
Numerical Simulation of High Pressure Hydrogen Release through an 

Expanding Opening 
Reza Khaksarfard1, Marius Paraschivoiu1* 

 

 

1 Department of Mechanical and Industrial Engineering, Concordia University, 

1455de Maisonneuve West, Montreal, Quebec, H3G 1M8, Canada 

*Corresponding author 

 Department of Mechanical and Industrial Engineering, Concordia University, 

1455de Maisonneuve West, Montreal, Quebec, H3G 1M8, Canada 

Paraschi@encs.concordia .ca 

Tel 1-514-848-2424 ext. 3147 

Fax 1-514-848-3175 

https://mail.encs.concordia.ca/horde/imp/message.php?index=1446�


 

 

Abstract 
Computational Fluid Dynamics is an effective tool to develop safety standards related to 

the sudden release of hydrogen from a high pressure reservoir. In this work, a three-

dimensional in-house code is developed to numerically simulate the release of high 

pressure hydrogen (70 MPa) from a reservoir when the release area into air is expanding 

with time. Furthermore, high pressure hydrogen flows cannot be accurately simulated by 

the ideal gas equation; therefore the Abel-Noble real gas equation of state is applied. A 

transport equation is solved to find the concentration of hydrogen and air in the hydrogen-

air mixture generated soon after release. The novelty of this work is to simulate and to 

study the flow when the release area enlarges rapidly. To obtain this capability, the solid 

boundaries of the release area are moved and the mesh follows based on a spring method. 

All the nodes in the mesh are moved at each time step accordingly to have a good quality 

mesh. Three initial diameters of 1.0 mm, 1.5 mm and 2.0 mm are tested for the release area, 

and opening wall speeds of 80 m/s and up to 300 m/s are discussed. 
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1-Introduction 
The low energy content per unit volume is the main drawback of using hydrogen as a fuel. Therefore, 

hydrogen has to be stored in high pressure tanks (up to 70 MPa) to provide enough energy storage. The high 

pressure ratio of the storage tank to the ambient pressure results in a highly under-expanded jet in case of a 

rupture or a connector failure. Hydrogen may ignite after release as in the incidents of the Stockholm 

explosion [1]. Nevertheless, spontaneous ignition does not always occur and predicting ignition of hydrogen 

still requires more research [2]. Ignition based on the diffusion ignition mechanism was first shown 

experimental by Wolański and Wójcicki [3]. Golub et al. [4] also studied experimentally the spontaneous 

ignition of hydrogen release through a tube of cross section area of 20 mm2 into a semi-confined space. 

Both round and rectangular cross sections were tested. The hydrogen pressure in the chamber was increased 

up to 10 MPa. It was concluded that the ignition is probable if the chamber pressure is higher than 4 MPa. 

More experimental results were reported in the work of Shirvill et al. [5] where the maximum release 

pressure was 13 MPa and hydrogen was released from a circular orifice of 3mm diameter. Numerical 

simulations were also performed to capture spontaneous ignition of hydrogen within a tube after the rupture 

of a disk at a bursting pressure of 8.7 MPa [6]. 



 

Understanding the critical features of the hydrogen-air mixture and the flow pattern for higher release 

pressure is important as storage reservoirs of 70 MPa are considered. Khaksarfard et al. [7] numerically 

simulated the release from a high pressure reservoir (up to 70 MPa) using a three dimensional in-house code 

based on tetrahedral elements. The Abel-Noble equation was used as the real gas model [8] and results were 

compared to the ideal gas results. The exit diameter was 5 mm and both the reservoir and the external 

environment were included in the computational domain. Liu et al. [9] used a direct numerical simulation to 

investigate the jet exiting from tanks with pressure of 10, 40 and 70 MPa, and exit diameter of 1 mm. In 

their work, two dimensional Euler axisymmetric equations were applied and the stagnation pressure was 

300 K. Ignition and combustion mechanism were also included and it was concluded that an ignition source 

is needed to have a hydrogen flame. Radulescu et al. [10] numerically simulated highly under-expanded jets 

from both slit and round orifices. In their work, the ideal gas law and two dimensional axisymmetric 

equations were used. The pressure ratio of the tank to the external environment was in the range of 100 to 

1000. Viscous effects were only considered in areas of high gradients since the Reynolds number is high. In 

regions of low gradients, the results were similar to the results of Euler equations. 

