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ABSTRACT 

PRODUCTION PLANNING WITH RAW MATERIAL SHELF-LIFE 

CONSIDERATIONS BY MIXED INTEGER PROGRAMMING 

Andrés F. Acevedo 

Besides being a widely studied area in operations research and in industrial and management 

science, production planning is considered one of the most fundamental elements in 

manufacturing systems. Due to the nature of the features involved in production planning 

problems, Mixed Integer Programming (MIP) is commonly used for optimization in this area. 

Also, the flexibility of MIP allows addressing specific problem characteristics and assumptions. 

This thesis tackles a multi-item multi-level capacitated production planning problem by MIP 

with a particular feature found in certain industries: raw material shelf-life. Manufacturing 

systems such as food, chemicals, composite materials and related industries, utilize components 

that are subject to limited shelf-life and must be disposed if they reach the end of it. Two MIP 

model formulations are proposed here: one without raw material shelf-life requirements as a 

basis of comparison, and one integrating raw material shelf-life. The models are flexible enough 

to be applied and validated for multiple problem instances with different variations and for an 

Automotive Industry case study. IBM
®

 ILOG
®
 CPLEX

®
 Optimization Studio is used to achieve 

optimality. Results are analyzed and discussed in depth and future research topics are proposed. 

Keywords: production planning, mixed integer linear programming, shelf life, composites manufacturing. 
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1 INTRODUCTION 

Production planning is one of the most relevant fields of study in operations research and 

management science. The range of decisions that are made based on production planning 

models and systems can be associated with virtually all the variables involved in a 

manufacturing process, sometimes including supply chain. In general terms, variables 

and parameters regarding quality, quantity, timing, sequences, and other features of raw 

materials procurement, production and distribution are addressed by production planning.   

Mixed Integer Linear Programming (MILP) is often used to solve production planning 

problems, taking advantage of its flexibility to involve specific aspects and variables for 

each case. This study focuses on manufacturing processes with perishable raw materials 

or components. The perishability feature is addressed here using the concept of shelf-life, 

which is defined as the maximum length of time a component can be stored under 

specified conditions and remain suitable for use, consumption or for its intended function. 

Unlike other models of inventory control and production planning involving deteriorating 

inventory with lose of functionality depending on storage time, we consider raw materials 

fully functional until the end of its shelf-life. In addition to this feature, other relevant 

variables, parameters and assumptions such as ordering batch size and lead time are taken 

into account to analyze the impact of such considerations in problem results. 
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In order to make a more practical research contribution, the study is specifically 

contextualized in composites manufacturing field and related industries. In such systems, 

components shelf-life requirements are of particular relevance. 

The thesis is organized as follows: We present a review of recent research contributions 

relevant to the topics of interest in Chapter 2. We first discuss production planning in 

general, followed by applications of Mixed Integer Linear Programming optimization, 

then considering the perishability characteristics, and finally contextualizing the study in 

composites manufacturing. In Chapter 3, we propose different variants for the studied 

problem assuming relevant features, variables, constraints and parameters. Subsequently, 

the mathematical formulation is applied to different problem instances and to an 

Automotive Industry case study in Chapter 4. Finally, Chapter 5 summarizes the main 

research conclusions and suggests future research and aspects to consider. 

1.1 Scope and Delimitation of Thesis 

This thesis focuses specifically on Production Planning using Mixed Integer Linear 

Programming optimization models considering shelf-life of components (raw materials). 

The specific problem addressed in this study refers to a multi-item multi-level production 

planning model, under the assumption that the end-products are made with perishable 

materials, i.e. they have limited shelf-life. Once defined, the mathematical formulation is 

applied to solve different hypothetical instances with different assumptions and a case 

study from the Automotive Industry using IBM
®

 ILOG
®
 CPLEX

®
 Optimization Studio 

Version 12.4. Results are analyzed and discussed in depth. 
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1.2 Research Objectives and Contribution 

The objectives and contribution of this research work are described as follows: 

 To carry out a review of recent and relevant scientific contributions on topics 

related to production planning, mixed integer linear programming, shelf-life 

considerations and composites manufacturing. To analyze different approaches and 

methodologies in order to sufficiently substantiate the research contribution. 

 To propose a Mixed Integer Linear Programming formulation that includes 

fundamental and specific variables, parameters and constraints to solve the 

production planning problem under consideration. Moreover, this formulation is 

intended to be flexible and general to be applied to different manufacturing 

systems. The main aspect of the study is to consider components or raw material 

shelf-life. 

 To validate and analyze the efficiency and relevance of the proposed optimization 

model by applying it to solve different instances of the addressed problem with 

different assumptions. We also apply it to a case study based on information from 

industry sources. 

 To present analysis and in-depth discussion on the performance and the important 

aspects of the mathematical model and implementation. 

The above objectives are tackled throughout the thesis, keeping a logical order, but not 

strictly linear, i.e. it is likely that part of an objective is addressed in more than one 

section or chapter of the document. 
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1.3 Limitations of Thesis 

The limitations of this research are mainly in two aspects: (1) in the set of assumptions 

made about the parameters, variables and/or constraints used to make a more specific 

model so that it can focus on its unique features. That is, some important considerations 

may have been overlooked or not taken into account. (2) In the proposition of more 

sophisticated and efficient methodologies for solving considerably large size instances of 

the production planning problem under consideration. However, these limitations can be 

addressed in our future in this area. 
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2 LITERATURE REVIEW 

2.1 Production Planning 

As proposed by Wolsey and Pochet (2006), production planning can be viewed as 

planning of the acquisition of resources and raw materials (components), as well as 

planning of the production activities required to transform materials into finished 

products. All of the above, meeting customer demand in the most efficient or economical 

way possible, i.e. minimizing total costs. 

Typically, solving production planning problems involve making decisions regarding the 

size of production lots, or production levels, for each of the time periods in a planning 

horizon. Additionally, these problem solutions may also include decisions on the 

quantities of raw materials (components) to purchase, order or process, inventory levels 

for finished products and components, production sequence, and other variables related to 

these aspects.  

In production planning, we usually consider material flow and inventory balance 

equations in time-indexed models using a relative coarse discretization of time, such as 

years, quarters, months or weeks (Kallrath, 2005). Linear Programming (LP), Mixed 

Integer Linear Programming (MILP), and Mixed Integer Non-Linear Programming 

(MINLP) models are often appropriate and successful for solving these problems with a 

clear quantitative objective function: net profit, contribution margin, cost, total sales, total 

production, etc (Kallrath, 2005). 
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2.1.1 History and Evolution of Production Planning Models 

Harris and Wilson EOQ Models 

The beginning of the study and development of production planning and production 

scheduling models dates back to 1913, with the Economic Order Quantity (EOQ) model 

proposed by F. W. Harris. The purpose of the EOQ model is to determine the order 

quantity that minimizes the total inventory holding costs and the ordering costs. 

Expanding Harris’ contributions, R. H. Wilson developed the statistical re-order point 

model in 1934 with the objective of preventing components from running out of stock, 

introducing the notion of safety stock. 

In the 1940s, Wilson combined his technique with that of Harris’ EOQ and it became 

referred to as the Wilson EOQ Technique, or the Wilson Formula. These models became 

the main inventory control technique for almost 30 years (Adam and Sammon, 2004). 

Wagner and Whitin Dynamic Lot-Sizing and MRP Models 

Over a decade later, another crucial contribution was made by H. Wagner and T. Whitin. 

They introduced the Dynamic Lot-Sizing model in 1958 as a generalized version of the 

EOQ model, considering the demand as time-varying. Subsequently, “the introduction of 

Materials Requirement Planning (MRP) systems in the 1970s was a major step forward in 

the standardization and control of production planning systems” (Wolsey and Pochet, 

2006). While MRP is primarily focused on planning and scheduling of materials, 

subsequent formulations called Manufacturing Resource Planning (MRP II) began to 
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cover all aspects of manufacturing processes, including demand planning, sales and 

operations planning (S&OP), master production schedule (MPS), bill of materials (BOM) 

and inventory control, among others. 

Advanced Planning and Scheduling and Enterprise Resource Planning Systems 

During the 1980s and 1990s decades, the intentions of integrating MRP and MRP II 

transversally in supply chain and manufacturing facilities led to what is now knows as 

Advanced Planning and Scheduling (APS) and Enterprise Resource Planning (ERP). 

Thus, APS systems provide long, mid and short-term planning of the supply chain, 

including aspects of procurement, production, distribution, and sales (Newmann et al., 

2002). Furthermore, ERP systems not only focus on planning and scheduling of internal 

resources, they strive to plan and schedule supplier resources as well (Chen, 2001). 

Additionally, ERP systems also include technology aspects, such as friendly graphical 

user interfaces, relational databases, use of fourth-generation language, and computer-

aided software engineering tools (Adam and Sammon, 2004).  

However, according to Wolsey and Pochet (2006), “MRP and its successors are not 

sufficient for the efficient planning of the factory or enterprise. Much criticism was 

leveled at the inability of such systems to deal effectively with lead times and capacity 

constraints. Even in APS and ERP systems, the planning modules are still seen as 

unusable, or unable to handle the complexity of the underlying capacitated planning 

problems”.  
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2.1.2 Production Planning by Mixed Integer Linear Programming 

When we intend to apply production planning in a more sophisticated way for complex 

manufacturing systems, it is usual to find such applications made through Mixed Integer 

Linear Programming (MILP) models. This is due to the nature of the decision variables 

for some features involved in such problems, e.g., set-up costs and times, start-up costs 

and times, machine assignment decisions, ordering costs and times, and so on. These 

costs and times are fixed per batch and are not proportional to the batch size. Therefore, 

binary or integer variables are required to model them (Wolsey and Pochet, 2006). 

Recent and relevant contributions on the development of these production planning 

models by Mixed Integer Linear Programming are presented below. 

Orçun et al. (2001) developed a continuous time model for production planning and 

scheduling applicable to batch processing plants. Initially, the proposed model is a Mixed 

Integer Nonlinear Program (MINLP), and it is then reformulated as a MILP using 

linearization techniques. The model aims at maximizing the net profit obtained from the 

batch production, and it is subject to restrictions relating batch assignment, operation and 

equipment setup time limitations, and scheduling periods. A multi-product batch paint 

processing plant is considered for a real case implementation to show the effectiveness of 

the model.  

Timpe (2002) presents a combined Mixed Integer Linear Programming / Constraint 

Programming (MILP/CP) model for production planning in the chemical process industry 

with the objective function of minimizing setup, stock holding and backlogging costs. 
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The MILP model is a standard capacitated dynamic lot-sizing problem and involves 

material balance, machine usage production setups and inventory bounds constraints. The 

model is developed and programmed in C++, using Dash’s XPRESS-MP library 

functions. 

Floudas and Lin (2005) made a review of the progress of MILP approaches for short-term 

scheduling systems. The models presented are classified by the representation of time: 

discrete and continuous, and some approaches to accelerate the solution process are also 

shown. They analyze more specific decision variables used to assign tasks to units 

(binary), and the amount of materials produced, consumed and available (continuous), in 

specified time intervals. Thus, inventory balance equations, similar to the ones showing 

how to add shelf-life considerations in Kallrath (2005), are presented for both discrete 

and continuous time models. 

Chen and Ji (2007) presented an Advanced Planning and Scheduling (APS) problem 

modeled by MILP. The model considers capacity constraints, operation sequences, lead 

times, due dates and multi-level product structures (Bill of Materials). Chen and Ji 

addressed the MILP problem of finding the optimal schedule for the orders by composing 

the objective function in two main parts: first, the production idle time is to be minimized 

(equivalent to maximizing machine utilization), and second, orders must be completed as 

close to their due date as possible (minimizing tardiness and earliness penalties). The 

model considers precedence constraints of items, which means subassemblies and 

components should be completed before processing final products. The model is 
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illustrated by a four level structure product example and solved using CPLEX. Optimal 

numerical results are shown and graphically presented in a Gantt chart. 

Moreno and Montagna (2009) proposed a MILP model to simultaneously optimize 

production planning and design decisions applied to multiproduct batch production plants 

over a multi-period scenario. The model involves deterministic seasonal variations of 

costs, prices, demands and supplies. The objective of the model is to maximize the net 

present value of the profit (sales, investment, inventories, waste disposal and resources 

costs). The model calculates the plant structure and allocation of intermediate storage 

tanks, unit sizes, inventory levels of both product and raw materials and purchases. They 

present two problem examples to illustrate the key features of the formulation approach, 

as well as its versatility and usefulness. 

As it can be see, production planning using Mixed Integer Linear Programming is an area 

that has been worked extensively, considering various aspects, systems, and perspectives. 

However, there still seems to be a long way to go in this topic, not only in formulation 

but also on the efficient solution of such models. 
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2.2 Production Planning for Perishable Products  

Regardless of the formulation technique, production planning models are applied to 

multiple types of manufacturing systems. Due to the formulation flexibility of these 

models, variables and constraints are adjusted to requirements and specifics of each 

problem. Specifically, industries such as food and chemicals have manufacturing systems 

involving products and raw materials that have the characteristic of being perishable, 

meaning that, once they are produced, after a certain time, expire, deteriorate or cease to 

be completely useful and should be discarded or diminish its commercial value.  

This characteristic of perishable products can be reflected in other aspects even beyond 

the physical conditions of the product (deterioration or depletion). Sarker and Xu (2003) 

considered the productive or marketable life of a product in a competitive emerging 

market as a form of perishability. “For example, though it is not a deteriorating item, a 

personal computer’s (PC) marketable life is completely dominated by the other emerging 

competitive items in the market. Hence, even though a relatively old PC is sparingly 

usable, this product has a very short shelf-life after which it is not saleable” (Sarker and 

Xu, 2003). In this sense, the concept of shelf-life can be defined as the time period during 

which a product can be stored without loss of function for which it was designed, or 

without loss of its usability. 

To present recent and relevant contributions in the area of production planning models 

considering this special feature of perishability or shelf-life, we can begin with Kallrath 

(2002), who made an overview of some of the most encountered production planning and 
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scheduling problems in the chemical process industry and their specific characteristics. 

He took into account and distinguished three classes of production systems: continuous, 

batch and semi-batch production. Among the several aspects needed for undertaking such 

problems, Kallrath refers to the possible limitations on the shelf-life time of products. 

Thus, it is specified that product-aging time should be traced, giving way to the 

application of constraints such as: “maximum shelf-life time, disposal costs for time 

expired products, and the setting of selling prices as a function of product life”. 

Newmann et al. (2002) introduced a Mixed Integer Nonlinear Programming model for an 

Advanced Planning System (APS) in the context of batch production for process 

industries. The model is reduced to a Mixed Binary Linear Program of moderate size, and 

includes constraints referring to perishability of products, where production tasks are 

assigned to consuming tasks so that no perishable product is kept in stock at any time, i.e. 

the amount produced by a batch must equal the amount consumed in following tasks 

without delay. The proposed model was applied for a chemical industry production plant 

and solved by a branch-and-bound algorithm in C under MS-Visual C++ 6.0.  

Entrup et al. (2005) developed three Mixed Integer Linear Programming (MILP) models 

that incorporate shelf-life limitations for final products in planning and scheduling for an 

industrial case study of stirred yoghurt production. The models presented focus on the 

flavoring and packaging steps of the yoghurt production process. 

Considering a shelf-life-dependent pricing component, M. Entrup et al. (2005) included 

the shelf-life aspect in their models’ objective function, which aims at maximizing the 

contribution margin. Numerical investigation was carried out to assess the suitability of 
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the models for specific planning problems. Computations were performed using ILOG’s 

OPL Studio 3.6.1 as a modeling environment and its incorporated standard optimization 

software CPLEX 8.1. 

