PW (τ) = 1, then considering all agents we have:

∑

τ1∈TPos
a1

∑

τ2∈TPos
a2

. . .
∑

τn∈TPos
an

PW (τ1) × PW (τ2) × . . . × PW (τn) = 1. (40)

As can be observed above, the PW is normalized in such a way that, for every set of trust

ratings {τ1, τ2, . . . , τn} (where τi ∈ TPos
ai

), the corresponding OP of this set can be measured through

multiplication of PW of the trust ratings in the set, namely PW (τ1)× PW (τ2)× . . .× PW (τn).

Trust Event Coefficient: The PW (τ) value shows the relative possibility of τ compared to

other values in T of an agent a. However, we still need to compare the possibility of a given trust

rating τ , for an agent a, with other agents in A. If the possibility weights of two agents are equal,

say 0.2 and 0.8 for trust ratings τ and τ , and the number of interactions with the first agent is

much higher than for the second agent, we need to give more credit to the first agent’s reported

distribution of Πa→ad . However, the current model described above is unable of doing so. Therefore,

we propose to use a Trust Event Coefficient for each trust value τ , denoted by tec(τ), in order to
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consider the number of interactions, which satisfies:

1) If mτ = 0, tec(τ) = 0. (41)

2) If Πas→a(τ) = 0, tec(τ) = 0. (42)

3) If mτ ≥ mτ ′ , tec(τ) ≥ tec(τ ′). (43)

4) If mτ = mτ ′ and Πas→a(τ) ≥ Πas→a(τ
′),tec(τ) ≥ tec(τ ′). (44)

where τ ∈ TPos
a , mτ is the frequency of the trust rating τ in the interactions between agents as and

a. Considering conditions 1) and 2) above, if the frequency of the trust rating τ or its corresponding

possibility value is 0, then tec is also zero. Condition 3) increases the value of tec by increasing the

frequency of the trust rating τ . As observed in Condition 4), if the frequency of two trust ratings,

τ and τ ′ are equal, then the trust rating with higher possibility is given the priority. Comparing

the frequency (in the number of interactions) and the possibility value Πas→a, the priority is given

first to the frequency, and then, to the possibility value Πas→a in order to avoid giving preference to

the possibility values driven out of few interactions. The following formula is an example of a tec

function, which satisfies the above conditions.

tec(τ) =





0, mτ = 0 or Πas→a = 0

[1/(γ ×mτ )]
(1/mτ ) +

Πas→a

χ
, otherwise

(45)

where γ > 1 is the discount factor and χ ≫ 1. Higher values of γ impede the convergence

of tec(τ) to one and vice-versa. χ, which is a large value, insures that the influence of Πas→a on

tec(τ) remains trivial and is noticeable only when the number of interactions are equal. In (45), as

mτ grows, tec(τ) converges to one. tec(τ) can be utilized as a coefficient for trust rating τ when

comparing different agents. Note that the General Case mentioned above gives the guidelines for

merging successive possibility distributions and tec feature is only used as an attribute when the

number of interactions should be considered and can be ignored otherwise.
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• Possibility Distribution of aS’s Trust in aD: We propose two approaches for deriving

the final possibility distribution Πas→ad considering different available possible choices.

The first approach is to consider all K possibility distributions Πas→ad and take their weighted

mean by giving each Πas→ad a weight equal to its Occurrence Probability (OP ), measured by mul-

tiplying the possibility weights of the trust values, PW (τi), that are used to build Πas→ad .

In the second approach, we only consider the trust ratings, τ ∈ T such that Πas→a = 1. In

other words, we only consider the trust ratings that have the highest weight of PW in the TPos
a set.

Consequently, the Πas→ad distributions derived from these trust values have the highest OP value

which makes them the most expected distributions. We denote by µa the number of trust ratings,

τ ∈ TPos
a that satisfy Πas→a = 1 for agent a. In this approach, we only select the trust ratings in µa

for each agent a in A and build the possibility distributions Πas→ad out of those trust ratings. After

building M =
∏
a∈A

µa different possibility distributions Πas→ad , we compute their average, since all

of them have equal OP weight.

Proposition 1 In both approaches, the conditions of the general case described in the previous

section are satisfied.

Proof: Proof can by simply done by replacing values.

Due to the computational burden of the first approach (which requires building K distributions

of Πas→ad), we used the second one in our experiments as it only requires building M distributions.

The second approach has been simulated on a cluster using parallel programming in order to speed

up the running time.

To conclude this section, we would like to comment on the motivation behind using possibility

distribution rather than probability distributions. Indeed, if probability distributions were used

instead of possibility distributions, a confidence interval should be considered in place of the single

value of trust for each τ in T . Consequently, for representing the probability distribution of as’s

trust in each agent a ∈ A, a confidence interval should be measured for each τ ∈ T to consider

uncertainty. The same representation should be used for each agent a ∈ A’s trust in ad. Now, in
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order to estimate the probability distribution of ad’s trust with respect to its uncertainty, we need

to find some tools for merging the confidence intervals of the probability distributions of as’s trust

in A with the A’s trust in ad. To the best of our knowledge, only the works of [64, 65] address this

issue. In [64], the frequency of each element in the domain, which is equivalent to the number of

observances of each τ value in the interactions between agents a and ad, is reported by agents in

A to as and then, the probability intervals on the trust of ad is built. The work [65] measures the

confidence intervals of ad’s trust out of several confidence intervals provided by agents in A. In both

proposals, the manipulation of information by the agents in A is not considered and for building

the confidence intervals of ad, the trust of as in A is neglected. We employed possibility theory as

it is capable of addressing both types of uncertainty (variability and ignorance). In addition, as

mentioned in [32], possibility theory is the simplest theory for addressing incomplete information.

Moreover, it offers flexible and straightforward tools for our trust model.

B Trust Estimation Through Single Trust Value of Advisor Agents

In this section, we measure a single value of trust, representing the trust of as in agent a ∈ A.

Then, this value is considered as a trust weight of the possibility distributions Πa→ad (representing

the trust of a in the target agent ad). Finally, the fusion rules discussed in Section 4.1.2 are applied

on the possibility distributions Πa→ad , considering the single value of trust, to derive the possibility

distribution of as’s trust in ad, namely Πas→ad . Here, we intend to use the traditional fusion rules

(Section 4.1.2) more directly and compare the final trust distribution of Πas→ad with the distribution

measured in Section 5.2.2.

• Measuring Single Trust Values: Here, we measure a single value of trust, τas→a, rep-

resenting as’s trust in a. To this end, the empirical values obtained through interactions of as, as

trustor, with a, as trustee, can be used. We introduce a weight of as’s trust in a measured from
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empirical interactions between these agents computed as follows:

Eas→a =
∑

τ∈T

nτ

N
× τ , N > 0 (46)

where nτ is the frequency of the trust rating τ in the interactions between agents as and a such

that
∑
τ∈T

nτ = N . The shortcoming of (46) is that it does not consider the number of interactions

carried out between the two agents. In (46), if the number of observations of each trust rating for

agent a is m times more than for agent a′, (a and a′ ∈ A), equation (46) cannot differentiate the

E measured for agents a and a′. In order to consider the number of interactions, we propose an

Interaction-Coefficient (IC) for the value of E such that the trust value of as in a is defined as

τas→a = ICas→a × Eas→a. Any formula measuring IC should satisfy the following conditions:

C1. If the number of the interactions N is low, the impact of Eas→a, on the value of τas→a

should remain low.

C2. If N ≥ N ′, then τas→a ≥ τas→a′ .

C3. If N is high enough, Eas→a should almost be equal to τas→a.

Condition C1 avoids having high trust values of τas→a over few interactions. Comparing two agents

a and a′, if a’s total number of interaction (N) is greater than a′’s number of interactions (N ′), then

trust of as in a should be greater than a′. In condition C3, if the number of interactions is above

a certain threshold, the value of IC would be ineffective on τas→a. Therefore, only Eas→a derives

τas→a. The following is an example of an IC formula which satisfies conditions C1 to C3:

ICas→a =

(
1

γ ×N

) 1

N

γ > 1, N > 0 (47)

where γ is a discount factor. Higher values of γ decreases the growth of IC.

• Trust Estimation of Target Agent aD: The fusion rules described in Section 4.1.2 can

be applied to the possibility distributions Πa→ad , ∀a ∈ A, by using the trust values τas→a, ∀a ∈ A
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measured in this section. Thereupon, an estimated possibility distribution of as’s trust in ad, which

is represented as Πas→ad , ∀τ ∈ T can be measured. Despite the fact that each agent a measures

the distribution Πa→ad independent of other agents in A, we assume that as does not know whether

the agents in A have exchanged information or not. Consequently, as cannot prefer any specific

fusion rule in advance. In Chapter 6, the final possibility distribution Πas→ad measured here is

compared with the distribution measured through merging successive distributions. This, in turn,

would indicate which approach is more accurate.