 

Since high pressure hydrogen can not be accurately simulated by the ideal gas equation, a real gas equation 

of state is necessary to accurately find out the critical features of the flow. There are several real gas 

equations of state; amongst them the Abel-Noble which has one constant, the Van der Waals, the Redlich-

Kwong, the Dieterici and the Berthelot which have two constants, and the Beattie-Bridgeman, the Clausius 

and the Wohl which have three constants. Cheng et al. [11] investigated the release through an exit area 

with a 6 mm diameter using the Abel-Noble equation of state for reservoirs with pressure of up to 40 MPa. 

Their results showed considerable difference between ideal gas and real gas models. This difference 

increased, as expected, for higher tank pressures. In their research, the flow was analysed after a long 

release time in the order of seconds, therefore they did not investigate the flow near the jet exit. Their work 

reported that the mass flow rate is overestimated by 30% in the first 10 seconds and 35% in the first 25 

seconds of release for the ideal gas model compared to the real gas model. Mohamed et al. [12] simulated 

the release from a tank of 34.5 MPa using Beattie-Bridgeman state equation. In their work, the external 

environment was not included; only the chamber with an exit boundary was considered for the calculations. 

Analytical results were compared with numerical results. They showed that there is only 2 percents 

difference between analytical and numerical results, and the exit velocity is 14 percents higher when using a 

real gas at the beginning of release. 

  



In most practical cases the release area expands in time so this paper describes the effect of this geometry 

change on the flow. To this end a moving mesh is developed for our in-house code. Euler equations are 

changed according to the work of Trepanier et al. [13] in which the velocities are changed to the relative 

velocity considering the speed of each node while moving. The movement method uses a basic spring-

based method explained in the work of Zhang et al. [14] and Zenga et al. [14]. In this method each edge acts 

as a spring and the nodes are moved based the force calculated by Hook’s law. 

 

As in the case of a fixed exit area, hydrogen releases into air very rapidly and strong shocks happen soon 

after release. These shocks and flow pattern were previous discussed by the authors for a fixed mesh and for 

longer time of up to 110 micro seconds after release [7]. The objective of this work is to focus on the very 

first few micro seconds after release and on an expanding release area. The Abel-Noble real gas equation of 

state is applied since the ideal gas equation cannot accurately simulate the high pressure hydrogen. The 

code uses parallel processing to access large memory and to reduce the solution time. Hydrogen is release 

into air, therefore soon after release a hydrogen-air mixture is generated. A transport equation is used to find 

out the concentration of hydrogen and air in the mixture. Euler equations are used to solve this high 

Reynolds number flow as viscous effects are negligible in the near jet exit area. Euler equations and 

transport equation are changed for the moving mesh feature.  The code is based on an implicit scheme, 

second order accuracy in space and first order accuracy in time. In the literature, we only found one paper 

[16] describing the flow of air in an expanding nozzle. 

 

In this paper, first the governing equations for the moving mesh and the Abel-Noble real gas equation are 

explained. Then the spring-based mesh moving method is discussed. The geometry and the meshes used for 

the simulation are reported. Finally the results of the flow simulation for the release of hydrogen from a 70 

MPa tank into ambient air are presented. Three initial exit diameters of 1.0 mm, 1.5 mm and 2.0 mm, and 

three opening speed of 100 m/s, 200 m/s and 300 m/s are investigated. 

 

2-Governing Equations 
2-1-Euler Equations and Discretization 

This high Reynolds number flow can be simulated by solving the Euler equation in the vicinity of the exit. 

The Euler equation is solved according to the [13] for the moving mesh: 

0. =∇+
∂
∂ F

t
U                                                                                                                                                  (1) 

where, 
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xw , yw  and zw  are the node speeds in each coordinate direction. In our simulation, boundary nodes are 

moved radially in order to enlarge the exit with a fixed speed.  The other inner nodes are moved to maintain 

a good mesh quality as described in section 3. The following equation is used for discretization: 

 

                                                                                                                                                                      (2) 

where nV  and 1+nV  are the volume of the control volume before and after movement in each time step. 

