
TAXONOMY-BASED PRUNING IN GENERALIZED

FREQUENT ITEMSETS MINING

LinLin Ma

A Thesis

In

The Department

Of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Computer Science at

Concordia University

Montréal, Québec, Canada

March 2012

 LinLin Ma, 2012

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: LinLin Ma

Entitled: Taxonomy-based Pruning in Generalized Frequent Itemsets Mining And

submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science Degree

Complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

___ Chair
Dr. B. C. Desai
___ Examiner
Dr. N. Shiri
___ Examiner
Dr. Y. Yan
___ Supervisor
Dr. Gosta Grahne

Approved by __
 Chair of Department or Graduate Program Director

 __
 Dr. Robin A. L. Drew, Dean

 Faculty of Engineering and Computer Science

Date

iii

ABSTRACT

The orignal purpose of data mining is for analysis of supermarket transaction data.

Now with the rapid development in business, industry and science, data mining is

used in lots of domains, so mining interesting information from large database

becomes more important. Data mining includes two main parts: frequent itemsets

mining and association rules mining. And frequent itemsets mining plays an essential

role between them.

Our thesis is focused on frequent itemsets mining. Previous studies on frequent

itemsets mining is at single or multiple concept level, however, mining frequent

itemsets at flexible multiple concept level may help finding more specific and useful

information from huge data. In this thesis, four methods are introduced for mining

frequent itemsets at flexible multiple level by extension of Apriori and Eclat

algorithms. We also implement two algorithms for frequent pairs mining. We draw

some conclusions about which method is suitable for which distributions of data.

iv

 ACKNOWLEDGMENTS

 First and foremost, I would like to express my deepest gratitude to my

 supervisor, Dr. Gosta Grahne, whose precious guidance, support and

 encouragement were pivotal in establishing my self-confidence in this

 endeavor. I would also thank my fellow researcher Dr.Adrain Onet for

 his help and encouragement. He spent a lot of time on my research and

 gave me lots of good ideas. He contributed substantially to the

 completion of my thesis.

 I would also like to thank my friends who give my lots of support

 and help.

 Finally, I wish to express my gratitude to my family members - my

 parents, my parents-in-law, my husband and my son for their love and

 support.

Contents

Contents v

List of Tables vii

List of Figures ix

Nomenclature x

1 Introduction 1

1.1 Description of problem . 1

1.2 Taxonomy of the Product Schema 4

1.3 Encoded mode . 5

1.4 Motivations . 8

1.5 Our contribution . 8

1.6 Thesis Organization . 9

2 Preliminaries 10

2.1 Single level frequent itemset mining 10

2.1.1 Apriori . 10

2.1.2 FP-growth . 15

v

CONTENTS

2.1.3 Eclat . 20

2.1.4 Closed pattern mining . 23

2.2 Multi-level or Cross-level frequent itemset mining 25

2.2.1 Multi-level frequent itemset mining 25

2.2.2 Cross-level frequent itemset mining 31

3 Item definitions and Properties 32

3.1 Properties of itemsets . 34

4 The Algorithms 39

4.1 ET-apriori . 40

4.2 LP-apriori . 45

4.3 ET-eclat . 48

4.4 LP-eclat . 50

4.5 ET-Pairs . 53

4.6 LP-Pairs . 57

5 Experimental Result 61

5.1 Data generator . 61

5.2 Frequent itemset Performance Study 64

5.3 Frequent Pairs Performance Study 71

6 Future Work 75

7 Conclusions 76

References 77

vi

List of Tables

1.1 Encoded Original Transaction table 4

2.1 Encoded Transaction table . 11

2.2 Pseudo code of Apriori algorithm 13

2.3 Ordered Transaction table . 16

2.4 Pseudo code of FP-growth algorithm 20

2.5 Pseudo code of Eclat algorithm 22

2.6 Pseudo code of Eclat algorithm 28

2.7 Encode Transaction Table for ML T2L1 29

2.8 Filtered Transaction Table for ML T2L1 30

3.1 Encoded Transaction table using the taxonomy 33

4.1 Encoded Original Transaction table 40

4.2 ET-apriori Algorithm . 41

4.3 Extended Transaction table using the taxonomy 43

4.4 Filtered Transaction table . 43

4.5 LP-apriori Algorithm . 45

4.6 Filtered table by using Frequent level-1 size-1 itemset for LP-apriori 48

vii

LIST OF TABLES

4.7 ET-eclat Algorithm . 49

4.8 LP-eclat Algorithm . 51

4.9 Encoded original transaction table for pairs 53

4.10 ET-Pairs Algorithm . 54

4.11 Extended Transaction table using the taxonomy 56

4.12 Frequent Pairs Result . 56

4.13 LP-Pairs Algorithm . 58

5.1 Data Generator Description . 64

viii

List of Figures

1.1 Hierarchy of Milk attributes . 4

1.2 An example of a product schema 6

1.3 A hierarchy relation of Milk and Café with their encoding 7

1.4 The candidates’ composite lattices 7

2.1 Frequent patterns in TDB generated by Apriori 12

2.2 An example of FP-tree . 17

2.3 Conditional tree for A . 19

2.4 Conditional tree for E . 19

2.5 Vertical data layout . 22

2.6 Intersecting tid-lists of B and C 22

2.7 Diffsets for Pattern Counting . 24

2.8 A-closed pattern mining . 26

2.9 Frequent itemsets for level-1 . 29

2.10 Frequent itemsets for level-2 . 30

2.11 Frequent itemsets for level-3 . 30

3.1 Frequent size two itemset . 34

ix

LIST OF FIGURES

4.1 Frequent Itemsets Tree for ET-apriori from input of Table 4.1 with

min-sup is 0.5 . 44

4.2 Frequent Itemsets Tree for Each Level 47

4.3 Tid-List for frequent one item . 49

4.4 Frequent itemsets Result for item ’111’ 50

4.5 Tid-List for frequent one items for each level 52

4.6 Prefix tree of frequent itemsets of first level 52

4.7 Frequent Size-1 items Tid-List . 56

4.8 Hierarchy Tree for Frequent Size-1 items with Tid-List 59

4.9 Listing Structure for Frequent Size-1 items with Tid-List 60

5.1 Item Represent Tree . 62

5.2 6-200000-10-50-200000$20000 . 65

5.3 6-200000-15-30-200000$3000 . 65

5.4 6-200000-5-50-200000$100000 . 66

5.5 6-100000-3-30-100000$2000 . 66

5.6 3-500-10-30-500$100000 . 67

5.7 3-500-15-30-500$3000 . 67

5.8 3-500-5-30-500$100000 . 68

5.9 6-200000-5-5000-200000$10000 . 68

5.10 Top left: 6-200000-10-50-200000$3000; top right: 6-200000-15-

30-200000$3000; center left: 6-200000-5-50-200000$3000; center

right: 6-200000-5-50-200000$100000; bottom left: 3-500-15-30-

500$3000; bottom right: 3-500-5-30-500$100000. 72

5.11 Real World Groceries . 73

x

LIST OF FIGURES

LIST OF ACRONYMS

DB Database

TID Transcation ID

ET-apriori Expanded Trascation Apriori Mining

LP-apriori Level Pruning Apriori Mining

ET-Elcat Expanded Trascation Elcat Mining

LP- Elcat Level Pruning Elcat Mining

ET-Pairs Expanded Trascation Pairs Mining

LP- Pairs Level Pruning Pairs Mining

FIM Frequent Itemset Mining

TDB Transaction Database

Min-sup Minimum Support

xi

Chapter 1

Introduction

1.1 Description of problem

The discovery of frequent itemsets is at the core of many data mining tasks,

such as association rules, correlations, classifiers, clusters, etc. An item can be

a consumer product, a medical symptom, a word in a document, a webpage,

etc. Our prototypical application is the “market basket”, in which the items are

consumer products that are bought by a customer in a transaction. The task is

then to find all sets of items that are frequent, i.e. they occur in at least a given

fraction σ of the transactions. The quantity σ can also be given as an absolute

number, which is called the minimum support, or min-sup. Since its inception in

Agrawal et al. [6], mining frequent itemsets has been the focus of intense research

that has resulted in countless algorithms and publications.

In many applications, the items can be aggregated into categories, which can

be further aggregated until a taxonomy suitable for the domain is obtained. For

example, ‘skim-milk’ belongs to the category of ‘milk’, which belongs to the cat-

1

1. Introduction

egory of ‘food’. The word ‘wonder bread’ belongs to the category of ‘bread’, the

word ‘bread’ belongs to the category of ‘food’, and so on. It is clear that having a

taxonomy available will allow for the discovery of more fine-grained sets of items.

For instance, it can be more valuable to know that {white bread, milk} is fre-

quent, than simply knowing that “higher-level” itemset {bread, milk} is frequent.

Single-level frequent itemset mining will generate one concept level itemset like

{bread, milk}. Multi-level frequent itemset mining will generate itemsets whose

items are at the same level, e.g. {white bread, 2% milk} or {bread, milk}.
In this paper we study the problem of mining mix-level frequent itemsets.

Since, for instance, there are naturally more ‘milk’ items than ‘Lactaid Milk’

items, the min-sup σ might depend on the level of the taxonomy. Furhter-

more, some measures could also be used to determine the “interestingness” of

a mix-level frequent itemset, allowing us, for example, to discard the itemset

{white bread, milk} in favor of the more “interesting” itemset {bread, Lactaid Milk},
or vice versa. There is, however, no universally agreed interestingness measure

(for a survey, see [15]). We, therefore, make the simplified assumption that the

min-sup σ is the same for each level, and consider the problem of mining all

frequent mix-level itemsets.

Related work: Frequent itemsets mining is to discover the useful patterns

from the databases. It is an important and progressive topic in the field of Data

Mining. It was first presented in [4]. Agrawal’s Apriori [4], Han’s FP-Growth [21]

and Mohammed J. Zaki’s Eclat [40] are considered as three of the most significant

contributions in data mining.

Later lots of research based on these three basic algorithms are proposed.

[11; 28; 33; 37] use the whole structures and procedures of Apriori. Zaki[39]

2

1. Introduction

gets some pruning on Eclat. MAFIA [12] and SPAM [9] use vertical bit-vectors

for fast itemset and sequence mining respectively, are also considered a vertical

format. [2; 3; 17; 21] are based on FP-Growth. For more detail, some work

on association rules maintenance [8; 13; 14; 36], episode mining [25], mining

sequential patterns [7; 35], discovering functional and approximate dependencies

[22; 23] Previous work has been focused on single concept level [4; 6; 10; 16; 21;

39; 40] or multiple concept levels frequent itemsets mining [18; 20; 26; 34]. Little

work has been done in the flexible multiple concept levels. For example, if we

have a taxonomy for the product like {Category, Brand, Content}, the former

research can generate symmetrical frequent itemsets of 70% customers that buy

{bread, milk} or {white bread,2% milk},all the items in a itemset are in the same

level. But now one may be interested in finding frequent itemsets with alternative,

multiple hierarchies. So we give the applications which finding frequent itemsets

at flexible concept level. For example, they can generate asymmetric frequent

itemsets of 70% customers that buy {Pom white bread,Quebon milk}. R. Srikan
has introduced an algorithm [34] which can generate the flexible concept level

frequent itemsets based on Apriori like our ET-apriori. Later, Runying Mao has

introduced a method that can generate the flexible concept level frequent itemsets

base on FP-Growth [26]. But it is limited by the concept level due to the FP-

Growth’s data structure. That means it is only suitable for small concept level

and small number of items. To restrict the frequent itemsets, we would introduce

the concept of minimum support (min-sup hereafter)which has been defined in

Agrawal’s paper [4]. Informally, the support of a pattern A in a set of transactions

S is the probability that pattern A occurs in S.

