
Toward Formal Reasoning in Cyberforensic
Case Investigation with Forensic Lucid

Serguei A. Mokhov

Senior Scholar, visiting Visualization and Graphics Lab, Tsinghua University, from
the Department of Computer Science and Software Engineering,

Concordia University, Montréal, Québec, Canada,
mokhov@cse.concordia.ca

May 8, 2012, Tsinghua University, Beijing, China

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/0906.5181
http://arxiv.org/abs/0906.5181
http://users.encs.concordia.ca/~mokhov/
mokhov@cse.concordia.ca
http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Part I

Background Overview

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Part I Outline

Introduction
Research Summary
The Problem
Overview

Background
Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Part I Outline

Introduction
Research Summary
The Problem
Overview

Background
Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Research Summary I

I The research project involves, among other things, creating a
credible tool, well founded in science, to manage (potentially
vast amounts of) digital evidence data, as well as descriptions of
non-digital evidence, and witness accounts related to computer
crime (and beyond), all in one common format in order to verify
claims without omitting details and helping investigators to avoid
ad-hoc conclusions and perform event reconstruction if the claim
agrees with the evidence collected.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Research Summary II

I Essentially, an investigator gathers evidential data from various
sources, such as logs, memory analysis, disk analysis tools,
network traces, IDS logs, data-mining tools, physical evidence,
human witness accounts (input and encoded manually) of the
events in a knowledge base like evidential statement, against
which claims (e.g. of the accused or prosecution) are validated
automatically.

I The implementation and mathematical details are being
finalized, but the design and semantics of a language (Forensic
Lucid) that would allow investigators do such things with the
evidential data are already in place and some of that was
published in the peer-reviewed venues.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Founding Publications I

I S. A. Mokhov, J. Paquet, and M. Debbabi. Reasoning about a simulated printer
case investigation with Forensic Lucid. In P. Gladyshev, editor, Proceedings of
ICDF2C’11. Springer, Oct. 2011. To appear, online at
http://arxiv.org/abs/0906.5181

I S. A. Mokhov, J. Paquet, and M. Debbabi. Towards automated deduction in
blackmail case analysis with Forensic Lucid. In J. S. Gauthier, editor,
Proceedings of the Huntsville Simulation Conference (HSC’09), pages 326–333.
SCS, Oct. 2009. ISBN 978-1-61738-587-2. Online at
http://arxiv.org/abs/0906.0049

I S. A. Mokhov, J. Paquet, and M. Debbabi. On the need for data flow graph
visualization of Forensic Lucid programs and forensic evidence, and their
evaluation by GIPSY. In Proceedings of the Ninth Annual International
Conference on Privacy, Security and Trust (PST), 2011, pages 120–123. IEEE
Computer Society, July 2011. ISBN 978-1-4577-0582-3. doi:
10.1109/PST.2011.5971973. Short paper; full version online at
http://arxiv.org/abs/1009.5423

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/0906.5181
http://arxiv.org/abs/0906.0049
http://arxiv.org/abs/1009.5423
http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Founding Publications II

I S. A. Mokhov, J. Paquet, and M. Debbabi. Formally specifying operational
semantics and language constructs of Forensic Lucid. In O. Göbel, S. Frings,
D. Günther, J. Nedon, and D. Schadt, editors, Proceedings of the IT Incident
Management and IT Forensics (IMF’08), LNI140, pages 197–216. GI, Sept.
2008. ISBN 978-3-88579-234-5. Online at http:
//subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf

I S. A. Mokhov and J. Paquet. Using the General Intensional Programming
System (GIPSY) for evaluation of higher-order intensional logic (HOIL)
expressions. In Proceedings of SERA 2010, pages 101–109. IEEE Computer
Society, May 2010. ISBN 978-0-7695-4075-7. doi: 10.1109/SERA.2010.23. Online
at http://arxiv.org/abs/0906.3911

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://arxiv.org/abs/0906.3911
http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Speaker’s Bio
I PhD Candidate in Computer Science, Concordia University, Montreal, Canada where he completed his

bachelor’s and master’s degrees in Computer Science and Information Systems Security.
I Presently a Senior Scholar visiting Tsinghua University, Beijing, China, the Department of Computer

Science and Technology, the Visualization and Graphics Lab with Dr. Yankui Sun.
I A part-time faculty member at the Department of Computer Science and Software Engineering and a

Systems Administrator in the Faculty of Engineering and Computer Science’s Network Administration
Group.

I He is also an Assistant Editor of Scholarpedia, a peer-reviewed open-access encyclopedia, TPC member in
several conferences and a referee for a few journals.

I Mr. Mokhov’s multidisciplinary research includes diverse aspects in distributed and parallel computing,
pattern recognition and data mining, computer forensics and security, computer graphics and visualization,
AI and natural language processing, intensional programming, autonomic computing, and software
engineering, where he has had a number of publications.

I Strong proponent and developer of open-source software, having contributed most of his research software
and the results to the community.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

The Problem I

I The first formal approach for cyberforensic analysis and
event reconstruction appeared in two papers [13, 12] by
Gladyshev et al. that relies on the finite-state automata
(FSA) and their transformation and operation to model
evidence, witnesses, stories told by witnesses, and their
possible evaluation.

I The examples the papers present are the use-case for the
proposed technique – the ACME Printer Case Investigation
and a Blackmail Investigation. See [13, 12] for the
formalization using FSA by Gladyshev and the
corresponding LISP implementation.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

The Problem II

I We first aim at the same cases to model and implement it
using the new approach, which paves a way to be more
friendly and usable in the actual investigator’s work,
introduces the notion of credibility, and serve as a basis to
further development in the area.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Overview I

I In this work we model the ACME (a fictitious company
name) printer case and blackmail case incidents and make
their specification in Forensic Lucid, a Lucid- and
intensional-logic-based programming language for
cyberforensic analysis and event reconstruction
specification.

I Our initial work is based on the said cases modeling by
encoding concepts like evidence and the related witness
accounts as an evidential statement context in a Forensic
Lucid “program”, which is an input to the transition function
that models the possible deductions in the case.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Research Summary
The Problem
Overview

Overview II

I We then invoke the transition function (actually its reverse)
with the evidential statement context to see if the evidence
we encoded agrees with one’s claims and then attempt to
reconstruct the sequence of events that may explain the
claim or disprove it.

I The evaluation is naturally parallel and the GIPSY’s
run-time system supports distributed demand-driven
(eductive) evaluation for scalability and efficiency reasons
when needed.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Intensional Cyberforensics I

I Intensional Cyberforensics project
I Cyberforensics
I Case modeling and analysis
I Event reconstruction
I Language and Programming and Run-time Environments

I Forensic Lucid – functional intensional forensic case
programming and specification language, covering:

I Syntax and Semantics
I Compiler and Run-time System
I General Intensional Programming System (GIPSY)

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Intensional Cyberforensics II

I Operational aspects:
I Operators
I Operational Semantics

I Based on:
I Lucid
I Higher-Order Intensional Logic (HOIL)
I Intensional Programming

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

An Example of Using Temporal Intensional Logic

Temporal intensional logic is an extension of temporal logic that
allows to specify the time in the future or in the past.

I E1 := it is raining here today
Context: {place:here, time:today}

I E2 := it was raining here before(today) = yesterday
I E3 := it is going to rain at (altitude here + 500 m)

after(today) = tomorrow
I E1: fix here to Beijing and assume it is a constant. In the

month of May 2012, with granularity of day, for every day,
we can evaluate E1 to either true or false:

Tags: 1 2 3 4 5 6 7 8 9 ...

Values: F F T T T F F F T ...

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

If one starts varying the here dimension (which could even be
broken down to X , Y , Z), one gets a two-dimensional
evaluation of E1:

City: / 1 2 3 4 5 6 7 8 9 ...

Beijing F F T T T F F F T ...

Montreal F F F F T T T F F ...

Sydney F T T T T T F F F ...

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Higher-Order Intensional Logic (HOIL) I

I Intensional programming (IP) is based on intensional (or
multidimensional) logics, which, in turn, are based on
natural language understanding aspects (such as time,
belief, situation, and direction).

I Intensional logic adds dimensions to logical expressions;
thus, a non-intensional logic can be seen as a constant or
a snapshot in all possible dimensions.

I Intensions are dimensions at which a certain statement is
true or false (or has some other than a Boolean value).

I Intensional operators are operators that allow us to
navigate within these dimensions.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Higher-Order Intensional Logic (HOIL) II

I Higher-order intensional logic (HOIL) is the one that
couples functional programming as that of Lucid with
multidimensional dataflows that the intensional programs
can query an alter through an explicitly notion of contexts
as first-class values.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Higher-Order Intensional Logic (HOIL) III

I To summarize, expressions written in virtually all Lucid
dialects correspond to higher-order intensional logic (HOIL)
expressions with some dialect-specific instantiations.

I They all can alter the context of their evaluation given a set
of operators and in some cases types of contexts, their
range, and so on.

I HOIL combines functional programming and intensional
logics.

I The contextual expression can be passed as parameters
and returned as results of a function and constitute the
multi-dimensional constraint on the Lucid expression being
evaluated.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Higher-Order Intensional Logic (HOIL) IV

I The corresponding context calculus [57, 38, 49] defines a
comprehensive set of context operators, most of which are
set operators and the baseline operators are @ and # that
allow to switch the current context or query it, respectively.

I Other operators allow to define a context space and a point
in that context corresponding to the current context.