The tools explained in Chapter 4 have made the possibility theory more adaptable with our

model. However, we have developed additional tools, which were introduced in this chapter, in

order to completely use the possibility theory for our trust model. As mentioned before, excluding

the technical tools introduced in chapter 4 (which are developed by other researchers), the rest of

materials in this chapter, (e.g., equations, formulas, methodologies and metrics) are all contributions

of this thesis.

5.3 Measuring Certainty

In this section, we propose a new metric in order to figure out the extent to which as can rely on

the information provided by the set A of agents. On this purpose, we measure as’s certainty over

the possibility distributions Πa→ad , ∀a ∈ A reported by the advisor agents on agent ad’s trust. We

call it the certainty metric and it measures the confidence that as has on the information acquired

from its advisors with respect to their degree of trustworthiness. We consider two features to define

the certainty metric:

(i) Consistency: Given a fixed number of agents in A, and a fixed set of trust values representing

trust of as in the agents of A (τas→a, ∀a ∈ A), the more the possibility distributions of Πa→ad

reported by the agents in A become similar, especially the ones reported by highly trusted agents,

the higher the certainty over the distributions provided by members of A.

(ii) Trust: Given a fixed set of possibility distributions reported by the members of A to as
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(Πa→ad , ∀a ∈ A) and a fixed number of agents in A, increase of as’s trust in an individual agent

a ∈ A increments the certainty, if the reported distribution Πa→ad is similar with other agents,

especially the highly trusted ones. On the other hand, increase of as’s trust in an agent a decreases

the certainty if its reported distribution is dissimilar to other agents (especially the highly trusted

ones). The trust feature should also increase the certainty in the cases where, for a fixed number

of agents, and a fixed set of reported distributions ( Πa→ad , for a ∈ A) the trust of as in all of the

agents in the set A or the majority of them increases. This is due to the fact that the trust in the

agents providing the same information is enhanced. For the evaluations made in this section, we

use the single trust value measured in Section 5.2.2. This is due to the fact that in the current

certainty model the trust of as in an agent a ∈ A is considered as a single value, indicated by τas→a,

instead of a distribution. Developing a certainty metric while considering the possibility distribution

Πas→a instead of a single value τas→a is part of our future works. The certainty metric and all of

the components developed in this section are also the contributions of this thesis.

5.3.1 Measuring Consistency

Consistency is expressed through measuring the degree of similarity among the reported possibility

distributions of the advisors agents. On this purpose, we first measure the extent of dissimilarity

among the possibility distributions provided by the agents in A, considering the trust of as in

each agent a ∈ A, which we refer to as inconsistency. Then, we propose a normalization for the

measured dissimilarity, which we denote by maximum possible inconsistency. Finally, we measure

the consistency out of these two values, which is a normalized value and lies in [0, 1] .

A Inconsistency in Possibility Distributions

Given a fixed number of agents in A and a fixed set of trust values (τas→a, ∀a ∈ A) representing

the trust of as in each agent a (∀a ∈ A) , the more the reported possibility distributions Πa→ad

are similar, the higher the consistency within the information provided by the agents in A and

therefore the higher is the certainty. The certainty is especially higher when the reports of the
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highly trustworthy agents are similar as as relies more on their reports. In order to measure the

inconsistency in the distributions provided by the agents of A, we measure the weighted average

absolute deviation of every pair of possibility distributions Πa→ad(τ) and Πa′→ad(τ) reported by a

and a′ (∀ a, a′ ∈ A, a 6= a′). The Inconsistency inc is defined as follows:

inc =
1

|T |

∑

(a,a′)∈A2,a6=a′

ωas→a × ωas→a′ ×
∑

τ∈T

|Πa→ad(τ)−Πa′→ad(τ)| (48)

where ωas→a′ = (τas→a′/
∑
a∈A

τas→a) and |T | > 0. In (48), for every pair of distributions, Πa→ad(τ)

and Πa′→ad(τ), we compare the difference in the possibility value over all trust ratings in the domain.

The weight ωas→a′ is equal to the ratio of the agent a′’s trust to the trust of all agents in A. Usage of

the weights in (48) causes the difference (absolute value) among the reports of more trusted agents

to be further penalized as their reports are considered more important by agent as.

For illustration, consider an example with two highly trusted and two slightly trusted agents in

A. If the reports of the two trusted agents are similar, the certainty is much higher compared to

the case where the reports of these two agents are dissimilar. The influence of two slightly trusted

agents would be trivial on the certainty as their reported distributions are not highly trusted.

B Maximum Possible Inconsistency

In order to normalize the inc value defined in Section 5.3.1.A, we need to evaluate the maximum

possible inconsistency such that it provides an upper bound for the inconsistency value. The max-

imum inconsistency, denoted by incmax, arises from the situation where as has equal trust in the

agents of A (τas→a = τas→a′ , ∀a, a′ ∈ A) and these agents provide the most inconsistent possibility

distributions, i.e., agents of A are divided into two subsets A1 and A2, such that the difference

between the possibility distributions of the agents of A1 and those of the agents of A2 takes its

largest possible value. It can be shown that this occurs when the possibility distributions reported

by each subset are identical while the dissimilarity between the distributions reported by each agent

a1 ∈ A1 and each agent a2 ∈ A2, is at its largest possible value, i.e., |T |. It means that, for each
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trust rating τ ∈ T , we have: |Πa1→ad(τ) − Πa2→ad(τ)| = 1, for all a1 ∈ A1, and a2 ∈ A2 such that

∑
τ∈T

|Πa1→ad(τ)−Πa2→ad(τ)| = |T | . This is indeed the case when Πa1→ad(τ) is at one extreme end

of the possibility value (either 0 or 1) and Πa2→ad(τ) is at the other extreme end (1 − Πa1→ad(τ)

which is either 0 or 1).

In order to have the possibility distributions of Πa1→ad(τ) and Πa2→ad(τ) normalized, at least

the possibility of one trust rating in T must be equal to 1, therefore
∑
τ∈T

Πa1→ad(τ) cannot be equal

to 0 or |T |. For estimating incmax, we distinguish two cases:

Case 1. If |A| is even, both A1 and A2 have the same cardinality, equal to |T |
2 . Using the inc

expression of (48), we get: incmax = 1/4, where ωas→a = ωas→a′ = 1/n.

Case 2. If |A| is odd then one subset has |A|+1
2 members and the other subset has |T |−1

2

members. By replacing values in formula (48) we obtain: incmax = 1/4 − 1
|A|2

. The

normalized inconsistency in the distributions reported by the set A of agents is therefore

equal to inc
incmax

and the consistency is equal to 1− inc
incmax

.

5.3.2 Measuring Trust

Through the inconsistency formula proposed in Section 5.3.1.A , if we have a fixed number of agents

in A and a fixed set of distributions Πa→ad , for all a ∈ A, increase or decrease of as’s trust in an

individual agent a is reflected in the weight ωas→a, which influences the measured consistency value.

Specifically, increasing the trust of an agent whose reported distribution is in conformance with

the distributions reported by the mostly trusted agents would increase consistency and vice-versa.

However, in a scenario where we have a fixed set of agents in A and a fixed set of distributions

Πa→ad , if we, for example, double the trust values τas→a(∀a ∈ A), our certainty in the information

received by the set A should increase as we can rely more on those agents, but the consistency value

measured in Section 5.3.1 does not distinguish such cases. In order to consider the overall trust of

as in the set A of agents, we introduce a trust feature, Tf , which should satisfy:
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(1) Tf (A) = 0, if τas→a = 0, ∀a ∈ A. (49)

(2) Tf (A) = 1, if τas→a = 1, ∀a ∈ A. (50)

(3) Tf (A) > Tf (A
′), if

∑

a∈A

(τas→a) >
∑

a′∈A′

(τas→a′). (51)

Conditions (1) and (2) satisfy the existence of Tf in [0, 1] and condition (3) increases Tf by

increasing as’s trust in the set A of agents. Set A′ has the same number of agents as A while the

trust of as in the agents of set A (τas→a, ∀a ∈ A) may differ from its trust in the agents of set

A′ (τas→a′ , ∀a′ ∈ A′). The following function is a possible candidate for the trust feature:

Tf (A) =

[
1

n

∑

a∈A

(tas→a)

]k

(52)

Higher values of k slow down the growth of Tf (A).

