
A GENERAL ARCHITECTURE TO ENHANCE

WIKI SYSTEMS WITH

NATURAL LANGUAGE PROCESSING

TECHNIQUES

BAHAR SATELI

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN

SOFTWARE ENGINEERING

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

APRIL 2012

c© BAHAR SATELI, 2012

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Bahar Sateli

Entitled: A General Architecture to Enhance Wiki Systems

with Natural Language Processing Techniques

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in

Software Engineering

complies with the regulations of this University and meets the accepted

standards with respect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. Volker Haarslev

Examiner
Dr. Leila Kosseim

Examiner
Dr. Gregory Butler

Supervisor
Dr. René Witte

Approved
Chair of Department or Graduate Program Director

20
Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

A General Architecture to Enhance Wiki Systems with

Natural Language Processing Techniques

Bahar Sateli

Wikis are web-based software applications that allow users to collabora-

tively create and edit web page content, through a Web browser using a

simplified syntax. The ease-of-use and “open” philosophy of wikis has

brought them to the attention of organizations and online communities,

leading to a wide-spread adoption as a simple and “quick” way of collab-

orative knowledge management. However, these characteristics of wiki

systems can act as a double-edged sword: When wiki content is not prop-

erly structured, it can turn into a “tangle of links”, making navigation,

organization and content retrieval difficult for their end-users.

Since wiki content is mostly written in unstructured natural language,

we believe that existing state-of-the-art techniques from the Natural Lan-

guage Processing (NLP) and Semantic Computing domains can help miti-

gating these common problems when using wikis and improve their users’

experience by introducing new features. The challenge, however, is to find

a solution for integrating novel semantic analysis algorithms into the multi-

tude of existing wiki systems, without the need for modifying their engines.

In this research work, we present a general architecture that allows wiki

systems to benefit from NLP services made available through the Semantic

Assistants framework – a service-oriented architecture for brokering NLP

pipelines as web services. Our main contributions in this thesis include

an analysis of wiki engines, the development of collaboration patterns be-

tween wikis and NLP, and the design of a cohesive integration architecture.

As a concrete application, we deployed our integration to MediaWiki – the

powerful wiki engine behind Wikipedia – to prove its practicability. Fi-

nally, we evaluate the usability and efficiency of our integration through a

iii

number of user studies we performed in real-world projects from various

domains, including cultural heritage data management, software require-

ments engineering, and biomedical literature curation.

iv

Acknowledgments

As Isaac Newton once said, “If I have seen further, it is by standing on the

shoulders of giants.” My utmost gratitude goes to my thesis supervisor,

Dr. René Witte for his invaluable guidance, endless patience and under-

standing throughout the course of this thesis. His positive outlook, care-

ful editing and confidence in my research inspired me to do the best of my

ability.

I would like to express my appreciation to Dr. Marie-Jean Meurs for

offering me her kind support and generous contributions to the evaluation

of this thesis. Thank you for always being there for me. I am indebted to

you for your kind heart and sisterly love.

I would also like to thank my fellow lab mates at the Semantic Software

Lab and the scientists of Concordia Centre for Structural and Functional

Genomics for their careful feedback on my research work. I thank Caitlin

Murphy and Elian Angius for their time and hard work, as well as tens of

Software Engineering students who participated in the evaluation of this

thesis.

Last but not least, I cordially thank my parents and my brother for

their everlasting love and encouragements. Words fall short to express

how grateful I am to feel the warmth of their presence and support at

every step of my life. It is to whom this thesis is dedicated.

v

Table of Contents

List of Figures x

List of Tables xiii

List of Acronyms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Outline . 6

2 Background 7

2.1 Wiki Systems . 7

2.1.1 System Specifications . 7

2.1.2 Markup Languages . 9

2.2 Wikis in Practice . 11

2.2.1 Wikipedia, An Encyclopedia Wiki 11

2.2.2 Personal Information and Knowledge Management . . . 12

2.2.3 Software Requirements Engineering 12

2.2.4 Enterprise Wikis . 13

2.2.5 Cultural Heritage Data Management 14

2.3 Common Problems in Wikis . 15

2.4 Suggested NLP Solutions . 17

2.5 The Semantic Assistants Architecture 19

2.5.1 System Overview . 19

2.5.2 System Workflow . 21

vi

2.5.3 Service Results . 22

2.6 Résumé . 23

3 Related Work 24

3.1 NLP-Enhanced Wikis . 24

3.1.1 Wikulu, An Intelligent User Interface for Wikis 24

3.2 Semantic Wikis . 27

3.2.1 Semantic MediaWiki, A Semantic Extension to Medi-

aWiki . 27

3.2.2 IkeWiki, A Semantic Wiki for Collaborative Knowledge

Management . 30

3.2.3 SweetWiki, A Semantic Web Enabled Technology Wiki . 32

3.2.4 AceWiki, A Natural and Expressive Semantic Wiki . . . 34

3.3 Discussion . 36

3.4 Résumé . 37

4 Requirements Analysis 38

4.1 End-User Requirements . 39

4.2 Wiki Developer Requirements 41

4.3 System Requirements . 42

4.4 Discussion . 44

4.5 Résumé . 46

5 System Design 47

5.1 Design Alternatives . 47

5.1.1 A Browser Plug-in . 48

5.1.2 A Wiki Plug-in . 49

5.1.3 A Semantic Assistants Wiki Component 51

5.1.4 A Proxy Server Component 52

5.1.5 Summary . 53

5.2 The Analysis Workflow . 54

5.2.1 User Interaction . 55

5.2.2 Service Invocation . 61

5.2.3 Wiki Communication . 66

5.3 Transformation of Results . 73

vii

5.3.1 Semantic Metadata Representation 74

5.4 Wiki Independency . 75

5.4.1 Module-based Architecture 75

5.4.2 Semantics-based Architecture 75

5.5 Wiki Ontology . 76

5.6 Developed Solution . 79

5.7 Résumé . 81

6 Implementation and Application 83

6.1 System Overview . 83

6.2 The Semantic Assistants Servlet 86

6.2.1 The User Interface Module 88

6.2.2 The Wiki Helper Module 91

6.2.3 The Semantic Assistants Broker 92

6.2.4 The Wiki Ontology Repository 93

6.3 The Semantic Assistants Wiki Plug-in 94

6.4 Storing and Presenting Service Results 96

6.4.1 Templating Mechanism 97

6.4.2 Storing the Markup . 100

6.5 Service Execution Flow . 102

6.6 Résumé . 104

7 Evaluation 106

7.1 Methodology . 106

7.2 Wiki-based Cultural Heritage Data Management 108

7.2.1 Evaluation Scenario . 109

7.2.2 Results . 110

7.3 Wiki-based Collaborative Software Requirements Engineering 111

7.3.1 Evaluation Scenario . 113

7.3.2 Results . 114

7.4 Wiki-based Biomedical Literature Curation 118

7.4.1 Evaluation Scenario . 119

7.4.2 Results . 122

7.5 Résumé . 125

viii

8 Conclusions and Future Work 126

8.1 Summary . 126

8.2 Suggestions for Future Work . 129

8.3 Conclusion . 130

Bibliography 131

A Wiki Upper Ontology Description 139

B MediaWiki Ontology Description 142

C ReqWiki Questionnaire 148

D Questionnaire Responses 158

D.1 Graduate Students Responses 158

D.2 Undergraduate Students Responses 173

ix

List of Figures

1 Wikipedia – a free encyclopedia wiki 2

2 A subset of MediaWiki text formatting markup 10

3 A MediaWiki page markup importing the FOAF vocabulary . . 10

4 The Semantic Assistants architecture [WG09] 20

5 The Semantic Assistants service execution workflow [WG09] . 21

6 The DTD for Semantic Assistants response messages 23

7 The Wikulu system architecture [HZG09] 25

8 The Semantic MediaWiki system architecture [KVV06] 28

9 Semantic MediaWiki markup and factbox embedded in a wiki

page . 29

10 The IkeWiki system architecture [Sch06] 31

11 The SweetWiki system architecture [BGE+08] 33

12 The web interface of AceWiki, presenting the logic structure

of a sentence . 35

13 Design alternative using a browser plug-in 48

14 Design alternative using a wiki plug-in 50

15 Design alternative using a Semantic Assistants wiki component 51

16 Design alternative using a proxy server component 52

17 The web service description for OpenCalais 64

18 A web service call for OpenCalais in SMW+ 65

19 Wiki upper ontology graph . 77

20 Developed solution system architecture 80

21 Transforming service results to wiki markup 81

22 Wiki-NLP integration merged with the Semantic Assistants

architecture . 84

x

23 Communication flow between wiki system, wiki web server

and the Semantic Assistants servlet 86

24 Semantic Assistants user interface generated by the servlet . . 89

25 Semantic Assistants user interface second tab 90

26 The proxy JSP page code . 91

27 JavaScript code for on-the-fly user interface modification . . . 91

28 Java code to instantiate a wiki object 92

29 UML class diagram presenting the wiki factory pattern 93

30 The Semantic Assistants MediaWiki plug-in code 95

31 Semantic Assistants plug-in installed on MediaWiki 96

32 MediaWiki Semantic Assistants service template markup . . . 98

33 MediaWiki Semantic Assistants Table template markup 99

34 Semantic Assistants annotations view in MediaWiki 99

35 MediaWiki Semantic Assistants Block template markup 100

36 Semantic Assistants Block preview in MediaWiki, showing a

summary generated from a wiki page 100

37 Java Wiki Bot Framework used to write content to a wiki page 101

38 RDF representation of semantic metadata generated by Se-

mantic MediaWiki . 102

39 Communication flow for user interface generation 103

40 Communication flow for service invocation 105

41 The Durm wiki workflow [WKKL11] 109

42 Person and Location Extractor service results in DurmWiki . . 110

43 Output of German Durm Indexer pipeline in DurmWiki 111

44 A sample form in ReqWiki . 113

45 Presentation of SRS Defects in ReqWiki 115

46 A sample question from the students questionnaire 115

47 Feedback statistics from students questionnaire 116

48 System usability feeback based on the students NLP knowl-

edge level . 116

49 Average number of defects found in assignments 117

50 Manual curation workflow for biomedical literature 119

51 A wiki page containing a full-text paper 120

xi

52 GenWiki-assisted curation workflow for biomedical literature . 121

53 Presentation of NLP-generated annotations in GenWiki 121

54 The Semantic MediaWiki inline query for all enzyme entities

in GenWiki . 124

55 Semantic query results for all enzyme entities in GenWiki,

generated by NLP services . 124

xii

List of Tables

1 Comparison of wikis against Wiki-NLP integration requirements 46

2 Comparison of user interface alternatives 60

3 Comparison of service invocation alternatives 66

4 Comparison of wiki communication alternatives 72

5 Concepts in wiki upper ontology 79

6 List of parameters in HTTP service requests 87

7 Mapping of requirements to evaluation scenarios 108

8 GenWiki-assisted literature curation time 122

9 Curation time of papers with different levels of semantic sup-

port . 123

10 Comparison of Wiki-NLP integration against architecture re-

quirements and similar wikis 129

xiii

List of Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

ASP Active Server Pages

BRENDA BRaunschweig ENzyme DAtabase

CSAL Client-Side Abstraction Layer

CSFG Concordia Centre for Structural and Functional Genomics

CSS Cascading Style Sheets

CSV Comma Separated Values

DOI Digital Object Identifier

DTD Document Type Definition

FAQ Frequently Asked Questions

FOAF Friend Of A Friend

GATE General Architecture for Text Engineering

GRDDL Gleaning Resource Descriptions from Dialects of Languages

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

J2EE Java 2 Enterprise Edition

JAR JAVA Archive

JAVA-WS Java Web Service

JSP Java Server Pages

JVM Java Virtual Machine

MuNPEx Multi-lingual Noun Phrase Extractor

NASA National Aeronautics and Space Administration

NLP Natural Language Processing

OWL Web Ontology Language

xiv

PHP Peripheral Hypertext Preprocessor

PMID PubMed ID

RDF Resource Description Framework

RE Requirements Engineering

REST REpresentational State Transfer

SA Semantic Assistants

SMW Semantic MediaWiki

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SRS Software Requirements Specifications

URL Uniform Resource Locator

W3C World Wide Web Consortium

WSDL Web Service Definition Language

WWSD Wiki Web Service Description

WYSIWYG What You See Is What You Get

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Transformations

xv

Chapter 1

Introduction

This thesis is concerned with developing a general architecture for inte-

grating Natural Language Processing (NLP) techniques with wiki systems.

We envision a new generation of wikis that can help developing their own

primary content and organize their structure by using state-of-the-art tech-

nologies from the NLP and Semantic Web domains. The motivation of this

integration is to enable wiki users – novice or expert – to benefit from NLP

techniques directly within their wiki environment, by offering a seamless

integration of wiki systems with NLP. We propose new human/AI collab-

oration patterns that mitigate common problems when using wikis and

support end-users dealing with massive and usually unstructured infor-

mation. Within this chapter, we first motivate our efforts and then provide

an overview of the structure of our research work.

1.1 Motivation

Wiki systems power websites whose users can collaboratively add, mod-

ify or delete their content via a Web browser. They came into existence

in 1995, when Ward Cunningham [LC01], the inventor of wikis, was dis-

satisfied by the conventional word processing applications’ features for

collaboration. His vision was to develop a relatively simple software that

would enable collaborative work on documents that can be published im-

mediately. In the words of Cunninghum, a wiki is “the simplest online

1

database that could possibly work”1.

“Wikiwiki” is a Hawaiian term meaning “quick”. It is used for wikis to

describe the characteristics of their underlying software, which allows a

quick and simple way for collaborative knowledge creation and manage-

ment. The ease-of-use and “open” philosophy of wiki systems has brought

them to the attention of organizations, online communities and schools.

One of the most popular examples of a wiki is the Wikipedia2. Wikipedia

is a free, encyclopedia wiki with content provided by volunteers around

the world. Anyone visiting this website can edit the wiki pages using his

browser and a simplified syntax. Figure 1 shows a sample page from the

Wikipedia website.

Figure 1: Wikipedia – a free encyclopedia wiki

The wiki philosophy is based on trusting users to provide structured

content and meaningful relations between entities, and therefore imposes

1What is Wiki, http://www.wiki.org/wiki.cgi?WhatIsWiki
2Wikipedia, http://www.wikipedia.org

2

no strict hierarchy on its content. This means that wiki instances are

provided with no pre-defined structure, but rather find their own, by dy-

namically adapting to their content. While the flexible structure of wikis

facilitates the process of knowledge creation and linking, it also poses a

challenge on their usability: As the size of a wiki grows, if content is not

properly maintained, i.e., structured and linked, it can gradually turn into

a “tangle of links”, making navigation, organization and content retrieval

difficult for its users [Buf06]. With no explicit browsing feature built into

wiki systems, users can easily miss information they don’t know exists in

the wiki. Also, wiki content is mostly maintained by its visitors. Apart

from web bots that can that detect syntactic problems, such as vandal-

ism3, the semantics of wiki content can only be maintained by humans.

For example, as seen in Figure 1, an alert box is placed on top of the page

by a user, suggesting that the content needs additional citations for ver-

ification, as well as reorganization to comply with Wikipedia’s guidelines.

This type of content maintenance, when scaled to thousands of pages in a

wiki, becomes nearly impossible for human capabilities.

This thesis addresses these challenges by applying techniques from the

NLP and Semantic Computing domains to combine wiki content with NLP-

derived metadata.

1.2 Approach

Natural Language Processing is a branch of computer science that uses

Artificial Intelligence techniques to process content written in natural lan-

guage. One of the applications of NLP is text mining – the process of

deriving high-quality information from text. This process is facilitated

by frameworks, such as the General Architecture for Text Engineering

(GATE) [CMB+11]. Using these frameworks, sophisticated text mining ap-

plications can be developed, not only to derive patterns within the struc-

tured data, but also to enhance information management of a system by

3Vandalism is any addition, removal, or change of content in a deliberate attempt to

compromise the integrity of a wiki (here, Wikipedia).

3

finding content based on meaning and context, using technologies from

the Semantic Web domain.

Since wiki content is mostly written in unstructured natural language,

we believe that employing NLP techniques, such as text mining algorithms,

on the content of wikis can improve both their usability and the quality of

their content. In this thesis, we are proposing an architecture to enhance

wiki systems, rather than developing a new wiki engine. This is because

the already established engines, like MediaWiki, are not likely to accept

fundamental changes to their structure. One of the biggest challenges

for the integration of NLP in wikis is the lack of a common standard wiki

structure and syntax. Wiki systems are written in various programming

languages. Each wiki system has its own database schema and uses its

own proprietary grammar and markup. Therefore, one concrete solution

can not be easily provided that would encompass the variety of all the

existing wiki engines. Rather, an abstraction layer is needed to hide the

complexity of NLP techniques from the point of view of wiki end-users and

minimize the dependency on the concrete implementation of the underly-

ing wiki engine.

Our two main research questions are: (1) considering the variety of

wiki engines, is it possible to create an integration architecture that would

allow wikis engines to benefit from NLP techniques, irrespective of the con-

crete implementation of their engine and the NLP service itself?; and (2)

does the integration of such capabilities into a wiki system actually bring

measurable value to its end-users?

To answer these questions, we investigate the use cases of wikis in vari-

ous domains: From personal use to large-scale enterprise wikis. By study-

ing these use cases, we are able to discover common problems that wiki

users face in their daily tasks and match them with solutions from the NLP

domain to derive our system requirements. We also describe a number of

collaboration patterns between wiki systems and NLP domain techniques.

Finally, our contribution is presented as a web-based solution that plays

the role of an extension to the Semantic Assistants framework [WG09] –

a multi-tier, service-oriented architecture that provides us with the NLP

4

functionality we need in form of web services.

Augmenting wikis with NLP techniques has not attracted a lot of re-

search attention yet and our work is among the first to demonstrate how

NLP techniques can be used in the context of wikis to improve their users’

experience in content development, organization and retrieval. We are also

the first to perform an extrinsic evaluation of the Wiki-NLP integration in

a number of real-world projects that further proves the usability and effec-

tiveness of this approach.

The impact of integrating wikis with NLP techniques suggested in this

work is significant: It opens the opportunity of bringing state-of-the-art

techniques from the NLP and Semantic Web domain to wiki users, without

requiring them to have a concrete knowledge in these areas. Rather, the

integration will seamlessly provide them with NLP capabilities, so that no

context switch is needed, i.e., the invocation is carried out from within

the wiki and results are brought back to the user in his place of choice.

This way, a broad range of wiki users, from laypersons to organization

employees can benefit from NLP techniques, which would normally require

them to use specialized tools or have expert knowledge in that area.

When our Wiki-NLP integration is employed, not only can wiki content

be developed and organized by NLP techniques, but it also becomes im-

plicitly machine-accessible when semantic metadata is generated by NLP

pipelines and stored in the wiki. This way, the sheer volume of informa-

tion available in wikis can be used by machines, so that they can actively

participate in the creation and organization of content.

Finally, our Wiki-NLP integration lays the groundwork for a multitude

of new projects. More and more wikis are created everyday to support

various user needs. This means that, the more wikis are used in various

domains, the more NLP techniques are demanded. Using this architecture,

wikis can access NLP techniques that are beneficial to their content. On

the other hand, more data is available for NLP pipeline developers to create

and train more intelligent algorithms and NLP techniques.

5

1.3 Outline

In this chapter, we explained the motivation for employing NLP techniques

on wiki systems and briefly described our approach towards this end. The

remainder of this thesis is structured as follows:

In Chapter 2, we cover the foundations related to this research. We

describe wiki systems and the underlying NLP analysis framework, which

our integration is based on.

Chapter 3 covers related work, where we describe similar attempts to

perform NLP analysis on wiki content, as well as a number of existing

semantic wiki systems.

In Chapter 4, we introduce three target user groups for the Wiki-NLP

integration and analyze their requirements in detail.

Various design alternatives for the Wiki-NLP integration are studied in

Chapter 5. There, we begin by examining each design alternative against

the requirements described in the previous chapter and then combine

them to derive a concrete system architecture.

Chapter 6 provides an overview of the entire system and the description

of the implementation of each of its components.

The evaluation of our system is covered in Chapter 7, where we exam-

ine our system along four dimensions, namely, its practicability, usability,

effectiveness and efficiency.

Finally, a summary of this research work and possible future develop-

ments are discussed in Chapter 8.

6

Chapter 2

Background

In this chapter, we discuss the foundations related to our work. In partic-

ular, we describe wiki systems and illustrate a number of their use cases

in different domains. Then, we give a brief introduction of the system that

will provide us with the NLP services that we ultimately want to execute on

wiki content.

2.1 Wiki Systems

Since the very first wiki developed by Ward Cunninghum in 1995 [LC01],

hundreds of wiki systems have been developed to serve different purposes1.

However, due to a lack of precise and detailed definition of wiki systems,

they are often being confused with other more common and established

web-based applications, such as Content Management Systems, Weblogs

(‘Blogs’) or discussion forums. Therefore, in order to distinguish wikis

from other web-based document collections and communication tools, let

us first clarify what we mean by a “wiki system”.

2.1.1 System Specifications

A wiki system, as used in the context of this research, refers to a web-

based software application that allows users to collaboratively create and
1See http://en.wikipedia.org/wiki/List_of_wiki_software and http://c2.

com/cgi/wiki?WikiEngines

7

edit web page content [EGHW08]. Content development is carried out via

a Web browser by using a simple text syntax to create cross-links between

internal pages on-the-fly. Content of wikis is composed of textual data, for-

matted with a wiki’s special markup. It is stored as articles or wiki pages2,

along with resources in arbitrary file formats, such as images, in the wiki’s

database or file system. The followings are some additional characteristics

that differentiate wikis from other web-based document collections:

• Wiki content, such as web pages, page-related information and other

corresponding data is stored in a central, shared repository accessible

through the wiki interface.

• Authoring and editing wiki content is carried out via a simple browser

interface and does not require knowledge of any web programming

languages nor the possession of special tools.

• Wiki pages are uniquely identified by titles, typically noun phrases,

with enough precision to avoid name clashes.

• Anyone is able to read and edit wiki page content. Additional permis-

sions, such as adding or deleting pages, can be optionally granted by

a wiki system administrator to users.

• A wiki system evolves incrementally. This means that there is no

explicit option to create new pages, rather pages are created when a

link pointing to them exists in the system.

• Activities and changes within a wiki system and its content are stored

in the wiki database and can be viewed by any visitor to the website.

• A wiki system is able to refer to or restore a previous version of a

wiki page. Therefore, each wiki page has a corresponding “history”

page, where the modification history of its content, as well as the

user information of its editors are listed chronologically.

• A wiki system provides a way for its users to search for wiki pages

using page titles, as well as full-text keyword search.
2used interchangeably in this thesis

8

• A wiki system provides space for users to discuss changes to articles.

This characteristic is intended to avoid “edit wars”, where users re-

peatedly undo or revert the prior user’s edits in an attempt to make

their own preferred version of a page visible3.

Optionally, wiki systems may offer an extensible architecture, where

additional features, such as special markup parsers or semantic reasoners,

can be introduced to the wiki’s core functionality via extensions or plug-

ins. When semantic capabilities are introduced to a wiki system, it is then

known as a semantic wiki.

2.1.2 Markup Languages

Wiki markup, also known as WikiText, is a lightweight markup language

used in wiki pages to inform the wiki engine how to display, categorize

and process an article. Wiki markup languages are simplified alternatives

to HTML for wiki users. They consist of special characters like asterisks,

single quotes and equal signs, which relate to special functions in the

wiki engine. For instance, as depicted in Figure 2, for MediaWiki users

to emphasize a word in an article, they simply have to place the word in

between a pair of two single quotes. When the page is requested by a

user, the wiki engine interprets the markup and transforms the special

characters, i.e., the single quotes, to the equivalent HTML <i></i> tags,

which in turn tell the browser to show the word in italic format.

In addition to text formatting markup, semantic wikis also offer seman-

tic markup. Semantic markup allows users to make formal descriptions

of resources by annotating the pages representing them. Where a regular

wiki enables users to describe resources in natural language, a semantic

wiki provides the possibility to additionally describe them in a formal lan-

guage [OBD06]. Semantic markup is special WikiText, added to an article’s

original content, to make it accessible to machines for interpretation. The

wiki engine uses the semantic markup to semantically organize its content,

improve the navigation using the annotated relations, and provide users

3Edit war, http://en.wikipedia.org/wiki/Edit_war

9

Figure 2: A subset of MediaWiki text formatting markup

with the ability to query the annotations directly, create views from such

queries and introduce background knowledge to the system [OBD06]. Fig-

ure 3 shows how the FOAF4 vocabulary can be imported to a Semantic

MediaWiki instance by creating a “magic” page5.

Figure 3: A MediaWiki page markup importing the FOAF vocabulary

In the International Symposium on Wikis in 20066, an attempt was

made to standardize the wiki markup language by a group of wiki devel-

opers, including Ward Cunningham, the inventor of wikis. Creole7 is the

result of the wiki markup standardization workshop that suggests a “com-

mon wiki markup language to be used across different Wikis”. Creole was

specified by comparing major wiki engines’ markups and deciding on the

4The Friend of a Friend (FOAF) project, http://www.foaf-project.org/
5A magic page in MediaWiki belongs to the Mediawiki namespace and has the prefix

“smw import ”.
6WikiSym 2006, http://www.wikisym.org/ws2006/
7Creole, http://www.wikicreole.org/

10

most common choice for a particular WikiText element according to the

goals and good practices formulated by a broad variety of wiki developers

and users. Creole version 1.0 was finally released in 2007, but only a hand-

ful of different wiki engines adopted the suggested syntax. Consequently,

at the time of this writing, no widely accepted standard wiki markup lan-

guage exists and different wiki systems use their own proprietary grammar,

structure, justification and keywords.

2.2 Wikis in Practice

Having defined the essential foundation of wiki systems, in this section we

describe some use cases of wikis in various domains.

2.2.1 Wikipedia, An Encyclopedia Wiki

When talking about wikis, Wikipedia [Bro08] is probably the first use

case of wikis that comes to mind, due to its popularity on the Internet.

Wikipedia is a free, collaborative and multilingual encyclopedia supported

by the non-profit Wikimedia Foundation8. It formally began in January

2001, as a “project to produce a free content encyclopedia to which anyone

can contribute” [Bro08]. After a decade, it now ranks as the 6th website in

the world wide web, serving 470 million people every month with billions of

page views9. Wikipedia uses MediaWiki as its underlying wiki engine and

contains the currently available knowledge on various subjects in its indi-

vidual pages. Each visitor to the Wikipedia website can improve the exist-

ing content or add new pages to the wiki, provided that he has a reference

to a published source, known as a citation, to verify the modified content.

Using their browsers, users can add text, images and multimedia objects

to wiki pages and dynamically link related topics together. Although Wal-

ters debates in [Wat07] that Wikipedia is not an acceptable citation, but

8Wikimedia Foundation, http://wikimediafoundation.org/
9According to Alexa statistics http://www.alexa.com/siteinfo/wikipedia.org –

Retrieved on 2011-12-20

11

rather a means to lead one to a citable source, it is nonetheless popular as

the secondary source for additional readings and in press citations [Lih04].

2.2.2 Personal Information and Knowledge Management

The goal of personal knowledge management is to make knowledge workers

better at capturing, sharing and using knowledge and maximizing their

personal effectiveness [KBD+09]. Because of wikis’ ease-of-use and flexible

structure, they have become a popular authoring environment used for

externalizing personal knowledge. Wikis can serve the role of a knowledge

repository, where a person can use the wiki as an “idea bucket” to store

his ideas, cross-link pages to other existing knowledge inside the wiki and

collect related external knowledge around them.

Wikis are also used for personal information management. Everyone

nowadays is dealing with enormous amount of information stored on their

personal computers or the cloud. In addition to their local information,

they store blog entries, journals and e-books. Using wikis, a person can

consolidate all of his information into a single “trusted system” stored on

his local machine and cross-link the content to their related resources.

Optionally, they can also publish it on the web, for instance, as an e-

portfolio.

2.2.3 Software Requirements Engineering

Software requirements engineering encompasses the tasks related to cap-

turing, determining and recording the needs of various stakeholders of a

software project. A requirements specifications document containing pre-

cise definitions of what stakeholders want is critical to the design of “the

right product” and consequently, the success of a project. A wide range of

tools are being used for requirements engineering purposes. These tools

vary from conventional office suites to dedicated commercial tools, each

bearing their own pros and cons [DRR+07]. What seems to be common

among all non-proprietary requirements engineering tools is the absence of

documents integrity and proper communication between stakeholders that

12

usually results in a chaotic situation. On the other hand, proprietary re-

quirements engineering tools are either too complicated for non-technical

stakeholders to use or come with licensing costs. These complications

become even more intensified in large projects, where a significant num-

ber of stakeholders, who are usually spatially and temporally separated,

are involved. Such a case is the globalization of building software projects,

where the teams involved in a project are typically in different geographical

locations. In this ongoing trend, the typical synchronous forms of commu-

nication, such as face-to-face conversations, are being replaced by new

tools and techniques. Wikis, as an affordable, lightweight documentation

and distributed collaboration platform, have demonstrated their capabili-

ties in distributed requirements elicitation [DRR+07] and documentation

[SFAV05]. Software requirements specifications, diagrams and images are

typically stored in wikis as articles and resources. Using a wiki’s built-in

features, stakeholders can easily author new requirements, create links

and back-links between different artifacts, view and keep track of the

changes in specifications and discuss their ideas on a specific topic in

its corresponding talk page.

2.2.4 Enterprise Wikis

Enterprise wikis build on the basic wiki idea by including certain function-

ality that meets the needs of organizations, such as the ability to easily

create and manage many individual wikis for teams, projects, and de-

partments [Mad08]. Wikis are ideal for managing organization products

through their development process. Product designers can log their ideas

and collaboratively design and document the features and specifications.

Manufacturers can be invited to the wiki to discuss on materials and pro-

duction process related issues. The marketing department can use the

information to develop marketing materials. This way, the product infor-

mation shared in the wiki can be developed by various associated groups

and still remain consistent. These information can then be used by differ-

ent departments, e.g., by a marketing department to develop a marketing

campaign, by manufacturers to adapt to changes in the design and by a

13

support department as a knowledge source to support customers.

Wikis are also widely used by project managers. Each project in an

enterprise can have a wiki page, where all the related information and ma-

terials are kept and easily updated. The presence of a project’s page in a

wiki ensures that everyone associated with the project has access to con-

sistent information. Such dynamic information linked to other wiki pages,

like reports, strategic plans or even other projects, can then become part

of the project management, allowing not only the teams to work more uni-

fied, but also the executive staff to draw more confident decisions through

transparent and accessible decision-making processes.

Wikis are also used as organizational knowledge base. Available infor-

mation in the wiki, ranging from technical product information to mar-

keting information, like competitors and their offerings, and educational

learning best practices, when kept in a logical structure can play the role

of an encyclopedia in the organization. Organization employees can up-

date the wiki with questions, answers, issues or solutions and constantly

grow the knowledge base with updated information. This way, a wiki exter-

nalizes the knowledge of different people working in relative isolation into

a central place accessible to everyone. The available technical information

present in the wiki can also be gathered together to play the role of a “col-

lective, site-wide” FAQ10 system, both to employees and customers of the

organization.

2.2.5 Cultural Heritage Data Management

Cultural heritage data is the legacy of artifacts of a society inherited from

the past, such as literature. To preserve these artifacts, they are often dig-

itized and stored in nationally and internationally distributed databases.

This stored data can be turned into valuable knowledge bases by linking

the text or parts thereof to a multitude of other existing supportive data,

like background information, and creating a structure from which infor-

mation can be automatically extracted [WGKK08].

Wiki systems can provide a fast and easy-to-use web interface for this

10Frequently Asked Questions

14

isolated data: By exploiting the power of Web 2.0 technologies, wikis allow

users to discuss and collaboratively add metadata in form of separate dis-

cussion or annotations to the original data. For example, wikis are used

as cultural heritage encyclopedias for different domains like architecture,

language and history.

2.3 Common Problems in Wikis

In this section, we look at a number of problems associated with us-

ing wikis found in the literature, in particular, the use cases described

in [Mad08].

