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ABSTRACT

Edge Preservation in Nonlinear Diffusion Filtering

Mohammad Reza Hajiaboli, Ph.D.

Concordia University, 2012

Image denoising techniques, in which the process of noise diffusion is modeled as a

nonlinear partial differential equation, are well known for providing low-complexity

solutions to the denoising problem with a minimal amount of image artifacts. In

discrete settings of these nonlinear models, the objective of providing a good noise

removal while preserving the image edges is heavily dependent on the kernels, diffu-

sion functions and the associated contrast parameters employed by these nonlinear

diffusion techniques. This thesis makes an in-depth study of the roles of the kernels

and contrast parameters with a view to providing an effective solution to the problem

of denoising of the images contaminated with stationary and signal-dependent noise.

Within the above unified theme, this thesis has two major parts. In the first

part of this study, the impact of anisotropic behavior of the Laplacian operator on

the capabilities of nonlinear diffusion filters in preserving the image edges in different

orientations is investigated. Based on this study, an analytical scheme is devised to

obtain a spatially-varying kernel that adapt itself to the diffusivity function. The

proposed edge-adaptive Laplacian kernel is then incorporated into various nonlinear

diffusion filters for denoising of images contaminated by additive white Gaussian noise.

The performance optimality of the the existing nonlinear diffusion techniques is

generally based on the assumption that the noise and signal are uncorrelated. How-

ever, in many applications, such as in medical imaging systems and in remote sensing

where the images are degraded by Poisson noise, this assumption is not valid. As

such, in the second part of the thesis, a study is undertaken for denoising of images

contaminated by Poisson noise within the framework of the Perona-Malik nonlinear
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diffusion filter. Specifically, starting from a Skellam distribution model of the gradient

of the Poisson-noise corrupted images and following the diffusion mechanism of the

nonlinear filter, a spatially and temporally varying contrast parameter is designed.

It is shown that the nonlinear diffusion filters employing the new Laplacian kernel

supports the extremum principle and that the proposed contrast parameter satisfies

the sufficient conditions for observance of the scale-space properties.

Extensive experiments are performed throughout the thesis to demonstrate the

effectiveness and validity of the various schemes and techniques developed in this

investigation. The simulation results of applying the new Laplacian kernel to a num-

ber of nonlinear diffusion filters show its distinctive advantages over the conventional

Rosenfeld and Kak kernel, in terms of the filters’ noise reduction and edge preservation

capabilities for images corrupted by additive white Gaussian noise. The simulation

results of incorporating the proposed spatially- and temporally-varying contrast pa-

rameter into the Perona-Malik nonlinear diffusion filter demonstrate a performance

much superior to that provided by some of the other state-of-the-art techniques in

denoising images corrupted by Poisson noise.
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Chapter 1

Introduction

1.1 Digital Image Denoising

Image processing is a rapidly growing field of research because of its widespread ap-

plications in military, commercial, entertainment, medical and many other sectors of

the society. Technological advances in digital imaging, computer processors and mass

storage devices have fueled this growth. Image processing tasks that in the past have

employed analog systems in their implementation are now being implemented using

digital systems because of the flexibility and affordability provided by the latter.

The field of image processing is concerned primarily with extracting useful infor-

mation from images. Image processing algorithms may be classified in three different

categories. In the first category, there are techniques that carry out low-level pro-

cessing using directly the raw pixels, with denoising and edge detection being good

examples of such techniques. In the second category, there are algorithms that utilize

the results of the low-level processing for other types of processing, such as segmenta-

tion, classification and edge linking. In the third category of digital image processing

algorithms, there are techniques that attempt to extract semantic meaning from the
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information provided by the algorithms in the first and second categories. For exam-

ple, pattern recognition or object tracking algorithms belong to this category.

In digital imaging systems, noise from various sources contaminates the acquired

image and hinders the performance of the image processing algorithms. Thus, de-

noising of the acquired image that improves the signal-to-noise ratio (SNR) is needed

prior to applying any higher-level image processing algorithms.

Noise is defined to be an uncertainty or imprecision with which a signal is recorded

[1]. One type of noise that is produced by a typical charge-coupled device (CCD) im-

age sensor is an additive white Gaussian noise (AWGN) with zero mean [2]. In many

imaging systems such as those used in medical, astronomical and remote sensing ap-

plications, images are acquired in a low-illumination condition and, therefore, referred

to as photon-limited images. In such a situation, the image is degraded mainly by a

Poisson noise [3]. The Poisson noise has strong signal dependency [4, 5].

A denoised image is an approximation of the underlying true image prior to be-

coming contaminated by the noise. A variety of denoising filtering techniques have

been introduced in the literatures [6–8]. However, there is always a trade-off between

the smoothing efficiency of a denoising technique, preservation of discontinuity and

generation of artifacts in the resulting denoised image. In the following, some of the

well-known noise filtering techniques are briefly reviewed.

1.2 A Brief Review of Noise Filtering Techniques

Image denoising schemes can be classified to two broad categories, linear and nonlin-

ear techniques. In linear denoising techniques, the denoised images are obtained by

performing some averaging operation on the image pixels in the spatial domain or first

by transforming the image in the frequency domain and then performing certain low-

pass filtering operations on the transformed image. There are number of transform
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domain filtering techniques that employ discrete transform, such as Fourier transform

(FT) [9], cosine transform [10], Haar transform [11], and wavelet transform [12–15].

These transform-domain techniques make use of the fact that the coefficients of the

transformed image are decorrelated into low and high frequency components. The

problem with these techniques, however, is that since the edges also belong to high

frequency regions, the filtering process, while denoising the image, results in distorting

the edges. The trade-off between the noise removal and edge preservation in these

techniques is generally controlled by a suitable choice of cut-off/threshold frequency

of the filters. Wavelet-based linear techniques for image denoising offer significant

advantages over other frequency domain filters, such as different choices in select-

ing basis functions and spatial frequency tiling [16]. However, these techniques have

limitations [17]: (i) The specific distributions of the signal and noise may not be

well matched at different scales. (ii) The choice of the threshold, which is the most

important design parameter, is made in an ad hoc manner.

To address the disadvantages of the linear denoising techniques, nonlinear filters

have been developed which are computationally more intensive, but they provide bet-

ter edge-preservation. In the context of wavelet-based denoising, based on formal

Bayesian theory, Simoncelli et al. [18] have developed nonlinear estimators for detect-

ing the threshold parameter that outperform its linear counterparts. They used a

generalized Laplacian model for the subband statistics of the image and developed a

noise-removal algorithm, which performs a ”coring” operation to the data. This same

idea has also been followed by other researchers to develop other wavelet-based denois-

ing methods based on different statistical models for subband wavelet coefficients. For

instance, in [19], a generalized Gaussian probability distribution function (PDF) has

been used to model the subband wavelet coefficients, and in [20–22] a Gauss-Hermite

PDF to model the empirical wavelet coefficients. Other examples of spatially-adaptive

techniques for thresholding wavelet coefficients to remove noise from medical and
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satellite aperture radar (SAR) images can be found in [23–27]. However, the use of

the orthogonal wavelet transform in these denoising techniques results in artifacts

in the denoised images due to the pseudo-Gibbs phenomena [11], which arise from

the fact that the orthogonal wavelet transforms are not shift-invariant and thus, the

singularities at different locations are represented differently in these transforms [28].

To reduce the impact of pseudo-Gibbs phenomena, the undecimated wavelet trans-

form (UDWT) has been introduced. This transform has been independently proposed

under several names, e.g., translation invariant wavelet transform (TIW) [29], shift

invariant wavelet transform (SIW) [30], and stationary wavelet transform (SWT) [31].

In the case of the orthogonal wavelet transforms, the wavelet coefficients of the signal

and those associated with the noise are uncorrelated. However, in the case of UDWT,

this property does not hold, since it is a non-orthogonal transform [32].

A class of nonlinear filters is median filters [33, 34] in which each pixel value

in the denoised image is the median of a set of the noisy pixels in a small window

of the image. The performance of these filters depends on the size of the image

window but the filters fail to provide a good visual performance for images highly

contaminated by noise [11]. Another class of nonlinear filters is the partial differential

equation (PDE) based filters [35, 36]. These filter are well known for their good

edge preservation capabilities without producing ringing artifacts. These filtering

schemes have been widely used in medical image denoising [37, 37–43], where it is

of paramount of importance that the denoising process preserves the information

contained in high-spatial-frequency components of the images. However, when the

level of the contaminating noise is moderate or high, these filters fail to provide a

good balance between noise reduction and edge preservation in the denoised image

and pin-hole artifacts in the denoised image are formed [44, 45].

The performance optimality of denoising techniques in terms of their edge preser-

vation and noise removal capabilities is generally based on the assumption that the
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noise and signal are uncorrelated and contaminating noise is stationary such as AWGN.

However, the assumption of stationarity and additivity do not hold for cases in which

images are acquired under low illumination condition such as cases in medical imaging

or remote sensing systems. In these cases, the images are degraded mainly by Poisson

noise. For removing Poisson noise, which is a non-stationary and signal correlated

noise, some methods have been developed, which belong to the category of nonlinear

denoising filters. One of the techniques to denoise images corrupted by Poisson noise

is to first apply the nonlinear Anscombe transform [46] or its simpler form, the square

root transform [47], in order to reduce the correlation between the signal and the

noise, and then use any denoising technique, developed based on the assumption of

uncorrelated noise, to process the transformed image. Some other techniques that

are more effective in removing Poisson noise have also been developed. The wavelet-

based denoising [48–53] is one category of such techniques. However, the denoised

images obtained by these techniques have ringing artifacts around the edges. The

formation of these artifacts can somewhat be reduced by incorporating the external

cycle-spinning mechanism [54] in the wavelet filtering at the expense of an increased

computational complexity.

A variational filter has also been introduced for removing Poisson noise, which can

be seen as an approach for minimizing a cost function consisting of two terms, a term

representing the total variation (TV) of the regularized image [36] and a fidelity term

representing the Kullback-Liebler (KL) divergence between the regularized and noisy

images [55]. Due to the non-smoothness of the cost function and the non-quadratic

and non-separable nature of its KL divergence term, many different approximate

methods have been proposed to solve this nonlinear problem [56–61]. The quality of

the denoised images provided by the filters is highly dependent on the effectiveness of

the numerical solver used for the solution of the minimization problem.
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1.3 Motivation

The nonlinear diffusion filters are powerful denoising techniques in view of their su-

perior edge preservation capability without producing ringing artifacts in the filtered

images. These filters perform time evolutionary processes, in which the denoised im-

age is a solution of a diffusion equation modeled as a PDE with spatially varying

diffusion coefficients. Since the introduction of the first nonlinear diffusion filter by

Perona and Malik [35] in 1990, enhancing the performance of the PDE-based nonlinear

diffusion further has been a subject of many research efforts [44, 45, 62–66]. In these

improved techniques, the focus has been on introducing new or modified diffusivity

functions providing better control of the diffusion process.

Digital realization of PDE, modeling the nonlinear diffusion process, invariably

makes use of kernels to approximate time and spatial rate of change of the image

intensities. It should be noted that the kernels themselves have impact on the charac-

teristics of the diffusing images. This impact of the kernels needs to be studied in the

context of noise removal and edge preservation capabilities of the nonlinear diffusion

process.

In nonlinear diffusion filters, a diffusivity function is used to control the diffusion

process. In order to provide a good control of the noise diffusion and edge preservation,

such a function should be a function of image gradient as well as image intensities.

Most of the diffusivity functions are chosen to be a function of image gradient and a

contrast parameter. With a proper choice of this parameter, the rate of diffusion at

edge pixels are made different from that at non-edge pixels. In most cases, a spatially

constant value of this parameter is judiciously chosen so as to provide a good balance

between edge preservation and noise removal. Some limited studies for obtaining the

spatially varying contrast parameter have been made and that too only for the cases

where images are contaminated by additive white Gaussian noise. Little effort seems

to have been made to carry out a comprehensive study on the impact of the contrast
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parameter in diffusing the noise and preserving the edges of images, specially when

the images are contaminated by other kinds of noise.

1.4 Scope of the Thesis

This thesis is concerned with the development of PDE-based techniques for removing

the noise in images. The focus of the research is on studying the impact of the kernels

and contrast parameters in removing the noise of the images while preserving their

edges.

In the first part of the thesis, a study is undertaken to investigate the impact of

the anisotropic behavior of the Laplacian operator of nonlinear diffusion filters. Based

on this study, an edge-adaptive Laplacian kernel is designed with a view to providing

filters with a better edge preservation capability while removing the noise effectively.

In the second part of the thesis, a systematic study is conducted for understand-

ing the mechanism of image diffusion from the view point of the choice of the con-

trast parameter used by a nonlinear diffusion filter. Through this study, a spatially

and temporally varying contrast parameter is evolved within the framework of the

Perona-Malik nonlinear diffusion filter with an objective of preserving the edges while

effectively denoising the images corrupted by Poisson noise.

1.5 Organization of the Dissertation

The dissertation is organized as follows.

In Chapter 2, a brief account of the development of the Perona-Malik nonlinear

diffusion filter is given. The development begins with a premise that image diffusion

is a process satisfying the scale-space properties and ends with a nonlinear PDE
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model for the process of image diffusion. A couple of discrete models of the Perona-

Malik filter, each emphasizing on a different strategy for noise diffusion and edge

preservation, is discussed. This chapter serves as a background material necessary for

the development of the work undertaken in this thesis.

In Chapter 3, the effect of the anisotropic behavior of Rosenfeld and Kak’s Lapla-

cian kernel on the edge preservation capability of a discretized version of the Perona

and Malik’s nonlinear diffusion filter is first studied. Based on this study, an edge-

adaptive Laplacian kernel, which exploits this anisotropic behavior in providing a

more effective edge preservation capability, is developed. The new kernel is incorpo-

rated into the Perona-Malik filter as well as into some other nonlinear diffusion filters

to demonstrate its effectiveness in enhancing their capability in providing better per-

formance.

In Chapter 4, the role of contrast parameters in denoising images contaminated

by Poisson noise is investigated. Starting from a Skellam distribution model of the

image gradient and carrying out a systematic analysis of the diffusion process of the

Perona-Malik nonlinear filter, a spatially and temporally varying contrast parameter

is designed. The scale-space properties of the Perona-Malik filter incorporating this

contrast parameter is also examined. Finally, in this chapter, the effectiveness of the

newly designed contrast parameter is experimentally investigated and performance of

the filter compared with that of other state-of-the-art nonlinear filters.

Finally, Chapter 5, summarizes the work of the study undertaken in this thesis

and highlights its contributions. Some suggestions for further work based on the ideas

and schemes developed in this thesis are also given.

