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Reconfigurable Cooperative Control of

Networked Lagrangian Systems Under

Actuator Saturation Constraints
A. R. Mehrabian, S. Tafazoli, and K. Khorasani

Abstract

In this paper, a reconfigurable control strategy is proposed for state synchronization and tracking control of

networked (electro-) mechanical Euler-Lagrange (EL) systems that are subject to input saturation constraints that

may arise due to actuator faults or failures. The reconfigurable controller consists of three main parts. The first part,

known as the nominal controller, is a distributed controller that is employed to guarantee global stability of the multi-

agent networked EL system provided that certain mild connectivity conditions are satisfied in absence or presence

of actuator saturation constraints. The second part, known as the reconfigured controller, is a constrained nonlinear

smooth distributed controller that has a different structure and gains from the nominal controller. This controller can

preserve the overall control objectives in presence of actuator faults and actuator saturation constraints. The third part

is a switching strategy between the nominal and the reconfigured controllers. Global stability as well as asymptotic

convergence of the synchronization and the tracking errors to origin for switchings under certain conditions between

the nominal and the reconfigured controllers with non-vanishing dwell-times for a fixed network topology are shown

to be guaranteed. Simulation results are reported to demonstrate and validate the merits of the proposed controllers.

I. INTRODUCTION

Cooperative control in networked systems is to be realized by information exchanges among agents. This behavior

and property is defined as the ability to synchronize the agents’ states (or outputs) in order to accomplish complex

tasks that otherwise could not have been accomplished by only utilizing individually decoupled and non-interacting

agents. Cooperative control of networked (electro-) mechanical Euler-Lagrange (EL) systems have applications in

various fields. These applications include cooperative control of multiple uninhabited (or unmanned) aerial vehicles

(UAVs) and uninhabited ground vehicles (UGVs) for search and rescue operations; intelligence, surveillance, and

reconnaissance (ISR) missions; and mapping unknown or partially known environments, among others. It has also
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applications to spacecraft (SC) formation flying missions and tele-operations, among others. The area of cooperative

control has recently attracted great interest and attention by researchers. A substantial body of work has already

appeared in the literature. However, in many of these works the emphasis has been focused on merely a specific

class of systems, such as single or double integrator systems [1], [2], linear systems [3], [4], UAVs [5], [6], [7], or

robot manipulators [8], [9], [10], [11], [12], [13], among others.

The reported results in [8], [9] rely only on linear interconnections among the agents for synchronization and

trajectory tracking objectives. Output and state synchronization of a network of passive systems is considered in

[14]. However, for state synchronization of multiple robot networks, the control law proposed in [14] requires the

knowledge of the inertia matrix and the Coriolis and centrifugal forces/torques. Furthermore, the bound on the

control efforts in [8], [9], and [14] depends on the selection of the initial conditions (that is, the initial set-point

tracking errors). In other words, the larger one selects the initial conditions, the larger the bound on the control effort

will be. Furthermore, in [10] the authors have addressed consensus seeking problem (and not set-point tracking)

among a class of robot manipulators.

In real life systems, actuators are physically constrained and are generally subject to faults and failures (permanent

or intermittent). This requires that the selected and designed controllers should be fault-tolerant and reconfigurable.

In other words, in presence of actuator faults, the controller should be able to maintain its minimum control

objectives by reconfiguring its own structure (or by changing its gains) so that degradations in the overall system

performance can be managed and handled efficiently and effectively. Reconfigurable control systems have been

investigated extensively in the literature for the past three decades. A bibliographical review of this area can be

found in [15].

The main objective of this paper is to present a switching-based control reconfiguration strategy that is utilized in

case of an actuator fault or a saturation constraint to accomplish cooperative control of (electro-) mechanical Euler-

Lagrange (EL) systems. Towards this end, we first introduce a class of distributed controllers (denoted as nominal)

that can be used for accomplishing cooperative state synchronization and set-point tracking. This will be achieved

under a fixed network topology consisting of potentially multiple leaders and followers and without requiring any

knowledge of the inertia matrix and the Coriolis and centrifugal forces/torques of the agents. It is shown that by

using a special class of our proposed distributed controllers, boundedness of the closed-loop networked EL system

states and control efforts are guaranteed regardless of the initial conditions. We then introduce a class of distributed

constrained controllers (denoted as reconfigured) that can be used to maintain the overall control objectives of the

EL system in presence of actuator faults and constraints. Finally, we introduce a procedure that can be employed

to switch between the two distributed controllers (the nominal and the reconfigured controllers). In presence of

actuator faults and saturations, a switching mechanism is introduced to provide a reconfigurable controller for the

networked EL system.

The outline of the remainder of the paper is as follows. In Section II, a brief overview of the necessary assumptions

and preliminaries are presented. Section III, presents the proposed cooperative control of networked EL systems

with and without actuator constraints. The proposed reconfigurable cooperative control of the networked EL system
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is presented in Section IV. Simulation results for the problem of cooperative control of a team of robot manipulators

subject to an actuator fault and saturation constraint are presented in Section V to demonstrate and illustrate the

advantages and benefits of the proposed reconfigurable control strategy. Finally, conclusions are stated in Section

VI.

II. ASSUMPTIONS AND PRELIMINARIES

A. Euler-Lagrange Systems

Dynamics of the class of (electro-) mechanical systems that are considered in this work are described by the

Euler-Lagrange (EL) equations of motion. Examples of mechanical EL systems are UGVs, UAVs, SC, among others.

Examples of electro-mechanical EL systems include magnetic levitation systems, AC machines, among others [16].

