
PERSISTENT PROTECTION IN MULTICAST CONTENT

DELIVERY

Malek Barhoush

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

May 2012

c© Malek Barhoush, 2012



Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Malek Barhoush

Entitled: Persistent Protection in Multicast Content Delivery

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. A. Aghdam Chair

Dr. K.C. Almeroth External to Program

Dr. M. Debbabi Examiner

Dr. H.F. Li Examiner

Dr. L. Narayanan Examiner

Dr. J.W. Atwood Thesis Supervisor

Approved by

Dr. V. Haarslev, Graduate Program Director

November 23, 2011

Dr. Robin A.L. Drew, Dean

Faculty of Engineering & Computer Science



Abstract

Persistent Protection in Multicast Content Delivery

Malek Barhoush, Ph.D.

Concordia University, 2012

Computer networks make it easy to distribute digital media at low cost. Digital rights

management (DRM) systems are designed to limit the access that paying subscribers

(and non-paying intruders) have to these digital media. However, current DRM

systems are tied to unicast delivery mechanisms, which do not scale well to very large

groups. In addition, the protection provided by DRM systems is in most cases not

persistent, i.e., it does not prevent the legitimate subscriber from re-distributing the

digital media after reception.

We have collected the requirements for digital rights management from various

sources, and presented them as a set of eleven requirements, associated with five

categories. Several examples of commercial DRM systems are briefly explained and

the requirements that they meet are presented in tabular format. None of the example

systems meet all the requirements that we have listed. The security threats that

are faced by DRM systems are briefly discussed. We have discussed approaches for

adapting DRM systems to multicast data transmission.

We have explored and evaluated the security protocols of a unicast distribution

model, published by Grimen, et al. that provides “persistent protection”. We have

found two security attacks and have provided the solution to overcome the discovered

attacks. Then we have proposed a more scalable architecture based on the modified

model. We call the resulting architecture persistent protection in multicast content

iii



delivery. We present and formally validate the protocol for control and data exchange

among the interacting parties of our proposal.

iv



Acknowledgments

I am extremely thankful to God for helping me and guiding me to the next stage of

my life.

I want to express my deepest appreciation and thanks to my supervisor and pro-

fessor, Dr. J. W. Atwood, for his support and patient guidance during my entire

research period. He helped me to successfully complete this stage of my life.

Also, I want to thank Dr. Mourad Debbabi for helping me overcome many diffi-

culties in my research.

Also, I want to express my great thanks to the committee members for their

feedback and for making my work stronger. A special thanks goes to Dr. Suleiman

Hussein Mustafa who encouraged me to complete my studies. A special thanks goes

to Yarmouk University for giving me the chance to continue my degree and for sup-

porting me.

I cannot forget to thank my friends who love me and help me move forward.

My special thanks goes to my father, parents in law, wife and kids for their

unconditional love, support, and encouragement and for praying for me to finish this

thesis.

v



Contents

List of Figures xi

List of Tables xiv

List of Acronyms xv

1 Introduction 1

1.1 Motivation for the Research . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Content Distribution Model 6

2.1 Public Content Distribution . . . . . . . . . . . . . . . . . . . . . . . 6

vi



2.2 Security Issues for Content Delivery . . . . . . . . . . . . . . . . . . . 8

2.2.1 Confidentiality and Secrecy . . . . . . . . . . . . . . . . . . . 9

2.2.2 Hash Function and Authentication Service . . . . . . . . . . . 11

2.2.3 Nonrepudiation Service and Digital Signatures . . . . . . . . . 13

2.2.4 Digital Signature Certificates . . . . . . . . . . . . . . . . . . 14

2.3 DRM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 DRM Architecture . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Different types of DRM systems . . . . . . . . . . . . . . . . . 18

2.4 Persistent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Hardware Based Protection . . . . . . . . . . . . . . . . . . . 27

2.4.2 Software-Based Protection . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Code Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.4 Mobile Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 DRM Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Multicast Content Distribution 40

3.1 Multicast Data Distribution . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 IETF Multicast Group Security Architecture . . . . . . . . . . . . . . 45

vii



3.3 Atwood Model for Multicast Distribution . . . . . . . . . . . . . . . . 48

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Problem Statement 52

5 Requirements for Persistent Protected and Scalable Distribution

Model 55

5.1 Basic DRM Requirements . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Goals behind Basic DRM Requirements . . . . . . . . . . . . 58

5.2 Addressing Basic DRM Requirements within DRM Examples . . . . . 61

5.3 Persistent Protection Requirements . . . . . . . . . . . . . . . . . . . 63

5.4 Multicast Consequences . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Multicast Content Media Distribution with DRM Enabled Requirements 67

5.6 DRM for Multicast Requirements Comprehensive Study . . . . . . . 71

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Grimen Model 78

6.1 Grimen Distribution Architecture . . . . . . . . . . . . . . . . . . . . 79

6.2 Grimen Distribution Protocol . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Automated Validation of Internet Security Protocols and Applications 82

viii



6.4 Attack on the Grimen Model . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.1 Attack Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Scalable Persistent Protection in Multicast Content Media Delivery 97

7.1 Improved MSA Model . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Persistent Protection in Multicast Content Media Delivery Model . . 103

7.2.1 The Content Provider (CP) . . . . . . . . . . . . . . . . . . . 106

7.2.2 The Content Server (CS) . . . . . . . . . . . . . . . . . . . . . 107

7.2.3 The Merchant (MR) . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.4 The Mobile Security Codes (MP and MG) . . . . . . . . . . . 108

7.2.5 The Network Service Provider (NSP) . . . . . . . . . . . . . . 108

7.2.6 The End User (EU) . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.7 Viewer Software . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 The New Model’s Workflow . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Authentication Protocols among MR, NSP and EU . . . . . . . . . . 113

7.5 Discussion on the Protocol . . . . . . . . . . . . . . . . . . . . . . . . 117

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



8 The Persistent Protected and Scalable Delivery Model 124

8.1 Another Improvement for MSA Model . . . . . . . . . . . . . . . . . 125

8.2 Last Mile Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.1 Last Mile Connection Over Copper Based Connection . . . . . 134

8.2.2 Last Mile Connection Over Optical Connections . . . . . . . . 136

8.3 The MP and MG Individualization Point . . . . . . . . . . . . . . . . 138

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9 Conclusion and Future Work 144

A Original Grimen et al. Protocol Validation 163

B Improved Version of Grimen et al. Protocol Validation 168

C Persistent Protection in Multicast Content Delivery Protocol Vali-

dation 173

x



List of Figures

1 Asymmetric key encryption . . . . . . . . . . . . . . . . . . . . . . . 9

2 Symmetric key encryption . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 DRM generic interactions . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Windows media rights manager flow [Cor04a]. . . . . . . . . . . . . . 19

6 Data content format structure [All, Cor08] . . . . . . . . . . . . . . . 22

7 ISMA DRM architecture [ISM06] . . . . . . . . . . . . . . . . . . . . 24

8 Reverse engineering process . . . . . . . . . . . . . . . . . . . . . . . 31

9 Java virtual machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 Java virtual machine [Pat08] . . . . . . . . . . . . . . . . . . . . . . . 33

11 Java virtual machine components [Pat08] . . . . . . . . . . . . . . . . 34

12 Multicast architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13 Multicast group security architecture [VC04] . . . . . . . . . . . . . . 47

xi



14 Multicast security architecture [J. 07] . . . . . . . . . . . . . . . . . . 49

15 DRM system comparison . . . . . . . . . . . . . . . . . . . . . . . . . 62

16 Dividing the media content media [GMM06b] . . . . . . . . . . . . . 79

17 Grimen et al. proposed system architecture [GMM06b] . . . . . . . . 81

18 Grimen et al. hash function calculation [GMM06b] . . . . . . . . . . . 82

19 Grimen et al. key exchange protocol [GMM06b] . . . . . . . . . . . . 82

20 HLPSL architecture [Tea06a] . . . . . . . . . . . . . . . . . . . . . . . 83

21 Simple session key exchange protocol represented by FSM. . . . . . . 88

22 Grimen et al. Key exchange protocol simulation . . . . . . . . . . . . 90

23 Attack trace simulation for Grimen, et al.’s key exchange protocol . . 91

24 Revised Grimen, et al.’s key exchange protocol simulation . . . . . . 95

25 The content of the ticket. . . . . . . . . . . . . . . . . . . . . . . . . . 114

26 Protocol negotiated between VS, NSP and MR . . . . . . . . . . . . 117

27 The MG delivery protocol . . . . . . . . . . . . . . . . . . . . . . . . 120

28 Mobile protection structure . . . . . . . . . . . . . . . . . . . . . . . 128

29 Mobile guard structure . . . . . . . . . . . . . . . . . . . . . . . . . . 128

30 Validating the CP’s integrity process . . . . . . . . . . . . . . . . . . 130

31 Validating the EU’s integrity process . . . . . . . . . . . . . . . . . . 131

xii



32 Persistent protected & scalable delivery work flow . . . . . . . . . . . 132

33 Mobile security provider’s work flow . . . . . . . . . . . . . . . . . . . 133

34 Physical network connection [nuP]. . . . . . . . . . . . . . . . . . . . 135

35 Individualization in branch level . . . . . . . . . . . . . . . . . . . . . 141

36 Individualization in curb level . . . . . . . . . . . . . . . . . . . . . . 142

xiii



List of Tables

1 DRM Software and Hardware . . . . . . . . . . . . . . . . . . . . . . 37

2 Attack Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 DRM Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 DRM Basic Requirements VS DRM Services . . . . . . . . . . . . . . 101

xiv



List of Acronyms

AAAS Authentication, Authorization and Accounting Server

AVISPA Automated Validation of Internet Security Protocols and Applications

CEK Content Encryption Key

CP Content Provider

CS Content Server

DEK Data Encryption Key

DRM Digital Rights Management

DRMA DRM Agent

EEMD Encrypted Encoded Media Document

EU End User

FI Financial Institution

GCKS Group Control and Key Server

IETF Internet Engineering Task Force

LP License Provider

MG Mobile Guard Agent

MP Mobile Protection Agent

MR Merchant

MSA Multicast Security Architecture

MSEC IETF Multicast Security Working Group

MSP Mobile Security Provider

NSP Network Service Provider

PPMCD Persistent Protection in Multicast Content Delivery

PS Policy Server

SS Security Server

VOD Video on Demand

VS Viewer Software

xv



Chapter 1

Introduction

1.1 Motivation for the Research

The phrase “Digital Content Distribution” describes the distribution, using the In-

ternet, of intellectual property from a Content Provider to one or more End Users.

Most contemporary Content Distribution systems establish a one-on-one (unicast) re-

lationship between the Content Provider and the individual End Users. In addition,

the delivery of the intellectual property is usually done “on demand”, i.e., delivery

happens when the End User wants it to happen.

However, the Internet is a very open, insecure medium. Few owners of intellectual

property will be interested in using this medium for distribution if their intellectual

property can be copied and re-distributed during delivery. For this reason, Digital

Rights Management (DRM) systems have been developed to manage the distribu-

tion, and protect the rights of the Content Provider against the actions of malicious

intruders and the malicious actions of legitimate End Users.

DRM systems need to provide two kinds of protection:

1



1) Within the delivery medium, it is necessary to ensure that a random malicious

intruder cannot access the digital content. This is “protection before delivery”.

2) Within the End User’s device, it is necessary to ensure that the media stream

cannot be captured and subsequently shared with the End User’s friends or

clients. This is “protection after delivery”.

Protection before delivery is normally provided by cryptographic mechanisms.

The details of such mechanisms are outside the scope of this thesis. Protection after

delivery is normally provided by DRM systems. Ideally, this protection will be “per-

sistent”, i.e., it will last beyond the point in time where the End User has finished

using the intellectual property. A more precise definition of our use of “persistent

protection” will be given later in this thesis.

The one-on-one nature of contemporary Content Delivery systems is resource-

intensive for the Content Provider. As the number of customers grows, the effort

required to manage them and to deliver the intellectual property increases linearly,

eventually reaching the point where it is difficult to service all of the requests. For

certain events (e.g., world-level sporting events such as the Olympics, soccer tourna-

ments, cricket tournaments, etc.), it may become impossible to provide the expected

Quality of Service to the End Users. In addition, the Network Service Provider may

have difficulty providing sufficient bandwidth to the Content Provider to service all

of the requests.

If we take as an example the delivery of video, as the number of End Users

demanding a particular video increases, the disadvantage of making them wait a

short period of time before the presentation starts gets smaller. If the video is for a

real-time event, then of necessity all End Users need the identical video stream. In

these two cases, multicast data distribution (one-to-many relationship) can provide

significant resource savings to both the Content Provider and the Network Service

Provider. However, standard Internet Protocol multicast has neither security nor

DRM.

2



The initial focus of our work was to answer the questions:

1) what requirements for protection of digital intellectual property are difficult

or impossible to meet when multicast data distribution is used?

2) what approaches can be used to mitigate these difficulties?

However, we discovered that there appeared to be no list of requirements for

enforcing Digital Rights Management in the multicast systems. In addition, the

available lists for unicast-based systems were narrowly focused. Therefore, we will

begin our journey by studying in detail many DRM systems such as Microsoft DRM

and Open Mobile Alliance (OMA) Digital Rights Management (DRM) 2.0. Next, we

will collect and adopt a list of requirements to achieve the desired benefits for content

media protection in the unicast case. Then we will find out what requirements are

difficult or impossible to meet when multicast data distribution is used. Throughout

this thesis the term “content media” is used uniformly to refer to “digital intellectual

property”, “media document”, “digital content” and “digital multimedia”, which are

terms used by other authors to refer to the same concepts.

1.2 Problem Statement

The main goal of this thesis is to design a flexible mechanism, architecture and pro-

tocols, for scalable, scheduled and persistently protected content media delivery.

1.3 Objectives

The main objectives of this research are the following:

• Harden and increase the security of the protection applications that are used to

control the content media access after it was been delivered.

3



• Improve the performance and scalability of current DRM systems by changing

the underlying distribution mechanism from unicast into multicast.

1.4 Contributions

We have the following contributions:

• We provide a comparative study of the state-of-the-art proposals in secure and

scalable content delivery.

• We provide a requirement analysis for DRM in multicast content delivery.

• We identify the sufficient requirements to enforce persistently protected content

delivery.

• We provide security analysis of Grimen, et al.’s model.

• We elaborate an extension to Grimen, et al.’s model that fixes a vulnerability.

• We propose and validate an architecture that assures flexible, scalable and per-

sistently protected content delivery.

1.5 Thesis Organization

In Chapter 2, we provide more details about the content media distribution model,

beginning with an introduction to the related benefits of the public content media dis-

tribution. Then, we discuss the security issues with content media delivery, followed

by a description of the DRM system’s basic architecture. Next, we study different

types of DRM systems and their limitations. Persistent protection and some infor-

mation about Java mobile code are included in this chapter. Finally, we present the

4



DRM attack model. Chapter 3 describes how multicast content media distribution

works by providing IP multicast as an example. We show the advantages and disad-

vantages of IP multicast, analyze IP multicast scalability factors, and describe two

secure multicast models: Multicast Group Security and Multicast Security Architec-

ture. We propose the problem statements in Chapter 4; there, we show the objectives

of our work, and then we draw the road map to address the DRM and secure multicast

problems. In Chapter 5, we start our road map to the proposed solution for the per-

sistent protection in multicast content media delivery by proposing the requirements

for securing both unicast and multicast distributions with persistent protection of the

delivered media. Before proposing our solution, we go through a simple proposal by

Grimen et al. in Chapter 6. It illuminates a promising solution for achieving persis-

tent protection for delivered content media. We validate their proposal and find a

hole, for which we propose a solution, and then, based on the model of Grimen et al.,

we propose and validate an improved persistent protection model. In Chapter 7 we

propose the solution for secure multicast distribution with persistent protection; also,

we propose the interaction protocol between main roles of the proposed solution, and

then validate the protocol. Finally, in Chapter 8, we propose an architecture for a

more distributed, scalable and presistent protection of the delivered content media.

We finish our discussion with our conclusion and future work in Chapter 9.

5



Chapter 2

Content Distribution Model

If the Internet is to be used to distribute content media, it is necessary to provide

control over this distribution, to ensure that only legitimate End Users can access it,

and only in permitted ways.

In this chapter, we will discuss the services needed to protect the information, and

the architectures of Digital Rights Management (DRM) systems that claim to provide

this protection. We will focus our attention on the idea of persistent protection, which

is one of two areas of concentration for the work of this thesis. Finally, we will give

the attack model for security threats against DRM systems.

2.1 Public Content Distribution

Using the Internet for distributing multimedia contents without any control over the

distributed media is called public distribution. Any user can use public digital content

anytime anywhere as long as the link to the digital content is provided and s/he has

the suitable device that is able to render the digital content [Sys, Che08]. The meaning

6



behind free content is: there are no restrictions on the use of free content after being

delivered, so the end user has the right to copy the content and reuse it an unlimited

number of times and s/he can redistribute it to his/her friends, or worse, he may be

able to sell it without getting the permission from the content provider or content

owner [Mar].

In the past, producing physical content media was done by a lot of expensive

technologies. The next stage is to distribute these media. The way of distribution

was through physical media, which gives the publisher some ways of control to protect

physical media, but in the same time it increases the cost of goods, as well as, the

beneficiaries of the goods get paid less. The enormous development and progress in

the field of networks, as well as providing the possibility to convert many non-digital

products to digital products, and the spread of the Internet and the possibility of

buying and selling via the Internet, all have led many investors to think about using

the Internet to promote the way of distrbuting content media [BA].

Public network which works well with free content distribution is not a good choice

for the investor. They are looking for suitable controlled environment for distributing

the content media. Digital investors are looking for controlling the media distribution

as well as controlling how the media are used. Cryptographic technologies are the

efficient way to control media distribution using a public network, Section 2.2 will give

a good description on that. Controlling the content media to reduce the number of

times to read the content media, restrict the operations allowed on the content media,

or select a time to use the content media cannot be achieved by using encryption

technologies only. Section 2.3 will describe these issues.

7



2.2 Security Issues for Content Delivery

The role of the content provider (CP) is to convert analog content media into digital

media. The end user (EU) is the customer who is interested in receiving content

media, and the distribution mechanism is the Internet. The CP needs to control the

delivery of content media to those who are eligible to receive it. The EU eligibility

is determined by the ability of a customer to pay for the use of the content. One

of the most efficient ways to achieve such control via the public network is to use

cryptographic technologies.

Cryptography may be defined as a way of encrypting or hiding plain text using

mathematics to produce protected information or ciphertext. The encryption process

requires key(s). The strength of the encryption technology depends on hiding the key,

not the algorithm. At the same time, if an unauthorized person tries to decrypt the

cipher text without knowing the key, we call this process cryptanalysis. Cryptography

technology covers secrecy, authenticity, integrity and non-repudiation services [BP82,

BEM+07].

A secrecy or confidentiality service allows two or more persons to securely exchange

information without unauthorized disclosure. An authenticity service guarantees the

user that the received message and its source are reliable; at the same time, this

service assures the sender that the end user is reliable as well. An integrity service

provides both the sender and the receiver with confidence that the received message

was not altered along the communication path. A non-repudiation service provides

all parties related to a specific transaction the assurance that none of them can deny

having participated in the transaction [Sta03].

8



���������	
�����
���

������
���������
���� �����
����

���������	
�������
���

Figure 1: Asymmetric key encryption

2.2.1 Confidentiality and Secrecy

Confidentiality or secrecy is achieved when two parties are able to protect information

exchanged between them without allowing others to know what has been negotiated,

in other words, the secrecy property is concerned with preventing unwanted people

from snooping around the channel established between two or more parties. In the

Internet world, the secrecy property is achieved using cryptosystems; “the encryption

and decryption [process] is called a cryptosystem” [BEM+07]. The sender encrypts

the message using what is called an encryption key. Then, the receiver decrypts

the protected message using the decryption key. The encryption and decryption

procedures fall under two major models depending on what type of keys they use:

• Asymmetric or Public-key cryptosystems: In the Asymmetric encryption and

decryption models, a public-key cryptosystems such as RSA, every user has two

keys, one public key and one private key. Usually, the public key is known to the

whole world, while the private key must be kept in a private place and should

not be disclosed to anyone but its owner. In fact, the success of this model

depends on keeping the private key hidden. To achieve secrecy, the receiver’s

public key is used to encrypt the message, and the receiver’s private key is

needed for the decryption process. Since the private key is only known by one

person, its owner, the encrypted message can only be decrypted by the owner

[Sta03], see Figure 1.

9



If Alice and Bob want to talk with each other using a public transporter, and

Eve is listening to their talk, then, in order to prevent Eve from understanding

their conversation:

– Alice produces and encrypts the messages she wants to send, using Bob’s

public key.

– Alice sends the encrypted message via public transporter.

– Bob receives and decrypts the protected message coming from Alice using

his private key.

– Eve can receive the protected message, but she cannot see its content

because she does not know Bob’s private key.

– Since only Bob knows his private key, this fact partially provides the au-

thenticity of the receiver.

Theoretically, the asymmetric model is computationally more secure than the

symmetric model.

• Symmetric cryptosystems: In the symmetric encryption, both the sender and

the receiver share the same key called secret key; both of them use the same en-

cryption and decryption algorithm as well. This type of secrecy model depends

on keeping the secret key protected from unwanted parties. In symmetric cryp-

tosystems, the sender uses the secret key to encrypt the message he wants to

send resulting in cipher data, and then sends the cipher data into the receiver.

On the other side of the channel, the receiver receives the cipher data and uses

the same secret key along with a corresponding decryption algorithm to decrypt

the cipher data resulting in the original message [Sta03].

If Alice and Bob want to talk with each other using a public transporter, and

Eve is listening to their talk, then, in order to prevent Eve from understanding

their conversation:

10



���������
���

������
���������
���� �����
����

����
���������
���

Figure 2: Symmetric key encryption

– Alice produces and encrypts the messages she wants to send, using the

shared secret key.

– Alice sends the encrypted message via public transporter

– Bob receives and decrypts the protected message coming from Alice using

the same secret key.

– Eve can receive the protected message, but she cannot see its content

because she does not know Alice and Bob’s shared secret key.

– Since only Alice and Bob know the secret key, this fact provides the au-

thenticity of both the sender and the receiver.

The symmetric model is computationally faster and more efficient than the

symmetric encryption model. The most important problem of this model is that

the secret key distribution is not flexible, as well as, the symmetric encryption

model is less secure than the asymmetric key. See Figure 2.

2.2.2 Hash Function and Authentication Service

Hash function is a one way function where its input is an electronic message

regardless of its length, and its output is a message digest of fixed length. The

digest length ranges between 128 bits and 160 bits. Theoretically, the result

of a hash function is unique for each different message. The message digests

could be used as a unique identifier for messages, and that helps the receiver to

authenticate received messages. See Figure 3.

11



If Alice and Bob want to talk with each other using a public transporter, and

they want to be assured that the talk integrity is not violated by Eve who is

listening to their talk and can intercept and forward the talk, then, in order to

prevent Eve from violating their conversation:

– Alice produces the hash value of the messages she wants to send.

– Alice encrypts the hash value with the secret key and then sends the en-

crypted hash value along with the message via public transporter.

– Bob receives the protected hash value along with the message and then

decrypts the protected hash value using the same secret key.

– Eve can receive the protected hash value, but she cannot see its content

and she cannot modify the hash value because she does not know Alice

and Bob’s shared secret key.

– Bob generates the hash value of the received message and then compares

the result with the hash value received from Alice. If both are identical,

then that is an indicator that the message integrity is not violated and

that the sender is Alice. In this case, both the message and the sender are

authenticated.

– Since Alice or Bob only can encrypt hash value using their secret key, then

this kind of process provides the authenticity of the source of the message.

Another scenario using public key and hash value for the purpose of authenti-

cation service:

– Alice produces the hash value of the messages she wants to send.

– Alice encrypts the hash value with her private key and then encrypts the

result with Bob’s public key. Afterward, she sends the encrypted hash

value along with the message via public transporter.

12



– Bob receives the protected hash value along with the message and then de-

crypts the protected hash value using his private key, then again, decrypts

the result with Alice’s public key.

– Eve can receive the protected hash value, but she cannot see its content

and she cannot modify the hash value because she does not know Bob’s

private key.

– Bob produces the hash value of the received message and then compares

the result with the hash value received from Alice. If both are identical,

then that is an indicator that the message integrity is not violated and

that the sender is Alice, as well as, the receiver is Bob. In this scenario,

the message, the receiver and the sender are authenticated.

– Since Alice only can encrypt hash value using her private key, this pro-

cess called signing the hash value, then this kind of process provides the

authenticity of the source of the message.

In the previous two scenarios, if we need to apply confidentiality service, the

message also needs to be encrypted as has been discussed in Section 2.2.1.

2.2.3 Nonrepudiation Service and Digital Signatures

This service is essential for electronic transactions where both ends, the sender

and the receiver, need undeniable evidence that the transaction is complete

and not forgeable. Digital signature is a mechanism achieved by encrypting a

message, which needs to be signed, by the sender’s private key. Since the private

key is known only to the owner of that key, this gives a proof that the signature

is done by only the owner [Lou00, Sta03]. In other words, “The recipient of a

signed message has proof that the message originated from the sender” or “the

recipient can verify that the message came from the sender” [RSA78].

Since encryption and decryption using public key infrastructure is a heavily

loaded processes, and the result of a hash function is a fixed length message

13



����������
��		� �

!�	�

"������� ��		� �
#� �	�

Figure 3: Hash function

digest (MD) that represents the original message and usually the MD is shorter

that the original message, signing the MD is an efficient way to provide non-

repudiation service. The receiver of the signed MD usually receives the original

message that is encrypted via some symmetric-key algorithm, so s/he can pro-

duce the MD of the original message and validate with the received MD [Sta03].

2.2.4 Digital Signature Certificates

Digital signature certificates provide a flexible trust framework. Usually, digital sig-

nature certificates are issued based on public key infrastructure. The most important

role in this trust framework is the certificate authority (CA), who is responsible for

issuing and managing Digital Certificates. A digital certificate contains a customer’s

public key, date of issue, name of the customer, certificate expiry date and other

information. The customer could be the end user, a company, the content provider,

the merchant and so on. The certificate is signed by the CA, who is publicly known.

The certificate authority’s public key should be available; VeriSign organization is an

example of a CA [MRB01].

One single trusted third party works as global or root CA, and the whole world

trusts that entity. Of course, for availability purposes, that single trusted certificate

14



authority needs to be distributed. The global certificate authority may issue certifi-

cates for other certificate authorities and thus build a hierarchical framework for trust

service.

Due to the fact that the CA’s public key is universally known, customer’s cer-

tificates can be easily validated by checking the expiry date of the certificate. The

customer’s public key can be extracted from the customer’s certificate, which helps

to build a trust relationship between customers and to secure the path between them.

In the case of exposing the customer’s private key, the corresponding certificate

needs to be invalidated; the CA periodically publishes the certificate revocation list

(CRL).

2.3 DRM Systems

In the early years of producing content, the relationship between the content owners

and the content consumers was based on physical objects, e.g., books. The content

publisher, who was responsible for publishing these books, would try to prevent con-

sumers from compromising this service and producing illegal copies. If s/he used

special paper that prevented copiers from producing (illegal) high quality books, the

protection of the content owner was somehow assured [Coy03].

The increasing reliability of the Internet and the advanced technologies used to

generate digital multimedia have changed the distribution methods for multimedia

content from physical forms into digital forms. Examples of digital multimedia con-

tent (e-audio, e-video, e-image, e-book, etc.), “e” stands for electronic. This new

technology draws intelligent artists’ attention, converting their “tangible” [PBW02]

intellectual property into equivalent digital forms and then advertising their innova-

tions to the whole world at small cost, knowing that millions of customers can easily

15



connect to the Internet and ask for the content media. The fact that many customers

are attracted to get the content media using easy connections cheaply, will increase

the demand on the content distribution service. Flexibility in this context means that

the end user only needs to use his own machine to access digital content rather than

going to a theater or a digital store to search for specific media and then watch it.