I The context can be arbitrary large in its rank.
I The identified variables of the dimension type within the

context can take on any data type, e.g. an integer, or a
string, during lazy binding of the resulting context to a
dimension identifier.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Lucid I

I Lucid [56, 5, 4, 2, 3] is a dataflow intensional and functional
programming language.

I In fact, it is a family of languages that are built upon
intensional logic (which in turn can be understood as a
multidimensional generalization of temporal logic) involving
context and demand-driven parallel computation model.

I A program written in some Lucid dialect is an expression
that may have subexpressions that need to be evaluated at
certain context.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Lucid II

I Given the set of dimension D = {dimi} in which an
expression varies, and a corresponding set of indexes or
tags defined as placeholders over each dimension, the
context is represented as a set of <dimi : tagi> mappings
and each variable in Lucid, called often a stream, is
evaluated in that defined context that may also evolve
using context operators [38, 49, 58, 57].

I The generic version of Lucid, GIPL [36], defines two basic
operators @ and # to navigate in the contexts (switch and
query).

I The GIPL was the first generic programming language of
all intensional languages, defined by the means of only two
intensional operators @ and #.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Lucid III

I It has been proven that other intensional programming
languages of the Lucid family can be translated into the
GIPL [36].

I Since the Lucid family of language thrived around
intensional logic that makes the notion of context explicit
and central, and recently, a first class value [58, 57, 38, 49]
that can be passed around as function parameters or as
return values and have a set of operators defined upon.

I We greatly draw on this notion by formalizing our evidence
and the stories as a contextual specification of the incident
to be tested for consistency against the incident model
specification.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Lucid IV

I In our specification model we require more than just atomic
context values – we need a higher-order context hierarchy
to specify different level of detail of the incident and being
able to navigate into the “depth” of such a context.

I A similar provision by has already been made by the
author [23] and earlier works of Swoboda et al.
in [43, 46, 45, 44] that needs some modifications to the
expressions of the cyberforensic context.

I Some other languages can be referred to as intensional
even though they may not refer to themselves as such, and
were born after Lucid (Lucid began in 1974).

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Lucid V

I Examples include hardware-description languages (HDLs,
appeared in 1977) where the notion of time (often the only
“dimension”, and usually progresses only forward), e.g.
Verilog and VHDL.

I Another branch of newer languages for the becoming
popular is aspect-oriented programming (AOP) languages
[10], that can have a notion of context explicitly, but
primarily focused on software engineering aspect of
software evolution and maintainability.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

JLucid, Objective Lucid, and JOOIP I

I JLucid [22] was a first attempt on intensional arrays and
“free Java functions” in the GIPSY. The approach used the
Lucid language as the driving main computation, where
Java methods were peripheral and could be invoked from
the Lucid part, but not the other way around.

I This was the first instance of hybrid programming within
the GIPSY. The semantics of this approach was not
completely defined, plus, it was only one-sided view
(Lucid-to-Java) of the problem. JLucid did not support
objects of any kind, but introduced the wrapper class idea
for the free Java methods and served as a precursor to
Objective Lucid.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

JLucid, Objective Lucid, and JOOIP II

I Objective Lucid [22] is an extension of the JLucid language
that inherits all of the JLucid’s features and introduced Java
objects to be available for use by Lucid. Objective Lucid
expanded the notion of the Java object (a collection of
members of different types) to the array (a collection of
members of the same type) and first introduced the
dot-notation in the syntax and operational semantics in
GIPSY.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

JLucid, Objective Lucid, and JOOIP III

I Like in JLucid, Objective Lucid’s focus was on the Lucid
part being the “main” program and did not allow Java to
call intensional functions or use intensional constructs from
within a Java class. Objective Lucid was the first in GIPSY
to introduce the more complete operational semantics of
the hybrid OO intensional language.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

JLucid, Objective Lucid, and JOOIP IV

I JOOIP [59] greatly complements Objective Lucid by
allowing Java to call the intensional language constructs
closing the gap and making JOOIP a complete hybrid OO
intensional programming language within the GIPSY
environment. JOOIP’s semantics further refines in a
greater detail the operational semantics rules of Lucid and
Objective Lucid in the attempt to make them complete.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

Context-Oriented Reasoning

I Evaluation of Lucid expressions
I Reasoning About Cyberforensic Investigation Cases and

Forensic Lucid
I A Lucid dialect, Forensic Lucid [28, 24, 29, 32, 26] develops a specification of a cyberincident for

analysis of claims of witnesses against encoded evidential statements to see if they agree or not
and if they do provide potential backtraces of event reconstruction.

I Reasoning in Hybrid OO Environment
I JOOIP [59, 60] is offering Lucid fragments within Java code and allowing the Lucid code to

reference to Java methods and variables, along with the corresponding type system extensions and
providing context-aware Java objects.

I Reasoning in Autonomic Environment
I Vassev and Paquet designed an Autonomic GIPSY [53] (AGIPSY) version of the platform with the

corresponding ASSL toolset [54, 52, 51] as a research case study.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

GIPSY I

I The General Intensional Programming System (GIPSY)
has been built around the Lucid family of intensional
programming languages that rely on the higher-order
intensional logic (HOIL) to provide context-oriented
multidimensional reasoning of intensional expressions.

I It executes Lucid programs following a demand-driven
distributed generator-worker architecture, and is designed
as a modular collection of frameworks where components
related to the development (RIPE, Run-time Integrated
Programming Environment), compilation (GIPC, General
Intensional Programming Compiler), and execution (GEE,
General Eduction Engine) of Lucid programs are separated

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

GIPSY II

allowing easy extension, addition, and replacement of the
components.

I GIPSY provides support for hybrid programming models
that couple intensional and imperative languages for a
variety of needs.

I Explicit context expressions limit the scope of evaluation of
math expressions (effectively a Lucid program is a
mathematics or physics expression constrained by the
context) in tensor physics, regular math in multiple
dimensions, etc., and for cyberforensic reasoning as one of
the use-cases of interest.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Introduction
Background

Intensional Cyberforensics
Intensional Logic
Lucid
General Intensional Programming System (GIPSY)

GIPSY III

I Thus, GIPSY is a support testbed for HOIL-based
languages some of which enable such reasoning, as in
formal cyberforensic case analysis with event
reconstruction. This is a proposed testing and investigation
platform for our Forensic Lucid language.

I Summary of technologies: Java, Jini (Apache River) and
JMS for distributed middleware, GIPSY cluster; multi-tier
architecture.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

GIPC Framework

Figure: GIPC Framework [30]

GIPSY’s GIPC-to-GEE GEER Flow Overview

Figure: GIPSY’s GIPC-to-GEE GEER Flow Overview [30]

Design of the GIPSY Node

Figure: Design of the GIPSY Node [37, 16]

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Part II

Forensic Lucid

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Part II Outline

Forensic Lucid
Features
Forward Tracing vs. Back-tracing
Context

Brief Forensic Lucid Syntax and Operational Semantics
Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Part II Outline

Forensic Lucid
Features
Forward Tracing vs. Back-tracing
Context

Brief Forensic Lucid Syntax and Operational Semantics
Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Forensic Lucid I

I A summary of the concepts and considerations in the
design of the Forensic Lucid language, large portions of
which were studied in the earlier work [24, 28].

I The end goal of the language design is to define its
constructs to concisely express cyberforensic evidence as
context of evaluations, which can be initial state of the case
towards what we have actually observed (as
corresponding to the final state in the Gladyshev’s FSM).

I One of the evaluation engines (a topic of another paper) of
the implementing system [47] is designed to backtrace
intermediate results to provide the corresponding event
reconstruction path if it exists.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Forensic Lucid II

I The result of the expression in its basic form is either true
or false, i.e. “guilty” or “not guilty” given the evidential
evaluation context per explanation with the backtrace(s).

I There can be multiple backtraces, that correspond to the
explanation of the evidence (or lack thereof).

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Features I

I We define Forensic Lucid to model the evidential
statements and other expressions representing the
evidence and observations as a higher-order context. An
execution trace of a Forensic Lucid program would expose
the possibility of the proposed claim with the events in the
middle between the final observed event to the beginning
of the events. Forensic Lucid aggregates the features of
multiple Lucid dialects mentioned earlier needed for these
tasks along with its own extensions.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Features II

I Addition of the context calculus from Lucx for operators on
Lucx’s context sets (union, intersection, etc.) are used to
address to provide a collection of traces. Forensic Lucid
inherits the properties of Lucx, Objective Lucid, JOOIP
(and their comprising dialects), where the former is for the
context calculus, and the latter for the arrays and structural
representation of data for modeling the case data
structures such as events, observations, and groupings of
the related data.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Features III

I One of the basic requirements is that the complete
definition of the syntax, and the operational semantics of
Forensic Lucid should be compatible with the basic Lucx
and GIPL, i.e. the translation rules or equivalent are to be
provided when implementing the language compiler within
GIPSY, and such that the GEE can execute it with minimal
changes. The most difficult aspect here is, of course, the
semantics of Forensic Lucid (luckily, the bulk of it is an
aggregation of the semantic rules of the languages we
inherit from).

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Forward Tracing vs. Back-tracing I

I Naturally, the GEE makes demands in the demand-driven
evaluation in the order the tree of an intentional program is
traversed. Tracing of the demand requests in this case will
be “forward tracing”.