An advantage of the EL formulation is that the dynamical equations are independent of the coordinate system that

is used. It is assumed, in this paper, that the j-th EL system (agent) has the following dynamics, namely,

D j(q j)q̈ j +C j(q j, q̇ j)q̇ j +g j(q j)+
∂F j(q̇ j)

∂ q̇ j
= M j u j (1)

where q j ∈ Rk denotes the generalized coordinates, D j(q j) ∈ Rk×k denotes a symmetric positive definite matrix

known as the general inertia matrix, C j(q j, q̇ j)q̇ j denotes the Coriolis and centrifugal forces, and g j(q j) denotes

as the gravitational force vector (GFV). Moreover, F j(q̇ j) denotes the Rayleigh dissipation function, which by

definition satisfies q̇T
j

∂F j(q̇ j)

∂ q̇ j
≥ 0, and q̇ j ≡ 0 implies ∂F j(q̇ j)

∂ q̇ j
= 0. It is further assumed that the control signal

u j ∈ Rk enters into the EL system dynamics linearly, and M j ∈ Rk×k is a nonsingular constant matrix.

The dynamical model (1) enjoys the following properties [16], namely, P1: The general inertia matrix is bounded,

specifically, ∃k j,k j such that: k j Ik <D j(q j)< k j Ik, ∀q j, where Ik is an k×k identity matrix, P2: GFV is assumed

to be upper bounded, that is, 0 ≤ supq j∈ℜk{|gi, j(q j)|} ≤ gi, j, ∀i ∈ {1, . . . ,k}, where gi, j(q j) denotes the elements of

g j(q j), and P3: Ḋ j(q j)−2C j(q j, q̇ j) is a skew-symmetric matrix.

We now introduce a notion of the saturation function that will be used subsequently.

Definition 1. A saturation function denoted by Sat(x) : R→ R, is an odd function with the following properties

∀x ∈ R, namely, (i) Sat(x) = 0, if and only if x = 0; (ii) |Sat(x)| ≤ 1; (iii) Sat(−x) =−Sat(x); (iv) ∂Sat(x)
∂x ≥ 0 and

∂Sat(x)
∂x ̸= 0, when x = 0; and (v) there exists a constant b > 0 such that ∀x ∈ [−b,b], we have Sat(x) = γ x, where

γ > 0.

There are several functions that globally satisfy the above requirements. Examples include tanh(κ2 x), and the

function x√
κ2+x2

, ∀x ∈R with a constant parameter κ , to name a few. It can be shown that the saturation function

satisfying the conditions of Definition 1 enjoys the property
∫ x1

0 Sat(x)dx ≥ 1
2 Sat(x1)x1 ≥ 0, ∀x,x1 ∈ R [16].

B. Graph Theory and the Communication Topology

In this paper, it is assumed that information exchanges among the ’m’ EL systems (agents) can be represented

by a graph G . Graph G consists of a node set V = {1, . . . ,m}, an edge set E ⊆ V ×V , and a weighted adjacency
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matrix Λ = [λ jn]∈ ℜm×m. The m agents in the network are considered as nodes of the graph G . The communication

links among the agents are considered as the graph edge set.

The weighted adjacency matrix Λ is defined such that λ jn = λn j is a positive weight if ( j,n)∈ E , while λ jn = λn j =

0, otherwise. Associated with Λ, we introduce a symmetric positive semi-definite matrix known as the Laplacian

matrix L = [l jn] ∈ ℜm×m, such that l j j = ∑m
n=1,n ̸= j λ jn and l jn = −λ jn, where k ̸= j. Furthermore, if the graph is

connected, L has a simple eigenvalue 0 with an associated eigenvector of 1m, where 1m denotes an m×1 column

vector of ones. All the other eigenvalues of L are positive if and only if the graph G is connected.

The edge count of the graph G , denoted by |E (G )|, is the number of edges in the graph G . For a given node

j in the communication graph, the set of agents from which it can receive information is called a neighboring set

N j, that is ∀ j = 1, . . . ,n : N j = {n = 1, . . . ,m|( j,n) ∈ E }. In addition, the number of the j-th agent neighbors is

denoted by
∣∣N j

∣∣ (known as the cardinality of the set N j). We are now in a position to state our first Assumption.

Assumption 1. Throughout the paper it is assumed that the communication graph is strongly connected (bi-

directional).

Some examples of the communication graphs that can be considered in this paper corresponding to for example,

3, 4, 6 and 8 agents in the network as per Assumption 1 are shown in Fig. 1. The communication graphs shown

in this figure are bi-directionally connected and with minimum number of edges.

III. COOPERATIVE CONTROL OF NETWORKED LAGRANGIAN SYSTEMS WITH AND WITHOUT ACTUATOR

CONSTRAINTS

We start this section by introducing the notions of state synchronization and set-pint tracking errors. The problem

definition and requirements are then presented. Next, we develop and present distributed cooperative controllers

that are with and without actuator constraints. This will be followed by some preliminary results. Finally, the main

result of this section is presented in a theorem.

A. State Synchronization and Set-Point Tracking Errors

In this section, a strategy for coordinated control of a network of multi-agent EL systems is developed. Let

us denote the desired coordinates for the j-th EL system (agent) by q⋆j . The set-point tracking error between the

coordinates of the j-th agent and its desired coordinates is defined according to

δq j = q j −q⋆j , j ∈ V (2)

It is assumed that the desired coordinates q⋆j are set to constant values. Therefore, we have δ q̇ j = q̇ j, j ∈ V .

