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Abstract

Mathematical Approaches For Image Enhancement Problems

Dongwook Cho, Ph.D.

Concordia University, 2012

This thesis develops novel techniques that can solve some image enhancement

problems using theoretically and technically proven and very useful mathematical

tools to image processing such as wavelet transforms, partial differential equations,

and variational models. Three subtopics are mainly covered. First, color image

denoising framework is introduced to achieve high quality denoising results by con-

sidering correlations between color components while existing denoising approaches

can be plugged in flexibly. Second, a new and efficient framework for image contrast

and color enhancement in the compressed wavelet domain is proposed. The proposed

approach is capable of enhancing both global and local contrast and brightness as well

as preserving color consistency. The framework does not require inverse transform for

image enhancement since linear scale factors are directly applied to both scaling and

wavelet coefficients in the compressed domain, which results in high computational

efficiency. Also contaminated noise in the image can be efficiently reduced by intro-

ducing wavelet shrinkage terms adaptively in different scales. The proposed method

is able to enhance a wavelet-coded image computationally efficiently with high image

quality and less noise or other artifact. The experimental results show that the pro-

posed method produces encouraging results both visually and numerically compared

to some existing approaches. Finally, image inpainting problem is discussed. Lit-

erature review, psychological analysis, and challenges on image inpainting problem

and related topics are described. An inpainting algorithm using energy minimization
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and texture mapping is proposed. Mumford-Shah energy minimization model detects

and preserves edges in the inpainting domain by detecting both the main structure

and the detailed edges. This approach utilizes faster hierarchical level set method

and guarantees convergence independent of initial conditions. The estimated seg-

mentation results in the inpainting domain are stored in segmentation map, which is

referred by a texture mapping algorithm for filling textured regions. We also propose

an inpainting algorithm using wavelet transform that can expect better global struc-

ture estimation of the unknown region in addition to shape and texture properties

since wavelet transforms have been used for various image analysis problems due to

its nice multi-resolution properties and decoupling characteristics.
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Chapter 1

Introduction

In this modern world, we cannot imagine a life without digital images. They are not

only limited to store one’s memory, please our eyes, and express the world. They

depict micro- and macro-spaces, inner material, external world, nature, and history.

Images are essential information that can capture the moment of the universe.

However, the images we possess may not be sufficiently good enough. We may

lose the information of the scene during the acquisition, conversion, communication,

and processing. First, images can be degraded when they are acquired due to lighting

condition, sensor resolution and quality, or any limitations of the acquisition system.

The degradation could come about when the data compression or transmission to

other devices is made. It can also be due to certain processing, transformation, modi-

fication, or even intentional changes that may contaminate an image. In addition, any

plain 2D discrete image cannot contain all the information for the real scene because

the moment of the world is continuous 3D information, and hence loss of information

such as object occlusion and low resolution problems necessarily occurs.

Image enhancement is a major and fundamental topic since the time image pro-

cessing has emerged. The ultimate objective of image enhancement in a broad sense

is to improve a degraded image that can express all the information of the scene.

This is mathematically an inverse problem and it is impossible to solve in general.

However, it is not impossible to obtain something better under certain conditions and
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the desire to have something better pushes forward advances in image processing re-

search. In this sense, there are practically two main purposes for developing image

enhancement algorithms. The first is to satisfy and comfort human visual system

(HVS). The second is to estimate the missing information to obtain an image close to

the original scene for the analysis either by a human being or an intelligent machine

vision system. The former is subjective and aesthetic while the latter is objective

and informative. An enhanced image is expected to have better brightness and con-

trast, good color consistency, reduced noise or defect, less visual artifacts, better

resolution, or even contextually meaningful information. Depending on the quality

of a given degraded image, each of these improvement factors becomes an important

subtopic separately, namely, denoising, contrast enhancement, white balance, deblur-

ring, demosaicking, deblocking, super-resolution, inpainting, sharpening, smoothing,

interpolation, gamma correction, chromaticity enhancement, and so forth. Figure 1

shows the examples of image enhancement subtopics. These separate problems can

also be considered together and solved in an integrative manner. Various approaches

have been used to solve each image enhancement problem as can be seen in figure 2.

Super-
resolution

Deblurring 
(sharpening)

Demosaicking Deblocking
Chromaticity 
enhancement

Color 
enhancement

White 
balancing

Special effects

Figure 1: Subtopics of image enhancement

This thesis develops novel techniques based on different mathematical approaches

to solve some image enhancement problems. Mathematical tools such as wavelet

transforms, partial differential equations (PDE), and variational methods have been
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Linear Filters
(e.g. mean filter)

Order statistics 
(e.g. median filter)

Markov random 
field

Histogram 
analysis

Non-linear filters 
(e.g. Kalman)

Discrete cosine 
(

Others (Hough, 
Radon,…)

Sparse 
representation

Compressed 
sensing

Figure 2: Various approaches for solving image enhancement problems

proven in this thesis to be very powerful in solving many image enhancement prob-

lems. Also recently developed mathematical tools such as compressed sensing and

sparse representations are leading the new applications in image processing. The

theoretical background and review on the key mathematical approaches used in this

thesis and the image processing community is introduced in Chapter 2.

Among many image enhancement subtopics depicted in figure 1, this thesis covers

mainly three problems, i.e. color image denoising, contrast enhancement, and im-

age inpainting problems. First of all, a color image denoising framework is proposed

in Chapter 3. Image denoising is a classical yet still hot topic. It is attractive to

many researchers because any imaging system could have random noise and there is

no universal solution to the denoising problem. Wavelet transform is very useful to

solve this problem and there have been tremendous achievements along this direction

because wavelet transform is capable of separating a small number of salient scaling

coefficients with low-pass filter and a large number of detailed wavelet coefficients with

high-pass filter. Noise is mainly contaminated in the wavelet coefficients. In addition,

most of existing denoising approaches using wavelet transform focus on monochrome
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images while the majority of images are in color. A color image denoising framework

introduced in this thesis achieves high quality denoising results by considering corre-

lations among color components. The proposed approach is flexible enough to allow

employing any existing wavelet-based monochrome denoising approaches.

Chapter 4 proposes a new technique for image brightness and contrast enhance-

ment. Comfortable brightness, contrast, and color consistency are major enhancement

factors to HVS since photoreceptors in retina (rod and cones) are stimulated differ-

ently by lighting intensity and wavelengths, and they transduce the different levels of

stimuli to send the analyzed signal to the brain. A contrast enhancement algorithm

makes a degraded image visually better perceived. This is a subjective problem.

We presents a new and efficient framework for image contrast and color enhancement

in the compressed wavelet domain. The proposed approach is capable of enhancing

both global and local contrast and brightness as well as preserving color consistency.

The framework does not require inverse transform for image enhancement since linear

scale factors are directly applied to both scaling and wavelet coefficients in the com-

pressed domain, which results in high computational efficiency. Also contaminated

noise in the image can be efficiently reduced by introducing a wavelet shrinkage term

adaptively for analysis scale. The proposed method is able to enhance a wavelet-

coded image computationally efficiently with high image quality and less noise or

other visual artifacts. The experimental results show that the proposed method pro-

duces encouraging results both visually and numerically compared to some existing

approaches.

Chapter 5 discusses image inpainting problem. Inpainting is originally an artis-

tic term describing a procedure to restore a damaged painting or picture such as

medieval artwork and old pictures. In computer vision, inpainting is a process to

estimate partially unknown regions in an image and make the whole image region

complete. Therefore, it is also called image completion and essentially similar to

object removal, disocclusion, block recovery, texture synthesis, and image interpola-

tion. Unlike image denoising and contrast enhancement problems, image inpainting
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is a high-level computer vision problem because inpainting process reflects percep-

tual interpolation, which implies a coherent reaction of both vision and thought that

cannot be separated. Perception implicates the entire process from sensory input to

the related mental analysis of the given information. The chapter discusses prob-

lem set, literature review, psychological meaning, and challenges on image inpainting

problem and its related topics. The existing approaches using various mathematical

approaches introduced in Chapter 2 such as PDEs, variational, image decomposition,

and compressed sensing are also explained. In Section 5.3, an inpainting algorithm

using energy minimization and texture mapping is proposed. The Mumford-Shah

energy minimization model detects and preserves edges in the inpainting domain by

detecting both the main structure and the detailed edges. The proposed approach

utilizes hierarchical level set method that is faster than the standard way and guar-

antees convergence independent of initial conditions. The estimated segmentation

results in the inpainting domain is stored in the segmentation map. The segmenta-

tion map is referred to by a texture mapping algorithm for filling textured regions. In

Section 5.4, we propose an image inpainting algorithm using wavelet transform that

can expect better global structure estimation of the unknown region in addition to

considering shape and texture properties since wavelet transforms have been used for

various image analysis problems due to its powerful multi-resolution and decoupling

properties.

The last chapter concludes and summarizes the whole thesis. Future works are

also proposed.
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Chapter 2

Mathematics in Image

Enhancement

This chapter introduces different mathematical approaches used for enhancing im-

ages, and their relations to each other, and use in image processing and enhancement

problems. In the first overview section, the relations and connectivities between

mathematical approaches useful in image enhancement are discussed. More details

and existing models on each approach are introduced in the following sections there-

after.

2.1 Overview : PDE to Compressed Sensing

An image is represented as a two dimensional signal with spatial coherence and com-

mon properties. Two dimensional signals can be created and with different intensity

values on a 2D space but human knows if the 2D signal is meaningful. For example,

we know a discrete 2D signal produced with independent and identically distributed

(iid) random variables is not meaningful and we do not consider it as an image. In

short, our visual system can analyze, understand, and classify any kind of images,

but shows an interest in a meaningful one. Therefore, only meaningful images are

considered in this thesis.
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Mathematically, an image can be defined as a 2D function u(x, y) that is neither

deterministic nor fully random. Based on observations, it can be mathematically

modeled by functions with various conditions and special properties. A function u is

generally continuous, but it can be discretized just like a digital image represented

pixel by pixel.

Image enhancement is a process to estimate a good image û(x, y) from a given

contaminated or incomplete image u0(x, y). Now the questions are what a good im-

age is and how it can be defined. A good image must satisfy human visual system

by allowing good continuity, appropriate smoothness, yet clear edges with some vari-

ations. Some mathematical tools are able to model good images and express their

properties.

Modeling using partial differential equation (PDE) is one way to define a good

image model and behaviors. For instance, let us consider the heat equation, or more

generally the diffusion equation as follows:

∂u

∂t
= ∇ · c∇u, (1)

where c is the diffusion coefficient. Depending on the definition of c, the diffusion

equation (1) can be isotropic or anisotropic. This equation models the changes of

an image u over time variable t, i.e. image intensity spreads throughout the image

space. Equation (1) implicitly shows that it can enhance an image by smoothing

the noise while a proper choice of the diffusion coefficient c can preserve the edges.

An isotropic diffusion equation can smoothe a noisy image in all directions for both

textures and edges. While an anisotropic diffusion equation can preserve edges in pre-

ferred directions. In this case, one can design the diffusion coefficient as a tensor and

hence edges can be preserved effectively. PDE model essentially covers a continuous

image domain, but the practical solution requires discretization by finite difference or

multigrid methods.
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Variational approach from calculus of variations deals with finding optima (min-

ima or maxima) of a given functional (function of function). It is very useful to define

an image model and its behaviors in terms of functionals. A solution of the variational

model can be found by associating the Euler-Lagrange equation and converting the

variational problem to a PDE formulation. For example, a total variational (TV)

model is one of the successful variational models used for image enhancement and it

can be defined as

inf
u
F (u) = inf

u


Ω

|u− u0|2 dxdy + λ


Ω

|∇u| dxdy (2)

where u0 is an initial degraded image, λ is a scaling parameter (used for Lagrange

multiplier) and Ω ⊆ R2 is image domain, which is open and bounded (often assumed

to be a Lipschitz domain to express continuity, smoothness, and regularity of image).

The associated Euler-Lagrange equation can be obtained as follows:

u = u0 + 2λ∇ ·

∇u
|∇u|


(3)

with Neumann boundary condition from the normal derivative on the boundary

surface ∂Ω (i.e. the derivative of image u along the direction of surface normal),

∂u
∂n


∂Ω

= 0. It is noticeable that equation (3) is also the case of the diffusion equa-

tion (1) when c(|∇u|) = 2λ
|∇u| . The example of TV model shows strong relationship

between PDE and variational approaches.

Bayesian probability and statistical inference also contribute to model an image.

We can consider a Bayesian framework using the maximum a posteriori (MAP) esti-

mator:

û = argmax
u

ln p(u|u0) = argmax
u

[ln p(u0|u) + ln p(u)], (4)

where u0 is a given contaminated image and û is an estimated enhanced image. Equa-

tion (4) is an optimization problem just like variational formulation. The probability

model p(u|u0) is directly related to the functional in the variational approach, i.e.
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maximization problem in equation (4) is equivalent to minimize − ln p(u|u0). As will

be shown in Section 2.4, equation (2) is interpreted by Bayesian framework.

Another efficient mathematical image analysis tool used in this thesis is wavelet

transform. Wavelet-based image representation has been used to take various advan-

tages of wavelet analysis such as multi-scale analysis, compaction, data separations,

and perfect reconstruction properties. Wavelet is successfully used especially in the

discrete image domain. The construction of wavelets begins with a scaling equation,

which is a basic dilation equation from a two-scale difference equation:

φ(x) =
n

k=0

ckφ(2x− k), (5)

where the coefficients {ck} are given with k = 0, · · · , n and


k ck = 2 when

φdx =

1. Then, the wavelet ψ is obtained by taking the differences as follows:

ψ(x) =
1

k=1−n

(−1)kc1−kφ(2x− k). (6)

Equations (5) and (6) are of special finite difference form. From a fundamental point

of view, the numerical solutions of a PDE model of an image require a discretization

of the PDE into a finite difference form similar to equations (5) and (6). In a way,

the continuous domain represented by PDEs and the discrete domain represented

by wavelet transforms are related through the finite difference formulation. As an

example, equation (3) can be rewritten as u0 = u + (−2λ)∇ ·


∇u
|∇u|


, where u is the

smooth and noiseless component of the image that belongs to the Sobolev space, while

∇·


∇u
|∇u|


is the divergence of normalized gradient, which is Laplacian and represents

the detailed variations (i.e. edges in image). Similarly, in the wavelet domain the

image u0 can be decomposed by wavelet transform into coarse scaling coefficients

having low pass filtered smoothness and detailed wavelet coefficients that have strong

magnitudes along the edges. Hence, u and (−2λ)∇ ·


∇u
|∇u|


in equation (3) can be

interpreted as scaling and wavelet subband respectively.
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Discrete wavelet transform can also be expressed as linear matrix formulation as

follows:

x = Φα, (7)

where x is a vector with sizem (i.e. 1D signal or reshaped 2D image), α is transformed

coefficient vector with size n (i.e. scaling and wavelet coefficients), and Φ is an m×n

inverse transform matrix. If the size of transformed coefficients is the same as that

of the input vector, then n = m and we have a complete system. If n > m, the

system is redundant and we have an over-complete system. Equation (7) can be

generalized by sparse linear model, which represents a signal or image as sparse coding

and dictionary. In this case, Φ is called dictionary whose column vectors are basis

vectors, and α is called sparse code or sparse vector that contains sparse non-zero

elements and many zero’s with α ∈ Rn. Sparse representation is a mathematical

formulation that can decompose a signal into elementary atoms and take advantages

of over-completeness (or redundancy) and sparseness. Given x, estimation of efficient

sparse code α among many solutions is a key problem, i.e. sparsity of α should be

minimized. The sparsity can be measured by L0 norm ∥α∥00, i.e. the number of

non-zero components (Hamming distance from zero vector compared to Euclidean

distance of L2 norm). L− 0 norm is not F-norm since it is not continuous [41]. Now

the problem is to solve the following formulation:

min
α
∥α∥00, subject to ∥x−Φα∥2 ≤ δ. (8)

Since L0 minimization problem is technically difficult (combinatorial and NP-hard

[103]), L1 norm often replaces the problem, i.e. solve minα ∥α∥1 instead of equa-

tion (8). The equivalent Lagrangian form of equation (8) can be expressed as follows:

min
1

2
∥x−Φα∥22 + λ∥α∥pp, (9)

where p is 0 or 1. This formulation is again similar to the total variational form in
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Figure 3: Relations between different mathematical tools

equation (2) when p = 1, and also the Bayesian framework in Section 2.4.