5.3.3 Certainty Function

The certainty over the information provided by the agents in A, is equal to: C = (1− inc
incmax

× δ)×

Tf (A), 0 < δ ≤ 1, where δ is the inconsistency coefficient. Therein, the consistency and trust features

are combined together in such a way that the certainty function considers the issues mentioned in

Sections 5.3.1 and 5.3.2. The inconsistency coefficient moderates the influence of inconsistency on

the certainty. If δ = 1 and inc = incmax, the certainty would be equal to zero no matter how many

agents are supporting the most inconsistent situation. In order to make the certainty function less

restrictive, δ should be less than one. Having set δ to such a value, even in the most inconsistent

situation, the increase in the trust of the agents increases the certainty. We put our certainty metric

to experiments to observe its behavior.

68



A Modifying Inconsistency with Fixed Trust

Let us assume the set of τas→a, for all a ∈ A, representing trust of as in the set A of agents,

is fixed. We want to modify the possibility distributions Πa→ad , ∀a ∈ A to observe its effect on

the certainty value. In order to only observe the effect of possibility distributions on certainty,

we consider a scenario where we have four agents A = {a1, a2, a3, a4} with an identical trust value

τas→a = 0.5. Otherwise, if the trust values are not identical, the reported values of more trustworthy

agents would have higher influence on the certainty metric. We consider the trust values equal in

order to just observe the influence of the reported possibility values on the certainty metric. Without

loss of generality, we assume |T | = 2 and Πa→ad(τ) = 1, for all a ∈ A under the assumption that

the possibility distributions are normalized. We only modify the possibility value of Πa→ad(τ) and

measure the certainty for the changes made only on τ . We start with Πa→ad(τ) = 0,∀a ∈ A and

increase the value of Πa1→ad(τ) from 0 to 1 (0.25 each time), keeping the value of Πa→ad(τ) for the

other three agents fixed (equal to zero). Then, we keep increasing this value for agent a2 in the same

trend while Πa1→ad(τ) = 1 and Πa3→ad(τ) = Πa4→ad(τ) = 0. Later, we do the same for a3 and a4

increasing one at a time.

Figure 4: Modifying Inconsistency

X Axis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Πa1→ad(τ) 0 0.25 0.5 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1
# Πa2→ad(τ) 0 0 0 0 0 0.25 0.5 0.75 1 1 1 1 1 1 1 1 1
# Πa3→ad(τ) 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 1 1 1 1
# Πa4→ad(τ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1

Table 2: The reported values of agents ai, i ∈ {1, 2, 3, 4} corresponding to the x values of Figure 4
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Figure 4 demonstrates the results of this experiment. Table 2 demonstrates the reported possi-

bility value of Πai→ad(τ) by each agent ai, i ∈ {1, 2, 3, 4} for x values in Figure 4. The certainty

value shown in Figure 4 demonstrates a steady decrease from x = 1 to x = 5 (where Πa1→ad(τ) has

increased from 0 to 1) and from x = 6 to x = 9 (where Πa2→ad(τ) has changed in the same trend).

This is due to the fact that the reported values of a1 and a2 have deviated away from other two

agents such that it makes as less certain about the true distribution of ad. From x = 1 to x = 9,

the more the reported distributions of a1 and a2 deviate away from the reported values of a3 and

a4, the less certain as becomes about the true trust distribution of agent ad. At x = 9 we have

the lowest certainty as the agents are completely divided over the value Πa→ad(τ). from x = 9 to

x = 13, where the report of a3 converges towards the reports of a1 and a2 the certainty increases as

the agents’ reports are more consistent. The same trend happens for x = 14 to x = 17 when a4’s

report converges towards other agents. at x = 0 and x = 9 we have the highest certainty values as

the reported possibility values of all four agents are identical.

B Modifying Trust with Fixed Inconsistency

We consider a scenario where we keep the reported distributions Πa→ad , ∀a ∈ A intact and we

modify the trust of as in the agents of A to observe its influence on the certainty value. As in Section

5.3.3.A, we assume |T | = 2 and we consider Πa→ad(τ) = 1,∀a ∈ A in order to have the distributions

normalized and just observe the certainty metric as measured over the trust rating τ . We consider

a set of four agents, however, we associate Πa→ad(τ) to 1 for agents a1 and a2 and to 0 for agents

a3 and a4. We intentionally set such values in order to observe the effect of trust modification in a

case where the four agents have complete disagreement over the value of Πa→ad(τ). In such settings,

we increase the trust of the agents in the same trend that we increased the possibility values of the

agents in Section 5.3.3.A (one agent at a time). We start by τas→a = ǫ (≈ 0), ∀a ∈ A and increase

the trust of a1 by 0.25 each time while keeping the trust of other agents unchanged until τas→a1
= 1.

Then, we increment the trust of a2 from τas→a2
= ǫ to τas→a2

= 1 while keeping the trust of the

other three agents fixed (τas→a1
= 1, τas→a3

= τas→a4
= ǫ). Finally, we increase the trust of the
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agents a3 and a4 in the same trend, one at a time, keeping the trust values of the other three agents

unchanged. Figure 5 illustrates the measured certainty values over these trust changes. Table 3

shows the trust values of the agents a1 to a4 for each x value of Figure 5.

Figure 5: Modifying Trust

X Axis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# τas→a1

0 0.25 0.5 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1
# τas→a2

0 0 0 0 0 0.25 0.5 0.75 1 1 1 1 1 1 1 1 1
# τas→a3

0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1 1 1 1 1
# τas→a4

0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.5 0.75 1

Table 3: The trust values of τas→ai
, i ∈ {1, 2, 3, 4} corresponding to the x values of Figure 5

Figure 5 illustrates that, from x = 1 to x = 5 as the trust value τas→a1
increases, as relies more

on the reports of a1 compared to the other agents, whose trust values of τas→a, a ∈ {a2, a3, a4} are

very low, which results in the increase of the certainty value as as believes more that the possibility

of 1 reported by a1 is correct. Through increase of the trust of as in a2 from x = 6 to x = 9 from 0

to 1, the certainty increases since a2’s reported value of Πa2→ad(τ) = 1 is in conformance with the

agent a1’s value. Consequently, increase in the trust of a2 should increase certainty. At x = 9 we

have the highest certainty, which is due to the fact that as has complete trust in a1 and a2 that have

reported the same value of Πa→ad(τ) = 1 while as’s trust in a3 and a4 that provide a completely

contradictory report (compared to the reports of a1 and a2) which equals to Πa→ad(τ) = 0 is trivial

(τas→a ≈ 0, a ∈ {a3, a4}). When as’s trust in a3 increases From x = 10 to x = 13, the certainty

reduces since a3’s reported value contradicts with the reports of a1 and a2. The same scenario

happens for a4. At x = 17 the graph reaches a local minimum as the sets of {a1, a2} and {a3, a4}

have total disagreement over the value of Πa→ad(τ), however the certainty at x = 17 is greater than
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x = 1 since as has complete trust in the 4 agents compared to the case of x = 1.

In this chapter, we provided our main contribution, which is a possibilistic model for estimating

the trust of a target agent thought the information acquired from the advisor agents. We considered

both the problem that the advisor agents are unknown to as and the problem that they are known

to as. Moreover, we proposed a certainty metric measuring the confidence of as in the information

acquired from its advisors. Note that in this chapter whatever we borrowed from the chapter of

technical tools (chapter 4) is developed by other researchers and we reuse them in our trust model.

The rest of the materials introduced in this chapter are contributions of this thesis. This includes

the approaches proposed to address the two problems described above, the methodologies proposed

to solve the successive merging approach (including all of the equations introduced in this section),

the techniques used to address the single trust approach (including all of the equations proposed

to measure a single trust value in each advisor agent), the certainty metric proposed at the end of

this chapter and finally the combination of all of these tools (both the ones proposed in this thesis

and the ones described in chapter 4) to measure the trust of a target agent in the context described

before which is: (1) there is uncertainty (arisen from variability and ignorance) in the advisor and

target agent’s trust; (2) the advisor agents may act selfishly and manipulate the information; and

(3) each interaction between every pair of connected agents is multi-valued. These are the main

contributions of this thesis, which were described in details in this chapter. In the next chapter, we

provide the experimental results of our proposed approaches.
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Chapter 6

Simulation Results and Analysis

In this chapter, we provide extensive numerical experiments to validate all proposed concepts. We

use the same multi-agent network introduced in Chapter 5 and the game scenario described in

Section 5.1.6, where a buyer agent, namely as, wants to estimate the degree of trustworthiness of a

target agent, namely ad, unknown to him. as receives a possibility distribution from each member

a in the set A of agents where each agent a has already interacted with ad. Figure 6 illustrates the

aforementioned multi-agent network.