Kallrath (2005) presented a compilation of Mixed Integer Optimization (including MILP) 

for solving planning and design problems. One of the special features in planning in the 

process industry where Kallrath’s work delves more specifically is the case of limited 

shelf-life for products. According to Kallrath, in these cases, such limitations on the 

shelf-life require controlled records to trace time stamps of products. For this, a variable 

disposal cost is associated with products that have exceeded its shelf-life, are no longer 

useful and need to be discarded. From the above, inventory balance equations are 

presented and show how to add the shelf-life aspect for products.  

Corominas et al. (2007) proposed two MILP models to solve production, working hours 

and holiday weeks for human resources in a multi-product process with perishable 

products. Both models have the same objective function: maximizing the profit (income 

minus costs due to production, product elimination, lost demand, and inventory, among 

others), introducing a unit cost of eliminating product that have reached its shelf-life and 

must be discarded. A computational experiment was conducted to evaluate the model 

efficiency and was solved using ILOG CPLEX 8.1. 

Wang et al. (2009) presented a binary integer programming model for operations 

planning involving product traceability, production batch size, inventory levels, product 

shelf-life, and other aspects in perishable food production. They modeled two different 

scenarios: one with two-level bill of materials (raw materials and finished products), and 
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one with three-level bill of materials (adding components). Shelf-life is considered to be 

the period between manufacture and retail purchase of a product during which the 

product is of satisfactory quality or saleable condition, and it is calculated by deducting 

the product storage time from the product life. To incorporate the shelf-life factor, a 

temporary price discount is applied quantifying product deterioration cost. Wang et al. 

note that the model is applicable not only in perishable food manufacturing contexts, but 

in a wider area of batch production and assembly processing. A case study with 

numerical simulation is implemented using Microsoft Excel. Sensitivity analyses were 

conducted to illustrate the proposed work. 

Although we present only a portion of the available literature, most studies on the subject 

focus on production planning models considering shelf-life of finished-products. 

However, when studying systems like the ones in the composite materials manufacturing 

industry, it is very common to find this feature of perishability in the components (raw 

materials), and not so prominent in finished-products. 

The following section presents available research related to shelf-life of components and 

finished-products mainly from the field of inventory control theory and modeling. 

Subsequently we introduce further the components shelf-life considerations in industries 

related to composites manufacturing. 
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2.3 Inventory Theory and Models for Perishable 

Products 

Nahmias (1982) presented a review of existing literature related to perishable inventory 

theory. In this case, perishability is divided into two classes: fixed lifetime and random 

lifetime. The first one refers to cases in which shelf-life is known a priori and is 

independent of any other parameters in the system. This category also separates the cases 

depending on demand: deterministic and stochastic. While the second class is related to 

an exponential decay of shelf-life and includes cases in which it behaves randomly with a 

specific probability distribution. 

Raafat (1991) conducted a study of the available literature in mathematical modeling of 

inventory systems for deteriorating (decaying) items. The reviewed models consider the 

decay or deterioration processes as: “any process that prevents an item from being used 

for its intended original use”. Raafat distinguishes between cases in which all items in 

inventory become obsolete simultaneously at the end of their planning horizon, and those 

where the items deteriorate throughout it.  

Goyal and Giri (2001) extended the work in Raafat (1991). They presented a review of 

the advances of deteriorating inventory literature since early 1990s. Deteriorating items 

are referred to as those (a) having a maximum usable lifetime (perishable products) 

and/or (b) those having no shelf-life at all (decaying products). Subsequently, based on 

shelf-life characteristics, the inventory models reviewed are classified into models for 

inventory with (i) fixed lifetime, (ii) random lifetime, and (iii) decays corresponding to 
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the proportional inventory decrease in terms of its utility or physical quantity. According 

to the authors, in case (i), if a product remains unused up to its life-time, it is considered 

to be outdated and must be disposed; and in case (ii), the products’ lifetime cannot be 

determined in advance while in stock. Finally, principal features of the models are 

specified and discussed.  

Chang and Chou (2008) proposed inventory models for perishable products in the 

aerospace industry. The authors note that in this industry, “perishable products are raw 

chemical materials used on the airplane, or the raw materials for the manufacture of 

compound materials”. An assumption of the study is that the age of arriving inventory 

units is zero, i.e. they arrive fresh and shelf-life begins to deduct. In addition, as in most 

of the related work, units that have not been used before its expiration date are discarded 

and are applied an outdate cost. Based on the above, Chang and Chou proposed a model 

with four different policy options: the first one ignores the possibility of negotiation 

between the supplier and the customer; model 2 includes the supplier and considers 

return policies; the third one joins the customer considering discounts; and the last one 

involves all of the above. A real aerospace enterprise was taken as an example to verify 

the validity of the model. 
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2.4 Composites Manufacturing 

Although the feature of perishability of raw materials is a consideration in manufacturing 

systems in many different industries, the main focus of this study is in composites 

manufacturing and related industries. The reason for this is the great importance of 

composite materials for industries such as aerospace, automotive, motorsports, marine, 

among others.  

According to Advani and Sozer (2001), in engineering, the definition of composite 

materials can be narrowed down to “a combination of two or more distinct materials into 

one with the intent of suppressing undesirable constituent properties in favor of the 

desirable ones”. There are mainly three types of composites: polymer matrix composites, 

metal matrix composites, and ceramic matrix composites. 

Polymer matrix composites are constituted by two individual components: polymer resin 

and fibers. “The role of the polymer resin, which is also called the matrix phase of the 

composite, is primarily to bind the fibers together, give a nice surface appearance, and 

provide overall durability” (Advani and Sozer, 2011).  

One of the composites processing aspects that make the manufacturing stage to be of 

special importance is that not only the part of the desire shape is made, but also the 

materials with specific properties are manufactured throughout the multiple processing 

phases. In addition, it is during the manufacturing process that the matrix material and the 

fiber reinforcement are combined and consolidated to form the composite. 
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2.4.1 Shelf-Life Considerations in Composites Manufacturing 

As shown in Figure 1, depending on the materials to be made and the manufacturing 

methods, the polymer matrix can be either a thermoset or a thermoplastic material. In 

both categories, we can observe the presence of a crucial and relevant material: prepregs.  

 

Figure 1 Classification of Raw Materials for Composites Manufacturing 

(Mazumdar, 2001) 
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A prepreg is a combination of fiber reinforcement material preimpregnated with a resin 

matrix. These materials and other materials consisting of mixed resin and hardener will 

gradually cure, even at low temperatures (Strong, 2007). For this reason, these materials 

are subject to a maximum storage time, shelf-life. To have longer shelf-lives, these 

materials may be stored at low temperatures. However, “even when kept refrigerated, the 

manufacturer usually sets a maximum shelf-life after which the material is assumed to 

have become too hard (cured) to use” (Strong, 2007). The material that has reached its 

maximum shelf-life is discarded from the manufacturing process. 

2.4.2 Production Planning in Composites Manufacturing 

Mazumdar (2001) describes the production planning procedures in composites 

manufacturing summarizing the following stages: (i) establishing total time needed for 

procurement of raw materials, inspection of raw materials, storage, manufacturing 

operations, delays, quality control, packaging, and shipping; (ii) calculating 

manufacturing equipment  capacities, raw material storage, lay-up area, and more; (iii) 

preparing Bill of Materials and identifying methods for procuring all the materials and 

parts needed; (iv) establishing the list of all major activities and sub-activities (tasks); and 

(v) estimating manufacturing lead times and preparing schedules.  

From a systematic point of view, Zhongyi et al. (2011) proposed the production planning 

and scheduling module of a Manufacturing Execution System (MES) for composite 

component manufacturing in an aerospace enterprise. Figure 2 shows the production 

planning and scheduling structure and workflow in composite component manufacturing. 
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The authors mentioned that many optimal algorithms such as simulated annealing, 

genetic algorithms, tabu search and neural networks are developed to solve the problem 

of meeting products demands in this context. They proposed an improved genetic 

algorithm and develop it adopting three-layer structure based on Web technology and 

browser/server (B/S) architecture. The developing languages are ASP.NET and C# and is 

implemented and applied in the composite component manufacturing workshop of an 

aerospace enterprise. 

 

Figure 2 Production Planning and Scheduling in the Composites Manufacturing 

(Zhongyi et al., 2011) 

From this literature review, in the next chapter we introduce the production planning 

problem to study and the model formulation to solve it. 
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3 PROBLEM DEFINITION AND 

MATHEMATICAL MODEL 

The current chapter introduces the structure of the production planning problem studied, 

the assumptions made, and the mathematical formulation proposed to solve it. We present 

two different models: the first one, called “Basic Variant”, does not consider shelf-life, 

and it is introduced as comparison point for the main modeling. While the second one, 

called “Core Variant”, does consider the raw material shelf-life requirement. These 

formulations will be applied to several problem instances using different considerations 

that affect the most significant problem variables and the process to achieve optimality. 

While each model and problem instance will be described in detail in the following 

sections, they can be briefly summarized as in Table 3.1. The table shows the different 

considerations for each instance in which the two model formulations are applied.  

Table 3.1 Model Variants, Problem Instances and Considerations 

 

Considerations 

Component 

Shelf-Life 
Order Batch Size Order Lead Time 

Model Basic Variant 

    Problem Instance B1    

    Problem Instance B2    

    Problem Instance B3    

Model Core Variant 

   Problem Instance C1    

   Problem Instance C2    

   Problem Instance C3    
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3.1 Problem Definition 

The objective of the proposed core formulation is to solve a multi-item multi-level 

production planning problem, where the end-products are made with components (raw 

materials) that have shelf-life restrictions, i.e. they can be stored or kept in stock only for 

a limited time. 

More specifically, the addressed problem considers: 

 the acquisition of the components (raw materials): when and how much to order, 

 the production activities to meet customer demand: when and how much to produce 

(transforming or assembling the components into end-products), 

 the components and end-products inventory control: how much to keep on 

inventory during each period of the planning horizon, 

 the disposal of components that have reached their shelf-life and are not suitable for 

use or consumption: when and how many units of component to be discarded. 

These planning decisions are subject to production and ordering capacities, and to the 

objective of incurring the lowest possible cost. Costs are related to components and their 

purchase, production, holding of components and end-products in inventory, and finally, 

for this specific case, to components disposal. 
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3.1.1 Shelf-Life Consideration 

The core aspect of the problem under study is the perishability condition of the 

components considered as raw materials for production. These components are those that, 

for various reasons, will expire after certain date, or can only be used for a determined 

period of time. The term “shelf-life” refers to the maximum length of time a component 

can be stored under specified conditions and remain suitable for use, consumption or for 

its intended function. 

The relevance of the above lies in the need to track the age of components with specific 

time-stamps for each of them. Individual inventory control is required to properly handle 

the ordering/receiving of materials, their remaining shelf-life, their consumption and the 

subsequent disposal. 

As described by Kallrath (2005), most of the data associated with inventories have to be 

duplicated for problems involving shelf-life, regarding additional shelf-life index. 

Besides the amount of inventoy kept in stock, we also need to know when the material 

has been ordered or received. In order to track the inventory of components that must be 

discarded when they expire, it is required to keep specific records of the period in which 

the components were received. Thus, they are later totalized as inventory to be unsuitable 

for use after expiration date. 

If a component reaches the end of its shelf-life and expires, it will have to be discarded. 

This will cause additional costs: besides the cost of acquiring the component and holding 
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it in stock, it may need to be transported to a certain disposal site, and may incur a 

treatment cost. 

Hence, we present a mathematical model formulation that takes this factor into account 

by adding variables, indexes and constraints for these individual time-stamps. Also, a 

disposal cost per unit of discarded component is applied. 

3.2 Assumptions and Notation 

In this research, we consider that a manufacturer needs to develop its production plan 

involving a set of N types of end-products, using a set of J types of components, over a 

planning horizon of T periods. The company seeks at simultaneously optimizing 

production and component orders, as well as the inventory levels, consumption and 

disposal of components to minimize operating costs. 

To structure the problem and the mathematical formulation, we make use of the 

following assumptions and notation: 

 Demand is deterministic with no back-orders: there is no uncertainty about the 

quantity or timing of demand. For each end-product type    , and each period 

   , we assume that there is a forecasted demand      that needs to be filled on 

time, i.e. no back-orders are considered. 

 Production is instantaneous and immediate: we define     ,     and    , as 

the units of end-product type i to be produce in period t, and assume the entire lot is 

produced simultaneously. We also assume that demand for each period is to be 
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filled with production in the same period, plus available on-hand inventory from the 

previous period (   ), i.e. there is no time lag between production and availability 

to satisfy demand. 

 End-Product Inventory: available on-hand inventory is defined by     ,    , 

   , as the units of end-product type i kept in stock at the end of period t. 

 Bill of Materials: the dependent relationship between components and end-

products is modeled through the definition of the product structure (BOM). For 

every component type     and every end-product type    , we define      as the 

amount of component type j needed to produce a unit of end-product type i. 

 Component Orders: we consider three different problem variations relating 

component ordering. In first instance, for the case under the assumption that the 

manufacturer may order the exact amount of components required for production 

with immediate receipt, i.e. there is no determined component order batch size or 

order lead time, let     ,    ,    , be defined as the units of component type j to 

order in period t. Then, let also     , be the number of batches of component j to 

order in period t for the case where the manufacturer is subject to order components 

in batches of size   . We further assume that the manufacturer is also subject to 

ordering lead times   . In this case, we additionally define      as the number of 

batches of component j scheduled to be received in period t as a parameter. Thus, 

     is determined in advance and applies to the initial periods in which the orders 

     are not yet being received (    ). For this case, it is also important to clarify 

that the orders received in period t are those made in period     ). 
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 Component Inventory and Disposal: as mentioned in Section 3.1.1, for problems 

involving shelf-life, besides the amount of inventory kept in stock, we also need to 

know when the material was received. Therefore, the component inventory 

variable        , for every     ,      and     , is defined as the amount of 

component type j kept in stock at the end of period t that was received in period r. 

We assume the planning horizon starts with no available component inventory, 

i.e.,       , for problems with no order lead time considerations. For problems 

considering order lead times, we assume an initial inventory        that has been 

received in period t = 0, which means that, all inventory at the beginning of the 

planning horizon will have a age of 1 period, and therefore, a remaining shelf-life 

    . All units of components kept on inventory and that have reached the end of 

their shelf-life will not be considered useful. For this, we define    as the units of 

component     that have been discarded. In addition, for problems that do not 

consider component shelf-life, the inventory variable is simply     , i.e, it does not 

need to have the r index,  

 Component Consumption: a key auxiliary variable for a problem involving shelf-

life considerations for components is the one referring to component consumption. 

To have an inventory control that allows us to track the antiquity of items, we 

define        as the units of component type j that were received in period r and are 

consumed in period t,    ,    ,    . This variable is not relevant for the 

model formulation that does not consider component shelf-life.      
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 Shelf-Life: let    be the maximum number of t periods that each component type 

    can be stored before it is considered unsuitable for use or consumption and 

must be discarded. It is assumed that the shelf-life of each component begins to be 

deducted from the moment it is received by the manufacturer, i.e. the age of a 

component with shelf-life    received in a given period, at the end of the same 

period, is 1; meaning that its remaining shelf-life is     . 

 Order Batch Size and Order Lead Time: For problem variants considering order 

batch size, for each component type    , we define    as the order batch size. And 

for variants considering order lead time, for each component type    , we define 

   as the order lead time: number of periods it takes an order to be received from the 

moment it is ordered.    

 Capacity: We assume that both, production and orders have capacity constraints. 

For every end-product type    , we define its capacity    as the maximum units 

of end-product type i to produce in any period t. And for every component type 

   , for problem variants where there is no determined component order batch 

size, we define its capacity    as the maximum units of component type j to order in 

any period t. For problem variants where the manufacturer is subject to order 

components in batches,    is defined as the maximum number of batches of 

component type j to order in any period t. 

 End-Product Unit Costs and Component Costs: for each end-product type    , 

we define    as the cost of producing one unit of end-product type i in any period 

(not including component costs). And for each component type    , for problem 
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variants where there is no determined component order batch size, we define a cost 

   per unit of component type j ordered in any period. For the case where the 

manufacturer is subject to order components in batches,    is defined as per batch of 

component type j ordered in any period.  