Recently developed theory on compressed sensing is also formulated under sparse

representation. Using sparse representation in equation (7), a compressed signal y

with size n is defined by

y = Mx = MΦα = Θα, (10)

where M is a measurement matrix. When x is k-sparse, k ≤ n < m. Since com-

pressed sensing is able to estimate precisely unknown information from partially given

signal or image, recent works show promising results for solving image enhancement

problems.

In summary, image space can be modeled and analyzed by different mathematical

approaches, which are fundamentally closely related to each other as shown in the

relation diagram of figure 3. These mathematical tools have been applied to image

enhancement problems successfully, and hence we briefly discuss them in the following

sections.
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2.2 Partial Differential Equation (PDE) Models

PDE models are useful tools to describe and simulate physical behaviors dynamically

in image just like many physical phenomena such as heat conduction, solid and fluid

dynamics.In this section, we introduce a few useful PDE models for image enhance-

ment problems.

2.2.1 Diffusion Equation

Diffusion equation (1) has some interesting properties for image processing. It can

be rewritten for 2D image as

∂u(x, y, t)

∂t
= ∇ · [c(x, y, t)∇u(x, y, t)] . (11)

In image enhancement problem, diffusion process would simulate the suppression of

noise as the time variable (t) changes. Equation (11) is isotropic if the diffusion

coefficient c is constant and anisotropic if c is a symmetric positive definite matrix

or a function that can control the rate of diffusion. For example, Perona and Ma-

lik’s anisotropic diffusion in [111] is efficient to preserve edges in image by defining

c(||∇u||) = exp {−(||∇u||/K)2} and c(||∇u||) = 1
1+(||∇u||/K)2

, which are functions of

image gradient magnitude.

In case of isotropic diffusion, ∂u
∂t

= c∆u, where ∆ is a Laplacian operator. Deriva-

tions by 2D Fourier transform lead to the following solution:

u(x, y, t) =

 ∞

−∞

 ∞

−∞
u(vx, vy, 0)

1

4πct
exp


−(vx − x)2 + (vy − y)2

4ct


dvxdvy (12)

In other words, equation (12) is a convolution of 2D Gaussian smoothing filter to an

initial image u0 with variance 2ct when ut(x, y) = u(x, y, t). This is also a scale-space

representation, where t is a scale parameter that decides a scale level and leads to

multi-scale analysis of an image [5].
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2.2.2 Navier-Stokes Equation

Incompressible fluid flow can be modeled Navier-Stokes equation:

∂v

∂t
+ v · ∇v = −∇P

ρ
+ ν∆v, and ∇ · v = 0 (13)

where v is the velocity vector field of the fluid parcel, P the scalar pressure, ν the

kinematic viscosity, and ρ the fluid density. If we assume w = ∇× v, which is called

vorticity and curl operator (∇×) is applied to equation (13), we obtain

∂w

∂t
+ v · ∇w = ν∆w (14)

since wt = −∇× vt, v · ∇w = −∇× (v · ∇v), and ∇×∇P = 0.

It is interesting to note that the Navier-Stokes equation can also be seen from

the probability and statistical point of view. In that the Navier-Stokes equation is a

macroscopic form derived from the higher level Boltzmann equation which describes

the evolution of the distribution function of particles in a fluid [36].

In 2D space, the velocity v can be expressed as 90 degrees rotation of the gradient

of a stream function. Since we can consider a stream function as an image intensity, u,

v = ∇⊥u (i.e. isophote direction), therefore, equation (14) implies that the following

equation must be satisfied for steady state inviscid flows:

∇⊥u · ∇(∆u) = 0. (15)

Here, the vorticity can be related as w = ∆u by definition. Hence, equation (15)

means the Laplacian of the stream function (i.e. vorticity) has the same level curves

as the stream function. In addition, we can apply anisotropic diffusion in equation (11)

to a vorticity transport equation (14) as follows:

∂w

∂t
+ v · ∇w = ν∇ · (c(|∇w|)∇w) (16)
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which satisfies the Poisson equation ∆u = w with the Dirichlet boundary condition

u|∂Γ = u0.

Similar to the diffusion equation, the Navier-Stokes equation and its variations

have been used by many authors in image processing and image enhancement.

2.3 Variational Models

There have been various variational models applied in image processing and computer

vision. More general functional form often used in image processing problem is in the

following:

inf
u
F (u) = inf

u


Ω

f(x, y, u(x, y),∇u(x, y)). (17)

In this section, we introduce some of the most interesting models used in this

thesis.

2.3.1 Total variation (TV) Model

In the earlier section, we have briefly observed total variational model (equation (2)),

its equivalent PDE form (equation (3)), and its relations to other mathematical ap-

proaches. In image processing, it has been claimed that TV norm,

Ω
|∇u|, is more

appropriate than L2 norm due to its non-linearity. An image u that satisfies TV has

bounded variation (BV), which allows not only smoothness but also sharp edges in

the mathematical formulation. In [123], an image denoising approach was first pro-

posed to apply TV model to a noisy image. Other image processing applications such

as inpainting, segmentation, deblurring, and super-resolution have been successfully

developed as we will see some in the following chapters.

2.3.2 Euler Elastica Model

In [101], Mumford introduced Euler’s elastica model in computer vision as a prior

curve model. The original problem was first proposed and solved by Euler and the
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optimized curves were called elastica. The model can be generally described by min-

imizing the following integral: 
C

(ακ2 + β)ds, (18)

where α and β are constant parameters, κ the curvature of planar curves C, and ds

the arc length. The curvature can be given by the divergence of normalized image

gradient as follows:

κ = ∇ · n = ∇ ·

∇u
|∇u|


. (19)

We can notice that the curvature term in equation (19) can be plugged into Euler-

Lagrange equation of TV model in equation (3), i.e. u = u0+2λ ·κ(u). The endpoints

of C are not considered and the energy functional is minimized over the variations of

C which preserve the total length. In an intensity image u, which ranges in [0, 1], the

curves can be considered as level lines [92], which are boundaries of upper level sets

or Xλ = {x, u(x) ≥ λ} at each intensity level λ. Analysis of all the level lines in an

image can contribute useful image analysis information. The use of level lines in the

detection of texts in natural images can be found in [107]. A solution to inpainting

problem using elastica model can be found in [17] (see also Variational Approaches

in Section 5.2.1).

2.3.3 Mumford-Shah Model

Mumford-Shah (MS) variational model proposed by Mumford and Shah [102] has

been deeply studied and used in computer vision due to flexible curve evolution and

numerical advantages for implementation. One of the most successful applications

using the Mumford-Shah model is image segmentation [21, 143, 60, 149, 70, 151],

which enables to analyze noise-invariant global image structure. Mumford-Shah en-

ergy functional is defined in the following:

F (u,C) =


Ω

|u− u0|2 dxdy + µ


Ω\C
|∇u|2 dxdy + ν |C| , (20)
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where u0 is the original image, u is the smooth approximation of u0, C and |C| are

segmentation curve and the curve length, Ω and Ω \ C represent respectively image

domain and the image domain that excludes segmented curves, and µ and ν are given

parameters used to adjust the effects of different terms.

2.3.4 Image Decomposition and Variational Approach

An image can be considered as a combination of image structure (cartoon) and details

(texture and noise), i.e. u = v + w, where v and w represent a cartoon image and

a textured image of u respectively. Meyer’s model [96] proposes that a piece-wise-

smooth image v can be obtained by TV model in equation (2). The model also

characterizes oscillating property of texture image.

Based on Meyer’s model, an image decomposition method by Vese and Osher [150]

was proposed by optimizing the following functional:

Gp(v, g1, g2) =


|∇v|+ µ∥w∥∗

=


|∇v|+ λ


|u− v − ∂xg1 − ∂yg2|2dxdy + µ


|g|pdxdy

1/p
,(21)

where the norm ∥w∥∗ is the lower bound of all L∞ norms of the functions |g| =
g21 + g22, λ, µ > 0 are weight parameters, and p → ∞. In this case, v bounded

variation (BV), and w = ∂xg1 + ∂yg2 is in Banach space. In equation (21) u can

ensure to be approximation of v + w by the second term. Criterion (21) yields the

Euler-Lagrange equation when p = 1 as follows:

v = u− ∂xg1 − ∂yg2 +
1

2µ
∇ ·


∇v
|∇v|


(22)

with λg1
|g| = 2µ


∂x(v − u) + ∂2xxg1 + ∂2xyg2


and λg2

|g| = 2µ

∂y(v − u) + ∂2xyg1 + ∂2yyg2


.
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2.4 Bayesian Framework and Variational Approaches

MAP formulation in equation (4) can be translated as a minimization problem instead

of maximization. If we assume that u0 is blurred by a blurring operator K which is

linear and contaminated with white Gaussian noise, the following formulation can be

considered:

û = argmin
u
F (u) = argmin

u


1

2σ2|Ω|


Ω

|Ku− u0|2 dxdy + f(u)


, (23)

where F (u) = − ln p(u|u0), f(u) = − ln p(u), σ2 the noise variance, and |Ω| the

Lebesgue measure. We can notice that equation (23) is analogous to other energy

functional introduced. For example, if we set f(u) = λ

Ω
|∇u| dxdy and there is no

blurring, the minimization functional has the same form as equation (3).

2.5 Wavelet Transforms

For the last two decades, wavelet transform has been widely used in image processing

due to various properties such as multi-resolution analysis, perfect reconstruction,

filtering ability, locality, linearity, separability, sparsity, orthogonality (for orthogo-

nal wavelet), and so on. For example, its efficient separability into dense scaling

coefficients and sparse wavelet coefficients lead to good image compression methods.

Decomposition ability into image structure (scaling subband) and detailed texture

and noise (wavelet subband) makes efficient denoising possible. In this section, basic

notions and mathematical properties of wavelet transforms for image enhancement

are described. The interesting relationship between wavelet transforms and PDEs

has been discussed in Section 2.1. In this thesis, the formulation is presented based

on filtering theory to describe discrete wavelet transform in a simple way rather than

discussing mathematical properties which can be found in many good books on the

subject.
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The one-dimensional forward discrete wavelet transform can be expressed as fol-

lows:

sj+1,k =

⌊p/2⌋
m=−⌊ p−1

2
⌋

φmsj,2k−m (24)

wj+1,k =

⌊q/2⌋
m=−⌊ q−1

2
⌋

ψmsj,2k−m+1, (25)

where sj,k and wj,k are scaling and wavelet coefficients in j-th level and φm and ψm

are the scaling and wavelet filters with length p and q respectively. Also,

φm =

√
2

and

ψm = 0. In general, the filters φ and ψ should satisfy equations (5) and (6).

The following example defines forward transform of Le Gall 5/3 filter, which is

biorthogonal filter that is used for lossless compression standard of JPEG 2000:

sj+1,k =
√
2


3

4
sj,2k +

1

4
(sj,2k−1 + sj,2k+1)−

1

8
(sj,2k−2 + sj,2k+2)


(26)

wj+1,k =
1√
2


sj,2k+1 −

1

2
(sj,2k + sj,2k+2)


. (27)

The inverse wavelet transform for synthesis can be expressed as follows:

sj,k =
1

2

 ⌊p/2⌋
m=−⌊ p−1

2
⌋

ψ̆msj+1,k−m +

⌊q/2⌋
m=−⌊ q−1

2
⌋

φ̆mwj+1,k−m

 , (28)

where ψ̆m and φ̆m are the synthesis filters of the scaling and wavelet functions and the

coefficients sj+1, k and wj+1, k are upsampled. In the case of Le Gall 5/3 using equa-

tion (28), even and odd sampled scaling coefficients in the j-th level are respectively

obtained by

sj,2k =
1√
2


sj+1,k −

1

2
(wj,k−1 + wj,k)


(29)

sj,2k+1 =
√
2


3

4
wj,k +

1

4
(sj,k + sj,k+1)−

1

8
(wj,k−1 + wj,k+1)


. (30)

The shapes of the analysis and synthesis filters for Le Gall 5/3 are illustrated in

18



(a) scaling analysis filter (b) wavelet analysis filter

(c) scaling synthesis filter (d) wavelet synthesis filter

Figure 4: Le Gall 5/3 analysis and synthesis filters

figure 4.

In 2D wavelet transform, j-th level scaling coefficients are located in LLj subband

while wavelet coefficients are separated into HLj, LHj, and HHj subbands. The 2D

implementation can be made straightforward by applying 1D transform to rows and

then columns of the image or the scaling subband in the previous decomposition level.

2.6 Sparse Representation and Compressed Sens-

ing

Applications to image processing of sparse representation and compressed sensing are

relatively new. They have been actively employed in image enhancement problems.

Some reviews on sparse representation and compressed sensing can be found in [50,

48, 157, 113, 15, 121, 122, 52, 142, 43]. In this section, we discuss the basics of the

theory and useful development as applied to images.
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2.6.1 Sparse Representation

Image model in equation (7) is a general form for sparse coding, which includes wavelet

packets, discrete cosine transform (DCT), Gabor filters, singular value decomposition

(SVD), and many other recently developed filters, i.e. curvelet, ridgelet, bandelet, etc.

Narrow meaning of sparse representation takes advantages of sparsity and optimality

of the transformed domain and redundancy (or over-completeness). In this case, it is

an ill-posed problem since n > m. To solve the optimization problem in equation (8)

or (9), greedy algorithms such as basis pursuit[24], matching pursuit[91, 109, 105],

LASSO [141], and gradient projection [57] have been developed. A dictionary Φ

can be obtained directly from sparse filters, but it can be constructed by learning

technique [47, 2, 98]. In image enhancement problems, the solution of optimization

formulation in equation (9) or its variation can be considered as an enhanced image.

In fact, various algorithms for denoising, super-resolution, and deblurring problems

have been proposed based on this concept.

2.6.2 Image Decomposition and Sparse Representation

As shown in Section 2.3.4, an image can be decomposed into a piece-wise smooth

cartoon image and a texture image. Sparse representation including wavelet transform

is also good for image decomposition considering that it shares a variational scheme

like equation 9 and both transformed cartoon and texture images can satisfy sparsity

conditions.

Morphological component analysis (MCA) approach proposed in [134, 54, 135]

uses linear sparse representations with different dictionaries and results in layer sepa-

ration, i.e. u = Tvαv+Twαw, where Tv and Tw are N×L matrices representing given

dictionaries, and αv and αw are sparse vector with size L (L ≫ N and N is image

size). In this case, the main problem requires to estimate the sparse representations,

αv and αw as follows:

F (αv,αw) = ∥∇Tvαv∥1 + λ∥u− Tvαv − Twαw∥22 + µ(∥αv∥1 + ∥αw∥1). (31)
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The dictionaries can be chosen from known transforms as mentioned in the previous

section. For example, local DCT, Gabor, or wavelet packets can be used for Tw and

orthogonal wavelet transform, curvelet, ridgelets, and contourlets can be selected to

compose Tv.

2.6.3 Compressed Sensing

Recall a compressed sensing formulation in equation (10) compared to equation (7).

While sparse representation seeks the sparsest representation α, compressed sens-

ing reconstructs probabilistically a signal or image x given a partial observation y

[14]. However, there is very close relationship between sparse representation and com-

pressed sensing theory since x can be expressed as a linear combination of a dictionary

Φ and sparse vector α.

For image enhancement problems, reconstruction of good image x with size m

from a given incomplete data y with size l . The reconstruction of x is an ill-posed

problem with m > l like equation (7). In addition, there is an issue to design a stable

measurement matrix M not to destroy significant observation and bases to keep k-

sparsity. The former problem can be well-posed since we assume that x is k-sparse and

l ≥ k with the restricted isometry property (RIP), (1−ϵ)∥v∥2 ≥ ∥Θv∥2 ≥ (1+ϵ)∥v∥2,

and its related incoherence condition between rows of M and Φ [42]. For example,

M could be constructed by iid random variables from Gaussian distribution.