Figure 6: Network of Agents

We present an extensive experimental evaluation of the three different approaches described

in Sections 5.2.1, 5.2.2.A, and 5.2.2.B. Specifically, the trust estimation approach made through

unknown agents (described in Section 5.2.1) and the trust estimation approaches made through

known agents (presented in Section 5.2.2) are experimentally investigated. We evaluate our proposed

algorithms in these three approaches and perform evaluations in different experimental settings by
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changing: (1) the manipulation algorithms introduced in Section 5.1.5; (2) the number of agents

in the set A; (3) the number of interactions between every pair of connected agents (as illustrated

in Figure 6); and (4) the degree of trustworthiness of the agents in A. We intend to evaluate

our proposed trust estimation approaches in different experimental settings in order to measure

its performance in different scenarios. In addition, we measure the certainty over the possibility

distributions acquired from the set A of agents (as described in Section 5.3) in every experiment.

In Section 6.1, we introduce two evaluation metrics for our experiments and then in Section

6.2 we present our experimental results. Finally, in Section 6.3 we discuss the conclusions of our

simulation.

6.1 Evaluation Metrics

In order to evaluate the experimental results, we first introduce two evaluation metrics: (i) the

information level of the estimated possibility distribution of ad’s trust , and (ii) the approximated

error of ad’s estimated possibility distribution. The former metric measures the degree of provided

information in the final possibility distribution of ad’s trust. The latter metric, however, provides

an approximation on the error of the estimated possibility distribution of ad’s trust.

6.1.1 Metric I - Information Level of a Possibility Distribution

In the context of the possibility theory, the uniform distribution (53) contributes no information, as

all of the trust ratings are equally possible and cannot be differentiated. The uniform distribution

provides the state of “complete ignorance” [53].

∀τ ∈ T : Π(τ) = 1, (53)

The more a possibility distribution deviates from the uniform distribution, the more it contributes

information. The following distribution provides the most informative possibility distribution which
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is referred to as “complete knowledge” [53]:

∃! τ ∈ T : Π(τ) = 1 and Π(τ ′) = 0, ∀τ ′ 6= τ, (54)

where only one trust value in T has a possibility greater than 0. We assign the information levels of

0 and 1 to the distributions of (53) and (54), respectively. In the general case, the information level

(denoted by I) of a distribution Π having a total of |T | trust ratings, is equal to:

I(Π) =
1

|T | − 1

∑

τ∈T

(1−Π(τ)), |T | > 1. (55)

Here, the distance of each possibility value of Π(τ) from the uniform distribution is measured

first for all trust ratings of T . Then, it is normalized by |T | − 1, since at least one trust rating must

be equal to 1 (property of a possibility distribution). We denote the information level of a possibility

distribution by I in our experiments.

6.1.2 Metric II - Estimated Error of Target Possibility Distribution

In this Section, we measure the approximated error of the estimated possibility distribution of ad’s

trust, namely Πas→ad . On this purpose, we measure the difference between the estimated and the

true possibility distributions of ad’s trust. In order to measure the true possibility distribution of

ad’s trust, its true probability distribution of trust (which is ad’s internal probability distribution of

trust as described in Section 5.1.2) should be transformed to a possibility distribution. Dubois et

al. [58] provide a probability to possibility transformation procedure, which is described in Section

4.3. Through usage of this transformation procedure, the true possibility distribution of ad’s trust

can be measured and then compared with the estimated distribution Πas→ad . Let Πas→ad denote

an estimated distribution, measured by one of the three estimation approaches (presented in Sec-

tions 5.2.1, 5.2.2.A, and 5.2.2.B) and let ΠF represent the true possibility distribution of ad’s trust

transformed from its internal probability distribution. The Estimated Error (EE) of distribution
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Πas→ad is measured by taking the average of the absolute differences between the true and estimated

possibility values over all trust ratings, τ ∈ T . The EE metric is measured as:

EE(Πas→ad) =
1

|T |

∑

τ∈T

|Πas→ad(τ)−ΠF (τ)| . (56)

We denote the estimated error of the possibility distribution Πas→ad by EE in our experiments.

6.2 Experimental Results

Here we report the experiments conducted to evaluate our three estimation approaches described in

Sections 5.2.1, 5.2.2.A, and 5.2.2.B. We provide our experimental evaluations with respect to these

three approaches.

In order to facilitate variation in the degree of trustworthiness of the agents in A, we divide the

set A into three subsets. Each subset simulates a specific level of trustworthiness in the agents. The

subsets are:

• Aft: The subset of Fully Trustworthy agents where the peak of the internal probability dis-

tribution of trust( described in Section 5.1.2) is 1.

• Aht: The subset of Half Trustworthy agents where the peak of the internal probability trust

distribution is 0.5.

• Ant: The subset of Not Trustworthy agents where the peak of the internal probability trust

distribution is 0.

In each experiment, we start with A = Ant, where all of the agents in A are not trustworthy, and

then at each step we gradually move a subset of the agents in A from Ant to Aht such that after a

number of such steps, we reach the state of A = Aht where all of the agents in A belong to the subset

of half trustworthy agents (Aht). Later, in the same trend, we move the agents in A from the subset

of Aht to Aft, moving a subset of the agents in A from the set of half trustworthy agents (Aht) to

the set of fully trustworthy agents (Aft) in each step such that we finally end up with A = Aft.
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Through such transformation of the agents in A, we want to observe the influence of the degree of

trustworthiness of the agents in A on the accuracy of the results we obtain. Indeed, the robustness

of the estimated distribution Πas→ad is evaluated with respect to the nature of trustworthiness of

the agents in A. We repeat this transition in different experimental settings by changing:

1. The number of agents in the set A;

2. The number of interactions between each pair of connected agents; and

3. The manipulation Algorithm I and II.

We intend to observe the influence of each one of these components on the final estimated

distribution Πas→ad . In all experiments, the number of trust rating events, |T |, is equal to 5 (a

commonly used value in most surveys, e.g., ebay, IMDB and Amazon). Moreover, the possibility

distributions constructed in our experiments (as described in Section 4.3) are measured with a

confidence of 100(1−5)%. This , in turn, means that the measured possibility distribution dominates

the true probability with 95% confidence, as presented in Equation (26) in Section 4.3.

6.2.1 Experiments Using the Manipulation Algorithm I

In the first set of experiments, the manipulation Algorithm I (described in Section 5.1.5) is used by

the agents in A. We carry out four different experiments. We change the number of agents in A and

the Number of Interactions (NoI) among every pair of connected agents (as illustrated in Figure 6)

from one experiment to another. The following four experiments are carried out:

1. Experiment 1: |A| = 30, NoI = 50

2. Experiment 2: |A| = 30, NoI = 20

3. Experiment 3: |A| = 10, NoI = 20

4. Experiment 4: |A| = 5, NoI = 10

In the first experiment, the results are evaluated when both NoI and the number of agents are

high enough. Then, through moving from the first to the second experiment, the number of agents

is kept unchanged while NoI is reduced. Later, In the third experiment, NoI remains unchanged
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while the number of the agents is decreased. Finally, in the fourth experiment, both NoI and

the number of agents are reduced. The last experiment aims to measure the performance of trust

estimation approaches in low data presence (few number of interactions). In each one of these

experiments, the set of agents in A is gradually transferred from Ant to Aht and later from Aht

to Aft as explained before. Moreover, in each experiment, one trust estimation approach is made

through unknown agents (described in Section 5.2.1) and two trust estimation approaches are done

through known agents (presented in Section 5.2.2). Finally, the certainty of the information acquired

by as is measured in each experiment (as described in Section 5.3). In this chapter, the elements of

X axis are denoted by x. In the following sections, we present the results of these experiments.

A Experiment 1: |A| = 30, NoI = 50

In this experiment, we have 30 agents in A and a total of 50 interactions among every pair of

connected agents (as illustrated in Figure 6). We start with A = Ant and at each step we transfer

10 agents from subset of (Ant) to (Aht). As shown in Table 4, each step is associated with a value

of X axis. For each x value, the partition of A into Aft ∪ Ant ∪ Aht is presented in Table 4. At

x = 1, we have A = Ant where all of the agents belong to Ant. As x increases, the agents of A are

redistributed from Ant to Aht such that at x = 4 we have A = Aft. In the same trend, by increasing

values of x, the members of A are redistributed from Aht to Aft. Finally, at x = 7, all the agents

belong to Aft such that A = Aft.