8



Chapter 2

Background Material

2.1 Nonlinear Diffusion Denoising

The Gaussian scale-space [67] can be considered a striating point of diffusion based

image processing techniques. The Gaussian scale-space is derived by convolving the

original image u0(x, y) with a Gaussian kernel G(x, y, t) of variance σ2 = t, where t is

an artificial time index. The resulting linear scale-space for t : 0 �−→ +∞ is a family

of derived images in form of

u(x, y, t) = u0(x, y) ∗ G(x, y, t) (2.1)

where u(x, y, t) has coarser resolution as t marching to infinity. Later, Koenderink [68]

and Hummel [69] have shown that the convolution of u0 with Gaussian kernel with

variance of t is equivalent to the solution of standard heat conduction equation in

form of

∂u(x, y)

∂t
= ∇2u(x, y) (2.2)

at t = σ2/2 with the initial condition u(x, y, 0) = u0(x, y), where ∇2 denotes the

Laplacian operation. This linear diffusion equation (2.2) can be used for removing
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the noise from the initial image u0; however, the diffusion rate of the noise and edges

are equal; thus, the edges on image will be eliminated, displaced or blurred. A major

breakthrough to this problem has been proposed by Perona and Malik in [35], where

they introduced the nonlinear diffusion equation given by

∂u/∂t = div (c (‖∇u‖)∇u) on Ω × (0, +∞), (2.3)

subject to the boundary and initial conditions

∂u/∂n = 0 on ∂Ω × (0, +∞) ,

u(x, y, 0) = f on Ω ,

where f is a noisy image, ∂u/∂n is the derivative of the image on the normal to the

image boundary ∂Ω, ‖.‖ and div denote the L2 − norm and divergence respectively

and c(.) is the diffusivity function also referred to as the diffusion coefficients. For

notational simplicity, u(x, y, t) is denoted as u. The diffusivity function is a positive,

and non-increasing function of ‖∇u‖ and two of these diffusivity functions introduced

in [35] are

c (‖∇u‖) = K2/
(
K2 + ‖∇u‖2

)
(2.4)

and

c (‖∇u‖) = exp−
(

1

2

(‖∇u‖
K

)2
)

, (2.5)

where K is a positive parameter called a contrast parameter. The value of the pa-

rameter K is chosen such that the diffusion coefficient, c (‖∇u‖), is close to one for

regions of u with ‖∇u‖ 
 K, whereas it is close to zero for ‖∇u‖ � K, which leads

to a good edge preservation by reducing the diffusivity for the high contrast edges.

The nonlinear diffusion (2.3) can be seen as a minimization problem of a potential

cost function (see e.g. [70, 71]) in from of

min

{∫
Ω

ρ(s)dxdy

}
, (2.6)
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where s = ‖∇u‖ and ρ(s) is a function associated with a diffusivity function as

ρ(s) =

∫
φ(s)ds =

∫
sc(s)ds , (2.7)

where φ(s) is called the flux function. Using the diffusivity functions of Perona and

Malik, the associated potential function is non-convex leading to ill-posedness of (2.3).

In this case, edges and noise with s > K are facing an inverse diffusion (i.e. the

enhancement). To overcome the difficulty arose from the ill-posedness of the nonlinear

diffusion process one of the possibility is to use the a different diffusivity function by

which the flux function of ϕ(s) = ρ′(s) is monolithically increasing with respect to

s, i.e., d(φ(s))/ds > 0. An example of these diffusivity functions is introduced by

Charbunnier [72] in the form of

c (‖∇u‖) =
(
K2/
(
K2 + ‖∇u‖2

))−1/2
. (2.8)

Another practical approach for increasing the stability of the nonlinear diffusion pro-

cess, when the associated potential function is of non-convex, is to employ the spatial

regularization scheme introduced by Catte et al. [73]. In this scheme, the diffusivity

function is replaced by c (‖∇ (u ∗ Gσ) ‖) where u is convolved by a Gaussian kernel,

Gσ, with a standard deviation of σ.

In general, using the diffusivity function by which the associated potential func-

tion becomes non-convex or even concave is more desirable for increasing the edge

preservation capability of the filter. In this regard, different diffusivity functions have

been introduced such as the ones by Wieckert [64] and Gilboa et al. [74] with a non-

convex potential function, and Keeling and Stollberger’s function [63] by which the

potential function is concave.

The main question that for while in literature has been refer to as Perona-Malik

Paradox [66] is that the nonlinear diffusion using the diffusivity functions for which

the associated potential function is non-convex should lead to instability. However,

the results does not show any instability. The research in [64] has shown that the
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nonlinear diffusion filter that is discretized in spatial domain in particular way can

be seen as well-posed diffusion process which can support the associated scale-space

properties. Two of commonly used discretized model of the nonlinear diffusion filter

are provided in Section 2.2.

Apart from the variety in diffusivity functions, the nonlinear diffusion equation

itself has been formulated in different ways. One of early models emerged from the

expansion of the divergence in (2.3) by Alvarez et al. [75] is in the form of

ut = c (‖∇u‖)uξξ + (c (‖∇u‖) + c′ (‖∇u‖) ‖∇u‖)uηη , (2.9)

where uξξ and uηη are the second derivative of u in the direction of the level sets (i.e.,

the direction parallel to the image features) and the direction of the gradient (i.e., the

direction across the edge). Knowing that c(.) is a positive coefficient, (2.9) can be

interpreted as a combination of a forward diffusion term in the direction of the level

set and a term that could possibility perform the backward diffusion process in the

direction of the gradient since (c (‖∇u‖) + c′ (‖∇u‖) ‖∇u‖) can be negative.

A class of nonlinear diffusion filters known as anisotropic diffusion filters has been

developed in which the diffusion rate is spatially controlled based on the direction of

the local features. Using the directional dependent smoothing for image enhancement

can be traced back to the work of [76]. However, in context of PDE-based filters for

image processing, we can refer to the method of [77] known as mean curvature motion

(MCM) as one of the earliest method in which the smoothing is performed only in

the direction of level sets. Based on the idea of MCM, other nonlinear filters have

been developed such as the ones introduced by [78] and [79] for image denoising and

segmentation.

Among the other directional dependent smoothing filters (i.e., anisotropic) filters,

we can refer to the model of [64, 80] in both edge and coherence-enhancing formu-

lations, or the model of [81] and its improved one [82] developed for denoising of

vector-valued images.
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Starting from (2.9), Carmona and Zhong [83] introduced a more generalized PDE

for the nonlinear diffusion filter in the form of

ut = a (‖∇u‖) (b (‖∇u‖)uξξ + c (‖∇u‖)uηη) , (2.10)

where the diffusivity function a(.) controls the total diffusion and the diffusivity func-

tions of b(.) and c(.) control the diffusivity in the direction of the level sets and

gradient.

2.2 Numerical Solution

A commonly used numerical model for the Perona-Malik filter [35] is based on an

explicit forward Euler approximation of ∂u/∂t in the time and using the 4-nearest

neighborhood pixels in direction of x and y in the space. This numerical model for

each pixel of a digital image, u, with a constant grid size of Δx = Δy = 1 at position

of (i, j) is given by

u
(n+1)
i,j = u

(n)
i,j + τ [cN∇Nu + cS∇Su + cE∇Eu + cW∇Wu](n)

i,j , (2.11)

where n is the number of iterations, τ is a time step-size for approximation of ∂u/∂t

and for stability reason, it is bounded in range of (0, 0.25]. The evolved image un

is usually considered as diffused image at a virtual time of t = τ × n. Directional

gradients of u for any pixel at position of (i,j) are given by

∇Nui,j = ui+1,j − ui,j , ∇Sui,j = ui−1,j − ui,j ,

∇Eui,j = ui,j+1 − ui,j , ∇W ui,j = ui,j−1 − ui,j , (2.12)

which are the result of subtraction of each pixel value from the pixel values of the

4-nearest neighbors in the directions of north (N), south (S), east (E) and west (W).

The diffusion coefficients of cN , cS, cE and cW are updated at every iteration as a
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function of the gradient in the form of

cN = c
(‖∇ui+1/2,j‖

)
, cS = c

(‖∇ui−1/2,j‖
)

,

cE = c
(‖∇ui,j+1/2‖

)
, cW = c

(‖∇ui,j−1/2‖
)

. (2.13)

For approximation of the diffusion coefficients at the arc locations, one of the simple

and crude choice as Perona and Malik have suggested, is to approximate the norm

of gradient at each arc location with the absolute value of its projection along the

direction of the arc [35], which leads to

cd ≈ c (|∇du|) , where d ∈ {N, S, E, W} . (2.14)

Approximation of cd as as an arithmetic average of the diffusivity at the adjacent

nodes has also been suggested [65, 84] in the form of

cN ≈ (c (‖∇ui+1,j‖) + c (‖∇ui,j‖)) /2 ,

cS ≈ (c (‖∇ui−1,j‖) + c (‖∇ui,j‖)) /2 ,

cE ≈ (c (‖∇ui,j+1‖) + c (‖∇ui,j‖)) /2 ,

cW ≈ (c (‖∇ui,j−1‖) + c (‖∇ui,j‖)) /2 . (2.15)

It is important to note that
∑

d ∇du is equal to Laplacian of u, ∇2u. To calculate

∇2u, a discrete Laplacian Kernel of L1 in the from of

L1 =

⎡⎢⎢⎢⎢⎣
0 1 0

1 −4 1

0 1 0

⎤⎥⎥⎥⎥⎦
is convolved by u. Therefore, by substituting (2.15) in (2.11) and after adding and

subtracting of (c (‖∇ui,j‖)∇2u) /2 and simplifications, one can derive the following

numerical model

u
(n+1)
i,j = u

(n)
i,j + τ

[∑
d∈D

c∇2u +
τ

2
[∇dc∇du]

](n)

i,j

, D = {N, S, E, W} (2.16)
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where ∇d denotes the directional gradient based on (2.12) for both function c(.) and

u.

In the numerical model of (2.16), the second term at the right side is a nonlinear

forward diffusion term and the third term can lead to an inverse diffusion which

results in the formation of the staircases of the ramp edges. Some advantages of

(2.16) compared to (2.11) have been mentioned in [85] and [86] such as flexibility of

the adjustment of the forward and inverse diffusion rate.

Other spatial discretization of the Perona-Malik filter also have been introduced

such as [63, 87] by incorporating the different neighborhood pixels rather than those

in orthogonal directions. For spatial discretization of the expanded models of the

nonlinear diffusion filters given by (2.9) and (2.10), the spatial partial derivative are

usually approximated by central difference operators.

2.3 Summary

In this chapter, the background material necessary for the development of the research

undertaken in this thesis has been presented. A brief account of the development of

the PDE-based nonlinear diffusion filter of Perona and Malik has been given. The

effect of diffusivity functions and the role they play in preserving edges have been

discussed. Finally, two commonly used discretized versions of the Perona-Malik non-

linear diffusion filter have also been presented.

15



Chapter 3

An Edge-Adaptive Laplacian

Kernel for Nonlinear Diffusion

Filters

3.1 Introduction

In this chapter, the Laplacian kernel is investigated from the point of view of its

impact on edge preservation capability in nonlinear diffusion of images. A technique

based on the anisotropic behavior of the Rosenfeld and Kak Laplacian operator [88] is

presented for an efficient preservation of the edges in nonlinear diffusion processes [89].

A study is undertaken first to investigate the impact of the anisotropic behavior of the

Laplacian operator on the capability of nonlinear diffusion filters in preserving edges in

different orientations and then to explore the possibility of designing a new Laplacian

operator that is best suited to preserve the edges in certain orientations without

affecting the quality of the edges in other directions. It is shown that the coefficients

of the kernel can be is derived so as to integrate into it an anisotropic behavior

to control the process of forward diffusion in horizontal and vertical directions. Even

though the proposed constant-coefficient kernel reduces the process of edge distortion,
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it nonetheless produces artifacts in the smooth regions of the image. After examining

the source of this problem, an analytical scheme is devised to obtain an edge-adaptive

Laplacian kernel that adapt itself to the diffusivity function. The proposed Laplacian

kernel is then used in various nonlinear diffusion filters starting from the classical

Perona-Malik filter to the more recent ones. The effectiveness of the new kernel,

using quantitative and qualitative measures, is demonstrated by applying it to images

contaminated by additive white Gaussian noise (AWGN).

3.2 Impact of the Anisotropic Behavior of the

Laplacian Operator on the Diffusion Rate

of Edges

The basic nonlinear diffusion filter of Perona and Malik [35], characterized by a non-

linear partial differential equation, is given by

∂u/∂t = div (c (‖∇u‖)∇u) , (3.1)

where ‖.‖ and div denote, respectively, the L2−norm and divergence of the associated

quantities, c(.) is a diffusivity function, also referred to as the diffusion coefficients,

and ∇u represent the gradient of the diffusing image u. By carrying out the divergence

operation with respect to the independent variable x and y of u, the above equation

can be expressed as follows:

∂u/∂t = c(.)∇2u + ∇c(.)∇u (3.2)

in which ∇2u denotes the Laplacian of u. A commonly used discrete version [65, 84]

of (3.1) (or equivalently of (3.2)) in which the diffusivity function is approximated by

the arithmetic average of the diffusivity coefficients at the adjacent nodes, is given by

u
(n+1)
i,j = u

(n)
i,j + τ

[
ci,j∇2ui,j

](n)
+

τ

2

[∑
d

∇dci,j∇dui,j

](n)

, (3.3)

17



Figure 3.1: Four step edges with the same contrast level of (u1 −u2) and orientations
of θ = 0◦, 90◦, 45◦,−45◦.

where ∇d , d ∈ {N, S, E, W} , denotes the directional gradient calculated as the

difference of two adjacent pixel values or diffusion coefficients in the north (N), south

(S), east (E) and west (W) directions, τ is the step-size of the independent variable t

used for the approximation of ∂u/∂t, and n is the discrete time index (or the iteration

number). The Laplacian ∇2u in the approximation given by (3.3) is actually the

discrete convolution of u with the so-called Rosenfeld-Kak Laplacian kernel L1 [88])

given by

L1 =

⎡⎢⎢⎢⎢⎣
0 1 0

1 −4 1

0 1 0

⎤⎥⎥⎥⎥⎦ .

The Laplacian kernel L1 has an anisotropic response to step edges [90] in the sense

that the convolution result of the constant-contrast edge is orientation dependent.