General Misuse. The Wiki philosophy assumes that edits and comments

are made in “good faith” and users are trying to help, rather than to hurt

the usability or integrity of the wiki. However, intentionally or otherwise,

users can exploit the democratic philosophy of wikis by outbreaking be-

havioral (e.g., personal attacks on other editors) or content-based (e.g.,

vandalising or spamming) misuse. While some of these problems, such as

vandalising an article, can be detected by wiki bots on a syntactic level,

other problems with semantic issues, such as the use of offensive lan-

guage in discussion pages, remain in a wiki system until it is corrected by

a human user.

Loose Structure. Wikis themselves are shipped to users without any im-

posed structure, unlike other content management systems and that is

what makes wikis capable of adapting to their content. While this feature

provides wikis with a competitive advantage over other content manage-

ment systems, it relies on the trust that users will provide structured con-

tent and meaningful relations between the entities. However, this assump-

tion is not always true, especially when users do not oblige themselves

to explicitly provide a structure for their content or when already unstruc-

tured data is imported into a wiki, e.g., by bulk importing data directly into

the wiki database. The result is a wiki containing unstructured, unrelated

15

and orphaned11 articles.

Information Overload. As a collaborative and easy-to-use content man-

agement system, wiki systems can quickly and dramatically grow in size,

especially when used in organizations or large online communities like

Wikipedians12. With no explicit navigation feature in wikis, a keyword

search can return hundreds or thousands of pages as a result. Although

semantic queries can relieve the overload to some extent, still the user’s

information need is dispersed over multiple pages. For example, creating

a report from a project described in tens of wiki pages or a summary of the

available information on a specific topic in the wiki becomes an extremely

labour-intensive and expensive task, not to mention the problem of poor

search recall, i.e., not retrieving all the relevant wiki pages.

Information Redundancy. Redundancy in information typically happens

at two different levels: at the document level and at the term level. The

former points to the difficulty of finding desired information within a set of

artifacts. When an existing information is not retrieved successfully, the

person querying the system falsely comprehends this as absence of the

content and thus attempts to create a new document for a concept that al-

ready exists. Redundancy at the term level refers to the different cognitive

ability of wiki users. People tend to invent different names for the same

concept. Therefore, two different persons or groups may refer to the same

entity in the system environment by different terms. As we previously de-

scribed in Section 2.1.1, wiki pages are uniquely identified by their titles

and it is possible that the same content is stored under two or more dif-

ferent titles, e.g., with alternative punctuation, capitalization or spellings.

Some wiki systems, like MediaWiki, manage content duplications by creat-

ing “redirect” pages to forward users. Creating redirect pages however, is a

task done manually by users, as it requires reasoning on a semantic level.

11An article with no incoming links
12Wikipedians, http://en.wikipedia.org/wiki/Wikipedia:Wikipedians

16

2.4 Suggested NLP Solutions

By studying the common problems when using wikis described in the pre-

vious section, one of the main root causes seems to be derived from the

situation where the human ability to retrieve or organize content becomes

limited due to the large size of wiki content or the difference in background

or cognitive abilities of its users. This is where, we believe, modern ap-

proaches from the NLP domain can help mitigate the information overload

that wiki users are faced with. It should be noted that the term NLP encom-

passes a broad range of techniques from the field of Artificial Intelligence

for automated generation, manipulation and analysis of natural languages.

In the following, we describe some example NLP techniques to tackle the

problems we defined earlier.

Automatic Categorization. Categories are a feature of wiki systems that

enables users to classify pages on similar subjects by adding them to auto-

matic listings. Adding pages to a specific category is done manually, by em-

bedding special markup inside articles. The process of adding categories to

articles can be automated using NLP techniques that would analyze each

wiki article and assign a category to its page. Also, NLP techniques can

make use of semantic methods to enrich pages with semantic metadata

– if supported by the underlying wiki engine – and then create semantic

categories to further organize the wiki content, for example, categorizing

authors and books description pages and then semantically relating each

book to its author.

Content Development. When a user is authoring content in the wiki,

NLP techniques can help the author by providing him with complementary

information retrieved from external resources, like the Web. For example,

in a personal wiki, when a user creates a page to write down his ideas

about a certain topic, he can ask an NLP service to perform a Web search

and bring back a summary of the results, without distracting him in his

task. Also, if the service is configured to find related information inside the

wiki, it can prevent users from creating duplicate content by retrieving a

17

list of pages with similar content by invoking NLP services proactively, i.e.,

while the user is typing in the wiki page.

Automatic Index Generation. A combination of different standard NLP

techniques can provide a full-text index of the wiki’s textual content. Such

an index helps users with the accessibility of the content that is difficult

or impossible to identify or retrieve through traditional keyword search

or page navigation. In case of semantic wikis, where semantic metadata

is present in wiki articles, automatically generated semantic indices can

further aid users by finding semantic entities in the wiki, like an index

of all the mentions of a specific entity type in a wiki used for literature

mining.

Automatic Summarization. “Wealth of information creates a poverty of

attention”: Herbert Simon [Sim71] states that in the presence of mass

information, there is a need to allocate the attention of the target efficiently

among the overabundance of information sources. Imagine a wiki user

who wants to create a report on a specific topic from the available related

information in a wiki with the size of Wikipedia. For this task, the user

has to start from one page, read its content to determine its relevance

and continue browsing through the wiki by clicking on page links that

might be related to his topic in mind. This manual approach is not only

a time-consuming and tedious task, but also often results in neglection

of information due to the existence of orphan pages. In such a situation,

where a user’s information need is dispersed over multiple documents, NLP

techniques can provide him with generic or focused summaries: The wiki

user can collect the pages of interest or provide a topic keyword, and ask

the summarization service to generate a summary with a desired length

from the available information on that topic within the wiki.

Question-Answering. The knowledge gathered in wikis, for example, wh-

en a wiki is used inside an organization to gather technical knowledge from

employees, is a valuable source of information that can only be queried via

18

a keyword search or indices. However, using a combination of NLP tech-

niques, a wiki can be enhanced to allow its users to pose questions against

its knowledge base in natural language. Then, after “understanding” the

question, NLP services can browse through the wiki content and bring

back the extracted information or a summery of a desired length to the

user. Question-answering systems are especially useful when the informa-

tion need is dispersed in multiple pages of the wiki, or when the user is

not aware of the existence of such knowledge and the terminology used to

refer to it.

2.5 The Semantic Assistants Architecture

Following an exhaustive description of wiki systems and how NLP tech-

niques can be used to improve wiki users’ experience, in this section we

describe the Semantic Assistants architecture – the system we are trying

to integrate with wiki systems in order to benefit from its NLP services.

2.5.1 System Overview

The Semantic Assistants project [WG09] aims to bring NLP techniques di-

rectly to end users by integrating them with common desktop applications,

such as word processors, email clients, or Web browsers. The Semantic

Assistants framework is a service-oriented multi-tier architecture that bro-

kers NLP pipelines as W3C13 standard Web services14. This means that

any of the NLP services deployed in this architecture can be consumed

by clients that are able to access the architecture interface over the Web.

The Semantic Assistants architecture, as depicted in Figure 4, comprises

four tiers. Tier 1 consists of the clients that access the Semantic Assis-

tants server, either directly via its interface written in the Web Service

Description Language (WSDL) [CCMW01] or the “Client-Side Abstraction

Layer”. CSAL is a library of Java classes that facilitates connecting clients

13World Wide Web Consortium, http://www.w3c.org
14Web Services Addressing 1.0, http://www.w3.org/TR/ws-addr-soap/

19

by providing common client-server communication and data conversion

functionality.

C
lient S

ide A
bstraction Layer

Tier 1: Clients Tier 4: Resources

application
N

ew

Tier 2: Presentation and Interaction Tier 3: Analysis and Retrieval

E
clipse

O
penO

ffice.org
W

riter

P
lugin

P
lugin

NLP Subsystem

W
eb S

erver

NLP Service Connector

Service Invocation

Service Information

Language Services

Question Answering

Index Generation

Information Retrieval

Information Extraction

Automatic Summarization

Language

Service

Descriptions

Indexed

Documents

External

Documents

Figure 4: The Semantic Assistants architecture [WG09]

The Semantic Assistants server, written using JAX-WS15 technology, re-

sides in Tier 2 and offers its functionality via a web service endpoint, to

which clients send messages and receive responses. In addition to commu-

nicating with clients, the Semantic Assistants server is also responsible

for reading and querying the language service descriptions, executing re-

quested language services, and generating response messages once a ser-

vice execution is finished. The second sub-module of the server tier is the

“NLP Service Connector” that has the responsibility of receiving input docu-

ments from the clients and executing NLP services inside the “NLP Subsys-

tem” in Tier 3 to perform the analysis on their content. The NLP services

are implemented as pipelines based on the General Architecture for Text

Engineering (GATE) framework [CMB+11]. They reside in the NLP Subsys-

tem and are introduced to the Semantic Assistants server by their formal

description files, written in the OWL [Sah07] ontology language. Service

description files stored in the “Language Service Description” repository

in Tier 4 provide dynamic discovery of NLP services at runtime. In addi-

tion, Tier 4 contains other resources, such as documents metadata (e.g.,

indexed documents) and any other external documents that NLP services

need to have access to in order to perform their analysis (e.g., documents

15Java API for XML Web Services, http://jax-ws.java.net/

20

found on the Web).

The Semantic Assistants core architecture, along with sample clients,

ontologies and NLP pipelines, is released as open-source software and dis-

tributed under the AGPL316 license on the Semantic Software Lab web-

site17.

2.5.2 System Workflow

On each bootstrapping of the Semantic Assistants Server, an in-memory

model of all available services is formed. The Semantic Assistants Server

uses this model object to respond to client requests for querying available

services, executing a service and creating service responses. As illustrated

in Figure 5, clients send service execution requests to the Semantic Assis-

tants server, along with any applicable runtime parameters to customize

the pipelines. The Semantic Assistants server will then provide the NLP

pipelines with the input value received from the clients. Once the service

execution is finished, the server uses the OWL service description file to

determine the pipeline’s output type and generate a proper response mes-

sage (see Section 2.5.3). The response is then transmitted to the clients in

form of an XML message to be interpreted and shown to the end-users.

NLP−Service 2

NLP−Service n

NLP Service
Results

...

− Calling an NLP−Service
− Runtime Parameters

Client

Summarization

NLP−Service 1

Focused

Word Processor

Server

Figure 5: The Semantic Assistants service execution workflow [WG09]

16GNU Affero General Public License v3, http://www.gnu.org/licenses/agpl-3.0.

html
17Semantic Assistants, http://www.semanticsoftware.info/

semantic-assistants

21

2.5.3 Service Results

Once a semantic service execution finished successfully, the results are

gathered from the pipeline and passed onto the clients in a uniform XML

format with the document type definition shown in Figure 6. The XML is

generated on the server side, according to the service output type defined

in its description file. In the Semantic Assistants ontology, NLP service

results are categorized into three types:

Annotation. Many text mining services, such as Named Entity Recogni-

tion, provide metadata about a chunk of text with precise offsets in the

document that can be as long as a whole paragraph or down to the size of

one token, e.g., a space token between two words. The annotation results

bear the same schema as GATE Annotations [CMB+11]. Each annotation

has a “content” attribute that contains the text that the annotation belongs

to, a “start” and “end” offset that mark the beginning and end character

offsets of the annotation, and a list of “features” that provides additional

information, e.g., a gender feature for an annotation of type Person.

Boundless Annotation. The second service result type is the boundless

annotation. Essentially, a boundless annotation is the same as a regular

annotation described above, except for the fact that the annotation applies

to the whole document being analyzed and not a specific text chunk. For

example, a semantic service can analyze a document and return one anno-

tation that contains a total score of its readability. Boundless annotations

have the same structure as a regular annotation, with an additional at-

tribute that unambiguously distinguishes them from regular annotations.

File. Semantic Assistants services can also generate new files as a result.

For example, an Automatic Index Generation service can produce a new file

that indexes all the noun phrases extracted from various documents with

an anchor back to their resources. In the Semantic Assistants terminology,

such files can be of any type and since they can be quite large in size, they

are not contained in the XML response. Instead, the response message

22

1 <!DOCTYPE saResponse [

2 <!ELEMENT saResponse (annotation∗, outputFile∗) >

3 <!ELEMENT annotation (document+) >

4 <!ATTLIST annotation annotationSet CDATA #IMPLIED >

5 <!ATTLIST annotation type NMTOKENS #REQUIRED >

6

7 <!ELEMENT annotationInstance (feature∗) >

8 <!ATTLIST annotationInstance content CDATA #REQUIRED >

9 <!ATTLIST annotationInstance end NMTOKEN #REQUIRED >

10 <!ATTLIST annotationInstance start NMTOKEN #REQUIRED >

11

12 <!ELEMENT feature EMPTY >

13 <!ATTLIST feature name NMTOKEN #REQUIRED >

14 <!ATTLIST feature value CDATA #REQUIRED >

15

16 <!ELEMENT document (annotationInstance∗) >

17 <!ATTLIST document url CDATA #IMPLIED >

18

19 <!ELEMENT outputFile EMPTY >

20 <!ATTLIST outputFile format CDATA #REQUIRED >

21 <!ATTLIST outputFile mimeType CDATA #REQUIRED >

22 <!ATTLIST outputFile url CDATA #REQUIRED >

23]>

Figure 6: The DTD for Semantic Assistants response messages

contains the URL of the file that refers to the server’s file system and its

MIME type information. Clients can use this information to retrieve the

file and choose a suitable presentation method, e.g., a new document in a

word processor, or a new browser window.

2.6 Résumé

In this chapter, we presented the foundations related to our research work.

We described the wiki systems and their use cases and looked into the

system architecture of the Semantic Assistants, the system we want to

integrate in order to invoke NLP services on wiki content. In the following

chapter, we compare existing efforts similar to our work on the integration

of semantics and NLP capabilities into wiki systems.

23

Chapter 3

Related Work

In this chapter, we investigate existing efforts similar to our research work.

A multitude of wiki engines exist that are designed for the different pur-

poses postulated in the previous chapter. Here, we focus our investigation

on two specific types: (1) wiki engines that are enhanced with NLP tech-

niques, and (2) wiki engines capable of developing, managing and querying

semantic metadata.

3.1 NLP-Enhanced Wikis

‘NLP-enhanced wikis’ refers to wikis that benefit from employing NLP tech-

niques on their content, either provided as an extension to their architec-

ture or tightly integrated in their engine. Such wikis aid their users with

content development and management by employing language analytics

solutions on the wiki content. Currently, the only existing NLP-enhanced

wiki we are aware of is Wikulu [HZG09]. In the following section, we look

at Wikulu’s architecture and detail how it improves the users’ experience

for developing, organizing and finding content in the wiki by using NLP

techniques.

3.1.1 Wikulu, An Intelligent User Interface for Wikis

Hoffart et. al [HZG09] propose an architecture to support wiki users in

their tasks of adding, organizing and finding content in a wiki by applying

24

NLP techniques. The major focus of Wikulu is helping users to organize

wiki content. In [HZG09], they analyze different types of user interactions

corresponding to these tasks and try to improve the user experience by

providing suggestions on where to add or how to organize content. The

interactive user interface of Wikulu supports users with NLP techniques

and involves them at every step of the analysis, using popular Web 2.0

technologies.

System Architecture

The Wikulu architecture consists of five components, fulfilling two main

requirements: The first requirement states that the system should present

suggestions regarding the link structure, tags, page segments and possible

points of content insertion upon a user’s request or in a proactive manner.

The second requirement states that the system must be able to act on

behalf of the user when he accepts the suggestions. For example, when

a user agrees to insert a chunk of text into a page’s specific section, the

system must be able to access the page content and add the corresponding

markup.

Figure 7: The Wikulu system architecture [HZG09]

The proxy component in the Wikulu architecture depicted in Figure 7

25

intercepts the interaction between the wiki engine and the user’s browser.

The proxy adds additional JavaScript and CSS references to the original

HTML page rendered by the wiki, once it is enabled on the user’s browser.

This dynamic manipulation of wiki page content provides an easy and ex-

tensible way of augmenting system-generated suggestions with the wiki

interface, rather than rendering them by integrating Wikulu directly into

the wiki platform. The Wikulu Daemon component, as well as the proxy,

is realized as a Java Servlet and is responsible for delegating calls to NLP

services and bringing back the results to the user interface.

System Features

The Wikulu architecture provides support for adding, organizing and find-

ing content in a wiki as follows:

Adding Content. Wikulu helps to reduce duplicate content by calculat-

ing the semantic relatedness of existing content in the wiki and presenting

suggestions to the user while typing, allowing him to decide whether the

content is redundant. If the user decides to enhance a wiki page by provid-

ing new content, Wikulu will then perform a page segmentation analysis

based on a TextTiling [Hea97] algorithm and suggest possible points of

insertion.

Organizing Content. Wikulu offers support for linking newly added pages

to the existing ones by calculating the semantic relatedness of the new

content to the existing content of the wiki and allows users to add them

as related links to the page being created. In addition, Wikulu provides

tag suggestions for wiki pages through Keyphrase Extraction [WPF+04] of

significant terms in each page based on the TextRank [MT04] algorithm.

Finding Content. [HZG09] states that the browsing feature of the wiki

has already been facilitated because of the user support while adding

and organizing content. In addition, Wikulu presents dynamically gen-

erated links to related pages in each page without explicit user interaction,

26

which in turn facilitates browsing. Regarding the content search in a wiki,

Wikulu states that by providing semantic metadata for the wiki, the search

recall will be improved. The NLP task used to retrieve search results is the

same semantic relatedness used in displaying related pages during content

creation.

3.2 Semantic Wikis

The second category of wiki systems we want to investigate are the seman-

tic wikis. As briefly explained in Section 2.1.2, the term “semantic wikis”

refers to wiki systems that allow their users to formally describe the wiki’s

embodied content with different degrees of formalization. Semantic wikis

vary in their semantic metadata representation language; some engines

offer special wiki markups, while others emphasize the use of standard

languages, such as the Resource Description Framework (RDF) [KC04] or

OWL [Sah07]. In the following, we detail a number of existing semantic

wikis and how they aid wiki users in the task of content development and

organization.

3.2.1 Semantic MediaWiki, A Semantic Extension to Me-

diaWiki

Semantic MediaWiki (SMW) [KVV06] is an extension to the MediaWiki ar-

chitecture that enhances its engine, in order to allow users to annotate

wiki content with explicit, machine-readable information. Using this se-

mantic metadata, SMW offers consistency of content, as well as accessing

and reusing knowledge presented in the wiki to the users. The primary ob-

jective for SMW is the seamless integration of semantic technologies into

the established usage patterns of the MediaWiki system. It also has a

particular focus on scalability and performance.

27

System Architecture

In SMW, users explicitly provide special markup within a page. The SMW

engine unambiguously translates those annotations to a formal descrip-

tion using the OWL language. SMW also provides various interfaces to

data and tools, based on Semantic Web technologies. To reuse the knowl-

edge contained in the wiki, formal descriptions for one or more articles can

be obtained in RDF format via a web interface. Furthermore, SMW allows

importing data from ontologies described in OWL, as well as mapping of

wiki annotations to existing vocabularies, such as FOAF1.

Figure 8: The Semantic MediaWiki system architecture [KVV06]

In SMW, annotations are presented in different parts of a wiki page,

based on their type. For example, category links appear only at the bot-

tom of a page, relations are displayed like normal links, and attributes

just show the given value. A factbox at the bottom of each page enables

users to view all extracted annotations: This way, the article’s original text

remains undisturbed and clearly separated from the semantic metadata.

Figure 9 shows the semantic markup embedded in a page’s markup and

the corresponding factbox rendered by the SMW engine.

1FOAF, http://www.foaf-project.org/

28

Figure 9: Semantic MediaWiki markup and factbox embedded in a wiki

page

System Features

The Semantic MediaWiki architecture provides support for adding, organiz-

ing and finding content within a wiki as follows:

Adding Content. SMW relies on the existence of explicitly provided se-

mantic markup to generate semantic metadata from text. For the genera-

tion of annotations, users have to manually insert SMW markup following

special rules and constraints. Then, these markups are parsed and ren-

dered by the SMW engine and transformed to RDF triples. While this

process imposes a learning curve on the user, many extensions for Seman-

tic MediaWiki exist, providing users with WYSIWYG editors and forms that

aid users in semantically annotating the content of a wiki.

Organizing Content. SMW uses categories as a mean to classify pages.

Categories are a simple form of annotation that help to classify content

based on their semantic relatedness to each other. This feature is already

available in MediaWiki and SMW merely endows it with a formal interpre-

tation, i.e., as RDF classes.

Finding Content. Users can search for articles using a simple query lan-

guage that was developed based on the known syntax of MediaWiki. In

SMW, the syntax for specifying an annotation is identical with the syntax

29

for searching it and multiple query statements are interpreted conjunc-

tively. Therefore, users can create powerful inline queries that include

wildcards, ranges, and subqueries and see the results in the desired for-

mat at the same location as the query.

3.2.2 IkeWiki, A Semantic Wiki for Collaborative Knowl-

edge Management

IkeWiki [Sch06] is a semantic wiki, developed to support collaborative

knowledge engineering. IkeWiki is best known for its ease-of-use, sup-

port for different levels of formalization and its sophisticated, interactive

user interface. IkeWiki was primarily developed as a tool for ontology en-

gineering, however, over the time it was extended to be used in a variety

of application areas. Eventually, IkeWiki development was stopped and

its developers started to work on a successor, the KiWi project1. KiWi

[KSB+10] provides a platform to build Social Semantic Applications based

on the layout and functionalities of the IkeWiki.

System Architecture

The IkeWiki architecture was designed based on four main requirements:

(1) Easy-to-use, interactive interface to support different levels of user

experience, (2) Compatibility with MediaWiki markup and Semantic Web

standards, (3) Support for various levels of formalization for different ap-

plication areas, and (4) Support for reasoning to derive knowledge that is

not stated explicitly in the wiki’s content.

The browser view in IkeWiki is divided into three parts: The left col-

umn provides navigation functionality and access to tools, similar to other

wikis, the centre column contains the human-readable wiki content, and

the right column contains additional information about the main content,

based on its metadata. The wiki engine provides means to store, update,

search, version and query wiki contents. In IkeWiki, the knowledge base

1KiWi Project, http://www.kiwi-project.eu/

30

Figure 10: The IkeWiki system architecture [Sch06]

is represented using the Jena RDF framework2 and data is stored in a

Postgres3 database. When a resource is requested, the XML page content

and related RDF data are retrieved from the database and sent to the Ren-

dering Pipelines to transform them into an enriched XML representation,

called Wiki Interchange Format. The XML representation can then be sent

to external web services or transformed into HTML for presentation in the

user’s browser.

System Features

The IkeWiki architecture provides support for adding, organizing and find-

ing content of a wiki as follows:

Adding Content. By default, the centre column of IkeWiki displays the

main content. This allows the user to switch to editing mode and manually

annotate the content with metadata in the form of RDF, via a WYSIWYG

editor. The editor interacts with the server back-end to recognize and verify

the links and annotations.

2Jena, http://jena.sourceforge.net/
3PostgreSQL, http://www.postgresql.org/

31

Organizing Content. The IkeWiki editor allows users to associate a page

with one or more types available in the system, as well as annotating out-

going and incoming links with type information. The IkeWiki reasoner also

automatically determines and creates annotations based on the page and

link types defined in their associated semantic metadata.

Finding Content. The knowledge base of IkeWiki is represented using

the Jena Framework. The in-memory model for knowledge representation

in IkeWiki is frequently synchronized with a database model for persis-

tent storage. Afterwards, the SPARQL Protocol and RDF Query Language

(SPARQL) [QL08] engine in the RDF Store component offers semantic, type

and tag-based search of the wiki content.

3.2.3 SweetWiki, A Semantic Web Enabled Technology

Wiki

SweetWiki [BGE+08] is a semantic wiki developed based on CORESE4, an

RDF engine based on Conceptual Graphs, that investigates the use of se-

mantic web technologies to support and “ease the lifecycle” of wikis. It

relies on web standards for the wiki page format (XHTML), semantic an-

notations (RDF) and ontologies (OWL). The main goal of SweetWiki is to

improve access to information inside the wiki with faceted navigation, en-

hanced search tools and awareness capabilities.

System Architecture

The implementation of SweetWiki, as shown in Figure 11, relies on the

CORESE semantic search engine for querying and reasoning. Pages in

SweetWiki are directly stored as XHTML and contain the semantic meta-

data in form of RDFa triples. Once a page is saved or modified by a user,

SweetWiki servlets use GRDDL [W3C07] to extract the semantic metadata

embedded in the page markup and convert it to RDF. Users also have the

4COnceptual REsource Search Engine, http://www-sop.inria.fr/edelwiss/

software/corese

32

chance to use an AJAX-powered WYSIWYG editor in the wiki, both for

content and metadata editing.

Figure 11: The SweetWiki system architecture [BGE+08]

System Features

The SweetWiki architecture provides support for adding, organizing and

finding content in a wiki as follows:

Adding Content. SweetWiki provides a WYSIWYG content editor with as-

sisted annotation tools, such as auto-completion, that allows users to see

embedded queries or annotations in a page. It also embeds a web-based

ontology editor that can be used for editing, creating and managing ontolo-

gies, including a user’s folksonomy built upon the tags.

Organizing Content. The SweetWiki editor is extended to support social

tagging functionalities. Users can freely enter tags; an auto-completion

mechanism suggests existing ones by performing SPARQL queries to find

existing concepts with compatible labels.

33

Finding Content. SweetWiki implements the tag/keyword mechanism

with a domain ontology shared by the whole wiki. Then, by reasoning

on this explicit ontology, it can find semantically close topics, by making

complex queries to find pages according to the topic they were tagged with.

Editing the ontology is made possible for users via the wiki user interface

to improve the navigation and querying capabilities of the wiki.

3.2.4 AceWiki, A Natural and Expressive Semantic Wiki

Kuhn [Kuh08] presents AceWiki, a wiki using the Attempto Controlled En-

glish language. ACE [FSS98] looks like English, but avoids the ambigu-

ities of natural language by restricting the syntax and defining a small

set of interpretation rules. The ACE parsers then automatically translate

ACE texts into Discourse Representation Structures, which are a syntac-

tical variant of first-order logic, providing a single and well-defined formal

meaning for each ACE text. Furthermore, ACE has been used as a natural

language front-end to OWL, with a bidirectional mapping of ACE to OWL.

This means that AceWiki is able to perform reasoning mechanisms using

existing OWL reasoners.

System Architecture

The main goal of AceWiki is to improve knowledge aggregation and repre-

sentation through unity and strict user guidance principles. In AceWiki,

the ontology is represented in a form that is very close to natural language,

using one single language for ontology definition, rules and queries. The

two requirements behind AceWiki’s design are (1) it should be easy to use

and (2) it should support a higher degree of expressivity than a natural

language. AceWiki guides its users by using a predictive editor that helps

them in a step-by-step manner to create knowledge and ensures the lexical

and grammatical correctness of the content. In addition, all the ontolog-

ical statements written in ACE are valid English sentences and can be

immediately understood by any English speaker.

34

Figure 12: The web interface of AceWiki, presenting the logic structure of

a sentence

System Features

The AceWiki architecture shown in Figure 12 provides support for adding,

organizing and finding content in a wiki as follows:

Adding Content. As stated earlier, the use of AceWiki is limited to knowl-

edge creation and does not allow the generation of unstructured content

produced in natural language. Unlike other semantic wikis, the formal

statements are not contained in annotations or considered as metadata,

but rather are the main content of the AceWiki. In order to be convenient

for both novice and advanced users, the stepwise creation of a sentence

35

can be done either by clicking on lists of proposed words or by typing the

words in a text field. The semantic correctness of the content is not en-

forced at this level, but suitable words are retrieved on the basis of the

hierarchy of concepts and roles and the domain and range restrictions of

roles and shown to the user in a list.

Organizing Content. AceWiki uses OWL reasoners to perform semantic

reasoning on inserted knowledge and only adds them to the knowledge

base if it finds no conflict. Therefore, the content of the AceWiki, i.e., the

formal sentences, have a sophisticated structure due to their clearly de-

fined semantic relations. Nevertheless, the generation of orphan pages,

i.e., pages that are not linked to other pages, or undefined entities, unde-

fined relations is inevitable. That is because although the AceWiki editor

enforces the content’s lexical and grammatical correctness, it does not ne-

cessitate the creation of links at the time of content creation.

Finding Content. At the time of this writing, AceWiki offers only keyword

search. Semantic queries for finding content is considered as future work.

3.3 Discussion

Among the wiki systems described in the previous sections, Wikulu has

the most similar motivations to our research work, as they both aim to im-

prove the wiki users’ experience through the means of NLP. However, there

are significant differences between the two approaches. First, in Wikulu,

the execution of NLP services is implemented within their system archi-

tecture, whereas our approach will offer such capabilities not within the

integration, but backed by a robust, multi-tier and service-oriented archi-

tecture – the Semantic Assistants. Using this framework, our Wiki-NLP

integration will be able to offer a variety of NLP services5 to multiple wikis.

Second, our Wiki-NLP architecture is also concerned with content devel-

opment, both the wiki’s main content and semantic metadata, whereas

5As long as they can be brokered via the Semantic Assistants architecture

36

Wikulu’s emphasis is on the organization of content by providing users

with interactive system suggestions.

Regarding the semantic wikis described above, as Buffa explains in

[BGE+08], they can be distinguished into approaches considering “the use

of wikis for ontologies” like AceWiki and approaches considering “the use

of ontologies for wikis” like IkeWiki and SweetWiki. Our Wiki-NLP inte-

gration envisions the second approach, where the wiki is not used as a

front-end for community ontology creation by imposing a specific struc-

ture or language on the users. Rather, it uses ontologies populated by NLP

techniques to improve the wiki users’ experience. Nevertheless, many of

the features of these semantic wikis, such as knowledge presentation and

reasoning, can be reused in the design of our integration.

Finally, the most remarkable difference between our Wiki-NLP integra-

tion and the aforementioned wikis is that we are not aiming at creating a

custom wiki engine with NLP capabilities but an architecture that would

allow arbitrary wiki engines – traditional or semantically enhanced – to

benefit from NLP capabilities with no or minimum possible modifications

required on their concrete implementation.

3.4 Résumé

Augmenting wiki systems with NLP techniques is a novel area of research

and has not attracted a lot of attention yet. In this chapter, we looked

at a number of existing works related to our Wiki-NLP integration. We

described Wikulu, the only currently existing work on integrating wikis

and NLP. Then we looked at a number of semantic wikis and how they use

semantic metadata inside the wiki to improve creation, organization and

retrieval of content. In the next chapter, we define the requirements for

our Wiki-NLP architecture in detail.

37

Chapter 4

Requirements Analysis

Having positioned our research goal in comparison with existing work, in

this chapter we define the requirements of our system in detail. We start

by the ultimate goal of the Wiki-NLP integration – namely the zeroth re-

quirement:

Requirement #0: General Integration Architecture. The ultimate goal

of the Wiki-NLP integration is to create an extensible architecture that will

allow wiki systems to make use of NLP techniques to improve the user’s

experience in developing, organizing and finding wiki content.

The architecture should be general to enable various wiki systems to ben-

efit from NLP techniques, without the need to have a concrete knowledge

of their implementation, nor requiring extensive manipulation to their en-

gines. This means that the integration of NLP services must not be hard-

coded on the NLP providing system or on the wiki engine – rather, an ab-

straction layer is required between the two that provides a common ground

for communication.

In the following sections, we define our system requirements from three

different perspectives: the wiki systems’ end-users, the wiki developers,

and the Wiki-NLP integration system as a whole.

38

4.1 End-User Requirements

The first target group of our integration are the wiki end-users. Previously,

in Chapter 2, we described how wikis are used in different domains. From

our examples, it can be seen that wiki end-users vary from laypersons

using a wiki as a personal information management tool to highly technical

employees of organizations. Therefore, different background knowledge

and cognitive abilities of wiki-end users must be considered during the

requirements analysis of this user group.

Requirement #1: Seamless Integration. Employing NLP techniques on

wiki content must not largely deviate from the established usage patterns

of wikis. This means that NLP capabilities must be integrated within the

wiki’s user interface that the users are already familiar with.

Requirement #2: NLP Service Recommendation. Although wiki ar-

ticles are all natural language documents in essence, they are still not

homogeneous. For example, a person can create articles containing her

personal knowledge or ideas about a specific matter, and at the same time,

have articles in the wiki that contain her full-text biology research paper

with a sophisticated structure and specialized terminology. Furthermore,

these articles may even be written in different languages, such as English

or French. Therefore, users must be able to see suitable language services

for each article, based on its content (e.g., its language), as well as its

context (e.g., the article’s category).