2.7 Conclusion

In this chapter we have described some mathematical approaches that have important

applications to image enhancement, the topic of this thesis. These mathematical

approaches are: PDEs, variational models, wavelet transform, sparse representation

and compressed sensing. This chapter also describes the relationship that exists

among these powerful methods.
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Chapter 3

Image Enhancement : Color Image

Denoising

Wavelet transform has been used for denoising problem and various approaches have

been proposed for the last two decades since it has been proven to be efficient for

removing noise of images as well as for signals. It has been shown that denoising

using wavelet transforms produces superb results. This is because wavelet transform

has the compaction property of having only a small number of significant coefficients

and a large number of detailed coefficients as we discussed in the previous chapter.

Therefore, it is possible to suppress the noise in the wavelet domain by killing the

detailed coefficients that represent the detailed information as well as the noise.

Most of the image denoising approaches using wavelet transforms have been de-

signed for monochrome images. However in practice more common image type is

color image composed of multiple color components. Unlike monochrome images,

color images can be expressed as multiple components of monochrome images or a

set of pixels represented by vectors. Therefore it is possible to extend most of the ex-

isting denoising approaches to color image straightforwardly by denoising each color

component independently. In this case, correlation and dependency between color

components are ignored.

In order to estimate visually comfortable and meaningful color pixels from noisy
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image, it is necessary to take advantage of correlation or dependency of color compo-

nents. In the spatial domain, there have been many works including vector processing

[115, 32, 144], PDE modeling [71, 4], and fuzzy approaches [125, 95]. For vector pro-

cessing approaches, it is possible to develop a rule to estimate a correlated vector by

averaging or utilizing order statistics between the vectors (or pixels).

In this chapter, a color image denoising approach using wavelet transform is in-

troduced. Color image denoising problem in the wavelet domain has not been studied

deeply. Only a few color image denoising algorithms using wavelet transform such

as [63] and [140] have been developedat the time our work was proposed, which was

initially published in SPIE Wavelet XI 2005 as an invited paper [28]. Since then,

there have been more works on wavelet-based color image denoising approaches such

as [81, 82, 86, 67, 164]. Some of recent methods combine a wavelet-based approach

and spatial filters or PDE scheme and there have been some improvement. On the

other hand, our work presented in this chapter is still comparable to the most recent

state-of-the-art. In addition, the major contribution of this work is the color image

denoising framework itself that can flexibly employ more recent and efficient wavelet-

based denoising algorithm for a single channel in order to reach better performance.

The proposed general framework of color image denoising utilizes color compo-

nents in the wavelet domain by decorrelating them statistically. In the decorrelated

space, the sample space is randomly distributed and this results in more robust es-

timation for clean image. Before we present the color image denoising framework,

some monochrome image denoising approaches using wavelet transform are briefly

discussed because basic concepts are shared and any of these methods can be used in

our proposed framework.

The organization of this chapter is as follows. In the following section, we briefly

review wavelet-based monochrome image denoising approaches including the works

originally proposed in [29] and [31]. In Section 3.2, a color denoising framework

that performs decorrelation between color components in the wavelet domain is pro-

posed. Experimental results are shown and compared with the existing methods in
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Section 3.3. And finally we conclude this chapter in Section 3.4.

3.1 Monochrome Image Denoising Approaches Us-

ing Wavelet Transform

Wavelet coefficients are not strongly correlated, but they still have dependency on each

other. So many of the recent works have taken into account this dependency in order

to obtain better coefficient estimate. Cai and Silverman [13] proposed a simple and

effective approach for signal denoising by incorporating the neighboring coefficients.

Chen and Bui [22] designed new neighboring threshold for multiwavelet based on

NeighBlock. Their method considers both multiwavelet properties and neighboring

dependency. Mihcak et al. [97] proposed a local variance estimator to get a locally-

adaptive shrinkage value. Malfait and Roose proposed an image denoising algorithm

using Markov random field image model as a priori [88]. Also Pizurica et al.[114]

considered a joint inter- and intra-scale statistical model and improved the approach

of Malfait and Roose. A parent coefficient in the coarser level was also considered

to estimate a threshold by Sendur and Selesnick [127]. They obtained better results

when they applied the local variance together with the dual-tree complex wavelet

transform (DT CWT) [128]. DT CWT provides better shift-invariant features and

directional selectivity than the usual separable wavelet transform [72]. Portilla et

al.[118] presented an image denoising algorithm which is based on a Gaussian scale

mixture (GSM) model using an overcomplete multiscale oriented basis. They define

a vector using neighboring coefficients and obtain an accurate estimate by the vector

operations. These works show that incorporating different information like neighbors

and parents is helpful to remove noise and preserve details for natural image denoising.

Also, two different denoising methods for monochrome image were proposed in

master’s thesis of the author [27]. These methods are described more in detail since

they are used in the color image denoising framework as we will see in Section 3.2. In

both methods, neighboring coefficients of given noisy image are utilized to estimate
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those of clean image accurately. However they have different approaches to obtain

the clean estimates. The first method utilizes the Lp-norm of a vector composed of

all the related neighboring coefficients by comparing it with universal threshold [40].

On the other hand, the second method generally estimates the clean coefficients using

Bayesian statistics based on our multivariate a priori model.

We define some common notations first. Let A be a clean natural image with size

N ×N , B a noisy image which can be expressed as B = A + σC, and C zero-mean

Gaussian white noise, which is C∼N(0, 1). σ2 is noise variance. After performing

multiresolution wavelet decomposition on B, we get the wavelet coefficient yj,k, which

is the k-th wavelet coefficient in j-th level for B. Due to the linearity of the wavelet

transform, we have:

yj,k = xj,k + σzj,k, (32)

where xj,k and zj,k are the wavelet coefficients of A and C respectively in the same

location as yj,k.

3.1.1 NeighLevel : a simple and efficient shrinkage rule

In the wavelet domain, the strong dependency between parent and child coefficients

has been widely realized in image coding and denoising since zerotrees were intro-

duced by Shapiro [129]. Among them, Cai and Silverman [13] proposed a simple and

effective approach for a signal denoising. The method, called NeighBlock, takes the

neighboring coefficients into account and obtains a threshold by comparing the sum

of squared neighboring coefficients with Donoho’s universal threshold. In addition,

parent and child coefficients have inter-dependency similar to neighbors. Therefore,

if we can properly utilize neighbors spread both vertically and horizontally as shown

in figure 5a, a better performance can be expected.

Based on these ideas, we proposed an efficient image denoising approach called

NeighLevel for a monochrome image in [31]. This can be briefly described in the
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Figure 5: Main concept and analysis of NeighLevel approach.

following equation:

x̂j,k = yj,k


1− (M2 + 1)λ∗2

 
sl∈Nj,k

s2l + p2


+

or in general,

x̂j,k = yj,k


1− d

 λ∗

∥y∥r

r
+

, (33)

where sl denotes the coefficient to be thresholded and its neighbors in an M ×M

window, and p is a corresponding parent of the coefficient to be thresholded, which is

a coefficient matched in the coarser level (see figure 5a). y is a d-dimensional vector

composed of all the related coefficients including the coefficient to be thresholded,

neighbors and parent and ∥y∥r denotes Lr-norm (we mostly set r to 2). λ∗ = θλ,

where λ is the universal threshold λ =

2σ2 logN2. θ is given as a parameter which

satisfies 0 ≤ θ ≤ 1.

In equation (33), it should be noted that a normalized factor, d or M2+1, is used

which is the number of correlated elements in the context. By this rule, the effect of

the local variance from the parent level is considered as well as from the current level.

In this method, it is important to choose an appropriate paramter θ. The universal
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threshold is designed for smoothness rather than for minimizing the errors. So λ is

more meaningful when the signal is sufficiently smooth or the length of the signal

is close to infinity. Natural images, however, are usually neither sufficiently smooth

nor composed of infinite number of pixels. In fact, if we suppose that an optimal

threshold that minimizes mean square error (MSE) (or maximizes peak signal to

noise ratio (PSNR)), θ is always much less than 1.0 for natural images as shown in

figure 5b. Especially we got very similar θ value for different kinds and sizes of images

when we applied soft thresholding rule. It might vary depending on the wavelet filter,

but the appropriate range is similar for different images and noise level we have tested

in our experiments.

3.1.2 Bayesian Estimation for Multivariate Statistical Model

Another method for monochrome image denoising proposed in [29] is to use the statis-

tical model of clean wavelet coefficients in addition to taking advantage of neighboring

coefficients. This drives us to use multivariate statistical model. The method uses a

general estimation rule in the wavelet domain to obtain the denoised coefficients from

the noisy image based on the multivariate statistical theory and Bayesian estimator.

We briefly review the estimator in the following.

Let x be a d-dimensional wavelet coefficient vector, x = (x1, x2, · · · , xd)t, where

x1 is the wavelet coefficient under consideration and xi (i = 2, · · · , d) are the related

coefficients to be taken into consideration, e.g. neighbors, parent and offsprings. Here

for simplicity, we replace the double subscripts in xj,k by a single subscript xi. The

corresponding vectors y and z can be similarly defined for the noisy image B and the

noise C. We assume that xi, yi and zi correspond to each other in both decomposition

level and location. Therefore,

y = x+ σz. (34)

For the sake of simplicity, we omit subscripts j, k in equation (34) and the rest of the

chapter.
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Our concern lies mainly in obtaining the estimate of a clean wavelet coefficient

vector, x̂. x̂ should be obtained only from y, a wavelet coefficient vector of the noisy

image B. One of the ways to estimate x̂ is to use MAP estimator to maximize p(x|y).

MAP estimator for x̂ can be obtained as follows:

x̂ = argmax
x∈Rd

[ln p(y|x) + ln p(x)]

= argmax
x∈Rd

F (x), (35)

where F (x) represents the term inside argmax. This means that the optimal value

x̂ with minimum probability error can be estimated by p(y|x) and p(x).

From equation (34), p(y|x) is the multivariate Gaussian distribution withN(0,Σz =

σ2I) since Gaussian noise is independently and identically distributed for each element

of the vector. Hence,

ln p(y|x) = −d
2
ln (2πσ2)− (y − x)t(y − x)

2σ2
. (36)

We assume that p(x) is known. p(x) might vary depending on the type of sample

images. Also suppose that g(x) = ln p(x) and there exists x̂ which satisfies F (x̂) >

lim
xi→±∞

F (x). From equations (35) and (36), equation (35) is equivalent to the solution

of the following equation:

∇F (x̂) = − x̂− y

σ2
+∇g(x̂) = 0

⇔ x̂ = y + σ2∇g(x̂). (37)

Therefore the estimate of x highly depends on the probability density of clean wavelet

coefficients, p(x).

The existing models for wavelet denoising are usually based on univariate sta-

tistical model whereas p(x) is a multivariate pdf in our model. There are several

multivariate functions which are symmetric spherically like multivariate Gaussian

model. We use extended generalized Gaussian distribution (GGD) model [89] for
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its simple form and to achieve good fitting results. We call this model multivariate

generalized Gaussian distribution (MGGD):

p(x) = γ exp


−

(x− µ)tΣ−1

x (x− µ)
α

β

, (38)

where α and β are parameters which can represent the spherical shape of the model

and γ indicates a normalized constant defined by α, β and the covariance matrix Σx.

When the dimension of x is one (scalar), the MGGD is still applicable and is

denoted by univariate generalized Gaussian distribution (UGGD). MGGD is a par-

ticular case of the v-spherical distribution defined by Fernández [56]. Using MGGD

model, we can derive more specific forms of equation (37). Since we can assume that

µ = 0,

∇g(x) = −2β

αβ
(xtΣ−1

x x)β−1Σ−1
x x. (39)

From equations (37) and (39),

x̂ =


Σx̂ +

2σ2β

αβ
(x̂tΣ−1

x̂ x̂)β−1I

−1

Σx̂y. (40)

To simplify equation (40), we define q(x̂) = x̂tΣ−1
x̂ x̂. Hence :

q(x̂) = yt


Σx̂ +

2σ2β{q(x̂)}β−1

αβ
I

−2

Σx̂y. (41)

Equations (40) and (41) allow us to solve for x̂.

However, there is no general solution for equation (41). To overcome this problem,

we can define a particular condition for α, β and Σx̂ or use a numerical method. In

our case, we simply use Newton’s method.
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3.2 Proposed Color Image Denoising Framework

A color image can be described as a set of multiple image components. The color

image representation is based on the trichromatic theory, which reflects the fact that

human has three kinds of cones and they absorb light of different wavelengths. This

leads to the separation of most of color images into three color components. In this

chapter, we consider RGB color space that is an additive color model using three

primary colors, i.e. red, green, and blue. We assume color images are composed of

these three color channels. In this case we assume that a given noisy image contains

randomly distributed Gaussian additive noise for each channel of RGB components. .

Unlike trichromatic color models such as RGB space, color models based on luminance

and chrominance such as HSI, YUV, YIQ, L*a*b, and so on, have some advantages.

For example, HVS is more sensitive to the change of luminance than chrominance.

This enables us to decorrelate color components and limit the bandwidth of chromi-

nance channels. Many of these color spaces can separate two uncorrelated parts,

luminance and chrominance1 while RGB color components are highly correlated.

By considering these properties of different color models, some works for color image

denoising have been proposed [115].

The main difficulty in applying a monochrome image denoising algorithm to color

image is the fact that a color image is multi-channel and the channels are correlated to

each other. The simplest and straightforward way to apply the denoising algorithms

discussed in Section 3.1 to color images is to consider each color channel as a single

monochrome image and denoise each channel separately. As one can expect, this

approach does not take advantage of any color information and channel correlation.

Another straightforward approach is to take advantages of a single color space

that considers HVS such as YUV or YIQ color space. As shown in figure 6 , a

simple framework that utilizes YUV color space system can be considered. Since

YUV conversion can be linearly performed and there is less correlation between Y

1Luminance part substitutes intensity, lightness, or brightness depending on the color system.
Chrominance information includes hue and saturation.
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Figure 6: Color image denoising framework using YUV color space conversion

and UV channels, better performance can be achieved. We discuss more details in

the following section.

Finally, our proposed color denoising scheme is depicted in figure 7. The frame-

work estimates clean wavelet coefficients by different analyses which can make the

color channels decorrelated. The analyses generate multiple estimates and construct

probable ranges of clean coefficients in the color vector space. In the limited ranges of

the vector space, we can decide an estimated coefficient vector which has the highest

a posteriori.