To show this anisotropic response, one can consider four step edges with the same

contrast level of (u1 − u2) and orientations of θ, as shown in 3.1

If the central pixel of these intensity functions is denoted by I5, the Laplacian

responses of I5 for the four orientation values is given by

θ = 90 ◦ θ = 0 ◦ θ = +45 ◦ θ = −45 ◦

∇2I5 = (u1 − u2) (u1 − u2) 2(u1 − u2) 2(u1 − u2) .

This simple example shows that the response of L1 to an edge in horizontal or vertical

direction is different from that to the diagonal edge thus confirming the anisotropic

behavior of the discrete Laplacian operator.
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We now focus our attention to study the impact of the anisotropic behavior of the

Laplacian operator L1 on the performance of the discrete nonlinear diffusion filters,

in as far as their capability in preserving edges.

In (3.3), the values c(‖∇u‖), calculated based on central difference operator for

‖∇u‖, on both sides of a step edge are the same; thus, the directional derivative of

∇dc(.) is zero. Therefore, at step edges, the nonlinear diffusion equation given in (3.3)

becomes

u
(n+1)
i,j = u

(n)
i,j + τ

[
ci,j∇2ui,j

](n)
. (3.4)

In fact, the same simplification achieved from the nonlinear diffusion equation of

Alvarez et al. [75] given by

ut = c (‖∇u‖)uξξ + (c (‖∇u‖) + c′ (‖∇u‖) ‖∇u‖)uηη , (3.5)

where uξξ and uηη are the second-order derivatives of u in the direction of the level

set (i.e. the direction parallel to the image features) and the direction of the gradient

(i.e. the direction across the edge). In this case, ∇2u = uηη + uξξ and for step edges

uξξ = 0, this nonlinear diffusion filter at the step edges in the continuous domain

assumes the form

ut = c(‖∇u‖)∇2u , (3.6)

which can be seen to have the same discrete version as the one given by (3.4).

Equation (3.4) governs the diffusion process at edges has another difference oper-

ator arising from the diffusion coefficient c(.), which also has an anisotropic behavior.

In order to study the impact of only the anisotropic behavior of the Laplacian oper-

ator (i.e. L1) on the diffusion process of the edges, we use the Scharr kernels [91] to

have the rotationally invariant (isotropic) approximation of ‖∇u‖.
Two synthetic digital images shown in 3.2(a) and (b) containing vertical and a

diagonal edge, respectively, are chosen. The contrast level of the edge in both images

is 70 thus the variance of either images is approximately 1225. These two images
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are filtered in accordance with the diffusion process of (3.4) in which the diffusivity

function of Perona and Malik given by

c (‖∇u‖) = K2/
(
K2 + ‖∇u‖2

)
, (3.7)

where K is a positive parameter called a contrast parameter, is used. The value of

K, which is manually set, controlls the the diffusion in the sense that the larger value

of K results in a more intense diffusion. The diffusion process is repeated by varying

the values of K from 5 to 25 in steps of 0.5. For each run, τ is chosen as 0.1 and

the diffusion process stopped after n = 30 iterations. The variance of the diffused

image is calculated. The result of the variance of the diffused image as a function of

K is plotted in Figure 3.2(c). It is seen from this figure that the image containing

the vertical edge is less diffused than the one with the diagonal edge. Thus, the same

diffusion precess can preserve a vertical edge better than a diagonal one.

It is important to note that the commonly used approximation of ‖∇u‖ is based

on the central difference operator [45], which is an anisotropic operator. In our ex-

periment, by using this operator to calculate the diffusivity function and L1 for the

Laplacian operator, we obtain results that are also depicted in Figure 3.2(c). As seen

from this figure, an isotropic or anisotropic approximation of ‖∇u‖ has a little or

no impact on the diffusion of the edges. However, the results of Figure 3.2(c) also

indicates that there are significant differences between the diffusions of the vertical

and diagonal edges. This observation motivates us to develop a new kernel with the

capability of providing a better control of the diffusion of edges.

3.3 Proposed Laplacian Kernel

Our objective in this section is to explore the possibility of designing a Laplacian

kernel from the standpoint of reducing the diffusion process of the edges and make

the process less dependent on their orientation of the edges. Hence, in the context of
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Figure 3.2: Impact of the anisotropic behavior of the L1 kernel, when used in (3.3),
on the vertical and diagonal edges. (a) Image with a vertical edges. (b) Image with
a diagonal edge. (c) Variance of the diffused images using isotropic and anisotropic
discrete approximations of ‖∇u‖.

Figure 3.2(c), our objective is to raise the level of the curves higher and closer to each

other.
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3.3.1 Design of a Laplacian Kernel to Curtail the Diffusion

of Edges

A generalized parametric realization of a Laplacian kernel can be written in form of

L =

⎡⎢⎢⎢⎢⎣
β/2 α β/2

α −4(α + β/2) α

β/2 α β/2

⎤⎥⎥⎥⎥⎦ . (3.8)

From this generalized Laplacian kernel, one can obtain different kernels depending on

the values of the parameters α and β. For example, the Laplacian kernel L1 can be

obtained by choosing α = 1 and β = 0. Similarly, for α = 0 and β = 1, (3.8) yields

L2 =
1

2

⎡⎢⎢⎢⎢⎣
1 0 1

0 −4 0

1 0 1

⎤⎥⎥⎥⎥⎦ ,

which is also a commonly used Laplacian kernel [63]. The generalized parametric

kernel given by (3.8) is a linear combination of two Laplacian kernels of L1 and L2

given by

L = αL1 + βL2 . (3.9)

In order to study the effect of this Laplacian operator (L) on the orthogonal

(vertical and horizontal) and diagonal edges shown in Figure 3.1, we first obtain the

response of L to each pixel numbered as 1 to 9. For this purpose we assume that

structure of the edges continues beyond the 3 × 3 region of the image shown in this

figure. The response to all the 9 pixels in the 3×3 region containing the vertical edge

(Figure 3.1(b)) is given as

∇2Ip =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α + β)u2 − (α + β)u1, p = 1, 2, 3

−∇2Ip−3, p = 4, 5, 6

0, p = 7, 8, 9

(3.10)
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and that for the pixels of the region containing the diagonal edge with θ = 45◦ (Figure

3.1(c)) is given by

∇2Ip =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)p [(β/2)u1 − (β/2)u2] , p = 1, 6, 8

(−1)p[(2α + β/2)u2−
(2α + β/2)u1], p = 2, 3, 4, 5, 7

0, p = 9 .

(3.11)

Our objective is to curtail the diffusion of the edges by making ∇2u to be zero at

all pixels on the edges and their immediate neighborhoods. This implies that we must

find the values of the parameters α and β that reduces ∇2Ip to be zero for all values

of p ∈ {1, 2, · · · , 9}. It is obvious from (3.11) that for the diagonal edge with θ = 45◦,

the only values for α and β that lead to ∇2Ip = 0 are the trivial values of α = 0 and

β = 0. The same conclusion can be reached for a diagonal edge with θ = −45◦. Thus,

for a diagonal edge, there does not exist a non-trivial Laplacian operator L that when

operated on the pixels lying on the edges or those in their neighborhoods gives a zero

response.

However, for a vertical edge, it is seen from (3.10) that for α = −β, ∇2Ip = 0

for all p = 1, 2, · · · , 9. In this case, the Laplacian operator L as gives by (3.8) can be

expressed as

L(γ) = γL3 , (3.12)

where γ is an arbitrary constant and L3 is a Laplacian kernel defined as

L3 =

⎡⎢⎢⎢⎢⎣
−1 2 −1

2 −4 2

−1 2 −1

⎤⎥⎥⎥⎥⎦ .

Note that the Laplacian kernel of L3 has been used in the literature [92] for

estimating of the noise variance of images. It is now clear from the above study as

to why L3 provides a better estimate the noise variance in images. As a matter of
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fact, it eliminates the effect of orthogonal edges in the Laplacian map of the images.

However, our objective here is to study the effect of L(γ) in the nonlinear diffusion

filter given by (3.3).

The nonlinear filter described by (3.3) has two diffusion terms, namely (τc(.)∇2u)

and (τ∇dc(.)∇du), which are linearly scaled by the step-size τ . Although in practice

both these terms are linearly scaled by the same step-size τ , the possibility of scaling

each term by a different scale factor has been pointed out in [85] in order to provide

some controlling mechanism to the forward and backward diffusion components of the

filtering process. In (3.3), when L(γ) = γL3 is used, the first diffusion term becomes

(τ ′c(.)(L3 ∗ u)), where τ ′ = τγ and ∗ represents the convolution operation. Thus,

the approximation of the Laplacian operator by L(γ) effectively provides two different

scaling factors, τ ′ and τ , to the two diffusion terms, respectively and Laplacian oper-

ator replaced by operator L3. Now we consider again orthogonal and diagonal edges

of images as shown in Figure 3.2 to examine the effect of L(γ) on nonlinear diffusion

of images in the presence of edges. For this purpose, we chose γ = 1.

The image of Figure 3.2(a) is filtered using (3.3) with the step-size τ = 0.1 which

employs the diffusivity function of (3.7) with K = 10. Figures 3.3(a) and 3.3(b) show

the filtered images after 25 and 100 iterations, respectively, resulting from the use of

the Laplacian operators L3. As expected, L3 is capable to preserve the vertical edge of

the image, since ∇dc(.) and u ∗L3 are exactly zero meaning that the diffusion process

is completely halted at the edge. The same result could be observed in the presence

of a horizontal edge in the image.

Next, the filter given by (3.3) with the same parameter settings as used for the

orthogonal edge is applied to the image of Figure 3.2(b) i.e. an image with a diagonal

edge (θ = 45◦). The results after 25 and 100 iterations are shown in Figures 3.3(c)

and 3.3(d), respectively. Even though L(γ) has been designed to preserve orthogonal

edges, it is seen from these figures that the use of the Laplacian kernel does not
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smooth the diagonal edge. On the contrary, it gets enhanced as a result of an inverse

diffusion process taking place . However, as the number of iterations is increased,

ringing artifacts are formed resulting from the up lifting and down lifting of the pixel

intensities on both sides of the edge. It also seen that the phenomenon of these lifting

of the pixel intensities violates the extremum principle [93, 94]:

min(u(0)) ≤ un
(i,j) ≤ max(u(0)) ∀n ∈ [0, +∞] . (3.13)

It is known that the nonlinear diffusion filter (3.3) using the diffusivity function of

(3.7) and the Laplacian kernel L1 supports the extremum principle [64] even though

it performs inverse diffusion on regions where ‖∇u‖ > K. In the next subsection, we

will determine the condition under which the nonlinear diffusion filter does not violate

the extremum principle so that a scheme overcoming this problem could be devised.

3.3.2 Analysis

We analyze the problem of the nonlinear diffusion filter violating the extremum princi-

ple when it uses L(γ) as the Laplacian kernel. For this analysis we utilize an expression

of the nonlinear diffusion filter in the form of a system of ordinary differential equa-

tions given by [64]

∂u/∂t = A(u)u, (3.14)

u(t = 0) = f

in which u = (u1, · · · , uq, · · · , uN) is a vector consisting of the pixel values of the

image taken column-wise such that uq represents the pixel value at position (i, j), N

denotes the total number of pixels in the image, and A is an N × N matrix with

elements ak,l(u). When (3.14) employs the Laplacian kernel L(γ), the element of A
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(a) (b)

(d)(c)

Figure 3.3: Diffusion of the image containing vertical and diagonal step edges by
(3.3) using the Laplacian kernel L(γ), (a) and (c) diffused images after 25 number of
iterations, (b) and (d) diffused images after 100 number of iterations.

can be expressed as

ak,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ck + cl)/2 + (2γ − 1)ck, l ∈ No(k)

−γck, l ∈ Nd(k)

−∑l∈Nd(k){(ck + cl)/2+

(2γ − 1)ck} +
∑

l∈Ne(k) γck, l = k

0, else ,

(3.15)

where No(k) and Nd(k) denote the sets of the indices of the immediate neighbors of

uk in the 2-D image in the orthogonal and diagonal directions, respectively, and cq is

the diffusion coefficient at pixel position q.

In [95], it is shown that if matrix A satisfies the following conditions:

(S1)
∑N

l=1 ak,l = 0
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(S2) ak,l ≥ 0 for all l = 1, · · · , N (l �= k) for all k = 1, · · · , N for which uk is an

extremum

then the diffusion filter (3.14) satisfies the extremum principle. It is seen from (3.15)

that the filter employing The Laplacian Kernel L(γ) always satisfies the condition

(S1); however, the condition (S2) is not satisfied because of the the presence of the

negative entries in A for indices l ∈ Nd(k) and possible negative terms in A for indices

l ∈ No(k) whenever γ < 1/4.

In order for the filter given by (3.14) to satisfy the extremum principle, we now

propose to modify the matrix A by using a function f(uk) as follows.

ak,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ck + cl)/2 + (2γ − 1)ck, l ∈ No(k)

−γf(uk)ck, l ∈ Nd(k)

−∑l∈Nd(k){(ck + cl)/2+

(2γ − 1)ck} +
∑

l∈Ne(k) γf(uk)ck, l = k

0, else

(3.16)

It is seen from the above equation that with the proposed modification of A, the

condition (S1) is still readily satisfied. However, in order to satisfy the condition (S2),

f(uk) should be capable of making the entries of A for l ∈ Nd(k) to vanish whenever

uk is an extremum. In the next subsection, we explain how this can be accomplished

by designing a data-dependent kernel and discuss its implication on the performance

of the filter.
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3.3.3 An Edge Adaptive Laplacian Kernel

Using the kernel L(γ) = γ(2L1 − 2L2) in (3.3), which is the fully discrete version of

(3.14), we obtain

(u
(n+1)
i,j − u

(n)
i,j )/τ = 2γ [c(.)i,j(u ∗ L1)i,j]

(n) −

2γ [c(.)i,j(u ∗ L2)i,j ]
(n) +

1

2

[∑
d

∇dc(.)i,j∇dui,j

](n)

. (3.17)

The backward Laplacian diffusion term 2γ [c(.)i,j(u ∗ L2)i,j] in (3.17) results from the

entries corresponding to the l ∈ Ndk (i.e. −γck) and
∑

l∈Ne(k) γck part of the entries

corresponding to l = k of A. It is only these entries of A, given by (3.15) that are

affected when A is modified as in (3.16) using the function f(.). Thus, the proposed

modification of A results in modifying (3.17) as

(u
(n+1)
i,j − u

(n)
i,j )/τ = 2γ [c(.)i,j(u ∗ L1)i,j]

(n) −

2γ [f(.)c(.)i,j(u ∗ L2)i,j ]
(n) +

1

2

[∑
d

∇dc(.)i,j∇dui,j

](n)

. (3.18)

In essence, the proposed modification of A simply affects the backward Laplacian

diffusion term by multiplying it with f(.). Our objective is to make (3.18) independent

of the backward Laplacian diffusion term at an extremum of u by letting f(.) assume

a value of zero at such pixel positions of the image.

