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Abstract

Nonlinear two-point boundary value problems (BVPs) may have none or more than one solution. For the singularly perturbed
two-point BVP

εu′′ + 2u′ + f (u) = 0, 0 < x < 1, u(0) = 0, u(1) = 0,

a condition is given to have one and only one solution; also cases of more solutions have been analyzed. After attention tothe form
and validity of the corresponding asymptotic expansions, partially based on slow manifold theory, we reconsider the BVP within
the framework of small and large values of the parameter. In the case of a special nonlinearity, numerical bifurcation patterns are
studied that improve our understanding of the multi-valuedness of the solutions.
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1. Introduction

It is well known that existence of solutions of nonlinear
boundary value problems does not necessarily imply unique-
ness. An example is the following strongly damped equation
with a small parameterε subject to the Dirchlet boundary con-
ditions

εu′′ + 2u′ + f (u) = 0, 0 < x < 1, u(0) = 0, u(1) = 0, (1)

where for certain nonlinearitiesf (u) more than one solution ex-
ists. Interestingly, classical matched asymptotic expansions im-
mediately produces an approximation of one of the solutions;
we will call this the “small” solution. A proof of asymptoticva-
lidity of the expansions can be given with various methods; we
choose here a shooting method employing slow manifold the-
ory. It turns out that the boundedness of the nonlinearityf (u)
will guarantee the uniqueness of the solution. Insight in the
existence and the approximate character of a possible second
solution is obtained by considering a neighbouring conserva-
tive problem and using mixed analytic-numerical methods; the
asymptotics is definitely non-standard. In nonlinear two-point
boundary value problems with a small parameterε one can dis-
tinguish between cases where ‘routine’ matching or multiple
scale methods apply, and cases showing unexpected behaviour.
For the latter it helps if we can identify a slow manifold which
is stable. The analysis is supplemented by numerical continua-
tion that explores the behaviour of the solutions for both small

and large values of the parameterε, producing conditions for
the existence and bifurcations of “small” and “large” solutions
of the boundary value problem (1) withf (u) = eu (a dissipative
modification of the classical one-dimensional Liouville-Bratu-
Gelfand problem). In particular, we show that the correspond-
ing solutions exhibit a generic branch point, thus making the
bifurcation diagrams of (1) qualitatively different from that of
the undumped problem.

2. The General case

Consider the boundary value problem (1). We assumef (u) ≥
a0 > 0, f ∈ C2(R), and without loss of generality we take
f (0) = 1. Existence of solutions of this problem has been
demonstrated in [3] and [7]. These existence proofs also imply
local uniqueness, which means that in a neighbourhood of the
solution there exists no other solution of the Dirichlet bound-
ary value problem. Conditions for the existence of one or two
solutions of (1) are presented in [12].

2.1. Introductory lemmas

We start with a number of general observations.

Lemma 1. A solution of Eqn.(1) has one and only one interior
maximum (no interior minimum).
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Proof: Whenu(x) is identically zero, it does not satisfy the
equation. Thusu(x) has interior extreme values. At a stationary
point p we have

εu′′(p) = − f (u(p)) ,

so the curvature is negative, and we have a maximum with re-
spect top. The presence of more than one interior maximum
would imply the existence of a minimum. Contradiction.

�

A simple corollary of Lemma 1 is thatu(x) ≥ 0 in [0, 1]. We
will reformulate Eqn. (1) as an initial value problem with

u(0) = 0 , u′(0) = α > 0 ,

whereα is to be determined later by imposing a second bound-
ary condition.

Lemma 2. For a solution u(x) of Eqn.(1), asε→ 0, we have

u′(1) = −
1
2
+O(ε) .

Proof: Puttingε = 0 in the equation of (1) and replacingu by
u0 we have

2u′0 = − f (u0) .

We putu0(1) = 0, and we note that the equation has a stable
slow manifoldM, with a O(ε) approximation by the manifold
M0 described byu0(x). This obervation follows from Fenichel’s
geometric singular perturbation theory; for an introduction see
[13]. Explicitly this implies that forx away from the boundary
layer nearx = 0 we have

u(x) = u0(x) +O(ε) .