I Such tracing is less useful than the mentioned back-tracing
when demands are resolved, when dealing with the
back-tracing in forensic investigation in an attempt to
reconstruct events from the final state observations.
Back-tracing is also naturally present when demands are
computed and return results.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Forward Tracing vs. Back-tracing II

I The latter may not be sufficient in the forensic evaluation,
so a set of reverse operators to next, fby, asa, etc. is
needed. The development of such operators is discussed
further in the syntax and semantics sections.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Context I

I We need to provide an ability to encode the stories told by
the evidence and witnesses. This will constitute the context
of evaluation.

I The return value of the evaluation would be a collection of
backtraces, which contain the “paths of truth”.

I If a given trace contains all truths values, it’s an
explanation of a story.

I If there is no such a path, i.e. the trace, there is no enough
supporting evidence of the entire claim to be true.

I The context for this task for simplicity of the prototype
language can be expressed as integers or strings, to which
we attribute some meaning or description.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Context II

I The contexts are finite and can be navigated through in
both directions of the index, potentially allowing negative
tags in our tag sets of dimensions. Alternatively, our
contexts can be a finite set of symbolic labels and their
values that can internally be enumerated. This approach
will be naturally more appropriate for humans and we have
a machinery to so in Lucx’s implementation in
GIPSY [49, 38].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Context III

I We define streams of observations as our context, that can
be a simple context or a context set. In fact, in Forensic
Lucid we are defining higher-level dimensions and
lower-level dimensions. The highest-level one is the
evidential statement, which is a finite unordered set of
observation sequences.

I The observation sequence is a finite ordered set of
observations.

I The observation is an “eyewitness” of a particular property
along with the duration of the observation.

I As in the FSA [12, 13], the observations are a tuples of
(P,min,opt) in their generic form.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Context IV

I The observations in this form, specifically, the property P
can be exploded further into Lucx’s context set and further
into an atomic simple context [57, 50]. Context switching
between different observations is done naturally with the
Lucid @ context switching operator.

I Consider some conceptual expression of a storyboard in
the next slide where anything in [...] represents a
story, i.e. the context of evaluation. foo can be evaluated
at multiple contexts (stories), producing a collection of final
results (e.g. true or false) for each story as well as a
collection of traces.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Intensional Storyboard Expression

claimA @

{

[final observed event, possible initial observed event],

[story X],

[story Y]

}

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

I While the [...] notation here may be confusing with
respect to [dimension:tag] in Lucid and more specifically
in Lucx [57, 50], it is in fact a simple syntactical extension to
allow higher-level groups of contexts where this syntactical
sugar is later translated to the baseline context constructs.

I The tentative notation of {[...],...,[...]} implies a
notion similar to the notion of the “context set” in [57, 50]
except with the syntactical sugar mentioned earlier where
we allow syntactical grouping of properties, observations,
observation sequences, and evidential statements as our
context sets.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

I The generic observation sequence can be expanded [13]
into the context stream using the min and opt values,
where they will translate into index values. Thus,
obs = (A,3,0)(B,2,0) expands the property labels A and B
into a finite stream of five indexed elements: AAABB.
Thus, a Forensic Lucid fragment in the examples would
return the third A of the AAABB context stream in the
observation portion of o.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

// Give me observed property at index 2 in the observation sequence obs

o @.obs 2

where

// Higher-level dimension in the form of (P,min,opt)

observation o;

// Equivalent to writing = { A, A, A, B, B };

observation sequence obs = (A,3,0)(B,2,0);

where

// Properties A and B are arrays of computations

// or any Expressions

A = [c1,c2,c3,c4];

B = E;

...

end;

end;

I The property values of A and B can be anything that
context calculus allows. The dimension type observation

sequence is a finite ordered context tag set [38] that allows
an integral “duration” of a given tag property.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

I This may seem like we allow duplicate tag values that are
unsound in the classical Lucid semantics; however, we find
our way around little further in the text with the implicit
index tag.

I The semantics of the arrays of computations is not a part
of either GIPL or Lucx; however, the arrays are provided by
JLucid and Objective Lucid. We need the notion of the
arrays to evaluate multiple computations at the same
context. Having an array of computations is conceptually
equivalent of running an a Lucid program under the same
context for each array element in a separate instance of
the evaluation engine and then the results of those
expressions are gathered in one ordered storage within the
originating program. Arrays in Forensic Lucid are needed
to represent a set of results, or explanations of evidential

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

statements, as well as denote some properties of
observations. We will explore the notion of arrays in
Forensic Lucid much greater detail in the near future work.

I In the FSA approach computations ci correspond to the
state q and event i that enable transition. For Forensic
Lucid, we can have ci as theoretically any Lucid expression
E .

Observed property (context): A A A B B

Sub-dimension index: 0 1 2 3 4

o @.obs 0 = A

o @.obs 1 = A

o @.obs 2 = A

o @.obs 3 = B

o @.obs 4 = B

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

To get the duration/index position:

o @.obs A = 0 1 2

o @.obs B = 3 4

I Here we illustrate a possibility to query for the
sub-dimension indices by raw property where it persists
that produces a finite stream valid indices that can be used
in subsequent expressions, or, alternatively by supplying
the index we can get the corresponding raw property at
that index. The latter feature is still under investigation of
whether it is safe to expose it to Forensic Lucid
programmers or make it implicit at all times at the
implementation level. This is needed to remedy the

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

problem of “duplicate tags”: as previously mentioned,
observations form the context and allow durations. This
means multiple duplicate dimension tags with implied
subdimension indexes should be allowed as the semantics
of a traditional Lucid approaches do not allow duplicate
dimension tags. It should be noted however, that the
combination of the tag and its index in the stream is still
unique and can be folded into the traditional Lucid
semantics.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Gladyshev’s Meaning and Explanation Hierarchy

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Features
Forward Tracing vs. Back-tracing
Context

Higher Order Context

I HOCs represent essentially nested contexts, modeling
evidential statement for forensic specification evaluation.

I Such a context representation can be modeled as a tree in
an OO ontology or a context set.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Higher-Order Contexts

Figure: Nested Context Hierarchy Example for Digital
Investigation [24, 28]

I Lucx
I Forensic Lucid
I MARFL
I iHTML

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Concrete Forensic Lucid Syntax I

I The concrete syntax of the Forensic Lucid language is
presented in the slides that follow. It is influenced by the
productions from Lucx [58, 57], JLucid and Objective
Lucid [22, 14, 21], and Indexical Lucid [36]. Some of the
syntactical definitions can be, perhaps, implemented as a
collection of macros.

I The evidential statement, observation sequence, and
observation dimension types can be translated into
dimension by some translation rules flattening them into
simple contexts and context sets.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Concrete Forensic Lucid Syntax II

I The GIPSY compiler framework (GIPC) allows for the
introduction of such semantic translation rules to define
new language variants. We will use this feature as much
as possible, though some of our syntactic constructs may
have some underlying semantic details that cannot be
translated into generic Lucid primitives, in which case we
need to expand the existing semantics.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

(01) E ::= id

(02) | E(E,...,E) #LUCX

(03) | EE,...,E #GIPL

(04) | if E then E else E fi

(05) | # E

(06) | E @ E E #GIPL

(07) | E @ E #LUCX

(08) | E where Q end;

(09) | [E:E,...,E:E] #LUCX

(10) | E bin-op E #INDEXICAL

(11) | un-op E #INDEXICAL

(12) | E i-bin-op E #INDEXICAL

(13) | i-un-op E #INDEXICAL

(14) | bounds

(15) | embed(URI, METHOD, E, E, ...) #JLUCID

(16) | E[E,...,E] #JLUCID

(17) | [E,...,E] #JLUCID

(18) | E.id #OBJECTIVE

(19) | E.id(E,...,E) #OBJECTIVE

(20) Q ::= dimension id,...,id;

(21) | evidential statement id,...,id [= ES];

(22) | observation sequence id,...,id [= OS];

(23) | observation id,...,id [= O];

(24) | id = E;

(25) | id(id,....,id) = E; #LUCX

(26) | id[id,...,id](id,....,id) = E; #GIPL

(27) | E.id = E; #OBJECTIVE

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

(28) | id.id,...,id(id,...,id) = E; #OBJECTIVE

(29) | QQ

(30) ES ::= { OS,...,OS } # evidential statement

(31) OS ::= { O,...,O } # observation sequence

(32) O ::= (E, E, E) # (property, min, opt)

| $ # no-observation (Ct, 0, infinitum)

| \0(E) # zero-observation (P, 0, 0), where P = E

(33) bin-op ::= arith-op | logical-op | bitwise-op

(34) un-op ::= + | -

(35) arith-op ::= + | - | * | / | % | ^

(36) logical-op ::= < | > | >= | <= | == | in | && | "||" | !

