
A Model Based Framework for Service Availability Management

by

 Pejman Salehi

A Thesis

in

The Department of Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

April 2012

© Pejman Salehi, 2012

CONCORDIA UNIVERSITY
 SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Pejman Salehi

Entitled: A Model Based Framework for Service Availability Management

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Electrical & Computer Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Dr. P. Grogono Chair

 Dr. D. Amyot External Examiner

 Dr. J. Rilling External to Program

 Dr. S. Abdi Examiner

 Dr. R. Dssouli Examiner

 Dr. A. Hamou-Lhadj Thesis Co-Supervisor

 Dr. F. Khendek Thesis Co-Supervisor

Approved by

Chair of Department or Graduate Program Director

April 11, 2012
Dean of Faculty

iii

ABSTRACT

A Model Based Framework for Service Availability Management

Pejman Salehi, Ph.D.

Concordia University, 2012

High availability of services is an important requirement in several domains, including

mission critical systems. The Service Availability Forum (SA Forum) is a consortium of

telecommunications and computing companies that defines standard middleware

solutions for high availability. Availability Management Framework (AMF) manages the

high availability of services by coordinating their application components according to

redundancy models. To protect these services, AMF requires a configuration, i.e. a

representation of the organization of the logical entities composing an application under

its control. AMF configuration design is error-prone and tedious if done manually, due to

the complexity of the AMF domain. This PhD thesis explores the effective design and

analysis of AMF configurations, proposing a model-based management framework that

facilitates this process. We propose a domain-specific modeling language that captures

AMF domain concepts, relationships, and constraints, facilitating the management of

AMF configurations. We define this language by extending UML through its profiling

mechanism, capturing the concepts of AMF configurations and the description of the

software for which the configuration will be generated.

We introduce a new approach for the automatic generation of AMF configurations based

on our UML profile using model transformation techniques. This approach consists of a

set of transformations from the software description entities into AMF configurations

iv

while satisfying the requirements of the services to be provided as well as the constraints

of the deployment infrastructure.

We also propose a third-party AMF configuration validation approach consisting of

syntactical and semantic validations. Syntactical validation checks the well-formedness

of third-party configurations by validating them against AMF standard specification

requirements captured in our UML profile. Semantic validation focuses on ensuring the

runtime protection of services at configuration time (the SI-Protection problem). SI-

Protection has combinatorial aspects and results in an NP-hard problem for most

redundancy models, which we have tackled by devising a heuristic-based method,

overcoming its complexity.

We present proofs of concepts by using different available technologies: IBM Rational

Software Architect (RSA) for implementing our UML profiles, Eclipse environment for

developing a prototype tool for validating third-party configurations, and Atlas

Transformation Language (ATL) for developing a prototype implementation of our

model-based configuration generation approach.

v

Acknowledgments

I would like to thank the many people who have made this thesis possible through their

wisdom and mentorship: First, my supervisors Dr. Ferhat Khendek and Dr. Abdelwahab

Hamou-Lhadj who have guided me through this venture with their insightful advice; and

secondly, to Dr. Maria Toeroe for her tireless dedication and meticulousness. I would

also like to express my gratitude to my colleagues and friends from the MAGIC Project,

Dr. Pietro Colombo, Ali Kanso, and Dr. Abdelouahed Gherbi, for their friendship and

support.

This dissertation would not have been possible without the generous financial support

received through the organizations contributing to the MAGIC Project: the Natural

Sciences and Engineering Research Council (NSERC) of Canada, Ericsson Software

Research and Concordia University. I would also like to express my appreciation for the

research facilities provided by Concordia University.

I would like to extend my thanks to the examining committee for their support during the

various stages of my PhD and for their effort in the final evaluative process.

I express my profound appreciation to my girlfriend, Katherine, for her for her love,

encouragement, support and her tireless proofreading.

I would like to show my gratitude to my little sister Mahsa for always supporting me

during the various stages of my life. I would also like to thank my uncles for always

believing in me and encouraging me during my studies.

vi

I owe my deepest gratitude to my parents, Mahnaz and Hossein, to whom this thesis is

dedicated, for their endless love and support throughout my life. I would like them to

know that I am eternally indebted to them.

vii

Table of Contents

1 Introduction ... 1

1.1 Thesis Motivation ... 1

1.2 Contributions .. 4

1.3 Thesis Organization.. 6

2 Background and Literature Review ... 8

2.1 High Availability and SA Forum ... 8

2.1.1 Service Availability .. 8

2.1.2 The Service Availability Forum.. 9

2.1.3 The Availability Management Framework ... 10

2.1.4 The Entity Types File.. 17

2.2 Modeling and UML Profiles .. 18

2.2.1 The UML Profiling Mechanism.. 19

2.2.2 Related UML Profiles ... 22

3 Modeling Framework- Domain Models .. 28

3.1 Domain Modeling Process ... 29

3.2 AMF Domain Model .. 30

3.2.1 AMF Components and Component Types ... 31

3.2.2 SU, SG, SI, CSI and their Types ... 33

3.2.3 Deployment Entities.. 34

3.2.4 Well-formedness Rules ... 35

3.2.5 Challenges ... 40

3.3 ETF Domain Model ... 41

viii

3.3.1 Basic Service Provider and Service Elements .. 42

3.3.2 Compound Elements ... 44

3.3.3 Software Dependency ... 46

3.3.4 Domain Constraints .. 47

3.3.5 Challenges ... 48

3.4 CR Domain Model ... 49

3.5 Summary .. 51

4 Modeling Framework- Mapping to UML Metamodel .. 52

4.1 Mapping Domain Model Concepts to UML Metaclasses 54

4.1.1 AMF Component .. 55

4.1.2 AMF Service Unit (SU) .. 55

4.1.3 AMF Service Group (SG) ... 55

4.1.4 AMF Application .. 56

4.1.5 AMF Component Service Instance (CSI) ... 56

4.1.6 AMF Service Instance (SI) ... 57

4.1.7 AMF Node .. 57

4.1.8 AMF Cluster and AMF NodeGroup ... 58

4.1.9 AMF Entity Type Elements .. 58

4.1.10 ETF Types ... 63

4.1.11 CR Elements ... 65

4.2 Mapping the Domain Relationships to the UML Metamodel 66

4.3 Specifying Constraints ... 71

4.3.1 Constraints on Relationships... 72

4.3.2 Constraints on Metaclasses ... 73

4.4 Challenges .. 73

4.5 Summary .. 74

ix

5 AMF Configuration Validation ... 76

5.1 Syntactical Validation of AMF Configurations ... 76

5.2 Semantic Validation of AMF Configurations .. 77

5.2.1 Definitions and Notations ... 78

5.2.2 Service Instance Protection for the 2N and No-Redundancy Models 81

5.2.3 Service Instance Protection for the N+M Redundancy Model 84

5.2.4 The N-Way-Active and N-Way Redundancy Models 89

5.2.5 Overcoming Complexity for Special Cases .. 91

5.2.6 Overcoming Complexity with Heuristics: Checking for Service Protection
Using Heuristics .. 95

5.3 Summary .. 108

6 Model-based AMF Configuration Generation .. 110

6.1 Overall View .. 110

6.2 ETF Type Selection .. 117

6.2.1 CSITemp Refinement ... 119

6.2.2 SITemp Refinement .. 125

6.2.3 SGTemp Refinement .. 127

6.2.4 Dependency Driven Refinement ... 129

6.2.5 Completing the Refinement .. 132

6.3 AMF Entity Type Creation .. 137

6.3.1 AMF SGType and AppType Generation .. 140

6.3.2 AMF SUType and SvcType Generation ... 144

6.3.3 AMF Component Type and CSType Generation 150

6.4 AMF Entity Creation .. 154

6.4.1 Step 1: AMF Entity Instantiation .. 156

6.4.2 Step 2: Generating Deployment Entities... 164

x

6.4.3 Step 3: Finalizing the Generated AMF Configuration 165

6.5 Limitations ... 165

6.6 Summary .. 166

7 Implementation of the Framework and Application.. 168

7.1 Implementation of the Model-based Framework ... 168

7.2 The Online Banking System .. 170

7.2.1 The Billing Service ... 171

7.2.2 The Authentication Service... 172

7.2.3 The Money Transfer Service .. 173

7.2.4 Web Server and User Interface ... 174

7.2.5 Database Management System ... 176

7.2.6 General Inquiries ... 177

7.2.7 Transaction Information.. 178

7.2.8 SUType Level Dependency .. 179

7.3 Configuration Requirements for the Online Banking System 180

7.4 Generation of an AMF Configuration for Safe Bank Online Banking System 188

7.4.1 Selecting ETF Types ... 188

7.4.2 Creating AMF Types .. 191

7.4.3 Creating AMF Entities .. 194

7.5 Validation of the Model-based AMF Configuration Generation Approach 197

8 Conclusion and Future Work ... 202

8.1 Conclusion .. 202

8.2 Future Research .. 204

8.2.1 Model-based AMF Configuration Generation .. 204

8.2.2 Performance Evaluation of Heuristics Based Validation Approach 205

xi

8.2.3 Bridging the Gap between User Requirements and Configuration
Requirements ... 206

8.2.4 UML Profiling .. 206

8.2.5 Model-driven Software Development... 207

Bibliography ... 210

Appendix I .. 214

xii

List of Figures

Figure 1-1 Overview of the AMF configuration management framework......................... 5

Figure 2-1 The Service Availability Interfaces ... 10

Figure 2-2 Redundancy models defined in the AMF specification 13

Figure 2-3 An example of an AMF configuration .. 16

Figure 2-4 An example of ETF model .. 18

Figure 3-1 Domain Modeling Process .. 30

Figure 3-2 AMF Component Categories .. 31

Figure 3-3 AMF Component Type Categories ... 32

Figure 3-4 Service Unit and Service Group Categories .. 33

Figure 3-5 Component Service Instance and Service Instance ... 34

Figure 3-6 AMF Nodes, Node Groups, and Cluster ... 34

Figure 3-7 Relationship of CSType with component and component type 36

Figure 3-8 Component Type and CSType Categories .. 43

Figure 3-9 Compound elements .. 45

Figure 3-10 Configuration Requirement (CR) domain model .. 49

Figure 4-1 The process of mapping to the UML metamodel and concrete syntax

definition ... 53

Figure 4-2 Relationship between AMF SI and AMF CSI .. 69

Figure 5-1 Architecture of Validation Tool .. 77

Figure 5-2 Complexity of the SI-Protection for the N+M redundancy model 87

Figure 5-3 Incremental AMF configuration design using BF method with relative

capacity sorting criterion... 104

xiii

Figure 5-4 An example for the incremental design approach ... 107

Figure 5-5 Overview of the incremental design approach .. 108

Figure 6-1 The overall process of model-based AMF configuration generation............ 111

Figure 6-2 The main phases of the model transformation approach 111

Figure 6-3 The relation between the models and the transformation phases 113

Figure 6-4 The transformation steps for ETF Type Selection phase 117

Figure 6-5 The result of the ETF Type Selection from the metamodel perspective 118

Figure 6-6 The activity diagram describing the selection of ETF Component Types 120

Figure 6-7 The activity diagram describing the selection of ETF SUTypes 125

Figure 6-8 The activity diagram describing the process of selecting ETF SGTypes 128

Figure 6-9 The transformations performed to complete the refinement phase 133

Figure 6-10 The result of the AMF Entity Type creation phase from the metamodel

perspective .. 138

Figure 6-11 The transformation steps of the AMF entity type creation phase 139

Figure 6-12 The result of the AMF Entity creation from the metamodel perspective ... 155

Figure 6-13 The flow of transformations to generate AMF entities 157

Figure 7-1 ATL Transformation scheme .. 170

Figure 7-2 ETF model for billing part of an online banking software bundle 172

Figure 7-3 ETF model for the authentication part of an online banking software bundle

... 173

Figure 7-4 ETF model for money transfer part of online banking software bundle 174

Figure 7-5 ETF model for web server part of online banking software bundle 175

Figure 7-6 ETF model for user interface part of online banking software bundle 176

xiv

Figure 7-7 ETF model DBMS part of online banking software bundle 177

Figure 7-8 ETF model for the general inquiries part of an online banking software bundle

... 178

Figure 7-9 ETF model for the transaction information part of an online banking software

bundle .. 179

Figure 7-10 SUType level dependency ... 180

Figure 7-11 The SGTemplates of the Safe Bank online banking system 181

Figure 7-12 Configuration requirement elements of WebModules and WebServer

SGTemplates ... 184

Figure 7-13 Configuration requirement elements of Security, Information, and DB

SGTemplates ... 184

Figure 7-14 Configuration requirement elements of Banking SGTemplate 185

Figure 7-15 Configuration requirements for deployment infrastructure 187

Figure 7-16 ETF Type selection phase for the DBMS part of online banking ETF 189

Figure 7-17 ETF Type selection phase for TransactionManagement SITemplate 190

Figure 7-18 AMF Type creation phase for the DBMS part of online banking

configuration ... 191

Figure 7-19 AMF SGType, AMF SUType, and AMF SvcType generation steps for

TransactionManagement SITemplate and Banking SGTemplate 192

Figure 7-20 AMF Component Type and AMF CSType generation steps for the

CSITemplates of TransactionManagement SITemplate ... 193

Figure 7-21 Created AMF Types for the transaction management part of online banking

configuration ... 194

xv

Figure 7-22 AMF entity creation phase for the DBMS part of online banking

configuration ... 196

xvi

List of Tables

Table 4-1 The summary of the stereotypes defined for AMF entities and entity types 59

Table 4-2 The summary of the stereotypes defined for ETF types................................... 64

Table 4-3 The summary of the stereotypes defined for CR elements 66

Table 4-4 Summary of Stereotypes Related to the Relationships between Domain

Concepts .. 70

Table 6-1 The list of the associations that model the relationships among elements of the

sub-profiles ... 114

Table 6-2 The list of additional attributes ... 117

Table 7-1 List of values of attributes of the SGTemplates specified for the Safe Bank

online banking system... 182

Table 7-2 List of the values of attributes of SITemplates and CSITemplates of

WebModules and WebServer SGTemplates .. 183

Table 7-3 List of the values of attributes of SITemplates and CSITemplates of Security,

Information, and DB SGTemplates .. 185

Table 7-4 List of the values of attributes of SITemplates and CSITmplates of Banking

SGTemplates ... 186

xvii

List of Equations

Equation 2-1 System availability .. 9

Equation 5-1 Adding capacity lists ... 79

Equation 5-2 Comparison of capacities .. 79

Equation 5-3 Division between capacities .. 79

Equation 5-4 Active and Standby relation between a set of SUs and a set of SIs 80

Equation 5-5 Operators for active/standby relation .. 81

Equation 5-6 Formal specification of the 2N redundancy model 83

Equation 5-7 Necessary and sufficient conditions for the 2N redundancy model 83

Equation 5-8 Formal specification of the No-redundancy model 84

Equation 5-9 Formal specification of the N+M redundancy model 85

Equation 5-10 Formal specification of the N-Way-Active redundancy model 90

Equation 5-11 Formal specification of the N-Way redundancy model 90

Equation 5-12 Active/Standby capacity of an SU w.r.t. to an SI...................................... 92

Equation 5-13 Necessary and sufficient conditions for the N+M redundancy model 93

xviii

List of Acronyms

AIS Application Interface Specification

AMF Availability Management Framework

ATL Atlas Transformation Language

CSI Component Service Instance

CSType Component Service Type

DSL Domain Specific Language

DSML Domain Specific Modeling Language

EMF Eclipse Modeling Framework

ETF Entity Types File

HA High Availability

IMM Information Model Management

MDA Model Driven Architecture

OCL Object Constraint Language

OMG Object Management Group

RSA Rational Software Architect

SA Forum Service Availability Forum

SG Service Group

SGType Service Group Type

SI Service Instance

SU Service Unit

SUType Service Unit Type

xix

SvcType Service Type

UML Unified Modeling Language

XMI XML Metadata Interchange

1

Chapter 1

1 Introduction

1.1 Thesis Motivation

The growing reliance on computing platforms has led to an increase in the customer’s

demand for robust and safe systems. For such systems, the requirement of providing

services with minimal to no interruptions has become essential. The development of

highly available (HA) systems has been investigated for several years and different

solutions have been proposed (e.g. [Lomb 1996, Vogels 1998, Watts 2007]). However,

these solutions are proprietary which hinders portability of applications from one

platform to another. To address this issue, many telecommunications and computing

companies have joined forces to create the Service Availability Forum (SA Forum) [SAF

2010a], a consortium that has the objective of defining standard specifications to support

the development of HA systems. These standards aim to enable the portability and

reusability of applications across different platforms by shifting the availability

management from applications to a dedicated middleware.

One of the key SA Forum specifications is the Application Interface Specification (AIS)

[SAF 2010b], which supports the development of HA applications by abstracting from

their components. To achieve this, AIS defines several services, among which the most

important is the Availability Management Framework (AMF) [SAF 2010d]. AMF is the

2

middleware service that manages the high availability of the services offered by

applications by coordinating their redundant components. In order to protect the services,

AMF requires a configuration that specifies the organization and the characteristics of the

entities under its control. These entities model the service providers, the provided

services, their types, and the deployment information.

The design of AMF configurations consists of specifying a set of elements based on the

description of software entities in order to provide and protect the services as requested

by the configuration designer. The description of the software entities is specified by

means of Entity Types File (ETF) standard XML schema [SAF 2010e]. More

specifically, the design is based on 1) the descriptions of software resources to be used as

well as the description of the infrastructure supporting the deployment, 2) requirements

that specify the services to be provided, and 3) other non-functional requirements such as

the level of availability. The design and analysis of AMF configurations requires a good

understanding of AMF entities and their relations. This is a complex task due to the

following:

• The large number of entities and the numerous attributes/parameters that need to

be taken into consideration.

• The large number of constraints in the standard specification. Moreover, these

constraints crosscut various entities, making the process of validation extremely

complex.

• Runtime versus configuration time aspects: there exist certain aspects which

cannot be set at configuration time, giving the middleware the flexibility to make

decisions. For instance, the AMF middleware decides to assign services to

3

specific service providers at runtime. However, in order to design valid

configurations, the designer should predict AMF’s behaviour and consider all

possible assignment scenarios.

Moreover, the specifications describe the AMF configuration characteristics

through the expectations of the AMF middleware at runtime. The pure

configuration aspects are, therefore, rather ambiguous in the specifications, and

consequently, reasoning about AMF configurations is not a straightforward

process.

• The complexity of the concepts and their relationships defined in the AMF

specification. For instance, the notion of types and entities is introduced to capture

the limitations and capabilities on two different levels of abstractions. This

increases the complexity of insuring the necessary consistency between these two

levels.

Considering these complexities, a manual or an ad hoc approach for generating AMF

configurations is extensively tedious and error prone. Therefore, the need for a systematic

and automatic approach is inevitable. In [Kanso 2008 and Kanso 2009], Kanso et al.

proposed algorithmic solutions, implemented in Java, for the automatic generation of

valid AMF configurations and thus overcame the difficulties of the manual generation

process. However, in using a pure code-centric method, one still needs to deal with

unnecessary details and complexity at the low level of abstraction. As such, the process

still remains complex and, in addition, any small changes will result in large

modifications to the code.

4

1.2 Contributions

In this research, we address the aforementioned issues by defining a modeling framework

and approaches for the design and validation of AMF configurations. The model-driven

paradigm focuses on creating models, or abstractions, which are closer to particular

domain concepts rather than to computing concepts [Aagedal 2005]. In this paradigm,

models replace code as the primary artefacts in the development process by enabling the

developers to focus on modeling the problem domain rather than on programming.

Therefore, it enables the abstraction from specific programming platforms by modeling at

a platform independent level. This paradigm appeared to be an appropriate solution for

the specification of AMF configuration management framework. It allows methods to

shift from the low levels of details to higher levels of abstraction.

The main objective of this work is to define a precise modeling framework for AMF and

related approaches for design and validation of AMF configurations. More specifically,

the contributions of this PhD thesis are:

• A domain specific modeling language (DSML) tailored to AMF domain concepts,

semantics, and syntax. This modeling framework is designed to support the

design, specification, analysis and validation of AMF configurations. We build

the modeling framework by extending the Unified Modeling Language (UML).

More precisely, the required DSML is represented in the form of a UML profile

which integrates the concepts involved in managing an AMF configuration from

creation to analysis.

• A model driven approach for the generation of AMF configurations through

model transformations. This is contrasted with existing code-centric configuration

5

generation techniques such as the ones presented by Kanso et al. in [Kanso 2008

and Kanso 2009], and which tend to be rigid and platform-dependant.

• An approach for the validation of third-party AMF configurations. These

configurations are generally built manually due to a lack of tool support for AMF.

The validation process is particularly designed to address two questions: (1) Is a

third-party configuration syntactically correct and well-formed with respect to the

AMF standard specification? (2) Does a given AMF configuration provide the

level of protection that it claims?

The modeling framework is composed of two UML sub-profiles, namely the AMF and

ETF sub-profiles. The implementation of the modeling framework using proper CASE

tools such as Rational Software Architect (RSA) [IBM 2011] provides us with the

interface for designing and validating instances of these profiles. In other words, it

provides the facilities for the AMF configuration designers or software vendors for the

specification and validation of AMF configurations or ETF models.

Figure 1-1 Overview of the AMF configuration management framework

AMF ProfileETF Profile IMM XML
Schema

Configuration
Requirements

Profile

AMF Configuration
Design and
Validation

ETF File Design and
Validation

Model Based AMF
Configuration

Generation

AMF Configuration
Validation of Third

Party

AMF Configuration
Management
Framework

6

Figure 1-1 illustrates the high level view of our proposed framework in which the gray

squares represent elements of the modeling framework, the white squares represent the

approaches, and the dashed empty squares represent external models, e.g. standard

model, used by the framework. The discussion of these external models is beyond the

scope of this research.

It is worth noting that the work describe in this thesis is part of a larger research

projectcalled MAGIC1 —a collaboration between Concordia University and Ericsson

Software Research— and the results of this thesis are being used in other MAGIC

research streams. The term MAGIC is used throughout the profile.

1.3 Thesis Organization

The remaining parts of this thesis are organized as follows: In Chapter 2, we introduce

the main concepts of high availability followed by the fundamentals of the model-driven

paradigm, UML profiles, and the review of related work. In Chapter 3, we describe the

domain model of our framework followed by its mappings to the UML metamodel and

the description of the concrete syntax of our profile in Chapter 4. In Chapter 5, we

introduce our approach for AMF configuration validation. In Chapter 6, we present and

discuss our model-based approach for AMF configuration generation. In Chapter 7, we

discuss the implementation of our model-driven framework. This chapter also illustrates

the application of the framework through a case study for the generation of an AMF

configuration for an online banking system as well as the description of all modeling

1 MAGIC (Modeling and Automatic Generation of Information and upgrade Campaigns for service
availability). http://encs.concordia.ca/~magic/

http://encs.concordia.ca/~magic/

7

artefacts. In Chapter 8 we review the main contributions of this thesis and outline

potential future work.

8

Chapter 2

2 Background and Literature
Review

In this chapter, we explain the context of our research. More specifically, we introduce

service availability, the SA Forum [SAF 2010a], and SA Forum middleware

specifications focusing on AMF [SAF 2010d], and the Entity Types File (ETF) [SAF

2010e]. Model-driven paradigm is used as a general framework for the design and

specification of the framework for software availability management. Therefore, in the

second part this chapter, we present an overview of the main concepts of model-driven

development approach. More particularly, we discuss Domain Specific Modeling

Languages (DSML), Unified Modeling Language (UML), and UML’s profiling

mechanism. Finally, we discuss related research work focusing on existing UML profiles

that capture non-functional properties of software, as well as existing approaches for the

design of AMF configurations.

2.1 High Availability and SA Forum

2.1.1 Service Availability

Availability is the probability of service provision upon request, assuming that the time

required for satisfying each service request is short and negligible [Wang 2005]. The

availability of a system is measured in terms of the reliability of the system components

9

and the required time to repair the system in case of failure. It is measured using the

following formula:

Equation 2-1 System availability

MTBFAvailability
MTBF MTTR

=
+

in which the MTBF represents the mean time between failure (the failure rate of the

system) and MTTR stands for the mean time to repair (the time to restore service) [Wang

2005]. If the availability of a system goes beyond 99.999% of the time (known as five

nines), the system is considered as a highly available system.

2.1.2 The Service Availability Forum

The Service Availability Forum (SA Forum) is a consortium of several computing and

telecommunications companies that develops, publishes, promotes, and provides

education on open specifications in order to standardize high availability platforms [SAF

2010b]. The solution offered by the SA Forum facilitates high availability alongside

service continuity.

SA Forum members have developed a set of specifications that describe various services

that, when implemented, form a complete middleware for high availability. A set of APIs

has also been defined in order to standardize the interface between the applications and

the middleware that implements SA Forum specifications (referred to in this thesis as a

SA Forum middleware). The SA Forum specifications are divided into two main groups

(see Figure 2-1):

10

• The Application Interface Specifications (AIS) [SAF 2010b], which defines the

services that handle the high availability of the application’s components.

• The Hardware Platform Interface (HPI) [SAF 2010c], which provides the standard

means to control and monitor hardware components. HPI is out of the scope of

this thesis and our focus will center on the services defined by AIS.

Figure 2-1 The Service Availability Interfaces

AIS is divided into smaller areas with specialized services that are used together with HPI

to manage the redundant components of the applications and the underlying hardware.

2.1.3 The Availability Management Framework

From the availability perspective, the Availability Management Framework (AMF) is

perhaps the most important part of the AIS middleware. Its role is to manage the

availability of the services provided by an application. AMF fulfills this responsibility by

managing the redundant components of an application, dynamically shifting a workload

of faulty components to the healthy components.

Operating Systems

Middleware

Applications

Hardware Platform

Application
Interface

Platform
Interface

11

As mentioned earlier, AMF requires a configuration of the application it manages. This

configuration consists of several logical entities that abstract out an application

components and services. More precisely, an AMF configuration consists of two different

sets of elements: AMF entities and AMF entity types.

2.1.3.1 AMF Entities

AMF entities consist of hardware/software resources, aggregations of resources,

constructs supporting redundancy mechanisms, services, and deployment elements

(cluster information, number of nodes, etc.).

Component

A component represents hardware or software resources capable of supporting the

workload of the application services. It is the smallest AMF logical entity on which AMF

performs error detection and isolation, recovery and repair [SAF 2010d].

Component Service Instance (CSI)

The Component Service Instance represents the workload that AMF assigns to a

component. AMF assigns High-Availability (HA) states of active and standby to

components for handling their component service instances depending on whether the

component is active (it is providing a service) or standby (used as a backup). For

example, an instance of MySQL server could be a component called MySQL_1 which is

capable of supporting a specific set of clients. The IP addresses of these clients form the

description of the workload for this specific instance of MySQL component, which is

captured through a CSI (MySQL_1_CSI).

12

Service Unit (SU)

A Service Unit is a logical entity that aggregates a set of components, combining their

individual functionalities into a higher level service. SU is the basic redundancy unit for

AMF and can have the HA (High Availability) active state, the HA standby state or no

HA state on behalf of a Service Instance (SI).

Service Instance (SI)

The aggregation of components enables the combination of their functionalities to form

into higher level services. More specifically, the workloads of the components of an SU

are aggregated into a Service Instance (SI), which represents the aggregated workload

assigned to the SU. An SI also represents the combined higher level service of the

collaborating components within the SU.

Service Group (SG)

A Service Group aggregates a set of service units that collaborate in a redundant manner

in order to protect a set of SIs by means of redundancy. The service group also defines the

level of protection applied to the SIs. This is achieved through five different redundancy

models defined in AMF specifications [SAF 2010d]. These redundancy models differ on

the number of SUs that can be active and standby for the SIs and on how these

assignments are distributed among the SUs. The following is the list of the redundancy

models defined by AMF:

• 2N Redundancy Model: 2N redundancy model requires two SUs. One SU is

active for all the SIs protected by the SG and one is standby for all the SIs.

13

• N+M Redundancy Model: In the N+M model, N SUs support the active

assignments and M SUs support the standbys. N+M allows at the most one active

and one standby assignment for each particular SI.

• N-Way Redundancy Model: An SG with N-Way redundancy model contains N

SUs. Each SU can have a combination of active and standby assignments.

However, each SI can be assigned active to only one SU while it can be assigned

standby to several service units.

• N-Way-Active Redundancy Model: An SG with the N-Way-Active redundancy

model has N SUs which are assigned only as active. It has no SU assigned as

standby. Furthermore, each of the SIs protected by this SG can be assigned to

more than one SU.

Figure 2-2 Redundancy models defined in the AMF specification

SU SU

SU

SI SI

SU SU

SI SI

SUSU SU

SI SI

SUSU SU

SI SI

2N

N-WayN+M

N-Way-Active

Active
Standby

SU SU

SI SI No
Redundancy

SGSG

SG SG

SG

14

• “No-Redundancy” Redundancy Model: It consists of one or many service units

that handle the entire set of SIs protected by the SG in their active state. There are

no standby assignments. The difference with the N-Way-Active redundancy

model is that in this case each service instance is assigned to at most one service

unit and each service unit can protect at most one service instance.

Figure 2-2 summarizes the different redundancy models defined in the AMF

specification.

Application

To provide a higher level service, a set of service groups is aggregated into an

application. While an application can contain multiple service groups, each service group

belongs to only one application.

Node and Cluster

All the aforementioned AMF entities are hosted on AMF Nodes. An AMF node is a

logical entity on a cluster node. An AMF Cluster is a set of AMF nodes.

Node Group

Each service group has a list of configured nodes that AMF specification referred to as

the Node Group.

2.1.3.2 AMF Entity Types

In addition to the entities, the notion of entity type is introduced in the AMF specification

to capture common characteristics shared by all the entities that belong to the same type.

In AMF all entities except the deployment entities (i.e., node, nodegroup, and cluster)

have a type.

15

Component Type

Each component is typed and its type represents the particular version of the hardware or

software used to build that component. It also specifies the component service types a

component can support.

Component Service Type (CSType)

A Component Service Type is the type of services a component provides. It is actually a

generalization of similar component service instances that are equivalent from AMF

perspective and are thus handled in the same manner.

Service Unit Type (SUType)

Each service unit is typed and its type specifies the component types of the components

that belong to the service unit of this type. The service unit type also specifies the

maximum number of components of each particular type that this service unit type can

contain.

Service Type (SvcType)

A Service Type is the type of services a service unit can provide. It also refers to the

component service types that are provided by the components of this service unit. For

each component service type, the service type constrains the number of component

service instances to handle.

Service Group Type (SGType)

A Service Group Type specifies the list of service unit types that a service group of this

type can support. All the service groups of a specific type have the same redundancy

model.

16

Application Type

An Application Type specifies the list of service group types that an application of this

type can support.

2.1.3.3 Example of an AMF Configuration

Figure 2-3 shows an example of an AMF configuration. Notice that this simple example

does not present AMF configurations in their full complexity, but rather, introduces the

reader to the fundamental concepts in these configurations. In this example, a cluster is

composed of two nodes (Node1 and Node2). It hosts an application consisting of one SG

protecting two SIs (SI1 and SI2) in a 2N redundancy model. The SG consists of two SUs,

SU1 and SU2, each being composed of two components.

Figure 2-3 An example of an AMF configuration

Although shown in Figure 2-3, the distribution of the active and standby assignments is

not part of the configuration as defined by AMF, since this is decided by AMF at

runtime. The relationship between the type entities and the entities presented in the

configuration are as follows: Component1 and Component3 are from the Component

Node 1 Node2
App1

SG1
SU2SU1

Component3

Component4

Component1

Component2

SI2
CSI3
CSI4

SI1
CSI1
CSI2

Active
Standby

APT-A

SGT-A

SUT-A

CT-A CT-B

SVCT-A

CST-A CST-B

17

Type CT-A, while Component2 and Component 4 are from CT-B. Both the SUs are

represented by the same SUType called SUT-A. SG1 and App1 are from the type SGT-A

and APT-A, respectively. At the service level, both SIs are from the type SVCT-A while

the CSIs are from two different types. More specifically, CSI1 and CSI3 are of the type

CST-A, while CSI2 and CSI4 are from the type CST-B.

2.1.4 The Entity Types File

In order to design an AMF configuration for a given software system, it is necessary to

have a description of the software’s components, their capabilities, supporting services,

as well as the constraints on any of the parameters and their combination options. This

description is provided by the software developer in the form of another SA Forum

standard, known as the Entity Types File (ETF) XML schema. Using ETF, software

developers can specify the characteristics of their software, capabilities, and limitations in

a way that can guide the generation of an AMF configuration. Moreover, ETF elements

(referred to as ETF types) describe how an application’s components can be combined by

providing information regarding their dependencies and compatibility options.

An ETF file must provide at least two types: the Component Types and the Component

Service Types (CSTypes). Other entity types such as Service Type (SvcType), Service

Unit Type (SUType), Service Group Type (SGType), and the Application Type

(AppType) may also be used in order to capture the limitations and constraints of the

application. However, they do not have to be provided in ETF.

For instance, Figure 2-4 shows the ETF types that are used to generate the AMF

configuration shown in Figure 2-3. The ETF model specifies the Component Types CT-

18

AA, CT-BB and CT-CC. CT-AA provides CST-AA, while CT-BB provides CST-BB and

CT-CC provides CST-CC. CST-AA and CST-BB are grouped in the service type SVCT-

AA. CST-BB and CST-CC in the service type SVCT-BB while the service type SVCT-

CC aggregates CST-CC. Moreover, CT-AA in providing CST-AA requires CT-BB to

provide CST-BB. Finally, there exists an SUType (SUT-AA) aggregating CT-AA and

CT-BB that provides SVCT-AA.

Figure 2-4 An example of ETF model

ETF entity types and AMF entity types describe the same logical entities from two

different perspectives. AMF deals with types from a configuration and runtime

management point of view, while ETF projects the description of the software from the

vendor’s point of view and describes the ways the software could be deployed and its

various capabilities and limitations.

2.2 Modeling and UML Profiles

Our proposed approach for defining the framework for AMF configuration management

is based on the model-driven paradigm. Moreover, one of the key aspects of our approach

is the definition of a domain specific modeling language which captures AMF domain

concepts. More specifically, in the proposed solution we have extended the UML

SUT-AA

CT-AA CT-BB

SVCT-AA

CST-AA CST-BB

SVCT-CC

CST-CC

CT-CC

SVCT-BB

depends

19

metamodel by means of the UML profiling mechanism [Abouzahra 2005]. By doing so,

we aim to take full advantage of UML as being the de facto standard for modeling (e.g.

standard tools support interoperability with other OMG standards) and design while

having a precise language tailored for AMF concepts and semantics. In this section, we

review key concepts that pertain to the development of domain specific modeling

languages, and the UML profiling mechanism. We also report on other UML profiles

related to our research.

2.2.1 The UML Profiling Mechanism

2.2.1.1 Domain Specific Languages & Domain Specific Modeling Languages

Domain-specific languages (DSLs) are languages tailored to a specific application

domain. They are easy to use and provide an extensive level of expressiveness for users

[Mernik 2005]. As a matter of fact, domain specific elements are more appropriate for

communication with users. In addition, contrary to general purpose languages, DSLs

have a limited semantic scope and reduce development challenges substantially. The

domain specific modeling (DSM) approach has been introduced in order to utilize DSLs

for the modeling and analysis of concepts within certain domains [Kelly 2008]. For this

purpose, the concept of domain specific modeling languages (DSML) emerged.

Moreover, due to the popularity and extensive advantages of the Unified Modeling

Language (UML) [OMG 2007a] —a general purpose language—, UML has been broadly

employed by many software practitioners as a DSML [Abouzahra 2005, Felfering 2000].

20

2.2.1.2 UML Extension Mechanisms

The OMG (Object Management Group) [OMG 2011] defines UML [OMG 2007a] as a

visual language for specifying, designing, and documenting the artefacts of a wide variety

of systems (e.g. software systems, real-time systems or business process models). In

addition to being an extensively accepted standard for object-oriented modeling in the

software engineering community, UML is also supported by panoply of existing CASE

tools. It is a general purpose modeling language that covers a variety of domains from

different points of view and involves different levels of abstraction [Fuentes 2004].

However, there are circumstances in which UML is too general and thus inappropriate for

modeling applications within specific domains. In such cases, UML can be extended

using one of the following mechanisms [Fuentes 2004]:

• A heavyweight extension mechanism which enlarges the UML metamodel by

adding new model elements. This can be achieved by extending the UML

metamodel through Meta-Object Facility (MOF) [OMG 2006a], which defines the

UML metamodel itself. Some examples of using the heavyweight UML

metamodel extension mechanism can be found in [OMG 2003b, Knapp 2003].

• The lightweight extension mechanism, which consists of adding and/or modifying

the semantics of UML elements through its metamodel. The newly introduced

elements form a UML profile, which is usually a package that contains the new

elements and describes how they map to UML metamodel elements [OMG 2002,

OMG 2004].

The first approach is more expressive since it enables the definition of a tailor-made

language for defining a notation that precisely matches the concepts of the target domain.

21

However, this approach cannot be supported by most standard commercial tools. On the

contrary, using UML profiles provides compatibility with UML modeling tools, though it

may result in less accuracy, and the newly introduced elements may not perfectly match

domain specific concepts. In fact, choosing between these two approaches is not a

straightforward decision. Due to the complexity of the heavyweight mechanism, it seems

that, unless there is a real necessity to deviate from the UML metamodel, the advantages

of using UML profiles outweigh its restrictions [Fuentes 2004].

2.2.1.3 Creating a UML Profile

Unfortunately, there has been little material on how to create UML profiles. As a result,

most existing UML profiles have been defined in an ad hoc manner, ending up being

either technically invalid, contradicting the UML metamodel, or being of poor quality

[Selic 2007, Lagarde 2007, Lagarde 2008]. To address this issue, Selic describes [Selic

2007] a systematic approach for defining profiles. He proposes a two-step approach

which consists of the following:

• Specifying the domain model (or domain metamodel): The domain model

specifies the concepts that pertain to the DSL and how these concepts are

represented. The output of this phase consists of fundamental language constructs,

relationships between domain concepts, constraints imposed by the domain, the

concrete syntax or the notation used to render these concepts, and the semantics of

each language construct.

• Mapping the domain model to the UML metamodel: This step consists of

identifying the most appropriate UML base concepts for each domain concept

specified in the previous step. In this step, the profile designer needs to choose the

22

base UML metaclass that is semantically closest to the semantics of the domain

concept. Moreover, the constraints, attributes, and related associations of the

selected meta-elements should be verified in order to prevent the contradiction of

the domain concepts.

Although in [Selic 2007], the author proposes the separation of the domain modeling

phase and the mapping phase, he does not provide any guidelines for this mapping which

is the most challenging activity in defining a UML profile. For example, since there is no

systematic approach for selecting the most suitable metaclasses, the designer may end up

with several candidates for a single domain concept. Accordingly, this phase extensively

depends on the experience of the profile’s designer. Other studies [Lagarde 2007,

Lagarde 2008] propose patterns that are based on a few types of relationships that may

exist between domain elements and the corresponding metaclasses. However, these

guidelines focus on specific scenarios and do not provide a general solution to the

mapping problem. In other words, there is no “ready to use” solution that addresses the

general issue of selecting the most appropriate UML metaclass for a specific domain

element. In this thesis, we carefully selected the UML metaclasses that best fit the AMF

concepts through thorough examination of the UML metamodel.

2.2.2 Related UML Profiles

There are several UML profiles (some of them standardized) that model concepts such as

components and services, which are also key concepts in AMF. Some of these profiles

also target dependability analysis by facilitating the mapping to analytical models such as

Petri nets and fault trees. The question is therefore: Do we need to define a UML profile

from scratch or simply reuse (or extend) an existing one? This question has always been a

23

matter of debate since each option has its own benefits and disadvantages. Unfortunately,

there is no formal process of finding out whether it is better to extend an existing profile

or to create a new one. In this section, we present a brief review of related UML profiles

together with the rationale supporting our decision to create a new profile, instead of

extending an existing one.

There are three main UML profiles defined and standardized by OMG [OMG 2011] and

which represent some concepts that are also found in AMF. These profiles are: SPT

[OMG 2003], MARTE [OMG 2009], and the UML profile for QoS&FT [OMG 2008].

There exist also other profiles that are related to the AMF concepts, namely the DAM

Profile [Bernardi 2008] and the profile introduced in the HIDENETS project [Kövi

2007]. These two profiles are to some extent either extending or reusing parts or all of

one of the OMG profiles mentioned above.

The UML SPT profile [OMG 2003] focuses on the properties related to the modeling of

time and time-related aspects such as the concept of clocks, the key characteristics of

timeliness, performance, and schedulability. Despite the fact that the authors introduce a

set of sub-profiles in order to extend the core of SPT, which is the general resource

modeling framework and which can be used by other profiles for availability analysis,

there are no specific means for modeling availability related issues such as redundancy

models in SPT. Consequently, by reusing SPT, one should define all necessary constructs

for AMF configurations and for ETF. However, basing this definition on SPT’s abstract

syntax may increase the complexity of designing our language by imposing extra

constraints unrelated to the AMF domain.