3

1. Introduction

TID Items

T1 111,212 ,112,222,312
T2 312,113,231
T3 111,212,312,121,232
T4 212,211,311
T5 111, 212,312,221,321
T6 111, 312,322,412

Table 1.1: Encoded Original Transaction table

1.2 Taxonomy of the Product Schema

Most of time, products are organized as hierarchies of their attributes. A sim-

ple hierarchy example is: ‘milk’, ‘Quebon milk’ and ‘2% Quebon milk’. In the

presence of hierarchies, we denote ‘milk’ � ‘Quebon milk’ � ‘2% Quebon milk’.

In other words, the count of ‘milk’ in transaction dataset is greater than ‘Que-

bon milk’ , and ‘Quebon milk’ is greater than ‘2% Quebon milk’. We show this

hierarchy relation in a drill-down process in Figure 1.1

Figure 1.1: Hierarchy of Milk attributes

4

1. Introduction

1.3 Encoded mode

First of all, we need to construct the taxonomy of the Product, and each position

in this product hierarchy should be given a unique encoded digit which requires

fewer bits than the corresponding food-identifier. We assume that one shopping

transaction database contain three parts: 1) One item data set which contains the

description of each product item in I in the form of (Pi, Name), where encoded

digit Pi ∈ I, 2) a customer transaction table like Table 1.1, which consists of a set

of (TIDi, {Px, . . . , Py}), where TIDi is a transaction identifier and Pi ∈ I (for

i = x, . . . , y), 3) the notation of ′∗′ represents a class of object in an encoded

digit Pi. To clarify above, an abstract example is illustrated below.

Example 1 An instance that shows the taxonomy information of food schema

with hierarchy is shown in Figure 1.2. Let “Category” represent the first-level

concept, “Brand” for the second level, and “Content” for the third level. Thus we

can represent a product by one unique encoded digit. For example,‘Ground Café of

Van’ will be encoded as ‘311’ in which the first digit, ‘3’ represents ‘Café’ at level1,

the second digit ‘1’ for the ‘Van’ at level2, the last ‘1’ for the content ‘Ground’ at

level3. Then by using this taxonomy tree, we can convert the customers shopping

transaction database to the encoded a customer transaction table as Table 1.1.

In our research, we focus on the flexible multiple level frequent item sets

mining, which releases the restriction of mining among the concepts at the same

level of a hierarchy. It may generate frequent set like ‘2% Quebon milk’, ‘Pom

bread’ ({111, 22*}) in which the two items are at different levels of a hierarchy.

In Figure 1.3 we show a simple example for ‘milk’ and ‘Café’ hierarchy relation

and their encoding.

5

1. Introduction

Fo
od

(*
**

)

M
ilk

(1
**

)
B

re
ad

(2
**

)
C

af
e

(3
**

)

Q
ue

bo
n

(1
1*

)
N

es
tle

(1
2*

)
W

on
de

r
(2

1*
)

P
om

(2
2*

)
S

un
m

ai
d

(2
3*

)
V

an
(3

1*
)

M
ax

w
el

l
(3

2*
)

2% (1
11

)
S

ki
m

(1
13

)
3.

25
%

(1
12

)
W

he
at

(2
11

)
W

hi
te

(2
12

)
G

ra
pe

(2
21

)
B

ur
ge

r
(2

22
)

S
lic

e
(2

31
)

B
ag

el
(2

32
)

G
ro

un
d

(3
11

)
In

st
an

t
(3

12
)

C
ho

co
la

te
(1

21
)

B
la

ck
(3

21
)

W
hi

te
(3

22
)

C
at

eg
or

y

B
ra

nd

C
on

te
nt

Figure 1.2: An example of a product schema

6

1. Introduction

Milk (1*)

Quebon milk (11) Nestle milk (12)

Café (2*)

Quebon milk (21)

Figure 1.3: A hierarchy relation of Milk and Café with their encoding

Figure 1.4: The candidates’ composite lattices

7

1. Introduction

Then we give the size one and size two candidates’ composite lattices for

multiple, hierarchical dimensions as shown in Figure 1.4 using the example in

Figure 1.3.

1.4 Motivations

Even though more than a decade of study over frequent itemsets mining, it has

been noticed that traditional mining methods can not meet today’s needs. We

need more detailed information and more efficient mining methods. First,it is

more interesting to mine the flexible multiple concept levels frequent patterns.

For example, besides that finding 60% customers buy ‘milk’ and ‘bread’ together,

it will be more desirable that 50% customers buy ‘Quebon 2% milk’ and ‘whole

wheat bread’ together. Second, some of the algorithms concentrate on multiple

concept levels, which can only find symmetrical information. For example, it

can find ‘Quebon milk’ and ‘pom Bread’. Last, few algorithm can mine flexible

multiple concept levels frequent itemset based on Apriori and FP-growth. For

the former, it just extended transcations with low efficiency. And for the second,

since FP-growth has a complicated data structure, it has a very low efficiency for

mining high level data structure.

1.5 Our contribution

In this study, we extend the itemset mining from single level, muiltiple level to

flexible multiple level. And we analyze some previous research work. Since less

work was done in flexible muiltiple levels itemset mining, we try lots of methods to

8

1. Introduction

tracle this problem, and finally four algorithms ET-apriori, LP-apriori, ET-Eclat

and LP-eclat are developed and examined. All of them can solve the multiple

level frequent itemsets mining problem. The experimental results indicate that

certain algorithms could be fastest for certain kinds of data distributions. We

also implemented two fast algorithms for mining frequent pairs. One of them

using hierarchy structure is shown to be a faster one in most of the cases.

1.6 Thesis Organization

This document is organized as follows. In chapter 1, the problem is proposed.

In chapter 2, we introduce the related work. In chapter 3 we introduce some

definitions and the properties of the item or itemsets. In chapter 4, four algo-

rithms of flexible multiple level frequent itemsets mining are studied. And two

algorithms of mining frequent pairs are impelemented. In chapter 5, experimen-

tal results show the performance of four algorithms which can help us choose the

relevant algorithm for different distribution of the data. The future work and the

conclusion are presented in chapter 6 and 7.

9

Chapter 2

Preliminaries

2.1 Single level frequent itemset mining

In the recent years many algorithms on mining single-level frequent itemset have

been proposed. Each of them has its distinctive merits. Practically, all of them

can be classified into three different basic algorithms: Apriori, FP-growth and

Eclat, which will be introduced in the following subsections.

2.1.1 Apriori

Apriori is considered as the first FIM algorithm[4] proposed by Rakesh Agrawal

and Ramakrishnan Srikant from IBM Almaden Research Center.

A detailed description of Apriori can refer to [5]. Briefly, it uses a bottom-up

strategy for the traversal of the search space, i.e., beginning from an empty set

and then generate k− itemsets (there are k items in it and k from 1). It performs

an iterative approach to find k+1−itemsets using k−itemsets. First it scans the

database and generates the frequent 1− itemset and then it generates candidates

10

2. Preliminaries

TID Items

10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Table 2.1: Encoded Transaction table

of k − itemsets and scans the database to find frequent k-itemsets until the

candidates of k+1− itemsets is NULL. The total number of the full scan of the

database is k + 1 times.

Example 2 This example illustrates the Apriori Algorithm. A transaction database

TDB is given in Table 2.1. < 10, {A, C, D} > is a transaction, in which 10

is the transaction identifier, and {A, C, D} is a set of items, which can also be

denoted as ACD.

Given an absolute min-sup equals to 2. Figure 2.1 lists the steps how frequent

patterns in TDB are generated using the Apriori algorithm.

Then the frequent patterns in TDB we can get are:

{A}:2 ; {B}:3 ; {C}:3 ; {E}:3 ;

{A, C}:2; {B, C}:2; {B, E}:3; {C, E}:2;
{B, C, E}:2.
The total number of the database scan is 3.

The pseudo-code for the Apriori algorithm is given as below in Table 2.2.

The algorithm mainly includes three steps: join step, prune step and stop step.

• The join step:

11

2. Preliminaries

Itemset Support

 {A} 2

 {B} 3

 {C} 3

 {D} 1

 {E} 3

Itemset Support

 {A} 2

 {B} 3

 {C} 3

 {E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset Support

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset Support

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset Support

{B, C, E} 2

Itemset Support

{B, C, E} 2

1st Scan->C1 L1

min-sup = 2

C2

2nd Scan->C2
L2

C3

3rd Scan->C3 L3

Figure 2.1: Frequent patterns in TDB generated by Apriori

12

2. Preliminaries

Apriori Algorithm:
1: Ck : Candidate itemset of size k
2: Fk : frequent itemset of size k
3: F1 : = {frequent items}
4: for (k = 1; Fk �= ∅; k ++) do begin
5: Ck+1 = candidates generated from Fk;
6: for each transaction t in database do
7: increase the count of all candidates in Ck+1 that are contained in t
8: Fk+1= candidates in Ck+1 which Ck+1.suppot ≥ min− sup
9: end
10: Return

⋃
kFk

Table 2.2: Pseudo code of Apriori algorithm

– Find Fk in line 5, the set of candidate of k − itemsets, join Fk−1 with

itself.

– Rules for joining: 1.Order the items first so you can compare item by

item 2.The join of Fk−1 is possible only if its first (k − 2) items are in

common

• The Prune step:

– The “join” step will produce all k − itemsets, but not all of them are

frequent.

– Scan DB in line 6 to see which itemsets are indeed frequent and discard

the others.

• Stop when “join” step produces empty set in line 4.

Based on the Apriori algorithm, several optimized algorithms are proposed to

improve the performance by adding more specific techniques while keeping the

same candidates generation structure.

13

2. Preliminaries

AprioriTid, AprioriHybrid

Along with the basic Apriori Algorithm, Agrawal et al.[4] proposed two other al-

gorithms, AprioriTid and AprioriHybrid. AprioriTid replaces all the transactions

in the database by the set of candidate itemsets that occur in that transaction.

It repeats this process in every iteration k as detailed in [6]. AprioriTid is much

faster in the later iterations when there are less frequent patterns, it can con-

vert the dataset much smaller, but it is much slower than Apriori in the early

iterations. For improvement, another algorithm AprioriHybrid was proposed by

Agrawal et al.[4]. It combines Apriori and AprioriTid, and lets the algorithm

decide to switch between Apriori and AprioriTid.

Combining passes

Another enhancement, tries to scan as many iterations as possible in once when

only few candidate patterns can be generated at the higher iterations. This com-

bination technique was mentioned in [6].

Sampling

Since Apriori Algorithm relies on multiple database scans, the Sampling algo-

rithm, proposed by Toivonen [37], uses at most two scans through the database

by selecting a random sample from the database, and then uses this sample to

predict all the possible frequent patterns of the whole database, and verifies the

results with the rest of the database. However, the performance of the Sampling

algorithm highly depends on the sample extracted from the database. Actu-

14

2. Preliminaries

ally transactions databases are seldom uniform distributed, hence itemsets that

are frequently appeared in the sample might turn to be infrequent in the whole

database.

2.1.2 FP-growth

Later, a depth-first algorithm, FP-growth, was proposed by Han [21]. FP-growth

uses a trie structure to store the database in the main memory. It uses a com-

pressed representation of the database by an FP-tree. Once an FP-tree is con-

structed, it uses a recursive divide-and-conquer approach to mine the frequent

itemsets.

• First step: it scans data to determine the count of each item. Then it sorts

items in the database in ascending order.

• Second step: it makes a second pass over the data to construct the FP-

tree. It creates the “nul” root node of the tree. For each transaction in

the ordered database, a branch is added for each transaction. Each node

in the FP-tree also stores a counter which keeps track of the number of

transactions that share that node. When it adds a branch to the FP-tree,

it follows the rules that if there already exists a common prefix, it increases

the count of the common node and adds new nodes to the FP-tree. At the

same time, maintaining a header table that each node on the tree has a link

via the same node to the header table.