(37) bitwise-op ::= "|" | & | ~ | !| | !&

(38) i-bin-op ::= @ | i-bin-op-forw | i-bin-op-back | i-logic-bitwise-op | i-forensic-op

(39) i-bin-op-forw ::= fby | upon | asa | wvr

| nfby | nupon | nasa | nwvr

(40) i-bin-op-back ::= pby | rupon | ala | rwvr

| npby | nrupon | nala | nrwvr

(41) i-logic-bitwise-op ::= and | or | xor

| nand | nor | nxor

| band | bor | bxor

(42) i-un-op ::= i-bin-un-forw | i-bin-un-back | #

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

(43) i-bin-un-forw ::= first | next | iseod

| second | nnext | neg | not

(44) i-bin-un-back ::= last | prev | isbod

| prelast | nprev

(45) i-forensic-op ::= combine | product | psi | invpsi

(46) bounds ::= eod | bod | +inf | -inf

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

I
/∗ ∗
∗ Append given e to each element
∗ of a given stream e under the
∗ contex t o f d .
∗
∗ @return the r e s u l t i n g combined stream
∗ /

combine (s , e , d) =
i f iseod s then eod ;
else (f i r s t s fby . d e) fby . d combine (next s , e , d)

;
f i

Listing 1: The combine Operator

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

I
/∗ ∗
∗ Append elements o f s2 to element o f s1
∗ i n a l l poss ib le combinat ions .
∗ /

product (s1 , s2 , d) =
i f iseod s2 then eod ;
else combine (s1 , f i r s t s2) fby . d product (s1 , next

s2) ;
f i

Listing 2: The product Operator

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

stream/index -1 0 1 2 3 4 5 6 7 8 9 10 11

X bod 1 2 3 4 5 6 7 8 9 10 eod eod
Y bod T F F T F F T T F T eod eod

X first Y 1 1 1 1 1 1 1 1 1 1
X last Y 10 10 10 10 10 10 10 10 10 10
X next Y 2 3 4 5 6 7 8 9 10 eod eod
X prev Y bod

X fby Y 1 T F F T F F T T F T eod
X pby Y T F F T F F T T F T 1 eod

X wvr Y 1 4 7 8 10
X rwvr Y 10 8 7 4 1
X nwvr Y 2 3 5 6 9
X nrwvr Y 9 6 5 3 2

X asa Y 1 1 1 1 1 1 1 1 1 1
X nasa Y 2 2 2 2 2 2 2 2 2 2
X ala Y 10 10 10 10 10 10 10 10 10 10
X nala Y 9 9 9 9 9 9 9 9 9 9

X upon Y 1 2 2 2 3 3 3 4 5 5 eod
X rupon Y 10 9 9 8 7 7 7 6 6 6 bod
X nupon Y 1 1 2 3 3 4 5 5 5 6 6 eod
X nrupon Y 10 10 9 9 9 8 7 7 6 5 5 bod

neg X -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 eod eod
not Y F T T F T T F F T F eod eod

X and Y 1 0 0 1 0 0 1 1 0 1 eod eod
X or Y 1 2 3 5 5 6 7 9 9 11 eod eod
X xor Y 0 2 3 5 5 6 6 9 9 11 eod eod

Table: Example of Application of Forensic Lucid Operators to
Bounded Streams

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Transition Function I

I A transition function determines how the context of
evaluation changes during computation. A general issue
exists that we have to address is that the transition function
ψ is problem-specific. In the FSA approach, the transition
function is the labeled graph itself. In the first prototype, we
follow the graph to model our Forensic Lucid equivalent.

I In general, Lucid has already basic operators to navigate
and switch from one context to another, which represent
the basic transition functions in themselves (the intensional
operators such as @, #, iseod, first, next, fby, wvr,
upon, and asa as well as their inverse operators). However,
a specific problem being modeled requires more specific

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Transition Function II

transition function than just plain intensional operators. In
this case the transition function is a Forensic Lucid function
where the matching state transition modeled through a
sequence of intensional operators.

I A question arises a of how to explicitly model the transition
function ψ and its backtrace Ψ−1 in the new language. A
possible approach is to use predefined macros in Lucid
syntax [27].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Transition Function III

I In fact, the forensic operators are just pre-defined functions
that rely on traditional and inverse Lucid operators as well
as context switching operators that achieve something
similar to the transitions. Once modeled, it would be the
GEE actually execution ψ within GIPSY. In fact, the
intensional operators of Lucid represent the basic building
blocks for ψ and Ψ−1. We provide a first implementation of
Ψ−1 in [28].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Operational Semantics I

I As previously mentioned, the operational semantics of
Forensic Lucid for the large part is viewed as a composition
of the semantic rules of Indexical Lucid, Objective Lucid,
and Lucx along with the new operators and definitions.
Here we list the existing combined semantic definitions to
be used the new language, specifically extracts of
operational semantics from GIPL [36], Objective Lucid [22],
and Lucx [57] are in figures that follow. The explanation of
the rules and the notation are given in great detail in the
cited works and are trimmed in this article. For
convenience of the reader they are recited here.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Operational Semantics II

I The Objective Lucid semantic rules were affected and
refined by some of the semantic rules of JOOIP [59].

I The new rules of the operational semantics of Forensic
Lucid cover the operators primarily, including the reverse
and logical stream operators as well as forensic-specific
operators.

I We use the same notation as the referenced languages to
maintain consistency in defining our rules.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Ecid :
D(id) = (const,c)

D ,P ` id : c

Eopid :
D(id) = (op, f)
D ,P ` id : id

Edid :
D(id) = (dim)

D ,P ` id : id

Efid :
D(id) = (func, idi ,E)

D ,P ` id : id

Evid :
D(id) = (var,E) D ,P ` E : v

D ,P ` id : v

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Eop :
D ,P ` E : id D(id) = (op, f) D ,P ` Ei : vi

D ,P ` E(E1, . . . ,En) : f (v1, . . . ,vn)

Efct :
D ,P ` E : id D(id) = (func, idi ,E ′) D ,P ` E ′[idi ← Ei] : v

D ,P ` E(E1, . . . ,En) : v

EcT :
D ,P ` E : true D ,P ` E ′ : v ′

D ,P ` if E then E ′ else E ′′ : v ′

EcF :
D ,P ` E : false D ,P ` E ′′ : v ′′

D ,P ` if E then E ′ else E ′′ : v ′′

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Etag :
D ,P ` E : id D(id) = (dim)

D ,P `#E : P(id)

Eat :
D ,P ` E ′ : id D(id) = (dim) D ,P ` E ′′ : v ′′ D ,P†[id 7→ v ′′] ` E : v

D ,P ` E @E ′ E ′′ : v

Ew :
D ,P `Q : D ′,P ′ D ′,P ′ ` E : v

D ,P ` E where Q : v

Qdim :
D ,P ` dimension id : D†[id 7→ (dim)],P†[id 7→ 0]

Qid :
D ,P ` id = E : D†[id 7→ (var,E)],P

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Qfid :
D ,P ` id(id1, . . . , idn) = E : D†[id 7→ (func, idi ,E)],P

QQ :
D ,P `Q : D ′,P ′ D ′,P ′ `Q′ : D ′′,P ′′

D ,P `Q Q′ : D ′′,P ′′

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Ec−vid :

D ,P ` E : id D ,P ` E ′ : id ′

D(id) = (class, cid, cdef) D(id ′) = (classv, cid.cvid, vdef)
D ,P `<cid.cvid>: v

D ,P ` E .E ′ : v

Ec−fct :

D ,P ` E : id D ,P ` E ′ : id ′ D ,P ` E1, . . . ,En : v1, . . . ,vn
D(id) = (class, cid, cdef) D(id ′) = (classf, cid.cfid, fdef)

D ,P `<cid.cfid(v1, . . . ,vn)>: v
D ,P ` E .E ′(E1, . . . ,En) : v

Effid :

D ,P ` E : id D ,P ` E1, . . . ,En : v1, . . . ,vn
D(id) = (freefun, ffid, ffdef)

D ,P `<ffid(v1, . . . ,vn)>: v
D ,P ` E(E1, . . . ,En) : v

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

#JAVAobjid :
cdef= Class cid {. . .}

D ,P ` cdef : D†[cid 7→ (class, cid, cdef)], P

#JAVAobjvid :
cdef= Class cid {. . .vdef . . .} vdef= public type vid;

D ,P ` cdef : D†[cid.vid 7→ (classv, cid.vid, vdef)],P

#JAVAobjfid :
cdef= Class cid {. . .fdef . . .} fdef= public frttype fid(fargtype1 fargid1 , . . . , fargtypen fargidn)

D ,P ` cdef : D†[cid.fid 7→ (classf, cid.fid, fdef)],P

#JAVAffid :
ffdef= frttype ffid(fargtype1 fargid1 , . . . , fargtypen fargidn)

D ,P ` ffdef : D†[ffid 7→ (freefun, ffid, ffdef)],P

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

EE.did :
D(E .id) = (dim)

D ,P ` E .id : id.id

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

E#(cxt) :
D ,P `# : P

Econstruction(cxt) :

D ,P ` Edj
: idj D(idj) = (dim)

D ,P ` Eij : vj P ′ = P0†[id1 7→ v1]†. . .†[idn 7→ vn]

D ,P ` [Ed1 : Ei1 ,Ed2 : Ei2 , . . . ,Edn : Ein] : P
′

Eat(cxt) :
D ,P ` E ′ : P ′ D ,P†P ′ ` E : v

D ,P ` E @ E ′ : v

E. :
D ,P ` E2 : id2 D(id2) = (dim)

D ,P ` E1.E2 : tag(E1 ↓ {id2})

Etuple :
D ,P ` E : id D†[id 7→ (dim)] P†[id 7→ 0] D ,P ` Ei : vi

D ,P ` 〈E1,E2, . . . ,En〉E : v1 fby .id v2 fby .id . . . vn fby .id eod

Eselect :
E = [d : v’] E ′ = 〈E1, . . . ,En〉dP ′ = P†[d 7→ v ′] D ,P ′ ` E ′ : v

D ,P ` select(E ,E ′) : v

Eat(s) :
D ,P ` C : {P1, . . . ,P2} D ,Pi:1...m ` E : vi

D ,P ` E @C : {v1, . . . ,vm}

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid
Brief Forensic Lucid Syntax and Operational Semantics Overview

