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Abstract. We consider a homoclinic bifurcation of a vector field in R3, where

a one-dimensional unstable manifold of an equilibrium is contained in the
two-dimensional stable manifold of this same equilibrium. How such one-

dimensional connecting orbits arise is well understood, and software packages

exist to detect and follow them in parameters.
In this paper we address an issue that it is far less well understood: how does

the associated two-dimensional stable manifold change geometrically during the

given homoclinic bifurcation? This question can be answered with the help of
advanced numerical techniques. More specifically, we compute two-dimensional

manifolds, and their one-dimensional intersection curves with a suitable cross-
section, via the numerical continuation of orbit segments as solutions of a

boundary value problem. In this way, we are able to explain how homoclinic

bifurcations may lead to quite dramatic changes of the overall dynamics. This
is demonstrated with two examples. We first consider a Shilnikov bifurcation in

a semiconductor laser model, and show how the associated change of the two-

dimensional stable manifold results in the creation of a new basin of attraction.
We then investigate how the basins of the two symmetrically related attracting

equilibria change to give rise to preturbulence in the first homoclinic explosion

of the Lorenz system.

1. Introduction. Numerous areas of application give rise to mathematical models
that can be written in the form of an autonomous vector field; see, for example,
the textbooks [25, 41, 62] and further references therein. The main task is then to
determine the possible dynamics of the system, which means that one needs to find
the compact invariant objects (such as equilibria and periodic orbits) and, when they
are of saddle type, their stable and unstable invariant manifolds. Furthermore, the
question arises how these objects change with system parameters. Changes of the
local stability of equilibria and periodic orbits give rise to local bifurcations that can
be understood via normal forms. However, one also needs to consider how the global
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dynamics changes due to re-arrangements of stable and unstable manifolds. At such
a global bifurcation one finds homoclinic and heteroclinic connecting orbits from a
saddle object back to itself or to a second saddle object, respectively. It is well known
that homoclinic and heteroclinic bifurcations are important for understanding the
overall dynamics. In particular, they play a key role in transitions from simple to
complicated dynamics; see, for example, the textbooks [25, 41, 59] and the recent
survey paper [30] as entry points to the extensive literature.

In this paper we consider the consequences of a global bifurcation for the overall
organization of the dynamics by the stable and unstable manifolds — both near the
connecting orbit and further away from it. More specifically, we focus on homoclinic
bifurcations of equilibria in three-dimensional vector fields as the simplest class of
examples where this question is of interest. Throughout, we consider a vector field

ẋ = f(x, λ), (1)

where x ∈ R3, λ ∈ Rm is a parameter vector, and f : R3 × Rm → R3 is sufficiently
smooth. The vector field (1) induces a flow ϕt on R3 that determines the dynamics.
We suppose that (1) has a hyperbolic saddle equilibrium p, meaning that the Ja-
cobian matrix Df(p) has only eigenvalues with both positive or negative real parts
(and none with zero real part), which come with associated stable and unstable
eigenspaces Es(p) and Eu(p). The global stable and unstable manifolds of p are
then defined as

W s(p) =
{
x ∈ R3 | ϕt(x)→ p as t→∞

}
and

Wu(p) =
{
x ∈ R3 | ϕt(x)→ p as t→ −∞

}
.

According to the Stable Manifold Theorem [50], W s(p) and Wu(p) are (immersed)
manifolds that are as smooth as f and tangent at p to Es(p) and Eu(p), respectively.
Without loss of generality, we assume that Eu(p) and Wu(p) are of dimension one,
and Es(p) and W s(p) are of dimension two. (Note that this can always be achieved
by reversing time if necessary.)

We consider a homoclinic orbit of (1) that connects the equilibrium p back to
itself. In our setting the homoclinic orbit is formed by one branch of the one-
dimensional unstable manifold Wu(p), which lies entirely in the surface W s(p).
Provided that certain transversality conditions are satisfied, the situation is of codi-
mension one, meaning that it occurs at an isolated value λ∗ when a single parameter
λ ∈ R is changed. In the simplest case, a single periodic orbit bifurcates but more
complicated and even chaotic dynamics may be found as well; see, for example,
[30, 59].

It is an interesting observation that homoclinic bifurcations (and global bifurca-
tions more generally) are studied and illustrated in the literature with an emphasis
on the one-dimensional unstable manifold that forms the connecting orbit. The
associated stable manifold of higher dimension is generally considered only locally
near the connecting orbit, for example, in intersection with a local section. Such
illustrations are mostly in the form of topological sketches and they emphasise the
theoretical point of view that it is sufficient to study global bifurcations in a tubular
neighborhood of the one-dimensional connecting orbits.

By contrast, the emphasis of this paper is on how the two-dimensional stable
manifold changes as the one-dimensional manifold ‘passes through it’ to form the
homoclinic connection when a parameter is changed through the value where the
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homoclinic bifurcation takes place. This allows us to investigate how the homo-
clinic bifurcation manifests itself throughout the entire phase space, and not just
in a neighborhood of the homoclinic orbit. Of special interest in this context is
how the basins of different attracting sets change in the global bifurcation under
consideration. This question is not only of theoretical interest, but also relevant for
the study of specific vector-field models arising in applications. In an application
context a global bifurcation generally does not occur ‘in isolation’ but in the pres-
ence of other invariant objects. Hence, quantitative information about where basin
boundaries are located is generally what is required. Since two-dimensional stable
manifolds form boundaries of basins of attraction, their computation is the key to
understanding how a given global bifurcation changes the overall dynamics, even
very far away from where the homoclinic orbit appears in phase space.

A homoclinic orbit and the associated stable and unstable manifolds are global
objects that normally do not have analytic expressions so that they need to be found
numerically. Today, continuation software packages, such as Auto [12], Content
[40] and Matcont [10], are able, as a standard feature, to find a homoclinic orbit
and then continue it in (at least two) parameters. One approach is to find a periodic
orbit with sufficiently large period T , which can then be continued in two parameters
as an approximation of the homoclinic orbit. A more reliable numerical method
is to represent the homoclinic orbit itself as an orbit segment that starts near the
equilibrium along the unstable eigenspace Eu(p) and ends back near the equilibrium
in the stable eigenspace Es(p). (One also speaks of projection boundary conditions,
and error bounds can be derived for such an approximation as a function of the
total integration time T of the orbit segment [5].) This method is implemented, for
example, in the HomCont [8] extension of Auto; see also [14, 21, 46]. HomCont
also contains several test functions that allow one to detect and then continue (in
at least three parameters) global bifurcations of these orbits up to codimension
two. Furthermore, methods based on Lin’s method [43] allow one to find even
more complicated homoclinic and heteroclinic orbits with several close returns to
a neighborhood of an equilibrium or periodic orbit [39, 46]. With these numerical
tools it is possible to obtain very intricate bifurcation diagrams that feature global
bifurcations of higher codimension as organising centers; see, for example, the recent
studies [7, 65].

The computation of the associated stable and unstable manifolds, on the other
hand, is much less standard today. While one-dimensional stable and unstable
manifolds of vector fields are curves that can be found readily by integration, the
computation of global invariant manifolds of dimension two (or higher) remains
quite challenging. The development of computational tools for their computation
has been an area of active research in recent years; see, for example, the recent
surveys [35, 37]. The two-dimensional stable manifolds presented here have been
computed via the continuation of orbit segments that are defined as solutions of
suitable boundary value problems. More specifically, we employ and combine two
methods that are based on complementary representations of a relevant part of the
two-dimensional global manifold. One method computes the manifold as a family
of orbit segments, and the other as a family of geodesic level sets; see Sec. 2 for
more details. By visualizing the computed two-dimensional manifolds appropri-
ately as surfaces in three-dimensional space, we obtain insight into the geometric
consequences of the global bifurcation in question.
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We bring these numerical methods to bear in the study of two concrete test-
case examples. First, we consider a Shilnikov bifurcation (homoclinic orbit to a
saddle-focus) in a model of a laser with optical injection [65, 66, 68]. We focus here
on the case of a so-called simple Shilnikov bifurcation, where the saddle quantity
at the equilibrium is negative so that a single attracting periodic orbit bifurcates
[41]. Near this global bifurcation the laser system shows excitability: there is an
attracting equilibrium nearby, and any perturbation past the two-dimensional sta-
ble manifold of the saddle focus leads to a large excursion corresponding to a pulse
of laser light. We show in Sec. 3 how the two-dimensional stable manifold changes
at the Shilnikov bifurcation to organize the overall dynamics. Our second exam-
ple is the first homoclinic bifurcation (or explosion point) in the Lorenz system
[15, 60]. Due to the symmetry of the Lorenz equations, there is a symmetric pair
of homoclinic orbits in a butterfly configuration. The complex dynamics of the
Lorenz system is created in this so-called homoclinic explosion in a tubular neigh-
borhood of both homoclinic orbits. However, it is initially of a transitory nature
(one speaks of preturbulence) after this bifurcation: before and after the bifurcation
all typical orbits end up at one of two (symmetrically related) attracting equilibria.
We show in Sec. 4 what the consequences of the homoclinic explosion are for the
two-dimensional stable manifold of the origin, and how the two basins of attraction
change dramatically in this transition to preturbulence.