Requirement #2.1: Context-specific NLP Services. In order to provide

wiki users with NLP services that are beneficial to their task at hand, the

system must be able to only present the services that are related to the

wiki end-user’s context.

Requirement #2.2: Presentation of User Context. Our architecture must

provide a mean for wiki users to declare their context. Dey [Dey01] defines

context as “any information that can be used to characterize the situation

39

of an entity.” Therefore, the system must be able to gather pieces of in-

formation, such as the languages that the user knows, to model the user

context.

Requirement #3: Change Visibility. Despite the existence of a number

of robust NLP techniques that can improve user experience, a complete au-

tomated understanding of natural language is still not feasible. Given the

complexity of natural language, NLP systems are still not able to deliver

perfect results to users. Therefore, the NLP services’ result, such as gener-

ated content or semantic metadata, must be visually distinguishable from

the wiki’s original content. This way, wiki users can assess the quality of

the results separately and merge them with the original wiki page or revert

the changes if the delivered results are not satisfactory.

Requirement #4: Organizing Wiki Content. The philosophy of wikis

emphasizes the quick creation of content. Additional steps required to or-

ganize the wiki, such as cross-linking related articles or providing seman-

tic metadata, like assigning articles to categories, are optional and can be

simply skipped by users. The integration shall aid users in organizing their

wiki content by exploiting the wiki’s embodied semantic metadata derived

from an NLP analysis of its content.

Requirement #5: Finding Wiki Content. Current wikis offer a full-text

keyword-based search of content, which is usually authored by various

users. However, because of the vocabulary gap between wiki users, query

terms do not always match the terms used in articles and thus, causes

the search feature to fail to retrieve relevant results. Additionally, since

navigation in wikis is mostly done through linking related pages together,

the absence of such links prevents users from finding the content they are

looking for. Therefore, the integration shall aid users in finding content

inside the wiki and discover concepts or entities that he did not know were

present in the wiki.

Requirement #6: Content Development. In addition to generating

40

metadata from the wiki content, the integration must also be able to create

the primary content itself. For example, in Wiktionary1, where information

is highly structured, various techniques from computational linguistics

can help to automatically populate the wiki by adding new stubs and their

morphological variations. Furthermore, the NLP system can analyse the

wiki content to find the entries across different languages and automati-

cally annotate them or cross-link their pages together.

Requirement #7: Low Learning Curve. Employing NLP techniques

on a wiki’s content must not necessitate learning of software or language

engineering for the wiki users. This requirement is derived from the fact

that wiki end-users are diverse in their background knowledge and no

assumption about thereof should be made. In other words, if deploying

the integration requires critical software or language engineering skills, it

will not be usable by a wiki’s non-technical user group.

Requirement #8: Collection-based Analysis. An implicit goal of our

Wiki-NLP integration is automating tasks that are currently done manu-

ally through the traditional ways that wikis provide. In some instances,

a user’s information need is scattered across multiple pages in the wiki.

Satisfying such needs by hand is a cumbersome and error-prone task.

Therefore, users must be able to collect pages of interest and run an NLP

service on the collection at once. An example of such a case is generat-

ing a summary from several wiki articles. Users must be able to specify

individual pages, as well as complete categories for NLP pipelines’ input

documents.

4.2 Wiki Developer Requirements

Our second target user group are the wiki developers. By wiki develop-

ers, we mean software developers implementing a wiki engine, as well as

1Wiktionary, http://en.wiktionary.org/wiki/MainPage

41

administrators that can enhance a wiki’s capabilities by deploying third-

party extensions. The important characteristic of this user group is that

they may not necessarily be familiar with language engineering concepts.

Requirement #9: Easy Deployment. In order to benefit from NLP

techniques offered by the Wiki-NLP integration, users must not need to

apply major changes to the wiki engine or to the means to access the wiki,

i.e., their Web browsers. This requirement is derived from the fact that wiki

end-users are diverse in their background knowledge and no assumption

about their knowledge in software or language engineering should be made.

In other words, if deploying the integration requires critical software or

language engineering skills, it will not be usable by a wiki’s non-technical

user group.

Requirement #10: Facilitate Client Integration. For wiki developers

that want to use our Wiki-NLP integration by embedding it into their wiki

engines, or providing their users with a sophisticated user interface, the

system must facilitate the integration process by hiding the complexity of

NLP analysis from the developer’s view, offering common functionalities of

the system in way that can be easily re-used.

4.3 System Requirements

Finally, we have to define requirements from the point of view of our

Wiki-NLP integration as a whole. In order to deliver the functionalities

expected from the integration, our system requires fundamental charac-

teristics, such as being independent from both the wiki and the Semantic

Assistants system, while at the same time being able to exchange data be-

tween the two. In the following, we look at these system requirements in

detail.

Requirement #11: NLP Service Independence. NLP services are used

in various domains and have different implementations. While some of

these services have direct real-world applications, others more commonly

42

serve as new inputs to larger and more complex tasks. Thus, irrespective

of the NLP services’ concrete implementation, the integration must offer

them within a single unique interface in the wiki.

Requirement #12: Wiki System Independence. Considering the vari-

ety of wiki engines, the integration must employ a generic approach that

allows offering NLP services within wiki engines, independent of their im-

plementation. This requirement places considerable limitations on how the

Wiki-NLP communication should be realized, due to the fact that various

wiki engines have diverse architectures and are developed using different

programming languages.

Requirement #13: Flexible Response Handling. According to the

Semantic Assistants architecture described in Section 2.5, NLP services

produce different types of metadata, e.g., annotations or files. The inte-

gration must be able to differentiate the type of the generated metadata in

order to adequately transform, store and present the results to wiki users.

The response handling mechanism must not be tied to a specific wiki en-

gine and should be able to distinguish a wiki’s original content from the

developed metadata, as postulated in Requirement #3.

Requirement #14: Read Content from Wiki. The system must be able

to pull out content from the wiki’s database in order to provide the NLP

pipelines with input documents. Based on the available wiki capabilities,

the integration must also be able to retrieve not only the main content of a

page, but also its associated metadata, such as revisions, editor informa-

tion, discussion page content and semantic annotations.

Requirement #15: Write Content to Wiki. The integration must be

able to write the analysis results back to the wiki’s database to make

them persistent. Also, the integration must be flexible in terms of where

it should write the results. For example, users may choose to store the re-

sults of content development services embedded in a page’s main content,

while having the associated metadata generated by NLP services stored in

43

the page’s discussion section.

Requirement #15.1: Write Semantic Metadata to Wiki. In order to exploit

the semantic metadata generated by NLP services, they have to be stored

in the wiki’s database to become persistent. Therefore, our system must

store the metadata related to each article in the wiki so that it can be

queried later or be reused by other external applications. Also, the system

must transform the generated semantic metadata to a format that can be

used by the wiki, as well as other external applications.

Requirement #16: External Data Access. The integration should be

able to retrieve content from external sources in order to perform specific

NLP analyses on a wiki’s content. For example, the system must be able

to read the content of a wiki article and use it as input to an Information

Retrieval pipeline that finds related information from external resources,

such as an Intranet.

Requirement #17: Proactive Service Execution. The system must be

able to perform NLP analysis in a proactive and event-based manner. For

example, when the integration is used to index the wiki’s content, it should

be able to perform an automatic index generation every time a change is

applied to the wiki content.

4.4 Discussion

The requirements defined above detail all the functionality that needs to

be implemented in order to enable wiki systems to benefit from NLP tech-

niques. However, since we are trying to benefit from the NLP services bro-

kered via the Semantic Assistants architecture, some of our requirements

are already fulfilled, in particular:

• Organizing, finding, and development of wiki content (Requirements

#4, #5 and #6) are requirements that are fulfilled by NLP services,

44

such as the ones described in Section 2.4, rather than the integra-

tion architecture. Therefore, since these services are independent

of the Wiki-NLP integration implementation, the assumption of the

existence of such services in the Semantic Assistant’s NLP Subsys-

tem component (see Section 2.5) fulfills the three mentioned require-

ments.

• According to the Semantic Assistants architecture, NLP services devel-

oped based on the GATE framework, irrespective of their concrete im-

plementation, can be brokered to all of the connected clients. There-

fore, Requirement #11 is fulfilled by the Semantic Assistants architec-

ture and any NLP service that is brokered by the Semantic Assistants

server can be used within the wiki system.

• Any NLP service available in the Semantic Assistants NLP Subsys-

tem capable of performing external information retrieval task is able

to access external data for content development. Therefore, Require-

ment #16 can be fulfilled by services offered by the Semantic Assis-

tants architecture.

• All the NLP services in the Semantic Assistants NLP Subsystem are

formally described by their OWL description files. One of the proper-

ties of each NLP service is the definition of the context in which the

service becomes useful, e.g., the natural languages that the service is

capable of analysing. For example, when a list of available assistants

is requested from the Semantic Assistants server with a user context

object containing English and German as the acceptable languages,

the server then executes a SPARQL query against its services meta-

data repository to find suitable NLP services for the specified user

context. Therefore, this feature of the Semantic Assistants architec-

ture fulfills Requirement #2.1.

Before proceeding to the next chapter, let us take a look back at the

related work we defined in Chapter 3, and examine each one against our

Wiki-NLP integration requirement. The comparison shown in Table 1 helps

45

Table 1: Comparison of wikis against Wiki-NLP integration requirements

Requirement Wikulu SMW IkeWiki SweetWiki AceWiki

Seamless Integration � ∼ � � �

NLP Service Recommendation � � � � �

Change Visibility � ∼ � � �
Low Learning Curve � � � � �
Easy Deployment � � � � �
Facilitate Client Integration � � � � �

Wiki System Independence � � � � �

Flexible Response Handling � � � � �

Read Content from Wiki � � � � �
Write Content to Wiki � � � � �
External Data Access ∼ � � � �

Proactive Service Execution � � � � �

�= fully satisfied

∼ = partially satisfied or not available in literature

� = not satisfied

us to get inspired by the design ideas implemented in their engines, in

order to fulfill our remaining requirements.

4.5 Résumé

In this chapter, we defined the features and functionalities required in

order to integrate various wiki systems and NLP techniques. We analyzed

our system requirements from the perspectives of different user groups

and justified how some of them are implicitly fulfilled by the use of the

Semantic Assistants architecture. In the next chapter, we describe how

we derived concrete design decisions from the remaining requirements.

46

Chapter 5

System Design

In this chapter, we describe how the requirements postulated in Chapter 4

are transformed to concrete design decisions. We start by exploring design

alternatives and then we elaborate on how our system components can

communicate with each other. Finally, the chosen solution for integrating

wiki systems and NLP services will be detailed in Section 5.6.

5.1 Design Alternatives

The software architecture of a system comprises software components, re-

lations among them and their properties. Juxtaposition of system compo-

nents results in different system architectures, but a good architecture is

the one that is not only able to fully satisfy all the system requirements,

but also considers design best practices like extensibility, reusability and

modularity. In this regard, we investigate various possible juxtapositions

of our system components and discuss whether each alternative is able to

fulfill our integration requirements. The goal of this section is to perform

a high-level design analysis to find the best place for the Wiki-NLP inte-

gration to be implemented. Our three candidate places are: (1) the user’s

browser, (2) the wiki engine, and (3) the Semantic Assistants architecture.

47

5.1.1 A Browser Plug-in

One of the candidate points of the Wiki-NLP integration is the user’s Web

browser. Generally, a user interacts with the wiki via his browser interface.

The wiki user requests a page either by directly typing its address into the

browser’s address bar or clicking on a link inside a page. This action

sends a request to the web server hosting the wiki system. The wiki engine

then retrieves the page content from its database, renders it into an HTML

document, and sends it back to the user’s browser via its web server.
W

eb
 S

erver

Browser

Plug−in

Wiki Engine

Wiki System Semantic Assistants

Service Information

Service Invocation

Database

Figure 13: Design alternative using a browser plug-in

In this design alternative, the idea is that a plug-in installed on the

user’s browser allows him to invoke NLP services on the page content that

is being viewed. As depicted in Figure 13, the plug-in lets the user inter-

act with the Semantic Assistants server through new GUI elements in the

browser interface, such as dialog windows, and invoke a desired NLP ser-

vice. The plug-in is responsible for sending the page content along with

any other necessary information, e.g., acceptable data formats and lan-

guages, to the Semantic Assistants server. When the service execution

is completed in the Semantic Assistants server, the browser plug-in re-

ceives the results and transforms them into a user-friendly format to be

displayed to the user. Optionally, the plug-in can apply its own formatting

styles on-the-fly, such as text highlighting, to distinguish the generated

semantic metadata from the page’s original content. Up to this point, the

48

generated metadata is only embedded temporarily as HTML markup in the

user’s browser and is therefore not persistent in the wiki’s database. This

means that once the user navigates to another page, or closes the browser,

the semantic metadata embedded in the page will be lost. Therefore, the

plug-in needs to connect to the wiki’s database in order to store the re-

sults – through its API or via direct queries to its database – using the

authentication information provided by the user.

Since using the browser is already an established usage pattern, it is

considered as a suitable location for the Wiki-NLP integration. It provides

wiki users with a seamless integration and can re-use the browser inter-

face and built-in features, such as sidebars, text selection or detecting a

page language. Also, the wiki content for analysis is retrieved from the

HTML representation of the page and thus, requires no interaction with

its database. This means that the same browser plug-in can be used with

multiple wiki systems.

Despite being independent from a wiki engines’ concrete implementa-

tion to retrieve a page content, in order to write the results to the wiki, the

browser still needs to know about the wiki implementation. Also, this op-

tion is browser-dependent. This means that a new plug-in must be specif-

ically designed for each available browser. Moreover, it requires wiki users

to install the plug-in on their browser, which might not be an easy task for

novice users. Finally, since the plug-in’s lifecycle is tied to the browser and

requires user interaction, it cannot perform a proactive service execution

on behalf of the user, as demanded in our system Requirement #17.

5.1.2 A Wiki Plug-in

The main idea in this design alternative is that each wiki system that wants

to use the Semantic Assistants NLP services has to implement all of the

functionality that is needed to connect to, communicate with and consume

the results from the Semantic Assistants server. This is usually realized

through designing a plug-in or an add-on, using the wiki’s API. Once the

plug-in is installed and deployed on the wiki, it provides an adequate user

interface for users to inquire about and invoke NLP services on the wiki

49

pages. As shown in Figure 14, the plug-in uses the wiki API to retrieve a

page content directly from the wiki database. Then, it refines the input to

eliminate noise, such as formatting markup, and invokes the selected NLP

service with the prepared document. Similarly, once the service execution

is finished, the plug-in retrieves the result from the Semantic Assistants

server, transforms the response into wiki markup and stores it back in the

database.

W
eb

 S
erver

P
lu

g
−in

Wiki Engine

A
P

I

Wiki System Semantic Assistants

Service Information

Service Invocation

Database

Figure 14: Design alternative using a wiki plug-in

In this design, one plug-in installed on the wiki is offered to all the

users, contrary to our previous design alternative. Since the wiki plug-in

resides in the wiki, it has direct access to all the wiki system components,

including the wiki database and rendering engine. This feature enables the

plug-in to read page content directly from the database and store back the

NLP analysis results. Also, it can customize the user interface of the wiki

in order to aid novice wiki users to benefit from the Wiki-NLP integration.

Finally, the plug-in can also act in a proactive manner to invoke periodical

NLP analysis on the wiki content, since it is aware of the changes in the

wiki. For example, the plug-in can be designed in such a way that every

time a new page is created in the wiki, it invokes a service to update the

wiki index.

The most prominent disadvantage of this alternative is that for each

existing wiki engine, we must develop a plug-in. Concerning the large

number of wiki engines and their various structures, this alternative is

not desirable and against our vision of a general architecture (Require-

ment #0).

50

5.1.3 A Semantic Assistants Wiki Component

In this design alternative, we introduce an auxiliary wiki component that

eliminates the need for a plug-in, like the one we described in the previous

section, and acts as a mediator between the wiki system and the Semantic

Assistants server.

The auxiliary wiki component, as depicted in Figure 15, is basically an

extension to the original Semantic Assistants architecture. It is solely re-

sponsible for the presentation and invocation of NLP services, as well as

communicating directly with wiki systems, in order to retrieve their con-

tent and store the results afterwards. This design alternative is based on

the assumption that wiki systems provide an API for this purpose that

the wiki component can use to connect to the wikis’ databases. Some of

the more established wiki systems, such as MediaWiki, facilitate this in-

teraction by Bot Frameworks written in different programming languages

that run on wikis in a methodical, automated manner and automatically

manipulate pages.

W
eb

 S
erver

M
ediaW

iki
...

C
lien

t−S
id

e A
b

stractio
n

 L
ayer

S
w

eetW
iki

A
u

xiliary W
iki C

o
m

p
o

n
en

t...

MediaWiki

SweetWiki

Semantic AssistantsWiki Systems

Service Information

Service Invocation

Figure 15: Design alternative using a Semantic Assistants wiki component

Having the Wiki-NLP integration on the Semantic Assistants side has

the advantage of re-using the CSAL libraries. The integration can present

and invoke NLP services through simple method calls, made available by

the abstraction layer. However, accessing the wiki content, such as reading

from or writing to its database, is only possible when the wiki component

has a corresponding bot framework or fully knows about the wiki’s API.

This mean that, when the wiki is unknown to the wiki component, it can-

not employ NLP services on its content, and this makes our architecture

wiki-dependent. Also, since the wiki component works independently of

51

the wiki engine and most of the wiki APIs do not allow modification of the

wiki’s user interface, the wiki component cannot integrate an appropriate

user interface inside the wiki. Therefore, it requires modification of the

wiki engine or an external application to allow users to interact with the

broker, similar to the one implemented in [WG07].

5.1.4 A Proxy Server Component

Our last design alternative, presented in Figure 16, tries to eliminate the

need for an external user interface application by adding a proxy server

component to the architecture. The proxy component is inspired by the

Wikulu architecture [HZG09] and acts as an intermediary for interactions

between the user’s browser and the wiki.

P
ro

xy S
erver

W
eb

 S
erver

Wiki Engine

Semantic AssistantsWiki System

Service Information

Service Invocation

Database

Figure 16: Design alternative using a proxy server component

When the proxy is enabled on the client-side, i.e., set on the user’s browser

configuration, all the requests from the user’s browser will be routed to the

proxy server. Then, the proxy server processes the request and responds

with one of following:

• If the request is to view a wiki page, the proxy retrieves the page’s

HTML representation from the wiki’s rendering engine, adds custom

client-side code, such as JavaScript and CSS references, to the page

and returns it to the user’s browser. This way, the injected client-side

code allows users to inquire about or invoke NLP services on the page

content.

• If the request is for an NLP service execution, the proxy server trans-

lates the request to the corresponding service call in the Semantic

52

Assistants Server. Similar to the previous condition, the proxy re-

turns the results as embedded client-side code inside the original

wiki-rendered page.

Following a service execution, if the user agrees to keep the changes

applied to the page content, the proxy receives the confirmation request

from the user and stores the metadata into the wiki database.

The generated JavaScript code that is injected into the user’s browser

is independent of the wiki engine and thus aligned with our wiki indepen-

dency requirement. Also, using the JavaScript capabilities, the proxy can

obtain valuable information from the client, such as the capabilities of the

client to accept output types, the browser and the page language, which

can be used to recommend appropriate NLP services. However, in order to

store the service results in the wiki database, the proxy has to know about

each wiki’s concrete implementation or its API, and this bring wiki depen-

dency into the architecture. Finally, the proxy component relies on user

interaction to perform analysis and thus, is not able to fulfill the proactive

behaviour that is expected from the integration.

5.1.5 Summary

In Section 5.1, we described four different design alternatives by juxta-

posing the integration components, and examining each one against our

requirements postulated in Chapter 4. While some of them exhibit wiki

dependency, others fail to fulfill essential requirements, such as seamless

integration (Requirement #1). Therefore, neither of the design alternatives

can satisfy all of the integration requirements by itself.

However, by having a closer look at the advantages and disadvantages

of them, it can be seen that advantages of some of the design alternatives

can compensate the disadvantages of others. For example, the disadvan-

tage associated with the wiki component described in Section 5.1.3 is its

limitation to offer a general solution to use a wiki API to access its compo-

nents and generate appropriate markup, as they are both proprietary to

53

the underlying wiki engine and thus vary from one wiki to another. Simi-

larly, for a wiki plug-in, such as the one described in Section 5.1.2, commu-

nicating with the Semantic Assistants server through SOAP messages and

consequently resolving the results is a difficult task for the plug-in devel-

opers with no knowledge about the Semantic Assistants ontology, whereas

using the wiki component alternative can facilitate this process by using

the Semantic Assistants CSAL libraries. Consequently, the architecture

chosen for the Wiki-NLP integration would be a combination of different

components and would firmly depend on the available capabilities of the

target wiki.

Nonetheless, however the system components of our Wiki-NLP integra-

tion architecture are tied together, there are some essential tasks that they

need to be able to perform. In the following section, we will describe them

in detail and examine their alternatives, considering the currently avail-

able approaches and technologies.

5.2 The Analysis Workflow

The NLP analysis of wiki content is a process that starts when a request

is sent – manually or proactively – to the Wiki-NLP integration and ends

when the results are made persistent in the wiki database or file system.

The four main phases of this process are:

1. User interaction via an interface, where the user can select and run

arbitrary NLP services and ultimately view the results;

2. Accessing the wiki content for the processing pipelines;

3. Execution of NLP services on the provided content; and

4. Writing the results back to the wiki.

In this section, we investigate various possible ways of performing these

steps using available technologies.

54

5.2.1 User Interaction

A wiki user must be able to interact with a graphical interface that allows

him to see appropriate NLP services related to his task at hand and invoke

an arbitrary service on the selected content. Further explained in Require-

ment #1, the interface usage pattern must not be largely different from

the wiki’s, in order to provide a seamless integration and achieve user ac-

ceptance. There are various ways of providing users with an interactive

user interface that allows explicit service requests to be sent from within

a wiki. Having in mind the large number of different wiki systems, the

ideal user interface would be one that is independent of the concrete wiki

implementation and can be reused among different wiki systems.

Here, we discuss possible ways of providing a user interface for the

purpose of Wiki-NLP integration.

1. A Standalone Desktop Application

The Wiki-NLP integration can provide the user with a standalone applica-

tion external to the wiki system, capable of communicating with the wiki

system and the Semantic Assistants server. This application will deliver

the required user interactions using the full features of the language that

it is written in. For example, in [WG07] a Java application is written that

can dynamically generate lists of available NLP services, as well as appro-

priate form fields using the Java Swing1 GUI widget toolkit, allowing the

user to run a service and view the results.

Advantages

• A standalone application provides the user with an interface, inde-

pendent of the underlying wiki system and supplied with a rich array

of widgets – from basic components, like buttons and check boxes, to

the more complex ones, such as tables and text grids.

1Java Swing, http://docs.oracle.com/javase/tutorial/ui/overview/intro.

html

55

• Using the rich interface that the application provides, the integration

will be able to properly present the results to the user in dynamically

generated widgets, such as windows and lists, and differentiate be-

tween the results and the original wiki content.

Disadvantages

• Using an external application requires the user to switch contexts

between the wiki system and the application and imposes an extra

learning curve on them, which evidently violates the seamless inte-

gration as postulated in Requirement #1.

• Each wiki user will need to separately deploy the application on his

machine, which might not be convenient for wiki users with limited

background computer knowledge as explained in Requirement #9 and

is also problematic when the wiki has a large number of users, e.g.,

in enterprise wikis.

2. Generating a user interface on-the-fly on the server-side

The Wiki-NLP integration interface can also be constructed using a number

of Web 2.0 technologies that provide a means for users to interact with the

wiki. For example, among these technologies, Asynchronous JavaScript

and XML (AJAX) [Gar05] is a popular web development technique used

for creating interactive web applications using JavaScript that are able to

retrieve data from the server asynchronously in the back-end. For the pur-

pose of Wiki-NLP integration, an AJAX application can be designed in a

client-side plug-in or the proxy component described in Section 5.1.4 to

query the Semantic Assistants server and bring back the list of available

services. It can also embed the NLP analysis results in a page, without

stalling the user’s interaction with the wiki. Service invocation and result

presentation abilities are added to a wiki page by injecting dynamically

generated HTML markup and CSS references. This way, the user inter-

actions that normally would generate HTTP requests, e.g., clicking on a

button, will take the form of JavaScript calls to the AJAX engine and the

56

engine asynchronously would make the request to the Semantic Assistants

server. Ultimately, the AJAX engine will return the response as HTML el-

ements styled with CSS or an XML document that can be enriched with

XSLT2 to distinguish the generated metadata from the wiki page’s original

content.

Advantages

• Since generating the user interface is done on the fly using state-of-

the-art web technologies and it is embedded into the original HTML

pages rendered by the wiki engine, it is completely independent of the

wiki’s concrete implementation.

• The embedded user interface inside the wiki pages gives the user

the impression that he is still using the native wiki interface, thus

providing a seamless experience.

• Using custom client-side code and CSS references, the interface will

be able to present the results and distinguish the generated metadata

from the original wiki content.

Disadvantages

• Dynamically generated user interfaces are generally complicated to

design and are strongly dependent on the client-side capabilities. For

example, if the user interface is heavily relying on JavaScript code,

for users whose browsers do not support JavaScript or who have it

turned off, the interface will not be visible.

3. Enhancing the Browser GUI

Essentially, a user interacts with the wiki through his browser interface.

Therefore, one of the candidate points of the integration interface is the

browser environment. Many of the available browsers feature APIs that

2eXtensible Stylesheet Language Transformation, a style sheet language for XML doc-

uments.

57

enable developers to extend the browser’s capabilities in a way that suits

their objectives. These extensions are often known as plug-ins or add-ons.

For our purpose, a specially designed plug-in can add a new menu to the

user’s browser to allow him to inquire about and invoke NLP services. It

can also use the browser GUI to present the results, e.g., by using the

browser sidebars or opening an external window.

Advantages

• Using the browser GUI brings independence from the concrete im-

plementation of the wiki systems, because the content is retrieved

through the browser interface. Once the service execution is com-

pleted, results will be again presented in the browser’s GUI.

• Since the integration is delivered inside the browser that users access

the wiki with, no context switching is required and thus a seamless in-

tegration is provided for the user inside the browser that he is already

familiar with.

• Using the browser interface gives users the ability to collect multiple

pages of a wiki or just select a portion of an article to be sent for

analysis, as most browsers already have native support for this kind

of user interactions.

• Most of the available browsers have the ability to receive and present

different kinds of media types, from plain text web pages to multime-

dia files, and can interpret CSS references to highlight the analysis

results.

• Most of the available browsers feature easy installation of plug-ins,

which facilitates the deployment of the integration for wiki users with

limited computer background knowledge.

58

Disadvantages

• A wiki can be accessed by different kinds of browsers, ranging from

commercially available ones to the embedded browsers inside hand-

held devices. Using this approach will require designing a new inter-

face for each browser.

• Similar to a standalone application, using the browser GUI for our

Wiki-NLP integration requires each wiki user to have the plug-in in-

stalled on his system, which might not be convenient for wiki users

with limited computer knowledge and is also problematic when the

wiki has a large number of users.

4. Enhancing The Wiki GUI

A plug-in specifically designed for a wiki has low-level access to its compo-

nents and the wiki interface. Therefore, the plug-in can contribute to the

wiki’s native interface with additional links, forms and HTML entities de-

signed to aid users in their interaction with the Wiki-NLP integration. The

Collection3 extension in Wikipedia is an example of this interface type: A

wiki user can start the application by clicking on the plug-in’s link in the

wiki’s navigational menu. Triggered by the user, a new session starts that

injects extra HTML elements into the wiki page, allowing users to collect

wiki articles and perform a desired action such as adding, removing and

exporting pages from the gathered collection.

Advantages

• The plug-in can contribute to the graphical user interface of the wiki

that the user is already familiar with, thus offering a seamless experi-

ence to the user.

• Using special styling features, the plug-in can visually distinguish the

generated data from the page’s original content.

3Collection extension for Wikipedia, http://www.mediawiki.org/wiki/Extension:

Collection

59

Table 2: Comparison of user interface alternatives

No. Requirement S
ta

n
d
al

o
n
e

A
p
p
li

ca
ti

o
n

O
n
-t

h
e-

fl
y

B
ro

w
se

r
G

U
I

W
ik

i
G

U
I

1 Seamless Integration � � � �
3 Change Visibility � � � �
9 Easy Deployment � � � �
10 Facilitate Client Integration � � � �

12 Wiki System Independence � � � �

13 Flexible Response Handling � � � �

• The plug-in only needs to be installed once on the wiki, and then all

of the wiki users can benefit from the integration.

• The plug-in can handle various system response types, based on the

available capabilities of the wiki.

Disadvantages

• Since the plug-in is using the API that is specific to a wiki system, it

can only be used on that specific wiki and its clones. Thus, this option

does not provide a general solution that can be used on different wiki

systems.

Table 2 provides an overview of the comparison of user interface alter-

natives against the requirements described in Chapter 4.

60

5.2.2 Service Invocation

The second phase of the NLP analysis on wiki content is service invocation.

Interacting through the provided user interface, a user selects an NLP ser-

vice from a list of available services. After an optional step of customizing

the pipeline at runtime by providing parameters, a request from the client-

side is sent to the Semantic Assistants server, asking for the execution

of a specific pipeline on a set of inputs, namely wiki pages or literal text

chunks.

In order to use the services in the Semantic Assistants server, clients

have to make web service calls over the HTTP protocol. In view of this, let

us have a look at the alternative ways of invoking a service from a wiki.

1. Direct Java Calls via CSAL

Previously, we described in Section 2.5 that the Semantic Assistants archi-

tecture offers an abstraction layer that contains most of the common func-

tionalities needed to connect to the server and consume the results. This

thin layer, available as a JAR file, offers convenience methods to make the

server communication simpler to use on the client-side. Therefore, wikis

written in Java or any language that has native support to handle Java

objects only need to make simple Java calls to the designated methods in

order to invoke a service. This way, the creation of HTTP requests will be

hidden from the client behind the Semantic Assistants abstraction layer.

Advantages

• In addition to service invocation methods, the Semantic Assistants

CSAL libraries offer more convenience methods, such as pre-defined

user dialogs for providing service runtime parameters, as well as sys-

tem settings, such as customizing user interface or server properties.

Reusing this code can further facilitate the integration of new clients.

• Using Java for service execution provides more functionalities for

61

fault management and exception handling, compared to directly com-

municating with the server over HTTP. In particular, in SOAP re-

quests, a fault flows from the server to the client in the form of a

SOAP fault envelope that only consists of the fault code and a human

readable explanation. The information about the cause of the fault

and more specific details are optional in SOAP fault envelope syntax

and can be omitted, which in turn complicates the fault handling on

the client-side.

Disadvantages

• While this option offers convenient service invocation methods, as

well as the benefits of reusing the Semantic Assistants client-side

abstraction layer, it places a major constraint on the range of wikis.

For all of the non-Java compatible wiki engines, the gap between the

implementation language and Java must be filled with third-party

applications or libraries. For example, the PHP/Java Bridge4 is an

XML-based network protocol, which can be used to connect a native

script engine with a Java virtual machine. Therefore, re-using CSAL

functionalities is subject to the existence of such libraries.

2. Dynamically Generated SOAP Messages

Simple Object Access Protocol (SOAP) [BEK+00] is a protocol specification

that uses XML for exchanging information between applications via HTTP.

There are plenty of libraries and toolkits in different languages available

that allow developers to create and consume web services based on SOAP

messages. The Semantic Assistants server exposes a WSDL5 service de-

scription with SOAP bindings that specifies the location of the web service

and the operations it provides. Using this WSDL file, wikis can create a ser-

vice execution SOAP message from user inputs in the integration interface

and send it to the Semantic Assistants server.
4PHP/Java Bridge, http://php-java-bridge.sourceforge.net/
5Web Service Description Language, http://www.w3.org/TR/wsdl

62

Similarly, when the service execution is completed, the results will be

transmitted to the client in form of a SOAP response message. The wiki

then receives the message and extracts the NLP analysis results from the

XML document embedded inside the response envelope.

Advantages

• Since SOAP messages use XML as the standard message exchange

format, the Semantic Assistants server response can be directly placed

in its body and transmitted to the clients.

• Because SOAP messages are created programmatically by the wiki

system, an automatic generation of such requests can realize a proac-

tive behaviour for requesting service execution on the server. For

example, dynamic SOAP messages can be created automatically by

the wiki system to invoke an NLP service to update the wiki index

everytime a change is applied to the wiki content.