Additionally, the header table also has a support record for each item. Why

we store the transaction items in support of descending order? Because

15

2. Preliminaries

TID Items

10 C, A
20 B, C, E
30 B, C, E, A
40 B, E

Table 2.3: Ordered Transaction table

we can save the database using smallest space since the more frequently

occurring items are arranged closer to the root of the FP-tree and thus are

more likely to be shared.

• Third step: mining frequent item pattern uses a partition-based, divide-and

conquer method rather than Apriori-like bottom-up generation of frequent

patterns combinations.

Inherently, it converts the problem of finding long frequent patterns to look for

shorter ones and then join with the suffix.

Thus, FP-growth only needs two database scans. One is to find frequent one

items and order the transactions according to the frequent one item support and

the other is to build FP-tree. The rest operation is to recursively mine frequent

items on the FP-tree using FP-growth.

Example 3 We will illustrates the FP-growth Algorithm in following example.

Given an absolute min-sup equals to 2. Continue with Table 2.1.

• Step 1: After the first scan we get a new ordered table as Table 2.3 and

frequent one itemsets: {A}:2 ; {B}:3 ; {C}:3 ; {E}:3 .

16

2. Preliminaries

Figure 2.2: An example of FP-tree

• Setp 2: Scan the transaction database TDB the second time. For each

transaction, insert a branch to construct a FP-tree. The result is shown as

Figure 2.2.

• Step 3: Use FP-growth to recursively mine frequent item patterns from FP-

tree. We describe the FP-growth algorithm as below.

We mine FP-tree from bottom to top. Starting from A, for each frequent 1-

item, we construct its conditional pattern base. A conditional pattern base

for an item/itemset contains the transactions that end with that item/itemset.

We then treat the conditional pattern base the same as a transaction database

and build the conditional FP-tree. The FP-growth algorithm is recursively per-

formed on such conditional FP-trees. Item A’s conditional pattern base is:

P = {(C : 1), (B : 1, C : 1, E : 1)} .The conditional tree for A is shown as

17

2. Preliminaries

Figure 2.3.

Count for A is 2, so {A} is frequent itemset. Then Recursively apply FP-

growth on P . The conditional pattern base for E within conditional base for

A is P = {(B : 1, C : 1)}. Count for E is 1. So {A,E} is not frequent. The

conditional pattern base for C within conditional base for A is P = {(C : 2)}.
Count for C is 2. So {A,C} is frequent. The conditional pattern base for B

within conditional base for A is P = {(B : 1)}. Count for B is 1. So {A,B} is

not frequent.

After we mine item A, we use this algorithm on E. Item E’s conditional pattern

base is: P = {(B : 2, C : 2)} .The conditional tree for E is shown as Figure 2.4.

Count for E is 3, so {E} is frequent itemset. Then recursively apply FP-growth

on P . Count for {C,E} is 2, count for {B,E} is 3, count for {B,C,E} is 2. So

{C, E}, {B, E}, {B, C, E} is frequent itemsets.

We continue use the algorithm on C. Count for C is 3, and count for {B,C} is

2. So they are frequent itemsets. Last, we use the algorithm on B, count for B

is 3, so {B} is frequent itemset.

Combined with all the frequent 1-items generated during the first database scan,

we get the same set of frequent patterns:

{A}:2; {B}:3; {C}:3; {E}:3;
{A, C}:2; {B, C}:2; {B, E}:3; {C, E}:2;
{B, C, E}:2.

FP-growth only needs two database scans. For some database that generate

lots of frequent item patterns, FP-growth may require more time when compared

with Apriori, but for only a small portion of the candidate sets will survive to

18

2. Preliminaries

Figure 2.3: Conditional tree for A

Figure 2.4: Conditional tree for E

19

2. Preliminaries

FP-growth Algorithm:
Input: D, σ, I ⊆ I

Output: F[I](D, σ)
1: F[I] = {}
2: for all i ∈ I occurring in D do
3: F[I] = F[I] ∪ {I ∪ {i}}

// Create Di

4: Di = {}
5: H = {}
6: for all j ∈ I occurring in D such that j > i do
7: if support (I ∪ {i, j}) ≥ σ then
8: H = H ∪ {j}
9: end if
10: end for
11: for all (tid,X) ∈ D with i ∈ X do
12: Di = Di ∪ {(tid,X ∩H)}
13: end for

//Depth-first recursion
14: Compute F[I ∪ {i}](Di, σ)
15: F[i] = F[i] ∪ F[I ∪ {i}]
16: end for

Table 2.4: Pseudo code of FP-growth algorithm

become frequent patterns, Apriori loses drastically as well due to the costly can-

didate generation.

The pseudo-code for the FP-growth algorithm is given as below in Table 2.4.

2.1.3 Eclat

Another method for Frequent Itemset Generation is Eclat [40]. It uses the vertical

database layout and the Tid-list intersection based approach to compute the

support of an itemset. Before introducing the algorithm, we need to know the

20

2. Preliminaries

definition of “Cover”. The cover of an itemset X in D is a list of the transaction

ID (tid) in which X is included in those transactions. Let us see an example. We

still use Table 2.1 as the original transaction database given an absolute min-sup

equals to 2.

• Step 1: After the first scan, we convert the original database to the verti-

cal data layout as shown in Figure 2.5. Item D’s support is 1, less than

the min-sup, we eliminate it. Then we get the frequent one itemsets:

{A}, {B}, {C}, {D}.

• We use depth-first recursion to generate frequent itemset candidates, and

then for each candidate set, intersect their Tid-list to get their support.

Determine support of any k − itemset by intersecting tid-lists of two of its

(k − 1) subsets. For example: Figure 2.6 illustrates the result of itemset

{B, C}.
From {B, C} tid-list, it is easy to get their support by |cover{B, C}| to
be equal to 2. So {B, C} is frequent. The same way, we can get all the

frequent itemsets as below:

{A}:2; {B}:3; {C}:3; {E}:3;
{A, C}:2; {B, C}:2; {B, E}:3; {C, E}:2;
{B, C, E}:2.

The pseudo-code for the Eclat algorithm is given as below in table 2.5.

The advantage of Eclat is very fast support counting. We just need count the

itemset’s absolute value of its cover. The disadvantage is intermediate tid-lists

may become too large for memory usage. If the tid-list is too long, the intersect

21

2. Preliminaries

A B C D E

10 20 10 10 20

30 30 20 30

40 30 40

Figure 2.5: Vertical data layout

Figure 2.6: Intersecting tid-lists of B and C

Eclat Algorithm:
Bottom-Up(S):
1: for all atoms Ai ∈ S do
2: Ti = ∅
3: for all atoms Ai ∈ S, with j > i do
4: R = Ai ∪ Aj

5: L(R) = L(Ai) ∩ L(Aj)
6: if σ(R) ≥ min− sup then
7: Ti = Ti ∪ {R};F|R| = F|R| ∪ {R}
8: end
9: end
10: for all Ti �= ∅ do Bottom-Up(Ti)

Table 2.5: Pseudo code of Eclat algorithm

22

2. Preliminaries

operator also costs time.

Diffsets The vertical format gains a lot on the TIDs intersection operations.

The problem of these methods is that when the TID lists become too large,

it will take more time on calculations. So Jaki proprose a novel vertical data

representation called Diffset [39]. Instead of storing the entire tidset of each

member of a class, the diffsets only keep track of the differences in the TIDs

between each itemset and their prefix itemset. This method is efficient for dense

datasets. Check Figure 2.7, it shows the diffsets algorithm and how it works.

2.1.4 Closed pattern mining

We will generate a large number of frequent itemsets according to the density

of the database and min-sup. Among them, users have to do lots of analysis to

find useful patterns. So Pasquier et al. [29] proposed to mine only closed set of

frequent itemsets instead of the complete set. For example, the set of frequent

patterns {(A:3), (B:3), (AB:3)} can be represented by {(AB : 3)}. Thus we give

the definition of frequent closed itemset as below.

Definition 1 A frequent closed itemset is either a maximal frequent itemset, or

a frequent itemset whose support is higher or equal to the supports of all its proper

supersets.

Pasquier developed an Apriori-based algorithm A-Close [30]. A-close is a breath

first search method to find frequent closed itemset. Later, Pei proposed the

algorithm CLOSET [31] based on FP-Growth. In 2002, Zaki and Hsiao present

CHARM [41] algorithm which is proved to be the most efficient one among the

23

2. Preliminaries

Figure 2.7: Diffsets for Pattern Counting

24

2. Preliminaries

published. Below we will show an example of A-close to explain what closed

pattern mining is.

Example 4 We still use Table 2.1 as the original transaction database, given an

absolute min-sup equals to 2. First we generate the frequent itemsets. We then

compare the support between itemsets and their proper supersets.

The mining process is as Figure 2.8

An instance for 2-itemset and 3-itemset sup({B, C}) = sup({C, E}) = sup({B, C, E}) =
sup({B, E}). This means every transaction containing {B, C, E}must also have

{B, C} and {C, E}. So the closed set is {B, C, E} and {B, E}.

2.2 Multi-level or Cross-level frequent itemset

mining

In this section, we will introduce Han’s work [20] for multiple-level frequent pat-

tern mining. Although we have mentioned some related work in section 1.1, Han’s

work is first one which introduces the multiple-level frequent pattern mining.

2.2.1 Multi-level frequent itemset mining

Most of the time, the real transaction database appears with hierarchy infor-

mation as shown in Figure 1.2. When customer buys the ‘Quebon 2% milk’, the

transaction database will save as {milk, Quebon, 2%} by the format {Category, Brand, Content}
The highest level represents the product index, i.e., milk or bread. In the second

level, products are classified by the “Brand”, i.e., milk is divided into two sub-

class based on their brand - Quebon and Nestle. The lowest level represents the

25

2. Preliminaries

Candidate Support
{A} 2
{B} 3
 {C} 3
{D} 1
{E} 3

Candidate Support
 {A, B} 1
 {A, C} 2
 {A, E} 1
 {B, C} 2
{B, E} 3
{C, E} 2

Candidate Support
 {B, C, E} 2

Frequent Support
{A} 2
{B} 3
{C} 3
{E} 3

Frequent Support
 {A, C} 2
 {B, C} 2
{B, E} 3
{C, E} 2

Frequent Support

 {B, C, E} 2

Closed Support

 {B, C, E} 2
{B, E} 3
{A, C} 2

{C} 3

1st Scan

Prune
Infrequent

2nd Scan
Prune
Infrequent

3rd Scan

Prune
Infrequent

Prune
Infrequent

Closed pattern

Figure 2.8: A-closed pattern mining

26

2. Preliminaries

content. Mining on different level will lead to different layer of the information

hierarchy.

Generating multi-level frequent itemsets can help us get more detailed informa-

tion. Unlike single-level frequent itemsets mining, it will generate a large amount

of information, which takes more time to find interested ones. We can see that

few people buy ‘Quebon 2% milk’ and ‘Wheat Wonder Bread’ together.

Thus, compared with single-level frequent itemsets mining, multi-level frequent

itemsets mining is fine-grained to generate interesting frequent itemsets. It matches

the business needs much better.

Algorithms:

Han [20] introduces four algorithms for multi-level frequent itemset mining: ML T2L1,

ML T1LA, ML TML1 and ML T2LA. Since they are all based on Apriori with

similar data structures and little different pruning methods, we therefore only in-

troduce ML T2L11 as an example.

[ML T2L1]

Input: a hierarchy-information-encoded dataset and min-sup for each level.

Output: Multi-level frequent itemsets.

Method: A top-down method which scans the database one times for each level

and each size of itemsets.

Starting at level 1, derive each level l, the frequent k-itemsets, L[l, k] , for each

k, and the frequent itemset, ll[l] (for all k’s), as Table 2.6.