Apart from being of immediate interest for the systems at hand, the case studies
presented here also serve the purpose of highlighting what can be achieved with
manifold computations. It is now possible to gain detailed global understanding
of how the dynamics is organized by homoclinic and heteroclinic bifurcations in a
three-dimensional vector field. We would also argue that the images in this paper
represent the state-of-the-art in terms of computation and visualization of global
invariant manifolds of vector fields. Clearly, there are many more global bifurcations
that can be studied similarly, and Sec. 5 discusses directions of ongoing and future
research.

2. Computing manifolds via the continuation of orbit segments. Solvers
for two-point boundary value problems (BVPs) are a key feature of numerical con-
tinuation software such as Auto [12], Content [40] and Matcont [10]. In com-
bination with path following, it is possible to find and then follow the solution of
a well-posed BVP in parameters. We make extensive use of this capability for the
computation of invariant manifolds by defining BVPs that specify families of orbit
segments of interest. The general set-up can be formulated for autonomous vector
fields in any space dimension, but we restrict here to the case of a three-dimensional
phase space for simplicity; see [13, 35, 37] for more information. More specifically,
we consider a function

u : [0, 1] 7→ R3 (2)

that satisfies the differential equation

u′(t) = T f(u(t)). (3)

Note that (3) is simply the time-rescaled version of (1), where the integration time
over the orbit segment is always 1; hence, the actual integration time in (1) appears
as the explicit parameter T in (3). The function u represents a unique orbit segment
provided that suitable boundary conditions are specified at one or both end points
u(0) and u(1).
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Figure 1. Sketch of an orbit segment u starting near an equilib-
rium p with complex eigenvalues (a) and with real eigenvalues (b).
The second boundary condition can be left free or be constrained
to lie in a two-dimensional submanifold Σ.

A convenient and powerful way of representing the orbit segment u numerically
is the method known as collocation. It was first implemented in Colsys [2], and
first used in Auto[11] in the context of bifurcation studies; later implementations
include Coldae [3], Content [40], Matcont [10], and other software packages.
Here the function u is represented by polynomials of degree d in the intervals of
a mesh with N + 1 mesh points (where u(0) and u(1) are the first and last mesh
points, respectively). One requires that the differential equation (3) is satisfied at
certain interior points of the mesh intervals, namely, the so-called Gauss points. In
conjunction with continuity constraints and the boundary conditions one obtains
a set of equations that determines all (d + 1) × N coefficients of the polynomials
and the integration time T uniquely. We stress that a rigorous error analysis exists
that shows the order (in terms of the maximal mesh size) at which the approximate
solution converges to the true orbit segment; see [13] for details.

Once a numerical solution of the BVP has been found, it can readily be followed in
a system parameter with standard pseudo-arclength continuation [13]. Indeed, this
is the standard technique in Auto, Content and Matcont for the continuation
of a periodic orbit, which is represented as a solution of (3) subject to the boundary
condition u(0) = u(1) (plus a phase-condition), in which case the parameter is the
period T . Similarly, a homoclinic orbit is represented in the HomCont extension
of Auto as a solution of (3) subject to the boundary conditions u(0) ∈ Eu(p) and
u(1) ∈ Es(p) (again, plus a phase-condition), where T needs to be sufficiently large
to ensure the accuracy of the representation [5].

2.1. Computing a 2D manifold as a family of orbit segments. At the homo-
clinic bifurcation one knows a single orbit segment — the approximated homoclinic
orbit — that lies in the two-dimensional manifold W s(p). We now explain how a
large relevant part of W s(p) can be computed, regardless of whether this manifold
is involved in a global bifurcation or not. The underlying idea is to represent a
part of interest of W s(p) by a one-parameter family of orbit segments (of sufficient
length), one end point of which lies in Es(p) and near p. More formally, the family
is parameterized by a suitable one-dimensional submanifold in Es(p), where it is
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convenient to distinguish between the cases that the stable eigenvalues λs1 and λs2
are complex or real.

When λs1 and λs2 are complex conjugate — as is the case for the Shilnikov bifur-
cation in Section 3 — we require that

u(0) = p+ δv, (4)

where v ∈ Es(p) is a fixed vector of norm 1. Note that, throughout, we require that
the point u(0) lies in Es(p), which means that the total integration time T in (3)
of u is negative. As is illustrated in Fig. 1, the parameter δ parameterizes orbits
that lie on W s(p) (to good approximation), provided that δ is sufficiently small to
ensure that Es(p) is an accurate representation of W s(p) locally near p. Owing to
the spiralling nature of the dynamics on W s(p) near p, it suffices to vary δ over
a fixed small interval [δ0, δ1); see Fig. 1. Note that the interval [δ0, δ1) defines a
fundamental domain on the vector v, by which we mean that every orbit on (the
approximation of) W s(p) intersects it exactly once. We remark that the boundary
condition (4) can also be used to compute a stable (or unstable) manifold of a saddle
periodic orbit. In this case the vector v is chosen from the stable (or unstable) linear
bundle of the periodic orbit, which can also be found by continuation [39].

When λs1 and λs2 are real — as is the case for the Lorenz system in Section 4 —
we can require, for example, that

u(0) = p+ δ

(
cos(θ)

v1

|λs1|
+ sin(θ)

v2

|λs2|

)
(5)

or variations thereof. The parameter θ ∈ [0, 2π) parameterizes orbits that lie on
W s(p) (to good approximation) by an ellipse in Es(p), whose half-axes are deter-
mined by the ratio of the stable eigenvalues. Here, we again assume that δ is fixed
at a sufficiently small value to ensure that Es(p) is an accurate representation of
W s(p). Taking an ellipse, rather than a circle, of boundary conditions is helpful in
the computations because it adjusts for the different rates of growth of orbits near
p. We remark that it is preferable in practice to use boundary condition (4) over
(5) when the eigenvalues are complex conjugate, because it is difficult to choose an
ellipse in Es(p) to which the (spiralling) flow is transverse throughout; see, for ex-
ample, [19]. Namely, for most ellipses one will find four points where the spiralling
flow is tangent to the ellipse, which means that parts of the manifolds are covered
twice as θ is continued over [0, 2π). This issue is avoided entirely by boundary
condition (4), because a spiralling flow is transverse to any vector v ∈ Es(p).

Each of the boundary conditions (4) and (5) requires u(0) to lie on a one-
dimensional curve, and this can be expressed by two equations for the three co-
ordinate components of u(0). Hence, to obtain a representation of a part of W s(p)
as a one-parameter family of orbit segments, we need to ensure that the defining
family of BVPs is well-posed (i.e., has a unique solution for each value of δ and θ).
This requires us to specify one additional condition [13].

2.1.1. Continuation in the integration time. For any fixed value T = T0 of the
total integration time, the BVP (3) with boundary conditions (4) for fixed δ, or
alternatively (5) for fixed θ, has a unique solution. It is given by the initial value
problem that is specified by u(0) after integration over time T0, where T0 is negative
since we are considering a stable manifold. Hence, continuation in T , for example,
with the package Auto, does not change u(0), but the other end point u(1) traces
out the unique orbit through u(0). In other words, starting from the trivial solution
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u(0) = u(1) for T = 0, this continuation amounts to solving the initial value
problem with a collocation method. While this may seem like a complicated way
of integrating from an specific initial condition, it has the benefit that the output
files of this continuation method in Auto are then compatible with subsequent
steps of computing the manifold W s(p). Moreover, this approach is more likely
to notice sensitive dependence on initial conditions and, therefore, it is less likely
to compute the inaccurate or even spurious solutions that initial value solvers are
prone to produce in such situations.

To obtain this first orbit on W s(p), one can monitor a user-defined function (a
suitable end-point condition) during the continuation in T and detect an initial
orbit that satisfies a further (boundary) condition. There are several choices, which
makes this general approach rather flexible.

2.1.2. Fixing integration time or arclength. Arguably the simplest approach for
defining a family of orbit segments on W s(p) is to stop the first continuation run
at a suitable fixed integration time T = T0 and subsequently continue solutions of
(3) subject to (4) (or (5)) in the distance parameter δ (or the angle parameter θ).
In this way, a first piece of W s(p) is swept out by orbit segments with the same
integration time T0, but with different arclengths.

Alternatively, the total arclength of the orbit segment of the family may be kept
fixed, which means that a first piece of W s(p) is swept out by orbits of the same
arclength, but with different integration times. To this end, one imposes the integral
constraint ∫ 1

0

T ||f(u(s)) || ds− L = 0 (6)

along the orbit segment, while solving (3) subject to (4) (or (5)), where the inte-
gration time T and the distance δ (or the angle θ) are the continuation parameters.
Here the arclength L is kept at a desired fixed value L = L0; an initial orbit for this
type of continuation can be obtained by monitoring L with a Auto user-defined
function during the continuation in T of Sec. 2.1.1.