Disadvantages

• Although SOAP is an open standard, not all languages offer appropri-

ate libraries or development environment support. This limitation can

make the creation of SOAP messages difficult for plug-in developers

and system integrators.

3. SMW+ Wiki Web Services

SMW+6 is a collaborative semantic wiki software suite, developed by On-

toprise7, for embedding structured data within small business operations,

such as knowledge and project management. The SMW+ software bundle

is composed of the MediaWiki engine, along with a number of its exten-

sions.

6SMW+, http://smwforum.ontoprise.com/
7Ontoprise GmbH, http://www.ontoprise.de/

63

The Data Import extension8 is one of the core extensions of SMW+ that

enables users to integrate external data into the wiki from various sources,

such as CSV files, SPARQL endpoints and SOAP and RESTful web services.

Web services have to be defined prior to be used within the wiki using the

Wiki Web Service Description (WWSD) syntax provided by the Data Import

extension. A WWSD document is a dedicated article under the namespace

WebService that defines the web service URI, the methods it provides and

the possible result formats. Figure 17 presents a WWSD example, which

introduces the OpenCalais9 web service to the SMW+ wiki.

1 <WebService>

2 <uri name="http://api.opencalais.com/enlighten/?wsdl" />

3 <protocol>SOAP</protocol>

4 <method name="Enlighten" />

5 <parameter name="content" optional="false" path="/parameters/content" />

6 <parameter name="licenseID" optional="false" path="/parameters/licenseID" />

7 <parameter name="paramsXML" optional="true" path="/parameters/paramsXML" />

8 <result name="result" >

9 <part name="company" path="//EnlightenResult" xpath="//rdf:Description[./

rdf:type/@rdf:resource=’http://s.opencalais.com/1/type/em/e/Company

’]/c:name"/>

10 <part name="person" path="//EnlightenResult" xpath="//rdf:Description[./

rdf:type/@rdf:resource=’http://s.opencalais.com/1/type/em/e/Person’]/

c:name"/>

11 </result>

12 <displayPolicy>

13 <once/>

14 </displayPolicy>

15 <queryPolicy>

16 <maxAge value="10"></maxAge>

17 <delay value="0"/>

18 </queryPolicy>

19 <spanOfLife value="0" expiresAfterUpdate="true" />

20 </WebService>

Figure 17: The web service description for OpenCalais

The Data Import extension interprets each WWSD article into a web

service object and uses it to invoke its methods. After the successful in-

stantiation of the web service, one can directly call its methods within the

8Data Import Extension for MediaWiki, http://www.mediawiki.org/wiki/

Extension:Data_Import_Extension
9OpenCalais, http://www.opencalais.com/

64

wiki articles, either by using the designated GUI or inserting inline web

service calls. Web service calls are inline {{#ws}} markup that provide

the parameters specified in the definition of a call. Figure 18 shows the

web service call for OpenCalais, requesting a list of named entities of type

“Person” found in the provided content. The Data Import extension parser

engine parses the {{#ws}} markup and assigns the actual values to the

parameters and ultimately makes a service request to the web service URI.

When the service execution terminates, the markup gets replaced, either

by the results presented in the requested format or a fault message re-

ceived from the server response.

1 {{#ws:OpenCalais

2 | content = Albert Einstein was a physicist.

3 | ?result .person

4 | format= list

5 }}

Figure 18: A web service call for OpenCalais in SMW+

This idea can be reused by the integration to invoke Semantic Assis-

tants services from within the wiki articles. Special markups entered by

the user or generated by the integration user interface can represent a

service invocation request and then be transformed into a web service in-

vocation request by a plug-in, a proxy or a wiki component. Likewise,

the analysis results retrieved from the Semantic Assistants server will be

transformed into the requested format and presented in the wiki page.

Advantages

• Because the service description and invocation syntax is exclusive to

the extension and is independent of the wiki’s native syntax, it can be

reused on various wiki systems.

• The web service extension needs to be installed once one the wiki and

the integration will be available to all wiki users.

65

Disadvantages

• One of our Wiki-NLP integration goals it to provide wiki end-users

with NLP services that are beneficial to their task at hand. The list

of available services are dynamically generated considering the user

context. This means that wiki end-users are not necessarily aware of

the existence of such services. However, using this approach requires

them to have a knowledge of the service information, in particular,

their input and output types, prior to using them.

• The web services are described using formal languages that might

not be convenient for wiki users without background computer knowl-

edge.

Table 3 provides an overview of the comparison of service invocation

alternatives against the requirements described in Chapter 4.

Table 3: Comparison of service invocation alternatives

No. Requirement Java Calls SOAP Messages WWS

10 Facilitate Client Integration � � �
12 Wiki System Independence �∗ � �
13 Flexible Response Handling � � �
17 Proactive Service Execution � � �

* if the wiki is compatible with Java

5.2.3 Wiki Communication

Following the elaboration on user interaction and alternative ways of com-

municating with the Semantic Assistants server, this part focuses on the

other end of the communication channel: the wiki system. Communica-

tion with wikis, as explained in Steps (2) and (4) in the introduction of

Section 5.2, is divided into two sub-tasks:

Reading from the wiki. For NLP pipelines to perform analysis on wiki

content, they need to directly access the content of a single or a collection

66

of wiki pages. Usually, sending wiki page URLs to services in the Semantic

Assistants server is sufficient for GATE pipelines to retrieve the content

and perform analyses. However, each wiki page contains not only the

article content, but also the wiki’s navigation menu, header and footer that

are considered as noise and not meant to be analyzed. Moreover, when a

user wants to perform an analysis on a portion of an article, e.g., only one

paragraph, or when the content is not yet saved, i.e., user has typed the

content into the wiki page editor but not yet saved to the wiki database,

the usual fetching of content through the page URL would not retrieve the

correct input. Therefore, different levels of access to the wiki content must

be considered for the integration.

Writing to the wiki. The generated data from NLP services has to be

stored in the wiki database to become persistent. In order to store the

results, the integration must be able to communicate with the wiki engine

to write to its database.

The following are a number of possible ways to provide a communication

channel between the wiki system and the NLP pipelines inside the Seman-

tic Assistants architecture.

1. Web Scraping

Web scraping is the technique of extracting information from websites.

Web pages, such as wiki articles, are built using markup languages and

typically contain a wealth of useful data in textual form. The process of

web scraping mostly entails two main tasks: First, the web scraping API

should acquire access to the page containing the required data, e.g., by us-

ing HTTP clients. Second, the scraping API has to transform the retrieved

text into a structured document, such as XML. There are plenty of web

scraping APIs that allow developers to write scripts for customizing the

scraping methods. For the purpose of Wiki-NLP integration, this approach

can be used to extract textual content from an article inside a wiki page

and send it to the Semantic Assistants server for analysis.

67

Advantages

• The scraping API uses HTML pages rendered by the wiki engine to

parse their markup and extract the actual article content. Therefore,

the content retrieval process will be independent of the wiki system.

• Since the article content is already rendered by the wiki engine, the

system does not need to interpret the wiki-specific markup by itself.

• In addition to user-triggered web scraping, scraper bots can automat-

ically collect content on a scheduled basis to monitor the wiki content

as it changes over time.

Disadvantages

• Using the web scraping technique only partially satisfies the wiki com-

munication requirement: it is still not possible to write the generated

metadata back to the wiki database.

• Since web scraping is usually done by web crawlers, the typical com-

plications associated with crawlers, such as being slowed or blocked

by a website administrator, is present and thus can interrupt the

communication between the wiki and the Semantic Assistants server.

• The embedded metadata in HTML pages rendered by the wiki engine

are not visible in the page and therefore will be missed by the web

scraper bot. For instance, in Semantic MediaWiki, properties are

assigned to annotations using special markup that is not visible in

the HTML representation of the article. Therefore, for example, the

statement Montreal [[isLocatedIn::Canada]] will only print out

the word Montreal in the HTML output; the semantic property is not

visible to the scraper and will not be provided to NLP pipelines for

analysis.

• In addition to an article’s content, wiki pages usually contain naviga-

tional menus, footers and headers that are considered as data noise

68

and have to be removed from the content prior to sending it to anal-

ysis pipelines. Considering the various implementations of wiki en-

gines, removing such noise from data is a difficult task.

2. Using Wiki Bot Frameworks

Wiki bots are computer programs that run on wiki systems in a methodical,

automated manner and automatically manipulate their pages. They access

the wiki via an available API to perform repetitive tasks, such as maintain-

ing the wiki links, finding vandalism or mass editing. Recently, many bot

frameworks have been developed that allow programmers to build bots to

manage wiki content without the need to know the concrete implementa-

tion of their engines. For instance, at the time of this writing, MediaWiki

has more than twenty client API and bot frameworks10 written in ten differ-

ent languages, such as Java, Ruby or Python. Therefore, if the integration

is written in Java, it can use the MediaWiki Java bot framework11 that al-

lows connecting to, reading from and writing content to a MediaWiki-clone

wiki system. Similar bot frameworks for other wikis can also facilitate the

communication between the Semantic Assistants system and the desig-

nated wiki engines.

Advantages

• Using bot frameworks, the Wiki-NLP integration can instantiate a bot

object inside its implementation and communicate with the wiki with-

out knowing the wiki’s concrete implementation.

• Since bot frameworks provide low-level access to the wiki compo-

nents, an article’s content can be read directly from the database,

which allows the pipelines faster access, compared to the web scrap-

ing method, and without the problem of dealing with noise.

10MediaWiki API, http://www.mediawiki.org/wiki/API:Client_code
11Java Wiki Bot Framework, http://jwbf.sourceforge.net/

69

Disadvantages

• Wiki bot frameworks are developed using the underlying wiki API,

which is proprietary to that specific engine. Therefore, using the bot

framework to communicate with a wiki will bring dependency on its

API.

• Using wiki bots is restricted to the availability of an external bot frame-

work. This means that, if a bot framework or a similar medium to

access the wiki is not present, the integration will not be able to com-

municate with the wiki to perform the analysis.

3. Using The Wiki API

The most preferable way of communicating with a wiki system is using its

API, because it provides direct, low-level access to the data contained in the

wiki’s database. The difference between the wiki API and wiki bots is that

a wiki bot uses the API to perform functions on the wiki and thus provides

a more abstract way of communicating with the wiki engine for developers.

In addition, the wiki’s native API is written in the same language that the

wiki system is written in, whereas bot frameworks are available in various

programming languages. However, using the API over a bot framework pro-

vides a faster access to the wiki components, compared to a bot framework

by eliminating the need for passing through an abstraction layer. Also, the

wiki API exposes the full functionality of the wiki system, whereas a bot

framework may only offer a portion of the wiki’s available functionality.

Advantages

• Many wiki APIs, such as the MediaWiki API, can also transform an

article’s content to a wide range of other formats, such as XML, which

can be directly consumed by the analysis pipelines.

• In addition to retrieving article contents, Wiki APIs also offer access

to meta information, such as the wiki system, user and revision infor-

mation that might be be useful for the analysis pipelines.

70

Disadvantages

• Each wiki’s API is proprietary to its engine and thus, cannot be reused

on other wiki engines to communicate with its components.

• The API can only be used if the wiki offers such a feature. This means

that, if the wiki does not expose an API, the integration will not be able

to communicate with the wiki to perform the analysis.

• If the Wiki-NLP integration and the wiki API are written in two differ-

ent languages, there is still a need for an intermediary component to

enable the communication between the two parts.

4. Direct Access To The Wiki Database

Essentially, all of the wiki content, such as user information, article con-

tent and their associated metadata are stored in a single central database.

Wiki systems provide access to their database through a graphical user in-

terface, as well as APIs for system developers. However, in the absence of

an appropriate API or when only a subset of wiki functionality is provided

by the API, the integration will have to directly access the wiki database to

read the data or write the results.

Advantages

• Direct communication with a wiki database provides faster access to

its content compared to the previously described alternatives, since

there are no additional indirections between the integration and the

wiki content.

• By having the knowledge of the wiki database schema, in addition to

the raw wiki article content, further data can be extracted that is not

generally exposed by the wiki API, such as an article’s related RDF

data, permissions, etc.

71

Disadvantages

• Direct access to a wiki database requires concrete knowledge of the

wiki database schema. Since each wiki system has a different database

structure, using this approach will make the integration dependent

on the wiki implementation.

• Direct access to a wiki database also requires sufficient privileges

for manipulating the data. For anonymous bots or proxy servers,

such permissions might be denied by the wiki system and thus, the

communication will not be possible.

• Obviously, the integration needs to be updated every time the wiki

database schema is modified.

Table 4: Comparison of wiki communication alternatives

No. Requirement Scraping Wiki Bots Wiki API Wiki DB

10 Facilitate Client Integration � � � �

12 Wiki System Independence � � � �

13 Flexible Response Handling � � � �

14 Read Content from Wiki � � � �
15 Write Content to Wiki � � � �

Table 4 provides an overview of the comparison of wiki communication

alternatives against the requirements described in Chapter 4. While web

scraping methods provide access for reading a wiki article, they are not

able to write the results back to the wiki database. Other options, such as

wiki API or bots, provide the integration with the ability to communicate

with the wiki database, but introduce wiki dependency to the integration

architecture.

72

5.3 Transformation of Results

In this section, we discuss our design decision towards fulfilling Require-

ment #13, namely, Flexible Response Handling. In Section 2.1.2, we dis-

cussed wiki markup languages and how they vary in syntax and grammar

from one wiki engine to another. This inconsistency and the lack of a

common standard markup imposes a significant constraint on how our

integration can present service results in a way that can be consumed

by the wiki engines and subsequently by their users. We also described

in Section 2.5.3 that following a successful service execution, results are

gathered from the pipeline by the Semantic Assistants server and passed

to the client as an XML message. However, this XML message is not usable

per se for our end-users with limited knowledge of XML or the Semantic

Assistants ontology. Therefore, there exists a need to transform the service

results to one of the following formats:

HTML Markup. In this option, our integration parses the response XML

message. Based on the indicated output type, it produces the correspond-

ing HTML markup for, e.g., annotations, or anchors to result files on the

Semantic Assistants server.

Although transforming results to HTML markup provides a user-friendly

representation of the results, as it can be formatted with CSS, it is not

guaranteed that all wiki engines will allow HTML markup to be saved into

their database. For example, the MediaWiki engine does not allow any

HTML markup to be embedded in an article except for a handful of stan-

dard text formatting tags like <code>, <div>, and . Moreover, this

solution breaks the Separation of Concerns principle as it combines the

data model with its presentation and thus, makes the system maintenance

difficult.

Wiki Markup. In this option, our integration has to know the exact syn-

tax and grammar of the destination wiki engine to produce proper markup.

Based on the available features of the wiki, the integration then produces

appropriate markup for, e.g., annotations, wiki links, or new articles.

73

Compared to the previous solution, producing wiki markup has the ad-

vantage that it is not concerned with how the results are rendered and

displayed to the user, as it relies on the wiki rendering engine to transform

markup to an HTML representation. However, it is not easily extensible

and requires modifications on the integration core code to include new

grammars, as more wikis are integrated into the architecture.

5.3.1 Semantic Metadata Representation

In addition to natural language content created by NLP services, we also

need to consider how our integration will present the semantic metadata

generated by pipelines to the wiki, as described in Requirement #15.1. In

order to store semantic metadata in the wiki and make it accessible for the

wiki’s reasoning engine or external applications, the semantic results can

be transformed to one of the following formats:

Wiki Semantic Markup. Many wiki engines have built-in capabilities to

handle semantic metadata. For this, they either provide users with a sepa-

rate editor to define semantic entities in the wiki or use a special markup.

For example, in Semantic MediaWiki (see Section 3.2.1), entities can be de-

fined by using a special SMW syntax. When a page is saved to the database,

the SMW engine transforms the semantic markup to standard RDF triples

format and stores them in the database. While using this option hides

the complexity of transforming results to standard representation formats,

it requires the integration to know about each wiki’s semantic markup

syntax.

Standard Representation Languages. The semantic metadata generated

by NLP pipelines can be transformed to a standard representation format

using formal languages, like OWL, and then transmitted to the wiki. Some

wiki engines, like SweetWiki, allow the formal representation of semantic

data in RDF language to be imported into their database. For example,

74

for each annotation that is retrieved from a service result, it can be trans-

formed into an RDF triple using semantic frameworks like Jena12. Finally,

all the prepared triples can be exported to the XML format and transmitted

to the wiki database.

5.4 Wiki Independency

One of the most discussed features of our Wiki-NLP integration is wiki in-

dependence, as articulated in Requirement #12. Our integration envisions

an approach that can provide wiki systems with NLP techniques, without

requiring knowledge of their concrete implementation. Here, we detail de-

sign alternatives towards achieving this goal.

5.4.1 Module-based Architecture

In this option, each wiki engine’s structure and syntax is implemented as

a module that can be added to the Wiki-NLP architecture. This way, the

integration has to provide a public interface that each wiki can implement

to describe its structure and capabilities. At runtime, the wiki sending a

request to the Wiki-NLP integration has to announce its identity so that

the system can instantiate its corresponding module. This behaviour can

be achieved by using the Template Method design pattern [GHJV95]. The

integration will provide the abstract behaviour that is needed for commu-

nicating with a wiki system and each wiki module will provide the concrete

implementation. Using highly cohesive and loosely coupled wiki modules

will minimize the dependency of the integration to wikis, while the finer

granularity of the system makes it easier to understand, maintain, and

extend.

5.4.2 Semantics-based Architecture

In this option, each wiki engine’s structure and syntax is introduced to the

Wiki-NLP architecture through its ontology. “Ontology”, in the context of

12Jena Semantic Web Framework, http://jena.sourceforge.net/

75

computer science, is a term used to refer to the shared understanding of

some domain of interest [UG96]. An ontology contains a set of concepts,

e.g., entities or attributes, their definitions and inter-relationships. They

are mainly used to formalize knowledge, by using formal languages to al-

low machines to read and reason about it. In our Wiki-NLP integration, we

can use ontologies to formally describe wiki systems and their capabilities.

This way, if the ontology is expressive enough to describe a wiki system,

the Wiki-NLP integration does not need to know about the concrete imple-

mentation of the wiki engines, rather it uses automatic reasoning on their

ontologies to discover their structure and capabilities. Typical queries to

the automatic reasoning system are “What are the namespaces in this wiki

engine?” or “What file formats does the wiki engine allow to be uploaded

to the database?”. Also, having a wiki ontology allows the wiki engines

and the Wiki-NLP integration to evolve separately. For example, if a new

namespace is added to a wiki engine, only the corresponding engine ontol-

ogy needs to change and therefore, no code modification on the integration

side is required.

5.5 Wiki Ontology

Ontologies are typically expressed using declarative languages and we

chose OWL [Sah07] – an XML-based language for describing knowledge

and sharing ontologies endorsed by the World Wide Web Consortium – for

this purpose. The wiki ontology, as shown in Figure 19 is designed using

Protégé13, and reflects the concepts that are common to all wiki engines

and thus, plays the role of an upper ontology for different wiki engines.

This way, any new wiki ontology can import this ontology in its descrip-

tion file and reuse the concepts that have been already defined. The wiki

ontology OWL description can be found in Appendix A.

Our wiki ontology imports the Semantic Assistants Concept Upper on-

tology [WG09], a multi-purpose ontology that describes five core concepts

to model the relationships between users, their tasks, the artifacts involved

13Protégé, http://protege.stanford.edu/

76

Thing

Metadata

has subclass

Namespace

has subclass

cu:Artifact

has subclass

cu:Language

has subclass

cu:Format

has subclass

History

has subclass

cu:Tool

has subclass

Page

has subclass

Resource

has subclassWiki

has subclass

has belongsTo has

Content Page

has subclass

Talk Page

has subclass

has

hashas

has

cu:Natural Language

has subclass

cu:Artificial Language

has subclass

cu:Programming Language

has subclass

Wiki Markup

has subclass

Figure 19: Wiki upper ontology graph

and their format and language. Therefore, the prefix “cu” in the graph

nodes denotes that the concept is imported from the concept upper ontol-

ogy. One of the main concepts defined in the upper ontology is “Artifact”,

which is the parent concept for all kinds of objects like documents, files,

NLP services, parameters, and annotations and most of our wiki ontology

concepts are subclasses of this artifact class.

The main concepts of our ontology, as summarized in Table 5, are as fol-

lows:

Wiki. This class represents the wiki engines that we want to integrate

with NLP techniques. Each engine’s ontology has exactly one instance of

this class in its description that specifies the name and the version of the

wiki’s underlying engine.

77

Page. Pages are the constituent elements of wikis and present the actual

content of the wiki’s database. Pages in wikis are identified by their unique

titles and are divided into “content” pages, i.e., articles, and “talk” pages14

that provide users with a place to discuss their opinions about an article.

Namespace. Namespaces are pre-defined categories in wikis that seman-

tically classify pages at a high level. For example, the “Help” namespace in

the wiki implies that all the pages inside this namespace are intended to

help users of the wiki. Namespaces are also used to avoid name clashes in

a wiki; therefore, each page in the wiki belongsTo exactly one namespace.

Resource. In addition to articles, wikis also contain resources with arbi-

trary formats. For example, a wiki page can have zero or more pictures,

videos or other multimedia objects embedded in its content. The available

formats that a resource can have are inherited from the Semantic Assis-

tants concept upper ontology.

Metadata. As we defined in the wiki system specification section, each

wiki page can have additional data about its main content. For example,

each page in the wiki has one “History” page that chronologically lists

the modification history of its content, as well as the user information of

its editors. In addition, in semantic wikis, semantic metadata such as

annotations are added to the page content. This concept defines all the

metadata types that can be associated with a wiki page.

Wiki Markup. This concept is the parent node for an ontological repre-

sentation of a wiki markup language and is considered as an artificial

language that the wiki page contents are written in. Each wiki engine on-

tology can optionally instantiate this class to allow the NLP integration to

transform the wiki markup to other formats, and vice versa. This node is

also considered in design of our ontology for when a standard wiki markup

language emerges.

14For wikis that combine the content and talk pages into one page, the “has” relation-

ship is recursive to the content page.

78

Table 5: Concepts in wiki upper ontology

Concept Description Example

Wiki Classes of wiki engines “MediaWiki”

Page Wiki elements encompassing tex-

tual content

“Semantic Web”

Namespace Category names to differentiate

pages at a high level

“Help”, “Project”

Resource Files with arbitrary formats Picture.jpg

Metadata Metadata associated with wiki

pages

Revision History, Se-

mantic Annotations

Wiki Markup Ontological representation of wiki

syntax

MediaWiki Markup

5.6 Developed Solution

In this section, we derive a concrete architecture for our Wiki-NLP inte-

gration. The chosen solution described here is essentially a collaborative

approach, combining the power of a client-side wiki plug-in and a server-

side wiki connector component as described in Section 5.1, working hand-

in-hand to deliver the NLP capabilities within a wiki system. Figure 20

presents our developed solution architecture, where the Wiki-NLP integra-

tion components are highlighted.

The main idea of this architecture is to divide the responsibilities be-

tween the two communication points, based on their capabilities. The

wiki plug-in, specifically designed for the Wiki-NLP integration, bears the

responsibility of wiki-specific tasks, such as accessing the database or

generating markup. The server-side wiki component, on the other hand,

encompasses the common functionalities that can be reused by different

wikis, such as presenting the Semantic Assistants user interface, handling

service invocation requests and refining the Semantic Assistants server re-

sponse messages.

The wiki component – we call it the Wiki-SA Connector – is a proxy

server that acts as an intermediator between the Semantic Assistants

server and a wiki system. It has three sub-components: (1) a user-interface

79

Rendering Engine

Database Interface

Graphical User Interface
W

eb
 S

erver

C
lien

t−S
id

e A
b

stractio
n

 L
ayer

Database

Wiki Ontologies

Language

Descriptions

Service

A
P

I

P
lu

g
−in

U
ser Interface

S
ervice B

roker

Web Server
NLP Service Connector

W
iki H

elper

W
iki−S

A
 C

o
n

n
ecto

r

Browser

JavaScript

Wiki System Semantic Assistants

Service Invocation

Service Information

Figure 20: Developed solution system architecture

module that can inject custom code into the user’s browser, e.g., to present

the integration interface, (2) a wiki helper to communicate with its known

wiki engines, and (3) a service broker module that is responsible for dele-

gating user requests to the Semantic Assistants server.

The wiki plug-in is typically implemented using the wiki API and there-

fore, it can be used for customizing the wiki user interface for Wiki-NLP

integration, or directly accessing wiki system components, such as its

database. The plug-in is supposed to be a light-weight extension to the

wiki system architecture and is considered in the architecture to perform

tasks that are not already provided by the Wiki-SA Connector, e.g., modi-

fying a wiki’s interface.

This system design provides a separation of concerns between the ar-

chitecture components, which facilitates system maintenance and the in-

tegration of new wiki plug-ins: The wiki plug-in does not need to worry

about how to handle the complex mechanism of requesting NLP services

and resolving the result objects. Reciprocally, the wiki component does not

need to be concerned with accessing the wiki database and generating the

appropriate markup based on the wiki engine requesting the service. In

other words, the Wiki-SA connector will generate the data model, i.e., NLP

service results, and the wiki plug-in provides users with the presentation

80

of the results.

The only disadvantage of this architecture is that it requires both com-

ponents to be available to deploy NLP analysis on the wiki content. This

means that each component in this architecture will not be able to deliver

the results to the user without the presence of the other component.

For the transformation of results, as discussed in the previous section,

we adopted the approach of transforming Semantic Assistants server re-

sponses to wiki markup, when such capability is available in the wiki

helper module. Here, the integration will interpret service results into Java

objects and the wiki helper module will transform them to wiki markup, us-

ing its available parsers. This way, not the integration but the wiki engine

is responsible for formatting the markup and presenting it to the user in

such a way that the original content of the article and the generated meta-

data can be clearly distinguished. Figure 21 presents an abstract diagram

for this process.

Database

C
S

A
L

 L
ib

raries

R1 R2 R3 ...

MediaWiki

...

W
iki P

arsers

TWikiXML

W
eb

 S
erver

Java Object

Creole

Wiki
Markup

Wiki Engine

Wiki SystemWiki−SA IntegratorSemantic Assistants

Figure 21: Transforming service results to wiki markup

5.7 Résumé

This chapter presented how we translated the requirements identified in

the previous chapter into concrete system components. First, in Sec-

tion 5.1, we looked at various ways of juxtaposing the system components

to employ NLP services on wiki content brokered by the Semantic Assis-

tants architecture. Then, in Section 5.2, we described the four phases of

81

NLP analysis over wiki content and discussed how they can be realized

through the use of available technologies. We also presented an ontol-

ogy that we developed to achieve wiki independency in our architecture in

Section 5.4. Finally, in Section 5.6, we presented our developed solution,

which depicts an architecture for the integration of NLP services and wiki

systems. In the next chapter, we will discuss the implementation details

of our chosen solution.

82

Chapter 6

Implementation and Application

This chapter details the steps taken during the implementation process

of the solution developed in Chapter 5. We start this chapter by defining

the essential components of our system design and then look into their im-

plementations. In each section, we also present how the implementation

is applied to a real-world wiki engine. Finally, we investigate how differ-

ent components communicate with each other and illustrate a scenario to

describe the overall workflow of our system.

6.1 System Overview

The system architecture depicted in Figure 22 shows how the integration

components are tied together and merged into the Semantic Assistants ar-

chitecture. Before detailing the implementation of our system components,

we have to justify the programming language that is used for our system

implementation. The Wiki-NLP integration is realized as a Java-based web

application. This is because, compared to server-side scripting languages,

such as PHP1 or ASP2, Java-based web applications have the following

advantages:

Portability. Web applications written in the Java language run inside

1Hypertext Processor, http://www.php.net/
2Active Server Pages, http://msdn.microsoft.com/en-us/library/aa286483.

aspx

83

Tier 2: Presentation and InteractionTier 1: Clients Tier 3: Analysis and Retrieval Tier 4: Resources

B
row

ser
D

esktop A
pplication

W
eb S

erver

NLP Service Connector

NLP Subsystem

Wiki−NLP Integration

Wiki System

Wiki−SA Connector

W
eb

 S
erver

W
eb

 S
erver

Semantic Assistants Server

Client−Side Abstraction Layer

Service Invocation

Service Information

Graphical User Interface

Rendering Engine

Database Interface
A

P
I

P
lu

g
−in

Service Broker

User Interface Module

Wiki Helper Module

Language Services

Information Extraction

Automatic Summarization

Question Answering

Index Generation

Information Retrieval

Wiki

Ontologies

Database

Language

Service

Descriptions

Indexed

Documents

Indexed

Documents

Figure 22: Wiki-NLP integration merged with the Semantic Assistants ar-

chitecture

a Java Virtual Machine (JVM) on the server environment. Unlike

server-side scripting languages that require specific compilers or in-

terpreters to be installed on the server, Java applications are neither

operating system nor browser dependent3.

Efficiency. Once a Java application is loaded into the JVM, it remains in

the server’s memory as a single object instance and therefore, client

requests are handled through simple and lightweight method calls.

Also, In Java applications, concurrent requests are handled by sepa-

rate threads with Java’s built-in constructs to support their “synchro-

nization”, and thus, they are scalable as well.

3Except for Java Applets that require a Java plug-in to be installed on the browser.

84

In our system architecture, the Wiki-NLP integration web application,

called the Wiki-SA Connector, is a Java-based HTTP proxy server that pro-

vides the means for system components to communicate and exchange

data with each other. In order to use the proxy server, it first has to be de-

ployed in an application container. A container provides the environment

for the web application to run. It translates the request and response data

between raw protocol formats to Java representations. The Semantic Assis-

tants servlet can be deployed in the same web container as the Semantic

Assistants server, or on a remote machine, provided that both machines

are accessible over the HTTP protocol.

Once the connector is deployed, it constantly listens for incoming re-

quests over the HTTP protocol. Since the proxy accepts both HTTP GET

and POST requests, a user’s request for a wiki page can be sent to the

proxy directly from a browser’s address bar, upon clicking on a hyperlink

or as a result of an HTML form submission. When the request is validated,

the proxy server will execute the command retrieved from the request’s

body. For example, when a client requests a wiki page through the proxy,

the servlet fetches the content of the wiki page and generates a Java Server

Pages (JSP) [CEJ+05] page containing the wiki’s original content, as well

as the Semantic Assistants user interface. The JSP page is then compiled

into HTML code and returned to the browser, thus creating a seamless ex-

perience for users. Figure 23 presents the high-level system interactions,

both when the wiki page is requested directly from the wiki web server (the

dotted line) and through the Semantic Assistants proxy server (the solid

line).

Similarly, when a service execution request is sent to the proxy server,

following the request validation, it is translated to a Java call to the Se-

mantic Assistants server, triggering the execution of an NLP service. The

result of the service execution is sent back to the proxy server to be writ-

ten to the destination wiki database and consequently, returned to the

user’s browser. In the following section, we will examine the details of our

Semantic Assistants servlet component.

85

(1)

(2)

(6)

(3)

(4)

(5)

(1)

(2)

User’s Machine Wiki−NLP Proxy Server SA Server

Wiki Web Server

Figure 23: Communication flow between wiki system, wiki web server and

the Semantic Assistants servlet

6.2 The Semantic Assistants Servlet

The Semantic Assistants Servlet component is a Java class that conforms

to the Java Servlet API4, a protocol by which a Java class can respond to

requests over the HTTP protocol. Servlets can be thought of as the Java

counterpart to non-Java dynamic web content technologies. They typi-

cally offer the capability to process form data, provide dynamic content

or manage state information. In our system architecture, the Semantic

Assistants Servlet plays the role of an HTTP proxy server, acting as an

intermediator between the Semantic Assistants server, the wiki system

and the user’s browser. The servlet is designed using the Front Controller

Pattern [AMC03] and therefore provides a centralized entry point for han-

dling application requests. In other words, all the requests from the user’s

browser are sent to the servlet and it will in turn provide the browser with

the outcome of the demanded action, such as wiki content or the capability

to inquire about and invoke available NLP services.

The Semantic Assistants servlet has four main responsibilities:

1. Pre-processing of requests. Every application request received by

the servlet is first validated before being dispatched to the business logic.