The lemma follows from this estimate.

�

2.2. Construction by matched asymptotic expansions

For the outer (regular) solution we expand

u(x) = u0(x) + εu1(x) + ε2 · · · ,

which, as seen above, produces

2u′0 = − f (u0) ,

for the first term. This leads to

F(u0) =
∫ u0

0

ds
f (s)
= −1

2
x+ c .

Sincex(u0) is monotonic, we apply the conditionu0(1) = 0 to
the inverse, so thatc = 1

2. The reasoning of classical singular
perturbation theory is that the functionu0(x) will generally not
satisfy the boundary condition,i.e., u0(0) , 0. Thus we expect a
boundary layer nearx = 0, which agrees with Fenichel’s theory.
Rescaling

x
λ(ε)

= ξ, λ(ε) = o(1) ,

and transformingu(x)→ w(ξ) yields

ε

λ2(ε)
d2w
dξ2
+

2
λ(ε)

dw
dξ
+ f (w) = 0 .

If we assume thatf (w) is bounded by a constant independent of
ε then we have a significant degeneration forλ(ε) = ε. We find

d2w
dξ2
+ 2

dw
dξ
+ ε f (w) = 0 .

Upon expanding

w(ξ) = w0(ξ) + εw1(ξ) + ε2 + · · ·

we find
d2w0

dξ2
+ 2

dw0

dξ
= 0 .

With the boundary conditionw(0) = 0, and introducing a con-
stantA, we have

w0(ξ) = Ae−2ξ − A .

The matching rule

lim
ξ→∞

w0(ξ) = lim
x→0

u0(x)

yields
−A = u0(0) .

The composite expansion ˜u(x) is a first order formal asymptotic
approximation of the form

ũ(x) = −u0(0)e−2 x
ε + u0(x) . (2)

Note that the maximum is located in theO(ε) boundary layer
nearx = 0. We still have to give a proof of the asymptotic
validity. We can obtain this by a maximum principle, see for
instance [3], [5] or [7], but we will explore an alternative route
that produces additional information.

2.3. Construction and proof by shooting

Puttingu(0) = 0, u′(0) = α > 0 for the equation of Eqn. (1),
we transformu, u′ → A, B by

u(x) = A(x) + B(x)e−
2
ε

x,

u′(x) = −2
ε

B(x)e−
2
ε

x.

We find A(0) = 1
2εα, B(0) = − 1

2εα, and by variation of con-
stants the integral equations

u(x) =
1
2
εα−1

2
εαe−

2
ε

x−1
2

∫ x

0
f (u(s))ds+

1
2

e−
2
ε

x
∫ x

0
e

2
ε

s f (u(s)) ds,

(3)
and

u′(x) = αe−
2
ε

x −
1
ε

e−
2
ε

x
∫ x

0
e

2
ε

s f (u(s)) ds . (4)

Lemma 3. The interior maximum of u(x) is assumed for x=
m, 0 < m< 1 with

0 < u(m) <
1
2
εα .
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Proof: From the requirementu′(m) = 0 and (3) we find for
0 < x < 1

u(m) =
1
2
εα − 1

2

∫ m

0
f (u(s))ds<

1
2
εα .

�

We derive an equation forα by the following lemma:

Lemma 4. With u(1) = 0, the solution u(x) of the initial value
problem and the initial valueα have to satisfy the equation

εα − εu′(1) =
∫ 1

0
f (u(s)) ds .

Proof: Put x = 1 in Eqs. (3-4) and eliminate one of the inte-
grals by using (4).

�

Lemmas 3 and 4 have as an interesting consequence thatα has
to depend onε and that it has to become unbounded asε →
0. For suppose we have 0< α < c, wherec is a constant
independent ofε. From Lemma 2 we have

0 < u(m) < εc ,

so that

f (u(s)) = 1+O(ε),
∫ 1

0
f (u(s))ds= 1+O(ε), 0 < x < 1 .