In [95], a non-standard approximation of the gradient modulus is suggested as

∇̃ui,j = [max(−∇Nui,j.∇Sui,j, 0) + max(−∇Eui,j.∇Wui,j, 0)]1/2 , (3.19)

which assumes the value of zero at extremum of u. Using this approximation for the

gradient, ∇̃ui,j, we propose a function f(.) to have the following form:

f(ui,j) = c(0) − c(∇̃ui,j) . (3.20)
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Thus, with this choice of f(ui,j), the backward Laplacian diffusion term of the filter

(3.18) is eliminated at extermum of u and the filter satisfies the extremum principle.

In the following, we investigate the behavior of this modified filter given by (3.18).

Let us consider the value ur,s that is an edge pixel. Then, it is easy to see that

the approximate gradient modulus given by (3.19) for such a pixel is zero; thus, the

function f(ur,s) given by (3.20) assumes a zero value. Since, as discussed in Section

II, the third diffusion term in (3.18) vanishes for an edge pixel, (3.18) assumes the

following form

(u(1)
r,s − u(0)

r,s )/τ = 2γ [c(.)r,s(u ∗ L1)r,s]
(0) , (3.21)

for the first iteration of the filtering operation that is, it has the forward diffusion.

Thus, unlike the filtering operation performed by (3.17) in which the diffusion process

on the orthogonal edges is completely halted, in the filtering operation performed by

the filter (3.18) all the edge pixels including the orthogonal edge pixels would undergo

the diffusion operation. However, in order to make the filter (3.18) not to perform

more diffusion on the edges than done by (3.4), one has to chose the value of γ ≤ 1/2.

But, a small value of γ, on the other hand, would impact negatively on the noise

filtering capability of (3.18) for the smooth regions of the image.

In order to increase the noise reduction performance of (3.18) without hindering

its edge preservation capability, it is required to devise a mechanism of increasing

the value of γ beyond 0.5 without increasing the forward diffusion on the edges. For

γ > 1/2, the forward Laplacian diffusion performed by (3.18) is bigger than that

performed by the nonlinear diffusion filter (3.4). In order to eliminate the impact of

the extra diffusion on the edges, we modify the forward diffusion term 2γc(.)i,j(u∗L1)i,j

of (3.18) as

c(.)i,j(u ∗ L1)i,j + f(.)(2γ − 1)c(.)i,j(u ∗ L1)i,j , (3.22)

where the first term is exactly same as the forward Laplacian diffusion term of (3.3)

and the second term is the extra diffusion part in (3.18). Thus, with the modified
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forward Laplacian diffusion term, its negative effect on the edges would not exceed that

of (3.3) because of the presence of f(.), whereas the performance of (3.18) in smooth

regions should improve because of the value of γ > 1/2. The nonlinear diffusion filter

(3.18), after this modification, becomes

(u
(n+1)
i,j − u

(n)
i,j )/τ = [c(.)i,j(u ∗ L1)i,j]

(n) +

{f(.) [(2γ − 1)c(.)i,j(u ∗ L1)i,j − 2γc(.)i,j(u ∗ L2)i,j]}(n) +

1

2

[∑
d

∇dc(.)i,j∇dui,j

](n)

. (3.23)

It is important to note that the filter (3.23) still satisfies the extremum principle,

since the backward Laplacian diffusion term is still intact compared to that in filter

(3.18). The purpose of modifying (3.18) into (3.23) has been to improve the noise

reduction capability of the resulting filter by using a larger value of the parameter γ.

We would now examine as to how this modification affects the performance of (3.23)

in terms of processing orthogonal edges. Since, L3 = 2L1 − 2L2, the second term on

the right side of (3.23) can be simplified as

f(.) [(2γ − 1)c(.)i,j(u ∗ L1)i,j − 2γc(.)i,j(u ∗ L2)i,j] =

f(.) [c(.)i,jγ(u ∗ L3)i,j − c(.)i,j(u ∗ L1)i,j] , (3.24)

As at the orthogonal edges (u ∗ L3) = 0, the diffusion performed on these edges

by (3.23) is independent of the value of γ, and considering the fact that for many

diffusion functions c(.) assume a value in (0, 1] with c(0) = 1, i.e., f(.) = 1 − c(∇̃u),

the Laplacian diffusion process carried out by filter (3.23) on an orthogonal edge is

given by

[c(.)i,j(u ∗ L1)i,j] − f(.) [c(.)i,j(u ∗ L1)i,j] =

c(‖∇ui,j‖)i,jc(∇̃ui,j)i,j(u ∗ L1)i,j . (3.25)
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If we compare the diffusion coefficient c(‖∇ui,j‖)c(∇̃ui,j) of (3.23) with the diffusion

coefficient c(‖∇ui,j‖) in (3.4), the diffusion performed on the orthogonal edges by

(3.23) is less than that performed by (3.4) from iteration 2 onward, since c(‖∇ui,j‖)(n) >

c(‖∇ui,j‖)(n)c(∇̃ui,j)
(n).

Before closing this section, we make an explicit comparison of the filters given by

(3.3) and (3.23). By combining the first two terms on the right side of (3.23), we have

a single Laplacian diffusion term in the form of c(.)(u ∗ L)i,j, where Li,j is given by

Li,j = L1 − f(ui,j)((2γ − 1)L1 − 2γL2) . (3.26)

Recall that in (3.3), the Laplacian operation is performed by using the kernel L1 as

∇2u = L1 ∗ui,j. Note that if kernel L1 in (3.3) is replaced by Li,j, then (3.3) becomes

the filter given by (3.23). In a view of the fact that Li,j depends on ui,j, hereafter we

refer to it as the edge adaptive kernel.

3.4 Simulation Results

In this section, we study the effect of the proposed edge-adaptive kernel on the filtering

performance of three nonlinear diffusion filters. The nonlinear diffusion filters consid-

ered for this purpose are the classical filter proposed by Perona and Malik [35], the

anisotropic filter introduced by Carmona and Zhong [83] and a filter due to Hongchuan

and Chua [85]. The performance of these filters are examined when the kernel L1 of

these filters is replaced by the proposed one. Their performances are measured in

terms of the SNR representing the noise removal capability of the filters, and a figure

of merit (FOM) index introduced by Pratt’s [11] that represents the edge preservation

capability of the filters. The SNR is defined as

SNR = 10log10 (var(û)/var(I − û)) , (3.27)
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where û and I denote, respectively, the denoised and noiseless images, var(.) and

avg(.) denote, respectively, the variance and average of the pixel values of the associ-

ated image. The index FOM is defined in [11] as

FOM =
1

max(uD, uI)

uD∑
i=1

1

1 + φd2
i

, (3.28)

where uD is the number of detected edge points, uI the number of edge points in the

image I, φ is a positive scaling factor often chosen to be 1/9, and di the distance

between the ith detected edge pixel in û and the corresponding pixel in I. For the

evaluation of FOM, the Sobel operator is used for the edge detection. Filters in

these experiment are implemented using a MATLAB 2008Ra simulation platform on

a Windows-based 64-bit icore5 machine with 4-GB RAM.

3.4.1 The Nonlinear Diffusion Filter of Perona and Malik [35]

The proposed edge adaptive kernel used in the filter given by (3.23) has a parameter

γ. Recall that the lower limit of 1/4 of this parameter is dictated by the extremum

principle. On the other hand, a larger value of this parameter within a limit ensuring

the numerical stability of the discrete model of the filter improves the noise reduction

capability of the filter. In order to see the impact of the value of γ chosen on the

diffusion of orthogonal and diagonal edges, we again consider the synthetic images

shown in Figures 3.2(a) and 3.2(b) containing vertical and diagonal edges, respectively.

These images are diffused by employing the filters given by (3.23) and (3.3) using the

diffusivity function given by (3.7) for the value of contrast parameter K chosen in the

interval [5, 25] and for values of γ in the range [0.5, 1.5]. The filtering is performed for

n = 30 iterations and the time step size τ = 0.1.

The variance of the diffused images as a function of K for different values of γ is

depicted in Figure 3.4 for the vertical and diagonal edges. It is seen from this figure

that the variance of the images diffused by the proposed filter for both the diagonal
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Figure 3.4: The variance of the image as a function of the contrast parameter K and
γ illustrating the effects of using the L1 and Li,j kernels on the diffusion precess of
(3.3) for an image having (a) vertical edge and (b) a diagonal edge.

and vertical edges is consistently higher than that obtained by using (3.3) indicating

a smaller diffusion of the edges by the proposed filter. Also, as expected, the diffusion

performed by (3.23) on the vertical edge is independent of the choice of the value

γ (Figure 3.4(a)). Even though the noise reduction capability of the proposed filter

is, in general, enhanced at the expense of a reduced edge preservation capability by

choosing a larger value of γ, it is seen from Figure 3.4(b) that even for γ = 1.5, the

diffusion of the diagonal edge by the proposed filter is smaller than that by (3.3).
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Therefore, the value of γ for all of the simulation study of this section is chosen to be

1.5.

In order to examine the performance of the filters given by (3.3) and (3.23), we

use the regularized version [73], c(‖∇(Gσ ∗ u)‖), of the diffusivity function given by

(3.7) in which Gσ denotes the Gaussian kernel with standard deviation σ. The value

of σ is chosen to be 1. The value of the contrast parameter K is set using the so-called

threshold freezing scheme given in [96]:

K(n) =
1

ε + χ · n · τ , (3.29)

where ε = 10−10 and χ is a threshold parameter, which provides a non trivial steady

state solution of the nonlinear diffusion filter in a finite number of iterations. The

iterative filtering process is stopped once the condition ||u(n)−u(n−1)||/||u(n−1)|| ≤ 10−4

is satisfied. The time step size τ is chosen to be 0.05.

In this simulation study, the synthetic images of disk, and Flingstone, a natural

image House, and an organic super-conductor (OSC) image given in [97] are chosen.

Table 3.1 gives a comparative performance of the two schemes, when L1 and the

proposed kernel are used, to filter these images corrupted by white Gaussian noise

(AWGN) with standard deviation SD = 15 and 25. For the purpose of comparison,

the SNR and the corresponding FOM values of the filtered images are obtained at

the threshold values χ = χopt that provide the largest possible SNR for the filtered

images. This table also depicts the total number of iteration meeting the stopping

condition specified above and CPU time. It is seen from this table that the proposed

filter yields the SNR and corresponding FOM values that are consistently higher than

that provided by the filter using kernel L1. On the average, SNR and FOM values

obtained by the filter using the proposed kernel are, respectively, 0.98dB and 6.98%

higher than when the L1 kernel is used. However, it is noted that this improvement in

the performance of the filter is achived at the expense of an increased computantinal

complexity. The proposed scheme results have a higher number of iterations and a
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CPU time that is on the average 46% larger.

Table 3.1: Quantitative comparison of the results obtained by using the Laplacian
kernel L1 and the proposed kernel Li,j in filter (3.3)

Degraded Image Filtered Image
Noise level Image SNR(dB) Kernel χopt SNR(dB) FOM n Time(s)

SD = 15

House 10.17
L1 0.40 17.60 0.7133 62 1.12

Proposed 0.23 17.96 0.7688 75 1.71

OSC 11.47
L1 0.56 17.08 0.7495 67 3.20

Proposed 0.52 17.34 0.7817 70 4.13

Disk 15.95
L1 0.28 28.43 0.8491 78 1.35

Proposed 0.05 31.16 0.8579 90 2.02

Flintstone 14.13
L1 0.55 17.97 0.8183 51 7.22

Proposed 0.45 18.09 0.8624 56 9.11

SD = 25

House 6.41
L1 0.2 15.46 0.6184 89 1.60

Proposed 0.08 16.11 0.7005 117 2.81

OSC 7.52
L1 0.28 14.33 0.6190 60 4.56

Proposed 0.22 14.52 0.6976 68 6.48

Disk 11.71
L1 0.17 25.23 0.8161 108 1.9

Proposed 0.025 28.56 0.8177 119 3.1

Flintstone 9.97
L1 0.3 15.48 0.7035 69 9.71

Proposed 0.21 15.65 0.7831 82 13.29

Figure 3.5 depicts the perceptual quality of the image house processed by the two

filters. The original image and the one degraded by a noise with SD = 25 are shown in

Figures 3.5(a) and (b), respectively. Figures 3.5(c) and (d) show the images processed

by filters (3.3) and (3.23), respectively, that employ the optimal values of χ of the

respective filters, that is, 0.2 and 0.08, respectively. It is seen from these two images

that filter (3.3) is not as effective in removing the noise and preserving the edges

as filter (3.23). By increasing the value of χ to a value higher than χopt, the noise

reduction ability of the filters would naturally be reduced. However, the resulting

reduction of the diffusion on the edges should increase the FOM value compared to

that of χopt. To see the effect of increasing χ above χopt, we increase the value of χ

in filter (3.3) from its optimal value of 0.2 to 0.35 at which the FOM value of the

processed image by this filter becomes almost equal to the FOM value of the filter

(3.23) at its optimal value i.e. 0.7005. It is seen from the the resulting processed

image, shown in Figure 3.5(e), that the noise reduction ability of the filter (3.3) is
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considerably reduced, and quantitatively the SNR value gets reduced from its optimal

value of 15.46dB (Figure 3.5(c)) to 14.75dB . Figure 3.5(f) shows the processed image

by the filter (3.23) with the value of χ increased from its optimal value for filter (3.23)

to that of for filter (3.3) i.e. χ = 0.2. It is seen from this figure that as expected more

noise is left behind compared to that in Figure 3.5(d) as a result of the reduction of

the diffusion, which is particularly visible of the edges. However, the FOM value of

the image in Figure 3.5(f) is 0.7606, which is larger than the value of 0.7006 for the

image in Figure 3.5(e).
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: The perceptual quality of the processed image House. (a) Original image. (b) Image contaminated by AWGN with
SD=25. (c) Image denoised using (3.3) with χopt = 0.2. (d) Image denoised using (3.23) with χopt = 0.08. (e) Image denoised
using (3.3) with χ = 0.35; (f) Image denoised using (3.23) with χ = 0.2.
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(a) (b)

Figure 3.6: The quality of edge preservation illustrated by the residual image û−u(0).
The residual of the image processed by (a) filter (3.3) and (b) filter (3.23).