Moreover, the synchronization error between the coordinates of the j-th and the n-th EL systems and its time

derivative are defined according to

q jn = δq j −δqn, q̇ jn = q̇ j − q̇n (3)

Note that as long as q⋆j −q⋆n ̸= 0, the agents are assumed to not collide with one another at the steady-state.
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B. Problem Definition and Requirements

The objective of this section is to introduce a distributed cooperative control law for the j-th (electro-) mechanical

EL system. This distributed control law has to guarantee the following requirements, namely: (1) the closed-loop

networked system’s states and control signals remain globally stable, (2) the synchronization errors asymptotically

converge to origin, i.e., q jn → 0 and q̇ jn → 0 as t → ∞ (this is designated as the station-keeping behavior), and (3)

the set-point tracking errors asymptotically converge to origin, i.e., δq j → 0, q̇ j → 0 as t → ∞ (this is designated

as the formation-keeping behavior). We also consider actuator saturation constraints in the design of the distributed

cooperative control law for the j-th EL system, which will be presented formally subsequently.

C. The Distributed Cooperative Control Design

The distributed cooperative control law considered in this paper has two main parts: (i) The station-keeping

control, and (ii) the formation-keeping control. The station-keeping control is introduced to satisfy the first and

the second objectives of the coordinated control of the EL system. The formation-keeping control is introduced to

satisfy the first and the third objectives of the coordinated control of the EL system.

As opposed to the centralized multi-input multi-output (MIMO) cooperative control laws (cf. [17]), our proposed

control laws do not require knowledge of all the agents states in the network. In other words, our proposed distributed

control laws only require information from their own agent states and their neighboring agents states in the network.

Due to the dependency of the control command of the j-th agent on the states of its neighboring agents N j, the

proposed control law cannot be considered “strictly” as a decentralized controller, where the control command only

depends on the agent’s own states (cf. [18]).

We therefore introduce the following distributed nominal nonlinear cooperative control for the j-th EL system

to satisfy the three objectives introduced in the previous subsection simultaneously, namely,

u j = M−1
j

(
−Λp

j χ(δq j)−Λd
j χ(q̇ j)+g j(q j)︸ ︷︷ ︸

station-keeping control

− ∑
n∈N j

Λp
jn χ(q jn)− ∑

n∈N j

Λd
jn χ(q̇ jn)︸ ︷︷ ︸

formation-keeping control

)
(4)

where χ(x) = col[χ(x1), . . . ,χ(xn)], where χ(x) is a monotonically increasing odd function. In addition, the control

gains Λp
j ≽ 0, Λp

jn = Λp
n j ≻ 0, Λd

j ≽ 0, and Λd
jn = Λd

n j ≻ 0 are diagonal matrices of (positive) proportional and

derivative gains (superscript ‘p’ denotes proportional and superscript ‘d’ denotes derivative). The first three terms

of the above control law are also called the station-keeping control. The last two terms of the above control law

are called the formation-keeping control.

In practice, it is not always possible to provide the desired coordinates to all the EL system agents in the

network. The agents that receive the desired coordinates can be considered as leaders. Therefore, for the team

leaders we have Λp
j ≻ 0 and Λd

j ≻ 0. The agents that do not receive the desired coordinates can be considered as

followers. Consequently, for the team followers we have Λp
j = 0 and Λd

j = 0. To guarantee strong connectivity of

the communication graph for the followers there should exist an n ∈ {1, . . . ,m}, n ̸= j, such that Λp
jn, Λd

jn ̸= 0. In
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other words, every EL system agent in the communication graph only needs to be connected (bidirectional) to a

leader. We now formally state our next assumption below.

Assumption 2. The following conditions are assumed to hold for the considered EL systems:

a. The EL systems are fully actuated at all times. This implies that the dimension of the input vector is equal

to the dimension of the generalized coordinates vector at all times,

b. The maximum control effort available to each actuator is constrained at all times due to the inherent physical

saturation constraints. Specifically, the maximum control effort for the i-th actuator of the j-th EL system, in

absence of faults, is constrained by ūmax
i | j,

c. In presence of actuator faults, the maximum control effort for the i-th actuator of the j-th EL system may

fall below ūmax
i | j and this maximum bound could be time-varying, in general, and is denoted by u(t)max

i | j,

d. The maximum control effort available in presence of the worst-case actuator faults, u(t)max
i | j, is bounded

from below. Specifically, the least upper bound of the available control effort for the i-th actuator of the j-th

EL system under all possible faults and constraints is known a priori and is denoted by umax
i | j,

e. The above control bounds satisfy, 0 ≤ ||M−1
j g j(q j)|| < ||umax

j || ≤ ||u(t)max
j || < ||ūmax

j ||. This implies that the

actuators should maintain the j-th system at rest corresponding to all desired positions.

We first present the following lemma, which is used subsequently in the paper.

Lemma 1. Consider the following algebraic equations that correspond to a strongly connected network of ‘m’

agents

Λp
j χ(δq j)+ ∑

n∈N j

Λp
jn χ(q jn) = 0, j,n ∈ {1, . . . ,m}, j ̸= n (5)

where δq j ∈ Rk, χ(x) is a monotonically increasing odd function, and Λp
jn = Λp

n j are positive definite matrices.

Furthermore, assume that Λp
j is a positive definite diagonal matrix for only 0 < l ≤ m number of equations

(corresponding to ‘l’ leaders) and is zero, otherwise. If we have ∑l
j=1 Λp

j χ(δq j) = 0, then the only solution

to (5) is δq j = 0,∀ j ∈ {1, . . . ,m}.

Proof: We prove this lemma by contradiction. First note that (5) implies that if for the j-th algebraic equation

we have Λp
j = 0 (corresponding to m− l ≥ 0 followers), then ∑n∈N j Λp

jn χ(q jn)= 0. Therefore, (5) essentially reduces

to Λp
j χ(δq j)+∑n∈N j Λp

jn χ(q jn) = 0, j,n ∈ {1, . . . , l}, j ̸= n. Now let us assume that the claim does not hold, i.e.