4Java Servlet API, http://download.oracle.com/docs/cd/E17802_01/products/

products/servlet/2.5/docs/servlet-2_5-mr2/

86

The servlet performs a check on all the necessary parameters to execute

the demanded action by examining the request’s parameters found in its

query string (in case of a HTTP GET request) or the request header (in case

of a HTTP POST request), as well as cookies embedded in the body of the

request. A list of parameters found in each service request can be found

in Table 6. Pre-processing the requests provides a preemptive behaviour

against malicious or faulty requests to be sent to the Semantic Assistants

server.

Table 6: List of parameters in HTTP service requests

Parameter Description Possible Value

Action Action to be executed by servlet “Proxy”, “Invoke”

Wiki Engine Name of wiki engine “MediaWiki”, “TWiki”

Wiki URL URL of the wiki engine any URL

Username Bot username any string

Password Bot password any string

Scope Where the results should be written “self”,“other”

Target The page name to write the results any valid page name

ServiceName Name of service any string

Params Service’s Runtime Parameters delimited list of strings

Input List of wiki pages as service input delimited list of URLs

Lang Languages that the user know “English”, “Spanish”

Format Desired response format “XML”, “Markup” (default)

2. Dispatching requests to the business logic. Following the pre-pro-

cessing phase, the servlet then dispatches the request parameters to a

wiki factory class, which decides whether the underlying wiki engine is

supported by the integration. The factory class, as the name suggests, is a

Java class using the Factory Method Pattern [AMC03] that will match the

underlying wiki engine against the known wikis residing in the servlet’s

repository of wiki ontologies. Consequently, the request would continue

to be processed in the business logic with the right type of wiki object

or returned back to the servlet with an error message to be sent to the

browser. Section 6.2.2 provides more details on the wiki object creation

87

process.

3. Controlling the display flow. Based on the status of the pre-proces-

sing phase or business logic outcome, the servlet maps the request to a

chosen JSP page for the templating mechanism described in Section 6.4.1.

For example, if an exception occurs during the pre-processing or service

execution, the servlet can store the exception in the request object and

forward the display to a JSP page, providing the user with detailed infor-

mation about the exception.

4. Maintaining the ontology model. As we described earlier in Sec-

tion 5.5, wikis are introduced to the Wiki-NLP integration by their ontolo-

gies. The Semantic Assistants servlet’s OntologyKeeper class is specif-

ically designed to load and query wiki ontologies. This class keeps the

in-memory model of ontologies during the lifecycle of the servlet and can

query the servlet’s in-memory ontology model using SPARQL or Protégé

libraries.

As mentioned earlier, the Semantic Assistants servlet acts as an inter-

mediator between the Semantic Assistants server, the wiki system and the

user’s browser. For each of these system endpoints, there exists a sub-

component in the servlet, specifically concerned with the endpoint’s busi-

ness logic. This way, having separate modules allows the sub-components

to evolve and extend independently.

6.2.1 The User Interface Module

This module is responsible for generating the Semantic Assistants user

interface for wikis. Since wikis are accessible through Web browsers, this

module is designed to generate an HTML representation of the Semantic

Assistants user interface, allowing users to see available assistants and

invoke arbitrary NLP services, as shown in Figure 24.

The user interface of the Wiki-NLP integration uses tabs to divide the

interface content into separate panes, which can be viewed one at a time.

This way, wiki users are not overwhelmed with a lot of options, and the

88

Figure 24: Semantic Assistants user interface generated by the servlet

design allows more features to be added to the user interface in additional

tabs.

The first tab of the integration user interface allows users to inquire

about available NLP services and customize them at runtime. It also lets

users add or remove pages from their “collection”. Each page URL that is

added to the collection is kept inside a cookie in the user’s browser. This

way, a user can navigate to other pages and add them to the collection. Us-

ing the collection feature, users can execute an NLP pipeline on all of their

selected pages at once. The list of available assistants is retrieved from the

Semantic Assistants server every time the interface is requested by a user.

Therefore, when a new service is added to the Semantic Assistants server,

the list will be automatically updated.

The second tab gives users the chance to select the location where the

service results should be written. The available options are provided to

users by reasoning on the underlying wiki engine ontology. For example,

as shown in Figure 25, when a user chooses to store the results in a sep-

arate page from the original article, the user interface module will ask the

servlet’s OntologyKeeper class to return all the namespaces of the wiki

by querying its ontology. Finally, by pressing the “Run Service” button, a

service invocation request is sent to the servlet via AJAX technology, along

with any required information, e.g., the name of the requested service or

list of input pages.

The third tab provides users with the ability to change the Semantic As-

sistants server that they are connected to, by selecting from a pre-defined

list of servers, or defining a custom one. This way, users can dynamically

89

Figure 25: Semantic Assistants user interface second tab

change servers to have access to a variety of NLP services. The selected

server address is also stored in the user’s browser and thus, will be re-

membered the next time he asks for the proxy page.

The fourth tab is designed as a place to provide users with log messages

sent by the servlet on the progress of an NLP service being executed in the

server. This tab is automatically activated when a service execution is

finished. It informs the user on the status of the process and the place to

find the results.

While the static elements of the user interface are pre-defined in the

Semantic Assistants proxy JSP page, dynamic content is generated by the

user interface module and embedded in the page. For example, Figure 26

shows an excerpt of the servlet’s proxy JSP page. It can be seen that the

static parts of the JSP page, like the table structure, are literally placed in

the page, whereas the dynamic parts, like the list of available assistants,

are inserted by direct Java calls. Line 5 of the excerpt, starting with “<%”

and ending with “%>”, asks the servlet to place a Java call to the desig-

nated class and replace the line with the method’s return value.

For on-the-fly modification of the user interface, intended divisions are

coded inside the page using HTML div elements, in order to inform the

servlet about the place to inject the generated code. For instance, line 15

of the excerpt defines a part of the page as “saRTParams”, which will be

used to embed service runtime parameters textfields. When a service is se-

lected by a user from the list of available assistants, the page’s JavaScript

code, as shown in Figure 27, sends a request to the servlet using AJAX

technology, to inquire about its runtime parameters. The returned results

90

1 <table>
2 <tr>
3 <td>
4 <label for="semAssistServices" id="lblServices">Available Assistants</label>
5 <%= HTMLGenerator.servicesCombobox(SemAssistServlet.services) %>

6 </td>
7 </tr>
8 <tr>
9 <td>

10 <label for="saRTParams" id="lblParams">Runtime Parameters</label>
11 </td>
12 </tr>
13 <tr>
14 <td>
15
16 </td>
17 </tr>
18 </table>

Figure 26: The proxy JSP page code

from the request will be injected into the page’s division identified as “saRT-

Params”.

1 // Sending an XMLHttpRequest to the servlet via AJAX

2 var selectedService = $("#semAssistServices option:selected").val();

3 var req = proxyServer.concat("params&serviceName=").concat(selectedService);

4 xmlhttp.open("GET",req,true);

5 xmlhttp.send();

6

7 // Injecting the results to the page using jQuery

8 xmlhttp.onreadystatechange=function(){
9 if (xmlhttp.readyState==4 && xmlhttp.status==200){

10 $("#saRTParams").html(xmlhttp.responseText);

11 }
12 };

Figure 27: JavaScript code for on-the-fly user interface modification

6.2.2 The Wiki Helper Module

The wiki helper module encompasses the classes required for communi-

cating with wiki engines. This module contains the wiki factory class that

delegates the application requests to the designated wiki class. It works

91

closely with the Semantic Assistants Servlet’s wiki ontology repository (see

Section 6.2.4). Each known wiki engine described in the repository must

have its associated classes in this module that knows how to make use

of the ontology: We call this class the WikiOntoKeeper. In addition, each

wiki engine must have two other separate classes: (1) a class that can con-

nect to the wiki engine and is responsible for reading from and writing to

the wiki database: We call it the WikiHelper; (2) a class that can transform

service result Java objects to the wiki’s specific markup, the WikiParser.

On each servlet bootstrapping, the list of known wikis is created by the

servlet’s OntologyKeeper class. This list is sent to the WikiFactory class

when a request for a wiki comes in. The factory class then matches the

wiki engine parameter against the list of known wikis, and if a match is

found, the correct type of wiki engine object gets created. The wiki object

itself will bear the responsibility of creating its three helper, parser and

ontology keeper objects along with any other needed classes. Therefore, as

far as the servlet is concerned, it can instantiate a wiki object, as shown

in Figure 28, without worrying about the concrete type that will be defined

at runtime.

1 // Concrete wiki type is determined at runtime by examining the input argument

2 WikiEngine wiki = WikiFactory.getWiki(wikiEngine);

Figure 28: Java code to instantiate a wiki object

Figure 29 illustrates the wiki factory pattern used to dynamically create

a “MediaWiki” engine object.

6.2.3 The Semantic Assistants Broker

The Semantic Assistants Broker module is the connecting point of the

servlet to the Semantic Assistants server. When a service execution re-

quest is received by the servlet, it is dispatched to this module after the

pre-processing phase. This module contains a “broker” class that con-

nects to the Semantic Assistants server defined in the request parameter

and triggers the execution of an NLP service. Since the broker module

92

«abstract»
WikiEngine

+getHelper()
+getParser()
+getOntologyKeeper()

SemAssistServlet
List<Wiki> knownWikis
+getWiki()

WikiFactory
+createWiki()

MediaWiki
-MediaWikiHelper helper
-MediaWikiParser parser
-MediaWikiOntoKeeper ontoKeeper
+getHelper()
+getParser()
+getOntologyKeeper()

«abstract»
WikiHelper

+getPageContent()
+writeToSamePage()
+writeToOtherPage()
+createBot()

«abstract»
WikiParser

+translateResults()
+removeTemplate()
+updateTemplate()

MediaWikiHelper
+getPageContent()
+writeToSamePage()
+writeToOtherPage()
+createBot()

MediaWikiParser
+translateResults()
+removeTemplate()
+updateTemplate()
+transformToHTML()
+createTypePage()

MediaWikiOntoKeeper
+getNamespaces()
...

«abstract»
WikiOntoKeeper

+getNamespaces()

«abstract»
WikiEngine

+getHelper()
+getParser()
+getOntologyKeeper()

WikiFactory
+createWiki()

MediaWiki
-MediaWikiHelper helper
-MediaWikiParser parser
-MediaWikiOntoKeeper ontoKeeper
+getHelper()
+getParser()
+getOntologyKeeper()

«abstract»
WikiHelper

+getPageContent()
+writeToSamePage()
+writeToOtherPage()
+createBot()

«abstract»
WikiParser

+translateResults()
+removeTemplate()
+updateTemplate()

MediaWikiHelper
+getPageContent()
+writeToSamePage()
+writeToOtherPage()
+createBot()

MediaWikiParser
+translateResults()
+removeTemplate()
+updateTemplate()
+transformToHTML()
+createTypePage()

MediaWikiOntoKeeper
+getNamespaces()
...

«abstract»
WikiOntoKeeper

+getNamespaces()

Wiki Helper Module

SemAssistServlet
List<Wiki> knownWikis
+getWiki()

Semantic Assistants Servlet

BaseOntoKeeper
-baseModelInstance
+createServiceModel()

Figure 29: UML class diagram presenting the wiki factory pattern

classes are written in Java, they can directly use the Semantic Assistants

CSAL libraries (see Section 2.5) that further facilitate the communication

with the Semantic Assistants server, as well as transform service results

to Java objects accessible by the wiki’s helper and parser classes.

6.2.4 The Wiki Ontology Repository

The last sub-component of the Semantic Assistants Servlet to describe is

the wiki ontology repository. The ontology repository resides inside the

servlet’s web application and contains the wiki upper ontology file as de-

scribed in Section 5.4, along with formal descriptions of supported wiki

engines in form of OWL files. On each servlet bootstrapping, the servlet’s

93

ontology keeper class runs over the repository OWL files and creates an in-

memory model of the wikis by parsing them using Protégé’s OWL libraries.

The in-memory model is created only once, because parsing OWL code and

constructing the appropriate data structures is a time-consuming process,

despite the efficiency of the Protégé libraries. Therefore, the same consis-

tent model that is created at start up is served to wiki ontology keeper

classes faster and without having to parse and repeatedly process the

same data.

In our implementation, we have defined a wiki ontology for the Medi-

aWiki engine. The MediaWiki ontology imports the wiki upper ontology

class and therefore inherits all its concepts such as pages, namespaces

and resources. Specialized concepts, only applicable to MediaWiki, such

as Virtual namespaces5, were added to the ontology. The complete Medi-

aWiki OWL file is provided in Appendix B.

6.3 The Semantic Assistants Wiki Plug-in

The wiki plug-ins described in our architecture are typically implemented

in the same language as their wiki engines. The main purpose of a plug-

in is to provide functionalities that cannot be offered through the servlet,

such as proactive service execution described in Requirement #17. For

example, the plug-in can be designed in a way that creates pre-defined

service requests to the Semantic Assistants Servlet on a time or event trig-

gered basis. Moreover, since the plug-in is installed on the wiki and has

direct access to the wiki database, it can patrol content changes in the wiki

and create dynamic service execution requests to the servlet to analyze the

new content or flag already existing results as outdated when the original

content of the page changes.

For our MediaWiki integration, we have developed an extension written

in PHP. Once installed, it introduces a new menu item to the wiki’s naviga-

tional menu and adds six templates to customize NLP result presentation

in wiki pages. The Semantic Assistants MediaWiki plug-in is a light-weight

5MediaWiki Namespaces,http://www.mediawiki.org/wiki/Help:Namespaces

94

extension, in fact, its whole implementation code is shown in Figure 30.

1 <?php

2 # Not a valid entry point, skip unless MEDIAWIKI is defined

3 if (!defined(’MEDIAWIKI’)) {
4 exit(1) ;

5 }
6

7 $dir = dirname(FILE) . ’/’;

8

9 # Extension information to be diplayed in the ”Version” page

10 $wgExtensionCredits[’semantic’][] = array(

11 ’path’ => FILE ,

12 ’name’ => ’Semantic Assistants’,

13 ’version’ => ’1.0’,

14 ’author’ => array(’Bahar Sateli’),

15 ’description’ => ’Offers NLP services by connecting the Wiki to the Semantic

Assistants framework.’,

16 ’url’ => ’http://www.semanticsoftware.info/semantic-assistants-project’,

17) ;

18

19 # Set up hook

20 $wgHooks[’MonoBookTemplateToolboxEnd’][] = ’wfToolboxLink’;

21

22 function wfToolboxLink(&$monobook) {
23 # Create a link in the menu pointing to the Wiki−NLP servlet

24 print(" <a href=\"http://loompa.cs.concordia.ca:8080/Wiki-NLP/SemAssistServlet

?action=proxy\">Semantic Assistants");

25 return true;

26 }
27 ?>

Figure 30: The Semantic Assistants MediaWiki plug-in code

Figure 31(a) presents the MediaWiki’s Version page6 that shows the

Semantic Assistants Wiki plug-in installed on its engine. The Semantic

Assistants menu item as shown in Figure 31(b) provides the users with the

ability to request NLP services on any wiki page through the ease of one

click. Clicking on the “Semantic Assistants” link causes a proxy request

to be sent to the Semantic Assistants servlet. From the user’s point of

view, the page is simply reloaded, whereas the content of the wiki page is

now served via the Semantic Assistants proxy server and has the Semantic

Assistants user interface embedded in it.

6MediaWiki Version Page, http://meta.wikimedia.org/wiki/Special:Version

95

Figure 31: Semantic Assistants plug-in installed on MediaWiki

As mentioned above, the second feature of the Semantic Assistants Me-

diaWiki plug-in is the addition of six new templates. These templates are

used to present the service results once they are written back to the wiki’s

database. Provided that the structure of the templates is preserved, the

wiki administrators can optionally add their desired stylesheets for the

results’ representation. We will talk more about the templates in Sec-

tion 6.4.1.

6.4 Storing and Presenting Service Results

The ultimate goal of our Wiki-NLP integration is to create a “self-aware”

wiki that can develop and organize its content. Therefore, unless the re-

sults from NLP services are presented to users or become persistent in

the wiki, the integration would not add any valuable advancement to the

current state of the underlying wiki system. Transforming the NLP service

results to wiki content is one of the most challenging parts of the integra-

tion, due to the fact that each wiki engine has its own proprietary markup

and database schema as explained in Section 2.1.2. In this section, we

explain how our integration manages this important task.

96

6.4.1 Templating Mechanism

Following a successful NLP service execution by the Semantic Assistants

server, results are passed to the servlet’s broker module to be refined for

the wiki. The broker module interprets the server’s XML response and

transforms the message into an array of Java objects. This is the ultimate

extent that our integration can stay abstract from a wiki engine. From

this point on, service results are transformed to wiki-specific markup and

prepared for the templating mechanism. The templating mechanism is

the process of embedding service results into wiki-specific templates for

presentation. This mechanism separates the data model from its presen-

tation and provides the opportunity to create multiple views for a single

model for different purposes. Templating is a collaborative task performed

by the Semantic Assistants servlet and the wiki plug-in. The wiki helper

module prepares the markup by placing results within their correspond-

ing templates and storing them in the wiki’s database. Once a wiki page

is viewed by the user, the templates installed on the wiki will render the

template markup to generate appropriate HTML representation.

For our MediaWiki integration, the Semantic Assistants templates are

designed using the wiki’s built-in Templates feature7. A MediaWiki tem-

plate can contain parameters by putting a parameter name in three right

and left curly brackets {{{ }}}. On each template invocation inside a wiki

page, the template call is replaced by the template content, where the

parameters with matching names are replaced by their values or with de-

faults. The Semantic Assistants plug-in leverages this useful feature of

MediaWiki to create the following templates:

Semantic Assistants Template. This template is specifically designed

to point out the start and end position of the Semantic Assistants service

results in a wiki page’s markup. It is important to separate the NLP ser-

vice results from the page’s original markup to avoid user confusion over

what already existed in the wiki and what has been developed through the

help of NLP pipelines, as postulated in Requirement #3. The Semantic

7MediaWiki Templates, http://meta.wikimedia.org/wiki/Help:Template

97

Assistants template has three parameters: (1) the name of the NLP ser-

vice executed on the page content, (2) the wiki page name, and (3) the

absolute URL of the wiki page that has been analyzed. Having these pa-

rameters in the template helps the user to visually identify the service that

was executed and its input wiki page. Moreover, when the same service is

re-run on the document, the wiki helper module can accurately locate the

service’s result, as postulated in Requirement #3, and update its content,

instead of adding a set of new results to the page.

1 <!−− Semantic Assistants Results Begin −−>

2 {{{serviceName}}} on {{{doc}}} [{{{url}}} (View)]

3 ...

4 {{{serviceName}}} {{{doc}}}
5 <!−− Semantic Assistants Results End −−>

Figure 32: MediaWiki Semantic Assistants service template markup

Semantic Assistants Table. This template is designed to present the an-

notations retrieved from a Semantic Assistants NLP service. According to

the Semantic Assistants framework, each “Annotation” has five distinctive

parts: (1) a content attribute that holds the annotation’s string value, (2) a

type attribute that represents the annotation type, (3) a start attribute

that shows the start offset of the annotation in the text, (4) an end at-

tribute that shows the end offset of the annotation in the text, and (5) a

feature attribute that contains additional information about the annotated

entity. For each of these annotation attributes, there exists a parameter in

the Semantic Assistants table template as shown in Figure 33.

When an array of annotations are passed to the wiki helper module,

it embeds the annotations’ content inside the template markup, so that

they can be stored in the database. For example, Figure 34 shows the

generated table from a service execution in MediaWiki. In this example,

the Semantic Assistants “Person and Location Extractor” service has been

run on a “Kate Middleton” wiki page. The MediaWiki wiki helper module

places the annotations inside the Semantic Assistants Table template and

duplicates the row markup (see line 7 of Figure 33) for each generated

98

1 {| class="wikitable" style="height:50px"

2 ! width="200" | Content

3 ! width="80" | Type

4 ! width="50" style="text-align: center;" | Start

5 ! width="50" style="text-align: center;" | End

6 ! Features

7 |− valign="top" |{{{content}}} | style="text-align: center;" | [[Property:{{{type}}}|{{{type}}}]] |
style="text-align: center;" | {{{start}}} | style="text-align: center;" | {{{end}}} | {{{
features}}}

8 |}

Figure 33: MediaWiki Semantic Assistants Table template markup

annotation.

Figure 34: Semantic Assistants annotations view in MediaWiki

Semantic Assistants Block. This template is designed for the Semantic

Assistants “Boundless Annotations” type of service results, as described

in Section 2.5.3. According to the Semantic Assistants framework, bound-

less annotations are similar to regular annotations, except that they apply

to a document as a whole and do not have specific “start” and “end” off-

sets. While this annotation type bears the same structure as regular an-

notations, it is not appropriate to generate a table structure to represent

them. Therefore, the wiki helper module assembles boundless annotations

content into one string value and places them inside the Semantic Assis-

tants block template. Figure 35 shows the template markup designed for

MediaWiki.

Figure 36 shows the MediaWiki Semantic Assistants Block template

99

1 <table style="border: 2px dotted; border-color: #545454;

2 background-color: #F0F0F0; padding: .5em 1em; float: left;

3 margin-bottom: 2em; color: #000;">

4 <tr>
5 <td>{{{content}}}</td>
6 </tr>
7 </table>

Figure 35: MediaWiki Semantic Assistants Block template markup

generated from running the Semantic Assistants “Simple Summarizer” ser-

vice on the same wiki page as the previous example.

Figure 36: Semantic Assistants Block preview in MediaWiki, showing a

summary generated from a wiki page

6.4.2 Storing the Markup

The next important task is to store the results in the wiki, so that they

become persistent and can be reused later on. This is important because,

according to Requirement #17, the service execution can occur proactively

and does not require user interaction. In such cases, service results, such

as generated content, has to be stored in the wiki so that users can access

them later. Since storing markup needs direct interaction with the wiki

database, and each wiki has its own schema, this task is handled by the

wiki helper module inside the servlet. The wiki helper class can use the

wiki’s Java API, if offered by its engine, or rely on third party libraries to

connect to the wiki database.

100

For the MediaWiki integration, our implementation reuses the Java

Wiki Bot Framework8, an open-source third party library that provides

methods to connect, modify and read collections of articles. This frame-

work also provides the means to create wiki bots for batch processing of

wiki content. Figure 37 shows how the bot is used to save NLP results to

a wiki page.

1 /∗∗ Stores the markup to the specified wiki page.

2 ∗ @param content content to write

3 ∗ @param pageName name of the wiki page

4 ∗ ∗/

5 @Override

6 public void writeToPage(final String content, final String pageName) {
7 MediaWikiBot bot = new MediaWikiBot(iWikiAddress);

8 bot.login(iWikiUser, iWikiPass) ;

9 Article article = new Article(bot, pageName);

10 article .addText(content);

11 article .save();

12 }

Figure 37: Java Wiki Bot Framework used to write content to a wiki page

Storing Semantic Metadata. In Section 5.3.1, we described various ways

of representing semantic metadata generated by NLP pipelines. We chose

the semantic wiki markup approach for our MediaWiki integration, since

the Semantic MediaWiki extension installed on its engine allows us to rep-

resent the semantic entities using a simple wiki markup.

In Semantic MediaWiki, a semantic annotation is defined in form of

a “subject, predicate, object” triple, using [[property::object]] syntax.

Using a wiki helper module, semantic results can be easily transformed

to semantic markup using this syntax. For example, when an NLP ser-

vice generates annotations, our wiki helper module will use the results

objects to create semantic metadata: each entity found by the pipeline is

annotated with its associated type. Therefore, if a “Person and Location

Extractor” pipeline finds “John” as a person in a wiki page, the wiki helper

module will transform it into [[hasType::Person|John]]. This markup

8Java Wiki Bot Framework, http://jwbf.sourceforge.net/

101

is then stored in the wiki to semantically annotate the page. Once the

page is saved in the wiki’s database, the Semantic MediaWiki will parse

the provided semantic markup and transform it to triples using the RDF

language. For example, Figure 38 shows how our previous example is

exported to RDF by the Semantic MediaWiki engine.

1 <owl:ObjectProperty rdf:about="http://localhost/Wiki-Sandbox/index.php/

Special:URIResolverProperty-3AHasType">

2 <rdfs:label>HasType</rdfs:label>

3 <swivt:page rdf:resource="http://loompa.cs.concordia.ca/Wiki-Sandbox/index.php/

Property:HasType"/>

4 <rdfs:isDefinedBy rdf:resource="http://loompa.cs.concordia.ca/Wiki-Sandbox/index.php/

Special:ExportRDF/Property:HasType"/>

5 <swivt:wikiNamespace rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">102</

swivt:wikiNamespace>

6 </owl:ObjectProperty>

7

8 <swivt:Subject rdf:about="http://localhost/Wiki-Sandbox/index.php/Special:URIResolver/

Person">

9 <rdfs:label>Person</rdfs:label>

10 <swivt:page rdf:resource="http://loompa.cs.concordia.ca/Wiki-Sandbox/index.php/Person"/>

11 <rdfs:isDefinedBy rdf:resource="http://loompa.cs.concordia.ca/Wiki-Sandbox/index.php/

Special:ExportRDF/Person"/>

12 <swivt:wikiNamespace rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">0</

swivt:wikiNamespace>

13 </swivt:Subject>

Figure 38: RDF representation of semantic metadata generated by Seman-

tic MediaWiki

6.5 Service Execution Flow

We have clarified the connection between system components and how re-

sults are presented to wiki users. In this section, we describe a scenario to

illustrate the execution flow of NLP services and how users will eventually

benefit from the system.

In this scenario, we have a user who wishes to extract all the named

entities of a certain type from a wiki article. Our user’s first step is to ask

for the Semantic Assistants user interface by clicking on the plug-in menu

as shown in Figure 31(b). Upon clicking, the browser creates an HTTP

102

request object and sends it to the Semantic Assistants Servlet. The servlet

receives the request and asks the wiki helper module to create the right

type of wiki object to connect to its database and retrieve the content of the

article. At this point, the servlet still needs to get the Semantic Assistants

user interface and embed it in the result JSP page before sending it back

to the browser. Therefore, the servlet tells the user interface module to ask

for available services from the broker module and dynamically generates

a list of all available assistants, as depicted in Figure 24. Once the HTML

representation of the list is ready, the servlet will assemble the JSP page

and send it back to the browser. This sequence is visualized in Figure 39.

Figure 39: Communication flow for user interface generation

From the user’s point of view, the proxy page presents the exact struc-

ture of the original wiki page, in addition to the Semantic Assistants user

interface. Using the list of available services, our user can now decide

which service to run by reading each service description, adjusting the

input and eventually requesting its execution. Again, the browser sends

another request to the servlet, asking for the execution of the user-selected

103

service on the provided input. The servlet then asks the wiki helper module

to retrieve the content of the wiki page and prepares it for service execu-

tion. In this step, all the noise from a wiki page can be discarded before

sending the textual content to the NLP pipeline. The broker module is the

next component to receive the wiki content and make the actual execution

method call to the Semantic Assistants server. Once the execution is fin-

ished, the broker module will transform the Semantic Assistants Server

XML response to an array of Java objects with the help of the Semantic As-

sistants CSAL libraries. The array of results is then sent to the wiki helper

module to be transformed to a language understandable by the wiki engine,

namely, wiki markup. The helper module stores the markup in the wiki

database and informs the servlet that the execution is finished. Finally,

the servlet embeds a “completion of service” message inside an HTTP re-

sponse object and sends it to the browser to be displayed to the user. The

communication flow for a service execution is illustrated in Figure 40.

6.6 Résumé

This chapter described the implementation process of the system design

described in the previous chapter. In Sections 6.1 and 6.2, we looked at the

essential components of our architecture and defined how their design was

translated into concrete implementation decisions. Then we elaborated the

implementation details of the Semantic Assistants Wiki plug-in and how

the results from NLP services are presented to a wiki. We finally closed the

chapter with an example scenario of a service execution and illustrated the

communication flow of our system components. In the next chapter, we

will put our system into practice and evaluate its practicability in various

domains.

104

Figure 40: Communication flow for service invocation

105

Chapter 7

Evaluation

Every scientific work needs to be evaluated to prove its feasibility and

usefulness. In this research work, we proposed an architecture to inte-

grate wikis with NLP techniques, claiming that enriching wiki content with

metadata derived from NLP techniques can aid its users with content de-

velopment, organization and retrieval. In this chapter, we evaluate our

Wiki-NLP integration in the light of our goals by applying it to real-world

projects from various domains.

7.1 Methodology

In our evaluation process, we will assess our architecture along three di-

mensions:

Practicability. In this dimension, we want to evaluate whether the Wiki-

NLP architecture developed throughout this thesis can be applied to a con-

crete scenario and all the analysis workflow phases described in Section

5.2 can be successfully carried out to analyze the content of a wiki. To-

wards this end, in Scenario 1, described in Section 7.2, we will use our

integration on a wiki that contains a digitized version of an encyclopedia.

The goal in this process is to invoke an NLP service on the wiki content

and have the results retrieved and stored in the wiki’s database. In addi-

tion, by invoking different NLP services on the wiki, we will demonstrate

106

the NLP-independence feature of our architecture as postulated in Require-

ment #2.

Usability. Following our first scenario, in Section 7.3, we will evaluate

whether the Wiki-NLP architecture can be used by wiki users who do not

have a profound knowledge of NLP concepts. For this, in Scenario 2, we

asked the students of one undergraduate and one graduate level software

engineering class to use the wiki for a specific task. Then, at the end of the

experiment, we inquired about their level of knowledge in the NLP domain

and the ease-of-use of our integration.

Effectiveness. In Section 7.3, we also examine whether the integration

of NLP services into a wiki system will ultimately improve the quality of

its content. Towards this end, in Scenario 2 we asked the students to

develop wiki content with and without the help of NLP services. At the end,

we will compare the number of defects found in each revision of the wiki’s

content, which allows us to estimate the impact of NLP support on the wiki

content’s quality.

Efficiency. In our last scenario, described in Section 7.4, we evaluate

whether the integration of NLP techniques in wikis via our architecture is

efficient, in terms of the time needed by wiki users to fulfill their informa-

tion needs. For this, we asked two graduate researchers to collaboratively

use a wiki for the purpose of biomedical literature curation. During the

experiment, we will keep track of the time spent on the curation process

and compare it to the time needed to do the same task without the help of

NLP services.

Table 7 shows the mapping of our evaluation scenarios to the requirements

defined in Chapter 4. The only requirement that is not explicitly evaluated

in this chapter is the proactive behaviour of the system. That is because

since the Wiki-NLP integration is implemented as a RESTful web applica-

tion, irrespective of how the HTTP request is formed – user-generated or

by a cron job – it is naturally able to respond accordingly.

107

Table 7: Mapping of requirements to evaluation scenarios

Requirement Scenario 1 Scenario 2 Scenario 3

Seamless Integration � � �
Change Visibility � � �
Organizing Wiki Content � � �
Finding Wiki Content � � �
Low Learning Curve � � �
Collection-based Analysis � � �
Easy Deployment � � �

NLP Service Independence � � �

Wiki System Independence � � �

Flexible Request Handling � � �
Read Content from Wiki � � �

Write Content to Wiki � � �

Proactive Service Execution � � �

7.2 Wiki-based Cultural Heritage Data Manage-

ment

In Section 2.2.5, we described how wikis are used as cultural heritage

knowledge bases. The Durm [WKKL11] project is an example of this cate-

gory, carried out from 2004 to 2006 at the University of Karlsruhe with the

goal of investigating the use of semantic technologies for cultural heritage

data management. The project uses a MediaWiki instance that contains

a complete digitized version of one volume of the Handbuch der Architek-

tur1 – a 100-year old historical encyclopedia for architecture. The Durm

wiki offers three NLP services through the use of a bot written using the

Python Wikipedia Robot Framework2: (1) a German Index Generation ser-

vice [WKKL10] that creates a classical back-of-the-book index of the wiki

content by grouping extracted terms into groups of noun phrases, while

1Handbook on Architecture
2Python Wikipedia Robot Framework, http://pywikipediabot.st.net

108

keeping the track of their corresponding wiki page, (2) an Automatic Sum-

marization service that provides contrastive or focused summaries of ar-

bitrary length to users, and (3) an Ontology Population service that anno-

tates text tokens found in the wiki content with a corresponding ontology

class, thus making the wiki content machine-accessible and available for

semantic queries. Figure 41 shows the workflow between document stor-

age, retrieval and NLP analysis in the Durm wiki.