Compared with a content distribution service for “tangible” intellectual property,

a digital service has the potential to increase the content producer’s profit. However,

it has the disadvantage that a person (paying subscriber or not) can get a copy of

the content and start to re-distribute it. This has led to the idea of generating Dig-

ital Rights Management (DRM) systems, which are intended to protect the content

producer’s rights to distribute the content, and thus retain his/her profits.

Content distribution has traditionally been based on a one-to-one relationship

between the content provider and the end user. These two parties agree (implicitly or

explicitly) on the mechanism(s) to be used (in the content server, on the wire, and in

the receiving host) to protect the digital content from various threats, whether they

come during data transmission, or after the data have arrived at the receiver.

The management of the digital rights has been the direct responsibility of the

content provider. The resources of the Network Service Provider have been used

solely to “move the data”. The only negotiation required between the content server

and the network has been to ensure that the necessary resources are available to

deliver the required Quality of Service, using, for example, the Resource Reservation

Protocol (RSVP) [RB97].

Some rights are applicable for digital assets/roles and others are not. In the

following lines, we will show examples of some digital assets/roles and their applicable

rights:

• License (create, modify, distribute, redistribution).

16



• Digital content media (offline/online play, replay, modify, forward, super-distribution)

• Roles (CP, EU, LP, monitor).

• Digital document (view, write, print, delete, forward)

• Teleconference (join, leave, add members, delete members, authenticate)

2.3.1 DRM Architecture

The generic DRM architecture consists of three players: content provider (CP), li-

cense provider (LP) and end user (EU), see Figure 4. The CP is mainly in charge

of generating the content media, then protecting the content media by encrypting it

using well known encryption algorithms. In some cases, the CP may use a proprietary

or closed encryption algorithm, and that may not be acceptable in the commercial

world. Usually, for commercial use, cryptography technology hides encryption and

decryption keys but not encryption and decryption algorithms. We strongly believe

that in the military use, both encryption and decryption algorithms as well as encryp-

tion and decryption keys are hidden[Sav02]. CP generates meta-data, which contains

some useful information such as the place where to get the encrypted media, which

algorithm to decrypt the content media and where to obtain the decryption key, and

so on. The CP attaches meta-data along with each encrypted content (protected con-

tent). The meta-data guides the consuming device to the location of the LP, i.e., where

to acquire a license. The CP provides the LP with corresponding content encryption

keys (CEK). The LP is mainly responsible for creating permissions (licenses), which

include terms and conditions, as well as the CEK for enabling the consuming device

to expose the corresponding hidden content. EU downloads the hidden content via

local software called a DRM agent (DA), which is designed to enforce usage policies.

The DA extracts the information pointing to the LP from the meta-data, negotiates

with the LP for providing licenses according to user’s payment amount, downloads the

17



Figure 4: DRM generic interactions

license, checks the integrity and the validity of the license, interprets the license, ex-

tracts the CEK and enforces the terms and conditions [Ltd02, Ars, OMA08b, Cor08].

In most of the DRM systems, hidden contents can be publicly reached either from

the CP or via another peer device (super-distribution). However, the license file that

allows the completion of the rendering process for any distinct content must be paid

for. Therefore, controlling and managing the license helps the content owners.

DRM technology is deployed in three levels (application, operating system and

hardware [AH04]). In Section 2.3.2, we will talk about two successful DRM products

belonging to Microsoft, which deploy DRM in operating system and application level:

Windows media rights manager (WMRM) and the successor Windows Rights Man-

agement Services (RMS). Then we will go through a successful DRM system, mainly

applied for mobile phones, Open Mobile Alliance (OMA), which deploys DRM at

both application and hardware level.

2.3.2 Different types of DRM systems

Windows media right manager (WMRM) is a Microsoft tool that allows the CP

to protect any content media, and it allows him to send and receive the protected

content media using the public network. The CP, with the help of WMRM, encrypts

18



�������

�	
��
�

�	�����$

��$��

�����
��	���

%���
��
����

������
�

��$��
����

&��
����

��$��
�����
'���

&�
$	'�
��$��

������
��
���


(
��
��

)* �������
��$��

+* �	��
��$��

+* �	��
��$��

,*��-����
�
$

�������
�

�$��

.* �	'
�	�$
%���
��
/*��-����
%���
��

0� �����	�

����	

1� ����	2��
��

�������
#�����

Figure 5: Windows media rights manager flow [Cor04a].

the content media with a selected key, then the encrypted media is packaged with

useful information such as media version. The resulting protected content is ready

to be distributed and delivered to any client via a distributor server. See Figure 5.

The client who wants to watch any protected content, needs to get a license from

the clearing house and licensing server, which contains license key seed and key id,

for more information see [Cor04a]. Rights Management Services (RMS) is a product

developed by Microsoft as well, there are some differences in the two products.

WMRM provides an economical and feasible solution for hiding the digital media;

it does not need any special hardware to hide the content. In contrast, RMS may need

such hardware. Both technologies (we will call them Microsoft DRM or MSDRM)

support multiple access control models, such as:

• The number of times the end user is permitted to use the protected media

[Cor04a].

• The starting time to use the content media [Cor04a].

• Is the end user allowed to copy the content media [Cor04a].

• “Document expiration” [MT08].

19



• “Access content programmatically” [MT08].

Microsoft released operating systems that allow Microsoft DRM to be run through

a variety of devices such as personal computers, notebooks, PDAs, smart-phones and

pocket PC [Cor04b, Cen]. WMRM as well as RMS are end-to-end DRM solutions.

They used cryptographic mechanisms to securely distribute the content media. When

a client receives any protected media, s/he cannot directly decrypt it, the client needs

to use what is called DRM application, which is responsible for contacting the clearing

house and license server and get a license, which is capability given to an eligible client

to get access to a protected content. The application DRM afterward is capable of

decrypting protected content and rendering it [Cor04b, Cen].

Microsoft builds a secure environment via software application; application uses

proprietary mechanisms that encrypt and decrypt content media. Each end-user

virtually has a unique instance of that application, this process is called individual-

ization. The application uses a secure path to the hardware driver used to render the

content media. If an instance of this proprietary application is hacked a revocation

process is used to revoke that instance. This kind of individualization supports ma-

chine authentication [JPKJ06, Arn07]. There is no provided information that tells us

that WMRM supports user authentication but RMS does [16w, Ros05].

For each enterprise, there is a certified RMS server used for registration purposes,

the RMS system considers this server to be a root server. The registering RMS

server signs up each client’s device; it has the chance to register other servers. In the

Microsoft RMS system, each client needs to use a DRM controller and his account

certification in order to enable DRM. RMS may authenticate enterprise internal users

as well as external users (users who do not belong to the same enterprise) as long as

they use either active directory server or a .NET Passport account [Ros05].

MSDRM uses the “individualization” technique, which generates a unique in-

stance of the software player, and binds each instance to a specific customer machine,

20



therefore, each player is supposed to work only on a specific machine. It also supports

revocation service as counterattack if individualized software instance is compromised.

More information on these two services is available on the Microsoft website [Mic].

The WMRM player is software and it is susceptible to modification or replacement

attacks. These attacks are achieved by obstructing or modifying the enforcement part

of the rendering code with an attacker-made code, and thus bypassing the checking

points. Another attack was created by one software cracker. He analyzed the WMRM

code and then produced a tool called “FreeMe”, which tracks the location of encryp-

tion keys located inside the blackbox file (used to hide these keys) and then exposed

hidden media files [Scr01, JM07]. WMRM does not provide real privacy preservation

for end users; neither does RMS (R6). There is no reported attack against the RMS

system but the behavior of the system indicates that it is susceptible to a software

reverse engineering attack.

The Open Mobile Alliance DRM-2 (OMA-DRM-2) [All, Irw04] is a specification

and standard designed for enabling the control of digital services on different mobile

phones and personal players. OMA DRM2 architecture has three major components:

content issuer (CI), rights issuer (RI) and a DRM agent (DA). The CI generates a

content encryption key (CEK) either for each individual content medium or multiple

contents, and may encrypt selective contents. It then packages each of them in a

secure container; this container is grouped and packaged into the DRM Content

Format (DCF). The DCF may contain more than one container, Figure 6 shows the

DCF structure [All]. OMA-DRM-2 supports a small-size content DCF (picture, ring

and small messages) as well as a large-size (audio and video content), they call it

Packetized-DCF (PDCF). The CI negotiates the rules and constraints for DCF usage

with RI. CI delivers DCF to customer machine via various transport mechanisms,

s/he does not need to use a secure connection since the DFC is already secured.

When a customer browses a digital catalog, selects interesting media to play, reads

21



O
M

A
 D

R
M

C
o

n
ta

in
e
r

8

OMA DRM headers

D
R

M
C

o
n
te

n
t

Content Object

Content Object container

2
n

d
 O

M
A

D
R

M
C

o
n

ta
in

e
r

(multipart)
 other content

containers

20

D
C

F
H

e
a
d
e
rs

Common
headers

OMA DRM Container Length - 12

Complete File Size

2nd OMA DRM
Container Length

Fixed DCF
header

User
Data

F
re

e
 S

p
a
c
e

R
ig

h
ts

 O
b
je

c
t

(free space)
RO,

TransactionID

Figure 6: Data content format structure [All, Cor08]

and agrees on terms and conditions and the price for consuming that content, the

SIM card that is attached to the mobile phone authenticates the user. Afterward, the

DA, which plays the tamper resistant role residing in a mobile station, requests the

protected content. DA downloads a DCF, checks its integrity and extracts the infor-

mation that triggers it to send a rights request to the RI. When it receives the rights

object (RO), it verifies the authenticity of RI and RO as well as RO’s integrity, all

authentication activities happen through rights object acquisition protocol (ROAP)

[Irw04]. By then, DA extracts the keys (KEK) from RO and decrypts the protected

contents within DCF/PDCF.

The LP creates a suitable rights object (RO) for each DCF. The RO works like

a license. When the DA requests an RO, the LP authenticates the DA and protects

the RO, which is achieved by encrypting the part containing KEK with target DA’s

public key and then signing the RO. This means if an adversary accesses this RO,

s/he cannot access the KEK because of not having the corresponding private key.

The RO is an XML file containing DCF encryption keys and expresses the rules and

constraints for using the DCF as being expressed by the CI.

The DA enables the content rendering process and controls its usage rules. The

DA is a trusted component in the mobile phone; it has a unique public/private key

and a certificate [MST05, Med03], which helps the LP to authenticate the DA. The

DA is designed in a way that it should receive both DCF/PDCF and the associated

rights object in order to render protected content; it checks and governs the treatment

22



of the DRM content by enforcing the rights stated in the rights object. The keys in the

Rights object are encrypted with the DA’s public key. This process binds the rights

object to a specific DRM agent and only that target agent can expand the encryption

key out of the rights object. It is possible that DA redistributes a protected container

to another friend’s machine (super-distribution), the receiving machine’s DA will start

a new RO acquisition process for the received DCF. This super-distribution decreases

the extensive overload on CP and improves the availability of the service.

OMA DRM-2 supports the domain concept, which allows the sharing of RO to a

group of domain registered devices; this allows them to view the same contents using

the shared RO.

Mobile phones have unique embedded proprietary hardware specifications, and

each user has to use a special smart card, which supports the device with an address

number, therefore, user/device identification, authentication and payment are reli-

able. Embedded hardware works as a tamper-resistant hardware and it provides the

trust to the LP [KC04, MD03].

Internet Stream Media Alliance Encryption and Authentication (ISMACryp) is

successfully used for trading by generating a controllable streamed service for high

quality media content such as video and audio. The main purpose of this service is

to preserve interoperability, especially when DRM is applied to the ISMA scheme.

ISMACryp is being built in the application layer [Doe07]. The ISMA architecture

consists of four parties: the mastering, key/license MGT, the sender and the receiver

[ISM06, PJK06], see Figure 7.

The mastering is responsible for equipping the content for distribution; it has the

option to encrypt the media content and specify the usage rights, which helps it to

work as a clerk, or it may provide the encryption key to the sender and the sender

will do the encryption part. ISMA uses “Advanced Encryption Standard Counter

Mode” (AES-CTR) for protecting the content media [Hou04]. Mastering may get the

23



Figure 7: ISMA DRM architecture [ISM06]

encryption key from the key/license MGT or provide the key whenever it is needed.

In the scenario where the encrypting of the media is done by the mastering entity,

the sender is not aware of the encryption key; it has no job but to send the protected

media whenever it is needed to the customers. Finally, mastering is responsible for

advertising for the content media.

The sender is responsible either to encrypt the content media or receive the pro-

tected media from the mastering entity, and then stream it to the receiver; the dis-

tribution mechanism for the streamed protected content is the real-time transport

protocol (RTP) [Doe07, PJK06]. The sender has the option to predict the encryption

key by following the same procedures that are given to a user by the key/license

MGT, and then generate the protected media. The media could be saved in a file

before it is being streamed or streamed directly from the sender.

The key/license MGT is responsible for generating suitable licenses according to

the granted rights; the license authorizes ISMA users to use the protected content me-

dia. It contains the two main components: the decryption key and the usage rights.

For interoperability issues, ISMA tries to include all types of licensing schemes. If

the responsibility for creating the key encryption is on the key/license MGT, then it

24



may generate that key depending on some properties of the receiving entity, which

are used for authenticating the receiver. The ISMACryp uses the secure real-time

transport protocol to authenticate protected content and uses existing key manage-

ment standards, which provides the flexibility for the content provider to chose which

key management he is going to use [ISM06].

The ISMA framework supports three types of receivers: ISMA-only-receiver, MPEG-

receiver and IPMP-X receiver [ISM06]. The first type represents the receivers who

play streamed MPEGmedia, the second represents the receiver that can play streamed

data or stored files of type MPEG-4, and the last one represents the receiver that

can parse and process Intellectual Property Management and Protection Extension

(IPMP-X) format. The rendering software on the receiver side is responsible for con-

tacting the sender and key/license MGT, authenticating both of them, acquiring and

authenticating the license. ISMACryp uses the secure real-time protocol (SRTP) for

integrity checking, accessing the proper decryption key for the protected content me-

dia and enforcing the usage rights. The receiver’s rendering software has the option

to decrypt, authenticate and check the validity of the control flow between the sender

and the receiver. The receiver’s rendering software enforces the usage rights [ISM06].

In the ISMACryp specification, the protected media are decrypted only just before

they are decoded by the rendering software [Doe07].

ISMACryp supports super-distribution by providing the ability to OMA-DRM2

compliant devices to store streamed media into DFC/FDFC file format. Then, the

compliant device can super-distribute the content to other friends’ devices. That will

increase the availability of the service as well as decrease the load on the sender server.

Again, those devices should acquire a license in order to play forwarded content media

[ISM06].

It is known that using a public key infrastructure for hiding data is robust, but it

is inefficient, especially to protect real-time streaming media. For efficiency purpose,

25



the ISMACryp framework uses a symmetric algorithm for data encryption, authenti-

cation, and integrity purposes. ISMACryp has the option to change the mechanisms

used to for encryption, authenticating and checking the validity of the message sent

via this system [ISM06].

2.4 Persistent Protection

Encryption technology, alone, is not enough to protect content media [AH04, Mar].

The main purpose of the DRM system is to guarantee persistent protection for de-

livered media [LSNS03]; in another words, DRM systems are designed to guard in-

tellectual property against digitally related criminal actions. DRM systems allow

intellectual property owners to embed control within the delivered products.

DRM systems can be defined as cooperative and organized efforts among trusted

entities and tools in order to achieve persistent control over digital products [PBW,

Tec, Int]. The phrase “persistent control” is used to imply control over a sufficient

period of time but not forever. After a certain period of time, the content may become

available for free, not because the owners of the copyright have given it up, but rather,

because they have stopped enforcing it. This is because the cost of satisfying demands

for new copies is more than the content producers’ revenues, and they have already

achieved sufficient returns on their investments [PBW02, AH04, Hua07].

The word persistent means “refusing to give up” or “persevering obstinately”

[Ans], which means that the persistency is valid at any time and any place. Persistent

protection, in this context, means to obstinately protect the digital content from

digital piracy at a place that is outside the content provider’s ownership. However,

persistent protection at any time and any place seems to be impossible. After some

time, this persistency will decay due to the fact that the secret used to hide such

content will not remain a secret forever. We will relax the definition of persistent

26



protection by providing the environmental conditions and the time period in which

persistency is to be valid.

Liu et al. [LSNS03] suggest that persistent protection is gained by encrypting

content media using a cryptography system; then, a distinctive identification needs

to be assigned to the rendering device. This identification is used for authentication

purposes. A license that embeds the decryption key(s), as well as the usage rights,

needs to be issued to the rendering device. Finally, software-based or hardware-based

protection must be used to enforce usage rights that are embedded in the acquired

license.

Chin-Ling Chen [Che08] has expressed that persistent protection of delievered

media content is achieved by individualizing the end user’s machine and employing a

digital certificate.

Most of the software-based and hardware-based protection used by many com-

panies today does not support standard or common implementation. They use a

proprietary implementation and design called a closed system [Che08].

2.4.1 Hardware Based Protection

Hardware-based protection is intended to protect software programs from piracy and

tampering and to protect user’s private digital information from unauthorized use

and distribution, thus protect user’s privacy. One example of a successful hardware-

based protection system used to exchange digital products is smart cards. The smart

card system is an integrated circuit used as a portable token that embeds a secure

crypto-processor, random access memory (RAM), and a secure file system to protect

cryptographic data such as a secret key. The design of the smart card is considered

proprietary, and the secure file system contains private information about the end

user for identification and authentication purposes [SSK04, Cle, Smab, Smaa].

27



Smart phones with OMA DRM2 specifications represent another example of the

successful use of hardware-based protection. DRM Agents, as described in the OMA

DRM Architecture specification [All06], embed unique private/public key pairs and

certificates, which are used to identify and authenticate mobile devices and to indi-

vidualize the acquired right objects for that device.

Trusted computing platform alliance (TCPA), or trusted computing group (TCG),

provides a specification for trusted computing environments and protocols that is

composed of trusted hardware, BIOS, trusted OS kernel, self encrypting storage, and

trusted anti-virus software. TCG specification provides three access privileges:

• Privileged access[TCPA members only].

• Underprivileged access [platform owner].

• Unprivileged access [non-TCPA applications].

In the TCG, the following components are essential for enforcing DRM usage

rights and security policies: Cryptographic operations, such as public and secret key

encryption; key store; key management; and secure booting process [Gro07].

The main problem with hardware-based protection is that it is not easy to replace

once it has been hacked.

2.4.2 Software-Based Protection

Software-based protection needs to be individualized in order to prevent it from work-

ing on more than one device. For example, each instance of Apple’s Fairplay player

embeds the hardware information of the device that is supposed to launch it; this

is called individualization via binding hardware information. Microsoft media rights

manager is another example of individualization via binding hardware information,

28



wherein the player with Windows Media Rights Manager uses DLL files, which are

individualized for the distinct player that is supposed to run on a specific computer.

The individualization process is achieved by generating a unique DLL file that is

embedded with the computer hardware’s unique identifier and private key. When

the clearing house issues a license to a particular computer, it is encrypted with the

related public key. Thus, the only machine that can use the license is the one with

the right private key [LSNS03].

The license provider or clearing house, in turn, individualizes any acquired license

by encrypting the media key with a specific DRM player’s public key and then embeds

the encrypted media key within the license. This process is called individualization

via binding certificate [Che08]. The advantage of binding a license to a unique player

is that it prevents the license from being transferable.

The individualisation process gives the content provider the power to make the

digital content work under specific individualized DRM components [LSNS03].

The most important thing here is that the DRM enabled application must be

tamper resistant in order to enhance the reliability of the playing machine. Rights

enforcement is one part of the DRM enabled software that runs in the user’s machine

that needs to be protected from any modification, replacement or discarding. By

employing a tamper resistant object, we make it more difficult for the software to

be modified, replaced or discarded. Some companies use proprietary encryption and

decryption algorithms, which are not tested and may not be trustworthy or efficient

[LSNS03, LSNS03]; this is called security via obscurity. Other companies employ code

obfuscation techniques in order to hide the logic of the obfuscated software.

The antiscreen capture program is another example of the successful use of software-

based protection, which has the ability to prevent the end user from capturing sen-

sitive information at the application level; this protection works at the operating

system level [LSNS03].

29



The main problem with software-based protection is that it is susceptible to reverse

engineering and dynamic and static analysis attacks by software experts.

2.4.3 Code Obfuscation

The code obfuscation process is used to make software codes hard to guess by human

or reverse engineering processes, as well as harder to modify. It is important to

note that code obfuscation does not alter original code functionality or logic; in

other words, the code is obfuscated, but gives the same results as the original code.

However, usually the performance of obfuscated code is degraded [EDB04, CT02,

Low98].

The reverse engineering process dumps the executable binary code from a ma-

chines’s memory, then interprets the code into assembly code, which called disassem-

bly process, and then extracts a higher-level structure from the assembly code, which

called decompilation process [LD03]. Figure 8 depicts the reverse engineering process.

The main goal of the obfuscation process is to add more complication and cost, as

much as we can, to the static disassembling and decompilation processes. However,

forever secure obfuscation algorithms are impossible.

Code obfuscation is categorized into three types [Low98]:

• Layout Obfuscation: this process is achieved by changing the variables’ and

functions’ name into meaningless names.

• Data Obfuscation: this process may achieved by changing the scope of data

structure variables, or changing the variable location, or data encoding or even

data ordering.

• Control Obfuscation: this process is achieved by changing or hiding the control

30



Figure 8: Reverse engineering process

flow and/or control computations of the original control flow graph.

Code obfuscation can be done using techniques used to increase instruction level

parallelism such as software pipeline, and code unrolling technologies [HP07].

2.4.4 Mobile Code

Mobile code is a piece of software that has the ability to run on the target machine

regardless of the platform. In the distributed system, this approach is called code

migration, and it is useful for increasing performance, reducing the network band-

width and improving load balancing. The following three examples show the benefit

of process migration [TS02, RLMR00]:

• If a process wants to use resources that exist in another machine or wants to

do heavy computation on a machine that does not have enough resources, then

31



migrating the process to the other machine with enough resources will lead to

increase the performance.

• Sometimes, a process needs to use large amount of data that exists on another

side of the network, and that process only wants to compute the summary out

of this data. In this case, instead of moving the data from one place to another

place which will overload the network, it is better to migrate the process itself

to the other side of the network and then do the computation and return the

summary. We assume that the size of the mobile process is small.

• If a machine is heavily loaded with many processes, and that machine is part

of the distributed system, then migrating some processes from heavy loaded

machine to another machine that is not loaded will help to improve the load

balancing and the performance as well.

Mobile code technology allows a process to run on different hosts: Java applet is a

good example and mobile agent is another example. The least necessary condition to

run a Java applet program is Java enabled platform or Java enabled browser [GA98].

Java platform easily allows the Java class or applet migration from one host to another

host; for this situation, a Java applet/class may be prepared in a way to circumvent

target machine stability. For security purposes, Java applet/class needs to be verified,

authenticated, authorized and controlled [RLMR00, DD00].

Any illegal changes of any system state sometimes considered an attack. In order

to make sure there is no attack, we could employ integrity checker for the important

file systems. The consequences of any system that is under attack may include system

files modification or deletion or sending user’s private information via network [GA98].

The main reason behind the ability of executing Java files on any devices is that

the Java architecture supports Java code mobility and platform independence. The

result of compiling Java source code is an intermediate language called Java bytecode,

32



Figure 9: Java virtual machine

Figure 10: Java virtual machine [Pat08]

and any Java bytecode can be executed on any machine that has Java virtual machine

(JVM). See Figure 9, Figure 10 and Figure 11.

As stated by Gritzalis and Aggeli [GA98], Java bytecode is an architecture in-

dependent object, which means that Java byte code can run on any platform that

supports JVM. The main components of the Java virtual machine are [Pat08]:

• The Stack, which contains local variables, execution environment and operand

stack.

• Garbage-collected Heap, which holds Java objects.

• Method Area, which holds Java bytecode.

• Program Counter.

33



Figure 11: Java virtual machine components [Pat08]

• Registers.

One of the important issues that needs to be considered when transferring Java

bytecode is security. Java bytecode needs to be authenticated and authorized before

it runs on a specific machine. For that issue a trust relationship via signing model

is built between Java code producer and consumer. The generator of a Java code

digitally signs it, which enables the client to authenticate and check the Java code

integrity [RLMR00, HB01].

A restricted environment called a sandbox is used. Sandbox is a construct used to

control Java applets. The sandbox has a range of customizable access control starting

from a simple sandbox that accesses the standard input/output and its memory space,

to a sandbox that can access all resources in the target host [RLMR00, HB01]. The

sandbox contains a bytecode verifier, an applet class loader and a security manager.

The bytecode verifier checks the bytecode to see whether it is vulnerable to security

attack or not. Applet class loader loads applet code and all related objects into the

host memory. The security manager checks all applet operations that need to be

perfomed by the host CPU, and if there is a security attack, then it stops the action

[San].

34



Java 1.2 architecture is an extensible and comprehensive security framework and

has many features and mechanisms, such as security policy, access permissions, pro-

tection domain and fine grain access control. A new service has been added to Java 1.2

called Java authentication and authorization service (JAAS), which works as authen-

tication framework and it is responsible for authenticating users and authorizing their

permission. In Java 1.2, every user has an identity based on some sort of evidence.

Java 1.2 allows to define set of protected resources and terms or conditions, which are

used to verify identified users to use them. JAAS policy used to state permissions

to users. java.security.SecurityManager along with java.security.AccessController dy-

namically enforces access control [LG99].

The Java platform introduces APIs for main security services such as symmetric

and asymmetric cryptography infrastructure, authentication and authorization ser-

vices, secure communication services; ex, secure session layer (SSL), and fine grain

access control. The Java platform supports interoperability and it is easily extendable

to support new services [(SD05].

Now we come to the more challenging security problem, which is protecting mobile

code from any malicious hosting target. In some cases, mobile codes may hold some

private information such as a private key. This private information needs to be

protected from being exposed. Mobile code may be subject to forwarding to another

target. In this case it is subject to owner impersonation. Mobile code is subject to

modification [RLMR00, HB01].

In summary, Java platform supports protection for hosting machine against mobile

malicious code.

35



2.5 DRM Attack Model

Information security developers are concerned about countering threats. In this sec-

tion, we will discuss threats that content distribution services are facing.

Since DRM developers have found that the easiest way to develop a DRM system

is to consider that the end users’ devices are trusted, therefore the most important role

in the DRM system is the role of DRM agent (DA), which enforces the compliance to

the content owner(s)/publisher(s) definition of legal activities on the content media.

The DA controls the use of protected content media by burying secret keys used to

decrypt that content, i.e., the DA works to provide a protection against piracy. The

software and hardware attackers try to break the DA by exposing these keys and gain

access to the clear content media.

Deploying a DRM software solution within generic machines is viable and cost

effective, but it is susceptible to various attacks and it degrades the system perfor-

mance. Normally, because DRM processes reside in customer-machines’ memory,

attackers can physically access to these memories, thereby, they can reverse engineer,

disassemble and decompile binary codes inside these memories and then extract sen-

sitive information used for content media hiding. Or, they can dynamically monitor

process execution and follow the pointers to the location of secret keys [YKM+06]. In

addition, a software solution may carry a serious attack against a customer, specially

when it works as a virus spying for private information [FH06].