3.2.1 Color Space Conversion for Human Visual System

Any physical wavelength of visible light is recognized by three different types of cone

cells in human retina. A color that represents light energy of a certain wavelength

can be expressed by combining three primary color components such as red, green,

and blue. Physically any optical systems including human optic nerves and charge-

coupled devices (CCD) acquire these primary colors from the reflected light of an

object. Human visual system is more sensitive to luminance information than hue

and saturation. Among many color spaces that consider HVS, we mainly use a linear

YIQ color conversion from RGB space defined in the following:
Y

I

Q

 =


0.299 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311




R

G

B

 , (42)
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where (R,G,B)t denote a color vector of RGB components that are normalized

gamma-corrected values and (Y, I,Q)t is a YIQ color coordinate. Similarly we can

use YUV color conversion that is defined in the following:
Y

U

V

 =


0.299 0.587 0.114

−0.147 −0.289 −0.436

0.615 −0.515 −0.100




R

G

B

 , (43)

where (Y, U, V )t denotes vector of YUV color channels. YIQ is a standard of NTSC

system while PAL uses YUV color space. Both YIQ and YUV color spaces can be

converted linearly from RGB space. Due to the linear properties of both the wavelet

transform and the conversion to YIQ color space, the conversion to YIQ can therefore

be performed in the wavelet domain. We prefer the linear conversion in order to keep

the noise properties. In equation (32), we can notice that the noise is still zero-mean

Gaussian after a linear transformation. However, the variance for each color channel

may vary. In our case, the noise variances for Y, I, Q components become

σ2
Y = (0.299σR)

2 + (0.587σG)
2 + (0.114σB)

2

σ2
I = (0.596σR)

2 + (0.275σG)
2 + (0.321σB)

2

σ2
Q = (0.212σR)

2 + (0.523σG)
2 + (0.311σB)

2

respectively, where σR, σG, and σB are given noise standard deviations for each RGB

channel.
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3.2.2 Decorrelation Approach in the Wavelet Domain

Since RGB color space is strongly correlated for natural images, one can assume that

uncorrelated space can be helpful for image denoising. In fact, one of the impor-

tant inspirations in denoising methods using wavelet transform is drawn from weak

correlation property between wavelet coefficients. Rao and Jones developed denois-

ing method for a multisensor [120]. They show the similarity between Karhunen-

Loeve (KL) and wavelet transforms and utilize the uncorrelation properties in spatio-

temporal manner. KL transform is able to decorrelate strongly correlated multichan-

nel data perfectly. It has been used for image analysis and coding widely. From

equation (32), we define one color pixel as a vector, v = (vr, vg, vb)
t. Hence, we can

denote a wavelet vector composed of wavelet coefficients from each color component

as follows:

y = x+ Σ1/2
z z, (44)

where Σ
1/2
z = diag(σR, σG, σB). In order to decorrelate the given wavelet vectors,

we obtain the KL transform matrix Φ, which satisfies ΦtΣyΦ = Λ, where Σy is a

covariance matrix of the given wavelet vectors y, Λ is a diagonal matrix containing

the eigenvalues of Σy, and Φ is a eigenmatrix of Σy expressed as Φ = [aij], where aij

denotes the element of i-th row and j-th column in a 3×3 matrix Φ. They are all

3×3 matrices. Then the transformed vectors

yKL = Φty (45)

become ideally uncorrelated. In this case, our denoising problem is to estimate xKL =

Φtx. From equations (44) and (45), yKL = xKL + ΦtΣ
1/2
z z. Therefore,

σ2
j = (a1jσR)

2 + (a2jσG)
2 + (a3jσB)

2,

where σj denotes noise standard deviation for a transformed channel j and j =

1, 2, 3. Since KL transform is linear like YIQ color conversion, the noise model in the
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transformed domain is also Gaussian. Then we can apply a monochrome denoising

algorithm without modification for each transformed channel. Since Φ is orthogonal,

inverse KL transform can be obtained from equation (45) as follows:

y = ΦyKL (46)

The main advantage of KL transform is the ideal decorrelation depending on the

given data. In our framework, KL transform is performed for each subband in the

wavelet domain in order to take maximum advantages of multiresolution analysis

property of wavelets. It should be noted that any denoising algorithm using wavelet

transform can be applied to each of the estimation procedures for the denoised wavelet

coefficients.

3.2.3 Bayesian Selection of Candidate Vectors

Previous sections imply that there might be many ways to estimate the clean wavelet

coefficients. We can compose multiple candidate vectors from the estimates and

confine the vector space including them. In this section, we follow the approach

described in Section 3.1.2 where we assume that the clean wavelet coefficient is an

estimate that maximizes the a posteriori p(x|y). If p(x|y) can be modeled accurately,

it is possible to estimate the clean coefficient in a locally confined vector space with less

computational cost. Suppose that the power set 2D = {x̂1, x̂2, · · · , x̂m} is constructed

from the estimated vector set D obtained by the two different ways at the end of step

4 (estimation blocks) of the framework in figure 7. Then in order to estimate the most

probable vector values, we evaluate the following equation for each element vector of
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2D:

x̂ = argmax
x∈2D

ln p(y|x) + ln p(x)

= argmax
x∈2D


−1

2
ln (2π)3|Σz|+ γ − (y − x)tΣ−1

z (y − x)

2σ2
−

(x− µ)tΣ−1

x (x− µ)
α

β

.

(47)

3.3 Experimental Results

In the experiments, we have used mainly color images with 512×512 sizes from USC-

SIPI image database and other public sources. Clean images are assumed to be

gamma corrected to satisfy HVS. The noise model we assume is zero-mean additive

white Gaussian noise (AWGN). In addition, we also used color images taken by con-

sumer digital cameras to see how the denoising algorithms can enhance the practically

used images which include naturally generated noise.

The wavelet filter we have used is dual-tree complex wavelet transform (DT CWT)

suggested in [72]. DT CWT has helpful properties for the denoising such as redun-

dancy and directionality. We also have chosen Daubechies’ length 8 wavelet filter

(DAUB. 8) which is one of the most common mother wavelets for denoising for com-

parison.

In order to evaluate our method, we show the results using Wiener, a straight-

forward extension in RGB space using NeighLevel, and our proposed framework de-

scribed in the previous sections. Wiener filter is the optimal minimum mean squared

error estimator which considers neighboring information. We simply used Matlab im-

plementation of pixelwise adaptive Wiener filtering, wiener2() function with given

noise (σ) and 5 × 5 or 7 × 7 local window for measuring mean and standard devia-

tion. The preliminary estimator for clean wavelet coefficients is NeighLevel presented

in Section 3.1, in order to investigate how the correlation between color components

affects the denoising results. We also implemented a method described in [85], which
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takes advantage of chromatic filters with anisotropic diffusion for luminance channel.

Tables 1 and 2 shows the denoising results with additive white noise N(0, 202) and

N(0, 302) respectively in terms of peak signal to noise ratio (PSNR). PSNR for color

image is defined as follows:

PSNR = 10 log10


2552

MSE


, (48)

and

MSE =
1

3nm


i∈R,G,B

n−1
y=0

m−1
x=0

|u(x, y, i)− û(x, y, i)|2, (49)

where u(x, y, i) is a clean image pixel on (x, y) spatial coordinate of i-th channel of

RGB color components and û is an estimated image with size n×m. In figures 8, 9 and

12, some of the results are displayed. Figure 8 shows one example denoising results

for different approaches and figure 9 present its zoomed region. The compared de-

noising results in figure 9 are interesting since figure 9(c) has rainbow-colored artifact

while figure 9(d) looks more consistent with the white mountains. Another example

is pepper image in figure 11 and its cropped one figure 10. This example gives the

smallest difference between NeighLevel RGB and the proposed (10e and 10f). It’s

mainly because the original image has relatively good decorrelation between RGB

channels. Therefore, independent denoising works better than the other examples.

We also tried to enhance an image without artificial Gaussian noise in figure 12. As

can be seen, our proposed wavelet approach can remove the noise in the image with-

out too much blurring. These results show that we can achieve high-quality color

image denoising by decorrelation of color components for most of natural images.

However, the denoising performance depends on a given image itself and its statisti-

cal properties. For example, Baboon image in figure 13 has more random noise-like

texture, which is natural and not supposed to be removed. In this case, it’s difficult to

distinguish texture and noise. Therefore, none of methods give good PSNR although

visual impression is acceptable.
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(a) Clean image (b) Noisy image (18.59dB)

(c) Wiener (27.50dB) (d) Chromatic filters (27.49dB)

(e) NeighLevel RGB (29.62dB) (f) Proposed (30.99dB)

Figure 8: Denoising results for F-16 image with Gaussian noise N(0, 302).
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Image Noisy Wiener Chromatic NeighLevel Proposed
image (dB) filter (dB) filters[85] (dB) RGB (dB)

Lena 22.11 29.70 29.54 31.50 32.53
F-16 22.11 29.60 28.91 31.47 32.89
Lake 22.11 27.27 26.94 28.40 29.09
Baboon 22.11 22.99 23.22 25.41 26.87
Pepper 22.11 29.65 28.68 30.61 31.06

Table 1: PSNR values of denoised 512×512 color images with AWGN N(0, 202) from
USC SIPI database

Image Noisy Wiener Chromatic NeighLevel Proposed
image (dB) filter (dB) filters[85] (dB) RGB (dB)

Lena 18.59 27.63 27.84 30.01 31.09
F-16 18.59 27.50 27.49 29.62 30.99
Lake 18.59 25.79 25.94 26.79 27.56
Baboon 18.59 22.74 22.90 23.81 24.98
Pepper 18.59 27.67 27.15 29.48 29.72

Table 2: PSNR values of denoised 512×512 color images with AWGN N(0, 302) from
USC SIPI database

(a) Clean image (b) Noisy image
(18.59dB)

(c) Wiener (27.50dB)

(d) Chromatic filt.
(27.49dB)

(e) NeighLevel RGB
(29.62dB)

(f) Proposed (30.99dB)

Figure 9: Denoising results for cropped F-16 image with Gaussian noise N(0, 302).
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(a) Clean image (b) Noisy image (22.11dB)

(c) Wiener (29.65dB) (d) Chromatic filters (28.68dB)

(e) NeighLevel RGB (30.61dB) (f) Proposed (31.06dB)

Figure 10: Denoising results for pepper image with Gaussian noise N(0, 202).
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(a) Clean image (b) Noisy image
(22.11dB)

(c) Wiener (29.65dB)

(d) Chromatic filt.
(28.68dB)

(e) NeighLevel RGB
(30.61dB)

(f) Proposed (31.06dB)

Figure 11: Denoising results for pepper image with Gaussian noise N(0, 202).

(a) Captured test frame using Sony PD-100 (b) Zoom of (a); original (top-left), Wiener
(top-right), chromatic filter [85] (bottom-
left), and proposed (bottom-right)

Figure 12: Denoising results of a naturally corrupted image frame captured by con-
sumer digital camcorder
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(a) Clean image (b) Noisy image (22.11dB)

(c) Wiener (22.99dB) (d) Proposed (26.87dB)

Figure 13: Denoising results for baboon image with Gaussian noise N(0, 202).
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3.4 Conclusion

In this chapter, color image denoising framework using wavelet transform has been

presented. The correlation between color components must be maximally utilized for

an efficient denoising algorithm. The proposed framework is capable of employing

any wavelet shrinkage algorithms for monochrome image. In the experiments, we use

wavelet shrinkage algorithms that take advantages of intra-dependency of the wavelet

coefficients since the dependency between neighboring wavelet coefficients is critical

information for image denoising. Our experiments show that the proposed framework

is practically flexible and efficient.
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Chapter 4

Image Enhancement : Contrast,

Brightness, And Color

Natural images can be degraded when they are acquired due to lighting condition,

sensor resolution and quality, or limitation or noise of optical system. In addition,

most of natural images are compressed with a certain degree of data loss for more

efficient storage and communications. An image enhancement algorithm makes such

degraded images visually better perceived. It is a fundamental problem in image

processing field and somehow subjective since the quality is decided by human visual

system (HVS). The enhanced image is expected to have better brightness and con-

trast, good color consistency, reduced noise or defect, less visual artifacts, or better

resolution. Depending on the quality of a given degraded image, each of these im-

provement factors became an important topic separately in the area such as denoising,

contrast enhancement, white balance, deblurring, demosaicking, deblocking, super-

resolution, inpainting, and so forth. Among them, comfortable brightness, contrast,

and color consistency are major enhancement factors to HVS since photoreceptors in

retina (rod and cones) are mainly stimulated differently by light strength levels and

wavelengths, and transduce different levels of stimuli to send the analyzed signal to

the brain. In this chapter, we will be dealing with image contrast enhancement in

the compressed wavelet domain. This to our knowledge is the first attempt in the
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direction.

There have been various works along this line. In the spatial domain, there have

been many good methods that can be easily found in introductory image processing

books.

Retinex-based approaches, one of the successful methods, express HVS-adaptive

dynamic ranges with different lighting conditions in the spatial domain [64, 65, 94]. In

the compressed discrete cosine transform (DCT) domain that the most popular JPEG

image format employs, there have recently been some efficient image enhancement

approaches such as [78, 100]. Since they can be applied directly to the encoded

data, it is not required to decode the image for image enhancement. These methods

also consider the degradation caused by the compression approach such as blocking

artifact or related noise.

Wavelet transforms have been used for image contrast enhancement to take ad-

vantage of the multi-scale properties in the wavelet domain [147]. Curvelet is also

used to preserve better the multi-scale edges[136]. The method proposed in [25] auto-

matically chooses one discrete wavelet filter that can produce the best enhancement

result for a given image. These methods are designed to use wavelet transforms to

achieve a better image enhancement quality. Therefore, computational efficiency re-

garding transformation or data transmission was not considered. On the other hand,

our method puts an emphasis on the image data processing in the wavelet compressed

domain itself. Figure 14 shows a conceptual diagram for the communication process

of compressed image data. In the process, image enhancement can be implemented

directly in the compressed domain.

JPEG 2000 is a representative standard which can replace the DCT-based JPEG

[133]. In JPEG 2000, symmetric filters with biorthogonal properties such as Le Gall

5/3 and CDF 9/7 have been chosen. Unlike orthonormal wavelet filters with some

nice mathematical properties, biorthogonal wavelet causes a difference between the

scaling and wavelet filters in their filter lengths; However, biorthogonal wavelet makes

it possible for simple and fast implementation. More details on wavelet transform have
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Figure 14: Transmission of image data

been introduced in Section 2.5.

In this chapter, we propose a new, fast image enhancement framework in the

compressed wavelet domain, especially for JPEG 2000. The framework is required to

estimate the enhanced transformed image data by applying scale factors of scaling

and wavelet coefficients. Since each meaningful wavelet coefficient is simply scaled

by a proposed formulation, the framework is computationally efficient. In addition,

the framework is flexible since the resulting scaling factor for wavelet coefficients is a

combination of global scaling enhancement factor for a scaling coefficient, shrinkage

factor for noise suppression, and wavelet enhancement factor. We derive the scaling

factors by taking into account the multi-scale property and the low- and high-pass

representation of the wavelet transforms.

This chapter is organized as follows. In the next section, we review the dis-

crete wavelet transform and its properties for image enhancement problem. Proposed

algorithm is described in Section 4.1. Then experimental results and performance

evaluation are demonstrated before concluding this work.
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4.1 Proposed Wavelet Framework for Image En-

hancement

Our proposed approach is performed in the compressed wavelet domain. In other

words, the approach does not require any information in the spatial domain and

benefits from the wavelet properties. Therefore, some advantages are expected as

follows:

• First, computational cost can be tremendously reduced when the image is com-

pressed by the wavelet transform (e.g. JPEG 2000). Actual enhancement pro-

cess is performed only in the compressed domain.

• Secondly, both low and high frequency information are treated separately. A

scaling subband that contains the compact information describes the brightness

of the image and each coefficient represents the local brightness. Wavelet sub-

bands are represented as a small number of significant coefficients and a large

number of trivial coefficients. In other words, significant coefficients mainly

preserve the edge structure while trivial coefficients represent noise or detailed

texture. Therefore, it is possible to develop a technique for emphasizing impor-

tant edges while suppressing noise.

• Finally, the multi-resolution property of wavelet transform can help analyzing

images in different scale. Multi-resolutaiton analysis (MRA) makes possible to

catch both global and local characteristics of images.

The proposed approach consists mainly of the estimation of scale factors for scaling

coefficients and wavelet coefficients of luminance component and their application to

chrominance color components. The overview block diagram of the proposed frame-

work is shown in figure 15.
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Figure 15: Block diagram of wavelet-based enhancement framework.

4.1.1 Estimation of scaling coefficients

Scaling subband represents overall image structure since it includes a relatively small

number of coefficients by a few iterations of decimation. Therefore, this information

is closely related to global brightness and contrast of the image. Scaling coefficients

do not have exactly the same properties as the intensity values in the spatial domain.

For example, statistical indicators such as mean and standard deviation are scaled

by applying linear filter iteratively. Bounded set is also changed in the same manner.

Let’s denote the mean and standard deviation of an image by µim and σim. Then

their relation to the mean and standard deviation for the L-th level scaling subband,

µsL and σsL , becomes

µsL
∼= 2Lµim and σsL

∼= 2Lσim (50)

The bound of scaling coefficient is larger than the one in the spatial domain. For

instance, the bound by Le Gall 5/3 filter becomes 2LImax


−L·5L−1+1

4L
, 5

L+5L
4L


, where

Imax is a maximum image intensity value. In practice, most of coefficients belong to

the bound [0, 2LImax] because there exist weak tails on both sides of the bounds [inf, 0]

and [2LImax, sup]. Figure 16 shows the difference between histograms of an image
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(a) original image (b) scaling subband

Figure 16: Distributions of image intensity values and its transformed scaling coeffi-
cients after three level decompositions with image no. 15 of NASA database.

and its scaling subband. In this case, infimum and supremum should be −2422.5 and

4462.5 respectively after three levels of decompositions. However, more than 99% of

scaling coefficients lie between 0 and 2040 (i.e. 2LImax).