Concrete Forensic Lucid Syntax
Some Forensic Lucid Operators
Transition Function
Operational Semantics

Cbox :

D ,P ` Edi
: idi D(idi) = (dim)

{E1, . . . ,En}= dim(P1) = . . .= dim(Pm)
E ′ = fp(tag(P1), . . . ,tag(Pm)) D ,P ` E ′ : true

D ,P ` Box [E1, . . . ,En|E ′] : {P1, . . . ,Pm}

Cset :
D ,P ` Ew :1...m : Pm

D ,P ` {E1, . . . ,Em} : {P1, . . . ,Pw}

Cop :
D ,P ` E : id D(id) = (cop, f) D ,P ` Ci : vi

D ,P ` E(C1, . . . ,Cn) : f (v1, . . . ,vn)

Csop :
D ,P ` E : id D(id) = (sop, f) D ,P ` Ci : {vi1 , . . . ,vik }

D ,P ` E(C1, . . . ,Cn) : f ({v11 , . . . ,v1s}, . . . ,{vn1 , . . . ,vnm})

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Forensic Lucid Compilation and Evaluation Flow in
GIPSY

ACME Manufacturing Printing Case

Part III

Sample Cases

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case

Part III Outline

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling
Modeling the Investigation

Modeling Events
Formalization of the Evidence
Modeling an Explanation of Mr. A’s Theory
Modeling Complete Explanations

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

ACME Manufacturing Printing Case I

This is one of the cases we re-examine from the Gladyshev’s
FSA approach [13].

I The local area network at some company called ACME
Manufacturing consists of two personal computers and a
networked printer.

I The cost of running the network is shared by its two users
Alice (A) and Bob (B).

I Alice, however, claims that she never uses the printer and
should not be paying for the printer consumables.

I Bob disagrees, he says that he saw Alice collecting
printouts.

I According to the manufacturer, the printer works as follows:

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

ACME Manufacturing Printing Case II

1. When a print job is received from the user, it is stored in the
first unallocated directory entry of the print job directory.

2. The printing mechanism scans the print job directory from
the beginning and picks the first active job.

3. After the job is printed, the corresponding directory entry is
marked as “deleted”, but the name of the job owner is
preserved.

4. The printer can accept only one print job from each user at
a time.

5. Initially, all directory entries are empty.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

ACME Manufacturing Printing Case III

The investigator finds the current state of the printer’s buffer as:

1. Job From B Deleted

2. Job From B Deleted

3. Empty

4. Empty

5. ...

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Gladyshev’s Printer Case State Machine

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

Paths Leading to (B Deleted ,B Deleted)

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

a l i c e c l a i m @ es
where

e v i d e n t i a l statement es = [p r i n t e r , manuf , a l i c e] ;

observa t ion sequence p r i n t e r = F ;
observa t ion sequence manuf = [Oempty , $] ;
observa t ion sequence a l i c e = [Oal ice , F] ;

observa t ion F = (‘ ‘ B deleted ’ ’ , 1 , 0) ;
observa t ion Oal ice = (P a l i ce , 0 , + i n f) ;
observa t ion Oempty = (‘ ‘ empty ’ ’ , 1 , 0) ;

/ / No ‘ ‘ add A ’ ’
P a l i ce = unordered { ‘ ‘ add B ’ ’ , ‘ ‘ take ’ ’ } ;

invpsiacme (F , es) ;
end ;

Listing 3: The Pinter Case “main()”

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

Transition Function” ψ in Forensic Lucid

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

Inverse Transition Function” Ψ−1 in Forensic Lucid

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

Figure: Cluster Data with the Blackmail Fragments

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

The case description in this section is from [12]. A managing
director of some company, Mr. C, was blackmailed. He
contacted the police and handed them evidence in the form of a
floppy disk that contained a letter with a number of allegations,
threats, and demands. The message was known to have come
from his friend Mr. A. The police officers went to interview Mr. A
and found that he was on holiday abroad. They seized the
computer of Mr. A and interviewed him as soon as he returned
into the country. Mr. A admitted that he wrote the letter, but
denied making threats and demands. He explained that, while
he was on holiday, Mr. C had access to his computer. Thus, it
was possible that Mr. C added the threats and demands into
the letter himself to discredit Mr. A. One of the blackmail
fragments was found in the slack space of another letter
unconnected with the incident. When the police interviewed the

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

person to whom that letter was addressed, he confirmed that he
had received the letter on the day that Mr. A had gone abroad
on holiday. It was concluded that Mr. A must have added the
threats and demands into the letter before going on holiday,
and that Mr. C could not have been involved. [12] In Figure 5 is
the initial view of the incident as a diagram illustrating cluster
data of the blackmail and unconnected letters [12].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

Simplified model of the cluster:

possible data lengths: 0 1 2
PL – left part PR – right part

possible data values: u – unrelated
t1 – threats-obscured part t2 – threats in slack
o1 – other data left part o2 – other data right part

Observed final state:
L = 1 (u) unrelated (t2) threats in slack
PL = {u, t1,o1}
PR = {t2,o2}
Q = L×PL×PR

Figure: Simplified View of the Cluster Model [12]

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

In the blackmail example, the functionality of the last cluster of
a file was used to determine the sequence of events and,
hence, to disprove Mr. A’s alibi [12]. Thus, the scope of the
model is restricted to the functionality of the last cluster in the
unrelated file. The last cluster model can store data objects of
only three possible lengths: L = {0,1,2}. Zero length means
that the cluster is unallocated. The length of 1 means that the
cluster contains the object of the size of the unrelated letter tip.
The length of 2 means that the cluster contains the object of the
size of the data block with the threats. In Figure 6 is, therefore,
the simplified model of the investigation [12].
The state of the last cluster can be changed by three types of
events [12]:

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

1. Ordinary writes into the cluster:

W ={(u),(t1),(o1),(u, t2),(u,o2),

(t1, t2),(t1,o2),(o1, t2),(o1,o2)}

2. Direct writes into the file to which the cluster is allocated
(bypassing the OS):

Wd ={d(u, t2),d(u,o2),d(o1),

d(t1, t2),d(t1,o2),

d(o1, t2),d(o1,o2)}

3. Deletion of the file D sets the length of the file to zero.
Therefore, all writes and the deletion comprise I:

I =W
⋃

Wd
⋃

D

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

The final state observed by the investigators is (1,u, t2) [12].
Let Ofinal denote the observation of this state. The entire final
sequence of observations is then osfinal = ($,Ofinal) [12]. The
observation sequence osunrelated specifies that the unrelated
letter was created at some time in the past, and that it was
received by the person to whom it was addressed is
osunrelated = ($,Ounrelated ,$,(CT ,0,0),$) where Ounrelated
denotes the observation that the “unrelated” letter tip (u) is
being written into the cluster [12]. The evidential statement is
then the composition of the two stories
esblackmail = {osfinal ,osunrelated} [12].
Mr. A’s theory, encoded using the proposed notation, is
osMr .A = ($,Ounrelated−clean,$,Oblackmail ,$), where Ounrelated−clean
denotes the observation that the “unrelated” letter (u) is being
written into the cluster and, at the same time, the cluster does

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

not contain the blackmail fragment; Oblackmail denotes the
observation that the right part of the model now contains the
blackmail fragment (t2) [12].
There are two most logically possible explanations that can be
represented by a state machine [12]. See the corresponding
state diagram for the blackmail case in Figure 7 [12].

Figure: Blackmail Case State Machine

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

1. The first explanation [12]:

. . .
(u)−−→ (1,u,o2)

(u,t2)−−−→ (2,u, t2)
(u)−−→ (1,u, t2)

I Finding the unrelated letter, which was written by Mr. A
earlier;

I Adding threats into the last cluster of that letter by editing it
“in-place” with a suitable text editor (such as ViM [33]);

I Restoring the unrelated letter to its original content by
editing it “in-place” again [12].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

“To understand this sequence of events, observe
that certain text editors (e.g. ViM [33]) can be
configured to edit text “in-place”. In this mode of
operation, the modified file is written back into the
same disk blocks that were allocated to the
original file. As a result, the user can forge the
file’s slack space by (1) appending the desired
slack space content to the end of the file, (2)
saving it, (3) reverting the file back to the original
content, (4) saving it again.” [12]

2. The second explanation [12]:

. . .
(u)−−→ (1,u,o2)

d(u,t2)−−−−→ (1,u, t2)

I The threats are added into the slack space of the unrelated
letter by writing directly into the last cluster using, for
example, a low-level disk editor [12].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

The blackmail case example of the initial implementation steps
modeled in Forensic Lucid is in Listing 4. At the top of the
example we construct the hierarchical context representing the
evidential statement and comprising observations. The syntax
is made to relate to the mathematical description of
Gladyshev’s FSA, but with the semantics that of Lucid. Any
event property can also be mapped to a human-readable
description that can be printed out in a trace. invtans
corresponds to Ψ−1; given all states, the evidential statement,
and Mr. A’s claim as an argument it attempts to find possible
backtrace explanations within the cluster model. trans is ψ.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

os mra @ es mra
where

/ / Core contex t o f eva lua t i on
e v i d e n t i a l statement es mra = { o s f i n a l , os unre la ted

} ;

/ / Mr . A ’ s s to r y
observa t ion sequence os mra = ($, o unre la ted c lean , $

, o b lackmai l , $) ;
/ / Crime scene d e s c r i p t i o n
observa t ion sequence o s f i n a l = ($, o f i n a l) ;
observa t ion sequence os unre la ted = ($, o unre la ted , $

, (Ct , 0 , 0) , $) ;
observa t ion o f i n a l = (1 , ” u ” , ” t2 ”) ;
observa t ion o unre la ted c lean = (1 , ” u ” , ” o1 ”) ;

/ / Corresponds to the s ta te machine
t rans = . . .