We consider DRM hardware solution as a black box, which hides sensitive secrets

and prevents them from being released. This depends on the fact that the attacker

has little knowledge about that box’s internal structure, and the existing tools’ ca-

pabilities are too limited to catch much useful information. Therefore, tampering

with such hardware is too limited. This makes it a promising solution for future

trusted computing [SV01]. Unfortunately, this solution is not economically feasible

36



Table 1: DRM Software and Hardware
DRM SW solution DRM HW solution

Attack easy: hard:
tools are available need special tools

Fix reinstall new replace or repatch
version HW component

other Needs more power surges &
problems computational cost costly installation

Table 2: Attack Cost
Tools cost Knowledge availability Time availability Attack cost

Low Reverse engineering Limited Less expensive

Low Reverse engineering Open Low

Low Available Limited Medium

Low Available Open Very Low

Expensive Available Limited Very expensive

Expensive Available Open Expensive

Expensive Reverse engineering Limited Very expensive

Expensive Reverse engineering Open Expensive

for existing PCs. Table 1 shows a comparison between DRM software and hardware

[EDB04].

If the attacker has the right tools, a good experience and knowledge, as well as

enough time, then s/he has a better chance to successfully attack the content distri-

bution model. In contrast, if the tools used to circumvent the content distribution

model are expensive enough, the knowledge about the technology used to protect

digital assets is limited as well as the time to accomplish the attack is restricted by

enforceable limitations, then s/he will have difficulty to attack the model. Table 2

shows attack costs for a variety of scenarios.

In software-based environments, the end user “owns” the environment where the

rendering of the content takes place and the memory that holds the digital data as

37



well as the mechanism used to enforce the content owner’s rights, which allows the end

user to trace the place of the encryption key or modify the enforcement/ protection

mechanism [BA, MVJDD05, GMM06b, GMM06c].

To conclude, the DRM systems seem to be reasonably strong, however they face

the following threats [FH06, HB05b, EDB04]:

• All threats that are faced by transmitting data through insecure channels are

applied to the DRM agent software, e.g., data eavesdropping, man-in-the-middle

and modification attack.

• Reverse engineering of the DRM agent in order to deduce the location where

the sensitive data reside.

• Monitoring the system behavior at run-time in order to observe the data changes

in memory locations, so the attacker can predict sensitive secrets hidden inside

the memory.

• Modifying the DRM software that is used to enforce usage policies, and then

bypassing the enforcement point.

• Modifying the license in such a way as to allow customers to use fake rights.

• General operating systems suffer from many security holes. In MS-Windows OS,

attackers have physical access to the machine’s memory and disk, and are able

to hide their spy-ware and dangerous files [HB05b], which helps the attacker to

spy without being caught.

• DRM application may enable private information spying [FH06].

38



2.6 Summary

DRM systems control and manage the distribution of the content media. Mainly,

it uses two levels of control, the first on the network level, and the second on the

application level. In this chapter, we discussed the techniques used to provide the

following services in the network level: confidentiality, authentication, integrity, non-

repudiation and digital signatures. DRM systems use two approaches to provide

protection on the application level, they are: hardware based protection and software

based protection. We showed DRM architecture and some means to control the use

of the content media after delivery. DRM system implementations are based on long-

term same protection techniques and unicast distribution, which makes it susceptible

to modification or replacement attacks, specially when software-based protection is

used. A typical DRM system is not scalable when the number of customers exceeds

the capacity of the NSP and/or the CP. We are searching for ways allow us to increase

the difficulty of attacking protection programs and the scalability of the used DRM

model. What we miss at this stage is to identify a comprehensive set of requirements

that cover basic DRM functionalities. In this thesis, we will investigate general DRM

requirements that mainly satisfy persistent protection and improve DRM scalability.

39



Chapter 3

Multicast Content Distribution

In the generic DRM architecture, the NSP takes no active role. It only provides a

means of communication among the CP, LP and EU. As long as the network capacity

is sufficient and exceeds the expectation of the End Users, and the capacity of the

Content Server is sufficient, the existing DRM model is feasible. However, it is based

on a one-to-one relationship. As the demands of the End Users grow, the linearly-

increasing load will reach a point where the expectations of the End Users will grow

beyond the capacity of the network or the Content Server to meet it. This is the

scalability problem. If we could schedule the delivery of the highly-demanded services,

then a promising solution is to shift from unicast to a multicast delivery mechanism.

In this chapter, we will outline the properties, advantages and disadvantages of

multicast data delivery, and then summarize two existing approaches to providing

security within multicast systems.

40



Figure 12: Multicast architecture

3.1 Multicast Data Distribution

It is known that multicast as a distribution mechanism has the advantages of lowering

the price of distribution, speeding up the delivery process, lowering the resource usage

of both the source and network and improving the network bandwidth [J. 07]. This

introduces the possibility of enhancing the scalability of a system by shifting the

traditional DRM technologies from a one-to-one relationship, between the sender and

the receiver, into a one-to-many relationship. Figure 12 shows the distribution flow of

the multicast architecture; the arrows, in the figure, reflect that there is one copy of

data flow sourced from one sender to many receivers. Scheduled service works along

with multicast, and by decreasing the delivery cost, will bring a motivating factor for

the content media distributor to gain more from this distribution model.

The generic multicast model is good for free distribution when there is no need

for control over the distributed content media. Multicast, as a technology, is widely

used for applications that require fast response time and high quality. It requires

fewer resources from the sender and the network and saves network bandwidth, in

addition to reducing the provider’s and network’s CPU processing cycles, which leads

to less delivery delay and cost [J. 07, IA06]. Most importantly, it scales up group

communication, especially when the number of potential group members is large

enough, and if they are connected through few Network Service Providers (NSP(s)).

41



Thus, it reduces the content server’s load to the minimum. For group communication,

the sender should synchronize with all group members to make multicast worthwhile.

Existing IP Multicast follows IGMP/MLD protocols as follows [Cai02, Kos98]:

1- A group manager creates a multicast group using a specific IP address (Class

D).

2- A customer who wishes to join a group sends a join message (IGMP/MLD) to

the nearest multicast-enabled router. IGMP/MLD is a protocol used to manage

multicast group membership. The data sent to group members is called group-

data.

3- A customer who is no longer interested in the group-data sends a leave request.

4- Intermediate routers, that happen to be in the path between the sender and

receivers, collaboratively build a multicast distribution tree based on join and

leave messages. Routers can use any multicast routing protocol.

5- Intermediate routers know how to forward group-data to all receivers.

6- If any edge router receives a new join message, it extends the multicast tree if

needed.

7- Once the multicast routing tree is created, group-data, sent by any sender, will

be received by all group members.

8- A router responsible for forwarding group-data to that receiver checks whether

there are any other receivers connected to that branch; if not, it truncates itself

from the multicast tree; after that, no group-data will be received by that edge.

Multicast is a technology for delivering the same data packets to millions of people

who are synchronized to receive them. In doing so, it hides the identities of all users

from the sender. Replacing the on-demand service of normal DRM systems with

42



scheduled service results in the identities of all users being hidden from the original

sender. This saves a lot of packets on the network, as well as requiring the content

provider to produce and deliver only one copy of the content media.

Multicast allows the achievement of orders of magnitude better performance on

the scalability requirement than the unicast model. The drawback is that once the

media are delivered, there will be no control on the receiver side. IP multicast does not

provide any security measures for the delivered media. Also, it does not preserve the

end user’s privacy and does not include any accounting or access control mechanisms

over digital assets.

The advantages of using IP multicast did not motivate content providers to use

it as a distribution mechanism because it only offers free join and does not monitor

the sending process or restrict the receiving process. In other words, the content

providers cannot control their contents’ distribution[IA06]. Let us study the distinc-

tive properties (factors) that contribute to the scalability of the IP multicast scheme:

F1 Separation of concern.

When a problem becomes more complex, the most effective way to deal with it

is to divide it into sub-problems, solve these sub-problems and then gather the sub-

solutions. When a sub-problem is assigned to an individual role, this procedure is

called “separation of concern” in the software engineering process. DRM developers

use this concept in their design; they physically separate the content media from the

authorization mechanism in a distributed manner [VMF99]. The IP multicast generic

architecture consists of three roles: the sender, interconnecting networks (routers) and

receivers. IP multicast separates the sending process from the distribution process,

the distribution process from delivering process and the delivering process from the

registration process; the sending process is done by the sender, the distribution tree

is generated by cooperative intermediate routers, the registration process as well as

43



the delivering process is managed by multicast-enabled routers at the edge of the net-

work. The sender of group data is concerned about creating the group and sending

the data that belong to those group members (group data). The interconnecting net-

works, routers, are concerned with building the multicast distribution tree, copying,

forwarding and delivering the group data at the network level. Routers in the multi-

cast case keep more information than in the unicast case, e.g., sender address, group

address and output port [VAD99]. Receivers show their interest to receive or stop-

receiving the transmitted group data by sending (IGMP/MLD) join/leave requests.

Thus those parties have to collaborate with each other to perform the multicast dis-

tribution. In general, for a complicated interactions, it is advised to divide it into a

set of cooperating interactions and apply the separation of concern concept, which

introduces the scalability, flexibility and simplicity to the solution.

F2 Resource reduction.

The number of packets traveling inside the network using the IP multicast model

is smaller than in the unicast case. Suppose we want to send a data file to a group

of users; having created a shared distribution tree for each sender in a multicast case

will definitely improve network bandwidth, since sending N copies of packets to N

customers in the unicast case is replaced by one copy of packets using the shared

distribution tree. In the multicast model, the multicast enabled routers replicate

packets belonging to a group of users and forward them through their appropriate

ports. In the unicast case, if a router happens to be in the path between the sender

and N receivers, it will forward the same packet N times. The multicast mechanism

provides a good solution for saving network bandwidth and decreasing the data traffic,

assuming we have a large enough set of receivers and the control traffic is small relative

to the data traffic.

44



F3 Better response time.

Interaction between roles affects the response time and that is what the separation

of concern concept asserts. The sender should not directly manage the customers;

doing that will affect the scalability of multicast sessions. S/He may not directly be

responsible for authenticating, authorizing or accounting for them. This will lessen

the interactions between a sender and all receivers. Intermediate routers manage the

join and leave process for each user, so the number of control messages between the

receivers and a sender is minimized. This improves the response time for the receiving

service and improves the network bandwidth as well.

Content providers and owners insist on securing the multicast distribution model

to control the use of their intellectual properties. This kind of protection needs to be

valid for a certain period of time. If we could not develop a protection mechanism

for multicast, then no company will develop intellectual properties.

In the following sections we will explore some of the related works that demon-

strate general requirements for adding data protection and access control functions

to IP multicast in the network layer.

3.2 IETF Multicast Group Security Architecture

The Internet Engineering Task Force (IETF) Multicast Security working group (MSEC)

proposed the Multicast Group Security Architecture (MGSA) [VC04] as a reference

framework that provides clear-data concealment to the traditional IP multicast. The

MGSA architecture contains four actors: policy server (PS), group control and key

45



server (GCKS), the sender, and the receiver.

The PS is in charge of creating, managing and maintaining security policies within

each group. There is an interface between the PS and the GCKS, which is used to

pass security policies. PS peers can talk to each other in a distributed manner in

order to scale up the MGSA framework. Peer PS servers need to authenticate each

other before securely distributing security policies among each other. The GCKS

is responsible for managing multicast groups and maintaining data encryption keys

(DEK) for each group; the DEK is used to secure individual group-data. Group-data

are the data that need to be securely exchanged within a specific group. The GCKS

is also responsible for authenticating and authorizing end users and collaborating

with another peer GCKS server in order to scale up and distribute GCKS related

responsibilities. The GCKS contacts the senders and the receivers every once in a

while for the purpose of KEK updates according to a specific policy issued by PS. Peer

GCKS servers must authenticate each other before securely distributing information

among each other. The sender is the entity who uses a specific KEK received from

GCKS; s/he encrypts the group-data and then sends it to N receivers. In GCKS

models any user can be the sender. The receiver is the entity that needs to be

authenticated and authorized by the nearest GCKS before receiving the KEK and

related policies [VC04]. See Figure 13.

The MGSA model can be implemented to a local area network (LAN) or a wide

area network (WAN). The MGSA model has a simple structure in LAN; it is also

called the centralized reference framework. It consists of a PS, a GCKS, the sender

of a group, and at least one of the receivers. This structure suffices for small groups.

When the group is larger (perhaps spanning more than one administrative region),

the PS and the GCKS may be replicated, as is shown in the right column in Figure 13,

and an individual receiver will connect to its local GCKS. Further details are available

in [VC04].

46



Figure 13: Multicast group security architecture [VC04]

This PS/GCKS model provides an example of the separation of concern concept

in addition to the flexibility and simplicity of the IP multicast design model. The

GCKS is the core entity in the MGSA architecture; along with the policy server, it is

the manager of the group and is concerned with maintaining the confidentiality of the

data being sent to all group members. Data confidentiality is achieved by protecting

the data before making it available [VC04]. Many proposals have been presented

for improving the scalability of the manager task [Mit97, WMSL00, MA07, ZZM+06,

CC03, CS05].

There are many advantages to the MGSA architecture:

• It adds a network protection layer to the delivered data flow packets.

• It works with any multicast routing protocol.

• It can be used as a reference framework for securing large multicast groups.

• It provides three functions: multicast security management, multicast group

key management and multicast data flow security.

MGSA introduces the need for efficient key management and distribution as well as

47



the requirements for manipulating and carrying out access control of multicast content

media for both the senders and the receivers; however, the specification of MGSA

does not mention the requirements for accounting for the content media usage. Since

MGSA’s introduction, scalable key management protocols and schemes have been

proposed by many authors. The IETF Multicast Deployment (MBONED) working

group has introduced the requirements for accounting and controlling access to the

IP multicast [THVV10]; they call this “well-managed” IP multicast. None of these

previous studies provide the requirements for protecting content media from a hostile

person who may receive the clear content media legitimately.

In summary, the most obvious advantage of the MGSA model is that the Internet

Engineering Task Force (IETF) Multicast Security (MSEC) working group added two

new players, the Group Controller / Key Server (GCKS) and the policy server (PS),

to the conventional IP multicast in order to provide confidentiality of transmitted

data in the network layer [VC04].

3.3 Atwood Model for Multicast Distribution

The increasing development of network technologies removes any need to consider the

location or distance of target consumers. If we consider video on demand (VOD) as

a small transaction between a content provider and a customer, the content provider

or owner will take the responsibility of managing and maintaining the detailed cor-

responding records. Multicast content media distribution (ex. scheduled program),

which consists of multiple instances of unicast connections (distribution tree), is a

group of such transactions, and the supervision that exists between CP and EU in

unicast case is no longer there in multicast case, because that will hurt the scalability

of the multicast model.

As the delivery of high quality multimedia content media becomes faster, because

48



Figure 14: Multicast security architecture [J. 07]

of the increasing development of networking technologies, the location or distance of

target consumers ceases to be of concern. This increases the potential size of the

target audience for a specific content media stream. If “video on demand” (VOD) is

required, then each request is likely to occur at a different time, and therefore must

be managed separately. The content provider/owner will take the responsibility for

managing a session, and maintaining the detailed corresponding records (session keys,

account information, etc.). As the total number of participants in a session increases,

the load on the content server increases in proportion. Eventually, as noted above, a

point may be reached where the content server is unable to sustain the necessary flows,

and it becomes useful to consider relaxing the “on-demand” requirement, in favor of

the requirement for “efficient delivery”, by using scheduled delivery and multicast

data transmission. However, the supervisory relationship that exists between content

provider and end user in the first case is no longer present in the second case, because

to maintain it would hurt the scalability of the multicast model (F1, F2, F3). In this

case, an efficient solution is to give this supervisory responsibility to intermediate

proxies, and offer the content providers a limited summary. This was proposed by

Islam and Atwood [IA06], see Figure 14.

Islam and Atwood [IA06, IA09] realized that the network service providers (NSP)

should contribute to the solution; they state that without the help of the NSP, there

will not be a feasible solution for scalable multicast content media distribution. They

49



propose adding distributed authentication, authorization and accounting (AAA) func-

tionalities to the IETF model as a way to motivate both NSP and content provider(s)

to deploy this service. Atwood [J. 07] proposed an architecture for secure multicast

content media distribution. He calls his model “Multicast Security Architecture”

(MSA). The solution touches billing and security parts for delivered media. Fig-

ure 14 shows the components of the MSA architecture. Sultana and Atwood, as

well as Islam and Atwood, discuss the end user authentication and authorization

services within MSA framework in order to control the access for group members

[SA05, IA06, IA07b]. Islam and Atwood propose policy enforcement mechanisms at

network level [IA09, IA07a].

MSA [J. 07] has seven main parties: the content provider (CP), the end user (EU),

the network service provider (NSP), the merchant (MR), the financial institution (FI),

the content server (CS), and the AAA server (AAAS) [J. 07].

The CS is responsible for producing the digital content media for a selected group

session; the CP receives the encryption key from the group owner and encrypts the

digital content media before the distribution starts. The CS is responsible for de-

livering the encrypted media. The MR is responsible for advertising and managing

content media as well as distributing the electronic ticket for the legal EU according

to a defined policy stated by CP. The FI is responsible for providing a proof that

the selected EU is able to pay. The NSP provides suitable media to use multicast

as a distribution mechanism for content media, account for the use of content media

and enforce the usage policy as defined by the CP. It checks the EU’s credentials and

provides authorization mechanisms for a legal EU via the AAAS, as well as provid-

ing the accounting mechanism on behalf the MR and the CP. The EU is the entity

that consumes the content media and provides funds for that consumption. It gets

an electronic ticket from the MR in order to show it to the NSP who is responsible

for attaching the EU to a multicast session. The NSP connects the CS and the EU

via access routers (AR), and connects the ARs via intermediate routers called core

50



routers (CR).

3.4 Summary

Even though IP-Multicast distribution is not secure, it lowers the resources usage

at the sender’s site, and at the closest NSP resources near to the sender. The IETF

multicast group security architecture provides scalable protection at the network level

for the delivered content media, in other words, it provides scalable protection before

delivery. It also provides simple policy management for each multicast group. The

IETF multicast group security architecture does not provide any protection after the

delivery of the content media. Atwood’s multicast security architecture (MSA) has

broader control and management for the delivered content media. The MSA model

includes receiver and sender access control, and policy management. In this chapter,

we briefly detailed the multicast security architecture, which is based on multicast

distribution, and what protections it provides. The main problem with the multicast

security model is that it does not prevent a dishonest customer from forwarding

any delivered data. What we miss at this stage is to identify a comprehensive set

of requirements to enforce DRM functionalities into multicast content distribution

model. In this thesis, we will investigate general DRM requirements and show how

to push them into multicast distribution model.

We are interested in reaching a solution that provides persistent protection and

scalable content media distribution model in such a way that the attacker cannot

defeat the system for long period of time. In this thesis, we will suggest some ways

to enhance the generic DRM model by integrating some of the scalability properties

of IP multicast, which will allow us to gain both DRM functionalities and scalable

behavior.

51



Chapter 4

Problem Statement

In this chapter, we will show a solid understanding of problem statement which the

dissertation addresses, which is: design a flexible mechanism, architecture and proto-

cols, for scalable, scheduled and persistently protected content media delivery.

The DRM model is mainly designed to provide persistent control of the delivered

content media. The technologies used with most existing DRM systems depend on

long-period protection software or hardware. Hardware-based protection solutions

are feasible where the protection providers have control over the hardware; therefore,

OMA adopts a hardware solution, because cell phone providers have control over

the hardware-based protection embedded in the cellphones. These models are not

open platform models. There are a lot of pieces inside their community that are

private. It is not impossible to reverse engineer these pieces, but like everything

else, persistent protection is only valid for a certain time, and that time depends on

how hard it is to reverse engineer the protection mechanism. The hardware-based

protection solutions are valid for a longer time, but not forever. As a content provider,

to increase persistent protection on delivered content media, it is required that s/he

has some control over the hardware-based protection, and the cellular community has

that control on the hardware-based protection embedded in cellular set. That is out

52



of scope for our problem at hand, because we want to look at a more general market,

which includes personal computers and laptops. This implies that the protection

needs to be quickly deployed and easily to be replaced. Software-based protection

provides these attributes.

Various approaches exist for doing DRM based on the unicast distribution mech-

anism, and that creates a concern that unicast-based DRM system is not scalable

when the number of users, who are using this service, increases. This increases the

resources used at the sender’s site, and at the closest NSP’s resources near to the

sender [PA11]. Scalable content delivery in this thesis context means that the re-

sulting solution can afford any increasing number of end users. A promising and cost

effective way to improve the scalability of the current DRM systems is to change their

underlying distribution mechanism from unicast into multicast.

Many delivery applications need to support scheduled delivery because some ap-

plications, such as online world cup, interest million of users around the world, and

the content media owner will be interested if the content media is persistently pro-

tected. Persistent protection in this thesis context covers content media protection

after delivery.

At the beginning of our work, we did not have a comprehensive list of requirements

for unicast DRM or multicast DRM. We start our work by:

Goal1: Exploring and collecting basic list of requirements for both unicast DRM

and multicast DRM.

Later on as the work progressed and we become more mature in the area of DRM

world, we found the collected list of DRM requirements is applicable to both unicast

and multicast DRM. As the work progressed, this realization became clear that only

the implementation and architecture are different.

Once the list is established, we will explore what parts of the requirements are not

met or cannot be met with existing architecture when multicast is used. We found

53



that a small part of DRM requirements is met with IETF MGSA architecture, and

a larger part of DRM requirements is met with MSA architecture. We will identify

missing parts of DRM requirements that MSA architecture misses.

After determining the requirements that are lost, we will continue our work:

Goal2: Develop and validate methods that exhibit superior persistence and more

scalable approach compared with previous approaches.

To achieve goal2, we will explore and validate the proposal of Grimen et al., which

provides a light on persistent protection, using a formal tool to ensure that it works

correctly for the unicast case. In other words, we will use Grimen et al.’s ideas

to harden and increase the security of the protection applications that are used to

control the content media access after it has been delivered. Then, we will propose

and validate an extension to this approach for the multicast case and suggest an

appropriate architecture for implementing the new approach. Thus, we improve the

performance and scalability of current DRM systems by changing the underlying

distribution mechanism from unicast into multicast.

54



Chapter 5

Requirements for Persistent

Protected and Scalable

Distribution Model

In this chapter, we are introducing the basic DRM requirements as a starting point

for the solution to proposed problems with current unicast and multicast distribution

systems. The main problem with the multicast security model is that it does not

prevent a dishonest customer from forwarding any delivered data, and that problem

is not perfectly solved in the current software-based DRM systems. Also, as we

noticed, a typical unicast-based DRM system is not scalable when the number of

customers exceeds the capacity of the NSP and/or the CP.

This chapter presents the fulfillment of our first goal, to explore and collect a basic

list of requirements for both unicast DRM and multicast DRM.

55



5.1 Basic DRM Requirements

Nowadays, the digital world makes the copying of digital content media easy and

perfect, which makes protecting these media more difficult. Digital rights man-

agement is a scheme designed to protect digital assets. There are four basic pro-

cesses used in the DRM system: protection, distribution, management and control

[Ian01, Ltd02]. Many researchers proposed a list of requirements in order to give

the content providers the ability to acquire control for their digital intellectual prop-

erty, and preserve the producers and consumers rights [NN07, JM07, AH05, LSNS03,

AH07, LELD05, OLR+07]. We organize these requirements into five categories: ac-

cess control, security, privacy, robustness and marketing:

R1: Prevent illegal access and allow legal access to valuable media.

R1.A: Prevent the action of capturing clear content media in the distri-

bution path.

R1.B: Prevent the action of stealing clear content media when it is hosted

at the end user’s machine.

R2: Ensure the authenticity of interacting objects.

R2.A: Digital assets.

R2.B: Sender entity.

R2.C: Receiver entity.

R3: Regulate the legal operation of content media; in other words, permit different

authorization activities for different types of transactions.

R3.A: Content owners need to specify their content media usage policies.

R3.B: Content media usage specifications need to be protected and dis-

tributed to their appropriate destination.

R3.C: Specified usage activities need to be enforced.

R4: Ensure the integrity of digital assets.

56



Table 3: DRM Requirements

Req AC Security Privacy Robustness Marketing

R1 +
R2 +
R3 + +
R4 +
R5 + +
R6 +
R7 +
R8 +
R9 +
R10 +
R11 +

R5: Ensure the non-repudiation for the service.

R6: Ensure the privacy of end users.

R7: Ensure the availability of the service.

R8: Reduce the damage caused by the attacker.

R8.A: Prevent “break-once, break everywhere” (BOBE).

R8.B: Detect and fence the cause of illegal content media distribution.

R8.C: Repair the protection engine once it has been compromised.

R9: Support service on demand.

R10: Ensure efficient use of content provider’s resources.

R11: Allow domain access.

In Table 3, we map these requirements into the five categories: access control

(AC), security, privacy, robustness and marketing. In the next section, we will give a

justification of the elements in this table and discuss the goals behind these require-

ments in detail.

57



5.1.1 Goals behind Basic DRM Requirements

The content owners do their best and spend time and effort to produce remarkable

intellectual properties. They need to protect their works in order to control the

use of them for a certain period of time. DRM strives to achieve “persistent access

control” for the content provider/owner and provides him/her the ability to regulate

the content media operations [JM07, AH07]. This persistency is achieved by hiding

the content media as a first stage, then filtering the access to it as a second stage.

Requirement one is about hiding the content media and both requirements two and

three are about filtering and organizing the content media access. Hiding the content

media is accomplished by making the following sub-requirements valid:

R1.A: Prevent the action of capturing clear content media in the distri-

bution path [Access control requirement].

R1.B: Prevent the action of stealing clear content media when it is hosted

at end users’ machine [Access control requirement].

To allow only legitimate customers to utilize the service, a demand for identify-

ing and authenticating the customers is needed. Requirement two is to ensure the

authenticity of the following:

R2.A: Digital assets.

R2.B: Sender entity.

R2.C: Receiver entity.

This involves clarifying, ensuring and assessing the truth of any declaration sourced

by a valid entity (content sender, content consumer and the digital assets), we con-

sider it as security requirement. To start with, consumers want to ensure the identity

and authenticity of the sender(s) before receiving any data, and this is useful for

protecting customers from sender spoofing. As well, a sender requires that each valid

58



customer be identified and authenticated before s/he is authorized to use the product,

and this will help for billing issues. Finally, the content consumer hopes to authen-

ticate the product itself before s/he starts using it. This process helps him/her to

avoid any harm that could be sourced from unknown content providers or products.

Requirement three introduces the need for managing different types of content

media usage, that is why we classify this requirement as both access control and

marketing. It is further subdivided into the following sub-goals:

R3.A Content owners need to specify their content media usage policies

(rights/licenses) [Marketing requirement] [JM07, Irw04].

R3.B Content media usage specifications need to be protected and dis-

tributed to their appropriate destination [Access control require-

ment] [JM07].

R3.C Specified usage activities need to be enforced [Access control re-

quirement] [NN07, Kam02].

Requirement four ensures that any digital assets used in the context of content

media distribution have not been changed in the path from content providers to

content consumer, and it takes two flavors: checking the digital assets’ integrity in

the distribution path and giving a promise to the Stakeholders that the digital asset

will not be changed at the point when the end user can access it; we considered it a

security requirement, because if the integrity of the assets is violated, then it could

introduce a hole in the content media distribution model.

Requirement five is to ensure the non-repudiation action for the requesting process,

which is an important security service that avoids any tensions that could happen

between content seller chain and the end users. There should be evidence of sell-

ing/buying the product for both sellers and buyers. The seller needs this service to

59



prevent the buyer from denying using the service and not paying the fees. At the

same time, if user protection is broken because of a delibrate security hole embeded

inside a product sold by the seller, then this offensive action should not be denied by

the seller, this is a kind of security requirement. To conclude, both the sellers and

the buyers should be responsible for their activities. In another view, if the access to

the service is granted, then this action should not be repudiated. We consider this

requirement as both security and marketing requirement.

The sixth requirement affirms anonymity to end users by preventing unauthorized

entities from accessing users’ private information such as name, address, date of birth,

credit card number, and so on. This information could help the attacker to gain access

to transactions that belong to someone else. It is a privacy requirement.

Requirement seven is important for all parties. It concerns keeping the product

service, the users can receive the digital product and its license if they are eligible

without any blocking, which means that denial of service (DOS) attacks must neces-

sarly be eliminated. We considered it as a robustness requirement.