Based on the above observations, we can develop contrast enhancement criteria

as follows:

ŝ = 2LImaxf


s

2LImax


= 2LImaxf(s̄), (51)

where f(·) is a mapping function for a scaling coefficient s and s̄ = s
2LImax

. f(·) should

be able to adjust local image brightness adaptively from global image structure. In

this chapter, two possible ways to decide a mapping function f(s̄) for the enhanced

scaling coefficient estimation are proposed. The first one is a global mapping function

and the other one is a flattening function that levels off the image brightness all over

the image regions.

Flexible mapping function

An enhanced scaling coefficient is obtained by multiplying a given coefficient by a

proper factor. In other words, equation (51) can be rewritten using the scale factor

κs as follows:

ŝ = κss = g(s̄)s, (52)
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where g(·) is a scaled mapping function, which can be obtained by dividing f(·) by

the normalized scaling coefficient s.

The scaled mapping function g(s̄) is defined with the following conditions:

1. s̄ ranges between 0 and 1.

2. f(s̄) = s̄g(s̄)

3. 0 ≤ f(s̄) ≤ 1.

4. f(s̄) is monotonically increasing, i.e. g(s̄) + s̄g′(s̄) ≥ 0.

If g(s̄) is greater than 1, the coefficient s is scaled-up. On the other hand, s becomes

scaled-down if g(s̄) is less than 1. The mapping functions introduced in [78, 100]

has the form of f(s̄) and satisfy these conditions. However, it is possible to design

a maaping function with great flexibility. In this chapter, we propose the following

scaling mapping function:

g(s̄) =

 1 + c1(m− s̄) exp

− |s̄−m|2

σ2
1


, 0 ≤ s̄ ≤ m

1 + c2(m− s̄) exp

− |s̄−m|2

σ2
2


, otherwise

, (53)

with the assumption that the above-mentioned conditions are satisfied for the map-

ping function g(s̄); and the parameters should be chosen accordingly. The proposed

scaling function is continuous and its shape can be flexibly decided by the parame-

ters. The balance control parameter, m, is between 0 and 1. It provides a balanced

position for an equal state, i.e. g(s̄) = 1. σ1 and σ2 are shape parameters that deter-

mine the shapes of scale-up or down. c1 and c2 are amplitude constants that decide

the maximum and minimum scale factors. The shape flexibility plays an important

role in dealing with different statistical properties of images and some examples of

equation (53) with different parameters are presented in figure 17. It is important to

choose the right parameters depending on the type of images. The parameters could

be chosen manually, but we use automatic parametrization based on image statistics,

which is described in the following section.
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(a) m = 0, c = 2 (b) m = 0.5, c = 2 (c) m = 1, c = −2

Figure 17: Proposed scale mapping function g.

Automatic parametrization

Natural images can be visually and statistically very different from each other. Fig-

ure 18 shows different image statistics on different images. An image could be globally

very bright (figure 18a) or very dark (figure 18b). Some regions of image could be

very bright while other local regions are dark or just about right (figure 18c). Or an

image like figure 18d has narrow dynamic range. Statistically balanced image with

higher dynamic range is desirable in many cases. One popular way to achieve this

idea is to use histogram equalization. It aims to statistically distribute the image

intensities equally through all the ranges by spreading out more frequent intensity

values and clustering less frequent ones. However, general histogram equalization is

not good for some cases. For example, the brightness of background and foreground

objects is very different; or some background noise can be too much emphasized, etc.

Although there are some extreme cases, histogram equalization is still useful for many

situations.

As shown in figure 16, scaling coefficients have similar statistical distribution as

in the spatial domain. In order to get a good global mapping function described

in equation (53), we estimate a good parameter set that fit into the ideal statisti-

cal model. In this chapter, we assume that the ideal statistical model for scaling

coefficients after applying a mapping function is simply a uniform distribution like

histogram equalization approach. Parameters are estimated by simulated annealing
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(a) Overexposed image
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Figure 18: Statistics of global image intensity with different images from RIT MCSL
High Dynamic Range Image Database [77]

approach to avoid local minima solution.

Flattening function

The scaling coefficients in the wavelet domain represent the local brightness of an

image. HVS feels more comfortable when a local region is neither too dark nor too

bright. A local region could have well-balanced brightness by modifying the scaling

coefficients to a proper brightness that is comfortable to HVS. Let’s assume that

the proper mean brightness is a mid intensity value, Imax

2
, when the image intensity

ranges from 0 to Imax. In this case, a mapping function is defined by f(s̄) = 1/2 in

equation (51) and called a flattening function. Or a scaled mapping function of f(s̄)

becomes

g(s̄) =
1

2s̄
for 0 < s̄ ≤ 1. (54)

The flattening process strongly affects the overall quality of a reconstructed image

since scaling coefficients are condensed information with high entropy. The locality of

a scaling coefficient is related to the downsampling factor and the analysis scale and
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the decomposition level especially plays an important role to yield visually acceptable

balanced image. For example, figure 19 shows visually different results when the

number of decomposition levels is changed. The scaling coefficients are scaled by

equation (54) and the wavelet coefficients are simply scaled based on the upsampled

scales of the scaling coefficients. In this example, the low decomposition level like

figure 19a gives high brightness level over all the regions, but large objects are not

distinguishable well (see for example the plane versus its background or the sky

outside versus the floor). On the other hand, high decomposition levels produce

higher contrast as seen in figure 19f where the sky is too bright and the floor is

relatively dark.

Discontinuities of downsampled scaling coefficients

Unlike spatial domain, changes in the scaling coefficients profoundly affect all the

other coefficients and overall image brightness since the scaling coefficients are ob-

tained by downsampling spatial image data by 2 iteratively. When L decompositions

are applied to an image, 1/4L coefficients of input data are preserved in the scal-

ing subband. Therefore, there is much less spatial continuity between neighboring

coefficients. In addition, a small number of scaling coefficients contains significant

information of an image. The wrong estimation of scaling coefficients may result in

serious image degradation.

Direct multiplication of the enhanced scale factor to the downsampled discrete

wavelet coefficients could result in spatial distortion and ringing artifacts after in-

verse transform. In fact, independent estimation of each scaling coefficient by global

mapping function without considering neighbors in the scaling subband easily pro-

duces stains on the image. Such visual artifacts can be suppressed by guaranteeing

smooth intradependency. We propose to consider neighboring dependency of scaling

coefficients and reduce discontinuity by applying smoothing operation. equation (52)

can be rewritten as follows:

ŝ = g


h(s)

2LImax


s, (55)

53



(a) Level 1 (b) Level 2 (c) Level 3

(d) Level 4 (e) Level 5 (f) Level 7

Figure 19: Flattening mapping function and decomposition levels of wavelet trans-
form.
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(a) original image (b) Non-smooth (c) Smooth

Figure 20: Behavior of smoothing filter h.

where h(s) is a smoothing convolution filter such as Gaussian. Figure 20 shows exam-

ple enhancement results with and without h(s). The example without any smoothing

operation shows more severe ringing artifacts, especially around the edges such as

borders between lighthouse and sky.

4.1.2 Estimation of wavelet coefficients

While global image brightness and contrast are improved by properly estimating scale

factors of scaling coefficients as described in the previous section, it is also important

to estimate appropriate enhanced wavelet coefficients to obtain clear details such as

edges and textures for better local contrast and sharpness of image. One way is

to apply the scale factor of scaling coefficient to its spatially corresponding wavelet

coefficient (see equation (55)). In this case, image edges, details, and dynamic ranges

are emphasized or diminished in the same way as the scale factor. However, they could

be too coarse or easily distorted especially where the number of decomposition levels

is increasing because the number of scale factors for the scaling coefficients is much

less than the number of wavelet coefficients. Therefore a scale factor for each wavelet

coefficient needs to be considered independently. In addition, noise suppression could

be considered simultaneously during the estimation since wavelet domain contains

most of the noise in an image. Our proposed scale factor for wavelet coefficient is

derived using all the above-mentioned elements.
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Wavelet scale factor

A wavelet transform used in JPEG 2000 produces one scaling subband in the coarsest

level and three wavelet subbands for each level, i.e. there exist 3L subbands for L-level

decompositions. Each coarse-to-fine level is related to the retinex with different scale

(see Section 4.1.2 for more discussion). Since wavelet transform preserves locality,

each wavelet coefficient contains edge and detailed information of the corresponding

spatial location. Therefore, enhancement of wavelet coefficients can yield a spatially

enhanced image with better contrast and sharpness.

The proposed wavelet coefficient estimation is obtained by a scale factor (κw) that

is composed of mainly three sub-factor terms defined as follows:

ŵ = κww = gwγwλww, (56)

where gw is a scale factor for the scaling coefficient, γw is a locality factor, and λw is

a shrinkage factor.

A scale factor for scaling coefficient gw is computed based on equation (55). This

term represents that the energy of the details (wavelet coefficient) is proportional

to the brightness level (scaling coefficient). Unbalanced modification of scaling and

wavelet coefficients causes necessarily unbalanced enhancement of brightness and con-

trast as well as annoying visual artifacts. Since scaling coefficient is usually down-

sampled in discrete wavelet transform and accordingly very coarse, hence gw is ob-

tained by spatial interpolation of κs or g(s̄) in equation (51).

Second, a locality factor γw is obtained from wavelet coefficients. This factor

directly contributes to deblurring or contrast enhancement. Since scale factor for

scaling coefficient is obtained from decimated information, it is not enough to reflect

a local information for a specific wavelet coefficient. Also, high-frequency information

including edges, textures and other details in image is only available in the wavelet

domain. γw can be defined by a mapping function in equation (53) used for scal-

ing coefficient estimation. Other examples of choice include the mapping functions
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proposed in [136] and [25].

The third term is a shrinkage factor λw for noise removal. Wavelet domain mainly

preserves detailed information of an image such as edges, texture, and even noise.

Noise is mainly expressed in small wavelet coefficients. The shrinkage term is helpful

to suppress noise emphasized by the scale factor gw as well as originally prevalent

noise. Efficiency of noise reduction in the wavelet domain has already been proven. In

fact, shrinkage rule of wavelet coefficients has been proven to be efficient for denoising

problem. λw should be between 0 and 1. In this chapter, we adopt a technique used

in [29].

Retinex and wavelet

Retinex formulation in [64] is defined as R = log I(x, y)− log [F (x, y) ∗ I(x, y)], where

F (x, y) is a surround function with upper-concave shape such as Gaussian filter. Since

the formulation is a special case of the difference between two logged convolved images,

it can be rewritten as

R = log [F1(x, y) ∗ I(x, y)]− log [F2(x, y) ∗ I(x, y)], (57)

where F1 is Dirac delta function. On the other hand, wavelet function is often derived

from the Laplacian. For example, Mexican hat wavelet is equivalent to Laplacian of

Gaussian and can be approximated as Difference of Gaussian (DoG), i.e.

∆G ∗ I(x, y) ≈ Gσ1(x, y) ∗ I(x, y)−Gσ2(x, y) ∗ I(x, y). (58)

It can be easily noticed that the only difference between equations (57) and (58) is the

logarithmic function that is considered for shunting inhibition in Retinex formulation.

This reflects that wavelet coefficients contain information related to locally adaptive

contrast level for HVS stimulation. In other words, efficient enhancement in the

wavelet domain will result in visual improvement that can satisfy HVS.
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4.1.3 Color treatment

Wavelet transform of JPEG 2000 is applied to each color channel directly. Color space

used in JPEG 2000 is usually either RGB or YCbCr. While RGB channels are strongly

correlated to each other, luminance channel is less correlated to chrominance channels

in YCbCr space. In practice, chrominance channels are obtained by conversion matrix

from RGB channels and preserve the edge structures [100]. Instead of computing scale

factors for each channel, we apply the scale factors of luminance channel computed

in equation (52) and (56) to the corresponding coefficients in the chromatic channels

for better color consistency.

4.2 Experimental Results and Performance Eval-

uation

In this section, the proposed image enhancement approach is applied to various images

and we observe how it behaves. The experiments are performed based on the following

consideration:

• First, the influence and behavior of scale factors introduced in the proposed

approach are observed.

• The effects of different parameters are related to the enhanced image quality.

• All the experimental results are evaluated by visual observation and some nu-

merical measurements.

• Finally, the proposed method is compared to the other state-of-the-art ap-

proaches.

Measures Unlike some other image processing problems such as compression and

denoising, there is no standard measure to quantify the degree of enhanced image

quality because a good enhanced image is a subjective matter and fully depends on
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HVS. However, there exist some quantitative measures that present image bright-

ness, edge contrast, or statistical distribution. These measures should be used only

for reference since they usually reflect one aspect of image characteristics rather than

showing satisfaction of HVS. Final quality judgment should be performed visually by

human observer because the goal of image enhancement is to satisfy HVS. In this

chapter, image quality is quantified by calculating mean brightness, mean contrast

[93] and absolute mean brightness error (AMBE) [23], and AME [1]. Mean brightness

(MB) is an indication of overall image brightness and defined as a global mean inten-

sity. The desirable MB value is a mid-intensity value, (Imin + Imax)/2 (e.g. 127.5 for

8-bit gray scale image). However, MB is mainly regarded as an indicator to identify

whether the image is too dark or too bright rather than using it as a reliable qual-

ity measure because it depends on the image content and whether HVS is efficiently

adapted to brightness. Mean contrast (MC) is defined as follows:

MC =
 u(x, y)− E(x, y)

u(x, y) + E(x, y)
, (59)

where E(x, y) =


k∈N(x,y) ekuk
k∈N(x,y) ek

, u(x, y) is a pixel intensity, e(x, y) is an edge magnitude

that can be obtained by Sobel operator, and N(x, y) is neighboring pixels around

(x, y) pixel coordinate. Usually if the value is higher, the image quality is better. MC

represents image contrast and clear edge quality relatively well. But it should be noted

that too much contrast and sharpness could be uncomfortable to HVS. Absolute mean

brightness error (AMBE) describes brightness preservation. It is defined as AMBE =

|E(X) − E(Y )|, where X is a given image and Y is output image by histogram

equalization. E(Y ) = (Xm + XG)/2 if Xm is mean of image X and XG = (Imin +

Imax)/2, where Imin and Imax are lowest and highest luminance values respectively.

Lower AMBE means better brightness preservation. AME is defined based on HVS by

combining Weber’s Contrast Law and modulation-based Michelson’s Contrast Law.
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The AME formulation is denoted by

AME = max
Φ,α

AMEα,k1,k2(Φ). (60)

AMEα,k1,k2(Φ) =
1

k1k2

k2
l=1

k1
k=1 α


Imax;k,l−Imin;k,l

Imax;k,l+Imin;k,l+c

α
× log

Imax;k,l−Imin;k,l

Imax;k,l+Imin;k,l+c
, where Φ

is a given transform from class of fast unitary transform, Imin and Imax are minimum

and maximum luminance values respectively when an image I is split into k1 × k2

blocks.

Example images Our experiments have been mainly done with NASA image

database [11] since these images are widely used by many researchers for compar-

ison.

Evaluation In order to evaluate the proposed algorithm, several other approaches

are employed for comparative studies. Among many existing approaches, we have

chosen McCann’s retinex-based algorithm [94], color enhancement by scaling (CES)

[100], automatic wavelet base selection (AWBS) [25], and Curvelet-based approaches

[136] have been considered. A retinex-based approach is one of the most popular

image enhancement methods in the spatial domain. We use Matlab implementation

for McCann’s algorithm that was implemented and contained in [58]. CES algorithm

is performed in the compressed DCT domain used in JPEG image format and the

enhancement estimation is done by scaling the DCT coefficients. Also some works

using wavelet transforms have been considered, i.e. AWBS and Curvelet.

We have used Le Gall 5/3 filters to produce compressed scaling and wavelet do-

mains.

Figure 21 shows one of the experimental results. It can be seen that the proposed

image in figure 21c is visually comparable to figure 21d produced by CES method.