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

/ / Event r e c o n s t r u c t i o n
i n v t r a n s (Q, es mra , o f i n a l) = backtraces
where

/ / L i s t o f a l l poss ib le dimension tags
observa t ion Q = lengths box l e f t p a r t box r i g h t p a r t

;
/ / C lus te r events
observa t ion leng ths = unordered {0 , 1 , 2} ;
/ / Symbolic l a b e l s map to human d e s c r i p t i o n s
observa t ion l e f t p a r t = unordered {

” u ” => ” unre la ted ” ,
” t1 ” => ” th rea ts−obscured pa r t ” ,
” o1 ” => ” o ther data (l e f t pa r t) ”

} ;
observa t ion r i g h t p a r t = unordered {

” t2 ” => ” t h r e a t s i n s lack ” ,
” o2 ” => ” o ther data (r i g h t pa r t) ”

} ;
backtraces = [A, B] @ t 5 ;

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

ACME Manufacturing Printing Case
Gladyshev’s Printer Case State Machine
Case Specification in Forensic Lucid
Initial Blackmail Case Modeling

where
dimension t ;
A = o f i n a l pby . t ‘ ‘ u ’ ’ pby . t (2 , ‘ ‘ u ’ ’ , ‘ ‘ t 2 ’ ’)

pby . t (‘ ‘ u ’ ’ , ‘ ‘ t 2 ’ ’) pby . t (1 , ‘ ‘ u ’ ’ , ‘ ‘ o2 ’ ’)
pby . t (0 , ‘ ‘ o1 ’ ’ , ‘ ‘ o2 ’ ’) ;

B = o f i n a l pby . t d (‘ ‘ u ’ ’ , ‘ ‘ t 2 ’ ’) pby . t (1 , ‘ ‘ u ’ ’
, ‘ ‘ o2 ’ ’) pby . t ‘ ‘ u ’ ’ pby . t (0 , ‘ ‘ o1 ’ ’ , ‘ ‘ o2 ’ ’)
;

end ;
end ;

end ;

Listing 4: Blackmail Case Modeling in Forensic Lucid

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Part IV

Concluding Remarks

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Part IV Outline

Concluding Remarks
Overview
Ongoing Work and Future Work
Acknowledgments

Questions

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Part IV Outline

Concluding Remarks
Overview
Ongoing Work and Future Work
Acknowledgments

Questions

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Concluding Remarks I

I We presented the basic overview of Forensic Lucid, its
concepts, ideas, and dedicated purpose – to model,
specify, and evaluation digital forensics cases.

I The process of doing so is significantly simpler and more
manageable than the previously proposed FSM model and
its common LISP realization. At the same time, the
language is founded in more than 30 years research on
correctness and soundness of programs and the
corresponding mathematical foundations of the Lucid
language, which is a significant factor should a Forensic
Lucid-based analysis be presented in court.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Concluding Remarks II

I We re-wrote in Forensic Lucid two of the sample cases
initially modeled by Gladyshev in the FSM and Common
LISP to show the specification is indeed more manageable
and comprehensible than the original and fits in two pages
(when printed).

I We also still realize by looking at the examples the usability
aspect is still desired to be improved further for the
investigators, especially when modeling ψ and Ψ−1, as a
potential limitation, prompting one of the future work items
to address it further.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Concluding Remarks III

I In general, the proposed practical approach in the
cyberforensics field can also be used to model and
evaluate normal investigation process involving crimes not
necessarily associated with information technology.

I Combined with an expert system (e.g. implemented in
CLIPS [40]), it can also be used in training new staff in
investigation techniques. The notion of hierarchical
contexts as first-class values brings more understanding of
the process to the investigators in cybercrime case
management tools.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Ongoing Work I

I Formally prove equivalence to the FSA approach.
I Adapt/re-implement a graphical UI based on the data-flow

graph tool [8, 31] to simplify Forensic Lucid programming
further for not very tech-savvy investigators by making it
visual. The listings provided are not very difficult to read
and quite manageable to comprehend, but any visual aid is
always an improvement.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Ongoing Work II

I Explore and exploit the notion of credibility factors of the
evidence and witnesses fully in GEE.

I Include the ability of having multiple GEE engine
evaluation backend plug-ins, one of which would rely on
PRISM [48], and the other one on AspectJ [6];

I Release a full standard Forensic Lucid specification.
I Work with the real-world data.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Computing Credibility Weights I

I This sub-project refines the theoretical structure and formal
model of the observation tuple with the credibility weight
and other factors for cyberforensic analysis and event
reconstruction. An earlier work suggested a mathematical
theory of evidence by Dempster, Shafer and
others [15, 41], where factors like credibility,
trustworthiness, and the like play a role in the evaluation of
mathematical expressions, which Gladyshev lacked.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Computing Credibility Weights II

I Thus, we augment the Gladyshev’s formalization with the
credibility weight and other properties derived from the
mathematical theory of evidence and we encode it as a
context in the Forensic Lucid language, a Lucid derivative
for forensic case management, evaluation, and event
reconstruction.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Computing Credibility Weights III

I We augment the notion of observation to be formalized as:

o = (P,min,max,w , t) (1)

with the w being the credibility or trustworthiness weight of
that observation, and the t being an optional wall-clock
timestamp. With w = 1 the o would be equivalent to the
original model proposed by Gladyshev.

I We define the total credibility of an observation sequence
as an average of all the weights in this observation
sequence.

Wnaive =
∑(wi)

n
(2)

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Computing Credibility Weights IV

I A less naive way of calculating weights is using some
pre-existing functions. What comes to mind is the
activation functions used in artificial neural networks
(ANNs), e.g.

WANN = ∑
1

(1 + e−nwi)
(3)

I The witness stories or evidence with higher scores of W
have higher credibility. With lower scores therefore less
credibility and more tainted evidence.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Proposed Visualization I

I Additionally, a part of the proposed related work on
visualization and control of communication patterns and
load balancing idea was to have a “3D editor” within RIPE’s
DemandMonitor that will render in 3D space the current
communication patterns of a GIPSY program in execution
or replay it back and allow the user visually to redistribute
demands if they go off balance between workers.

I A kind of virtual 3D remote control with a mini expert
system, an input from which can be used to teach the
planning, caching, and load-balancing algorithms to
perform efficiently next time a similar GIPSY application is
run as was proposed in [22].

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Proposed Visualization II

I Related work by several researchers on visualization of
load balancing, configuration, formal systems for
diagrammatic modeling and visual languages and the
corresponding graph systems are presented in
[61, 55, 1, 7, 20]. They all define some key concepts that
are relevant to our visualization mechanisms within GIPSY
and its corresponding General Manager Tier (GMT) [18].

I We propose to build upon those works to represent the
nested evidence, crime scene as a 2D or even 3D DFG,
and the reconstructed events flow upon evaluation.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Proposed Visualization III

I For that related work a conceptual example of a 2D DFG
corresponding to a simple Lucid program is in Figure 8.
The actual current rendering of such graphs is exemplified
in Figure 9 from Ding [8] in the GIPSY environment.

I These 2D conceptual visualizations are proposed to be
renderable at least in 2D or in 3D via an interactive
interface to allow modeling complex crime scenes and
multidimensional evidence on demand. The end result
could look like something expanding or “cutting out” nodes
or complex-type results conceptually exemplified in
Figure 10.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Canonical Example of a 2D Data Flow Graph-Based
Program

Figure: Canonical Example of a 2D Data Flow Graph-Based Program

Example of an Actual Rendered 2D Data Flow
Graph-Based

Figure: Example of an Actual Rendered 2D Data Flow Graph-Based
Program with Graphviz [9]

Modified Example of a 2D Data Flow Graph-based
Program

Figure: Modified Example of a 2D Data Flow Graph-based Program
with 3D Elements

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I In Forensic Lucid, the need is to represent visually forensic
cases, evidence, and other specification components is
obvious for usability and other issues.

I Placing it in 3D helps to structure the “program”
(specification) and the case in 3D space can help arrange
and structure the case in a virtual environment better with
the evidence items encapsulated in 3D spheres akin to
Russian dolls, and can be navigated in depth to any level
of detail e.g. via clicking.

I The depth and complexity of operational semantics and
demand-driven (eductive) execution model are better
represented and comprehended visually in 3D especially
when doing event reconstruction.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I Ding’s implementation allows navigation from a graph to a
graph by expanding more complex nodes to their
definitions, e.g. more elaborate operators such whenever
(wvr) or advances upon (upon), their reverse operators,
forensic operators, and others.

I Some immediate requirements to realize the envisioned
DFG visualization of Forensic Lucid programs and their
evaluation:

I Visualization of the hierarchical evidential statements
(potentially deeply nested contexts).