Requirement eight tries to reduce or mitigate the unsatisfactory effects of service

attacks. It tries to find a means of defense against intentional irresponsible actions

and return the system to the previous stable state. It is a robustness requirement.

We further subdivide it into three lines of defense.

R8.A Prevent “break-once, break everywhere” (BOBE) [PBW02, JM07].

R8.B Detect and fence the cause of illegal content media distribution.

R8.C Revise the protection engine once it has been compromised [JM07,

BE06, GMM06b].

Requirement nine endows the DRM system with flexibility; once the users choose

the time frame for enabling legal operations on the content media, they should be able

60



to do that [JM07]. Somehow, it is related to the availability requirement, R7. This

requirement is important for marketing issues, because if the service is motivating

users, then the service provider is successfully marketing her/his product.

Requirement ten seeks the efficient usage of the content providers’ resources. It

contradicts requirement nine, which demands reserving fixed resources for each indi-

vidual user. Because of the fact that senders have limited resources, they can serve

only a limited number of users. Therefore the flexibility desired by requirement nine

is influenced by the efficiency desired by requirement ten. Requirement 10 is again a

marketing requirement.

Requirement eleven gives the ability to each customer to use the same content

media on a limited number of devices s/he owns. It is preferable that deploying

any technique to achieve this requirement not hurt any of the previous requirements.

This requirement attracts a customer to use this service, therefore it is a marketing

requirement.

5.2 Addressing Basic DRM Requirements within

DRM Examples

Section 2.3.2 shows current DRM solutions and discusses four examples of DRM mod-

els and their limitations. In this section, we will address the basic DRM requirements

of the DRM model examples.

Figure 15 addresses the availability of the basic DRM requirements in each men-

tioned DRM technology in Section 2.3.2.

61



Figure 15: DRM system comparison

62



5.3 Persistent Protection Requirements

One of goals that has been requested by content providers is to close the security hole

that exists in the current content media distribution systems, and to motivate the

network service provider to participate in the solution of content media distribution

model. The road to having a scalable content media distribution is dependent on

having the help of the network service provider [J. 07]. In our opinion, adding per-

sistent protection properties to content media distribution systems is done by closing

the security holes generated by dishonest customers.

Persistent protection is English terminology is composed of two words, the word

protection and the word persistent. Technically, protection means, to protect an ob-

ject whether it is tangible or intangible, and persistent in this context means, to make

the protection valid for a certain length of time. In the context of persistent protec-

tion for delivered digital media, and since we are using the Internet to distribute

the content media to a large number of users, the most feasible way to achieve this

protection is to use cryptographic technologies. Encrypting the content media using

efficient and secure encryption algorithm with secure encryption key converts read-

able, watchable and/or audible content media into unreadable, unwatchable and/or

inaudible media, which is called protected content media. This process achieves the

protection phase for the content media.

The next phase is to control the access to the protected content media by authen-

ticating and authorizing the end user(s) who are eligible to read, watch and/or listen

to the content media. By authorizing the end user we mean, that the end user is

allowed to use the content media according to the rights and privileges the end user

has been granted from the content owner or his representative. In order to give the

end user the right to use the content media without removing the protection on the

content media, we need to use a trusted tamper resistant object, which is responsible

for allowing end user to legally use the content media and emphasize permission rights

63



on the content media.

To achieve persistent protection, the tamper resistant object needs to be protected

for the period of time that is enough for the content provider to gain enough control for

his/her work. In our opinion, the road to the protection persistency can be achieved

by making at least the following three basic requirements valid [BA]:

R1 Prevent illegal access and allow legal access to valuable media.

R3 Regulate the legal operation of content media; in other words, permit

different authorization activities for different types of transactions.

R8 Reduce the damage caused by the attacker.

The first one is to hide the digital assets so no one can access them; employing

the cryptographic tchnologies is the easiest way to accomplish this hiding in public

networks. The second one is to arrange and manage the access to the digital assets

by providing legitimate end users with the capabilities to access the protected dig-

ital assets; legitimate clients can use the content media they are provided with the

decryption key, but that should be under careful manipulation in such a way that

they do not really understand the right decryption flow. The third one is to pro-

vide the means for a reaction when detecting an attacker has been successful. This

requirement is more detailed via the following sub-requirements [BA]:

R8.A Prevent break-once, break everywhere (BOBE).

R8.B Detect the cause of illegal content media distribution.

R8.C React to the action of illegal distribution.

Nothing will remain secret forever, so protecting these protection mechanisms is

not something easy, at some time these protection mechanisms will be known and

the hidden content is not really hidden, “DRM systems can’t protect themselves”

[Doc05]. If time is not considered, a knowledgable hacker may have sufficient funds

and appropriate tools to extract the sensitive information (key) from the machine’s

memory to achieve a successful attack. The ability to achieve persistent protection

64



at the user level depends on the ability to protect the DRM subsystem at the user

side.

In order to reduce the damage caused by the attacker, replacing the protection

mechanism used to control the access to the content media with a new one is one

promising kind of reaction. In this case the attacker spends time and effort in order

to attack and reveal the protection mechanism, which will be not valid at the time of

the eventual attack.

Arbitrary long persistence is not achievable. If the achievable persistence with a

particular mechanism lasts for an insufficient time, then renewability can be used in

order to extend the persistency of the protection. “Renewability” is a term used to

indicate that one of the DRM component(s) can be refreshed or replaced. The basic

mechanism is good enough to last for a specific time, and a sequence of basic mecha-

nisms provides persistent protection with a sufficiently long effectiveness. One entity

will interact with the user to renew the protection mechanism periodically or when the

current protection mechanism is compromised or has expired [GMM06a, GMM06b].

This mechanism has the disadvantage that it reduces the network performance due

to the high network bandwidth that is used for this renewability mechanism with the

current DRM system. The renewability mechanism appears not to be used, which

gives us an indication that there is no real persistent protection in current DRM

systems.

Another way to gain long persistence is to use tamper resistant hardware that is

strong enough for the spectrum of expected attacks over the required time, and then

replace these hardware devices, after the period where we think they are not useful

any more or they have expired [SCA]. A hardware solution is suitable for a high-

availability system with few participants. A software solution is suitable and cost

effective when we have very many customers. In order to gain a range of persistence,

either we need a single technique that is strong enough for a desired time period,

65



or we need a technique or techniques that are useful only for a shorter time period,

coupled with renewability.

We may need renewability as one element of a DRM toolkit that offers the choice

to use hardware that cannot be broken for long period of time, or to use a combination

of hardware and software that makes the attacker no longer interested in attacking

this distribution model.

5.4 Multicast Consequences

Multicast, as a distrbution mechanism, is an environment used to deliver a copy of

digital data to selected receivers. The most obvious issues when using multicast as a

distribution mechanism are:

• Scale up multicast service to the maximum.

• Remove the exclusive connections between the sender(s) and the receivers.

• Distribute the management of delivering the data stream.

• Reduce the resources that need to be used in multicast service to the minimum.

• Increase the availability of the resources that are used in the multicast service.

We saw in the previous chapter that IP multicast delivers one copy of the data

stream packet to multiple recipients by copying and forwarding the received packet

during the routing process. Multicast participants connect to the multicast group

via the nearest multicast-enabled router using IGMP/MLD protocol. The network

routers collaborate with each other to build the distribution tree. There is no direct

connection between the sender(s) and the receivers in the IP multicast; the sender(s)

is not aware of who the receivers are. The data stream’s delivery is managed by the

66



routers that connect the sender(s) to the receivers. When the sender(s) sends one

copy of the data stream, it reduces the resources consumed by the sender(s) to the

minimum. In addition, when the routers copy and forward the data stream, it reduces

the number of packets sent to the minimum. All previous achievements contribute to

increasing the number of packets that can be sent by the sender(s), and thus, increase

the availability of the resources used by the multicast service.

5.5 Multicast Content Media Distribution with DRM

Enabled Requirements

Current DRM requirements are feasible for DRM systems up to the point where the

server capacity cannot satisfy users’ demands. By the time we reach the situation

where the size of their demands goes beyond the server’s capacity, we propably have

enough customers to drop the “service on demand” requirement and replace it with

an offering of scheduled services. This enables the content owner to upgrade the

DRM performance, and therefore, serve more customers. However, it impacts the

solutions to the DRM requirements, because multicast as a distribution mechanism

truncates some DRM requirements and improves some others as well as produces new

challenges in order to mitigate the others. We summarize the following requirements

that need to be adjusted in order to enable DRM in the multicast model (DRMM),

then we will discuss these requirements in detail.

R1 Prevent illegal access and allow legal access to valuable media

This requirement is to attain “remote control” along with the “Persistent Access

Control” [AH07] on multicast content media distribution, we need the following sub-

requirements to be valid:

67



R1.A Prevent the action of capturing the content media in the network

level.

This requirement is being achieved by hiding the content media using cryptogra-

phy techniques and key management protocols, and then allowing the legal customers

to use the content media by giving them the means to unhide the hidden content me-

dia.

R1.B Prevent the action of illegal copying of the clear content media from

customers’ machine.

We need to build and deploy a tamper resistent object that controls the use of

content media and prevents end users from attaining sensitive data. To achieve this

requirement, we further divide it into the following sub-requirements:

R1.B.I The need for building DRM mediator by which only it has the

capability to render protected content media for a distinct user.

R1.B.II DRM mediator needs to be trusted.

Trust in this context means that the mediator is not subject to change by any

illegal entities.

R2 Ensure the authenticity of digital assets, senders and receivers

[AH07].

Authenticating the sender as well as the customers or their devices is a prereq-

uisite requirement for authorizing them. Autentication of the object is required for

subsequent use with non-repudiation requirement.

R3 Regulate the legal operation of content media.

To achieve this requirement, we will use the idea of distributing a license to autho-

rize the use of a content media. We further divide this requirement into the following

sub-requirements:

68



R3.A Only legitimate users can gain access to the valid licenses.

R3.B It is recommended that license issuers can account for customers’

usages without hurting the scalability of the multicast model.

R4 Ensure the integrity of digital assets [AH07].

Since the sender of the digital assets is not connected to the end user, then, this

requirement becomes more urgent than in the unicast case. The reason behind that

in the multicast case is the receiver needs to assure that the content media comes

from a certain source, not from an attacker, and that helps him to assure for to a

certain limit that the recived product will not affect the end user integrity.

R5 Ensure the non-repudiation for the service [AH07, OLR+07].

This service is urgent in the multicast case because the sender cannot track the

service usage by the end user, and thus cannot directly have a proof for the content

media consumption. This requirement is divided into the following sub-requirements:

R5.A Each end user needs to be uniquely identified.

This unique identification can be used to bind the tamper resistant object to the

end user’s machine, and thus the next requirement is needed,

R5.B Tamper resistant object should not be predictable or duplicated.

This requirements is needed to prevent the end user from cloning tamper resistant

object and forwarding it to his friends;

R6 Protect the privacy of end users.

R7 Ensure the availability of the service [AH07].

Obviously, this requirement is urgent in the multicast case because if the service

is not available for a short time, it will discount many users. This requirement is

69



achieved by the satisfying the following sub-requirements:

R7.A Protect the end user environment from hardware and software at-

tacker.

R7.b Protect the network resources from network attackers.

R7.A Protect the sender’s resources from hardware and software attacker.

If requirement R7.A is not achieved for some users, then the service is stopped for

those users, which we do not want. However, if requirements R7.B and R7.C are not

achieved, then the service is stopped for many if not all users.

R8 Reduce the effect of service compromise.

As we said before, requirement eight comprises three levels of defence, which are

summarized in the following sub-requirements:

R8.A Prevent “break-once, break everywhere”.

R8.B Detect and limit the effect of that illegal content media distribution.

R8.B is further subdivided into:

R8.B.I End users’ Content needs to be distinguished and individualized.

R8.B.II This distinction needs to be robust.

R8.C Revise the protection engine once it is being compromized [JM07,

BE06, GMM06b].

R9 Support service on demand.

For requirement nine, multicast does not support this requirement any more.

R10 Ensure efficient use of content provider’s resources.

For requirement ten, multicast as a technology improves this requirement.

R11 Allow domain access.

70



This requirement needs to be considered after satisfying the previous requirements

(R1...R8).

The next step is a comprehensive study of these requirements.

5.6 DRM for Multicast Requirements Comprehen-

sive Study

From the scalability and content owners point view, multicast distribution gives up

the opportunity to improve the performance for some requirements that are met

in DRM unicast case, e.g., efficiency requirement (R10). But, it kills some other

requirements, e.g., VOD requirement (R9). In different viewpoint, it cannot easily

satisfy the BOBE requirement (R8.A), which is solved by individualization in the

unicast solution. In the previous section we mapped the requirements for multicast

and those requirements that need to be achieved in order to reach the optimal case for

multicast DRM enabled solution. We will discuss each requirement from the multicast

point of view.

R1.B Prevent the action of illegal copying of the clear content media from

customers’ machines.

This requirement is to assure full remote control and “Persistent Access Control”

[AH07] on the digital assets for a limited period of time and is considered the most

vital requirement for securing current multicast technologies. Without it, the content

owner will not be cheering, if he doubts that his extensive work to produce remarkable

product is under control once it comes to the customers’ hands. To attain remote

control on multicast assets, they must be protected at the network and the application

levels.

71



The most mature scheme to protect multicast content media is Secure Multicast

[J. 07], but it protects the content media at the network level. A sender encrypts

the clear content media before flowing it into the distribution tree and individually

sending these keys to each end user. Because some multicast applications require a

dynamic membership, keys may need to be refreshed for every membership change.

R1.A is well established by many researchers working in multicast key management

and distribution, and we will not discuss it further.

A legal customer should behave in the way that they should: not copy or redis-

tribute granted content media; unfortunately, bad users do not behave in the way

that they should. To keep clear content media away from the users’ hands and give

the rights to legal customers to use them are the means for controlling the use of con-

tent media. Enforcing these rights would be the responsibility of the network service

providers (NSP) and clients’ platform. Satisfying both R1.B.I and R1.B.II gives the

system the chance to achieve remote control at the application level.

R1.B.I suggests that to remove users’ ability to directly access clear content media,

it is sufficient to build a DRM mediator to mandate an individual user and give him

the capability to legally use the content media with considering only legal usages to

the service. In this way, the mediator holds up the customer’s ability for extracting

keys or any sensitive information used to protect the content media, e.g., knowing

which algorithm is used for content media protection, and thus the end user can

obtain the clear content media with great difficulty only.

OMA DRM 2 specification achieves the content media protection by keeping the

private key inside tamper-resistant hardware, and by hiding the technology secrets

used to build the DRM agent. Because the major audience for our proposed multi-

cast content media is generic PCs, applying tamper-resistant hardware for multicast

content media distribution is not feasible because the cost is unaffordable. The major

problem with those PCs is that they do not have any special hardware that provides

72



tamper resistance and their operating systems are generic and do not provide any

real protection [HB05b].

The feasibility could be achieved when applying tamper-resistant software. R1.B.I

proposes to build a DRM mediator to control legal activities. However, a problem

arises when a legal customer redirects that mediator to illegal customers, or extracts

the secrets embedded inside the DRM mediator, or tries to modify the logic of the

DRM mediator, e.g., modify the part of the code that is responsible for enforcement

activities. R1.B.II requires a means to establish a trusted mediator in order to resist

the following attacks:

1. Forward the working version of DRM mediator.

2. Reverse engineer the mediator.

3. Modify the logic of the mediator.

Requirement R3 helps the content owner to control and manage the access to the

content media; it is to manage the relationship among all parties in the system. We

can call it a marketing requirement. In this requirement’s view point, the content

seller needs to be able to specify the terms and conditions for using the content media.

The policy server can specify what accounting information needs to be recorded for

an accepted End User. This makes it possible, for example, to collect accounting

information.

R3 is subdivided into two sub-requirements:

R3.A suggests to use licenses to authorize a legitimate customer to consume the

content media. The license should describe the legal rights, constraints and include

the encryption key. The license should resist being modified or forwarded to unau-

thorized users [Coy03]. Knowing that licenses are susceptible to an analyzing attack,

which may allow the attacker to discover and extract encryption keys hidden in the

73



license, we need a mechanism that prevents the customer from tampering with these

licenses.

R3.B takes care of another issue, if we adopt the LP role to manage the distribu-

tion of the license, we need to deploy it in a way such that the license sender does

not need to be aware of the existence of the end user (F1) see Chapter 3, which

contradicts the accounting issue. We need a cost effective mechanism to use licenses

as an authorization and accounting mechanism.

R4 is to verify the integrity of the digital assets, security services and the cus-

tomers’ device. Digital assets comprises the content media, policy, licence and DRM

mediator.

R5 ensures the non-repudiation of requesting a service. A content owner needs

its customers to commit to non-repudiation of the request for a service. In the same

sense, customers need content owners to commit to non-repudiation of the sending

service or any damages could harm customers by using any DRM mediator. This

requires that content owners or distributors should not alter the customer’s security

services.

R6 Protect the privacy of end users. We believe that this requirement has not

fully been achieved in the existing DRM models. The content owner needs to trust

customers before authorizing them (giving them the license) to use his/her products.

In the DRM system, the trust model is based on direct security association between

CP, LP and end user. Therefore, there is one advisor who mandates customers to

follow her/his protocol. It is the responsibility of the end user to know who he is

dealing with. Multicast deals with more complicated requirements due to the simul-

taneous multiple users’ connection and dynamic membership support. Users may not

be aware of the real senders’ authority and then they should not be responsible for

checking the senders’ honesty. Entrusted role could break the whole system. There-

fore, trust model has to be changed in a way that follows collaborative protocols

74



between roles and does not reduce the system scalability.

End users need to show their private information to LP as an evidence of their

ability to pay for a specific service. Users need be sure that their private information

will not be used in a wrong way; this problem is not solved in most DRM systems.

Worse than that, users’ privacy is under attack, but there is no legal recourse against

the attackers [FH06, HB05b]. The largest challenge here is that using the DRM

mediator makes saving user’s privacy harder, because it may hide a rootkit [FH06,

HB05a].

R7 Ensure the availability of the service. Here we are talking about preventing

DOS attack and maintaining the consistency of CP, LP, digital assets, policies, and

licenses. In the DRM system, the services become more available by introducing more

servers or caches near to users, as well as by using peer-to-peer distribution, and this

will increase the network load, especially when the number of users is inflating. The

nature of multicast distibution reduces the extensive interactions between the senders’

servers and receivers’ machines (F3) see Chapter 3, which improves the scalability and

reduces the number of servers needed to provide such a facility. Multicast introduces

two challenges on this issue: a) the need for maintaining and accounting for end

users’ behavior requires the interaction between servers and clients; b) the increasing

number of users will increase the probability of DOS attack. This issue was discussed

by Islam and Atwood [IA06].

R8 introduces three lines of defense to mitigate the fact of compromising the

service. R8.A is the second line of defense. If the attacker unveils the secrets used to

hide digital assets, s/he can affect all the roles (content owners, content distributors

and end users), s/he can play the sender role or harm end users and send viruses

as well as redistribute content media and throw away content owners’ money. This

tragedy was limited in DRM solution because of the individualization technique.

We need to deploy this technique for each individual DRM mediator and license on

75



condition that this individualization should not hurt the scalability requirement.

R8.B is the third line of defense. Content owners spent a long time generating

content media and if anybody can download them from the Internet for free, then

no artist can make any benefit. Monitoring the Darknet [PBW02] for illegal content

media distribution and tracing the source of that distribution is the third line of

defense and a way to prevent such bad actions. In DRM systems, this could be done

by fingerprinting each individual copy. Multicast makes it harder to insert a different

mark for each copy, because all customers should receive the same copy. This is one

of the big challenging issues.

R8.C is the fourth line of defense, which requires that the system roll back to

the previous secure state once it has been compromised. Multicast as a distribution

mechanism may provide a promising solution to achieve this requirement.

The previous requirements are needed in the new system, some of them are easy,

and others are not.

5.7 Summary

In this chapter, we have built the structure that illuminates the starting point to

get to the fundamental solution for scalable and persistent protection for the deliv-

ered content media. We presented eleven basic requirements to achieve basic DRM

functionalities. These requirements are organized into five categories: access con-

trol, security, privacy, robustness and marketing. Some of the eleven requirements

are contradicting others, which leads to finding a trade-off when building a DRM

system. We found that there are three basic requirements out of eleven that repre-

sent the basic rule to achieve persistent protection. These three have a total of eight

sub-requirements, of which renewability and individualization are the most important

76



pieces. We have in mind to use multicast distribution mechanism to achieve scalabil-

ity for delivered content media. In the next chapter, we will be looking for proposals

that claim to achieve persistent protection, and use protection renewability as one

piece.

77



Chapter 6

Grimen Model

Grimen et al. [GMM06b] proposed a software solution based on periodic renewal

of the protection scheme that is used to control the access to content media. The

software-based solution they proposed appeared to be a promising solution, but we

have found two attacks against the protocol that they use to control the access to

protected media. We will discuss their solution in Section 6.1, then we will go through

the Grimen distribution protocol and introduce a formal version of the protocol in

Section 6.2, after that we will show attacks on Grimen model and give a formal

model of the attack in Section 6.4. In Section 6.5, we give a solution to the attack,

and demonstrate its security.

This chapter presents an approach to DRM that exhibits superior persistence,

which is a necessary prerequisite to meeting our second goal.

78



Figure 16: Dividing the media content media [GMM06b]

6.1 Grimen Distribution Architecture

Grimen et al. [GMM06b] proposed an architecture for software-based secure content

media distribution that consists of four players: the content provider (CP), the stream

server, which we are going to call the content server (CS), the viewer software (VS)

and the security server (SS). The CP encodes the content media, and divides it into

many pieces. It then produces as many symmetric keys as there are media pieces, in

order to protect each piece with one unique symmetric key. This process results in

what they called an encrypted encoded media document (EEMD) and makes it ready

for distribution. See Figure 16. The authors called the time period for each piece a

trust interval.

The CS is in charge of distributing the EEMD piece by piece. The VS player is

running within the user environment. It is responsible for decrypting and decoding

the EEMD and then rendering the content media and making it available for viewing.

The SS is responsible for generating and delivering a piece of code called a Mobile

Guard (MG), which is able to execute in the user environment. The MG needs to be

plugged into the VS. The MG needs to be sent to the VS in order to configure the

VS to maintain security states of the media document. The MG is responsible for

checking the integrity of the VS components, including the MG itself, see Section 6.2,

and then after successful integrity checking, the SS is going to deliver a corresponding

79



media key for a current delivered piece of the EEMD. The authors claim that the

MG is hard to compromise; if successful software modifications happens, it will be

detected and the system will have break once break everywhere resistance [GMM06b],

see Section 6.2.

As the encoded media document is being split into multiple pieces, each piece is

encrypted with a different key. The SS is going to provide the decryption key for each

piece only at the start of its particular trust interval, upon request and after checking

the integrity of VS; the VS needs to prove its good intention before delivery of the new

decryption key. This good intention is achieved when the VS receives and executes a

new generated MG, which means that for every decryption key there is a new MG.

Each MG is distinct from the others, and each one is responsible for reconfiguring

and securing the VS. The MG needs to be obfuscated to prevent the software hacker

from predicting the internal logic of the MG within short period of time [GMM06b].

The MG is replaced for each trust interval, in order to prevent the software attacker

from predicting the VS configuration when he has the time to gain the knowledge.

Each instance of the MG is responsible for protecting the access control mechanism

used by the VS for the duration of the trust interval. Each MG instance is going to

check the integrity of the VS every new trust interval. The VS is going to request the

corresponding decryption key at the end of each trust interval. The SS is responsible

for receiving the checksum for the VS for each trust interval. Then, upon verifying

the correctness of each checksum, it is going to send the next decryption key that

corresponds to the new media piece. Figure 17 shows the Grimen et al. proposed

architecture.

6.2 Grimen Distribution Protocol

The details of the process of receiving the decryption key for each trust interval (as

proposed by Grimen et al. [GMM06b]) are as follows:

80



Figure 17: Grimen et al. proposed system architecture [GMM06b]

• The VS generates a random unpredictable transport key.

• The MG executes and determines the integrity checksum of the VS along with

the MG itself.

• The integrity checksum is determined by computing a one-way hash function

across the VS code, the MG code, MG’s public key and the generated transport

key. See Figure 18.

• The VS encrypts the transport key with the SS public key.

• The VS sends the encrypted transport key to the SS along with the integrity

checksum.

• The SS verifies the checksum. Since the SS can extract the transport key, and

since it knows the VS instructions, the MG instructions, MG’s public key and

the generated transport key, the SS can then generate the checksum. The SS

verifies the calculated checksum against the received checksum. If the verifica-

tion is successful, the SS encrypts the corresponding trust interval’s media key

with the transport key and sends it to the VS.

• The VS now can decrypt the corresponding piece of the EEMD. See Figure 19.

In the next section, we will introduce a protocol model checker called AVISPA.

Then, we will validate the key exchange protocol using the AVISPA tool.

81



Figure 18: Grimen et al. hash function calculation [GMM06b]

Figure 19: Grimen et al. key exchange protocol [GMM06b]

6.3 Automated Validation of Internet Security Pro-

tocols and Applications

The Automated Validation of Internet Security Protocols and Applications (AVISPA)

is a model checker verification tool and is also considered a descriptive language that

is useful for validating cryptographic protocols. A group of researchers has evaluated

85% of the IETF protocols using the AVISPA tools; this indicates that AVISPA

is powerful. The AVISPA architecture is composed of four verification utilities or

back-ends [Tea06a, HS06], see Figure 20. Each back-end uses different verification

techniques:

• OFMC stands for On-the-Fly Model-Checker.

• Cl-AtSe stands for CL-based Attack Searcher.

• SATMC stands for SAT-based Model Checker.

82



Figure 20: HLPSL architecture [Tea06a]

• TA4SP stands for Tree Automata based Protocol Analyzer.

In real life, interacting users that use the public network need to authenticate each

other before securely exchanging data. Using a public network, this authentication is

achieved by using a cryptographic protocol. It is important to verify cryptographic

protocols to validate their security properties.

In AVISPA, security protocols are modeled with the high-level protocol specifica-

tion language (HLPSL), which is considered a Meta Language that can be translated

into intermediate format (IF). The IF can be used by the four utilities, which are able

to understand it.

HLPSL is a role-based formal language; the state of the interacting roles in HLPSL

is constructed using the idea of finite state machine (FSM); thus this language is

considered an expressive language. In AVISPA model, we can represent interact-

ing entities as roles, each has a state and possible transition(s). The transition is

83



represented by exchanged messages between participants. HLPSL language has the

capability to model security messages and also to show if the security properties are

maintained. AVISPA helps to catch vulnerabilities in the security protocols. There

are hierarchical roles in HLPSL [Tea06b]:

• Basic roles: they represent interacting parties.

• Session role: it contains composition roles, which sketch how basic roles com-

municate with each other.

• Environment role: it works as a main coordinator, which declares constant

variables, intruder knowledge and sessions call.

Goal section is one component of the HLPSL program. In that section, you can assert

one of three security checks:

• Message secrecy: e.g., secret(T,id,A,B), which asserts that the value of token

T, that has protocol id labeled “id” used to identify the goal, is only shared

between role A and role B.

• Weak authenticity: e.g., the end user sends a token and claims that he is a

specific identifier; the receiver needs to look for the validity of the token not for

the validity of the sender’s identity.

• Strong authenticity: the end user sends a token and claims that he is a specific

identifier; the receiver needs to look for the validity of both the token as well as

the sender’s identity.

As seen in Figure 20, AVISPA has a tool called hlpsl2if, which converts the HLPSL

specification model into intermediate format (IF). Afterward, the user has the option

to use any of the back-ends supported by AVISPA. The selected back-end tool takes

the IF language as input and analyses the protocol modeled by HLPSL according

84



to the specified security goal and properties, and then catches vulnerabilities in the

security protocols if any [Tea06a].

