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Abstract

Nonlinear two-point boundary value problems (BVPs) mayehawne or more than one solution. For the singularly pertlirbe
two-point BVP
eu +2u + f(u)=0, O<x<1, ul0)=0, ul)=0,

a condition is given to have one and only one solution; alsesaf more solutions have been analyzed. After attentitretéorm

and validity of the corresponding asymptotic expansioastiglly based on slow manifold theory, we reconsider thePBMthin

the framework of small and large values of the parametehércase of a special nonlinearity, numerical bifurcatiottgpas are
studied that improve our understanding of the multi-vahess of the solutions.

Keywords: boundary value problems, branch points, asymptotic expassnumerical continuation

1. Introduction and large values of the parameterproducing conditions for
the existence and bifurcations of “small” and “large” saus
It is well known that existence of solutions of nonlinear yf the boundary value problem (1) wifi{u) = " (a dissipative
boundary value problems does not necessarily imply uniquenqgification of the classical one-dimensional LiouvilleaB-
ness. An example is the following strongly damped equationselfand problem). In particular, we show that the corresipon
with a small parameter subject to the Dirchlet boundary con- jnq solutions exhibit a generic branch point, thus making th
ditions bifurcation diagrams of (1) qualitatively fiierent from that of

e+ 20+ f()=0, O<x<1 u@0)=0, u@l)=o, (1) Neundumpedproblem.

where for certain nonlinearitiefu) more than one solution ex-
ists. Interestingly, classical matched asymptotic exjosusim-
mediately produces an approximation of one of the solutions

we will call this the “small” solution. A proof of asymptoti- Consider the boundary value problem (1). We assti(ap>

lidity of the expansions can be given with various methods; w @ > 0, f € C?(R), and without loss of generality we take
choose here a shooting method employing slow manifold thef(0) = 1. Existence of solutions of this problem has been
ory. It turns out that the boundedness of the nonlinedifty ~ demonstrated in [3] and [7]. These existence proofs alsdyimp
will guarantee the uniqueness of the solution. Insight @ th local uniqueness, which means that in a neighbourhood of the
existence and the approximate character of a possible decofolution there exists no other solution of the Dirichlet bdu
solution is obtained by considering a neighbouring coreserv ary value problem. Conditions for the existence of one or two
tive problem and using mixed analytic-numerical methols; t solutions of (1) are presented in [12].

asymptotics is definitely non-standard. In nonlinear tvainp
boundary value problems with a small parametene can dis-
tinguish between cases where ‘routine’ matching or mutipl
scale methods apply, and cases showing unexpected behaviou We start with a number of general observations.

For the latter it helps if we can identify a slow manifold wihic

is stable. The analysis is supplemented by numerical ceatin  Lemma 1. A solution of Eqn(1) has one and only one interior
tion that explores the behaviour of the solutions for botllém maximum (no interior minimum).

2. The General case

2.1. Introductory lemmas
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Proof: Whenu(x) is identically zero, it does not satisfy the and transformingi(x) — w(¢) yields
equation. Thusi(x) has interior extreme values. At a stationary

2
point p we have e dw 2 dw

=+t +f(w)=0.
su”’(p) = —f(u(p)) . A2(e) dg? - Ae) dE
so the curvature is negative, and we have a maximum with réf we assume that(w) is bounded by a constantindependent of
spect top. The presence of more than one interior maximume then we have a significant degeneration.i¢) = . We find
would imply the existence of a minimum. Contradiction. 5

d—W+2d—W+af(W) =0
O de2 - T dé o
A simple corollary of Lemma 1 is that(x) > 0 in [0,1]. We  Upon expanding
will reformulate Egn. (1) as an initial value problem with 5
W(E) = Wo(&) + ewi(§) + &%+ -

u0)=0 , Uv@0)=a>0, we find
whereq is to be determined later by imposing a second bound- -+ zd_WO =0.
ary condition. d¢ g

. With the boundary conditiom(0) = 0, and introducing a con-
Lemma 2. For a solution §x) of Eqn.(1), ase — 0, we have  giantA we have

d2W0

Wo(é) = Ae % — A

, 1
u(1)=-5+0l). The matching rule

Proof: Puttinge = 0 in the equation of (1) and replacingy lim wo(&) = lim ug(x)
Up we have gm0 x>0

2U6 = —f(Uo) . ylelds
We putup(1l) = 0, and we note that the equation has a stable —A = Up(0) .