Below we will give an example in Example 5 to illusion [ML T2L1]. According

to the product hierarchy of 1.2, we encode the supermarket transaction database

to three digit format as Table 2.7. Each digit represents one concept level of

27

2. Preliminaries

ML T2L1 :
1: for (l = 1;L[l, 1] �= ∅ and l < max level; l ++) do
2: if(l == 1) then
3: L[l, 1] = get large itemsets[T [1], l)
4: T [2] = get filteed table(T [l],L[l, 1]
5: else
6: L[l, 1] = get large 1 itemsets[T [2], l)
7: endif
8: for (k = 2;L[l, k − 1] �= 0; k ++) do
9: Ck = get candidate set(L[l, k − 1])
10: for each transaction t ∈ T [2] do
11: Ct = get subsets(Ck, t)
12: for each candidate t ∈ T [2] do c.support++ end for
13: endfor
14: L[l, k] = {c ∈ Ck|c.support ≥ min− sup[l]}
15: endfor
16: LL[l] =

⋃
k L[l, k]

17: endfor

Table 2.6: Pseudo code of Eclat algorithm

28

2. Preliminaries

TID Items

T1 111,212,312
T2 312,113,231
T3 111,212,312,121
T4 212,311
T5 111,212,312,221
T6 111,312,412

Table 2.7: Encode Transaction Table for ML T2L1

hierarchy. For example: ‘111’ represent ‘2% Quebon Milk’. We suppose the

min-sup for each level is: 4, 3, 3.

Example 5 1. Step 1: Find frequent itemsets for level-1 for each size with

three scans and min-sup equals to 4. The result is as shown in Figure 2.9.

Then, using Level-1 Frequent 1-itemset we can get the filtered transaction

table shown in Table 2.8.

Frequent Support

 {1**} 5
 {2**} 5
 {3**} 6

Frequent Support

 {1**,2**} 4
 {2**,3**} 5
 {1**,3**} 5

Frequent Support

 {1**,2**,3**} 4

Level-1 Frequent 1-Itemset Level-1 Frequent 2-Itemset Level-1 Frequent 3-Itemset

Figure 2.9: Frequent itemsets for level-1

2. Step 2: find frequent itemsets for level-2 using filtered transaction Table 2.8

with min-sup equal to 3. The result is as Figure 2.10.

3. Step 3: find frequent itemsets for level-3 using filtered transaction Table 2.8

with min-sup equal to 3. The result is as Figure 2.11.

29

2. Preliminaries

Frequent Support

 {11*} 4
 {21*} 4
 {31*} 6

Frequent Support

 {11*, 21*} 3
 {21*,31*} 4
 {11*31*} 4

Frequent Support

 {11*, 21*,31*} 3

Level-2 Frequent 1-Itemset Level-2 Frequent 2-Itemset Level-2 Frequent 3-Itemset

Figure 2.10: Frequent itemsets for level-2

Frequent Support

 {111, 212,312} 3

Frequent Support

 {111} 3
 {212} 4
 {312} 5

Frequent Support

 {111,212} 3
 {212,312} 3
 {111,312} 3

Figure 2.11: Frequent itemsets for level-3

Therefore, ML T2L1 algorithm generates the multi-level frequent itemset as fol-

low:

Frequent itemset at level-1:

{{1**}, {2**}, {3**}, {1**, 2**}, {2**, 3**}, {1**, 3**}, {1**, 2**, 3**}};
Frequent itemset at level-2:

TID Items

T1 111,212,312
T2 312,113,231
T3 111,212,312,121
T4 212,311
T5 111,212,312,221
T6 111,312

Table 2.8: Filtered Transaction Table for ML T2L1

30

2. Preliminaries

{{11*}, {21*}, {31*}, {11*, 21*}, {21*, 31*}, {11*, 31*}, {11*, 21*, 31*}};
Frequent itemset at level-3:

{{111}, {212}, {312}, {111 ,212}, {212, 312}, {111, 312}, {111, 212, 312}}.

2.2.2 Cross-level frequent itemset mining

Several studies on Cross-level frequent itemsets mining are also proposed. R.

Srikan has introduced an algorithm [6] which can generate flexible concept level

frequent itemsets based on Apriori like the ET-apriori proposed in this thesis.

However, our method has more pruning on the filtered database. Runying Mao

introduced a method that can generate flexible concept level frequent itemsets

base on FP-Growth [26], which focus more on multi-dimension. Due to the com-

plexity of the structure of FP-Growth, this algorithm is suitable for low level

dataset. That is,it may be suitable for three-level data, But if usedthe total data

level is 6, the FP-Growth tree will became bigger and more complicate. Venkata

[32] proposed a algorithm based on Han’s Discovery of Multiple-Level ssociation

Rules from Large Databases. They just add cross-level items to the algorithms.

So they are low efficient since it scans the database more times.

31

Chapter 3

Item definitions and Properties

Products are frequently organized as so called isA hierarchies, or taxonomies. A

taxonomy T is a tree structure of classifications for a given set of items. At the

root of this tree is a single class consisting of all items. Nodes below are more

specific classes, each corresponding to a subset of the items. The leaves of the

taxonomy T are the items. See Figure 1.2 for an example of a taxonomy. It

illustrates that ‘Quebon 2% milk’ isA ‘Quebon milk’ isA ‘Milk’ isA ‘Food’, and

so on. In the following we present the encoding schema [20] used for the items in

the taxonomy. Each item is identified by a unique list of ‘n’ digit encoding. For

example ‘Quebon 2% milk’ is encoded as ‘112’, that is this item is represented by

3 digits. The encoding of the items in an ‘n’ level taxonomy is defined recursively

as follows:

• The root is encoded with n ‘*’s.

• The child on level k+1 is encoded with the same first k digits as its parent,

followed by an additional digit and n− k − 1 ‘*’s.

32

3. Definitions and Properties

TID Items

T1 111,212,112
T2 111,222,231
T3 111,222,312,121

Table 3.1: Encoded Transaction table using the taxonomy

Thus, the leaves are encoded with n digits and no ‘*’s representing the original

encoding of the items. Actually in our implementation, we use binary represen-

tation for these items, which can help using binary operators to check two items

are parent each other. we will introduce it in section 4.1.

Example 6 Figure 1.2 shows an example of such an encoding. The first-level

concept is represented by Category, the second level is represented by Brand and

the last level is represented by the Content. Each product is represented by a

unique digit encoding. For example, ‘Ground Café of

Van’ is encoded as ‘311’ in which the first digit, ‘3’ represents the category ‘Cafe’,

the second digit ‘1’ representing the content ‘Van’ the last digit ‘1’ represents the

content ‘Ground’. Using this encoding we can encode the transaction data as

represented in Table 3.1.

In this paper we focus on a mixed multilevel itemsets mining, based on the tax-

onomy hierarchy. Our approach can generate frequent itemsets as

{2% Quebon milk, Pom bread}, with encoding ({112, 22∗}), that is with items

located on different levels in the taxonomy tree. In Figure 3.1 are displayed

frequent size 2 itemsets from Table 3.1, using min-sup 0.5. For two same size

itemsets X and Y , we denote X is a descendant of Y if for any item i in X, there

exists an item j in Y that i � j and for any item j in Y ,there exists an item

i in X that j � i. The taxonomy based pruning means that if an node on the

33

3. Definitions and Properties

tree is infrequent, then all the descendants of that node are also infrequent. For

instance of Figure 3.1, if the node ({11∗, 22∗}) is infrequent, all of its leaves in
the tree are also infrequent.

(1**,2**)

(1**,22*)(11*,2**) (11*,22*)

(111,22*)(111,2**) (111,222) (11*,222)(1**,222)

Figure 3.1: Frequent size two itemset

3.1 Properties of itemsets

Single-Level Definitions and Properties

Frequent itemset mining is aimed to find frequent patterns from transaction

databases. In this section, we review some concepts for single-level frequent

itemsets mining which will be useful for multiple-level data mining. Let I be

a set of items from a transaction database D. The k -itemset is a set of size k

with elements from I. Each transaction from the set D is identified by a unique

identifier tid, named transaction id. Let I be a function that for each transaction

id tid returns the set of elements part of that transaction.

Next, let us introduce the definition of the support. The support of an itemset

X in a transaction database D, is percentage of transactions in D that contains

34

3. Definitions and Properties

X. The support of X in D is denoted as σ(X,D)

Proposition 1 (Support monotonicity) [4] Let X, Y ⊆ I be two itemsets,

then,

X ⊆ Y ⇒ σ(Y,D) ≤ σ(X,D)

�

This means that the support of an itemset is less than or equal to the support of

its subsets.

An itemset is said to be frequent if its support is greater or equal than a threshold

support given, in general, given by the users, and it is denoted by min-sup. The

frequent itemset mining problem is to find all frequent itemsets in the transaction

database given by a threshold support min-sup. The Apriori algorithm is based

on this proposition.

Definition 2 Let I be the set of items for transaction database D, and min-sup

be the threshold support. The collection of frequent itemsets in D is denoted by

F(D, σ) = {X⊆ I | (σ(X,D)) ≥ min-sup}

Mutil-Level Definitions and Properties

Let us now introduce some properties of multiple level itemsets. According to the

item taxonomy, we denote a � b if a is a descendant of item b or b is an ancestor

of a. For example: 11∗ � 1 ∗ ∗. For two same size itemsets X and Y , we denote

X � Y if for any item i in X, there exists an item j in Y that i � j and for any

item j in Y ,there exists an item i in X that j � i. We will need the following

notations:

35

3. Definitions and Properties

Definition 3

X � Y =def {a ∈ X : ∀b ∈ Y, a �≺ b} ∪ {b ∈ Y : ∀a ∈ X, b �≺ a}

Example 7 Consider the itemset X = {111, 21∗, 311} and itemset Y = {11∗, 3∗
∗, 4 ∗ ∗}. Then X � Y = {11∗, 21∗, 3 ∗ ∗, 4 ∗ ∗}.

Definition 4

X � Y =def {a ∈ X : ∀b ∈ Y, a �� b} ∪ {b ∈ Y : ∀a ∈ X, b �� a}

Example 8 Consider the itemset X = {111, 21∗, 311} and itemset Y = {11∗, 3∗
∗, 4 ∗ ∗}. Then X � Y = {111, 21∗ , 311, 4 ∗ ∗}.

Definition 5

max(X) =def {a ∈ X : ∀b ∈ X, a �≺ b}

Example 9 Consider the itemset X = {111, 21∗, 2 ∗ ∗, 311}. Then max(X) =

{111, 2 ∗ ∗, 311}.

Definition 6

min(X) =def {a ∈ X : ∀b ∈ X, a �� b}

Example 10 Consider the itemset X = {111, 21∗, 2∗∗, 311}. Then min(X) =

{111, 21∗, 311}.

We now have the following propositions:

Proposition 2 X � Y = max(X ∪ Y)

36

3. Definitions and Properties

Proof : Let a ∈ X � Y , follows that either a ∈ max(X) or a ∈ max(Y) that is

a ∈ max(X ∪ Y). �

Example 11 Consider the itemset X = {111, 21∗, 311} and itemset Y =

{11∗, 3 ∗ ∗, 4 ∗ ∗}. We have X � Y = {11∗, 21∗, 3 ∗ ∗, 4 ∗ ∗}

Proposition 3 X � Y = min(X ∪ Y)

Proof : Let a ∈ X �Y , it follows that either a ∈ min(X) or a ∈ min(Y). Thus

a ∈ min(X ∩ Y) �

Example 12 Consider the itemset X = {111, 21∗, 311} and itemset Y =

{11∗, 3 ∗ ∗, 4 ∗ ∗}. We have X � Y = {111, 21∗, 311, 4 ∗ ∗}

Proposition 4 If X � Y then X � Y = Y .

Proof : Let a ∈ X � Y , that is a ∈ max(X ∪ Y). case 1: a ∈ max(X), since

X � Y , it follows that a ∈ Y . case 2: a ∈ max(Y), it follows that a ∈ Y , so

X � Y ⊆ Y .