It may be advantageous in certain calculations to fix the product L×T , where L
is the total arclength along the orbit segment as defined above. This approach has
been used in [15] to compute orbit segments on the stable manifold of the Lorenz
system past structurally stable heteroclinic connections. In this situation, T → ∞
while the arclength L reaches a finite minimal value given by the length of the
respective heteroclinic connection. By fixing L×T , connecting orbits in the Lorenz
system have been identified as minima of the arclength (or the norm of the solution)
during the continuation in the distance parameter δ in (4); see [15] for details.

It is important to note that in all computations of W s(p) via parameterized
families of orbit segments, each continuation step in Auto is taken in the full
product space of the (discretized) functions u(·) and the parameters. That is, the
continuation step size is not determined by a fixed variation of the initial condition,
but by the change of the norm of the entire orbit segment. In this way, a good mesh
resolution of the computed piece of W s(p) is achieved; see also [13].

2.1.3. Intersection curves of W s(p) with a section. To learn more about the struc-
ture of a two-dimensional stable manifold W s(p) it may be useful to compute inter-
section curves of W s(p) with a two-dimensional section given, say, as the zero set
Σ of a vector function G : R3 → R. Note that W s(p) ∩ Σ may consist of infinitely
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many curves; see Sections 3 and 4. To compute curves in W s(p) ∩ Σ, we consider
the BVP defined by (3) subject to (4) or (5) and the additional boundary condition

G(u(1)) = 0. (7)

This BVP is well posed in the sense that a solution is given by a unique tuple (u, T ),
for each choice of δ in (4), or θ in (5). An initial solution can be found by monitoring
(7) as a user-defined function in Auto for fixed δ or θ during the continuation of an
orbit segment in T . In fact, depending on the geometry of W s(p), several zeros of
G may be found, and the corresponding solutions of the BVP can all be continued
to yield different curves in W s(p) ∩ Σ. Continuation with T and δ (or T and θ)
as continuation parameters yields a one-dimensional curve in W s(p) ∩ Σ. With
the Python scripting option of Auto it is possible to automate the generation and
continuation of the corresponding BVPs.

The standard choice for the section is to consider a two-dimensional plane Σ, in
which case G is simply a linear function; this is used in section 4. The BVP set-
up above for finding curves in W s(p)∩Σ is very similar to the ManBVP algorithm
from [18] for the computation of one-dimensional stable and unstable manifolds of a
periodic point of the associated Poincaré return map to the section Σ. The difference
is that the invariant object of the vector field — the equilibrium — need not lie in
the section Σ. As we will see in Section 3, it is sometimes convenient to consider a
compact section, in this case a sphere Σ = S around the saddle equilibrium (given
by a nonlinear function G).

In either case, one faces the problem that the associated Poincaré return map is
not a global diffeomorphism on the whole of Σ. In fact, the section is generically
divided into open regions where the direction of the flow (measured with respect
to the normal of the section) differs [42]. The boundary between these regions is
formed by the tangency locus C, defined as the set of points where the flow of
(1) is tangent to the section. The crucial observation is that the set W s(p) ∩Σ (or
W s(p)∩S) may change even though the flow of the vector field remains topologically
the same — we speak of a tangency bifurcation. Indeed, tangency bifurcations can
be brought about simply by changing the section (for example, by moving Σ or
changing the size of the sphere S), while the vector field remains unchanged [42].
It is, therefore, important not to confuse a tangency bifurcation of W s(p) ∩ Σ (or
W s(p) ∩ S) with a bifurcation of the vector field. In the present setting of vector
fields in R3, when a single parameter is changed we may encounter generically the
generation or disappearance of a closed intersection curve of W s(p) with the section
(we also speak of a minimax transition of W s(p)), and the local rearrangment of two
different intersection curves (in a saddle transition of W s(p)); see [42] for details.

2.2. The manifold as a family of geodesic level sets. Our second method
for computing a stable manifold is based on the geometric idea that W s(p) can
be viewed as a one-parameter family of geodesic level sets. This point of view
is complementary to the one in Section 2.1 where W s(p) was represented as a
one-parameter family of orbit segments. The advantage of representating W s(p)
by geodesic level sets is that in this way one generates the ‘most circular’ mesh
centered around the equilibrium p. Each geodesic level set has the property that
the mesh points on it lie at the same geodesic distance from p; recall that the
geodesic distance between two points is the arclength of the smallest path on the
manifold that connects them.
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We now briefly explain the GLS implementation [19] of the method [33, 34],
which makes use of Auto’s collocation and pseudo-arclength continuation routine
to find a solution family of an associated BVP in order to obtain a new mesh point.
Indeed, a new geodesic level set — a closed one-dimensional curve in the setting of
this paper — is computed point by point in this way, and the mesh is then extended
by a triangulation of the band between the previous and the new geodesic level set.
In other words, W s(p) is grown uniformly outwards from p by appropriate geodesic
increments, which are determined by the local curvature of the manifold. While
this method may seem somewhat cumbersome, the mesh it generates has very nice
properties that can be used to understand the geometry of the computed manifold
[36, 47, 48, 49].

The first approximate geodesic level set Cδ is simply given by K uniformly spaced
mesh points on a circle with radius δ around p in the stable eigenspace Es(p).
Suppose now that the algorithm has computed a mesh consisting of level sets Cδ
up to a level set Cr. To find the geodesic level set Cb at a distance ∆ from Cr we
consider each of the mesh points rk on Cr and determine associated (closest) points
bk on Cb. To this end, we construct a plane Frk (approximately) perpendicular to
Cr at rk. Then the sought after new point bk lies on the (unknown, but locally
well-defined) one-dimensional intersection curve W s(p) ∩ Frk .

The idea is now to consider the solution family of the BVP given by (3) and the
boundary conditions

u(0) ∈ Cr, (8)

u(1) ∈ Frk . (9)

Here, Cr is represented by the piece-wise linear approximation through its mesh
points. Starting from the trivial solution u(t) = rk, 0 ≤ t ≤ 1 with T = 0, the
GLS implementation calls Auto’s collocation and pseudo-arclength continuation
routines to continue u in the parameter T (which is again negative since we compute
a stable manifold). Notice that this BVP set-up at each mesh point is conceptually
the same as in Section 2.1.1. During this computation we monitor the (Euclidean)
distance

∆T =||u(1)− rk ||
between u(1) and rk until a required small distance ∆ is reached, which defines the
new point bk. To maintain a good resolution of the manifold, bk is tested against
accuracy criteria (involving the curvature along geodesics). In case bk violates
accuracy constraints, the geodesic level set currently being computed is discarded
and ∆ is reduced. Furthermore, mesh points may need to be added or removed
during a computation; this is done in such a way that the global interpolation error
remains bounded; see [19, 33, 34] for further details.

Figure 2 illustrates, with the example of a first piece of the Lorenz manifold
W s(0) from Section 4, how the GLS method works in practice. Shown are all
orbit segments (black curves) that were computed to find a next geodesic level set.
Notice that the mesh points given by u(1) are quite uniformly spaced along the
new geodesic level set, while the corresponding points u(0) of the orbit segments
are condensed in places on the previous geodesic level set; this is particularly visible
near the bottom of the vertical z-axis in Fig. 2. Also shown is how the overall mesh
on W s(0) is built up, which requires adding mesh points as the manifold grows, for
example, near the top of the vertical z-axis.
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Figure 2. Illustration of the orbit segments computed by the GLS
method to find the mesh points of the next geodesic level set; the
data is for the Lorenz manifold with % = 10.

3. The stable manifold near a Shilnikov bifurcation. A Shilnikov bifurcation
[57, 58] refers to the occurence of a homoclinic orbit to a saddle-focus equilibrium
p. Under suitable transversality conditions [30, 41, 59], this global bifurcation is of
codimension one, meaning that it occurs generically at an isolated parameter value
λ∗ in a one-parameter family of vector fields.

Without loss of generality we suppose here that Df(p) has a pair of complex
conjugate eigenvalues λs1,2 = ρ ± ηi with ρ < 0 and η 6= 0 and a real eigenvalue
λu > 0, so that the saddle-focus has a two-dimensional stable manifold W s(p) and
a one-dimensional unstable manifold Wu(p). A Shilnikov homoclinic orbit is then
formed at λ∗ by the branch of W s(p) that lies in Wu(p).

The unfolding of the Shilnikov bifurcation (that one obtains when the parameter
λ is varied from λ∗) depends on the sign of the saddle quantity σ = λu + ρ. For
σ < 0 a unique and stable limit cycle Γ bifurcates from the homoclinic orbit; one
speaks of a simple Shilnikov bifurcation. For σ > 0, on the other hand, the unfolding
features infinitely many periodic orbits of saddle type in a tubular neighborhood
of the homoclinic orbit to the saddle-focus; this case is also known as a chaotic
Shilnikov bifurcation. The proof by Shilnikov in the 1960s of the existence of an
invariant horseshoe in the return map near this global bifurcation is a celebrated
and now classical result in dynamical systems [57, 58].