X Axis 1 2 3 4 5 6 7
# |Aft| 0 0 0 0 10 20 30
# |Aht| 0 10 20 30 20 10 0
# |Ant| 30 20 10 0 0 0 0

Table 4: Distribution of Agents in Figures 7 to 12 and Figures 19 to 24

For each distribution of the agents in A into Aft ∪Ant ∪Aht presented in Table 4, we carryout

the experiments as discussed in Sections 5.2.1, 5.2.2.A, and 5.2.2.B. Indeed, as discussed in Section

5.2.1, we estimate the trust distribution of ad for the fusion rules of intersection (Equation 6), union

(Equation 13), and mean (Equation 14). In this approach, as does not know the agents of the set
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A. Later, based on the approach presented in Section 5.2.2.A, the following two trust distributions

are successively merged: (1) the possibility distribution of as’s trust in agents of A, and (2) the

trust possibility distributions of the set A in ad. As described in Section 5.2.2.A, the fusion rules

of trade-off (Equation 15), Yager (Equation 16) and DP (Equation 17) are used in this approach.

Finally, based on the approach introduced in Section 5.2.2.B, a single trust value for each agent of

set A is measured by as and this value is used in the fusion rules of trade-off (Equation 15), Yager

(Equation 16) and DP (Equation 17) to estimate the trust distribution of ad. The results presented

in the figures of Section 6.2 are the average over 50 test runs measured for each fusion rule. In

our experiments, we refer to the approach of Section 5.2.1 as “Unknown Agents”, the approach of

Section 5.2.2.A as “Successive Merging (SM)” and the approach of Section 5.2.2.B as “Single Trust

(ST)”.

Figures 6.7(a) and 6.8(a) illustrate the results carried out based on “Unknown Agents” approach.

Figure 6.7(a) presents the Information level (I) (described in Section 6.1.1) of the possibility dis-

tribution of ad measured through fusion rules of intersection (Equation 6), union (Equation 13),

and mean (Equation 14). Figure 6.8(a) illustrates the Estimated Error (EE) of the the possibility

distribution of ad measured in the same experiment. In Figures 6.7(a) and 6.8(a), throughout the

evolution of the agent distribution by increasing x values, we can observe the decrease of EE and

the increase of I. This is a consequent of the fact that as the agents move from the subset of Ant

to Aht and later to Aht the agents become more trustworthy and therefore the information pro-

vided by the agents becomes less prone to error. Consequently, the estimation made through more

accurate information enhances as the value of x increases in these figures. Comparing the fusion

rules, the intersection rule outperforms the mean and union rules. This is a consequence of the fact

that the intersection rule selects the information that all the sources agree upon. The results of the

intersection rule deteriorate considerably at x = 1 as none of the sources are reliable.

Figures 6.7(b) and 6.8(b) show the experiment results carried out based on the “Successive

Merging (SM)” approach of Section 5.2.2.A. Figure 6.7(b) illustrates the I metric as measured for
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the estimated possibility distribution of ad’s trust through fusion rules of trade-off (Equation 15),

Yager (Equation 16) and DP (Equation 17). Figure 6.8(b) demonstrates the EE of the the possibility

distribution of ad measured in the same experiment.

Figures 6.7(c) and 6.8(c) show respectively the I and EE metrics applied on the possibility

distribution of ad’s trust measured using the approach “Single Trust (ST) (Section 5.2.2.B) where

the fusion rules of trade-off (Equation 15), Yager (Equation 16) and DP (Equation 17) are employed.

In Figures 6.7(b), 6.7(c), 6.8(b) and 6.8(c), by increasing the value of x, the results measured by

metrics I and EE improve. Indeed by increasing x values, as the agents become more trustworthy,

I increases and EE decreases. Comparing the fusion rules, DP outperforms fusion rules of Yager

and trade-off in all Algorithm I and II’s experiments which is due to the fact that the DP rule is

more categoric in its ignorance of the agents who are not trustworthy compared to the two other

fusion rules.

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 7: Experiment 1 - Algorithm I, |A| = 30, NoI = 50 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 8: Experiment 1 - Algorithm I, |A| = 30, NoI = 50 - Metric EE
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In order the compare the results of the approaches presented in Sections 5.2.1, 5.2.2.A, and

5.2.2.B, we have selected the best result from each one of these three approaches. Indeed, for each

value of x in each approach the best value is selected. For example, in Figure 6.7(a) at x = 1 the value

of 0.45 from the mean rule is selected since it provides the highest I compared to intersection and

union rules at x = 1. In Figure 6.7(a), at x = 2, the value of 0.63 belonging to the intersection fusion

rule is selected since it contributes higher I compared to union and mean rules. Similarly, in Figure

6.7(b), at x = 2 the value of 0.74 from DP rule is selected since it’s I value is higher than Yager and

trade-off rules. In Figure 6.7(c), at x = 2 the value of 0.72 from DP is selected. In the same approach,

for each x value in each subfigures a, b and c of figures 7 and 8, the best value is selected out of the

three values. These selected values are shown in Figures 6.9(a) and Figure 6.9(b). Figures 6.9(a)

illustrates the metric I while Figures 6.9(b) demonstrates the metric EE of these selected values.

In Figures 6.9(a) and 6.9(b) “Unknown” stands for the selected value of the “Unknown Agents”

approach (Section 5.2.1), SM stands for the “Successive Merging” approach (Section 5.2.2.A) and

ST stands for the “Single Trust” approach (Section 5.2.2.B). The results shown in these figures

illustrate that the SM and ST approaches outperform the “Unknown Agents”’s approach. This is

due to the fact that these approaches also rely on the trust of the agents in the set A. However,

the result of “Unknown Agents” is still satisfactory, which is mainly selected from the intersection

rule, due to the nature of this rule that only takes information that all of the sources agree upon.

Comparing SM and ST , SM performs better than ST . This is due to better trust modeling of

the agents in the set A in the SM approach which builds a possibility distribution for each agent

a ∈ A. However, in the ST approach a single trust value is measured for each agent a. Usage of a

distribution allows as to model all of the possible trust ratings for each agent a ∈ A which, in turn,

would enhance its estimation results.

Figures 6.9(c) demonstrates the certainty value measured in Experiment 1 (based on the explana-

tions of Section 5.3). In this figure, by increasing x values, the agents in A become more trustworthy

and their report becomes more consistent. This, in turn, increases the certainty value as as can rely

81



more on the information provided by the members of A.

(a) Metric I (b) Metric EE (c) Certainty Value

Figure 9: Experiment 1 - Algorithm I, |A| = 30, NoI = 50 - Comparison of the Selected Results

B Experiment 2: |A| = 30, NoI = 20

We perform the same experiment as Experiment 1 while reducing NoI from 50 to 30. The same

approaches are used and the same experiments are carried out. Figures 6.10(a) and 6.11(a) demon-

strate the I and EE metrics applied on the “Unknown Agents” approach. Figures 6.10(b) and

6.11(b) illustrate the approach of “Successive Merging (SM)” and Figures 6.10(c) and 6.11(c) show

the results of the “Single Trust (ST)” approach. The results are almost the same as Experiment 1.

However, the outcome of Experiment 2 has deteriorated compared to Experiment 1. Figure 10 shows

lower values of I compared to Figure 7. In the same trend, Figure 11 demonstrates higher values

of EE compared to Figure 8. This is due to the fact that reduction in the number of interactions

between every pair of connected agents has reduced the accuracy of the possibility distributions

measured by the trustor agent (in the pair of connected agents trustor agent is the agent who trust

the other agent). Consequently, the estimation results have deteriorated since the estimation is made

through lower amount of information.

As in Experiment 1, we choose the best result in each one of the three approaches of “Unknown

Agents”, “Successive Merging (SM)”, and “Single Trust (ST)”. Figures 6.12(a) and 6.12(b) demon-

strate the selected values for the metrics of I and EE, respectively. Finally, the certainty over the

results of Experiment 2 is shown in Figure 6.12(c).
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(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 10: Experiment 2 - Algorithm I, |A| = 30, NoI = 20 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 11: Experiment 2 - Algorithm I, |A| = 30, NoI = 20 - Metric EE

C Experiment 3: |A| = 10, NoI = 20

In this experiment, we set |A| to 10 and NoI to 20. Compared with Experiment 2, we reduce the

number of agents from 30 to 10 while keeping the NoI intact. We intend to observe the influence of

the number of agents in A given a fixed manipulation algorithm and a fixd NoI. Since the number

of agents is reduced to 10, the distribution of agents in A into Aft ∪Ant ∪Aht for each x value has

changed. Tabel 5 shows the partition of A for each x value. At x = 1, all the agents belong to the

set Ant. From x = 2 to x = 6 we transfer two agents from Ant to Aht such that at x = 6 all the

agents are in the set of Aht and we have A = Aht. From x = 7 to x = 11, agents are redistributed

from Aht to Aft, two agents at a time. Finally, at x = 11, all the agents are in the set Aft.