Let a ∈ Y , thus a ∈ X � Y , so Y ⊆ X � Y . From above, we can get if X � Y

then X � Y = Y . �

Example 13 Consider the itemset X = {111, 21∗, 311} and itemset Y =

{11∗, 2 ∗ ∗, 3 ∗ ∗}. We have 111 ≺ 11∗, 21∗ ≺ 2 ∗ ∗ and 311 ≺ 3 ∗ ∗. In

this case we compute X � Y = max(111, 21∗, 311, 11∗, 2 ∗ ∗, 3 ∗ ∗) that is

X � Y = {11∗, 2 ∗ ∗, 3 ∗ ∗} = Y

Proposition 5 If X � Y then X � Y = X.

Proof : similar to the proof of Proposition 4. �

37

3. Definitions and Properties

Example 14 Consider itemset X = {111, 21∗, 311} and itemset Y = {11∗, 2∗
∗, 3 ∗ ∗}. We have 111 ≺ 11∗, 21∗ ≺ 2 ∗ ∗ and 311 ≺ 3 ∗ ∗ we can now compute:

X � Y = min({111, 21∗, 311, 11∗, 2 ∗ ∗, 3 ∗ ∗})

that is X � Y = {111, 21∗, 311} = X.

The following proposition is used in the LP-Apriori algorithm in order to check

if the set of parent items for an itemset is frequent then the itemset can be a

candidate, otherwise we eliminate it.

Proposition 6 Let X ∪ Y ⊆ I, and let X � Y , then σ(X,D) ≤ σ(Y,D).

�

Example 15 Consider itemset X = {111, 21∗, 311} and itemset Y = {11∗, 2∗
∗, 3 ∗ ∗}. σ({111, 21∗, 311}) ≤ σ({11∗, 2 ∗ ∗, 3 ∗ ∗})

38

Chapter 4

The Algorithms

Throughout the past decade, lots of implementations were developed for frequent

itemset mining. The most general and popular of these algrithms are Apriori

[4], Eclat [40] and FP-growth [21]. For mixed multiple level frequent itemset

mining, we need to generate more single items, which makes the data structure

of FP-growth more complicated. For example, if we mine for a six level item-

set, the FP-growth tree will become six times bigger. It will be inefficient to

mine from large information tree. So we chose Apriori and Eclat as our basic al-

gorithms to develop ET-apriori,LP-apriori, ET-eclat and LP-eclat in this study.

And among the dozens of Apriori implementations, our algorithms extend A Fast

APRIORI[10], which is proved to be the fastest one in most cases. It uses a trie

stucture which is first introduced in [24] to store and retrieve words of a dictio-

nary. The implementation uses an array [27] to support this trie stucture. The

essential difference between ET-apriori, LP-apriori and A Fast APRIORI is A

Fast APRIORI can only generate single-level fequent itemsets, and ours can gen-

erate cross-level fequent itemsets. We also make a significant research on fequent

39

4. The Algorithms

TID Items

T1 111,212 ,112,222,312
T2 312,113,231
T3 111,212,312,121,232
T4 212,211,311
T5 111, 212,312,221,321
T6 111, 312,322,412

Table 4.1: Encoded Original Transaction table

pairs mining, we will introduce them in Section 4.5 and Section 4.6. Due to the

fast development of memory, we store our transaction table in the main memory

in all the presented algorithms.

4.1 ET-apriori

The ET-apriori algorithm, it is similar to [34], and is an extension of A Fast

APRIORI [10]. The algorithm uses a breadth-first search technique through

candidate itemsets. The ET-apriori expand each item with all its ancestors in

the transaction table creating a new extended transaction table. There is a little

difference between ET-apriori and the algorithm presented by Srikant, Agrawal

in [34]. The main difference is that after the first scan, ET-apriori removes from

the original transaction database all items that are not frequent decreasing the

size of the database. This step is not done in the Srikant’s algorithm. Also,

Srikant’s algorithm uses the original dataset for all scans. This extra step done

by our algorithm helps by making the original transaction database smaller, and

increasing the performance of the rest of the scans on the cost of one extra scan.

The ET-apriori algorithm can generate multi-level frequent itemsets. The

40

4. The Algorithms

Algorithm ET-apriori:
Input: D, σ
Output: F(D, σ)
1: Extend D by including in each transaction all the higher level items;
2: Let C1 := {{i} : i ∈ I(D)}
3: Let F1 = scan(D,C1)
4: D′ be the database obtained from D by removing items such that

I(D′) = I(D)
⋂
(
⋃

X∈F1
X)

4: Let C2 := F1 × F1

5: Let k := 2
6: while Ck �= ∅ do
7: Let Fk = scan(D′,Ck)
8: Let k := k + 1
9: Let Ck := Fk−1 × Fk−1

10: end while

11: F(D, σ) =
⋃k

i=1Fi

Table 4.2: ET-apriori Algorithm

ET-apriori algorithm that generates mixed-level frequent itemsets is described in

Table 4.2. The input of the algorithm is the encoded transaction database and

the support. The algorithm outputs the set of mixed-level frequent itemsets.

Where the scan function computes the frequent itemsets for a database D and

a set of candidate itemsets Ck, for some k. This computation is done in the usual

way, by scanning each transaction step by step and increasing the support for

each itemset that is a subset of the transaction.

Note that the computation of the set Fk×Fk, for some k, involves an expensive

step that checks if for two items X, Y is it that X � Y or Y � X. For a better

performance we optimized this step as follows: convert the encoded item to binary

representation by expanding each digit to its four bits binary encoding. As a

special case digit ∗ is replaced by binary encoding ‘1111‘. For instance item 112 is

encoded with the following binary vector ‘000100010010‘, item 11∗ is represented

41

4. The Algorithms

by binary vector ‘000100011111‘. Thus, to check if 112 � 11∗ is enough to check

if 112 ∧ 11∗ = 112 in their binary representation, where ∧ represents the logical

”and” operator. In our example we have that ‘000100010010‘∧ ‘000100011111‘ =

‘000100010010‘, meaning that 112 � 11∗. This is indeed an optimization as it

is well known that binary operators are executed faster than any other language

specific operators.

Intuitively, the ET-apriori algorithm follows these steps:

1. expand each transaction by adding all ancestors for each item in the trans-

action;

2. to compute size 1 frequent itemsets we simply scan once the extended

database;

3. remove from the extended database all the items that are not found fre-

quent. This can be done by scanning once the extended transaction database;

4. for any k > 1, we repeat the following steps until there are no more candi-

date itemsets:

(a) Compute the candidate set Ck as Fk−1×Fk−1 by using apriori candidate

generation algorithm [4].

(b) In one scan of the transaction database find the frequent itemsets of

size k based on the candidates Ck.

5. Finally output is the union of all computed sets Fk.

As an optimization in our implementation, we use a trie structure to save

frequent itemsets. For more details about the data structure, the reader should

refer to [10].

42

4. The Algorithms

TID Items

T1 111,112,11*,1**,212,21*,222,22*,2**,312,31*,3**
T2 113,11*,1**,231,23*,2**,312,31*,3**
T3 111, 112,11*,1**,212,21*,232,2**,312,31*,3**
T4 211,212,21*,2**,311,31*,3**
T5 111, 11*,1**,212,21*, 221,22*,2**,312,31*,321,32*,3**
T6 111, 11*,1**, 312,31*,322,32*,3**,4**,41*,412

Table 4.3: Extended Transaction table using the taxonomy

TID Items

T1 111,112,11*,1**,212,21*,222,22*,2**,312,31*,3**
T2 113,11*,1**,231,23*,2**,312,31*,3**
T3 111, 112,11*,1**,212,21*,232,2**,312,31*,3**
T4 211,212,21*,2**,311,31*,3**
T5 111, 11*,1**,212,21*, 221,22*,2**,312,31*,321,32*,3**
T6 111, 11*,1**, 312,31*,322,32*,3**,4**,41*,412

Table 4.4: Filtered Transaction table

Example 16 1. Let us suppose Table 4.1 to be our original dataset. Next we

convert Table 4.1 in Table 4.3 by extending each transaction by adding for

each item its ancestors.

2. After first scan Table 4.3, we generate the following size-1 frequent itemsets

{111, 11∗, 1 ∗ ∗, 212, 21∗, 2 ∗ ∗, 312, 31∗, 3 ∗ ∗} with min-sup equal to 3.

Then we use this set to filter Table 4.4. The resulted table is represented in

Table 4.4.

3. We continue mining size-k itemsets and get the final output frequent itemset

trie as represented in Figure 4.1.

43

4. The Algorithms

R
oo

t

11
1

11
*

1*
*

21
2

21
*

2*
*

31
3

31
*

3*
*

21
2

21
*

2*
*

31
2

31
*

3*
*

21
2

21
*

2*
*

31
2

31
*

3*
*

21
2

21
*

2*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

Figure 4.1: Frequent Itemsets Tree for ET-apriori from input of Table 4.1 with
min-sup is 0.5

44

4. The Algorithms

Algorithm LP-apriori:
Input: D, σ
Output: F(D, σ)
1: Let C1 := {{i} : i ∈ I(D)}
2: Let F1 = scan(D,C1)
3: Consider F1 =

⋃
1≤l≤n F

l
1, where n represents the levels

4: Let D′ be the database obtained from D by removing items such that
I(D′) = I(D)

⋂
(
⋃

X∈F1
X)

5: for l = 1 to n do //n represents the number of levels, where level 1 is ***

6: Cl
2 = Fl

1 × (
⋃

1≤j≤l F
j
1)

7: Let k := 2
8: while Cl

k �= ∅ do
9: Let Fl

k = scan(D′,Cl
k)

10: Let Cl
k+1 = Fl

k × (
⋃

1≤j≤l F
j
k)

// The level pruning
11: eliminate from Cl

k+1 all sets X such that there exists Y ∈ P(I∗)k+1 with X ≺ Y .
12: k ++
13: end while
14: end for

15: F(D, σ) =
⋃�

l=1

⋃k
i=1F

l
i

Table 4.5: LP-apriori Algorithm

4.2 LP-apriori

The LP-apriori algorithm also extends A Fast APRIORI algorithm [10]. We

construct trie based structures for each level. The algorithm uses the breadth-

first search technique to search candidate itemsets.

Table 4.5 represents the LP-apriori algorithm. Similarly to the ET-apriori

algorithm, the input is the transaction database and the minimum support used to

find frequent itemsts. The main difference between ET-apriori and LP-apriori it

that the later does not expand the transactions in the database. The performance

comparing is done in the next section.

The intuition behind the algorithm is as follows:

45

4. The Algorithms

1. First compute the frequent itemsets of size 1 for all levels. This can be done

in only one scan of the transaction database;

2. remove from the extended database all the items that are not found fre-

quent. This can be done by scanning once the extended transaction database;

3. For all levels, starting with the lowest level (***), for each size k ≥ 2

compute the candidate itemsets

4. From the computed candidate set of itemsets eliminate those itemsets for

which there is an ancestor set such that it is not in the already computed

frequent itemsets. (Step 11)

5. Last, the output is the union of Fl
k for all the k’s.

Example 17 1. After the first scan we get frequent itemsets of level 1 and

size-1 {1 ∗ ∗, 2 ∗ ∗, 3 ∗ ∗} with min-sup equal to 3.

2. Use, frequent one size one itemset {1 ∗ ∗, 2 ∗ ∗, 3 ∗ ∗} to filter the Table

4.1 and get Table 4.6. For an instance, 4∗∗ is infrequent, we eliminate 412

from the Table 4.1.

3. We generate candidates for each level. For an instance, after we generate

candidate {11∗, 21∗, 31∗}, we check its parent {1 ∗ ∗, 2 ∗ ∗, 3 ∗ ∗} from

its first level. since {1 ∗ ∗, 2 ∗ ∗, 3 ∗ ∗} is frequent, {11∗, 21∗, 31∗} could

be a candidate. We than scan the dataset to calculate the support for the

candidate itemsets and eliminate the ones that are infrequent. For each level

we will have a frequent itemset trie to save the frequent itemsets as Figure

4.2.