Contrast level can be changed by mapping function (e.g. constant parameter c in

equation (53)). Unlike DCT-based approaches, a wavelet-based approach does not
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MB MC AMBE Time(s)
Original 83.41 .0565 12.39
Proposed 123.56 .1007 4.76 0.44
Retinex McCann[94] 173.69 .0277 14.78 0.49
CES[100] 124.47 .0532 5.64 2.79
Curvelet[136] 83.25 .0662 12.10 34.44
Wave. Sel.[25] 82.85 .0929 11.61 181.00

Table 3: Quality measures for image10

MB MC AMBE Time(s)
Original 54.96 .0611 31.19
Proposed 111.59 .1240 2.08 0.14
Retinex McCann[94] 204.05 .0158 23.86 0.34
CES[100] 94.27 .0606 9.72 1.72
Curvelet[136] 54.98 .0712 25.51 34.41
Wave. Sel.[25] 55.13 .1065 30.37 169.01

Table 4: Quality measures for image18

cause blocking artifacts although there could be some ringing artifacts caused by

wrongly estimated wavelet coefficients.

Figure 22 shows enhancement results obtained by the proposed approach and

other existing approaches. It can be shown that the proposed algorithm preserves

local details comparatively better in addition to improving the overall contrast and

brightness. Quality measure and elapsed time for the experiments can be found in

Tables 3 and 4. Table 3 is for image 10 and Table 4 for image 18 of the NASA

database. The elapsed time is only for reference purpose since implementation is

made with Matlab which does not reflect the optimization of the codes.

Noisy image enhancement Figure 23 presents the role of shrinkage term γw in

equation (56). One simple shrinkage function can be considered as follows:

γw =
σ2

σ2 + σ2
x

, (61)

where σ is noise standard deviation and σx is standard deviation of the clean im-

age. σ can be estimated by using σ̂ = median(|HH1|)/0.6745 as proposed in [39].
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(a) original image (b) McCann[94]

(c) Proposed (d) TW-CES-BLK[100]

Figure 21: Image enhancement results (image15).
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(a) original image (b) McCann[94] (c) TW-CES-BLK[100]

(d) Curvelet[136] (e) Wave. Sel.[25] (f) Proposed

Figure 22: Image enhancement results (image10).
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(a) original image

(b) without denoising term

(c) with denoising term

Figure 23: Influence of denoising term γw.

If we assume independency of noise and signal, σ̂x =


max (σ2
y − σ2, 0), where

median(|HH1|) denotes the median of the absolute values in the finest wavelet sub-

band in diagonal direction and σy is standard deviation from a given noisy image.

In figure 23, Gaussian random noise with σ = 5 has been added in order to see how

the shrinkage term affects image enhancement result. The magnified results of the

top-right region of the image show clear difference of applying the shrinkage term

(images in the right column of figure 23).
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Computational complexity One of the main advantages of the proposed frame-

work is to make fast computations possible especially when the image is encoded

using wavelet transform. Assume that a given image size is N ×M , the size of scal-

ing subband is N1 ×M1, and there exist N2 non-zero wavelet coefficients. Then it

takes O((k21 + 1)N1M1) for the estimation and application of scale factor to a scal-

ing subband since it takes O(k21N1M1) for the smoothing operation and O(N1M1)

when k1 × k1 is a local window size for a smoothing convolution h(·). On the other

hand, computation of the enhanced wavelet coefficients requires O((k22 + 5)N2) since

gw, γw, and λw can be computed in O(4N2), O(N2), and O(k
2
2N2) when the bilinear

interpolation is applied to get gw and locally adaptive shrinkage estimation for λw

is employed. The computational cost could vary since a different approach for each

element of the scale factors could be applied. Therefore, overall computational cost

requires O((k21+1)N1M1+(k22+4)N2) ≈ O(N1M1+N2) when k1 and k2 are constants.

Considering that NM > N1M1 + N2, the overall computation is basically linear to

the size of the compressed coefficients instead of a full image size.

4.3 Conclusion

In this chapter, a novel image enhancement algorithm in the compressed wavelet

domain has been presented. The proposed approach is simple and computationally

efficient since the estimation is only performed in the compressed wavelet domain and

the estimated coefficients are linearly scaled. The enhanced images produced by the

proposed approach are both visually and numerically encouraging.
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Chapter 5

Image Enhancement : Inpainting

Inpainting is an artistic term describing a procedure to restore a damaged painting or

picture such as medieval artwork and old pictures. It is also called retouching. This

delicate artistic activity motivated researchers to imitate the procedure automati-

cally. Image inpainting as an image enhancement problem can be defined in general

to estimate and fill automatically predefined unknown region (i.e. normally spatially

connected pixels) in an incomplete or damaged image. It is also called image comple-

tion, disocclusion, object removal, or some other names depending on the application

and its purposes. Unlike other image enhancement problems such as image denois-

ing and contrast enhancement problems we have discussed in the previous chapters,

image inpainting is a high-level computer vision problem since the solution should be

meaningful and satisfactory to human perception.

In this chapter, we exploit automatic image inpainting problem. In the first sec-

tion, psychological meaning of image inpainting is discussed. Literature review on

inpainting and related topics are followed. Many existing approaches are based on

mathematical tools such as PDE and variational models or some methods considering

texture recovery. Some related applications such as texture synthesis, block recov-

ery and film restoration are also introduced. In Section 5.3, an approach based on

Mumford-Shah model, hierarchical level set and texture mapping is proposed. Sec-

tion 5.4 presents a wavelet-based image inpainting algorithm that takes advantages
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of image decomposition and multi-resolution analysis.

5.1 Human Vision Perception and Inpainting

A human brain has an amazing ability to analyze and recognize what we see either

consciously or unconsciously. Kanizsa in his seminal book [69] described how human

visual perception occurs. Perception implicates the entire process from sensory input

to related mental analysis of given information. In other words, vision and thought

cannot be separated.

Inpainting process reflects perceptual interpolation, which implies both primary

and secondary processes. In the first phase of perception, the vision system (e.g.

eyes) receives a set of 2D images from real 3D scene. Then human brain analyzes the

given information obtained from the image sensor (e.g. rod and cones). In this phase,

we need two procedures: 1) detecting damaged regions and 2) filling in the detected

regions. If we ignore the first procedure, the second one is sometimes referred to as

perceptual interpolation. The brain goes beyond the information obtained from the

first phase. In Gestalt psychology1, this procedure is elucidated as phenomena of

completion or totalization. For example, when we see figure 24(a), a triangle around

the center is amodally perceived although there is no edge. Then we are tempted

to fill in the triangular region by removing the front triangle as if it occludes the

other objects and estimating the occluded contours and surfaces. In addition, most

of us think there are three small dark objects and a large contour object filled white.

It is hard to imagine the occluded small objects are connected to each other. This

procedure is demonstrated in figure 24(c)–(d).

Perceptual interpolation and analysis of human visual system are related to many

topics in image processing, pattern recognition and computer vision: object re-

moval, disocclusion, block recovery, texture synthesis, image interpolation, and super-

resolution to only name a few. They are all related substantially, but each application

1References on fundamentals of Gestalt theory or its application to computer vision can be found
in [69, 79, 148, 37].
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(a) (b)

(c) (d)

Figure 24: Tendency toward completion of gap for anomalous contours and objects
[69]

has slightly different problems. For example, image interpolation usually requires to

fill in the regularly spread small unknown regions using regularly spread known infor-

mation all over the image. On the other hand, disocclusion or object removal requires

to estimate one or a few unknown large regions. Also, narrow application of image

inpainting usually considers small damaged areas or scratches rather than a large fat

region. These different applications result in different approaches.

A fundamental problem in computer vision is concerned with the properties of

edges as perceived by human being. Scientists and psychologists have tried to model

visual perception mathematically. One of the most challenging problems in image

inpainting is to estimate reasonable edges which convince human visual system. When

we estimate edges in inpainting domain by perceptual interpolation, there are some
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(a) Similarity (b) Proximity (c) Good con-
tinuation

(d) Closure (e) Symmetry (f) Periodicity

Figure 25: Examples of some of Wertheimer’s laws of perceptual grouping [79]

principles in order to satisfy human visual system.

Low-level inpainting can be done by considering local continuity and smoothness.

In this case, the unknown area can be filled by locally looking at the surrounding

known image pixels without considering image content. On the other hand, high-

level inpainting must consider reasonable situation using human visual experiences.

Reasonable estimate can be obtained by analogical inference from other examples

based on our previous experiences. For instance, we can estimate an occluded object

more accurately if we have seen it before. Wertheimer’s laws of perceptual grouping

including similarity, proximity or good continuation, closure, symmetry, and periodic-

ity are some useful principles for perception of the visual scene [79]. Figure 25 depicts

some of the Wertheimer’s laws. These grouping laws could be helpful to estimate

an occluded region using the properties of other given regions. When we only use

global information of a given image to solve inpainting problem, we call it middle-level

inpainting and some Gestalt perceptual laws by Wertheimer could be applied.
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(a) Connection of
two edge points on
∂Γ

(b) Edge for rectan-
gular shape

(c) Edge for circular
shape

(d) Parallel edges

(e) T junction (f) Curved Y junc-
tion

(g) Connection of
multiple edges

(h) Various edges
and endpoints

Figure 26: Various cases for perceptual edge estimation: green region is interpolated
region and possible estimation for edge is displayed in different colors (blue dash-dot
line is most probable estimation)

Now let us consider different examples of simple inpainting problems that only

involve strong edge structure without considering any details as shown in figure 26. In

figure 26(a), two given endpoints on the boundary of inpainting domain (∂Γ) are to

be connected to construct one continuous edge (continuity) and the estimated edge

must be curvilinear similar to the dashed lines (smoothness). It should be noted

that there is no unique estimate in this case. The estimate is acceptable as far as

human eyes feel comfortable. In this simple case, there are not many reasonable

choices and low-level inpainting is enough for a possible solution. In figures 26(b),

(c) and (d), we can also consider more difficult situations with only two endpoints.

In these cases, more possible solutions are available compared to figure 26(a) when

only low-level inpainting principle is considered. In fact, middle-level or high-level

inpainting principle (e.g. the edge estimation using given shapes such as square and

circle) should be considered. Based on the given information, we may choose the

most probable estimate such as the blue dash-dot lines. This can be explained as a
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similarity property in Gestalt principle. However, these estimates could be changed

if some other information exists. There are even more complicated examples such

as the ‘T’ junction, or ‘Y’ junction, and estimations for multiple edges as shown

in figures 26(e)–(h). These examples do not have only one solution. There could

be many possible solutions if they are meaningful and satisfactory to human visual

system.

5.2 Review on Image Inpainting

For the last decade, various image inpainting approaches have been proposed. In this

section, different approaches for inpainting problem are discussed.

5.2.1 Image Inpainting Using Mathematical Models

In Chapter 2, we have reviewed the mathematical models for image enhancement.

Many existing image inpainting approaches including the early works use these models

to solve an inpainting problem. This section briefly review those existing inpainting

methods.

PDE-based Approaches

In [7], Bertalmio et. al observed the underlying methodology performed by a restora-

tion artist and proposed a PDE model to express the relationship between edge prop-

agation direction and measure of change in the propagated information by time vari-

ations. Let u0 be a given corrupted image with inpainting domain Γ, the region to be

inpainted, and its boundary ∂Γ, and un be a resulting image after n iterations. Then

an inpainting algorithm can be expressed as an evolution equation in the following:

un+1 = un +∆t
∂un
∂t

in Γ, (62)

∂un
∂t

=
−→
δLn ·

−→
N n = ∇Ln ·

−→
N n
∼= ∇(∆un) · ∇⊥un, (63)
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where Ln is the information to be propagated, N⃗n the propagation direction, and
−→
δLn measure of the change in Ln. In this case, the iteration stops at steady state,

i.e. un+1 − un → 0 or
−→
δLn ·

−→
N n → 0. Also a diffusion process (e.g. anisotropic

diffusion[111]) is performed after a few iterations in equation (62) in order to avoid

an error in calculation of the isophote direction caused by noise. If we consider

additional term for anisotropic diffusion, equation (63) can be rewritten as follows:

∂u

∂t
= ∇(∆u) · ∇⊥u+ ν∇ · (c(|∇u|)∇u), (64)

where c(·) is a diffusion coefficient function (usually monotonically decreasing func-

tion). Equation (64) is also explained by Navier-Stokes equation (16) in Section 2.2.2.

Another method in [6] derives a third-order optimal PDE that expresses local

neighborhoods and ensures continuation of level lines. In [4], global heat transfer

principle is decomposed into basic laws and their numerical scheme is developed both

for inpainting and denoising instead of directly solving a PDE.

Variational Approaches

Total variation introduced in Section 2.3.1 can be considered to solve inpainting

problem as proposed by Chan and Shen [18]. Let Ω and Γ denote the image domain

and the inpainting domain respectively. Then TV minimizer for image inpainting can

be modeled in the following energy functional

FTV (u) =


Ω\Γ
|u− u0|2 dxdy + λ


Ω

|∇u| dxdy (65)

λ must be 0 in the inpainting domain Γ.

Mumford-Shah model can be considered for edge estimation of unknown inpainting

domain, which is the critical information for image inpainting problem. Based on

equation (20), inpainting formulation of Mumford-Shah functional can be expressed
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as follows:

FMS(u,C) =


Ω\Γ

(u− u0)2dxdy + µ


Ω\C
|∇u|2dxdy + ν|C|. (66)

The above equation indicates that only the variance of the image and the length of

the segmentation curve are considered inside the inpainting area.

In order to minimize Euler elastica model given by equation (18) for all level lines,

Chan et al. proposed the following minimization functional in [17]:

FEE(u) =

 1

0

P (Xλ)dλ =

 1

0


Xλ

(ακ2 + β)dsdλ =


Γ

(ακ2 + β)|∇u|ds, (67)

where P (Xλ) is the Euler elastica model for a given level line Xλ and dλ
dt

= |∇u| or

dλ = |∇u|dt.

In [51], an improved model which combines the advantage of Mumford-Shah and

Euler (MSE) elastica models has been proposed, called Mumford-Shah-Euler func-

tional,

FMSE(u,C|Γ) =

Ω\Γ

(u− u0)2dxdy + λ


Ω\C
|∇u|2dxdy +


C

(α + βκ2)ds. (68)

In this case, the length term in equation (66) is included in the Euler elastica curve

model (i.e.

C
(α + βκ2)ds = α|C|+ β


C
κ2ds).

Bayesian Framework and Variational Approaches

As shown in Section 2.4, Bayesian framework has very close relationship to varia-

tional approach. For inpainting problem, inpainting domain Γ is considered. Then

equation (4) in Chapter 2 can be rewritten as follows:

û = argmax
u

ln p(u|u0,Γ) = argmax
u

[ln p(u0|u,Γ) + ln p(u|Γ)], (69)
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where u0 is a given noisy image and Γ is the inpainting domain. More details can

be found in [130], which summarizes TV and other variational approaches for image

inpainting in terms of Bayesian philosophy of vision.

Image Decomposition, Sparse Representation, and Compressed Sensing

Many recent works on image inpainting consider texture recovery as well as image

structure for good continuation. Image decomposition by mathematical transforms

such as wavelet and DCT is able to separate an image into image structure and

detailed texture. Many existing methods in this category contains the following two

steps:

• Inpainting of smooth image space (i.e. piecewise smooth image with visually

strong edges)

• Inpainting of textures (i.e. texture synthesis).

In [8], Bertalmio et al. combined their previous work [7] with texture synthesis. This

can be achieved by an image decomposition method proposed in [150] introduced in

equation (21) of Section 2.3.4. After image decomposition, two different images, i.e.

a cartoon and a texture images, are obtained and the above-described two steps are

applied. A solution of equations (62) and (63) is used for inpainting a decomposed

BV image while a texture synthesis method from [46] is applied to a texture image.

Some inpainting algorithms proposed in [49, 53] use MCA approach introduced

in Section 2.6.2. The minimization function in equation (31) by applying a diago-

nal mask matrix M that indicates inpainting region can be formulated as an image

inpainting problem in the following:

F (αv, αw) = ∥∇Tvαv∥1 + λ∥M(u− Tvαv − Twαw)∥22 + µ(∥αv∥1 + ∥αw∥1). (70)
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This can be rewritten in terms of v and w if we define αv = T+
v v + rv and αw =

T+
w w + rw with simplification assumptions rv = rw = 0:

F (v, w) = ∥∇v∥1 + λ∥M(u− v − w)∥22 + µ(∥T+
v v∥1 + ∥T+

w w∥1). (71)

Also, equation (70) can be simplified by considering two sparse dictionary matrices

as a single unitary transform T (i.e. u = Tα):

F (α) = λ∥M(I − Tα)∥22 + µ∥α∥1 or F (Z) = λ∥M(I − Z)∥22 + µ∥THZ∥1. (72)

In this case, equation (72) becomes equivalent to the model used in [61, 62].