AVISPA helps to catch vulnerabilities in the security protocols. The security goals

that are supported by the current version of HLPSL are authentication and secrecy

goals [Tea].

Let us say that Alice and Bob want to exchange a session key before starting a

new session [Tea06a]. Alice starts by asking a trusted third party to help her with

the exchange, assuming that the trusted third party server shares a secret key (Kas)

between him and Alice, and another secret key (Kbs) between him and Bob:

• A ->S: {Kab} Kas

Alice generates the session key Kab, encrypts it with the Kas and then sends

the encrypted message to the server who is the only one who can decrypt the

message.

• S ->B: {Kab} Kbs

The server in his turn encrypts the Kab with the Kbs and then sends it to

Bob who can decrypt the message. Then Alice and Bob can securely exchange

information using the Kab.

The previous protocol seems to be secure; the properties that both Alice and Bob are

looking for is the secrecy of the Kab. To model the previous protocol using AVISPA,

we need to initialize three roles’ structures: role Alice, role Bob and role server. Every

role structure is composed of parameters and a state data structure that represents

the role state. The role state can be changed only according to the rules that control

the state transition. These rules must be specified in the role structure. A role’s state

transitions are specified in the transition section within each role.

85



For example, the following role structure represents the trusted third party server.

there are three agents in the parameters attached to role server: A, B, and S. S

represents the trusted server. A and B represent Alice and Bob respectively, and

that can be extracted from the context of the whole program. Kas and Kbs are some

of the parameters and they represent the shared key between the server and Alice

or Bob respectively. SND and RCV are the channels that are under dy’s control.

The channel “dy” stands for Dolev-Yao intruder model [Tea06b, DY81]; it is the only

intruder model that is supported by AVISPA. The Dolev-Yao model assumes that

the intruder can impersonate another user, intercept transmitted messages over dy

channels and may be able to alter messages depending on the knowledge s/he has or

acquires [Tea06b, DY81].

role server(A,B,S : agent,

Kas,Kbs : symmetric_key,

SND, RCV : channel (dy))

played_by S def=

local State: nat, Kab: symmetric_key

init State := 1

transition

step1. State = 1 /\ RCV({Kab}_Kas) =|>

State:= 3 /\ SND({Kab}_Kbs)

end role

The initial state is one as indicated by init State := 1. In the transition section,

the state may change from State = 1 into State = 3 only if the server receives the

key Kab encrypted by Kas. In this case, the state is changed and the server sends

the key Kab encrypted by Kbs. Roles Alice and Bob can be modeled in AVISPA as

the following:

86



role alice(A,B,S : agent,

Kas : symmetric_key,

SND, RCV : channel (dy))

played_by A def=

local State: nat, Kab: symmetric_key

init State := 0

transition

step1. State = 0 /\ RCV(start) =|>

State:= 2 /\ SND({Kab}_Kas)

end role

role bob(A,B,S : agent,

Kbs : symmetric_key,

SND, RCV : channel (dy))

played_by B def=

local State: nat, Kab: symmetric_key

init State := 4

transition

step1. State = 4 /\ RCV(start) =|>

State:= 6 /\ SND({Kab}_Kas)

end role

The signal “start” in the RCV(start) in role Alice is a special signal used to start the

protocol, and then the selected backend tries all possible intruder interactions to gain

more knowledge about secrets that are used between legitimate interacting parties.

Figure 21 shows the finite state machine for Alice, Bob and the trusted server. You

can get more information about AVISPA tool from [Tea06a, Tea, HS06].

87



�����34 �����3���56�����78
�9#6:��;<��	

�����3� �����30��56:��;<��	8
�9#6:��;<�	

�����3� �����3���56:��;<�	8

=����

������

>�

Figure 21: Simple session key exchange protocol represented by FSM.

6.4 Attack on the Grimen Model

We analyzed the presented protocol and found two security attacks. The first attack

happens because there is nothing that can prevent the software attacker from forward-

ing the MG to another VS, and then the forwarded MG produces a new transport key

and sends that key to the SS. There is nothing to tell the SS that the MG is a copy,

not the original. In this case the server will respond with the media key encrypted

with the new generated transport key provided by the pirated MG. Another attack

appears because the generation of the transport key is done by the VS, because the

VS executable file is stored in the client environment. Thus the client has the chance

to statically or dynamically analyze the code and learn the memory address of the

transport key.

The main problem with this key exchange protocol comes from the fact that there

is nothing to distinguish any instances of MG. All of them have the same features and

no individualization technique has been attached to them. The secondary problem is

due to the fact that the client has enough time to statically or dynamically analyze

88



the VS. One way to prevent the previous attacks is to individualize the MG for each

client and to store the transport key in an unpredictable place. In the next Section

we will discuss how to achieve both goals.

6.4.1 Attack Analysis

We translated the Grimen et al. key exchange proposal into the following messages:

1- MG → S: [Nm.Tki.MG]Ks . hash(MG.VS.Nm.Tki)

Where MG: The identity of the mobile guard

S: The identity of the security server

Nm: nonce generated by MG for authentication purposes

Tki: transport key for session i, a generated symmetric key randomly generated

by MG, used to transport the media key for the ith trust interval session.

Hash: one way hash function.

Ks: public key for S.

VS: is the instructions of the viewer software along with MGs instructions, see

Figure 18.

“.”: concatenation.

2- S → MG: [Nm|Ns|S]Km

Where Km: public key for MG.

3- MG → S: [Ns|MG]Ks

4- S → MG: [Mki|S]Tki

Where Mki: media key for the trust interval ith session. Figure 22 depicts the

protocol exchanged between the two roles.

89



Figure 22: Grimen et al. Key exchange protocol simulation

We translated the previous message exchanges into HLPSL, see Appendix A, and

simulated the attack. Figure 23 shows the attack simulation. i represents the intruder

entity who is trying to gain access to the media key for all sessions. An intruder is

a forwarded MG, i.e., an illegal copy of MG, who knows the public key of MG. The

first message shows that the intruder generates a transport key and a new nonce, and

encrypts them with SS’s public key. Then, the intruder generates a checksum that

is a result of applying code instructions into a hash function, these instructions are:

fixed parts of the binary code of the VS and MG, transport key and nonce. Then the

intruder sends the result to SS. SS extracts the transport key and nonce, and then

calculates the checksum code, since the VS has all inputs for the hash function, and

then compares the result with received information. Upon successful verification, the

SS creates a nonce and then sends the SS’s nonce along with MG’s nonce all encrypted

with MG’s public key. The intruder who has the MG’s public key can extract the

SS’s nonce and then encrypt it with SS’s public key and then send it to SS. The SS

believes that he is talking to a legal MG, and then encrypts the media key for ith

session with the transport key. This leads to an attack since the intruder can extract

that media key. We assume that forwarding the Mobile Guard to an illegal user is

a DRM attack, which means that the illegal user uses indirectly the MG public key

or at least the pirated MG can decrypt any messages that have been encrypted with

MG’s public key.

90



Figure 23: Attack trace simulation for Grimen, et al.’s key exchange protocol

The problem with the Grimen et al. solution is that generating a new transport

key from any MG instance does not correspond to the validity of any MG instance,

thus any message from a pirated MG is accepted. A solution to prevent the previous

attack is to give the ability for the SS to distinguish each MG instance. We can

achieve this distinction by individualizing all legal MG copies.

6.5 The Solution

Apple’s DRM solution used three keys to protect its products: master key, repository

key and client key. The product media is encrypted with the master key, the master

key is encrypted with the client key, and the encrypted master key is attached to

the protected content media. When the user asks for a license to use the product

media, the server that locally stores the client key sends the requesting user a license

that includes the client key encrypted with the repository key. The application that

presents the product media at the client side has the repository key and is attached

with a secret algorithm embedded in the presentation software. The protection mech-

anism is dependent on keeping the secret algorithm hidden from the user. Each user

has a distinct client key and repository, which simplifies the license individualization

process. The client key is randomly created by the server and saved in the server’s

database for further use. The repository key is calculated from serial number of the

91



first hard disk, BIOS version, CPU name and the ID of windows operating system,

which is assumed to be unique [GMM06a].

In the Microsoft DRM solution the product media are encrypted with a content key

and the content key is encrypted with client keys. When the user asks for a license to

use the product media, the license server sends the license that contains the encrypted

content key to the user. In the client side, there is a blackbox file that contains the

client key. Each client has an individualized blackbox, which means each instance of

a blackbox can only work for a specific machine. The protection mechanism relies

on keeping the blackbox hidden from the user access, which simplifies the license

individualization process [GMM06a].

OMA DRM standard encrypts the product media with a content encryption key

(CEK), the CEK is encrypted with a DRM agent’s public key and then inserted into

a right object (RO). This process cryptographically binds an RO into DRM agent.

Each DRM agent has a unique public and private user key; when a DRM agent asks

for a right object to use a specific product, the server, who is responsible for creating

right objects, can obtain the DRM agent’s public key, and create a unique right object

for each DA that includes the CEK key, which is encrypted with the public key of a

DA. Only the DA who has the corresponding private key can use that RO and get

the CEK [OMA08a].

From the previous solutions we have two software solutions and one hardware

solution for the end-user individualization process. The case that we are working

with needs to prevent an end user from forwarding the MG to another user. To

do this, we need to individualize each MG and make MG code not to work on any

other user. We suggest that the SS, which is responsible for generating an MG,

needs to authenticate each user and then embed a unique identity (Ticket) in the

MG. The security server is going to accept only one request for media decryption key

from each legal MG instance per trust interval. Due to the fact that the generation

92



of transport key is unpredictable to both SS and user, the ticket value along with

generated transport key will be the unique identifier for each MG per trust interval.

When the SS receives two requests for the same MG that have the same ticket and

a different transport key, the second key request will not receive any response. This

will prevent a pirated MG instance from successfully attacking the model previously

discussed. Here is the modified protocol:

1- MG → S: [msg]Km . hash(MG.VS.Nm.Tki.Ticket)

Where msg = [Nm|Tki|MG|T icket]Ks

2- S → MG: [Nm.Ns.S]Km

3- MG → S: [Ns|MG]Ks

4- S →MG: [Mki|S]Tki Where Km here is a symmetric shared key between the

MG and the SS, and the Ticket is the unique value for each generated MG.

Before SS delivers an MG to a valid VS, it embeds a symmetric key Km into

the generated MG. If a legitimate user receives a valid MG, and then forwards that

received MG to his friend, both MGs will have the same identity (ticket). Each MG

is going to run and generate a unique transport key at the client host; this makes a

checksum calculation unique since the transport key is one of the hash function inputs.

We will call the result of the hash function a checksum. When both MGs send the

first message, which contains: nonce, random generated transport key, mobile guard

identity and ticket all encrypted with the SS’s public key and then again encrypted

with shared key (Ks), the second part of the massage is the checksum. The SS can

extract the ticket value and the transport key and use them to calculate the checksum.

The SS compares the received checksum with the one it calculates, if both match then

the MG has sent correct information. The SS checks the ticket value, if it receives it

for the first time, then the MG is legal, so it will respond with the second message. If

it receives the ticket for the second time, and if the checksum is the same, then it can

93



safely reply to the second message, assuming that its previous response was lost in

the network. If the SS receives the same ticket with a different checksum, this means

that an illegal MG is sending the second request, in this case the SS will not reply to

the request. The second message contains a generated nonce from the SS side, MG’s

nonce and the SS identity all encrypted with the shared key Km. The third message

is from the MG side and contains: SS’s nonce and MG’s identity all encrypted with

SS’s public key. Now the SS and MG are mutually authenticated, the forth message

is from SS side and contains the media key for the ith session and the SS’s identity

all encrypted with the transport key for ith session.

To prevent the software hacker from discovering the transport key in the VS space

by using static or dynamic analysis, the MG needs to create a random Transport Key

and store it in a random place in the VS, or keep it in MG space, note that the

contents of MG is not predicted for a short time. The VS should implement a way

to call the transport key generation from the plug-in MG instance. This will prevent

the end user from knowing the location of the transport key for a short time.

In the solution we provide, the SS only accepts the first media key request for each

unique ticket, and rejects any subsequent request for the same ticket with different

checksum. We model the proposed solution for Grimen et al. protocol and validate

it using AVISPA tool. We show the HLSPL code in Appendix B. We ran the new

protocol on AVISPA and did not catch any attack. We therefore believe that our

protocol is correct and helps the SS to authenticate valid instances of MG.

6.6 Summary

In this chapter, we discussed Grimen, et al. model that is assumed to achieve persis-

tent protection for delivered content media. The protection used in the model is based

on software-based protection, which makes it fast to be deployed and flexible to be

94



Figure 24: Revised Grimen, et al.’s key exchange protocol simulation

distributed among an acceptable number of users. Grimen, et al. make the software

based protection valid for a short time period called a trust interval, and this software

protection is periodically changed. They assume that the protection software can-

not be defeated within the trust interval because Grimen, et al. assumed obfuscated

protection software, and they have added a validation mechanism to the protection

software. Grimen, et al. assume that they can provide an extended range of persis-

tent protection to the delivered media content. The assumption the author made was

valid because the protection method is changed once the trust interval expires. We

have verified the assumption claimed; we used AVISPA model checker to verify the

protocol used in the Grimen, et al. model and found that there were defects in the

protocol that claimed to achieve persistent protection for delivered content media.

We have fixed the protocol and then we have verified the modified model and found

that it is working with no bug. Thus, the software hacker has little opportunity to

hack the improved protection solution even if s/he is given enough time and suitable

tools. The only problem with the model is that it is based on unicast distribution,

and thus it is not scalable.

To conclude, persistent protection that is a result of using software based pro-

tection is flexible and a promising solution for CP to deploy. We found our target,

flexible persistently protected method, especially when the clients are general purpose

computers or laptops. The scalability of the model can be improved if we change the

95



underlying distribution mechanisms from unicast distribution into multicast distribu-

tion, and that is our next step.

96



Chapter 7

Scalable Persistent Protection in

Multicast Content Media Delivery

Now, we can observe that many DRM systems suffer from using the same protection

scheme for a long time, which gives the software hacker the opportunity to hack the

protection solution given enough time and suitable tools. Grimen et al. [GMM06a,

GMM06b] analyzed DRM weaknesses, and then proposed a secure software-based

DRM system that prevents the DRM attacker from penetrating the DRM system for

a short period of time. However, their solution is not scalable because changing the

key as well as the mobile guard every short period will exhaust the SS. Although care

has been taken, by Grimen et al.’s model, to replace the protection mechanism every

trust interval, the Grimen model does not prevent a user from forwarding the mobile

guard to his friends, which is a flow that allows illegal end users to illegally access

protected media. We found that error in the Grimen model and presented a corrected

version, see Chapter 6.

It is known that multicast as a distribution mechanism has the advantages of

lowering the price of distribution, speeding up the delivery process, lowering the

97



resource usage of both the source and network and improving the network bandwidth

[J. 07]. We presented Multicast Security Architecture (MSA) in Section 3.3, which

works side by side with scheduled content media distribution. The main problem

with the multicast security model is that it does not prevent a dishonest customer

from forwarding any delivered data.

The goal in this chapter is to find an implementation and an architecture that

permits changing the underlying Grimen et al. model from unicast into multicast

transmission mechanism. In our opinion, if we could marry the multicast security

model with the Grimen et al. model, in this case we could acquire the advantages of

both approaches: scalability and a long period of persistent protection.

In this chapter, we propose a scalable model that enables a periodic replacement

of the protection mechanisms, thus extending the lifetime of the protection. We

then explore how to apply the ideas in the case of multicast data distribution. After

detailing the protocols between the major parts of this model, we show the results of

a formal validation of the security of these exchanges.

This material provides the scalability that is a necessary prerequisite to meeting

our second goal.

7.1 Improved MSA Model

To increase the scalability of current DRM systems, we need the network service

provider to contribute to the solution. The NSP is able to authenticate the individ-

ual customers, deliver the service to their customers, and account for their resource

usage [IA06], as well as monitor end user’s behavior. In our opinion, adding per-

sistent protection properties to the multicast content media distribution system is

the way to close the security holes generated by dishonest customers. Satisfying the

98



scalability requirement, which leads to the use of multicast distribution, is hard to

achieve without the help of the network service provider. Buyens et al. [BMJ07]

stated that building and implementing DRM must consider the following fuctional

requirements in the DRM development phase: interoperability, modifiability, extend-

ability, usability, testability, availability, security, scalability and performance. They

recognized key DRM blocks for licensing, access, content media handling, abuser

identification, content media importing, consumer tracking, and payment. Michiels,

et al. [MVJDD05] determined DRM services from different view points: consumer,

producer and publisher. They proposed a layered architecture that is composed of

multiple DRM services. As hinted by Buyens et al. and Michiels, et al. we strongly

believe that we need the following services:

1. Content media protection (Encryption service): due to using the public network

for delivering content media, the most feasible way to control the content media

access is to encrypt the content media.

2. Authorization service: A service to authorize customers who are entitled to

see the content media by delivering them the capabilities to access protected

content media such as the encryption key.

3. Trust service: A service that provides the trust relations that need to be estab-

lished between the sender and the distributor, the distributor and the receiver,

as well as the receiver and the received objects. Usually, the trust service is

established based on content media, sender and receiver authentication.

4. Usage accounting: A service to account for the content media usage.

5. Policy statement: A service that allows the content owner to specify terms and

conditions, usage rights and the payment fees, as well as any related issue for

delivery agreements. There is a need for a rights expression language (REL) to

express rights and policies.

99



6. Assets unforgeable proof: A service that provides a proof that the assets pro-

duction is generated by an authorized entity. It is achieved by signing integrity

hash-value. The signature is done by CP, so it gives a proof for originality.

7. Secure storage: A service used to hide sensitive information. Hidden informa-

tion should not be revealed unless an authorized entity allowed it.

8. Rights enforcing: an authorized protection agent that is authenticated by con-

tent owner and that has the responsibility of decrypting the content media.

That agent has the decryption key and is responsible for hiding this key away

from the customer as well as enforcing terms and conditions.

9. Integrity insertion: A Service that enables the content media integrity verifica-

tion.

10. Integrity checker: A service that works as a detective and that has the respon-

sibility for checking the validity of the received product.

11. User privacy assurance: a service that guarantees that the user’s private infor-

mation is not in the hands of a privacy attacker.

12. Individualization service: this service enables the distributor of the hardware-

based or software-based protection to distinguish between diffrent instances

of them, and prevent the attacker from extending his penetration into wider

environments.

13. Watermark and fingerprint injection service: this service injects a unique ID

that represents either the owner of content media or the paying customer, so

that it enables the traceback to the source of illegal distribution.

14. Web spider: search for compromised content media across the Internet and

discover the illegality of distributing stolen content media.

100



Table 4: DRM Basic Requirements VS DRM Services
DRM requirement DRM services

R1.A Content media protection
R1.B Trust service

Secure storage
Right enforcing

R2 Authorization service
Usage accounting

R3.A Policy statement
R3.B Content meida protection
R3.C Right enforcing
R4 Integrity insertion

Integrity checker
R5 Assets unforgeable proof
R6 User privacy assurance
R7 Multicast distribution
R8.A Individualization service
R8.B Watermark/fingerprint injection

Web spider
R8.C Monitor

Protection scheme renewal
R9 Secure storage
R10 Multicast distribution
R11 Not yet determined

15. Protection scheme renewal: this service determines the exact period needed to

replace the protection scheme, revokes the old protection scheme, and performs

the replacing action.

16. Monitor: this service tracks the behavior of the end user, it periodically sends

feedback to the server monitor, if certain condition(s) are met.

Table 4 maps previous services to the eleven requirements we collected in Chapter 5.

In the generic DRM model the network service provider has no role in the DRM

plane. It works as a transporter, and thus the relationship between the CP and DA is

one-to-one. In the world of multicast content media distribution the content provider

cannot directly identify, authenticate, authorize, account and track customers, as a

101



result of moving the provider-receiver relationship from one-to-one into one-to-many

or many-to-many. The provider is only responsible for the production related issues.

The network service provider is the best place for doing the customer identification,

authorization, accounting and tracking [J. 07, IA06]. Based on this observation, we

suggest allocating the previous 16 services into the following roles:

1. The content provider (CP): is the entity that is responsible for providing the

content media to the end users, it could be responsible for:

(a) Content media protection.

(b) Trust service.

(c) Integrity insertion.

(d) Policy statement.

2. The Merchant (MR): a role that is responsible for providing a valid token to a

valid requester, it is responsible for enabling the following services:

(a) Assets unforgeable proof.

(b) Rights enforcing.

(c) Protection scheme renewal.

3. The content media distributor: in the context of multicast service, the major

distributor is the network service provider, this role could be responsible for:

(a) Usage accounting.

(b) Individualization service.

(c) Watermark and fingerprint injection service.

(d) Web spider.

(e) Monitor.

4. The mobile protection (MP) agent: a role that is responsible for:

102



(a) Integrity insertion.

(b) Content media protection.

(c) Trust service.

(d) Rights enforcing.

5. The mobile guard (MG) agent: a role that is responsible for:

(a) Integrity checking.

(b) Authorization service

(c) Providing a secure storage.

(d) Sender authentication.

(e) Rights enforcing.

We have not allocated a place for user privacy assurance. However, we believe

that this service will not affect the DRM workflow, so we will leave it for future study.

7.2 Persistent Protection in Multicast Content Me-

dia Delivery Model

In this section we suggest a persistent protection model for content media using

a multicast distribution model. We strongly believe that merging ideas that exist

within the Atwood and Grimen models will result in a persistent protection and

scalable content media distribution model, so we build our solution based on MSA.

If the majority of the end users are using general PCs, it is not feasible to use tam-

per proof hardware to hide the protection secrets. A better solution is to use tamper

resistant software that provides a flexible and pluggable solution. MSA protects the

103



content media in the network layer, but does not protect it in the application layer.

We suggest adding new functionalities to MR and NSP, which inject a DRM agent to

an individual EU. We will use the same name as in the Grimen model for this agent,

a mobile guard plug-in (MG). We will ignore the FI role at this stage. The MG (tam-

per resistant object) helps to achieve application protection [GMM06a, GMM06b],

it embeds the decryption algorithm and decryption keys that are needed to decrypt

the stream media as well as other mechanisms to enable monitoring the EU. We will

add a mobile protection (MP) role, which embeds mechanisms for protecting content

media. The CP and the end user have to have no access to these secrets in order to

reach a global solution.

The MR is responsible for generating the MG, MG authorizes the EU to legally use

the content media in a controlled manner. The MG has embeded in it the terms and

conditions, enforcing and decryption mechanisms, and other mechanisms for checking

and validating the EU environment.

The NSP is the entity that can easily track and account for the EU’s activity, so

the generated MG should be delivered to the NSP who in turn is going to securely

deliver it to each individual EU. Because the NSP does not trust the EU, employing

the mobile guard is a way to load a method on the customer’s device. A Java applet

is a self-contained program that loads mobile code in a remote machine, and executes

that code under a standard virtual machine. Java has come to be trusted by the end

user community, so this represents a low-risk approach for implementing the ideas.

We assume that a contract is established between the following entities:

• The NSP and the MR.

• The MR and the CP.

We assume that the following assumptions are valid:

104



1. The CP trusts the MR.

2. The NSP trusts the MR.

3. The CP is specialized for generating and encoding the content media.

4. The MR is specialized in selling content media and generating the encryption and

decryption mobile code for content media: mobile protection (MP) and mobile

guard (MG) [GMM06b].

5. The MP and MG are executable plug-in files.

6. The attacker does not have advance knowledge about the forming, content and

production of the MG and MP.

7. The network service provider and the end user share a preshared-key, and will call

this key an access-key.

8. The merchant and the end user share another access-key.

9. The attacker does not have advance knowledge about any access-keys shared be-

tween the NSP and the EU, and the MR and EU.

There will be a mechanism that establishes the access-key between the NSP and

EU, or the EU may receive this access key by telephone, email, or by buying an

long-distance calling card, and that card contains the access-key.

Similarly, there exists another access-key between the MR and the end user, and

this could be established by creating an account at the merchant side, and then

the merchant uses the account name and the user password to generate the access-

key. The end user is able to generate the same access-key if s/he follows the same

procedure.

We relaxed the persistent protection definition, and in our context, it is defined as

a protection with specified permission and constraint; that protection is applied to a

105



specific media and it is valid for a specified time and place. In order to implement this

definition, we need to concentrate on protecting the protection software from reverse

engineering and related attacks, in other words, disallow illegal use of protection

software. The following list summarizes the threat model:

• Code modification attack.

• Forwarding and illegal use of protection software.

• Reverse engineering attack.

Previous items are applicable to protection software.

• Message replay attack.

• Man-in-the-middle attack.

• Message integrity attacks.

The last three points are usually applicable to the security protocols

In the following subsections, we will show the new multicast model for persistent

protection distribution. The new model is an improvement to both Atwood (MSA)

and Grimen et al.’s model [J. 07, GMM06a, BA10].

7.2.1 The Content Provider (CP)

The CP is considered an artistic director to the art production, s/he is responsible

for generating and encoding the content media using the right technology tools, then

dividing each content medium into multiple pieces, where each piece has the same

duration. The CP uses specific protection executable software on each piece, this

protection software is provided by the MR. The resulting protected pieces are called

the encrypted and encoded streamed content media document (EEMD) [GMM06b,

GMM06c].

106



The CP also responsible for preparing the meta data that will guide the EU where

to get the content media. The CP provides terms and conditions to the merchant

that he wants to be applied on the content media. The MR is going to record them

in its database, and hard code them in the generated MG.

7.2.2 The Content Server (CS)

The EEMD piece is a secure content to be distributed only at specific time. The CS

is responsible for starting the multicasting of each piece of the EEMD stream at the

scheduled time.

7.2.3 The Merchant (MR)

The Merchant is responsible for managing, advertising and selling the content media.

S/He works as an interface of the CP to the whole world. When the CP generates the

content media, s/he contacts the merchant and sends all required information about

the content media to be registered. The MR generates the suitable software codes

called mobile protections (MP), which are needed to protect and package the content

media. The MR generates the enforcing mechanisms for the terms and conditions and

embeds them into MG. The MR may embed a mechanism that footprints individual

instances of the EEMD. The MR receives requests from end users who are interested

in watching one of the goods, and provides them with tickets to use later to show their

eligibility for using the content media. The MR provides the NSP with all lists of

MGs that are capable to decrypt and enforce access right conditions on the requested

EEMD for each individual trust interval.

107



7.2.4 The Mobile Security Codes (MP and MG)

The MR generates a list of mobile guards (MG), and mobile protection plug-in soft-

ware (MP), for each content medium. The MP embeds mechanisms to encrypt a

sequence of sub-content media with different encryption keys and mechanisms, while

MG embeds the capabilities to decrypt the sequence of sub-content media. The MG

also has the capabilities to enforce the terms and conditions stated by the CP, as well

as, the MG should able to validate and authenticate the end user machine used to

access content media.

7.2.5 The Network Service Provider (NSP)

Since we are suggesting to use multicast as a distribution mechanism to convey the

content media from content server into many end users, the only feasible way for

content media usage accounting, in our opinion, is to asign this task to the NSP. The

reason behind our belief is when we use multicast as a distribution mechanism, and

for scalability requirement, the CP and the MR need not to be aware of the existence

of the end users, only NSP can be aware of end users without degrading the scalability

requirement [J. 07].

The NSP receives a ticket from the EU as proof for his/her eligibility to access

the content media. The ticket is valid for a certain time period and is unique for each

request. The NSP is responsible for validating any request from the end user and

contacting the MR to request for getting the suitable MG for the requested media

at specific time interval. Once the NSP gets the suitable list of MG, s/he clones and

individualizes each of them by inserting the user ticket in a predetermined place in

each cloned MG, this place cannot be predicted by the individual EU for short period

of time. This individualization helps to trace back the source of illegal distribution

in order to mark him/her “Wanted”.