 

2-2-Transport Equation 

A transport equation is added to calculate the concentration of Hydrogen and air in the hydrogen-air 

mixture. The transport equation previously used by the authors [7] is modified according to the moving 

speed: 
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The air concentration is given by c which varies between zero and one, and is one in locations of no 

hydrogen. Therefore, c is initially zero in the tank and one in the external environment. This transport 

equation is solved at the end of each time step. Finally, R of the mixture at each time step is calculated 

based on the concentration c:  

cRcRR AirHmix +−= )1(
2

                                                                                                                                (4) 

 where kgKJRH /4124
2
=   and kgKJRAir /287=  

 

2-3-Real Gas Equation 

The Abel-Noble real gas equation is applied as the state equation since the ideal gas equation is not capable 

of accurately simulating high pressure hydrogen. The Abel-Noble equation uses a compressibility factor z 

compared to the ideal gas equation ( RTP ρ= ) which is a function of density and a constant b : 
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The difference between ideal gas and Abel-Noble equations can be neglected up to a pressure of 10 MPa 

but for higher pressures the ideal gas modelling cannot give accurate results.  

 

3-Spring-Based Mesh Moving 

The mesh is moved by using the spring-based method [14, 15]. In this method the boundary nodes are 

moved at each time step and the interior nodes are moved accordingly to reach the equilibrium state in the 

entire domain. Each edge acts like a spring such that the movement of a boundary node generates a force 

along the connected edges. The total force on one node is the sum of all these forces. This force is 

calculated by Hook’s law: 

)(∑ ∆−∆= xxkF ii                                                                                                                                        (6) 

where x∆  is the displacement of the node and ix∆  is the displacement of the neighbouring nodes. ik  

is the stiffness of each connected edge and is found as follow: 

LengthEdge
ki

1
=                                                                                                                                          (7) 

The total force on each node should be zero at the equilibrium state. Therefore x∆  of each node is found by 

solving the following iterative equation: 

∑
∑ ∆
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x                                                                                                                                                (8) 

The new position of each node is finally obtained by adding x∆  to the previous position of the node: 

xxx nn ∆+=+1                                                                                                                                            (9) 

 

4-Geometry and Mesh 
The three-dimensional geometry consists of a reservoir, a release area and an external environment. High 

pressure hydrogen is released from the reservoir through the release area into the external environment. The 

domain is cylindrical. In Figure (1) a three-dimensional view and a two-dimensional cut of the geometry 

and mesh are given. The geometry and the three-dimensional tetrahedral mesh are generated with Gambit. 

Three meshes are constructed of size: 0.8 million nodes, two million and three million nodes to evaluate the 

impact of the mesh size on the accuracy of the results. The mesh shown in Figure (1) contains 0.8 million 

nodes. The finer meshes are not shown since higher concentration of nodes cannot be visible in a small 

figure. Parallel processing is used and the mesh is divided into 32 partitions. The external environment is 



small compared to the reservoir and compared to the external environment previously used by the authors to 

simulate the flow through a fixed diameter release area since the focus in this work is on the first three 

micro seconds after release. Three initial diameters of 1.0 mm, 1.5 mm and 2.0 mm are studies. The release 

area is 2.0 mm long for all cases and the initial interface is in the middle of this release tube. 

5-Simulation 

A three-dimensional in-house code using the Abel-Noble real gas equation is developed to simulate the 

release of high pressure hydrogen into air from a reservoir through an enlarging tube-shaped area. Although 

in reality the release area is initially closed, this case cannot be tested with the proposed methodology since 

nodes are not generated during the movement of the mesh, therefore three very small initial release area 

diameters of 1.0 mm, 1.5 mm and 2.0 mm are considered. The tank pressure is 70 MPa for all cases and the 

outside environment has ambient conditions. The initial temperature is 300 K in the whole domain. The 

release area length is 2.0 mm and the initial interface is in the middle of the release tube. The speed of 

sound of the hydrogen at the exit is approximately 1400 m/s therefore it was decided to examine the 

opening speeds that are an order of magnitude less than the speed of sound. Three opening speeds of 100 

m/s, 200 m/s and 300 m/s are tested for all cases. These speeds refer to the speed of the wall outwards. In 

Figure (2), the two-dimensional view of the mesh of the release tube at different times of 1.0, 1.5, 2.0, 2.5 

and 3.0 micro seconds after release for the initial diameter of 1.0 mm and an opening speed of 500 m/s is 

presented. The mesh is moved using the spring-based method to maintain a high quality mesh at all steps as 

seen in the figure.  