 Inventory Holding Costs: end-product inventory holding cost per unit per period 

for each     is defined by   , and component inventory holding cost per unit per 

period for each     is defined by   . 

 Component Disposal Cost: if a component is stored in inventory until the end of 

its shelf-life, expires, and is not suitable for use or consumption, a disposal cost    

per unit of component type     is incurred.  

 Fixed Set-Up and Ordering Costs: regardless of the amount of end-product units 

produced, a production run incurs a fixed set-up cost of    for each end-product 

type    . Also, independently of the amount of components ordered, placing an 

order at a period incurs a fixed ordering cost of    for each component type    . 

For these parameters, we define the binary variables     ,      and     ,    ,     

and    , iqual to 1 if and only if       ,        and       , respectively. 
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3.2.1 Summary of Model Parameters and Variables 

Initial Inventory and Scheduled Order Receipt: 

Ii,0 Initial End-Product Inventory, 

vj,0 Initial Component Inventory, 

 qj,t Component Scheduled Order to Receive,  

Demand, BOM and Shelf-Life: 

di,t End-Product Demand, 

bj,i Bill of Materials, 

aj Component Shelf-Life, 

Component Order Batch Size and Lead Time: 

Sj Order Batch Size, 

 lj Order Lead Time, 

Costs and Capacity: 

fj Component Unit Disposal Cost, 

cj Component Cost, 

pi End-Product Unit Cost, 

hi End-Product Inventory Holding Cost, 

mj Component Inventory Holding Cost, 

Ai Fixed Set-Up Cost, 

gj Fixed Ordering Cost, 

Ki Production Capacity, 

Lj Ordering Capacity, 
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Variables: 

xi,t Production, 

Ii,t End-Product Inventory, 

Qj,t Component Orders, 

vj,t,r Component Inventory, 

ej,r,t Component Consumption, 

zj Component Disposal, 

yi,t Fixed set-up binary variable, 

wj,t Fixed scheduled ordering binary variable, 

Wj,t Fixed ordering binary variable. 
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3.3 MIP Optimization Model 

This section presents the mathematical formulation to solve the discussed problem. The 

formulation is a Mixed Integer Linear Programming Optimization Model with the 

objective function to minimize the total costs.  

Two model variants are considered to evaluate different aspects of the problem. Table 3.2 

details the changes in each variant. 

Table 3.2 Model Variants Definition 

Model Variants Definition 

Basic Variant (No Component Shelf-Life) 

This is the most basic variant. It refers to a production planning model with no components 

shelf-life restrictions, and it is to be applied to problem instances considering: (1) no ordering 

batch sizes and no order lead times, (2) ordering batch size    and no order lead times, and (3) 

ordering batch size    and ordering lead time   . 

Core Variant (Component Shelf-Life)  

This is the main formulation considering the core aspect of the study: component shelf-life. As 

well as the Basic Variant, it is applied to problem instances considering: (1) no ordering batch 

sizes and no order lead times, (2) ordering batch size    and no order lead times, and (3) ordering 

batch size    and ordering lead time   . 

 

The variables and the parameters have certain modifications corresponding to each of 

these variants as specified in Section 3.2. The details of the mathematical formulation for 

each variant are presented below. 
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3.3.1 Basic Variant: No Component Shelf-Life Considerations  

In this section, we present a Mixed Integer Linear Programming model for the basic 

production planning problem without component shelf-life limitations. The point of 

presenting this model is that, later in the stage where we analyze the implementation of 

the proposed core mathematical formulation, relevant comparison is made between the 

two scenarios: production planning with and without component shelf-life requirement. 

The mathematical model for the Basic Variant, which can be considered an extension of 

the lot-sizing with capacities formulation by Wolsey & Pochet (2006), is as follows: 

Objective Function: 

min                           

 

   

 

   

 

 

   

 

   

 

   

 

   

        

 

   

 

   

                           

 

   

 

   

 

   

 

   

 

   

 

   

         

 

   

 

   

             

Minimize Total Costs: The objective function (3.1) is to minimize: 

 Cost of production:               , 

 Cost of components:                              , where      are the orders 

of component j scheduled to be received in period t, which for problem instances 

with the ordering lead time lj consideration will be       . Also, the component 

cost parameter cj is per component unit for problem instances with no ordering 

batch consideration, and per component batch for instances with ordering batch. 
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 End-product and component inventory costs:                              , 

where the component inventory variable      does not need to specify the period r 

in which the component was received,   

 Set-up and ordering costs:                                             . 

Subject to: 

                                                                                                                      

End-Product Inventory Balance, Production, and Demand Fulfillment: constraint 

(3.2) imposes that end-product demand is filled in every period, either with production, 

inventory, or both. It also sets the end-products inventory level for each period t. 

Inventory level at the end of period t (Ii,t) must be equal to inventory of end-products at 

the end of previous period (Ii,t-1), plus the units of end-products to be produced (xi,t), 

minus the demand (di,t), which can also be interpreted as end-product consumption. 

                            

 

   

                                                              ( . ) 

                     
          

 

   

                                                               ( .4) 

Component Inventory Balance, Component Ordering, and BOM: constraints (3.3) 

and (3.4) ensure component orders to satisfy the requirements for production. They also 

define the component inventory level for each period t. Component inventory at the end 

of period t (    ) must be equal to inventory at the end of previous period (vi,t-1), plus units 

of component received in period t, either from scheduled orders (    ) or from orders 
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made within the planning horizon (    ), minus component consumption according to bill 

of materials (bj,i) for end-products. Note that      only starts to be relevant when     , 

because no orders made within the planning horizon will be received before the order 

lead time   . For problem instances without ordering batch size consideration     , and 

for problem instances without ordering lead time consideration     . 

                                                                                                                                    

Production Capacity: constraint (3.5) sets the limits on production capacity for each 

end-product type    . 

                                                                                                                                     

Ordering Capacity: constraint (3.6) sets the limits on ordering capacity for each 

component type    . For the case of problem instances with no ordering batch size 

consideration, the ordering capacity parameter    is defined as the maximum units of 

component type     to order in any period t. For the case with ordering batch size 

consideration,    is defined as the maximum number of batches of component to order in 

any period t. 

                                                                                                                                  

                                                                                                                                 

                                                                                                                                  

Fixed Set-Up and Ordering Cost Binary Variables: constraint (3.7) ensures that if 

      , then the fixed set-up cost binary variable       , and so necessarily       . 
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Constraint (3.8) ensures that if       , then the fixed ordering cost binary variable 

      , and so necessarily       . And constraint (3.9) respectively does the same for 

     and      (M is a large positive number). 

Basic Variant Model Formulation Summary 

Summarizing the above discussion, the mixed integer programming model formulation 

for the Basic Variant is given below: 

min                           

 

   

 

   

 

 

   

 

   

 

   

 

   

        

 

   

 

   

                           

 

   

 

   

 

   

 

   

 

   

 

   

         

 

   

 

   

           

Subject to: 
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3.3.2 Core Variant: Component Shelf-Life Considerations 

In this section we present in detail the core mathematical formulation to solve the 

production planning problem with raw material shelf life. It is a MILP optimization 

model specific enough to involve the most unique features of the problem, and 

sufficiently flexible and/or general to be applied to multiple problem instances with 

different considerations. These considerations relate to the variables and parameters that 

mostly affect the results of the problem: ordering batch size and ordering lead time.   

The formulation for the Core Variant production planning problem is as follows: 

Objective Function: 

min                           
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Minimize Total Costs: The objective function (3.10) is to minimize the cost of 

production, cost of components, end-product and component inventory holding costs, 

component disposal cost (        ), and set-up and ordering cost. It is important to note 

that in this case, the component inventory variable        includes the component receipt 

index r, to specify the period in which the component is received. In addition, for 

problem instances considering initial inventory of component        with an age of 1 

period, index r will begin to be consider from period t = 0, i.e., we assume that the 

inventory of component at the beginning of the planning horizon has been received in 

period t = 0, and therefore has a shelf-life     . Just as in the Basic Variant, the 

component cost parameter cj is per unit of component for problem instances with no 

ordering batch consideration, and per component batch for instances with ordering batch.   

Subject to: 

                                                                                                                    

End-Product Inventory Balance, Production, and Demand Fulfillment: constraint 

(3.11) imposes that end-product demand is filled in every period, either through 

production, inventory, or both. It also sets the inventory level for end-products for each 

period t. Inventory level at the end of period t (Ii,t) is equal to inventory of end-products at 

the end of previous period (Ii,t-1), plus the units of end-products to be produced (xi,t), 

minus end-product consumption (di,t). 

Component Inventory Balance, Component Ordering, and BOM: The following 

constraints (3.12), (3.13), (3.14), (3.15) and (3.16) ensure component orders to satisfy the 
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requirements for production. They also define the component inventory level for each 

period t. Notice that, inventory level calculation varies depending on the period.  

       

 

   

                      

 

   

                                                   ( .12) 

Equation (3.12) specifies the component inventory (      ) at the end of the first period 

   . In this case, the component inventory consists on the one coming from the initial 

inventory (    ) i.e., interpreted as having been received in period    , and the one 

cause by the receipt of scheduled orders in period     (      ). In cases where no 

ordering batch size is considered     . 

       

 

   

          

   

   

                 

 

   

                                  (    ) 

Now in equation (3.13), when component inventory is being observed in periods that are 

lower than component shelf-life (    ) and lower or equal to the order lead time     , 

it is still possible to have component in inventory from the one assumed to be received in 

period    . Also, the component inventory contains the remaining units of scheduled 

orders that are received in period t. In cases where no ordering lead time is considered 

    . 

       

 

        

          

   

        

                 

 

   

                                 (    ) 

Equation (3.14) makes sure that when period     , only those components received 

starting from period        can be hold in inventory. All units of inventory received 
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before then would have had to be discarded. Additionally, it still maintains the 

assumption that     , which means that only scheduled orders      would have been 

received in period t. It is important to remember that scheduled orders are only relevant 

when ordering lead time    is considered. 

       

 

   

          

   

   

          
          

 

   

                                        (    ) 

Constraint (3.15) still considers the time before expiration      as in (3.13), but now it 

calculates the component inventory for periods greater than the order lead time (    ). 

This means that component orders      made within the planning horizon in period      

would have been received. 

       

 

        

          

   

        

          
          

 

   

                            (    ) 

Finally, constraint (3.16) calculates the component inventory for periods beyond 

component shelf-life and order lead times (     and     ), which implies that only 

those components received in periods starting from        can be considered, 

because the ones received before then are already discarded. Furthermore, equation (3.16) 

considers the receipt of orders made within the planning horizon (    ) in period     . 

         

 

   

        

 

   

                                                                                       (    ) 
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                                                                              (    ) 

 

Component Consumption: Constraints (3.17) and (3.18) define the component 

consumption variable ej,r,t. Units of component j consumed for production in period t, 

ordered in different previous periods r and that have not yet exceeded its shelf life time 

aj, must be equal to all component requirements in that same period t. Notice that, 

depending on the period t when it is being calculated, the components considered for 

consumption vary. Thus, if the consumption for component j is being calculated in a 

period t lower than the component’s shelf-life    (3.17), then all components ordered 

starting from period     will be considered. However, if the consumption for 

component j is being calculated in a period t greater or equal to component’s shelf-life 

(3.18), then only those components received starting at period        will be 

considered, because all components received before then would have been discarded. 

                                                                                               ( .19) 

                
                                                                            ( .20) 

                                                                                       ( .21) 

Component Individual Inventory: constraints (3.19), (3.20) and (3.21) represent 

conservation of components. Inventory of component j at the end of period t that was 

received in period r (vj,t,r) is equal to, in (3.19) when     and     , the units of 

component scheduled to be received in period t (      ), minus consumption of the same 
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component in the same period (ej,r,t). In (3.20) when     and     , component 

inventory is equal to the units of component ordered in period      (         
), minus the 

consumption of the same component in the same period (ej,r,t). And in (3.21) when 

      , to the inventory of component from previous period (vi,t-1,r) received in period 

r, minus the component consumption at the same period (ej,r,t). Notice that, if the 

component inventory is being observed in the same period r that it was received (   ), 

then it is going to depend on the units received in that same period t (    ). In contrast, if 

the component inventory is being calculated on a period t different than the one r when it 

was received, it will depend of the inventory of the same component at the end of the 

previous period (        ), as long as the storage time of the component is not greater than 

its shelf-life (      ), otherwise, it would have had to be discarded. 

               

 

    

                                                                                                                  

Component Disposal: constraint (3.22) consolidates the units of component to be 

discarded because they exceeded their shelf-life. 

                                                                                                                                   

Production Capacity: constraint (3.23) sets the limits on production capacity for each 

end-product type    . 
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Ordering Capacity: constraint (3.24) sets the limits on ordering capacity for each 

component type    . 

                                                                                                                                

                                                                                                                               

                                                                                                                                

Fixed Set-Up and Ordering Cost Binary Variables: constraint (3.25) ensures that if 

      , then the fixed set-up cost binary variable       , and so necessarily       . 

Constraint (3.26) ensures that if       , then the fixed ordering cost binary variable 

      , and so necessarily       . And constraint (3.27) does so respectively for      

and      (M is a large positive number). 

Core Variant Model Formulation Summary 

Summarizing the above discussion, we have that, for Variant C, the mixed integer 

programming model formulation is as follows: 

min                           

 

   

 

   

 

 

   

 

   

 

   

 

   

        

 

   

 

   

            

 

   

      

 

   

 

   

 

   

                  

 

   

 

   

 

   

 

   

         

 

   

 

   

                                         



43 

 

Subject to: 
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Refer to Appendix 1. IBM
®
 ILOG

®
 CPLEX

®
 OPL Model Source File to view the model 

formulations written in IBM
®
 ILOG

®
 CPLEX

®
 OPL format. 
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3.4 Model Solution Methodology 

In order to validate and evaluate the relevance of the optimization model presented 

above, we apply it to different instances of the production planning problem. Initially, we 

assume hypothetical values for the parameters and test the model using IBM
®
 ILOG

®
 

CPLEX
®
 Optimization Studio Version 12.4.  

Subsequently, we present a production planning problem applied to the automotive 

industry, although still mostly hypothetical, the parameter values are based on actual data 

collected from the composite manufacturing industry and from the automotive industry. 

The results of applying the model are analyzed and discussed in depth in Chapter 4. We 

analyze the behavior of each of the model variants and instances of the problem, 

discussing specific aspects related to processing times, number of constraints and 

variables used to solve it, optimality gaps, as well as outcomes related to the most unique 

variables of the model: components shelf-life and their disposal. 

3.4.1 IBM
®
 ILOG

®
 CPLEX

®
 Optimization Studio 

The IBM
®
 ILOG

®
 CPLEX

®
 Optimization Studio is an optimization software package 

that solves linear, mixed integer linear, quadratic, mixed integer quadratic and constraint 

programming formulations with CPLEX
®
 Optimizers. 

CPLEX
®

 was originally developed by Robert E. Bixby, current research professor of 

management in Rice University and who is a noted authority on the theory and practice 
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of optimization (Rice University, 2008). CPLEX
®
 was offered commercially starting in 

1988 by CPLEX Optimization Inc., which was acquired by ILOG
®
 in 1997. ILOG

®
 was 

later acquired by IBM
®

 in January 2009, for approximately $340 million USD (IBM, 

2009). CPLEX
®
 uses the programming language called OPL (Optimization Programming 

Language) to model the mathematical formulation. The specific individual formulations 

for each variation of the mathematical model written in OPL format can be found in 

Appendix 1. IBM
®

 ILOG
®
 CPLEX

®
 OPL Model Source File. 