4) display content

5) add/edit content

6) read content

7) add annotations

9) add/edit content

8) read NLP results

Wiki database

1) convert original content

2) feed bot with content

3) insert content into

Original
content

Wiki
Content

NLP
Annotations

Wiki

GATE

BotBot

Database

XML

Figure 41: The Durm wiki workflow [WKKL11]

In this scenario, we aim to prove that the same NLP capabilities can be

provided to Durm wiki users through our general architecture, indepen-

dent of its concrete engine, rather than hard-coding such capabilities in

the wiki itself. We also aim to demonstrate that by using our Wiki-NLP inte-

gration, the Durm wiki can benefit from a wider range of services, without

the need to modify the wiki engine or the bot used in the original approach.

7.2.1 Evaluation Scenario

The corpus developed during the Durm project is released under the GNU

Free Documentation license and is available for download3. We acquired

the corpus and imported it in a MediaWiki instance that was set up for

this evaluation purpose. Then, we installed the Semantic Assistants plug-

in on the wiki and invoked the same German Index Generation service

described above on a sample wiki page. In addition to this service, we also

3The Durm Corpus, http://www.semanticsoftware.info/durm-corpus

109

invoked a simple named entity recognition service on a sample wiki page

that extracts entities of type Person and Location. Figure 42 shows the

results as a table of annotations written into the page.

Figure 42: Person and Location Extractor service results in DurmWiki

7.2.2 Results

The results of the index generation service invoked during the evaluation

are stored in our online demo wiki as shown in Figure 43, and resembles

the same page that had been created by their bot, on the original Durm

wiki public version [WKKL11]. Therefore, it proves that the same NLP func-

tionality is achieved through our generic architecture, without any modifi-

cations on the wiki engine. Also, Figure 42 shows that, in addition to the in-

dex generation service, we successfully invoked a named entity recognition

service. This supports our claim of having an NLP-independent integration

110

architecture, where new NLP services can be added and discovered dynam-

ically through the Semantic Assistants service-oriented architecture.

Figure 43: Output of German Durm Indexer pipeline in DurmWiki

7.3 Wiki-based Collaborative Software Require-

ments Engineering

Previously, we described in Section 2.2.3 how wikis are used in the soft-

ware requirements engineering domain. In this scenario, we aim at eval-

uating the usability of our system by testing the Wiki-NLP integration in

the context of a collaborative software requirements engineering process.

For this purpose, a MediaWiki instance, called ReqWiki, was set up as a

collaborative platform for the documentation of a hypothetical Android4

4Android, http://developer.android.com/guide/basics/what-is-android.

html

111

application requirements specifications. To customize the wiki for this

scenario, the Software Requirements Specification (SRS) templates docu-

ment provided to students in the course material, based on the Unified

Process (UP) [Lar04], were divided into three parts and placed in separate

wiki pages: (1) a “Vision” page to define the product position, stakeholders,

assumptions, dependencies, needs and features, (2) a “Use Case” page to

define actors, goals, use cases, and (3) a “Supplementary Specification”

page to define functional and non-functional requirements, standards, le-

gal notes, test cases and traceability links. For each of these pages, a

“discussion” page – provided by the MediaWiki engine – was also available

for students to discuss contradictory ideas and leave notes for other stake-

holders.

To reduce the learning curve of using the wiki, we installed the Seman-

tic Forms5 extension on its engine to allow students entering and editing

wiki content using HTML forms, instead of working with raw markup. Fig-

ure 44 shows a wiki form used to create a problem statement, similar to

the table found in the document templates provided to the other group

of students using traditional word processor applications. Then we asked

a graduate student from a Software Engineering Case Study (SOEN 6951)

course to transform the document templates, e.g., product position or use

case tables, to MediaWiki template markups for a user-friendly presen-

tation of the system entities. In addition, an ontology for requirements

specifications documents was designed and reflected in the wiki by cre-

ating Semantic MediaWiki-style relationships between domain entities in

the wiki, e.g., “Goal” belongs to “Actor”. Using this ontology, we were able

to embed pre-defined semantic queries to create traceability links between

various entities of the system in the three wiki pages described above, thus

helping the students with the integrity of their SRS documents.

5Semantic Forms extension for MediaWiki, http://www.mediawiki.org/wiki/

Extension:Semantic_Forms

112

Figure 44: A sample form in ReqWiki

7.3.1 Evaluation Scenario

The ReqWiki system was eventually introduced to one undergraduate level

(SOEN 342) and one graduate level (SOEN 6481) software engineering class.

Students were asked to voluntarily use the wiki system for their course as-

signment, i.e., developing an Android application SRS. Several instances of

ReqWiki were set up for a total of 22 students, teamed up in groups of one

or two. The Semantic Assistants plug-in was also installed on each wiki

and students were asked to perform a quality analysis on their third as-

signment before submitting it. For this task, we provided various domain-

specific NLP services, as well as general Information Extraction services as

follows:

Writing Quality Assessment, which performs grammar and spell check-

ing on the content and provides suggestions for improvements. This

service provides the capabilities of the After The Deadline [Mud10]

tool and helps students to find spelling and grammatical mistakes,

as well as passive voice, in their requirements specifications.

Readability Assessment, which measures the readability of a given text

based on standard readability metrics, like Flesch and Kincaid [DuB06].

This service provides the students with an overall readability score of

their assignment. The result score indicates how hard to read and

comprehend their assignment is for other stakeholders, e.g., their

teammates and markers.

Requirements Quality Assurance, which is a service developed based on

113

the NASA requirements quality metrics [Lap09]. It detects SRS de-

fects like Options, Directives or Weak Phrases in a document. By

using this service, students have the chance to find these defects in

their assignment and correct them, resulting in a higher quality SRS

document.

English Durm Indexer, which creates a noun-phrase index of the wiki

content. This service uses MuNPEx6, an open-source tool that groups

words into noun phrases. Students can compare the result of this

service to their “Glossary” section and check its completeness.

Figure 45 shows how the results of the NLP services are presented to

the students in ReqWiki. A sample use case table is shown on top of the

picture. Two NLP services, namely Readability Assessment and Writing

Quality, have been invoked on this use case and the results are presented

at the bottom of the page.

7.3.2 Results

Nielsen and Landaur mathematically prove in [NL93] that the detection

of usability problems as a function of the number of tested users is well-

modeled as a Poisson process. They suggest that for a medium-size project,

at least 16 evaluations are needed, at which optimal cost-benefit ratios are

obtained. Therefore, at the end of the course, all the ReqWiki users were

provided with a questionnaire (see Appendix C) to evaluate their experience

using the ReqWiki system for their assignments in terms of its usability, as

well as the quality of the NLP services provided. We explicitly asked them

about the user-friendliness of the Semantic Assistants user interface and

its features in detail, e.g., forms, templates, pre-defined queries.

At the end of the questionnaire, we asked the students whether, given

the experience of using ReqWiki, they would use ReqWiki-like systems

with semantic support for requirements engineering tasks in the future

6Multi-Lingual Noun Phrase Extractor http://www.semanticsoftware.info/

munpex

114

Figure 45: Presentation of SRS Defects in ReqWiki

or if they would resort to traditional wikis or word processors. Figure 47

presents the results gathered from the questionnaire feedback.

The two pie charts on the right side of Figure 47 show that an aver-

age of 50% percent of the students voted the Semantic Assistants user

interface to be “Very Easy” or “Easy” to use, while the two pie charts in

the middle show that an average of 80% of the students had no or mere

Figure 46: A sample question from the students questionnaire

115

Figure 47: Feedback statistics from students questionnaire

textbook knowledge in the NLP domain. Figure 48 presents the correla-

tion between the students’ level of NLP knowledge and their choice on the

system’s usability. Among the feedback data, only one student rated the

Semantic Assistants user interface as “Very Difficult” to use and indicated

that the reason for his or her choice was a browser incompatibility issue,

meaning that he or she was not able to view or use the integration func-

tionality. Nevertheless, we can conclude that the seamless integration of

NLP services inside the wiki provided the chance for wiki users to benefit

from NLP techniques, without having a profound knowledge in this area.

Finally, all of the students who used ReqWiki during the course indi-

cated that in the future, they are likely to use a wiki system enhanced with

Figure 48: System usability feeback based on the students NLP knowledge

level

116

semantic support and NLP techniques for similar efforts, rather than a tra-

ditional wiki or word processors. Therefore, an acceptance rate of 100%

for future use further proves the usability and helpfulness of our Wiki-NLP

integration in real-world software requirements engineering tasks.

Figure 49: Average number of defects found in assignments

As for evaluating the effectiveness of our integration, we calculated the

number of defects found in the students’ Use Case documents, when they

had no NLP support on the ReqWiki (Assignment #2) and performed a sim-

ilar calculation for the same documents after they had been analyzed with

ReqWiki’s available NLP services for quality assessment (Assignment #3).

Figure 49 shows the average number of defects found in assignments, both

before and after the help of NLP services. It can be seen that the use of NLP

117

services significantly decreased the number of defects found in the second

revision of the Use Case documents.

From our findings in the gathered data, we can conclude that: (1) de-

spite the students’ low level of knowledge in the NLP domain, all the stu-

dents were able to use our seamless integration and almost half of the

students ranked the Semantic Assistants user interface to be easy-to-use,

and (2) by comparing the number of defects found in SRS documents be-

fore and after using NLP services, we proved that the integration of NLP

services into an ordinary software engineering task carried out via a wiki

interface can improve the quality of its content.

7.4 Wiki-based Biomedical Literature Curation

Biomedical literature curation is the process of manually refining and up-

dating bioinformatics databases. The data for curation is generally gath-

ered from the domain literature, e.g., scientific papers, journal articles and

domain-specific websites like PubMed7 and provided to curators – domain

experts – who will manually browse through the data and extract domain

knowledge from the literature.

Our third evaluation scenario took place within Concordia’s Centre for

Structural and Functional Genomics8 in the context of the Genozymes

project9. The Genozymes project comprises a team of multi-disciplinary

scientists, including biologists, biochemists and bioinformaticians, with

the ultimate goal of producing breakthroughs in genomics research that

will transform green waste into renewable and alternative chemicals and

fuels. Among them, a team of biologists and bioinformaticians are cur-

rently working on the curation of characterized glycoside hydrolases10 of

fungal origin from the domain literature [MPW+11]. The curators use

BRENDA [CSG+09] – a comprehensive enzyme information system – and

7PubMed, http://www.ncbi.nlm.nih.gov/pubmed/
8Concordia’s Centre for Structural and Functional Genomics, http://genomics.

concordia.ca/
9The Genozymes Project, http://www.fungalgenomics.ca/

10family of enzymes used to break down plant cell walls

118

the PubMed website to find related literature references. Once the litera-

ture is acquired, curators evaluate the papers for curation, typically by

reading the abstract. Then, for all the selected papers, curators read

their full text and extract entities of interest. Each extracted entity is

then inserted into a spreadsheet as a new record. Further related data,

such as gene names, gene IDs and species, are gathered by curators from

published articles that meet their criteria of characterized glycoside hydro-

lases. Finally, the extracted entities in the spreadsheet are organized in

a searchable database called mycoCLAP [MPW+11], which has an online

query interface11. Figure 50 illustrates the curation workflow practiced in

this project.

Web Crawler Spreadsheet Online Query Interface

Database

Curator

WWW

Downloaded Literature

Figure 50: Manual curation workflow for biomedical literature

7.4.1 Evaluation Scenario

The manual curation approach practiced in CSFG is an expensive and

time-consuming task. In addition, resource management, e.g., managing

downloaded literature and removing duplicate files, is frequently reported

as a problem. Recently, ontological NLP analysis pipelines have been de-

veloped to help curators spend less time on mining the literature, while

providing richer and semantically related results: mycoMINE [MMM+11] is

11Characterized Lignocellulose-Active Proteins of fungal origin, http://mycoclap.

fungalgenomics.ca

119

such a pipeline developed in the Semantic Software Lab that provides in-

formation about lignocellulose entities found in the domain literature and

detects entities such as pH, Temperature and Kinetic Assay Conditions,

Enzymes and Substrates, as well as Organisms through its OrganismTag-

ger [NKBW11] component. For our scenario, a MediaWiki instance, called

GenWiki, was set up for the curators with the goal of helping them spend

less time on the selection and curation of papers. GenWiki was then pre-

filled with literature related to characterized glycoside hydrolases of fungal

origin. For each paper, we put the full text as well as its abstract into

individual wiki pages, as shown in Figure 51.

Figure 51: A wiki page containing a full-text paper

The Semantic Assistants plug-in described in Section 6.3 was also in-

stalled on the GenWiki engine and the functionality of the system was

introduced to the curators during a meeting. For the evaluation, the cu-

rators were assigned credentials on the wiki and asked to keep track of

the time spent on selection and annotation of wiki pages with the help of

120

the mycoMINE pipeline that was accessible through the Semantic Assis-

tants interface. Figure 52 shows how the manual curation workflow was

changed by our Wiki-NLP integration. In this approach, literature is pro-

vided to the curators via a wiki interface that allows them to annotate it

with NLP pipelines within the wiki, as shown in Figure 53.

Spreadsheet Online Query Interface

Database

CuratorGenWiki

Figure 52: GenWiki-assisted curation workflow for biomedical literature

Figure 53: Presentation of NLP-generated annotations in GenWiki

121

7.4.2 Results

As described earlier in this chapter, the ultimate goal of this evaluation

scenario is to assess the efficiency of the Wiki-NLP integration in terms of

the time that the curators need to extract knowledge from the literature

and import it to the mycoCLAP database.

In [MMM+11] a similar research has been conducted that provides an

average time for a full paper curation process. This publication uses the

same curators as our scenario, as well as a comparable dataset (a corpus

of 10 papers) and therefore, is a valid dataset to be compared to the results

of our evaluation. Table 8 shows the results reported by our curators using

ReqWiki for literature curation.

Table 8: GenWiki-assisted literature curation time

Paper Abstract Selection Full Paper Curation

PMID: 12565856 10 sec. Rejected

PMID: 12763033 10 sec. Rejected

PMID: 12567807 15 sec. 31 min.

PMID: 15006424 30 sec. 56 min.

PMID: 15294290 30 sec. 21 min.

PMID: 15555935 30 sec. 21 min.

PMID: 15716038 15 sec. 34 min.

PMID: 19590866 15 sec. 21 min.

PMID: 20143777 15 sec. 22 min.

PMID: 20591661 15 sec. 24 min.

PMID: 20709852 15 sec. 41 min.

PMID: 21626020 15 sec. 41 min.

PMID: 21948841 15 sec. 71 min.

DOI: j.procbio∗ 15 sec. Rejected

DOI: j.enzmictec∗∗ 30 sec. 25 min.

Median 15 sec. 28 min.

Average 18.3 sec. 34 min.
* Complete reference ID is DOI: 10.1016/j.procbio.2007.01.007

** Complete reference ID is DOI: 10.1016/j.enzmictec.2006.03.017

The “Abstract Selection” column in Table 8 contains the time that is

needed for the curator to read a paper abstract to decide whether the paper

122

should be considered for curation and the “Full Paper Curation” column

states whether the paper was selected, and if so, how much time was spent

on the curation process. We used the times in this table to calculate the

time needed for both selection and curation of a paper and compare it to

the results found in [MMM+11] in Table 9. In can be seen that the time for

selection and curation of papers in the wiki, with the help of the mycoMINE

NLP pipeline, was reduced by 50% and 9.33%, respectively.

However, in the data shown in Table 8, the curation time for PMID:

21948841 is 71 minutes and deviates markedly from other members of

the sample. Therefore, if we exclude this outlier from our sample data, the

average curation time will be 28 minutes and thus the manual curation

time will be reduced by 18.33% – almost twice the first average.

Therefore, Table 9 supports our evaluation hypothesis that the seam-

less integration of NLP services inside a wiki is indeed efficient, in terms of

the time needed to fulfill the wiki users’ information needs.

Table 9: Curation time of papers with different levels of semantic support

Abstract Selection Full Paper Curation

Manual GenWiki Manual GenWiki

1 min. 20 sec. 37.5 min. 30.63 min.

Semantic Metadata. Our Wiki-NLP integration in GenWiki is also able to

produce semantic metadata from the annotations found by the mycoMINE

pipeline. The semantic results further help curators with querying and

finding entities in the wiki – a feature that is missing from the CSFG

workflow. Currently, the only possible way of querying the knowledge ex-

tracted from literature is to use the mycoCLAP website in order to perform

a keyword-based search. However, in GenWiki, since annotations are also

represented with semantic markup, they can be queried using Semantic

MediaWiki inline queries, like the one showed in Figure 54, or exported

as RDF triples to be used by external applications. Figure 55 shows how

curators see the results of a semantic query for all the entities of type “En-

zyme” in the wiki. They can directly navigate to an enzyme’s wiki page by

123

clicking on its title in the table.

1 {{#ask: [[hasType::Enzyme]]

2 |?Enzyme=Enzyme Entities Found

3 |format=table

4 |headers=plain

5 |default=No pages found!

6 |mainlabel=Page Name

7 }}

Figure 54: The Semantic MediaWiki inline query for all enzyme entities in

GenWiki

Figure 55: Semantic query results for all enzyme entities in GenWiki, gen-

erated by NLP services

124

7.5 Résumé

This chapter described the evaluation process of our Wiki-NLP integration.

We evaluated our architecture along four dimensions: Practicability, Us-

ability, Effectiveness and Efficiency. We started each scenario by briefly de-

scribing the domain and putting the integration in context. The MediaWiki

engine, enhanced with our Wiki-NLP architecture that was described in

Chapter 6, was used in our scenarios. Finally, the results gathered from

our studies proved not only the practicability of the Wiki-NLP integration,

but that it indeed brings a measurable value to wiki end-users. In the next

chapter, we will summarize this research work and provide some thoughts

for future work.

125

Chapter 8

Conclusions and Future Work

In this chapter, we provide a summary and the conclusion of our research

work, by describing the progress made towards the goal of providing wiki

users with the benefit of NLP techniques. Also, we will suggest some re-

search directions to be undertaken in the near future.

8.1 Summary

Wikis are popular web-based applications, whose users can collaboratively

add, edit, or delete content via a Web browser, using a simplified markup

language. They have been widely adopted in various domains as a light-

weight and easy-to-use information management tool. The aim of this the-

sis was to develop an architecture for aiding wiki users in time-consuming

and labor-intensive tasks, through the help of automatic text mining ser-

vices. We first performed a literature survey on related existing work in this

area, followed by an elaborated effort on investigating typical use cases of

wikis in real-world scenarios. During this investigation, we gathered a

comprehensive list of reported problems in working with wikis and chose

the most prominent ones to derive our initial system requirements. We

performed a detailed requirements analysis from the perspectives of wiki

end-users, the system as a whole, as well as wiki developers, i.e., wiki ad-

ministrators or engine developers who wish to enhance their wiki systems

with NLP capabilities.

126

The NLP services of our solution are provided by the Semantic Assis-

tants project, an open source service-oriented architecture that brokers

NLP pipelines, developed based on the GATE framework, as web services.

Using this architecture provided us with the advantage of service inde-

pendency, and automatically fulfilled a number of our integration require-

ments. The remaining ones were then translated to concrete design deci-

sions in Chapter 5.

One of the main challenges of this research work was the lack of a

standard architecture and markup syntax for wikis. Therefore, no definite

architecture could be easily developed that would encompass the variety

of every existing wiki engine. Consequently, in our design chapter, we

thoroughly analyzed how various juxtapositions of our system components

can realize the ultimate goal of the integration, and examined each design

alternative against the system requirements. Eventually, we chose a col-

laborative approach, combining the advantages of our design alternatives

into a cohesive architecture that provides wiki systems with NLP services,

while keeping the wiki dependency as small as possible. Our contribution

was implemented as an abstraction layer between the Semantic Assistants

architecture and the wiki system component, realized as a proxy server us-

ing J2EE Servlets and a number of Web 2.0 technologies on the client-side

wiki. The integration provides a wiki-independent user interface that is

populated dynamically based on the capabilities of the underlying engine.

The integration of wiki engines into the architecture is facilitated through

the use of ontologies, i.e., a formal description of wiki domain concepts and

their relationships. This way, we created an extensible architecture that al-

lows more wikis to be added in the future, without the need to change any

code in their implementation, allowing both sides to evolve independently.

When semantic capabilities are enabled in a wiki system, our architec-

ture can also generate semantic metadata from the results of semantic NLP

pipelines and transform them in a way that can be stored in a wiki system.

Our work is the first to attempt to automatically generate semantic meta-

data from wiki content, thus making it machine-accessible. Eventually,

the semantic metadata that has been added to the wiki can be exploited to

127

organize its content, enhance its search features or exported for external

application use.

Finally, the integration was applied to MediaWiki – a widely-used wiki

engine best known from the Wikimedia projects – to prove its feasibility. We

developed a MediaWiki ontology, as well as helper modules, to integrate it

in our Wiki-NLP architecture. The integration was ultimately introduced

to the wiki engine via a light-weight plug-in.

The NLP-enhanced MediaWiki instance was used in the evaluations pro-

cess during this work. First, we demonstrated the practicability of our

work by applying NLP services on an existing heritage data wiki. In this

context, we automatically generated a back-of-the-book index through an

NLP service call – a feature that had previously been implemented in the

wiki itself. This way, we showed that the same capabilities can be pro-

vided to the wiki through our general wiki- and service-independent archi-

tecture.

Second, as the first to perform an extrinsic evaluation of using NLP

techniques in wikis, we demonstrated the usability, effectiveness and effi-

ciency of our integration within a number of real-world projects. As part

of this, we used our NLP-enhanced MediaWiki instance in two software

engineering courses as a collaborative platform, where students could use

it to develop their assignments and ultimately use the provided NLP ser-

vices to detect defects in their documents. Our survey results, gathered

from the students, showed the usability of our integration, despite their

low knowledge level in the NLP domain. Also, by examining the number of

defects found in their assignments before and after using NLP services, we

concluded that the NLP integration can indeed help to improve document

quality.

Third, to evaluate the efficiency of our approach, we integrated our

architecture into the workflow of a functional genomics project, where bi-

ologists manually extract knowledge from the biomedical literature and

128

Table 10: Comparison of Wiki-NLP integration against architecture require-

ments and similar wikis

Requirement Wikulu SMW IkeWiki SweetWiki AceWiki Wiki-NLP

Seamless Integration � ∼ � � � �
NLP Service Recommendation � � � � � �
Change Visibility � ∼ � � � �
Low Learning Curve � � � � � �
Easy Deployment � � � � � �
Facilitate Client Integration � � � � � �
Wiki System Independence � � � � � �
Flexible Response Handling � � � � � �
Read Content from Wiki � � � � � �
Write Content to Wiki � � � � � �
External Data Access ∼ � � � � �
Proactive Service Execution � � � � � �

�= fully satisfied

∼ = partially satisfied or not available in literature

� = not satisfied

curate them for a database. Using our integration, knowledge was auto-

matically extracted by NLP pipelines, providing additional semantic meta-

data for each extracted entity. Employing NLP analysis on the wiki con-

tent not only proved to reduce the curation time up to almost 20%, but

also enriched the wiki with semantic metadata, thus further facilitating

knowledge management for end-users. Table 10 presents our Wiki-NLP

integration in comparison with the wikis described in Chapter 4. The table

shows that our Wiki-NLP integration is able to fulfill all the requirements

for employing NLP techniques in various wikis.

8.2 Suggestions for Future Work

A number of our system aspects remain open for further investigation:

First, one of the powerful features of our architecture is its modularity,

meaning that building blocks can be gradually added as they are needed.

As new wiki engines and human-computer interaction technologies emerge,

the current architecture components can be replaced by more up-to-date

129

technologies, as well as adding new components responsible for the newer

functionalities.

The Wiki-NLP integration architecture developed in this work, although

designed to be general, has only been evaluated on one wiki engine, namely

MediaWiki. Therefore, it is suggested that the integration is tested on more

wiki engines, as their different requirements will improve the compatibility

of the existing solution.

Regarding the integration user interface, since our solution is mostly brows-

er-based, more tests on different browsers need to be performed to assess

the compatibility of the system interface. Major parts of our integration use

client-side scripting languages, such as JavaScript, which are infamous

for browser incompatibility issues. Also, as new technologies emerge and

become adopted, these implementations will need to be replaced to provide

a more interactive, intuitive and user-friendly user interface.

We developed a wiki ontology with a set of primitive concepts and relation-

ships. The wiki ontology can also be extended to allow the integration to

perform semantic reasoning on the wiki engine description, thus providing

users with more convenience, e.g., reasoning on where and how to present

the results, based on the wiki capabilities described in its ontology – and

better service results, e.g., reasoning on where to look for input data in the

wiki.

8.3 Conclusion

Augmenting wikis with NLP capabilities has not attracted a lot of research

attention yet and this research work is among the first. Unlike other ex-

isting related work, our thesis provides a general architecture to offer NLP

capabilities to wikis, without the need for hard-coding such features or

modifying the wiki engine. Our initial evaluations of the system proved the

usefulness of the Wiki-NLP integration architecture in real-world projects

carried out within a wiki environment. By providing a direct and seamless

130

integration of NLP capabilities, we are able help wiki users to overcome

common problems of using wikis, such as, information overload or poor or-

ganization. This way, the organized structures of wikis not only increases

their acceptability and usability as a powerful, yet easy-to-use collabora-

tive documentation platform, but also allows their users to focus on their

main task in the wiki, rather than spending time on going through the

usually massive amount of available unstructured information.

Wikis were invented to change the role of end-users from being con-

sumers of websites to “prosumers”1 – they can read, develop or modify

content of wikis via a simple browser interface. In this work, we intro-

duced yet another party to the wiki community users: natural language

processing services, performing text mining techniques on wiki content to

develop primary and complementary content, organize the wiki structure,

as well as enriching it with semantic metadata, so that it becomes accessi-

ble to machines.

The Wiki-NLP integration allows wiki users to benefit from the collabo-

ration between the artificial intelligence domain and wiki systems by using

various generic or domain-specific semantic assistants, seamlessly helping

them with their tasks in a wiki, e.g., by creating focused summaries, ex-

tracting entities or answering questions based on a wiki’s available knowl-

edge.

Although this thesis focused on the integration of NLP capabilities in

wiki systems, the core idea can also be applied to other web information

systems, such as Content Management Systems, due to the similar nature

of web-based applications.

Finally, the integration of wikis and NLP systems also provides NLP

pipeline developers with a chance to reach a new target audience and a

body of content that grows over time. They can now directly access wiki

content to develop and train more NLP pipelines to improve wiki users’

experience, thus, persuade them to use wikis to develop more content.

1This term is the portmanteau of “producer” and ”consumer”, coined by Alvin Toffler

in The Third Wave, ISBN 0517327198.

131

Bibliography

[AMC03] Deepak Alur, Dan Malks, and John Crupi. Core J2EE Patterns:

Best Practices and Design Strategies. Prentice Hall, 2nd edition,

2003.

[BEK+00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman,

Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and

Dave Winer. Simple Object Access Protocol (SOAP) 1.1. Techni-

cal report, World Wide Web Consortium, May 2000.

[BGE+08] Michel Buffa, Fabien Gandon, Guillaume Ereteo, Peter Sander,

and Catherine Faron. SweetWiki: A Semantic Wiki. Web Se-

mantics, 6(1):84–97, 2008.

[Bro08] John Broughton. Wikipedia: the missing manual. O’Reilly, 1st

edition, 2008.

[Buf06] Michel Buffa. Intranet Wikis. In Proceedings of Intraweb Work-

shop 2006 at the 15th International World Wide Web Conference,

Edinburgh, Scotland, 23-26 May 2006.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and San-

jiva Weerawarana. Web Services Description Language (WSDL)

1.1. Technical report, World Wide Web Consortium, 2001.

[CEJ+05] Vivek Chopra, Jon Eaves, Rupert Jones, Sing Li, and John T.

Bell. Beginning JavaServer Pages. Wrox Press Ltd., Birming-

ham, UK, 2005.

132

[CMB+11] Hamish Cunningham, Diana Maynard, Kalina Bontcheva,

Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve Gor-

rell, Adam Funk, Angus Roberts, Danica Damljanovic, Thomas

Heitz, Mark A. Greenwood, Horacio Saggion, Johann Petrak,

Yaoyong Li, and Wim Peters. Text Processing with GATE (Ver-

sion 6). University of Sheffield, Department of Computer Sci-

ence, 2011.

[CSG+09] Antje Chang, Maurice Scheer, Andreas Grote, Ida Schomburg,

and Dietmar Schomburg. BRENDA, AMENDA and FRENDA

the enzyme information system: new content and tools in 2009.

Nucleic Acids Research, 37(Database-Issue):588–592, 2009.

[Dey01] Anind K. Dey. Understanding and Using Context. Personal

Ubiquitous Computing, 5:4–7, January 2001.

[DRR+07] Björn Decker, Eric Ras, Jörg Rech, Pascal Jaubert, and Marco

Rieth. Wiki-Based Stakeholder Participation in Requirements

Engineering. IEEE Software, 24(2):28–35, March/April 2007.

[DuB06] William H. DuBay. Smart language: Readers, Readability, and

the Grading of Text. Impact Information, 2006.

[EGHW08] Anja Ebersbach, Markus Glaser, Richard Heigl, and Alexander

Warta. Wiki: Web Collaboration. Springer, 2nd edition, 2008.

[FSS98] Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto

Controlled English - Not Just Another Logic Specification Lan-

guage. In Pierre Flener, editor, Logic-Based Program Synthesis

and Transformation, volume 1559, pages 1–20. Springer, 1998.

[Gar05] Jesse James Garrett. Ajax: A New Approach to Web

Applications. http://adaptivepath.com/ideas/essays/

archives/000385.php, February 2005.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

133

[GW08] Thomas Gitzinger and René Witte. Enhancing the OpenOf-

fice.org Word Processor with Natural Language Processing Ca-

pabilities. In Natural Language Processing resources, algo-

rithms and tools for authoring aids, Marrakech, Morocco, 1

June 2008.

[Hea97] Marti A. Hearst. TextTiling: Segmenting Text into Multi-

paragraph Subtopic Passages. Computational Linguistics,

23(1):33–64, 1997.

[HZG09] Johannes Hoffart, Torsten Zesch, and Iryna Gurevych. An ar-

chitecture to support intelligent user interfaces for Wikis by

means of Natural Language Processing. In Dirk Riehle and

Amy Bruckman, editors, International Symposium on Wikis

(WikiSym2009), Orlando, Florida, USA, 25–27 October 2009.

ACM.

[KBD+09] Hak Lae Kim, John G. Breslin, Stefan Decker, Jaehwa Choi,

and Hong-Gee Kim. Personal knowledge management for

knowledge workers using social semantic technologies. Interna-

tional Journal of Intelligent Information and Database Systems,

3(1):28–43, 2009.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Descrip-

tion Framework (RDF): Concepts and Abstract Syntax. World

Wide Web Consortium, Recommendation REC-rdf-concepts-

20040210, February 2004.

[KSB+10] Thomas Kurz, Sebastian Schaffert, Tobias Buerger, Stephanie

Stroka, Rolf Sint, Mihai Radulescu, and Szabolcs Grunwald.

KiWi – A Platform for building Semantic Social Media Ap-

plications. In 9th International Semantic Web Conference

(ISWC2010), Shanghai, China, 7–11 November 2010.

[Kuh08] Tobias Kuhn. AceWiki: A Natural and Expressive Semantic

Wiki. In Proceedings of Workshop Semantic Web User Interaction

134

at CHI 2008: Exploring HCI Challenges, Florence, Italy, 5–10

April 2008.

[KVV06] Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic

MediaWiki. In The Semantic Web, volume 4273 of Lecture Notes

in Computer Science. Springer, 2006.

[Lap09] Phillip A. Laplante. Requirements Engineering for Software and

Systems. Auerbach Publications, Boston, MA, USA, 1st edition,

2009.

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative Development.

Prentice Hall PTR, 3rd edition, 2004.

[LC01] Bo Leuf and Ward Cunningham. The Wiki Way. Quick Collabo-

ration on the Web. Addison-Wesley Longman, 2001.

[Lih04] Andrew Lih. Wikipedia as Participatory journalism: reliable

sources? metrics for evaluating collaborative media as a news

resource. In Proceedings of the 5th International Symposium

on Online Journalism, pages 16–17, Texas, USA, 16–17 April

2004.

[Mad08] Stewart Mader. Wikipatterns – A practical guide to improving

productivity and collaboration in your organization. Wiley Publi-

cation, 2008.