24

The MARTE profile [OMG 2009], the successor of SPT, defines a package for Non-

Functional Properties (NFP) that supports new user-defined NFPs for different

specialized domains [OMG 2009]. It also defines a package for the purpose of analysis

called the Generic Quantitative Analysis Modeling (GQAM). However, similar to SPT,

none of the newly introduced concepts in MARTE are sufficient for modeling and

analyzing aspects of service availability. MARTE does not concentrate on availability

concepts such as the redundant structures which play a crucial role in highly available

systems. In order to reuse MARTE for our domain, one can only use the basic building

blocks of MARTE which have been designed for the purpose of capturing quality

attributes other than availability. In other words, the building blocks of MARTE enforce

constraints related to non-functional attributes other than availability. Consequently,

reusing these building blocks does not facilitate the design of AMF configurations, and

also generates much more complexity.

The UML profile for QoS&FT defines a general QoS catalogue including a set of general

characteristics and categories [OMG 2008]. In particular, this profile defines a package

for availability related characteristics, focusing on the availability attributes such as mean

time to failure. Although there are many availability related attributes introduced in this

profile, it does not support the constructs that are necessary for designing highly available

systems such as redundancy structures. In order to reuse this profile for the AMF

configuration management domain, we still need to build all required constructs and

fundamental structures and embed generic concepts introduced by QoS&FT in these

structures. In this case, it is necessary to create relationships between the AMF structures

and the attributes of this profile. Moreover, the concepts introduced in this profile are

25

rather too general to be used for AMF. Therefore, we need to further specify constraints

in order to make them specific to our domain. By introducing a UML profile, one can

define the availability attributes inside the building blocks themselves (instead of making

relationships to external entities) and thus, there is no need for any further refinements.

Both the NFA and GQAM packages (from the MARTE Profile) have been reused in the

design of the Dependability Analysis Modeling (DAM) profile (an extension to MARTE)

in order to enhance modeling facilities for the purpose of analysing dependability

[Bernardi 2008]. In the DAM profile, the building blocks of a system are limited to

components (DaComponent mapped to MARTE::GRM::Resource) and services

(DaService mapped to MARTE::GQAM::GaScenario). However, in order to represent

these concepts in the AMF configuration domain model, we have introduced two sets of

domain entities (ServiceProvider Package and Service Package). Both packages contain

several domain entities (e.g. Component Service Instance, Proxy Component, Service

Unit, Service Instance, etc.) which cannot be modeled by the DAM profile. Moreover,

there is a substantial distinction between the concept of service in DAM and in our

domain. The concept of service in the DAM profile addresses the description of the

service itself while, in the AMF domain, the service is the description of the workload to

be assigned to service providers at runtime. To bridge the gap between the definition of

services in DAM and AMF, we either need to ignore the service part of the DAM profile

and completely re-build the service structures, or specify a large number of complex

constraints to adapt the existing definition of services to our context. Both cases are

practically equivalent to the creation of entirely new structures and concepts.

26

The HIDENETS profile [Kövi 2007] was introduced to model software that runs on the

HIDENETS platform. The HIDENETS middleware provides a basis for mobility-

awareness and for the distribution of applications. The designers of this profile have

reused several standard UML profiles such as SPT, QoS&FT, SysML [OMG 2010b],

AUTOSAR Profile [OMG 2006b], and MAM-UML [Belloni 2006]. In addition, the

HIDENETS profile is compliant with the AMF specification [SAF 2010d]. HIDENETS

utilizes AMF concepts using the facade design pattern and makes the AMF related

concepts transparent to the user. HIDENETS, however, only relies on AMF related APIs

instead of modeling AMF concepts. Also, the objective of HIDENETS, which consists of

addressing a specific set of applications, is different from our goal, which is specifying

and analyzing AMF configurations.

The recently published work described in [Szatmári 2008] is probably the work most

related to our research stream. The authors of this paper introduced an MDA (Model-

Driven Architecture) approach for the automatic generation of SA Forum compliant

applications. They have introduced a metamodel based on the AMF specification [SAF

2010d]. Based on the authors’ approach, an application is first modeled using their

metamodel (Platform Independent Model) and then mapped to an APIs (Platform

Specific Model) that represents the implementation of SA Forum services. The work in

question concentrates more on application development than on configuration generation.

Assuming to have all the required information for the software, the authors ignore the

role of the entity types file (ETF) in their framework which is an important part of

creating a configuration. In order to establish a modeling framework, they present a UML

27

profile based on AIS standards. However, the introduced profile seems to have several

shortcomings, such as the following:

• The profile does not guarantee valid configurations since constraints on AMF

concepts are not captured. This is due to the fact that the authors simply modeled

AMF concepts based on a class diagram given in the AMF specification. This

diagram, however, does not model the AMF constraints on these concepts. The

constraints are captured in other parts of the specification. In our work, a tedious

step was dedicated to capturing domain specific constraints and to specifying

those constraints using Object Constraint Language (OCL) [OMG 2010a].

• In their profile, the authors have specified stereotypes for runtime entities of

which the configuration designer does not have any control at configuration time.

• The authors have mapped all domain concepts to the UML metaclass Component.

Considering the fact that we have deployment concepts or service concepts in this

domain, mapping all of the domain concepts to the metaclass Component appears

to have not been a proper design decision.

• As a general purpose modeling language, UML provides an extensive level of

flexibility. Therefore, in order to specify a UML profile, certain constraints are

required to restrict the UML metamodel. Similar to domain specific constraints,

there are no constraints specified regarding this aspect.

28

Chapter 3

3 Modeling Framework- Domain
Models

In this chapter, we present the domain model for modeling framework. This modeling

framework is defined by extending UML through its profiling mechanism which results

in a UML profile for: 1) AMF configurations, 2) Entity Types File, and 3) Configuration

Requirements (CR). Therefore, the modeling framework is composed of three UML sub-

profiles, namely the AMF, ETF and CR sub-profiles.

The process of creating the profile consists of two phases. The first phase is concerned

with specifying the domain model of the profile, which formally describes the concepts

of the domain, the relationships among them, as well as the domain specific constraints.

The second step consists of mapping the domain model to the UML metamodel by

defining a set of stereotypes, tagged values and constraints (see Chapter 4). This phase

requires identifying the most appropriate UML concepts, represented as UML

metaclasses, which need to be extended to support the domain concepts. The criteria we

followed for building the profile consists of:

1) ensuring completeness by containing all the elements needed by the domain;

2) not contradicting nor violating the UML metamodel;

3) reusing metaclasses based on their semantics;

29

4) reusing as many UML relationships between the stereotyped elements as possible;

5) constraining the stereotyped elements to behave according to the rules of the

domain.

In this chapter we present the domain model of our modeling framework. The next

chapter is dedicated to discussing the mapping of the domain model to the UML

metamodel. The content of this chapter has been published in [Gherbi 2009, Salehi

2010a, and Salehi 2011b].

3.1 Domain Modeling Process

We developed the domain model of the profile by studying the specifications and through

constant interactions with a domain expert. In our domain modeling process we went

through several iterations in order to ensure that the concepts of the domain model were

captured properly. We have focused on different specifications and resources in order to

capture the concepts of our domain model. More specifically, we studied the AMF

specification [SAF 2010d] in order to extract the AMF configuration domain model while

the ETF domain model is designed by studying the ETF standard XML schema [SAF

2010e]. The domain elements are modeled as UML classes and the relationships among

them are modeled through different types of UML relationships. The well-formedness

rules of the AMF domain model elements have been specified using OCL. Figure 3-1

represents the process of specifying the domain model.

30

Figure 3-1 Domain Modeling Process

3.2 AMF Domain Model

As discussed in the previous sections, AMF concepts are classified into AMF entities and

AMF entity types. Accordingly, we group such concepts into two packages named AMF

Entity and AMF Entity Type. A further classification distinguishes the entities that

provide the services (included in the Service Provider packages) from the services

themselves (in the Service package). Similarly, two packages called Service Provider

Type and Service Type have been defined to capture the AMF entity types. In addition,

the AMF Entity package includes the Deployment package, which contains elements

corresponding to the cluster and the nodes. There is no corresponding type package for

the Deployment package since the deployment entities are not typed. The following

sections present the key AMF model elements which have guided the design of the UML

extension for AMF.

Verification and Validation by Domain Expert

Studying the
Standard

Specifications

Specifying
Domain

Concepts

Specifying
Relationships

Specifying Well-
formedness

Rules in OCL

Profile
Domain Model

31

Figure 3-2 AMF Component Categories

3.2.1 AMF Components and Component Types

Although AMF defined several categories of components, they are represented in the

AMF specification as one aggregate element. We decided to classify AMF components

according to four orthogonal criteria: locality, service availability awareness (SA-

awareness for short), containment, and mediation (see Figure 3-2). The SA-awareness

criterion distinguishes the components that implement the AMF APIs and directly

interact with an AMF implementation to manage service availability. SA-aware

components are further specialized using other criteria. The containment criterion

identifies the contained components that do not run directly on an operating system but

instead use an intermediate environment, referred to as container component, like a

virtual machine (for example, to support Java-like programs). Moreover, by using the

mediation criterion, the SA-aware components are also classified into proxy and

container components. Proxies are used to give AMF control over hardware or legacy

software, called proxied components. Container components allow AMF to control the

32

life-cycle of contained components. Finally, the locality criterion distinguishes

components that reside within an AMF cluster from the external ones. External

components are also proxied to be controlled by AMF. The majority of components

managed by AMF are expected to reside within the AMF cluster. The SA-aware

components, regardless of the other criteria (containment and proxy-based mediation),

are inevitably local. The local components category also includes the non SA-aware

components which are either proxied or not proxied.

Figure 3-3 AMF Component Type Categories

Unlike the component classification, our classification of the component types does not

take into consideration the locality criterion. This is because the component type cannot

specify whether its components have to be located outside or inside the AMF cluster. In

fact, a component type can specify whether its implementation captures 1) the APIs

required to interact with AMF or 2) the necessary states for being proxied by another

component type. As a result, the component type class models the types of the SA-aware

components, the proxied components, and the non-proxied-non-SA-aware components.

The SA-aware component type is further specialized to model the type of standalone

components whose life cycle is managed directly by the AMF. Moreover, a standalone

33

component type is further specialized into a proxy component type and a container

component type which are the types of the proxy and container component, respectively.

Figure 3-3 represents the categories of AMF component types.

Figure 3-4 Service Unit and Service Group Categories

3.2.2 SU, SG, SI, CSI and their Types

To provide a higher level service, components are grouped into SUs. We distinguish

between local and external SUs (see Figure 3-4) based on whether or not they contain

local or external components. SUs are organized into SGs to protect services using

different redundancy models: 2N, N+M, N-Way, N-Way-Active and No-redundancy.

SGs are specialized based on the redundancy models used to protect their SIs (see Figure

3-4). The original SG configuration attributes depicted in the AMF specification have

been re-organized according to their relevance to the newly introduced SG classes. At the

type level, the AMF specification defines an attribute to distinguish between the local and

the external SUTypes. In our domain model, we specialize the SUTypes into two classes:

MagicAmfLocalSUType and MagicAmfExternalSUType. The SGType and

ApplicationType are the same as in the AMF specification as there is no specific reason

to specialize them. The CSI and SI entities are captured in our domain model as shown in

Figure 3-5.

34

Figure 3-5 Component Service Instance and Service Instance

3.2.3 Deployment Entities

The cluster, the node and the nodegroup represent part of our model for the deployment

entities (see Figure 3-6). An AMF cluster is a complete set of AMF nodes in the AMF

configuration. A node represents a complete inventory of the SUs and, consequently, the

corresponding components that it hosts. A nodegroup represents a set of nodes and is

used for the deployment of local SUs and SGs. More specifically, each local SU can be

configured to be deployed on one of the nodes of a nodegroup, giving an AMF

implementation multiple options for deploying the SU. Moreover, if a failure occurs on a

hosting node, for each of the SUs deployed on the faulty node, AMF must select another

host node from their configured nodegroup.

Figure 3-6 AMF Nodes, Node Groups, and Cluster

35

3.2.4 Well-formedness Rules

We use OCL to describe the constraints on the AMF domain model elements. These

constraints govern both the structure and the behaviour of these entities. We have

categorized the well-formedness rules into three different groups: 1) configuration

attributes, 2) structural constraints, and 3) constraints for ensuring the protection of

services that a configuration claims to achieve. In the rest of this subsection, we describe

each category along with a representative example.

3.2.4.1 Configuration Attributes Well-formedness Rules

As discussed in Chapter 1, one of the main reasons for the complexity of AMF

configurations is the large number of configuration attributes and parameters to be

considered and the constraints on their values. These constraints form the category

addressing the well-formedness rules concering the configuration attributes. In other

words, this category represents the constraints imposed by the AMF domain on the

configuration attributes of different domain elements. For instance, among the attributes

of the component type element, the magicSaAmfCtDefDisableRestart attribute specifies

whether the restart recovery action is disabled for components of this component type

and the magicSaAmfCtDefRecoveryOnError attribute specifies the default recovery

action that should be operated by the middleware for the components of this type. Based

on the AMF domain, for a certain component type, if the

magicSaAmfCtDefDisableRestart is configured true, then the attribute

magicSaAmfCtDefRecoveryOnError must not be set to

SA_AMF_COMPONENT_RESTART or SA_AMF_NO_RECOMMENDATION. This

constraint is specified in OCL as:

36

context MagicSaAmfCompType
inv:
(magicSaAmfCtDefDisableRestart = true) implies
(magicSaAmfCtDefRecoveryOnError <> SA_AMF_COMPONENT_RESTART AND
magicSaAmfCtDefRecoveryOnError <> SA_AMF_NO_RECOMMENDATION)

Several other restrictions on attributes defined in the AMF specification are, however,

complex and not straightforward to express. This complexity stems from the fact that, in

an AMF configuration, these requirements crosscut entities and concepts from different

levels. This is the case, for example, when a constraint involves different concepts such

as the component capability and the redundancy model.

Figure 3-7 Relationship of CSType with component and component type

Figure 3-7 depicts part of the AMF domain model which represents the relationships of

the CSType with the component type and the component. Both relationships are

represented through association classes. The AMF domain specification states that: for all

CSTypes which are provided by a component, the value of the attribute

magicSaAmfCompNumMaxActiveCSIs in the association class between component and

CSType should be lower than or equal to the value of the attribute

magicSaAmfCtDefNumMaxActiveCSIs which is located in the association class between

37

the CSType and the component type of that component. This is an example of a cross-

context constraint which has been captured in OCL as follows:

context MagicSaAmfComp
inv:
self.magicSaAmfCompCsType->
forAll(compcst|compcst. magicSaAmfCompNumMaxActiveCSIs <=
self.magicSaAmfCompType.magicSaAmfCtCsType
-> select(ctcst | ctcst.magicSafSupportedCsType =
compcst.magicSafSupportedCsType)
->asSequence.at(1). magicSaAmfCtDefNumMaxActiveCSIs)

3.2.4.2 Structural Well-formedness Rules

The elements of AMF configurations are strongly related, resulting in a complicated

organization of configuration elements. More specifically, the configuration entities and

entity types form two levels of abstraction which need to be compliant with each other. In

addition, in each level there are nested relationships among the elements (e.g. SG groups

SUs and each SU groups components). Therefore, the second category of well-

formedness rules is concerned with ensuring the structural consistency of the

configuration with respect to the standard. As an example of a structural constraint

definition, let us consider the definition of the following property specified by the AMF

specification: the only valid redundancy model for the SGs whose SUs contain a

container component is the N-Way-Active redundancy model. This is expressed in OCL

in the context of the container component category represented by the class

MagicAmfContainerComponent, and by using our specific class for the SG associated

with the N-Way-Active redundancy model, MagicAmfN-WayActiveSG. We can

therefore easily capture this restriction in OCL as follows:

38

context MagicAmfContainerComponent
inv:
self.magicAmfLocalComponentMemberOf. magicAmfLocalServiceUnitMemberOf.
 oclIsTypeOf(MagicAmfN-WayActiveSG)

3.2.4.3 Service Protection Constraints

A configuration is semantically valid only if it is capable of providing and protecting the

services as required and according to the specified redundancy model. More specifically,

given a set of SUs grouped in an SG, one needs to ensure that the set of SUs is capable of

handling the SIs configured for the SG. Ensuring this (referred to as SI-Protection

problem) requires the exploration of all possible SI-SU assignments. In some cases it is

necessary to consider different combinations of SIs, which makes the problem complex

in most redundancy models. For instance, the problem has combinatorial aspects in N-

Way and N-Way-Active redundancy models where the SIs can be assigned to more than

one SU simultaneously. We tackled the problem by providing the necessary and

sufficient conditions for ensuring the SI-Protection for each redundancy model. In the

case of the 2N redundancy model and the No-redundancy model, the necessary and

sufficient conditions can be expressed using first-order predicate logic and therefore for

these cases the well-formedness rules are specified in OCL. For example the conditions

for the case of 2N redundancy model are summarized as:

A service unit in the MagicAmfTwoNSG should be able to be active for all service

instances protected by the service group and a service unit in the MagicAmfTwoNSG

should be able to be standby for all service instances protected by the service group.

The OCL constraints specifying the well-formedness rule for the active assignment of 2N

redundancy model is:

39

context MagicAmfTwoNSG
inv:
(self.magicAmfSGGroups->forAll(su |
su.oclIsTypeOf(MagicSaAmfLocalServiceUnit))
implies
(su.magicSaAmfSUType.magicSaAmfSutProvidesSvcType-> forAll(svct |
svct.magicSaAmfSvcTypeCSType. magicSafMemberCSType-> forAll(cst |
su.magicAmfSUMemberOf.magicAmfSGProtects->iterate(si; b:integer = 0 |
si.magicAmfSIGroups->select(csi | csi.magicSaAmfCSType = cst)-
>size()+b) <=
su.magicAmfLocalComponentMemberof->iterate(c ; a:integer = 0|
c.MagicSaAmfCompCsType->select (compcst | compcst.
magicSafSupportedCsType = cst)->
asSequence.at(1).magicSaAmfCompNumMaxActiveCSIs+a)))))

and

(self.magicAmfSGGroups->forAll(su |
su.oclIsTypeOf(MagicSaAmfExternalServiceUnit))
implies
(su.magicSaAmfSUType.magicSaAmfSutProvidesSvcType-> forAll(svct |
svct.magicSaAmfSvcTypeCSType. magicSafMemberCSType -> forAll(cst |
su.magicAmfSUMemberOf.magicAmfSGProtects->iterate(si; b:integer = 0 |
si.magicAmfSIGroups->select(csi | csi.magicSaAmfCSType = cst)-
>size()+b) <=
su.magicAmfExternalComponentMemberof->iterate(c ; a:integer = 0|
c.magicSaAmfCompCsType->select (compcst | compcst.
magicSafSupportedCsType = cst)->
asSequence(1).magicSaAmfCompNumMaxActiveCSIs+a)))))

However, for the N+M, the N-Way-Active, and the N-Way redundancy models, the

problem is combinatorial and NP-hard [Salehi 2009]. For these cases, the necessary and

sufficient conditions are specified in higher order logic (HOL). Due to the fact that OCL

is based on first order predicate logic, it is not suitable for expressing these constraints.

For overcoming this complexity, we have characterized a special set of SIs, where the

necessary and sufficient conditions have been defined and can be checked using OCL

constraints. The details of the formal description of the SI-Protection problem as well as

the complexity analysis and the proposed solutions are presented in Chapter 5.

40

3.2.5 Challenges

The AMF specification served as our main source for understanding and capturing the

concepts of the AMF domain model. This specification defines what a valid AMF

configuration is and how it is managed at runtime by a compliant AMF middleware

implementation. Therefore, in order to design the AMF domain model, it is necessary to

distinguish clearly between configuration time and runtime aspects. This process was not

straightforward since often the specification does not provide a clear cut answer as to

whether aspects are necessary criteria for configuration or AMF service runtime related

requirements. As specification defines relations between the different entities involved in

a configuration, there is a temptation to define all of them at configuration time. This is

not a valid decision, as some of these relations are defined to allow more flexibility for

the AMF middleware at runtime. These runtime relations are based on other

configuration time constraints to ensure that the configured application will provide and

protect the service independently from the decisions taken by the middleware. Capturing

and specifying these configuration time constraints without the related runtime

relationships between the entities is not a simple process. Moreover, it is not clear which

one of these aspects should be captured in the domain model and to what extent. Indeed,

here we are facing the traditional over- vs. under-specification problem. Over-

specification occurs when we try to capture some concepts and/or constraints in our

domain model which are not configuration time and instead are related to the runtime

behavior of the AMF service and to its manipulation of the configuration. On the other

hand, under-specification occurs when we do not capture configuration time relations.

Such misinterpretations could result in a profile that either excludes valid AMF

41

configurations as a consequence of over-specification or which includes invalid

configurations. Close interaction with the domain expert and several iterations allowed us

to avoid some pitfalls that would have led to over- or under-specification. For instance,

one of the most important AMF requirements specifies a location constraint between a

proxy and a proxied component. In the initial version of our domain model, we related

formally proxy and proxied components with an association. The interactions with the

domain expert showed that this relationship is not a configuration time relationship and it

is only at runtime that an AMF middleware selects and assigns a particular proxy

component to a particular proxied component. This association is therefore removed from

our model, as it represents a typical case of over-specification, which fixes runtime

relationships at configuration time.

3.3 ETF Domain Model

SA Forum standards informally define the specification of the software components by

means of XML files called Entity Types File (ETF). ETF as defined in the standard

specification is rather ambiguous and informal. Due to the hierarchical representation of

XML documents, the relationships between the elements are defined in a uni-directional

manner. For instance, CSTypes are defined as children of their supporting Component

Types. Therefore, in order to find out which Component Types support a certain CSType,

one should explore all Component Types and find the ones having that CSType as one of

their children. Moreover, the set of constraints —one of the most important aspects of

the domain model—is not complete and a few constraints that are explicitly defined in

standard specifications are specified in natural language. Therefore, in order to

thoroughly capture the concepts of this domain, we went through constant interactions

42

with an ETF domain expert. In the rest of this section we present the concepts captured in

the ETF domain model.

3.3.1 Basic Service Provider and Service Elements

The basic software entities in ETF are component types which represent the

characteristics of the software resources and the various ways they can be configured

from the vendor’s point of view, such as: 1) the capability of the instances of the software

entity in handling the active and/or standby assignments and 2) the compatibility of the

instances of component types for the purpose of interacting with instances of other

component types. ETF supports the notion of component base type which defines the

configuration attributes common to its different versioned component types. We have

classified ETF component types according to three different criteria: service availability

awareness (SA-awareness for short), containment, and proxy mechanism (see Figure

3-8). The SA-awareness criterion distinguishes the Component Types that implement the

AMF APIs and which directly interact with an AMF implementation to manage service

availability. The SA-aware Component Types are further specialized into the independent

Component Types whose instances can be run on the middleware without any mediation.

On the contrary, the contained Component Types do not run directly on an operating

system but instead use an intermediate environment. These intermediate environments,

like a virtual machine are instances of another category of ETF independent Component

Types called container Component Types. Container Component Types are software

designed to allow AMF to control the life-cycle of contained Component Types. Proxy

Component Types are, however, used to give AMF control over hardware or legacy

software, called proxied Component Types.

43

Finally, the non-proxied non-SA-aware Component Type models the category of

Component Types for which the role of the AMF is limited to the management of their

life cycle, i.e. instatiation and termination.

The compatibility option which specifies the Component Types capable of collaborating

with each other in a redundancy model is captured through the association between

“MagicEtfCompType” and “MagicEtfCompBaseTyp”. We also describe the attributes of

software bundles that deliver the Component Types of the model in a class called

“MagicEtfSwBundle”.

Figure 3-8 Component Type and CSType Categories

ETF CSTypes are the description of the workloads that can be supported by the

component types. In other words, ETF CSTypes model the characteristics of the services

which AMF dynamically assigns to components (instances of component types) in terms

44

of workload. Similar to the component base type, CSBaseType defines the attributes

common to its versioned component service types. “MagicEtfCtCSType” association

class models the relationship between ETF Component Types and CSTypes. It also

specifies the capability of the instances of a given component type in acquiring the

workload, i.e. the instances of a certain CSType. More specifically, it describes the

capability of software (the maximum that the implementation of software can handle) to

act as standby and/or active. In other words, “MagicEtfCtCSType” defines the maximum

number of active/standby assignments of the instances of particular CSType to the

instances of a specific component type.

ETF CSTypes are further specialized into Proxy and Container CSTypes which are

defined to capture the specific proxy and container workloads.

3.3.2 Compound Elements

Compound elements are the elements that represent the combination options of the

software elements. More specifically, they specify how software resources can be

combined for various purposes, including for the provision of higher level services and

the protection of services to ensure service availability. For this purpose, ETF supports

different compound elements. The class diagram in Figure 3-9 illustrates part of the

domain model which captures the compound elements and their relationships, as well as

their connections to the basic elements described in the previous section.

45

Figure 3-9 Compound elements

ETF SUTypes are the logical software elements that group a set of Component Types.

The instances of these Component Types are capable of collaborating with each other to

combine their services. Therefore, the software modules associated with the Component

Types of a certain SUType are required to implement necessary interfaces in order to

collaborate and communicate with each other. Moreover, the limitation on the maximum

number of Component Type instances in an instance of a given SUType can be defined

by the software vendor. For this purpose, the association class “MagicEtfCtSut”, between

“MagicETFSUType” and “MagicETFCompType”, models this constraint through

“magicEtfMaxNumInstances” and “magicEtfMinNumInstances” attributes (see Figure

3-9). The set of ETF CSTypes supported by these Component Types also forms another

ETF element referred to as Service Type (SvcType). ETF SvcTypes are the description of

the workloads that can be supported by SUTypes. Similar to the limitations captured

between ETF SUTypes and Component Types, the ETF SvcType may limit the number

of the instances of a particular CSType that can exist in an instance of the SvcType. In

our domain model, this feature is captured by means of the attributes of the

46

“MgicEtcSvctCst” association class defined between “MagicEtfSvcType” and

“MagicEtcCSType”.

In order to capture the level of service protection provided for the services, another ETF

element called SGType is introduced into the domain model. ETF SGType groups a set

of SUTypes and specifies the redundancy model supported for the instances of these

SUTypes from vendors’ perspective. Therefore, the SGType plays a key role in

determining the availability of services. Finally, ETF Application Type defines the set of

SGTypes that may be used to build applications, i.e. the instances of the Application

Type.

3.3.3 Software Dependency

Software dependency is one of the most important aspects captured in ETF. In the ETF

domain we capture the software dependency in two main levels, namely Component

Type and SUType levels. There are three different types of Component Type level

dependency: CompType/CSType, Proxy/Proxied, and Container/Contained

dependencies. CompType/CSType dependency reflects the fact that the provision of a

specific service by a certain service provider depends on the provision of another service

by a different service provider. In other words, it represents the dependency of a specific

Component Type in providing a given CSType on the provision of another CSType by a

certain Component Type. This dependency is captured in the ETF domain model through

a reflexive association on the “MagicEtfCtCSType” association class (see Figure 3-8). As

discussed in Section 3.3.1, components can be of the type Proxied, thus requiring a Proxy

that conveys the requests of the AMF middleware. They can also be of the type

Contained, requiring a Container capable of managing their life cycles. In the ETF

47

domain model the Proxy/Proxied dependency is modeled as an association class between

the Proxy and Proxied CompType elements. This association class specifies the

ProxyCSType provided by the Proxy CompType in order to proxy the Proxied

CompType. In this dependency the Proxied CompType relies on the Proxy CompType.

Similarly, Container/Contained dependency is modeled as an association class between

the Container and Contained CompType elements. The association class specifies the

ContainerCSType provided by the Container CompType in order to manage the life cycle

of the Contained CompType.

The dependency at the SUType level is specified in the ETF domain model as the

dependency of a SUType to an SvcType in providing a given SvcType. In the model the

SvcType dependency is defined at the level of a relationship between the

“MagicEtfSvcsSut” association class and the SvcType class.

3.3.4 Domain Constraints

Specifying constraints is an important step in the definition of a UML profile. In

particular, in complex domains class diagrams are absolutely insufficient for expressing

all domain specific concepts. In our work, a tedious step was dedicated to capturing

domain specific constraints and to specifying those constraints using the Object

Constraint Language (OCL). These constraints govern both the structure and the

behaviour of these entities. As an example of a constraint definition, let us consider the

definition of the following property: A service unit type that uses contained component

types should not use component types of other categories. This is expressed in OCL in the

context of the SUType represented by the class “MagicEtfSUType”. We can, therefore,

easily capture this restriction in OCL as follows:

48

context MagicEtfSUType
inv:
self.magicEtfGroups ->
exist(c|c.oclIsTypeOf(MagicEtfContainedCompType)) implies
self.magicEtfGroups ->
forAll(c|c.oclIsTypeOf(MagicEtfContainedCompType))

3.3.5 Challenges

The main challenge in defining the ETF domain model lies in the fact that the main

source of information is the standard specifications given as an XML schema. SA Forum

standards [SAF 2010b, SAF 2010e] informally define the specification of the software

entities by means of XML files. Therefore, the definition of the entities involved in the

description of the software is rather ambiguous and informal. For instance, the set of

constraints that must be considered between software entities is not complete. Moreover,

the few constraints that are explicitly defined in standard specifications are specified in

natural language. Recognizing the ambiguous representation of domain concepts in

standard specifications, we went through several iterations in order to accurately capture

these concepts in ETF domain model. Each iteration consisted of an extensive phase of

interactions with the domain expert. At the end of each iteration, the domain model and

the document specifying the domain concepts and domain constraints were reviewed by

the domain expert and the shortcomings were pointed out and considered in subsequent

iterations.

49

3.4 CR Domain Model

Figure 3-10 Configuration Requirement (CR) domain model

Configuration requirements specify the set of services to be provided by a given software

system through the target AMF configuration. More specifically, they define different

characteristics of the services such as their types, the number of instances of a certain

service type, the relationships between services, and the level of protection expressed in

the context of AMF in the form of redundancy models. The configuration requirements

model also specifies the requirement for the deployment infrastructure. The specification

of the configuration requirements is defined as templates (see Figure 3-10) to help the

configuration designer specify common characteristics shared by multiple SGs (through

SGTemplates), SIs (using SITemplates) and CSIs (by means of CSITemplates). The

CSITemplate defines the information needed to create a set of CSIs. More specifically, it

specifies the number of CSIs to be created, the CSType of the created CSIs, and the

50

relationships between the CSIs. Similarly, SITemplate specifies the SIs with the

associated SvcType, the number of SIs to be created, dependencies among SIs, and the

set of CSITemplates that constitute the set of CSIs each of the created SIs will contain.

The level of protection is one of the most important requirements for the generation of

the AMF configurations which is captured through SGTemplate. It specifies the

requirements on the SG(s) that will protect the SIs and the sets of SIs that need be

protected by this SG(s). The SG template also specifies the redundancy model and the

number of SUs in the SG(s) expected to protect the SIs. The number of SUs is divided

into two parts: the number of active SUs and the number of standby SUs. The values of

the number of active and standby SUs are constrained based on the redundancy model as

specified in the AMF specification [SAF 2010d].

In order to group SGTemplates, the CR domain model also introduces the notion of

administrative domain. If an SGTemplate belongs to an administrative domain, then all

its SITemplates will belong to this administrative domain. The SIs generated from the

SITemplates of the same administrative domain can be serviced by the SGs of the same

application, and thus at configuration generation time we will associate those SIs only to

specific applications defined for the administrative domain.

Finally, The NodeTemplate and ClusterTemplate are used to capture the requirements of

the deployment infrastructure, namely the AMF nodes and the AMF cluster. The

NodeTemplate specifies the number of nodes and their attributes used to create identical

AMF nodes and the ClusterTemplate represents the characteristics of the required AMF

cluster.

51

3.5 Summary

In this chapter we discussed the first phase in defining our modeling framework which

concerns specifying the domain model of the UML profile. Our domain modeling process

follows an iterative scheme focusing on different specifications and interactions with the

domain expert. We discussed the domain model of our profile in terms of three

subdomains, namely AMF configurations, Entity Types File, and Configuration

Requirements. In each subdomain, we presented the description of the concepts of the

domain and the relationships among them, as well as the domain specific constraints.

We also discussed the main challenges we faced in this process and which stem mainly

from the informality and incompleteness of the standard specifications for describing

ETF concepts and from the fact that the AMF standard specification simultaneously

defines what a valid AMF configuration is and specifies the expected behaviour from an

AMF service implementation.

The domain modelling process has resulted in three technical reports used in the second

phase of the definition of our modeling framework. In the next chapter we present this

second phase which consists of mapping the domain model to the UML metamodel by

defining a set of stereotypes, tagged definitions, and constraints.

52

Chapter 4

4 Modeling Framework- Mapping
to UML Metamodel

Once the domain model is completed, the second major step is to map the domain

concepts to the UML metamodel. For this purpose, one needs to proceed stepwise

through the full set of domain concepts (specified as classes in the domain model) and

identify the most appropriate UML base concepts for each of them. The objective is to

find the UML base concept (UML metaclass) which is conceptually and semantically

similar to each domain concept. The output of the mapping phase is a set of introduced

stereotypes and the UML metaclass from which each stereotype is derived. It is important

to mention that, since UML 2.0 supports inheritance relationships between stereotypes,

not all domain concepts need to be directly derived from the corresponding UML

metaclasses. Some of them will be derived from the newly created stereotypes. Figure

4-1 illustrates the process of mapping the domain model to the UML metamodel, the

definition of the concrete syntax for the language, and the specification of the metamodel

level constraints. Following this process, we have carefully selected the UML

metaclasses that carry semantics similar to the domain concepts being represented. As

such, the newly defined stereotypes must neither contradict nor violate the UML

metamodel. In the presence of multiple candidates, we favoured the metaclasses that

permitted the reuse of as many UML relationships between the stereotyped elements as

53

possible. Reusing the associations among the metaclasses decreases the complexity of the

design. Hence, if it is necessary to have a relationship between two stereotypes, it is

better to reuse (if possible) the existing relationships between the corresponding

metaclasses. We also opted for the metaclasses that minimized the number of constraints

needed to constrain the UML metamodel elements (i.e., to restrict the stereotyped UML

metaclasses so as to have them behave according to the rules imposed by the domain). A

large number of constraints is an indication that the selected metaclasses might not be the

most suitable ones. Once the stereotypes have been defined, specifying the tagged

definitions is the next step in the process of building the concrete syntax of our language.

Tagged definitions represent properties of these stereotypes which are not included in

UML.

Figure 4-1 The process of mapping to the UML metamodel and concrete syntax definition

Mapping Domain
Classes

Mapping Domain
Relationships

Select the
Domain Concept

Study UML
metamodel

Find the proper
metaclass to map

Select the
Domain

Relationship

Study UML
metamodel

Find a proper
relationship

between
metaclasses or

create a new
association

Concrete Syntax
Definition

Metamodel Level
Constraints

54

Due to the large number of tagged definitions, we present their specifications in

Appendix I. The remainder of this chapter is dedicated to presenting the steps of mapping

our domain model to the UML metamodel in detail. The content of this chapter has been

published in [Salehi 2010a and Salehi 2010b].

4.1 Mapping Domain Model Concepts to UML Metaclasses

For each stereotype a suitable metaclass is presented. This selection has been made by

mainly considering the semantic alignment of the domain concepts with UML

metaclasses. However, the first choice might not be the most appropriate one and further

investigation is necessary. More specifically, after finding the candidate metaclasses for

each domain concept, two different scenarios may occur:

• The candidate metaclass appears semantically to be appropriate: in this case it is

always beneficial to look at the metaclasses inherited from the candidate

metaclass. In other words, since the inherited metaclasses specify more features,

we may find them semantically more accurate for aligning with the description of

the domain concept.

• The candidate metaclass turns out to have features which are semantically too

restrictive compared to the description of the domain concept. In this case, one

should consider the parent metaclass which has fewer features.

These guidelines highly support the semantic alignment of the domain concepts with

respect to the UML metamodel. Following this process, we have identified the

stereotypes that fit AMF concepts. We present the stereotypes in the next subsections.

For each stereotype we discuss the rationale behind the selection of the UML metaclass

in question.

55

4.1.1 AMF Component

The component in AMF represents the encapsulation of the functionality of the software

that provides the services. This is similar to the concept of the component in UML, which

is defined as “a modular part of a system that encapsulates its contents and whose

manifestation is replaceable within its environment” [OMG 2007b]. Therefore, we

mapped the AMF component to a UML component defining a new stereotype called

<<MagicSaAmfComponent>>. Similarly, a stereotype is defined for each component

category and is indirectly mapped (through inheritance relationships between stereotypes)

to the Component metaclass.

4.1.2 AMF Service Unit (SU)

Based on the definition of SUs in the AMF domain, an SU is a logical entity that

aggregates a set of components by combining the individual functionalities of these

components to provide a higher level service. From this perspective, one could see an SU

as a service provider, similar to a component, but at a higher level of abstraction. We

therefore decided to map the SU to a UML Component metaclass as well. The stereotype

<<MagicSaAmfSU>> is used to represent an SU. Local and external SUs are represented

using the stereotypes <<MagicAmfLocalServiceUnit>> and

<<MagicAmfExternalServiceUnit>>.

4.1.3 AMF Service Group (SG)

One of the key characteristics of a SG is the grouping of SUs. Given the fact that in UML

“a package is used to group elements, and provides a namespace for the grouped

elements” [OMG 2007b], it may appear that the metaclass Package could be a suitable

base class for an SG. However, in addition to its ability to group SUs, an SG also ensures

56

the availability of services by means of redundancy models for a certain set of SIs

(assigned to the SUs grouped by the SG). Moreover, UML Component can liberally

provide any kind of service. Consequently, we can consider the protection of SIs as a sort

of service that is provided by the SG through importing SUs in its namespace. Therefore,

similar to an SU, an SG can map to the UML Component metaclass. Considering the fact

that the Component metaclass also has a grouping capability, it is the most appropriate

candidate base class for the SG.

There are different categories of SGs based on their redundancy model, and so, for each

category we have introduced a stereotype. The topmost stereotype

(<<MagicSaAmfSG>>), however, has been mapped to the UML Component metaclass.

4.1.4 AMF Application

An application is a logical entity that contains one or more SGs. An application combines

the functionalities of the constituent SGs in order to provide a higher level service.

Similar to an SU, a UML Component has been found to be the most suitable base class

for the stereotype designed to represent an AMF application

(<<MagicSaAmfApplication>>).

4.1.5 AMF Component Service Instance (CSI)

In the UML specification, a Classifier is an abstract metaclass which is a namespace

whose members can include features. A BehavioralClassifier is a specific type of

Classifier that may have an interface realization [OMG 2007b]. Since we can consider

CSIs as realizations of services which AMF dynamically assigns to components in terms

of workload, BehavioredClassifier could be a good candidate for CSI. However, a CSI is

57

the description of the characteristics of the workload which will be assigned to the

component at runtime and not the description of the service itself. Therefore,

BehavioredClassifier has been discarded. On the other hand, in UML, “a class describes a

set of objects that share the same specifications of features, constraints, and semantics”

[OMG 2007b], and thus, the metaclass Class is semantically closer to a CSI. As a result,

we have used the metaclass Class as a base class for the stereotype that has been defined

for CSI (<<MagicSaAmfCSI>>).

4.1.6 AMF Service Instance (SI)

An SI is an aggregation of all component service instances (CSIs) to be assigned to the

individual components of the SU in order for the SU to provide a particular service. In

fact, semantically, an SI shares most of the characteristics of the CSI but at a higher level

of abstraction. Consequently, similar to CSI, the metaclass Class can be used as a base

class for the stereotype defined for an SI (<<MagicSaAmfSI>>). The only difference

existing between the two is that the SI is capable of grouping a set of CSIs. This

capability is also captured by the metaclass Class in UML due to the existence of an

inheritance relationship between the metaclass Class and the metaclass Classifier.

4.1.7 AMF Node

A node in the AMF domain is a logical entity that represents a complete inventory of SUs

and their components. We mapped the AMF node to the UML metaclass Node since,

similar to AMF, a node in UML “is a computational resource upon which artefacts may

be deployed for execution” [OMG 2007b]. We created the stereotype

<<MagicSaAmfNode>> to refer to an AMF node.

58

4.1.8 AMF Cluster and AMF NodeGroup

Based on the UML specification, “a package is used to group elements, and provides a

namespace for the grouped elements” [OMG 2007b]. On the other hand, the complete set

of AMF nodes in the AMF configuration defines the AMF cluster. The role of an AMF

cluster and nodegroup is the grouping of different AMF nodes. Therefore, the metaclass

Package seems to be the most appropriate base class for the AMF cluster and

nodegroups. The stereotypes <<MagicSaAmfCluster>> and

<<MagicSaAmfNodeGroup>> are used to refer to these two entities.

4.1.9 AMF Entity Type Elements

In general, the type entity describes the characteristics and features common to all entities

of this type. All entities of the same type share the attribute values defined in the entity

type. Some of the attribute values may be overridden, and some other ones may be

extended by the entity at configuration time. In other words, the type is the generalization

of similar entities. For example, the SGType is a generalization of similar SGs that follow

the same redundancy model, provide similar availability, and are composed of units of

the same SUTypes. Considering the fact that, in UML, the metaclass Class describes a set

of objects that share the same specifications of features, constraints, and semantics [OMG

2007b], it can be used as a base class for all AMF entity types.