5-1-Validation  

Results of a fixed opening are used for validation due to the lack of expanding orifice simulation in the 

literature. Pedro et al. [17] simulate the release using FLUENT from a tank with a pressure of 10 MPa. 

Although in their work the ideal gas equation is employed, results are still accurate enough since the tank 

pressure is not very high. Figure (3) shows the Mach number along the centerline at different times for both 

our and theirs computations. It is noticed the difference is negligible. The non-dimensionalize time is based 

on the diameter of the orifice over the sound speed of hydrogen for a temperature of 300 K. 

Another validation approach is based on comparing our results with the analytical work of Ashkenas et al. 

[18]. They propose an equation to calculate the final location of the Mach disk according to the pressure 

ratio. 

2/1

1
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P

D
Z =                                                                                                                                        (10) 

Z is the distance from the orifice and D is the orifice diameter. In table (1), for three different pressures of 

10 MPa, 34.5 MPa and 70 MPa this equation is used to compare results of our simulation. Although the 



results of the present simulation show some difference from the results of the analytical equation, this 

analytical equation is still a good indication that our simulation is adequate.   

5-2-Mesh Study 

Three meshes of 0.8, 2.0 and 3.0 million nodes are investigated. Pressure on the contact surface along the 

center line and the contact surface location for the 0.8 million node mesh and the 2 million node mesh are 

plotted in Figure (4) for different opening speeds. In Figure (5), results are given for different initial 

diameters. Results show the 2 million node mesh gives more accurate results. In Figure (6), the 2 and 3 

million node meshes are compared in case of an initial diameter of 1 mm and an opening speed of 80 m/s. It 

is concluded that the 2 million node mesh is accurate enough since the difference with the 3 million node 

mesh is negligible. 

 

5-3 Analysis of the flow 

Soon after release, hydrogen mixes with air and a contact surface is formed. Since the 2 million node mesh 

is accurate enough, the rest of the results are based on this mesh. The initial time step is 910− seconds and 

the initial CFL number is 0.3. CFL is multiplied by 1.0001 before each time iteration. Note that the 

time step is very small so that the temporal error is very small.  In Figure (7), Mach number, 

concentration, density, pressure and velocity contours are presented after 3 micro seconds. The Mach 

number increases very rapidly and the flow advances very fast. In Figure (8), Mach number, concentration, 

density, pressure, velocity and temperature are given along the centerline. The maximum Mach number 

reaches almost 6 and the maximum velocity reaches almost 3000 m/s. We note from Figure (7b) and (8b) 

that some hydrogen is entrapped in front of the lead shock. This flow feature was also noticed for a fixed 

exit orifice. 

 

The hydrogen-air mixture ahead of the contact surface has the potential to ignite since temperature may rise 

up to the temperature required for ignition and also air exists in the mixture. Properties on the contact 

surface along the centerline are important to predict ignition. If there is a possibility of explosion it certainly 

occurs ahead of the contact surface where the mixture is heated by the lead shock. Since combustion models 

need the value of pressure on the contact surface as an input, the following results mainly discuss the 

pressure on the contact surface along the centerline. In Figure (9a), the pressure versus time along the 

centerline on the contact surface is presented for the initial diameter of 1.0 mm for a fixed mesh and 

opening speeds of 100 m/s, 200 m/s and 300 m/s and in Figure (9b) the contact surface location as a 

function of time is reported. The pressure on the contact surface is sensitive to the opening speed. For 



example, the pressure is approximately 3.0 MPa for the opening speed of 300 m/s while it is approximately 

5.0 MPa for the opening speed of 100 m/s after 0.3 micro seconds. The major difference is in the first micro 

second. A slight difference is also noticed in the contact surface location by changing the opening speed. 