δq j ̸= 0,∀ j ∈ {1, . . . , l}. This in view of ∑l
j=1 Λp

j χ(δq j) = 0, implies that there exists at least one system (let’s say

the l-th system, without loss of any generality) for which we have: ∑l−1
j=1 Λp

j χ(δq j) =−Λp
l χ(δql)≡ Λp

l χ(−δql),

which implies that the sign of the l-th system error is opposite to that of the others in the network. Without loss of

generality, let us assume δql =−ε jδq j, j = 1, . . . , l−1, where ε j > 0, and that δq j > 0, j = 1, . . . , l−1. Thus, from

(5) we have: Λp
l χ(δql)+Λp

l,1 χ(δql −δq1)+Λp
l,2 χ(δql −δq2)+ · · ·+Λp

l,l−1 χ(δql −δql−1) = 0, which can be

re-written as: −Λp
l χ(ε1δq1)−Λp

l,1 χ[(ε1 +1)δq1]−·· ·−Λp
l,l−1 χ[(εl−1 +1)δql−1] = 0. The statement above does

not hold when δq j ̸= 0, ∀ j ∈ {1, . . . , l}, which is a contradiction. Therefore, the only solution to the problem is to
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have δq j = 0, j = 1, . . . , l. Consequently, from (5) we have ∑n∈N j Λp
jn χ(q jn) = 0,∀ j,n ∈ {1, . . . ,m}, j ̸= n, which

by the strong connectivity of the communication graph, and the fact that χ(x) is a monotonically increasing odd

function implies q jn = 0,∀ j,n∈ {1, . . . ,m}, j ̸= n. Consequently, in view of (3), one obtains δq j = 0, j = l+1, . . . ,m.

Therefore, we have δq j = 0,∀ j ∈ {1, . . . ,m}. This completes the proof of the lemma.

We are now in a position to present the main result of this section.

D. Main Result

Our main result in this subsection is provided in the following theorem.

Theorem 1. Consider a network of ‘m’ multiple heterogeneous (electro-) mechanical EL systems where the j-

th agent’s dynamics is governed by (1). Without loss of generality, let us assume that agent 1 to agent ‘l’ are

the network leaders and agent ‘l + 1’ to agent ‘m’ are the followers. Furthermore, consider that the distributed

“nominal” cooperative control law for the j-th agent is selected according to equation (4). Then under Assumption

1 and Assumption 2 (parts (a) and (e)) it is guaranteed that: (i) all the signals of the closed-loop EL system will

remain bounded, (ii) the synchronization errors asymptotically converge to origin, i.e., q jn → 0 and q̇ jn → 0 as

t → ∞, for all j ∈ V , n ∈N j, and, (iii) the set-point tracking errors converge asymptotically to origin, i.e., δq j → 0,

q̇ j → 0 as t → ∞ for all j ∈ V . Furthermore, suppose that one sets χ(x), Sat(x) in the control law (4) and let the

gains of the j-th EL system satisfy the following inequalities,

m̄i| j

(
λ p

i | j +λ d
i | j + ∑

n∈N j

λ p
i | jn + ∑

n∈N j

λ d
i | jn +gi| j

)
≤ ūmax

i | j, i ∈ {1, . . . ,k}, j ∈ {1, . . . ,m} (6)

where m̄i denotes the i-th element of the M−1
j matrix, λ σ

i | j, σ = p,d denotes the i-th element of the Λσ
j matrix and

λ σ
i | jn, σ = p,d denotes the i-th element of the Λσ

jn matrix. Then, under Assumption 1 and Assumption 2 (parts

(a), (b), and (e)) in addition to guaranteeing conditions (i)-(iii) above, one can also ensure that, (iv) the actuator

constraints are satisfied, that is |u(t)i| j| ≤ ūmax
i | j,∀ j ∈ {1, . . . ,m}, ∀t ≥ 0 and for all initial conditions.

Proof: In order to prove the theorem, let us introduce the following positive definite radially unbounded

Lyapunov function candidate for the network of EL systems

W (δq j, q̇ j,q jn) =
m

∑
j=1

(
1
2

q̇T
j D j(q j)q̇ j +

k

∑
i=1

λ p
i | j

∫ δqi, j

0
χ(x) dx+

1
2 ∑

n∈N j

k

∑
i=1

λ p
i | jn

∫ qi, jn

0
χ(x) dx

)
(7)

where λ p
i | j denotes the i-th diagonal element of Λp

j and λ p
i | jn denotes the i-th diagonal element of Λp

jn. The time

derivative of the above Lyapunov function candidate, by taking into account the expressions (2) and (3), is given

by

Ẇ =
m

∑
j=1

(
q̇T

j D j(q j)q̈ j +
1
2

q̇T
j Ḋ j(q j)q̇ j + q̇T

j Λp
j χ(δq j)+

1
2 ∑

n∈N j

q̇T
jnΛp

jnχ(q jn)

)
(8)
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Note that the communication links are bidirectional (as per Assumption 1), therefore one can show that

1
2

m

∑
j=1

∑
n∈N j

q̇T
jnΛp

jnχ(q jn) =
m

∑
j=1

∑
n∈N j

q̇T
j Λp

jnχ(q jn)

m

∑
j=1

q̇T
j ∑

n∈N j

Λd
jn χ(q̇ jn) =

m

∑
j=1

∑
n∈N j

q̇T
jnΛd

jn χ(q̇ jn)