It follows from Lemma 4 that the equation linkingα andu(x)
can not be satisfied.

We will now apply an O’Malley-Vasil’eva expansion to ob-
tain an asymptotic approximation ofu(x); for references see
[11] or [13]. We find

ũ(x) =
1
2
εα − u0(0)− 1

2
εαe−

2
ε

x
+ u0(x) , (5)

with the estimateu(x) − ũ(x) = O(ε) on [0, 1]. Requiring that
ũ(1) = 0 results in the condition

1
2
εα = u0(0) ,

which is the same expression obtained in the preceding sub-
section by matched asymptotic expansions. Note that the ac-
tual construction of the asymptotic approximation by shooting
is more complicated, but that it also provides a proof of asymp-
totic validity. Another point of interest is that for the initial
value problem the solutions approach the slow manifoldM0 de-
scribed by the outer solution.

2.4. A condition for uniqueness

In Section 2.2 we found that there is only one significant de-
generation if f (u) is bounded forx ∈ [0, 1] andε → 0. For
a case likef (u) = eu we have found two solutions numeri-
cally; see also [12]. On the other hand in [3] and [7] theorems
are given guaranteeing existence and uniqueness of boundary

value problem (1),e.g., in [7], Chapter 11, Theorem 1. The ap-
parent contradiction is solved when one considers the proofof
this Theorem 1. It is constructed by translating the boundary
value problem into a formulation as a nonlinear mapp 7→ F(p)
of a normed spaceN into a Banach space and then applying
fixed point theory. For the linear space we have

N := {p|p ∈ C2[0, 1], p(0)= p(1) = 0}

with

‖p‖ = max
[0,1]
|p(x)| + εmax

[0,1]
|
dp(x)

dx
| + ε2 max

[0,1]
|
d2p(x)

dx2
| .

Note that there is no guarantee that this norm is bounded for
ε → 0 in Eqn. (1). However, as the matching process suggests,
in the case of boundedf (u) we have uniqueness of the solution
of Eqn. (1).

Theorem 1. For the nonlinear term in Eqn.(1), assume that

0 < a0 ≤ f (u(x)) ≤ a1 ,

for constants a0, a1 that are independent ofε. Then the solution
of Eqn.(1) is unique and has an O(1) bound.

Proof: The solution constructed in Section 2.2 is bounded
to O(1); see also Lemma 2. Suppose we have two solutions
of Eqn. (1) with determining conditionsu(0) = 0, u′(0) = α,
where eitherα = α1 = 2u0(0)/ε + O(1) orα = α2. The value
of α1 follows from Sections 2.2 and 2.3. Substitutingα1 andα2

into the equation of Lemma 3 and subtracting we have

2u0(0)− εα2 +O(ε) =
∫ 1

0
( f (uα1(x) − f (uα2(x)) dx ,

so that from the estimates for the nonlinearityf we haveα2 =

C/ε +O(1), whereC is a constant independent ofε. Lemma 2
produces the boundC/2+O(ε) for the solution. Note that from
the approximation ˜u(x) in (5) we have for the two solutions

uα1(x) − uα2(x) = O(ε) .

From (4) it is now easy to conclude thatεdu/dxandε2d2u/dx2

are also bounded by anO(1) constant. We conclude from the
uniqueness Theorem 1 of Chapter 11 of [7] thatuα1(x) = uα2(x).

�

3. The Case f (u) = exp(u)

Consider the equation

εu′′ + 2u′ + exp(u) = 0, 0 < x < 1 , (6)

with boundary conditionsu(0) = 0, u(1) = 0.
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3.1. Asymptotic expansions

Following the procedure outlined in Section 2 we find

u0(x) = ln

(

2
x+ 1

)

,

and for the asymptotic approximation

ũ(x) = ln

(

2
x+ 1

)

− ln 2e−
2
ε

x .