46

4. The Algorithms

1*
*

2*
*

3*
*

R
oo

t

2*
*

3*
*

3*
*

3*
*

le
ve

l1

R
oo

t

11
*

21
*

31
*

21
*

2*
*

31
*

3*
*

31
*

3*
*

31
*

3*
*

31
*

3*
*

le
ve

l2
le

ve
l3

R
oo

t

11
1

21
2

31
2

21
2

21
*

2*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

31
2

31
*

3*
*

Figure 4.2: Frequent Itemsets Tree for Each Level

47

4. The Algorithms

TID Items

T1 111,212 ,112,222,312
T2 312,113,231
T3 111,212,312,121,232
T4 212,211,311
T5 111, 212,312,221,321
T6 111, 312,322, 412

Table 4.6: Filtered table by using Frequent level-1 size-1 itemset for LP-apriori

4.3 ET-eclat

The ET-eclat algorithm is based on An efficient algorithm for closed itemset

mining presented in [40]. The algorithm uses a Depth-First search technique

through search candidate itemsets. The database is converted into a vertical bit-

map format and use the intersection based approach to calculate an itemset’s

support. ET-eclat recursively generates the frequent itemsets F[i](D, σ) for each

item i ∈ I which I is the expanded set of all the items. The frequent itemsets

mining of ET-eclat algorithm is given in Table 4.7.

The intuition behind the algorithm is as follows:

1. First, we expand the each transaction with different level in digital number

with numeric order, the notation ‘*’ is replaced by ‘9’ and the result is

shown in Table 4.3.

2. Second, we convert the expanded database to a vertical tid-list database

format where we associate with each itemset a list of transactions in which

it occurs. The result is shown as Figure 4.3.

3. Third, for each item i we use depth-first approach and do the intersection

with j(i < j) recursively where i and j have no parents pairs. The support

48

4. The Algorithms

Algorithm ET-eclat:
Input: D, σ,L, I ⊆ I

Output: F[I](D, σ)
1:D = convertT toMultiLevel(D) \\for each
item generate all its parents as new item
2:F[I] := {}
3:for all i ∈ I occurring in D do
4: F[I] := F[I] ∪ {I ∪ {i}}
5: Create Di

6: Di := {}
7: for all j ∈ I occurring in D such that

j > i and NotParentEachOther(i, j) do
8: C := cover({i}) ∩ cover({j})
9: if |C| ≥ σ then
10: Di := Di ∪ {(j, C)}
11: end if
12: end for
13: \\Depth-first recursion
14: Compute F[I ∪ {i}](Di, σ)
15: F[I] := {F}[I] ∪ F[I ∪ {i}]
16:end for

Table 4.7: ET-eclat Algorithm

111
1
3
5
6

11*
1
2
3
5
6

1**
1
2
3
5
6

212
1
3
4
5

21*
1
3
4
5

2**
1
2
3
4
5

312
1
2
3
5
6

31*
1
2
3
4
5
6

3**
1
2
3
4
5
6

Figure 4.3: Tid-List for frequent one item

49

4. The Algorithms

for the itemsets is the number of results of the intersection, for example:

for itemset {111,21*}, the intersection result is {1,3,5}, so the support is 3.

We give an example for item ’111’ as Figure 4.4.

Figure 4.4: Frequent itemsets Result for item ’111’

4. Last, the output is the union of F[i] for each i ∈ I. We’ll get the same

results with ET-apriori and LP-apriori.

4.4 LP-eclat

The LP-eclat algorithm is the same with ET-eclat. We add a frequent prefix

tree for the first level to filter some itemsets before count their support. This

algorithm is fast for the two-digit represent data format. The algorithm still uses

a Depth-First search technique through search candidate itemsets. We convert the

database to a vertical bit-map format and use the intersection based approach

to calculate an itemset’s support. LP-eclat recursively generates the frequent

itemsets Fl[i](D, σ) for each item i ∈ Il which Il is the expanded set of all the

items for each level. The frequent itemsets mining of LP-eclat algorithm is given

in Table 4.8.

50

4. The Algorithms

Algorithm LP-eclat:

Input: D, σ,L, I ⊆ I

Output: F[I](D, σ)
1:for each level l ∈ L do
2: Fl[I] := {}
3: for all il ∈ Il occurring in D do
4: Fl[I] := Fl[I] ∪ {I ∪ {il}}

\\Create Dil

5: Dil := {}
6: for all jl

′≤l ∈ I occurring in D such that

jl > il and NotParentEachOther (il, jl
′
) do

7: if ParentSetIsFrequnet(il ∪ jl
′
) then

\\check its parent in level1

8: C := cover({il}) ∩ cover({jl′})
9: if |C| ≥ σ then

10: Dil := Dil ∪ {(jl′ , C)}
11: end if
12: end if
13: end for

\\Depth-first recursion

14: Compute Fl[I ∪ {il}](Dil , σ)
15: Fl[I] := Fl[I] ∪ Fl[I ∪ {il}]
16: end for
17:end for

Table 4.8: LP-eclat Algorithm

51

4. The Algorithms

The intuition behind the algorithm is as follows:

1. we scan the encoded transaction and convert the database to a vertical

tid-list database format for each level. The result is shown as Figure 4.5.

1**
1
2
3
5
6

2**
1
2
3
4
5

Level1

3**
1
2
3
4
5
6

11*
1
2
3
5
6

21*
1
3
4
5

Level2

31*
1
2
3
4
5
6

111
1
3
5
6

212
1
3
4
5

Level3

312
1
2
3
5
6

Figure 4.5: Tid-List for frequent one items for each level

2. for each item i of level 1 we use depth-first approach and do the intersection

with j(i < j) recursively. The support for the itemsets is the number of

results of the intersection. At the same time we construct a prefix tree of

all frequent itemsets of first level. The result is shown as Figure 4.6.

1** 2** 3**

Root

2** 3**

3**

3**

level1

Figure 4.6: Prefix tree of frequent itemsets of first level

3. for each item il(l > 1) we use depth-first approach to generate candidate

itemset with all its upper levels frequent one items jl
′≤l(i < j) and check if

52

4. The Algorithms

Table 4.9: Encoded original transaction table for pairs

TID Items

T1 111,112,311
T2 111,112,211
T3 211,221,311
T4 211,221,412
T5 221

its parent of the first level with the prefix tree that we generate in the second

step. If its parent is frequent then we make the intersection where i and j

have no parents-pairs. The support for the itemsets is the number of results

of the intersection, for example: for itemset {111, 21*}, the intersection

result is {1, 3, 5}, so the support is 3. We do the step 3 recursively for each

item of each level.

4. the output is the union of Fl[i] for each i ∈ I, l ∈ L.

4.5 ET-Pairs

The ET-Pairs pair algorithm uses a breadth-first search technique through can-

didate itemsets. The ET-Pairs expand each item with all its ancestors in the

transaction table creating a new extended transaction table.

The ET-Pairs algorithm can generate multi-level frequent pairs. The ET-

Pairs algorithm that generates mixed-level frequent itemsets is described in Table

4.11. The input of the algorithm is the encoded transaction database and the

support. The algorithm outputs the set of mixed-level frequent pairs. Note that

the frequent items are stored as structured types, that is each item t stores the

53

4. The Algorithms

Algorithm ET-Pairs:

Input: D, σ,L, I ⊆ I

Output: F2[I](D, σ)

1: Let F2 := ∅;
2: D := convertTtoMultiLevel (D) \\for each item generate all its parents as new item;
3: Generate frequent 1 itemset F1 by single scan of D;
4: for i := 1 to n do
5: begin
6: j := i+ 1;
7: while (j ≤ n) do
8: begin
9: if (F1[i].id,F1[j].id are parent each other) then
10: j ++;
11: else if (F1[i].tid ∩ F1[j].tid > σ) then
12: begin
13: F2 := F2 ∪ {F1[i].id,F1[j].id};
14: j ++;
15: end
16: end
17: end
18: end

Table 4.10: ET-Pairs Algorithm

item encoding (t.id) and the bitmap corresponding with the transactions where

the item appeared in the database (t.tid).

Intuitively, the algorithm computes the frequent 1 itemsets for a database D and

then uses F1 × F1 to compute the candidate set C2. This computation is done in

the usual way, by intersecting the bit vector of each item.

Note that the computation of the set F1 × F1 involves an expensive step

that checks if for two items X, Y is it that X � Y or Y � X. For a better

performance we optimized this step as follows: convert the encoded item to binary

representation by expanding each digit to its four bits binary encoding. As a

special case digit ∗ is replaced by binary encoding ‘1111‘. For instance item 112 is

54

4. The Algorithms

encoded with the following binary vector ‘000100010010‘, item 11∗ is represented

by binary vector ‘000100011111‘. Thus, to check if 112 � 11∗ is enough to check

if 112 ∧ 11∗ = 112 in their binary representation, where ∧ represents the logical

”and” operator. In our example we have that ‘000100010010‘∧ ‘000100011111‘ =

‘000100010010‘, meaning that 112 � 11∗. This is indeed an optimization as it

is well known that binary operators are executed faster than any other language

specific operators.

The ET-Pairs algorithm follows these steps:

1. expand each transaction by adding all ancestors for each item in the trans-

action;

2. to compute size 1 frequent itemsets we simply scan once the extended

database;

3. convert the expanded database to a vertical tid-list database format where

we associate with each itemset a list of transactions in which it occurs.

4. Compute the candidate set C2 as F1 × F1 by intersecting the tid-list.

5. Finally output is the union of all computed pairs F2.

Example 18 1. Let us suppose Table 4.9 to be our original dataset. First we

convert the database, represented by Table 4.9, in the one represented by

Table 4.11. That is extending each transaction by adding for each item its

ancestors.

2. After the first scan of the database, we generate the following frequent item-

sets of size one {111, 112, 11∗, 1∗∗, 211, 21∗, 221, 22∗, 2∗∗, 311, 31∗, 3∗
∗} with min-sup equal to 2. Each of them has a bit vector list as Figure 4.7.

55

4. The Algorithms

Table 4.11: Extended Transaction table using the taxonomy

TID Items

T1 111,112,11*,1**,311,31*,3**
T2 111,112,11*,1**,211,21*,2**
T3 211,21*,221,22*,2**,311,31*,3**
T4 211,21*,221,22*,2**,4**,41*,412
T5 221,22*,2**

Table 4.12: Frequent Pairs Result

Pairs Support

111,112 2
211,221 2
211,22* 2
21*,22* 2

3. We continue mining size-2 itemsets by computing F1 ×F1 and get the final

output frequent itemset pair as represented in Table 4.12.

111
1
2

112

1
2

11*
1
2

1**

1
2

211

2
3
4

21*
2
3
4

221

3
4
5

22*

3
4
5

2**
2
3
4
5

312
1
3

31*
1
3

3**
1
3

Figure 4.7: Frequent Size-1 items Tid-List

56

4. The Algorithms

4.6 LP-Pairs

The LP-Pairs pair algorithm uses a hierarchy list structure to store the Frequent

size-1 items.

Data Structure: Each node include item encoding (id), item bitmap (tid),

item sibling. All the nodes are saved into an array.

Table 4.13 gives a pseudo-code definition for the LP-Pairs algorithm. Similarly

to the ET-Pairs algorithm, the input is the transaction database and the minimum

support. The difference between ET-Pairs and LP-Pairs it that the later does

not expand the transactions in the database and organize the frequent size-1

items within a hierarchical structure. Thus, ET-Pairs may get pruned using the

observation from Proposition 6. The performance comparison between these two

algorithms is presented in the next section.

Here is the intuition behind this algorithm:

1. First compute the frequent itemsets of size 1 for all taxonomy levels and

construct a hierarchy tree T. Where T is a parent prefix tree and the parent

of each node is the prefix of the child. All nodes with the same parent are

sibling and are considered ordered. Then, convert the tree structure T to a

list (L) structure using a single scan of the transaction database;

2. The size-2 itemsets are computed from L × L. For optimization, when

sup((X ∈ L) × (Y ∈ L)) is less than min-sup, the algorithm will stop

calculating the support the children nodes of X and Y .