3.1. Shilnikov bifurcations in a laser model. As is the case for any global
bifurcation, a normal form vector field for the Shilnikov bifurcation does not exist.
On the other hand, Shilnikov bifurcations occur naturally in many applications,
for example, in nerve impulse propagation [20], electro-chemical reactions [4] and
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oxidation processes [45], electrodynamic convection in liquid crystals [52], and food
chain models [9], to name just a few.

Another important class of systems where one finds Shilnikov bifurcations are
models of laser systems [65, 66, 68], and we consider here the specific example of a
semiconductor laser with optically injected light from a second laser. This system
is an example of an externally driven (optical) oscillator, and it can be modeled by
the so-called rate equations{

Ė = K +
(

1
2 (1 + iα)n− iω

)
E,

ṅ = −2Gn− (1 + 2Bn)(|E|2 − 1)
(10)

for the complex electric field E = Ex + Ey i and the population inversion n (the
number of electron-hole pairs that may recombine to produce a photon); see [66, 68]
for more details. The main parameters are the amplitude K and the detuning ω
(the difference between the frequencies of laser and injected light). Throughout, we
keep K fixed at K = 0.45; furthermore, B,G and α describe material properties of
the laser and, for our purposes, they are fixed at B = 0.015, G = 0.035, α = 2.

An extensive bifurcation analysis in [65, 68] of system (10) revealed, among other
dynamical features, many curves of Shilnikov bifurcations to a saddle-focus p. In
particular, it was found that a simple Shilnikov bifurcation near a curve of saddle-
node bifurcations of p gives rise to excitability; see also [38]. More specifically, in
the parameter region in question there is a unique attracting equilibrium q near
p. A perturbation of the system past the stable manifold W s(p) results in a large
excursion in phase space. The system then settles back to the attractor q, and it
can be excited again. Physically, the laser produces a pulse of light in reaction to
a small perturbation. In other words, W s(p) acts as the excitability threshold of
the system, and the exact shape of the pulse is determined by the shape of the
nearby saddle-focus homoclinic orbit. In fact, bifurcation analysis showed that the
injection laser may show a multi-pulse response to a single perturbation [67] (in
the vicinity of n-homoclinic orbits), and this was later confirmed experimentally
[23, 63].

3.2. The simple Shilnikov bifurcation. Our aim is to investigate how the ge-
ometry of the two-dimensional stable manifold changes during a simple Shilnikov
bifurcation (of a 1-homoclinic orbit), and the laser model (10) is used here simply
as a concrete and convenient example vector field that features this bifurcation.
More specifically, we consider the Shilnikov homoclinic orbit of the saddle-focus
p ≈ (0.728926, 0.7165664,−0.627905) that one finds (for example, with HomCont)
at ω ≈ −0.93653321169; the eigenvalues of p at the bifurcation are λu = 0.205017
and λs1,2 = −0.452133±1.11566 i, so σ = −0.247116 and we are indeed dealing with
a simple Shilnikov bifurcation. This global bifurcation is unfolded here by changing
the detuning ω.

Figure 3 shows the one-dimensional unstable manifold Wu(p) before, at and after
the bifurcation; also shown is a small disc in the stable linear eigenspace Es(p). One
of the two branches of Wu(p) is quite short and always converges directly to the
attracting equilibrium q ≈ (1.01442, 0.180927,−0, 859854). By contrast, the branch
of Wu(p) on the other side of Es(p) makes a large excursion before returning to a
neighborhood of the saddle-focus p. In Fig. 3(a) this branch ‘dives under’ Es(p) [see
panel (a2)] so that it also ends up at the attractor q. In this situation the system is
excitable: any perturbation from the attractor q sufficiently past the saddle p will
lead to a global excursion that follows the longer branch of Wu(p). Figure 3(b)
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Figure 3. The unstable manifold Wu(p) and a small disc repre-
senting the stable eigenspace Es(p) before, at and after a simple
Shilnikov bifurcation of the laser model (10). The right column
shows enlargements near the saddle-focus p; ω = −0.93 in row (a),
ω ≈ −0.93653321169 in row (b), and ω = −0.94 in row (c).

shows the Shilnikov homoclinic orbit at the moment of bifurcation, when the longer
branch of Wu(p) spirals into the saddle focus p. Figure 3(c) shows the situation
past the Shilnikov bifurcation. The longer branch of Wu(p) now stays on the same
side of Es(p) and accumulates on an attracting periodic orbit Γ. Note that we are
showing a situation quite close to the Shilnikov bifurcation, so that Γ passes very
close to p (and it has the quite large period TΓ ≈ 19.7378); see panel (c2).

Figure 3 presents the simple Shilnikov bifurcation in the spirit of ‘classical sketches’
of Wu(p), as they can be found in textbooks [25, 41, 59]. It forms the starting point
for our investigation into the properties of the two-dimensional stable manifold
W s(p). In fact, until now very little is known about the geometry of W s(p) at the
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Shilnikov bifurcation, and images such as Fig. 3 only give a vague idea of what
W s(p) looks like. For instance, if we imagine the two-dimensional manifold W s(p)
at the homoclinic bifurcation growing backwards in time from the saddle-focus p,
it is clear that it consists initially of trajectories that spiral around p. Yet it is not
obvious at all how this growth process continues once W s(p) has left a neighbor-
hood of p. The only thing that we can assert is that a part of the manifold W s(p)
near the homoclinic orbit must head back towards p. In the process, the rotational
component of the vector field near the saddle-focus must induce twisting of W s(p).

Questions that remain are: what is the global shape of W s(p) near a simple
Shilnikov bifurcation? How does W s(p) ‘return’ to the equilibrium p? How does
the topological change due to this Shilnikov bifurcation manifest itself in terms of
the geometry of W s(p)? And how does this lead to the creation of the basin of the
bifurcating attracting periodic orbit Γ?

3.2.1. The geometry of W s(p) in phase space. Figure 4 shows a global view of the
stable manifold W s(p), before and after the simple Shilnikov bifurcation of (10)
at ω ≈ −0.93653321169. The manifold has been computed with the method in
Sec. 2.1.1. More specifically, we continued orbit segments of fixed integration time
T0 = 40 whose end point u(0) satisfies (4) where δ ∈ [1 × 10−5, 1.15 × 10−4) with
ω = −0.93 before the bifurcation in Fig. 4(a), and δ ∈ [1 × 10−5, 7 × 10−5) with
ω = −0.94 after the bifurcation in Fig. 4(b). For ease of reference, all images in
Fig. 4 are shown from the same viewpoint as those in Fig. 3. In each row, two styles
of rendering show the same manifold as a solid surface and as a transparent surface,
respectively. Figure 4 gives a good impression of the overall shape of W s(p), but it
does not illustrate very well where W s(p) lies in relation to the unstable manifold
Wu(p) and the saddle-focus p. The transparent rendering is helpful in that it shows
how W s(p) folds and twists as it grows away from the saddle focus p. In the process
several layers of W s(p) are formed that are ‘hidden’ inside an ‘external shell’; note
that some layers of W s(p) even ‘surround’ the attractor q. Overall, Fig. 4 presents
global images of a two-dimensional invariant manifold near a Shilnikov bifurcation
for the first time in great accuracy and detail. The manifold W s(p) emerges as an
intriguing two-dimensional surface that changes with ω, but it is not yet clear what
the exact nature of this change actually is.

To address this issue we first consider the geometry of W s(p) in a tubular neigh-
borhood around the homoclinic orbit. Figure 5 shows only a thin strip of W s(p)
near the homoclinic orbit; the situations before, at and after the simple Shilnikov
bifurcation are exactly as shown in Fig. 3. Each strip has been computed with the
method in Sec. 2.1.3 as orbit segments that end (after one global excursion) on the
sphere S = S0.5(p) of radius 0.5 around the saddle-focus p; hence, Σ = S0.5(p) is
defined by G(u(1)) =||u(1)− p || −0.5 = 0. The strip starts near p, where it is very
thin, and it becomes wider as it returns to a neighborhood of the saddle-focus p.
The strip, and hence the stable manifold W s(p), is forced to rotate around Wu(p)
when it returns; see the enlargements near p in Fig. 5. Notice from the right column
of the figure that, as a result of the bifurcation, the unstable manifold Wu(p) moves
to the other side of the shown strip of W s(p). At the moment of the Shilnikov bi-
furcation W s(p) forms several layers that accumulate on each other in the vicinity
of p; see Fig. 5(b). Notice further that after the bifurcation, in Fig. 5(c), the strip
moves upwards again.
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Figure 4. The stable manifold W s(p), computed via the contin-
uation of orbit segments of fixed period T0 = 40, with ω = −0.93
before (a), and with ω = −0.94 after the simple Shilnikov bifurca-
tion (b). The viewpoint is the same as in the left column of Fig. 3;
the manifold is rendered both as a solid surface (left column) and
as a transparent surface (right column).