In the construction of this example there is the explicit as-
sumption thateu is bounded by a constant independent ofε. The
maximum ofu(x) is found in the boundary layer nearx = 0. If
it becomes large we have a different significant degeneration;
unfortunately this is not a ‘degeneration’, it is describedby the
full equation.

x

u(
x)

ε = 0.1

Asymptotic solution

Solution through numercial integration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Numerical and first-order asymptotic approximations of the two-point
boundary problem withf (u) = exp(u) in Eqn. (1).

Thus we have constructed a solution through first order
asymptotic approximation for smallε. In [12] it has been shown
that a second solution exists, which becomes unbounded asε

tends to zero. In an attempt to understand the origin of the
second solution, we focus in this section on the asymptotic be-
haviour of the solution of this specific BVP for largeε. We will
show that this BVP has two solutionsu1 andu2 such that

α1 := u′1(0) = 2 ln(ε) +O(ln(| ln(ε)|)) ,

and
α2 := u′2(0) = 1/(2ε) +O(ε−3/2) ,

asε → ∞. A numerical bifurcation study producing several
bifurcation diagrams clarifies the origin of the second solution.

Introducing the perturbation parameter 0< λ = 1/ε ≪ 1,
the BVP (6), which from now on will be referred to as the
nonconservative BVP, can be rewritten as follows:

u′′ + 2u′ + λ exp(u) = 0 , (7)

u(0) = u(1) = 0 .

3.2. The conservative case

The conservative part of (7) is

u′′ + λ exp(u) = 0 , (8)

u(0) = u(1) = 0 ,

which is a special case of the well-known 1DLiuoville-Bratu-
Gelfand BVP[10, 6, 1], used as a test-example in BVP-
continuation packages,e.g.AUTO [4].

Remark: A problem equivalent to (8) appears forN = 1
from the classical 1D Liuoville-Bratu-Gelfand problem

u′′ +
N − 1

x
u′ + λ exp(u) = 0 , (9)

u′(0) = u(1) = 0 ,

which describes radially symmetric solutions of∆u+λ exp(u) =
0 inside the unit sphere subject to the Dirichlet boundary con-
ditions. It is remarkable that the solution behaviour in (9)with
respect to parameterλ depends strongly onN (see [8]) and is
very different forN = 1 [10], N = 2 [10], andN = 3 [6]. We
will not further discuss these phenomena here and concentrate
on caseN = 1 when theu′-term vanishes.⋄

We shall prove that solutions of the conservative BVP (8) re-
main close to those of the nonconsevative BVP on the time scale
O(1). Thus, we now focus on the asymptotics of the conserva-
tive BVP. The differential equation in this case can be solved
implicitly through integration. We get the following expression
from the integral:

u′ = ±
√

c− 2λ exp(u),

with
c = α2

+ 2λ , (10)

andα as defined in Section 2.3. The orbits in this case are given
in Fig. 2 forλ = 0.01.

u

u′

Orbits of the conservative system:u′′ + λ exp(u) = 0, λ = 0.01

-2 0 2 4 6 8 10

-15

-10

-5

0

5

10

15

Figure 2: Orbits corresponding to the conservative caseu′′ + λexp(u) = 0

It is not difficult to see that the conservative BVP has a solu-
tion y if and only if

∫ ln( c
2λ )

0

du
√

c− 2λ exp(u)
=

1

2
. (11)

4



This can be deduced from Fig. 2, in the sense that using the
symmetry, one can see that the timeτ needed for a particle to
travel in the phase space from point (0, α) to (0, y′(τ)) is twice
the time needed to travel from (0, α) to (ln( c

2λ ), 0). Requiringτ
to be equal to 1 yields equation (11). Integrating the left hand
side of (11) gives

ln
[√
α2 + 2λ + α

]

− ln
[√
α2 + 2λ − α

]

√
α2 + 2λ

=
1

2
. (12)

Note that (12) gives a necessary and sufficient condition for the
conservative BVP to have solutions. In other words the num-
ber of real positive rootsα of (12) is equal to the number of
solutions of the conservative BVP.

Lemma 5. Eqn.(12)has exactly two solutionsα1 > α2 > 0 for
λ > 0 and small enough, such thatα1 → +∞ enα2 → 0 as
λ→ 0.