3. Finally, the algorithm outputs the union of all pairs in F2.

Example 19 1. After the first scan of the database the algorithm computes

57

4. The Algorithms

Algorithm LP-Pairs:
Input: D, σ,L, I ⊆ I

Output: F2[I](D, σ)
1: Let F2 := ∅;
2: Generate frequent 1 itemset listing L(F1) using a single scan of D;
3: for (i = 1 to n) do
4: begin
5: j := i+ 1;
6: while (j ≤ n) do
7: begin
8: if ((L[i].id, L[j].id are parent each other)) then
9: j ++;
10: else if (L[i].tid ∩ L[j].tid < σ) then
11: j = L[j].sibling;
12: else
13: begin
14: F2 := F2 ∪ {L[i].id, L[j].id};
15: j ++;
16: end
17: end
18: end

Table 4.13: LP-Pairs Algorithm

58

4. The Algorithms

the frequent itemsets of level 1 and builds a hierarchy tree T with a bit vector

list for each node as shown in Figure 4.8 (the min-sup used is 2). The T is

converted in a list representation as shown in Figure 4.9

2. Compute L× L on Figure 4.9. After it calculates sup(1 ∗ ∗ × 2 ∗ ∗) is less

than min-sup 2, it will not calculate anymore sup(1 ∗ ∗ × 21∗). Next it will
continue calculating sup(1 ∗ ∗× 3 ∗ ∗) for the item 3 ∗ ∗, sibling of 2 ∗ ∗. At
this point by pruning from the list structure, it does not need to compute the

children nodes if their parent are not frequent pairs.

3. Finally, the algorithm outputs the frequent itemset pairs as presented in

Table 4.12.

1
2

1
2

1
2

1
2

1
2

3
4

1
2

2
3
4
5

2
3
4

3
4
5

3
4
5

1
3

1
3

1
3

2
3
4

R

1** 2**

11*

111 112

21* 22*

3**

31*

311211 221

Figure 4.8: Hierarchy Tree for Frequent Size-1 items with Tid-List

59

4. The Algorithms

1**
1
2

11*

1
2

111
1
2

112

1
2

2**

2
3
4
5

21*
2
3
4

211

2
3
4

22*

3
4
5

221
3
4
5

3**
1
3

31*
1
3

311
1
3

Sibling

Figure 4.9: Listing Structure for Frequent Size-1 items with Tid-List

60

Chapter 5

Experimental Result

The algorithms were implemented in C++. All experiments were run on a 32-

bit, 2.4GHz machine with 4GB RAM Windows 7 OS. We used various synthetic

datasets that were generated with our own data generator. Since there is no

data generator served for multiple level datasets, we implement an small tool to

generate multiple level datasets. Next, we will describe our data generator used

to produce the data for used in our experimental results.

5.1 Data generator

Each item is encoded as integers with digits ranging between 1 and 8. The

number of digits is given by the number of levels in the taxonomy, for example

2456 represents an item in a 4 level taxonomy and number 63467 represents an

item in a 5 level taxonomy. Figure 5.1 represents a three level and fan-out 3

taxonomy for leaf items 111, 112, 113, 121, 122, 123, 131, 211, 212 . . .

The algorithm proposed, controls the height and width of the taxonomy tree by

61

5. Experimental Result

root

1 2 3

1 2 3 1 2 3 1 2 3

123

Level 1:

Level 2:

Level 3: 123 123 123 123 123 123 123 123

Figure 5.1: Item Represent Tree

input parameters. Also, by input, are specified the number of items generated

and the data distribution of these items in the generated transaction set.

The data generator algorithm has the following input parameters:

• l: the number of levels, acceptable values are from 1 to 6;

• i: the total number of items generated. This number should be less than

8l;

• f : represents the taxonomy tree fanout. This parameter determines the

width of the tree;

• T : represents the number of transactions;

• k1: this number represents the size of the items candidate for frequent

itemsets (see description for k2);

• k2: gives the number of items considered for the frequent itemsets of size

k1, that is for each transaction k1 items are selected from the fixed k2 items.

The rest of the items for the transaction are choose form the set of items

except the fixed k2 items. T is the total number of transactions. Thus, the

62

5. Experimental Result

probability of exists k1 size frequent itemsets is:

T
(
k2
k1

)

• h: represents the homogeneity, that is a high value of h gives us more items

related to a lower level ancestor in the taxonomy tree. A low value of h

will give items related by a higher level ancestor in the taxonomy tree. The

value for h should range between 1 and i;

Example 20 From Figure 5.1 we can get the total number of item i is 27.

If we set h to 3, then we will get 111,112,113, which have the same parent

with each other. If we set h to 27, then we will get 111,113, . . . ,332,333,

which will generate items have less relation among them. So h can help us

control generate sparse or dense dataset.

With this input the algorithm will construct the transaction set. In order to

delimit between sets generated with different parameters we conveniently named

the files to include the input parameters as well. The file name has the format

as “6-200000-10-1020-200000$5000” which means

“levels-Total number of items-transaction size- number of items in the file-from

where to select items $ transaction No.”. To obtain a dataset similar to the

one depicted in Table 4.1, the generator should be executed with the following

parameters: l = 3; i ≈ 64; f = 3; T = 6; k1 = 3; k2 ≈ 5; h ≥ 50

63

5. Experimental Result

Data generator:
Input:
l, i, f, k1, k2, h, T, s

Output:
The output file is a binary representation
dataset. It will help us use binary operators
to determine two itemsets are parent each
other, and save time.

Table 5.1: Data Generator Description

5.2 Frequent itemset Performance Study

In this section we present an experimental comparative performance study, for

the two algorithms introduced. The performance is measured based on the type

of the input data and the minimum support value. Here, by type of the data,

we refer to the size of the data, size of the transactions but also the shape of its

taxonomy tree. For the taxonomy tree, we consider two parameters that may

vary the width of the tree and the depth of the tree.

For the experiments we considered seven distinct type datasets. The type of

the data sets considered was given by our data generator tool based on different

input parameters as described in the previous section. We run our algorithms

against each such datasets and retain the execution time.

In Figure 5.2, we used deep taxonomy tree (6 level), transactions with a large

number of items (10 items in each transaction) and large datasets. For this dataset

we started with a low min-sup and slowly increase, in order to see the behavior for

each of our four algorithms. As it can be seen, for small min-sup, the best choice

is the LP-apriori algorithm as it filters more data during the candidate generation

64

5. Experimental Result

Figure 5.2: 6-200000-10-50-200000$20000

Figure 5.3: 6-200000-15-30-200000$3000

65

5. Experimental Result

Figure 5.4: 6-200000-5-50-200000$100000

Figure 5.5: 6-100000-3-30-100000$2000

66

5. Experimental Result

Figure 5.6: 3-500-10-30-500$100000

Figure 5.7: 3-500-15-30-500$3000

67

5. Experimental Result

Figure 5.8: 3-500-5-30-500$100000

Figure 5.9: 6-200000-5-5000-200000$10000

68

5. Experimental Result

phase for sparse datasets and also it is faster than ET-apriori algorithm, as it does

not extend the already large transactions.

Next, we used we changed the previous dataset by decreasing the size of the

dataset (3000 transactions). In this case, as it can be seen in figure 5.3, ET-eclat

is faster for small min-sup, but as we increase the min-sup LP-apriori runs faster

on the same dataset. This is the expected behavior as LP-apriori can filter more

candidates during the pruning phase. On the other hand, ET-eclat runs faster

for lower min-sup.

In the following experiment we go back for larger datasets, but using smaller

transaction size (5 items in each transaction). The result of this experiment is

shown in Figure 5.4. As it can be seen, LP-apriori runs faster on small values for

the min-sup. This is mainly because when the transaction number is large and

small min-sup, the tid list used in ET-eclat is large, and makes ET-eclat slower.

Also, ET-apriori does not filter many items in its pruning phase, made him slower

than LP-apriori.

In the next scenario,as Figure 5.5, we considered both the transaction size and

the size of the dataset as small. In this case ET-Eclat is faster when using small

values for the min-sup, as the size of the tid-list is smaller and it is processed

faster. As the min-sup is small the apriori based algorithms are slower as there

is not much filtering during candidate pruning.

Figure 5.6, represents the experiment run on a dataset with a wide taxonomy

tree , large transaction size and a large number of transactions (100000 transac-

tions), that is a sparse distribution of data in the dataset. In this case, as there

are a lot of candidates considered, ET-Eclat runs faster than the other algorithms

independent on the min-sup value. This is the expected behavior as in the case

69

5. Experimental Result

of ET-Apriori the transaction size gets very large by the transaction extension

process.

The next dataset considered, Figure 5.7, used a wide taxonomy with long

transaction size but with a small number of transactions. For this dataset, we

obtain similar results as for the previous case, making the ET-Eclat the favorite

algorithm for this type of dataset too.

In the following scenario, we kept the wide taxonomy tree, but we considered

small transaction sizes and with a large number of transactions. This gives a

sparse distribution of the items in the dataset. In this scenario, Figure 5.8, ET-

Apriori is the fastest one. This is explained by the dataset small transaction size.

By extending these small transactions ET-Apriori doesn’t add to much workload

on the algorithm. ET-Eclat is slower again because of its large tid-list that is due

to the large number of transactions.

In the last scenario considered, Figure 5.9, for the dataset creation we used

a deep taxonomy tree, short transaction size, medium number of transactions

and also we partition the items in the dataset in 2 disjoint sets such that each

transaction, excepting a small number, contains items only from one of these two

partition. Again, this case gives us a sparse data distribution in the dataset. For

large min-sup values LP-Eclat runs faster. This is because LP-Eclat filters much

of the candidates even before calculating their support. On the other hand, for

small min-sup values, most of the one level item sets becomes frequent, slowing

down LP-Eclat. In this case, ET-eclat is the runs faster.

From the experiment result, we can conclude the following: ET-apriori is

general good for small size of transaction items in large dataset; LP-apriori is

faster for small min-sup and large transaction items in sparse datasets; ET-eclat

70

5. Experimental Result

is faster for dense and small dataset; LP-eclat is faster for skewed distribution

database.

5.3 Frequent Pairs Performance Study

In this section we compare the performance of the two algorithms introduced in

Section 4.5 and 4.6. The performance is measured based on the shape of the input

data and the minimum support value. Here, by shape of the data, we refer to the

size of the data, size of the transactions and also the shape of its taxonomy tree,

thus the input parameters for the data generator algorithm. For the taxonomy

tree, we consider two parameters that may vary: (i) the width of the tree and (ii)

the depth of the tree.

For the experiments we considered six distinct shape of datasets and one

real world GROCERIES dataset [19]. The shape of the data sets considered were

given by our data generator tool based on different input parameters as described

in the previous subsection.

In Figure 5.10 (top left), we used deep taxonomy tree (6 level), transactions

with a large number of items (10 items in each transaction) and a large dataset.

For this dataset we started with a low min-sup and slowly increase it, in order to

see the behavior for each of our two algorithms. As it can be seen, for small min-

sup, LP-Pairs algorithm discovers the frequent mixed pairs faster as it needs to

compute less data during the candidate generation phase for these dense datasets.

Next, we changed the previous dataset by increasing the size of each transac-

tion (15 items in each transaction). In this case, as it can be seen in Figure 5.10

(top right), LP-Pairs is faster. This is an expected result as LP-Pairs will skip

71

5. Experimental Result

Figure 5.10: Top left: 6-200000-10-50-200000$3000; top right: 6-200000-
15-30-200000$3000; center left: 6-200000-5-50-200000$3000; center right:
6-200000-5-50-200000$100000; bottom left: 3-500-15-30-500$3000; bottom
right: 3-500-5-30-500$100000.