108



7.2.6 The End User (EU)

The end users are users of machines such as laptops, personal computers, cell phones

and so on. The EU searches through the web for some content media to watch, then

contacts the MR who is responsible for issuing him a ticket. The EU buys a ticket

and then provides that ticket to the NSP, who in turn will connect him to watch

the media. The EU needs to install a standard software called viewer software (VS)

developed by the standard third party, Section 7.2.7 gives more details of the viewer

software.

7.2.7 Viewer Software

The following description of the VS ideas comes from [GMM06b, GMM06c].

Every client machine needs to use standard viewer software (VS), which been

developed by the MR. The VS is developed in such a way as to accept an instance of

MG. The MG hides a decryption key for a specific piece of the EEMD, and then the

VS renders the result on the screen of the client machine. The VS mainly contains

two parts: fixed and dynamic parts. The fixed part consists of the text code and

some parts of the data section that needs to be unchanged. The dynamic part is

the plug-in software, which is dynamically attached to the memory space of the VS,

which is MG. Applying the fixed part of the viewer software into a one way hash

function leads to a resulting hash-value that is known by all parties.

The plug-in software also has a fixed part and dynamic part. The fixed part

consists of the instructions and constant static data. Apply these fixed parts to one

way hash function results in a hash-value which should be known to the generator of

the plug-in software. We will use these facts to check the validity of VS and plug-in

software attached to the VS.

109



The plug-in software is responsible for carrying out the decryption mechanism and

the decryption key in order to decrypt a specific EEMD piece. The plug-in software

also provides validity checking of the VS along with the plug-in software itself. We

will call the plug-in software mobile guard (MG) as been called by Grimen because

it checks the destination viewer and ensures its validity and security. In the next

section, we will present the protocol between NSP, MR and EU of the new multicast

content media distribution that is scalable and provides persistent protection to the

distributed content media.

7.3 The New Model’s Workflow

We suggest the following workflow for the new system:

1- The MR generates two classes of executable plug-ins: mobile protection (MP)

and mobile guard (MG). The mobile protection is mainly responsible for en-

crypting and packaging a content media piece; on the other side, the mobile

guard is mainly responsible for unpackaging and decrypting a piece of content

media. Both classes are also responsible for checking the integrity of the host

that one plug-in instance is going to be hosted in.

2- There will be a series of mobile guards MGi and a mobile protection MPi. MGi

and MPi symbols represent MG and MP instances. The MGi will be only valid

for a certain period of time, we will call this period “trust interval” as has been

advised by Grimen [GMM06b, GMM06c]. Every trust interval should be served

by only one instance of MGi. Suppose that the trust interval is going to be one

hour, then there will be 24 MGi to cover one day.

3- The CP generates and encodes the content media, then divides it into multiple

pieces of a certain time slot.

110



4- The CP contacts the MR to register the media information and specifications

such as the time schedule to disseminate the content media, number of pieces

of the protected media, the usage policy, terms and conditions for using the

content media, stars, genre and the price of the content media.

5- The MR generates a mobile protection that is responsible for generating the

EEMD. It then sends the sequence of MPi to the CP. Also, the MR generates

a corresponding list of plug-in MGi for unpackaging the content media and

reflecting the terms and conditions that the CP wants to enforce at the client

side.

6- The CP generates EEMD. The CP may have the option to select different prop-

erties for the encryption code, such as, which cryptography and authentication

algorithm and key length. The CP sends EEMD to the CS, and gives him the

time to start distributing the content media.

7- The MR advertises the content media and provides the time schedule, usage

policies and corresponding meta data for the content media. S/He is responsible

for selling the tickets for the content media.

8- The EU contacts the MR and gets the needed information about the content

media.

9- The end user creates an account at the MR site, and provides some necessary

information such as name, address, NSP identity and so on. The created account

has account login and password. That password may used as an input to hash

function to generate a unique secret key.

10- The EU provides the needed funds to watch a specific content media. The MR

creates a ticket and sends it the end user. The client gets a ticket.

11- The ticket is used as a proof of successful payment. The ticket composed of

ticket ID, a nonce generated by the MR, a nonce generated by the VS, the MR

ID, the NSP ID, the EEMD ID and client ID.

111



The idea behind using viewer software is to prevent the user from directly

accessing the content media, or accessing any capabilities that allow him/her to

access the content media. The viewer software works as an interface between

the CP and EU. In one side it allows the EU to indirectly use the content

media, and on the other side, it enforces the terms and conditions that need

to be applied on the content media. Since the VS is software that lives in the

user’s environment, the EU may have full control on the machine he is using,

which may lead him to hack the VS. To prevent EU from hacking the VS, we

need a periodic check of the VS. If there is any attack on the VS, then there

should be a mechanism to stop sending the media flow to the compromised VS.

Since the NSP is the Internet interface to all EU, we will add VS validity

checking function to his/her responsibilities. It is more feasible for him to do

that than for other entity. One way to check VS validity, is to send checking

software to the EU side, we call it “mobile guard”. That mobile guard has the

properties that have been mentioned in Section 7.2.7, which allows the periodic

configuring of the VS by periodic renewing of the mobile guard itself. If the

validity check is not satisfied, the NSP stops sending the media flow and any

subsequent MG to the suspicious VS. If the validity checking is passed, a specific

signal is sent to the VS to start doing the decryption and encoding process to

the media piece that is under flow.

Next we will provide the authentication protocol that applies between the CP,

MR and VS before the VS receives the MG plug-in.

112



7.4 Authentication Protocols among MR, NSP and

EU

In this section we will start with the authentication protocols between MR, NSP and

VS before the VS receives a new code piece allowing him to decrypt and encode the

content media peice. Here is the protocol control flow:

1- The end user creates an account on the MR site, and provides some necessary

information such as name, address, NSP identity and so on. The created account

has account login and password. The account, password and nonces generated

by the two parties (EU & MR) are be used as an input to a hash function to

generate a unique secret key.

2- The EU contacts the MR via the viewer software and views posted information

about the content media, then sends a request to buy a ticket for the content

media s/he is interested in. The EU generates a nonce and provides the needed

funds to watch a specific content media.

VS → MR: VS.NSP.MR.RequestKvm

where:

“A → B: Message”: means A sends B a message.

. means text concatenation.

Request = [Nvs.V S.NSP.MR.Minfo.Money]KMR

VS: End user’s viewer software’s identity.

MR: The merchant’s identity.

Nvs: is a nonce generated by VS.

NSP: Network service provider identity.

Minfo: media information.

KMR: is the public key of the MR.

Kvm: is the symmetric key (access-key) shared between VS and MR.

113



Figure 25: The content of the ticket.

Money: is a token that represents sufficient money for the requested media.

3- The MR generates a nonce and a ticket and sends them to the end user. The

client gets a ticket.

MR → VS: VS.NSP.MR.ResponseKvm

where:

Response: [V S.NSP.MR.K.Nvs.Nmr]Kvm.Ticket.

Nmr: is a nonce generated by MR.

K: is Symmetric key generated by MR.

Ticket: [K.Nvs.Nmr.T icketID.Minfo.MR.NSP.V S]KNSP .

KNSP: is the public key for the NSP.

TicketID: is the identity of the ticket.

MR: is the merchant identity.

4- The ticket is used as a proof of successful payment. The ticket is composed of

Ticket ID, nonce generated by VS, nonce generated by MR, MR ID, NSP ID,

VS ID and a symmetric key generated by the MR, see Figure 25.

Notice that the client cannot open the ticket, since it is encrypted by NSP’s

public key. Only the NSP can open the ticket and extract its content media.

5- For validating the ticket, there will be policy statements that have been nego-

tiated between the NSP and the MR for that purpose. For example, one policy

statement may say “refer every ticket to the MR for verification purposes”,

while another may say, “if the ticket starts with a specific properties and has

been signed by the MR, accept it and then send the money later”. This will give

114



flexibility and decouple the interaction between the NSP and the MR. Either

the NSP is going to get information about the ticket’s validity or is going to get

a template so that he can match or he is going to get a policy statement on how

validation of tickets is taking place. Also the NSP has the policy that defines

what has to be done on every step of an interaction between him and any other

entity. We will not give any detail on any financial and marketing interactions,

which is not the concern of our DRM solution.

6- Here is an example of how the NSP validates the ticket. The VS sends the NSP

the ticket:

VS → NSP: VS.NSP.MR.MediaAccessRequestKvn

where:

MediaAccessRequest: Ticket.[Nvs.Nmr]K

Kvn: is a shared key (access-key) between NSP and VS. Since the EU is cus-

tomer of the NSP, there will be a secure tunnel established between them.

7- The NSP send the following request to the MR.

NSP → MR: TicketID.ChkTkReqK

where:

ChkTkReq: [Nvs.Nmr.NSP.MR.V S.T icketID]KMR

KMR: is the public key of the MR.

8- After the ticket has been verified, the MR sends all MGs that are responsible

for decrypting and enforcing conditions on each piece of the EEMD. Sometimes,

the MR needs to be updated with the number of customers connected to the

NSP for the purpose of accounting.

MR → NSP: TicketID.ChkResK

where:

ChkRes: [Nvs.Nmr.NSP.MR.V S.T icketID.MG]KNSP

MG = PCi.MKi

115



The Mobile Guard includes the decryption keys, public and private keys, en-

forcement mechanisms and integrity checking mechanisms.

PCi: is the protection code for all media pieces that are distributed at trust

interval i.

MKi: is the media key for all media pieces that are distributed by the CS at

trust interval i.

9- The NSP individualizes the MG by injecting the VS identity and the ticket,

which is unique for any individual client. Then s/he provides the VS with

the MG that will help in decrypting the content media flow when CS starts

distributing it.

NSP → VS: VS.NSP.MR.[Nmr.Nvs.MGi]Kvn

where:

MGi: [PC.Nmr.Nvs.V S.MKi]K

MGI is an individualized piece of code for the specific VS. Note that the injected

MKi within the MG may not be the true media key, and the correct MKi will

be sent by the NSP only after the VS and MG verification is completed.

10- The VS calls the MG and allows him to run, then the MG will compute the

hash-value of the MG along with the VS, and then send the computed value to

the NSP.

VS → NSP: VS.NSP.MR.[Nmr.Nvs.HashV alue]K

where:

HashValue: the hash-value of result in applying the VS and MG to a specific

one-way secure hash-function.

11- Since the NSP has all information to compute the hash-value, s/he is able to

compare the received hash-value and validate the end user’s integrity, then s/he

send the right media key to the end user.

NSP → VS: VS.NSP.MR.[V S.NSP.Nvs.Nmr.MK]Kvn

116



Figure 26: Protocol negotiated between VS, NSP and MR

Figure 26 illustrates the protocol simulation between the VS, the NSP and the MR

in order to deliver the MG instance to each client.

7.5 Discussion on the Protocol

The end user interacts with the NSP and MR via the VS. The VS works as an

intermediate channel between the EU and the NSP and MR. The end user has the

ability to extract the working logic of the VS, so it is susceptible to abuse by end-users

due to their static framework.

When the VS receives an individualized instance of the MG, then the resulting VS

itself is individualized. If the end user tries to forward the individualized VS or MG

to others, this forwarding needs to be invalidated. It is required that the VS execute

the received MG, which computes the hash-value of the individualized VS and sends

the result to the NSP. The hash-value is a result of secure one-way hash-function;

the input of the hash-function is the static part of the VS plus the static part of the

received MG, end user ticket, shared-key and MG’s public and private keys. The

117



NSP knows in advance the content and the values of all previous fields, but the end

user must not know. Once the NSP receives the correct hash-value, then s/he will

respond by sending the sub-media-key to the requesting VS. When an MG computes

the hash-value, theoretically, the result is a unique value. When the NSP receives the

hash-value, s/he accepts the first valid request and invalidates any other request that

carries the same hash-value, assuming that any other request that carries the same

hash value is a result of forwarded VS or/and MG. This will prevent forwarding and

illegal use of protection software.

The end user cannot modify the VS without being detected by the NSP, because

any modification on the VS will lead to a wrong hash-value generated by the MG,

Knowing that the content of the MG is not predicted by the end user within the trust

interval [GMM06a, BA10], this will prevent code modification attack and reverse

engineering attack.

What we discussed so far is a software solution, which is more flexible than the

hardware one. Generating multiple instances of obscured PMG and then multicasting

them to valid customers via the NSP is an economically feasible solution, especially

when the majority of these customers are general PCs [GMM06a]. Knowing that

general PCs do not include any tamper resistant hardware, distributing such hardware

among users will not be a cost effective solution, because the end user does not

appreciate more cost, as well as the NSP or the CP or any other participants.

Since our intent is to maintain a secure environment and prevent message replay

attack, man-in-the-middle attack and message integrity attacks, it is necessary to

validate the proposed protocol. We used the AVISPA tool to validate the previous

protocol, the property we set is to validate the following:

• Authentication on nonces generated by VS and MR

• The secrecy of the tickets generated by MR

118



• The secrecy of the mobile guard generated by MR

• The secrecy of session key K that needs to be shared between VS and NSP

• The secrecy of the media-key.

The result of running the protocol validation shows that the attacker has no chance

to discover the ticket’s contents, the MG’s contents, the value of the session key K and

the value of the media-key. The attacker cannot discover the value of the VS’s nonce

and the MR’s nonce. This proves that both authentication and secrecy goals are

satisfied. We use the four back ends that are supported by AVISPA in this protocol

validation, and the result out of the four back ends shows that the protocol is safe.

What we model is the protocol that takes place between the major parties: the

NSP, the MR and the EU. Other interactions that happen between the MR and the

CP, and between the CP and the CS are one-to-one interactions, and that kind of in-

teractions is secure assuming that there a secure channel between the MR and CP and

another secure channel between the CP and CS. We believe that Challenge/Response

Authentication Protocol, version 2, to establish an authenticated one-to-one connec-

tion is enough [TH]. The interactions between the financial institution and other

roles within MSA architecture is been validated by Parham and Atwood [PA11].

Within the trust interval, if the VS wants to change to different channels that are

supported by the same merchant and allowed to be viewed using the same ticket, then

the NSP sends the new media key encrypted with the established secret key K, that

is generated by the merchant and embedded in the ticket. Another possible scenario

is that the NSP injects an asymmetric key pair in to the MG instance before sending

it the specific VS. Then the NSP encrypts any new media key using the public key.

The MG instance’s public key is not known to anyone but the NSP. This property

increases the security relation between the NSP and the VS, and then subsequently,

119



 ��
!��'	�
������
�	��$�
  ��
�����
�
 ��
"
$
?��

5�@9��@��A##9�	@5�@9��@���2�@�
����$
���$
���

5�A9��A��A##5�A9��A��A�A9�	A9��$

���A������$
���

5�A9��A9�	A#������@
#9�	@9��$
�$
���

������%#A##9�	A9��A9��A��A5�A������
%#$
���$
�

������%#A##9�	A9��A9��A��A
5�A������%#A�B�$
�9��$$
�

5�A9��A��A##9��A9�	A%�&���&
����C�&��B�
�$
�$
���

�� �	�������

��'��	� :

:��		���
D���

��'��	�

��		���
D���

��'��	�

5���&�����

��'��	�

��	��	�

:
#!�	�5����$
�

5�A9��A��A#5�A9��A9�	A9��
A��$
!�	�5����

(	���	
%��� ����

�����

Figure 27: The MG delivery protocol

the MG’s private key may used for injecting a unique finger-print into received sub-

media document, which can be used for tracking illegal media distribution.

Figure 26 shows the result of validating the proposed protocol solution, we get the

interaction result from AVISPA tool, and the tool shows no attack on the protocol

model that we proposed.

Figure 27 depicts the interactions between the VS, the MR and the NSP in order

to securely deliver the MG to the VS. In Appendix C we provide the HLPSL model

the interactions . We may harden the hacker’s task by using obfuscation technique to

hide the software protection’s logic; also we can hide the messages interaction with a

protocol and hiding the messages content. Our protection scheme has many building

blocks, and they are as follows:

• Cryptography technology.

• Code obfuscation technology.

120



• Tamper resistant object.

• Software protection renewal

• Hiding the protocol.

• Hiding the interacting tokens’ content.

• Hiding the MG’s public key.

We can allow every end user to have a domain access for the content media, in such

a way that one ticket allows one user to watch the content media via N different

machines or VS instances that are owned by the same user. We could allow that by

permitting the user to receive N individualized MG on his N machines or VS instances,

and then the NSP counts N hash-value that comes from the same user, Afterward,

the NSP sends the suitable media keys for each machine or VS instance. This idea

gives the end user the ability to watch N different channels that are supported by the

same merchant on N different machines or N different VS instance.

We will call our Model, which is a merger of MSA and Grimen model [J. 07,

GMM06a, BA10], persistent protection in multicast content media delivery (PPMCD).

This PPMCD satisfies the following:

• Content media protection: Achieved by encrypting the content media at the

place owned by CP, as well as using Persistent Protection ideas by hiding the

protection mechanisms and keys.

• Trust service: Achieved by hash-value validation by MG or NSP and enabling

the MG replacement, which helps to prevent hacking the MG.

• Usage accounting: Achieved by the original MSA architecture.

• Policy statement: Achieved by the original MSA architecture.

121



• Rights enforcing: Achieved by embedding terms and conditions inside the MG,

while the enforcement action is done by VS. The VS is checked and approved

every trust interval when a new MG is injected into the VS. The periodic re-

placement of the MG ensures periodic reassessment of the validity of the VS,

which makes the hacking of VS infeasible. We assume the hierarchy trust rela-

tionships among all interacting parties are valid.

• Sender and Receiver authentication: Achieved by the original MSA architecture.

• Integrity checker: Achieved by the original MSA architecture.

• Individualization service: Achieved by individualizing/injecting each MG in-

stance with user’s ticket.

• Watermark and fingerprint injection service: this may be achieved by embedding

fingerprint injection mechanism in the MG and embedding watermark injection

mechanism in the MP.

• Protection scheme renewal: Achieved by enabling the MG replacement every

trust interval expiration, which prevents hacking the MG and VS.

• Monitor: Achieved by enabling the NSP to monitor the VS at the EU every

trust interval.

• Authorization service: Achieved by using MG idea.

• Secure storage: Achieved by using MG idea.

• Assets unforgeable proof: Achieved by the original MSA architecture.

Neither the User privacy assurance nor the Web spider is achieved with the PPMD

model.

122



7.6 Summary

In previous chapters, we noted that current DRM solutions do not scale when the

number of users who use this model increases above a certain level. We pointed out the

basic requirements that make the protection persistent and used these requirements

to improve both Grimen et al. model and secure multicast architecture. We proposed

a scalable software-based protection that extends the period for securing the delivered

content media. The proposed solution relies on utilizing the network service provider,

and add more privileges to him/her, and make him able to do extra tasks such as

monitoring the integrity of the end user’s protection software and individualizing a

piece of the protection software; this piece is called the mobile guard. The proposed

solution based on utilizing the NSP. We showed how this solution will help to satisfy

most of the DRM requirements. We validated the security aspects of our proposal.

By merging the Gremin, et al. model and MSA, we acquire the persistent protection

property that exists in Grimen et al. model and the scalability property that exists

in the MSA model. The weakness of the new model is the extensive load added to the

NSP because of cloning MG plug-ins and individualizing each one. The production

of each MG may be different among different merchants, and this leads to more time

consumption at customer side if s/he wants to switch between channels that happen

to be managed by different merchants. This leads to uploading different MGs at the

customer side.

To conclude, we proposed a new model that is flexible and persistently protected

for delivered content media, and demonstrated that the new model is satisfying the

persistent protection requirement to a certain level.

123



Chapter 8

The Persistent Protected and

Scalable Delivery Model

In Chapter 7, we proposed a persistent protection in multicast content delivery model,

which is a merger of Grimen, et al. model and multicast security architecture. The

new model has five main roles: the content provider, the merchant, the content server,

the network service provider and the end user. The idea of the merger is to acquire the

persistent protection property that exists in Grimen et al. model and the scalability

property that exists in MSA model. The weaknes of the new model is the extensive

load added to NSP in term of cloning MG plug-ins, as well as individualizing each one.

Add to this, these cloning and individualization processes need to be repeated for each

different merchant’s customers. In this chapter, we will introduce an improved and

more scalable architecture for the persistent protection in multicast content delivery.

The new architecture is based on the persistent protection in multicast content media

delivery model discussed in Section 7.2, and it will lessen the new NSP extensive

load that resulted from cloning and individualizing MG plug-ins for each merchant’s

customers. The production of each MG may be different for each merchant, which

will lead to more time consumption at customer side if s/he wants to switch between

124



channels that happen to be managed by different merchants. This leads to uploading

different MGs at the customer side. We will look for ways to reduce the number of

MGs produced.

This material provides additional scalability in our system, which improves the

achievement of our second goal.

8.1 Another Improvement for MSA Model

In order to have strong and fast deployment for security, rights enforcement and

efficient execution of content media distribution transactions, we introduce the mobile

security provider (MSP) role to the MSA architecture, and the main services provided

by this new role are:

a Trust service.

b Rights enforcing.

c Protection scheme renewal.

The idea behind introducing mobile security provider (MSP) is to increase the sepa-

ration of concern, as well as release the MR from some responsibilities, such as rights

enforcing and protection scheme renewal, and thus provide the merchant with more

flexibilty for utilising his/her resources.

We suggest that we define a distributed MSP role for each country or territory.

That role is responsible for building a standard viewer software according to the

specifications we mentioned in Section 7.2.7.

In order to deploy our proposal, we assume the following assumptions to be valid:

125



1. The CP trusts the MR.

2. The NSP trusts the MR.

3. Both the MR and NSP trust the MSP.

4. The CP is specialized for generating and encoding the content media.

5. The MR is specialized in selling content media

6. The MSP is specialized in generating the mobile protection (MP) and mobile guard

(MG) that are responsible for encrypting and decrypting the content media.

7. The MP and MG are executable plug-in files.

The MSP is responsible for developing multimedia player software, which is com-

posed of a static part (such as a code section and some portions of a data section) and

a dynamic part (such as heap and stack sections). We assume that the static part of

the multimedia player is the stamp of the player, and we can use it to represent an

application class instance for a specific platform. The multimedia player is designed

in a way that accepts a plug-in mobile code called “mobile guard” (MG) [GMM06b],

which is a piece of executable code.

The player software works as an executable host that carries out decryption and

decoding of the EEMD. The decryption executable code and the decryption key are

embedded within the plug-in mobile guard. The main security goal of this scheme is

to protect the cryptographic code fragment and key(s) from exposure or modification.

The player software can be run on personal computers, PDAs, mobile phones and so

on.

The MSP is also responsible for developing multimedia packager software with the

same properties as the multimedia player software, namely static and dynamic parts.

Again, the static part of the multimedia packager is the stamp, which can be used as

a representative instance of the application class used within a specific platform. The

126



multimedia packager is designed in a way that accepts a plug-in mobile code called

“mobile protection” (MP), which is a piece of executable code.

The packager software functions as an executable host that carries out encryption

and encoding of the EEMD. The encryption executable code and the encryption key

are embedded inside the plug-in mobile protection. The main security purpose of this

scheme is to protect cryptographic code fragment and key(s) from being exposed or

modified. The packager software should run on high computation servers.

The MSP generates the suitable list of software mobile protection (MP), which are

needed to protect and package the content media at the CP side. S/He also generates

the enforcing mechanisms for the terms and conditions and embeds them into the

MG. The MSP may embed a mechanism that footprints individual instances of the

EEMD.

The MSP divides an entire day into epochs, periods of time, and we will use the

term “trust interval” for each epoch. The MSP generates one MP and one MG for

each epoch; thus we have a limited number of MP and MG for each day.

The MP’s and MG’s structures contain multiple encryption or decryption meth-

ods, a hash function method and multiple secret keys and public keys, some of them

are dummy and others are real. The main goal of having these elements is to confuse

the hacker, and make his job harder. Figure 28 and Figure 29 depict the MP’s and

the MG’s structures.

The MSP generates a list of MP(s), each of which is embedded with one media

key that is used to encrypt one sub-media document. Every mobile protection is

associated with one sub-media document. At the same time, the MSP generates

a list of MG(s), each of which is embedded with one media decryption key that is

used to decrypt one specific sub-media document. In other words, for each mobile

protection, there is a corresponding mobile guard.

127



B������
�D���

�����2�����
������
������

����&������

�����2�����
������
�����2�����

��������

������������

����������

�����
����������

Figure 28: Mobile protection structure

B������
�D���

�����2�����
������
������

����&������

�����2�����
������
�����2�����
��������

������������

����������

�����
B���&

����	
��&
���&�����	
	�����

Figure 29: Mobile guard structure

128



When the CP generates the content media, s/he contacts the merchant and sends

all required information about the content media to be registered. The MR contacts

the MSP and informs him about the scheduled time for the EEMD. The MSP sends

the MR only the related MP(s) that are valid for that scheduled time.

The MR receives requests from end users who are interested in watching one of

the goods, and provide them tickets to use them later to show their eligibility for

using the content media.

A sufficient amount of time before the new epoch starts, the MSP sends the NSP(s)

an un-individualised MG related to that epoch. The epoch-related MG is capable of

decrypting and enforcing access right conditions on the requested sub-EEMD for that

individual epoch or trust interval. Figure 30 and Figure 31 illustrate the process of

validating the CP’s and EU’s integrity. In this case, we will have one MG for each

epoch, and that MG embeds related security associations used to decrypt each sub-

EEMD that is supposed to flow at that time. All CP(s) who are supposed to protect

a sub-EEMD, which happens to be distributed in the same epoch, need to protect

the sub-EEMD using the corresponding MP. This will help to switch quickly between

different EEMD that are supposed to be distributed during the same time interval.

Figure 32 shows the persistent protected and scalable delivery architecture’s work

flow.

In the MSP there are many processes working for developing and implementing

MP(s) and MG(s). There, you will find a library bank that contains code fragments,

sub-routines and functions that are responsible to do MP and MG related tasks

such as: encryption and decryption algorithms, mechansism to insert cryptosystem

keys, mechanisms for enforcing terms and conditions, mechanisms for evaluating end

user’s environment-integrity, mechanisms for individualizing MG(s), mechanisms for

footprinting content media. Figure 33 shows the mobile security provider’s work flow.

129



%�	��������
��
�D���
)���

	����2��
����������A
��	��
2�������
�������	�	

�����

%�D���
����������
���
2���

���
	����
����
��

�������
���
��	�������

5�

��

E

!�	��
"�������

���&
���
��

�����

���&
�������

��2��������

%�&���&����C�
��

�������
���
��

�������
���
��	�������

���&
���
��	�������

�������
���
��	�������

5���&���
���

��	��5����

���&

��������

�� ���

F�	

������
���

����
��

9�
�������

��������

	� ���

������&
��

���
����
	���

���
�������
�����&��
	�&�

���
�����
��������

�����&��
��
���

��������
	�&�

Figure 30: Validating the CP’s integrity process

130



�����

%�D���
#���������
���
2���

���
	����
����
�B

�������
���
��	�������

5�

�B

E

!�	��
"�������

���&
���
�B

�����

���&
�
������

%�&���&����C�
�B

�������
���
�B

�������
���
��	�������

���&
���
��	�������

�������
���
��	�������

5���&���
���

��	��5����

���&

��������

�� ���

F�	

������
���

����
�B

9�
�������

��������

	� ���

������&
��

���
����
	���

��&
(	��
	�&�

9��)���
�������

�����&��
	�&�

Figure 31: Validating the EU’s integrity process

131



�������� ���

�
B

�
�

�(

�(

�

�

9��

��

�

�

��

��

�

�

5�

5�
5� 5�

5�

�B

�B

��

��

0

��

����	
��&

���&�����	

*

�
B

1

�
B

1
�
B

1

�
B

1

�
B

1

Figure 32: Persistent protected & scalable delivery work flow

As we assumed, there will be a contract signed by both the MR and the CP; that

contract is a consent between both parties that their works must be legal. In this

case no connction is established by the NSP and the CP or CS unless it has been

approved by the MR. That will help if any illegal content media is distributed by an

illegal CP, then it is the responsibility of the MR is to judge that bad CP which is

easy to catch by the NSP.