In order to further compare the edge preservation capability of the two filters, the

residual images û−u(0) corresponding to images processed by filters (3.3) and (3.23) at

χopt are obtained and shown in Figure 3.6. It is clear from this figure that the diffusion

process of the image edges as carried out by (3.3) is stronger than that by (3.23).In

order to quantitatively analyze the results of the filtering operations carried out by

(3.3) and (3.23), the variance of the residual image, var(û− u(0)), and absolute value

of their correlation with the estimated image, |corr(û− u(0), û)|, are obtained. These

values are 591 and 0.05, respectively, resulting from the filtering operation carried out

by (3.3) and 616 and 0.01, respectively, resulting from the filtering operation of (3.23).

A higher value of the variance along with simultaneously lower value of the correlation

in the case when the filtering is carried out by (3.23) indicates the effectiveness of the

new kernel in both edge preservation and noise reduction.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: The perceptual quality of the processed image Disk.(a) Original image. (b) Image contaminated by AWGN with
SD = 25. (c) Image denoised by (3.3). (d) Image denoised by (3.23). Images in (e), (f), (g), and (h) are the magnified version
of a part of the images in (a), (b), (c), and (d), respectively.
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For images containing only high contrast edges such as image Disk, the diffusion

coefficients corresponding to the edge pixels is sufficiently small and as a result the

edge preservation of the filter by using Laplacian kernel L1 would not be substantially

different from that using the proposed kernel as quantitatively evaluated by FOM

value in Table 3.1. However, in this case the advantage of using the proposed kernel

instead of kernel L1 is on the better noise reduction ability of the filter, which can

make a considerable difference in SNR value of the images. In Figure 3.7, the results

of these filters for noise level SD = 25 are shown. It is seen from these results that

even though both filters are capable of preserving edges during the diffusion process,

a significant amount of the noise still remains on the edge pixels of the diffused image

obtained by (3.3), which is perceptually more visible as seen from the magnified region

of the images shown in Figure 3.7(g). On the other hand, the proposed filter effectively

removes the noise and preserves the edges (Figure 3.7(h)).

3.4.2 The Anisotropic Filter of Carmona and Zhong [83]

As mentioned earlier, the proposed edge-adaptive kernel Li,j can also be used in

nonlinear diffusion settings other than the one given in (3.3). In the following, we

show how the proposed kernel can be used in the anisotropic filter of Carmona and

Zhong [83]. The PDE of this filter is given by

ut = a (‖∇u‖) (b (‖∇u‖)uξξ + c (‖∇u‖)uηη) , (3.30)

where a(.), b(.) and c(.) are the diffusivity functions that provide a great deal of

flexibility in controlling the diffusion process of the images. These diffusivity functions

can be chosen in a way such that the image edges are significantly diffused in the

direction of their level sets than in the direction of their gradient. Introducing the

notation ∇2u in (3.30) using the fact that ∇2u = uξξ + uηη, we have

ut = a (‖∇u‖) (c (‖∇u‖)∇2u + (b (‖∇u‖) − c (‖∇u‖)) uξξ) . (3.31)
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Now, in our simulation of the filter of Carmona and Zhong given by the above equation,

we use the kernel L1 and the proposed kernel Li,j to approximate the Laplacian

operator. Note that the use of the approximation of the second-order derivatives in

the direction of the level set and gradient given by

uξξ =
uxxu

2
y − 2uxuyuxy + uyyu

2
x

u2
x + u2

y

(3.32)

and

uηη =
uxxu

2
x + 2uxuyuxy + uyyu

2
y

u2
x + u2

y

(3.33)

ensures that the filter given by (3.30) or (3.31) employs the L1 kernel. In order to use

the proposed kernel, we use Li,j in (3.31) to approximate the Laplacian operator and

(3.32) for uξξ.

The parameter settings used for Li,j to perform the Laplacian operator ∇2 are

the same as that used in Section 3.4.1 except that the contrast parameter K is now

set to unity. The diffusivity function a (‖∇u‖) is chosen to be the same as in [83],

i.e., a (‖∇u‖) = [K2/ (K2 + ‖∇u‖2)]
1/2

with K given by (3.29), b (‖∇u‖) is set to be

unity, and c (‖∇u‖) is given by (3.7) with K set to have a value of 10. The time step

size is chosen to be 0.05 for the first 50 iterations and 0.25 afterward. The stopping

criterion used in the filter simulation is the same as that in Section 3.4.1.

Table 3.2 gives the quantitative results in terms of the SNR and FOM of the four

images degraded by AWGN with SD = 25 and then processed by the Carmona and

Zhang filter employing the L1 and Li,j kernels. It is seen from this table that replacing

the kernel L1 by Li,j enables the Carmona and Zhang filter to perform consistently

better in processing all the four images. On the average, the proposed kernel yields

the values of the SNR and FOM that are, respectively, 0.76 dB and 5.3% higher than

when the kernel L1 is employed. However, the convergence rate of the filter using the

proposed kernel is lower than that when L1 used, and this is reflected in making the

computational time of the filter with Li,j kernel to be 24.5% higher.
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Table 3.2: Quantitative comparison of the results obtained by using the Laplacian
kernel L1 and the proposed kernel Li,j in filter (3.31)

Degraded Image Filtered Image
Noise level Image SNR(dB) Kernel χopt SNR(dB) FOM n Time(s)

SD = 25

House 6.41
L1 0.33 15.14 0.6095 185 2.34

Proposed 0.21 15.76 0.6682 193 3.04

OSC 7.52
L1 0.43 14.42 0.6198 258 10.10

Proposed 0.31 14.74 0.6484 273 12.56

Disk 11.71
L1 0.2 27.04 0.8336 155 1.93

Proposed 0.1 28.46 0.8368 156 2.43

Flintstone 9.97
L1 0.4 15.23 0.6843 172 18.66

Proposed 0.3 15.73 0.7301 178 19.27

3.4.3 GVF-based Anisotropic Filter [85]

Nonlinear diffusion filters can be used for simultaneous deblurring and denoising, since

they can be set to perform an inverse diffusion on the edges. One of the techniques

for performing deblurring-denoising, introduced by Yu and Chua [85], is the gradient

vector flow (GVF)-based anisotropic diffusion filter given by

ut = c (‖∇u‖)∇2u− →
v ·∇u , (3.34)

where
→
v is a gradient vector flow field calculated through an evolutionary process

given by

→
v t= μ∇2 →

v −
(→

v −∇E
)
‖∇E‖2 (3.35)

→
v (t = 0) = ∇E ,

and E is the image edge map defined by

E = 1 − 1√
2πK

e(−‖∇u‖2/2K2) . (3.36)

In (3.35), μ is a positive blending coefficient used to smoothen the GVF field,
→
v . The

deblurring process performed by (3.34) is due to the inverse diffusion of the edges

carried out by the second term of right of (3.34).

The filter given by (3.34) has a Laplacian forward diffusion term, c(.)∇2u, which in
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Table 3.3: Quantitative comparison of the results obtained by the filter (3.34) using
kernels L1 and the proposed kernel Li,j

Degraded Image Filtered Image
Image SNR(dB) FOM Kernel SNR(dB) FOM Time(s)

House 8.85 0.5039
L1 13.48 0.4748 2.16

Proposed 14.13 0.5484 2.51

OSC 8.71 0.2816
L1 10.45 0.3043 4.87

Proposed 11.30 0.3757 5.39

Disk 14.87 0.5804
L1 22.22 0.7975 2.11

Proposed 22.49 0.8015 2.45

Flintstone 9.79 0.1179
L1 8.34 0.2106 11.37

Proposed 11.02 0.3442 12.39

a discrete setting is implemented as c(.)i,j(u∗L1)i,j. In order to use the proposed edge-

adaptive kernel, we simply replace the Laplacian kernel L1 in this forward diffusion

term by the kernel Li,j.

In this simulation study, filter (3.34) using the L1 and Li,j kernels is set up as

follows:

1. The evolutionary processes of (3.34) and (3.35) are discretized in the temporal

domain using the forward Euler approximation with the time-step size τ set to

0.1

2. The spatial derivatives in (3.34) and (3.35) are based on the central difference

operators with a reflective boundary condition.

3. The total number of iterations for the discretized diffusion precess of (3.34) is

chosen to be 50 with the value of
→
v updated after each 10 iterations using (3.35).

The total number of iterations for the discretized realization of (3.35) is chosen

to be 20.

4. The blending coefficient, μ, in (3.35) is set to unity.

5. The diffusivity function is computed as c (‖∇u‖) = e(‖∇u‖/2K2) with the value of

K at each iteration set to the 80% value of the integral of the gradient magnitude
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of the image. The same value of K is also used in (3.36) for the evaluation of

E.

6. Parameter settings used for the Li,j kernel are the same as those used in Section

3.4.2.

In order to see the effect of the proposed kernel in the deblurring-denoising process

of (3.34), the same four images as considered earlier are first blurred using a 15 ×
15 Gaussian kernel with the standard deviation of 1.5 and then contaminated with

an AWGN having SD = 15. Table 3.3 gives the quantitative results for the four

images in terms of the SNR and FOM. It is seen from this table that the use of the

proposed kernel in the filtering process of (3.34) yields the values of SNR and FOM

that are consistently better than that in the case when the L1 kernel is used. On the

average, the SNR and FOM values are, respectively, 1.1 dB and 25.73% higher. This

improvement in the performance of the filter using the proposed kernel is achieved at

the expense of a modest increase of only 10% in the comutational time. Figure 3.8

depicts the perceptual quality of the image OSC processed by (3.34) using the L1 and

Li,j kernels. The original test image is shown in Figure 3.8(a) and the corresponding

degraded image (blurred and noise contaminated) is shown in Figure 3.8(b). Figures

3.8(c) and (d) show the images resulting from the processing of image of Figure 3.8(b)

by the filter (3.34) with the L1 and Li,j kernels, respectively. It is seen from these two

processed images that the proposed kernel is more effective in deblurring the edges.
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(a) (b) (c) (d)

Figure 3.8: The perceptual quality of an image restored by (3.34) using the L1 and Li,j kernels. (a) The original image OSC.
(b) Degraded image blurred by the 15 × 15 Gaussian kernel with SD = 1.5 and contaminated by AWGN with SD=15. (c)
Image processed by (3.34) using L1. (d) Image processed by (3.34) using Li,j.
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3.5 Summary

In this chapter, a new scheme to enhance the edge-preservation capability of nonlin-

ear diffusion filters has been developed. In contrast with the existing methods for

increasing the edge preservation capability of nonlinear diffusion filters in which the

focus is on significantly reducing the value of diffusion coefficient at the edges, the new

scheme is motivated by the result of a study on the impact of the anisotropic behavior

inherent in the discrete approximations of the Laplacian operator on the diffusion of

the edges. The study has shown that the Laplacian kernel when it operates on pixels

of the orthogonal edges results in a smaller diffusion of these pixels compared with the

case of diagonal edges. Motivated by this result, a new Laplacian kernel has been de-

signed, which when operated on pixels of the orthogonal edges yields a zero response.

It has been shown that, although the filter employing this kernel completely halts the

diffusion process of the orthogonal edges, the filter itself in this case does not satisfy

the extremum principle. This problem has been analytically investigated to drive a

sufficient condition for the observance of the extremum principle, and eventually, to

propose an edge-adaptive Laplacian kernel. To demonstrate the effectiveness of the

new kernel, extensive simulations have been carried out by employing this kernel in

some well-known nonlinear diffusion filters. It has been shown that, at the expense of

some increase in the processing time, the use of the proposed kernel in the nonlinear

diffusion filters not only provides improved FOM values but also enhances their noise

reduction capability.
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Chapter 4

Nonlinear Diffusion Filtering for

Poisson Noise Removal

4.1 Introduction

Performance of nonlinear diffusion filters, in terms of their noise removal and edge

preservation capabilities, is intimeately related to the diffusion functions and the as-

sociated contrast parameters used by the filters. Furthermore, these nonlinear tech-

niques do not perform well when the noise corrupting the images being denoised is

non-stationary and signal-dependent. In this chapter, a nonlinear diffusion-based tech-

nique for denoising of images corrupted by Poisson noise is developed [98]. Starting

from a Skellam distribution model for the gradient of the Poisson noise corrupted im-

age and conducting a systematic investigation of the underlying diffusion mechanism,

a spatially and temporally varying contrast parameter is designed. The nonlinear

diffusion filter employing the contrast parameter thus designed is shown to satisfy the

scale-space properties. Through a comprehensive simulation study, it is shown that

the performance of the proposed technique, in terms of Poisson noise removal and

edge preservation, is significantly superior to those of some the recent state-of-the-art

techniques.
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4.2 Role of Contrast Parameter in Nonlinear

Diffusion Filter

A discrete realization of the nonlinear diffusion filter introduced by Perona and Malik

[35] for processing a noisy digital image f in which each pixel position is indexed by

(i, j), i = 1, · · · , I; j = 1, · · · , J , is given by

u
(n+1)
i,j = u

(n)
i,j + τ

∑
d∈D

[g(∇du)∇du](n)
i,j (4.1)

u(1) = f ,

where n is the iteration number, τ is a time step-size, g(.) is a diffusivity function,

and ∇d is the directional derivative in the direction d ∈ D = {N, S, E, W}, i.e., in the

direction north (N), south (S), east (E) or west (W), approximated as the difference

of the pixel value ui,j and that of the nearest pixel in one of the four directions.

Perona and Malik have introduced the following two expressions for the diffusivity

function [35]:

g(∇du, K) =
1

1 + (|∇du|/K)2
(4.2)

g(∇du, K) = exp− (|∇du|/2K)2 , (4.3)

where K is a tunning contrast parameter that controls the trade-off between the noise

removing and edge preserving capabilities of the filter. In fact, the nonlinear diffusion

filter using using either of these two diffusivity functions performs a strong forward

diffusion in regions of the image u with |∇du| ≤ K, and a reduced diffusion or even an

inverse diffusion in regions when |∇du| > K. Therefore, a good choice of this contrast

parameter in a nonlinear diffusion filter is the one that assumes a value larger than

the gradient magnitude at pixels that are in the smooth regions of the image and it is

smaller than that at the edge pixels. However, finding such a K is not a trivial task,

since the gradient magnitude alone cannot distinguish between a noisy pixel and an

edge pixel, specially when the noise level is high.
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For finding a suitable K when the image is corrupted by an additive white Gaus-

sian noise (AWGN), Perona and Malik [35] have suggested the use of an empirically

obtained distribution function of the gradient magnitude, where the value of K at

each iteration is set to be 80% ∼ 90% of the value of the integral of the histogram of

the absolute value of the gradient throughout the image. In [44], a technique based on

using median absolute deviation was introduced for estimating the contrast parameter

as

K = 1.4862 × MAD(∇u) , (4.4)

where MAD(.) is defined as

MAD(∇u) = median(|∇u − median(|∇u|)) . (4.5)

In contrast to the gradient based techniques of [35] and [44] for estimating a suitable

contrast parameter, in [99] this parameter is estimated by using directly the variance

of the contaminating AWGN. All these methods have resulted in a contrast parame-

ter that is spatially invariant when the contaminating noise is specifically stationary

uncorrelated AWGN. It should, however, be pointed out that in [2] a technique that

provides a spatially-varying K has been developed and it is shown to provide improved

performance for images with stationary AWGN contamination.