By noting the skew-symmetric property of the matrix Ḋ j(q j)−2C j(q j, q̇ j) (cf. property P3), and the fact that for

the followers we have Λp
j = Λd

j = 0, and by using the governing dynamics (1) and (4) one can then yield

Ẇ =
m

∑
j=1

[
q̇T

j

(
−C j(q j, q̇ j)q̇ j −g j(q j)−

∂F j(q̇ j)

∂ q̇ j
+M j u j

)
+

1
2

q̇T
j Ḋ j(q j)q̇ j + q̇T

j Λp
j χ(δq j)+

1
2 ∑

n∈N j

q̇T
jnΛp

jnχ(q jn)

]

=−
m

∑
j=1

[
q̇T

j
∂F j(q̇ j)

∂ q̇ j
+ q̇T

j Λp
j χ(δq j)+

1
2 ∑

n∈N j

q̇T
jnΛp

jnχ(q jn)

]

+
m

∑
j=1

q̇T
j

(
−Λp

j χ(δq j)−Λd
j χ(q̇ j)− ∑

n∈N j

Λp
jn χ(q jn)− ∑

n∈N j

Λd
jn χ(q̇ jn)

)

=−
l

∑
j=1

q̇T
j Λd

j χ(q̇ j)−
m

∑
j=1

q̇T
j

∂F j(q̇ j)

∂ q̇ j
−

m

∑
j=1

∑
n∈N j

q̇T
jnΛd

jn χ(q̇ jn)≤ 0

(9)

which is a negative semi-definite decrescent function. First note that since the Lyapunov function is radially

unbounded, all the signals remain globally bounded. Now, consider the set H = {(q̇ j,δq j, q̇ jn,q jn) : Ẇ ≡ 0}.

When Ẇ ≡ 0 (Ẇ is identically equal to zero), we have q̈ j = q̇ j = q̇ jn = 0, therefore, the closed-loop dynam-

ics of the j-th EL system can be written as D j(q j)q̈ j = −Λp
j χ(δq j)− ∑n∈N j Λp

jn χ(q jn) = 0. By noting the

fact that Λp
jn = Λp

n j and χ(q jn) = −χ(qn j), it is straightforward to show that ∑m
j=1 ∑n∈N j Λp

jn χ(q jn) = 0, which

implies ∑l
j=1 Λp

j χ(δq j) = 0. Therefore, the requirements of Lemma 1 are satisfied, and one can conclude that

δq j = q jn = 0, ∀ j,n ∈ {1, . . . ,m}, j ̸= n. Therefore, the largest invariant set in H is the origin. Thus, by invoking

the LaSalle’s invariance theorem [19], and due to the fact that W is a positive definite radially unbounded function,

it follows under Assumption 2 (parts (a) and (e)) that: (i) the states and control signals of the closed-loop networked

EL system are globally stable, (ii) the synchronization errors asymptotically converge to origin, i.e., q jn → 0 and

q̇ jn → 0 as t → ∞, and, (iii) the set-point tracking errors asymptotically converge to origin, i.e., δq j → 0, q̇ j → 0

as t → ∞.

By noting the fact that |Sat(x)| ≤ 1,∀x ∈ R (cf. Definition 1), it is straightforward to show that by setting

χ(x), Sat(x) in the control law (4), and provided that the conditions (6) are satisfied, one has |u(t)i| j| ≤ ūmax
i | j,∀ j ∈

{1, . . . ,m}, ∀t ≥ 0 and for all initial conditions. Therefore, under Assumption 2 (parts (a), (b) and (e)), it now

follows that the properties (i)-(iii) above hold, and moreover the property (iv), that is the satisfaction of the actuator

constraints also hold, namely, |u(t)i| j| ≤ ūmax
i | j,∀ j ∈ {1, . . . ,m}, ∀t ≥ 0 and for all initial conditions. This completes

the proof of the theorem.

It is important to note that our proposed nominal distributed controller (4) is model-independent, in the sense
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that it does not require any information on the system’s inertia matrix D j(q j) as well as C j(q j, q̇ j). The controller

requires only measurements from the coordinates of the system and information on the GFV.

IV. RECONFIGURABLE COOPERATIVE CONTROL OF NETWORKED LAGRANGIAN SYSTEMS

In the previous section, we introduced a distributed approach for cooperative control of networked EL systems.

It was shown that by using a special class of our proposed nominal distributed control approach (that is, by setting

χ(x) to a Sat(x) function), the upper bound on the control effort does not depend on the initial conditions. We are

now in a position to present the following definitions.

Definition 2. A distributed controller is called nominal if the control law is given by

unom
j = M−1

j

(
−Λp

j χ(δq j)−Λd
j χ(q̇ j)+g j(q j)− ∑

n∈N j

Λp
jn χ(q jn)− ∑

n∈N j

Λd
jn χ(q̇ jn)

)
(10)

where ‘nom’ stands for nominal, χ(x) , Sat1(x) (Sat1(x) is a saturation function defined according to Definition

1), and the controller gains are Λσ
j = diag(λ σ

1 | j, . . . ,λ
σ
k | j) and Λσ

jn = diag(λ σ
1 | jn, . . . ,λ

σ
k | jn), where σ = p,d, such

that the following constrained conditions are satisfied

m̄i| j

(
λ p

i | j +λ d
i | j + ∑

n∈N j

λ p
i | jn + ∑

n∈N j

λ d
i | jn +gi| j

)
≤ umax

i | j, i ∈ {1, . . . ,k}, j ∈ {1, . . . ,m} (11)

under the nominal EL system operations.