Table 4-1 represents the summary of the stereotypes defined for AMF entities and entity

types as well as the graphical syntax of our language for each stereotype.

59

Table 4-1 The summary of the stereotypes defined for AMF entities and entity types

Stereotype Generalization Notation

<<MagicSaAmfCompGlobalAttributes>> metaclass Class

<<SaAmfCompBaseType>> metaclass Class

<<MagicSaAmfCompType >> <<SaAmfCompBaseType>>

<<MagicAmfSaAwareCompType>> <<MagicSaAmfCompType>>

<<MagicAmfStandaloneSaAwareCompType >> <<MagicAmfSaAwareCompType>>

<<MagicAmfProxyCompType>> <<MagicAmfStandaloneSaAwareCompType>>

<<MagicAmfContainerCompType>> <<MagicAmfStandaloneSaAwareCompType>>

<<MagicAmfContainer-ProxyCompType>>
<<MagicAmfProxyCompType>>

<<MagicAmfContainerCompType>>

<<MagicAmfProxiedCompType>> << MagicSaAmfCompType>>

<<MagicAmfNon-ProxiedNon-
SaAwareCompType>> << MagicSaAmfCompType>>

<<MagicSaAmfHealthcheckType>> metaclass Class

60

<<SaAmfSUBaseType>> metaclass Class

<<MagicSaAmfSUType>> <<SaAmfSUBaseType>>

<<MagicAmfLocalSUType>> <<MagicSaAmfSUType>>

<<MagicAmfExternalSUType>> <<MagicSaAmfSUType>>

<<SaAmfSGBaseType>> metaclass Class

<<MagicSaAmfSGType>> <<SaAmfSGBaseType>>

<<SaAmfAppBaseType>> metaclass Class

<<MagicAmfAppType >> <<SaAmfAppBaseType>>

<<SaAmfCSBaseType>> metaclass Class

<<MagicSaAmfCSType>> <<SaAmfCSBaseType>>

<<SaAmfSvcBaseType>> metaclass Class

<<MagicSaAmfSvcType>> <<SaAmfSvcBaseType>>

61

<<MagicSaAmfComp>> metaclass Component

<<MagicAmfLocalComponent>> <<MagicSaAmfComp>>

<<MagicAmfExternalComponent>> <<MagicSaAmfComp>>

<<MagicAmfSaAwareComponent>> <<MagicAmfLocalComponent>>

<<MagicAmfNon-SaAwareComponent>> <<MagicAmfLocalComponent>>

<<MagicAmfStandaloneSaAwareComponent>> <<MagicAmfSaAwareComponent>>

<<MagicAmfContainedComponent>> <<MagicAmfSaAwareComponent>>

<<MagicAmfLocalProxiedComponent>> <<MagicAmfNon-SaAwareComponent>>

<<MagicAmfNon-ProxiedNon-
SaAwareComponent>> <<MagicAmfNon-SaAwareComponent>>

<<MagicAmfContainerComponent>> <<MagicAmfStandaloneSaAwareComponent>>

<<MagicAmfProxyComponent>> <<MagicAmfStandaloneSaAwareComponent>>

<<MagicAmfContainer-ProxyComponent>>
<<MagicAmfContainerComponent>>

<<MagicAmfProxyComponent>>

<<MagicSaAmfHealthcheck>> metaclass Class

62

<<MagicSaAmfSU>> metaclass Component

<<MagicAmfLocalServiceUnit>> <<MagicSaAmfSU>>

<<MagicAmfExternalServiceUnit>> <<MagicSaAmfSU>>

<<MagicSaAmfSG>> metaclass Component

<<MagicAmfTwoNSG>> <<MagicSaAmfSG>>

<<MagicAmfNPlusMSG>> <<MagicSaAmfSG>>

<<MagicAmfNWaySG>> <<MagicSaAmfSG>>

<<MagicAmfNWayActiveSG>> <<MagicSaAmfSG>>

<<MagicAmfNoRedundancySG>> <<MagicSaAmfSG>>

<<MagicSaAmfApplication>> metaclass Component

<<MagicSaAmfCSI>> metaclass Class

<<MagicSaAmfSI>> metaclass Class

63

<<MagicAmfCSIAttributeName>> metaclass Class

<<MagicSaAmfNode>> metaclass Node

<<MagicSaAmfNodeGroup>> metaclass Package

<<MagicSaAmfCluster>> metaclass Package

4.1.10 ETF Types

ETF types describe the characteristics and features of the software entities from the

vendor’s point of view. These characteristics mainly focus on the aspects of the software

which are important for the generation of the AMF configuration. In the process of

configuration generation the AMF entity types are created based on ETF types. For

instance, ETF defines ranges for some attribute values and consequently, the values of

the corresponding AMF type must be between these ranges.

As a result, ETF types act as metatypes for AMF types and, thus, are the generalization of

similar AMF types. In UML, the metaclass Class describes a set of objects that share the

same specifications of features, constraints, and semantics [OMG 2007b], we have

therefore used it as a base class for all ETF types.

Table 4-2 represents the summary of the stereotypes defined for ETF types as well as the

graphical notation of our language for each stereotype.

64

Table 4-2 The summary of the stereotypes defined for ETF types

Stereotype Generalization Notation

<<MagicEtfCompBaseType>> metaclass Class

<< MagicEtfCompType>> << MagicEtfCompBaseType>>

<< MagicEtfSaAwareCompType>> << MagicEtfCompType>>

<<MagicEtfNonProxiedNonSaAwareCompType >> << MagicEtfCompType>>

<< MagicEtfProxiedCompType>> << MagicEtfCompType>>

<< MagicEtfContainedCompType>> << MagicEtfSaAwareCompType>>

<< MagicEtfIndependentCompType>> << MagicEtfSaAwareCompType>>

<< MagicEtfContainerCompType>> << MagicEtfIndependentCompType>>

<< MagicEtfProxyCompType>> << MagicEtfIndependentCompType>>

<< MagicEtfStandaloneCompType>> MagicEtfIndependentCompType

<< MagicEtfContainer-ProxyCompType>>
MagicEtfProxyCompType

MagicEtfContainerCompType

<< MagicEtfSUBaseType>> metaclass Class

<< MagicEtfSUType>> << MagicEtfSUBaseType>>

<< MagicEtfSGBaseType>> metaclass Class

<< MagicEtfSGType>> << MagicEtfSGBaseType>>

<< MagicEtfAppBaseType>> metaclass Class

65

<< MagicEtfAppType>> << MagicEtfAppBaseType>>

<< MagicEtfSwBundle>> metaclass Class

<< MagicEtfUpgradeAwarenessAttributes>> metaclass Class

<< MagicEtfHealthcheck>> metaclass Class

<< MagicEtfSvcBaseType>> metaclass Class

<< MagicEtfSvcType>> << MagicEtfSvcBaseType>>

<< MagicEtfCSBaseType>> metaclass Class

<< MagicEtfCSType>> metaclass Class

<< MagicEtfContainerCSType>> <<MagicEtfCSType>>

<< MagicEtfProxyCSType>> << MagicEtfCSType>>

<< MagicEtfCstAttribute>> metaclass Class

4.1.11 CR Elements

Configuration requirement elements represent the description of the configuration and

their structure. CR profile is used in the configuration management framework and Table

4-3 presents the summary of the stereotypes of the CR profile.

66

Table 4-3 The summary of the stereotypes defined for CR elements

Stereotype Generalization Notation

<<MagicCrAdministrativeDomain>> metaclass Class

<<MagicCrSgTemplate>> metaclass Class

<<MagicCrSiTemplate>> metaclass Class

<<MagicCrRegularSiTemplate>> <<MagicCrSiTemplate>>

<<MagicCrProportionalSiTemplate>> <<MagicCrSiTemplate>>

<< MagicCrCsiTemplate>> metaclass Class

<< MagicCrClusterTempalate>> metaclass Class

<< MagicCrNodeTemplate>> metaclass Class

4.2 Mapping the Domain Relationships to the UML Metamodel

We distinguish different categories of relationships between domain concepts:

• AMF domain:

- Provide: This relationship is used between service providers and

service elements and represents the capability to provide services.

- Type: It represents the relationship which is used between AMF

entities and their type (e.g. the relationship between component and

component type).

67

- Group: It represents the relationship which is used between grouping

and grouped elements (e.g. the relationship between an SU and its

enclosing components).

- Protect: It represents the relationship which is used between an SG and

SIs in order to protect the services they represent.

- Deploy: It represents the relationship which is used for deployment

purposes (e.g. between a service unit and a node or between a service

group and a node group).

- Member node: represents the relationship which is used between a

node and a nodegroup or cluster.

- Contain: represents the relationship between container components

and CSI

- Proxy: represents the relationship between proxy components and CSI

• ETF domain:

- Provide: This relationship is used between service provider ETF types

and service ETF types and represents the capability of providing

services (e.g. ETF SUType and ETF SvcType).

- Group: It represents the relationship which is used between grouping

and grouped elements (e.g. the relationship between an ETF SUType

and its enclosing ETF Component Types).

- Depend: It represents the dependency relationship which is used

between a sponsor and its dependent elements.

68

- Contain: It represents the relationship which is used between an ETF

Container Component Type and its ETF Contained Component Types.

- Proxy: It represents the relationship which is used between an ETF

Proxy Component Type and its ETF Proxied Component Types.

• CR domain

- Group: It represents the relationship which is used between grouping

and grouped elements (e.g. the relationship between a SITemplate and

its enclosing CSITemplates).

- Depend: It represents the dependency relationship which is used

between a sponsor and its dependent elements.

- Type of Service: It refers to the service type needed to be provided in

order to satisfy the requirements of CR templates (between ETF

SvcType and SITemplate or between ETF CSType and CSITemplate)

A careful selection of metaclasses for our domain concept related stereotypes allowed us

to reuse many associations in the UML metamodel for the aforementioned relationships.

Reusing the association from the UML metamodel decreases the complexity of the

process of defining the profile while improving the quality of the profile. More

specifically, if we consider the related associations of each metaclass as part of its

semantic, reusing these associations will implicitly support the semantic alignment and

compliance of the domain concepts with respect to the UML metamodel. Each

association has been stereotyped accordingly and mapped to either Association,

AssociationClass, or Dependency.

69

For example, both <<MagicSaAmfSI>> and <<MagicSaAmfCSI>> stereotypes are

mapped to the UML metaclass Class and, since the metaclass Class inherits indirectly

from the metaclass Classifier in the UML metamodel, there is an association between the

classes Class and Classifier called “nestedClassifier”, which allows classifiers to group

other classifiers. We reused this association to express the fact that an SI (represented as

<<MagicSaAmfSI>>) groups CSIs (represented as <<MagicSaAmfCSI>>).

Consequently, as shown in Figure 4-2, we defined the stereotype <<groups>> to capture

the relationship and map it to metaclass Association.

Figure 4-2 Relationship between AMF SI and AMF CSI

Table 4-4 shows a summary of the stereotypes defined for the relationships, their base

metaclasses, the relationship reused from the UML metamodel, and the domain.

70

Table 4-4 Summary of Stereotypes Related to the Relationships between Domain Concepts

Stereotype UML
metaclass

Reused relationship
from UML
metamodel

Domain

<<groups>> Association

nestedClassifier
relationship between
Class and Classifier
packagedElement
relationship between
Componnet and
Packageable Element

AMF
ETF
CR

<<protect>> Association
nestedClassifier
relationship between
Class and Classifier

AMF

<<provide>> Association
nestedClassifier
relationship between
Class and Classifier

AMF
ETF

<<type>> Association

superClass
relationship between
Componnet and Class
Reflective superClass
relationship on Class

AMF

<<membernode>> Dependency

packagedElement
relationship between
Packageable Element
and Package

AMF

<<deploy>> Dependency

packagedElement
relationship between
Packageable Element
and Package

AMF

<<contain>> Association
nestedClassifier
relationship between
Class and Classifier

AMF
ETF

<<proxy>> Association
nestedClassifier
relationship between
Class and Classifier

AMF
ETF

<<typeofservice>> Association
nestedClassifier
relationship between
Class and Classifier

CR

<<MagicSaAmfSutCompType>> Association
Class

nestedClassifier
relationship between
Class and Classifier

AMF

<<MagicSaAmfSvcTypeCSType>> Association
Class

packagedElement
relationship between
Componnet and
Packageable Element.

AMF

71

<<MagicSaAmfCtCSType>> Association
Class

nestedClassifier
relationship between
Class and Classifier

AMF

<<MagicSaAmfCompCsType>> Association
Class

nestedClassifier
relationship between
Class and Classifier

AMF

<<MagicSaAmfSIDependency>> Association
Class

nestedClassifier
relationship between
Class and Classifier
inherited by
AssociationClass

AMF

<<MagicEtfCtCSType>> Association
Class

nestedClassifier
relationship between
Class and Classifier

ETF

<<MagicEtfSvctSut>> Association
Class

nestedClassifier
relationship between
Class and Classifier

ETF

<<MagicEtfContainerContained>> Association
Class

nestedClassifier
relationship between
Class and Classifier

ETF

<<MagicEtfCtSut>> Association
Class

nestedClassifier
relationship between
Class and Classifier

ETF

<<MagicEtfProxyProxied>> Association
Class

nestedClassifier
relationship between
Class and Classifier

ETF

<<MagicEtfSvctCst>> Association
Class

nestedClassifier
relationship between
Class and Classifier

ETF

4.3 Specifying Constraints

This phase aims at ensuring that the UML stereotyped base metaclasses do not have

attributes, associations, or constraints that conflict with the semantics of the domain

model. If this is the case, UML itself needs to be restricted in order to match the domain

related semantics and to guarantee the consistency of the profile with the semantics of the

domain model. To this end, a set of constraints were defined. Since we did not need to

specify any constraints on the metamodel attributes, the set of specified constraints were

72

grouped into two different categories: Constraints on relationships and Constraints on

model elements.

4.3.1 Constraints on Relationships

This type of constraints restricts the use of UML relations to the AMF domain. For

example, the previously defined stereotype <<groups>> can be used only between

specific AMF entities. However, UML has the capability of using associations between

all sorts of UML elements, including the metaclasses Class, Component, and Node.

Therefore, without any constraints it would be possible to use the <<groups>>

relationship to group CSIs into an AMF application, which is semantically invalid with

respect to the AMF domain. As a result, different constraints have been defined and

expressed in OCL to restrict the UML metamodel in the context of AMF. For instance,

the following constraint restricts the UML metamodel to use the <<groups>> stereotype

between component and SU:

context groups
inv:
(self.endType()->at(1).oclIsKindOf(MagicSaAmfComp)
or
self.endType()-> at(1).oclIsKindOf(MagicSaAmfSU))
and
(self.endType()->at(2).oclIsKindOf(MagicSaAmfComp)
or
self.endType()->at(2).oclIsKindOf(MagicSaAmfSU))
and
(self.endType()->at(1).oclIsKindOf(MagicSaAmfComp)
implies
self.endType()-> at(2).oclIsKindOf(MagicSaAmfSU))
and
(self.endType()->at(2).oclIsKindOf(MagicSaAmfComp)
implies
self.endType()-> at(1).oclIsKindOf(MagicSaAmfSU))

73

4.3.2 Constraints on Metaclasses

Similar to the constraints on relationships, there is another group of constraints that

should be taken into account. This group targets UML elements in order to restrict the

UML metamodel. For example, based on the AMF domain model, components cannot

inherit from other components. However, the UML metamodel allows designers to use

inheritance between elements that are mapped to UML metaclass Component. Therefore,

another set of constraints was required to restrict the standard UML elements according

to what is allowed by AMF. We have defined and specified this set using OCL. The

following constraint restricts the inheritance on components:

context <<MagicSaAmfComponent>>
inv:
self.general()->isEmpty()

4.4 Challenges

After the analysis of the domain and the design of the domain model, the first issue we

faced was how to define our profiles. Although a UML profile may result in a less precise

language than a MOF-based language, we avoided a MOF-based solution as this suffers

from a lack of tool support. The advantages of an UML profile seem to far outweigh its

drawbacks. The second issue involved deciding whether to extend existing profiles or to

create a new one. Because of the characteristics of our domain and the fact that the

required additional complexity does not justify the very few benefits of a possible

extension, we decided to design a new UML profile instead of reusing another profile and

adapting it to AMF.

Another challenge that we encountered was in identifying the most appropriate UML

metaclasses to extend in order to support domain concepts. We defined some guidelines

74

for both mapping domain concepts and mapping domain relationships and used them in

the mapping process.

In addition, a complementary and important aspect needs to be taken into consideration:

the tool support. We chose RSA because of its features. However, our experience with

RSA also revealed some of its weaknesses when dealing with the implementation of OCL

constraints. More specifically, to support the OCL statements that require access to

stereotyped elements or tagged definitions, RSA implements additional APIs such as

getAppliedSubstereotypes(), isStereotypeApplied(), and getValue(). The main issue with

these APIs is that they are not compliant with the standard OCL specification and

therefore, standard OCL constraints cannot directly be implemented in RSA. Considering

the fact that almost all of the constraints in UML profiles deal with stereotypes, this

drawback has a great impact on the readability of the OCL constraints and therefore, the

maintainability of the tool.

4.5 Summary

In this chapter we discussed the second step in creating our UML profile which consists

of mapping the domain model to the UML metamodel. In this phase we went through

three main steps: mapping domain concepts to the UML metamodel, mapping the domain

relationships to the UML metamodel, and specifying metamodel level constraints. In the

first step the most suitable metaclass was selected for each domain concept by

considering the semantic alignment of the domain concepts with UML metaclasses.

During the mapping of the domain relationships, in addition to considering the semantic

alignment we have also focused on reusing as many UML relationships between the

stereotyped elements as possible. This was achieved through a careful selection of

75

metaclasses for our domain concept from the previous step and resulted in the decreased

complexity of the process of defining the profile and in the improved quality of the

profile. Finally, we put some restrictions on UML itself by specifying metamodel level

constraints in order to guarantee the consistency of the profile with the semantics of the

domain model.

We have invested a great deal of effort in improving the quality of our profile by

specifying a process for profile definition. In addition, our work has undergone an

intensive and effective review process with the domain expert. The applicability and

usefulness of the profile will be evaluated empirically in the coming years. This profile

serves as the modeling framework for our approaches for model-based configuration

generation and the validation of third-party AMF configurations. Both of these

approaches either use certain parts of our profile or take advantage of the entire profile.

Since our modeling framework is compliant with the UML metamodel, we can transform

the configurations into other UML-based analytical models for the evaluation of their

availability and other non-functional characteristics.

76

Chapter 5

5 AMF Configuration Validation

One of the most important benefits of the model-driven paradigm is the possibility of

generating valid artefacts through automated transformations (AMF configurations in our

case). However, AMF configurations can also be designed manually by third parties.

Considering all the constraints that have to be taken into account and the complexity of

the design process, such configurations have to be validated before they can be used by

the AMF middleware. These configurations should be:

• Syntactically complete, valid, and consistent with respect to the standard

specification of the AMF middleware,

• Semantically aligned with the protection level expressed through characteristics of

SGs and the features of the set of SIs configured to be protected by these SGs.

The content of this chapter has been published in [Salehi 2009 and Salehi 2011a].

5.1 Syntactical Validation of AMF Configurations

Having a modeling framework based on the UML, the process of checking the

consistency of the model is rather straightforward and is carried out by well-known

technologies supporting the UML metamodel. We have used RSA [IBM 2011] to build

the AMF profile and the Eclipse EMF [Eclipse 2010b] UML importer to build the Ecore

model. The validation process, as shown in Figure 5-1, includes a mapping of an AMF

77

configuration ― provided by the user as an IMM XML [SAF 2010d] file, which is the

standard carrier for AMF configurations ― to an instance of the AMF profile

―presented in this thesis―, as well as a validation of the configuration performed

syntactically and with respect to the OCL constraints.

Figure 5-1 Architecture of Validation Tool

5.2 Semantic Validation of AMF Configurations

One of the most important objectives in the semantic validation of AMF configurations is

whether a given AMF configuration provides the level of protection it claims or not. In

other words, a configuration is semantically valid if and only if it is capable of providing

and protecting the services as required and according to the specified redundancy model.

Ensuring this requires the exploration of all possible SI-SU assignments and, in some

cases, different combinations of SIs; a complex procedure in most redundancy models

Validation Tool

AMF Profile
AMF Standard Model

IMM XML

<<instance of>>

create

Validation Log

<<instance of>>

78

defined in the AMF domain. In this section we explore the problem of SI-Protection at

configuration time.

5.2.1 Definitions and Notations

Provided services from the provider perspective, or requested services from the requester

perspective, can be defined in terms of component service types (CSTypes) and the

number of CSIs of each CSType provided or requested, respectively. Therefore, a service

group in an AMF configuration can be seen as a set of n SUs denoted by 𝑆𝑈𝐿𝑖𝑠𝑡 =

{𝑆𝑈1, . . . 𝑆𝑈𝑛}. Each SU combines a group of components capable of supporting different

CSTypes (i.e. capable of providing the CSIs of those CSTypes) in both active and

standby fashion. Let k denote the total number of CSTypes supported by the SUs in a

given configuration. Consequently, the provided active capacity list for 𝑆𝑈𝑖 ∈ 𝑆𝑈𝐿𝑖𝑠𝑡 is

defined as 𝑆𝑈𝑖𝑎𝑐𝑡 = 〈𝑎𝑐1𝑖 , … ,𝑎𝑐𝑘𝑖 〉 and the provided standby capacity list for 𝑆𝑈𝑖 is

described as 𝑆𝑈𝑖𝑠𝑡𝑏 = 〈𝑠𝑐1𝑖 , … , 𝑠𝑐𝑘𝑖 〉. 𝑎𝑐𝑡𝑖 and 𝑠𝑐𝑡𝑖 are non-negative integers representing

the capacity of the SU in supporting CSIs from the CSType t.

The n SUs in the SUList need to protect a given sequence of m SIs, denoted by 𝑆𝐼𝐿𝑖𝑠𝑡 =

{𝑆𝐼1, . . . 𝑆𝐼𝑚}. Similar to the provided capacity list of SUs, for each 𝑆𝐼𝑗𝜖𝑆𝐼𝐿𝑖𝑠𝑡, the

required capacity list can be defined by two ordered sets 𝑆𝐼𝑗𝑎𝑐𝑡 = 〈𝑎𝑟1
𝑗 , … ,𝑎𝑟𝑘

𝑗〉 and

𝑆𝐼𝑗𝑠𝑡𝑏 = 〈𝑠𝑟1
𝑗 , … , s𝑟𝑘

𝑗〉 determining the required capacity of the 𝑆𝐼𝑗 for each CSType. In

the rest of this section, whenever we use 𝑆𝑈𝑖 = 〈𝑐1𝑖 , … , 𝑐𝑘𝑖 〉 or 𝑆𝐼𝑗 = 〈𝑟1
𝑗 , … , 𝑟𝑘

𝑗〉 it implies

that the calculation or equation is valid for both active and standby part. Calculating the

capacity list of the set of SUs or SIs which is being used through this section is defined in

Equation 5-1. This equation defines the summation between two capacity list, but applies

79

for n (n>2) lists of capacities, where the summation of the first n-1 lists is added with the

capacity list n, in a recursive manner.

Equation 5-1 Adding capacity lists

1 1

1 1

, :
,..., , ,...,

,..., ;
k k

k k

A B CapacityList
Let A a a B b b
A B a b a b

=〈 〉 = 〈 〉
+ =〈 + + 〉

We can assign an SI (𝑆𝐼𝑗) to an SU (𝑆𝑈𝑖) in active mode when 𝑆𝑈𝑖𝑎𝑐𝑡 ≥ 𝑆𝐼𝑗𝑎𝑐𝑡 and in

standby mode when 𝑆𝑈𝑖𝑠𝑡𝑏 ≥ 𝑆𝐼𝑗𝑠𝑡𝑏 (see Equation 5-2). In other words, 𝑆𝐼𝑗 can be

assigned to 𝑆𝑈𝑖 if and only if the remaining capacity of 𝑆𝑈𝑖 for all CSTypes is not less

than the capacity required by 𝑆𝐼𝑗. It is important to note that SIs are units of assignment

and are indivisible. We also define the division between capacities as given formally in

Equation 5-3.

Equation 5-2 Comparison of capacities

1 1,....., , ,....., ;

(1) :

act i i act j j
i k j k

act act i j
i j l l

Let SU ac ac SI ar ar

SU SI iff l k ac ar

= 〈 〉 = 〈 〉

≥ ∀ ≤ ≤ ≥

1 1,....., , ,....., ;

(1) :

stb i i stb j j
i k j k

stb stb i j
i j l l

Let SU sc sc SI sr sr

SU SI iff l k sc sr

= 〈 〉 = 〈 〉

≥ ∀ ≤ ≤ ≥

Equation 5-3 Division between capacities

1 1

1 1

, :
,..., , ,...,

/ ,..., / ;
k k

k k

A B CapacityList
Let A a a B b b
Adiv B a b a b

=〈 〉 = 〈 〉

= 〈 〉

80

In an AMF configuration the assignment of the SIs to the SUs can be defined through the

mathematical relations. Equation 5-4 describes the relations capturing the active and

standby assignments between 𝑆𝑈𝐿𝑖𝑠𝑡 and 𝑆𝐼𝐿𝑖𝑠𝑡.

Equation 5-4 Active and Standby relation between a set of SUs and a set of SIs

:
:

SUList SIList ActiveAssignment SUList SIList
SUList SIList StdbyAssignment SUList SIList

× ⊆ ×
× ⊆ ×

In Equation 5-5 we present the mathematical definition of the operators defined for

active/standby relation throughout this section. The total active capacity required from an

SU su in a given SU-SI assignment A is denoted by RequiredActiveCapacityFrom(A,su)

and is defined by the summation of all the required active capacities of the SIs associated

to su through assignment A. Similarly, the total standby capacity required from an SU su

in a given SU-SI assignment A is denoted by RequiredStandbyCapacityFrom(A,su) and is

defined by the summation of all the required standby capacities of SIs associated to su

through assignment A.

81

Equation 5-5 Operators for active/standby relation

{ }

{ }

{ }

{ }

(:) : | (,) ;

(:) : | (,) ;

(: , :) : | (,) ;

(: , :) : | (,) ;

(:

Range A Assignment y SI x y A

Domain A Assignment x SU x y A

ElementRange A Assignment su SU y SI x y A x su

ElementDomain A Assignment si SI x SU x y A y si

RequiredActiveCapacityfrom A A

= ∈

= ∈

= ∈ ∧ =

= ∈ ∧ =

| (,)|

1

| (,)|

1

, :)

() (,);

(: , :)

() (,);

ElementRange A su
act
j j

j

ElementRange A su
stb
j j

j

ctiveAssignment su SU

SI where SI ElementRange A su

RequiredStandbyCapacityfrom A StandbyAssignment su SU

SI where SI ElementRange A su

=

=

=

∈

=

∈

∑

∑

Before starting with the redundancy models, we also remind the reader that the AMF

specification [SAF 2010d] requires that any SU in an SG must be able to protect any of

the SIs protected by the SG. Furthermore, we make the reasonable assumption that all

SUs in an SG are identical, i.e. they have identical capacity with respect to the SIs.

5.2.2 Service Instance Protection for the 2N and No-Redundancy Models

In this section we discuss the 2N and the No-redundancy models separately and show that

deciding about SI-Protection is not complex for these two cases.

5.2.2.1 The 2N Redundancy Model

In an SG with the 2N redundancy model, at most one SU will have the active HA state

for all SIs and is referred to as the active SU, and at most one SU will have the standby

HA state for all SIs and is usually called the standby SU. Any SU should be capable of

82

taking the active or the standby role for all SIs [SAF 2010d]. In order to capture

unambiguously the meaning of the 2N redundancy model for an SG, we define it

formally as shown in Equation 5-6. We consider any two different SUs in the SG, su1

and su2, and define two relations; the first one is for the active assignment while the

second one is for the standby assignment. ActiveAssignment and StandbyAssignment are

defined as relations between one SU and the set SIList of SIs, with the following

properties:

• The ActiveAssignment relation is defined as a set of pairs with a range equal to the

set SIList. Similarly, for StandbyAssignment relation. Therefore, each SI is taken

care of once and only once, for both the active and the standby assignments.

• The capacity required, from an SU, does not exceed the SU capacity, for both the

active and the standby assignments, as specified in

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐴𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓𝑟𝑜𝑚(𝐴𝑐𝑡𝑖𝑣𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑠𝑢1) ≤ 𝑠𝑢1𝑎𝑐𝑡 for the

active part, and in

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑡𝑎𝑛𝑑𝑏𝑦𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓𝑟𝑜𝑚(𝑆𝑡𝑎𝑛𝑑𝑏𝑦𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑠𝑢1) ≤ 𝑠𝑢1𝑠𝑡𝑏 for

the standby part.

• Only one SU, su1, is assigned the active role for all SIs and only one SU, su2, is

assigned the standby role for all SIs, and they are different.

83

Equation 5-6 Formal specification of the 2N redundancy model

{ }

{ }

1, 2 , 1 2,
((1,) | ())

(, 1) 1)

((2,) | (

act

su su SUList such as su su
ActiveAssignment su u u SIList Range ActiveAssignment SIList

RequiredActiveCapacityfrom ActiveAssignment su su

StandbyAssignment su u u SIList Range St

∀ ∈ ≠

∃ = ∈ ∧ =

∧

≤
∧

∃ = ∈ ∧))

(, 2) 2)stb

andbyAssignment SIList

RequiredStandbyCapacityfrom ActiveAssignment su su

=

∧

≤

Having assumed that all SUs in the SG are identical, the properties specified by Equation

5-6 will be satisfied by a configuration, if and only if the SG consists of at least two SUs

and anyone of these SUs is capable of taking the active or the standby role for all SIs.

These necessary and sufficient conditions, summarized by Equation 5-7, can be checked

easily.

Equation 5-7 Necessary and sufficient conditions for the 2N redundancy model

| | | |

1 1

| | 2

() ()
SIList SIList

act act stb stb
j j

j j

SUList
let su SUList

SI su SI su
= =

≥
∈

≤ ∧ ≤∑ ∑

5.2.2.2 The No-redundancy Model

The No-redundancy model is used for non-critical applications and components as

defined in [SAF 2010d]. An SU is assigned the active HA state for at most one SI. An SI

can be assigned to only one SU at a time. All SIs should be assigned if the number of SUs

in service permits. An SU is never assigned the standby HA state for any SI. The No-

redundancy model is formalized by Equation 5-8, where ActiveAssignment is simply a

bijective relation between SUList and SIList.

84

Equation 5-8 Formal specification of the No-redundancy model

{ }((,) | ())

(,))

(, !(,))

(, !(,))

act

ActiveAssignment su u u SIList Range ActiveAssignment SIList

RequiredActiveCapacityfrom ActiveAssignment su su

z SIList k z ActiveAssignment

k SUList k z ActiveAssignment

∃ = ∈ ∧ =

∧

≤
∧
∀ ∈ ∃ ∈
∧
∀ ∈ ∃ ∈

Knowing from [SAF 2010d] that any SU in the SG should be capable of protecting any

SI that is protected by the SG and assuming this condition, modeled here

with 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐴𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑓𝑟𝑜𝑚(𝐴𝑐𝑡𝑖𝑣𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑠𝑢) ≤ 𝑠𝑢𝑎𝑐𝑡, is checked a

priori, the only necessary and sufficient condition for an ActiveAssignment relation with

the specified properties to exist is: |𝑆𝑈𝐿𝑖𝑠𝑡| ≥ |𝑆𝐼𝐿𝑖𝑠𝑡|, and this can be checked easily.

Informally, it is necessary and sufficient to have at least as many SUs in SUList than SIs

in SIList.

5.2.3 Service Instance Protection for the N+M Redundancy Model

An SG with the N+M redundancy model has N+M SUs. An SU can be active for all SIs

assigned to it or standby for all SIs assigned to it. In other words, no SU can be

simultaneously active for some SIs and standby for some other SIs [SAF 2010d]. On the

service hand, for each SI there is at most one and only one SU that is assigned the active

HA state and at most one and only one SU that is assigned the standby HA state.

5.2.3.1 Formal Definition of the N+M Redundancy Model

In order to capture the characteristics of the N+M redundancy model in a precise manner,

a formal specification of an SG with the N+M redundancy model is given by Equation

85

5-9. As for the case of the 2N redundancy model, we can distinguish two parts for

expressing separately the active assignment and the standby assignments.

The 2N and the N+M redundancy models share several properties. In both cases, the SUs

can only be either active or standby, and from the service side each SI should only have

one active assignment and only one standby assignment. The difference is that for the

N+M redundancy model, the number of SUs that are assigned the active HA state or the

standby HA state is not limited to one for each. Consequently, in Equation 5-9,

ActiveAssignment relation is a relation between as set SUs and a set of SIs; similarly for

StandbyAssignment relation. It is well known that the 2N redundancy model is a special

case of the N+M redundancy model, i.e. the 2N redundancy model can be identified as

the 1+1 redundancy model.

Equation 5-9 Formal specification of the N+M redundancy model

{(,) | , |
, ! (,)

, () }

{(,) | , |
, ! (,)

act

ActiveAssignment x y x SUList y SIList
z SIList k z ActiveAssignment

w SUList RequiredActiveCapacityfrom w w

StandbyAssignment x y x SUList y SIList
z SIList k z StandbyAssignm

∃ = ∈ ∈
∀ ∈ ∃ ∈
∧

∀ ∈ ≤
∧
∃ = ∈ ∈
∀ ∈ ∃ ∈

, () }

() ()

stb

ent

w SUList RequiredStandbyCapacityfrom w w

Domain ActiveAssignment Domain StandbyAssignment

∧

∀ ∈ ≤
∧

=∅

5.2.3.2 Checking SI-Protection for an SG with the N+M Redundancy Model

In order to ensure SI-Protection at configuration time when this is not achieved by

design, we need to verify the configuration against the specification given in Equation

86

5-9. We need a procedure to check for the properties stated in this equation. Such as

procedure may have to consider all the possible combinations of SIs to assign to the SUs,

and obviously it will be a complex procedure in general. In the case of the 2N

redundancy model, there was only one combination of SIs, i.e. SIs are assigned all

together to one SU for the active role, and all together to another SU for the standby role.

The complexity of the problem for the case of N+M can be illustrated intuitively as

shown in Figure 5-2. The complexity is due to the different possible combinations of SIs

we may have to consider in order to find an ActiveAssignment or a StandbyAssignment

relation that satisfies the aforementioned properties. We will, in the following, show that

the SI-Protection problem for the N+M redundancy model is an NP-hard problem.

Therefore there is no polynomial order algorithm to solve it [Garey 1979].

According to the NP-hardness theory, a problem H is NP-hard if and only if there is an

NP-complete problem L that is polynomial time Turing-reducible to an instance of H

[Garey 1979]. Therefore, in order to prove the NP-hardness of SI-Protection problem, we

have to find an NP-complete problem and reduce it to an instance of the SI-Protection

problem.

87

Figure 5-2 Complexity of the SI-Protection for the N+M redundancy model

For the N+M redundancy model, there is N active SUs and M standby SUs. The active

and standby capacities of SUs are independent of each other, since different SUs take

these different roles. Consequently, without loss of generality, we will consider here the

active part only. The proof for NP-hardness for the active part can be likewise applied for

the standby part. If an NP-complete problem reduces to an instance of the SI-Protection

problem in polynomial time, the NP-hardness of the SI-Protection problem will be

established. For this purpose, let us consider the Subset Sum problem, which is known to

be NP-complete [Garey 1979]. The Subset Sum problem can be defined as follows [Garey

1979]: “Given a set of positive integers (I) and a positive integer (t), does the sum of

some non-empty subset equal exactly to t?”. To prove the NP-hardness of the SI-

Protection problem, let us now consider a specific case in which the number of active

SUs is 2 and each SU support only one CSType. We refer to this problem as the (2,1)-

assignment problem. We show the problem is NP-hard in this case; hence NP-hardness of

. . .

. . . .
. . . .

.

Active

Standby

N SUs

M SUs

SIs

88

the general SI-Protection problem. We hereafter, present a reduction of the Subset Some

Problem to the (2,1)-assignment problem.

Theorem 1

The Subset Sum problem reduces to the (2,1)-assignment problem in polynomial time.

Consider an instance)},t..a,.........{a(I 1p1= of the Subset sum problem. Let α be the

sum of members of I. Define 12 tt −= α . Observe that for 02 <t , the answer to the

problem is No and for 02 =t , the answer is Yes. These are trivial cases. Now, let 2t be

greater than 0 (positive). We need to define an instance of the (2,1)-assignment problem.

So, we have only two active SUs and the capacity of protected SIs can be represented as

positive integers (they can only support one specific CSType). Let us define the capacity

of SUs as),tmax(tt 21max = . Also, let the SIs have weights), β,......a(a p1 in which

),tmin(ttβ 21max −= (obviously they consist of CSIs of one CSType).

Lemma1

If the answer to the Subset sum problem is Yes, then the answer to the (2,1)-assignment

problem is also Yes.

Lemma 2

If the answer to the (2,1)-assignment problem is Yes, then the answer to Subset sum

problem is also Yes.

The proof for both lemmas is straightforward. With these lemmas and based on NP-

hardness theory, the NP-hardness of (2,1)-assignment problem is proven. Therefore, the

89

NP-hardness of SI-Protection problem for the N+M redundancy model is proven.

Consequently, there is no polynomial solution for this problem.

5.2.4 The N-Way-Active and N-Way Redundancy Models

An SG with the N-Way-Active redundancy model contains N SUs. Each SU has to be

active for all SIs assigned to it. An SU is never assigned the standby HA state for any SI.

From the service side, for each SI, one, or multiple SUs can be assigned the active HA

state according to the preferred number of assignment configured for the SI. The formal

specification of this redundancy model is given by Equation 5-10, where only the active

assignments part is present. As for the previous case, it is defined as a relation between

SUs and SIs. This relation has two properties. The first one states that each SI from the

SIList is assigned to as many SUs as its preferred number of active assignments. The

notation z.PreferredActiveAssignments refers to that number. The second property is

related to the capacity of the SUs, and as in the previous cases, it states that the capacity

of each SU is not exceeded.

For the N-Way redundancy model, the SG also contains N SUs that protect multiple SIs.

An SU can simultaneously be assigned active HA state for some SIs and standby HA

state for some other SIs. At most, one SU may have the active HA state for an SI, but

one, or multiple SUs may have standby HA state for the same SI. The N-Way

redundancy model is formalized by Equation 5-11. The notation

z.PreferredStandbyAssignments refers to the preferred number of standby assignments

for SI z. Notice the last property (𝐴𝑐𝑡𝑖𝑣𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ⋂𝑆𝑡𝑛𝑑𝑏𝑦𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = ∅) that

states that no SU is assigned active HA state and standby HA state for the same SI.

90

Equation 5-10 Formal specification of the N-Way-Active redundancy model

{(,) | , |
(, ' ,

(') { }

| ' | .)

(,

ActiveAssignment x y x SUList y SIList
z SIList ActiveAssignment ActiveAssignment

Range ActiveAssignment z

ActiveAssignment z PreferredActiveAssignments

w SUList RequiredActiveCapaci

∃ = ∈ ∈
∀ ∈ ∃ ⊆

=
∧

=
∧

∀ ∈ ())}acttyfrom w w≤

Equation 5-11 Formal specification of the N-Way redundancy model

{(,) | , |
, ! (,)

, () }

{(,) | , |
(, '

act

ActiveAssignment x y x SUList y SIList
z SIList k z ActiveAssignment

w SUList RequiredActiveCapacityfrom w w

StandbyAssignment x y x SUList y SIList
z SIList StandbyAssignment S

∃ = ∈ ∈
∀ ∈ ∃ ∈
∧

∀ ∈ ≤
∧
∃ = ∈ ∈
∀ ∈ ∃ ⊆ ,

(') { }

| ' | .)

(, ())}
() ()

stb

tandbyAssignment
Range StandbyAssignment z

StandbyAssignment z PreferredStandbyAssignments

w SUList RequiredStandbyCapacityfrom w w
Domain ActiveAssignment Domain StandbyAssignment

=
∧

=
∧

∀ ∈ ≤
=∅

Both the N-Way-Active and N-Way redundancy models are as complicated as the N+M

redundancy model. The issue of considering different combinations of SIs remains the

same. Moreover, the N-Way-Active and N-Way redundancy models allow for multiple

assignment of SIs to SUs. Therefore the SI-Protection problem for both of them is at least

as complex as for the N+M redundancy model. The same proof can be conducted for

these two redundancy models. The SI-Protection problem for the N-Way-Active and N-

Way redundancy models is also NP-hard.

91

5.2.5 Overcoming Complexity for Special Cases

As shown in previous sections, the SI-Protection problem is NP-hard for three

redundancy models: N+M, N-Way-Active and N-Way. In order to overcome this

complexity we will in this section consider a special case from the SIList, i.e. the set of

SIs to protect, perspective. We will first explore how to reduce the complexity of the SI-

Protection problem in the case of the N+M redundancy model before discussing the other

two redundancy models.

Let us consider the case where SIList can be partitioned into subsets of identical SIs and

the SIs of any pair of different subsets do not have any CSType in common. We refer to

this as the case of CSType_Disjoint subsets of identical SIs. More precisely, SIList can be

partitioned into SISubSet1, SISubSet2, …, and SISubSetn, where each SISubSeti contains

only identical SIs and SISubSeti and SISubSetj do not have any CSType in common when

i ≠ j.