Development of spatially-varying contrast parameters for filtering of non-stationary

noise has been a subject of intense research [38, 39, 99, 100]. However, the computa-

tional cost associated with these techniques of estimating a contrast parameter is

high, since the value of K at each pixel position needs to be calculated by processing

the noisy image in a small window centered at the pixel position. In this context, a

constrained variational filter [101] has been developed for removing Poisson noise in

which a spatially varying parameter set to be inversely proportional to the intensity

of the diffusing image is used to control the trade-off between the noise removal and

edge preservation capabilities of the filter. In this method, while the setting of the
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parameter controlling the noise removal and edge preservation is greatly simplified,

the optimization-based filtering process itself is very slow due to non-smoothness of

the underlining cost function. Recent research efforts in this area have been focusing

on finding the ways and means to improve the convergence rate of the optimization

process [56–61]. In the next section, we develop an efficient technique for estimating a

spatially varying contrast parameter in the framework of the rapidly convergent non-

linear diffusion filtering scheme of Perona and Malik [35] for the removal of Poisson

noise.

4.3 Proposed Method

In this section, we develop the proposed technique for estimating a spatially and

temporally varying contrast parameter K for an efficient filtering of the images con-

taminated with Poisson noise using the Perona-Malik nonlinear diffusion filter [35]. To

this end, we first provide an initial estimate of K by modeling the gradient ∇d of the

piecewise smooth regions of an image contaminated with Poisson noise using Skellam

distribution [102]. This initial estimate for K is then further modified to take into

consideration the image singularities caused by the edges. The contrast parameter is

finally modified to control the temporal diffusion of the image. The scale-space prop-

erties of the diffusion filter are studied in the context of this newly designed contrast

parameter.

4.3.1 Initial Estimate of the Contrast Parameter using

Skellam Distribution

For simplicity of notations, in the following we denote the pixel position (i, j) by a

single index s and that of its immediate neighboring pixel in the direction d by d.
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The pixel fs of a given contaminated image f has a Poisson distribution:

fs ∼ P(μ = f ∗
s ) , (4.6)

where f ∗
s is the pixel value at (i, j) of the noiseless image f ∗. If the pixel values of the

noisy image f are assumed to be independent, then the distribution of ∇dfs is known

to follow a Skellam distribution [102] given by

∇dfs ∼ S(mean = f ∗
d − f ∗

s , variance = f ∗
d + f ∗

s ) . (4.7)

Although this distribution model is based on the assumption that pixels of the noisy

image are independent, it has been shown in [103] that, in practice, this model is

sufficiently accurate to model the distribution of ∇dfs.

Let us consider the image f ∗ to be a piecewise constant image (i.e., the noiseless

image f ∗ consists of flat regions separated by step edges). In this case the distribution

of ∇dfs at a pixel position s ∈ Ri, where Ri is a region of f corresponding to a flat

region R∗
i of noiseless image f ∗, becomes

∇dfs ∼ S(mean = 0, variance = f ∗
d + f ∗

s ) ∀ f ∗
s , f ∗

d ∈ R∗
i , (4.8)

with the probability density function being

p(x) = e(−2f∗
s )I|x|(2f ∗

s ) , (4.9)

where I|x| is a modified Bessel function of the first kind. Assuming that Xi is the

largest value of the |∇dfs| in Ri, a suitable value of the contrast parameter K can be

chosen as K ≥ Xi in order to remove the noise from the region Ri. However, it is

practically not feasible to determine Xi, since it is not possible to specify the region

Ri in f . On the other hand, the distribution of ∇dfs given by (4.8) provides us with

some measure of the degree of the variability around its mean value of zero. Hence,

we propose an initial estimate of K to be determined using this variability, as

Kd
s = χ

√
f ∗

s + f ∗
d , (4.10)
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where χ is a spatially constant scaling coefficient. Note that the expression for the

contrast parameter becomes Kd
s = χ

√
2f ∗

s , if s ∈ R∗
i . With this choice of the contrast

parameter, we can compute the probability of Kd
s ≥ |∇dfs| in the region Ri, by using

the probability density function given by (4.9), as

P (f ∗
s ) =

∫ χ
√

2f∗
s

−χ
√

2f∗
s

p(x)dx . (4.11)

We now evaluate this probability using the built-in function for modified Bessel func-

tion of the first kind available in Matlab for χ = 0.35, 0.70, 1.0 and 3 and fs in the

range [1, 100]. The results are depicted in Figure 4.1. It is seen from this figure that,

except for a region Ri for which the corresponding region R∗
i in f ∗ has a very low

intensity, P (f ∗
s ) is almost independent of f ∗

s and that it varies from a value of 0.27 to

a value of almost unity as the value of χ is increased from 0.35 to 3. That is to say

that the percentage of the pixel positions in Ri at which the condition K ≥ |∇sfs| is

satisfied varies from 27% to almost 100% as χ is varied in the range [0.35, 3].

Note that we have proposed an expression for the contrast parameter given by

(4.10) for the removal of the noise only in the region Ri. However, before performing

an experiment to examine its noise removal capability in Ri and to observe its impact

on the diffusion of the edges (that is, when the filtering process is moved beyond

the region Ri), we are faced with a practical problem, in that the expression given

by (4.10) requires the knowledge of the noise-free image f ∗ corresponding to f . To

overcome this problem, we propose to use the pixel values of the diffusing image u

instead of those of f ∗ in the evaluation of the contrast parameter, as

Kd
s

(n)
= χ

√
u

(n)
s + u

(n)
d . (4.12)

We now examine the impact of this modification in the contrast parameter. In order

to study this impact, we conduct the following experiment. We choose the image

House and corrupt it using the noise model given in (4.6). The noisy image is diffused

by the nonlinear diffusion filter (4.1) with the diffusivity function given by (4.2) and τ
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Figure 4.1: Evaluation of P (f ∗
s ) given in (4.11) for f ∗

s ∈ [1, 100] and χ = 0.35, 0.70,
1.0 and 3.0

set to be 0.2. For this diffusion process, we obtain the mean square difference (MSD)

between the values of contrast parameter KN
s using the expressions given by (4.10)

and (4.12) as a function of the iteration number n for χ = 0.35, 0.7, 1.0 and 3. The

results are shown in Figure 4.2, from which it is seen that the initial difference between

the values obtained using (4.10) and (4.12) is larger for larger value of χ. However,

regardless of the value of χ, the difference becomes quite small as the diffusion is

continued beyond n = 10 iterations.

With the expression for the contrast parameter now modified to a practically

implementable form as given by (4.12) and the impact of this modification studied,

we now examine the visual quality of the images in terms of noise removal and edge

preservation capability of the nonlinear diffusion filter using this modified contrast
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Figure 4.2: Mean square difference between the values of the contrast parameter
evaluated using (4.10) and (4.12) as a function of iteration number.

parameter. Figures 4.3(a) and (b) show the original noiseless and Poisson noise cor-

rupted House images, whereas, Figures 4.3(c), (d) and (e) show the images obtained

by filtering the the image of Figures 4.3(b) using the contrast parameter given by

(4.12) with the values of χ chosen as 0.35, 0.70 and 3.0, respectively, after 20 itera-

tions. It is seen that as the value of χ is increased from 0.35 to 3.0, more and more

of the Poisson noise is removed at the expense of increasingly diffused edges. For

χ = 0.35, the edges are reasonably well preserved, but the noise is still visible in the

image, whereas for χ = 3 the noise is completely filtered out, but the edges are much

diffused. In this example of filtering the House image, χ = 0.70 seems to provide a

good compromise between the noise removal and edge preservation capabilities of the

nonlinear diffusion filter, as seen from Figure 4.3(d).

Finally, we conclude that a reasonable choice for the value of χ (for example
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(a) (c) (d)(b)

(h)(g)(f)(e)

Figure 4.3: Comparing the perceptual quality of the denoised images obtained by
nonlinear diffusion filter (4.1) using the diffusivity function given by (4.2). (a) Noise-
less image; (b) Noisy image; (c)-(e) Denoised images where the contrast parameter is
given by (4.12) with χ = 0.35, 0.70 and 3.0, respectively; (f) Denoised image obtained
by using the contrast parameter given by (4.18) with χ = 0.7;(h) Denoised image
obtained by using the contrast parameter given by (4.24) with χ = 0.70; Denoised
image obtained by using the proposed contrast parameter given in (4.28).

χ ≥ 0.7 in the above example) in the contrast parameter given by (4.12) can effectively

remove the noise from all regions of the image f for which the corresponding regions

in the noiseless image f ∗ are flat. In the next subsection, we modify the contrast

parameter given by (4.12) by focusing on the pixel-dependent component, namely√
u

(n)
s + u

(n)
d , of the contrast parameter in order to control the diffusion of the edges

while still effectively removing the noise.

55



4.3.2 An Edge-Adaptive Contrast Parameter

In this section, we suitably modify the data dependent part

√
u

(n)
s + u

(n)
d of the con-

trast parameter given by (4.12) so that its value on the edge pixels of the image gets

reduced. As mentioned in Section II, if at edge pixels the contrast parameter is made

to satisfy the condition

K < |∇dus| = |ud − us| , (4.13)

then the pixels in question will have reduced diffusion or may undergo even an inverse

diffusion. Satisfying the condition (4.13) at a pixel lying on an edge in image u, leads

to the preservation or enhancement of the edge pixel during the filtering process.

Using in (4.13) the expression for the contrast parameter given by (4.12), we have

|ud − us| > χ
√

us + ud . (4.14)

Solving the equation |ud − us| = χ
√

us + ud for ud yields

ud =

⎧⎪⎪⎨⎪⎪⎩
f1(us) =

2us + χ2 + χ
√

8us + χ2

2
, for us < ud (4.15)

f2(us) =
2us + χ2 − χ

√
8us + χ2

2
, for us > ud . (4.16)

The results of the above analysis is depicted in Figure 4.4(a) for χ = 1 and us in

the range [0.05, 10]. From the plot of the functions ud = f1(us) and ud = f2(us) as

given by (4.15), the first quadrant of usud-plane gets divided into regions R1, R2 and

R3. It is obvious from this figure that for an edge pixel us for which (us, ud) lies in

the region R1 or R3, the contrast parameter given by (4.12) will satisfy the condition

given by (4.14). However, for an edge pixel us for which (us, ud) lies in the region R2,

this condition will be violated. Therefore, by using the contrast parameter given by

(4.12), the edge pixels for which (us, ud) lies in the region R1 or R3 will undergo a

diffusion process in the direction
→
sd at a rate that is smaller than when (us, ud) lies

in the region R2. We, therefore, conclude that a choice of the contrast parameter

given in (4.12) is detrimental to preserving the edge pixels us such that (us, ud) ∈ R2

56



under the diffusion process given by (4.1). Hence, our objective in any modification

in the contrast parameter of (4.12) must focus on reducing the difference between the

function f1(us) and f2(us), that is, to reduce the vertical depth of the region R2. The

vertical depth of the region R2 can be obtained using (4.15) as

D1(us) = f1(us) − f2(us) = χ
√

8us + χ2 . (4.17)

Let us now modify the contrast parameter given by (4.12) as

Kd
s = χ

√
2min(u

(n)
s , u

(n)
d ) . (4.18)

Since in a region of u corresponding to Ri in f , u
(n)
s ≈ u

(n)
d , we have 2min(u

(n)
s , u

(n)
d ) ≈

u
(n)
s + u

(n)
d . Therefore, in this region, the modified contrast parameter given by (4.18)

assumes approximately the same value as that assumed by (4.12). However, the

intensity of an edge pixel us is substantially different from that of ud. Therefore, for

an edge pixel us, 2min(u
(n)
s , u

(n)
d ) < u

(n)
s + u

(n)
d , meaning that at an edge pixel us,

the value of the contrast parameter given by (4.18) is lower than that obtained by

using (4.12). Accordingly, the performance of the filter can be expected to improve

in reducing the diffusion of the edges while retaining the same performance as that

by using (4.12) in removing the noise in flat regions.

Using this modified contrast parameter, the condition (4.13) becomes

|ud − us| >

⎧⎨⎩χ
√

2us , for us < ud (4.19)

χ
√

2ud , for us > ud . (4.20)

In a way similar to the previous case, we can determine the regions in usud-plane

in which the condition given by (4.19) is satisfied by making use of the following

functions:

ud =

⎧⎨⎩
f3(us) = us + χ

√
2us for us < ud (4.21)

f4(us) =
2us + 2χ2 − χ

√
8us + 4χ2

2
for us > ud . (4.22)

The results for χ = 1 and us ∈ [0.05, 10] are depicted in Figure 4.4(b). It is seen

from this figure that with the modification of the contrast parameter as in (4.18), the
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Figure 4.4: Impact of using the contrast parameters resulting from its various de-
velopmental stages. Illustration of the regions R∞, R∈, R
 by using (a) (4.12), (b)
(4.18) and (c) (4.24). (d) The vertical depth of the region R∈.
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region R2 is vertically shrunk, that is, with the use of contrast parameter (4.18), the

condition K < |∇dus| holds at an edge pixel us with smaller values of |us − ud| than

that in the case of using the contrast parameter of (4.12). Thus, the use of contrast

parameter (4.18) should enable to preserve edges with a smaller contrast. In this case,

the vertical depth of the region R2 is given by

D2(us) = f3(us) − f4(us) = χ(
√

2us + χ2 +
√

2us) − χ2 . (4.23)

In order to see the visual performance of filter (4.1) using this modified contrast

parameter given by (4.18), we again consider the noisy image House shown in Figure

4.3(b) and let it undergo the nonlinear diffusion process of (4.1) using the contrast

parameter given by (4.18) with χ = 0.70. The filtered image is shown in Figure

4.3(f). A comparison of the filtered images of Figures 4.3(d) and (f) shows that the

edge preservation capability of the filter using (4.18) is improved over that using (4.12)

while still removing the noise effectively.