3.2.2. Intersection of W s(p) with a sphere. While Fig. 5 shows the rotational be-
havior of W s(p) near p very clearly, the exact nature of the topological change of the
dynamics during the simple Shilnikov bifurcation remains somewhat nebulous. To
study how the associated geometric change of W s(p) gives rise to the basin of the
attracting periodic orbit Γ, we now consider the intersection curves of W s(p) with
the sphere S = S0.5(p). Figure 6(a) shows how S sits inside the shell-like structure
of the entire manifold W s(p) before the Shilnikov bifurcation. (Here W s(p) is shown
from the opposite side compared to Fig. 4.) As Fig. 6(b) shows, only a small strip
of W s(p) near Wu(p) returns to S (provided that S is sufficiently small).
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Figure 5. A strip of the stable manifold W s(p) that returns to
a neighborhood of p, before, at and after a simple Shilnikov bi-
furcation of the laser model (10). Viewpoint, enlargements and
parameter values are as in Fig. 3.

The question is now how W s(p)∩S changes during the simple Shilnikov bifurca-
tion, and how this results in a topological change of the dynamics. The intersection
of W s(p) and a given sphere may consist of many curves (depending on the size of
the sphere), but it suffices to consider only the two curves W s

0 ∪W s
1 ⊆ W s(p) ∩ S

that are shown in Fig. 7. Here W s
0 is the intersection of W s

loc(p) with S, and W s
1

is the curve that corresponds to the first return of W s(p) to S along the unstable
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Figure 6. Intersections of W s(p) with the sphere S = S0.5(p)
before the Shilnikov bifurcation. Panel (a) shows how S sits inside
the manifold; only a thin strip of W s(p) returns to the sphere after
following the upper branch of Wu(p) (b).

manifold Wu(p). Note that W s
0 is a closed curve that divides S into two parts. The

left column of Fig. 7 shows the curves W s
0 and W s

1 on the sphere S in phase space,
together with the unstable manifold Wu(p); compare with Figs. 3 and 5. The right
column of Fig. 7 shows W s(p) ∩ S in convenient spherical polar coordinates on S,
given by  Ex(θ, ϕ) = px +R cos(2πθ) sin (π(1− ϕ)) ,

Ey(θ, ϕ) = py +R sin(2πθ) sin (π(1− ϕ)) ,
n(θ, ϕ) = pz +R cos (π(1− ϕ)) ,

(11)

where p = (px, py, pz) and R = 0.5 is the radius of S. The cylindrical chart {(θ, ϕ) :
0 ≤ θ ≤ 1, 0 < ϕ < 1} is a diffeomorphic image of the sphere, except at the ‘north
pole’ and the ‘south pole’ of S (corresponding to ϕ = 1 and ϕ = 0, respectively).
However, the poles do not cause a problem since the manifolds under consideration
stay away from them throughout the Shilnikov bifurcation. Hence, the charts in
Fig. 7 are a convenient representation of W s(p) ∩ S on the whole of the sphere S.

Also shown in Fig. 7 is the tangency locus C ⊂ S, where the flow of the vector
field (10) is tangent to the sphere S. It can be computed as the set of points
(cx, cy, cz) ∈ S that satisfy

(cx − px)Ėx + (cy − py)Ėy + (cz − pz)ṅ = 0, (12)

where (Ėx, Ėy, ṅ) is given by the right-hand side of (10) evaluated at (cx, cy, cz).
The existence of C 6= ∅ implies that the first-return map to S is not a diffeomorphism
on the whole of S [42]. In the present setting, the relevance of C, which consists
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Figure 7. The set W s(p) ∩ S before, at and after the simple
Shilnikov bifurcation. The left column shows the sphere S =
S0.5(p) in phase space together with Wu(p), and the right column
shows the cylindrical chart given by (11). Parameters are as in
Fig. 3.

of two closed curves, is that it divides S into two regions where the flow points
out of the sphere (indicated by the symbol �) and a single region where the flow
points into the sphere (indicated by the symbol ⊗). Notice that the two intersection
points of the periodic orbit Γ in Fig. 7(c) must necessarily lie in the two different
regions. Furthermore, the curve W s

1 crosses C. This is a generic property of two-
dimensional global manifolds that we will also encounter in Sec. 4. We remark that
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the corresponding one-dimensional intersection curves can be computed reliably
even when they cross C; see also [18].

We now discuss the geometry of W s before, at and after the Shilnikov bifurcation
in more detail. The lower branch of the unstable manifold Wu(p) goes to the
attractor q and, hence, has a single intersection ul with S throughout. Before the
bifurcation, in row (a) of Fig. 7, the upper branch of Wu(p) intersects S first in
the point u0. (Note that Wu

loc(p) ∩ S = {ul, u0}.) This branch of Wu(p) returns
to enter S below the curve W s

0 at u2 and then exits again at the point u3 (which
is indistinguishable from ul) to end up at the attractor q as well. The curve W s

1

bounds a region of S [shaded in Fig. 7(a2)] that does not contain the point u0.
At the Shilnikov bifurcation, in row (b) of Fig. 7, W s

1 and the shaded region it
bounds accumulate on W s

0 . The upper branch of Wu(p) forms the homoclinic orbit,
which means that Wu(p) ∩ S = {u0, u1} and these two points lie on W s

1 and W s
0 ,

respectively. After the bifurcation, in row (c) of Fig. 7, there is an attracting periodic
orbit Γ whose basin of attraction B on S is bounded by bothW s

1 andW s
0 ; the basin of

attraction of q is the interior of the complement of B. Furthermore, now Wu(p)∩S =
{u0, u1, · · · } consists of infinitely many points that all lie above W s

0 and very rapidly
converge to Γ ∩ S; in Fig. 7(c2) the (indistinguishable) odd-numbered intersection
points are indicated by the symbol uo and the (equally indistinguishable) even-
numbered ones by ue. We can summarize our findings as follows.

Result. (simple Shilnikov bifurcation)

Consider a sufficiently small sphere S around a saddle-focus equilibrium p with
negative saddle quantity near a simple Shilnikov bifurcation.

(S1) The basin B ⊂ S of the bifurcating attracting periodic orbit Γ is bounded by
the two curves W s

0 and W s
1 of first and second return of Wu(p) to S. It is

a large region of S that can be identified as the continuation of the region
bounded only by W s

1 before the Shilnikov bifurcation.
(S2) As the bifurcation is reached from either direction of the parameter, the curve

W s
1 accumulates onto W s

0 .

The accumulation process of W s
1 onto W s

0 as the simple Shilnikov bifurcation
is approached is illustrated further in Fig. 8. Before the Shilnikov bifurcation, the
shaded region bounded by W s

1 develops a growing ‘tail’ that accumulates on W s
0 as

the bifurcation is approached (ω is decreased); see the sequence Fig. 7(a2), Fig. 8(a1)
and (a2). After the Shilnikov bifurcation, on the other hand, the non-shaded region
bounded by W s

1 forms a ‘tail’ as the bifurcation is approached (ω is increased). This
means, that a small narrow and growing ‘inlet’ is taken out of the basin B of Γ; see
the sequence Fig. 7(c2), Fig. 8(b2) and (b1). Both convergence processes have the
same limit that is shown in Fig. 7(b2).

4. The Lorenz manifold near the homoclinic explosion. The well-known
Lorenz equations [44] are given as the vector field ẋ = σ(y − x),

ẏ = %x− y − xz,
ż = xy − βz.

(13)

The system describes a simplified model for convection, which is non-dimensionalized
so that the onset of convection occurs at the (rescaled) Rayleigh number % = 1.
Lorenz used the values σ = 10, β = 8/3 and % = 28 to find and explain sensitive
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Figure 8. Illustration of the accumulation of W s
1 onto W s

0 as the
Shilnikov bifurcation at ω ≈ −0.93653321169 is approached; panels
(a1) and (a2) are for ω = −0.935 and ω = −0.936 (before the
bifurcation), and panels (b1) and (b2) are for ω = −0.937 and
ω = −0.938 (after the bifurcation).

dependence on the initial conditions in (13). We keep σ and β fixed at these values,
and will focus on how the dynamics depends on the parameter %.

The Lorenz equations (13) have at most three equilibria. The origin 0 is always
an equilibrium, and two further equilibria

p± = (±
√
β(%− 1),±

√
β(%− 1), %− 1)

exist only when % > 1. More specifically, the origin is stable for % < 1 and loses
its stability at % = 1 in a bifurcation, in fact, in a pitchfork bifurcation due to
the invariance of (13) under the transformation (x, y, z) 7→ (−x,−y, z), which is
physically a rotation over π about the z-axis. For % > 1 the origin is a saddle with
one unstable and two stable eigenvalues. The two (symmetrically related) equilibria
p± that emerge from the pitchfork bifurcation are initially stable and correspond
to convection dynamics.