Definition 3. A distributed controller is called reconfigured if the control law is given by

ur f g
j = M−1

j

(
−Λp

j χ(δq j)−Λd
j χ(q̇ j)+g j(q j)− ∑

n∈N j

Λp
jn χ(q jn)− ∑

n∈N j

Λd
jn χ(q̇ jn)

)
(12)

where ‘rfg’ stands for reconfigured, χ(x), Sat2(x) (Sat2(x) is a saturation function defined according to Definition

1) and the controller gains are Λσ
j = diag(λ σ

1 | j, . . . ,λ σ
k | j) and Λσ

jn = diag(λ σ
1 | jn, . . . ,λ σ

k | jn), where σ = p,d, such

that the following constrained conditions are satisfied

m̄i| j

(
λ p

i | j +λ d
i | j + ∑

n∈N j

λ p
i | jn + ∑

n∈N j

λ d
i | jn +gi| j

)
≤ umax

i | j, i ∈ {1, . . . ,k}, j ∈ {1, . . . ,m} (13)

under the faulty EL system operations.

Note that the above definitions allow the functions Sat1(x) and Sat2(x) to be different. In other words, the functions

Sat1(x) and Sat2(x) given in Definitions 2 and 3 are saturation functions with possibly different structures.

In presence of actuator faults, the maximum control effort available to each actuator may change (cf. Assumption

2 (d)). In this case, the nominal controller must be reconfigured in order to satisfy the constraints on the control

effort due to the actuator faults. Note that these two controllers do not have the same structure and do not employ

the same gains. The control reconfiguration is to be accomplished and achieved by switchings between the nominal

and the reconfigured controllers.

Our goal in this section is to show that by any number of switchings between these two controllers it follows that:

(a) a globally stable closed-loop EL system is obtained, (b) the synchronization errors asymptotically converge to
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zero, and (c) the tracking errors asymptotically converge to zero, provided that certain conditions are satisfied.

These are very useful properties as they show that in case of a fault and presence of a subsequent actuator

saturation constraint one can switch from the nominal controller to the reconfigured controller while still ensuring

desirable behavior of the overall networked EL system. Furthermore, when the injected actuator fault is removed

(corresponding to an intermittent fault), one can switch back from the Rreconfigured controller to the nominal

controller. One of the advantages of this switching strategy is that the only information that is required for controller

reconfiguration is the knowledge of the fault occurrence, which can be determined through a large body of fault

detection algorithms that are available in the literature (refer to our recent works in [20], [21], [22] and references

therein). This approach does not require exact knowledge of the severity of the fault (fault identification) as long as

Assumption 2 (c)-(f) is satisfied. Furthermore, the requirements for the switching operation is rather straightforward

to satisfy and implement in practice. We now state the following definition and assumption before presenting our

main result of this section.

Definition 4. Let W1(x) represent W (x) given by equation (8) with χ(x), Sat1(x), Λσ
j , Λσ

j , and Λσ
jn , Λσ

jn, σ =

p,d. Furthermore, let W2(x) represent W (x) given by equation (8) with χ(x) , Sat2(x), Λσ
j , Λσ

j , and Λσ
jn ,

Λσ
jn, σ = p,d.

Assumption 3. The following conditions are assumed to hold:

a. The controller gains and the saturation functions are selected such that Λp
j Sat1(x) ≥ Λp

j Sat2(x), ∀x and

Λp
jn Sat1(x)≥Λp

jn Sat2(x), ∀x. This from Definition 4 implies that W1(x)≥W2(x),∀x, where x= [q̇T
j , δq j

T , q jn
T ]T .

We denote [−b̄, b̄] as the region where Λp
j Sat1(x) = Λp

j Sat2(x) and Λp
jn Sat1(x) = Λp

jn Sat2(x).

b. At every switching instant from the reconfigured controller to the nominal controller (this instant is at the

designer’s disposal since the fault is no longer present) one needs to ensure that δqi, j,qi, jn ∈ [−b̄, b̄], i =

1, . . . ,k, j,n∈ {1, . . . ,m}, j ̸= n (existence of such a region is guaranteed in part (a)), whereas at the switching

instant from the nominal controller to the reconfigured controller (this instant is not at the designer’s disposal

since the fault detection time is unknown) one cannot guarantee the size of δqi, j and qi, jn.

c. The time between any two sequential switches can be arbitrarily small, however it should always be greater

than a constant value τ̄ > 0. This can be interpreted as switchings with non-vanishing dwell-times [23].

We are now in a position to state the main result of this section.

Theorem 2. Consider a network of ‘m’ (electro-) mechanical EL systems where the j-th agent dynamics is governed

by equation (1) and which is subject to the nominal distributed cooperative control law that is given by Definition

2. Also consider the same network and communication topology which is subject to the reconfigured distributed

cooperative control law that is given by Definition 3. Any switchings between the nominal and the reconfigured

closed-loop systems will yield a globally stable EL system and moreover, the state synchronization and the set-point

tracking errors globally asymptotically converge to origin provided that the conditions of Assumptions 2 and 3 hold.
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Proof: Global asymptotic convergence of the state synchronization and the set-pint tracking errors, as well

as global boundedness of all of the states and control signals of the closed-loop switched EL system under a

finite number of switchings follow from Theorem 1. We consider an infinite number of switchings between the

nominal system and the reconfigured system. We can pick an infinite subsequence of switching times from the

reconfigured system to the nominal system, th1 , th2 , . . . and an infinite corresponding subsequence of switching times

from the nominal system to the reconfigured system, th1+1, th2+1, . . .. In view of condition (c) of Assumption 3,

the time between any two consecutive intervals, namely, [the , the+1), e = 1,2, . . . is not less than τ̄ for the nominal

system. We denote the union of these intervals by Ē . From the condition (v) of Definition 1, and by using the

conditions (a) and (b) of Assumption 3, one can show that at each switching instant from the reconfigured controller

to the nominal controller, we have λ p
i | j
∫ δqi, j

0 Sat1(ξ ) dξ = λ p
i | j
∫ δqi, j

0 Sat2(ξ ) dξ and λ p
i | jn

∫ qi, jn
0 Sat1(ξ ) dξ =

λ p
i | jn

∫ qi, jn
0 Sat2(ξ ) dξ . These properties along with the Definition 4 imply that at each switching instant from the

reconfigured controller to the nominal controller we have W2(ȳ) = W1(ȳ), where ȳ = [q̇T
j , δq j

T , q jn
T ]T .