For the N+M redundancy model, any SU in the SG can either be assigned the active or

standby HA state. From the service perspective, for each SI, we only have one active

assignment and one standby assignment. Consequently, we can divide the set of SUs into

two partitions: the active and standby partitions. Any SU in the active partition acts only

as active and any SU in the standby partition acts only as standby.

We assumed that SUs in an SG are all identical, which means they all have the same

number of components of the same component types. We have so far defined and

discussed the capacity in terms of CSTypes, we will here define another capacity for an

SU with respect to SIs as the number of SIs that the SU can provide service for at the

92

same time. In fact, each SU can have an active capacity and a standby capacity with

respect to each SI. We determine the active and standby capacity of an SU with respect to

each SI using the division operation introduced in Section 5.2.1as given by Equation

5-12.

Equation 5-12 Active/Standby capacity of an SU w.r.t. to an SI

: (: , :)
: ()

();
: (: , :)

: ()
(

act act

stb stb

Integer c ActiveCapacity su SU si SI
Let DivisionSet Set Integer su div si
c Min DivisionCap
Integer c StandbyCapacity su SU si SI
Let DivisionSet Set Integer su div si
c Min Di

=
=

=
=)visionSet

The set of protected SIs, SIList, is partitioned into CSType_Disjoint subsets of identical

SIs. By calculating the capacity of one SU for one of the SIs of each partition we will

have capacities of any SU in the SG regarding any SI in the SIList. We know that

1 2 nSIList SISubSet SISubSetSISubSet= , and each SISubSeti is CSType_Disjoint

with the other subsets. Consequently, we can define an ordered set of n integers for an SU

in the SG:{ , , , }1 2 nAC AC AC , in which iAC represents the active capacity of the

SU with respect to the SIs in iSubSet . Similarly, we define a set of integers for each SU in

the SG as { , , , }1 2 nSC SC SC , in which isc represents the standby capacity of the SU

with respect to the SIs in SISubSeti. Now, we have all required information in order to

check whether an SG with the N+M redundancy model is capable of protecting the set of

SIs it is configured for, or not.

93

As mentioned earlier, in the N+M redundancy model, we have N SUs and M SUs that are

taking the active assignments and standby assignments, respectively. From the service

perspective, SIList, the list of protected SIs, is partitioned into n CSType_Disjoint subsets

of identical SIs. In this specific situation, the conditions specified in Equation 5-13

represent the necessary and sufficient conditions for the SG to protect the set of SIs it is

configured for.

Equation 5-13 Necessary and sufficient conditions for the N+M redundancy model

1 , | |

1 , | |

i i

i i

i n AC N SISubSet

i n SC M SISubSet

∀ ≤ ≤ × ≥
∧
∀ ≤ ≤ × ≥

Intuitively, 1 , | |i ii n AC N SISubSet∀ ≤ ≤ × ≥ , states that there is enough capacity in the

SUs of the SG to protect all the SIs in SISubSeti, each SI once. Since the SISubSets are

CSType_Disjoint with each other, each SU will be able to provide service for all the

subsets simultaneously. The same reasoning applies for the standby part. Moreover, the

last property of the N+M redundancy model is satisfied, since we handle active and

standby SUs separately. A simple procedure can be written for checking the conditions in

Equation 5-13.

One very specific case for AMF configurations is when all SIs in the SIList are identical.

This is actually a special case of the CSType_Disjoint subsets of identical SIs, with the

number of subsets equal to one. Another very specific case is when all SIs in SIList are

CSType_Disjoint with each other. In other words, they are composed of CSIs that do not

have any CSType in common. This is another special case of the CSType_Disjoint

subsets of identical SIs, where SIList is partitioned into n subsets of cardinality one.

94

Similar conditions and reasoning can be followed for the N-Way-Active and N-Way

redundancy models. In the case of N-Way-Active redundancy model, let us assume the

number of SUs in the SG is N. We consider again the first condition in Equation 5-13, but

now taking also into account the number of preferred active assignment for each SI.

Indeed, the preferred number of active assignments for each SI has to be taken into

account as factor for the required capacity and we can check that SUs in the SG have the

required capacity to protect the SIs. However, the problem in this case is how to make

sure that an SI is not taken care of twice by the same SU? Therefore, we add the

following condition:

,1 i n N MaxPrefAct∀ ≤ ≤ ≥ in which MaxPrefAct is the highest number among the

preferred numbers of active assignments for the SIs in SISubSeti .

This condition is necessary and sufficient to ensure that a given SI can be assigned to as

many different SUs as specified by its preferred number of active assignments, knowing

that all SUs in the SG are identical. These necessary and sufficient conditions are simple

to check.

In the case of the N-Way redundancy model, let us also assume N as the number of SUs

in the SG. The first condition of Equation 5-13 remains the same as only one active

assignment is required per SI. The second condition is modified, M replaced by N, and to

take into account the preferred number of standby assignments for the SIs and make sure

the SUs have the capacity to protect the SIs in the standby role. Similarly to the N-Way-

Active redundancy model, we need another condition to make sure that an SU is not

assigned more than once the standby HA state for a given SI. Moreover, an SU should

95

not be assigned the active HA state and the standby HA state for a given SI. We therefore

add the following condition: , 11 i n N MaxPrefStb∀ ≤ ≤ ≥ + in which MaxPrefStb is the

highest number among the preferred numbers of standby assignments for the SIs in

SISubSeti to ensure there is enough SUs for standby and active assignments, knowing that

all SUs in the SG are identical.

5.2.6 Overcoming Complexity with Heuristics: Checking for Service

Protection Using Heuristics

In the previous section, we proved that in the case of N+M, N-Way and N-Way-Active

redundancy models the problem is NP-hard in general. For these three redundancy

models, we identified some specific situations where the problem can be simplified. In

this section, we tackle the problem further and propose a solution for the N+M, N-Way

and N-Away-Active redundancy models that is based on heuristics. Our solution is based

on extensions to the well-known problem of bin-packing [Coffman 1996]. We replace

bins and objects with SUs and SIs, respectively. We consider different types of capacity,

i.e. capacity vector, unlike the single type of capacity in the classical bin-packing

problem.

The bin-packing problem has already been revisited and extended to vector bin-packing,

see for instance [Csirik 1990, Patt-Shamir 2010, Rao 2010]. Vector bin-packing is a

variation of classical bin-packing in which the capacity of bins and objects is described in

terms of a vector of capacities [Csirik 1990]. Several approximation algorithms have

been proposed to optimize the number of bins. Recently, Patt-Shamir and Rawitz

explored the vector bin-packing problem with bins of variable sizes and presented an

approximation algorithm [Patt-Shamir 2010]. In [Rao 2010] Rao et al. developed an

96

approximation algorithm based on the near-optimal solution of linear programming

relaxation of integer programming. These approximation algorithms introduce a

boundary guaranteeing that their sub-optimal result will not exceed this boundary. This

boundary is expressed as a factor of the optimal solution and the parameters (number of

objects and the size of the vector) of the problem. Furthermore, the amount of

computational and memory resources necessary for solving the problem will increase

exponentially when the boundary becomes close to the optimal solution. For this reason,

the efficiency of these approximation algorithms will rarely prove to be practical for large

systems such as AMF configurations. Heuristics, however, target reasonably good

solutions efficiently [Pearl 1984]. Moreover, the main concern in the abovementioned

papers is the approximation of the optimal number of bins, while in our case we are

interested in finding a possible assignment of a given set of SIs to a given set of SUs.

Therefore, based on the traditional bin-packing problem heuristics, we devised new

heuristics for solving the SI-Protection problem taking into account the specificities of

the domain in question, i.e. SUs, SIs, and redundancy models.

We extend the three well-known heuristics for bin-packing. Each of these extensions

takes the SUList and SIList as input and decides if there exists a way to assign all SIs of

the SIList to the SUs of the SUList. If an algorithm succeeds in assigning all SIs to the

SUs, the answer to the problem is ‘Yes’. If it fails, the answer could be ‘Yes’ or ‘No’.

Since all these algorithms take a sequence of SIs and assign them one by one, an

algorithm will answer ‘No’ if it fails to assign an SI at a certain point. This may be a

False negative. When all SIs are successfully assigned to the SUs, the algorithm returns

‘Yes’ as result. Therefore, the signature of each algorithm can be represented as:

97

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑏𝑖𝑛_𝑝𝑎𝑐𝑘𝑖𝑛𝑔_𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑋(𝑆𝑈𝐿𝑖𝑠𝑡, 𝑆𝐼𝐿𝑖𝑠𝑡)

It is worth noting that these extensions are generic algorithms for deciding about the SI-

Protection and do not consider any specific redundancy model. In Section 5.2.6.4, we

discuss the application of these algorithms to each of the redundancy models.

To achieve better results, our approach applies all proposed algorithms to the sequence

and then determines the logical OR of the answers. Since these algorithms are different

(and somehow based on opposite principles), the probability of a False negative result is

reduced.

5.2.6.1 First-Fit approach (FF)

The first approach is the First-Fit (FF) approach, where we preserve a fixed order of SUs

in the SUList during the whole processing. To assign a given SI to an SU, we simply take

the first available SU in the SUList which can serve the SI.

Although the FF approach appears to be the easiest heuristic to the problem, it is known

to be quite effective for 𝑘 = 1 (classical bin-packing).

Complexity: The assignment of each SI to each SU can be achieved with k comparisons

between the provided and required capacities of the SU and the SI. Moreover, the number

of SUs that need to be checked before finding the appropriate one can reach n, at the

most. Considering the number of assignments which equals the number of SIs (m), the

complexity of this approach is 𝑚 × 𝑛 × 𝑘 in the worst case.

98

5.2.6.2 Best-Fit approach (BF)

This approach gives the best results in practice for the classical bin-packing problem

[Kenyon 1996].We keep the SUs sorted in an increasing order of remaining capacities,

and find the first SU capable of handling the load of the SI. Therefore, a given SI is

assigned to an SU which has the minimum remaining capacity among those which have

enough capacity for the SI under consideration. Note that the list of SUs should be sorted

after each assignment. Here, the goal is to exhaust an SU as much as possible before

moving to the next. BF is occasionally referred to as unbalanced assignment approach

[Kenyon 1996]. Since there is no single value defined as the ‘capacity’ of each SU, the

provided capacity being represented through a list of non-negative integers, it is

necessary to come up with a single criterion for the capacity of each SU, and to sort the

SUs in the SUList based on this criterion. In what follows, we introduce three different

criteria to represent the capacity of a given SU.

Total Capacity

Given the remaining capacity list (〈𝑐1𝑖 , … , 𝑐𝑘𝑖 〉) for a given SU (𝑆𝑈𝑖), the total capacity is

the sum of the remaining capacities of all supported CSTypes in 𝑆𝑈𝑖

(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑆𝑈𝑖 = ∑ 𝑐𝑡𝑖𝑘
𝑡=1).

For instance, let us consider the example of Figure 3 where we have three SUs

(𝑆𝑈1, 𝑆𝑈2, 𝑆𝑈3) supporting three different CSTypes and let the remaining capacity list for

these SUs be 〈4,2,1〉, 〈1,1,1〉, and 〈2,4,0〉, respectively. The total capacities for the SUs

are 7, 3, and 6, resulting in the sorted list {𝑆𝑈2, 𝑆𝑈3, 𝑆𝑈1}. On the service side, there are

two unassigned SIs (𝑆𝐼1, 𝑆𝐼2) with the required capacity list of 〈1,2,0〉 and 〈3,2,1〉,

99

respectively. For assigning SI1, SU2 will be considered first, then SU3 and finally SU1.

SU1 does not have the required capacity of each CSType, however SU3 does in fact have

this capacity.

Complexity: Sorting the SUList can be achieved in 𝑂(𝑛 log 𝑛) and keeping it sorted is

𝑂(log𝑛). For each SI, we need to examine at the most all the n SUs in the SUList in

order to find the proper SU. This can be done in 𝑛 × 𝑘 comparisons. In addition, after the

successful assignment of an SI, we need to keep the SUList sorted. As a result, the

complexity of this approach is 𝑚 × �𝑛 × 𝑘 + 𝑂(log𝑛)� + 𝑂(𝑛 log 𝑛).

As a variation for this case, one may also consider the sorting of the SIs at the beginning

of the process, according to the total required capacity and processing the SI with the

smallest capacity first or last. However, sorting SUs or SIs according to total provided or

required capacity, respectively, does not necessarily help as it does not look into CSType

capacities which are important for the assignments.

Relative Capacity

Contrary to the total capacity criterion, the relative capacity is defined with respect to a

specific SI and is based on the largest element of the required capacity list of the SI. As a

result, for each SI, the sorted list of SUs may differ. For a given SI (𝑆𝐼𝑗) with the capacity

list of 〈𝑟1
𝑗, … , 𝑟𝑘

𝑗〉, let the index of the largest member of the required capacity list be

𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(〈𝑟1
𝑗, … , 𝑟𝑘

𝑗〉). This means that, for 𝑆𝐼𝑗, the number of CSIs of CSTypet is

larger than the number of CSIs of the other CSTypes. Consequently, for 𝑆𝐼𝑗 we need to

sort the SUList based on the 𝑐𝑡 of each SU (e.g. 𝑐𝑡𝑖 for 𝑆𝑈𝑖).

100

Let us consider again the example in Figure 3. The largest required capacities of 𝑆𝐼1 and

𝑆𝐼2 are 2 and 3, respectively. Therefore, the relative capacity criterion for 𝑆𝐼1 is 𝑐2 ,

which results in the sorted SUList, {𝑆𝑈2, 𝑆𝑈1, 𝑆𝑈3}. Similarly, 𝑐1 is the criterion for 𝑆𝐼2

and the sorted SUList is {𝑆𝑈2, 𝑆𝑈3, 𝑆𝑈1}.

Complexity: The complexity of the approach is very similar to the case of total capacity.

The only difference is that the sorted list of SUs is different for each SI and thus, we need

to sort the SUList for each SI separately. Consequently, the complexity of this approach is

𝑚 × �𝑛 × 𝑘 + 𝑂(𝑛 log𝑛)�.

Critical Capacity

Similar to the relative capacity, this criterion is also defined with respect to each SI. Here

our objective is to find the most critical CSType for each SI and then sort the list of SUs

based on this criterion. The most critical CSType for each SI is the CSType which has the

largest required capacity in the SI while having the smallest provided capacity among the

SUs in the SUList. To this end, we first determine the total capacity per CSType of the

SUs as 〈𝑡𝑐1, … , 𝑡𝑐𝑘〉 = ∑ 〈𝑐1𝑖 , … , 𝑐𝑘𝑖 〉 = 〈∑ 𝑐1𝑖𝑛
𝑖=1 , … ,∑ 𝑐𝑘𝑖𝑛

𝑖=1 〉𝑛
𝑖=1 .

Thereafter, for a given 𝑆𝐼𝑗 with the required capacity list of 〈𝑟1
𝑗 , … , 𝑟𝑘

𝑗〉, the index of the

most critical required capacity is:

𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥 �𝑟1
𝑗

𝑡𝑐1
� , … , 𝑟𝑘

𝑗

𝑡𝑐𝑘
� �

Consequently, for 𝑆𝐼𝑗 we need to sort the SUList based on the 𝑐𝑇 of each SU (e.g. 𝑐𝑇𝑖 for

𝑆𝑈𝑖).

101

Going back to the example in Figure 3, the total capacity per CSType of the SUList is

〈7,7,2〉. For 𝑆𝐼1 based on the calculation (〈1
7

, 2
7

, 0
2
〉), the critical required service is 𝑟2 and

hence, the SUList should be sorted according to 𝑐2, which results in the sorted list

{𝑆𝑈2, 𝑆𝑈1, 𝑆𝑈3}. With the same calculation, the SUList for 𝑆𝐼2 is sorted based on 𝑐3 and

results in {𝑆𝑈3, 𝑆𝑈2, 𝑆𝑈1}.

Complexity: The complexity of the critical capacity is the same as for relative capacity,

i.e. 𝑚 × �𝑛 × 𝑘 + 𝑂(𝑛 log𝑛)�.

5.2.6.3 Worst-Fit approach (WF)

While this algorithm is not preferred in practice to the BF approach, it is important as it

uses a contrary approach, and occasionally gives positive answers when BF fails. The

algorithm is more or less the same as for the BF approach the only difference being that

the SUList is sorted in a decreasing order of capacities. In fact, the algorithm attempts to

assign SIs to the SUs in a balanced way. To sort the SUList, we can use the exact same

sorting criteria as described for the BF approach in 5.2.6.2.

5.2.6.4 Taking Into Account the Redundancy Models

In the previous section, we introduced three different approaches for checking the

protection of the SIs. In addition, we have also defined three different criteria for sorting

the list of SUs that can be used for both the BF and the WF approaches. Therefore, we

presented seven different heuristic methods for solving the SI-Protection problem that

can be applied in sequence to improve the accuracy of the solution. However, all

presented approaches target the generic case of the SI-Protection without taking into

account the features and the specific constraints of the redundancy models. In this

102

section, we discuss how we map these general approaches for the different redundancy

models, N+M, N-Way, and N-Way-Active.

The N+M Redundancy Model

In the N+M redundancy model, N SUs support the active assignments and M SUs support

the standbys. This model allows at the most one active and one standby assignment for

each SI. Assuming that the standby SUs are distinguished from active SUs, we apply our

approach, the sequence of seven heuristic methods defined previously, for the N SUs

configured to support the active assignment, considering their active capacity. Thereafter,

we apply the approach for M SUs configured to support the standby assignment,

considering their standby capacity. We are certain that the SG can protect the SIs if and

only if the result of the method is ‘Yes’ for both N active SUs and M standby SUs. Please

note that if a “No” answer results for either case, this may be a False negative.

The N-Way-Active Redundancy Model

An SG with the N-Way-Active redundancy model has N SUs which are assigned only as

active and has no SU assigned as standby. Furthermore, each of the SIs protected by this

SG can be assigned to more than one SU as specified in the PreferredActiveAssignments

configuration attribute. In previous sections we discussed one assignment per SI only. In

order to handle multiple assignments, whenever we consider an SI, we assign it to

PreferredActiveAssignments different SUs before proceeding to the next SI. Every

assignment is handled according to the methods in Section 5.2.6.1, Section 5.2.6.2, and

Section 5.2.6.3.

103

N-Way Redundancy Model

An SG with the N-Way redundancy model contains N SUs. Each SU can have a

combination of active and standby assignments. However, each SI can be assigned active

to only one SU while it can be assigned standby to several SUs (as specified in the

PreferredStandbyAssignments attribute). The solution for this redundancy model is quite

similar to the one for N-Way-Active. For the single active assignment in N-Way

redundancy model, we consider the active capacity of the SUs while, for multiple standby

assignments, the standby capacity of the SUs is taken into account. The same SU cannot

be reassigned to the same SI, neither as standby nor as active.

5.2.6.5 Incremental Design of AMF Configurations

The previously specified validation technique assigns the SIs to the SUs and returns ‘No’

if it fails to do so for any SI. In this case we propose to modify the invalid SG by adding

resources, namely SUs incrementally, to increase the provided capacities.

At the point where the technique fails to assign an SI, we add SUs to the SUList and

continue the assignment process. This process continues until all SIs are assigned or until

it again fails to assign a certain SI and requires additional SUs. At the end of this

incremental process, all SIs must be assigned to the SUs in the augmented SUList. The

number of additional SUs to be added each time the algorithm fails in assigning a given

SI depends on the redundancy model of the SG and in some cases on other configuration

attributes.

In the case of the active part of the N+M and N-Way redundancy models only one SU

should be added. For the N-Way-Active redundancy model and the standby part of the N-

104

Way, the number is equal to the number of remaining active/standby assignments of the

SI in question i.e., if Q assignments of an SI have already taken place before the failing

point, the number of additional SUs is equal to PreferredActiveAssignments ‒ Q or

PreferredStandbyAssignments ‒ Q. More specifically, one SU for handling the standby

assignment will be added in the case of N+M and PreferredStandbyAssignments SUs will

be added in the case of the N-Way redundancy model.

Figure 5-3 Incremental AMF configuration design using BF method with relative capacity sorting criterion

The creation of the additional SU(s) varies depending on the applied heuristic method

used. More specifically, in the BF method the extra SU(s) for a given SI is/are identical to

the first SU in the sorted (increasing order) list of SUs in the SUList. However, for a

given SI in the WF method, the additional SU(s) is/are identical to the first SU in the

Incremental design
 of AMF Configuration
BF method with Relative
Capacity sorting criterion SUList_BF_RC=

SUList

All SIs are
assigned

Find the best fit SU
in SUList for SIj and

name it BFSU

Based on the Redundancy
Model Create SU(s)

identical to BFSU and add
them to SUList1

Sort the SUList with
Relative Capacity

criterion

No

Yes

Yes
Send the

SUList_BF_RC in
the output

Let SIj be the first
unassigned SI in

SIList

Sort the SUList_BF_RC
based on relative criterion

with respect to the SIj

Is it possible
to assign SIj

Assign SIj to the SU(s) in
SUList_BF_RC

No

105

sorted (decreasing order) list of SUs in the SUList. In other words, the additional SU(s)

for a given SI is/are identical to the best fit SU in the BF method and identical to the

worst fit SU in the WF method. In order to sort the SUList, we use the same sorting

criteria as used in the heuristic methods.

It is worth noting that, for the case of the FF approach, the extra SU is simply identical to

the first SU in the SUList (i.e. the first fit SU). Figure 5-3 shows the activity diagram for

the AMF configuration incremental design method using BF method with the relative

capacity as sorting criterion.

In order to illustrate our incremental design approach, let us add three more SIs, 𝑆𝐼3 =

 〈3,2,1〉, 𝑆𝐼4 = 〈2,1,0〉, and 𝑆𝐼5 = 〈0,1,0〉 to the example in Figure 3. The SIList

becomes �𝑆𝐼1, 𝑆𝐼2, 𝑆𝐼3, 𝑆𝐼4,, 𝑆𝐼5� with the required capacity list

{〈1,2,0〉, 〈3,2,1〉, 〈3,2,1〉, 〈2,1,0〉, 〈0,1,0〉}, while the SUList remains the same. In this

example, we use the BF method and we apply the relative capacity criterion for sorting

the SUList. shows the steps of the approach. As shown in part (2) of Figure 5-4, the

SUList is sorted according to the relative capacity criterion of 𝑆𝐼1 (i.e. 𝑐2) in an ascending

order. Afterwards, the algorithm finds the first SU in the sorted SUList which has the

adequate capacity to support 𝑆𝐼1, 𝑆𝑈1, in this case. After the successful assignment of

𝑆𝐼1, the algorithm proceeds to 𝑆𝐼2 by sorting the SUList according to the relative capacity

of 𝑆𝐼2 and by finding the appropriate SU to support it (part (3) of Figure 5-4). As

presented in part (4) of Figure 5-4, after sorting the SUList, the algorithm succeeds in

assigning 𝑆𝐼3 to 𝑆𝑈3. For 𝑆𝐼4, after sorting the SUList, the algorithm fails to find an

appropriate SU capable of supporting 𝑆𝐼4. This means that the SG cannot protect the set

106

of SIs configured for it and thus the configuration is “likely” not valid. In this case, the

algorithm proceeds by adding an extra SU in order to increase the capacity. To do so, the

algorithm determines the best fit SU among the SUs of the original SUList (see part (1) of

Figure 5-4) and creates an SU with the same capacity, adding it to the SUList. As

presented in part (6) of Figure 5-4, 𝑆𝑈4 is created based on the 𝑆𝑈2 and is added to the

SUList in order to support the load of 𝑆𝐼3. The remaining capacity of the SUList is

sufficient to support the load of 𝑆𝐼5 and therefore it is assigned to 𝑆𝑈4 see part (8) of

Figure 5-4).

In the last row of Figure 5-4, part (9) represents the remaining capacity of the SUList

after the successful assignment of the entire SIList and part (10) shows the order of the

active assignment of each SI to one of the SUs of the augmented SUList.

In order to get the best result, we run seven different heuristics in parallel. Each one will

end up with an SUList, and the final SUList will be the list with the least number of SUs.

In other words, the final result will be the SUList with minimal additional SUs and

therefore, the resources used for protecting services will be relatively minimized. In the

case of equality between at least two lists, one may chose the list of SUs with minimal

total capacity or the list with maximal total capacity, depending on the design criteria of

minimizing resources further or on extendibility. However, comparing lists of SUs with

different capacities is not straightforward and further investigations are required. Notice

that having a smaller number of SUs will facilitate the management of the availability of

the applications by the AMF middleware, resulting in the increase of protection level

given a fixed number of deployment nodes. Obtaining the original SUList as the final

result indicates that the input SG is valid and can protect its SIs without any additional

107

SUs. Figure 5-5 presents the overview of our approach for the incremental design of

AMF configurations.

Figure 5-4 An example for the incremental design approach

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

SU1
<4,2,1>

SU2
<3,3,1>

SU3
<3,4,1>

SI1
<1,2,0>

SI2
<3,2,1>

SI3
<3,2,1>

SI4
<2,1,0>

SU1
<4,2,1>

SU2
<3,3,1>

SU3
<3,4,1>

SI1
<1,2,0>

SI2
<3,2,1>

SI3
<3,2,1>

SI4
<2,1,0>

SU1
<3,0,1>

SU2
<3,3,1>

SU3
<3,4,1>

SI2
<3,2,1>

SI3
<3,2,1>

SI4
<2,1,0>

SI3
<3,2,1>

SI4
<2,1,0>

SU1
<3,0,1>

SU2
<0,1,0>

SU3
<3,4,1>

SI4
<2,1,0>

SI4
<2,1,0>

 c based on SISorted for 21

 c based on SISorted for 12 c based on SISorted for 13

SI5
<0,1,0>

SI5
<0,1,0>

SI5
<0,1,0>

SI5
<0,1,0>

SI5
<0,1,0>

SI5
<0,1,0>

 c based on SISorted for 14

SI5
<0,1,0>

25 based on c SISorted for

SU1 SU2 SU3

SI1 SI2 SI3 SI4 SI5

SU4

SI4
<2,1,0>

SU1
<3,0,1>

SU2
<0,1,0>

SU3
<0,2,0>

SI5
<0,1,0>

SU4
<3,3,1>

 assign SI
failed to

4

 SUList & added to SUd based on is create SU 24 c based on SISorted for 14

SU1
<3,0,1>

SU2
<0,1,0>

SU3
<0,2,0>

SU4
<3,3,1>

SU1
<3,0,1>

SU2
<0,1,0>

SU3
<0,2,0>

SU4
<1,2,1>

SU1
<3,0,1>

SU2
<0,1,0>

SU3
<0,2,0>

SU4
<1,2,1>

SU1
<3,0,1>

SU2
<0,0,0>

SU3
<0,2,0>

108

Figure 5-5 Overview of the incremental design approach

5.3 Summary

In this chapter we presented our approach for a validation of third-party AMF

configurations which handles both the syntactical and the semantic validations of these

configurations. For syntactical validation, our approach includes the mapping of a given

third-party configuration—represented in the IMM (Information Model Management)

XML format—to an instance of the AMF sub-profile. During this mapping, the

consistency of the configuration with respect to the standard specification of the AMF

middleware is checked.

In semantic validation, we focused on the alignment of AMF configurations with the

protection level expressed through the characteristics of configuration elements. Ensuring

Incremental design of
AMF Configuration BF

method with Total
Capacity sorting

criterion

Incremental design of
AMF Configuration BF
method with Critical

Capacity sorting
criterion

Incremental design of
AMF Configuration BF
method with Relative

Capacity sorting
criterion

Incremental design of
AMF Configuration WF

method with Total
Capacity sorting

criterion

Incremental design of
AMF Configuration WF

method with Critical
Capacity sorting

criterion

Incremental design of
AMF Configuration WF
method with Relative

Capacity sorting
criterion

Incremental design of
AMF Configuration FF

method

FinalSUList =
MIN(SUList_BF_TC,SUList_BF_RC,SUList_BF_CC,SUList_WF_TC

,SUList_WF_RC,SUList_WF_CC,SUList_FF,)

 size of
FinalSULUST==
size of SULIst

Yes No

SUList can protect
SIList

SUList is
reconfigured to
FInalSUList to
protect SIList

109

the protection of the services at configuration time, as required and according to the

specified redundancy model, is proved to be NP-hard for most redundancy models. To

tackle this problem, we have presented a heuristics based approach by extending the

heuristics introduced for the well-known bin-packing problem. The precision of the

approach is enhanced by embedding seven different heuristic methods in order to obtain

better results. In terms of performance, we have tested our approach on a limited number

of small scale configurations. However, analysing the performance and the accuracy of

the approach is a complex task which requires the implementation of a simulation

framework for different scenarios, a task which is left for future work in this research

stream. As a corollary, we proposed a technique for the incremental modification of

“likely” invalid configurations into valid ones. We believe that our technique may lead to

over-dimensioned systems, though only by adding a minimal number of extra resources.

110

Chapter 6

6 Model-based AMF
Configuration Generation

As mentioned in the Chapter 1, the model-driven paradigm helps in managing the

complexity of the generation process by raising the level of abstraction at which the

configuration properties have to be defined. This allows for both the simplification of the

generation process and for the reduction of potential errors and/or inconsistencies.

Moreover, handling configuration generation in a high level of abstraction improves the

maintainability of the approach compared to the code-centric approaches presented in

[Kanso 2008, Kanso 2009].

The content of this chapter has been published in [Salehi 2010b and Salehi 2011b].

6.1 Overall View

The model-driven AMF configuration generation approach consists of a set of

transformation rules among models that are instances of the previously described profiles.

Starting from the description of software expressed through an ETF model, this approach

generates an AMF configuration which is an instance of the AMF profile. Moreover, the

approach considers the requirements of the configuration specified by configuration

designer. Configuration requirements specify the set of services to be provided by a given

software system through the target AMF configuration. More specifically, they define the

111

different characteristics of the services, such as their types, the number of instances of a

certain service type, the relationships between services, and the level of protection

expressed in the context of AMF in the form of redundancy models.

Figure 6-1 The overall process of model-based AMF configuration generation

Figure 6-1 illustrates the different artefacts involved in the generation process. The input

for the transformation consists of configuration requirements and the description of

software to be protected, while the output of the transformation is an AMF configuration

for the software that satisfies the configuration requirements. The inputs and outputs are

modeled as instances of different profiles.

Figure 6-2 The main phases of the model transformation approach

This process consists of a set of transformation rules expressed in a declarative style

defined among different elements of our profile. AMF configurations are generated by

applying the transformation rules to the model elements representing software entities

Modeling Framework
for AMF

Configuration
Management

Entity Type Files
Profile AMF Profile

Entity Type Files
Model

AMF Configuration
Model

<<instance Of>><<instance Of>>

Configuration
Requirements

Profile

Configuration
Requirements Model

<<instance Of>>

Model Based AMF
Configuration Generation

ETF Type
Selection

AMF Entity
Creation

AMF Type
Creation

Phase 1 Phase 3Phase 2

112

and configuration requirements. These rules, implemented using ATL, abstract from the

operational steps that have to be performed in order to generate the target elements.

However, the rules presented in this chapter only focus on a high level view of the

stereotypes, tagged definitions, and relationships between the elements, hiding the

implementation details in order to improve readability.

As shown in Figure 6-2, the transformation process has three distinct phases, namely, 1)

the selection of the software to be used to satisfy the requirements, 2) the creation of

proper AMF entity types based on the selected ETF types, and 3) the instantiations of

AMF entities related to each AMF entity types. More precisely, the configuration

generation method proceeds with selecting the appropriate ETF types for each service

specified by the requirements. Therefore, the selected software is used to derive the AMF

types and to instantiate the AMF entities that will compose the configuration. For each

transformation phase, Figure 6-3 illustrates the input and output models and their

referenced metamodels.

113

Figure 6-3 The relation between the models and the transformation phases

During the model-driven generation of AMF configurations a set of relationships and

attributes are temporarily necessary to link the elements of different sub-profiles. The

relationships are used to navigate the models involved in the transformation activities in

order to retrieve all the information that is required to generate an AMF configuration.

These relationships are modeled in terms of UML associations between the elements of

the CR sub-profile on one side and elements of the ETF and AMF sub-profiles on the

other side. Table 6-1 presents the list of associations and their descriptions. The variables

used to store temporary information used in several steps of the generation approach are

modeled in terms of attributes of the CR’s model elements. Table 6-2 specifies the list of

these attributes.

ETF Type
Selection

AMF Entity
Creation

AMF Type
Creation Entity Type Files

Model

Configuration
Requirements

Model

Selected ETF
Model

+ Configuration
Requirements

Model

AMF Types Model
+ Configuration
Requirements

Model

AMF
Configuration

Model

ETF Profile

CR Profile

AMF Profile ETF Profile

CR Profile

AMF Profile

CR Profile

<<instance Of>> <<instance Of>>

<<instance Of>>

<<instance Of>>

114

Table 6-1 The list of the associations that model the relationships among elements of the sub-profiles

Source Element Target Element Role Name Multiplicity Description

MagicCrCsiTemplate MagicEtfCompType properEtfCt [0..n] Refers to the ETF Component

Types which are selected for this

CSITemplate in the process of

configuration generation

MagicCrCsiTemplate MagicSaAmfCompType properAmfCt [0..n] Refers to the AMF component

types which are created for this

CSITemplate in the process of

configuration generation

MagicCrCsiTemplate MagicSaAmfComp properAmfComp [0..n] Refers to the AMF components

which are created for this

CSITemplate in the process of

configuration generation

MagicCrSiTemplate MagicEtfSUType properEtfSUT [0..n] Refers to the ETF SUTypes which

are selected for this SITemplate in

the process of configuration

generation

MagicCrSiTemplate MagicSaAmfSUType properAmfSUT [0..n] Refers to the AMF SU types

which are created for this

SITemplate in the process of

configuration generation

MagicCrSiTemplate MagicSaAmfSU properAmfSU [0..n] Refers to the AMF SUs which are

created for this SITemplate in the

process of configuration

generation

MagicCrSgTemplate MagicEtfSGType properEtfSGT [0..n] Refers to the ETF SGTypes which

are selected for this SGTemplate

in the process of configuration

generation

It is important to mention that the CR model requires processing before starting any of

the abovementioned transformation phases. This pre-processing activity consists of

setting the initial values of the attributes specified in Table 6-2. These attributes will be

used throughout this chapter in several transformation steps. The goal of this activity

consists of determining the expected load of the SIs of each SI template that an SU of the

SG protecting those SIs will handle. This is motivated by the fact that ETF types may

115

specify capacity limitations of Component Types and SUTypes articulated into three

steps:

1. Calculation of the number of SGs that are allowed to protect the SIs of a particular

SG template.

2. Calculation of the number of SIs from each SITemplate that will be assigned to

each SG. The calculation is based on the number of SGs calculated in Step 1. This

step initializes the value of the attribute expectedSIsperSG.

3. Calculation of the load of SIs that each SU of the SG is supposed to support

initializing the value of the attributes activeLoadperSU and stdbLoadperSU. The

calculation is based on the minimum number of SIs an SG must handle calculated

in Step 2.

The entire process is implemented as a refinement ATL rule on the SITemplate element

of the CR model.

rule CR_Preprocessing {
from
 s: MagicCRProfile!MagicCrRegularSiTemplate

using{

--Calculates the number of SGs

maxNumSGs : Integer =
s. magicCrBelongsToSgTemplate.magicCrGroupsSiTemplates
->iterate(sit, min:Integer = 0|
if sit.magicCrRegSiTempNumberofSis/sit.magicCrRegSiTempMinSis > min
then
min= sit.magicCrRegSiTempNumberofSis/sit.magicCrRegSiTempMinSis
endif);

--Calculates the number of expected SIs per SG
SIperSG : Integer =
s.magicCRRegSiTempNumberofSis/maxNumSGs +1

 }

to

116

 t: MagicCRProfile!MagicCrRegularSiTemplate(

 expectedSIsperSG <- SIperSG,

--Calculates the active load per SU based on the required redundancy
model
activeLoadperSU <-
if (s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_N_WAY_REDUNDANCY_MODEL'
or
s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_N_WAY_ACTIVE_REDUNDANCY_MODEL')
then
ceil((SIperSG* s. magicCrSiTempNumberofActiveAssignments)/
(s. magicCrBelongsToSgTemplate. magicCrSgTempNumberofActiveSus-1))
elseif
(s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
 'SA_AMF_2N_REDUNDANCY_MODEL'
or
s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_NPM_REDUNDANCY_MODEL')
then
ceil(SIperSG/ s. magicCrBelongsToSgTemplate.
magicCrSgTempNumberofActiveSus)
elseif
(s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_NO_REDUNDANCY_MODEL')
then
1
endif ,

--Calculates the standby load per SU based on the required redundancy
model

stdbLoadperSU <-
if (s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_N_WAY_REDUNDANCY_MODEL'
or
s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_N_WAY_ACTIVE_REDUNDANCY_MODEL')
then
ceil((SIperSG* s. magicCrSiTempNumberofStdbAssignments)/
(s. magicCrBelongsToSgTemplate. magicCrSgTempNumberofActiveSus-1))
elseif
(s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
 'SA_AMF_2N_REDUNDANCY_MODEL'
or
s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_NPM_REDUNDANCY_MODEL')
then
ceil(SIperSG/ s. magicCrBelongsToSgTemplate.
magicCrSgTempNumberofStdbSus)
elseif
(s. magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
'SA_AMF_NO_REDUNDANCY_MODEL')
then
0

117

endif
)
}

Table 6-2 The list of additional attributes

Attribute Name Parent Element Type Multiplicity Description

expectedSIsperSG MagicCrSiTemplate Integer [1] Specifies the number of SIs that are

expected to be protected by a single

SG

activeLoadperSU MagicCrSiTemplate Integer [1] Specifies the active load of SIs that

an SU is capable to support

stdbLoadperSU MagicCrSiTemplate Integer [1] Specifies the standby load of SIs

that an SU is capable to support

6.2 ETF Type Selection

This phase consists of selecting the appropriate elements from the ETF model, and

pruning out the ones that do not satisfy the configuration requirements. The input and

output artefacts of this transformation phase are instances of the same metamodels,

namely the ETF and the Configuration Requirements sub-profiles. Therefore, the

transformation phase generates an output model which is the refined input model. The

output ETF Model contains exclusively the proper selected types, while the

Configuration Requirements model in output will be enriched with the links to the

selected ETF types.

Figure 6-4 The transformation steps for ETF Type Selection phase

CSITemplate
Refinement

SGTemplate
Refinement

SITemplate
Refinement

Refinement
Completion

Dependency
driven

Refinement

118

As shown in Figure 6-4 the type selection consists of five different steps. The first three

steps bridge the gap between configuration requirements and software descriptions

elements. More specifically, they establish the link between the CSITemplates,

SITemplates, and SGTemplates on one end, and the appropriate ETF types to be used for

the service provision on the other side. The forth step refines the previously selected ETF

types based on the dependency relationships defined at the level of configuration

requirements. Finally, the fifth step aims at pruning out useless elements from the

analyzed ETF model.

Figure 6-5 The result of the ETF Type Selection from the metamodel perspective

Figure 6-5 describes the output generated at the end of the selection phase from the

metamodel perspective. The dashed connections describe the links defined between

elements of the ETF and of the Configuration Requirements as the result of this phase.

MagicEtfAppType

MagicEtfSgType

MagicEtfSUType

MagicEtfCompType

MagicEtfSvcType

MagicEtfCSType

MagicCrAdmin
Domain

MagicCrSgTemp

MagicCrSiTemp

MagicCrCSITemp

*
*

*
*

*
*

1
*

1
*

1
*

* *

* *

l *

l *

*
*

119

6.2.1 CSITemp Refinement

The CSITemp refinement consists of selecting the Component Types capable of

providing the required services described in terms of CSITemplates in the configuration

requirements. The selection is operated according to different criteria:

1. The capability of providing the CSType specified by the CSITemplate.

2. The compliance of the Component Type capability model (with respect to the

CSType) with the redundancy model specified by the parent SGTemplate.

3. The number of components of the Component Type that can be included in an SU

and the load of assignments required to be supported by such an SU.

4. The compliance of the redundancy model specified by parent ETF SGType of the

component type with the required redundancy model (specified in the parent

SGTemplate).

The first two criteria are general and are required to be checked for all component types

of the ETF model. The third one is checked for the component types that have at least one

parent SUType in the ETF model, referred to as non-orphan component types. Moreover,

if the parent SUType has at least one parent SGType in the ETF model, it is required to

apply the last criterion. Figure 6-6 illustrates the refinement process using a UML activity

diagram. This figure represents the control flow which regulates the usage of each

selection criterion.

120

Figure 6-6 The activity diagram describing the selection of ETF Component Types

The component type selection requires visiting both input models (see Figure 6-3), with

the aim to identify the proper Component Types for CSITemplates. The refinement

consists of specifying the link between CSITemplates and the Component Types.

rule CompTypeSelection {

from s: MagicCRProfile! MagicCrCsiTemplate

to t: MagicCRProfile!MagicCrCsiTemplate(
 properEtfCt<- properCtFinder())}

The above code describes the transformation rule that finds the proper Component Types

for each CSITemplate. The rule uses the properCtFinder helper function which

implements the previously shown refinement process (see Figure 6-6). This function

identifies the set of Component Types which satisfy the above mentioned criteria.