 

To find out the effect of the initial release area diameter, for the opening speed of 200 m/s, the pressure and 

the contact surface location versus time are given in Figure (10) for an initial release area diameters of 1.0 

mm, 1.5 mm and 2.0 mm. The value of pressure is higher for larger diameters and the difference is not 

negligible. The contact surface location is similar for all cases up to the time of 2.0 micro seconds. The flow 

advances faster for larger diameter after 2.0 micro seconds.  

As mentioned earlier and noticed in Figures (7b) and (8b), hydrogen is trapped ahead of the flow after a 

certain time. In Figure (11), the concentration is given at very early times of 0.2, 0.4, 0.6 and 0.8 micro 

seconds after release to find out how hydrogen is trapped and how air seperates the trapped hydrogen from 

the head of the contact surface.    

 

6- Conclusion  

An in-house parallel code is developed to simulate the release of high pressure hydrogen into air through an 

enlarging tube-shaped exit. The Abel-Noble real gas equation is applied to accurately simulate the release 

since high pressure hydrogen deviates from the ideal gas law. A transport equation is added to find out the 

concentration of hydrogen and air in the mixture. A spring-based method is applied to move the mesh nodes 

and the Euler equation is modified to consider the mesh movement. Three initial diameters of 1.0 mm, 1.5 

mm and 2.0 mm are investigated and three opening speeds of 100 m/s, 200 m/s and 300 m/s are studied. It 

is seen that the first few micro seconds after release are important for ignition prediction. It is concluded 

that the pressure on the contact surface which is important for combustion models depends on both the 

initial diameter and opening speed, and also the pressure drops faster when the release area opens faster. 
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Figure (2) – Release area expanding for the initial diameter of 1.0 mm at the rate of 500 m/s.  
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Figure (3) - Mach number along the centerline for pressure of 10 MPa  
(Left: results of [16], Right: present simulation) 
 



 

      

 

 

 

 Figure (4) – Pressure on the contact surface and contact surface location for 
two meshes and different opening rates 

 a) Pressure 

 b) Contact Surface Location 



      

  

   

 
Figure (5) – Pressure on the contact surface and contact surface location for two 
meshes and different initial diameters; the pressure is lower and the location of 
the contact surface is slightly more advanced for the fine mesh results 
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 a) Pressure 



          

 

 

 

Figure (6) – Pressure and contact surface location comparison for fine meshes at 
opening speed of 80 m/s 
 

 b) Contact Surface Location 
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Figure (7) – Properties after 3 micro seconds of release for an opening speed of 200 m/s and an 
initial diameter of 1 mm (Diameter reaches 1.6 mm at time of 3 micro seconds) 
 
 

 a) Mach Contours  b) Concentration Contours 

 c) Density Contours  d) Pressure Contours 

 e) Velocity Contours 



               

               

               

 
Figure (8) – Properties along the centerline after 3 micro seconds of release for the opening 
speed of 200 m/s and initial diameter of 1 mm 
 
 

 a) Mach Number  b) Concentration 

 c) Density  d) Pressure 

 e) Velocity  f) Temperature 



 

 

 

 

Figure (9) – Pressure on the contact surface and contact surface location for the 
initial diameter of 1.0 mm at different opening rates  

 b) Contact Surface Location 
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Figure (10) – Pressure on the contact surface and contact surface location for 
different initial diameters at the opening rate of 200 m/s  

 b) Contact Surface Location 

 a) Pressure 



 
 
 

                                      
 
 
 
 

                                 
 

 

 

Figure (11) – Concentration at the opening rate of 200 m/s and initial diameter of 1 mm 

 a) After 0.2 micro seconds  b) After 0.4 micro seconds 

 c) After 0.6 micro seconds  d) After 0.8 micro seconds 



 

 10 MPa 34.5 MPa 70 MPa 

DZ (analytical equation) 6.66 12.36 17.61 
DZ (Present Simulation) 7.00 14.00 20.00 

   

 

Table (1)-Final Mach disk location comparison 
 