Methods using transform-based sparse representations such as discrete cosine

transform or wavelet transform were also proposed for the approximation of unknown

regions [61, 30, 98]. A work in [112] uses K-SVD for redundant dictionaries and is

applied to inpainting, denoising, and demosaicking.

Also, a method based on compressive sensing has recently been proposed in

[126]. Equation (10) described in Section 2.6.3 is slightly modified by replacing

M = SFHG−1F as follows:

min ∥α∥0 s.t. y = SFHG−1FΦα, (73)

where S is a sampling matrix that indicates element locations, F is Fourier trans-

form matrix, and S is a diagonal matrix with values of a Gaussian function. The

equation (73) is then solved by regularized orthogonal matching pursuit [105]. The

method is very efficient if the inpainting pixels are randomly chosen, but it shows a

limitation if an inpainting region is too big since randomness of measurement is lost.

Other Models

A method in [38] employs Ginzburg-Landau functional while localized wavelet-based

approaches that use the second-order Allen-Cahn equation are considered. In their
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previous work [9], Cahn-Hilliard equation was used for inpainting binary images.

Nonlocal scheme that uses Mumford-Shah variational model is considered for in-

painting color image in [68].

5.2.2 Texture Synthesis and Inpainting

One of the main problems in early research works for image inpainting is that texture

in an image was not considered seriously. As seen in many approaches based on

PDEs and variational models, image smoothness is postulated by considering image

as a smooth functional space such as Sobolev space. As pointed out in [96], however,

a natural image includes oscillatory texture layer as well as piecewise smooth image

(cartoon or structural image). In addition, random noise should be considered. When

we refer to the inpainting problem, it should be noted that only a partial part of an

image (i.e. inpainting domain) is restored and the restored part is supposed to have

the same properties as the other known regions of the image. In other words, the

image statistics and the pattern (which can be represented by texture and noise) of

the unknown inpainting region should be similar to the known regions of the image.

Therefore, it is crucial to understand and utilize the texture properties in an image

for inpainting problem. Another important factor for plausible inpainting work is

the fact that there must be continuous connection between inpainting region and the

other known regions.

Texture synthesis and quilting have been extensively used in image processing,

computer vision and computer graphics. The problem requires to generate a texture

image which is similar yet not identical to a given example patch of texture. The

output texture could be any required size. There are a number of proposed approaches

for this problem [35, 46, 45, 3, 153, 154, 145, 146, 166, 116, 117, 55, 59].
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Exemplar-based Texture Synthesis

Many of the texture synthesis methods take an example patch (or exemplar) of given

texture and estimate a growing pixel or patch by copying the exemplar2. A synthesis

algorithm proposed by Efros and Leung is one of the well-known methods [46]. The

synthesized texture is grown pixel by pixel by considering neighborhood window based

on Markov random field (MRF) model. In other words, the probability of an unknown

pixel is computed based on the spatially neighboring pixels. Then it is considered for

a newly synthesized pixel.

The limitations of this approach can be caused by complicated texture structures

and many different types of texture elements (texels) in a given texture sample. For

example, a growing pixel can choose a wrong estimate from insufficient search space

and growing garbage will be generated after many iterations. Also, a particular place

can be stuck by verbatim copying. Another problem is that it becomes computa-

tionally intensive when a pixel-by-pixel growing method is used since it requires to

compare all the possible patches for each generated pixel. Some of the later works

based on Efros and Leung are extended for either reduced computational complexity

or visual improvement [45, 3, 153].

Texture Synthesis Using Wavelet Transform

Some recent approaches perform texture synthesis based on multi-scale analysis and

statistical properties in the wavelet domain [146, 166, 116, 117, 55, 59, 112]. Since

texture typically contains oscillatory pattern probably with some random variation,

a synthesized texture is supposed to have the similar pattern but different variational

factor such as position and orientations. When we analyze a sample texture using

wavelet transform, there are various useful statistical properties since wavelet per-

forms multi-resolution analysis and has some useful properties such as locality and

directionality. In addition, probability distribution models with a few parameters

2Exemplar, or example patch of texture, is called differently in the literature such as epitomes
[66, 26] or textons [168].
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such as generalized Gaussian distribution [90] represent statistics of the wavelet coef-

ficients. Based on the properties of wavelet transform, the approaches usually utilize

sample statistics such as mean, variance, and correlation in the wavelet domain.

5.2.3 Exemplar-based Inpainting

The methods based on image decomposition require to estimate the inpainting domain

separately. However, it is also possible to consider both piecewise smooth image with

strong edges and textures simultaneously. The algorithm proposed in [33] requires to

give high priority to a pixel of the inpainting region which is supposed to have strong

and continuous edge and then to copy an example patch (or pixels) from a sample

image. There are mainly three steps for each iteration to fill a windowed inpainting

patch in this algorithm.

First, the priority is decided by considering the product of confidence term C(p)

and data term D(p), i.e. P (p) = C(p)D(p) and C(p) and D(p) are defined as

follows:

C(p) =


q∈Ψp∩Ω\ΓC(q)

|Ψp|
, D(p) = |∇u⊥p · np|,

where Ψp is a given patch centered at a point p on the boundary ∂Γ, |Ψp| the

number of pixels in Ψp, and np a unit vector orthogonal to ∂Γ. P (p) is computed

for all the pixels on the boundary ∂Γ. C(p) is initially defined as 0 if p ∈ Γ and 1

otherwise. Since ∇u⊥p can be considered as the isophote direction, the high priority is

assigned when p is on a strong edge and its neighborhood pixels have high confidence.

Secondly, once the highest priority pixel p is decided, the patch Ψp is filled by copying

the closest exemplar Ψq:

Ψq = arg min
q∈Ω\Γ

d(Ψp,Ψq),

where d(·, ·) is a distance function between two patches such as Euclidean distance.

Finally, confidence values C(p) are updated in the filled pixels.

Since the approach gives high priority along the strong edges, edge sharpness as

well as continuation is well-preserved. Also balanced region filling can be achieved by
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changing the location by the priority (not filling by scanning in an orderly manner).

However, there are some limitations: 1) if an image is irregularly complicated or

there is no similar exemplar, it produces visually unacceptable severe errors, 2) once

an error is occurred, newly generated exemplar with some error may be iteratively

used, and 3) curved structure is not considered (more efficient for the line structure).

An extension using patch sparsity is proposed in [161] for measuring confidence

and sparse linear combination of candidate patches. Another extension to use joint

optimization of a single functional that consider the entire inpainting region is made

in [156].

5.2.4 Graph-based Approaches

Graph-based structure and texture propagation by either confidence map or interac-

tive guidance could be applied for better results as proposed in [137].

5.2.5 Hybrid Approaches

Some recent works take advantages of the existing schemes. A framework proposed

in [12] successfully combines exemplar-based texture synthesis, PDE-based image

structure model, and texture coherence into one variational formulation.

5.2.6 Inpainting Approaches in Wavelet Domain

The approaches introduced so far are performed in the spatial domain. However,

some coefficients in the transformed domain may be unknown due to transmission or

storage problem. For this, total variation model is used in [20, 16, 162, 167, 155].

5.2.7 Video Inpainting Approaches

Video offers spatio-temporal information, which enables to use correlation between

temporal frames that may give redundant information for inpainting. In [110], fore-

ground and background of video frames are segmented to build image mosaics and
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then inpainted separately, which is followed by texture synthesis for spatio-temporal

domain. A method in [132] proposes to use exemplar-based inpainting approach after

tracking motion objects while reducing ghost effects in video. Another approach in

[80] proposes a patch-based variational Bayesian framework for video inpainting that

a nonlocal sparsity-based prior as motion-related information is used instead of ex-

plicit motion estimation. An approach in [159] uses prior belief propagation (BP) with

regularized structure priors of a spatio-temporal Markov random field. Edge-based

structure estimation for inpainting is used in [158]. Some inpainting applications fo-

cus on motion tracking information [131]. Recently, there have been new attempts to

inpaint 3D videos [34, 104].

5.2.8 Specific Inpainting Approaches

If we know content and properties of image in advance, some assumptions and models

can be made before an inpainting algorithm is applied. A method in [76] recovers

texture maps of the occluded building facades from spatio-temporal image frames.

In [87], Bandlet transform is used to remove clouds of remotely sensed images. Red-

eye effect often seen in portrait photography with flash light can be corrected by

inpainting technique [163]. Human posture model and sequence estimation are used

to inpaint video with human in [83, 84].

5.2.9 Other Related Problems

Recovery of Lost Image Blocks and Error Concealment

One of the interesting applications related to image inpainting problem is recovery

of missing blocks caused by image communication [152, 119, 108, 99, 160, 165]. The

motivation comes from the fact that when an image comprises tiled small blocks by

image/video coding algorithms such as JPEG and MPEG, some blocks in the image

could be corrupted by a certain unstable communication process such as wireless

transmission. The recovery of transmission error is also referred to error concealment
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problem.

This problem is a subset of image inpainting problem, which has an additional

constraint that inpainting domain is composed of a set of known tiling blocks. There-

fore, it is possible to apply any inpainting algorithm. However, it is desirable to take

advantages of the additional constraints which may result in faster, more accurate,

and more robust algorithm.

In [119], both texture synthesis and non-texture image inpainting algorithms are

selectively utilized by block classification. Like [8], a texture synthesis algorithm in

[46] is used for a texture image and inpainting approach in [7] is applied to a cartoon

image. However, the main difference from [8] is that each missing block is classified

as either structure or texture and then synthesis or inpainting algorithm is selectively

applied to the classified block. Block classification can be performed by coarseness

measure defined as the number of local extrema.

Film Restoration

Automatic restoration of old films is also interesting application [74, 75, 73, 124, 138].

In the sense it is required to restore a sequence of corrupted images, the objective is

similar to that of the inpainting problem. In this case, it is also possible to apply any

inpainting algorithm if we assume that defects of the given film are known. However,

the assumption is practically not useful due to the volume of image frames. Therefore,

an automatic defect detection algorithm should be considered. In addition, time

complexity should be as low as possible even though it is not always required to achieve

real-time system. For example, if an algorithm can process a single frame in 1 minute,

20 minutes of film with 24 frames per second requires 20× 60× 24 = 28, 800 minutes,

or 20 days. Also, useful motion information is available by analyzing neighboring

image frames since the difference between adjacent frames is little in most cases.
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5.3 Image Inpainting Using Mumford-Shah Model

and Texture Mapping3

This section presents an image inpainting method that uses a segmentation map using

hierarchical level set based on Mumford-Shah inpainting model. In this approach,

we combine two schemes to solve image inpainting problem. First, a variational

approach has been chosen for estimating image structure such as strong edges in

inpainting domain. As we saw in Section 5.2.1, a variational approach that can be

also expressed as PDE modeling gives good and smooth continuity for the unknown

inpainting domain. Second, a texture synthesis method using segmentation map is

employed for preserving texture and the details of image more naturally. Since a

proposed Mumford-Shah inpainting model is capable of estimating segmentation of

inpainting domain, complete segmentation of both known and unknown regions in an

image can be obtained. Based on the segmentation map with good image structure

in the unknown inpainting domain, details and texture of inpainting domain can

be estimated. The texture mapping approach that copies exemplar patches that

are chosen to fill the unknown area with copy-paste criteria helps estimating more

natural image information. By maximizing the advantages of two different schemes,

the proposed approach produces visually pleasing results.

In the following section, we first present an Mumford-Shah inpainting model and

its level-set solution using hierarchical approach, which yields smooth segmentation

map with fair amount of detailed structure. In Section 5.3.2, the texture filling

algorithm using the produced segmentation map is described. Experimental results

are also presented in Section 5.3.3. Section 5.3.4 summarizes and concludes briefly

the proposed approach.

3This is a work with Xiaojun Du as well as Prof. Tien D. Bui. The original work was published
in Signal Processing, 2011 [44].
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5.3.1 Mumford-Shah Inpainting Model and Hierarchical Ap-

proach for Segmentation

As we saw in Section 2.3.3, Mumford-Shah (MS) variational model has been success-

fully used in image segmentation. In equation (66), Mumford-Shah model for image

inpainting was introduced. This can be rewritten in the following form if we assume

that the curve C is closed and an image u is partitioned into an inside region u1 and

an outside region u2:

FMS(u1, u2, C) =


Ω1

λ(x, y) |u1 − u0|2 dxdy + µ


Ω1

|∇u1|2 dxdy

+


Ω2

λ(x, y) |u2 − u0|2 dxdy + µ


Ω2

|∇u2|2 dxdy + ν|C|, (74)

where Ω1 and Ω2 are the regions inside and outside C respectively, and λ(x, y) is a

given mask function, i.e. λ(x, y) = 0 if (x, y) ∈ Γ and λ(x, y) = 1 otherwise. Then

two region segmentation using one level set function can be defined as follows:

φ(x, y, t) =


> 0 if (x, y) ∈ Ω1

= 0 if (x, y) ∈ C

< 0 if (x, y) ∈ Ω2

(75)

Equations (74) and (75) lead us the following segmentation curve evolution equation

[149]:

∂φ

∂t
= δ(φ)


ν∇ ·


∇φ
|∇φ|


− λ(x, y)(u1 − u0)2 − µ|∇u1|2 (76)

+ λ(x, y)(u2 − u0)2 + µ|∇u2|2

.

In equation (74), u1 and u2 can be replaced by constants c1 and c2 in the piecewise

constant approximation. By considering two phase segmentation using the simplified

Mumford-Shah model and level set method, we can define the following variational
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model:

F (c1, c2, φ) =


λ(x, y)(c1 − u0)2H(φ)dxdy (77)

+


λ(x, y)(c2 − u0)2(1−H(φ))dxdy + ν


δ(φ)|∇φ|dxdy

where H(x) is the Heaviside function, i.e. H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0.

For more details see [44].

In our inpainting model, we employ the hierarchical scheme of Gao and Bui pro-

posed in [60]. In this approach, the PDEs of two level-set functions are decoupled in

hierarchical order instead of solving the coupled PDEs. In general, n level set func-

tions are required to segment 2n regions. The coupled equation in this case results

in complicated and time-consuming computations. Since PDEs for curve evolutions

in Gao and Bui’s approach are decoupled into segmentation and diffusion, the imple-

mentation is fast and robust with regard to the initial condition. For inpainting, the

segmentation of a given image is performed using piecewise constant approximation

of Mumford-Shah model as shown in the previous section.

After the segmentation, diffusion can be used for inpainting purpose. Diffusion-

based filling can achieve smooth region filling with good edge preservation and denois-

ing. Therefore, it is efficient for small or long and narrow inpainting regions. However,

for large inpainting regions, good estimation of overall structure and preservation of

texture patterns is difficult.

5.3.2 Segmentation Map and Texture Filling

Variational or PDE approaches for image inpainting produce good image structure

and edge continuity. However, they do not fill the inpainting domain by the statistical

properties of other parts of the images since the defined model is usually spatially

continuous and smooth. Therefore texture and image details are not easily recovered.

On the other hand, natural image has some random and stochastic properties. For

example, if the image is contaminated by randomly distributed noise, the inpainting
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domain is also supposed to have similar kind of noise although it may be desirable to

enhance the whole image. In fact, details with little information, texture with oscilla-

tory or irregular patterns, and even random noise can be considered for more natural

and visually satisfactory inpainting. In addition, the heterogeneous smooth filling

with Mumford-Shah approach is more noticeable for the relatively large inpainting

region while the thin and long regions such as scratches can be restored relatively

better. In order to achieve filling both image structure and texture details, a region

filling approach using segmentation map and similar patches is proposed.