CPLEX
®

 Mixed Integer Optimizer employs a branch-and-cut technique that takes 

advantage of innovative strategies to provide high-performance solutions for the hardest 

mixed integer programs. CPLEX
®
 can solve mixed integer linear, mixed integer 

quadratic and mixed integer quadratically constrained problems. CPLEX
®

 Mixed Integer 

Optimizers include the CPLEX
®
 presolve algorithm, sophisticated cutting-plane 

strategies and feasibility heuristics (IBM Corporation, 2010). 
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4 NUMERICAL EXAMPLE, RESULTS AND 

ANALYSIS 

In this chapter we illustrate, validate and evaluate in depth the previously proposed model 

formulation. We present different numerical example instances of the production 

planning problem with component shelf-life considerations. These problems are solved 

by the mixed integer linear programming optimization model proposed in Chapter 3.  

Although the example instances are hypothetical, we also present a case in which the 

values are based on data and information collected from real sources of composite 

materials manufacturing.  

In order to have a better understanding of the performance of the mathematical 

formulation, multiple instances for the same numerical example problem are solved and 

analyzed. The different instances vary in size, i.e. number of time periods in the planning 

horizon, and number of types of components. They also vary with respect to lower or 

higher costs, shorter or longer shelf-life times, and smaller of bigger order batch sizes. 

Each of the mathematical model variations is applied to solve the example problem 

instances using IBM
®
 ILOG

®
 CPLEX

®
 Optimization Studio Version 12.4 on a computer 

with a 2.00 GHz Intel
®
 Core™ 2 Duo processor, 4.00 GB installed memory (RAM), and 

a 32-bit operating system. The results are presented, analyzed and discussed. 
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4.1 Example Problem Instances 

The features of the different problem instances are presented in Table 3.1 in Chapter 3 to 

specify which formulation is applied. In this section, Table 4.1 displays them again 

focusing on the different considerations related to component shelf-life, ordering bath 

size, and ordering lead time. Additionally, Table 4.1 also specifies the model variant to be 

applied for each instance depending on its assumptions.   

 Table 4.1 Different Example Problem Instances by Considerations 

Problem Instances 

No Order Batch Size Order Batch Size 

No Order Lead Time No Order Lead Time Order Lead Time 

B1 C2 B2 C2 B3 C3 

No 

Shelf-Life 
Shelf-Life 

No 

Shelf-Life 
Shelf-Life 

No 

Shelf-Life 
Shelf-Life 

Basic Variant Core Variant Basic Variant Core Variant Basic Variant Core Variant 

 

In addition to the above classification, the problem instances to develop also differ in 

their parameters and size. For this, we divide them into two groups: ALPHA and BETA. 

ALPHA instances have: 

     types of components, 

 Lower inventory costs, 

 Shorter component shelf-life, 

 Shorter ordering lead times (when applicable), 

 Lower fixed set-up costs, 

 Lower disposal costs, 
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 Smaller ordering batch size (when applicable). 

BETA instances have: 

     types of components, 

 Higher inventory costs, 

 Longer component shelf-life, 

 Longer ordering lead times (when applicable), 

 Higher fixed set-up costs, 

 Higher disposal costs, 

 Bigger ordering batch size (when applicable). 

All problem instances are applied using     types of end-products, and four different 

planning horizons,    ,    ,      and     . 

All parameter values for each of the problem instances are presented below. 

4.1.1 Demand, Bill of Materials and Shelf-Life 

For our numerical problem examples, we assume that a manufacturer company requires 

planning its production to meet the end-products demand. Table 4.2 shows the values of 

the end-products demand parameter      for each period t in the planning horizon T, for 

each of the different instances proposed. 
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Table 4.2 Demand Parameter for Each Problem Instance 

    1 2 3 4 5 6 7 8 9 10 11 12 

 T = 6 

 
i = 1 100 90 100 120 100 120 - - - - - - 

 
i = 2 70 80 120 110 90 90 - - - - - - 

T = 8 

 
i = 1 100 90 100 120 100 120 100 90 - - - - 

 
i = 2 70 80 120 110 90 90 100 100 - - - - 

T = 10 

 
i = 1 100 90 100 120 100 120 100 90 110 130 - - 

 
i = 2 70 80 120 110 90 90 100 100 110 110 - - 

T = 12 

 
i = 1 100 90 100 120 100 120 100 90 110 130 100 90 

 
i = 2 70 80 120 110 90 90 100 100 110 110 90 80 

 

Having determined the end-product demand for the planning problem, the next step is to 

establish the product structure, i.e. Bill of Materials (    ), to know the required amount of 

components j that constitute each end-product type i. Table 4.3 presents these amounts, as 

well as the component shelf-life    for each problem instance.  

It is important to emphasize that the component shelf-life and their inventory holding 

costs are directly related. Depending on the context in which the problem is addressed, it 

is to be expected that storage conditions influence the time that the components can be 

stored. Thus, for longer shelf-lives, we usually have to incur higher inventory (storage) 

costs and vice versa. This direct relation between shelf-life and component inventory 

holding costs is taken into account in defining of the example problem instances. 
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Table 4.3 Bill Of Materials and Shelf-Life for Each Problem Instance 

                    Bill Of Materials      Component 

Shelf-Life    
 

i = 1 i = 2 
 

ALPHA (J = 2, shorter shelf-life) 

 

j = 1 5 2 

 

2 

 

j = 2 3 4 

 

3 

BETA (J = 3, longer shelf-life) 

 

j = 1 5 2 

 

3 

 

j = 2 3 4 

 

4 

 

j = 3 2 2 

 

5 

 

4.1.2 Capacities, Component Order Batch Size and Order Lead Time 

Table 4.4 shows the production capacity    for each end-product type    , the ordering 

capacity   , order batch sizes   , and order lead times    for each component type    . 

All of the above for each example problem instance. 

Depending on the problem instance to be solved, these parameters are used differently. 

For example, the capacity parameter    is used in terms of component units for instances 

that do not consider order batch sizes, and it is used in terms of batches for problems with 

order batch size considerations. The same applies to the orders lead time   , it will only be 

used when applying model instances B3 and C3. 

 

 

 



52 

 

Table 4.4 Production and Ordering Capacity, and Order Batch Size 

Production 

Capacity    
  Ordering Capacity    

Order Batch 

Size   * 

Order Lead 

Time   * 

ALPHA (lower batch size, shorter lead times, and  J = 2) 

 
i = 1 210 

 
j = 1 6,400 (8 batches) 

 

800 2 

 
i = 2 160 

 
j = 2 4,900 (7 batches) 

 

700 2 

BETA (higher batch size, longer lead times, and  J = 3) 

 
i = 1 210 

 
j = 1 9,600 (8 batches) 

 

1200 2 

 
i = 2 160 

 
j = 2 8,400 (7 batches) 

 

1200 3 

    
j = 3 6,000 (6 batches) 

 

1000 4 

* Only used when applying model Variants Basic 2, Basic 3, Variant B, and Variant C.   

 

4.1.3 Costs 

The purpose of the application of mathematical model to a practical production planning 

problem is to optimize the results, i.e. to minimizing total operating costs.  

Table 4.5 shows all the costs associated with end-products production and inventory. 

Table 4.5 End-Product Unit, Inventory Holding and Fixed Set-Up Costs 

  

End-Product 

Unit Cost    ($) 

Inventory 

Holding Cost    ($) 

Fixed Set-Up 

Cost    ($) 

ALPHA (lower set-up costs) 

 
i = 1 60 16 3,000 

 
i = 2 70 18 3,500 

BETA (higher set-up costs) 

 
i = 1 60 16 6,000 

 
i = 2 70 18 5,500 
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Table 4.6 shows all costs associated with components, component inventory and disposal, 

and component ordering. 

Table 4.6 Component, Inventory Holding, Disposal and Fixed Ordering Costs 

  

Component 

Cost    ($)* 

Inventory Holding 

Cost    ($) 

Disposal 

Cost    ($) 

Fixed Ordering 

Cost    ($) 

ALPHA (lower component inventory costs, and lower disposal costs)  

 
j = 1 3.125 (2,500 / batch) 2 7 1,000 

 
j = 2 2.286 (1,600 / batch) 3 8 1,500 

BETA (higher component inventory costs, and higher disposal costs) 

 
j = 1 2.08 (2,500 / batch) 3 9 1,000 

 
j = 2 1.33 (1,600 / batch) 4 10 1,500 

 
j = 3 2.00 (2,000 / batch) 5 11 1,200 

** Component cost    per batch is only used when applying model variants with order batch size consideration. 

 

We assume the planning horizon starts with no available end-product inventories 

(      ) for model variants with no order lead time considerations, and with        for 

model variants considering order lead time 
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4.2 Results and Analysis 

The following are the results of the different model formulations to address each of the 

above introduced instances. We compare the behavior of each model variant for each 

instance in terms of the number of constraints, variables (binary, general integer and 

continuous), average running time and number of nodes and iterations required to achieve 

the optimal solution. 

Additionally, we compare the formulations in terms of their optimality gap between the 

objective value and the linear relaxation, as well as the most relevant variable associated 

cost: component disposal cost.   

4.2.1 Model Comparison for ALPHA Problem Instances 

All instances in the ALPHA category have the same parameter levels: lower inventory 

costs, shorter shelf-life, shorter order lead times, lower set-up costs, smaller order batch 

size,    , and vary in the number of periods T.  

Table 4.7 presents the computational results for the ALPHA problem instances and 

shows obvious variations in the majority of indicators depending on the formulation and 

the considerations included in the problem. For example, problem instances considering 

No Component Shelf-Life (B1, B2 and B3) have a smaller number of constraints and 

variables, but not necessarily the optimal solution is achieved with fewer nodes, iterations 
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or running time. In fact, for ALPHA instances with T = 6, in terms of time, all 

formulations require similar computational times. 

Table 4.7 Model Comparison / ALPHA Problem Instances (T = 6) 

ALPHA 

 

T = 6, N = 2, J = 2 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 96 338  96 338 120 434 

Variables 73 161 73 161 85 188 

    Binary 24 24 24 24 36 36 

    Integer 48 134 48 134 48 149 

    Continuous 1 3 1 3 1 3 

Non-zero coefficients 164 321 164 321 172 341 

       
Avg. Time (hrs:min:sec:cs) 00:00:02:21 00:00:02:44 00:00:03:76 00:00:03:98 00:00:02:32 00:00:04:61 

# of Nodes 15 51 4,607 3,908 457 615 

# of Iterations 115 205 152,520 19,905 2,111 3,163 

   
 

   
Linear Relaxation $128,296 $130,168 $128,295 $128,295 $130,760 $130,760 

Objective Value $141,965 $141,965 $152,520 $153,124 $149,235 $150,128 

Optimality Gap 0.0096 0.0083 0.158 0.162 0.124 0.129 

Disposal Cost (        ) No Disposal No Disposal No Disposal $2,182 No Disposal $3,490 

 

Optimality Gap: As to the optimality gap, When comparing each of the formulations 

with the same considerations in pairs, that is B1 with C1, B2 with C2, and B3 with C3, 

there is not a significant variation in the optimality gap values. However, when 

transversely comparing between them, the optimality gap will be lower for variants with 

No Order Batch Size, and higher for instances B2 and C2  

No disposal cost for instance C1: One of the most important aspects to note when 

comparing the different model applications is presented in instance C1. Even considering 
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component shelf-life requirements, it is not expected to incur disposal costs, since 

problem instance C1 includes the No Order Batch Size assumption. The manufacturer 

can always order the exact amount of components required for production. Therefore, the 

optimal solution will not incur components disposal. 

To extend the above, assume that, at any period t, we order a number of component type j 

       large enough to generate an inventory that, at the end of period     , has to be 

discarded; because the component orders are not subject to a specific batch size, there is 

always the possibility of ordering less component, even the minimum needed for 

production, and thus, only incurring inventory costs and not disposal. 

Table 4.8 Model Comparison / ALPHA Problem Instances (T = 8) 

ALPHA 

 

T = 8, N = 2, J = 2 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 128 546 128 546 160 674 

Variables 97 247 97 247 113 282 

    Binary 32 32 32 32 48 48 

    Integer 64 212 64 212 64 231 

    Continuous 1 3 1 3 1 3 

Non-zero coefficients 220 437 220 437 232 461 

       
Avg. Time (hrs:min:sec:cs) 00:00:02:40 00:00:03:86 00:00:47:64 00:00:21:17 00:00:04:16 00:00:06:13 

# of Nodes 57 38 301,868 68,933 6,864 10,847 

# of Iterations 296 266 1,304,423 376,967 33,623 65,645 

       
Linear Relaxation $168,766 $170,961 $168,764 $168,764 $171,230 $171,230 

Objective Value $188,476 $188,476 $204,752 $204,540 $199,411 $200,838 

Optimality Gap 0.104 0.093 0.175 0.175 0.141 0.147 

Disposal Cost (        ) No Disposal No Disposal No Disposal $3,346 No Disposal $2,546 
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Higher total costs when no component shelf-life: It is important to emphasize that, in 

situations (such as the one shown in Table 4.8 occurring between instance B2 and C2), it 

is possible for the total costs to be higher when there are no component shelf-life 

considerations. 

This is because, due to orders batch size, depending on the number of periods that are 

being planned and the relations between inventory and disposal costs, we may have to 

hold inventories for components and/or end-products for several periods and in amounts 

such that the costs are higher than those occurred if the components were discarded. 

The aforementioned phenomenon can be explained more specifically as follows: first, 

assume for instance C2 (with component shelf-life), at any period t, we have to dispose 

           
 units of component type j, incurring in inventory holding and disposal cost of  

                   
. Now, for variant B2 (no component shelf-life), those same units 

of component type j will not be discarded but kept in inventory at the end of the same 

period t (    ) with an inventory holding cost of         . In the event that, for the 

following period (t + 1), it is required to order a number        of component batches   , 

but not a sufficient component consumption is conducted, then it is feasible that the 

inventory in t + 1 for variant B2 (      ) is higher enough than the one for C2 (          ) 

so that the total cost for the two periods is greater in B2                     

                    
                 . 

It is also crucial to mention that this phenomenon is due mainly to two assumptions that 

we are doing in the problem. Firstly, we are considering the same component inventory 
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costs for both cases: with and without shelf-life. Normally it is to be expected that in 

the case in which the components have shelf-life, since they must be stored under special 

conditions, these costs would be higher than when there is no shelf-life consideration, 

which would make it less likely for the phenomenon to occur. Secondly, we are 

interpreting the inventory (of both components and end-products) solely as a cost, 

which makes the mere fact of holding inventory and adversely affect for the objective 

function. This is contrasted with the fact that inventories can also be considered as 

assets. Having available inventory can be interpreted as an opportunity to sell it and 

receive profits (or recoup investments). If we were to consider such inventories as assets, 

the phenomenon mentioned above would not occur (or would not have the logic that does 

in this case).     

Longer running times for some variants: Table 4.8, Table 4.9 and Table 4.10 show a 

significant increase in processing times for problem instances B2 and C2, which are the 

ones considering ordering batch size and no ordering lead time. A significant increase in 

the number of nodes and iterations used by CPLEX
®

 to solve the problem is also 

observed. This occurs in all instances of the problem example for the same variants. In 

contrast to the above, the problems that do consider ordering lead time (B3 and C3) not 

only take less time to reach the optimal solution, but they also use fewer nodes and 

iterations. 
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Table 4.9 Model Comparison / ALPHA Problem Instances (T = 10) 

ALPHA 

 

T = 10, N = 2, J = 2 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 160 802 160 802 200 962 

Variables 121 349 121 349 141 392 

    Binary 40 40 40 40 60 60 

    Integer 80 306 80 306 80 329 

    Continuous 1 3 1 3 1 3 

Non-zero coefficients 276 553 276 553 292 581 

   
 

   
Avg. Time (hrs:min:sec:cs) 00:00:03:15 00:00:03:15 00:07:04:82 00:09:25:96 00:00:12:40 00:00:19:06 

# of Nodes 429 224 1,773,651 1,944,153 44,154 46,593 

# of Iterations 2,201 1,218 10,126,595 11,309,316 225,504 274,983 

Linear Relaxation $216,336 $219,234 $216,334 $216,334 $218,799 $218,799 

Objective Value $244,418 $244,418 $262,724 $263,694 $257,282 $256,500 

Optimality Gap 0.115 0.103 0.176 0.179 0.149 0.147 

Disposal Cost (        ) No Disposal No Disposal No Disposal $3,878 No Disposal $3,570 

 

Through all the results, it can be evidenced that problem instances C1 and C2 (both 

involving components shelf-life) always use the same number of constraints and 

variables to reach optimality, although differing in the order batch size consideration. 