The rule fires for all instances of the CSITemplates of the configuration requirements

model. The execution of this rule results in selecting the set proper ETF Component

Types for each CSITemplates. However, the sets identified during this transformation

step do not necessarily represent the proper set that will be used to support the generation.

Extract
ETF Component Types

Select based on
Provided CSTypes

Select based on
Component Capability

model

Select based on
SU Capacity

Select Orphan
Component Types

Select Non-Orphan
Component Types

Select Non-Orphan
Component Types with

Orphan SUTypes

Select Orphan
Component Types with

Orphan SUTypes

Select based on
Redundancy Model

Collect the selected
Component Types

121

As a matter of fact, they will be further refined based on additional criteria introduced in

the next transformation steps.

Criterion 1: Provided CSType

Each CSITemplate specifies the CSType that identifies the type of the CSI that needs to

be provided, as well as the number of CSIs. For each Component Type it is required to

evaluate whether the Component Type can provide the required CSType. More

specifically, this can be done comparing each required CSType with the list of CSTypes

that can be provided by the Component Type. The following code shows the first part of

the helper function that selects the proper Component Types based on the supported

CSTypes. The helper defines a data structure called selectedCompType where it collects

the selected types.

helper context MagicCRProfile! MagicCrCsiTemplate
 def : properCtFinder() :
 Set(MagicEtfProfile!MagicEtfComptype) =
 let selectedCompType :
 Set (MagicEtfProfile!MagicEtfComptype) =
 MagicEtfCtCSType.allInstances
 -> select(ctcst|ctcst.magicEtfSupportedCsType =
 self.magicCrCsiTempCsType
 ...

The remaining parts of the helper function define the other selection criteria as illustrated

subsequently.

Criterion 2: Component Capability Model

The component capability model of the selected Component Type must conform to the

required redundancy model. The capability model specifies the capacity of the

Component Type in terms of the number of active and/or standby CSI assignments (of

the given CSType) that a component of that type can support. As specified in AMF sub-

122

profile, applying different redundancy models imposes different constraints on the

capability model. The redundancy model is specified by the SGTemplate.

The following code, extracted from the helper function, expresses the constraint imposed

by N-Way redundancy model.

...
and if self. magicCrBelongsToSiTemplate.
 magicCrBelongsToSgTemplate. magicCrSgTempRedundancyModel =
 'SA_AMF_N_WAY_REDUNDANCY_MODEL'
then
 ctcst.magicEtfCompCapabilityModel =
 'MAGIC_ETF_COMP_X_ACTIVE_AND_Y_STANDBY'
 ...

Criterion 3: Number of supported components by the SUType and SU Capacity

If the selected Component Types has a parent SUType it is required to take into

consideration the number of components of the Component Type that can be included in

an SU. More specifically, the number of Components of this Component Type in an SU

has to be capable of supporting the load of CSIs of the particular CSType.

The load of active/standby assignments required by the CSITemplate is related to the one

of the parent SITemplate. The number of SI assignments that should be supported by a

SU that aggregates Components of the selected Component Types depends on the

redundancy model specified in the Configuration Requirements model. The maximum

load of CSIs that should be supported by such an SU is the product of the SI load and the

number of CSIs specified by the current CSITemplate.

The required services need to be provided by the software entities. Therefore, it is

necessary to check the capacity of Component Types and SUTypes with respect to the

number of possible active/standby assignments they can provide. More specifically, we

123

need to find the maximum number CSIs of a CSType that can be provided by the

Components aggregated in an SU. The ETF specifies the maximum number of

components of a particular Component Type that can be aggregated into the SUs of a

given SUType (magicEtfMaxNumInstances). Besides, for each Component Type, the

ETF specifies also the maximum number of CSIs active/standby assignments of each

supported CSType (magicEtfMaxNumActiveCsi and magicEtfMaxNumStandbyCsi). As

a result, the active/standby capacity of SUs of a given SUType in handling assignments

of CSIs of a given CSType is the product of magicEtfMaxNumInstances and

magicEtfMaxNumActiveCsi/ magicEtfMaxNumStandbyCsi.

As a consequence, a Component Type aggregated into a given SUType can be selected

only if its provided capacity can handle the load associated with the CSType of the

CSITemplate.

The following ATL code extracted from properCtFinder selects Component Types

capable of supporting the required active and standby load.

 ...
and if ctcst.magicEtfSupportedby.MagicEtfCtSut->notEmpty()
 then
ctcst.magicEtfSupportedby.MagicEtfCtSut
->select(ctsut|ctsut.magicEtfGroupedBy.magicEtfSvctSut
->exists(svcsut| svcsut.magicEtfProvidesSvcType =
 self. magicCrBelongsToSiTemplate.magicCrSiTempSvcType))
 ->forAll(ctsutTemp|
 ctsutTemp.magicEtfMinNumInstances *
 ctcst.magicEtfMaxNumActiveCsi >=
self.magicCrBelongsToSiTemplate.magicCrBelongsToSgTemplate.magicCrGroup
sSiTemplates
->collect(sitemp|sitemp.magicCrSiTempGroups)
->select(csitemp|csitemp.magicCrCsiTempCsType =
self.magicCrCsiTempCsType)
->iterate(v, active:Integer = 0| active +
v.magicCrCsiTempNumberofCsis*v.magicCrBelongsToSiTemplate.activeLoadper
SU)

124

and
 ctsutTemp.magicEtfMinNumInstances *
 ctcst.magicEtfMaxNumStandbyCsi >=
self.magicCrBelongsToSiTemplate.magicCrBelongsToSgTemplate.magicCrGroup
sSiTemplates
->collect(sitemp|sitemp.magicCrSiTempGroups)
->select(csitemp|csitemp.magicCrCsiTempCsType =
self.magicCrCsiTempCsType)
->iterate(v, standby:Integer = 0| standby +
v.magicCrCsiTempNumberofCsis*v.magicCrBelongsToSiTemplate.stdbLoadperSU
)
...

Notice that the calculation of the load is based on the activeLoadperSU/stdbLoadperSU

attributes of the SITemplates which aggregate the CISTemplates that require the same

CSType, as well as the number of the CSIs of these CSITemplates.

Criterion 4: Redundancy model

If the parent SUType of the Component Type has a parent SGType, the redundancy

model of the SGType has to match the one specified in the SGTemplate which contains

the current CSITemplate. The following ATL code (part of properCtFinder) verifies the

compliance of the redundancy model specified in the parent SGTemplate.

 ...
and
if ctsutTemp.magicEtfGroupedBy.magicEtfGroupedBy->notEmpty()
then
ctsutTemp.magicEtfGroupedBy.magicEtfGroupedBy
 ->exists(sgt| sgt. magicEtfSgtRedundancyModel =
 self. magicCrBelongsToSiTemplate.magicCrBelongsToSgTemplate.
magicCrSgTempRedundancyModel
-- End of the properCtFinder helper function

At the end of this step and after considering all above mentioned criteria, if the set of

Component Types selected is an empty set, the analyzed ETF model cannot satisfy the

configuration requirements and therefore the configuration cannot be designed.

Otherwise, the refinement process moves the focus from the level of selecting

125

Component Types for CSITemplates, to finding the proper SUTypes for SITemplates

referred to as SITemplate refinement.

6.2.2 SITemp Refinement

The SITemp refinement consists of selecting the SUTypes of the ETF model capable of

providing the services required by the SITemplates specified in the Configuration

Requirements model. The selection process in this step is similar to the one defined in the

CSITemp refinement. In this step the ETF model is further refined with respect to the

properties required by the SITemplates and base on the following criteria:

1. The capability of providing the SvcType specified by the SITemplates

aggregated by the SGTemplate of the current SITemplate.

2. The compliance of the redundancy model specified by parent ETF SGType of

the SUType with the required redundancy model of SITemplate (specified in

the parent SGTemplate).

3. The existence of links (resulting from the CSITemp refinement) between

Component Types of the SUType and CSITemplates of the SITemplate.

Figure 6-7 The activity diagram describing the selection of ETF SUTypes

The UML activity diagram in Figure 6-7 represents the process to select SUTypes based

on these mentioned criteria.

Extract
ETF SUTypes

Select based on
provided SvcTypes

Select based on
Redundancy

Model

Select Orphan
SUTypes

Select Non-Orphan
SUTypes

Collect the selected
SUTypes

Select based on
links between
the grouped

Component Types and
CSITemplate

126

rule SUTypeSelection {

from s: MagicCRProfile! MagicCrRegularSiTemplate

to t: MagicCRProfile! MagicCrRegularSiTemplate(
 properEtfSUT<- properSUTFinder())}

The rule, which is presented above, defines the link between the SITemplates and the

selected SUTypes by using the properSUTFinder helper function which implements the

previously mentioned criteria.

Criterion 1: Provided SvcType

Each SITemplate specifies the SvcType that identifies the type of the SIs that needs to be

provided, as well as the number of SIs. For each SUType we need to evaluate whether

the SUType can provide the required SvcType of the SITemplates of the parent

SGTemplate. More specifically, this can be done comparing SvcTypes with the list of

SvcTypes that can be provided by the SUType. The following code shows the part of the

helper function that selects the proper SUTypes based on the supported SvcTypes.

helper context MagicCRProfile! MagicCrRegularSiTemplate
 def : properSUTFinder() :
 Set(MagicEtfProfile!MagicEtfSUType) =
 let selectedSUType :
 Set (MagicEtfProfile!MagicEtfSUType) =
 MagicEtfSvctSut.allInstances
 -> select(sutsvct| sutsvct. magicEtfProvidesSvcType =
 self.magicCrSiTempSvcType
 ...

Criterion 2: Redundancy Model

If the SUType has a parent SGType, the redundancy model of the SGType has to match

the one specified in the SGTemplate which contains the current SITemplate. The

following ATL code is (part of properSUTFinder) verifies the compliance of the

redundancy model specified in the parent SGTemplate.

127

 ...
 and
if sutsvct.magicEtfProvidingSuType.magicEtfGroupedBy-> notEmpty()then
sutsvct.magicEtfProvidingSuType.magicEtfGroupedBy
 ->exists(sgt| sgt. magicEtfSgtRedundancyModel =
 self.belongsToSgTemplate.magicCRSgTempRedundancyModel)
 ...

Criterion 3: Links of grouped Component Types

In order to select an SUType for an SITemplate, the SUType should group all the

Component Types which are required by the CSITemplates of the given SITemplate. In

other words, for each of the CSITemplates of the SITemplate at least one of the

Component Types of the SUType must have the link to that CSITemplate.

and
self.siTempGroups->forAll(csitemp|csitemp.properEtfCt->
intersection(sutsvct.magicEtfProvidingSuType.magicEtfGroups)-
>notEmpty())

6.2.3 SGTemp Refinement

The SGTemp refinement consists of selecting the SGTypes of the ETF model capable of

providing the services required by the SGTemplates specified in the Configuration

Requirements model. The selection is based on the following criteria:

1. The compliance of the redundancy model specified by ETF SGType with the

required redundancy model in SGTemplate.

2. At least one SUType of the SGType has to provide all the SvcTypes

associated with the SITemplates grouped in the SGTemplate.

The UML activity diagram in Figure 6-8 represents the process to select SGTypes base

on these mentioned criteria.

128

Figure 6-8 The activity diagram describing the process of selecting ETF SGTypes

 rule SGTypeSelection {

from s: MagicCRProfile! MagicCrSgTemplate

to t: MagicCRProfile! MagicCrSgTemplate (
 properEtfSGT<- properSGTFinder())}

Based on these criteria the SGTypeSelection defines the link between the SGTemplates

and the selected SGTypes. It invokes the properSGTFinder helper function which

follows the process specified in Figure 6-8.

Criterion 1: Redundancy Model

In order to select an SGType for an SGTemplate, the SGType, the redundancy model of

the SGType has to match the one specified in the SGTemplate. The following ATL code

(part of properSGTFinder) verifies the compliance of the redundancy model specified in

the parent SGTemplate.

helper context MagicCRProfile!SGTemplate
 def : properSGTFinder() :
 Set(MagicEtfProfile!MagicEtfSGType) =
 let selectedSGType :
 Set (MagicEtfProfile!MagicEtfSGType) =
 MagicEtfSGType.allInstances
 -> select(sgt| sgt.magicEtfSgtRedundancyModel =
 self.magicCrSgTempRedundancyModel
 ...

Criterion 2: Links of grouped SUTypes

In order to select an SGType for an SGTemplate, the SGType should group at least one

SUType which is required by all the SITemplates of the given SGTemplate. In other

Extract
ETF SGTypes

Select based on
Redundancy

Model
Collect the selected

SGTypes

Select based on
links between
the grouped

SUTypes and
SITemplate

129

words, this SUType is capable of providing each of the SvcType associated with the

SITemplats aggregated in the SGTemplate.

 ...
and
sgt.saAmfSgtValidSuTypes -> exists(sut| sut->
magicSaAmfSutProvidesSvcType
 ->includesAll(self. magicCrGroupsSiTemplates
 ->collect(sit|sit.magicCrSiTempSvcType)))

6.2.4 Dependency Driven Refinement

In this step, we take into account the dependency relationships that exist both at the level

of configuration requirements elements and at ETF model elements level. In the

configuration requirements model the dependency relationships are defined between

CSITemplates and between SITemplates. In the ETF model, the dependency relationships

are specified between the Component Types in providing CSTypes and between

SUTypes in providing SvcTypes. The objective of this step is to refine the previously

selected ETF types based on the dependency relationships defined at the level of

configuration requirements. More specifically, all ETF types that do not respect the

dependency requirements need to be pruned out form the set of selected types.

The refinement consists of two different activities: 1) refinement of the set of proper

Component Types for each CSITemplate, 2) refinement of the set of appropriate

SUTypes for each SITemplate.

6.2.4.1 Component Type Dependency driven Refinement

This activity aims at refining the set of Component Types selected as a result of previous

step based on the dependency relationships. The refined set of Component Types needs to

be compliant with the configuration requirements from the dependency point of view. To

130

this end, this refinement activity takes into account the following scenario for each

CSITemplate: In case the CSITemplate does not specify any dependency relationship to

other CSITemplates, the proper Component Types for the CSITempalte should not have

any dependency in providing the required CSType.

This activity is described in terms of a refinement transformation of CSITemplates. The

transformation is enabled for each CSITemplate in the Configuration Requirements

model which does not specify any dependency relationship.

The refinement consists of updating the set of properCt by including in this set only those

Component Types that do not specify any dependency in providing the CSType

associated with the CSITemplate. This refinement takes into account the dependency

relationship in both directions. More specifically, it considers both the case in which a

CompType depends on other CompTypes in providing a CSType, and the case in which a

given CompType in providing a CSType depend by other CompTypes.

These two cases are implemented in terms of two different ATL rules. The first rule,

CSITempNotDependOnRefinement, extracts from the set of previously selected

Component Types of a given CSITemplate those that do not depend on any other

component types in providing the associated CSType.

rule CSITempNotDependOnRefinement {
from
 s: MagicCRProfile!MagicCrCsiTemplate
 s. magicCrCsiTempDependsOn->IsEmpty()
)
to
 t: MagicCRProfile!MagicCrCsiTemplate(
 properEtfCt<-
 s. magicCrCsiTempCsType.MagicEtfCtCSType->
 select(sourcectcst|s.properEtfCt->includes(
sourcectcst.magicEtfSupportedby))->select(

131

 targetctcst| targetctcst.magicEtfRequires->IsEmpty())
)->collect(ctcst|ctcst.magicEtfSupportedby)
)
}

The second rule, named CSITempNotDependByRefinement, refines the set of proper

Component Types of a given CSITemplate by selecting the ones that do not depend on by

any other Component Types.

rule CSITempNotDependByRefinement {
from
 s: MagicCRProfile!MagicCrCsiTemplate(
 s. magicCrCsiTempDependedOnBy->IsEmpty()
)
to
 t: MagicCRProfile!MagicCrCsiTemplate(
 properEtfCt<-
 s. magicCrCsiTempCsType.MagicEtfCtCSType->
select(sourcectcst|s.properEtfCt->includes(
sourcectcst.magicEtfSupportedby))->select(
 targetctcst| targetctcst.magicEtfRequiredBy->IsEmpty())
)->collect(ctcst|ctcst.magicEtfSupportedby)
)
}

6.2.4.2 SUType Dependency driven Refinement

This activity aims at refining the set of SUTypes selected as a result of previous step

based on the dependency relationships. The refined set of SUTypes needs to be compliant

with the configuration requirements from the dependency point of view. To this end, this

refinement activity takes into account the following scenario for each SITemplate: In case

the SITemplate does not specify any dependency relationship to other SITemplates, the

proper SUTypes for the SITemplate should not have any dependency in providing the

required SvcType.

This activity is the refinement transformation of SITemplates. The transformation is fired

for each SITemplate which does not specify any dependency relationship.

132

The refinement consists of selecting from the set of properSUT the SUTypes that do not

specify any dependency on other SvcTypes in providing the SvcType associated with the

SITemplate. This transformation is implemented using the ATL rule

SITempNotDependOnRefinement.

rule SITempNotDependOnRefinement {
from
 s: MagicCRProfile! MagicCrRegularSiTemplate (
 s. magicCrSiTempDependsOn->IsEmpty()
)
to
 t: MagicCRProfile! MagicCrRegularSiTemplate (
 properEtfSUT<-
 s. magicCrSiTempSvcType.MagicEtfSvctSut-> select(
 sourcesutsvct|s.properEtfSUT>includes(sourcesutsvct.magicEtfProvidin
gSuType))
->select(targetsutsvct| targetsutsvct.magicEtfRequires->IsEmpty())

)->collect(sutsvct|sutsvct.magicEtfProvidingSuType)

)
}

6.2.5 Completing the Refinement

The previously selected ETF types represent the essential software resources that can be

used to design an AMF configuration which satisfies the configuration requirements. As

previously mentioned, the proper sets identified at the end of each selection step need to

be further refined since they may contain elements which are inappropriate to be used for

generation purposes. More specifically, the previously mentioned criteria consider each

selected ETF type as independent from the other ETF types. For example, a selected ETF

Component Type is aggregated by an ETF SUType which has not been selected during

the SUType refinement step. That Component Type cannot be used for generation

purposes and thus has to be removed from the selected sets. This transformation phase is

completed pruning out the unselected irrelevant types from the ETF model. This

133

refinement activity results in the sets of ETF types that will be used for the subsequent

phases of the transformation. Figure 6-9 illustrates the different activities that

characterize the completion of the refinement.

Figure 6-9 The transformations performed to complete the refinement phase

More specifically, the transformation starts refining the selected set of ETF types linked

by each Configuration Requirements element. Afterwards, it forwards the appropriate

ETF types to the next phase pruning out the unselected ones from the ETF model.

6.2.5.1 Configuration requirements refinement

In this step the CR model is transformed refining the list of proper ETF types based on

different criteria. The step is characterized by three different transformations.

The SGTemplate elements and their previously defined links to the ETF types are

forwarded to next phase of the transformation without any change as specified in

following ATL code.

Prune out the
inappropriate ETF
Component Types

Prune out the
inappropriate ETF

SUTypes

Prune out the
inappropriate ETF

SGTypes

Prune out the
inappropriate ETF
Application Types

Prune out the
inappropriate ETF

CSTypes

Prune out the
inappropriate ETF

SvcTypes

SITemplates
refinement

SGTemplates
refinement

CSITemplates
refinement

134

rule SGtempRefinement {

from s: MagicCRProfile! MagicCrSgTemplate

to t: MagicCRProfile!MagicCrSgTemplate

}

The SITemplate elements are refined modifying the associated list of proper SUTypes by

means of SItempRefinement transformation rule. This rule prunes the irrelevant SUTypes

from the preliminary selected set. More specifically an SUType will result in the final set

of selected SUTypes:

• If it is not aggregated by any SGType

• If it is aggregated by an SGType and the SGType is in the set of selected

SGTypes of the SGTemplate associated with the current SITemplate.

rule SItempRefinement {

from s: MagicCRProfile! MagicCrRegularSiTemplate

to t: MagicCRProfile! MagicCrRegularSiTemplate(
properEtfSUT<- s.properEtfSUT->select(sut| sut.magicEtfGroupedBy-
>IsEmpty() or
sut.magicEtfGroupedBy -> intersection(self.magicCrBelongsToSgTemplate->
properEtfSGT)-> notEmpty()))
}

Afterwards, CSITemplate elements are transformed updating the list of proper

Component Types. The inappropriate Component Types are pruned out from the list

based on criteria similar to the ones used for SITemplate. More specifically a Component

Type will result in the proper selected set:

• If it is not aggregated by any SUType

• If it is aggregated by an SUType and the SUType is in the set of selected

SUTypes of the SITemplate associated with the current CSITemplate.

135

rule CSItempRefinement {

from s: MagicCRProfile! MagicCrCsiTemplate

to t: MagicCRProfile! MagicCrCsiTemplate(
 properEtfCt<- s.properEtfCt->select(ct| ct.magicEtfGroupedBy->
 IsEmpty() or
ct.magicEtfGroupedBy -> intersection(self.magicCrBelongsToSiTemplate->
properEtfSUT)-> notEmpty()))
}

6.2.5.2 ETF type refinement

In this step, the ETF model is transformed pruning out the inappropriate ETF types from

the current ETF model. The refinement is operated based on the previously selected and

refined set of proper ETF types linked by the configuration requirements elements.

Component Types pruning

The transformation consists of creating into the target model, Component Type elements

with the same set of attributes of the selected ones. The following code focuses on the

Component Type set that has been previously linked to the CSITemplates.

rule CompTypePruning {
from s: MagicETFProfile!MagicEtfCompType
(MagicCRProfile::MagicCrCsiTemplate.allInstances-> exists(csitemp|
csitemp.properEtfCt->includes(s)))
to t: MagicETFProfile!MagicEtfCompType(
 magicEtfCtVersion<- s.magicEtfCtVersion
 -- Transforming the rest of the attributes......

SUType pruning

This transformation prunes the irrelevant SUTypes based on the preliminary selection

performed during the first refinement step and the relationships with the ETF SGType

resulting from the previously described selection steps. More specifically an SUType will

result in the final set of selected SUTypes:

• If it is not aggregated by any SGType

136

• if it is aggregated by an SGType, the SGType should be in the set of selected

SGTypes of the SGTemplate associated with its SITemplates

The transformation consists of copying the selected SUType elements into the target

model.

rule SUTypePruning {
from s: MagicETFProfile!MagicEtfSUType
(MagicCRProfile:: MagicCrRegularSiTemplate.allInstances->forAll(sitemp|
sitemp.properEtfSUT->includes(s)))
to t: MagicETFProfile!MagicEtfSUType(
 magicEtfSutVersion<- s.magicEtfSutVersion
 -- Transforming the rest of the attributes......

SGType pruning

Similar to the previous pruning steps the transformation consists of replicating the

selected SGType elements into the target model.

rule SGTypePruning {
from s: MagicETFProfile!MagicEtfSGType
(MagicCRProfile:: MagicCrSgTemplate.allInstances->exists(sgtemp|
sgtemp.properEtfSGT->includes(s)))
to t: MagicETFProfile!MagicEtfSGType(
 magicEtfSgtVersion<- s.magicEtfSgtVersion
 -- Transforming the rest of the attributes......

Application Type pruning

A similar rule can be applied for the pruning out the Application Types. However, this

pruning also requires identifying the Application Types capable of supporting at least one

of the previously selected SGTypes. In fact, there is no element in the configuration

requirement model that directly links to the Application Types.

rule APPTypePruning {
from s: MagicETFProfile!MagicEtfAppType
(MagicCRProfile::MagicCrSgTemplate.allInstances
->exists(sgtemp| sgtemp.properEtfSGT
->intersection(s.magicEtfGroups)->notEmpty()))
to t: MagicETFProfile!MagicEtfAppType(
 magicEtfApptVersion <-s. magicEtfApptVersion
 -- Transforming the rest of the attributes.....

137

SvcType pruning

The SvcTypes pruning is easily realized by operating on the SvcTypes which are linked

by SITemplates.

rule SvcTypePruning {
from s: MagicETFProfile!MagicEtfSvcType
(MagicCRProfile::SITemplate.allInstances
->exists(sitemp| sitemp. magicCrSiTempSvcType = s)
to t: MagicETFProfile!MagicEtfSvcType (
 magicEtfSvctVersion<-s. magicEtfSvctVersion
 -- Transforming the rest of the attributes......

CSType pruning

The CSTypes pruning is easily realized by operating on the CSTypes which are linked by

CSITemplates.

rule CSTypePruning {
from s: MagicETFProfile!MagicEtfCSType
(MagicCRProfile::CSITemplate.allInstances
->exists(csitemp| csitemp. magicCrCsiTempCsType = s)
to t: MagicETFProfile!MagicEtfCSType (
 magicEtfCstVersion<-s. magicEtfCstVersion
 -- Transforming the rest of the attributes......

6.3 AMF Entity Type Creation

This phase mainly consists of generating the AMF entity types to be used for the AMF

configuration design. The main objective of this phase is to define the AMF entity types

that can be used to specify one possible configuration which satisfies the configuration

requirements.

As shown in Figure 6-3, this transformation phase takes as input the ETF model refined

by the previous transformation phase described in 6.2. This phase creates and configures

AMF entity types based on the selected ETF types. It also creates the links between AMF

entity types and Configuration Requirements considering the possible relationships that

138

exists between the ETF types and CSITemplates, SITemplates, or SGTemplates. More

specifically, these links substitute the links between ETF types and templates resulting

from the previous phase. For example, an AMF Component Type can be created based on

a selected ETF Component Type in the refined ETF model. In addition the generated

AMF Component Type is linked to the CSITemplates which is already connected to the

ETF type.

Figure 6-10 describes the output generated at the end of this phase from the metamodel

perspective. The dashed connections describe the links defined between the generated

AMF entity types and the elements of Configuration Requirements as well as the

relationships among the AMF entity types.

Figure 6-10 The result of the AMF Entity Type creation phase from the metamodel perspective

Figure 6-11 presents he AMF entity type creation phase as composed of four different

steps.

MagicAmfAppType

MagicAmfSgType

MagicAmfSUType

MagicAmfCompType

MagicAmfSvcType

MagicAmfCSType

*
*

*
*

*
*

* *

* *

MagicCrAdmin
Domain

MagicCrSgTemp

MagicCrSiTemp

MagicCrCSITemp

1
*

1
*

1
*

* 1

* 1

* 1

* 1

* 1
*
*

139

Figure 6-11 The transformation steps of the AMF entity type creation phase

Each step corresponds to a different transformation that generates a particular AMF entity

types starting from the corresponding previously selected ETF types. However, the only

mandatory elements in ETF model are Component Types and CSTypes. Therefore,

SUTypes, SGTypes, AppTypes and SvcTypes might not exist in the ETF model. The

refinement phase described in the previous section does not aim at modifying the ETF

model by completing the definition of the missing ETF types. In other words, it is

possible to have ETF types that are not aggregated into other ETF types according to the

hierarchical structure specified by the ETF model. For example, ETF Component Types

may not be aggregated by any ETF SUType. Although missing types are tolerated in ETF

models, in order to generate an AMF configuration it is required to have the complete

hierarchy of types. Therefore, to complete the hierarchy, the transformation process

builds AMF entity types based on a set of existing ETF types. For the previously

mentioned example, we need to create an AMF SUType based on the existing ETF

Component Types.

In this section, we discuss the details of the AMF entity type creation phase and present

the transformation rules accordingly. In this phase we start generating the different AMF

entity types directly derived from existing ETF types, and afterwards, we focus on

creating the AMF entity types which do not have any ETF type counterpart. Besides

generating the proper AMF types, these transformations also establish the required

relationships among them.

AMF Component
Type CSType
Generation

AMF SUType
SvcType

Generation

AMF AppType
SGType

Generation

140

For the creation of the AMF entity types based on the existing ETF types the generated

AMF entity types are characterized by a set of attributes that directly corresponds to the

properties defined in ETF types. As a matter of fact, the properties specified in ETF types

impose restrictions on corresponding AMF entity types’ attributes. For instance, they can

specify the admissible range of values that can be defined for each attribute. For the sake

of simplicity, the same values defined in ETF types are assigned to these attributes. In

case of optional attributes which are not specified in the ETF model, for the entity type

generation we create them without any initial value.

In order to generate AMF entity types that do not have any ETF counterparts, these

generated AMF entity types are characterized by a set of attributes which are initialized

with the information described in configuration requirement elements (e.g. redundancy

model which is specified in the SGTemplate). Moreover, in case we have attributes

without any value, in our approach we initialize them according the default values

indicated in the AMF specification.

6.3.1 AMF SGType and AppType Generation

As previously mentioned, SGTypes and Application Types are not mandatory elements

of an ETF models. Moreover, there is no element in the configuration requirement model

that directly links to the Application Types. Therefore, the generation of both AMF

SGTypes and AppTypes will be performed starting from SGTemplate and based on the

set of selected SGTypes of that template. The generation is implemented using three

different transformations:

141

1. If the list of selected ETF SGTypes is empty, we need to create an AMF SGType

and a parent AMF AppType from scratch.

2. If the list of selected ETF SGTypes consists of only orphan SGTypes, we

transform one of the selected ETF SGTypes and create the parent AMF AppType

from scratch.

3. If the list of selected ETF SGTypes consists of at least one non-orphan SGType,

we transform one of the non-orphan SGTypes and one of its parent AppTypes.

The first transformation is rather straightforward and performed by means of a single

ATL rule called AMFSGType_AppTypeCreate. For a given SGTemplate, this rule fires if

the list of the proper ETF SGTypes is empty, indicating that there is not an appropriate

SGType in the ETF model for this SGTemplate. The rule consists of three different parts:

t1 creates an AMF SGType and t2 generates the AMF AppType. Moreover, the link

between the created AMF SGType and AppType is also established in t1 and t2. Finally,

t3 creates the link to the generated AMF SGType.

rule AMFSGType_AppTypeCreate {
from
 s: MagicCRProfile!MagicCrSgTemplate(
 --Fire only if the list of selected SGTypes is empty
 properEtfSGT->IsEmty()
)
to
 t1: MagicAmfProfile! MagicAmfSGType (
 --Link to AppType
 magicSaAmfSgtMemberOf<- Set{t2},
 --Transforming the Attributes
),

 t2: MagicAmfProfile! MagicAmfAppType (
 --Link to SGType
 magicAmfApptSGTypes <- Set{t1},
 --Transforming the Attributes
),
 t3: MagicCRProfile!MagicCrSgTemplate(
 properAmfSGT <- Set{t1},
}

142

The second transformation is performed by means of

Orphan_AMFSGType_AppTypeCreate rule and AMFSGTypeTransform unique lazy rule.

For a given SGTemplate, Orphan_AMFSGType_AppTypeCreate fires when all selected

ETF SGTypes are orphans. In this rule t1 creates an AMF AppType and generates the

link to an AMF SGType transformed from the first selected ETF SGType. This ETF

SGType is transformed using the AMFSGTypeTransform rule. Moreover, t2 updates the

SGTemplate with the newly created AMF SGType. t2 also replaces the list of proper ETF

SGTypes with the ETF SGType which is transformed to the AMF SGType (This list will

be used in the next steps).

rule Orphan_AMFSGType_AppTypeCreate {
from
 s: MagicCRProfile!MagicCrSgTemplate(
 --Fire only if all selected SGTypes are orphan
 properEtfSGT->forAll(sgt| sgt. magicSaAmfSgtMemberOf->IsEmpty())
)
to

 t1: MagicAmfProfile! MagicAmfAppType (
 --Link to SGType
 magicAmfApptSGTypes <- Set{ AMFSGTypeTransform (s.properEtfSGT-
>at(1))},
 --Transforming the Attributes
),
 t2: MagicCRProfile!MagicCrSgTemplate(

 properAmfSGT <- Set{ AMFSGTypeTransform (s.properEtfSGT-
>at(1))},
 properEtfSGT <- Set{ s.properEtfSGT->at(1)}
}

unique lazy rule AMFSGTypeTransform {
from
 s: MagicEtfProfile! MagicEtfSGType
to
 t: MagicAMFProfile! MagicAmfSGType(
 --Transforming the Attributes
)
}

143

The third transformation fires if at least one of the selected ETF SGTypes of a given

SGTemplate is non-orphan. The transformation is performed mainly by an ATL rule

called Non_Orphan_AMFSGType_AppTypeCreate. This rule transforms one of the non-

orphan selected ETF SGTypes to an AMF SGTypes using AMFSGTypeTransform unique

lazy rule and creates a link from the SGTemplate to the created AMF SGType. It also

replaces the list of proper ETF SGTypes with the ETF SGType which is transformed to

the AMF SGType (This list will be used in the next steps). Moreover, by using

AMFAppTypeTransform unique lazy rule, Non_Orphan_AMFSGType_AppTypeCreate

transforms one of the ETF AppTypes that aggregates the transformed ETF SGType to an

AMF AppType.

rule Non_Orphan_AMFSGType_AppTypeCreate {
from
 s: MagicCRProfile!MagicCrSgTemplate(
 --Fire only if at least one of selected SGTypes is non-orphan
 not properEtfSGT->forAll(sgt| sgt. magicSaAmfSgtMemberOf-
>IsEmpty())
)
to

 t: MagicCRProfile!MagicCrSgTemplate(

properAmfSGT <- Set{ AMFSGTypeTransform (s.properEtfSGT->
 select(sgt|sgt. magicEtfSgtGroupedBy->notEmpty()))->at(1)},
properEtfSGT <- Set{ s.properEtfSGT->select(sgt|sgt.
magicEtfSgtGroupedBy
-> notEmpty())->at(1)}

do
{
t. properAmfSGT->at(1). magicSaAmfSgtMemberOf <- AMFAppTypeTransform(t.
properAmfSGT-> at(1).magicEtfSgtGroupedBy->at(1));
}

unique lazy rule AMFSGTypeTransform {
from
 s: MagicEtfProfile! MagicEtfSGType
to
 t: MagicAMFProfile! MagicAmfSGType(
 --Transforming the Attributes
)
}

144

unique lazy rule AMFAppTypeTransform {
from
 s: MagicEtfProfile! MagicEtfAppType
to
 t: MagicAMFProfile! MagicAmfAppType(
 --Transforming the Attributes
)
}

6.3.2 AMF SUType and SvcType Generation

Similar to SGTypes and AppTypes, SUTypes and SvcTypes are not mandatory elements

of an ETF models. However, since we assumed that the Configuration Requirements

model is complete, the SvcTypes are already specified in this model. Therefore, different

generation strategies need to be defined according to the existence of the SUTypes in the

ETF model. As a consequence, this generation step consists of three different

transformations.

1. Generation of the AMF SUTypes and SvcTypes from the selected matching non-

orphan ETF SUTypes and the related ETF SvcType.

2. Generation of the AMF SUTypes and SvcTypes from the selected matching

orphan ETF SUType and the related ETF SvcType.

3. Creation of the AMF SUTypes from scratch as well as the creation of the AMF

SvcTypes based on the corresponding ETF types. This transformation covers the

case in which the corresponding ETF SUTypes are missing in the selected ETF

model.

In the rest of this section we describe the details of the above mentioned transformations

using ATL.

145

The first transformation generates AMF SvcTypes and AMF SUTypes for a given

SITemplate starting from the corresponding ETF SvcType and non-orphan ETF SUTypes

selected in the previous step.

The transformation is implemented using the Non_Orphan_AMFSUType_SvctTransform

rule and the unique lazy rules AMFSUTypeTransform and AMFSvctTransform. The rule

also establishes the relationships among the generated AMF types. Moreover, the lazy

rules generate AMF types that capture all the characteristics of the related ETF types. The

rule also establishes the relationships among the generated AMF types.

For a given SITemplate, Non_Orphan_AMFSUType_SvctTransform refines the current

SITemplate and targets the generation of AMF SvcTypes and SUTypes and their

relationships. The rule fires only if any of the selected SUTypes is not an orphan.

Thereafter, the rule transforms the ETF SUType which is supported by the SGType

transformed for the aggregating SGTemplate in previous step. This transformation is

performed by calling the AMFSUTypeTransform. AMFSUTypeTransform targets the

generation of AMF SUTypes and the attributes based on the corresponding ETF types.

The list of proper ETF SUTypes is also replaced with the ETF SUType which is

transformed to the AMF SUType (This list will be used in the next steps).

rule Non_Orphan_AMFSUType_SvctTransform {
from
 s: MagicCRProfile!MagicCrRegularSiTemplate(
--Fire only if properEtfSUT has an SUTypes which is the child of the
transformed SGType of the aggregating SGTemplate
 s.properEtfSUT->exists(sut|s.magicCrBelongsToSgTemplate.
properEtfSGT
 ->at(1).magicEtfGroups->includes(sut)))
to
 t: MagicCRProfile!MagicCrRegularSiTemplate(
 --Link to SUType

146

properAmfSUT <- Set{ AMFSUTypeTransform(s.properEtfSUT->select(sut|s.
magicCrBelongsToSgTemplate. properEtfSGT->at(1).magicEtfGroups-
>includes(sut)))
->at(1)},
 --Link to SvcType
 magicCrSiTempSvcType<- Set{AMFSvctTransform(s.
magicCrSiTempSvcType->at(1))}
),

do {

 let svct : MagicAMFProfile!MagicSaAmfSvcType =
 AMFSvctTransform(s.magicCrSiTempSvcType->at(1))
 in
svct.magicAmfSvcTProvidingSut <- Set{ AMFSUTypeTransform(s.properEtfSUT
->select(sut|s. magicCrBelongsToSgTemplate. properEtfSGT
->at(1).magicEtfGroups->includes(sut)))->at(1)};
properEtfSUT <- Set{ s.properEtfSUT->select(sut|s.
magicCrBelongsToSgTemplate. properEtfSGT->at(1).magicEtfGroups-
>includes(sut))->at(1)}
 }
}

Moreover, AMFSvctTransform generates the SvcType associated with the current

SITemplate and initializes its attributes with the attributed specified by the corresponding

ETF type.

unique lazy rule AMFSvctTransform{
from
 s: MagicEtfProfile!MagicEtfSvcType
to
 t: MagicAMFProfile!MagicSaAmfSvcType(
 --Transforming the Attributes
 safSvcType <- s.magicCrSiTempSvcType.magicEtfSvctName,
 magicSafVersion <- s.magicCrSiTempSvcType.magicEtfSvctVersion
)
}

The second transformation generates AMF SvcTypes and AMF SUTypes for a given

SITemplate starting from the corresponding ETF SvcType and orphan ETF SUTypes

selected in the previous phase.

147

This transformation is implemented using the Orphan_AMFSUType_SvctTransform rule

and the unique lazy rules AMFSUTypeTransform and AMFSvctTransform similar to the

first transformation.

For a given SITemplate, Orphan_AMFSUType_SvctTransform refines the current

SITemplate and targets the generation of AMF SvcTypes and SUTypes and their

relationships. The rule fires only if all selected SUTypes are orphans. This also implies

that the SGTemplate of the current SITemplate was created from scratch in the previous

step. Consequently, the rule transforms the one of the selected ETF SUTypes by calling

the AMFSUTypeTransform. AMFSUTypeTransform targets the generation of AMF

SUTypes and the attributes based on the corresponding ETF types. The list of proper ETF

SUTypes is also replaced with the ETF SUType which is transformed to the AMF

SUType (This list will be used in the next steps). Finally, AMFSvctTransform generates

the SvcType associated with the current SITemplate.

rule Orphan_AMFSUType_SvctTransform {
from
 s: MagicCRProfile!MagicCrRegularSiTemplate(
--Fire only if all Component Types of properEtfSUT are orphan
 not s.properEtfSUT->exists(sut|s.magicCrBelongsToSgTemplate.
properEtfSGT
 ->at(1).magicEtfGroups->includes(sut)))
to
 t: MagicCRProfile!MagicCrRegularSiTemplate(
 --Link to SUType
 properAmfSUT <- Set{ AMFSUTypeTransform(s.properEtfSUT->
 at(1)},
 --Link to SvcType
 magicCrSiTempSvcType<- Set{AMFSvctTransform(s.
magicCrSiTempSvcType->at(1))}
),

do {

 let svct : MagicAMFProfile!MagicSaAmfSvcType =
 AMFSvctTransform(s.magicCrSiTempSvcType->at(1))
 in

148

svct.magicAmfSvcTProvidingSut <- Set{
AMFSUTypeTransform(s.properEtfSUT
->at(1)};
 --Replace the properEtfSUT with the ETF SUType which is transformed
to AMF SUType
s.properEtfSUT<- Set{ s.properEtfSUT->at(1)}

 }
}

As mentioned the above presented rules (Non_Orphan_AMFSUType_SvctTransform,

Orphan_AMFSUType_SvctTransform, AMFSUTypeTransform, and AMFSvctTransform)

aim at generating AMF types from the existing corresponding ETF types. However, if the

selection phase could not find any appropriate SUType for the given SITemplate, the

proper SUType needs to be created from scratch.

The AMFSUType_SvctCreate rule creates AMF SUTypes from scratch and the AMF

SvcTypes based on the corresponding ETF types.