I Placement of hybrid intensional-imperative nodes into the
DFGs such as mixing Java and Lucid program fragments.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I The GIPSY research and development group’s previous
research did not deal with aspects on how to augment the
DFGAnalyzer and DFGGenerator of Ding to support hybrid
GIPSY programs.

I This can be addressed by adding an “unexpandable” (one
cannot click their way through its depth) imperative DFG
node to the graph.

I To make it more useful, i.e. expandable, and so it’s possible
to generate the GIPSY code off it or reverse it back we can
leverage recent additions to Graphviz and GIPSY.

I The newer versions of Graphviz support additional features
that are more usable for our needs at the present.
Moreover, with the advent of JOOIP [60], the Java 5 ASTs
are made available along with embedded Lucid fragments
that can be tapped into when generating the dot code’s
AST.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I A Java-based wrapper for the DFG Editor of Ding [8] to
enable its native use withing Java-based GIPSY and plug-in
IDE environments like Eclipse.

I One of the goals of this work is to find the optimal
technique, with soundness and completeness and formal
specifications along with the ease of implementation and
usability; thus we’d like to solicit opinions and insights of
this work in selecting the technique or a combination of
techniques, which seems a more plausible outcome.
The current design allows any of the implementation to be
chosen or a combination of them.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I First, the most obvious is Ding’s [8] basic DFG
implementation within GIPSY as it is already a part of the
project and done for the two predecessor Lucid dialects
GIPL and Indexical Lucid. Additionally, the modern version
of Graphviz now has some integration done with Eclipse
[11], so GIPSY’s IDE – RIPE (Run-time Interactive
Programming Environment) – may very well be the an
Eclipse-based plug-in.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I Puckette came up with the PureData [39] language and its
commercial offshoots, which also employ DFG-like
programming with boxes and inlets and outlets of any data
types graphically placed and connected as “patches” and
allowing for sub-graphs and external implementations of
inlets in procedural languages. Puckette’s original design
was targetting signal processing for electronic music and
video processing and production for interactive artistic and
performative processes but has since outgrown that notion.
The PureData externals allow deeper media visualizations
in OpenGL, video, etc. thereby potentially enhancing the
whole aspect of the process significantly.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

I The BPEL (Business Process Execution Language) and its
visual realization within NetBeans [42, 34] for SOA
(service-orient architectures) and web services is another
good model for inspiration [35, 19, 17] that has recently
undergone a lot of research and development, including
flows, picking structures, faults, and parallel/asynchronous
and sequential activities. More importantly, BPEL notations
have a backing formalism modeled upon based on Petri
nets. BPEL specifications actually translate to executable
Java web services code.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Overview
Ongoing Work and Future Work
Acknowledgments

Acknowledgments

I Visualization and Graphics Lab, Department of Computer
Science and Technology, Tsinghua University as a host.

I Dr. Yankui Sun and his students for their support.
I The audience.
I Canada-China Scholars’ Exchange Program (CCSEP)

scholarship.
I This research work was funded by NSERC and the Faculty

of Engineering and Computer Science of Concordia
University, Montreal, Canada.

I Thanks to many of the GIPSY project current and former
team members for their valuable contributions,
suggestions, and reviews, including Sleiman Rabah, Yi Ji,
Bin Han, Aihua Wu, Emil Vassev, Xin Tong, Amir
Pourteymour, and Peter Grogono.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

Questions?

Questions, suggestions, and feedback are welcome

I now,
I after the talk,
I or by email: mokhov@cse.concordia.ca.
I Thank you :-)

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

mokhov@cse.concordia.ca
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References I

[1] G. Allwein and J. Barwise, editors. Logical reasoning with diagrams. Oxford University Press, Inc., New York,
NY, USA, 1996. ISBN 0-19-510427-7.

[2] E. A. Ashcroft and W. W. Wadge. Lucid – a formal system for writing and proving programs. SIAM J. Comput.,
5(3), 1976.

[3] E. A. Ashcroft and W. W. Wadge. Erratum: Lucid – a formal system for writing and proving programs. SIAM J.
Comput., 6(1):200, 1977.

[4] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with iteration. Communications of the
ACM, 20(7):519–526, July 1977. ISSN 0001-0782. doi: 10.1145/359636.359715.

[5] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge. Multidimensional Programming. Oxford
University Press, London, Feb. 1995. ISBN: 978-0195075977.

[6] AspectJ Contributors. AspectJ: Crosscutting Objects for Better Modularity. eclipse.org, 2007.
http://www.eclipse.org/aspectj/.

[7] R. Bardohl, M. Minas, G. Taentzer, and A. Schürr. Application of graph transformation to visual languages. In
Handbook of Graph Grammars and Computing by Graph Transformation: Applications, Languages, and Tools,
volume 2, pages 105–180. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1999. ISBN
981-02-4020-1.

[8] Y. Ding. Automated translation between graphical and textual representations of intensional programs in the
GIPSY. Master’s thesis, Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada, June 2004.
http://newton.cs.concordia.ca/~paquet/filetransfer/publications/theses/DingYiminMSc2004.pdf.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://www.eclipse.org/aspectj/
http://newton.cs.concordia.ca/~paquet/filetransfer/publications/theses/DingYiminMSc2004.pdf
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References II

[9] Y. Ding. Automated translation between graphical and textual representations of intensional programs in the
GIPSY. Master’s thesis, Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada, 2004.

[10] W. Du. On the relationship between AOP and intensional programming through context, July 2005. Keynote
talk at the Intensional Programming Session of PLC’05.

[11] Eclipse contributors et al. Eclipse Platform. eclipse.org, 2000–2012. http://www.eclipse.org, last viewed
April 2012.

[12] P. Gladyshev. Finite state machine analysis of a blackmail investigation. International Journal of Digital
Evidence, 4(1), 2005.

[13] P. Gladyshev and A. Patel. Finite state machine approach to digital event reconstruction. Digital Investigation
Journal, 2(1), 2004.

[14] P. Grogono, S. Mokhov, and J. Paquet. Towards JLucid, Lucid with embedded Java functions in the GIPSY. In
Proceedings of the 2005 International Conference on Programming Languages and Compilers (PLC 2005),
pages 15–21. CSREA Press, June 2005.

[15] R. Haenni, J. Kohlas, and N. Lehmann. Probabilistic argumentation systems. Technical report, Institute of
Informatics, University of Fribourg, Fribourg, Switzerland, Oct. 1999.

[16] B. Han, S. A. Mokhov, and J. Paquet. Advances in the design and implementation of a multi-tier architecture in
the GIPSY environment with Java. In Proceedings of SERA 2010, pages 259–266. IEEE Computer Society,
2010. ISBN 978-0-7695-4075-7. doi: 10.1109/SERA.2010.40. Online at http://arxiv.org/abs/0906.4837.

[17] IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. Business Process Execution Language for Web
Services version 1.1. [online], IBM, Feb. 2007.
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://www.eclipse.org
http://arxiv.org/abs/0906.4837
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References III

[18] Y. Ji. Scalability evaluation of the GIPSY runtime system. Master’s thesis, Department of Computer Science
and Software Engineering, Concordia University, Montreal, Canada, Mar. 2011.

[19] D. Koenig. Web services business process execution language (WS-BPEL 2.0): The standards landscape.
Presentation, IBM Software Group, 2007.

[20] N. G. Miller. A Diagrammatic Formal System for Euclidean Geometry. PhD thesis, Cornell University, U.S.A,
2001.

[21] S. Mokhov and J. Paquet. Objective Lucid – first step in object-oriented intensional programming in the
GIPSY. In Proceedings of the 2005 International Conference on Programming Languages and Compilers
(PLC 2005), pages 22–28. CSREA Press, June 2005.

[22] S. A. Mokhov. Towards hybrid intensional programming with JLucid, Objective Lucid, and General Imperative
Compiler Framework in the GIPSY. Master’s thesis, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada, Oct. 2005. ISBN 0494102934; online at
http://arxiv.org/abs/0907.2640.

[23] S. A. Mokhov. Towards syntax and semantics of hierarchical contexts in multimedia processing applications
using MARFL. In Proceedings of the 32nd Annual IEEE International Computer Software and Applications
Conference (COMPSAC), pages 1288–1294, Turku, Finland, July 2008. IEEE Computer Society. doi:
10.1109/COMPSAC.2008.206.

[24] S. A. Mokhov and J. Paquet. Formally specifying and proving operational aspects of Forensic Lucid in
Isabelle. Technical Report 2008-1-Ait Mohamed, Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada, Aug. 2008. In Theorem Proving in Higher Order Logics
(TPHOLs2008): Emerging Trends Proceedings.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/0907.2640
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References IV

[25] S. A. Mokhov and J. Paquet. Using the General Intensional Programming System (GIPSY) for evaluation of
higher-order intensional logic (HOIL) expressions. In Proceedings of SERA 2010, pages 101–109. IEEE
Computer Society, May 2010. ISBN 978-0-7695-4075-7. doi: 10.1109/SERA.2010.23. Online at
http://arxiv.org/abs/0906.3911.

[26] S. A. Mokhov and E. Vassev. Self-forensics through case studies of small to medium software systems. In
Proceedings of IMF’09, pages 128–141. IEEE Computer Society, Sept. 2009. ISBN 978-0-7695-3807-5. doi:
10.1109/IMF.2009.19.

[27] S. A. Mokhov, J. Paquet, and M. Debbabi. Designing a language for intensional cyberforensic analysis.
Unpublished, 2007.