This is because the component orders variable     , although being handled under 

different definitions, in both cases it only depends on the number of component types 

    and in the number of periods    . The remaining variables are all used in the 

same way in both model formulations, so there is no reason to generate changes in the 

amounts of variables used. 
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Table 4.10 Model Comparison / ALPHA Problem Instances (T = 12) 

ALPHA 

 

T = 12, N = 2, J = 2 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 192 1,106 192 1,106 240 1,298 

Variables 145 467 145 467 169 518 

    Binary 48 48 48 48 72 72 

    Integer 96 416 96 416 96 443 

    Continuous 1 3 1 3 1 3 

Non-zero coefficients 332 669 332 669 352 701 

   
 

   
Avg. Time (hrs:min:sec:cs) 00:00:03:12 00:00:04:32 00:07:14:80 00:07:14:16 00:01:07:48 00:01:16:87 

# of Nodes 519 375 1,626,039 1,334,919 311,327 226,528 

# of Iterations 2,109 2,473 9,754,558 8,353,792 1,785,494 1,639,288 

   
 

   
Linear Relaxation $253,542 $256,513 $253,539 $253,539 $256,005 $256,005 

Objective Value $286,667 $286,667 $303,078 $305,004 $301,784 $302,434 

Optimality Gap 0.115 0.105 0.163 0.169 0.152 0.153 

Disposal Cost (        ) No Disposal No Disposal No Disposal $1,990 No Disposal $2,230 

 

4.2.2 Model Comparison for BETA Problem Instances 

In this section we present the results of applying the model formulations to each of the 

BETA instances. BETA instances maintain the same parameter levels among them: 

Higher inventory costs, longer shelf-life, longer order lead times, higher set-up costs, 

higher disposal costs, bigger order batch size, and    , varying only the size of the 

planning horizon T. 
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We can see that all discussions presented in the preceding section on the application of 

the model to ALPHA instances still apply for BETA instances. 

Table 4.11 Model Comparison / BETA Problem Instances (T = 6) 

BETA 

 

T = 6, N = 2, J = 3 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 120 483 120 483 156 585 

Variables 91 237 91 237 109 282 

    Binary 30 30 30 30 48 48 

    Integer 60 203 60 203 60 233 

    Continuous 1 4 1 4 1 1 

Non-zero coefficients 211 526 211 526 220 569 

   
 

   
Avg. Time (hrs:min:sec:cs) 00:00:03:05 00:00:03:99 00:00:03:79 00:00:06:04 00:00:03:10 00:00:03:41 

# of Nodes 29 19 3,902 4,089 24 60 

# of Iterations 164 128 22,139 32,370 196 497 

   
 

   
Linear Relaxation $142,063 $145,270 $144,681 $144,681 $181,206 $181,386 

Objective Value $160,374 $160,374 $188,210 $188,210 $191,596 $191,710 

Optimality Gap 0.114 0.094 0.231 0.231 0.054 0.054 

Disposal Cost (        ) No Disposal No Disposal No Disposal No Disposal No Disposal $2,380 

 

No disposal in variants with shelf-life and batch size considerations: as shown in 

Table 4.11, although instance C2 assumes component shelf-life, it is perfectly possible to 

have no disposal of components when having this consideration. In this case, the value of 

the objective function is always going to be the same as that of the corresponding basic 

instance (which in this case is B2). When this situation occurs, the optimality gap is also 

the same for both variants. 
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One of the most crucial parameters for this problem of production planning is the 

component order batch size   . Depending on the relationship between the order batch 

size and the requirements of components, in a case applied to a manufacturing process, 

the flexibility of the producer will be critically affected by this. High order batch sizes 

could generate high levels of component disposal   , because the producer is forced to 

purchase large quantities of component that probably does not need to use. However, if 

end-products inventory holding costs    are not considerably high and with enough 

production capacity   , having large amounts of components will allow the manufacturer 

to produce end-products for inventory and not to have to dispose materials. 

Table 4.12 Model Comparison / BETA Problem Instances (T = 8) 

BETA 

 

T = 8, N = 2, J = 3 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 160 787 160 787 208 907 

Variables 121 369 121 369 145 426 

    Binary 40 40 40 40 64 64 

    Integer 80 325 80 325 80 361 

    Continuous 1 4 1 4 1 1 

Non-zero coefficients 283 742 283 742 298 791 

   
 

   
Avg. Time (hrs:min:sec:cs) 00:00:03:08 00:00:04:11 00:00:05:65 00:00:11:08 00:00:02:99 00:00:04:83 

# of Nodes 79 51 9,325 14,697 1,584 2,019 

# of Iterations 439 399 66,293 131,777 9,579 15,172 

   
 

   
Linear Relaxation $186,498 $189,994 $189,125 $189,125 $225,254 $225,794 

Objective Value $212,925 $212,925 $248,820 $249,752 $258,322 $256,690 

Optimality Gap 0.124 0.107 0.234 0.243 0.128 0.120 

Disposal Cost (        ) No Disposal No Disposal No Disposal $1,190 No Disposal $3,030 
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Observing problem instances B2 and C2 in Table 4.12 and Table 4.13, we can see the 

significant increase in processing time mentioned above when passing from T = 8 to T = 

10, as well as in the number of nodes and iterations used by  CPLEX
®

 to reach the 

optimal solution. However, these increases are not accompanied by a significant 

difference in the optimality gap between the linear relaxation and the objective value. 

In fact, the optimality gap presents variations in all corresponding model formulations 

through all the problem instances.  

Table 4.13 Model Comparison / BETA Problem Instances (T = 10) 

BETA 

 

T = 10, N = 2, J = 3 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 200 1163 200 1,163 260 1,293 

Variables 151 525 151 525 181 594 

    Binary 50 50 50 50 80 80 

    Integer 100 471 100 741 100 513 

    Continuous 1 4 1 4 1 1 

Non-zero coefficients 355 958 355 958 376 1,013 

   
 

   
Avg. Time (hrs:min:sec:cs) 00:00:03:14 00:00:04:57 00:00:52:55 00:01:51:44 00:00:10:21 00:00:19:57 

# of Nodes 773 431 182,715 194,818 25,338 24,266 

# of Iterations 4,031 2,496 1,386,785 1,803,414 190,219 249,308 

   
 

   
Linear Relaxation $238,737 $243,178 $241,375 $241,375 $277,505 $278,045 

Objective Value $278,504 $278,504 $319,644 $318,404 $333,290 $332,142 

Optimality Gap 0.142 0.127 0.245 0.242 0.167 0.163 

Disposal Cost (        ) No Disposal No Disposal No Disposal $1,000 No Disposal $3,026 

 

Another aspect to consider is that it is also feasible, through longer planning horizons, 

that the inventory costs of components and end-product is higher when low amounts of 
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components are disposed. In this situation, the “forced” disposal of components (due to 

order batch sizes) may not be considered a negative limitation, but on the contrary, a 

mechanism to prevent high total inventory holding costs. This under the assumption of 

inventories only as costs, and not as assets. 

Table 4.14 Model Comparison / BETA Problem Instances (T = 12) 

Instance: 4-BETA 

 

T = 12, N = 2, J = 3 
 

No Order Batch Size 

No Order Lead Time 

Order Batch Size (  ) 

No Order Lead Time Order Lead Time lj 

B1 C1 B2 C2 B3 C3 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

No 

Component 

Shelf-Life 

Component 

Shelf-Life aj 

# of Constraints 240 1,611 240 1,611 312 1743 

Variables 181 705 181 705 217 786 

    Binary 60 60 60 60 96 96 

    Integer 120 641 120 641 120 689 

    Continuous 1 4 1 4 1 1 

Non-zero coefficients 427 1,174 427 1,174 454 1235 

       
Avg. Time (hrs:min:sec:cs) 00:00:03:52 00:00:05:10 00:06:11:46 00:09:04:36 00:01:03:86 00:03:15:23 

# of Nodes 920 812 1,069,380 968,941 187,800 278,615 

# of Iterations 5,022 5,118 9,031,701 9,913,765 139,199 3,202,670 

   
 

   
Linear Relaxation $279,597 $283,900 $282,243 $282,243 $318,372 $318,913 

Objective Value $326,229 $326,229 $367,512 $368,412 $393,882 $394,269 

Optimality Gap 0.143 0.129 0.232 0.234 0.192 0.191 

Disposal Cost (        ) No Disposal No Disposal No Disposal $500 No Disposal $5,130 

 

The following section presents a comparison of the problem instances considering the 

component shelf-life requirement where the core model formulation variant is applied. 
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4.2.3 Comparison of Core Model Variants for all Instances 

In Table 4.15, we now present the previous results comparing all instances solved with 

the core model variant at once. The purpose of this mode of comparison is to more 

clearly visualize the differences in the application of the core model variant to solve each 

of the different problem instances and get a deeper view of its performance. 

Table 4.15 Core Model Comparison for all Problem Instances 

  
# of 

Const. 

Variables Non-

zero 

coeff. 

Average 

Time (seg) 

# of 

Nodes 

# of 

Iterations 

Optimality 

Gap   Total Binary Integer Cont. 

Instance C1 (No Order Batch Size, No Order Lead Time) 

ALPHA (J = 2)           

 T = 6 338 161 24 134 3 321 2.44 51 205 0.0083 

 T = 8 546 247 32 212 3 437 3.86 38 266 0.093 

 T = 10 802 349 40 306 3 553 3.15 224 1,218 0.103 

 T = 12 1,106 467 48 416 3 669 4.32 375 2,473 0.105 

BETA (J = 3)           

 T = 6 483 237 30 203 4 526 3.99 19 128 0.094 

 T = 8 787 369 40 325 4 742 4.11 51 99 0.107 

 T = 1 1,163 525 50 471 4 958 4.57 431 2,496 0.127 

 T = 12 1,611 705 60 641 4 1,174 5.10 812 5,118 0.129 

Instance C2 (Order Batch Size Sj, No Order Lead Time) 

ALPHA (J = 2)           

 T = 6 338 161 24 134 3 321 3.98 3,908 19,905 0.162 

 T = 8 546 247 32 212 3 437 21.17 68,933 376,967 0.175 

 T = 10 802 349 40 306 3 553 565.96 1,944,153 11,309,316 0.179 

 T = 12 1,106 467 48 416 3 669 434.16 1,334,919 8,353,792 0.169 

BETA (J = 3)           

 T = 6 483 237 30 203 4 526 6.04 4,089 32,370 0.231 

 T = 8 787 369 40 325 4 742 11.08 14,697 131,777 0.243 

 T = 10 1,163 525 50 741 4 958 111.44 194,818 1,803,414 0.242 

 T = 12 1,611 705 60 641 4 1,174 544.36 968,941 9,913,765 0.234 

Instance C3 (Order Batch Size Sj, Order Lead Time lj) 

ALPHA (J = 2)           

 T = 6 434 188 36 149 3 341 4.61 615 3,163 0.129 

 T = 8 674 282 48 231 3 461 6.13 10,847 65,645 0.147 

 T = 10 962 392 60 329 3 581 19.06 46,593 274,983 0.147 

 T = 12 1,298 518 72 443 3 701 76.87 226,528 1,639,288 0.153 

BETA (J = 3)           

 T = 6 585 282 48 233 1 569 3.41 60 497 0.054 

 T = 8 907 426 64 361 1 791 4.83 2,019 15,172 0.120 

 T = 10 1,293 594 80 513 1 1,013 19.57 24,266 249,308 0.163 

 T = 12 1,743 786 96 689 1 1,235 195.23 278,615 3,202,670 0.191 
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The tables in the previous section are intended to present the results of the problem 

instances solution and compare each of the mathematical formulations with its respective 

basic counterpart and with different key assumptions. In this section, the Table 4.15 

presents a comparison of the core model applied to different problem sizes in terms of 

number of T periods in the planning horizon and J types of components. Most of the 

conclusions drawn above can also be observed here, but we display more clearly the 

difference in performance when changing the number of periods or components. For 

example, it clearly shows the significant increase in computational time to solve the 

problem when moving from 8 to 10 and to 12 time periods for all instances. However, as 

also mentioned above, we do not observe significant changes in the optimality gap. 

In order to further analyze the application of the core model formulation, and to 

contextualize it in an industry where raw material shelf-life considerations are relevant, 

the following section presents a case study based on actual information from composites 

manufacturing and applied to an example in the automotive industry. 
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4.3 Case Study (Automotive Industry) 

Before stating the case study example, it is important to contextualize its field (industry) 

of application. As described by Mazumdar (2001), composite materials have come to be 

considered the “material of choice” for over a decade in various applications in the 

automotive industry, either to make exotic sports cars, passenger cars, or small, medium 

or heavy trucks. 

Manufacturers have the opportunity to meet the requirements of cost, appearance and 

performance, replacing metal parts with lightweight composite parts, by using materials 

such as customized glass fiber reinforced plastic (GFRP), and carbon fiber reinforced 

plastic (CFRP) prepregs. Surface finish body panels, impact structures, interior and 

exterior structural features, and aesthetic-pleasing cosmetic parts are some key elements 

in which these materials are used. 

The automotive industry has been chosen to be the base for the numerical case study 

example, due to the importance that the composite materials represent for it. Below, 

information and actual data from the automotive and composites manufacturing 

industries are presented for later use in defining the case. 

4.3.1 Composite Materials Used in the Automotive Industry 

According to the British composite materials manufacturer Amber Composites Ltd. 

(which produces composites for high performance lightweight structures), the most 
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typical applications of GFRP and CFRP prepregs and other composites in the automotive 

industry are (Amber Composites Ltd., 2012): 

Tooling: high-performance tool making from tooling board, release agents, sealers, 

vacuum bags and other consumables to high performance tooling prepreg, 

Structural parts: prepregs, honeycombs and adhesive films work together seamlessly to 

manufacture structural parts such as high-performance chassis, 

Interiors: aesthetic and structural parts such as dashboards, door panels, and trim, 

Cosmetic bodywork: rapid laminating epoxy resin systems reduce laminating times and 

enable first-class surfaces. 

For example, spanish manufacturer GTA Motor’s super sports car ‘Spano’ is 

manufactured using surfacing films for tooling, body panel systems for the bodywork, a 

combination of high visual quality cosmetic prepregs for the interior, exterior cosmetic 

trim panels and epoxy prepreg systems. For high impact resistance in certain areas of the 

car, GTA Motor is using resin systems on hybrid aramid/carbon reinforcement 

(Advanced Composites Group Ltd., 2012). Most of these materials mentioned above are 

composites whose shelf life must be considered when using them for production. 

Shelf-Life Consideration 

Shelf-life of composite materials depends on the type and compound formulation. 

Furthermore, depending on storage conditions, the shelf-life may vary dramatically. 

Typically, to achieve maximum shelf-life times, materials need to be stored at 
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refrigeration temperatures (18°C / 0°F). At ambient temperatures (20°C / 68°F), shelf-life 

times can be reduced to only a few days. 

Following is a series of examples of some composite materials used in the automotive 

industry where shelf-life is a consideration depending on the conditions under which they 

are stored. Specifically, Table 4.16 and Table 4.17 below show component and tooling 

prepregs, and other composites manufactured by Amber Composites Ltd. and Advanced 

Composites Group Ltd., two major companies in the composites manufacturing industry. 

The tables contain: the original manufacturer specification (OM), main characteristics of 

the material, some typical applications and information related to storage and shelf-life. 

Table 4.16 Prepreg Systems Developed by Amber Composites Ltd. 