X Axis 1 2 3 4 5 6 7 8 9 10 11
# |Aft| 0 0 0 0 0 0 2 4 6 8 10
# |Aht| 0 2 4 6 8 10 8 6 4 2 0
# |Ant| 10 8 6 4 2 0 0 0 0 0 0

Table 5: Distribution of Agents in Figures 13 to 15 and Figures 25 to 27

The values shown in Tabel 5 correspond to the experiments illustrated in Figures 13 to 15.
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(a) Metric I (b) Metric EE (c) Certainty Value

Figure 12: Experiment 2 - Algorithm I, |A| = 30, NoI = 20 - Comparison of the Selected Results

Figure 13 demonstrates the performance of our three estimation approaches (“Unknown Agents”,

“Successive Merging (SM)” and “Single Trust (ST)”) as measured by metric I. Figure 14 illustrates

the values for metric EE as measured for the these three estimation approaches.

Comparing Figures 6.13(a) and 6.14(a) with Figures 6.10(a) and 6.11(a), the graphs demonstrate

almost the same results. Only, the results obtained by intersection rule have slightly deteriorated

from x = 2 to the case where all of the agents are in the subset Aht. This is illustrated in the

decrease of I and increase of EE in Figures 6.13(a) and 6.14(a) for intersection rule from x = 2 to

x = 6.

Comparing Figures 6.13(b) and 6.14(b) with Figures 6.10(b) and 6.11(b), the value of metrics

I and EE for fusion rules of Yager and DP have moderately deteriorated from x = 2 to the case

where all of the agents are in the subset Aht. The results of trade-off rule, on the other hand, have

remained almost unchanged.

Finally, the DP rule in Figures 6.13(c) and 6.14(c) show moderate deterioration compared to the

results shown in Figures 6.10(c) and 6.11(c) from x = 2 to the case where all of the agents are in the

subset Aht. This is demonstrated in the increase of the EE metric and decrease of the I metric.

Figures 6.15(a) and 6.15(b) show the selected best values of each one of the “Unknown Agents”,

“Successive Merging (SM)” and “Single Trust (ST)” approaches. Comparing the graphs of Figures

6.15(a) and 6.15(b) with their equivalents 6.12(a) and 6.12(b), the results are almost unchanged

except for the values from x = 2 (where a subset of agents are in Aht) to the case where all of the

agents are in the subset Aht. This is due to the fact that the intersection and DP rules, have slightly
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(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 13: Experiment 3 - Algorithm I, |A| = 10, NoI = 20 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 14: Experiment 3 - Algorithm I, |A| = 10, NoI = 20 - Metric EE

deteriorated in this range in Figures 13 and 14 compared to Figures 10 and 11 and since these fusion

rules (DP and intersection) are selected in the graphs of Figures 15 and 12, they demonstrate a

slight modification comparing Figures 6.15(a) and 6.15(b) with 6.12(a) and 6.12(b).

Comparing the results of Experiments 2 and 3 we can conclude that reducing the number of

agents has a slight influence on the final results. The influence of the number of agents is mainly

observable in the cases where no subset of agents is fully trustworthy. In other words, in cases where

the agents of A belong to the subsets Aht and Ant, the reduction in the number of agents reduces

the accuracy of the results.

Figure 6.15(c) demonstrates the certainty value over the results of Experiment 3. Comparing

Figures 6.12(c) and 6.15(c), the certainty value is almost unchanged. This is a consequent of the

fact that the amount of information provided in Experiments 2 and 3 is almost unchanged and

consequently the degree of inconsistency in the information received by as has not changed.
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(a) Metric I (b) Metric EE (c) Certainty Value

Figure 15: Experiment 3 - Algorithm I, |A| = 10, NoI = 20 - Comparison of the Selected Results

D Experiment 4: |A| = 5, NoI = 10

In this experiment, we reduce both values of |A| and NoI to measure the performance of our

estimation approaches when the amount of data is considerably low. Tabel 6 shows the distribution

of A into Aft, Ant and Aht for each value of x in this experiment. At x = 1 all the agents are in

the set Ant. From x = 2 to x = 6 one agent is transfered from Ant to Aht at each step. At x = 6

all the agents are in the subset Aht. Later, from x = 7 to x = 11 the agents are redistributed from

Aht to Aft in the same trend as before. Finally, at x = 11 all of the agents are in the subset Aft.

X Axis 1 2 3 4 5 6 7 8 9 10 11
# |Aft| 0 0 0 0 0 0 1 2 3 4 5
# |Aht| 0 1 2 3 4 5 4 3 2 1 0
# |Ant| 5 4 3 2 1 0 0 0 0 0 0

Table 6: Distribution of Agents in Figures 16 to 18 and Figures 28 to 30

Tabel 6 corresponds to the experiments illustrated in Figures 16 to 18. These figures demonstrate

the same measurements as Experiments 1 to 3. Figure 16 shows the outcome of our three approaches

(“Unknown Agents”, “Successive Merging (SM)” and “Single Trust (ST)”) measured by Metric I,

while Figure 17 shows the results using the Metric EE applied in these three approaches. Figures

6.18(a) and 6.18(b) illustrate the selected value of each one of these three approaches. Figure 6.18(c)

, in turn, shows the certainty metric in Experiment 4.

Comparing the graphs of Experiment 4, with their equivalent of Experiment 2, the results have

deteriorated. The metric I shows a decrease in Figure 16 compared to Figure 13 and the EE metric

shows an increase in Figure 17 compared to Figure 14. The same result is observed while comparing
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(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 16: Experiment 4 - Algorithm I, |A| = 5, NoI = 10 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 17: Experiment 4 - Algorithm I, |A| = 5, NoI = 10 - Metric EE

the Figures 6.18(a) and 6.18(b) with Figures 6.15(a) and 6.15(b). This is due to decrease in the

number of agents and NoI compared to Experiment 3. However, the influence of the reduction of

NoI is more than the influence of the decrease in the number of agents in A. Reducing NoI reduces

information exchanged in the interactions and this in turn deteriorates the possibility distributions

built out of the few provided interactions. Consequently, the estimated distributions of ad made

through such few provided information is less accurate than Experiment 3. However, the results

obtained here shows that the proposed approaches still provide satisfactory results in the cases of

scarce data.

The certainty value demonstrated in Figure 6.18(c) is decreased compared to Figure 6.15(c)

which is due to the reduction in the number of interactions among every pair of connected agents.

This, in turn, decreases the consistency among the reported possibility distributions by the agents

of the set A. Consequently, the measured values for certainty decreases.
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(a) Metric I (b) Metric EE (c) Certainty Value

Figure 18: Experiment 4 - Algorithm I, |A| = 5, NoI = 10 - Comparison of the Selected Results

6.2.2 Experiments Using the Manipulation Algorithm II

We repeat the same experiments with manipulation Algorithm II to observe the extent of influence

of the manipulation algorithm chosen by the agents in the set A on the final distribution of Πas→ad .

Similar to the experiments of Section 6.2.1, the following experiments are carried out:

1. Experiment 5: |A| = 30, NoI = 50

2. Experiment 6: |A| = 30, NoI = 20

3. Experiment 7: |A| = 10, NoI = 20

4. Experiment 8: |A| = 5, NoI = 10

A Experiment 5: |A| = 30, NoI = 50

This experiment is the same as Experiment 1 (Section 6.2.1.A) only with the difference of using

Algorithm II instead of Algorithm I. Figures 6.19(a) and 6.20(a) correspond to the results of the

“Unknown Approach” as measured using the metrics I and EE, respectively. Figures 6.19(b) and

6.20(b) illustrate the results of the “Successive Merging (SM)” approach measured using the same

metrics. Finally, Figures 6.19(c) and 6.20(c) show the results of the “Single Trust (ST)” approach.

For each value of x, the distribution of the agents in A into the subsets Ant, Aht and Aft is given

in Table 4.

The graphs of Experiment 5 provide the same trends as Experiment 1. There is a noticeable

difference comparing the results of Figures 6.19(c) and 6.20(c) with the graphs of Figures 6.7(c) and

6.8(c) where the trade-off rule outperforms the DP rule in the graphs of Figures 6.19(c) and 6.20(c)
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in the “Single Trust (ST)” approach. This shows that this fusion rule is more affective when the

manipulation Algorithm II is being used. However, this observation is limited to the cases where

none of the agents belong to the subset Aft.