Proof: Eqn. (12) can be rewritten as

2(Q2 − 1)

Q2
ln2

(Q+ 1

Q− 1

)

= λ , (13)

where Q =

√

1+ 2λ/α2 ≥ 1. We see from Fig. 3 that

2(
Q

2
−1

)
Q

2
ln

2
(Q
+

1
Q
−1

)

Q

Asymptotic behaviour ofα asλ tends to zero

(Q2, 2) λ = 2

(Q1, 2)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3: Asymptotic behaviour of the roots of (13) asλ→ 0.

(12) has exactly 2 solutionsα1 =

√

2λ/(Q2
1 − 1) andα2 =

√

2λ/(Q2
2 − 1), providedλ is small enough. It also follows from

Fig. 3 thatQ1 → 1 andQ2 → +∞ asλ→ 0. This is equivalent
to α1→ +∞ andα2 → 0 asλ→ 0, which concludes the proof.
�

Corollary 1. The conservative BVP(8) has 0, 1 or 2 solutions,
depending on whetherλ > λc, λ = λc, or 0 < λ < λc respec-
tively, withλc ≈ 3.513830719125.

Proof: This follows immediately from Lemma 5. For the
computation ofλc we look for the maximum of the curve in
Fig. 3. �

Remark: Lemma 1 is well-known and is given here for
completeness. Moreover, there exists an explicit formula origi-
nally due to Liouville [10] for the solutionsu(x) of the conser-
vative BVP (8), where roots of a transcendental equation equiv-
alent to (13) are involved (see, e.g. [2]). The critical value λc

corresponds to a fold bifurcation, at which these two solutions
coalesce and disappear. We note that the value ofλc can be
computed to any desired accuracy without the use of continua-
tion software.⋄

Corollary 2. The following asymptotic expressions hold forα1

andα2, asλ tends to0 :

α1 = −2 lnλ +O(ln(| lnλ|)) , α2 = λ/2+O(λ3/2) .

Proof: One easily derives from (13) that:

α1 − 4 lnα1 = − ln λ2
+ ln 4+ o(λ) (14)

α2
2 = λ

2/4+O(λ5/2) (15)

from which it is straightforward to derive the asymptotic esti-
mates forα1 andα2.

�

We now prove that the two solutions of the conservative BVP
yield two neighboring solutions of the nonconservative BVP.

Theorem 2. The nonconservative BVP has two solutions u1,2

such thatsupt∈[0,1], y∈D |u1 − w1| = O(λ| ln λ|),
and supt∈[0,1], y∈D |u2 − w2| = O(λ2) as λ → 0, with validity
on the timescale t= O(1). Here w1,2 are the solutions of the
conservative BVP as described above.

Proof: It is easy to see thatw′1,2(t) ≤ α1,2 for 0 ≤ t ≤ 1.
Because of the damping, we have the following relationship:
|u′1,2(t)| ≤ |w

′
1,2(t)| for 0 ≤ t ≤ 1. Combining these results with

Corollary 2 yields the following estimate:

u′1(t) =O ln(λ) , (16)

u′2(t) =O(λ) . (17)

(18)

The BVP for the nonconservativecase can be rewritten in vector
form as follows:

Φ
′
1 =F0(t, u1) + λ ln(λ)F1(t, u1) (19)

Φ
′
2 =F0(t, u2) + λ2G1(t, u1) (20)

with

F0(t, x, x′) =(x′,−λ exp(x))T (21)

F1(t, x, x′) =(0,−2λx′)T
= (0,−2λ ln(λ) f1(x′))T (22)

G1(t, x, x′) =(0,−2λx′)T
= (0,−2λ2g1(x′))T (23)

Here the termF0 represents the conservative part of the BVP. In
this setting the nonconservative BVP can be seen as a perturba-
tion of the conservative BVP. Theorems on formal expansion,
(see, it e.g., [14], Chapter 9), guarantee the solutions will re-
main close; in the one caseO(λ ln(λ) close and in the other case
O(λ2), on the timescaleO(1). This concludes the proof.
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Nonconservative case

Conservative case

Solution withu′(0) = α1, λ = 0.01
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Nonconservative case
Conservative case

Solution withu′(0) = α2, λ = 0.01

u
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Figure 4: Plot of the solutions of the conservative and nonconservative BVP with initial conditionu1,2(0) = w1,2(0) = 0, u′1(0) ≃ w′1(0) = α1 (left) andu′2(0) ≃
w′2(0) = α2 (right).