(Amber Composites Ltd., 2012) 

Low-Temperature Prepregs 

Low-temperature curing component prepreg incorporates epoxy resin systems with a range of 

viscosities, pre-impregnated into high-performance fibers such as carbon, glass and kevlar. 

They are designed for rapid manufacturing from low cost tooling. Do not require autoclaves. 

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

E644 Very good surface finish 

under autoclave or vac-

bag. 

Fast curing at elevated 

temperatures. 

Motorcycle exhausts, 

motor racing bodywork, 

marine applications, 

medical applications. 

7 days Up to 12 months 

E650 Excellent surface finish 

with autoclave or vac-bag. 

Improved handleability and 

good mechanical 

properties. 

Motor racing bodywork, 

leisure industry, medical, 

commercial, automotive, 

wind turbines. 

5 days Up to 12 months 

8020 Designed for excellent 

surface finish with reduced 

layup times. 

Automotive & Marine. 30 days Up to 12 months 
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Cyanate Ester Prepregs 

Suited for motorsport, automotive, aerospace and industrial applications where high temperature 

performance is paramount. Resin systems can be pre-impregnated into carbon, glass and aramid 

fibers. 

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

C640 Very high end-use 

temperature with flexible 

low to medium cure. 

Motor sport exhaust 

systems and high 

temperature applications. 

4 days Up to 6 months 

C740 Very high end-use temp. 

Excellent handleability 

and surface finish. 

Aerospace and motor 

sport exhaust systems 

and engine covers. 

1 month Up to 12 months 

Out-Of-Autoclave Prepregs 

With out-of-autoclave systems, components can be laminated quickly and more efficiently in a 

non-autoclave environment. Benefits include: excellent surface finishes, more flexibility in 

manufacturing, less expensive tooling and energy savings. 

8020 

Rapi-

ply 

Rapi-

core 

Surface 

Film 

Multiple layer product 

that significantly reduces 

lay-up times compared 

with traditional prepreg. 

Structural components, 

automotive, marine, 

wind energy and many 

other applications. 

1 month Up to 12 months 

Fire Retardant Prepregs 

For quick component lamination and more efficiency in a non-autoclave environment. 

Benefits include: excellent surface finishes, more flexibility in manufacturing, less expensive 

tooling and energy savings. 

8020-

FR 

Flexible low to medium 

cure schedules. 

Excellent drape and good 

adhesive properties. 

Motor sport exhaust 

systems and high 

temperature applications. 

1 month Up to 12 months 

E721-

FR 

Excellent adhesive 

properties suitable for 

sandwich construction. 

Motor racing, marine, 

aircraft interiors, rail, 

automotive. 

1 month Up to 12 months 
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Tooling Prepregs 

Excellent surface finish, ease of handling and longevity of tool life. Up to 200°C (392°F) end-

use temperatures. Tools can be produced using a range of materials and methods. 

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

HX42 Longest out life, best 

surface finish at high 

temperature. 

Large aerospace and 

automotive tooling. 

5 days Up to 12 months 

HX50 Excellent surface finish. Fast curing automotive 

tooling. 

60 hours Up to 6 months 

HX70 Shorter autoclave curing 

time and very low curing 

temp. 

Very fast curing 

automotive tooling. 

30 hours Up to 6 months 

HX90N Lower coefficient of 

thermal expansion. 

High precision aerospace 

and automotive tooling. 

30 hours Up to 6 months 

 

As can be seen in the above table, the maximum shelf-life of the presented examples of 

composite materials may vary from 6 to 12 months, always depending on storage 

conditions. Additionally, when these materials are kept at ambient temperatures, their 

shelf-life (also called out-life in these cases) may be significantly reduced to 5 days. 

Table 4.17 gives further examples of composites with shelf-life considerations produced 

by Advanced Composites Group Ltd. ACG Ltd. is part of part of Umeco Composites 

Structural Materials (UCSM), and is a leading manufacturer of advanced composite 

carbon and glass fiber (CFRP and GFRP), reinforced plastic pre-impregnated materials 

(prepregs), custom formulated for components, and structural and tooling applications in 

a diverse range of industries (including the automotive industry) (Advanced Composites 

Group Ltd., 2012). 
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Table 4.17 Prepreg systems Developed by Advanced Composites Group Ltd. 

(Advanced Composites Group Ltd., 2012) 

Structural Epoxy Prepreg Resin Systems 

Low Temperature Molding (LTM)  

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

LTM
®
23 40°C (104°F) initial 

cure. Toughened. 

Honeycomb bondable. 

Prototypes. Low 

cost structural parts. 

Offshore structure 

repair. 

2 to 3 days 6 to 12 months 

LTM
®
26 Toughened LTM 

structural system. Wet 

service temp. 90°C 

(194°F). Excellent resin 

clarity and UV 

resistance. 

Light aircraft. 

UAVs. Automotive 

prototypes. Flame 

retarded and low 

smoke variants. 

4 to 6 days 6 to 12 months 

LTM
®
40 Toughened LTM 

structural system. 

Wet service temperature 

130°C (266°F). 

Aircraft prototypes. 

UAV’s. Automotive 

engine parts. 

3 to 15 days 6 to 10 months 

LTM
®
45 Toughened LTM 

structural system. Wet 

service temperature 

130°C (266°F). 

Autoclave quality from 

vacuum bag processing. 

Aircraft prototypes. 

Structural aircraft 

components. 

Automotive engine 

parts. 

5 to 6 days 6 to 10 months 

Medium Temperature Molding (MTM) 

MTM
®
28 Good handling. Variants 

to meet specific 

handling requirements. 

Excellent damage 

tolerance. Honeycomb 

bondable. 

Widely used structural 

material for commercial 

applications. 

1 month Up to 12 

months 

MTM
®
29FR/SFR Toughened LTM 

structural system. Wet 

service temperature 

130°C (266°F). 

Rail, marine and 

transport structural 

parts. 

1 month Up to 12 

months 

MTM
®
44-1 Out-of-Autoclave 

processing. Low density 

1.18g/cc. 

Primary aircraft and 

automotive structures. 

21 days Up to 12 

months 
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Medium Temperature Molding (MTM) 

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

MTM
®
45-1/FR Out-of-Autoclave 

processing. 90°C 

(194°F) initial cure for 

prototypes. 

Conventional 180°C 

(356°F) cure for 

production. Low 

density 1.18g/cc. 

Primary aircraft and 

automotive structures 

for prototypes and 

series production. 

21 days Up to 6 months 

MTM
®
48 Good tack and drape. 

Good environmental 

resistance. 

Honeycomb bondable. 

Honeycomb 

sandwich structures 

and secondary 

structures. 

1 month Up to 12 months 

MTM
®
49 High temperature 

resistance and wet 

service. Good balance 

of temperature 

resistance and 

toughness. 

Automotive and 

motorsport structures, 

e.g. chassis, wings 

and roll hoops. 

1 to 2 months Up to 12 months 

MTM
®
57 Low cost, aesthetically 

clear resin, offering 

good UV resistance.  

Component 

manufacture. 

Cosmetic interior and 

exterior automotive 

panels. 

1 month Up to 12 months 

MTM
®
58B/FRB Excellent tack and 

drape. Good hot/wet 

performance. 

Automotive 

components. 

2 months 12 to 18 months 

MTM
®
71 Good tack and 

handling. 

Motorsport chassis 

and side intrusion 

structures. 

1 month Up to 12 months 

MTM
®
249 Good dry property 

retention up to 180°C 

(356°F). Low density 

1.18g/cvc. High 

toughness. 

Motorsport 

chassis and impact 

structures at high 

service temperatures. 

21 days 12 to 18 months 

High Temperature Molding (HTM)  

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

HTM
®
60 High temp. resistance. 

Honeycomb bondable. 

High temp. 

automotive structural 

and bodywork 

applications. 

28 days Up to 12 months 
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Variable Temperature Moulding (VTM) 

OM 

Spec. 
Characteristics 

Typical 

Applications 

Shelf-Life 

At ambient temp. 

(20°C / 68°F) 

Refrigerated at 

(-18°C / 0°F) 

VTM
®
243FRB 

 

VTM
®
244FRB 

 

VTM
®
260 

 

Fabric reinforcement 

weights up to 

300g/m
2
, 700g/m

2
, and 

more. Excellent 

vacuum-bag 

consolidation for low 

void laminates. Good 

dry property retention. 

Large Out-of-

Autoclave 

structures for 

automotive, marine 

and other industries. 

1 month Up to 18 months 

Body Panels Systems  

VTF242 

FRB 

Pit free finish under 

vacuum consolidation. 

Stable under 

environmental 

conditioning. 

Excellent drape and 

handling. Flame 

retarded. 

Automotive body 

panels. Rapid 

prototype 

construction. 

Models. 

7 days 12 to 18 months 

VTS
®
243 

FR 

Rapid build-up of part 

thickness. Excellent 

drape and handling. 

Stable under 

environmental 

conditioning. Flame 

retarded. 

Automotive body 

panels. Rapid 

prototype 

construction. 

Models. 

30 days Up to 12 months 

Tooling Prepregs 

LTM
®
10 

 

LTM
®
12 

 

LTM
®
16 

Low temp. cure 

epoxide based resin 

systems which may be 

post-cured to produce 

high temperature 

(200°C/392°F) 

composite tools. 

Automotive and 

other industries 

tooling. 

3 to 7 days 6 to 12 months 

HTM
®
512 Bismaleimide (BMI) 

systems specifically 

formulated for the 

manufacture composite 

tooling operating at 

high temperatures. 

Automotive and 

other industries 

tooling. 

21 days Up to 6 months 
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The above items shown in Table 4.16 and Table 4.17 are just some of the many 

composite materials used in the automotive industry (among others industries). All these 

materials, as specified in the tables, are limited to storage conditions and a given shelf-

life time depending on such conditions. 

If the material is stored at room temperature, the term “out-life” is more appropriate to 

refer to the expiration period.  For moderately long periods of shelf-life time, the material 

can be stored in a refrigerator at approximately 5°C / 40°F. To obtain the maximum 

shelf-life time, the material must be stored frozen at 18°C / 0°F. Additionally, several 

suppliers recommend to allow prepreg to reach room temperature before opening its 

packing following removal from cold storage. 

Pricing and Other Specifications 

Multiple variables influence the final prices of materials for manufacturers. The price 

ranges can vary significantly depending on the type of composite material, the 

specifications required by the manufacturer for each product, the quantity and frequency 

of orders, the supplier, the time of the year (according to demand and product 

availability), etc. 

Additionally, depending on material specifications, market prices are established on 

various units of measure. For example, prices for epoxy prepreg systems may be 

specified by the area ($ per square foot: $/ft
2
, $/sq-ft, or $ per square meters: $/m

2
), but 

some suppliers may also manage prices by the weight ($/lb or $/kg), or even some just by 

custom units (e.g. rolls, sheets, cut forms, etc.). 
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For this specific case study, the measurement units that are used to specify component 

prices, requirements and other parameters are square foot (ft
2
), as done by Mazumdar 

(2001) when describing production planning and manufacturing instructions for 

composite materials. 

Although it is complex to establish pricing standards for such materials, it seems 

proportionate to say, based on various sources of the composites materials manufacturing 

industry, that market prices of thermoplastic and thermoset prepreg systems for 

manufacturers can vary around the range of US$1.5 to US$4 per square foot. It should be 

noted that some suppliers may have higher prices, and even that seasonal variations may 

cause significant increase in prices. The above range is used to approximate the prices of 

components for the automotive case study of matter. 

4.3.2 Demand/Sales and Production in the Automotive Industry 

Demand/Sales Behavior 

The demand is one of the fundamental elements of any production planning model, as it 

establishes patterns related to the objective function and system constraints. In order to 

develop a consistent case study with realistic elements, the automotive industry 

demand/sales behavior is briefly analyzed below, to then make approximations applied to 

the case definition. 

According to the National Automobile Dealers Association (NADA), which represents 

nearly 16,000 new car and truck dealers, with 32,500 franchises internationally, in its 
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2010 State of the Industry Report, sales of new cars fell dramatically in 2010 compared to 

previous year, as the recession deepened in the first half of the year. On the other hand, 

demand of used cars increased rapidly, even faster than supply, causing a significant 

shortage. This, mixed with other factors, led to an increase in new car’s sales in the 

second half of the year. 

In order to get a better idea about the behavior and the proportionality of the demand in 

the automotive industry, Table 4.18 records the monthly sales data of an important 

portion of that market over the past three years. 

Table 4.18 New-Car / New-Truck Dealer Total Monthly Sales (million units) 

(National Automobile Dealers Association, NADA, 2012) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

2011 2.51 2.64 3.15 2.95 2.94 2.92 2.93 3.02 2.87 2.80 2.75 3.25 34.74 

2010 2.03 2.03 2.71 2.59 2.66 2.58 2.76 2.73 2.56 2.64 2.57 3.09 30.94 

2009 1.82 1.81 2.05 2.08 2.12 2.40 2.49 2.70 2.01 2.26 2.15 2.49 26.38 

Total 6.36 6.49 7.92 7.62 7.71 7.90 8.18 8.44 7.44 7.70 7.48 8.83 92.07 

 

The above data is later used to approximate the demand parameter for the case study. 

Next, Figure 3 graphically illustrates the behavior of the sales data and evidence the 

presence of an increasing yearly trend. Observing the trend in sales, it is also clear that 

there are season patterns throughout the year. 
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Figure 3 New-Car / New-Truck Dealer Total Monthly Sales (million units) 

(National Automobile Dealers Association, NADA, 2012) 

 

Demand Forecasting With Seasonal Adjustment 

Using the historical data on sales for 2009, 2010 and 2011 presented above, and applying 

a simple forecasting model with seasonal adjustment, demand for 2012 is estimated to 

later use as a tool in formulating the case study. 

Table 4.19 New-Car / New-Truck 2012 Demand Forecast (million units) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

2012 
(Forecast) 

2.7 2.75 3.36 3.23 3.27 3.35 3.47 3.58 3.16 3.27 3.17 3.75 39.05 

 

Figure 4 graphically shows the forecasted demand for 2012, along with the sales curves 

for 2009, 2010 and 2011. As it can be seen by comparing the estimated curve for 2012 

with the past actual data, the estimate is relatively appropriate, reflecting both: seasonal 

variations and the overall annual trend. 
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Figure 4 New-Car / New-Truck 2012 Demand Forecast (million units) 

 

Subsequently, when stating the case study problem, this estimate will be used to 

approximate the demand parameter (di). Additionally, a car manufacturing company with 

an annual production between 3 and 4% of the total world car production is to be 

assumed. That is, an aggregate of approximately 1,367,000 units for the forecasted year. 

4.3.3 Case Study Definition 

In the previous section of this chapter, the case study was contextualized in its field 

(industry) of application. Relevant information about the automotive and composites 

manufacturing industries was presented and analyzed to be used now as a reference in the 

definition of the case. 
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An automotive manufacturer company is regarded to implement and analyze the 

production planning model. A planning horizon of 12 periods (in this case months) is 

considered, in which the company (medium-size) will have a total production between 3 

and 4% of the total world production of cars. Total production refers to 3 different types 

of cars: Type A, Type B and Type C. 

Among all the sub-assemblies required to manufacture the different types of cars, only 3 

sub-assemblies are considered as relevant for their content of composite materials with 

limited shelf-life for the purpose of the present case study. Figure 5 shows the bill of 

materials of sub-assemblies for the different car types. 

Figure 5 Sub-Assembly Bill of Materials  

 

As shown in Figure 5, Sub-Assembly Type 1 is only used to make Type A cars in 

quantities of 2 units per car; Sub-Assembly Type 2 is used in Type A and B cars in 

quantities of 1 and 3 units per car, respectively; and Sub-Assembly Type 3 is used in car 

types B and C in quantities of 2 units per car. The sub-assemblies are interpreted as the 

end-products (   ) for the implementation of the mathematical model. 
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Sub-Assembly 
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2 3 2 1 2 
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Demand Parameter 

To determine the demand parameter (    ), the previously presented forecast demand for 

2012 (Table 4.9) is taken into account. Thus, the company will sell (and so produce) a 

total of 1,367,000 cars: 40% of Type A, 35% of Type B, and 25% of Type C. 