[28] S. A. Mokhov, J. Paquet, and M. Debbabi. Formally specifying operational semantics and language constructs
of Forensic Lucid. In O. Göbel, S. Frings, D. Günther, J. Nedon, and D. Schadt, editors, Proceedings of the IT
Incident Management and IT Forensics (IMF’08), LNI140, pages 197–216. GI, Sept. 2008. ISBN
978-3-88579-234-5. Online at
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf.

[29] S. A. Mokhov, J. Paquet, and M. Debbabi. Towards automated deduction in blackmail case analysis with
Forensic Lucid. In J. S. Gauthier, editor, Proceedings of the Huntsville Simulation Conference (HSC’09), pages
326–333. SCS, Oct. 2009. ISBN 978-1-61738-587-2. Online at http://arxiv.org/abs/0906.0049.

[30] S. A. Mokhov, J. Paquet, and X. Tong. A type system for hybrid intensional-imperative programming support in
GIPSY. In Proceedings of C3S2E’09, pages 101–107, New York, NY, USA, May 2009. ACM. ISBN
978-1-60558-401-0. doi: 10.1145/1557626.1557642.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/0906.3911
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://arxiv.org/abs/0906.0049
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References V

[31] S. A. Mokhov, J. Paquet, and M. Debbabi. On the need for data flow graph visualization of Forensic Lucid
programs and forensic evidence, and their evaluation by GIPSY. In Proceedings of the Ninth Annual
International Conference on Privacy, Security and Trust (PST), 2011, pages 120–123. IEEE Computer Society,
July 2011. ISBN 978-1-4577-0582-3. doi: 10.1109/PST.2011.5971973. Short paper; full version online at
http://arxiv.org/abs/1009.5423.

[32] S. A. Mokhov, J. Paquet, and M. Debbabi. Reasoning about a simulated printer case investigation with
Forensic Lucid. In P. Gladyshev, editor, Proceedings of ICDF2C’11. Springer, Oct. 2011. To appear, online at
http://arxiv.org/abs/0906.5181.

[33] B. Moolenaar and Contributors. Vim the editor – Vi Improved. [online], 2009. http://www.vim.org/.

[34] NetBeans Community. NetBeans Integrated Development Environment. [online], 2004–2012.
http://www.netbeans.org.

[35] OpenESB Contributors. BPEL service engine. [online], 2009.
https://open-esb.dev.java.net/BPELSE.html.

[36] J. Paquet. Scientific Intensional Programming. PhD thesis, Department of Computer Science, Laval
University, Sainte-Foy, Canada, 1999.

[37] J. Paquet. Distributed eductive execution of hybrid intensional programs. In Proceedings of the 33rd Annual
IEEE International Computer Software and Applications Conference (COMPSAC’09), pages 218–224, Seattle,
Washington, USA, July 2009. IEEE Computer Society. ISBN 978-0-7695-3726-9.

[38] J. Paquet, S. A. Mokhov, and X. Tong. Design and implementation of context calculus in the GIPSY
environment. In Proceedings of the 32nd Annual IEEE International Computer Software and Applications
Conference (COMPSAC), pages 1278–1283, Turku, Finland, July 2008. IEEE Computer Society. doi:
10.1109/COMPSAC.2008.200.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/1009.5423
http://arxiv.org/abs/0906.5181
http://www.vim.org/
http://www.netbeans.org
https://open-esb.dev.java.net/BPELSE.html
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References VI

[39] M. Puckette and PD Community. Pure Data. [online], 2007–2012. http://puredata.org.

[40] G. Riley. CLIPS: A tool for building expert systems. [online], 2007–2011.
http://clipsrules.sourceforge.net/, last viewed May 2012.

[41] G. Shafer. The Mathematical Theory of Evidence. Princeton University Press, 1976.

[42] Sun Microsystems, Inc. NetBeans 6.7.1. [online], 2009–2010.
http://netbeans.org/downloads/6.7.1/index.html.

[43] P. Swoboda. A Formalisation and Implementation of Distributed Intensional Programming. PhD thesis, The
University of New South Wales, Sydney, Australia, 2004.

[44] P. Swoboda and J. Plaice. An active functional intensional database. In F. Galindo, editor, Advances in
Pervasive Computing, pages 56–65. Springer, 2004. LNCS 3180.

[45] P. Swoboda and J. Plaice. A new approach to distributed context-aware computing. In A. Ferscha,
H. Hoertner, and G. Kotsis, editors, Advances in Pervasive Computing. Austrian Computer Society, 2004.
ISBN 3-85403-176-9.

[46] P. Swoboda and W. W. Wadge. Vmake, ISE, and IRCS: General tools for the intensionalization of software
systems. In M. Gergatsoulis and P. Rondogiannis, editors, Intensional Programming II. World-Scientific, 2000.

[47] The GIPSY Research and Development Group. The General Intensional Programming System (GIPSY)
project. Department of Computer Science and Software Engineering, Concordia University, Montreal,
Canada, 2002–2012. http://newton.cs.concordia.ca/~gipsy/, last viewed April 2012.

[48] The PRISM Team. PRISM: a probabilistic model checker. [online], 2004–2012.
http://www.prismmodelchecker.org/, last viewed June 2010.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://puredata.org
http://clipsrules.sourceforge.net/
http://netbeans.org/downloads/6.7.1/index.html
http://newton.cs.concordia.ca/~gipsy/
http://www.prismmodelchecker.org/
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References VII

[49] X. Tong. Design and implementation of context calculus in the GIPSY. Master’s thesis, Department of
Computer Science and Software Engineering, Concordia University, Montreal, Canada, Apr. 2008.

[50] X. Tong, J. Paquet, and S. A. Mokhov. Complete context calculus design and implementation in GIPSY.
[online], 2007–2008. http://arxiv.org/abs/1002.4392.

[51] E. Vassev. ASSL: Autonomic System Specification Language – A Framework for Specification and Code
Generation of Autonomic Systems. LAP Lambert Academic Publishing, Nov. 2009. ISBN: 3-838-31383-6.

[52] E. Vassev and S. A. Mokhov. An ASSL-generated architecture for autonomic systems. In Proceedings of
C3S2E’09, pages 121–126, New York, NY, USA, May 2009. ACM. ISBN 978-1-60558-401-0. doi:
10.1145/1557626.1557645.

[53] E. Vassev and J. Paquet. Towards autonomic GIPSY. In Proceedings of the Fifth IEEE Workshop on
Engineering of Autonomic and Autonomous Systems (EASE 2008), pages 25–34. IEEE Computer Society,
2008. ISBN 978-0-7695-3140-3. doi: 10.1109/EASe.2008.9.

[54] E. I. Vassev. Towards a Framework for Specification and Code Generation of Autonomic Systems. PhD thesis,
Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada, 2008.

[55] P. C. Vinh and J. P. Bowen. On the visual representation of configuration in reconfigurable computing.
Electron. Notes Theor. Comput. Sci., 109:3–15, 2004. ISSN 1571-0661. doi: 10.1016/j.entcs.2004.02.052.

[56] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Language. Academic Press, London,
1985.

[57] K. Wan. Lucx: Lucid Enriched with Context. PhD thesis, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada, 2006.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/1002.4392
http://users.encs.concordia.ca/~mokhov/

Concluding Remarks
Questions

References

References VIII

[58] K. Wan, V. Alagar, and J. Paquet. Lucx: Lucid enriched with context. In Proceedings of the 2005 International
Conference on Programming Languages and Compilers (PLC 2005), pages 48–14. CSREA Press, June 2005.

[59] A. Wu, J. Paquet, and S. A. Mokhov. Object-oriented intensional programming: Intensional Java/Lucid
classes. In Proceedings of SERA 2010, pages 158–167. IEEE Computer Society, 2010. ISBN
978-0-7695-4075-7. doi: 10.1109/SERA.2010.29. Online at: http://arxiv.org/abs/0909.0764.

[60] A. H. Wu. OO-IP Hybrid Language Design and a Framework Approach to the GIPC. PhD thesis, Department
of Computer Science and Software Engineering, Concordia University, Montreal, Canada, 2009.

[61] C. Zheng and J. R. Heath. Simulation and visualization of resource allocation, control, and load balancing
procedures for a multiprocessor architecture. In MS’06: Proceedings of the 17th IASTED international
conference on Modelling and simulation, pages 382–387, Anaheim, CA, USA, 2006. ACTA Press. ISBN
0-88986-592-2.

Serguei A. Mokhov Cyberforensic Reasoning with Forensic Lucid

http://arxiv.org/abs/0909.0764
http://users.encs.concordia.ca/~mokhov/

	Background Overview
	Introduction
	Research Summary
	The Problem
	Overview

	Background
	Intensional Cyberforensics
	Intensional Logic
	Lucid
	General Intensional Programming System (GIPSY)

	Forensic Lucid
	Forensic Lucid
	Features
	Forward Tracing vs. Back-tracing
	Context

	Brief Forensic Lucid Syntax and Operational Semantics Overview
	Concrete Forensic Lucid Syntax
	Some Forensic Lucid Operators
	Transition Function
	Operational Semantics

	Sample Cases
	ACME Manufacturing Printing Case
	Gladyshev's Printer Case State Machine
	Case Specification in Forensic Lucid
	Initial Blackmail Case Modeling
	Modeling the Investigation

	Concluding Remarks
	Concluding Remarks
	Overview
	Ongoing Work and Future Work
	Acknowledgments

	Questions