[MMM+11] Marie-Jean Meurs, Caitlin Murphy, Ingo Morgenstern, Nona

Naderi, Greg Butler, Justin Powlowski, Adrian Tsang, and

René Witte. Semantic Text Mining for Lignocellulose Research.

In The ACM Fifth International Workshop on Data and Text Min-

ing in Biomedical Informatics in conjunction with CIKM, Glasgow,

UK, 24–28 October 2011.

[MPW+11] Caitlin Murphy, Justin Powlowski, Min Wu, Greg Butler, and

Adrian Tsang. Curation of characterized glycoside hydrolases

of Fungal origin. Database, Volume2011, 2011.

135

[MT04] R. Mihalcea and P. Tarau. TextRank: Bringing Order into Texts.

In Proceedings of EMNLP-04 and the 2004 Conference on Empir-

ical Methods in Natural Language Processing, 2004.

[Mud10] Raphael Mudge. The Design of a Proofreading Software Service.

In Workshop on Computational Linguistics and Writing: Writing

Processes and Authoring Aids, CL&W, 2010.

[NKBW11] Nona Naderi, Thomas Kappler, Christopher J.O. Baker, and

René Witte. OrganismTagger: Detection, normalization, and

grounding of organism entities in biomedical documents. Bioin-

formatics, 2011.

[NL93] Jakob Nielsen and Thomas K Landauer. A mathematical model

of the finding of usability problems, volume 206, pages 206–213.

ACM, 1993.

[OBD06] Eyal Oren, John G. Breslin, and Stefan Decker. How semantics

make better wikis. In Proceedings of the 15th international con-

ference on the World Wide Web (WWW2006), Edinburgh, Scot-

land, 23–26 May 2006. ACM.

[QL08] Bastian Quilitz and Ulf Leser. Querying distributed RDF data

sources with SPARQL. In Proceedings of the 5th European

Conference on The Semantic Web: research and applications,

ESWC’08, pages 524–538. Springer-Verlag, 2008.

[Sah07] Goutam Kumar Saha. Web ontology language (OWL) and se-

mantic web. Ubiquity, 2007, September 2007.

[Sch06] Sebastian Schaffert. IkeWiki: A Semantic Wiki for Collabora-

tive Knowledge Management. In IEEE International Conference

on Collaboration Technologies and Infrastructures, pages 388–

396. IEEE Computer Society, 2006.

136

[SFAV05] Clara Silveira, João Pascoal Faria, Ademar Aguiar, and Raul Vi-

dal. Wiki-Based Requirements Documentation of Generic Soft-

ware Products. In Proceedings of the 10th Australian Workshop

on Requirements Engineering, 2005.

[Sim71] Herbert A. Simon. Designing organizations for an information

rich world. In Martin Greenberger, editor, Computers, commu-

nications, and the public interest, pages 37–72. The Johns Hop-

kins Press, 1971.

[UG96] M. Uschold and M. Gruninger. Ontologies: Principles, Methods

and Applications. Knowledge Engineering Review, 11(2):93–

155, 1996.

[W3C07] W3C. Gleaning Resource Descriptions from Dialects of Lan-

guages (GRDDL). W3c recommendation, World Wide Web Con-

sortium (W3C), 2007.

[Wat07] Neil L. Waters. Why you can’t cite Wikipedia in my class. Com-

mun. ACM, 50:15–17, September 2007.

[WG07] René Witte and Thomas Gitzinger. Connecting Wikis and Natu-

ral Language Processing Systems. In WikiSym ’07: Proceedings

of the 2007 International Symposium on Wikis, pages 165–176,

New York, NY, USA, 2007. ACM.

[WG09] René Witte and Thomas Gitzinger. Semantic Assistants –

User-Centric Natural Language Processing Services for Desk-

top Clients. In 3rd Asian Semantic Web Conference (ASWC

2008), volume 5367 of LNCS, pages 360–374, Pathumthani,

Thailand, 2–5 February 2009. Springer.

[WGKK08] René Witte, Thomas Gitzinger, Thomas Kappler, and Ralf Kres-

tel. A Semantic Wiki Approach to Cultural Heritage Data Man-

agement. In Language Technology for Cultural Heritage Data

(LaTeCH 2008), June 1st 2008.

137

[WKKL10] René Witte, Ralf Krestel, Thomas Kappler, and Peter C. Lock-

emann. Converting a Historical Architecture Encyclopedia

into a Semantic Knowledge Base. IEEE Intelligent Systems,

25(1):58–66, January/February 2010.

[WKKL11] René Witte, Thomas Kappler, Ralf Krestel, and Peter C. Locke-

mann. Integrating Wiki Systems, Natural Language Processing,

and Semantic Technologies for Cultural Heritage Data Manage-

ment, pages 213–230. Theory and Applications of Natural Lan-

guage Processing. Springer, 2011.

[WPF+04] Ian Witten, Gordon Paynter, Eibe Frank, Carl Gutwin, and

Craig Nevill-Manning. Kea: Practical automatic keyphrase ex-

traction. pages 314–326, 2004.

138

Appendix A

Wiki Upper Ontology Description

1 @prefix xsd: <http://www.w3. org/2001/XMLSchema#> .

2 @prefix swrlb: <http://www.w3. org/2003/11/swrlb#> .

3 @prefix owl: <http://www.w3. org/2002/07/owl#> .

4 @prefix protege: <http://protege . stanford .edu/plugins/owl/protege#> .

5 @prefix cu: <http://localhost/ConceptUpper . owl#> .

6 @prefix xsp: <http://www. owl−ontologies .com/2005/08/07/xsp . owl#> .

7 @prefix : <http://localhost/WikiOntology . owl#> .

8 @prefix xml: <http://www.w3. org/XML/1998/namespace> .

9 @prefix rd f : <http://www.w3. org/1999/02/22−rdf−syntax−ns#> .

10 @prefix swrl: <http://www.w3. org/2003/11/swrl#> .

11 @prefix rd fs : <http://www.w3. org/2000/01/rdf−schema#> .

12 @base <http://localhost/WikiOntology . owl> .

13

14 <http://localhost/WikiOntology . owl> rdf : type owl:Ontology ;

15 owl:imports <http://localhost/ConceptUpper . owl> .

16

17 ###

18 # Object Properties

19 ###

20

21 ### http://localhost/WikiOntology . owl#belongsToNS

22 :belongsToNS rdf: type owl:ObjectProperty ;

23 rdfs:range :Namespace ;

24 rdfs:domain :Page .

25

26 ### http://localhost/WikiOntology . owl#hasContent

27 :hasContent rdf : type owl:ObjectProperty ;

28 rdfs:domain :Page ;

29 rdfs:range [rdf : type owl:Class ;

30 owl:unionOf (cu:Format

31 :WikiMarkup

32)

33] .

34

139

35 ### http://localhost/WikiOntology . owl#hasMetadata

36 :hasMetadata rdf : type owl:ObjectProperty ;

37 rdfs:range :Metadata .

38

39 ### http://localhost/WikiOntology . owl#hasTalkpage

40 :hasTalkpage rdf : type owl:ObjectProperty ;

41 rdfs:domain :Content Page ;

42 rdfs:range :Talk Page .

43

44 ###

45 # Data properties

46 ###

47

48 ### http://localhost/WikiOntology . owl#hasEngine

49 :hasEngine rdf : type owl:DatatypeProperty ;

50 rdfs:domain :Wiki ;

51 rdfs:range xsd:string .

52

53 ### http://localhost/WikiOntology . owl#hasVersion

54 :hasVersion rdf : type owl:DatatypeProperty ;

55 rdfs:domain :Wiki .

56

57 ###

58 # Classes

59 ###

60

61 ### http://localhost/ConceptUpper . owl#Art i fac t

62 cu:Art i fact rdf : type owl:Class .

63

64 ### http://localhost/ConceptUpper . owl#Artif icialLanguage

65 cu:Artif icialLanguage rdf : type owl:Class .

66

67 ### http://localhost/ConceptUpper . owl#Format

68 cu:Format rdf : type owl:Class .

69

70 ### http://localhost/ConceptUpper . owl#Tool

71 cu:Tool rdf : type owl:Class .

72

73 ### http://localhost/WikiOntology . owl#Content Page

74 :Content Page rdf : type owl:Class ;

75 rdfs:subClassOf :Page .

76

77 ### http://localhost/WikiOntology . owl#History

78 :History rdf : type owl:Class ;

79 rdfs:subClassOf :Metadata .

80

81 ### http://localhost/WikiOntology . owl#Metadata

82 :Metadata rdf : type owl:Class .

83

84 ### http://localhost/WikiOntology . owl#Namespace

85 :Namespace rdf : type owl:Class .

140

86

87 ### http://localhost/WikiOntology . owl#Page

88 :Page rdf : type owl:Class ;

89 rdfs:subClassOf cu:Art i fact .

90

91 ### http://localhost/WikiOntology . owl#Talk Page

92 :Talk Page rdf : type owl:Class ;

93 rdfs:subClassOf :Page .

94

95 ### http://localhost/WikiOntology . owl#Virtual Namespace

96 :Virtual Namespace rdf : type owl:Class ;

97 rdfs:subClassOf :Namespace .

98

99 ### http://localhost/WikiOntology . owl#Wiki

100 :Wiki rdf : type owl:Class ;

101 rdfs:subClassOf cu:Tool .

102

103 ### http://localhost/WikiOntology . owl#WikiMarkup

104 :WikiMarkup rdf: type owl:Class ;

105 rdfs:subClassOf cu:Artif icialLanguage .

106

107 ### Generated by the OWL API (version 3.2.3.1824) http://owlapi . sourceforge . net

141

Appendix B

MediaWiki Ontology Description

1 @prefix wo: <http://localhost/WikiOntology . owl#> .

2 @prefix xsd: <http://www.w3. org/2001/XMLSchema#> .

3 @prefix swrlb: <http://www.w3. org/2003/11/swrlb#> .

4 @prefix owl: <http://www.w3. org/2002/07/owl#> .

5 @prefix protege: <http://protege . stanford .edu/plugins/owl/protege#> .

6 @prefix xsp: <http://www. owl−ontologies .com/2005/08/07/xsp . owl#> .

7 @prefix : <http://localhost/MediaWiki . owl#> .

8 @prefix xml: <http://www.w3. org/XML/1998/namespace> .

9 @prefix rd f : <http://www.w3. org/1999/02/22−rdf−syntax−ns#> .

10 @prefix swrl: <http://www.w3. org/2003/11/swrl#> .

11 @prefix rd fs : <http://www.w3. org/2000/01/rdf−schema#> .

12 @base <http://localhost/MediaWiki . owl> .

13

14 <http://localhost/MediaWiki . owl> rdf : type owl:Ontology ;

15 owl:imports <http://localhost/WikiOntology . owl> .

16

17 ###

18 # Object Properties

19 ###

20

21 ### http://localhost/WikiOntology . owl#hasMetadata

22 wo:hasMetadata rdfs:domain wo:Page .

23

24 ###

25 # Data properties

26 ###

27

28 ### http://localhost/MediaWiki . owl#NS Value

29 :NS Value rdf : type owl:DatatypeProperty ;

30 rdfs:domain wo:Namespace ;

31 rdfs:range xsd:string .

32

33 ###

34 # Classes

142

35 ###

36

37 ### http://localhost/MediaWiki . owl#P Art ic le

38 :P Ar t i c l e rdf : type owl:Class ;

39 rdfs:subClassOf wo:Content Page ,

40 [rdf : type owl:Restrict ion ;

41 owl:onProperty wo:belongsToNS ;

42 owl:hasValue :NS Main

43] ,

44 [rdf : type owl:Restrict ion ;

45 owl:onProperty wo:hasTalkpage ;

46 owl:someValuesFrom :P Art ic le Ta lk

47] .

48

49 ### http://localhost/MediaWiki . owl#P Art ic le Talk

50 :P Art ic le Ta lk rdf : type owl:Class ;

51 rdfs:subClassOf wo:Talk Page ,

52 [rdf : type owl:Restrict ion ;

53 owl:onProperty wo:belongsToNS ;

54 owl:hasValue :NS Talk

55] .

56

57 ### http://localhost/MediaWiki . owl#P Category

58 :P Category rdf : type owl:Class ;

59 rdfs:subClassOf wo:Content Page ,

60 [rdf : type owl:Restrict ion ;

61 owl:onProperty wo:hasTalkpage ;

62 owl:someValuesFrom :P Category Talk

63] ,

64 [rdf : type owl:Restrict ion ;

65 owl:onProperty wo:belongsToNS ;

66 owl:hasValue :NS Category

67] .

68

69 ### http://localhost/MediaWiki . owl#P Category Talk

70 :P Category Talk rdf : type owl:Class ;

71 rdfs:subClassOf wo:Talk Page ,

72 [rdf : type owl:Restrict ion ;

73 owl:onProperty wo:belongsToNS ;

74 owl:hasValue :NS Category Talk

75] .

76

77 ### http://localhost/MediaWiki . owl#P Fi le

78 :P F i l e rdf : type owl:Class ;

79 rdfs:subClassOf wo:Content Page ,

80 [rdf : type owl:Restrict ion ;

81 owl:onProperty wo:hasTalkpage ;

82 owl:someValuesFrom :P Fi le Talk

83] ,

84 [rdf : type owl:Restrict ion ;

85 owl:onProperty wo:belongsToNS ;

143

86 owl:hasValue :NS File

87] .

88

89 ### http://localhost/MediaWiki . owl#P Fi le Talk

90 :P Fi le Talk rdf : type owl:Class ;

91 rdfs:subClassOf wo:Talk Page ,

92 [rdf : type owl:Restrict ion ;

93 owl:onProperty wo:belongsToNS ;

94 owl:hasValue :NS File Talk

95] .

96

97 ### http://localhost/MediaWiki . owl#P Help

98 :P Help rdf : type owl:Class ;

99 rdfs:subClassOf wo:Content Page ,

100 [rdf : type owl:Restrict ion ;

101 owl:onProperty wo:hasTalkpage ;

102 owl:someValuesFrom :P Help Talk

103] ,

104 [rdf : type owl:Restrict ion ;

105 owl:onProperty wo:belongsToNS ;

106 owl:hasValue :NS Help

107] .

108

109 ### http://localhost/MediaWiki . owl#P Help Talk

110 :P Help Talk rdf : type owl:Class ;

111 rdfs:subClassOf wo:Talk Page ,

112 [rdf : type owl:Restrict ion ;

113 owl:onProperty wo:belongsToNS ;

114 owl:hasValue :NS Help

115] .

116

117 ### http://localhost/MediaWiki . owl#P Project

118 :P Project rdf : type owl:Class ;

119 rdfs:subClassOf wo:Content Page ,

120 [rdf : type owl:Restrict ion ;

121 owl:onProperty wo:hasTalkpage ;

122 owl:someValuesFrom :P Project Talk

123] ,

124 [rdf : type owl:Restrict ion ;

125 owl:onProperty wo:belongsToNS ;

126 owl:hasValue :NS Project

127] .

128

129 ### http://localhost/MediaWiki . owl#P Project Talk

130 :P Project Talk rdf : type owl:Class ;

131 rdfs:subClassOf wo:Talk Page ,

132 [rdf : type owl:Restrict ion ;

133 owl:onProperty wo:belongsToNS ;

134 owl:hasValue :NS Project Talk

135] .

136

144

137 ### http://localhost/MediaWiki . owl#P Template

138 :P Template rdf : type owl:Class ;

139 rdfs:subClassOf wo:Content Page ,

140 [rdf : type owl:Restrict ion ;

141 owl:onProperty wo:hasTalkpage ;

142 owl:someValuesFrom :P Template Talk

143] ,

144 [rdf : type owl:Restrict ion ;

145 owl:onProperty wo:belongsToNS ;

146 owl:hasValue :NS Template

147] .

148

149 ### http://localhost/MediaWiki . owl#P Template Talk

150 :P Template Talk rdf : type owl:Class ;

151 rdfs:subClassOf wo:Talk Page ,

152 [rdf : type owl:Restrict ion ;

153 owl:onProperty wo:belongsToNS ;

154 owl:hasValue :NS Template Talk

155] .

156

157 ### http://localhost/MediaWiki . owl#P User Page

158 :P User Page rdf : type owl:Class ;

159 rdfs:subClassOf wo:Content Page ,

160 [rdf : type owl:Restrict ion ;

161 owl:onProperty wo:belongsToNS ;

162 owl:hasValue :NS User

163] ,

164 [rdf : type owl:Restrict ion ;

165 owl:onProperty wo:hasTalkpage ;

166 owl:someValuesFrom :P User Talk

167] .

168

169 ### http://localhost/MediaWiki . owl#P User Talk

170 :P User Talk rdf : type owl:Class ;

171 rdfs:subClassOf wo:Talk Page ,

172 [rdf : type owl:Restrict ion ;

173 owl:onProperty wo:belongsToNS ;

174 owl:hasValue :NS User Talk

175] .

176

177 ### http://localhost/WikiOntology . owl#Page

178 wo:Page rdfs:subClassOf [rdf : type owl:Restrict ion ;

179 owl:onProperty wo:hasMetadata ;

180 owl:someValuesFrom wo:History

181] .

182

183 ###

184 # Individuals

185 ###

186

187 ### http://localhost/MediaWiki . owl#Media

145

188 :Media rdf : type wo:Virtual Namespace ,

189 owl:NamedIndividual ;

190

191 :NS Value "Media"ˆˆ xsd:string .

192

193 ### http://localhost/MediaWiki . owl#MediaWiki

194 :MediaWiki rdf : type wo:Wiki ,

195 owl:NamedIndividual ;

196 wo:hasVersion "1.16"ˆˆ xsd:string ;

197 wo:hasEngine "MediaWiki"@en .

198

199 ### http://localhost/MediaWiki . owl#MediaWiki Markup

200 :MediaWiki Markup rdf: type wo:WikiMarkup ,

201 owl:NamedIndividual .

202

203 ### http://localhost/MediaWiki . owl#NS Category

204 :NS Category rdf : type wo:Namespace ,

205 owl:NamedIndividual ;

206 :NS Value "Category"ˆˆ xsd:string .

207

208 ### http://localhost/MediaWiki . owl#NS Category Talk

209 :NS Category Talk rdf : type wo:Namespace ,

210 owl:NamedIndividual ;

211 :NS Value "Category_Talk"ˆˆ xsd:string .

212

213 ### http://localhost/MediaWiki . owl#NS File

214 :NS File rdf : type wo:Namespace ,

215 owl:NamedIndividual ;

216 :NS Value "File"ˆˆ xsd:string .

217

218 ### http://localhost/MediaWiki . owl#NS File Talk

219 :NS File Talk rdf : type wo:Namespace ,

220 owl:NamedIndividual ;

221 :NS Value "File_Talk"ˆˆ xsd:string .

222

223 ### http://localhost/MediaWiki . owl#NS Help

224 :NS Help rdf : type wo:Namespace ,

225 owl:NamedIndividual ;

226 :NS Value "Help"ˆˆ xsd:string .

227

228 ### http://localhost/MediaWiki . owl#NS Help Talk

229 :NS Help Talk rdf : type wo:Namespace ,

230 owl:NamedIndividual ;

231 :NS Value "Help_Talk"ˆˆ xsd:string .

232

233 ### http://localhost/MediaWiki . owl#NS Main

234 :NS Main rdf : type wo:Namespace ,

235 owl:NamedIndividual ;

236 :NS Value "Main"ˆˆ xsd:string .

237

238 ### http://localhost/MediaWiki . owl#NS MediaWiki

146

239

240 :NS MediaWiki rdf : type wo:Namespace ,

241 owl:NamedIndividual ;

242 :NS Value "MediaWiki"ˆˆ xsd:string .

243

244 ### http://localhost/MediaWiki . owl#NS MediaWiki Talk

245 :NS MediaWiki Talk rdf : type wo:Namespace ,

246 owl:NamedIndividual ;

247 :NS Value "MediaWiki_Talk"ˆˆ xsd:string .

248

249 ### http://localhost/MediaWiki . owl#NS Project

250 :NS Project rdf : type wo:Namespace ,

251 owl:NamedIndividual ;

252 :NS Value "Project"ˆˆ xsd:string .

253

254 ### http://localhost/MediaWiki . owl#NS Project Talk

255 :NS Project Talk rdf : type wo:Namespace ,

256 owl:NamedIndividual ;

257 :NS Value "Project_Talk"ˆˆ xsd:string .

258

259 ### http://localhost/MediaWiki . owl#NS Talk

260 :NS Talk rdf : type wo:Namespace ,

261 owl:NamedIndividual ;

262 :NS Value "Talk"ˆˆ xsd:string .

263

264 ### http://localhost/MediaWiki . owl#NS Template

265 :NS Template rdf : type wo:Namespace ,

266 owl:NamedIndividual ;

267 :NS Value "Template"ˆˆ xsd:string .

268

269 ### http://localhost/MediaWiki . owl#NS Template Talk

270 :NS Template Talk rdf : type wo:Namespace ,

271 owl:NamedIndividual ;

272 :NS Value "Template_Talk"ˆˆ xsd:string .

273

274 ### http://localhost/MediaWiki . owl#NS User

275 :NS User rdf : type wo:Namespace ,

276 owl:NamedIndividual ;

277 :NS Value "User"ˆˆ xsd:string .

278

279 ### http://localhost/MediaWiki . owl#NS User Talk

280 :NS User Talk rdf : type wo:Namespace ,

281 owl:NamedIndividual ;

282 :NS Value "User_Talk"ˆˆ xsd:string .

283

284 ### http://localhost/MediaWiki . owl#Special

285 :Special rdf : type wo:Virtual Namespace ,

286 owl:NamedIndividual ;

287 :NS Value "Special"ˆˆ xsd:string .

288

289 ### Generated by the OWL API (version 3.2.3.1824) http://owlapi . sourceforge . net

147

Appendix C

ReqWiki Questionnaire

The questionnaire provided to ReqWiki users in the evaluation scenario de-

scribed is Section 7.3 in presented in this section. The following question-

naire was designed using LimeSurvey1, an open-source survey generator

written in PHP. The logic embedded in the questionnaire uses conditions

to show or hide questions. Therefore, ReqWiki users were only asked wiki

related questions when answered “ReqWiki” to question 6.

It should be noted that this questionnaire also contains the Semantic As-

sistants OpenOffice.org Writer plug-in [GW08], as well as NLP service spe-

cific questions, in addition to the ReqWiki related questions. However, the

demographic and ReqWiki-related results were isolated and only consid-

ered during the analysis. The raw data gathered from the questionnaire is

presented in Appendix D.

1http://www.limesurvey.org/

148

�����������	
�������
��
���
���������
���

������� ������
���	�
����� ���� ����
��
�	��
�
�����
��� �������
��	��
������	��
���� ������
������
���!�""�#$%%����
����"������������&
����"�������
�� ������ ��
����������
�����
'��������������	�������������	�
����������
�����"������� ����
��
�	��
�
���
��

�������
�	"���� ��������
�
�
�������""��
����
�� �

"� ��& ��"��"
�	�
����
���	��
�"��
�
��

*"
��
���
������������������� ��	���	�&
� ���
���������� �	���
����"��� ��������,
������ �	����
������	�
�
	��
�/�����������
���"��������� �	�����
������
�
� ��
�������������
����

���������
��	���
������
�
������
��
����������� �	����	��
��������������
�������&
��0�������	
�������
����������"� �� ����
�
�����������"
�
&
"���
���	����
��

������ �	�

��
��
��������� ����
�1����
�
������
��

��
�
���
�%2��	
��������������	�&
�

�������	
������������������

����������������������������	������������������
���������

*"
��
������
������������ ���
�� �""����3

�1����
���������*����� �
���,������"
�" ����
��������
�	��
�
��/

�*���
�����"��������*����� �
���,�	���� �
�����	��	��"����	��������&����	"���/

�4���&
����5�" ��	�"�,
�	�&�"
���������������
�	���
�����&
���
��
�/

!��"�#
����������������$	����������
�������%������
&�������'����������

*"
��
������
������������ ���
�� �""����3

�*�
&��	������
����
6�
��
�
�,
�������	���&
����
��
"��
����	��
�/

�*�
&��	����	�����"�
6�
��
�
�,
�������	���&
�����
�����������
�/

�5��������
���������	�����"�
6�
��
�

�4�

"��(�)��*������������$	���������
���������������+

*"
��
������
���
�����������
��
����
�� ���
������
�3

� 4�&��

'�&��
�
5
��
� 7���
�
� *����� �
� 86�
��

�������	�
�� ������������������������������������	�
�����������������

������� ���������������!�"#
149

� 4�&��

'�&��
�
5
��
� 7���
�
� *����� �
� 86�
��

�������

*���������
�������
��
����
�������

����
���" ���
���"�����
��
�
7��
���
�
����� ��
�
7��
���

�
� ������3

������3�9����"�����:�
6�����:����"
��
������	����
������������������

�	�
���	��������3�����������"
��
��� ��
� ����
������ ��������

�����������;���������������������	�����"
��
��� ���
���� ��������

����������3��
������ �	�
���������� �������"�
������
���� ��������

������3�'	���������&
����"
��
��� �������"�
�����

��������	�
�����������������
���� ��������

(��,�)��*������������$	���������
���������������-�./)��*���
�
��������+

*"
��
������
���
�����������
��
����
�� ���
������
�3

� 4�&��

'�&��
�
5
��
� 7���
�
� *����� �
� 86�
��

�������

�
&
"���
�
9
�����"���
�
�
�	��
�
��
8"�� ���������
8&�"	����
�
�	��
�
��
��
���������
,���	�
�����/
�
�	��
�
��
=	�"����'��	���

������9��
"��
,?91����!�
@��"���
�/

�
� ������3

������3�9����"�����:�
6�����:����"
��
������	����
������������������

�	�
���	��������3�����������"
��
��� ��
� ����
������ ��������

�����������;���������������������	�����"
��
��� ���
���� ��������

����������3��
������ �	�
���������� �������"�
������
���� ��������

������3�'	���������&
����"
��
��� �������"�
�����

��������	�
�����������������
���� ��������

�������	�
�� ������������������������������������	�
�����������������

������� ���������������!�"#
150

,��0�
)��*������������$	���������
���������������1.2�)��*����
��
������+

*"
��
������
���
�����������
��
����
�� ���
������
�3

� 4�&��

'�&��
�
5
��
� 7���
�
� *����� �
� 86�
��

�������

�
&
"���
�
9
�����"���
�
�
�	��
�
��
8"�� ���������
8&�"	����
�
�	��
�
��
��
���������
,���	�
�����/
�
�	��
�
��
=	�"����'��	���

������9��
"��
,?91����!�
@��"���
�/

�
� ������3

������3�9����"�����:�
6�����:����"
��
������	����
������������������

�	�
���	��������3�����������"
��
��� ��
� ����
������ ��������

�����������;���������������������	�����"
��
��� ���
���� ��������

����������3��
������ �	�
���������� �������"�
������
���� ��������

������3�'	���������&
����"
��
��� �������"�
�����

��������	�
�����������������
���� ��������

�������	�
�� ������������������������������������	�
�����������������

������� ���������������!�"#
151

3�������1���������

0�31��#
��
������
�����������		����������������������
�
������������������������������

*"
��
������
������������ ���
�� �""����3

�@�
@����
���������
�

��
�����

�@��
�� �

4�31!�#
��
������
�����������		����
���������������
�
5����������������������3)3����������

*"
��
������
������������ ���
�� �""����3

���
��
����� �'����������
�&��
�

�D����������	�""�

6�31"�#
��������
���������������������
�5������������3)3
����������

�����	�
������
����
����������������������������
�	������

G�'��
�������'%#:D����������	�""� :�����	
�����:J�Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�

� �����
��	�"��� ����
���
���� �� �	���������	�
��V/

*"
��
�����
�� �	�����
���
�
3

�

7�31(��������8��8��������������
�3�������1�������������
������������
���*��

�������	�
�� ������������������������������������	�
�����������������

������� ���������������!�"#
152

�����	�
������
����
����������������������������
�	������

G�'��
�������'%#:�
�����:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"������������� �	�	�
�� �����

���	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'����������
�& ��
�:�����	
�����:J
Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
���� �� �	�����
���	�
��V/

*"
��
������
������������ ���
�� �""����3

�Y
���8���

�8���

�4
	���"

�������	"�

�Y
���������	"�

�9�31,��������8��8��������������
�3�������1���������
/	��/�����	���8����������������

�����	�
������
����
����������������������������
�	������

G�'��
�������'%%:@�
@� � ��
���������
�:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"�����������
� �	�	�
�� �����
����	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'��������
�
�& ��
�:�����	
�����:J�Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
�
�� �� �	���������	�
��V/

*"
��
������
������������ ���
�� �""����3

�Y
���8���

�8���

�4
	���"

�������	"�

�Y
���������	"�

���310�:
��*����
����������������������������
���������
�
3�������1���������	���8��+

�����	�
������
����
����������������������������
�	������

G�'��
�������'%#:�
�����:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"������������� �	�	�
�� �����

���	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'����������
�& ��
�:�����	
�����:J
Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
���� �� �	�����
���	�
��V/

*"
��
������
�	�����������"� 3

�5����
��D���������" � ��

��"����
����
����

��
�	"����
�
����������
��Z	�
�����

�������	�
�� ������������������������������������	�
�����������������

$������ ���������������!�"#
153

�4�
�������&

@��
�3� �

�!�314�:
��*����
����������������������������
���������
�
3�������1���������	���8��+

�����	�
������
����
����������������������������
�	������

G�'��
�������'%%:@�
@� � ��
���������
�:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"�����������
� �	�	�
�� �����
����	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'��������
�
�& ��
�:�����	
�����:J�Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
�
�� �� �	���������	�
��V/

*"
��
������
�	�����������"� 3

�D������������������""

��"����
����
����

��
�	"����
�
����������
��Z	�
�����

�4�
�������&

@��
�3� �

�"�316�)��*�
��
������
�)�5#�*��������������
�����
;��������������+

�����	�
������
����
����������������������������
�	������

G�'��
�������'%#:�
�����:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"������������� �	�	�
�� �����

���	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'����������
�& ��
�:�����	
�����:J
Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
���� �� �	�����
���	�
��V/

*"
��
������
���
�����������
��
����
�� ���
������
�3

� 9���
�

��� ��" 5

��� ��" 4
	���"

1
���
�

��� ��"

7�""�������&

&����
�
'	�������
&
�������������
�
*�
0�
��
��=	
��
�
*�
0�
��
�
����
���" ����1���
����!�����,����

���/
�����
��"��
�
,�������
�
�����/

�������	�
�� ������������������������������������	�
�����������������

!������ ���������������!�"#
154

� 9���
�

��� ��" 5

��� ��" 4
	���"

1
���
�

��� ��"

8��
�����&������
�
��

�
����
�
8��
���������
�������
�Z������

����
�

�(�317�������
��$	��������������)�5#�*�<�
��
�		��������
��������������3�������)�5�����������������������������

�����	�
������
����
����������������������������
�	������

G�'��
�������'%#:�
�����:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"������������� �	�	�
�� �����

���	�
�������� �� �	��������
�V/

*"
��
������
������������ ���
�� �""����3

��
�����0" ��
�����
��������
����� ��	�����

����������"�����

����������"������*���
�����,
�����@�
@����
�����
���9�������������/

�@��
�� �

�,�31�9�)��*�
��
������
�3�������1���������	���8�������
�
����;��������������+

�����	�
������
����
����������������������������
�	������

G�'��
�������'%%:@�
@� � ��
���������
�:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"�����������
� �	�	�
�� �����
����	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'��������
�
�& ��
�:�����	
�����:J�Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
�
�� �� �	���������	�
��V/

*"
��
������
���
�����������
��
����
�� ���
������
�3

� 9���
�

��� ��" 5

��� ��" 4
	���"

1
���
�

��� ��"

'������
[���"������
D�
�����&

'�������
7	�����\���?�
�
D�
����
�,���
��\
/
����Z[��

'������
���
������
��	�
�

�������	�
�� ������������������������������������	�
�����������������

%������ ���������������!�"#
155

�0�31���������
��$	���������������
�%������&�������
'���������<���������������������3�������)�5���������
��������������*����������

�����	�
������
����
����������������������������
�	������

G�'��
�������'%%:@�
@� � ��
���������
�:�����	
�����:X�Q�'%U:�,�������
��� ���
�� �""��������"�����������
� �	�	�
�� �����
����	�
�������� �� �	��������
�V/�����'��
�������'%%:��
��
������'��������
�
�& ��
�:�����	
�����:J�Q�'#U:�,�������
��� ���
�� �""�������������
������� �	�	�
�� �����
��	�"��� ����
���
�
�� �� �	���������	�
��V/

*"
��
������
������������ ���
�� �""����3

�]
�

�4��,��
�������
��
��������
���6/

9��
�������
������	�������
��
�
3

�

�������	�
�� ������������������������������������	�
�����������������

&������ ���������������!�"#
156

%&'3�������

�4�%&'��)����
��
�������������
�����;��������������+

*"
��
������
���
�����������
��
����
�� ���
������
�3

� 9���
5

��� ��" 5

��� ��" 4
	���"

1
���
5

��� ��"

������
	�
���

D��������
86�������
�������=	�"���
8�"�����	��
D�
6
�
�
�����" ���
9
������,�� "	���
��
�����������/
*
������
1�������86�������
�
�	��
�
���='
�
�
���
�
�	��
�
���='
����������

�6�%&'!�#
����
������������������
��������
������$���
3�������)�5���������������������

*"
��
�����
�� �	�����
���
�
3

�

�������	�
�� ������������������������������������	�
�����������������

'������ ���������������!�"#
157

Appendix D

Questionnaire Responses

The data gathered from ReqWiki questionnaire feedbacks is provided in

this section.