Table 4.20 shows the car demand for each period t in the planning horizon T. Finally, and 

more importantly, Table 4.20 shows the demand for sub-assemblies, which is the 

definitive demand parameter (    ) for the case study. 

Table 4.20 End-Product and Sub-Assembly Demand (thousand units) 

    1 2 3 4 5 6 7 8 9 10 11 12 Total 

Car Demand 95 96 118 113 114 117 121 125 111 114 111 131 1,367 

Car Demand per Type 

Type A (40%) 38 39 47 45 46 47 49 50 44 46 44 53 547 

Type B (35%) 33 34 41 40 40 41 43 44 39 40 39 46 478 

Type C (25%) 24 24 29 28 29 29 30 31 28 29 28 33 342 

Sub-Assembly Demand (    ) 

Sub-Assembly 1 (    ) 76 78 94 90 92 94 98 100 88 92 88 106 1,096 

Sub-Assembly 2 (    ) 137 141 170 165 166 170 178 182 161 166 161 191 1,988 

Sub-Assembly 3 (    ) 114 116 140 136 138 140 146 150 134 138 134 158 1,644 

 

Component Bill of Materials and Shelf-Life Parameters 

Among the various components to be considered as raw materials for the sub-assemblies, 

different types of composites materials will be taken into account. We assume these 

materials as components of the sub-assemblies to produce and that are stored under 

different conditions. 
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With the information covered previously on the applications and specifications of various 

component prepregs systems, tooling prepregs systems, and other composites with shelf-

life considerations, we make the assumptions shown in Table 4.21 about the requirements 

(    ) and the shelf-life (  ) of different epoxy prepreg resins types (components    ) for 

each sub-assembly type    . Since these materials are assumed to be stored under 

different conditions (none reaches its maximum shelf-life), for purposes of the case study, 

we consider shelf-lives between 3 and 10 months. 

Table 4.21 Component Bill of Materials and Shelf-Life 

 Component Bill of Materials (    ) Component 

Shelf-Life 

(  )  
Sub-Assembly 

Type 1 

Sub-Assembly 

Type 2 

Sub-Assembly 

Type 3 

Component Type 1 145 ft
2
 200 ft

2
 100 ft

2
 6 months 

Component Type 2 80 ft
2
 144 ft

2
 - 4 months 

Component Type 3 24 ft
2
 - 24 ft

2
 10 months 

Component Type 4 42 ft
2
 60 ft

2
 55 ft

2
 3 months 

 

Remaining Parameters 

The remaining parameters needed to formulate the case study and the optimization model 

for each of the sub-assembly types are shown in Table 4.22. 

Table 4.22 Sub-Assemblies Remaining Parameters 

 
Sub-Assembly 

Type 1 

Sub-Assembly 

Type 2 

Sub-Assembly 

Type 3 

Production Capacity (  ) 400 units 600 units 600 units 

Unit Cost (  ) $ 120 $ 100 $ 250 

Inventory Holding Cost (  )  $ 60 $ 50 $ 80 

Fixed Set-Up Cost (  ) $ 600 $ 800 $ 900 

Initial Inventory (    ) 0 units 0 units 0 units 
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Table 4.23 shows the remaining parameters for each of the component types. 

Table 4.23 Components Remaining Parameters 

 
Component 

Type 1 

Component 

Type 2 

Component 

Type 3 

Component 

Type 4 

Order Batch Size (  ) 5,000 ft
2
 5,000 ft

2
 10,000 ft

2
 10,000 ft

2
 

Ordering Capacity (  ) 60 batches 40 batches 3 batches 9 batches 

Batch Cost (  ) $ 7,500 $ 20,000 $ 35,000 $ 25,000 

Inventory Holding Cost (  ) $ 4.0 $ 5.0 $ 5.0 $ 4.0 

Unit Disposal Cost (  ) $ 6.0 $ 8.0 $ 8.0 $ 6.0 

Fixed Ordering Cost (  ) $ 400 $ 500 $ 700 $ 500 

Order Lead Time (  ) 3 periods 3 periods 2 periods 4 periods 

Initial Inventory (    ) 30,000 ft
2
 20,000 ft

2
 5,000 ft

2
 0 ft

2
 

Scheduled Order Receipt (    ) 

    1 2 3 4 5 6 7 8 9 10 11 12 

Component Type 1 (    ) 20 0 10 - - - - - - - - - 

Component Type 2 (    ) 4 5 5 - - - - - - - - - 

Component Type 3 (    ) 0 2 - - - - - - - - - - 

Component Type 4 (    ) 6 0 5 0 - - - - - - - - 

 

4.3.4 Case Study Results and Analysis 

To solve the case study defined above, we apply the Mixed Integer Linear Programming 

Optimization core model formulation variant introduced in Chapter 3, Section 3.3.2, 

using IBM
®
 ILOG

®
 CPLEX

®
 Optimization Studio Version 12.4, on a computer with a 

2.00 GHz Intel® Core™ 2 Duo processor, 4.00 GB installed memory (RAM), and a  2-

bit operating system. The following results were obtained. 
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Statistics and Optimality 

 Number of constraints: 2,392  Running Time: 27 min., 9.46 sec. 

 Number of variables: 1,107  Number of nodes: 3,380,218 

 Binary: 132  Number of iterations: 17,667,870 

 Integer: 970  Linear Relaxation: $ 4,836,566 

 Continuous: 5  Objective value: $ 5,114,672 

 Non-zero coefficients: 1,998  Optimality Gap: 0.0544 

It is important to note the significant increase in running time, number of nodes and 

iterations used by CPLEX
®
 for the solution of the case study compared to the solution of 

the different problem instances previously presented in Section 4.2. With only an increase 

from     to    , and from     to    , the complexity of the solution process 

increases considerably. However, a significant impact is not shown on the optimality gap. 
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Solution for Variables Related to Sub-Assembly Production and Inventory 

The case study solution values for sub-assembly production variables      and     , and 

sub-assembly inventory variable     , are shown in Table 4.24. 

Table 4.24 Sub-Assembly Production and Inventory Variables 

    1 2 3 4 5 6 7 8 9 10 11 12 Total 
Total 

Costs 

Sub-Assembly Production (    )  

Type 1 (    ) 77 235 0 204 125 0 141 13 125 0 189 0 1,109 $ 133,080 

Type 2 (    ) 235 43 173 512 0 0 165 305 139 173 69 174 1,988 $ 198,800 

Type 3 (    ) 131 160 154 80 269 0 265 21 291 0 142 152 1,665 $ 416,250 

Sub-Assembly Production Set-Up (    )  

Type 1 (    ) 1 1 0 1 1 0 1 1 1 0 1 0 8 $ 4,800 

Type 2 (    ) 1 1 1 1 0 0 1 1 1 1 1 1 10 $ 8,000 

Type 3 (    ) 1 1 1 1 1 0 1 1 1 0 1 1 10 $ 9,000 

Sub-Assembly Inventory (    ) 

Type 1 (    ) 1 158 64 178 211 117 160 73 110 18 119 13 1,222 $ 73,320 

Type 2 (    ) 98 0 3 350 184 14 1 124 102 109 17 0 1,002 $ 50,100 

Type 3 (    ) 17 61 75 19 150 10 129 0 157 19 27 21 685 $ 54,800 

 

As it can be seen in the table above, in this case production is carried out in almost all 

periods: for Sub-Assembly Type 1, production was carried out in 8 of the 12 periods, and 

for Sub-Assemblies Type 2 and 3, in 10. As also shown in Table 4.24, total production 

exceeds demand for the sub-assemblies 1 and 3, leaving inventory of 13 and 21 units 

respectively at the end of the planning horizon. The table also shows the totaled costs 

associated with each of the variables. 
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Solution for Variables Related to Component Ordering and Inventory 

Below, Table 4.25 shows the values of the variables that determine the amounts and 

timing of orders for components, as well as those used to calculate the ordering costs. 

Table 4.25 Component Ordering Variables 

    1 2 3 4 5 6 7 8 9 10 11 12 Total 
Total 

Costs 

Component Ordering (    )  

Type 1 (    ) 28 9 0 16 13 15 7 11 10 0 0 0 109 $ 817,500 

Type 2 (    ) 18 2 0 7 9 6 5 5 5 0 0 0 57 $ 1,140,000 

Type 3 (    ) 0 0 1 0 1 0 1 0 1 1 0 0 5 $ 175,000 

Type 4 (    ) 2 0 3 2 3 1 2 2 0 0 0 0 15 $ 375,000 

Component Scheduled Ordering Placement (    )  

Type 1 (    ) 1 0 1          2 $ 800 

Type 2 (    ) 1 1 1          3 $ 1,500 

Type 3 (    ) 0 1           1 $ 700 

Type 4 (    ) 1 0 1 0         2 $ 1,000 

Component Ordering Placement (    ) 

Type 1 (    ) 1 1 0 1 1 1 1 1 1    8 $ 3,200 

Type 2 (    ) 1 1 0 1 1 1 1 1 1    8 $ 4,000 

Type 3 (    ) 0 0 1 0 1 0 1 0 1 1   5 $ 3,500 

Type 4 (    ) 1 0 1 1 1 1 1 1     7 $ 3,500 

 

The shaded areas determine the periods in which the calculation of the variable is not 

relevant. For example, in the case of the scheduled ordering placement variable (    ), it 

is only relevant starting at the beginning of the planning horizon and until the period t 

equal to the lead time    of each component. After that time, we will be receiving orders 

corresponding to those made during the course of planning     , which corresponds to the 

order placement variable     . Now, with respect to this variable     , one can observe 

that it is balanced with the above, since the shaded area corresponding the first one, 

equals the unshaded of the second.  It is pertinent to clarify that if the two variables are 

transposed in the first periods, it is because during these periods we are receiving the 
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scheduled orders      and placing orders      at the same time. Table 4.25 also shows the 

total costs associated with each of the ordering variables. 

Finally, Table 4.26 shows one of the most unique and relevant variables of the model: 

component inventory (      ). It should be remembered that this variable is directly related 

to the auxiliary variable        (component consumption) and at the same time determines 

the component inventory levels at the end of each time period t, the period r in which that 

component was received, and therefore also contains the component units that must be 

discarded because they reached their shelf-life limit. 

The shaded area on the left side of Table 4.26 corresponds to combinations of t and r 

periods in which the variable does not exist. E.g., if a component batch is received in the 

period r = 2, there is no inventory of that component at end of period t = 1. 

The shaded area on the right side of the table corresponds to the area in which the 

calculation of the variable is not relevant because the existing component inventory (if 

any) would have already expired and been discarded. E.g., in the case of component type 

1 that is received in the period r = 1, because its shelf-life is    = 6, the calculation of the 

variable is relevant only until t = 6. Moreover, the variable        also contains the units of 

component j to be discarded. E.g., in the case of component type 2 received in period r = 

2, since its shelf-life is    = 4, the 8 units in inventory at end of period t = 5 should be 

discarded. The same applies to the 55 units of component type 1 received at r = 0 at end 

of period t = 5, and to the 1,230 units of component type 4 (   = 3) received at r = 1 at 

the end of t = 3. For the case of component type 3, it does not present component 

disposal. 
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Table 4.26 Component Inventory Variables 

    1 2 3 4 5 6 7 8 9 10 11 12 Total  

Component Type 1 (      )  

                  

    0 60 60 60 55 55        290  

    1 58675 0 0 0 0 0       58675  

    2  0 0 0 0 0 0      0  

    3   0 0 0 0 0 0     0  

    4    25 0 0 0 0 0    25  

    5     0 0 0 0 0 0   0  

    6      0 0 0 0 0 0  0  

    7       55 40 40 40 40 0 215  

    8        30 5 5 0 0 40  

    9         0 0 0 0 0  

    10          400 0 0 400  

    11           0 0 0  

    12            40 40 Total Costs 

Total (    ) 58,735 60 60 80 55 0 55 70 45 445 40 40 59,685 $ 238,740 

Component Type 2 (      )  

                  

    0 0 0 0          0  

    1 0 0 0 0         0  

    2  8 8 8 8        32  

    3   88 0 0 0       88  

    4    40 40 40 0      120  

    5     0 0 0 0     0  

    6      0 0 0 0    0  

    7       0 0 0 0   0  

    8        40 0 0 0  40  

    9         24 0 0 0 24  

    10          112 56 0 168  

    11           0 0 0  

    12            0 0 Total Costs 

Total (    ) 0 8 96 48 48 40 0 40 24 112 56 0 472 $ 2,360 

Component Type 3 (      )  

                  

    0 8 8 8 8 0 0 0 0 0    32  

    1 0 0 0 0 0 0 0 0 0 0   0  

    2  10520 6824 8 8 8 0 0 0 0 0  17,368  

    3   0 0 0 0 0 0 0 0 0 0 0  

    4    0 0 0 0 0 0 0 0 0 0  

    5     552 552 0 0 0 0 0 0 1,104  

    6      0 0 0 0 0 0 0 0  

    7       816 0 0 0 0 0 816  

    8        0 0 0 0 0 0  

    9         16 16 16 0 48  

    10          0 0 0 0  

    11           2056 0 2,056  

    12            8424 8,424 Total Costs 

Total (    ) 8 10,528 6,832 16 560 560 816 0 16 16 2,072 8,424 29,848 149,240 

Component Type 4 (      )  

                  

    0 0 0           0  

    1 35461 14211 1230          50,902  

    2  0 0 0         0  

    3   44131 443 0        44,574  

    4    0 0 0       0  

    5     398 398 0      796  

    6      0 0 0     0  

    7       1 0 0    1  

    8        0 0 0   0  

    9         405 0 0  405  

    10          25 0 0 25  

    11           137 0 137  

    12            1337 1337 Total Costs 

Total (    ) 35,461 14,211 45,361 443 398 398 1 0 405 25 137 1,337 98,177 392,708 
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Table 4.26 also shows the total inventory at the end of each period t, and the total costs 

associated with each variable. 

It does not seem entirely relevant to show the values for the auxiliary component 

consumption variable       , not only because it is extensive, but because it is an auxiliary  

variable used to calculate other of higher interest that are presented in the above tables. 

Based on all the analysis and discussion above, and being consistent with the objectives 

set at the beginning of this study, in the next chapter we present the main conclusions and 

findings of the investigation. We also propose future research in this area. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

The following are the most conclusive aspects of this research thesis. We also propose 

future research topics in the area. 

5.1 Conclusions 

Regarding the first objective for this study, we conducted a review of recent research on 

topics related to production planning problems, MILP applied to solve them, and 

problems involving shelf-life or perishability requirements. From this review, we 

conclude that, although there is material related to cases in which production planning 

problems have perishable end-products, only some models of inventory control consider 

this feature for raw materials. Therefore, the importance and relevance of this study is the 

introduction of the shelf-life requirement feature for raw materials or components and 

applying MILP to solve the production planning problem. 

The proposed optimization model tackles a multi-product multi-level production planning 

problem with the consideration of raw material shelf-life. In addition to the typical 

production planning variables, parameters and constraints (production and ordering 

variables, inventory variables, lead times, set-up and ordering costs, inventory holding 

costs, inventory balance equations, etc.), we introduce a number of features to address the 

raw material shelf-life requirement.  
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Raw material perishability is tackled by introducing a Shelf-Life variable as the 

maximum number of periods that a component can be stored before it is considered 

unsuitable for use or consumption and must be discarded. This variable is complemented 

by a component disposal cost parameter, applied to those units that are discarded when 

they reach their shelf-life. Additional time-stamps were implemented for the component 

inventory variables, specifying the period in which the component orders are received, so 

that we can keep independent track of the material inventory age. Finally, we formulate 

the equations that relate the ordering times, receipt times and disposal of components and 

also the use of auxiliary variables that control the consumption of materials in each 

period. 