Once we get a segmentation map by solving Mumford-Shah inpainting model

described in Section 5.3.1, the overall image structure of the unknown region can

be estimated. On top of the overall structure, it is desirable to overpaint using the

most plausible texture patches. Recently some inpainting approaches utilize texture

synthesis algorithm to obtain close similarity between the unknown inpainting region

and the surrounding image regions as we saw in Sections 5.2.2 and 5.2.3. In our

approach, we take the scheme that could fill in plausible example texture patches

into the inpainting regions.

Inpainting of texture patterns and details in image is performed by a few steps

described in the following. First, the complete segmentation map of an image is

obtained as explained in the last section. It contains the estimated edge structure

of the inpainting domain and consists of all the segmented partitions in the whole

image. The segmentation map is capable of representing the overall image structure

without details as we can see in figure 27.

In the second step, patch priorities that decide the filling orders in the inpainting

domain are computed. Texture mapping procedure is to copy a good example patch

and then paste it into a corresponding inpainting area iteratively. In every copy and

paste iteration, the inpainting region that has already been filled is also considered

as example patches in order to achieve good continuity. Therefore, it is important to

have right the filling orders and in fact the inpainting performance is affected by the

filling orders. The priorities are computed in a similar way as described in [33], i.e.
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(a) given image with inpainting mask (b) Segmentation map

Figure 27: Segmentation map of City 2 image.

the inpainting boundary with the segmentation edge gives higher priority while plain

region without any edge structure and far from the inpainting boundary has lower

priority.

Once we decide the priorities, the patch around the highest priority pixel on the

segmentation edge is filled first. The patch is filled by finding the most similar patch

(exemplar) to the patch to be filled that excludes the unknown pixels. Euclidean

distance measure between two patches is used for similarity measure due to its sim-

plicity and popularity. However, a good similarity measure between two patches is

important to get good continuity and please HVS. The exemplar patch is found by

searching and comparing all the image regions that do not belong to the inpainting

domain. Instead of searching all the image regions, the search area can be confined

to speed up the algorithm.

In the last step of the filling procedure, we fill in the remaining inpainting areas

which have no segmented edges from boundary to inside of the inpainting domain.

The search of similar patch can be done in the same manner as the previous step that

fills in the high priority regions.
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5.3.3 Experimental Results

In the experiments, we have applied our inpainting algorithm to various different im-

ages including gray-scale and color images, natural images, and paintings. Figure 28

shows a real artistic inpainting example to the wall painting with some damages (e.g.

cracks). The painting is a small part of the ’Last Judgment’, which is Michaelan-

gelo’s fresco in Sistine Chapel. The inpainting regions around the damaged cracks

are masked manually as can be seen in figure 28b. Segmentation map is constructed

for edge estimation and the exemplar-based filling method has been applied to the

damaged image. Although the continuous edges are discontinued by the cracks (or

mask), the image structure including the discontinuous edges are estimated smoothly

well in the inpainting domain. Our approach is performed well to estimate edge

structure especially with narrow mask.

Figures 29 and 30 are the examples of object removal or disocclusion that have

larger and fatter masks than the previous example in figure 28. We compare the

inpainting results of our approach to some other methods. The method proposed

in [106] uses a simple implementation that convolve a small 3 × 3 filter iteratively.

In our experiment, we use 1000 iterations. The method usually produces smooth

inpainting results that does not consider either image structure or texture. Also,

implementations of OpenCV library [10] for Navier-Stokes approach and the algorithm

in [139] were used for the evaluation. These implementations are fast and efficient, but

we can notice some partitions with a certain degree of discontinuity. These methods

do not consider texture or details. Another PDE-based approach proposed in [7]

is also implemented for the comparison. In these examples, PDE and variational

approaches have difficulty in inpainting of natural images where it is important to

consider texture, patterns, and statistical properties of the image. The estimated

boundary between different textured regions is defined in the segmentation map. For

example, the ridge of a mountain occluded by the rightmost pillar in figure 30h is

recovered based on edge information of figure 30g.
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(a) Original image (b) Masked image

(c) Segmentation map (d) Inpainted image

Figure 28: Inpainting results using Michaelangelo’s Last Judgment image (partial)
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(a) Original image (b) Masked image

(c) Linear filter [106] (d) Telea [139]

(e) Navier-Stokes [10] (f) Bertalmio [7]

(g) Proposed segmentation map (h) Proposed

Figure 29: Inpainting results using ‘fish’ image
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(a) Original image (b) Masked image

(c) Linear filter [106] (d) Telea [139]

(e) Navier-Stokes [10] (f) Bertalmio [7]

(g) Proposed segmentation map (h) Inpainted image

Figure 30: Inpainting results using ‘pillar’ image
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5.3.4 Conclusion

We have presented an image inpainting approach that considers both edge structure

and details in image for visually pleasant and more natural inpainting performance.

The proposed Mumford-Shah inpainting model with hierarchical level-set approach is

able to detect both main image structure and detailed edges in the inpainting domain

and produce a partition-based segmentation map. However, inpainting using solely

the Mumford-Shah model [51, 19] does not estimate structure of complicated and

detailed texture. To overcome this problem, texture filling approach efficiently uses

the segmentation map to inpaint details and texture patterns in an image. Examples

from the experiments show that the method performs visually well.

5.4 Image Inpainting Using Wavelet-based Inter-

and Intra-scale Dependency4

As discussed in Section 2.5, wavelet transform has been used for a good image rep-

resentation and analysis tool due to its multi-resolution analysis, data separability,

compaction and sparsity features in addition to statistical properties. In this section,

we propose a wavelet-based approach for image inpainting. There are a few major ad-

vantages to use wavelet analysis for image inpainting problem. First, multi-resolution

analysis of wavelet transform can be helpful to predict coarse-to-fine image structure

in the inpainting domain. When we recall an example in figure 24, filling process by

perceptual interpolation requires to analyze a global image structure as a whole (e.g.

perception of triangle) and at the same time consider local objects (small objects or

pixel level analysis). Both global and local analysis is necessary for reasonable es-

timation of image structure. Analysis of different image scale will help to analyze

and estimate both global and local image content. Second, separable data into low

frequency scaling coefficients and high frequency wavelet coefficients make it possible

4This work was originally published in ICPR 2008 [30].
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to analyze both structure and texture independently. In addition to the image struc-

ture, it is also important to analyze texture and detailed patterns for natural images.

Wavelet transform can decompose an image into low-pass filtered image structure and

high-pass filtered details. As we reviewed image decomposition approaches for image

inpainting in Section 5.2.1, both image structure and texture contribute inpainting

quality and performance. Wavelet is capable of treating these elements altogether.

5.4.1 Proposed Approach

We first recall inpainting problem : given an image u with unknown regions Γ, find

an ideal image ν:

ν(x, y) =

 û(x, y) if (x, y) ∈ Γ

u(x, y) otherwise
(78)

Now the goal is to find a good estimation û in Γ.

Many inpainting solutions are achieved by analyzing image models and utilizing

them to obtain probable estimation. In our proposed algorithm, wavelet and scaling

coefficients are estimated after wavelet decomposition of a given incomplete image.

This approach does not require iterative decomposition and reconstruction, which

gives computational advantage. Discrete wavelet decomposition for each scale can be

formulated as follows:

sj+1 = hj ∗ hj ∗ sj,

wLH
j+1 = gj ∗ hj ∗ sj,

wHL
j+1 = hj ∗ gj ∗ sj,

wHH
j+1 = gj ∗ gj ∗ sj,

where hj and gj represent low-pass scaling and high-pass wavelet filters, sj and wj are

scaling and wavelet coefficients for scale j respectively. Wavelet transform is applied

to the given original image u and image of the mask m. The mask is a user defined

area that covers the inpainting region.
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33

3 3

Figure 31: Inter-scale dependency of wavelet coefficients

Inpainting process is performed in the wavelet domain by predicting both scaling

and wavelet coefficients from coarse to fine scales in the unknown regions. As shown

in figure 31, each coefficient in the wavelet domain is dependent on neighboring co-

efficients in the same subband and corresponding coefficients located in the other

subbands. Therefore, it is important to consider both inter and intra-scale depen-

dency. On the other hand, if the dependency of these coefficients is not considered,

it would be difficult to estimate visually meaningful coefficients.

Once forward transform has been carried out for both the original image and

the image of the mask up to level L (the coarsest level); scaling coefficients of the

coarsest scale need to be estimated for global image structure. The coarsest scaling

subband is required to be filled first as depicted in figure 31. Since the coarsest

scaling coefficients have the same properties as the low-pass filtered smooth image, any

inpainting existing algorithm described in the previous Section 5.2 could be applied

here. We have applied the total variation (TV)-based algorithm used in [17] since the

approach works well in smooth image domain. After filling the scaling subband, three

wavelet subbands (HL, LH, and HH) in the coarsest level are filled simultaneously to

avoid visually annoying artifacts after the inverse transform. In order to complete the

wavelet subbands, exemplar-based scheme proposed in [33] has been used. In other

words, unknown areas in the wavelet subbands are filled by example patches of the
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same subband based on a priority map (see [33]) which is obtained from the scaling

subbands of u and m. In this case, example patches in three wavelet subbands should

be geometrically corresponding to each other to reduce visual artifacts. An example

patch should resemble a patch area in the unknown region, i.e. the difference or

distance between a patch including the unknown area and an example patch should

be minimized. For this, we propose the following distance measure:

d = α|wd
LH − we

LH |+ β|wd
HL − we

HL|+ γ|wd
HH − we

HH |+ |sd − se| (79)

where we
LH and wd

LH are example patch and destination patch in the LH subband re-

spectively. The destination patch wd
LH includes the unknown area in the LH subband,

similarly for the other subbands. se and sd are example patch and destination patch

from the scaling subband. Finally α, β, and γ are parameters to be determined. By

default, they are set to 1.

Once all the coefficients are estimated, inverse transform for one level is performed

to obtain the approximation of the next finer scale. In the subsequent scales, as in

the coarsest scale, reconstructed scaling subband is used for the estimation of wavelet

subbands. The scaling subband can also be corrected by blending with the example

patch corresponding to the patches decided for the wavelet coefficients. Blending can

be done linearly, i.e.

sd ← αsd + (1− α)se (80)

where α ∈ [0, 1] is a parameter.

Summary of proposed algorithm is described as follows:

1. Apply forward wavelet transform to a given image u.

2. Apply forward wavelet transform to the image of the masks m.

3. Set scale parameter j = L (coarsest level).

4. While j > 0 (from coarse to fine),
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Scaling subband Wavelet subbands

Inpainted

Inverse wavelet transform

Inpainted

Scaling subband 
of mask

Figure 32: Inpainting in wavelet domain (one level): scaling and wavelet subbands
are estimated and reconstructed.
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(a) If j is L, fill the unknown area of scaling subband by using PDE or varia-

tional inpainting approach (e.g. [17]). Otherwise, scaling coefficients have

been already reconstructed in 4.(d) of the previous scale.

(b) Estimate wavelet coefficients in the wavelet subbands by finding closest

texture patches that can minimize distance d given by equation (79). Ge-

ometrically corresponding scaling coefficients to the estimated wavelet co-

efficients are also stored.

(c) The reconstructed scaling coefficients are blended with the estimated scal-

ing coefficients in the step 4(b). Blending function is in equation (80).

(d) Perform inverse wavelet transform to obtain scaling subband of the next

finer scale j − 1.

(e) j ← j − 1.

5. (Optional) Post-processing (e.g. blending)

5.4.2 Experimental Results

For the experiments, we assume that masks for the unknown regions are defined

manually. The mask image, m, is transformed by wavelet and the scaling subband

for each level is used for the inpainting of the subbands of the image at the same level.

Different wavelets could be considered. In our experiments, we simply use the Haar

basis with L = 2 or 3. The proposed algorithm has been applied to various gray and

color images. In figure 34, inpainting results of some color images are shown. Both

texture patterns and image structure are well-preserved.

We also compared the results of existing algorithms such as PDE-based approach

[7], total variation [17], exemplar-based approach [33], and decomposition and sparse

reconstruction [61]. Figure 34 shows inpainting results from these different methods.

A narrow region like a golf driver can be smoothly filled by most of the methods.

However, for large regions, PDE-based or variational algorithms result in smooth

surface even for textured background in addition to diminution of edge sharpness.
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Figure 33: Inpainting results of proposed method: original (top row), masked images
(middle row) and completed (bottom row) images
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(a) given image (b) PDE-based [7]

(c) total variation [17] (d) exemplar-based [33]

(e) sparse reconst. [61] (f) proposed

Figure 34: Inpainting results of different approaches.
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Exemplar-based approach mostly produces plausible textures in the unknown area,

but some abrupt changes between patched areas are observed. Our proposed method

also has slight seam from time to time, but overall quality in terms of image structure

and texture looks comparatively better than the other algorithms.

5.4.3 Conclusion

We have presented wavelet-based approach for image inpainting. Wavelet is a decent

mathematical tool for estimating global structure of image and texture analysis thanks

to its multi-scale analysis and separability features. The proposed method takes

advantages of wavelet by utilizing inter- and intra-scale dependency for maintaining

image structure and texture quality.
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Chapter 6

Conclusion and Future Work

In this thesis, image enhancement techniques using useful mathematical tools have

been discussed. Image enhancement algorithms that include image denoising, contrast

enhancement, and inpainting are indispensable to the field of image processing and

computer vision. As shown in this thesis, there exist various mathematical approaches

that play critical roles in solving image enhancement problems. In the following

paragraphs, the summary of results, contributions, and future works for each image

enhancement problem presented in this thesis are presented briefly.

In Chapter 2, various mathematical approaches and their close relationships to

image enhancement problems have been discussed. Some examples show that a math-

ematical model can be expressed by PDE, calculus of variations, wavelet transform,

Bayesian framework, sparse representation, or some other mathematical approaches

and they are fundamentally equivalent or share common properties. Establishment

of more complete theory on unifying these mathematical approaches as a whole for

image processing could be interesting future work.

In Chapter 3, an efficient color image denoising framework using wavelet trans-

form was presented. The framework decorrelates the color components and plugs in

a shrinkage method flexibly. The wavelet-based approach produces superior results

compared to some spatial-based algorithms. Most of experimental results show the
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proposed denoising framework that considers correlations between color channels usu-

ally gives about 1 dB higher than the RGB color space-based approach in terms of

PSNR measure when other conditions are same. The proposed approach only uses

wavelet transforms, but denoising performance can probably be improved by combin-

ing some schemes such as PDE, variational behaviors, or patch-based analysis.

In Chapter 4, a novel algorithm for brightness, contrast, and color enhancement

in the compressed wavelet domain was proposed. To our knowledge, this is a unique

work for a wavelet encoded image that considers fast complexity and advantages of

wavelet properties while scaling coefficients are modified for global brightness en-

hancement. In addition, the results are comparable or better than the other existing

spatial domain-based approaches visually and numerically.

In Chapter 5, a review on image inpainting problem was presented and two in-

painting approaches were proposed. The problem was described as mathematical and

psychological perception with extensive literature survey. A hybrid image inpaint-

ing approach using Mumford-Shah model and texture mapping was proposed. This

method can estimate the image structure by a proposed variational model while im-

age details such as texture are considered. The experimental results show that the

approach works well for many cases. However, there is a limitation when the in-

painting region is too complex or too big. Another inpainting approach using wavelet

transform is also presented. Since discrete wavelet analysis produces different scales

of image information, it is possible to estimate global image structure in a different

scale. In addition, wavelet coefficients contain texture information. This multiscale

and data separation properties of wavelet transform produce relatively good image

completion results. Proposed inpainting approaches can be improved by using a good

local model, e.g. an image patch. More intelligent similarity measure between image

patches will leverage the inpainting algorithms. Also, invariant learning-based criteria

from other images could be helpful for ambiguous cases.

In addition to some detailed issues to be solved in each enhancement problem,

some applications to image enhancement can be considered as future works. For
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example, detection of image degradation types could be considered by analyzing a

degraded image statistically and geometrically. Once we understand the nature of

degradation in an image, one or more image enhancement approaches can be applied.

Another possible future work is to employ these methods in a specific problem. For

instance, we may consider to restore partial occlusion of character scene, remove

unwanted objects in an image, or enhance a specific cell image. Also, applications to

video or 3D scene and surface are being recently studied and it could be interesting

to consider them as a future research. An image could have multiple degradation

sources that may require to solve different enhancement problems.
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