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 19: Experiment 5 - Algorithm II, |A| = 30, NoI = 50 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 20: Experiment 5 - Algorithm II, |A| = 30, NoI = 50 - Metric EE

As in previous experiments, we select the best results of each one of the three approaches of

“Unknown Agents”, “Successive Merging (SM)” and “Single Trust (ST)”. Figures 6.21(a) and

6.21(b) demonstrate the selected values of these approaches as measured by the I and EE metrics,

respectively. Finally, Figure 6.21(c) shows the certainty value in Experiment 5. The results observed

here are the same as in Figures 9 where “Successive Merging (SM)” outperforms the other two

approaches. The result of “Single Trust (ST)”, in turn, is better than “Unknown Agents”.

B Experiment 6: |A| = 30, NoI = 20

We perform the same experiments as Experiment 5 while reducing NoI from 50 to 30. The same
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(a) Metric I (b) Metric EE (c) Certainty Value

Figure 21: Experiment 5 - Algorithm II, |A| = 30, NoI = 50 - Comparison of the Selected Results

measurements are carried out as in Experiment 5. Figures 6.22(a) and 6.23(a) demonstrate the I

and EE metrics applied on the “Unknown Agents” approach. Figures 6.22(b) and 6.23(b) illustrate

the approach of “Successive Merging (SM)” and Figures 6.22(c) and 6.23(c) show the results of the

“Single Trust (ST)” approach. Figures 6.24(a) and 6.24(b) illustrate the selected values of these

three approaches chosen from Figures 22 and 23.

Comparing the results of Experiments 6 and 5, the outcome of Experiment 6 has deteriorated,

meaning that the values of I and EE have decreased and increased, respectively. This outcome

is expected as the number of interaction is reduced in Experiment 6 and therefore the acquired

information is decreased compared to Experiment 5. This trend was observed when we compared

the results of Experiments 1 and 2.

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 22: Experiment 6 - Algorithm II, |A| = 30, NoI = 20 - Metric I

Comparing Experiments 2 and 6, one noticeable difference is that the fusion rule of trade-off

outperforms the DP rule in Figures 6.22(c) and 6.23(c) compared to 6.10(c) and 6.11(c). This trend

was also observed in the results of Experiment 5 as compared with Experiment 1. Another noticeable
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(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 23: Experiment 6 - Algorithm II, |A| = 30, NoI = 20 - Metric EE

(a) Metric I (b) Metric EE (c) Certainty Value

Figure 24: Experiment 6 - Algorithm II, |A| = 30, NoI = 20 - Comparison of the Selected Results

difference is higher degree of volatility in the results of Experiment 6 compared to Experiment 2. This

means that the graphs of Experiment 6 are not monotonically changing. For example, in Figure

6.24(b) at x = 4, the value of EE has increased which was instead expected to decrease. Such

volatility is driven from more random nature of Algorithm II compared to Algorithm I. Therefore,

the results are not always following the monotonic patterns. However, the general trends are still

observed as in Experiment 2, meaning that the graphs of the metric I increase by increasing x and

the graphs of the metric EE decrease through higher values of x.

C Experiment 7: |A| = 10, NoI = 20

In this experiment, we reduce the number of agents from 30 to 10 compared to Experiment 6.

Other values and settings are the same as in Experiment 6. Figure 25 illustrates the result of the

metric I as measured for the three approaches of “Unknown Agents”, “Successive Merging (SM)”

and “Single Trust (ST)”. Figure 26 illustrates the results of the metric EE as measured for the
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same three approaches. Finally, Figure 27 shows the selected best values from each one of these

three approaches (Figures 6.27(a) and 6.27(b)) and the certainty metric as illustrated in 6.27(c).

Note that the distribution of agents in A into the subsets Ant, Aht and Aft corresponding to each

value of x, is given in Table 5.

The results of Experiment 7 show slight deterioration compared to Experiment 6 from x = 2 (in

which a subset of agents are in Aht) to the case where all of the agents are in the subset Aht. This

demonstrates that when agents are not totally trustworthy, decreasing the number of agents would

deteriorate the results (decrease of EE and increase of I).

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 25: Experiment 7 - Algorithm II, |A| = 10, NoI = 20 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 26: Experiment 7 - Algorithm II, |A| = 10, NoI = 20 - Metric EE

Comparing results of Experiments 3 and 7, the graphs of Figure 7 demonstrate the same results

as in Experiment 3. However, more volatility is observed in the results of Experiment 7 compared to

Experiment 3. Indeed, as the value of x increases, the graphs of Experiment 3 are not monotonically

changing. By increasing x values, the graphs of the metrics I and EE do not monotonically increase

and decrease, respectively. This is due to higher randomness of Algorithm II compared to Algorithm
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(a) Metric I (b) Metric EE (c) Certainty Value

Figure 27: Experiment 7 - Algorithm II, |A| = 10, NoI = 20 - Comparison of the Selected Results

I. However, the overall trend in Experiment 7 is the same as Experiment 3.

D Experiment 8: |A| = 5, NoI = 10

In this experiment, we reduce the number of agents and NoI to 5 and 10 compared to Experiment

7 in order to measure the performance of our approaches while using manipulation Algorithm II in

low data presence. The set of approaches are the same as before. Figure 28 demonstrates the

results of the metric I, while Figure 29 illustrates the results of the metric EE applied on our three

approaches. Figure 30 shows the selected values of each one of these three approaches (Figures

6.30(a) and 6.30(b)) and the certainty metric (Figure 6.30(c)). For each value of x, the distribution

of agents in set A into the subsets Ant, Aht and Aft is given in Table 6.

The results of Experiment 8 have deteriorated compared to Experiment 7. This is expected since

the number of interactions and agents have reduced compared to Experiment 7. However, decreasing

NoI has higher influence compared to reduction of agents. This is due to the fact that reduction of

information reduces the quality of the measured possibility distributions. This, in turn, deteriorates

the estimation results.

Comparing the results of Experiments 4 and 8, the graphs illustrate the same trends and the

results are close. However, more fluctuation is observed in the graphs of Experiment 8 compared to

Experiment 4. This phenomenon is also observed in previous experiments of manipulation Algorithm

II. As explained before, the higher degree of volatility in the graphs of Algorithm II is a consequent

93



(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 28: Experiment 8 - Algorithm II, |A| = 5, NoI = 10 - Metric I

(a) Unknown Agents (b) Successive Merging (SM) (c) Single Trust (ST)

Figure 29: Experiment 8 - Algorithm II, |A| = 5, NoI = 10 - Metric EE

of higher randomness in the nature of Algorithm II compared to Algorithm I.

6.3 Conclusions of Simulations

In this chapter, we presented the simulation results of our trust model. Our trust model was

aimed at estimating the trust distribution of a target agent through the information acquired from

a set of advisor agents. The results are presented for the scenario that the advisor agents are

unknown (“Unknown Agents”) and the scenarios that the advisor agents are known (“Successive

Merging (SM)” and “Single Trust (ST)”). The experiments were intended to validate the proposed

methodologies introduced in Chapter 5. In general, the results validate our proposed approaches

giving satisfactory results in the experiments. Moreover, the goal of separate experiments presented

in this chapter was to evaluate the influence of: (1) the number of agents in set A which is |A|; (2)

the number of interactions between each pair of connected agents (NoI); and (3) the manipulation

Algorithm I and II. This led to eight different experiments which were demonstrated in this chapter.
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(a) Metric I (b) Metric EE (c) Certainty Value

Figure 30: Experiment 8 - Algorithm II, |A| = 5, NoI = 10 - Comparison of the Selected Results

In each experiment, we evaluated the influence of the degree of the trustworthiness of the agents in

A by gradually moving agents from the subset of Ant to Aht and later to Aft.

Considering the simulation results of Section 6.2, by increasing the number of agents (|A|) and

the number of interactions (NoI), the estimated possibility distribution of ad improves. This im-

provement is observed in the results of manipulation algorithms I (starting from Experiment 4 and

going back to Experiment 1) and manipulation algorithms II (starting from Experiment 8 and going

back to Experiment 5) which is illustrated in the increment of the metric I and decrement of the

metric EE. The influence of NoI, however, is more than |A| since increasing the number of inter-

action would increase the information acquired on other agents in the multi-agent system which, in

turn, improves the accuracy of the possibility distributions measured on the trust of other agents.

Consequently, the results improve. This influence was observed when we compared the results of

Experiments 1 and 2 ( for manipulation Algorithm I) and Experiments 5 and 6 (for manipulation

Algorithm II). However, the influence of |A| is not to the same extent as NoI. This was illus-

trated when we compared the results of Experiments 2 and 3 (for manipulation Algorithm I) and

Experiments 6 and 7 (for manipulation Algorithm II).