In an effort to further decrease the value of the contrast parameter at edge pixels

while keeping its value about the same in non-edge-pixel regions, we make use of the

diffusivity function g(.). Note that the value of g(.) ranges between zero at edge pixels

and unity at pixels in Ri. Thus, if the contrast parameter is modified as

Kd
s

(n)
= χ

√
[1 + g(n−1)(.)]min(u

(n)
s , u

(n)
d ) (4.24)

g(0)(.) = 0 ,

its value will range between χ
√

min(us, ud) at edge pixels and χ
√

2min(us, ud) at

pixels positions in Ri, i.e., the range of Kd
s becomes [χ

√
min(us, ud), χ

√
2us)]. Most

of the diffusivity functions are designed so as to assume very small values at edge

pixels. Therefore, in order to examine the ability of the contrast parameter given by

(4.24) in further shrinking the region R2 vertically, we assume that g(n−1)(.) takes

a value of zero at edge pixels. With this assumption, the functions separating the
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regions R1 and R2 and regions R2 and R3 in the usud-plane are given by

ud =

⎧⎨⎩
f5(us) = us + χ

√
us , for us < us (4.25)

f6(us) =
2us + χ2 − χ

√
4us + χ2

2
, for us > ud . (4.26)

These functions, along with those obtained in connection with contrast parameters

(4.12) and (4.18), are plotted in Figure 4.4(c). It is seen from this figure that the

contrast parameter given by (4.24) has indeed succeeded in shrinking the region R2

further. The difference of the function f5(.) and f6(.) is given by

D3(us) = χ
(√

us +
√

us + χ2/4
)
− χ2

2
. (4.27)

The difference functions D1(us), D2(us) and D2(us) are plotted in Figure 4.4(d) in

order to show as to how the contrast parameter given by (4.12), (4.18) and 4.24) have

progressively shrunk the region R2.

Figure 4.3(g) shows the House image of Figure 4.3(b) filtered by using the contrast

parameter given in (4.24). By comparing this image with that of Figure 4.3(f), it is

seen that the filter with this contrast parameter is even more effective in preserving

the edges without a loss in its ability to remove noise.

4.3.3 Temporal Curtailing of Diffusion

In the development of the contrast parameter in the proceeding sub-sections, the

scaling coefficient χ was kept constant throughout the iterations. However, as seen

in Section III.A, for a given noisy image, one needs to use a value of χ that provides

an optimum performance in terms of the noise removal and edge preservation. We

also know that during the initial phase of the iterations, the noise is predominant.

Hence, during this phase, the use of large χ could be more effective for noise removal

. But, keeping this same large value through the later phases of iterations would be

detrimental to preserving the edges. Thus, by using the so-called threshold freez-

ing mechanism [96], we finally modify the contrast parameter to make it temporally
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decreasing:

Kd
s

(n)
= χ(n)

√[
1 + g

(n−1)
d (.)

]
min(u

(n)
s , u

(n)
d )

g(0)(.) = 0 (4.28)

χ(n) = χ0/n ,

where χ0 is a constant, which needs to be appropriately chosen. The use of contrast

parameter of (4.28) will reduce the diffusion process through the iterations. Hence,

the following condition can be used as a stopping criterion for further iterations∑
s(u

(n)
s − u

(n−1)
s )2∑

s u
(n)
s

≤ T, (4.29)

where T is a small positive number.

Figure 4.3(h) shows the image obtained by filtering the image of Figure 4.3(b)

using the contrast parameter (4.28) with χ0 = 2.38. A comparison of this image with

that in Figure 4.3(g) shows that the edge preservation capability of the filter using the

final contrast parameter has increased over that using the contrast parameter given

by (4.24).

4.3.4 Scale Space Properties

In this section, we study the scale-space properties of the nonlinear diffusion filter

given by (4.1) when it employs the proposed contrast parameter of (4.28). It has been

shown in [64] that if a nonlinear diffusion process expressed in the form

u(n+1) = A(u(n))u(n), n = 1, 2, · · · (4.30)

u(1) = f ,

where u = (u1, · · · , us, · · · , uN) is a vector obtained by concatenating the columns of

an image with us being a typical pixel value at position (i, j), N denotes the total
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number of pixels in the image, and A is an N × N matrix with its (k, l)th element

denoted by ak,l, satisfies the conditions:

(S1)
∑N

l=1 ak,l = 1

(S2) ak,l = al,k k, l ∈ {1, · · · , N}

(S3) continuity in the arguments of A, A ∈ C(RN , RN×N)

(S4) ak,l ≥ 0, k, l ∈ {1, · · · , N}

(S5) ak,k > 0, k ∈ {1, · · · , N}

(S6) irreducibility of A for all u ∈ RN

then the diffusion process maintains the scale-space properties. These conditions

constitute a set of sufficient conditions to ensure that the diffusion process is well-posed

and the output of the process converges to the a constant steady state and process

supports the extremum principle and the property of average gray level invariance.

It is seen that the nonlinear diffusion filter given by (4.1) is indeed expressible in the

form given by (4.30) with the elements of the matrix A given by

ak,l =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τgk,l, l ∈ Nd(k)

1 − τ
∑

l∈Nd(k) gkl, l = k

0, otherwise ,

(4.31)

where Nd(k) denotes the set of the indices of the immediate neighboring pixels of uk in

the 2-D image, and gkl is the diffusion coefficient calculated using diffusion function

(4.2) or (4.3) and the contrast parameter of (4.28) with s = k and d = l. Before

we verify that the nonlinear diffusion filter (4.1) employing the diffusivity function of

(4.2) and the contrast parameter given by (4.28) satisfies the conditions (S1)-(S6), we

prove the following lemma and theorem.
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Lemma 1. Elements of the matrix A satisfies

N∑
l=1

ak,l = 1 , k ∈ Ω = {1, 2, · · · , N} . (4.32)

Proof. We have

N∑
l=1

ak,l =
∑

l∈Nd(k)

ak,l +
∑
l=k

ak,l +

N∑
l=1
l�=k

l /∈Nd(k

ak,l , k ∈ Ω . (4.33)

Using (4.31) yields

N∑
l=1

ak,l =
∑

l∈Nd(k)

τgk,l +

⎛⎝1 −
∑

l∈Nd(k)

τgk,l

⎞⎠ = 1 , k ∈ Ω . (4.34)

Theorem 1. If the the pixel values of a 2-D image f are strictly positive, i.e., f =

u(1) ∈ R
+, χ0 �= 0 and 0 < τ < 0.25, then for n = 1, 2, · · · , the following holds:

(a) g
(n)
k,l (.) is a continuous function of u

(n)
k , u

(n)
l , u

(n−1)
k

and u
(n−1)
k with its range given by (0, 1]

(b) fmin ≤ u(n+1) ≤ fmax ,

where fmin = min{f} and fmax = max{f}.

Proof. Depending on the relative values of u
(n)
k and u

(n)
l , the diffusivity function (4.2)

when it employs the contrast parameter given by (4.28), can be expressed as

g
(n)
k,l (u

(n)
k , u

(n)
l , g(n−1)(.)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(n)
1 = 1

1+
(u

(n)
l

−u
(n)
k

)2

[χ(n)(1+g(n−1)(.))u
(n)
l

]2

, u
(n)
k > u

(n)
l

g
(n)
2 = 1, u

(n)
k = u

(n)
l

g
(n)
3 = 1

1+
(u

(n)
l

−u
(n)
k

)2

[χ(n)(1+g(n−1))(.)u
(n)
k

]2

, u
(n)
k < u

(n)
l .

(4.35)

We prove this theorem by induction.

(i) n = 1
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Since g(0)(.) = 0, for n = 1 (4.35) becomes

g
(1)
k,l (u

(1)
k , u

(1)
l , g(0)(.)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(1)
1 = 1

1+
(u

(1)
l

−u
(1)
k

)2

(χ0u
(1)
l

)2

, u
(1)
k > u

(1)
l

g
(1)
2 = 1, u

(1)
k = u

(1)
l

g
(1)
3 = 1

1+
(u

(1)
l

−u
(1)
k

)2

(χ0u
(1)
k

)2

, u
(1)
k < u

(1)
l .

(4.36)

Since, χ0 �= 0 and u(1) = f ∈ R
+, the functions g

(1)
1 , g

(1)
2 and g

(1)
3 , as given by (4.36),

are defined and each is continuous function of u
(1)
k and u

(1)
l in the specified regions.

Further, both g
(1)
1 and g

(1)
3 approach g

(1)
2 as u

(1)
k → u

(1)
l , and g

(1)
1 = g

(1)
2 = g

(1)
3 = 1 for

uk = ul. Thus, g(1)(.) is a continuous function. Also, it is obvious from (4.36) that

g(1)(.) ∈ (0, 1].

From (4.30), we have

u
(2)
k =

∑
l∈Ω

a
(1)
k,l u

(1)
l , k ∈ Ω . (4.37)

Since 0 < τ < 0.25 and the fact that g(1)(.) ∈ (0, 1], it is seen from (4.31) that all

elements of A(u(1)) are positive. Hence, by replacing u
(1)
l in (4.37) with fmin and fmax,

we have ∑
l∈Ω

a
(1)
k,l fmin ≤ u

(2)
k ≤

∑
l∈Ω

a
(1)
k,l fmax , k ∈ Ω . (4.38)

By factoring out fmin and fmax from the summations in (4.38), and since according

Lemma 1,
∑

l∈Ω a
(1)
k,l = 1 ∀ k ∈ Ω, we have

fmin ≤ u
(2)
k ≤ fmax , k ∈ Ω . (4.39)

This proves parts (a) and (b) of the theorem for n = 1.

(ii) n = p

Assume that (a) and (b) hold for n = p, that is,

g
(p)
k,l (.) is a continuous function of u

(p)
k , u

(p)
l , u

(p−1)
k and u

(p−1)
k , and g

(p)
k,l (.) ∈ (0, 1]

(4.40a)
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and

fmin ≤ u(p+1) ≤ fmax . (4.40a)

For n = p + 1, (4.35) can be written as

g
(p+1)
k,l (u

(p+1)
k , u

(p+1)
l , g(p)(.)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(p+1)
1 = 1

1+
(u

(p+1)
l

−u
(p+1)
k

)2

[χ(p+1)(1+g(p)(.))u
(p+1)
l

]2

, u
(p+1)
k > u

(p+1)
l

g
(p+1)
2 = 1, u

(p+1)
k = u

(p+1)
l

g
(p+1)
3 = 1

1+
(u

(n+1)
l

−u
(n+1)
k

)2

[χ(p+1)(1+g(p))(.)u
(p+1)
k

]2

, u
(p+1)
k < u

(p+1)
l .

(4.41)

Using the condition given by (4.40a) and following the same reasoning as used to

prove the theorem for n = 1, it easy to see that g
(p+1)
k,l (.) is a continuous function with

its range given by (0, 1]. In order to prove part (b) of the theorem for n = p + 1, we

can write using (4.30)

u
(p+2)
k =

∑
l∈Ω

a
(p+1)
k,l u

(p+1)
l , k ∈ Ω . (4.42)

Using the above equation, and the fact g
(p+1)
k,l (.) ∈ (0, 1] and 0 < τ < 0.25, we obtain

the following inequalities:

∑
l∈Ω

a
(p+1)
k,l u

(p+1)
min ≤ u

(p+2)
k ≤

∑
l∈Ω

a
(p+1)
k,l u(p+1)

max , k ∈ Ω , (4.43)

where u
(p+1)
min = min u

(p+1)
l and u

(p+1)
max = max u

(p+1)
l ∀ l ∈ Ω. Using Lemma 1 and

(4.40), the above equation readily yields

fmin ≤ u
(p+2)
k ≤ fmax , k ∈ Ω . (4.44)

Thus, with the conditions given by (4.40), the theorem also holds for n = p + 1.

Using the results of Lemma 1 and Theorem 1, we now show that the nonlinear

diffusion filter (4.1) using the diffusivity function given by (4.2) and the proposed
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contrast parameter (4.28) satisfies the conditions (S1)-(S6). The condition (S1) is

already proved as Lemma 1. In order for (S2) to hold, we must have g
(n)
k,l = g

(n)
l,k , which

is equivalent to showing Kd
s

(n)
= Ks

d
(n). The proposed contrast parameter given by

(4.28) indeed satisfies this last condition. According to (4.31), the continuity of the

elements of A, i.e., condition (S3), is dictated by the continuity of the function g
(n)
k,l ,

which is a result of Theorem 1. As for condition (S4), we have already established

in the proof of Theorem 1 that the ak,l elements of the matrix A are all positive.

Condition (S5) is seen to be satisfied, since for 0 < τ < 0.25 and gk,l ∈ (0, 1], ak,k

cannot be zero. As for condition (S6) , the necessary condition for the matrix A to

be irreducible is given in [64]. A sufficient condition for A to be irreducible is that

the elements ak,k+1 and ak,k−1 (k ∈ Ω) are all non-zero. Using (4.31), it is easy to

verify that in our case, where 0 < τ < 0.25 and gk,l ∈ (0, 1], these elements are strictly

positive. Hence, A is irreducible.

Finally, it can easily be shown that if the nonlinear diffusion filter (4.1) employs

the diffusivity function given by (4.3) along with the proposed contrast parameter

(4.28), then Lemma 1 and Theorem 1 still applies and the diffusion filter satisfies

conditions (S1)-(S6).

4.4 Simulation Results

In this section, we study the performance of the nonlinear diffusion filter given by (4.1)

using the proposed contrast parameter for removing the Poisson noise and compare

its performance with that of other state-of-the-art filters.

For our experiments, three test images, Pepper, Cameraman and House, are used.

The size of these test images is 256×256 with the gray levels of the pixels lying in range

of [0, 255]. In order to ensure the contaminated images to have low signal-to-noise

ratio (SNR), the pixel values of each of the original images before its contamination
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is scaled down by a factor so as to limit its maximum gray level in f ∗
M to be 120, 60

or 30. The scaled down images are then contaminated according the noise model of

(4.6) using a built-in function in MATLAB. In order to ensure that the filter (4.1)

employing the proposed contrast parameter satisfies the scale space properties as well

as to ensure that conditions of the filters used for comparison are also satisfied, the

pixel values of the contaminated images smaller than ε = 10−15 are reset to ε.