Two different formulation variants are presented to address the problem with different 

assumptions. The first variant called "Basic Variant" is introduced without considering 

shelf-life to compare with called “Core Variant”. The core formulation involves the main 

feature of the study, raw material shelf-life. These formulations are applied to multiple 

problem instances differing in aspects of importance for the features in question. The 

presence or absence of ordering batch sizes and the presence or absence of ordering lead 

times are the assumptions that vary in the different problem instances and significantly 

impact results. 

When it comes to implementing the model to different problem instances and to an 

Automotive Industry case study, we use IBM
®
 ILOG

®
 CPLEX

®
 Optimization Studio to 

solve them. Analysis and discussion are carried out referring to important performance 

aspects such as: number of constraints, variables, time, nodes and iterations. Optimal 

solutions, optimality gaps and disposal cost values are also analyzed. 
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Additionally, a further observation on the behavior of the formulation and results is also 

held. One of the most important remarks is the one concerning the assumption of equal 

component inventory costs for cases with and without shelf-life; as well as the 

interpretation of inventory merely as costs and not as assets. These two observations are 

of crucial importance because they make a difference in the objective function values, in 

the general logic of the results, and in the model approximation to real cases. 

Finally we conclude that the originally proposed research objectives have been 

successfully achieved and the proposed models are feasible for future applications, with 

relevant modifications or extensions.  

5.2 Future Research 

Future research of this study are directly related to the delimitations presented in the first 

chapter of this thesis. 

In order to develop models with broader applicability in real industry cases, there is 

opportunity for formulations considering additional aspects such as: 

 More directly involving the storage conditions of components with limited shelf-

life, i.e. consider both the shelf-life variable, and the component inventory holding 

costs as a function of storage conditions, 

 Assuming different component inventory holding costs for problems with the 

component shelf-life requirement that for those without it, 
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 Considering inventory holding (of both components and finished-products) as 

assets and not only as costs, 

 Assuming random customer demand: uncertain demand modeled by probability 

distributions, 

 Allowing backlog inventory with penalty costs, 

 Considering inventory stock-out and related costs, 

 Involving quality aspects of both components and end-products. 

These are some of the possible considerations that would make the formulation more 

accurate for real world applications. 

In addition, given that the proposed formulation presents a significant increase in time 

and iterations required to solve larger problems, there is an opportunity to use more 

efficient and sophisticated methodologies using heuristics or metaheuristics to locate 

optimal or near-optimal solutions of larger size problems. 
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APPENDIX 1. IBM
®

 ILOG
®

 CPLEX
®

 OPL 

MODEL SOURCE FILE 

Appendix 1.A Basic Variant OPL Model Source File 

/*  OPL Model Formulation */ 

/*  Basic Variant */ 

/*  No Shelf-Life */ 

 

/*SETS AND RANGES*/ 

 

 int tPeriods = ...;         /*Set of periods in planning horizon*/ 

 int iProducts = ...;         /*Set of end-product types*/ 

 int jComponents = ...;      /*Set of component types*/ 

 range T = 1..tPeriods;         /*Range of periods t*/ 

 range N = 1..iProducts;     /*Range of end-product types i*/ 

 range J = 1..jComponents; /*Range of component types j*/ 

  

/*PARAMETERS*/ 

 

/*Demand, BOM, Lead Time and Shelf-Life*/ 

 int d[N][T] = ...;             /*End-Product Demand*/ 

 int b[J][N] = ...;             /*Bill of Materials*/ 

 int l[J] =  ...;             /*Order Lead Time*/ 

  

/*Costs*/ 

 float c[J] = ...;             /*Component Cost (per unit or per batch)*/ 

 float p[N] = ...;             /*End-Product Unit Cost*/ 

 float h[N] = ...;             /*End-Product Inventory Holding Cost*/ 

 float m[J] = ...;             /*Component Inventory Holding Cost*/ 

 float A[N] = ...;             /*Fixed Set-Up Cost*/ 

 float g[J] = ...;             /*Fixed Ordering Cost*/ 

  

/*Component Order Batch Size*/ 

 int S[J] = ...;             /*Order Batch Size*/ 

  

/*Capacity*/  

 int K[N] = ...;             /*Production Capacity*/ 

 int L[J] = ...;             /*Ordering Capacity (number of units or batches)*/ 

 

/*Initial Inventory, scheduled order receipt*/ 

 int EPInv[N] = ...;         /*End-Product Initial Inventory*/ 

 int CInv[J] = ...;             /*Component Initial Inventory*/ 

 int q[J][T] = ...;             /*Component Scheduled Order Receipt*/ 

 

/*VARIABLES*/ 

  

dvar int+ x[N][T];             /*Production*/ 

 dvar int+ I[N][T];             /*End-Product Inventory*/ 

 dvar int+ Q[J][T];             /*Component Orders (number of units or batches)*/ 

 dvar int+ v[J][T];             /*Component Inventory*/ 
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 dvar boolean y[N][T];         /*Fixed set-up cost binary variable*/ 

 dvar boolean w[J][T];         /*Fixed scheduled ordering cost binary variable*/ 

 dvar boolean W[J][T];         /*Fixed ordering cost binary variable*/ 

 int M = 100000000;             /*Big Number*/ 

  

/*OBJECTIVE FUNCTION*/ 

  

/*Minimize TotalCost*/ 

  

 minimize sum (t in T, i in N) p[i]*x[i][t] 

          + sum (t in T, j in J) c[j]*q[j][t] 

          + sum (t in T, j in J) c[j]*Q[j][t] 

          + sum (t in T, i in N) h[i]*I[i][t] 

          + sum (t in T, j in J) m[j]*v[j][t] 

          + sum (t in T, i in N) A[i]*y[i][t] 

          + sum (t in T, j in J) g[j]*w[j][t] 

          + sum (t in T, j in J) g[j]*W[j][t]; 

          

/*CONSTRAINTS*/ 

  

 subject to { 

    

/*(Basic3 II) End-Product Inventory Balance, Production, Demand Fulfillment*/ 

    forall (t in T, i in N) 

      if (t == 1) { 

        Basic3IIa: I[i][t] == EPInv[i] + x[i][t] - d[i][t]; 

 }     

    forall (t in T, i in N) 

      if (t > 1) { 

        Basic3IIb: I[i][t] == I[i][t-1] + x[i][t] - d[i][t]; 

 } 

 

/*(Basic3 IX and X) Component Inventory Balance, Component Ordering, BOM*/ 

    forall (t in T, j in J) 

      if (t == 1) { 

        Basic3IXa: v[j][t] == CInv[j] + S[j]*q[j][t] - sum (i in N) b[j][i]*x[i][t]; 

 } 

     forall (t in T, j in J) 

       if (t > 1 && t <= l[j])    { 

         Basic3IXb: v[j][t] == v[j][t-1] + S[j]*q[j][t] - sum (i in N) b[j][i]*x[i][t];  

 }  

    forall (t in T, j in J) 

      if (t > l[j]) { 

        Basic3X: v[j][t] == v[j][t-1] + S[j]*Q[j][t-l[j]] - sum (i in N) b[j][i]*x[i][t];     

 }            

       

/*(Basic3 IV) Production Capacity*/ 

     forall (t in T, i in N) 

       Basic3IV: x[i][t] <= K[i]; 

 

/*(Basic3 V) Ordering Capacity*/ 

    forall (t in T, j in J) 

      Basic3V: Q[j][t] <= L[j]; 

        

/*(Basic3 VI) Fixed Set-Up Cost Binary Variable*/ 

    forall (t in T, i in N) 

      Basic3VI: x[i][t] <= M*y[i][t]; 

       

/*(Basic 3 VII) Fixed Ordering Cost Binary Variable*/ 

    forall (t in T, j in J) 

      Basic3VII: Q[j][t] <= M*W[j][t];  
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/*(Basic 3 XI) Fixed Scheduled Ordering Cost Binary Variable*/ 

    forall (t in T, j in J) 

      Basic3XI: q[j][t] <= M*w[j][t]; 

        

 }  
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Appendix 1.B Core Variant OPL Model Source File 

/*  OPL Model Formulation */ 

/*  Core Variant */ 

 

/*SETS AND RANGES*/ 

 

 int tPeriods = ...;         /*Set of periods in planning horizon*/ 

 int iProducts = ...;         /*Set of end-product types*/ 

 int jComponents = ...;      /*Set of component types*/ 

 range T = 1..tPeriods;         /*Range of periods t*/ 

 range R = 0..tPeriods;         /*Range of ordering periods r*/ 

 range N = 1..iProducts;     /*Range of end-product types i*/ 

 range J = 1..jComponents; /*Range of component types j*/ 

  

/*PARAMETERS*/ 

 

/*Demand, BOM, Lead Time and Shelf-Life*/ 

 int d[N][T] = ...;             /*End-Product Demand*/ 

 int b[J][N] = ...;             /*Bill of Materials*/ 

 int l[J] =  ...;             /*Order Lead Time*/ 

 int a[J] = ...;             /*Component Shelf-Life*/ 

  

/*Costs*/ 

 float f[J] = ...;             /*Disposal Unit Cost*/ 

 float c[J] = ...;             /*Component Cost (per units or per batch)*/ 

 float p[N] = ...;             /*End-Product Unit Cost*/ 

 float h[N] = ...;             /*End-Product Inventory Holding Cost*/ 

 float m[J] = ...;             /*Component Inventory Holding Cost*/ 

 float A[N] = ...;             /*Fixed Set-Up Cost*/ 

 float g[J] = ...;             /*Fixed Ordering Cost*/ 

  

/*Component Order Batch Size*/ 

 int S[J] = ...;             /*Order Batch Size*/ 

  

/*Capacity*/  

 int K[N] = ...;             /*Production Capacity*/ 

 int L[J] = ...;             /*Ordering Capacity (number of units or batches)*/ 

 

/*Initial Inventory and Sheduled Order Receipt*/ 

 int EPInv[N] = ...;         /*End-Product Initial Inventory*/ 

 int CInv[J] = ...;             /*Component Initial Inventory*/ 

 int q[J][T] = ...;             /*Component Scheduled Order Receipt*/ 

 

/*VARIABLES*/ 

 dvar int+ x[N][T];       /*Production*/ 

 dvar int+ I[N][T];             /*End-Product Inventory*/ 

 dvar int+ Q[J][T];             /*Component Orders (number of component units or batches)*/ 

 dvar int+ v[J][T][R];         /*Component Inventory*/ 

 dvar int+ e[J][R][T];         /*Component Consumption*/ 

 dvar float+ z[J];             /*Component Disposal*/ 

 dvar boolean y[N][T];         /*Fixed set-up cost binary variable*/ 

 dvar boolean w[J][T];         /*Fixed scheduled ordering cost binary variable*/ 

 dvar boolean W[J][T];         /*Fixed ordering cost binary variable*/ 

 int M = 100000000;             /*Big Positive Number*/ 

  

/*OBJECTIVE FUNCTION*/ 
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/*Minimize TotalCost*/ 

  

 minimize sum (t in T, i in N) p[i]*x[i][t] 

           + sum (t in T, j in J) c[j]*q[j][t] 

          + sum (t in T, j in J) c[j]*Q[j][t] 

          + sum (t in T, i in N) h[i]*I[i][t] 

          + sum (t in T, j in J, r in R) m[j]*v[j][t][r] 

          + sum (j in J) f[j]*z[j] 

          + sum (t in T, i in N) A[i]*y[i][t] 

          + sum (t in T, j in J) g[j]*w[j][t] 

          + sum (t in T, j in J) g[j]*W[j][t]; 

          

/*CONSTRAINTS*/ 

  

 subject to { 

    

/*(C2) End-Product Inventory Balance, Production, Demand Fulfillment*/ 

    forall (t in T, i in N) 

      if (t == 1) { 

        C2a: I[i][t] == EPInv[i] + x[i][t] - d[i][t]; 

 }     

    forall (t in T, i in N) 

      if (t > 1) { 

        C2b: I[i][t] == I[i][t-1] + x[i][t] - d[i][t]; 

 } 

 

/*(C13) Component Inventory Balance, Component Ordering, Bill of Materials*/ 

    forall (t in T, j in J) 

      if (t == 1) { 

        C13a: v[j][t][0] + v[j][t][t] == CInv[j] + S[j]*q[j][t] - sum (i in N) b[j][i]*x[i][t]; 

 }         

    forall (t in T, j in J) 

      if (t > 1 && t <= l[j] && t < a[j]) { 

        C13b: v[j][t][0] + sum (r in 1..t) v[j][t][r] == v[j][t-1][0] + sum (r in 1..t-1) v[j][t-1][r] + S[j]*q[j][t] - sum (i in N) 

b[j][i]*x[i][t]; 

 } 

     forall (t in T, j in J) 

       if (t > 1 && t <= l[j] && t >= a[j]) { 

         C13c: sum (r in t+1-a[j]..t) v[j][t][r] == sum (r in t+1-a[j]..t-1) v[j][t-1][r] + S[j]*q[j][t] - sum (i in N) 

b[j][i]*x[i][t];  

 }  

    forall (t in T, j in J) 

      if (t > l[j] && t < a[j]) { 

        C13d: v[j][t][0] + sum (r in 1..t) v[j][t][r] == v[j][t-1][0] + sum (r in 1..t-1) v[j][t-1][r] + S[j]*Q[j][t-l[j]] - sum (i in 

N) b[j][i]*x[i][t];  

 } 

    forall (t in T, j in J) 

      if (t > l[j] && t >= a[j]) { 

          C13e: sum (r in t+1-a[j]..t) v[j][t][r] == sum (r in t+1-a[j]..t-1) v[j][t-1][r] + S[j]*Q[j][t-l[j]] - sum (i in N) 

b[j][i]*x[i][t]; 

 } 

  

/*(C14) Component Consumption*/     

     forall (t in T, j in J) 

       if (t < a[j])    { 

         C14a: sum (i in N) b[j][i]*x[i][t] == sum (r in 0..t) e[j][r][t]; 

 } 

     forall (t in T, j in J) 

       if (t >= a[j])    { 

         C14b: sum (i in N) b[j][i]*x[i][t] == sum (r in t+1-a[j]..t) e[j][r][t]; 

 }         
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/*(C15) Component Individual Inventory*/ 

    forall (t in T, j in J) 

      if (t == 1)    { 

        C15: v[j][t][0] == CInv[j] - e[j][0][t]; 

 }         

    forall (t in T, j in N, r in R) 

      if (t == r && t <= l[j])    { 

        C15a: v[j][t][r] == S[j]*q[j][t] - e[j][r][t]; 

 } 

    forall (t in T, j in J, r in R) 

      if (t == r && t > l[j])    { 

        C15b: v[j][t][r] == S[j]*Q[j][t-l[j]] - e[j][r][t]; 

 } 

     forall (t in T, j in J, r in R) 

       if (r < t && t > 1 && t - r < a[j])    { 

           C5b: v[j][t][r] == v[j][t-1][r] - e[j][r][t];          

 }            

       

/*(C6)Component Disposal*/ 

     forall (j in J) 

       z[j] == sum (t in a[j]-1..tPeriods) v[j][t][t+1-a[j]];  

        

/*(C7) Production Capacity*/ 

     forall (t in T, i in N) 

       C7: x[i][t] <= K[i]; 

 

/*(C8) Ordering Capacity*/ 

    forall (t in T, j in J) 

      C8: Q[j][t] <= L[j]; 

        

/*(C9) Fixed Set-Up*/ 

    forall (t in T, i in N) 

      C9: x[i][t] <= M*y[i][t]; 

       

/*(C10) Fixed Scheduled Ordering*/ 

    forall (t in T, j in J) 

      CXI: q[j][t] <= M*w[j][t];  

 

/*(C11) Fixed Ordering*/ 

    forall (t in T, j in J) 

      C11: Q[j][t] <= M*W[j][t]; 

        

 } 
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