In Experiments 1 to 8, agent redistribution from the subset Ant to Aht and later from Aht to

Aft improves the results. This improvement is observed through increment of the value of x where

the metric I is increased and the metric EE is decreased. Through redistribution of the agents in

A from Ant to Aht and later to Aft, the advisor agents become more trustworthy and report more

honestly. Therefore, the estimated trust distribution of ad improves.
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Comparing manipulation algorithms I and II, the graphs of manipulation Algorithm I (Exper-

iments 1 to 4) are monotonically changing while the graphs of manipulation Algorithm II (Ex-

periments 6 to 8), on the other hand, do not demonstrate such monotonic transformation. This

influence is observed in the graphs of the metrics I and EE which is due to higher randomness in

the nature of Algorithm II compared to Algorithm I. However, this influence is not observed in the

graphs of Experiment 5 where NoI is 50. This indicates that when the number of interactions is

high enough, the acquired information is adequate for correct measurement of ad’s trust distribu-

tion. Consequently, having sufficient amount of information compensates for the random nature of

manipulation Algorithm II.

The results of Experiments 4 and 8 aim to measure the performance of our proposed approaches

when data is scarce. The results obtained in these two experiments are worse than other experiments.

However, it shows that the proposed approaches still perform satisfactorily in low data presence.

Comparing the fusion rules of the “Unknown Agents” approach, intersection rule outperforms

union and mean rules in experiments 1 to 8. This is due to the fact that the intersection rule

only considers the information that all of the sources agree upon. Considering the results of the

“Successive Merging (SM)” approach in experiments 1 to 8, DP rule outperforms Yager and trade-off

rules. This is the consequent of the fact that DP fusion rule is more categoric in considering only the

information acquired from the trustworthy sources. DP shows the same performance in the results

of the “Single Trust (ST)” approach in experiments 1 to 4. However, in experiments of Algorithm

II (Experiments 5 to 8), DP only dominates other fusion rules in the cases that a subset of the

agents in A are in Aft . When no agent is in the subset of Aft, trade-off rule outperforms other

fusion rules. This indicates that in cases where no agent is fully trustworthy, trade-off rule is more

adaptable when manipulation Algorithm II is used and the “Single Trust (ST)” approach is applied.

Comparing the three approaches, the “Successive Merging (SM)” approach outperforms the

“Single Trust (ST)” approach and the “Single Trust (ST)” approach, in turn, performs better than

the “Unknown Agents” approach. This indicates that when the degree of the trustworthiness of
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the advisor agents is known, the estimation results improve. Although the “Successive Merging

(SM)” approach yields the best results, there is a considerable computation burden for applying

this approach. If the running time is important in an application, the “Single Trust (ST)” approach

would be a better option, which keeps a balance between the performance and the running time.

The certainty metric, presented in Section 5.3, is aimed at measuring the confidence of as in

the information acquired from its advisors. The certainty metric considers both the consistency

in the information acquired from the agents in A and the trust of as in its advisors. Considering

the certainty metric, increasing NoI enhances certainty. This trend was observed while comparing

Experiments 1 and 2 (in manipulation Algorithm I) and Experiments 5 and 6 (in manipulation

Algorithm II). Higher NoI contributes to more accurate possibility distributions built by agents

in A on the trust distribution of ad. Consequently, the consistency among the reported possibility

distributions by the agents in A enhances which, in turn, increases certainty. Changing the number

of agents in A does not influence certainty. This was observed while comparing Experiments 2 and

3 (in manipulation Algorithm I) and Experiments 6 and 7 (in manipulation Algorithm II) which

is due to the fact that the quality of information has not changed and therefore the inconsistency

among the reported distributions remains the same. Comparing the manipulation algorithms I and

II, the certainty metric has unchanged while comparing experiment i (1 ≤ i ≤ 4) with experiment

i + 4. This is due to the fact that NoI has remained the same which keeps the inconsistency

among the reported possibility distributions of agents in A unchanged. In all Experiments 1 to

8, through redistribution of agents from Ant to Aht and later to Aft the certainty metric has

improved. This is the consequent of the fact that when the agents in A are more trustworthy, their

reported distribution become less manipulated and therefore the possibility distributions reported

to as become more consistent. Consequently, the certainty increases by increase in the x values.

In this chapter, we provided extensive simulations in different experiments and we observed

the influence of the multi-agent platform settings on the quality of the target agent’s estimated

distribution. The quality of the estimated distributions was evaluated through the the metrics I
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and EE. Moreover, we presented the performance of our certainty metric and how it relates to

the settings in the multi-agent platform. The simulations presented in this chapter were aimed at

validating the approaches which were introduced in Chapter 5. In the next chapter, we present the

conclusion and the future works.
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Chapter 7

Conclusion and Future Work

7.1 Summary of the Thesis

In this thesis, we estimated the trust distribution of an unknown target agent through the acquired

information from a set of advisor agents when: (1) there is uncertainty arising from variability and

ignorance in the degree of trustworthiness of the advisor and target agents; (2) the advisor agents

are self-interested and manipulate their information before reporting it; and (3) the trust domain is

multivalued. We proposed the usage of the possibility distributions in such settings and considered

three different approaches:

1. Unknown agents approach. We assumed the agents in the set A are unknown to as.

2. Successive merging approach. We assumed the agents in the set A are known to as and

we merged the successive distributions of: (1) the possibility distributions of as’s trust in the

agents of the set A; and (2) the possibility distributions of the set A’s trust in ad.

3. Single trust approach. We assumed the agents in the set A of advisors are known to as

and we measured a single trust value, representing the trust of as in each agent a ∈ A. Then,

we used these single trust values in the fusion rules of Yager, DP, and trade-off (introduced

in Section 4.1.2) to estimate the possibility distribution of as’s trust in ad.
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Moreover, we measured a certainty metric over the possibility distributions reported by the

agents in the set A in order to demonstrate the confidence of agent as in the information acquired

from its advisors. For measuring the certainty metric we considered: (1) consistency in the reported

possibility distributions by the agent in A; and (2) the trust of as in the agents of A. We measured

the certainty metric in Section 5.3.3 and demonstrated the influence of modifying inconsistency and

trust on the certainty value.

Finally, we presented extensive experiments in Section 6, where we first introduced two evaluation

metrics of I and EE which respectively correspond to: (1) I. the information level of a possibility

distribution; and (2) EE. the estimated error of the measured possibility distribution of ad. Later,

we validated our proposed approaches in extensive experiments and presented the results of our

simulations by demonstrating the influence of the following experimental settings: (1) the employed

manipulation algorithm; (2) the number of agents in A; (3) the number of interactions between every

pair of connected agents (NoI); (4) the employed fusion rule; and (5) the degree of trustworthiness

of the agents in A. The results demonstrated that the “successive merging” approach outperforms

the “single trust” approach and the “single trust” approach, in turn, performs better than the

“unknown agents” approach. In general, the trust estimation approaches and the certainty metric

showed satisfactory results in the experiments.

7.2 Future Work

A possible extension to our model is consideration of prorogation of trust in multi-agent networks.

In this thesis, we just considered trust estimation of a target agent who is connected to the evaluator

agent through one intermediary agent. Indeed, each agent a ∈ A connects as to ad. This can be

extended to the cases where the target agent can be reached through a set of connected intermediary

agents. In such cases, the reputation of the target agent should be propagated more than once to

reach the evaluator agent. Higher number of intermediary agents would probably decrease the

accuracy of the information received by the evaluator agent and more robust approaches would be
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required to compensate for the manipulation of the information by the intermediary agents.

The possibility distribution measured in this thesis is based on the work of Masson and Denœux

[59] which was explained briefly in Section 4.3. The possibility distribution is measured directly

from empirical data. However, this measurement is done in a one shot approach, meaning that

the possibility distribution is measured only once, which is after completion of the interactions.

There is no mechanism for updating the possibility distribution when more data becomes available.

Indeed, through the current mechanism the possibility distribution should be constructed entirely

from scratch once more data is acquired. A methodology can be proposed for updating the possibility

distribution measured in [59] in which the possibility distribution can be updated as more interaction

is carried out over time and more data becomes available. This would, in turn, provide an online

learning on the possibility distribution of an agent’s trust.

Finally, we want to compare our trust model with the models of BLADE (introduced in Section

3.2.8) and Travos (introduced in Section 3.2.7) which are the closest trust models to our own. We

became familiar with the BLADE model one month ago when I was almost at the end of writing my

thesis, which was too late for an experimental comparison. The Travos model is proposed for binary

domains which has a more restricted platform compared to our multi-valued platform. Both models

of BLADE and Travos are probabilistic models which can only address uncertainty driven from

variability. This is a shortcoming of probabilistic models compared to the possibilistic models which

can address both types of uncertainty (namely variability and ignorance). Despite these differences,

we want to compare our model with these two models as part of our future work.
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