Now we come to the most important part: when and where should the MG be

individualised? We need to study this issue for two reasons: to trace back the source

of illegal distribution and increase the scalability of our proposal to the maximum.

To answer this question, we need to know more details about last mile delivery.

132



Policy

List of subroutines and decisions

Threads of mobile security providers

Management

Customer Service

Distrib
utio

n

$

Bank of Code fragments

Inventory

Packaging

Manufacturing

Terms and conditions

3

2

4

6

5

7

List of mobile 

protections and 

guards Plug-In
9

10

Request 1

8

Figure 33: Mobile security provider’s work flow

133



8.2 Last Mile Connection

Last mile connection, also called first mile connection, refers to the one-to-one con-

nection between a network customer and the network service office. Whatever the

intermediate connections that builds the network, the last mile connection is the leg

that connects the end user to the public or private network, whether that connection

is used for data uploading or downloading. As has been suggested in [Hel06], the

content media distribution network is divided into three levels:

• National Hubs

The active components, such as satellite, that are used to connect territories

and countries form the national hubs. They are supposed to have a big store

for submitted content media to be distributed within the country.

• Regional Hubs

The active components that form the network backbone or core, where each

country has a network core in order to connect the whole country’s regions.

The regional hub is the intermediate connection between the national hubs and

the local hubs.

• Local Hubs

The components that connect the customer to the network core.

8.2.1 Last Mile Connection Over Copper Based Connection

Asymmetric Digital Subscriber Line (ADSL) is a copper based connection between

the end user and a network regional office. For downstream data rate of 8 Mbps

and upstream data rate of 768 Kbps, the maximum distance of the copper based

connection beween the subscriber’s premises and the telephone branch office should

not exceed 5.5 Km [Hel06].

134



Figure 34: Physical network connection [nuP].

135



ADSL2+ is a twisted pair copper based wire that provides up 10 Mbps downstream

bit rate transmission, and 3 Mbps upstream over maximum distance of 2 km from the

DSLAM. Note that ADSL2+ may provide 26 Mbps over 300 meter of twisted pair

copper based wire [FB06, Hel06].

The acceptable range of the cable length used in a very-high-bitrate DSL (VDSL)

is up to 900 meters. At 300 meters the twisted pair copper based wire can carry up to

52 Mbps acceptable downstream bit rate transmission. The acceptable downstream

transmission decreases to 19.2 Mbps when the cable length approaches 900 meters

[FB06].

A connection between multiple ADSL, VDSL, or any kind of DSL signals, requires

a Digital Subscriber Line Access Multiplexer (DSLAM) device. This device will allow

for more functionality and control over the network [wik].

8.2.2 Last Mile Connection Over Optical Connections

Nowadays, due to the increasing demand for more bandwidth, Internet speed is in-

creasing from Mbps to Gbps owing to the advances in fiber optic technology. Com-

pared to copper-based connections, fiber optic lines provide a higher data transmission

rate and a longer distance connection between the subscribers and the central office.

Fijnvandraat and Bouwman [FB06] categorize last mile optical networks into two

types depending on the active electronic devices that participate in the connection

between two terminals:

• Optical network or optical Ethernet: In this category, there are routers, gate-

ways or multiplexers between the end user’s premise and the network branch

office.

• Passive optical network: In this category, there are no routers, gateways or

136



multiplexers between the end users’ premises and the network branch office;

instead, it has been replaced by a single fiber optical connection.

Generally, last mile connections that use optical connections are divided into the

following categories:

• The Optical Line Termination (OLT): The Optical Line Termination is a net-

work interface that combines electrical data, which comes from multiple base

1000T Ethernet routers, gateways and multiplexers residing in the network core,

to form a single optical-fiber. Usually, OLT exists at the companies’ central of-

fices. The OLT can support up to 512 end users [Hel06, O’D08, nuP, Opt].

• Fiber-to-the-home (FTTH): It is possible these days to connect the end user

directly to the company central office via fiber cable called Fiber-to-the-home

(FTTH) connection. This one-to-one connection provides 400 times faster data

rate than ADSL connection. This type of network connection is useful for the

content server in order to provide the network with high quality content media

within fast speed.

• Passive Optical Network (PON): In this category, there are no routers, gateways

or multiplexers between the end users’ premises and the network branch office;

instead, it has been replaced by a single fiber optical connection.

The transmission medium determines the maximum transmission rate, which is

measured by bits per second (bps). Transmission media types are as follows [Hal96]:

• Twisted pair lines: it is subdivided into: unshielded twisted pair (UTP) and

shielded twisted pair (STP). This type of connection supports data rates of

1Mbps with distances shorter than or equal 100 meters. It supports lower bit

rate with longer distance than 100 meters, and support more bit rate with

distance shorter than 100 meters.

137



• Coaxial cables: this type of connections can support 10 Mbps, and with dis-

tances lower than or equal to 500 meters. This type of connection suffers high

maintenance cost.

• Optical fiber: this type supports 1 G bps with distances less than or equal to

20 Km.

• Satellites: this type composes Terrestrial microwave and radio transmissions.

This kind of transmission usually does not support higher transmission rate.

From the previous list, we can notice that fiber optics has larger bandwidth and

longer distance for signal to reach. That gives an indication for future bandwidth

demand, it is better to install fiber to the home. The end user can be satisfied with

ADSL and ADSL+ connections, but the CS, the CP, the MR and the MSP should

use fiber optics connections.

8.3 The MP and MG Individualization Point

The CP is a network customer that needs to be connected to the NSP in order to

multicast the content media via the CS that works for him. For efficiency purposes,

it is recommended that the last mile connection to the CS be fiber optics. A sufficient

amount of time before the new epoch starts, the CP needs to receive individualized

version of MP that is responsible for fingerpring the sub-content media with a unique

identifier of the CP, which is a proof for the legality of the content media distribution.

This sufficient time needs to be short enough before the distribution starts for that

sub-media, thus the CP or CS does not have the time to attack the MP instance.

The individualization process is done by adding unique tokens that represent the CP

into specific points of the MP, these points are determined by the MSP. The MSP

informs the MR with the predetermined hash value of MP along with the protection

software that runs at CP side, which is used to deploy the protection action.

138



The MP runs at the CP site and computes the integrity of the CP and then sends

the result hash value to the MR. The MR checks the validity of the received hash

value; in case of valid response, it tells the NSP to open the gate for incoming flow

from the CS.

For the end user, s/he can use fiber or coper-based connection for the last mile

connection. Every MG instance needs to be individualized by injecting the end user’s

ticket into the MG; then, the individualized MG must be unicast to the specific end

user. In order to prevent the end user from searching for the ticket pattern within the

MG, the ticket needs to be split into multiple pieces, which are injected into multiple

places within the MG. These places are predicted by the NSP but not by the end

user. This process prevents the user from modifying the MG for a certain amount

of time, because, the MG need to be excuted on the end user’s machine and then

compute the hash value of the MG along with VS. That hash value needs to be sent

to the NSP. Then, the NSP validates the hash value, which reflects the end user’s

integrity as has been described in the previous chapter.

To maximize scalability of distributing the MG, the unindividualized MG needs

to be multicast until the last mile edge; at that point, the individualisation process

should begin. Then, the individualized MG is unicast to the end user. This pro-

cess assures that the scalability is not affected during the transport from multicast

unindividualized MG(s) into unicast individualized MG(s).

For the individualization process we could do the following:

• Place a computer in the branch office, that computer is responsible for doing

the individualization process.

• The optical line terminals, which are used for last mile connections, are hardware

designed to do a particular job, and it may be easy to add individualization

function.

139



• Redesign the curb side box and then put another hardware card in it. The card

works as distributed controller to do the individualization proccess for the NSP.

We do not need to validate the exchanged protocols between the MSP, the NSP

and the EU because it is similar to the protocol that happens between the MR, the

NSP and the EU that we proposed and validated in the previous chapter.

We can allow every end user to have a domain access for the content media, in

such a way that one ticket allows one user to watch the content media via N different

machines or VS instances that are owned by the same user. We could allow that by

permitting the user to receive N individualized MG on his N machines or VS instances,

and then the NSP counts N hash-value that comes from the same user. Afterward,

the NSP sends the suitable media keys for each machine or VS instance. This idea

gives the end user the ability to watch N different channels that are supported by the

NSP on N different machines or N different VS instance.

Within the trust interval, if the VS wants to change to different channels that are

supported supported by the NSP and allowed to be viewed using the same ticket, then

the NSP sent the new media key encrypted with the established secret key K, that is

generated by the merchant and embedded in the ticket. Another possible scenario is

that the NSP injects an asymmetric key pair in to the MG instance before sending

it the specific VS. Then the NSP encrypts any new media key using the public key.

The MG instance’s public key is not known to anyone but the NSP. This property

increases the security relation between the NSP and the VS, and then subsequently,

the MG’s private key may used for injecting a unique finger-print into received sub-

media document, which can be used for tracking illegal media distribution.

140



��%+�

�	�
!��'	�

�������	
�
�����������
��������

,�
��
G--���

��
���
G--���

(
$���$����.���	

�	����	

Figure 35: Individualization in branch level

141



���
 ���
��

�	�
!��'	�

,�
��
G--���

��
���
G--���

(

$
��
�$
�
�
��.�

��	



�
�
$

�
	
��
��	



#�����

Figure 36: Individualization in curb level

142



8.4 Summary

In this chapter we minimized the number of MGs produced by adding a new role

called mobile security provider (MSP), which is responsible for producing one version

of MG and MP per trust interval. In this case the end user receives only one version of

MG within an individual trust interval, and if the end user wants to switch between

channels, he only needs to receive the decryption key for the new channel. Also

we provided distributed cloning and individualization processes, which makes the

resulting architecture more scalable.

To conclude, the architecture that we are proposing contains six roles, those roles

collaborate together in order to provide a scalable and persistent protection in multi-

cast content delivery (PPMCD). Those roles are: the CP, the CS, the MR, the MSP,

the NSP and the EU. In this chapter, we proposed a solution to individualize each

MG copy for each individual end user.

143



Chapter 9

Conclusion and Future Work

Internet distribution provides a flexible way to distribute intellectual property such

as software, entertainment, etc. Cryptography technologies can be used to protect

the intellectual property in transit in the network; thus it provides protection before

delivery. Cryptography technologies alone cannot protect the intellectual property

when it is hosted in the target’s environment that is outside the control of the con-

tent owner; and thus it does not provide protection after delivery. Digital Rights

Management is used to protect content media while it is in the end user’s machine

but it is subject to various attacks such as reverse engineering because it uses long-

term protection mechanisms. Thus, the persistent protection that has been promised

by DRM systems is not persistent.

In this thesis, we studied some DRM systems and learned through the study their

strengths and weaknesses, and also the means used to achieve protection after delivery,

which are divided into two directions: protection after delivery via hardware-based

protection and protection after delivery via software approach. Because we are look-

ing to a solution that can be quickly deployed into general personal computers and

laptops, we preferred to go in the second direction. DRM technologies are primarily

based on a unicast one-to-one distribution model, which is not scalable, and that

144



leads to a growing need for scalable and persistent protection delivery. Secure multi-

cast can satisfy the scalability requirement, but it does not provide protection after

content media delivery. Our target in this thesis is to design a flexible mechanism,

architecture and protocols, for scalable, scheduled and persistently protected content

media delivery.

In order to extend the content owner’s control and prevent the customer from

accessing the delivered content, we collected and presented eleven basic DRM re-

quirements which are necessary in ideal unicast-based DRM systems, and that was

the beginning road to push these requirements into multicast world. We realized that

most of the unicast-based DRM are the same for multicast-based DRM, however the

implementation and architecture are different. The DRM requirements covers five

aspects: access control, security, privacy, robustness and marketing. The comparison

we made of different DRM systems with respect to the eleven requirements, see the

table in Figure 15, gives us a clear picture that existing DRM systems do not satisfy

all these requirements.

Atwood’s multicast security architecture has some of the eleven requirements, but

it does not deal with DRM or persistent protection.

We analyzed the eleven requirements for basic DRM system, and found that the

“on demand” requirement conflicts with the “scalability” requirement. We suggested

a trade-off solution would be on dropping the “on demand” requirement and enhanc-

ing the “scalability” requirement.

We recognized that Grimen et al.’s model is a potential solution for the persistent

protection delivery model. Furthermore, we discovered a flaw in their model, because

there is no possibility to distinguish between “mobile guard” copies. We fixed the

flaw by individualizing each copy of the mobile guard, and then based on Grimen et

al.’s model, we proposed an improved model. Finally, we validated both protocols.

However, the original and improved Geimen et al.’s models do not scale for a large

145



number of users.

The improved Grimen et al.’s model provides persistent protection for the de-

livered content media, but it is not scalable. Multicast secure architecture model

provides a scalable delivery system but the delivered content media is not persis-

tently protected. It is clear both models have advantages and disadvantages. At this

stage it is clear that we can reach the final goal if we marry the improved Grimen, et

al.’s model with the multicast secure architecture model.

We proposed a protocol and an architecture for the result of merging both multi-

cast secure architecture and improved Grimen et al.’s model, and then validated the

protocol. We showed that the new model achieves scalable and persistent protection

for delivered content media; and then, we proposed an architecture for a more dis-

tributed, scalable and persistent protection of the delivered content media, and there

we adapted the architecture so it provides a scalable individualization technology for

the mobile guard and mobile protection plug-in code.

In this thesis, we used software-based protection and the idea of renewability of one

component of the software-based protection, i.e., mobile guard. We used a multicast

distribution mechanism to distribute both mobile guards and media documents. Our

novelty is to show how to merge the ideas of using mobile guard, renewability and

multicast in such a way that the resulting solution does not need expensive hardware

to be deployed, and is scalable, cost effective, and exhibits persistent protection for

delivered media.

In this work, we did not address the privacy requirement, so for future work, we

will concentrate on the end user privacy protection.

146



Bibliography

[16w] Windows media digital rights management.

http://msdn2.Microsoft.com/en-us/windowsmedia/bb190317.aspx,

Accessed March 31, 2008.

[AH04] Alapan Arnab and Andrew Hutchison. Digital rights manage-

ment - an overview of current challenges and solutions. 7

2004. http://pubs.cs.uct.ac.za/archive/00000139/, Accessed January

29, 2011.

[AH05] Alapan Arnab and Andrew Hutchison. Requirement analysis of enter-

prise drm systems. In Proceedings of Information Security South Africa

(ISSA) Conference 2005, Johannesburg, South Africa, 2005.

[AH07] Alapan Arnab and Andrew Hutchison. Persistent ac-

cess control: A formal model for drm, October 2007.

http://pubs.cs.uct.ac.za/archive/00000411/03/acmdrm07-arnab.pdf,

Accessed May 08, 2011.

[All] Open Mobile Alliance.

[All06] Open Mobile Alliance. Drm architecture - oma-ad-drm-v2 0-

20060303-a -approved version 2.0 03 mar 2006, 3 2006.

http://www.omadrm.ru/spec/version2/DRM Architecture.pdf, Ac-

cessed June 29, 2011.

147



[Ans] Answers.com. http://www.answers.com/topic/persistent, Accessed

June 15, 2010.

[Arn07] Alapan Arnab. Towards a general framework for digi-

tal rights management (drm). PhD, Department of Com-

puter Science, University of Cape Town, 2007, 2007.

http://pubs.cs.uct.ac.za/archive/00000448/01/alapan.arnab.thesis.final.

pdf, Accessed May 08, 2011.

[Ars] Emilija Arsenova. Technical aspects of digital rights management.

http://wob.iai.uni-bonn.de/Wob/images/01212504.pdf, Accessed Jan-

uary 29, 2011.

[BA] Malek Barhoush and J. William Atwood. Requirements for enforcing

digital rights management inmulticast content distribution. Telecom-

munication Systems.

[BA10] Malek Barhoush and J. William Atwood. Software-based protection for

content media distribution. In Proceedings of the IADIS International

Conference on WWW/Internet (ICWI2010), October 2010.

[BE06] Hagai Bar-El. Challenges in design-

ing content protection solutions. 2006.

www.hbarel.com/publications/Challenges in designing content protection

solutions.pdf, Accessed May 09, 2011.

[BEM+07] Dagmar Bruss, Gábor Erdélyi, Tim Meyer, Tobias Riege, and Jörg

Rothe. Quantum cryptography: A survey. ACM Comput. Surv., 39,

July 2007.

[BMJ07] Koen Buyens, SamMichiels, andWouter Joosen. A software architecture

to facilitate the creation of drm systems. In Consumer Communications

and Networking Conference, 2007. CCNC 2007. 4th IEEE, pages 955

–959, jan. 2007.

148



[BP82] H.J. Beker and F.C. Piper. Communications security: a survey of cryp-

tography. Physical Science, Measurement and Instrumentation, Man-

agement and Education - Reviews, IEE Proceedings A, 129(6):357 –376,

6 1982.

[Cai02] Deering S. Kouvelas I. Fenner B. Thyagarajan A. Cain, B. Internet

Group Management Protocol, Version 3. RFC3376, IETF, October 2002.

[CC03] Kin-Ching Chan and S.-H.G. Chan. Key management approaches to

offer data confidentiality for secure multicast. Network, IEEE, 17(5):30

– 39, sept.-oct. 2003.

[Cen] Pocket PC Central. Windows mobile 6 device types - smart-

phones & pdas. http://pocketpccentral.net/smartphone/help/general/

wm6 naming scheme.htm, Accessed 30 Jan 2011.

[Che08] Chin-Ling Chen. A secure and traceable e-drm system based on mobile

device. Expert Systems with Applications, 35:878–886, 10 2008.

[Cle] Jan De Clercq. Smart cards. http://technet.microsoft.com/en-

us/library/dd277362.aspx, Accessed July 17, 2011.

[Cor04a] Microsoft Corporation. Architecture of

windows media rights manager, 5 2004.

http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarc

hitecture.aspx, Accessed 30 Jan 2011.

[Cor04b] Microsoft Corporation. Microsoft announces new version of

windows media digital rights management software, 5 2004.

http://www.microsoft.com/presspass/press/2004/may04/ 05-

03digitalrightsmanagementtechnologypr.mspx, Accessed 30 Jan

2011.

149



[Cor08] OMA Corporation. Drm content format. Aug 2008.

http://www.openmobilealliance.org/Technical/release program/drm archi

ve.aspx, Candidate Version 2.1 05 Aug 2008. Accessed January 29,

2011.

[Coy03] Karen Coyle. The technology of rights: Digital rights management.

Nov 2003. http://www.kcoyle.net/drm basics.pdf, Accessed January 29,

2011.

[CS05] Yacine Challal and Hamida Seba. Group key management protocols:

A novel taxonomy. International Journal of Information Technology,

2(1):105–118, 2005.

[CT02] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-

proofing, and obfuscation - tools for software protection. Software En-

gineering, IEEE Transactions on, 28:735–746, 2002.

[DD00] Stéphane Doyon and Mourad Debbabi. Verifying object initialization in

the java bytecode language. In Proceedings of the 2000 ACM symposium

on Applied computing - Volume 2, SAC ’00, pages 821–830, New York,

NY, USA, 2000. ACM.

[Doc05] Cory Doctorow. Digital rights management: A failure in

the developed world, a danger to the developing world.

Technical report, Electronic Frontier Foundation, 2005.

http://w2.eff.org/IP/DRM/ITU DRM paper.pdf, Accessed March

25, 2010.

[Doe07] Stefan Doehla. Dvb-h handheld video content protection with isma

encryption, 5 2007. http://www.design-reuse.com/articles/14971/dvb-

h-handheld-video-content-protection-with-isma-encryption.html, Ac-

cessed May 28, 2011.

150



[DY81] D. Dolev and A. C. Yao. On the security of public key protocols. In

Foundations of Computer Science, 1981. SFCS ’81. 22nd Annual Sym-

posium on, pages 350 –357, oct. 1981.

[EDB04] Martin R. Stytz Eric D. Bryant, Mikhail J. Atallah. A survey of anti-

tamper technologies. CrossTalk: The Journal of Defense Software En-

gineering, 17(11):12–16, 11 2004.

[FB06] Marieke Fijnvandraat and Harry Bouwman. Flexibility and broadband

evolution. Telecommunications Policy, 30(8-9):424 – 444, 2006.

[FH06] E.W. Felten and J.A. Halderman. Digital rights management, spyware,

and security. Security Privacy, IEEE, 4(1):18 – 23, jan.-feb. 2006.

[GA98] Stefanos Gritzalis and George Aggelis. Security issues surrounding pro-

gramming languages for mobile code: Java vs. safe-tcl. SIGOPS Oper.

Syst. Rev., 32:16–32, April 1998.

[GMM06a] Gisle Grimen, Christian Mönch, and Roger Midtstraum.

Building secure software-based drm systems, 11 2006.

http://www.nik.no/2006/Grimen.pdf, Accessed March 26, 2010.

[GMM06b] Gisle Grimen, Christian Mönch, and Roger Midtstraum. Software-based

copy protection for temporal media during dissemination and play-

back. In Information Security and Cryptology - ICISC 2005, volume

3935/2006, 2006.

[GMM06c] Gisle Grimen, Christian Mönch, and Roger Midtstraum. Tamper pro-

tection of online clients through random checksum algorithms. In ISTA,

pages 67–79, 2006.

[Gro07] Trusted Computing Group. Tcg specification architecture

overview - specification revision 1.4 2nd august 2007, 8 2007.

151



http://www.trustedcomputinggroup.org/files/resource files/AC652DE1-

1D09-3519-ADA026A0C05CFAC2/TCG 1 4 Architecture Overview.pdf,

Accessed June 29, 2011.

[Hal96] Fred Halsall. Data Communications, Computer Networks, and Open

Systems. Addison-Wesley, 4 edition, 1996.

[HB01] Mohamed Hefeeda and Bharat Bhargava. On mobile code se-

curity. Technical report, 2001. http://www.cs.sfu.ca/ mhe-

feeda/Papers/OnMobileCodeSecurity.pdf, Accessed August 8, 2011.

[HB05a] Greg Hoglund and James Butler. Rootkits: Subverting the Windows

Kernel. Addison-Wesley, 2005.

[HB05b] Grog Hoglund and James Butler. Rootkits: Subverting the windows

kernel. page 352, 2005.

[Hel06] Gilbert Held. Understanding IPTV. Prentice Hall, 2006.

[Hou04] R. Housley. Using Advanced Encryption Standard (AES) Counter Mode

With IPsec Encapsulating Security Payload (ESP). RFC3686, IETF,

January 2004.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. 2007.

[HS06] M. Hussain and D. Seret. A comparative study of security protocols

validation tools: Hermes vs. avispa. In Advanced Communication Tech-

nology, 2006. ICACT 2006. The 8th International Conference, volume 1,

pages 6–308, feb. 2006.

[Hua07] Tiejun Huang. Evolvement of drm schema: From encryption to inter-

operability and monitoring. In Nicu Sebe, Yuncai Liu, Yueting Zhuang,

152



and Thomas Huang, editors, Multimedia Content Analysis and Min-

ing, volume 4577 of Lecture Notes in Computer Science, pages 65–75.

Springer Berlin / Heidelberg, 2007.

[IA06] Salekul Islam and J. William Atwood. A framework to add aaa func-

tionalities in ip multicast. In Proceedings of Advanced International

Conference on Telecommunications (AICT’06), Guadeloupe, French

Caribbean, February 2006. IEEE Computer Society.

[IA07a] Salekul Islam and J. William Atwood. A policy framework for multicast

group control. In Consumer Communications and Networking Confer-

ence, 2007. CCNC 2007. 4th IEEE, pages 1103 –1107, jan. 2007.

[IA07b] Salekul Islam and J. William Atwood. Sender access control in ip multi-

cast. Local Computer Networks, Annual IEEE Conference on, 0:79–86,

2007.

[IA09] Salekul Islam and J. William Atwood. Multicast receiver access control

by igmp-ac. Comput. Netw., 53:989–1013, May 2009.

[Ian01] Renato Iannella. Digital rights management (drm) architectures,

2001. http://www.dlib.org/dlib/june01/iannella/06iannella.html, Ac-

cessed May 08, 2011.

[Int] InterTrust. The darknet and the future of content distribution.

http://www.intertrust.com/main/overview/drm.html, Accessed 12 Oct

2008.

[Irw04] James Irwin. Digital rights management: The Open Mobile Alliance

DRM specifications. Inf. Secur. Tech. Rep., 9:22–31, December 2004.

[ISM06] ISMA. Internet streaming media alliance implementation speci-

fication - isma encryption and authentication, version 1.1, 2006.

153



http://www.mpegif.org/m4if/bod/ISMA/ISMA E&Aspec1.1.pdf, Ac-

cessed Aug. 8 2011.

[J. 07] J. William Atwood. An architecture for secure and accountable mul-

ticasting. In Local Computer Networks, 2007. LCN 2007. 32nd IEEE

Conference on, pages 73–78, 10 2007.

[JM07] Hugo Jonker and Sjouke Mauw. Core se-

curity requirements of drm systems, 2007.

http://alexandria.tue.nl/extra1/wskrap/publichtml/200524.pdf, Ac-

cessed May 08, 2011.

[JPKJ06] Kun-Won Jang, Chan-Kil Park, Jung-Jae Kim, and Moon-Seog Jun.

Manuscript received august 2005. a study on drm system for on/off line

key authentication, 2006.

[Kam02] Mayur Kamat. Security requirement for digital rights management.,

2002. http://proc.isecon.org/2002/353b/ISECON.2002.Kamat.pdf, Ac-

cessed May 08, 2011.

[KC04] William Ku and Chi-Hung Chi. Survey on the technological aspects

of digital rights management. In Kan Zhang and Yuliang Zheng, edi-

tors, Information Security, volume 3225 of Lecture Notes in Computer

Science, pages 391–403. Springer Berlin / Heidelberg, 2004.

[Kos98] Dave. Kosiur. IP Multicasting : The Complete Guide to Interactive

Corporate Networks. New York : Wiley, c1998., 1998.

[LD03] Cullen Linn and Saumya Debray. Obfuscation of executable code to

improve resistance to static disassembly. In Proceedings of the 10th

ACM conference on Computer and communications security, CCS ’03,

pages 290–299, New York, NY, USA, 2003. ACM.

154



[LELD05] E.I. Lin, A.M. Eskicioglu, R.L. Lagendijk, and E.J. Delp. Advances

in digital video content protection. Proceedings of the IEEE, 93(1):171

–183, jan. 2005.

[LG99] Charlie Lai and Li Gong. User authentication and authorization in the

java(tm) platform. In In ACSAC 99: Proceedings of the 15th Annual

Computer Security Applications Conference, page 285. IEEE Computer

Society, 1999.

[Lou00] Panagiotis Louridas. Some guidelines for non-repudiation protocols.

SIGCOMM Comput. Commun. Rev., 30:29–38, October 2000.

[Low98] Douglas Low. Protecting java code via code obfuscation. Crossroads,

4:21–23, April 1998.

[LSNS03] Qiong Liu, Reihaneh Safavi-Naini, and Nicholas Paul Sheppard. Dig-

ital rights management for content distribution. In Proceedings of the

Australasian information security workshop conference on ACSW fron-

tiers 2003 - Volume 21, ACSW Frontiers ’03, pages 49–58, Darlinghurst,

Australia, Australia, 2003. Australian Computer Society, Inc.

[Ltd02] Sonera Plaza Ltd. Digital rights managament. white paper. Feb

2002. http://www.medialab.sonera.fi/workspace/DRMWhitePaper.pdf,

DRM White Paper. Accessed January 29, 2011.

[MA07] Ritesh Mukherjee and J. William Atwood. Scalable solutions for secure

group communications. Comput. Netw., 51:3525–3548, August 2007.

[Mar] Mark Stamp. Stamp: Digital Rights Man-

agement: The Technology Behind The Hype .

http://www.csulb.edu/web/journals/jecr/issues/20033/paper3.pdf,

Accessed January 15, 2011.