�

Fig. 4 shows that the solutions, here obtained by shooting, of
both the conservative BVP and nonconservative BVP are close.
Note that the values ofα1 andα2 can be derived from Eqs. 14
and 15. We find in the caseλ = 0.01

α1 =23.16 , (24)

α2 =0.005, (25)

which is in agreement with the slopes witnessed in Fig. 4.

3.3. Numerical bifurcation analysis
One might try to obtain the second solution by numerical

continuation of the “small” solution of the nonconservative
BVP with respect the parameterλ, e.g., using the sofware pack-
age AUTO [4]. Unfortunately no folds are encountered. This
suggests that the two solutions probably never merge. However,
unfolding the fold bifurcation encountered for largeε (i.e. small
λ) explains what happens.

Consider a linear homotopy between (7) and (8), that we
write as

u′′ + λµu′ + λ exp(u) = 0 ,
u(0) = u(1) = 0 ,

(26)

where the homotopy parameter takes values in [0, 2].
Whenµ = 0, this BVP has the trivial solutionu ≡ 0 atλ = 0

that can be continued w.r.t. the parameterλ, and which exhibits
a fold (or “limit point” LP) at λLP ≈ 3.5138 (see Fig. 5). This
agrees with the results of Section 3.2 and implies that forλ >

λLP the Eqn. (26) has no solutions, while for 0< λ < λLP two
solutions coexist, one “small” and one “large”.

Our aim is to study the evolution of the bifurcation diagram
when µ changes between 0 and 2. Forµ = 2, at least two
different solutions still exist for smallλ. It turns out that these
solutions belong to two different families (or ”branches”), one
of which does not pass through the trivial solution atλ = 0.

The numerical results are presented in Fig. 6 indicate that for
all 0 < µ < 2 the BVP (26) has two different solutions with

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
lambda

0

1

2

3

4

5

6

7

in
te
gr
al
_u

1

2

3

Figure 5: The bifurcation diagram forµ = 0; label2 indicates a fold.

small λ. However, these solutions either belong to the same
branch or to two disconnected branches. In particular, thisim-
plies that forµ = 2 the upper solution cannot be obtained by
continuation of the trivial solution, since no folds occur.It is
also clear that Eqn. (26) withµ = 2 also has two solutions for
sufficiently big values ofλ. Notice that such values correspond
to smallvalues of the original parameterε, when the BVP be-
comes singularly perturbed.

At µ ≈ 1.076 a branch pointoccurs where the solution
branches cross. The figures clearly illustrate that this branching
is generic [9] and disappears under small variations of param-
eterµ. Since this branch point can be viewed as a collision of
two folds on different branches, we can locate it accurately by
continuing a curve of folds in the two parameters (λ, µ), and by
locating a (maximum) on this curve with respect to the param-
eterµ. The results are shown in Fig. 7. The maximum value
µBP ≈ 1.07532 corresponds to the branch point.
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Figure 6: One-parameter bifurcation diagrams for different values ofµ.
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Figure 7: (a) Fold curve; (b) Detail of the fold curve: The maximum valueµBP ≈ 1.07532 corresponds to the branch point.
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4. Conclusions

We studied a nonlinear boundary value problem by tradi-
tional methods. The identification of a slow manifold in the
shooting approach provides some information. However, ap-
proximation by local expansions and matching is more efficient.
For the existence of two solutions, the behaviour of the “large”
solution is quite surprising, but can be fully understood bya
combination of analytical and numerical methods, which reveal
a generic branch point where two folds collide, thereby discon-
necting the “large” solution from the “small” one.
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