4.1. The homoclinic explosion point. Our interest here is in a dramatic global
bifurcation of the Lorenz system — called a homoclinic explosion point — that
occurs at % = %hom ≈ 13.9162. At this value of % one finds a symmetric pair
of homoclinic orbits, which unfold to create a symmetric pair of primary saddle
periodic orbits Γ± for % > %hom; see Fig. 9. What is more, this global bifurcation
is responsible for the birth of all chaotic dynamics in the Lorenz system, hence the
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name [60]. Indeed, it creates many more saddle periodic and also homoclinic orbits
in a tubular neighborhood of the two homoclinic orbits. This chaotic dynamics is
initially unstable [22, 60], but gives rise to chaotic transients of trajectories, which
all end up at either of the two attractors p± — one speaks of the preturbulent
regime [31, 69]. For completeness, we briefly mention how the transition to the
Lorenz attractor for % = 28 continues. The preturbulent regime ends when the
chaotic dynamics becomes attracting. This happens at % = %het ≈ 24.0579 where
one finds a symmetric pair of heteroclinic connections of Wu(0) from 0 to Γ±.
The ensuing chaotic attractor co-exists with the two attractors p± until the latter
become saddle equilibria in a subcritical Hopf bifurcation at %H = 470

19 ≈ 24.736842,
where the primary saddle periodic orbits Γ± disappear. For further details and, in
particular, other homoclinic bifurcation points in the Lorenz equations, see [15] and
references therein.

The homoclinic explosion at % = %hom has been illustrated generally only in
terms of one-dimensional objects: both branches of the one-dimensional unstable
manifoldWu(0) lie in the two-dimensional stable manifold W s(0) to form the pair of
homoclinic orbits that connect 0 back to itself. In the process the two periodic orbits
Γ± (which are also one-dimensional objects) are born. The homoclinic explosion
is illustrated in Figure 9 by a three-dimensional view of the equilibria and Wu(0)
along with the one-dimensional strong stable manifolds W ss(p±) of p±; also shown
for orientation is a small disc in the two-dimensional stable eigenplane Es(0) of the
origin. Panel (a) shows the situation before the homoclinic bifurcation; here % = 10,
which is representative for all 1 < % < %hom. The left and right branches of Wu(0)
converge to p− and p+, respectively, in a spiralling manner by rotating around the
one-dimensional strong stable manifolds W ss(p±). Figure 9(b) shows the actual
homoclinic bifurcation at % = %hom. Instead of converging to p± the two branches
of Wu(0) come back to 0 and are tangent to the stable eigenplane Es(0). The
situation after the homoclinic bifurcation is shown in Fig. 9(c) for % = 20, which is
representative for %-values in the preturbulent regime. Note that the two branches
of Wu(0) again converge to p±, but the branch that converged to p− before the
bifurcation now converges to p+, and vice versa. Furthermore, we now have a pair
Γ± of primary saddle periodic orbits.

4.2. The geometry of W s(0) in phase space. We consider here in detail what
happens to the two-dimensional stable manifold W s(0) — which we also refer to as
the Lorenz manifold — during the transition from stable convection to the pretur-
bulent regime in the homoclinic explosion at %hom. This work follows on from our
previous work in [15], where we considered bifurcations of heteroclinic connections
from p± to 0, that is, how the intersections of W s(0) and Wu(p±) change with
%. Clearly, the phase portraits on the level of one-dimensional objects in Fig. 9(a)
and (c) are topologically different, but it is not clear at all from these images what
this global bifurcation means for W s(0) and how preturbulence arises in the phase
space at large. More specifically, the situation is this. Before and after the homo-
clinic explosion the two equilibria p± are the only attractors and, hence, the union
of their basins remains dense in R3. Nevertheless, there must be a topological
change of the two basins at the homoclinic explosion that generates the possibility
of arbitrarily long transients for % > %hom. Since the Lorenz manifold W s(0) forms
a basin boundary, the issue is to find out how it changes globally at %hom. To this
end, we employ the numerical methods from Sec. 2 to compute W s(0) in different
ways to understand and illustrate its complicated geometry. We remark that our



CONSEQUENCES OF GLOBAL BIFURCATIONS FOR 2D MANIFOLDS 21

(a)

W ss(p+)W ss(p−)

Wu(0)

Es(0)

p− p+

(b)

W ss(p+)

W ss(p−)

Wu(0)

Es(0)

p− p+

(c)

W ss(p+)

W ss(p−)
Wu(0)

Es(0)

Γ−
Γ+

p− p+

Figure 9. The homoclinic bifurcation at % = %hom ≈ 13.9162
is well understood on the level of the one-dimensional manifolds.
Shown here are the equilibria 0 and p± with the one-dimensional
manifolds Wu(0) and W ss(p±), and a small disc representing
Es(0). Panel (a) is for % = 10, panel (b) is at the bifurcation,
and panel (c) is for % = 20; also shown in (c) are the bifurcating
periodic orbits Γ±. In all panels the z-axis is the vertical axis and
the view is along the direction rotated by π/30 with respect to the
x-axis.
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(a1) (a2)

(b1) (b2)

Figure 10. The Lorenz manifold for % = 10 (a) and for % =
20 (b), computed with the method from Sec. 2.2 up to geodesic
distance 150 and 148.75, respectively. The manifold is rendered as
a solid surface in the left column and as a transparent surface in
the right column; the bounding last geodesic level sets are drawn
as black curves; also shown are the one-dimensional objects from
Fig. 9.

results can be seen as extending the work of Perelló in [53], whose three hand-drawn
sketches were the first and, to our knowledge, the only attempts to date of illustrat-
ing the geometry of W s(0) as a surface through the homoclinic explosion. Note that
Perelló’s sketch for % = 28 also formed the basis for the illustrations by Abraham
and Shaw [1]; see also [15, 47].

Figure 10 shows the Lorenz manifold W s(0) before and after the homoclinic
bifurcation, together with the one-dimensional objects from Fig. 9(a) and (c). The
last geodesic level set (at geodesic distance 150 and 148.75, respectively) has been
drawn as a closed black curve to help interpret how W s(0) changes in the homoclinic
bifurcation at %hom. Observe from Fig. 10(a) that the shown part of W s(0) for
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% = 10 has several layers in the region near the negative z-axis. For % = 20, on
the other hand, these are absent and W s(0) appears to ‘roll up’ in the region of
positive z.

Our goal is now to understand this geometric change of W s(0) and its conse-
quences for the dynamics of the Lorenz system in more detail. To this end, we study
one-dimensional intersections of W s(0) with the section Σ% = {z = %− 1}, that is,
the horizontal plane through the equilibria p±. This section is the standard choice
that has been used to study the dynamics on the Lorenz attractor by means of a
local Poincaré map. Such studies consider only a neighborhood of the intersection
of the chaotic attractor with Σ% where the flow is transverse to the section, so that
the Poincaré map, defined as the return to this neighborhood, is a local diffeomor-
phism [25, 60]. By contrast, we consider here the intersection set W s(0)∩Σ%, which
is a much larger object that necessarily interacts with the locus C where the flow
is tangent to Σ% [42]. It is straighforward to see that

C = {(x, y) | y = β(%− 1)/x} .
Hence, the tangency locus C consists of two (symmetrically related) hyperbolas
that divide Σ% into two outer regions where the directed flow of (13) points up
(in the direction of positive z), indicated by �, and a central region where the
flow points down (in the direction of negative z), indicated by ⊗. Notice that the
equilibria, which lie in Σ% by its choice, must and do indeed lie on C. The location
of the intersection curves in W s(0) ∩ Σ% relative to C provides information about
the dynamics on W s(0); namely, one can deduce how intersection curves map to
each other under the global Poincaré map, which is defined as the first-return map
on the entire section Σ%.

4.3. Intersection of W s(0) with Σ% for % = 10. Figure 11 illustrates for % = 10
how intersection curves of W s(0) with Σ% arise; here we take advantage of the fact
that our numerical method grows this surface as a sequence of geodesic level sets.
Also shown in the figure are the one-dimensional manifolds Wu(0) and W ss(p±);
they intersect Σ% in a sequence of points that lie alternatingly on one side of C,
and then the other. In row (a) of Fig. 11 the Lorenz manifold W s(0) is shown only
up to geodesic distance 31 when it intersects Σ% in a single curve W s

1 , which is
invariant under the rotation symmetry. Note that all points on W s

1 ⊂ W s(0) ∩ Σ%
do not return to Σ% but flow directly to 0; this is consistent with the fact that
the flow points down in this region of Σ%. In row (b) W s(0) is computed up to
geodesic distance 62. There are now two additional pairs of (symmetrically related)
intersection curves with Σ%; we can speak of a second and third pair of intersection
curves, W s

2 and W s
3 .

We remark that the first-return map to Σ% maps curves in W s(0) ∩ Σ% to each
other in quite an involved fashion. Notice that the first (symmetric) intersection
curve W s

1 as well as the third pair of intersection curves W s
3 are entirely contained

in the region where the flow points down. On the other hand, W s
2 crosses C; let

us denote the two (symmetrically related) intersection points of W s
2 ∩ C by w±C .