155



[MD03] Thomas S. Messerges and Ezzat A. Dabbish. Digital rights management

in a 3g mobile phone and beyond. In Proceedings of the 3rd ACM work-

shop on Digital rights management, DRM ’03, pages 27–38, New York,

NY, USA, 2003. ACM.

[Med03] Sonera MediaLab. Mobile digital rights managment. 8 2003.

http://www.medialab.sonera.fi/workspace/MobileDRMWhitePaper.pdf,

Accessed July 19, 2011.

[Mic] Microsoft. Windows media rights manager providers.

http://www.Microsoft.com/windows/windowsmedia/forpros/drm/sup

grade.aspx, Accessed March 31, 2008.

[Mit97] Suvo Mittra. Iolus: a framework for scalable secure multicasting. SIG-

COMM Comput. Commun. Rev., 27:277–288, October 1997.

[MRB01] Shafay Shamail Muhammad Razeen, Javaid Iqbal Zahid and Ha-

roon Atique Babri. Development of digital certification authority in

Pakistan. In Multi Topic Conference, 2001. IEEE INMIC 2001. Tech-

nology for the 21st Century. Proceedings. IEEE International, pages 239

– 245, 2001.

[MST05] Juergen Tacken Frank Bormann Miguel Soriano, Stephan Flake and

Joan Tomás. Mobile digital rights management: Security requirements

and copy detection mechanisms. In Database and Expert Systems Appli-

cations, 2005. Proceedings. Sixteenth International Workshop on, pages

251 –256, aug. 2005.

[MT08] Security Newsletter Microsoft TechNet. ”deploying active directory

rights management services at microsoft, technical white paper, 6 2008.

http://technet.microsoft.com/en-us/library/ee156482.aspx, Accessed 25

May 2011.

156



[MVJDD05] Sam Michiels, Kristof Verslype, Wouter Joosen, and Bart De Decker.

Towards a software architecture for drm. In DRM ’05: Proceedings of

the 5th ACM workshop on Digital rights management, pages 65–74, New

York, NY, USA, 2005. ACM.

[NN07] Maria Nickolova and Eugene Nickolov. Conceptual model

and security requirements for drm techniques used for e-

learning objects protection. International Journal “Informa-

tion Technologies and Knowledge”, Vol.1, 2007. http://sci-

gems.math.bas.bg:8080/jspui/bitstream/10525/106/1/ijitk01-1-

p18.pdf, Accessed Aug 08, 2011.

[nuP] nupon. http://www.ceos.com.au/products/nupon-content.htm, Ac-

cessed June 12, 2011.

[O’D08] Grard O’Driscoll. Next Generation IPTV Services and Technologies.

Prentice Hall, 2008.

[OLR+07] Jose Onieva, Javier Lopez, Rodrigo Roman, Jianying Zhou, and Stefanos

Gritzalis. Integration of non-repudiation services in mobile drm scenar-

ios. Telecommunication Systems, 35:161–176, 2007. 10.1007/s11235-007-

9050-4.

[OMA08a] OMA. DRM architecture. Technical report, 10 2008.

[OMA08b] OMA. DRM architecture oma. Aug 2008.

http://www.openmobilealliance.org/Technical/release program/drm archiv

e.aspx, Candidate Version 2.1 05 Aug 2008. Accessed January 29, 2011.

[Opt] Optical line termination unit oltu. http://www.selex-

comms.com/internet/localization/IPC/media/docs/OLTU EN LR.pdf,

Accessed June 12, 2011.

157



[PA11] Mohammad Parham and J. William Atwood. Validation of security

for participant control exchanges in multicast content distribution. In

Proceedings of the Ninth Annual Conference on Privacy, Security and

Trust (PST 2011), pages 73–78, Montreal, Quebec, Canada, 7 2011.

[Pat08] Viral Patel. Java virtual machine, an inside story!!, 12

2008. http://viralpatel.net/blogs/2008/12/java-virtual-machine-an-

inside-story.html, Accessed April 27, 2011.

[PBW] Marcus Peinado Peter Biddle, Paul England and

Bryan Willman. Digital rights management.

http://searchcio.techtarget.com/sDefinition/0,,sid182 gci493373,00.html,

Accessed January 29, 2011.

[PBW02] Marcus Peinado Peter Biddle, Paul England and Bryan Willman.

The darknet and the future of content distribution. Nov 2002.

http://msl1.mit.edu/ESD10/docs/darknet5.pdf, Accessed January 29,

2011.

[PJK06] Sang-Ho Park, Jaewoon Jeong, and Taekyoung Kwon. Contents dis-

tribution system based on mpeg-4 ismacryp in ip set-top box environ-

ments. Consumer Electronics, IEEE Transactions on, 52(2):660 – 668,

May 2006.

[RB97] S. Berson S. Herzog S. Jamin R. Braden, L. Zhang. Resource ReSerVa-

tion Protocol (RSVP) – Version 1 Functional Specification. RFC2205,

IETF, September 1997. https://datatracker.ietf.org/doc/rfc2205/, Ac-

cessed January 29, 2011.

[RLMR00] Sergio Loureiro Refik, Sergio Loureiro, Refik Molva, and Yves Roudier.

Mobile code security. In In proceedings of ISYPAR 2000 (4ème Ecole

dÍnformatiquedes Systèmes Parallèles et Répartis), Code, 2000.

158



[Ros05] Bill Rosenblatt. Enterprise drm – technology comparison: Authentica

active rights management and microsoft windows rights management

services. Technical report, 2005.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21:120–126,

February 1978.

[SA05] N. Sultana and J.W. Atwood. Secure multicast communication: end user

identification and accounting. In Electrical and Computer Engineering,

2005. Canadian Conference on, pages 1691–1694, May 2005.

[San] Sandbox. http://www.webopedia.com/TERM/S/sandbox.html, Ac-

cessed May 3, 2011.

[Sav02] John Savard. A cryptographic compendium, 2002.

[SCA] Smart Card Alliance SCA. http://www.smartcardalliance.org/, Ac-

cessed June 21, 2010.

[Scr01] Beale Screamer. Microsoft’s digital rights management scheme - tech-

nical details, 2001. http://cryptome.org/ms-drm.htm, Accessed May 9,

2011.

[(SD05] Sun Developer Network (SDN). Java se-

curity overview, white paper, 4 2005.

http://java.sun.com/developer/technicalArticles/Security/whitepaper/JS White Pape

Accessed May 3, 2011.

[Smaa] Smart card. http://en.wikipedia.org/wiki/Smart card, Accessed July

17, 2011.

[Smab] Smart cards. http://ewh.ieee.org/r10/bombay/news5/SmartCards.htm,

Accessed July 17, 2011.

159



[SSK04] G. Selimis, N. Sklavos, and O. Koufopavlou. Crypto processor for con-

tactless smart cards. In Electrotechnical Conference, 2004. MELECON

2004. Proceedings of the 12th IEEE Mediterranean, volume 2, pages 803

– 806 Vol.2, may 2004.

[Sta03] William Stallings. Cryptography and Network Security Principles and

Practices. Prentice Hall, 3 edition, 2003.

[SV01] William Shapiro and Radek Vingralek. How to manage persistent state

in drm systems. In Digital Rights Management Workshop, pages 176–

191. Springer-Verlag GmbH, 2001.

[Sys] Azuki Systems. Drm in the new world of mobile media.

http://www.azukisystems.com/contentOwners/DRMBrief AzukiSystems.

pdf, Accessed January 22, 2011.

[Tea] The AVISPA Team. Deliverable d2.1: The high level protocol specifica-

tion language.

[Tea06a] AVISPA Team. Hlpsl tutorial: A beginners guide to modelling and

analysing internet security protocols. Technical report, 6 2006.

[Tea06b] The AVISPA Team. Avispa v1.1 user manual, 2006.

[Tec] Techterms. Drm (digital rights management).

http://www.techterms.com/definition/drm, Accessed January 29,

2011.

[TH] Haykal Tej and Paul Hankes. Challenge/response authentication proto-

col, version 2. http://www.avispa-project.org/, Accessed May 9, 2011.

[THVV10] Satou H. Ohta T. Hardjono Verisign, H. He and S Vaidya. Require-

ments for Multicast AAA coordinated between Content Provider(s) and

Network Service Provider(s). draft-ietf-mboned-maccnt-req-06, IETF

160



Internet Draft, 10 2010. http://tools.ietf.org/html/draft-ietf-mboned-

maccnt-req-10, Accessed May 9, 2011.

[TS02] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:

Principles and Paradigms. Prentice Hall, 2002.

[VAD99] ATUL VADERA. Scamp : Scalable multicast protocol for com-

munication in large groups. Master thesis, Indian Institute of

Technology - Department of Computer Science & Engineering, 1

1999. http://www.cse.iitk.ac.in/users/dheeraj/mtech/atul-vadera.pdf,

Accessed May 13, 2011.

[VC04] T. Hardjono Verisign and B. Weis Cisco. The Multi-

cast Group Security Architecture. RFC3740, IETF, 3 2004.

http://www.faqs.org/rfcs/rfc3740.html, Accessed May 9, 2011.

[VMF99] Kaushik Veeraraghavan, Andrew Myrick, and Jason Flinn. Cobalt: Sep-

arating content distribution from authorization in distributed file sys-

tems. In Proceedings of the 5th USENIX Conference on File and Storage

Technologies. USENIX Association, pages 231–244, 1999.

[wik] wikipedia. Digital subscriber line access multiplexer.

http://en.wikipedia.org/wiki/Digital Subscriber Line Access Multiplexer,

Accessed June 12, 2011.

[WMSL00] Chung Kei Wong, Wong Mohamed, Gouda Simon, and S. Lam. Se-

cure group communications using key graphs. Networking, IEEE/ACM

Transactions on, 8(1):16 –30, feb 2000.

[YKM+06] Hiroki Yamauchi, Yuichiro Kanzaki, Akito Monden, Masahide Naka-

mura, and Ken-ichi Matsumoto. Software obfuscation from crackers’

viewpoint. In Proceedings of the 2nd IASTED international conference

on Advances in computer science and technology, pages 286–291, Ana-

heim, CA, USA, 2006. ACTA Press.

161



[ZZM+06] Jun Zhang, Yu Zhou, Fanyuan Ma, Gu Dawu, and Yingcai Bai. An

extension of secure group communication using key graph. Inf. Sci.,

pages 3060 – 3078, 2006.

162



Appendix A

Original Grimen et al. Protocol

Validation

In this section we will show the code we wrote to validate the Grimen proposed

protocol. The following lines are the code used to validate the key exchange protocol

proposed by Grimen et al. that takes place between the mobile guard and the security

server:

role mobileGuard (M, S: agent,

Ks,Km: public_key,

Tki,Mki: symmetric_key,

Hash: hash_func,

SND, RCV: channel (dy))

played_by M

def=

163



local State : nat,

Nm, Ns: text,

ChkSum : message

init State := 0

transition

0. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Nm’ := new()/\ Tki’:= new()

/\ ChkSum’ := Hash(M.Nm’.Tki’)

/\ SND({Nm’.Tki’.M}_Ks.ChkSum’)

/\ secret(Tki’, secTK,{M,S})

/\ witness(M,S,mobileGuard_server_nm,Nm’)

/\ witness(M,S,mobileGuard_server_tki,Tki’)

2. State = 2 /\ RCV({Nm.Ns’.S}_Km) =|>

State’:= 4 /\ SND({Ns’.M}_Ks)

4. State = 4 /\ RCV({Mki’.S}_Tki) =|>

State’ := 6 /\ secret(Mki’, secMK,{M,S})

/\ request(M,S,server_MobileGuard_ns,Ns)

end role

%%

role server(M, S: agent,

Km, Ks: public_key,

Tki,Mki: symmetric_key,

Hash: hash_func,

164



SND, RCV: channel (dy))

played_by S def=

local State : nat,

Nm, Ns: text

init State := 1

transition

1. State = 1 /\ RCV({Nm’.Tki’.M}_Ks.Hash(M.Nm’.Tki’)) =|>

State’:= 3 /\ Ns’ := new() /\ SND({Nm’.Ns’.S}_Km)

/\ witness(S,M,server_mobileGuard_ns,Ns’)

3. State = 3 /\ RCV({Ns.M}_Ks)

=|>

State’:= 5 /\ Mki’ := new()

/\SND({Mki’.S}_Tki)

/\ secret(Mki’, secMK,{M,S})

/\ request(S,M,mobileGuard_server_tki,Tki)

/\ request(S,M,mobileGuard_server_nm,Nm)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role session(M, S: agent, Km, Ks: public_key, Tki,Mki: symmetric_key,

Hash: hash_func)

def=

165



local SA, RA, SB, RB: channel (dy)

composition

mobileGuard(M,S,Ks,Km,Tki,Mki,Hash,SA,RA)

/\ server (M,S,Km,Ks,Tki,Mki,Hash,SB,RB)

end role

%%

role environment() def=

const m, s : agent,

km, ks, ki : public_key,

tk, mk, tki,mki: symmetric_key,

secMK, secTK, mobileGuard_server_nm,

mobileGuard_server_tki, server_mobileGuard_ns : protocol_id,

h : hash_func

% mobileGuard_server_ns,

intruder_knowledge = {m, s,ks, h, ki, inv(ki),inv(km)}%,tki,mki,km }

composition

session(m,s,km,ks,tk,mk,h)

/\ session(m,i,km,ki,tk,mki,h)

/\ session(i,s,ki,ks,tki,mk,h)

166



end role

%%

goal

secrecy_of secMK, secTK

% authentication_on mobileGuard_server_ns

% authentication_on server_mobileGuard_nm

end goal

%%

environment()

167



Appendix B

Improved Version of Grimen et al.

Protocol Validation

In this section we will show the code we wrote to validate the proposed solution

for Grimen et al. protocol. The following lines are the code used to validate the

key exchange protocol proposed by us to solve the problem found at Grimen et al.

proposed key exchange protocol that takes place between the mobile guard and the

security server:

role mobileGuard (M, S: agent,

Ks,Km: public_key,

K: symmetric_key,

Ticket: message,

Hash: hash_func,

SND, RCV: channel (dy))

played_by M

168



def=

local State : nat,

Nm, Ns: text,

ChkSum : message,

Tki,Mki: symmetric_key

init State := 0

transition

0. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Nm’ := new()/\ Tki’:= new()

/\ ChkSum’ := Hash(M.Nm’.Tki’.Ticket)

/\ SND({{Nm’.Tki’.M.Ticket}_Ks}_K.ChkSum’)

/\ secret(Tki’, secTK,{M,S})

/\ request(M,S,mobileGuard_server_nm,Nm’)

% /\ witness(M,S,server_mobileGuard_tki,Tki’)

2. State = 2 /\ RCV({Nm.Ns’.S}_Km) =|>

State’:= 4 /\ SND({Ns’.M}_Ks)

%/\ request(M,S,mobileGuard_server_ns,Ns’)

4. State = 4 /\ RCV({Mki’.S}_Tki) =|>

State’ := 6 /\ secret(Mki’, secMK,{M,S})

end role

169



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role server(M, S: agent,

Km, Ks: public_key,

K: symmetric_key,

Ticket: message,

Hash: hash_func,

SND, RCV: channel (dy))

played_by S def=

local State : nat,

Nm, Ns: text,

Tki,Mki: symmetric_key

init State := 1

transition

1. State = 1 /\ RCV({{Nm’.Tki’.M.Ticket}_Ks}_K.Hash(M.Nm’.Tki’.Ticket)) =|>

State’:= 3 /\ Ns’ := new() /\ SND({Nm’.Ns’.S}_Km)

/\ secret(Tki’, secTK,{M,S})

/\ witness(S,M,mobileGuard_server_nm,Nm’)

3. State = 3 /\ RCV({Ns.M}_Ks)

=|>

State’:= 5 /\ Mki’ := new()

/\SND({Mki’.S}_Tki)

/\ secret(Mki’, secMK,{M,S})

% /\ request(S,M,server_mobileGuard_nm,Nm)

170



end role

%%

role session(M, S: agent, Km, Ks: public_key, K,Tki,Mki: symmetric_key,Ticket: mes

Hash: hash_func)

def=

local SA, RA, SB, RB: channel (dy)

composition

mobileGuard(M,S,Ks,Km,K,Ticket,Hash,SA,RA)

/\ server (M,S,Km,Ks,k,Ticket,Hash,SB,RB)

end role

%%

role environment() def=

const m, s : agent,

km, ks, ki : public_key,

k,tk, mk, tki,mki: symmetric_key,

secMK, secTK, mobileGuard_server_nm : protocol_id,

ticket: message,

171



h : hash_func

% mobileGuard_server_ns,

intruder_knowledge = {m, s,km ,ks, h, ki, inv(ki),inv(km)}%,tki,mki}

composition

session(m,s,km,ks,k,tk,mk,ticket,h)

/\ session(m,s,km,ks,k,tk,mk,ticket,h)

/\ session(m,i,km,ki,k,tki,mki,ticket,h)

/\ session(i,s,ki,ks,k,tki,mki,ticket,h)

end role

%%

goal

secrecy_of secMK, secTK

% authentication_on mobileGuard_server_ns

% authentication_on server_mobileGuard_nm

end goal

%%

environment()

172



Appendix C

Persistent Protection in Multicast

Content Delivery Protocol

Validation

In this section, we will check the validity of the proposed protocol using the AVISPA

tool. The following is the code used to validate the authentication protocol that takes

place between the MR, NSP and VS. Figure 27 illustrates the MG delivery protocol:

PROTOCOL: Mobile Guard Delivery

PURPOSE: This protocol describes the interaction among three major entities:

the merchant, the viewer software and the network service provider. The purpose

of this protocol is to securely deliver an individualized mobile guard instance to the

viewer software, which is located in end user’s machine. The individualized mobile

guard is a plug-in software that contains the media key. This protocol allows the

network server to authenticate and authorise the viewer software to view a requested

media document.

173



ALICE BOB notation:

• VS ->MR : VS.NSP.MR,{{Nvs.VS.NSP.Minfo.Money} KMR} Kvm

• MR ->VS : VS,NSP,MR,{{VS,NSP,MR,K,Nvs,Nmr} Kvm,Ticket} Kvm

• VS ->NSP: VS,NSP,Nvs,{Ticket.{Nvs.Nmr} K} Kvn

• NSP ->MR: TicketID,{{Nvs,Nmr,NSP,MR,VS,TicketID} KMR} K

• MR ->NSP: TicketID,{{Nvs,Nmr,NSP,MR,VS,TicketID,MGi} KNSP}} K

• NSP ->VS: VS,NSP,MR,{{Nmr,Nvs,Individualized-MGi K} K} Kvn

• VS ->NSP: {HashValue} K

• NSP ->VS: VS,NSP,MR,{VS,NSP,Nvs,Nmr,MK} HashValue

PROBLEMS:

• Secrecy of session key K that is established to be shared between the NSP and

VS

• Secrecy of the MG

• Secrecy of the ticket

• Secrecy of the media key mk

• Authentication on the VS nonce

• Authentication on the MR nonce

ATTACKS: No attack has been found

174



role vs (VS, MR, NSP: agent,

KNSP, KMR : public_key,

% KNSP : NSP’s public-key and KMR : MR’s public-key

Kvm,Kvn : symmetric_key,

% Kvm:Access key between VS and MR Kvn:Access key between VS and NSP

Money, Minfo : text,

% Money : Payment-token and Minfo : Media information

Hash: hash_func,

% Hash : One way hash-function

SND_MRVS, RCV_MRVS, SND_NSPVS, RCV_NSPVS: channel(dy))

% SND_MRVS, RCV_MRVS, SND_NSPVS and RCV_NSPVS are channel controlled by dy

played_by VS

def=

local State : nat,

Nvs,Nmr : text,

% Nvs: a nonce generated by the VS

% Nmr: a nonce generated by the MR

K : symmetric_key,

% K : shared-key issued by the merchant

Ticket : {symmetric_key.text.text.text.text.agent.agent.agent}_public_key,

% The Ticket issued by the MR

MK: symmetric_key, % media key

MGi: {text.symmetric_key.text}_symmetric_key,

% MGi: An instance of mobile guard for a specific trust-interval

HashValue : message

% Hash-value: used for integrity checking for the MG+VS+MK+Ticket

const vs_mr_na, vs_nsp_na, vs_nsp_nb : protocol_id

init State := 0

transition

175



% generate nonce Nvs and choose the suaitable media information

% and send them with the Money token to the merchant

1. State = 0 /\ RCV_NSPVS(start)

=|>

State’:= 2 /\ Nvs’ := new()

/\ SND_MRVS(VS.NSP.MR.{{Nvs’.VS.NSP.MR.Minfo.Money}_KMR}_Kvm)

2. State = 2

/\ RCV_MRVS(VS.NSP.MR.{{VS.NSP.MR.K’.Nvs.Nmr’}_Kvm.Ticket’}_Kvm)

=|>

State’:= 4

/\ SND_NSPVS(VS.NSP.MR.{Ticket’.{Nvs.Nmr’}_K’}_Kvn)

/\ secret(Ticket’,ticket,{VS,NSP,MR})

3. State = 4

/\ RCV_NSPVS(VS.NSP.MR.{{Nmr.Nvs.MGi’}_K}_Kvn)

=|>

State’:= 6

/\ HashValue’ := Hash(VS.MGi’)

/\ SND_NSPVS({HashValue’}_K)

4. State = 6

/\ RCV_NSPVS(VS.NSP.MR.{VS.NSP.Nvs.Nmr.MK’}_HashValue)

=|>

State’:= 8

/\ request(VS,MR,vs_mr_na,Nvs)

/\ request(VS,NSP,vs_nsp_na,Nvs)

/\ request(VS,NSP,vs_nsp_nb,Nmr)

176



end role

%%

role mr (VS, MR, NSP : agent,

KNSP, KMR : public_key,

% KNSP : NSP’s public-key and KMR : MR’s public-key

Kvm : symmetric_key,

% Kvm:Access key between VS and MR

Money, Minfo : text,

% Money : Payment-token and Minfo : Media information

SND_VSMR, RCV_VSMR,SND_NSPMR, RCV_NSPMR: channel(dy))

% SND_VSMR, RCV_VSMR,SND_NSPMR and RCV_NSPMR are channel controlled by dy

played_by MR

def=

local State : nat,

Nmr,Nvs : text,

% Nvs: a nonce generated by the VS

% Nmr: a nonce generated by the MR

K : symmetric_key,

% K : shared-key issued by the merchant

TicketID : text,

% The Ticket ID generated by the MR

PC: text, % protection code.

MK: symmetric_key % Media key

const vs_mr_na : protocol_id

init State := 1

transition

1. State = 1

177



/\ RCV_VSMR(VS.NSP.MR.{{Nvs’.VS.NSP.MR.Minfo.Money}_KMR}_Kvm)

=|>

State’:= 3

/\ Nmr’ := new() /\ TicketID’:= new() /\ K’ := new()

/\ SND_VSMR(VS.NSP.MR.{{VS.NSP.MR.K’.Nvs’.Nmr’}_Kvm.

{K’.Nvs’.Nmr’.TicketID’.Minfo.MR.NSP.VS}_KNSP}_Kvm)

/\ secret(K’,k,{VS,NSP,MR})

/\ witness(MR,VS,vs_mr_na,Nvs’)

2. State = 3

/\ RCV_NSPMR(TicketID.{{Nvs.Nmr.NSP.MR.VS.TicketID}_KMR}_K)

=|>

State’:= 5 /\ MK’:= new()

/\ PC’:= new()

/\SND_NSPMR(TicketID.{{Nvs.Nmr.NSP.MR.VS.TicketID.PC’.MK’}_KNSP}_K)

/\ secret(PC’,mg,{VS,NSP,MR})

end role

%

role nsp (VS, MR, NSP: agent,

KNSP, KMR : public_key,

% KNSP : NSP’s public-key and KMR : MR’s public-key

Kvn : symmetric_key, % Kvn:shared key between VS and NSP

% Kvn:Access key between VS and NSP

Minfo : text,

% Minfo : Media information

Hash: hash_func,

SND_VSNSP, RCV_VSNSP, SND_MRNSP,RCV_MRNSP: channel(dy))

% SND_VSNSP, RCV_VSNSP, SND_MRNSP and RCV_MRNSP are channel controlled by dy

178



played_by NSP

def=

local State : nat,

Nmr, Nvs : text,

% Nvs: a nonce generated by the VS

% Nmr: a nonce generated by the MR

K : symmetric_key,

% K : shared-key issued by the merchant

TicketID : text,

% The Ticket ID generated by the MR

PC: text, % Protection Code

MK: symmetric_key, % Media key,

HashValue : message

% Hash : One way hash-function

const vs_nsp_na,vs_nsp_nb: protocol_id

init State := 5

transition

1. State = 5

/\ RCV_VSNSP(VS.NSP.MR.{{K’.Nvs’.Nmr’.TicketID’.Minfo.MR.NSP.VS}_KNSP.

{Nvs’.Nmr’}_K’}_Kvn)

=|>

State’:= 7

/\ SND_MRNSP(TicketID’.{{Nvs’.Nmr’.NSP.MR.VS.TicketID’}_KMR}_K’)

/\ witness(NSP,VS,vs_nsp_na,Nvs’)

/\ witness(NSP,VS,vs_nsp_nb,Nmr’)

2. State = 7 /\ RCV_MRNSP(TicketID.{{Nvs.Nmr.NSP.MR.VS.TicketID.PC’.MK’}_KNSP}_K)

179



=|>

State’:= 9 /\ SND_VSNSP(VS.NSP.MR.{{Nmr.Nvs.{PC’.MK’.TicketID}_K}_K}_Kvn)

/\ secret(MK’,mk,{VS,NSP})

3. State = 9 /\ RCV_MRNSP({HashValue’}_K)

=|>

State’:= 11

/\ HashValue’ := Hash(VS.{PC.MK.TicketID}_K)

/\ SND_VSNSP(VS.NSP.MR.{VS.NSP.Nvs.Nmr.MK}_HashValue’)

end role

%%

role session(VS, MR, NSP : agent,

KNSP, KMR : public_key,

Kvm, Kvn : symmetric_key,

Money, Minfo : text,Hash: hash_func)

def=

local

SMRVS, RMRVS,

SNSPVS, RNSPVS,

SVSNSP, RVSNSP,

SMRNSP, RMRNSP,

SVSMR, RVSMR,

SNSPMR, RNSPMR : channel (dy)

composition

vs (VS, MR, NSP, KNSP, KMR, Kvm,Kvn, Money, Minfo, Hash, SMRVS, RMRVS,

SNSPVS, RNSPVS)

/\ mr(VS, MR, NSP, KNSP, KMR, Kvm, Money, Minfo, SVSMR,

RVSMR,SNSPMR,RVSMR)

/\ nsp (VS, MR, NSP, KNSP, KMR, Kvn, Minfo, Hash, SVSNSP, RNSPVS,SMRNSP,RMRNSP)

end role

180



%%

role environment()

def=

const vs1, nsp1, mr1 : agent,

knsp, kmr, ki : public_key,

kvm, kvn : symmetric_key,

money, minfo : text,

h: hash_func,

vs_mr_na, vs_nsp_na, vs_nsp_nb,k, mg, ticket,mk: protocol_id

% Nonce_VS_NSP , Ticket_Key, Mobile_Guard_Mobile_protection, Media_Key

intruder_knowledge = {vs1, nsp1, mr1, ki,inv(ki), knsp, kmr, h }

composition

session(vs1,mr1,nsp1,knsp,kmr,kvm,kvn,money, minfo,h)

/\ session(vs1,mr1,i,knsp,ki,kvm,kvn,money, minfo,h)

/\ session(i,mr1,nsp1,knsp,kmr,kvm,kvn,money, minfo,h)

/\ session(vs1,i,nsp1,knsp,ki,kvm,kvn,money, minfo,h)

end role

%%

goal

secrecy_of k

secrecy_of mg

secrecy_of ticket

secrecy_of mk

authentication_on vs_mr_na

authentication_on vs_nsp_na

authentication_on vs_nsp_nb

end goal

%%

environment()

181