Furthermore, from the condition (v) of Definition 1, and by using the conditions (a) and (b) of Assumption 3,

one can show that at each switching instance from the nominal controller to the reconfigured controller, we have

λ p
i | j
∫ δqi, j

0 Sat1(ξ ) dξ ≥ λ p
i | j
∫ δqi, j

0 Sat2(ξ ) dξ and λ p
i | jn

∫ qi, jn
0 Sat1(ξ ) dξ ≥ λ p

i | jn
∫ qi, jn

0 Sat2(ξ ) dξ . These properties

along with the Definition 4 imply that at each switching instant from the nominal controller to the reconfigured

controller, we have W1(ȳ)≥ W2(ȳ). From equation (8), we have Sgn(Ẇ1(y)) = Sgn(Ẇ2(y)), where y = [q̇T
j , q̇T

jn]
T .

Consequently, when W1 is “non-increasing”, W2 is also “non-increasing”, and vise-versa. Therefore, it is guaranteed

that the value of W1 (W2) at the beginning of each interval on which the nominal system (reconfigured system) is

active does not exceed the value of W1 (W2) at the end of the previous such interval, if one exists.

Now let us introduce a new function,

yĒ (t) =

 −Ẇ1(t) if t ∈ Ē

0 otherwise
(14)

Given that W1 is always non-increasing, one obtains
∫ t

0 yĒ (τ)dτ ≤ W1(th1)−W1(t) ≤ W1(th1). Note that since

Ẇ1(t) ≤ 0,∀t ≥ 0, we have yĒ (t) = |yĒ (t)|,∀t ≥ 0, and therefore, yĒ (t) ∈ L1. Next, we show that yĒ (t) → 0 as

t → ∞.

Let us suppose that yĒ (t) ̸→ 0 as t → ∞. Then, there exists a sequence tn in R+ such that tn → ∞ as n → ∞, and

|yĒ (tn)| ≥ ε > 0 for all n, where n∈N. It follows from the definition of yĒ (t) that the sequence tn necessarily belongs

to Ē . Theorem 1 guarantees that δq j, q̇ j, q jn, and q̇ jn remain bounded, therefore, yĒ (t) is uniformly continuous on

Ē . By the uniform continuity of yĒ (t) on Ē , it follows that there exists a δ > 0 such that for all n and all 0 ≤ t ∈ Ē ,

we have |tn − t| ≤ δ ⇒ |yĒ (tn)− yĒ (t)| ≤ ε
2 .

In other words, for all t ∈ [tn, tn + δ ] and for all n we have |yĒ (t)| = |yĒ (tn)− (yĒ (tn)− yĒ (t))| ≥ |yĒ (tn)| −

|yĒ (tn)− yĒ (t)| ≥ ε − ε
2 = ε

2 (recall that the length of each interval in Ē is bounded from below by τ̄ > 0). This
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contradicts the assertion stated earlier that yĒ (t) ∈ L1. Therefore, yĒ (t)→ 0 as t → ∞ 1.

Now by taking into account the strong connectivity of the communication graph, it follows from equations

(3), (9) and (14) that q̇ j → 0 and q̇ jn → 0, ∀ j,n ∈ {1, . . . ,m}, j ̸= n as t → ∞. By the uniform continuity of q̇ j

on Ē , we have q̈ j → 0, ∀ j ∈ {1, . . . ,m} as t → ∞. Therefore, the closed-loop dynamics of the j-th EL system

can be written as D j(q j)q̈ j =−Λp
j χ(δq j)−∑n∈N j Λp

jn χ(q jn)→ 0, ∀ j,n ∈ {1, . . . ,m}, j ̸= n as t → ∞. Given that

Λp
jn = Λp

n j and χ(q jn) =−χ(qn j), it is straightforward to show that ∑m
j=1 ∑n∈N j Λp

jn χ(q jn) = 0, which implies that

∑l
j=1 Λp

j χ(δq j) = 0. Therefore, the requirements of Lemma 1 are satisfied, and one can conclude that δq j → 0,

q jn → 0, ∀ j,n ∈ {1, . . . ,m}, j ̸= n, as t → ∞. In other words, (a) all the states and control signals of the closed-

loop networked EL system will remain bounded, (b) the synchronization errors asymptotically converge to origin,

i.e., q jn → 0 and q̇ jn → 0 as t →∞, and (c) the set-point tracking errors asymptotically converge to origin, i.e., δq j →

0, q̇ j → 0 as t → ∞. This completes the proof of the theorem.

Remark 1. One can extend the results in Theorem 2 to develop a switching control law among a family (more

than two and finite number) of saturation functions with guaranteed stability. Furthermore, the results in Theorem

2 can also be used to develop a switching control law among a family (a finite set) of monotonically increasing

odd functions, e.g. χσ (x), σ = 1,2, . . . , m̄, with guaranteed stability.

V. SIMULATION STUDIES

The reconfigurable control scheme that we have developed in the previous sections is now applied to the problem

of cooperative control of a team of robot manipulators, which represents a class of (electro-) mechanical EL systems.