The (open) segment on W s
2 that lies in the region where the flow points down maps

under the first-return map to the (open) segment on W s
2 that lies in the region

where the flow points up, which then subsequently maps to W s
1 . More specifically,

the image on W s
1 of each of the two curves of the pair W s

2 extends from the image
of w±C to infinity (in the direction y → ±∞). The third intersection curve W s

3 and
the segment of W s

2 that lies in the region where the flow points down should be
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Figure 11. Intersection curves of W s(0) for % = 10 with the
section Σ% arise as the manifold grows during the compuation. Row
(a) shows W s(0) up to geodesic distance 31, and row (b) up to
geodesic distance 62. The manifold W s(0) is show on the left as a
solid surface, while on the right the part of W s(0) above the section
is rendered transparent; also shown are the one-dimensional objects
from Fig. 9. The curves labeled C divide Σ% into regions where the
flow points up (�) and down (⊗), respectively.

thought of as connected. In fact, one should identify the two ‘closest’ limits of W s
2 as

y → ±∞ and of W s
3 as y → ∓∞ (as they correspond to the same sheet of W s(0));

see Fig. 11(b). Together these two curves cover the segment of W s
1 between the

image of w±C and its limit y → ∓∞. Finally, note that the segment on W s
1 that is

bounded by the two symmetric points w±C contains the central point (0, 0, 9) ∈W s
1

on the z-axis, which does not have a pre-image in Σ%.
Figure 12 shows the intersection of W s(0) with Σ% for % = 10, up to geodesic

distance 150 as in Figure 10(a). There are now a lot more intersection curves, and
their mapping behavior under the first-return map is equally involved and similar
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Figure 12. The manifolds W s(0) (up to geodesic distance 150),
W ss(p±) and Wu(0), and their intersections with the section Σ%
for % = 10.

to that of the curves W s
2 and W s

3 from Fig. 11. Notice further that both branches
of W ss(p±) wind around C, where the branch of W ss(p+) with x → −∞ and the
branch of W ss(p+) with x → +∞ is further out. Clearly, W s(0) and W ss(p±)
cannot intersect and W s(0) winds around the inner branches of W ss(p±), while the
outer branches of W ss(p±) wind around W s(0).

The two-dimensional manifold W s(0) acts as a separatrix of the two basins of the
attracting equilibria p± under the flow of (13), which are connected open regions
that contain the one-dimensional manifolds W ss(p±). However, it is not easy to
distinguish the two basins in Fig. 12. Therefore, Fig. 13 shows the two corresponding
intersections B(p±) ⊂ Σ% of the basins with the section for % = 10. Note that
B(p±) are basins of p± under the first return map to Σ%. These basins in Σ%
consist of infinitely many connected components, and their union is dense in Σ%.
The connected components are bounded by curves in W s(0) ∩ Σ%; all these curves
tend to infinity along two limiting directions. With the exception of the symmetric
curve W s

1 , the end points of each curve in W s(0) ∩ Σ% tend to infinity either both
in the direction of positive y (for curves in the region of positive y), or both in the
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Figure 13. Intersections of the manifolds W s(0), Wu(0) and
W ss(p±) with the section Σ% for % = 10; the basin B(p+) is shaded.

direction of negative y (for curves in the region of negative y). As a result, each
component of B(p±) extends to infinity along extremely narrow channels, formed
in between two boundary curves in W s(0)∩Σ% that tend to infinity along the same
direction. The two connected components that contain p+ and p−, respectively, are
the immediate basins, and they also contain all intersection points of the respective
inner branch of W ss(p±). Furthermore, the intersection points of the branch of
Wu(0) that leaves the neighborhood of 0 in the direction of positive x lie entirely
in the immediate basin of p+, while the other branch of Wu(0) lies entirely in the
immediate basin of p−.

4.4. Intersection of W s(0) with Σ% for % = 20. We now consider corresponding
images for a %-value after the homoclinic bifurcation, where we choose % = 20
as before. Figure 14 shows the intersection of W s(0) with Σ% for % = 20, up
to geodesic distance 148.75 as in Fig. 10(b). Also shown in Fig. 14 are the one-
dimensional strong stable manifolds W ss(p+), the unstable manifold Wu(0) and
the periodic orbits Γ±. The positions of W ss(p±) has not changed qualitatively:
there are still inner and outer branches of these manifolds that spiral around C as
before. However, the Lorenz manifold W s(0) does not spiral around the respective
branches as before; compare Fig. 14 with Fig. 12. This change goes along with a
change of the intersection curves in W s(0)∩Σ%. Figure 14 shows that there are a lot
more (in fact, infinitely many) sheets of W s(0) in between the respective branches
of W ss(p±).

Figure 14 shows already that the role of W s(0) as basin boundary of p± has
changed. To investigate this in more detail, we show in Fig. 15(a) the curves in
W s(0)∩Σ%. One immediately notices the difference with Fig. 13. The ‘outer-most
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Figure 14. The manifolds W s(0) (up to geodesic distance
148.75), Wu(0) and W ss(p±), and their intersections with the sec-
tion Σ% for % = 20.

layer’ of curves in W s(0)∩Σ% for % = 20 are geometrically as for % = 10. However,
the ‘inner-most layer’ of curves in W s(0) ∩ Σ% has changed dramatically. These
inner curves are not like W s

2 and W s
3 from Figs. 12 and 13, but they cross from

the region of positive y to the region of negative y by passing very close to the
symmetric curve W s

1 . In the process, these inner intersection curves in W s(0)∩Σ%
accumulate on the boundary of two regions — the two immediate basins of p+

and p−, respectively. The two immediate basins again contain infinitely many
intersection points of Wu(0) ∩ Σ%. However, now the first intersection point of
Wu(0) with the section Σ% does not lie in the immediate basin and all subsequent
points of Wu(0)∩Σ% lie on the other side of the central symmetric curve W s

1 . This
is due to the fact that the branch of Wu(0) that leaves the neighborhood of 0 in the
direction of positive x now lies entirely in the basin of p−, and vice versa; compare
with Fig. 9(c).

4.5. Bifurcation of the basins B(p±). It is a key realization from Fig. 15 that the
basins B(p±) ⊂ Σ% are no longer bounded by the two-dimensional manifold W s(0)
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Figure 15. Intersections of manifolds with the section Σ% for
% = 20. Panel (a) shows W s(0), and panel (b) shows W s(Γ+)
(darker curves) and W s(Γ−) (lighter curves); also shown are the
intersection points of W ss(p±), Wu(0) and Γ± (black crosses).

alone. Rather, they are bounded (at least near p±) by the stable manifolds W s(Γ±)
of the two saddle periodic orbits Γ±. The black crosses in Fig. 15 are the two pairs
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Figure 16. Panel (a) shows how the curves in W s(0) ∩ Σ% and
in W s(Γ±) ∩ Σ% bound the basins B(p+) (light shading) and of
B(p−) (white). The narrow regions (darker shading) are channels
of preturbulence, where all manifolds accumulate on the boundary
of B(p±); also shown are W ss(p±), Wu(0) and Γ±. Panel (b) is an
enlargement near the symmetric curve W s

1 ⊂W s(0) ∩ Σ%.

of intersection points of Γ± with Σ%, and panel (b) shows a set of intersection
curves in W s(Γ±) ∩ Σ%. Notice that these curves run ‘in parallel’ on either side of
corresponding curves in W s(Γ±)∩Σ%, shown in panel (a). Furthermore, the curves
in W s(Γ+) ∩ Σ% are images of the curves in W s(Γ−) ∩ Σ% under the rotational
symmetry; in particular, this means that there is no curve in Fig. 15(b) that is
itself symmetric.
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Figure 17. Additional curves in W s(0)∩Σ% inside the channels
of preturbulence.

To illustrate the structure of the basins B(p±) ⊂ Σ% for % = 20, Fig. 16 shows the
curves from Fig. 15(a) and (b) in the same plot. The situation is rather complicated.
The immediate basin of p+ is bounded by a single curve in W s(Γ+) ∩ Σ%. This is
not easy to see in Fig. 16(a) because curves in W s(Γ−) ∩ Σ% and in W s(Γ+) ∩ Σ%
accumulate on this boundary curve, as do curves in W s(0) ∩ Σ%. The entire basin
B(p+) consists again of infinitely many regions. We can distinguish larger (lightly
shaded) regions in Fig. 16, which are somewhat smaller, but similar to those of
B(p+) for % = 10 in Fig. 13. In between these larger regions in Fig. 16 we find
channels (darker shading) that are bounded by a curve in W s(Γ+)∩Σ% and a curve
in W s(Γ−) ∩ Σ%, and divided by a curve in W s(0) ∩ Σ%. As the enlargement in
Fig. 16(b) shows, the boundary of the immediate basin of p+ is locally the limit of
an alternating sequence of a strip in B(p+), a strip in B(p−), a strip of a channel,
and so on. Given the symmetry of Fig. 15, the corresponding statements holds for
the boundary of the immediate basin of p−.