72

5. Experimental Result

Figure 5.11: Real World Groceries

more items during the pruning phase.

In the third experiment we used again small datasets, but in this case us-

ing smaller transaction size (5 items in each transaction). The result of this

experiment is shown in Figure 5.10 (center left). As it can be seen, LP-Pairs

algorithm runs faster on small values for the min-sup. This is mainly because

when the transaction number is small and small min-sup. More frequent 1 items

are generated. LP-Pairs computes less than ET-Pairs.

In the next scenario, as Figure 5.10 (center right), we considered the trans-

action size as small(5 items in each transaction) and the size of the dataset as

big . ET-Pairs is fast when the min-sup is getting smaller. This is because the

transaction size is big and number of frequent 1 items are small and we can’t gain

much by pruning from our hierarchy structure. In this case the total number of

frequent pairs is less than 100.

Figure 5.10 (bottom left), represents the result for running the experiment on

a dataset with a wide taxonomy tree and with long transaction size but with a

small number of transactions, small number of levels in the taxonomy, thus, a

sparse distribution of data in the dataset. Since it will generate more frequent 1

items when the min-sup is small. LP-Pairs will compute less data than ET-Pairs.

73

5. Experimental Result

The next dataset considered, Figure 5.10 (bottom right), uses a dataset with

a wide taxonomy tree, small transaction size and a large number of transactions

(we used 100,000 transactions), still using a taxonomy with only a few levels, thus,

a sparse distribution of data in the dataset. For this dataset, we obtain similar

results as for the previous case, making the LP-Pairs the favorite algorithm for

this type of dataset too.

In the next scenario, we used a real world database. The GROCERIES dataset

[19] includes 1-month of the point-of-sale transactions in a local grocery store.

The taxonomy of items is provided and it represents item categorization used

in this store. The dataset contains 9,835 transactions, it has three levels of

abstraction and 170 different items. Comparing our two algorithms against this

data, Figure 5.11, LP-Pairs was fastest than ET-Pairs algorithm. This is because

as the min-sup decreases, more pairs are generated, so LP-Pairs will compute less

data than ET-Pairs.

From the experiment result, we can conclude the following:

1. ET-Pairs is in general a good choice for small size of items in large dataset

with high min-sup.

2. If the min-sup is high, we will get a small number of frequent 1 item sets,

thus, the calculation is not to high, so there is no or small pruning from the

hierarchy structure.

3. LP-Pairs is faster for small min-sup and large transaction items in large

number of items datasets.

4. In general, no matter of the width and height of the taxonomy tree, most

of the time, LP-Pairs is faster than ET-Pairs.

74

Chapter 6

Future Work

All of our six methods assume that the input file can fit in main memory, and

we use the uniform min-sup for all the levels. Therefore, the future work can

be improved by processing large data files from the disk, and using different

min-sup for different levels or special items. We examine the applications of

finding frequent itemset at flexible concept level, which means that we can find

frequent itemset patterns like {11*, 2**}, but we cannot find frequent itemsest

at mix concept level, for example:{1*1, 2**}. This is important to note for the

future studies, and not difficult to implement, but because of data complexity, the

running time will become a big issue. We also implement two algorithms to find

frequent pairs at mix-level since it’s more useful. Finding frequent itemsets of size

greater than 2 will introduce new and interesting aspects that need to be taken

into account. Although several algorithms are proposed, none of them use the

hierarchy pruning. Therefore the challenge for researchers is how to efficiently

organize the data structure, and how to use hierarchy pruning to mine size k

frequent itemset.

75

Chapter 7

Conclusions

Throughout the past decade, mining frequent itemsets has been developed from

single concept level to multiple concept level. A lot of data mining methods were

introduced, and based on these methods, we have selected the fastest ones to

develop flexible multiple level frequent itemset mining which will help make data

mining reach a higher level. In this paper, we have developed two algorithms: ET-

apriori and LP-apriori. Our experimental results show that different algorithms

will have higher performance for different distributions of data. Generally, ET-

apriori is good for small transaction items in large datasets; LP-apriori is fast

for small min-sup and large transaction items in sparse datasets. Mining flexible

multiple level frequent itemsets may lead to the discovery of more detailed in-

formation from data. We also developed two algorithms for pairs: ET-Pairs and

LP-Pairs. Our experimental results show that ET-Pairs is usually better for small

transaction items in large datasets, while LP-Pairs tends to perform better for

small min-sup and large transaction items in sparse datasets. Mining mix-level

frequent itemsets can lead to the discovery of more detailed information from

76

7. Conclusions

data.

77

References

[1] Proceedings of the Fourteenth International Conference on Data Engineer-

ing, February 23-27, 1998, Orlando, Florida, USA. IEEE Computer Society,

1998. 80

[2] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth first

generation of long patterns. In KDD, pages 108–118, 2000. 3

[3] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree

projection algorithm for generation of frequent item sets. J. Parallel Distrib.

Comput., 61(3):350–371, 2001. 3

[4] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association

rules between sets of items in large databases. In SIGMOD Conference, pages

207–216, 1993. 2, 3, 10, 14, 35, 39, 42

[5] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,

and A. Inkeri Verkamo. Fast discovery of association rules. In Advances in

Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT Press,

1996. 10

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining

78

REFERENCES

association rules in large databases. In VLDB, pages 487–499, 1994. 1, 3,

14, 31

[7] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.

In Philip S. Yu and Arbee L. P. Chen, editors, ICDE, pages 3–14. IEEE

Computer Society, 1995. 3

[8] Necip Fazil Ayan, Abdullah Uz Tansel, and M. Erol Arkun. An efficient

algorithm to update large itemsets with early pruning. In KDD, pages 287–

291, 1999. 3

[9] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential

pattern mining using a bitmap representation. In KDD, pages 429–435.

ACM, 2002. 3

[10] Ferenc Bodon. A fast apriori implementation. In In Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining Implementations, 2003. 3, 39,

40, 42, 45

[11] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic

itemset counting and implication rules for market basket data. In Joan

Peckham, editor, SIGMOD Conference, pages 255–264. ACM Press, 1997. 2

[12] Douglas Burdick, Manuel Calimlim, and Johannes Gehrke. Mafia: A maxi-

mal frequent itemset algorithm for transactional databases. In ICDE, pages

443–452. IEEE Computer Society, 2001. 3

[13] David Wai-Lok Cheung, Jiawei Han, Vincent T. Y. Ng, and C. Y. Wong.

Maintenance of discovered association rules in large databases: An incremen-

79

REFERENCES

tal updating technique. In Stanley Y. W. Su, editor, ICDE, pages 106–114.

IEEE Computer Society, 1996. 3

[14] David Wai-Lok Cheung, Sau Dan Lee, and Ben Kao. A general incremental

technique for maintaining discovered association rules. In Rodney W. Topor

and Katsumi Tanaka, editors, DASFAA, volume 6 of Advanced Database

Research and Development Series, pages 185–194. World Scientific, 1997. 3

[15] B. Goethals. Survey on frequent pattern mining. Manuscript, 2003. 2

[16] Gösta Grahne, Laks V. S. Lakshmanan, Xiaohong Wang, and Ming Hao Xie.

On dual mining: From patterns to circumstances, and back. In ICDE, pages

195–204, 2001. 3

[17] Gösta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining

using fp-trees. IEEE Trans. Knowl. Data Eng., 17(10):1347–1362, 2005. 3

[18] Robert Györödi, Cornelia Györödi, Mirela Pater, Ovidiu Boc, and Zoltan

David. Afopt algorithm for multi-level databases. In SYNASC, pages 129–

133, 2005. 3

[19] Michael Hahsler, Kurt Hornik, and Thomas Reutterer. Implications of prob-

abilistic data modeling for mining association rules. In Myra Spiliopoulou,

Rudolf Kruse, Christian Borgelt, Andreas Nürnberger, and Wolfgang Gaul,

editors, GfKl, Studies in Classification, Data Analysis, and Knowledge Or-

ganization, pages 598–605. Springer, 2005. 71, 74

[20] Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules

from large databases. In VLDB, pages 420–431, 1995. 3, 25, 27, 32

80

REFERENCES

[21] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent pat-

terns without candidate generation: A frequent-pattern tree approach. Data

Min. Knowl. Discov., 8(1):53–87, 2004. 2, 3, 15, 39

[22] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Efficient

discovery of functional and approximate dependencies using partitions. In

ICDE [1], pages 392–401. 3

[23] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane:

An efficient algorithm for discovering functional and approximate dependen-

cies. Comput. J., 42(2):100–111, 1999. 3

[24] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.)

sorting and searching. Addison Wesley Longman Publishing Co., Inc., Red-

wood City, CA, USA, 1998. 39

[25] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovering fre-

quent episodes in sequences. In KDD, pages 210–215, 1995. 3

[26] Runying Mao. Adaptive-fp: An efficient and effective method for multi-level

multi-dimensional frequent pattern mining, 2001. 3, 31

[27] Banu Özden, Sridhar Ramaswamy, and Abraham Silberschatz. Cyclic asso-

ciation rules. In Proceedings of the Fourteenth International Conference on

Data Engineering, February 23-27, 1998, Orlando, Florida, USA [1], pages

412–421. 39

[28] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash based

algorithm for mining association rules. In Michael J. Carey and Donovan A.

81

REFERENCES

Schneider, editors, SIGMOD Conference, pages 175–186. ACM Press, 1995.

2

[29] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Pruning

closed itemset lattices for associations rules. In Mokrane Bouzeghoub, editor,

BDA, 1998. 23

[30] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering

frequent closed itemsets for association rules. In Catriel Beeri and Peter

Buneman, editors, ICDT, volume 1540 of Lecture Notes in Computer Sci-

ence, pages 398–416. Springer, 1999. 23

[31] Jian Pei, Jiawei Han, and Runying Mao. Closet: An efficient algorithm for

mining frequent closed itemsets. In ACM SIGMOD Workshop on Research

Issues in Data Mining and Knowledge Discovery, pages 21–30, 2000. 23

[32] V. Venkata Ramana, M V Rathnamma, and A. Rama Mohan Reddy. Arti-

cle: Methods for mining cross level association rule in taxonomy data struc-

tures. International Journal of Computer Applications, 7(3):28–35, Septem-

ber 2010. Published By Foundation of Computer Science. 31

[33] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient

algorithm for mining association rules in large databases. In Umeshwar

Dayal, Peter M. D. Gray, and Shojiro Nishio, editors, VLDB, pages 432–

444. Morgan Kaufmann, 1995. 2

[34] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association

rules. In VLDB, pages 407–419, 1995. 3, 40

82

REFERENCES

[35] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:

Generalizations and performance improvements. In Peter M. G. Apers,

Mokrane Bouzeghoub, and Georges Gardarin, editors, EDBT, volume 1057

of Lecture Notes in Computer Science, pages 3–17. Springer, 1996. 3

[36] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti, and Sanjay Ranka. An

efficient algorithm for the incremental updation of association rules in large

databases. In KDD, pages 263–266, 1997. 3

[37] Hannu Toivonen. Sampling large databases for association rules. In Vija-

yaraman et al. [38], pages 134–145. 2, 14

[38] T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L.

Sarda, editors. VLDB’96, Proceedings of 22th International Conference on

Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India.

Morgan Kaufmann, 1996. 82

[39] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets.

In Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge discovery and

data mining, KDD ’03, pages 326–335. ACM, 2003. 2, 3, 23

[40] Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEE

Trans. Knowl. Data Eng., 12(3):372–390, 2000. 2, 3, 20, 39, 48

[41] Mohammed Javeed Zaki and Ching-Jiu Hsiao. Charm: An efficient algorithm

for closed itemset mining. In Robert L. Grossman, Jiawei Han, Vipin Kumar,

Heikki Mannila, and Rajeev Motwani, editors, SDM. SIAM, 2002. 23

83