In AMFSUType_SvctCreate for a given SITemplate, the firing condition checks the

existence of an ETF SUType in list of selected SUTypes (properEtfSUT). The rule

targets the creation of different AMF entity types and the relationship among them. For

each created entity type the transformation initializes the attributes to their default value

specified in AMF specification. More specifically, t defines the link between the

SITemplates and the newly created SUTypes (from scratch) and SvcType generated by

the createSUTfromScratch helper function and the lazy rule AMFSvctTransform,

respectively.

rule AMFSUType_SvctCreate {
from
 s: MagicCRProfile!MagicCrRegularSiTemplate(
 --Fire only if the list of selected SUTypes is empty
 properEtfSUT->IsEmty()
)
to

149

 t: MagicCRProfile!MagicCrRegularSiTemplate(
 --Link to SUType
 properAmfSUT <- Set{s.createSUTfromScratch()},
 --Link to SvcType
 magicCrSiTempSvcType<- Set{AMFSvctTransform(s.
magicCrSiTempSvcType->at(1))}
),

do {

 let svct : MagicAMFProfile!MagicSaAmfSvcType =
 AMFSvctTransform(s.magicCrSiTempSvcType->at(1))
 in
 svct.magicAmfSvcTProvidingSut <-
Set{s.createSUTfromScratch()}

 }
}

unique lazy rule AMFSvctTransform{
from
 s: MagicEtfProfile!MagicEtfSvcType
to
 t: MagicAMFProfile!MagicSaAmfSvcType(
 --Transforming the Attributes
 safSvcType <- s.magicCrSiTempSvcType.magicEtfSvctName,
 magicSafVersion <- s.magicCrSiTempSvcType.magicEtfSvctVersion
)
}

helper context MagicCRProfile!SITemplate def : createSUTfromScratch() :
MagicAMFProfile!MagicSaAmfSUType =

AMFSvctTransform creates the appropriate AMF SvcType for the associated ETF type

linked to the SITemplates. createSUT-fromScratch is the helper function which returns

the proper AMF SUType capable of providing all the SvcTypes referred by the set of

SITemplates grouped by the SGTemplate. The function checks whether an SUType with

such characteristics has already been defined in the AMF model. In this case it returns

this type; otherwise it creates an SUType from scratch and returns it.

Finally, AMFSUType_SvctCreate establishes the connection between the newly created

SvcType and the SUTypes returned by the helper function.

150

6.3.3 AMF Component Type and CSType Generation

AMF Component Types and AMF CSTypes for a given CSITemplate are generated

starting from the previously selected ETF types. These generated types capture the

characteristics of the referenced ETF types.

The creation targets different elements: namely, the CSType associated with the current

CSITemplate, the proper ComponentTypes, the association class that links AMF

Component Types to the CSTypes, the association class that links AMF Component

Types to the SUTypes generated in the previous step, the association class that links

CSType to the SvcType of aggregating SITemplate as well as the link between

CSITemplates and the created entity types. For this purpose, we define two main

transformations in order to cover the following cases:

1. Generation of the AMF Component Types and CSTypes from the selected

matching non-orphan ETF Component Types and the related ETF CSType as well

as the generation of the association classes between AMF entity types generated

both in this step and in the previous step (see Section 6.3.2).

2. Generation of the AMF Component Types and CSTypes from the selected

matching orphan ETF Component Types and the related ETF CSType as well as

the generation of the association classes between AMF entity types generated

both in this step and in the previous step (see Section 6.3.2).

The generation process for both above mentioned cases is directly illustrated by means of

the transformation rule Non_Orphan_AMFCompType_CSTypeTransform and

Orphan_AMFCompType_CSTypeTransform as well as the required unique lazy rules

namely AMFCompTypeTransform and AMFCSTypeTransform.

151

Non_Orphan_AMFCompType_CSTypeTransform refines a given CSITemplate and

targets the generation of AMF CSTypes and Component Types and their relationship.

The rule fires only if any of the selected Component Types are not orphans. Afterwards,

the rule transforms the ETF Component Type which is supported by the SUType which is

transformed for the aggregating SITemplate in previous step. This transformation is

performed by calling the AMFCompTypeTransform. AMFCompTypeTransform targets

the generation of AMF Component Types and the attributes based on the corresponding

ETF types. Moreover, AMFCSTypeTransform generates the CSType associated with the

current CSITemplate and initializes its attributes with the attributed specified by the

corresponding ETF type.

t1 creates the association class (MagicSaAmfCtCSType) between the AMF Component

Type and CSType by calling the unique lazy rules. t2 generates the relationship

(MagicSaAmfSvcTypeCSType) between the newly created AMF CSType and its parent

SvcType created in the previous step. t3 establishes the link

(MagicSaAmfSutCompType) between the newly generated AMF Component Type and

its parent SUType created in the previous step. Finally, t4 updates the CSITemplate with

the list of AMF Component Types.

rule Non_Orphan_AMFCompType_CSTypeTransform {
from
s: MagicCRProfile!MagicCrCsiTemplate(
--Fire only if properEtfCT has a Component Types which is the child of
the transformed SUType of the aggregating SITemplate
s.properEtfCt->exists(ct|s. magicCrBelongsToSiTemplate.
properEtfSUT->at(1).magicEtfGroups->includes(ct)))
to
 t1: MagicAMFProfile!MagicSaAmfCtCSType(
 --Link to CompType
magicAmfSupportedby <- Set{ AMFCompTypeTransform(s.properEtfCt->
select(ct|s. magicCrBelongsToSiTemplate. properEtfSUT->
at(1).magicEtfGroups->includes(ct))) ->at(1)},

152

 --Link to CSType
 magicSafSupportedCsType <- Set{ AMFCSTypeTransform(s.
magicCrCsiTempCSType)},
 --Transforming the attributes

),

t2 : MagicAMFProfile!MagicSaAmfSvcTypeCSType(
 --Link to SvcType
 magicAmfMemberOf <- Set{ s.magicCrBelongsToSiTemplate.
magicCrSiTempSvcType},
 --Link to CSType
 magicSafMemberCSType <- Set{ AMFCSTypeTransform(s.
magicCrCsiTempCSType)},
 --Transforming the Attributes
),

t3 : MagicAMFProfile!MagicSaAmfSutCompType(
 --Link to SUType
magicAmfMemberOf <- Set{s. magicCrBelongsToSiTemplate. properAmfSUT-
>at(1)},
--Link to Component Type
magicSafMemberCompType <- Set{ AMFCompTypeTransform(s.properEtfCt
->select(ct|s. magicCrBelongsToSiTemplate. properEtfSUT
->at(1).magicEtfGroups->includes(ct))) ->at(1)},

 t4: MagicCRProfile!MagicCrCsiTemplate(
 --Link to AMF CompType
properAmfCt <- Set{ AMFCompTypeTransform(s.properEtfCt->select(ct|s.
magicCrBelongsToSiTemplate. properEtfSUT->at(1).magicEtfGroups-
>includes(ct))) ->at(1)},
 --Link to CSType
 magicCrCsiTempCsType<- Set{ AMFCSTypeTransform(s.
magicCrCsiTempCSType)}
)
}

Similarly Orphan_AMFCompType_CSTypeTransform refines a given CSITemplate and

targets the generation of AMF CSTypes and Component Types and their relationship.

This rule fires only if all selected Component Types of the CSITemplate are orphan.

Therefore, it simply transforms the first ETF Component Type selected for the current

CSITmplate and the corresponding CSType to AMF Component Type and AMF CSType

respectively. This transformation is performed by calling the AMFCompTypeTransform.

AMFCompTypeTransform targets the generation of AMF Component Types and the

attributes based on the corresponding ETF types. Moreover, AMFCSTypeTransform

153

generates the CSType associated with the current CSITemplate and initializes its

attributes with the attributed specified by the corresponding ETF type.

rule Orphan_AMFCompType_CSTypeTransform {
from
 s: MagicCRProfile!MagicCrCsiTemplate(
--Fire only if all Component Types of properEtfCt are orphan
 not s.properEtfCt->exists(ct|s. magicCrBelongsToSiTemplate.
properEtfSUT
 ->at(1).magicEtfGroups->includes(ct)))

to
 t1: MagicAMFProfile!MagicSaAmfCtCSType(
 --Link to CompType
magicAmfSupportedby <- Set{ AMFCompTypeTransform(s.properEtfCt-
>at(1))},
 --Link to CSType
 magicSafSupportedCsType <- Set{ AMFCSTypeTransform(s.
magicCrCsiTempCSType)}
 --Transforming the attributes

),

t2 : MagicAMFProfile!MagicSaAmfSvcTypeCSType(
 --Link to SvcType
 magicAmfMemberOf <- Set{ s.magicCrBelongsToSiTemplate.
magicCrSiTempSvcType},
 --Link to CSType
 magicSafMemberCSType <- Set{ AMFCSTypeTransform(s.
magicCrCsiTempCSType)}
 --Transforming the Attributes
),

t3 : MagicAMFProfile!MagicSaAmfSutCompType(
 --Link to SUType
magicAmfMemberOf <-Set{s.magicCrBelongsToSiTemplate.properAmfSUT-
>at(1)},
 --Link to Component Type
magicSafMemberCompType <- Set{AMFCompTypeTransform(s.properEtfCt-
>at(1))}
 --Transforming the Attributes
),

 t4: MagicCRProfile!MagicCrCsiTemplate(
 --Link to AMF CompType
properAmfCt <- Set{ AMFCompTypeTransform(s.properEtfCt->at(1))},
 --Link to CSType
 magicCrCsiTempCsType<- Set{ AMFCSTypeTransform(s.
magicCrCsiTempCSType)}
)
do{

154

foreach(sut in s. magicCrBelongsToSiTemplate.
magicCrBelongsToSgTemplate. magicCrGroupsSiTemplates-
>collect(SITemp|SITemp.properAmfSUT->at(1)) {
 --Create the first end of the Link to SUType

 sut. magicSafMemberCompType <- sut. magicSafMemberCompType
->Union(Set{ AmfSutCompTypeCreate() })
 --Create the second end of the Link to Component Type
 }

}

Similar to the previous rule, t1, t2, and t3 create the required association classes, namely

MagicSaAmfCtCSType, MagicSaAmfSvcTypeCSType, and MagicSaAmfSutCompType,

between the newly generated AMF Types and the related created elements from the

previous step. Finally, updating the CSITemplate with the list of AMF Component Types

is performed by t4. Moreover, the do part of the transformation creates the link between

created AMF component type and the previously generated AMF SUTypes of the sibling

SITemplates of current CSITemplates SITemplate.

6.4 AMF Entity Creation

As shown in Figure 6-3, this phase takes as input the refined Configuration Requirements

and the AMF model consisting of the generated AMF entity types. As a consequence of

the previous transformation step, these models are connected by means of links defined

among the AMF entity types (on one side) and the CSITemplates, SITemplates and

SGTemplates (on the other side).

155

Figure 6-12 The result of the AMF Entity creation from the metamodel perspective

Similar to the generation of the entity types, the creation of entities starts from the

Configuration Requirements elements. The generation of all the entities is driven by the

characteristics of the entities types that have been created during the previous phase. The

links defined between the configuration requirements elements and the AMF entity types

ease the navigation of the AMF model favouring the direct access to most of the desired

properties of such types. Figure 6-12 illustrates the result of this phase from the

metamodel perspective.The generation follows an approach composed of three different

steps. The first step targets the creation of different AMF entities, based on the entity

types created in the previous phase, as well as establishing the relations among them. The

second step aims at creating deployment entities. The third step prunes out all the

Configuration Requirements elements as well as their links to the AMF configuration

elements.

MagicAmfAppType

MagicAmfSgType

MagicAmfSUType

MagicAmfCompType

MagicAmfSvcType

MagicAmfCSType

*
*

*
*

*
*

* *

* *

* 1

* 1

* 1

* 1

* 1

MagicAmfApplication

MagicAmfSG

MagicAmfSU

MagicAmfComp

1
*

1
*

1
*

* 1

MagicAmfSI

MagicAmfCSI

*
*

1
*

*

1

*

1

156

The result of this phase is a set of AMF entities and entity types which form an AMF

configuration that satisfies the configuration requirements. In the following subsections

we describe more in depth each transformation step.

6.4.1 Step 1: AMF Entity Instantiation

The main issue of this step consists of determining the number of entities that need to be

generated for each identified entity type, and in defining the required links. For some

entities we fetch this number directly from the Configuration Requirements model and

for the others we need to calculate this number. In both cases the number of entities that

need to be created depends on the values of the attributes specified in Configuration

Requirement and AMF entity type elements.

Figure 6-13 shows the activity diagram which describes the flows of transformations

performed in the context of this generation step. In the rest of this section we thoroughly

describe these transformations.

This step starts with analyzing the SGTemplate and the AppType and SGType linked to

the template and creates instances of entities compliant with the characteristics of these

AMF types. It also generates the SUs providing the SIs that are protected by the

generated SGs. Afterwards, the generation targets the definition of links between the

generated entities, between the entities and the related types, and the generation of links

between the SGTemplate and the generated entities.

The step is described by means of the following ATL code which consists of

transformation rules and helper functions.

157

Figure 6-13 The flow of transformations to generate AMF entities

Transform
AMF Apps , SGs and SUs

Create AMF SGs Create AMF Applications Create AMF SUs

Define AMF Application Define AMF SG Define AMF SU

else
Sufficient # of Apps

else else
Sufficient # of SGs Sufficient # of SUs

Transform
AMF SIs Transform

AMF Components

Create AMF SIs

Define AMF SI

else

Create AMF Components

Define AMF Component

else

Sufficient #
of SIs

Transform
AMF CSIs

Create AMF CSIs

Define AMF CSI

else

Sufficient #
of CSIs

Sufficient #
of Components

158

rule AMF_APP_SG_SU_Transform {
from
 s: MagicCRProfile! MagicCrSgTemplate

using{

--Calculates the number of SGs

maxNumSGs : Integer =
s.magicCrGroupsSiTemplates
->iterate(sit, min:Integer = 0|
if sit.magicCrRegSiTempNumberofSis/sit.magicCrRegSiTempMinSis > min
then
min= sit.magicCrRegSiTempNumberofSis/sit.magicCrRegSiTempMinSis
endif);

--Calculates the number of SUs

NumSUs : Integer = s.magicCRSgTempNumberofActiveSus+
 s.magicCRSgTempNumberofStdbSus+s.magicCRSgTempNumberofSpareSus;

-- Calculates the total number of SIs
TotalNumOfSIs : Integer =
 s. magicCrGroupsSiTemplates ->iterate(sitemp; num:Integer = 0| num
+ sitemp.magicCRSiTempNumberofSis);

counter : Integer = 0;

 }

to
 t: MagicCRProfile! MagicCrSgTemplate (
 properAmfApp <-createAMFApplication(Set{},1),
 properAmfSG <- createAMFSG(Set{},NumOfSG),

)
do {
 -- Create an Application and establish the link to SGs
 t.properAmfApp->at(1).magicAmfApplicationGroups <- t.properAmfSG;

 -- Establish the link from each SG to the aggregated SUs while
creating them
 for (sg in t.properAmfSG){
 sg.magicAmfSGGroups <-
 createAMFSU(Set{}, NumSUs);
 t.properAmfSU <- t.properAmfSU->union(sg.magicAmfSGGroups);
 }
 -- Establish the link from each SU to the aggregated Components
while creating them
 for (su in t.properSU){
 su.magicAmfLocalServiceUnitGroups <-
 s. magicCrSiTempGroups -> collect
(e|AMF_Comp_Transform(e).properComp)

159

 }
 -- Create the all required SIs
 t.properAMFSI <-s. magicCrGroupsSiTemplates ->
collect(e|AMF_SI_Transform(e).properAmfSI);

 -- Establish the link from each SG to the aggregated set of
protected SIs
 for (sg in t.properAmfSG){
 sg.magicAmfSGProtects <- t.properAmfSI->asSequence()-
>subSequence(counter*TotalNumOfSIs/
maxNumSGs,(counter+1)*TotalNumOfSIs/ maxNumSGs);
 counter = counter +1;
 }

 }
}

The AMF_APP_SG_SU_Transform rule refines the SGTemplate by adding the links to

the AMF entities namely Application, SG, and SU. These AMF entities are instantiated

using different helper functions which take the required number of instances as an input

and return the collection of AMF entities. For the Application there is only one instance

needed for each SGTemplate, while for the case of SGs and SUs the number is calculated

from the information specified in the SGTemplate. For instance, the definition of AMF

Application uses the createAMFApplication helper function and a lazy rule called

APP_Define. The helper function creates a set of AMF application entities in a recursive

manner and in each recursion it calls the APP_Define lazy rule. APP_Define instantiates

an AMF application entity, initializes its attributes starting from a given AMF AppType,

and finally connects the generated entity to the type. Afterwards, the instantiated AMF

Application is added to the set of entities and returns to the caller rule. The number of

recursions corresponds to the number of required AMF applications specified by

AMF_APP_SG_SU_Transform as an input. The same approach based on defining a

helper function and a lazy rule is applied to create SGs and SUs.

160

The number of entities to be defined depends on the information which is specified in the

Configuration Requirements model elements.

Once the proper entities are generated they are linked to the appropriate configuration

entities. For instance, the generated SUs are grouped into different SGs depending on

their capability of providing the SIs of a given type.

helper context MagicCRProfile! MagicCrSgTemplate
def: createAMFApplication (s:
Set(MagicAMFProfile!MagicSaAmfApplication), i: Integer) :
Set(MagicAMFProfile!MagicSaAmfApplication)=
 if i>0
 then
 let app: MagicAMFProfile!MagicSaAmfApplication =
 APP_Define(self.properSGT->at(1).magicSaAmfSgtMemberOf->at(1))
 in
 self.createAMFApplication (s->union(app),i-1)
 else s
 endif;

lazy rule APP_Define{
from
 s:MagicMagicProfile!MagicSaAmfAppType
to
 t:MagicMagicProfile!MagicSaAmfApplication(
 magicSafApp = CreateName(),
 magicSaAmfAppType <- s)
 }

AMF_APP_SG_SU_Transform creates the link between newly generated AMF entities

and connects them to the SGTemplate. Moreover, it creates the relation between the

generated SGs and the protected set of SIs by means of the lazy rule AMF_SI_Transform.

The rule is responsible for generating the required set of AMF SIs based on a given

SITemplate. More specifically, AMF_APP_SG_SU_Transform uses AMF_SI_Transform

for generating the SIs required by all the SITemplates aggregated by the SGTemplate.

Using the same process, AMF_APP_SG_SU_Transform uses AMF_Comp_Transform

161

to generate the required components of each newly created SU and to connect them to the

SU.

lazy rule AMF_Comp_Transform {
from
 s: MagicCRProfile! MagicCrCsiTemplate
using{
 --Calculates the number of components
 NumOfComp : Integer =
max(
self.magicCrBelongsToSiTemplate.magicCrBelongsToSgTemplate.magicCrGroup
sSiTemplates
->collect(sitemp|sitemp.magicCrSiTempGroups)
->select(csitemp|csitemp.magicCrCsiTempCsType =
self.magicCrCsiTempCsType)
->iterate(v, active:Integer = 0| active +
v.magicCrCsiTempNumberofCsis*v.magicCrBelongsToSiTemplate.activeLoadper
SU)/
 (MagicSaAmfCtCsType.allInstances
 ->select(ctcst|ctcst.magicAmfSupportedby = s.properCt->at(1)
 and ctcst.magicSafSupportedCsType =s.csiCSType)
 ->at(1). magicEtfMaxNumActiveCsi ,

 ->collect(sitemp|sitemp.magicCrSiTempGroups)
->select(csitemp|csitemp.magicCrCsiTempCsType =
self.magicCrCsiTempCsType)
->iterate(v, standby:Integer = 0| standby +
v.magicCrCsiTempNumberofCsis*v.magicCrBelongsToSiTemplate.stdbLoadperSU
)/
 (MagicSaAmfCtCsType.allInstances
 ->select(ctcst|ctcst.magicAmfSupportedby = s.properCt->at(1)
 and ctcst.magicSafSupportedCsType =s.csiCSType)
 ->at(1). magicEtfMaxNumStandbyCsi)-
--Deducting the number of Component of the same Component Type created
for the other CSITemplates
self.magicCrBelongsToSiTemplate.magicCrBelongsToSgTemplate.magicCrGroup
sSiTemplates
->collect(sitemp|sitemp.magicCrSiTempGroups)
->select(csitemp|csitemp.properAmfCt->at(1) = self.properAmfCt->at(1))
->iterate(v, compNum:Integer = 0| compNum + v.properAmfComp->size())

);

}
to
 t: MagicCRProfile! MagicCrCsiTemplate (
 properAmfComp <- s.createAMFComp(Set{},NumOfComp)
)
}

The AMF_Comp_Transform rule refines the CSITemplate by adding the links from these

templates to the AMF Components. The number of components that are required to

162

support the required number of CSIs is calculated based on the active load of the SU that

will aggregate these components. This active load is calculated based on the required

redundancy model expressed by the SGTemplate which contains the SITemplate that

aggregate the current CSITemplate. The above presented code shows the part of the rule

which calculates the number of components for the case of the N-Way redundancy

model. The required set of AMF Components is generated by means of the helper

function (createAMFComp) which takes the required number of components

(NumOfComp) as an input. This helper function is similar to createAMFApplication.

After the generation of components, AMF_APP_SG_SU_Transform targets the definition

of links between the required SIs and the newly created SGs which will protect them.

lazy rule AMF_SI_Transform {
from
 s: MagicCRProfile! MagicCrRegularSiTemplate

to
 t: MagicCRProfile! MagicCrRegularSiTemplate (
 properAmfSI <- s.createAMFSI(Set{},s.magicCRSiTempNumberofSis),
)
do{
 for (si in t.properAmfSI){
 si.magicAmfSIGroups <- s. magicCrSiTempGroups
 -> collect (e|AMF_CSI_Transform(e).properAmfCSI);
If s. magicCrSiTempDependsOn->notEmpty()
then si. magicAmfDepends <- s. magicCrSiTempDependsOn->collect(sitemp|
sitemp. properAmfSI)
endif
 }
 }
}

The generation of the SIs is described by the lazy rule AMF_SI_Transform shown above.

This rule refines the SITemplate by adding the links to the set of SIs that is generated by

means of the createAMFSI helper function. This function takes as input the required

number of SIs and generates these entities using the same approach already described for

163

the case of AMF Application entities. AMF_SI_Transform invokes createAMFSI by

passing the number of SIs which is specified by the SITemplate. Moreover,

AMF_SI_Transform establishes the links between the newly generated SIs and their

grouped CSIs by calling the AMF_CSI_Transform lazy rule. In addition, based on the

dependency relationships specified in the SITemplate, this lazy rule establishes the

dependency relationships between the newly created SIs and the SIs of the SITemplate on

which the current SITemplate depends.

lazy rule AMF_CSI_Transform {
from
 s: MagicCRProfile!MagicCrCsiTemplate
to
 t: MagicCRProfile!MagicCrCsiTemplate(
 properAmfCSI <- s.createAMFCSI(Set{},s.magicCRCSiTempNumberofCsis)
)
do{
 for (csi in t.properAmfCSI){
 if s. magicCrcCsiTempDependsOn->notEmpty()
 then csi. magicSaAmfCSIDependencies<- s. magicCrCsiTempDependsOn
 ->collect(csitemp| csitemp. properAmfCSI)
 endif
 }
 }
}

AMF_CSI_Transform (shown above) refines the CSITemplate by specifying the links

between the template and the required set of CSIs. CSIs are generated invoking the

createAMFCSI helper function which takes as input the required number of CSIs.

createAMFCSI uses the same approach applied for the generation of AMF Application

entities. AMF_CSI_Transform calls createAMFCSI by passing the number of CSIs

expressed in the CSITemplate. Moreover, based on the dependency relationships

specified in the CSITemplate, this lazy rule establishes the dependency relationships

between the newly created CSIs and the CSIs of the CSITemplate on which the current

CSITemplate depends.

164

6.4.2 Step 2: Generating Deployment Entities

After creating service provider and service entities based on the previously generated

entity types, in this step we generate the deployment entities. Moreover, we deploy the

service provider entities (e.g. SU) on deployment entities (e.g. Node). For the sake of

simplicity, our approach assumes that all the nodes are identical and thus the SUs are

distributed among nodes evenly. The number of nodes and their attributes are explicitly

specified in the Configuration Requirements by means of the NodeTemplate element.

The creation of the deployment entities is supported by two different transformations that

target the generation of AMF Nodes and AMF Cluster respectively. The following code

shows an ATL implementation of these transformations rules.

rule AMF_Node_Transform {
from
 s: MagicCRProfile! MagicCrNodeTemplate

using{
 TotalNumOfSUs : Integer = MagicAmfLocalServiceUnit.allInstances()-
>size();
 counter : Integer = 0
}

to
 t: MagicCRProfile! MagicCrNodeTemplate (
 properAmfNode <-createAMFNode(Set{},s.magicCRNumberOfNodes),
magicAmfBelongsTo <- AMF_Cluster_Transform(s.magicCRNodeBelongsTo)
)
do {
 for (node in t.properAmfNode){
node.magicAmfConfigureFor <- MagicAmfLocalServiceUnit.allInstances()->
asSequence()->subSequence
(counter*TotalNumOfSUs/s. magicCRNumberOfNodes,
(counter+1)*TotalNumOfSUs/s. magicCRNumberOfNodes);
 counter = counter +1;
 }

 }
}

lazy unique rule AMF_Cluster_Transform {
from
 s: MagicCRProfile!MagicCrCluster

165

to
 t: MagicCRProfile!MagicCrCluster(
 properAmfCluster <-createAMFCluster(Set{},1)
)
}

Notice that similar to the above presented case, the generation uses the helper function to

create the required number of AMF entities.

6.4.3 Step 3: Finalizing the Generated AMF Configuration

As previously presented in Figure 6-3, the result of this phase is a model which is an

instance of the AMF sub-profile. Therefore, once all the required entities have been

generated, the final step consists of removing all Configuration Requirements elements

which were used to generate the AMF configuration. This step simply consists of copying

(without any change) all the AMF configuration elements and the relationships among

them while leaving out the Configuration Requirements elements. To this end, for each

AMF configuration entity and entity type it is required to define a transformation rule.

These rules simply move the attributes of each model element as well as the relationships

among them to the target model (AMF configuration). These rules are rather

straightforward and thus are not presented in this dissertation.

6.5 Limitations

In order to specify the requirements, we have used a new artefact, called configuration

requirement models. However, the CR model specifies the services to be provided and

protected as well as their properties using elements which are close to AMF

configurations concepts. As such, in order to specify the configuration requirements, one

needs to 1) have the knowledge of SA Forum specifications, and 2) specify the

166

requirements at a low level of abstraction close to AMF standard concepts and far from

the usual user requirements. Our approach can be improved by designing a requirement

engineering phase which processes the high level user requirements and refines them into

configuration requirement elements.

6.6 Summary

In this chapter we discussed our model-based approach for the generation of AMF

configurations. This approach is based on our modeling framework. The proposed

approach overcomes the complexity of the generation process by raising the level of

abstraction at which the configuration properties must be defined. Compared to the code-

centric approach [Kanso 2008 and Kanso 2009], our model-based approach offers a

simplified generation process with a reduction of potential errors or inconsistencies. More

specifically, by using a model transformation technique and a declarative implementation

style, these rules abstract from the operational steps that are necessary for generating

target elements. These rules simply specify the characteristics of the elements that have to

be created without imposing operational constraints on how the target elements need to

be created.

We have designed our approach in a modular and stepwise manner in which each step is

supported by a set of transformation rules. The input and output of each transformation is

an instance of the sub-profiles. Therefore, the interfaces between the different generation

steps are formally defined in terms of modeling artefacts. As a consequence, the proposed

approach is flexible and can be easily extended and refined. We have also directly reused

the domain knowledge that has been acquired and modeled in the three sub-profiles.

Finally, we have implemented our model-driven configuration generation approach using

167

ATL, a widely known toolkit for model transformation. Using these de-facto standard

technologies will certainly result in a higher wider acceptance of the approach.

In the next chapter we will illustrate the effectiveness of the model-based configuration

generation through the design of an AMF configuration for an online banking system.

168

Chapter 7

7 Implementation of the
Framework and Application

To demonstrate the effectiveness of AMF configuration management framework, we

used our model-based framework to develop a configuration for an online banking

system which allows customers to conduct financial transactions using a secure web

interface. In this chapter, we first introduce our prototype tool. Then, we use it for the

case study and start by presenting the description of the software entities in the domain of

online banking through an instance of our ETF sub-profile. After, we present the

description of the requirements of the system for which we aim to generate an AMF

configuration. These requirements are captured as an instance of the CR sub-profile.

Finally, we apply the model-based AMF configuration generation approach.

7.1 Implementation of the Model-based Framework

We implemented the AMF profile in the IBM Rational Software Architect (RSA) [IBM

2011]. RSA is a UML 2.0 based integrated software development environment which

supports UML extension capabilities and is built on top of the Eclipse platform [Eclipse

2011a]. The combination of RSA and Eclipse Modeling Framework (EMF) [Eclipse

2011b] provides a powerful capability for integrating new domain concepts with UML in

a single toolset. By using the visualization and metamodel integration services, RSA

169

integrates different metamodels, allowing them to reference one another. Therefore, it

facilitates the model-driven approach for generating, validating, and analyzing models

[Leroux 2006].

Compared to other modeling tools, RSA provides its users with a quicker and simpler

way of creating UML profiles in order to address domain-specific concerns [Leroux

2006]. In addition, since RSA’s internal model representations are based on EMF

metamodels, RSA allows users to visualize and integrate models and model elements

from different domain formats. Therefore, RSA has a high degree of interoperability with

other modelling tools [Leroux 2006].

Finally, our choice of using RSA also lies in the conclusions of the study conducted by

Amyot et al. [Amyot 2006]. The authors compared different UML 2.0 integrated software

development environments which support the design of UML profiles. This comparison

was based on the capabilities of the tools such as integration with other tools and the

effort required for defining a profile. RSA was found to be one of the most complete

tools in its category.

Our process for generating model-driven configuration was implemented using ATLAS

Transformation Language (ATL). ATL [Jouault 2006], a model transformation language,

constitutes part of the Atlas Model Management Architecture (AMMA) platform and was

created in response to the OMG MOF2.O /QVT RFP [OMG 2007c]. ATL is used in the

transformation scheme shown in Figure 7-1, permitting the transformation of the source

model Ms, an instance of the source metamodel MMs, into the target model Mt, an

instance of the target metamodel MMt.

170

ATL is a hybrid language which supports both imperative and declarative programming

styles. In addition to specifying the mappings between source and target model elements,

ATL provides imperative constructs, which help in specifying the mappings that are not

easily expressed in a declarative manner.

ATL is implemented as an Eclipse project and forms part of the Model-to-Model (M2M)

Eclipse project [Eclipse 2011d], a sub-project of the Eclipse Modeling Project [Eclipse

2011c]. We have used the Eclipse ATL Integrated Development Environment (IDE), an

Eclipse plug-in built on the top of EMF, to develop the model-based AMF configuration

generation approach discussed in Chapter 6.

Figure 7-1 ATL Transformation scheme

7.2 The Online Banking System

Online banking is a system allowing users to perform banking activities via the internet.

The features of this system include account transfers, balance inquiries, bill payments,

and credit card applications. In this section we present the description of the software

entities for online banking systems and, for this purpose, we have used our ETF sub-

profile. It is worth noting that the ETF model for online banking system includes the

description of the variety of software entities which can be used to design an online

MOF

MMs ATL MMt

Ms Mt MMs2MMt.atl

171

banking application based on the requirements of the customer. This model often has

different alternative software entities which can provide the same functionality. In fact,

the AMF configuration generation is responsible for selecting the appropriate option

which satisfies the configuration requirements.

7.2.1 The Billing Service

The electronic billing service is a feature of online banking which allows clients to view

and manage their invoices sent by e-mail. It also provides online money transfers from

the client’s account to a creditor’s or vendor’s account. Figure 7-2 presents the ETF

model for the billing system of our online banking software bundle. It consists of an

SUType (Billing) which provides BillingService SvcType. “Billing” includes

BillManager Component Type which provides services for viewing and paying bills

(ViewBill and PayBill CSTypes). ViewBill depends on the EPostCommunication

Component Type and PayBill is sponsored by ExtenalAccountManager through its

ExternalBankCommunication CSType.

172

Figure 7-2 ETF model for billing part of an online banking software bundle

7.2.2 The Authentication Service

Security is one of the most important concerns for online banking systems. In our

software bundle we have two different Component Types, namely

CertifiedAuthentication and BasicAccessAuthentication, which provide the

authentication service protecting clients’ information (See Figure 7-3).

173

Figure 7-3 ETF model for the authentication part of an online banking software bundle

7.2.3 The Money Transfer Service

The fund transfer part of our sample online banking software bundle provides four

different categories of money transfer services (see Figure 7-4):

1) Transferring money between the different accounts belonging to the same client

(e.g. between saving and chequing accounts) which is provided by

MoneyTransfer Component Type.

2) Performing money transfers from a client’s account to another client’s account(s)

within the same banking institution. This service is provided by MoneyTransfer

Component Type and is sponsored by the LocalAccountCommunication CSType

of the ExternalAccountManager Component Type.

174

3) Performing money transfers from a client’s account to an account held by a

different banking institution. This service is provided by MoneyTransfer

Component Type and is sponsored by ExternalAccountCommunication CSType

of the ExternalAccountManager Component Type.

4) Transferring funds to the Visa account of a client which is supported by

VisaPayment Component Type and is sponsored by VisaAccountCommunication

CSType of the ExternalAccountManager Component Type.

Figure 7-4 ETF model for money transfer part of online banking software bundle

7.2.4 Web Server and User Interface

In order to support the web based interface, the online banking software bundle includes

two well-known solutions, Apache Web Server and IBM WebSphere, which are

represented through two different ETF SUTypes in Figure 7-5. WebSphereServer

175

SUType includes WebSphere Component Type and ApacheServer groups Apache

Component Type. Both Component Types provide the Web CSType which forms the

WebServiceType SvcType. The difference between WebSphere and Apache Component

Types lies in the component capability model for providing Web CSType. More

specifically, the component capability model for Apache is

MAGIC_ETF_COMP_1_ACTIVE while this attribute is equal to

MAGIC_ETF_COMP_X_ACTIVE_AND_Y_STANDBY for WebSphere. In other

words, Apache has more limitations than WebSphere in providing the Web CSType (e.g.

Apache cannot participate in an SU aggregated in an SG with N-Way redundancy

model).

Figure 7-5 ETF model for web server part of online banking software bundle

176

The web based user interface of the online banking system consists of a set of web

modules. In the ETF model in Figure 7-6 these web modules are presented in terms of

ETF Component Types grouped into an SUType called UserInterface.

Figure 7-6 ETF model for user interface part of online banking software bundle

7.2.5 Database Management System

MySql server and oracle server are included in the online banking software bundle and

form the DBMS part of this bundle. They are both modeled in terms of ETF SUTypes

(MySqlServer and OracleServer) and both provide the DataBaseManagement SvcType

(See Figure 7-7).

177

Figure 7-7 ETF model DBMS part of online banking software bundle

7.2.6 General Inquiries

The online banking software also includes a number of software entities providing

services for public users such as financial advice, mortgage calculations, currency

exchange information, and information about the various branches and ATM machines.

In order to use these services, users do not need to be clients of the banking institution

and, therefore, authentication is not necessary for them. Figure 7-8 represents the ETF

model describing the software entities for general inquiries. Advice&Tools Component

Type provides FinancialAdvice, MortgageCalculator, and CurrencyExchangeCalculator

CSTypes. General Information Provider Component Type provides the

ATM/BranchLocator CSType sponsored by the MapInformation CSType which is

provided by the GoogleMap Component Type.

178

Figure 7-8 ETF model for the general inquiries part of an online banking software bundle

7.2.7 Transaction Information

One of the most useful services in online banking systems involves providing information

concerning the recent transactions of the client’s account. Some examples of such

services include viewing recent transactions, downloading bank statements, and viewing

images of paid cheques. The ETF elements of providing these services are presented in

Figure 7-9.

179

Figure 7-9 ETF model for the transaction information part of an online banking software bundle

7.2.8 SUType Level Dependency

The dependency between SUTypes of an online banking system is shown in Figure 7-10.

In particular, providing UserInterface service WebUI SUType depends on the provision

of the WebServiceType SvcType. The DataBaseManagement SvcType sponsors the

provision of the AuthenticationServiceType by Authentication SUType.

180

Figure 7-10 SUType level dependency

7.3 Configuration Requirements for the Online Banking System

The ETF model of the previous section describes the software which contains the

software entities for online banking systems. It often includes different software

components for providing the same services and thus includes different alternative

solutions. For instance, the number of active/standby assignments that two different

components can support for providing the same functionality may vary. This may make

one software entity an appropriate match for satisfying configuration requirements over

other possible alternatives.

The requirements needed to be satisfied by an AMF configuration of a given application

are specified in a configuration requirement model, i.e. an instance of the CR sub-profile.

181

In this section we specify the configuration requirements of a specific imaginary online

banking system called Safe Bank. The configuration requirements are defined based on

the high level requirements specified by stakeholders of Safe Bank. In other words, it is

the responsibility of the software analyst to extract configuration requirements from the

software requirement specification. It is worth noting that the process of refining software

requirements into configuration requirements is beyond the scope of this thesis.

Therefore, in this section we only present the results of this refinement process i.e. the

configuration requirement model. In the following sections, using our model-based

configuration generation method and basing our approach on the software bundle

presented in Section 7.2, we generate an AMF configuration for the Safe Bank online

banking system which satisfies these requirements.

Figure 7-11 The SGTemplates of the Safe Bank online banking system

Figure 7-11 shows the SGTemplates of the configuration requirement model for this

system grouped in an Administrative Domain element called Safe Bank. The values of

the attributes for each SGTemplate are represented in Table 7-1. These attributes specify

the requirements of the redundancy model for each SGTemplate and are extracted from

software requirement specification. For instance, for more critical SGTemplates such as

Security and DB, the required redundancy model is N-Way which supports a higher level

182

of service protection. On the contrary, the 2N redundancy model is specified for less

critical SGTemplates, e.g. Webmodules and Information.

Table 7-1 List of values of attributes of the SGTemplates specified for the Safe Bank online banking system

Attribute SGTemplate Information Banking Security DB WebServer WebModules

magicCrSgTempRedundancyModel 2N N+M N-Way N-Way N+M 2N

magicCrSgTempNumberofActiveSus 1 2 3 3 3 1

magicCrSgTempNumberofStdbSus 1 1 0 0 1 1

WebModules defines the requirements for the SG responsible for protecting the services

provided at the web user interface level. It consists of Private and Public SITemplates

which depend on the WebServerService SITemplate of WebServer SGTemplates (see

Figure 7-12). Table 7-2 presents the values of the attributes of these SITemplates and

their aggregated CSITemplates. The Public SITemplate models the requirements of the

UI services needed to be provided for system users who are not necessarily Safe Bank

clients. The Private SITemplate, on the other hand, defines the requirements of the UI

services provided only for Safe Bank clients. It consists of two CSITemplates,

TransactionUI and TransactionInfoUI, which specify the configuration requirements of

the user interface for transactional services and statement information services,

respectively. Once again, the values of these attributes are specified as a result of the

requirement refinement performed by the software analyst. For instance, the required

number of active/standby assignments is defined based on the required level of

protection. The number of SIs, however, is specified based on the expected workload in

the system. Since the Public SITemplate specifies the part of the system which is visible

for both authorized and unauthorized users, the number of SIs is twice the number of SIs

183

specified for the Private SITemplate which is only accessible for authorized users. Note

that the value of the additional attributes (expectedSIsperSG, activeLoadperSU, and

stdbLoadperSU) are calculated and populated using the CR_Preprocessing rule from the

previous chapter and are based on the parameters specified in the CR model.

Table 7-2 List of the values of attributes of SITemplates and CSITemplates of WebModules and WebServer

SGTemplates

Attribute SITemplate Public Private WebServerService

magicCrSiTempSvcType WebUI WebUI WebServiceType

magicCrSiTempNumberofActiveAssignments 1 1 1
magicCrSiTempNumberofStdbAssignment 1 1 1
magicCrRegSiTempNumberofSis 20 10 5

magicCrRegSiTempMinSis 10 10 5

expectedSIsperSG(Calculated) 10 5 5

activeLoadperSU(Calculated) 10 5 2

stdbLoadperSU(Calculated) 10 10 5

Attribute CSITemplate GeneralUI TransactionUI TransactionInfoUI Web

magicCrCsiTempCsType GeneralWebInfo Transaction

WebInterface

TransactionInfoWeb

Interface

Web

magicCrCsiTempNumberofCsis 1 1 1 1

184

Figure 7-12 Configuration requirement elements of WebModules and WebServer SGTemplates

Figure 7-13 Configuration requirement elements of Security, Information, and DB SGTemplates

The configuration requirement elements defined for Security, Information, and DB

SGTemplates are illustrated in Figure 7-13 and the values of their attributes are specified

in Table 7-3.