We refer to the channels in Fig. 16 as channels of preturbulence for the following
reason. Consider a point ξ on the boundary of, say, B(p+) that is formed by a
curve of W s(Γ+)∩Σ%. Such a point ξ is eventually mapped, after a certain number
N of iterates of the first-return map to Σ%, to the boundary of the immediate
basin. We assume further that ξ is typical, in the sense that it does not lie on
the tangency locus C or any of its pre-images. Then the Nth-return map to Σ%
maps a sufficiently small neighborhood of ξ diffeomorphically to its image in Σ%,
which is a neighborhood of a point on the immediate basin of p+. Hence, the
boundary curve of B(p+) on which ξ lies must also be accumulated (on one side)
by curves in W s(Γ+)∩Σ%, in W s(Γ−)∩Σ% and in W s(0)∩Σ%. In other words, the
channels of preturbulence in Fig. 16 need to be filled in recursively by accumulating
and increasingly narrow regions in both B(p+) and B(p−). The recursive nature of
this accumulation is apparent from Fig. 16(b): every grey channel of preturbulence
needs to be ‘filled in’ with a diffeomorphic image of the entire image.

The set of curves in W s(Γ±) ∩ Σ% that we computed and show in Figs. 15(b)
and 16 allow us to identify a repeated accumulation process of the two basins on
their own boundary. As our figures show, in the narrow channels of preturbulence
it is practically impossible to decide whether a given initial condition will end up in
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B(p+) or in B(p−). This phenomenon co-exists with the larger regions of B(p+) or in
B(p−), where the dynamics is highly predictable. The local structure of the channels
of preturbulence is that of a Cantor set of curves that bound B(p+) and B(p−).
Hence, there are infinitely many more curves of W s(0) ∩ Σ% and W s(Γ±) ∩ Σ% in
each channel, which can also be computed with our method. As an example, Fig. 17
shows how curves of W s(0) ∩ Σ% accumulate on each other inside the channels of
preturbulence to form a Cantor set of curves; compare with Fig. 16.

The manifold computations allow us to state clearly how preturbulence arises in
the Lorenz system and how it manifests itself after the homoclinic explosion point.
Our findings can be summarized as follows.
Result. (transition to preturbulence)

Consider the Lorenz system (13) with σ = 10 and β = 8/3. For 1 < % < %het ≈
24.0579 the equilibria p± are the only attractors of the Lorenz system, and the
union of their two basins is dense in R3.

(L1) For 1 < % < %hom ≈ 13.9162 the boundary between the basins of p+ and p−

is formed by W s(0).
(L2) For %hom < % < %het ≈ 24.0579 the two basins of p+ and p− are bounded by

W s(0) and W s(Γ+), and by W s(0) and W s(Γ−), respectively. Furthermore,
the basin of p+ accumulates on one side onto the boundary W s(Γ−) of the
basin of p−, and vice versa. The result is a local Cantor structure of basin
boundaries, organised in narrow channels of preturbulence, where trajectories
can be found that have arbitrarily long transients before ending up at either
p+ or p−.

(L3) As %hom is approached from above the manifolds W s(Γ±) and, hence, the
channels of preturbulence, converge to W s(0).

For completeness, we state (without presenting computed images) what happens
to the two-dimensional invariant manifolds as % is increased further into the region
of full-blown chaotic dynamics, as can be found for % = 28.

Result. (transition to chaos)

Consider the Lorenz system (13) with σ = 10 and β = 8/3.

(L3) At % = %het there is a symmetric pair of heteroclinic cycles between Γ± and the
origin 0 [15]. As %het is approached, the channels of preturbulence become
larger and the Cantor structure of basin boundaries inside them becomes
‘fatter’ (in Hausdorff dimension [51]), until it has full measure for % = %het.

(L4) For %het < % < %H = 470
19 ≈ 24.736842 there are three attractors: the equilibria

p± and a chaotic attractor. The basin of the chaotic attractor is the contin-
uation of the channels of preturbulence. The boundary between the basins is
formed by W s(Γ±), and the Lorenz manifold W s(0) is dense in the basin of
the chaotic attractor.

(L5) The manifolds W s(Γ±) and, hence, the basins of p± shrink to W ss(p±) as the
Hopf bifurcation at %H is approached. For % past %H the chaotic attractor is
the only attractor and W s(0) is dense in R3.

These results on the transition to turbulence via preturbulence in the Lorenz
system agree with the numerical study in [69] of decay times to the two attracting
equilibria for % > %hom; they were found to increase with % and then tend to infinity
as %het is approached. In fact, our results explain the sensitivity on the initial
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condition in the preturbulent regime as the result of the accumulation of the two
basins of p+ and p− onto each other’s boundary.

The fact that W s(0) is dense in the phase space R3 for % > %H is a direct
consequence of sensitive dependence on the initial condition in the chaotic regime
of the Lorenz system. Given any point r 6∈ W s(0), consider an ε-neighborhood
Nε(r) of r. Then W s(0) must intersect Nε(r), because otherwise all points in Nε(r)
would have the same itineary (in violation of sensitive dependence on the initial
condition) as they approach and then follow the chaotic attractor. Since ε > 0 is
arbitrary, the denseness of W s(0) in R3 follows. Depending on one’s point of view,
this property of W s(0) can be seen equivalently as the reason for — or the logical
consequence of — sensitive dependence on the initial condition.

5. Conclusions. We demonstrated that the computation of two-dimensional man-
ifolds and their intersection curves with a suitable cross-section is a powerful tool
for understanding the changes of the dynamics that are brought about by global
bifurcations. In particular, this appraoch allows one to determine how basins of
different attractors change topologically. Such computations can be performed in
an efficient and accurate way via the continuation of solution families of suitably
defined boundary value problems. We demonstrated this here with two examples.
Firstly, we showed how the stable manifold changes in a Shilnikov bifurcation to
form a basin of a bifurcating stable periodic orbit. Secondly, we considered the
homoclinic explosion in the Lorenz system and showed how preturbulence arises
via a dramatic change of the basins of the two stable attracting equilibria.

The technique presented here offers the possibility to investigate the geome-
try of two-dimensional invariant manifolds near any global bifurcation of three-
dimensional vector fields. Following on from the study of the simple Shilnikov
bifurcation, we are presently considering homoclinic bifurcations of a saddle equi-
librium of a generic vector field in R3. First of all, there is the chaotic case of the
Shilnikov bifurcation, as well as n-homoclinic orbits to a saddle focus (where the
connection back to the equilibrium occurs only after n − 1 close passes near it).
These global bifurcations can all be found in the laser system (10), where they are
closely related to the phenomenon of multi-pulse excitability [67]. Furthermore, we
are studying the geometry of two-dimensional stable manifolds near a homoclinic
bifurcation of an equilibrium with three real eigenvalues. There are a number of dif-
ferent cases; in particular, the stable manifold of the saddle point may be orientable
or nonorientable at the homoclinic bifurcation. Of special interest in this context
are codimension-two orbit flip and inclination flip bifurcations, which give rise to a
transition between these two topologically different cases [29, 30]. More generally, it
will also be interesting to consider heteroclinic connections that involve any number
of equilibria and/or periodic orbits. Examples of such global bifurcations can be
found, for example, in [30, 39, 59].

The Lorenz system is also the subject of an ongoing project. We already men-
tioned briefly that the transition to attracting chaotic dynamics occurs at the hete-
roclinic connection between the origin and the symmetric pair of periodic orbits Γ±.
How the respective two-dimensional manifold change geometrically in this transi-
tion will be presented elsewhere. What is more, several other global bifurcations
are encountered when the Rayleigh number is increased further [15, 60, 56]. In
particular, there are (infinitely many) homoclinic orbits that close up only after a
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fixed number of rotations around the secondary equilibria, as described by well-
defined symbol sequences. The computational methods presented here will allow us
to study in detail the consequences of these global bifurcations for the dynamics of
the Lorenz system throughout its three-dimensional phase space.

Finally, we mention that it is often of interest to determine the exact shape of
stable and/or an unstable manifolds arising in concrete applications. For example,
the stable manifold of a saddle point or saddle periodic orbit may form the thresh-
old for excitability [38], the boundary that determines successful transition from
hyperpolarized to depolarized phases in neuron cells [61], or the limit of stable op-
eration in power system models [6]. Another concrete application in the context of
Hamiltonian systems is space mission design. The basic idea here is that stable and
unstable manifolds of special solutions, for example, of libration points and nearby
halo orbits, can be used for the purpose of space craft transfer with minimal energy
[24]. Recent detailed studies of saddle periodic orbits in the restricted three-body
problem [16, 17] would form a natural starting point for the investigation of asso-
ciated stable and unstable manifolds. The BVP methods we presented allow one
to determine manifolds of interest in model vector fields arising in such concrete
application contexts. An advantage here is that the continuation of orbit segments
generally deals effectively with sensitivity issues that arise, for example, due to the
presence of different time scales.
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