The nonlinear dynamical models corresponding to the robots are developed in the Matlab SimMechanics toolbox.

We consider three non-identical (heterogenous) manipulators (m = 3) with two rotational joints. We further consider

a fully bidirectionally connected communication graph with two leaders (the manipulators #1 and #2, i.e. l = 2) and

one follower (the manipulator #3). It follows from our results presented in Section III that providing the desired

coordinates vector to only one agent creates the possibility of a single point of failure in the network. Therefore,

for the purpose of conducting simulations we consider a team having two leaders and one follower.

Through the use of our proposed control approach, the robots in the network synchronize their coordinate vectors

while following the desired coordinate vector which is assumed to be identical for all the three manipulators,

i.e. q⋆j = q⋆, j = 1,2,3. It is assumed that the torques that are applied to the joints are initially constrained during

the normal operation of the actuators with ūmax
j = 30 N-m, j ∈ {1, 2, 3}. However, due to an intermittent actuator

fault in the manipulator #1, the maximum torque that is available to the first joint is reduced to umax
1 |1 = 6 N-m.

This fault is injected at the time t f ault = 370 sec and is cleared at time t = 550 sec. The values of the nominal

and the reconfigured controller gains are not given here due to space limitations. However, it worth noting that

1Note that the proof is similar to the proof of the well-known Barbalat’s lemma [19], which cannot be used here since yĒ (t) is not a uniformly

continuous function. A similar proof has appeared in Theorem 7 in [24].
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these gains are not the same. We use the linear saturation function, i.e., Sat1(x) =

 x if −1 ≤ x ≤ 1

Sgn(x) otherwise
,

for the nominal controller and Sat2(x) = x√
κ2+x2

for the reconfigured controller in our simulations with κ = 0.2.

The closed-loop responses of the manipulators under our proposed control strategies are depicted in Fig. 2(a). The

associated control efforts of the manipulator #1 for joints 1 and 2 are depicted in Fig. 2(b). It can be observed

from Fig. 2(b) that from t = 370 sec to t = 400 sec the control efforts do not exceed the saturation limit of 6 N-m.

It follows from Fig. 2(a) that prior to the injection of the fault, the angular positions settle down to their desired

set-points by using the nominal controller.

However, at t = 400 sec while the fault is still present the set-point of the joint 1 of all the manipulators is

changed. Due to the coupling effects, the change in the set-point of joint 1 causes a change in the angular position

of joint 2. The required torque to maintain the manipulator #1 joint 1 at its desired angular position becomes

higher than that of its actuator limit as seen from Fig. 2(b). Consequently, this leads to the actuator saturation and

instability of the network of manipulators (from t = 400 sec to t = 430 sec). It is now assumed that the control

reconfiguration is implemented and invoked at trecon f . = 430 sec, that is the controller is switched from the nominal

to the reconfigured module.

Fig. 2(a) shows that after the controller reconfiguration at t = 430 sec, the closed-loop networked system is

stabilized and the angular position errors converge to zero by utilizing the constrained control efforts of 6 N-m.

Moreover, to further demonstrate the stability of our switched system, at time t = 550 sec the fault is removed

or cleared from the actuator of the manipulator #1. Subsequently, following condition (a) of Assumption 2 (with

b̄ = 0.4) we switch from the reconfigured controller to the nominal controller at time t = 600 sec (the top yellow

box in the graph shows the duration when the fault is present and the bottom green box shows the duration when

the reconfigured control is active). It can be observed from Fig. 2(a) that after t = 600 sec the tracking errors

converge to zero as required.

For providing a more descriptive explanation on the behavior of the cooperation error, in Fig. 3(a) the closed-loop

EL system responses before and after the controller reconfiguration are provided. One can observe from Fig. 3(b)

that the cooperation errors are smaller when the nominal controllers are used as compared to the reconfigured

controllers. This is obviously due to the fact that the control effort constraints on the nominal system are satisfied,

however, degradations in the performance of the faulty system are unavoidable due to the reduction of the control

effort constraints. Therefore, it is highly recommended that one switches to the reconfigured controller only when

a fault is present in the system, and when the fault is removed or cleared and during the healthy operation of the

team the nominal controller is used exclusively.

VI. CONCLUSIONS

A reconfiguration strategy for cooperative control of a network of nonlinear (electro-) mechanical Euler-Lagrange

(EL) systems subject to actuator faults and constraints is developed in this work. The proposed nonlinear control

strategy guarantees stability of the EL networked agents states and control signals and guarantees global convergence
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of the set-point tracking errors and the state synchronization errors to origin despite the presence of either actuator

saturation constraints or intermittent and permanent actuator faults. By using our proposed switching strategy

between the nominal and the reconfigured controllers, global stability of the closed-loop networked EL system

states and control signals as well as convergence of the synchronization errors and the tracking errors to origin can

still be ensured. Furthermore, the proposed control laws require minimum knowledge of the system’s dynamics. The

performance of our proposed reconfigurable control strategy is demonstrated by simulations to three heterogenous

2-DOF networked robots subject to actuator fault and actuator saturation.
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Fig. 1. Typical communication graphs corresponding to 3, 4, 6 and 8 agents in the network.
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Fig. 2. Reconfigurable control of three robots (R1 to R3) when an intermittent fault is injected at time t = 370 sec and cleared at time t = 550

sec only in the actuator # 1 of robot # 1.
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(b) Cooperation errors in the angular positions.

Fig. 3. Scaled responses before an intermittent fault is injected only in the joint # 1 of robot # 1 and after the control reconfiguration.
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