D.1 Graduate Students Responses

158

�������

��	
�������������������������� ��

���������������������� ��

������������������ �������

�

��������		���������

� �����������������������!�������������"���������������#

$�� ��� %��� ����������

�	
	�������	�������	�	����������������

�	
	������������	��
���� ��!�� �
"� #"������

�������	���������	�������	�	����������	�	����

�����������������������$���%����� ��!�# �
�&� '(��"���

)��	$�����*	�	����������	$��������������������
����������	$���+����� ��!�� �

,� ##�&(���

)��������� �� ������

)���	�+����� �� �����

��������		��������&

'��������������������(!������������������������������)�����������������#

$�� ��� %��� ����������

���$	��������
	���-+��	����������.�������$��
�������������������� ��!�� �

��� �&�'(���

���$	����	�����	����-+��	����������.�������$��

������	����	������ ��!�# �
'� �#�"����

*��������
	�����	�����	����-+��	������!�� � #� /�'&���

)�����!�' � �'� '&��/���

)��������� �� ������

)���	�+����� �� �����

��������		��������*+�*�,

���-��������������(!����������������� ����������

./�� ���������		���0

$�� ��� %��� ����������

)�$	����!'�� � �� ��#����

0$�����*��	������!'�# � /� �"��&���

1�
+�������!'�� � "� #"������

����	�	�����!'�' � �'� '&��/���

2-+�����!'�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

159

��������		��������*+�*1,

���-��������������(!����������������� ����������
./�� �����������0

$�� ��� %��� ����������

)�$	����!'�� � '� �#�"����

0$�����*��	������!'�# � &� �/������

1�
+�������!'�� � �'� '&��/���

����	�	�����!'�' � ,� ##�&(���

2-+�����!'�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������*+�*&,

���-��������������(!����������������� ����������
./�� ����������
�����0

$�� ��� %��� ����������

)�$	����!'�� � ��� �#�#/���

0$�����*��	������!'�# � �#� �(�,����

1�
+�������!'�� � &� �/������

����	�	�����!'�' � '� �#�"����

2-+�����!'�& � �� ������

)��������� �� ������

)���	�+����� �� �����

��������		��������*+�**,

���-��������������(!����������������� ����������

.'����'����'�
�%���!��0

$�� ��� %��� ����������

)�$	����!'�� � '� �#�"����

0$�����*��	������!'�# � ,� ##�&(���

1�
+�������!'�� � �/� &��/����

����	�	�����!'�' � �� "�/(���

2-+�����!'�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������*+�*2,

���-��������������(!����������������� ����������
./�	������'�
�%���!��0

$�� ��� %��� ����������

)�$	����!'�� � �(� &(��/���

0$�����*��	������!'�# � /� �"��&���160

��������		��������*+�*2,

���-��������������(!����������������� ����������
./�	������'�
�%���!��0

$�� ��� %��� ����������

1�
+�������!'�� � /� �"��&���

����	�	�����!'�' � �� ��#����

2-+�����!'�& � �� ������

)��������� �� ������

)���	�+����� �� �����

��������		��������2+�2�,

���-��������������(!����������������� ����������3"�4����-���������������

./�� ���������!	����5���������0

$�� ��� %��� ����������

)�$	����!&�� � #� /�'&���

0$�����*��	������!&�# � �'� '&��/���

1�
+�������!&�� � ��� �#�#/���

����	�	�����!&�' � &� �/������

2-+�����!&�& � �� ������

)��������� �� ������

)���	�+����� �� �����

��������		��������2+�21,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����"��������������"��������0

$�� ��� %��� ����������

)�$	����!&�� � ,� ##�&(���

0$�����*��	������!&�# � �'� '&��/���

1�
+�������!&�� � ,� ##�&(���

����	�	�����!&�' � #� /�'&���

2-+�����!&�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������2+�2&,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����/!�����������+���	�������,0

$�� ��� %��� ����������

)�$	����!&�� � /� �"��&���

0$�����*��	������!&�# � ��� '��"'���

1�
+�������!&�� � "� #"������

����	�	�����!&�' � #� /�'&���161

��������		��������2+�2&,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����/!�����������+���	�������,0

$�� ��� %��� ����������

2-+�����!&�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������2+�2*,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����6�������$��������0

$�� ��� %��� ����������

)�$	����!&�� � "� #"������

0$�����*��	������!&�# � �'� '&��/���

1�
+�������!&�� � ,� ##�&(���

����	�	�����!&�' � �� ��#����

2-+�����!&�& � �� ������

)��������� �� ������

)���	�+����� �� �����

��������		��������2+�22,

���-��������������(!����������������� ����������3"�4����-���������������
.�	����5�������+75)8����8�4�������,0

$�� ��� %��� ����������

)�$	����!&�� � &� �/������

0$�����*��	������!&�# � ��� '��"'���

1�
+�������!&�� � "� #"������

����	�	�����!&�' � �� "�/(���

2-+�����!&�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������9+�9�,

���-��������������(!����������������� ����������$��"����-���������������

./�� ���������!	����5���������0

$�� ��� %��� ����������

)�$	����!/�� � �� ������

0$�����*��	������!/�# � /� �"��&���

1�
+�������!/�� � ��� '��"'���

����	�	�����!/�' � ��� �&�'(���

2-+�����!/�& � �� ��#����

)��������� �� ������162

��������		��������9+�9�,

���-��������������(!����������������� ����������$��"����-���������������
./�� ���������!	����5���������0

$�� ��� %��� ����������

)���	�+����� �� �����

��������		��������9+�91,

���-��������������(!����������������� ����������$��"����-���������������
.�������	�����"��������������"��������0

$�� ��� %��� ����������

)�$	����!/�� � �� ������

0$�����*��	������!/�# � &� �/������

1�
+�������!/�� � �,� &'�('���

����	�	�����!/�' � (� #&�(����

2-+�����!/�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������9+�9&,

���-��������������(!����������������� ����������$��"����-���������������

.�������	�����/!�����������+���	�������,0

$�� ��� %��� ����������

)�$	����!/�� � �� ������

0$�����*��	������!/�# � '� �#�"����

1�
+�������!/�� � �"� /��#"���

����	�	�����!/�' � ,� ##�&(���

2-+�����!/�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������9+�9*,

���-��������������(!����������������� ����������$��"����-���������������
.�������	�����6�������$��������0

$�� ��� %��� ����������

)�$	����!/�� � �� ������

0$�����*��	������!/�# � /� �"��&���

1�
+�������!/�� � �"� /��#"���

����	�	�����!/�' � &� �/������

2-+�����!/�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

163

��������		��������9+�92,

���-��������������(!����������������� ����������$��"����-���������������
.�	����5�������+75)8����8�4�������,0

$�� ��� %��� ����������

)�$	����!/�� � �� ������

0$�����*��	������!/�# � /� �"��&���

1�
+�������!/�� � �,� &'�('���

����	�	�����!/�' � ,� ##�&(���

2-+�����!/�& � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		�������/$�

'����������������� �����!!������������������������������	��������������������	���#

$�� ��� %��� ����������

3+��3��	���������	�����40�� � �(� &(��/���

5���	�	��40�# � (� #&�(����

3����� &� �/������

)��������� �� ������

)���	�+����� �� �����

��������		�������/$1

'����������������� �����!!���������������������������������������	����������/�/�

���	����#

$�� ��� %��� ����������

6���4�
���	��0��	����������$	�����40�� � #(� "���#���

7�	�	��
���������40�# � �� "�/(���

)��������� �� ������

)���	�+����� �� �����

��������		�������/$&

'�����������������	���������������������������������/�/����	����#

%��� ����������

0������ �� "�/(���

)��������� �� �����

)���	�+����� #(� "���#���

��������		�������/$*

� �����:�:��������������������/�	������$�������������������������������� �-�#

$�� ��� %��� ����������

8����2�����40'� � �� "�/(���
164

��������		�������/$*

� �����:�:��������������������/�	������$�������������������������������� �-�#

$�� ��� %��� ����������

2�����40'# � #� /�'&���

)��������40'� � �� "�/(���

!	��	������40'' � �� ������

8����!	��	������40'& � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$2

� �����:�:��������������������/�	������$����������4!��4������!���:�����������������#

$�� ��� %��� ����������

8����2�����40&� � #� /�'&���

2�����40&# � "� #"������

)��������40&� � '� �#�"����

!	��	������40&' � �� ������

8����!	��	������40&& � �� ������

)��������� �� ������

)���	�+����� �/� &��/����

��������		�������/$9

%���-������������������������������������ ���������������/�	������$����������!���:���

$�� ��� %��� ����������

*�������7���
+��	%	�	����40/� � �� ��#����

4����5��+�����6	
���40/# � �� ��#����

5����������������������9����������40/� � �� "�/(���

)��������%�$���40/' � �� "�/(���

3����� �� "�/(���

��������		�������/$;

%���-������������������������������������ ���������������/�	������$����������!���:���

$�� ��� %��� ����������

7�������������	��������40,� � �� ��#����

4����5��+�����6	
���40,# � �� "�/(���

5����������������������9����������40,� � (� #&�(����

)��������%�$���40,' � '� �#�"����

3����� '� �#�"����

165

��������		�������/$<+/$<�,

���-� �����������������'�-����������� ��������	���
���������������
.%���
�������������	���0

$�� ��� %��� ����������

:����%����	�	����40�(� � &� �/������

*����	�	����40�(# � �� "�/(���

)��������40�(� � �� ������

������%����	�	����40�(' � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$<+/$<1,

���-� �����������������'�-����������� ��������	���
���������������

.$��	�����������������!����0

$�� ��� %��� ����������

:����%����	�	����40�(� � '� �#�"����

*����	�	����40�(# � #� /�'&���

)��������40�(� � #� /�'&���

������%����	�	����40�(' � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$<+/$<&,

���-� �����������������'�-����������� ��������	���
���������������
.���:��������6������0

$�� ��� %��� ����������

:����%����	�	����40�(� � '� �#�"����

*����	�	����40�(# � �� "�/(���

)��������40�(� � �� ������

������%����	�	����40�(' � �� ��#����

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$<+/$<*,

���-� �����������������'�-����������� ��������	���
���������������

.���:��������������
������)��-�0

$�� ��� %��� ����������

:����%����	�	����40�(� � ,� ##�&(���

*����	�	����40�(# � �� ��#����

)��������40�(� � �� ������

������%����	�	����40�(' � �� ������

)��������� �� ������166

��������		�������/$<+/$<*,

���-� �����������������'�-����������� ��������	���
���������������
.���:��������������
������)��-�0

$�� ��� %��� ����������

)���	�+����� #�� ,'��"���

��������		�������/$<+/$<2,

���-� �����������������'�-����������� ��������	���
���������������
./�/���	��+����������,0

$�� ��� %��� ����������

:����%����	�	����40�(� � �� "�/(���

*����	�	����40�(# � '� �#�"����

)��������40�(� � �� ��#����

������%����	�	����40�(' � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$<+/$<9,

���-� �����������������'�-����������� ��������	���
���������������

./�/���	!������+�����!����������,0

$�� ��� %��� ����������

:����%����	�	����40�(� � �� "�/(���

*����	�	����40�(# � '� �#�"����

)��������40�(� � �� ��#����

������%����	�	����40�(' � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$<+/$<;,

���-� �����������������'�-����������� ��������	���
���������������
."����������������
�� ������������0

$�� ��� %��� ����������

:����%����	�	����40�(� � &� �/������

*����	�	����40�(# � #� /�'&���

)��������40�(� � �� ��#����

������%����	�	����40�(' � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

167

��������		�������/$<+/$<<,

���-� �����������������'�-����������� ��������	���
���������������
."�������������������������=	���������������0

$�� ��� %��� ����������

:����%����	�	����40�(� � '� �#�"����

*����	�	����40�(# � �� "�/(���

)��������40�(� � �� ��#����

������%����	�	����40�(' � �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$>

?����������(!�������������������'�-�8� ������!!�������� ��������������/�� ����

�������	�����"��������������������#

$�� ��� %��� ����������

5���	�	;�	���4����
��	�����
���	����++����

�40"� �
(� #&�(����

6��	�	������	�	��40"# � �� ������

6��	�	������������������������.�3+��3��	���

��	���.�:	����������� ��40"� �
�� ������

3����� �� ������

)��������� �� ������

)���	�+����� #�� ,'��"���

��������		�������/$�@+/$�@�,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������
.$��������������������0

$�� ��� %��� ����������

:����%����	�	����4���� � &� �/������

*����	�	����4���# � /� �"��&���

)��������4���� � �� "�/(���

������%����	�	����4���' � �� ��#����

)��������� �� ������

)���	�+����� �/� &��/����

��������		�������/$�@+/$�@1,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������

.A�����������$��������0

$�� ��� %��� ����������

:����%����	�	����4���� � #� /�'&���

*����	�	����4���# � ,� ##�&(���

)��������4���� � /� �"��&���168

��������		�������/$�@+/$�@1,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������
.A�����������$��������0

$�� ��� %��� ����������

������%����	�	����4���' � �� ������

)��������� �� ������

)���	�+����� �/� &��/����

��������		�������/$�@+/$�@&,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������
.%���	�B����7����A���������+������B�,0

$�� ��� %��� ����������

:����%����	�	����4���� � #� /�'&���

*����	�	����4���# � �� "�/(���

)��������4���� � "� #"������

������%����	�	����4���' � �� ��#����

)��������� �� ������

)���	�+����� �/� &��/����

��������		�������/$�@+/$�@*,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������

./� =�����$�������������������������0

$�� ��� %��� ����������

:����%����	�	����4���� � #� /�'&���

*����	�	����4���# � '� �#�"����

)��������4���� � (� #&�(����

������%����	�	����4���' � �� ��#����

)��������� �� ������

)���	�+����� �/� &��/����

��������		�������/$��

?����������(!����������������������������)�����������������8� �����������������������
/�� �����������	�����"��������������-�����������#

$�� ��� %��� ����������

<����40��� � �'� '&��/���

)����+��	��������������	������%�- ��40��# � �� ��#����

1�

����� �� ������

)��������� �� ������

)���	�+����� �/� &��/����

169

��������		��������)��+�)�$�,

����� �������������� ��������	���
���������������
.A���	�����"(������0

$�� ��� %��� ����������

:����*����	�	����)���� � '� �#�"����

*����	�	����)���# � ,� ##�&(���

)��������)���� � ,� ##�&(���

������*����	�	����)���& � �� ������

!	���������	���)���/ � ��� '��"'���

)��������� �� ������

)���	�+����� �� �����

��������		��������)��+�)�$1,

����� �������������� ��������	���
���������������
.'�������6������0

$�� ��� %��� ����������

:����*����	�	����)���� � "� #"������

*����	�	����)���# � ��� '��"'���

)��������)���� � &� �/������

������*����	�	����)���& � #� /�'&���

!	���������	���)���/ � #� /�'&���

)��������� �� ������

)���	�+����� �� �����

��������		��������)��+�)�$&,

����� �������������� ��������	���
���������������

."����������	�A���(��0

$�� ��� %��� ����������

:����*����	�	����)���� � �� "�/(���

*����	�	����)���# � ,� ##�&(���

)��������)���� � ��� �&�'(���

������*����	�	����)���& � #� /�'&���

!	���������	���)���/ � (� #&�(����

)��������� �� ������

)���	�+����� �� �����

��������		��������)��+�)�$*,

����� �������������� ��������	���
���������������
.�����
������5�������+������������������������,0

$�� ��� %��� ����������

:����*����	�	����)���� � #� /�'&���

*����	�	����)���# � ��� �&�'(���170

��������		��������)��+�)�$*,

����� �������������� ��������	���
���������������
.�����
������5�������+������������������������,0

$�� ��� %��� ����������

)��������)���� � "� #"������

������*����	�	����)���& � �� ��#����

!	���������	���)���/ � (� #&�(����

)��������� �� ������

)���	�+����� �� �����

��������		��������)��+�)�$9,

����� �������������� ��������	���
���������������

.����������)������"(������0

$�� ��� %��� ����������

:����*����	�	����)���� � �� "�/(���

*����	�	����)���# � '� �#�"����

)��������)���� � ��� �#�#/���

������*����	�	����)���& � �� "�/(���

!	���������	���)���/ � ��� �&�'(���

)��������� �� ������

)���	�+����� �� �����

��������		��������)��+�)�$;,

����� �������������� ��������	���
���������������
.�������	�����6$��������0

$�� ��� %��� ����������

:����*����	�	����)���� � "� #"������

*����	�	����)���# � ��� '��"'���

)��������)���� � &� �/������

������*����	�	����)���& � �� "�/(���

!	���������	���)���/ � �� ��#����

)��������� �� ������

)���	�+����� �� �����

��������		��������)��+�)�$<,

����� �������������� ��������	���
���������������
.�������	�����6$�/���������0

$�� ��� %��� ����������

:����*����	�	����)���� � ,� ##�&(���

*����	�	����)���# � &� �/������

)��������)���� � ��� �#�#/���

������*����	�	����)���& � �� "�/(���171

��������		��������)��+�)�$<,

����� �������������� ��������	���
���������������
.�������	�����6$�/���������0

$�� ��� %��� ����������

!	���������	���)���/ � /� �"��&���

)��������� �� ������

)���	�+����� �� �����

��������		��������)�1

'����������������������� ���������������������(����/�� �����������	�����"����������#

%��� ����������

0������ �� "�/(���

)��������� #(� "���#���

)���	�+����� �� �����

172

D.2 Undergraduate Students Responses

173

�������

��	
�������������������������� ��

���������������������� ��

������������������ �������

�

��������		���������

� �����������������������!�������������"���������������#

$�� ��� %��� ����������

�	
	�������	�������	�	����������������

�	
	������������	��
���� ��!�� �
�� ��������

�������	���������	�������	�	����������	�	����

��������������������������������� ��!�� �
�� ��������

���	������		�	����������	���������������������
����������	����
����� ��!�� �

��� �������

���������� �� ������

����	�
����� �� �����

��������		��������&

'��������������������(!������������������������������)�����������������#

$�� ��� %��� ����������

����	��������
	����
��	���������������������
�������������������� ��!�� �

�� ��������

����	����	�����	�����
��	���������������������

������	����	������ ��!�� �
�� ������

	��������
	�����	�����	�����
��	������!�� � �� ��������

������!�� � �� ��������

���������� �� ������

����	�
����� �� �����

��������		��������*+�*�,

���-��������������(!����������������� ����������

./�� ���������		���0

$�� ��� %��� ����������

���	����!��� � �� �������

�������	��	������!��� � �� �������

��

�������!��� � � ��������

����	�	�����!��� � � ��������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

174

��������		��������*+�*1,

���-��������������(!����������������� ����������
./�� �����������0

$�� ��� %��� ����������

���	����!��� � �� �������

�������	��	������!��� � �� ��������

��

�������!��� � �� ������

����	�	�����!��� � �� ��������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������*+�*&,

���-��������������(!����������������� ����������
./�� ����������
�����0

$�� ��� %��� ����������

���	����!��� � � ��������

�������	��	������!��� � �� ��������

��

�������!��� � �� �������

����	�	�����!��� � �� ������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������*+�**,

���-��������������(!����������������� ����������

.'����'����'�
�%���!��0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � � ��������

��

�������!��� � �� ��������

����	�	�����!��� � �� �������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������*+�*2,

���-��������������(!����������������� ����������
./�	������'�
�%���!��0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � � ��������175

��������		��������*+�*2,

���-��������������(!����������������� ����������
./�	������'�
�%���!��0

$�� ��� %��� ����������

��

�������!��� � �� ��������

����	�	�����!��� � �� ������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������2+�2�,

���-��������������(!����������������� ����������3"�4����-���������������

./�� ���������!	����5���������0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � �� ��������

��

�������!��� � � ��������

����	�	�����!��� � �� �������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������2+�21,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����"��������������"��������0

$�� ��� %��� ����������

���	����!��� � � ��������

�������	��	������!��� � �� ��������

��

�������!��� � �� ��������

����	�	�����!��� � �� ������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������2+�2&,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����/!�����������+���	�������,0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � � ��������

��

�������!��� � �� ��������

����	�	�����!��� � �� �������176

��������		��������2+�2&,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����/!�����������+���	�������,0

$�� ��� %��� ����������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������2+�2*,

���-��������������(!����������������� ����������3"�4����-���������������
.�������	�����6�������$��������0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � �� ��������

��

�������!��� � �� �������

����	�	�����!��� � �� ������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������2+�22,

���-��������������(!����������������� ����������3"�4����-���������������
.�	����5�������+75)8����8�4�������,0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � �� ��������

��

�������!��� � �� ������

����	�	�����!��� � �� �������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������9+�9�,

���-��������������(!����������������� ����������$��"����-���������������

./�� ���������!	����5���������0

$�� ��� %��� ����������

���	����!��� � �� �������

�������	��	������!��� � �� ��������

��

�������!��� � �� ������

����	�	�����!��� � �� ��������

2�
�����!��� � �� ������

���������� �� ������177

��������		��������9+�9�,

���-��������������(!����������������� ����������$��"����-���������������
./�� ���������!	����5���������0

$�� ��� %��� ����������

����	�
����� �� �����

��������		��������9+�91,

���-��������������(!����������������� ����������$��"����-���������������
.�������	�����"��������������"��������0

$�� ��� %��� ����������

���	����!��� � �� �������

�������	��	������!��� � �� ��������

��

�������!��� � �� ��������

����	�	�����!��� � �� ��������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������9+�9&,

���-��������������(!����������������� ����������$��"����-���������������

.�������	�����/!�����������+���	�������,0

$�� ��� %��� ����������

���	����!��� � �� �������

�������	��	������!��� � �� ������

��

�������!��� � � ��������

����	�	�����!��� � �� �������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		��������9+�9*,

���-��������������(!����������������� ����������$��"����-���������������
.�������	�����6�������$��������0

$�� ��� %��� ����������

���	����!��� � �� �������

�������	��	������!��� � �� ������

��

�������!��� � �� ��������

����	�	�����!��� � �� ��������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

178

��������		��������9+�92,

���-��������������(!����������������� ����������$��"����-���������������
.�	����5�������+75)8����8�4�������,0

$�� ��� %��� ����������

���	����!��� � �� ��������

�������	��	������!��� � �� �������

��

�������!��� � ��� ��������

����	�	�����!��� � �� �������

2�
�����!��� � �� ������

���������� �� ������

����	�
����� �� �����

��������		�������/$�

'����������������� �����!!������������������������������	��������������������	���#

$�� ��� %��� ����������

3
��3��	���������	�����4��� � � ��������

5���	�	��4��� � �� ��������

3����� �� �������

���������� �� ������

����	�
����� �� �����

��������		�������/$1

'����������������� �����!!���������������������������������������	����������/�/�

���	����#

$�� ��� %��� ����������

6���4�
���	�����	�����������	�����4��� � �� ��������

7�	�	��
���������4��� � �� ��������

���������� �� ������

����	�
����� �� �����

��������		�������/$&

'�����������������	���������������������������������/�/����	����#

%��� ����������

������� �� ��������

���������� �� �����

����	�
����� �� ��������

��������		�������/$*

� �����:�:��������������������/�	������$�������������������������������� �-�#

$�� ��� %��� ����������

8����2�����4��� � �� ��������
179

��������		�������/$*

� �����:�:��������������������/�	������$�������������������������������� �-�#

$�� ��� %��� ����������

2�����4��� � �� ��������

���������4��� � �� �������

!	��	������4��� � �� ������

8����!	��	������4��� � �� �������

���������� �� ������

����	�
����� ��� �������

��������		�������/$2

� �����:�:��������������������/�	������$����������4!��4������!���:�����������������#

$�� ��� %��� ����������

8����2�����4��� � �� �������

2�����4��� � �� ��������

���������4��� � �� ������

!	��	������4��� � �� ������

8����!	��	������4��� � �� ������

���������� �� ������

����	�
����� ��� ��������

��������		�������/$9

%���-������������������������������������ ���������������/�	������$����������!���:���

$�� ��� %��� ����������

	�������7���

��	�	�	����4��� � �� ��������

4����5��
�����6	
���4��� � �� ������

5����������������������9����������4��� � �� ��������

���������������4��� � �� ��������

3����� �� ��������

��������		�������/$;

%���-������������������������������������ ���������������/�	������$����������!���:���

$�� ��� %��� ����������

7�������������	��������4�� � �� ������

4����5��
�����6	
���4�� � �� ������

5����������������������9����������4�� � �� �������

���������������4�� � �� ��������

3����� �� �������

180

��������		�������/$<+/$<�,

���-� �����������������'�-����������� ��������	���
���������������
.%���
�������������	���0

$�� ��� %��� ����������

:���������	�	����4���� � �� �������

	����	�	����4���� � �� ������

���������4���� � �� ������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

��������		�������/$<+/$<1,

���-� �����������������'�-����������� ��������	���
���������������

.$��	�����������������!����0

$�� ��� %��� ����������

:���������	�	����4���� � �� �������

	����	�	����4���� � �� ��������

���������4���� � �� �������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

��������		�������/$<+/$<&,

���-� �����������������'�-����������� ��������	���
���������������
.���:��������6������0

$�� ��� %��� ����������

:���������	�	����4���� � �� ������

	����	�	����4���� � �� ������

���������4���� � �� �������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

��������		�������/$<+/$<*,

���-� �����������������'�-����������� ��������	���
���������������

.���:��������������
������)��-�0

$�� ��� %��� ����������

:���������	�	����4���� � �� ������

	����	�	����4���� � �� �������

���������4���� � �� ������

�����������	�	����4���� � �� ������

���������� �� ������181

��������		�������/$<+/$<*,

���-� �����������������'�-����������� ��������	���
���������������
.���:��������������
������)��-�0

$�� ��� %��� ����������

����	�
����� ��� �������

��������		�������/$<+/$<2,

���-� �����������������'�-����������� ��������	���
���������������
./�/���	��+����������,0

$�� ��� %��� ����������

:���������	�	����4���� � �� �������

	����	�	����4���� � �� �������

���������4���� � �� ������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

��������		�������/$<+/$<9,

���-� �����������������'�-����������� ��������	���
���������������

./�/���	!������+�����!����������,0

$�� ��� %��� ����������

:���������	�	����4���� � �� ��������

	����	�	����4���� � �� ������

���������4���� � �� ��������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

��������		�������/$<+/$<;,

���-� �����������������'�-����������� ��������	���
���������������
."����������������
�� ������������0

$�� ��� %��� ����������

:���������	�	����4���� � �� �������

	����	�	����4���� � �� �������

���������4���� � �� ��������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

182

��������		�������/$<+/$<<,

���-� �����������������'�-����������� ��������	���
���������������
."�������������������������=	���������������0

$�� ��� %��� ����������

:���������	�	����4���� � �� ��������

	����	�	����4���� � �� �������

���������4���� � �� �������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� �������

��������		�������/$>

?����������(!�������������������'�-�8� ������!!�������� ��������������/�� ����

�������	�����"��������������������#

$�� ��� %��� ����������

5���	�	;�	���4����
��	�����
���	����

����

�4��� �
�� ��������

6��	�	������	�	��4��� � �� ������

6��	�	��������������������������3
��3��	���

��	�����:	����������� ��4��� �
�� ������

3����� �� ������

���������� �� ������

����	�
����� ��� ��������

��������		�������/$�@+/$�@�,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������
.$��������������������0

$�� ��� %��� ����������

:���������	�	����4���� � �� �������

	����	�	����4���� � �� ��������

���������4���� � �� ������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� ��������

��������		�������/$�@+/$�@1,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������

.A�����������$��������0

$�� ��� %��� ����������

:���������	�	����4���� � �� ������

	����	�	����4���� � �� ��������

���������4���� � �� ������183

��������		�������/$�@+/$�@1,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������
.A�����������$��������0

$�� ��� %��� ����������

�����������	�	����4���� � �� �������

���������� �� ������

����	�
����� ��� ��������

��������		�������/$�@+/$�@&,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������
.%���	�B����7����A���������+������B�,0

$�� ��� %��� ����������

:���������	�	����4���� � �� ������

	����	�	����4���� � �� �������

���������4���� � �� ��������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� ��������

��������		�������/$�@+/$�@*,

���-� ��������������/�	������$����������!���:��� ��������	���
���������������

./� =�����$�������������������������0

$�� ��� %��� ����������

:���������	�	����4���� � �� �������

	����	�	����4���� � �� �������

���������4���� � �� �������

�����������	�	����4���� � �� ������

���������� �� ������

����	�
����� ��� ��������

��������		�������/$��

?����������(!����������������������������)�����������������8� �����������������������
/�� �����������	�����"��������������-�����������#

$�� ��� %��� ����������

<����4���� � �� �������

�����
��	��������������	��������� ��4���� � �� ������

��

����� �� ������

���������� �� ������

����	�
����� ��� ��������

184

��������		��������)��+�)�$�,

����� �������������� ��������	���
���������������
.A���	�����"(������0

$�� ��� %��� ����������

:����	����	�	��������� � �� ��������

	����	�	��������� � �� �������

�������������� � �� ��������

������	����	�	��������� � �� ������

!	���������	�������� � ��� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)��+�)�$1,

����� �������������� ��������	���
���������������
.'�������6������0

$�� ��� %��� ����������

:����	����	�	��������� � �� ������

	����	�	��������� � �� ������

�������������� � �� ��������

������	����	�	��������� � �� ������

!	���������	�������� � �� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)��+�)�$&,

����� �������������� ��������	���
���������������

."����������	�A���(��0

$�� ��� %��� ����������

:����	����	�	��������� � �� ������

	����	�	��������� � �� �������

�������������� � �� ��������

������	����	�	��������� � �� �������

!	���������	�������� � ��� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)��+�)�$*,

����� �������������� ��������	���
���������������
.�����
������5�������+������������������������,0

$�� ��� %��� ����������

:����	����	�	��������� � �� ������

	����	�	��������� � �� ������185

��������		��������)��+�)�$*,

����� �������������� ��������	���
���������������
.�����
������5�������+������������������������,0

$�� ��� %��� ����������

�������������� � �� ��������

������	����	�	��������� � �� ������

!	���������	�������� � ��� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)��+�)�$9,

����� �������������� ��������	���
���������������

.����������)������"(������0

$�� ��� %��� ����������

:����	����	�	��������� � �� ������

	����	�	��������� � �� ��������

�������������� � �� �������

������	����	�	��������� � �� �������

!	���������	�������� � ��� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)��+�)�$;,

����� �������������� ��������	���
���������������
.�������	�����6$��������0

$�� ��� %��� ����������

:����	����	�	��������� � �� ������

	����	�	��������� � �� ��������

�������������� � �� �������

������	����	�	��������� � �� ������

!	���������	�������� � �� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)��+�)�$<,

����� �������������� ��������	���
���������������
.�������	�����6$�/���������0

$�� ��� %��� ����������

:����	����	�	��������� � �� �������

	����	�	��������� � �� �������

�������������� � �� �������

������	����	�	��������� � �� ������186

��������		��������)��+�)�$<,

����� �������������� ��������	���
���������������
.�������	�����6$�/���������0

$�� ��� %��� ����������

!	���������	�������� � ��� ��������

���������� �� ������

����	�
����� �� �����

��������		��������)�1

'����������������������� ���������������������(����/�� �����������	�����"����������#

%��� ����������

������� � ��������

���������� ��� ��������

����	�
����� �� �����

187