185

Table 7-3 List of the values of attributes of SITemplates and CSITemplates of Security, Information, and DB

SGTemplates

Attribute SITemplate Authentication LocationInfo DatabaseManagement

magicCrSiTempSvcType AuthenticationService

Type

GeneralInqueries DatabaseManagement

magicCrSiTempNumberofActiveAssignments 2 1 2

magicCrSiTempNumberofStdbAssignment 1 1 1

magicCrRegSiTempNumberofSis 5 1 5

magicCrRegSiTempMinSis 5 1 5

expectedSIsperSG(Calculated) 5 1 5

activeLoadperSU(Calculated) 5 1 5

stdbLoadperSU(Calculated) 3 1 3

Attribute CSITemplate CertificateAuthentication

Service

Branch/ATM

LocationInfo

MapInfo DBService

magicCrCsiTempCsType AuthenticationService ATM/

BranchLocator

MapInfo

rmation

DBService

magicCrCsiTempNumberofCsis 1 1 1 1

Figure 7-14 Configuration requirement elements of Banking SGTemplate

186

The configuration requirement elements defined for Banking SGTemplate are illustrated

in Figure 7-14 and the values of their attributes are specified in Table 7-4. Banking

SGTemplate specifies three different SITemplates:

• TransactionManagement, which specifies the configuration requirements for

money transfer services, i.e. internal money transfers between a client’s accounts

and local money transfers for transferring money between two different Safe

Bank clients.

• CreditCardService, characterizing the required transactions of credit cards limited

to credit card balance payments in the Safe Bank system.

• TransactionInfo, which models the requirements of different account information

services.

Table 7-4 List of the values of attributes of SITemplates and CSITmplates of Banking SGTemplates

Attribute SITemplate Transaction Management

magicCrSiTempSvcType TransactionService

magicCrSiTempNumberofActiveAssignments 1
magicCrSiTempNumberofStdbAssignment 1
magicCrRegSiTempNumberofSis 1

magicCrRegSiTempMinSis 1

expectedSIsperSG(Calculated) 1

activeLoadperSU(Calculated) 1

stdbLoadperSU(Calculated) 1

Attribute CSITemplate LocalMoneyTransfer InternalMoneyTransfer LocalAccountCommunication

magicCrCsiTempCsType LocalMoneyTransfer InternalMoneyTransfer LocalAccountCommunication

magicCrCsiTempNumberofCsis 1 1 1

187

Attribute SITemplate CreditCard Service TransactionInfo

magicCrSiTempSvcType TransactionService TransactionInfo

magicCrSiTempNumberofActiveAssignments 1 1
magicCrSiTempNumberofStdbAssignment 1 1
magicCrRegSiTempNumberofSis 1 2

magicCrRegSiTempMinSis 1 2

expectedSIsperSG(Calculated) 1 2

activeLoadperSU(Calculated) 1 1

stdbLoadperSU(Calculated) 1 2

Attribute CSITemplate Credit

Payment

VisaAccount

Communication

Saving AccInfo Chequing AccInfo

magicCrCsiTempCsType PayVisaBalance VisaAccount

Communication

Saving Statement Chequing Statement

magicCrCsiTempNumberofCsis 1 1 1 1

The required deployment infrastructure is specified in terms of NodeTemplate and the

properties of the cluster are modeled using an element called Cluster. The configuration

requirement for the deployment infrastructure consists of one Cluster and one

NodeTemplate which implies that all nodes of the cluster are identical. The number of

required nodes equals to 10 and Figure 7-15 shows the CR elements for deployment

infrastructure.

Figure 7-15 Configuration requirements for deployment infrastructure

188

7.4 Generation of an AMF Configuration for Safe Bank Online

Banking System

7.4.1 Selecting ETF Types

The selection of ETF types is performed based on the rules in the steps presented in

Section 6.2 and considering the selection criteria: service provision, the component

capability model, the redundancy model, the load of the SUs, and the dependency

between different elements used to provide services. For instance, in the CR model,

DBService CSITemplate specifies the required CSType as DBService and thus, both

Oracle and MySql ETF Component Types can be selected for this CSITemplate (see

dashed lines in Figure 7-16). The required service type specified through the parent

SITemplate is DatabaseManagement which is also supported by OracleServer and

MySqlServer SUTypes. However, the redundancy model specified by DB SGTemplate is

N-Way, requiring that the Component Types have the component capability model of

MAGIC_ETF_COMP_X_ACTIVE_AND_Y_STANDBY which is only supported by the

Oracle Component Type. Therefore, the MySql Component Type is removed from the set

of appropriate Component Types of the DBService CSITemplate.

189

Figure 7-16 ETF Type selection phase for the DBMS part of online banking ETF

Since OracleServer provides the required SvcType and supports the required load,

OracleServer SUType is selected for DatabaseManagement SITemplate in the

SITemplate refinement step. Figure 7-16 shows the effect of the ETF Type Selection

transformation step on the DBMS part of online banking ETF. Seeing as the elements

marked by the black diamond do not satisfy all specified requirements, they will be

pruned out of the model.

Figure 7-17 shows another example of applying the ETF Type Selection step by

performing it on part of the Banking SGTemplate. In this figure the dashed lines connect

the selected ETF type for each CR element. Since the MoneyTransfer part of our ETF

model does not include any SUTypes, this phase only selects appropriate Component

Types for CSITemplates. To this end, MoneyTransfer Component Type has been selected

for both LocalMoneyTransfer and InternalMoneyTransfer CSITemplates due to the

190

provision of InternalMoneyTransfer and LocalMoneyTransfer CSTypes by this

Component Type. ExternalAccountManager Component Type has been selected for

LocalAccountCommunication CSITemplate in order to provide the service necessary for

managing the communication between the accounts of Safe Bank’s clients. It is worth

noting that the dependency relationship between LocalMoneyTransfer and

LocalAccountCommunication CSITemplates is compliant with the dependency between

LMT_CtCst and LAC_CtCst ETF elements (see Figure 7-17). Therefore, the selected

ETF types successfully pass refinement step based on SI dependency presented in Section

6.2.4.

Similarly, the ETF type selection phase is performed on the rest of the CR model

elements, but will be omitted for the sake of avoiding repetition.

Figure 7-17 ETF Type selection phase for TransactionManagement SITemplate

191

7.4.2 Creating AMF Types

The next step is to create AMF types based on the selected the ETF types, For instance,

Figure 7-18 shows the AMF types which were created based on the set of selected ETF

types presented in Figure 7-16 of the previous section. This model is the result of

applying the transformation steps of the AMF type creation phase (see Section 6.3) on the

set of selected ETF types. More specifically, the AMF SGType called DB is created from

scratch for DB SGTemplate, since there is no ETF SGType selected for this SGTemplate.

Moreover, DataBaseManagement SITemplate, OracleServer AMF SUType and

DataBaseManagement AMF SvcType are created based on OracleServer ETF SUType

and DataBaseManagement ETF SvcType, accordingly. Finally, Oracle AMF Component

Type and DBService AMF CSType are created based on Oracle ETF Component Type

and DBService ETF CSType, respectively, and are linked to DBService CSITemplate.

Figure 7-18 AMF Type creation phase for the DBMS part of online banking configuration

192

Another example of the AMF type creation phase for TransactionManagement

SITemplate is presented in Figure 7-19, Figure 7-20, and Figure 7-21. Figure 7-19 shows

the creation of the Banking AMF SGType for the Banking SGTemplate as well as the

generation of TransactionManagement AMF SUTypes and TransactionService AMF

SvcType for TransactionManagement SITemplate. It is worth noting that, since the ETF

model does not include any ETF SUTypes or any ETF SGTypes, the generation of the

respective AMF types is performed from scratch.

Figure 7-19 AMF SGType, AMF SUType, and AMF SvcType generation steps for TransactionManagement

SITemplate and Banking SGTemplate

193

Figure 7-20 presents the result of the AMF Component Type and CSType generation

phase (see Section 6.3.3) for the CSITemplates of the TransactionMangement

SITemplate. In this step the AMF types are generated based on the selected ETF types

which resulted from the ETF type selection phase. For purposes of clarity, in Figure 7-20

uses the same names for both ETF types and their respective generated AMF types.

Finally, Figure 7-21 shows the generated AMF types and the relationships created

between them for TransactionManagement SITemplate as well as its parent SGTemplate

and its CSITemplates resulting from the AMF type creation phase.

Figure 7-20 AMF Component Type and AMF CSType generation steps for the CSITemplates of

TransactionManagement SITemplate

194

Figure 7-21 Created AMF Types for the transaction management part of online banking configuration

7.4.3 Creating AMF Entities

After creating the AMF entity types, the final phase of the transformation concerns

creating the AMF entities for each previously defined AMF entity type based on the

information captured by the Configuration Requirements. More specifically, the CR

model specifies a set of requirements from which our model-based approach extracts the

number of AMF entities necessary to be created. In Section 6.4.1, we specified the ATL

rules for calculating the number of entities to be generated. In this section we present the

required number of AMF entities for the part of the configuration concerning the DBMS

service of Safe Bank’s online system. DB SGTemplate has only one SITemplate,

DatabaseManagement, and in this SITemplate the minimum number of SIs and the

number of required SIs are equal to 5. Therefore, the number of required SGs to be

created is equal to one. As specified in DB SGTemplate (see Table 7-1), the required SG

195

should support the N-Way redundancy model and the number of member SUs equals 3.

The number of components to be generated in each SU is calculated based on the

capability of each component in providing CSIs in active and in standby mode. In the

ETF model such a capability is described in the association class between Component

Type and CSType (i.e. MagicEtfCtCSType) in terms of magicEtfMaxNumActiveCsi and

magicEtfMaxNumStandbyCsi attributes. The value of these attributes is transformed into

the attributes of its respective AMF type i.e. MagicSaAmfCtCSType. In this example the

value of both attributes is equal to 3 and specified in the DB_CtCst association class

between the Oracle AMF Component Type and DBService AMF CSType. To this end,

based on the calculations specified in the ATL rules of Section 6.4.1, the number of

components of each SU is equal to 2. The number of SIs and CSIs to be generated in the

configuration are specified explicitly according to SITemplate and CSITemplate elements

and can be easily extracted.

196

Figure 7-22 AMF entity creation phase for the DBMS part of online banking configuration

Figure 7-22 shows AMF entities instantiated for the DBMS part of the online banking

system. It should be noted that the links between AMF entity types and AMF entities are

omitted from this figure for readability purposes. Moreover, the elements of the CR

197

model will also be pruned out in the very last step of the AMF type creation phase (see

Section 6.4.3).

Finally, at the deployment level, ten identical nodes are created and all SUs in the

configuration are evenly distributed among these nodes. A single cluster is generated to

group these nodes.

7.5 Validation of the Model-based AMF Configuration Generation

Approach

The extensive usage of model transformations in the development of systems has led

researchers to apply software development techniques, such as formal validation and

verification as well as testing approaches on model transformations.The formal validation

and verification of transformations have been studied by different research groups. Varro

and Pataricza [Varro 2003] proposed a model-level automated technique to formally

verify model transformations. Their approach verifies whether the transformation from a

specific well-formed source model into its target equivalent preserves the dynamic

consistency properties of the target metamodel. This approach is based on model

checking and has practical limitations imposed by the state explosion problem.

In [Küster 2004], the author introduced a systematic approach for the validation of

transformations, focusing on their syntactical correctness. This work has been continued

and presented in [Küster 2006] by focusing on the formal investigation of the termination

and confluence properties of model transformations, i.e. to ensure that, given a source

model, a model transformation always produces a unique target model as result. Although

the author presents the theoretical part of the approach that needs to be taken into

198

consideration by software designers, the tool support component was not presented in

these works.

In a recent paper [Cabot 2010] Cabot et al. proposed verification and validation

techniques for M2M transformations based on the analysis of a set of OCL invariants

automatically derived from the declarative description of the transformations. These

invariants state the conditions that must hold between a source and a target model in

order to satisfy the transformation definition. These invariants, together with the source

and target meta-models, form transformation models and were analyzed by translating

them into a constraint satisfaction problem using the UMLtoCSP [Cabot 2009 and Cabot

2008] tool which is then processed with constraint solvers to verify transformations. The

authors also proposed an approach for validating the transformation by generating valid

pairs of source and target models using the UMLtoCSP tool. Although the presented

approach provides a comprehensive technique for the validation and verification of the

transformations, the tool support is limited due to the complexity of the transformation

models. This results in an exponential execution time or leads to undecidable or

incomplete decision problems, hindering the scalability of the approach.

There are also other works in the area of formal verification and/or validation of model

transformations [Ehring 2007 and Lengyel 2010]. Similarly, these approaches also suffer

from scalability issues, due to computational complexity and/or the state explosion

problem. As a result, existing techniques cannot be applied on our model-based

configuration generation approach which consists of a large number of transformation

rules as well as complex input/output metamodels.

199

We believe we have followed a rigorous and stepwise process in designing the model-

based approach. Reusing the knowledge gained during the specification of our modeling

framework which was validated by a domain expert certainly decreased the probability

errors in our approach. Indeed, for specifying the transformations rules we reused most of

the OCL constraints specified in the AMF sub-profile of our modeling framework.

Designing our approach in a stepwise manner allowed us to test each step independently

by defining appropriate test cases. In each step different rules capture different possible

scenarios and through the appropriate definition of our test cases, we have activated the

pre-conditions of each rule and have covered the various possible scenarios.

Testing is a partial validation technique that can be performed on model transformation

approaches. This is a challenging activity and there is ongoing research in this field

[Baudry 2006, Baudry 2010]. This process becomes even more challenging for systems

involving model-based AMF configuration generation that have complex metamodels

with large numbers of OCL constraints. Literature reports on the number of solutions for

testing model transformations mainly follow the black box testing strategy. For instance,

McGill et al. [McGill 2007] introduced an extension of the JUnit testing framework

including model transformation which facilitates the definition of simple Java test cases

for models represented in XML. Sen et al. [Sen 2008] presented a tool for automatic test

case generation which uses Alloy language. A recent work by Ciancone et al. [Ciancone

2010] concentrates on the white box testing strategy and focuses on the testing approach

for QVTO-based model transformations. The drawback of this approach is that it is

tightly coupled to the QVTO [OMG 2007c] transformation language.

200

These approaches, however, are subject to ongoing research and mainly suffer from the

absence of a mature oracle capable of handling large complex systems and metamodels

[Mottu 2008]. The strategy we used for testing our approach is based on the traditional

black box testing [Beizer 1995]. As specified in Chapter 6, in each of the three main

phases of our approach we store the selected/created elements which can be used to test

each step individually. More specifically, in each step we checked if the transformation

rules generate the desired output based on a given input model. We have also tested the

entire approach by considering the complete set of transformatons as a black box and

focused on checking if the requirements specified in the CR model were satisfied in the

final generated AMF configuration. The criteria that can be checked for the generated SIs

in the configuration are as follows:

• The redundancy model: For each SI whether the redundancy model of the

protecting SG is compliant with the redundancy model specified in the

SGTemplate of the corresponding SITemplate.

• The number of SIs created: The number of generated SIs is the same as the

required number of SIs specified in the corresponding SITemplate.

• The dependency: The compliance between the dependency specified in the CR

model and the dependency captured in the configuration.

• The number of CSIs created: For each SI whether the number of generated CSIs is

the same as the number specified in the CSITemplates of the corresponding

SITemplate.

In addition to the abovementioned strategies, we can also test the final generated

configuration using the validation approach presented in Chapter 5. Although our

201

validation approach is designed for the validation of the third-party configurations, using

this approach will assure the validity of the configuration with respect to the concepts and

constraints of the standard specification and can be used as a test strategy for the model-

based configuration generation.

202

Chapter 8

8 Conclusion and Future Work

8.1 Conclusion

In this thesis, we have proposed a model-based framework for AMF configuration

management. The proposed approach is based on the model driven paradigm which has

been shown to result in improved quality, serviceability, portability, and flexibility. Our

approach consists of a modeling framework, an AMF configuration validation approach

and a model-based AMF configuration generation approach.

The modeling framework is built as a UML profile and is composed of three sub-profiles:

AMF, ETF, and CR. These sub-profiles specify the concepts and semantics related to

AMF configurations, the description of the software, as well as the configuration

requirements, respectively.

The AMF sub-profile facilitates the design, generation, and validation of AMF

configurations while the ETF sub-profile supports the design and specification of

software descriptions for SA Forum compliant software.

Our approach also includes a model-based method for generating AMF configurations

and another one for validating third-party AMF configurations. The model-based

configuration generation approach is based on three profiles that capture elements

representing different artefacts involved in the generation process. The proposed

203

approach is defined in terms of these artefacts and abstracts away any specific code and

implementation details. This reduces the likelihood of potential errors and improves the

maintainability of the solution, as opposed to a code-centric approach. More specifically,

by using a model transformation technique and a declarative implementation style, future

modifications of the profiles will have less impact on the implementation compared to a

code-centric approach. Furthermore, the domain knowledge that has been modeled in

profiles is reused directly in the model-driven approach. For instance, the well-

formedness rules described in the profiles in terms of OCL constraints are used to derive

the definition of the transformation rules.

Our model-driven configuration generation process is implemented using ATL, a well-

known toolkit for model transformation, and is based on previously defined UML

profiles. The usage of these de-facto standard technologies favours the diffusion and

usability of our solution. Moreover, the proposed transformation rules can be easily

integrated and executed in any UML CASE tool.

For validating third-party AMF configurations, the syntactical validation was performed

by mapping these configurations to our modeling framework and checking their

compliance against the AMF specification. We have also proposed an approach for the

semantic validation of AMF configurations, i.e. whether a given AMF configuration

provided the level of protection it claimed. To this end, we explored and discussed this

issue, referred to as the SI-Protection problem, and we proved that in the case of N+M,

N-Way and N-Way-Active redundancy models the problem is NP-hard in general. For

these three redundancy models, we identified some specific situations where the problem

can be simplified. We tackled the problem further and proposed a solution for these

204

redundancy models that is founded on heuristics and based on extensions to the well-

known bin-packing problem. As a result, we have introduced seven different heuristic

methods for checking the SI-Protection problem. To achieve better results, our approach

applies all proposed methods and determines the answer based on the outcome of these

methods. Finally, we devised an approach which incrementally adds resources to a

“likely” invalid configuration and transforms it into a valid one.

As a final note, this doctoral research has been part of the MAGIC research project which

was carried out in collaboration with Ericsson. This opportunity has provided us with a

practical real world context. Our findings have been delivered to the industrial partner in

the project.

8.2 Future Research

Several issues are left open in this thesis and will be summarized in the following

categories.

8.2.1 Model-based AMF Configuration Generation

Our model-based configuration generation approach considers the redundancy model that

should be used to protect the services. This property allows for generating AMF

configurations that can support the required protection level associated with the

redundancy model. This represents a first step towards the definition of a generation

process that considers both functional and non-functional (NF) requirements. The

proposed process could be refined considering additional NF properties belonging to the

availability category, such as the level of availability, the mean time to failure, etc.

Moreover, properties belonging to other categories also could be used to refine the

205

generation of configurations. For instance, by knowing how much a customer is allowed

to invest and the cost associated with the SW bundle elements, one could generate AMF

configurations whose cost complies with the budget. Another refinement could be

enabled by performance properties, such as the desired response time or throughout, and

the corresponding aspects of the SW bundle.

In this regard, optimizing the generated configuration according to different NF

properties can also be investigated in the future. Different design decisions and/or

patterns could be introduced and considered in the generation process for supporting the

optimization of the designed configuration according to a specific NF property.

Considering multiple NF requirements simultaneously is also a potential future research

topic.

8.2.2 Performance Evaluation of Heuristics Based Validation Approach

So far, we have checked our heuristic approaches on a limited number of small scale

configurations that were generated automatically by our AMF configuration generation

method. However, these configurations were not appropriate for the performance analysis

of the validation approach. In order to analyze the performance of the approach, it is

necessary to have a set of large scale configurations. This set also needs to include a

variety of configurations in order to cover different criteria such as the variation of SIs or

SUs based on the number of CSTypes they require/provide. Therefore, analysing such

performance is a complex task which requires the implementation of a simulation

framework for different scenarios. In addition, it is possible to introduce new heuristics

focusing on the order of the SIs or alternative sorting criteria. Future work could involve

206

the investigation of this simulation framework, a thorough analysis of the performance of

our approach, as well as the design of new heuristics.

8.2.3 Bridging the Gap between User Requirements and Configuration

Requirements

As discussed in Chapter 6, one of the limitations of our model-based AMF configuration

approach is that the CR model uses elements close to AMF configuration concepts.

Specifying CR model elements requires broad domain knowledge and expertise.

Therefore, there is a gap between the high level user requirements and the configuration

requirements. In the future we can bridge this gap by adding an extra step for processing

and refining high level requirements into configuration requirements, a step which

complements our current approach. More specifically, this additional phase incorporates

the specification and decomposition of the user requirements and generates the CR to be

used for our current approach.

8.2.4 UML Profiling

Although UML profiling is a well-known technique for the design of DSMLs, most UML

profiles were designed in an ad hoc manner, resulting in UML profiles that are either

technically invalid or of poor quality. Another major shortcoming in this area is the lack

of a well-defined evaluation mechanism for evaluating UML profiles. Therefore, the

following issues can be addressed in the future work of this research stream:

- The design of a systematic approach to improve the process of defining UML

profiles.

207

- The specification of a well-defined evaluation framework and metrics in order to

support the formal evaluation of the UML profiles.

8.2.5 Model-driven Software Development

Model transformations that analyze certain aspects of models and then produce different

types of artefacts (e.g. different models) constitute an integral part of the MDE. Despite

the efforts that have been made in proposing different tools and languages to support

model transformations, these tools focus primarily on the implementation phase of the

software development. Therefore, the objective of another future research stream could

involve the specification of a well-defined software process based on model

transformation technology. This process will represent a networked sequence of

activities, objects, and artefacts that embody strategies for accomplishing software

evolution and will prove useful for developing more precise and formalized descriptions

of software life cycle activities (e.g. analysis and design).

208

Related Publications

• P. Salehi, F. Khendek, M. Toeroe, A. Hamou-Lhadj, and A. Gherbi, “Checking

Service Instance Protection for AMF Configurations,” in Proc. of the Third IEEE

International Conference on Secure Software Integration and Reliability

Improvement, Shanghai, China, IEEE Computer Society 2009, ISBN 978-0-7695-

3758-0, pp. 269 - 274.

• A. Gherbi, P. Salehi, F. Khendek, and A. Hamou-Lhadj, “Capturing and

Formalizing SAF Availability Management Framework Configuration

Requirements”, in Proc. of the First International Workshop on Domain

Engineering (DE@CAiSE'09) 2009, ISSN 1613-0073, pp. 56-68.

• P. Salehi, A. Hamou-Lhadj, P. Colombo, M. Toeroe, and F. Khendek, “A UML-

Based Domain Specific Modeling Language for the Availability Management

Framework”, in Proc. of the 12th IEEE International High Assurance Systems

Engineering Symposium, San Jose, CA, IEEE Computer Society 2010, ISBN

978-1-4244-9091-2, pp. 35-44.

• P. Salehi, P. Colombo, A. Hamou-Lhadj, and F. Khendek, “A Model Driven

Approach for AMF Configuration Generation”, in Proc. of 6th Workshop on

System Analysis and Modelling, Oslo, Norway, Lecture Notes in Computer

Science 6598 Springer 2011, ISBN 978-3-642-21651-0, pp. 124-143.

• P. Salehi, F. Khendek, M. Toeroe, and, A. Hamou-Lhadj, “A Heuristic Approach

on Checking Service Instance Protection for AMF Configurations”, in Proc. of

209

7th International Conference on Network and Service Management, Paris, France,

2011. [Acceptance Rate 15%]

• P. Salehi, A. Hamou-Lhadj M. Toeroe, P. Colombo, F. Khendek, “A Model

Driven Approach for Availability Management Framework (AMF) Configuration

Generation”, patent filed by Ericsson Canada, 2011.

Technical Reports Delivered to Industrial Partner

• A Model Driven Approach for Availability Management Framework

Configurations Generation, 2011.

• A Heuristic Approach on Checking Service Instance Protection for AMF

Configurations, 2011.

• A UML Profile for the Availability Management Framework Configurations

version 2.0, 2010.

• A UML Profile for the Entity Types File version 2.0, 2010.

• A UML Profile for the Entity Types File version 1.0, 2009.

• A UML Profile for the Availability Management Framework Configurations

version 1.0, 2008.

210

9 Bibliography

[Aagedal 2005] J. Aagedal, J. Bezivin, and P. Linington, "Model-driven
development," 2005. in: Malenfant, J. and Ostvold, Bjarte.M., eds.
ECOOP 2004 Workshop Reader. LNCS, 3344. Springer-Verlag, pp.
148-157.

[Abouzahra 2005] A. Abouzahra, J. Bézivin, M. Didonet Del Fabro, and F. Jouault.,
“A practical approach to bridging domain specific languages with
UML profiles,” in Proc. of the Workshop on Best Practices for
Model Driven Software Development, OOPSLA, San Diego, USA,
2005.

[Amyot 2006] D. Amyot and J. Roy, “Evaluation of Development Tools for
Domain-Specific Modeling Languages,” In 5th International
Workshop on System Analysis and Modeling, LNCS v. 4320
(2006).

[AUTOSAR 2006] AUTOSAR GbR, UML Profile for AUTOSAR Specification,
Version 1.0.1. 2006, URL: http://www.autosar.org.

[Baudry 2006] B. Baudry, T. Dinh-Trong, J.M. Mottu, D. Simmonds, R. France, S.
Ghosh, F. Fleurey, and Y. Le Traon, “Model transformation testing
challenges,” in Proceedings of IMDT workshop in conjunction with
ECMDA’06, Bilbao, Spain, 2006.

[Baudry 2010] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y.L. Traon and, J.M.
Mottu, “Barriers to systematic model transformation testing,”
Communications of the ACM 53(6), pp.139-143, (2010)

[Belloni 2006] E. Belloni, and C. Marcos, "MAM-UML: An UML Profile for the
Modeling of Mobile-Agent Applications," in Proc. of the 24th
International Conference of the Chilean Computer Science Society,
2004, pp.3-13.

[Bernardi 2008] S. Bernardi, J. Merseguer, and D. Petriu, "Adding dependability
analysis capabilities to the MARTE profile," in Proc. of the 11th
international conference on Model Driven Engineering Languages
and Systems, Toulouse, France, 2008, pp. 736-750.

[Beizer 1995] B. Beizer, “Black-box testing: techniques for functional testing of
software and systems”, John Wiley & Sons, Inc., New York, NY,
1995

211

[Cabot 2008] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL class
diagrams using constraint programming,” in MoDeVVa 2008. ICST
Workshop, pp. 73–80.

[Cabot 2009] J. Cabot and E. Teniente, “Incremental integrity checking of
UML/OCL conceptual schemas,” Journal of Systems and Software
vol. 82 (9), pp. 1459-1478.

[Cabot 2010] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara, “Verification and
validation of declarative model-to-model transformations through
invariants,” Journal of Systems and Software, vol. 83, 2010, pp.
283-302.

[Ciancone 2010] A. Ciancone, A. Filieri, and R. Mirandola, “MANTra: Towards
Model Transformation Testing,” in Proc. of the Seventh
International Conference on the Quality of Information and
Communications Technology, Porto, Portugal, 2010, pp. 97-105.

[Coffman 1996] E. G. Coffman, Jr. , M. R. Garey , and D. S. Johnson,
“Approximation algorithms for bin packing: a survey,”
Approximation algorithms for NP-hard problems, PWS Publishing
Co., Boston, MA, 1996

[Csirik 1990] J. Csirik, J. Frenk, M. Labbe, and S. Zhang, “On the
multidimensional vector bin packing,” European Institute for
Advanced Studies in Management, 1990.

[Eclipse 2010a] Eclipse Foundation, 2010, URL: http://www.eclipse.org/

[Eclipse 2010b] Eclipse Foundation, Eclipse Modeling Framework (EMF), 2010,
URL: http://www.eclipse.org/modeling/emf/

[Ehring 2007] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer,
“Information preserving bidirectional model transformations,” in
Proc. of FASE’07, 2007, vol. 4422, LNCS, Springer, pp. 72-86.

[Felfernig 2000] A. Felfernig, G. Friedrich, and D. Jannach, “UML as domain
specific language for the construction of knowledge-based
configuration systems,” International Journal of Software
Engineering and Knowledge Engineering, 2000. 10(4): pp. 449-470.

[France 2007] R. France, and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Proc. of Future of Software
Engineering, Washington, DC, USA, 2007, pp. 37-54.

[Fuentes 2004] L. Fuentes-Fernández, and A. Vallecillo-Moreno, “An introduction
to UML profiles,” The European Journal for the Informatics
Professional, Vol. 5, No. 2, 2004.

212

[Garey 1979] M. Garey, and D. Johnson, “Computers and intractability. A guide
to the theory of NP-completeness,” A Series of Books in the
Mathematical Sciences. 1979: WH Freeman and Company, San
Francisco, CA, USA.

[Gherbi 2009] A. Gherbi, P. Salehi, F. Khendek and A. Hamou-Lhadj “Capturing
and Formalizing SAF Availability Management Framework
Configuration Requirements,” in Proc. of the First International
Workshop on Domain Engineering (DE@CAiSE'09) 2009.

[Gray 2006] J. Gray, Y. Lin, and J. Zhang, “Automating change evolution in
model-driven engineering,” Computer, v.39 n.2, pp.51-58, 2006.

[IBM 2011] IBM Rational Software Architect (RSA), http://www-
01.ibm.com/software/awdtools/architect/swarchitect/

[Kanso 2008] A. Kanso, A. Hamou-Lhadj, M. Toeroe, and F. Khendek,
“Automatic Generation of AMF Compliant Configurations,” in
Proc. of the 5th International Service Availability Symposium,
Tokyo, Japan, 2008 pp. 155-170.

[Kanso 2009] A. Kanso, A. Hamou-Lhadj, M. Toeroe, and F. Khendek,
“Generating AMF Configurations from Software Vendor
Constraints and User Requirements,” in Proc. of the Forth
International Conference on Availability, Reliability and Security,
Fukuoka, Japan, 2009, pp. 454-461.

[Kelly 2008] S. Kelly, and J. Tolvanen, “Domain-specific modeling: enabling full
code generation,” Wiley-IEEE Computer Society Press, 2008.

[Kenyon 1996] C. Kenyon, “Best-fit bin-packing with random order,” in Proc. of
the seventh annual ACM-SIAM symposium on Discrete algorithms,
p.359-364, January 28-30, 1996, Atlanta, Georgia, United States

[Knapp 2003] A. Knapp, N. Koch, F. Moser, and G. Zhang, “ArgoUWE: A Case
Tool for Web Applications,” in Proc. of the First Int. Workshop on
Engineering Methods to Support Information System Evolution,
Geneva, Switzerland, 2003.

[Kövi 2007] A. Kövi, “UML profile and design patterns library. (Preliminary
version),” Aalborg University, Aalborg, Denmark, IST-FP6-
STREP-26979 / HIDENETS, 2007.

[Küster 2004] J.M. Küster, “Systematic Validation of Model Transformations,” in
the 3rd UML Workshop in Software Model Engineering (WiSME
2004), http://www.metamodel.com/wisme-2004/accept/4.pdf.

[Küster 2006] J.M. Küster, “Definition and validation of model transformations,”
Software and Systems Modeling, Volume 5, Number 3, 2006, pp.

213

233-259.

[Lagarde 2007] F. Lagarde, H. Espinoza, F. Terrier, and S. Gérard, “Improving
UML profile design practices by leveraging conceptual domain
models,” in Proc. of the 22nd IEEE/ACM International Conference
on Automated Software Engineering, Atlanta, USA, 2007, pp. 445-
448.

[Lagarde 2008] F. Lagarde, H. Espinoza, F. Terrier, C. André, and S. Gérard,
“Leveraging patterns on domain models to improve UML profile
definition,” in Proc of the Theory and practice of software, 11th
international conference on Fundamental approaches to software
engineering, Budapest, Hungary, 2008, pp. 116-130.

[Lengyel 2010] L. Lengyel, I. Madari, M. Asztalos, and T. Levendovszky,”
Validating Query/View/Transformation Relations,” in Proc. of 2010
Workshop on Model-Driven Engineering, Verification, and
Validation, 2010, Oslo, Norway, pp. 7-12.

[Leroux 2006] D. Leroux, M. Nally and K. Hussey “Rational Software Architect:
A tool for domain-specific modeling,” IBM System Journal, 2006.

[Lomb 1996] R. Lomb, K. Emo, and R. VanDoorn, “Storage management
solutions for distributed computing environments.” HEWLETT
PACKARD JOURNAL, 1996. 47: pp. 81-93.

[McGill 2007] M. J. McGill and B. H. C. Cheng, “Test-driven development of a
model transformation with jemtte,” Technical Report, Software
Engineering and Network Systems Laboratory, Department of
Computer Science and Engineering, Michigan State University,
2007.

[Mernik 2005] M. Mernik, J. Heering, and A. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys (CSUR),
2005. 37(4): pp. 316-344.

[Motto 2008] J.M. Mottu, B. Baudry, and Y.L. Traon, “Model transformation
testing: Oracle issue,” In: Proc. of MoDeVVa workshop colocated
with ICST 2008, Lillehammer, Norway (April 2008)

[OMG 2002] Object Management Group, UML Profile for CORBA
Specification, Version 1.0, formal/02-04-01, URL: http://www.
omg. org/cgi-bin/doc.

[OMG 2003a] Object Management Group, UML Profile for Schedulability,
Performance, and Time Specification, Version 1.1, formal/03-09-
01, 2003, URL: http://www.omg.org/cgi-bin/doc?formal/03-09-01.

214

[OMG 2003b] Object Management Group, Common Warehouse Metamodel
(CWM™) Specification, Version 1.1, formal/2003-03-02, 2003,
URL: http://www.omg.org/spec/CWM/1.1/.

[OMG 2004] UML 2.0 Testing Profile Specification, Version 1.0, ptc/2004-04-
02, 2004, URL: http://www.omg.org/cgi-bin/doc?ptc/2004-04-02.

[OMG 2006a] Object Management Group, Meta Object Facility (MOF) Core
Specification, Version 2.0, formal/2006-01-01, 2006, URL:
http://www.omg.org/spec/MOF/2.0.

[OMG 2006b] AUTOSAR GbR, UML Profile for AUTOSAR Specification,
Version 1.0.1. 2006, URL: http://www.autosar.org.

[OMG 2007a] Object Management Group, XML Metadata Interchange (XMI)
Specification, Version 2.1.1, formal/2007-12-02, 2007, URL:
http://www.omg.org/spec/XMI/2.1.1/.

[OMG 2007b] Object Management Group, Unified Modeling Language -
Superstructure Version 2.1.1 formal/2007-02-03, 2007, URL:
http://www.omg.org/technology/documents/formal/uml.htm.

[OMG 2007c] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Final Adopted
Specification, ptc/07-07-07, 2007, URL:http://www.omg.org/cgi-
bin/doc?ptc/2007-07-07

[OMG 2008] Object Management Group, UML Profile for Modelling Quality of
Service and Fault Tolerance Characteristics and Mechanisms
Specification, formal/2008-04-05, 2008, URL:
http://www.omg.org/spec/QFTP/1.1/.

[OMG 2009] Object Management Group, A UML Profile for MARTE
Specification, Version 1.0, formal/2009-11-02, 2009, URL:
http://www.omg.org/spec/MARTE/index.htm.

[OMG 2010a] OMG, Object Constraint Language, Version 2.2 -
http://www.omg.org/spec/OCL/2.2/PDF

[OMG 2010b] Object Management Group, SysML Specification, Version 1.2
formal/10-06-02, 2010, URL: http://www.sysml.org/specs.htm.

[OMG 2011] Object Management Group, URL: http://www.omg.org

[Patt-Shamir 2010] B. Patt-Shamir, and D. Rawitz, “Vector Bin Packing with Multiple-
Choice,” in Proc. of the 12th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT), Bergen, Norway, 2010,
pp. 248-259.

http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/

215

[Pearl 1984] J. Pearl, “Heuristics: Intelligent Search Strategies for Computer
Problem Solving,” New York, Addison-Wesley, 1984.

[Rao 2010] C.S. Rao, J.J. Geevarghese, and K. Rajan., “Improved
Approximation Bounds for Vector Bin Packing,” Arxiv preprint
arXiv:1007.1345, 2010.

[SAF 2010a] Service Availability Forum™, URL: http://www.saforum.org

[SAF 2010b] Service Availability Forum™, Overview SAI-Overview-B.05.03 at:
http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_i
d=16627

[SAF 2010c] Service Availability Forum™, Hardware Platform Interface SAI
HPI-B.03.02 at:
http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_i
d=16627

[SAF 2010d] Service Availability Forum™, Application Interface Specification.
Availability Management Framework SAI-AIS-AMF-B.04.01

[SAF 2010e] Service Availability Forum, Application Interface Specification.
Software Management Framework SAI-AIS-SMF-A.01.01.

[Salehi 2009] P. Salehi, F. Khendek, M. Toeroe, A. Hamou-Lhadj, and A. Gherbi,
“Checking Service Instance Protection for AMF Configurations,” in
Proc. of the Third IEEE International Conference on Secure
Software Integration and Reliability Improvement, Shanghai, China,
2009, pp. 269 - 274.

[Salehi 2010a] P. Salehi, A. Hamou-Lhadj, P. Colombo, M. Toeroe, and F.
Khendek, “A UML-Based Domain Specific Modeling Language for
the Availability Management Framework,” in Proc. of The 12th
IEEE International High Assurance Systems Engineering
Symposium, San Jose, CA, 2010, pp. 35-44.

[Salehi 2010b] P. Salehi, P. Colombo, A. Hamou-Lhadj, and F. Khendek, “A
Model Driven Approach for AMF Configuration Generation,” in
Proc. of 6th Workshop on System Analysis and Modelling, Oslo,
Norway, 2010, pp. 124-143.

[Salehi 2011a] P. Salehi, F. Khendek, M. Toeroe, and A. Hamou-Lhadj “A
Heuristic Approach on Checking Service Instance Protection for
AMF Configurations,” in Proc. of 7th International Conference on
Network and Service Management, Paris, France, 2011.

[Salehi 2011b] P. Salehi, A. Hamou-Lhadj M. Toeroe, P. Colombo, F. Khendek,
“A Model Driven Approach For Availability Management

http://www.saforum.org/
http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_id=16627
http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_id=16627
http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_id=16627
http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_id=16627

216

Framework (AMF) Configuration Generation,” patent application
filed by Ericsson Canada, 2011.

[Salehi 2011c] P. Salehi, A. Hamou-Lhadj, M. Toeroe, and F. Khendek, “A Precise
UML Domain Specific Modeling Language for Service Availability
Management,” submitted to the Journal of Systems and Software
2011.

[Selic 2003] B. Selic, “The pragmatics of model-driven development,” in IEEE
Software, 2003. 20(5), pp. 19-25.

[Selic 2007] B. Selic, “A systematic approach to domain-specific language
design using UML,” in Proc. of the 10th IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC'07), Santorini Island, Greece, 2007,
pp. 2-9.

[Sen 2008] S. Sen, B. Baudry, and J. M. Mottu, “On combining multi-
formalism knowledge to select models for model transformation
testing,” in Proc. Of the 1st International Conference on Software
Testing, Verification, and Validation, Lillehammer, Norway, 2008,
pp. 328-337.

[Szatmári 2008] Z. Szatmári, A. Kövi, and M. Reitenspiess, “Applying MDA
approach for the SA forum platform,” in Proc. of the 2nd workshop
on Middleware-application interaction," Oslo, Norway, 2008, pp.
19-24.

[Varro 2003] D. Varro and A. Pataricza, “Automated formal verification of model
transformations,” in Proc. of the UML’03 Workshop, Number
TUM-I0323 in Technical Report, Technische Universit¨at
M¨unchen, 2003 pp. 63-78.

[VideoLAN 2010] VideoLAN Project, The VideoLan Server (VLS) System, 2010,
URL: http://www.videolan.org/

[Vogels 1998] W. Vogels, “The Design and Architecture of the Microsoft Cluster
Service-A Practical Approach to High- Availability and
Scalability,” in Proc. of 28th Symposium on Fault-Tolerant
Computing, CS Press, 1998, pp. 422-431.

[Wang 2005] D. Wang, and K. Trivedi, “Modeling user-perceived service
availability,” in Service Availability, LNCS, 2005, Volume
3694/2005, pp. 107-122.

[Watts 2007] D. Watts, R.J. Brenneman, D. Feisthammel, and T. Sutherland,
“Implementing IBM Director 5.20,” IBM Redbooks, April, 2007.