The simulation of the nonlinear diffusion filter given by (4.1) using the diffusivity

function of (4.2) in conjunction with the proposed contrast parameter requires setting

the values of the parameters T and τ . We set T = 10−4 and τ = 0.2 in oder to ensure

that iterative process achieves a good steady state. Gaussian kernel with variances

of 0.30, 0.40 and 0.50 are used in the diffusivity function given by (4.2) in order to

provide spatial regularization for the processing of the contaminated images with

f ∗
M = 120, 60 and 30, respectively. As for setting the parameter χ0, its optimum value

is empirically obtained so as to satisfy the discrepancy principle for Poisson data [57],

that is, an optimum value of χ0 is obtained to result in a filtered image û for which

the expression

2

I × J

∑
s

(
fs ln

fs

ûs
+ ûs − fs

)
(4.45)

approaches unity.

The performances of all the filters considered in this study are measured in terms

of the peak signal-to-noise ratio (PSNR) representing the noise removal capability of

the filters, and a figure of merit (FOM) index introduced in [11] that represents the

edge preservation capability of the filters. The PSNR is defined as

PSNR = 10 log10

(
I × J × (f ∗

M)∑
s(f

∗
s − ûs)2

)
, (4.46)

where û and f ∗ denote, respectively, the denoised and the noiseless images. The index
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FOM, as defined in [11], is given by

FOM =
1

max (Nû, Nû)

Nû∑
i=1

1

1 + φd2
i

, (4.47)

where Nû is the number of detected edge pixels, Nf∗ is the number of edge pixels in

the original image f ∗, φ is a positive scaling factor often chosen to be 1/9, and di is

the distance between the ith detected edge pixel in û and the corresponding pixel in

f ∗. For the evaluation of FOM, the Sobel operator is used for the edge detection.

All the filters in this section are implemented using a MATLAB 2008Ra simulation

platform on a Windows-based 64-bit icore5 machine with 4-GB RAM.

The performance of the the proposed technique is compared with that of the

state-of-the-art techniques presented in [61], [104] and [53] for Poisson noise removal.

In our simulation of these three techniques, the parameter values used are the same

as those reported in the respective publications. However, the optimal values for the

parameters α and τ in the techniques of [61] and [104], respectively, which are used to

control the trade-off between the noise reduction and edge preservation of the images,

are determined empirically so as to provide the best values for the PSNR.

Table 4.1 gives the performance of the proposed filtering scheme and those of

the other schemes mentioned above, in terms of PSNR and FOM of the denoised

images, and the computational cost for processing the noisy images. It is seen from

this table that amongst all the techniques considered, the proposed one provides

with the best values for PSNR and FOM. For the three images, each with three

different noise levels, the proposed technique, on the average, provides improvements

of 9.18 dB in the PSNR over the average of the PSNR of the noisy images, which

compares with the improvement of 7.13 dB, 7.53 dB and 8.53 dB provided by the TV-

KL [61], SPIRAL-TV [104] and PURE-LET [53] filters, respectively. As regards the

comparative performance of the filters in edge preservation, the proposed technique, on

the average, provides improvements of 22.32%, 17.41% and 4.55% in the FOM values

over those of the TV-KL, SPIRAL-TV, and PURE-LET techniques, respectively. In
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regard to the computational times of the techniques, with the exception of the Pepper

image with f ∗
M = 120, the proposed technique has the lowest computational cost. On

the average, the computational cost of the proposed technique is only 82%, 11.37%

and 51% of that of the TV-KL, SPIRAL-TV, and PURE-LET techniques.

Table 4.1: Performance of various denoising filters

f ∗
M Noisy Image Optimal Values Denoised Image

Image PSNR(dB) Method of Parameters PSNR(dB) FOM Time(s)

120

Pepper 23.93

TV-KL [61] α = 11 28.97 0.8313 1.20
SPIRAL-TV [104] τ = 0.165 29.32 0.7259 12.30
PURE-LET [53] − 30.89 0.8224 3.00

Proposed χ0 = 1.78 31.29 0.8359 1.30

Cameraman 24.08

TV-KL [61] α = 6.6 28.81 0.7786 1.65
SPIRAL-TV [104] τ = 0.135 29.13 0.7972 12.00
PURE-LET [53] − 30.40 0.9227 3.06

Proposed χ0 = 1.25 30.49 0.9369 1.23

House 23.15

TV-KL [61] α = 7.2 31.13 0.7053 1.51
SPIRAL-TV [104] τ = 0.105 31.26 0.7254 111.7
PURE-LET [53] − 31.32 0.8045 3.03

Proposed χ0 = 1.47 32.38 0.8081 1.28

60

Pepper 20.90

TV-KL [61] α = 7 27.00 0.6554 1.62
SPIRAL-TV [104] τ = 0.235 28.27 0.6823 7.60
PURE-LET [53] − 29.15 0.7359 3.04

Proposed χ0 = 1.49 29.89 0.7871 1.48

Cameraman 21.08

TV-KL [61] α = 4.4 27.27 0.7070 1.95
SPIRAL-TV [104] τ = 0.195 27.37 0.7120 8.68
PURE-LET [53] − 28.57 0.8520 3.05

Proposed χ0 = 1.13 28.80 0.8700 1.45

House 20.15

TV-KL [61] α = 4.4 29.43 0.6150 1.99
SPIRAL-TV [104] τ = 0.180 29.44 0.6548 66.7
PURE-LET [53] − 30.11 0.6957 3.08

Proposed χ0 = 1.44 31.05 0.7251 1.55

30

Pepper
17.93

TV-KL [61] α = 3.83 25.18 0.5122 2.15
SPIRAL-TV [104] τ = 0.365 26.13 0.6078 8.90
PURE-LET [53] − 27.46 0.6461 3.00

Proposed χ0 = 1.37 28.39 0.7111 1.78

Cameraman 18.07

TV-KL [61] α = 2.8 25.33 0.6130 2.55
SPIRAL-TV [104] τ = 0.30 25.73 0.6419 8.43
PURE-LET [53] − 26.94 0.7951 3.02

Proposed χ0 = 1.02 27.20 0.8262 1.74

House 17.17

TV-KL [61] α = 3.0 27.59 0.5105 2.49
SPIRAL-TV [104] τ = 0.27 27.60 0.5627 149.5
PURE-LET [53] − 28.43 0.6064 3.01

Proposed χ0 = 1.31 29.61 0.6676 1.88

For demonstrating the visual qualities of the images processed by the various

filters considered, we choose the Pepper and Cameraman images as well as the image

Cell available in the image processing tool-box of MATLAB. The images Pepper and

Cameraman with f ∗
M = 30 and the image Cell with f ∗

M = 60 are contaminated to
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have the PSNR values of 17.93 dB, 18.07 dB and 20.28 dB, respectively. The first

two images shown in Figure 4.5, Figure 4.6 and Figure 4.7 are noiseless and noisy

images, respectively. The images filtered by the TV-KL, SPIRAL-TV and PURE-

LET techniques and by the proposed technique are depicted, respectively, as (c), (d),

(e) and (f) in these figures.

An examination of the images in Figure 4.5 shows that the image in Figure 4.5(f)

is visually better than that shown in Figure 4.5(c) and much better than the one in

Figure 4.5(e) in terms of getting their noise removed. Also, the edges and textures in

the image of Figure 4.5(f) are better preserved than that in Figure 4.5(d). A close look

at the images in Figure 4.6 shows that image of Figure 4.6(f) portrays the best balance

between the noise removal and edge preservation among all the denoised Cameraman

images. Specifically, a comparison of the images in Figures 4.6(e) and (f) shows that

the proposed method has removed the noise more effectively and has provided a better

look of the Cameraman’s face. Further, the tower in the distant background is best

preserved in the image Figure 4.6(f). It is also noted that in the image of Figure

4.6(c), one of the support of the tripod is completely distorted. From the filtered

images depicted in Figures 4.7(c) and (d), it is clear that noise in the background is

sufficiently removed; however, the texture on or near the boundary of the cells are

blurred. In Figure 4.7(e), even though the fine details at the surface of cells are well

preserved, the PURE-LET filter does not effectively remove the noise, particularly the

noise surrounding the right cell. Figure 4.7(f) shows the result obtained by using the

proposed filter, in which not only the noise has been effectively removed but also the

fine details of the cells are better preserved in comparison to that in images obtained

by using the other filtering schemes considered in this simulation study.
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(a) (b)

(d)(c)

(e) (f)

Figure 4.5: The perceptual quality of the processed image Pepper : (a) Noiseless
image. (b) Noisy image when f ∗

M = 30. (c) Image denoised using TV-KL with
α = 3.83. (d) Image denoised using SPIRAL-TV with τ = 0.365. (e) Image denoised
using PURE-LET. (f) Image denoised using proposed method with χ0 = 1.37.

71



(a) (b)

(d)(c)

(e) (f)

Figure 4.6: The perceptual quality of the processed image Cameraman: (a) Noiseless
image. (b) Noisy image when f ∗

M = 30. (c) Image denoised using TV-KL with
α = 2.80. (d) Image denoised using SPIRAL-TV with τ = 0.30. (e) Image denoised
using PURE-LET. (f) Image denoised using proposed method with χ0 = 1.02.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: The perceptual quality of the processed image Cell : (a) Noiseless image.
(b) Noisy image when f ∗

M = 60. (c) Image denoised using TV-KL with α = 5.9
(PSNR = 31.54 dB and FOM = 0.4392). (d) Image denoised using SPIRAL-TV
with τ = 0.130 (PSNR = 31.41 dB and FOM = 0.4786). (e) Image denoised using
PURE-LET (PSNR = 31.53 dB and FOM = 0.4474). (f) Image denoised using the
proposed method with χ0 = 1.19 (PSNR = 32.43 dB and FOM = 0.5796).
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4.5 Summary

Performance of the techniques for noise removal, in which the diffusion process is

modeled as a nonlinear partial differential equation, predominantly depends on the

choice of the diffusion functions, specially on the ability of the associated contrast

parameter, in removing the noise and preserving the edges of the image being de-

noised. The performance optimality of the denoising in these techniques is generally

based on the assumption that noise and signal are uncorrelated. The photon-limited

images in medical imaging systems and images in remote sensing are mainly de-

graded by Poisson noise having strong signal dependence, and they are examples of

noise corruption in which the assumption of stationarity or uncorrelatedness of the

contaminating noise for an optimal performance of the filter is no longer valid. In

this chapter, a study has been undertaken to develop a technique for denoising of

the images contaminated by Poisson noise within the framework of the Perona-Malik

nonlinear diffusion filter. Starting from a Skellam distribution model of the gradient

of a Poisson noise corrupted image and utilizing the mechanism of nonlinear diffusion

process as it navigates spatially and temporally through the noise regions correspond-

ing to the regions of the original image with and without edge pixels, a spatially and

temporally varying contrast parameter has been designed. It has been shown that

the nonlinear diffusion filter incorporating the proposed contrast parameter satisfies

the scale-space properties. Extensive simulations have been performed to study the

objective and subjective performances of the proposed and some of the other recently

proposed techniques. The experimental results have demonstrated the superiority of

the proposed technique in removing the noise and preserving the edges of the images

contaminated by Poisson noise.
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Chapter 5

Conclusion

5.1 Concluding Remarks

This thesis has been an investigation of the diffusion process of nonlinear diffusion fil-

ters as it concerns their capabilities for noise removal and edge preservation of images.

The discretized versions of nonlinear differential equations modeling the diffusion pro-

cess make use of kernels to perform the operations of spatial derivatives and contrast

parameters to control the diffusion process. In this thesis, the roles of Laplacian ker-

nels and contrast parameters have been investigated from standpoint of noise removal

and edge preservation capabilities of the filters employing them. Based on this study,

an edge-adaptive Laplacian kernel for removal of additive white Gaussian noise and

a spatially and temporally varying contrast parameter for removal of Poisson noise

from images have been developed.

In the first part of the thesis, a study has been first carried out to examine the

impact of the anisotropic behavior of the Rosenfeld and Kak’s Laplacian operator on

the edge preservation capability of a discrete version of the Perona-Malik nonlinear

diffusion filter. The result of this study has revealed that edges with different orienta-

tions having the same contrast can be diffused differently because of the anisotropic
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behavior of this operator. This has motivated the development of a new Laplacian

Kernel that when operating on pixels of orthogonal edges yields a zero response. It

has been shown that even though the filter employing this kernel halts the diffusion

process completely on orthogonal edges, the filter itself, in this case, does not satisfy

the extremum principle. This problem has been analytically investigated to derive

sufficient conditions for observance of the extremum principle and eventually to pro-

pose an edge-adaptive Laplacian kernel. The proposed Laplacian kernel has been used

in different nonlinear diffusion filters, namely the Perona-Malik filter, the anisotropic

filter of Carmona and Zhong and the gradient vector flow based anisotropic filter

of Yu and Chua, in order to demonstrate its effectiveness in improving the filters’

performance.

In the second part of the thesis, with a focus on the design of a new contrast

parameter, a study has been undertaken to develop a technique for denoising images

contaminated by Poisson noise within the framework of the Perona-Malik nonlinear

diffusion filter. Starting from a Skellam distribution model of the gradient of a Poisson

noise corrupted image and utilizing the mechanism of nonlinear diffusion process as it

proceeds spatially and temporally through the regions of the image with and without

edges, a spatially and temporally varying contrast parameter has been designed. It

has been shown that the nonlinear diffusion filter incorporating the proposed contrast

parameter satisfies the scale-space properties.

The effectiveness of the proposed techniques has been demonstrated by performing

a set of comprehensive experiments using benchmark images. It has been shown

that the edge preservation and noise reduction capabilities of the nonlinear diffusion

filters employing the proposed Laplacian kernel are significantly improved when they

are used for denoising images contaminated by additive white Gaussian noise, with

some increase in the processing time. The effectiveness of the proposed contrast

parameter has been shown by using it in the Perona-Malik filter and comparing the
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results of denoising images with that of some recent state-of-the-art nonlinear filters.

The subjective and objective evaluations of the performances of these filters have

convincingly demonstrated the superiority of the proposed filtering technique in its

noise removal and edge preservation capabilities and in the computational cost.

5.2 Scope for Future Work

The techniques of nonlinear diffusion proposed in this thesis have been developed to

denoise gray-level images. A study could be undertaken for development of Laplacian

operators and contrast parameters for nonlinear diffusion filters to denoise vector-

valued images contaminated with different kinds of noise. The possibility of extending

the proposed techniques to applications modeled with higher-order partial differen-

tial equations could be also explored. The impact of using the proposed Laplacian

kernel and contrast parameter on image denoising by nonlinear diffusion filters em-

ploying diffusivity functions other than those considered in this thesis could also be

investigated.

The techniques and schemes of this thesis to develop an edge-adaptive kernel and

spatially and temporally varying contrast parameter for denoising of images using

nonlinear partial differential equation based diffusion models could be further inves-

tigated for image processing applications such as deblurring and segmentations.
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