217

Appendix I:
List of the Tagged Definitions

AMF Sub-profile Tagged Definitions

Tagged Definition Description

MagicSaAmfCompGlobalAttributes

magicSafRdn This attribute contains the name of the

object of this class
magicSaAmfNumMaxInstantiateWithoutDe
lay

This attribute specifies the maximum
number of unsuccessful instantiation
attempts without delay performed
consecutively by AMF

magicSaAmfNumMaxInstantiateWithDelay This attribute indicates the maximum
number of attempts that AMF can make to
instantiate the component with a delay
between the attempts

magicSaAmfNumMaxAmStartAttempts The value of this attribute is the maximum
number of attempts to start the active
monitoring

magicSaAmfNumMaxAmStopAttempts The value of this attribute is the maximum
number of attempts to stop the active
monitoring of the component

magicSaAmfDelayBetweenInstantiateAtte
mpts

This value is the delay period that AMF
waits before the next attempt to instantiate
a component after failing to instantiate it

SaAmfCompBaseType

safCompType This attribute contains the name of this

base type

MagicSaAmfCompType

magicSafVersion value of this attribute is the version of the

218

component type
magicSaAmfCtDefRecoveryOnError This attribute specifies the recovery action

that should be taken by AMF by default
for the components of this type

magicSaAmfCtDefDisableRestart The value of this attribute indicates
whether the restart recovery action is
disabled or not by default for the
components of this type

magicSaAmfCtDefClcCliTimeout The value of this attribute is the default
value for the time that the process of
executing of a CLC-CLI command for the
components of this type should not exceed
otherwise the execution of the command
fails

magicSaAmfCtDefAmStartCmdArgv This attribute defines the default
arguments for the CLC-CLI command
used to start the active monitoring of a
component of this type

magicSaAmfCtDefStopCmdArgv This attribute defines the default
arguments for the CLC-CLI command
used to stop the active monitoring of a
component of this type

magicSaAmfCtRelPathAmStartCmd This attribute denotes the relative
pathname of the AM-START CLC-CLI
command of components of this type

magicSaAmfCtRelPathAmStopCmd This attribute defines the relative
pathname of the AM-STOP CLC-CLI
command for the components of this type

magicSaAmfCtDefCallbackTimeout This attribute defines the default value for
all callback timeouts of the components of
this type. This value will be used for all
callback timeouts that are not specified for
such a component

MagicAmfSaAwareCompType

magicSaAmfCtDefInstantiationLevel This attribute defines the default value for

instantiation level of the components of
this type

magicSaAmfCtDefQuiescingCompleteTim
eout

The value of this attribute defines the
default time limit used at quiescing of the
CSIs assigned to components of this type

MagicAmfStandaloneSaAwareCompType

magicSaAmfCtDefCleanupCmdArgv This attribute defines the default

219

arguments for the CLC-CLI cleanup
command for all components of this type

magicSaAmfCtRelPathAmfCleanupCmd This attribute defines the relative path for
the cleanup command of the components
of this type

magicSaAmfCtDefInstantiateCmdArgv This attribute defines the default
arguments for the CLC-CLI instantiate
command used for the components of this
type

magicSaAmfCtRelPathAmfInstantiateCmd This attribute defines the relative path for
the instantiate command of the
components of this type

magicSaAmfCtDefCmdEnv This attribute defines the default
environment variables and their values for
all CLC-CLIs commands of the
components of this type

MagicAmfStandaloneSaAwareCompType

magicSaAmfCtDefCleanupCmdArgv This attribute defines the default

arguments for the CLC-CLI cleanup
command for all components of this type

magicSaAmfCtRelPathAmfCleanupCmd This attribute defines the relative path for
the cleanup command of the components
of this type

magicSaAmfCtDefInstantiateCmdArgv This attribute defines the default
arguments for the CLC-CLI instantiate
command used for the components of this
type

magicSaAmfCtRelPathAmfInstantiateCmd This attribute defines the relative path for
the instantiate command of the
components of this type

magicSaAmfCtDefCmdEnv This attribute defines the default
environment variables and their values for
all CLC-CLIs commands of the
components of this type

MagicAmfProxiedCompType

magicSaAmfCtDefInstantiationLevel This attribute defines the default value for

instantiation level of the components of
this type

magicSaAmfCtDefQuiescingCompleteTim
eout

The value of this attribute defines the
default time limit used at quiescing of the
CSIs assigned to components of this type

magicSaAmfCtDefCleanupCmdArgv This attribute defines, for all the

220

components of this type, the default
arguments for the CLEANUP CLC-CLI
command

magicSaAmfCtRelPathAmfCleanupCmd This attribute defines the relative path for
the cleanup command

magicAmfCtIsPreinstantiable The value of this attribute indicates
whether the components of this type are
pre-instantiable or not

magicSaAmfCtDefCmdEnv This attribute defines the default
environment variables and their values for
all CLC-CLIs commands of the
components of this type

MagicAmfNon-ProxiedNon-SaAwareCompType

magicSaAmfCtDefTerminateCmdArgv This attribute defines, for components of

this type, the default arguments for the
TERMINATE CLC-CLI command

magicSaAmfCtRelPathTerminateCmd This attribute defines the relative path for
the TERMINATE CLC-CLI command
which is used for the components of this
type

magicSaAmfCtDefInstantiateCmdArgv This attribute defines, for all the
components of this type, the default
arguments for INSTANTIATE CLC-CLI

magicSaAmfCtRelPathInstantiateCmd This attribute defines the relative path for
the INSTANTIATE CLC-CLI command
which is used for the components of this
type

magicSaAmfCtDefCleanupCmdArgv This attribute defines, for all the
components of this type, the default
arguments for CLEANUP CLC-CLI
command

magicSaAmfCtRelPathCleanupCmd This attribute defines the relative path for
the CLEANUP CLC-CLI command which
is used for the components of this type

magicSaAmfCtDefCmdEnv This attribute defines the default
environment variables and their values for
all CLC-CLIs commands of the
components of this type

MagicSaAmfHealthcheckType

magicSaAmfHctDefPeriod This attribute defines the default time
interval at which the health check is
performed

magicSaAmfHctDefMaxDuration This attribute defines the period during

221

which AMF expects a response to the
health check callback from a component of
the component type associated with this
health check type

SaAmfSUBaseType

safSuType The name of the base service unit type

MagicSaAmfSUType

magicSafVersion This attribute defines the version of the

service unit type
magicSaAmfSutDefSUFailover This attribute specifies whether the fail-

over recovery is done for an entire service
unit of this type or not

SaAmfSGBaseType

safSgType This attribute defines the name of the

service group base type

MagicSaAmfSGType

magicSafVersion attribute defines the version of the service
group type

magicSaAmfSgtRedundancyModel This attribute specifies the redundancy
model of the service group type

magicSaAmfSgtDefAutoAdjust This attribute defines the default value of
the
MagicSaAmfSG::magicSaAmfSGAutoAdj
ust attribute for all service groups of this
type, which indicates whether the auto
adjust operation is enabled or not

magicSaAmfSgtDefAutoRepair This attribute defines the default value of
MagicSaAmfSG::magicSaAmfSGAutoRe
pair attribute for all service groups of this
type, which specifies whether the
Availability Management Framework
engages in automatic repair or not at
service group level.

magicSaAmfSgtDefAutoAdjustProb This attribute defines the default value of
the
MagicSaAmfSG::magicSaAmfSGAutoAdj
ustProb which defines the auto adjust
probation period. This period indicates the

222

time during which a service unit belonging
to a service group of this type may not
participate in an auto-adjust procedure.
After this period it becomes eligible for
assignments as part of an auto-adjustment
executed as a consequence of a
repair/recovery action

magicSaAmfSgtDefCompRestartProb This attribute defines the default value of
the
MagicSaAmfSG::magicSaAmfSGCompRe
startProb which specifies the component
restart probation period.

magicSaAmfSgtDefCompRestartMax This attribute defines the default value for
MagicSaAmfSG::magicSaAmfSGCompRe
startMax which is the maximum number of
components of any service unit in a service
group of this type that can be restarted
within the component restart probation
time without triggering a first level
escalation

magicSaAmfSgtDefSuRestartProb This attribute defines the default value for
MagicSaAmfSG::magicSaAmfSGSuResta
rtProb which is the restart probation period
of a service unit in a service group of this
type

magicSaAmfSgtDefSuRestartMax This attribute is the default value for
MagicSaAmfSG::magicSaAmfSGSuResta
rtMax which is the maximum number a
service unit in a service group of this type
can be restarted without causing a SU
failover

SaAmfAppBaseType

safAppType This attribute specifies the name of the
application base type

MagicAmfAppType

magicSafVersion This attribute specifies the version for the

application type

MagicSaAmfSutCompType

magicSaAmfSutMaxNumComponents This attribute specifies the maximum
number of components of the associated
component type that can be members of a

223

service unit from the related service unit
type

magicSaAmfSutMinNumComponents This attribute specifies the minimum
number of components of the associated
component type that must be members of a
service unit from the related service unit
type

SaAmfCSBaseType

safCSType This attribute specifies the name of the

component service instance base type

MagicSaAmfCSType

magicSafVersion This attribute specifies the version of
component service instance type

SaAmfSvcBaseType

safSvcType attribute defines the name of the service

base type

MagicSaAmfSvcType

magicSafVersion This attribute specifies the version of the
service type

magicSaAmfSvcDefActivWeight This attribute represents the default value
for the load that service instances of this
service type will impose on the node when
assigned to a service unit of the node as
active, quiescing, or quiesced

magicSaAmfSvcDefStandbyWeight This attribute represents the default value
for the load that service instances of this
service type will impose on the node when
assigned to a service unit of the node as
standby

MagicSaAmfSvcTypeCSType

magicSaAmfSvctMaxNumCSIs The value of this attribute indicates the

maximum number of CSIs of the
associated CStype (identified by
magicSafMemberCSType) can be in a
service instance of the service type

224

MagicSaAmfCtCSType

magicSaAmfCtCompCapability This attribute defines the component
capability model of the components of the
component type with respect to the CSI of
the CSType

magicSaAmfCtDefNumMaxActiveCSIs This attribute defines the maximum
number of active assignment CSIs of the
CSType to the components of the
component type

magicSaAmfCtDefNumMaxStandbyCSIs This attribute defines the maximum
number of standby CSIs of the CSType
that can be assigned to the components of
the component type

MagicSaAmfComp

magicSafComp This attribute contains the relative
distinguished name of a component

magicSaAmfCompDisableRestart This contains a Boolean value which
determines the applicable presence state
model at component failure

magicSaAmfCompRecoveryOnError This attribute specifies the recovery action
that should be taken by AMF for the
component

magicSaAmfCompInstantiateTimeout The value of this attribute is the time that
the instantiation of the component should
not exceed otherwise the instantiation of
the component fails

magicSaAmfCompCleanupTimeout The value of this attribute is the time that
the process of cleaning up the component
should not exceed otherwise the
termination of the component fails

magicSaAmfCompNumMaxInstantiateWith
outDelay

This attributes indicates the number of
attempts that AMF can make to instantiate
the component without delay between the
attempts

magicSaAmfCompNumMaxInstantiateWith
Delay

attribute indicates the number of attempts
that AMF can make to instantiate the
component with a delay between the
attempts

magicSaAmfCompDelayBetweenInstantiat
eAttempts

The value of this attribute indicates the
delay between instantiation attempts

magicSaAmfCompTerminateTimeout The value of this attribute is the time that
the termination of a component should not
exceed otherwise AMF will attempt the
cleanup of the component

225

MagicAmfLocalComponent

magicSaAmfCompAmStartCmdArgv This attribute contains additional

arguments for the CLC-CLI command,
which is used to start the active monitoring
for the component

magicSaAmfCompAmStartTimeout The value of this attribute is the time that
starting the active monitoring of the
component should not exceed

magicSaAmfCompNumMaxAmStartAttem
pts

The value of this attribute is the maximum
number of attempts to start the active
monitoring

magicSaAmfCompAmStopCmdArgv This attribute contains additional
arguments for the CLC-CLI command that
is used to stop active monitoring of the
component

magicSaAmfCompAmStopTimeout This value of this attribute is the time that
the completion of the command for
stopping active monitoring of the
component should not exceed

magicSaAmfCompNumMaxAmStopAttem
pts

The value of this attribute is the maximum
number of attempts to stop the active
monitoring of the component

MagicAmfExternalComponent

magicSaAmfCompInstantiationLevel This attribute reflects the order in which

components are instantiated within the
service unit. Components having a lower
instantiation level must be instantiated
prior to components having a higher
instantiation level

magicSaAmfCompCSISetCallbackTimeout The value of this attribute represents the
time limit for setting the HA state of the
component on behalf of some CSI

magicSaAmfCompCSIRmvCallbackTimeo
ut

The value of this attribute is the time limit
for removing one or all component service
instances from the set of component
service instances assigned to the
component

magicSaAmfCompQuiescingCompleteTim
eout

The value of this attribute represents the
time limit for the component to complete
the process of quiescing

MagicAmfSaAwareComponent

226

magicSaAmfCompInstantiationLevel The value of this attribute represents the

instantiation level of the component. The
instantiation level reflects the order in
which the components are instantiated:
components with a lower instantiation
level are instantiated prior to components
with a higher instantiation level

magicSaAmfCompCSISetCallbackTimeout The value of this attribute is the time limit
for setting of the HA state of the
component for component service
instances

magicSaAmfCompCSIRmvCallbackTimeo
ut

The value of this attribute is the time that
the removal of CSI assignments from this
component should not exceed

magicSaAmfCompQuiescingCompleteTim
eout

The value of this attribute is the time limit
that the process of quiescing of this
component for component service
instances assigned to it should not exceed

MagicAmfNon-SaAwareComponent

magicSaAmfCompCleanupCmdArgv This attribute contains any additional

arguments for the CLEANUP CLC-CLI
command specified in the type

magicSaAmfCompCmdEnv This attribute defines the environment
variables and their values for all CLC-
CLIs commands of this component

MagicAmfStandaloneSaAwareComponent

magicSaAmfCompCleanupCmdArgv This attribute contains any additional

arguments for the CLEANUP CLC-CLI
command specified in the type

magicSaAmfCompInstantiateCmdArgv This attribute contains the additional
arguments that should be passed to the
INSTANTIATE CLC-CLI command
specified in the type

magicSaAmfCompCmdEnv This attribute defines the environment
variables and their values for all CLC-
CLIs commands of this component

MagicAmfLocalProxiedComponent

magicSaAmfCompInstantiationLevel The value of this attribute represents the

instantiation level of a component

227

magicSaAmfCompCSISetCallbackTimeout The value of this attribute is the time limit
for the setting of the HA-state of the
component on behalf of component service
instances assigned to it

magicSaAmfCompCSIRmvCallbackTimeo
ut

The value of this attribute is the time that
the removal of component service
instances from the component should not
exceed

magicSaAmfCompQuiescingCompleteTim
eout

The value of this attribute is the time limit
for quiescing of the component service
instances assigned to this component

MagicAmfNon-ProxiedNon-SaAwareComponent

magicSaAmfCompInstantiateCmdArgv This attribute contains the arguments that

are used by AMF to instantiate this
component using the INSTANTIATE
CLC-CLI command

magicSaAmfCompTerminateCmdArgv This attribute contains the arguments that
AMF uses to terminate the component
using the TERMINATE CLC-CLI
command

MagicSaAmfHealthcheck

magicSaAmfHealthcheckPeriod This attribute indicates the period at which

the corresponding healthcheck should be
initiated

magicSaAmfHealthcheckMaxDuration This attribute indicates the time-limit after
which the AMF will report an error on the
component if no response for a
healthcheck is received by the AMF

MagicSaAmfSU

magicSafSu This attribute contains the name of a

service unit
magicSaAmfSURank The value of this attribute is the rank of the

SU within the service group
magicSaAmfSUFailover The value of this Boolean attribute

indicates whether the failure of a
component of the service unit should
trigger a fail-over of the entire service unit
or only of the erroneous component

magicSaAmfSUMaintenanceCampaign This attribute is used to disable the auto-
repair behavior of AMF in certain

228

situations
magicSaAmfSUAdminState This attribute holds the administrative state

of the service unit (this is persistent
runtime attribute in the standard AMF
model)

MagicSaAmfSG

magicSafSg This attribute contains the name of a

service group
magicSaAmfSGAutoRepair This attribute applies to any service unit of

the particular service group and it indicates
whether the AMF engages in automatic
repair or not

magicSaAmfSGAutoAdjust This attribute indicates that it is required
that the SI assignments are transferred
back to the preferred SUs as soon as
possible

magicSaAmfSGNumPrefInserviceSUs The value of this attribute is the preferred
number of in-service service units

magicSaAmfSGAutoAdjustProb The value of this attribute defines the auto-
adjust probation time. It is used as follows:
When a service unit becomes available
after a repair/recovery operation, the
service unit enters its auto-adjust probation
period, during which it cannot be used for
auto-adjustment

magicSaAmfSGCompRestartProb The value of this attribute is the
component restart probation period for a
service unit

magicSaAmfSGCompRestartMax The value of this attribute is the maximum
number of components of a service unit
that can be restarted before the end of
component restart probation period
without restarting the service unit. If this
maximum is reached, AMF escalates the
recovery action to restarting the entire
service unit

magicSaAmfSGSuRestartProb The value of this attribute is the service
unit restart probation period

magicSaAmfSGSuRestartMax The value of this attribute is the maximum
number of level 1 escalation (i.e. restarting
the entire service unit) that can be done
within the service unit restart probation
period. If this number is reached before the
end of the period, then AMF would engage

229

the level 2 of escalation for the service unit
which is failing over the entire service unit

magicSaAmfSGAdminState value of this attribute is the administrative
state of a service group

MagicAmfNPlusMSG

magicSaAmfSGNumPrefActiveSUs This attribute indicates the preferred

number of active service units at any time
magicSaAmfSGNumPrefStandbySUs This attribute indicates the preferred

number of standby service units at any
time

magicSaAmfSGMaxActiveSIsperSU This attribute indicates the maximum
number of SIs that can be assigned as
active to a service unit

magicSaAmfSGMaxStandbySIsperSU This attribute indicates the maximum
number of SIs that can be assigned as
standbys to a service unit

MagicAmfNWaySG

magicSaAmfSGNumPrefAssignedSUs This attribute indicates the preferred

number of assigned service units at any
time

magicSaAmfSGMaxActiveSIsperSU This attribute indicates the maximum
number of SIs that can be assigned as
active to a service unit

magicSaAmfSGMaxStandbySIsperSU This attribute indicates the maximum
number of SIs that can be assigned as
standbys to a service unit

MagicAmfNWayActiveSG

magicSaAmfSGNumPrefAssignedSUs This attribute indicates the preferred

number of assigned service units at any
time

magicSaAmfSGMaxActiveSIsperSU This attribute indicates the maximum
number of SIs that can be assigned as
active to a service unit

MagicSaAmfApplication

magicSafApp This attribute contains the name of the

application
magicSaAmfApplicationAdminState This attribute contains the administrative

state of an application

230

MagicSaAmfCSI

magicSafCsi attribute contains the name of the CSI

MagicSaAmfSI

magicSafSi This attribute defines the name of the

service instance
magicSaAmfSIRank The value of this attribute represents the SI

rank, AMF uses this rank to choose the SIs
that will be supported with less than the
wanted redundancy or that will be dropped
completely if the set of in-service service
units does not allow for the full support of
all Sis

magicSaAmfSIAdminState This attribute contains the administrative
state for the service unit

magicSaAmfSIActiveWeight This attribute represents the load that this
service instance will impose on the node
when assigned to a service unit of the node
as active, quiescing, or quiesced

magicSaAmfSIStandbyWeight This attribute represents the load that this
service instance will impose on the node
when assigned to a service unit of the node
as standby

MagicSaAmfSIDependency

magicSaAmfToleranceTime This attribute specifies the time limit for

which the dependent SI can tolerate the
unassigned state of the SI on which it
depends

MagicAmfCSIAttribute

magicSaAmfCSIAttriValue This attribute contains the values for the
attribute for a particular CSI

MagicAmfCSIAttributeName

magicSaCsiAttr This attribute contains the name of the

attribute

MagicSaAmfNode

magicSafAmfNode This attribute specifies the name of the

231

node
magicSaAmfSuFailOverProb This attribute defines the service unit fail-

over probation period
magicSaAmfSuFailoverMax This attribute defines the maximum

number of failovers for the SUs within the
failover probation period without causing a
node failover

magicSaAmfAutoRepair This attribute indicates whether the AMF
engages in automatic repair or not. This
attribute applies to any SU that is on this
node

magicSaAmfFailfastOnTerminationFailure This attribute indicates if AMF should
engage in the node failfast recovery action
when AMF fails to cleanup a component
after the termination failure of the
component

magicSaAmfFailfastOnInstantiationFailure This attribute indicates whether AMF
engages in the node failfast recovery
action after a component instantiation
failure occurs

magicSaAmfNodeAdminState This attribute contains the administrative
state of the node

magicSaAmfNodeCapacity This attribute contains the configuration
attribute which represents the capacity of
the node

MagicSaAmfNodeGroup

magicSafAmfNodeGroup This attribute represents the name of the

node group

MagicSaAmfCluster

magicSafAmfCluster This attribute specifies the name of the
cluster

magicSaAmfClusterStartupTimeout This attribute specifies the time from the
cluster start which AMF should wait
before it starts instantiating SUs and
assigning SIs

magicSaAmfClusterAdminState This attribute holds the administrative state
of the cluster

MagicSaAmfNodeSwBundle

magicSaAmfNodeSwBundlePathPrefix This attribute specifies the path prefix

which is configured for a software bundle

232

regarding a specific node

MagicSaSmfSwBundle

magicSafBundle This attribute contains the name of
software bundle

MagicSaAmfSIRankedSU

magicSaAmfRank This attribute specifies the rank of the SU

with respect to the Service Instance

MagicAmfPrefActiveAssignment

magicSaAmfSIPrefActiveAssignments This attribute defines the preferred number
of service units that are assigned the active
HA state for a SI within the protecting
service group, which must be of
MagicNWayActiveSG

MagicAmfPrefStandbyAssignment

magicSaAmfSIPrefStandbyAssignments This attribute defines the preferred number

of service units that are assigned the
standby HA state for this SI within the
protecting service group, which must be of
MagicNWaySG

MagicSaAmfCompCsType

magicSaAmfCompNumMaxActiveCSIs This attribute specifies the maximum

number of active CSIs of the CSType that
can be assigned to the associated
component

magicSaAmfCompNumMaxStandbyCSIs This attribute specifies the maximum
number of standby CSIs of the CSType
that can be assigned to the associated
component

233

ETF Sub-profile Tagged Definitions

Tagged Definition Description

MagicEtfCompBaseType

magicEtfCtName This attribute specifies the name of

the component base type

MagicEtfCompType

magicEtfCtVersion This attribute specifies the version
for the component type

magicEtfCtDisableRestart The value of this attribute indicates
whether the software
implementation is able to perform
restart recovery action or not

magicEtfCtRecoveryOnError This attribute specifies the recovery
action recommended by the vendor

magicEtfCtClcCliTimeout This attribute contains the lower
bound and a possible default value
for the CLC-CLI commands

magicEtfCtCallbackTimeout This attribute defines the lower
bound and a possible default value
for all callback timeouts. This
attribute specifies time for the
callbacks if the implementation
imposes any restriction. If there is a
restriction, the vendor needs to
provide the minimum timeout that
AMF shall use for the callbacks

magicEtfCtAmStartCmd This attribute contains the AM-
START CLC-CLI command string
which also includes the relative path
of the command and needs to be
adjusted to the execution
environment

magicEtfCtAmStartCmdArgv This attribute contains arguments of
the AM-START CLC-CLI
command ,which needs to be
adjusted to the execution

234

environment
magicEtfCtAmStopCmd This attribute contains the AM-

STOP CLC-CLI command string,
which also includes the relative path
of the command and needs to be
adjusted to the execution
environment

magicEtfCtAmStopCmdArgv This attribute contains arguments of
the AM-STOP CLC-CLI command
and needs to be adjusted to the
execution environment

MagicEtfSaAwareCompType

magicSaAmfCtDefInstantiationLevel This attribute contains minimum

timeout and possible default timeout
for the quiescing complete callback
timeout

MagicEtfNonProxiedNonSaAwareCompType

magicEtfCtInstantiateCmd This attribute contains the

INSTANTIATE CLC-CLI
command string, which includes the
path relative to the installation
location for the command and needs
to be adjusted to the execution
environment

magicEtfCtInstantiateCmdArgv This attribute contains the
arguments of the INSTANTIATE
CLC-CLI command and needs to be
adjusted to the execution
environment

magicEtfCtTerminateCmd This attribute contains the
TERMINATE CLC-CLI command
string which also includes the path
relative to the installation location
for the command. It needs to be
adjusted to the execution
environment

magicEtfCtTerminateCmdArgv This attribute contains arguments of
the TERMINATE CLC-CLI
command and needs to be adjusted
to the execution environment

magicEtfCtCleanupCmd This attribute contains the
CLEANUP CLC-CLI command

235

string which includes the path
relative to the installation location
for the command and needs to be
adjusted to the execution
environment

magicEtfCtCleanupCmdArgv This attribute contains arguments of
the CLEANUP CLC-CLI command
and needs to be adjusted to the
execution environment

MagicEtfProxiedCompType

magicEtfCtCleanupCmd This attribute contains the

CLEANUP CLC-CLI command
which string includes the path
relative to the installation location
for the command. It needs to be
adjusted to the execution
environment

magicEtfCtCleanupCmdArgv This attribute contains arguments of
the CLEANUP CLC-CLI command
and needs to be adjusted to the
execution environment

magicEtfCtQuiescingCompleteTimeout This attribute contains the minimum
and any recommended default
timeout value for the quiescing
complete callback timeout

magicEtfCtIsPreinstantiable This attribute specifies whether the
component type is pre- instantiable
or not. In other words this attribute
indicates whether the component
type is capable of being standby or
not. Non-preinstantiable
components cannot act as spare nor
be Idle

MagicEtfIndependentCompType

magicEtfCtInstantiateCmd This attribute contains the

INSTANTIATE CLC-CLI
command string, which includes the
path relative to the installation
location for the command and needs
to be adjusted to the execution
environment

magicEtfCtInstantiateCmdArgv This attribute contains the

236

arguments of the INSTANTIATE
CLC-CLI command and needs to be
adjusted to the execution
environment

magicEtfCtCleanupCmd This attribute contains the
CLEANUP CLC-CLI command
string which includes the path
relative to the installation location
for the command and needs to be
adjusted to the execution
environment

magicEtfCtCleanupCmdArgv This attribute contains arguments of
the CLEANUP CLC-CLI command
and needs to be adjusted to the
execution environment

MagicEtfSUBaseType

magicEtfSutName This attribute contains the name of

the service unit base type

MagicEtfSUType

magicEtfSutVersion This attribute specifies the version
for the service unit type

magicEtfSutSuFailOver This attribute specifies whether
AMF should fail over all CSIs of
SIs for the SUs of the AMF types
derived from this ETF type or not.
In other words, the software
implementation of components of
the service unit is such that the
failure of one component impacts
the entire SU

MagicEtfSGBaseType

magicEtfSgtName This attribute specifies the name of

the service group base type

MagicEtfSGType

magicEtfSgtVersion This attribute specifies the version
for the service group type

magicEtfSgtAutoAdjustPeriod This attribute specifies the
recommended probation period for

237

auto adjustment
magicEtfSgtAutoAdjustOption This attribute specifies vendor’s

recommendation for the auto adjust
option

magicEtfSgtRedundancyModel This attribute specifies the
redundancy model of the service
group type

magicEtfSgtAutoRepairOption This attribute contains a Boolean
value that specifies whether AMF is
permitted to initiate automatic repair
actions within an SG or not

magicEtfSgtCompProbPeriod This attribute contains the
recommended probation time for the
components inside a service group

magicEtfSgtCompProbCounterMax This attribute contains the
recommended maximum number of
AMF attempts to restart the
components inside a service group

magicEtfSgtSuProbPeriod This attribute contains the
recommended probation time for the
service units inside a service group

magicEtfSgtSuProbCounterMax This attribute contains the vendor`s
recommendation for
MagicSaAmfSGType::
magicSaAmfSgtDefSuRestartMax
AMF attribute

MagicEtfAppBaseType

magicEtfApptName This attribute specifies the name of

the application base type

MagicEtfAppType

magicEtfApptVersion This attribute specifies the version
for the application type

MagicEtfSwBundle

magicEtfSwbName This attribute specifies the name of

the software bundle
magicEtfSwbRemovalOnlineCmd This attribute contains the online –

as assumed by the vendor–
REMOVAL CLI command string of
this software bundle, which also
includes the relative path command.

238

It needs to be adjusted to the
execution environment

magicEtfSwbRemovalOnlineArgs This attribute contains arguments of
the online–as assumed by the
vendor– REMOVAL CLI command
of this software bundle and needs to
be adjusted to the execution
environment

magicEtfSwbInstallationOnlineCmd This attribute contains the online–as
assumed by the vendor–
INSTALATION CLI command
string of this software bundle,
which also includes the relative path
command. It needs to be adjusted to
the execution environment

magicEtfSwbInstallationOnlineArgs This attribute contains arguments to
the online –as assumed by the
vendor–INSTALATION CLI
command of this software bundle
and needs to be adjusted to the
execution environment

magicEtfSwbRemovalOfflineCmd This attribute contains the offline–as
assumed by the vendor–
REMOVAL CLI command string of
this software bundle, which also
includes the relative path of the
command. It needs to be adjusted to
the execution environment

magicEtfSwbRemovalOfflineArgs This attribute contains arguments of
the offline–as assumed by the
vendor– REMOVAL CLI command
of this software bundle and needs to
be adjusted to the execution
environment

magicEtfSwbRemovalOfflineImpactScope This attribute contains the minimum
scope of disruption during the
removal operation of this software
bundle and needs to be adjusted to
the particular system based on
system features

magicEtfSwbInstallationOfflineCmd This attribute contains the offline–as
assumed by the vendor–
INSTALATION CLI command
string of this software bundle,
which also includes the relative path
of the command. It needs to be

239

adjusted to the execution
environment

magicEtfSwbInstallationOfflineArgs This attribute contains arguments of
the offline–as assumed by the
vendor– INSTALATION CLI
command of this software bundle
and needs to be adjusted to the
execution environment

magicEtfSwbInstallationOfflineImpactScope This attribute contains the minimum
scope of disruption during the
installation operation of this
software bundle and needs to be
adjusted to the particular system
based on system features

MagicEtfUpgradeAwarenessAttributes

magicEtfInitCallback This attribute specifies the

parameters of the initiate callback
(for initiation of a new upgrade
campaign) if recognized by the
component type

magicEtfBackupCallback This attribute specifies the
parameters of the backup (to create
an application level backup)
callback if recognized by the
component type

magicEtRollbackCallback This attribute specifies the
parameters of the rollback (for
rolling back the campaign) callback
if recognized by the component type

magicEtfCommitCallback This attribute specifies the
parameters of the commit callback
(to indicate the commitment of
campaign) if recognized by the
component type

magicEtfOtherCallback This attribute specifies the
parameters of any other callback if
recognized by the component type

MagicEtfHealthcheck

magicEtfHctKey This attribute specifies the key for

this heath check type
magicEtfHctVariant This attribute specifies the technique

for invoking the health check

240

magicEtfHctMaxDuration This attribute defines the restriction
for the period during which AMF
expects a response to the health
check callback from a component of
the AMF component types, derived
from component type associated
with this health check type

magicEtfHctPeriod This attribute specifies the
restriction for the time interval at
which the health check is
performed, which is used by health
check entities of the AMF health
check type derived from this type

MagicEtfSvcBaseType

magicEtfSvctName This attribute contains the name of

the base service type

MagicEtfSvcType

magicEtfSvctVersion This attribute specifies the version
for the service type

MagicEtfCSBaseType

magicEtfCstName This attribute contains the name of

the component service base type

MagicEtfCSType

magicEtfCstVersion This attribute specifies the version
for the CSType

MagicEtfCstAttribute

magicEtfAttrName This attribute contains the name of
the CSI attribute which is specified
in this class

magicEtfAttrType This attribute contains the type of
the CSI attribute which is specified
in this class

magicEtfAttrUpperBound This attribute contains the upper
bound for the CSI attribute which is
specified in this class

magicEtfAttrLowerBound This attribute contains the lower

241

bound for the CSI attribute which is
specified in this class

magicEtfAttrDefault This attribute contains the default
value for the CSI attribute which is
specified in this class

MagicEtfSvctCst

magicEtfMinNumInstances This attribute specifies the minimum

number of component service
instances of the AMF CSTypes
derived from the associated CSType
in a service instance of AMF service
type derived from the associated
service types

magicEtfMaxNumInstances This attribute specifies the
maximum number of component
service instances of the AMF
CSTypes derived from the
associated CSType in a service
instance of AMF service type
derived from the associated service
types

MagicEtfCtSut

magicEtfMinNumInstances This attribute specifies the minimum

number of components of the AMF
component type derived from the
associated component type in a
service unit of AMF service unit
type derived from the associated
service unit type

magicEtfMaxNumInstances This attribute specifies the
maximum number of component of
the AMF component type derived
from the associated component type
in a service unit of AMF service
unit type derived from the
associated service unit types

MagicEtfCtCSType

magicEtfDefaultNumStandbyCsi This attribute defines the

recommended default number of
standby assignments for

242

components of the AMF component
type derived from the associated
component type

magicEtfMaxNumStandbyCsi This attribute describes the
capability of software(the maximum
what the implementation of software
can handle) to act as standby. In
other words it defines the maximum
number of standby assignments

magicEtfDefaultNumActiveCsi This attribute describes the
recommended default number of
active assignments for components
of the AMF component type derived
from the associated component type

magicEtfMaxNumActiveCsi This attribute describes the
capability of software(the maximum
what the implementation of software
can handle) to act as active. In other
words it defines the maximum
number of active assignments of the
components

magicEtfCompCapabilityModel This attribute defines the highest
level of component capability model
that the software implementation is
capable of handling.

243

CR Sub-profile Tagged Definitions

Tagged Definition Description

MagicCrAdministrativeDomain

magicCrAdminDomainName This attribute specifies the name

of the administrative domain

MagicCrSgTemplate

magicCrSgTempName This attribute specifies the name
of the SG template

magicCrSgTempRedundancyModel This attribute specifies the
redundancy model according to
which we want the SG to protect
the SIs.

magicCrSgTempNumberofActiveSus This attribute specifies the number
of active SUs in the SG.

magicCrSgTempNumberofStdbSus This attribute specifies the number
of standby SUs in the SG.

magicCrSgTempNumberofSpareSus This attribute specifies the number
of spare SUs in the SG.

magicCrPropSgTempFactor This attribute specifies the number
of time a proportion is repeated.

MagicCrSiTemplate

magicCrSiTempName This attribute specifies the name

of the SI template
magicCrSiTempNumberofActiveAssignments This attribute specifies the number

of active assignment each SI of the
SI template will acquire at runtime

magicCrSiTempNumberofStdbAssignment This attribute specifies the number
of standby assignment each SI of
the SI template will acquire at
runtime

MagicCrRegularSiTemplate

magicCrRegSiTempNumberofSis This attribute specifies the total

number of SIs of the regular
template

244

magicCrRegSiTempMinSis This attribute specifies the
minimum number of SIs of the
regular SI template required in one
SG

magicCrRegSiTempMaxSis This attribute specifies the
maximum number of SIs of the
regular SI template allowed in one
SG

MagicCrProportionalSiTemplate

magicCrPropSiTempProportion This attribute specifies the ratio in

which the SIs of this template are
required to be present in
comparison to the SIs of other
proportional SI templates

MagicCrCsiTemplate

magicCrCsiTempName This attribute specifies the name

of the CSI template
magicCrCsiTempNumberofCsis This attribute specifies the number

of CSIs to be created based on the
CSI template

	1 Introduction
	1.1 Thesis Motivation
	1.2 Contributions
	1.3 Thesis Organization

	2 Background and Literature Review
	2.1 High Availability and SA Forum
	2.1.1 Service Availability
	2.1.2 The Service Availability Forum
	2.1.3 The Availability Management Framework
	2.1.3.1 AMF Entities
	Component
	Component Service Instance (CSI)
	Service Unit (SU)
	Service Instance (SI)
	Service Group (SG)
	Application
	Node and Cluster
	Node Group

	2.1.3.2 AMF Entity Types
	Component Type
	Component Service Type (CSType)
	Service Unit Type (SUType)
	Service Type (SvcType)
	Service Group Type (SGType)
	Application Type

	2.1.3.3 Example of an AMF Configuration

	2.1.4 The Entity Types File

	2.2 Modeling and UML Profiles
	2.2.1 The UML Profiling Mechanism
	2.2.1.1 Domain Specific Languages & Domain Specific Modeling Languages
	2.2.1.2 UML Extension Mechanisms
	2.2.1.3 Creating a UML Profile

	2.2.2 Related UML Profiles

	3 Modeling Framework- Domain Models
	3.1 Domain Modeling Process
	3.2 AMF Domain Model
	3.2.1 AMF Components and Component Types
	3.2.2 SU, SG, SI, CSI and their Types
	3.2.3 Deployment Entities
	3.2.4 Well-formedness Rules
	3.2.4.1 Configuration Attributes Well-formedness Rules
	3.2.4.2 Structural Well-formedness Rules
	3.2.4.3 Service Protection Constraints

	3.2.5 Challenges

	3.3 ETF Domain Model
	3.3.1 Basic Service Provider and Service Elements
	3.3.2 Compound Elements
	3.3.3 Software Dependency
	3.3.4 Domain Constraints
	3.3.5 Challenges

	3.4 CR Domain Model
	3.5 Summary

	4 Modeling Framework- Mapping to UML Metamodel
	4.1 Mapping Domain Model Concepts to UML Metaclasses
	4.1.1 AMF Component
	4.1.2 AMF Service Unit (SU)
	4.1.3 AMF Service Group (SG)
	4.1.4 AMF Application
	4.1.5 AMF Component Service Instance (CSI)
	4.1.6 AMF Service Instance (SI)
	4.1.7 AMF Node
	4.1.8 AMF Cluster and AMF NodeGroup
	4.1.9 AMF Entity Type Elements
	4.1.10 ETF Types
	4.1.11 CR Elements

	4.2 Mapping the Domain Relationships to the UML Metamodel
	4.3 Specifying Constraints
	4.3.1 Constraints on Relationships
	4.3.2 Constraints on Metaclasses

	4.4 Challenges
	4.5 Summary

	5 AMF Configuration Validation
	5.1 Syntactical Validation of AMF Configurations
	5.2 Semantic Validation of AMF Configurations
	5.2.1 Definitions and Notations
	5.2.2 Service Instance Protection for the 2N and No-Redundancy Models
	5.2.2.1 The 2N Redundancy Model
	5.2.2.2 The No-redundancy Model

	5.2.3 Service Instance Protection for the N+M Redundancy Model
	5.2.3.1 Formal Definition of the N+M Redundancy Model
	5.2.3.2 Checking SI-Protection for an SG with the N+M Redundancy Model
	Theorem 1
	Lemma1
	Lemma 2

	5.2.4 The N-Way-Active and N-Way Redundancy Models
	5.2.5 Overcoming Complexity for Special Cases
	5.2.6 Overcoming Complexity with Heuristics: Checking for Service Protection Using Heuristics
	5.2.6.1 First-Fit approach (FF)
	5.2.6.2 Best-Fit approach (BF)
	Total Capacity
	Relative Capacity
	Critical Capacity

	5.2.6.3 Worst-Fit approach (WF)
	5.2.6.4 Taking Into Account the Redundancy Models
	The N+M Redundancy Model
	The N-Way-Active Redundancy Model
	N-Way Redundancy Model

	5.2.6.5 Incremental Design of AMF Configurations

	5.3 Summary

	6 Model-based AMF Configuration Generation
	6.1 Overall View
	6.2 ETF Type Selection
	6.2.1 CSITemp Refinement
	Criterion 1: Provided CSType
	Criterion 2: Component Capability Model
	Criterion 3: Number of supported components by the SUType and SU Capacity
	Criterion 4: Redundancy model

	6.2.2 SITemp Refinement
	Criterion 1: Provided SvcType
	Criterion 2: Redundancy Model
	Criterion 3: Links of grouped Component Types

	6.2.3 SGTemp Refinement
	Criterion 1: Redundancy Model
	Criterion 2: Links of grouped SUTypes

	6.2.4 Dependency Driven Refinement
	6.2.4.1 Component Type Dependency driven Refinement
	6.2.4.2 SUType Dependency driven Refinement

	6.2.5 Completing the Refinement
	6.2.5.1 Configuration requirements refinement
	6.2.5.2 ETF type refinement
	Component Types pruning
	SUType pruning
	SGType pruning
	Application Type pruning
	SvcType pruning
	CSType pruning

	6.3 AMF Entity Type Creation
	6.3.1 AMF SGType and AppType Generation
	6.3.2 AMF SUType and SvcType Generation
	6.3.3 AMF Component Type and CSType Generation

	6.4 AMF Entity Creation
	6.4.1 Step 1: AMF Entity Instantiation
	6.4.2 Step 2: Generating Deployment Entities
	6.4.3 Step 3: Finalizing the Generated AMF Configuration

	6.5 Limitations
	6.6 Summary

	7 Implementation of the Framework and Application
	7.1 Implementation of the Model-based Framework
	7.2 The Online Banking System
	7.2.1 The Billing Service
	7.2.2 The Authentication Service
	7.2.3 The Money Transfer Service
	7.2.4 Web Server and User Interface
	7.2.5 Database Management System
	7.2.6 General Inquiries
	7.2.7 Transaction Information
	7.2.8 SUType Level Dependency

	7.3 Configuration Requirements for the Online Banking System
	7.4 Generation of an AMF Configuration for Safe Bank Online Banking System
	7.4.1 Selecting ETF Types
	7.4.2 Creating AMF Types
	7.4.3 Creating AMF Entities

	7.5 Validation of the Model-based AMF Configuration Generation Approach

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Research
	8.2.1 Model-based AMF Configuration Generation
	8.2.2 Performance Evaluation of Heuristics Based Validation Approach
	8.2.3 Bridging the Gap between User Requirements and Configuration Requirements
	8.2.4 UML Profiling
	8.2.5 Model-driven Software Development

	9 Bibliography