slow manifoldM, with a O(s) approximation by the manifold - The composite expansiaitx) is a first order formal asymptotic
Mo described byio(x). This obervation follows from Fenichel's  g55r0ximation of the form

geometric singular perturbation theory; for an introdoctsee )
[13]. Explicitly this implies that forx away from the boundary f(X) = —Uo(0)e™2% + Up(X) . (2)

layer nearx = 0 we have . ) )
Note that the maximum is located in tl¥e) boundary layer

u(x) = up(x) + O(e) . nearx = 0. We still have to give a proof of the asymptotic
validity. We can obtain this by a maximum principle, see for
The lemma follows from this estimate. instance [3], [5] or [7], but we will explore an alternativeute
- that produces additional information.
2.3. Construction and proof by shootin
2.2. Construction by matched asymptotic expansions _ P y g .
. Puttingu(0) = 0, Uu’(0) = @ > 0O for the equation of Eqn. (1),
For the outer (regular) solution we expand we transformu, U’ — A, B by
u(X) = Ug(X) + ety (X) + &%+ -+, ux) = A(X) +BXe X
which, as seen above, produces ux) = —EB(x)e‘fx.
to
2uy = —f(uo) , We find A() = e, B(0) = —3ea, and by variation of con-
stants the integral equations
for the first term. This leads to g .
W ogs 1 u(x) = Lo tepex ! fx f(u(s))ds+}e‘g-xfx esf(u(9) ds
F(U0)=f o = —5X+C. 272 2 Jo 2 0 ’
o f(9 2 3)
and

Sincex(up) is monotonic, we apply the conditiag(1) = 0 to A T
the inverse, so that = % The reasoning of classical singular U(X) = ag =% - —e‘Exf e:3f(u(s)) ds. 4)
perturbation theory is that the functiog(x) will generally not & 0
satisfy the boundary conditione., ug(0) # 0. Thus we expecta Lemma3. The interior maximum of (x) is assumed for x
boundary layer neat = 0, which agrees with Fenichel's theory. m, 0 < m < 1 with

Rescaling « 1
m =&, /1(8) - 0(1) , 0<u(m) < 28(1.



Proof: From the requirement’(m) = 0 and (3) we find for value problem (1)e.g, in [7], Chapter 11, Theorem 1. The ap-
O<x<1 parent contradiction is solved when one considers the prbof
m this Theorem 1. It is constructed by translating the boupndar
1 1 1 . . .
u(m) = Zga — = f f(u(g))ds< zea . value problem into a formulation as a nonlinear npeg> F(p)
2 2Jo 2 of a normed spacél into a Banach space and then applying
0 fixed point theory. For the linear space we have

We derive an equation far by the following lemma: N := {plp € C?[0, 1], p(0) = p(1) = O}
Lemma4. With u(1) = 0, the solution (x) of the initial value .
N . . with
problem and the initial value have to satisfy the equation
1 dp(x) d*p(x)
e — eU/(1) = f f(u(9) ds. llpll = maXIp(X)I +smaXI ot & max 5 |-
0

Note that there is no guarantee that this norm is bounded for
¢ — 0in Egn. (1). However, as the matching process suggests,
in the case of boundef{u) we have uniqueness of the solution

O of Egn. (2).

Proof: Putx = 1in Egs. (3-4) and eliminate one of the inte-
grals by using (4).

Lemmas 3 and 4 have as an interesting consequence tte&8  Theorem 1. For the nonlinear term in Eqr(1), assume that
to depend ore and that it has to become unboundecas»

0. For suppose we have 8 « < c, wherec is a constant 0<ap< f(ux¥) <a
independent of. From Lemma 2 we have B B

for constants g a; that are independent ef Then the solution

0 <u(m) <ec, of Egn.(1) is unique and has an @) bound.

so that . . . .
Proof: The solution constructed in Section 2.2 is bounded

to O(1); see also Lemma 2. Suppose we have two solutions
of Egn. (1) with determining conditiong0) = O, u’(0) = a,
where eitherr = a1 = 2Up(0)/e + O(1) ora = a,. The value
It follows from Lemma 4 that the equation linkingandu(X)  of o, follows from Sections 2.2 and 2.3. Substitutinganda;

can not be satisfied. into the equation of Lemma 3 and subtracting we have
We will now apply an O’Malley-Vasil’eva expansion to ob-

1
f(u(9) = 1+ O(e), fo f(u(9)ds=1+0(), 0< x<1.

tain an asymptotic approximation ofx); for references see 1
[11] or [13]. We find 2Ug(0) — gaz + O(e) = fo (F(Ue, () = f(Uay(¥)) dX,
1
0(x) = —aa Up(0) — Ewe X+ Up(X) , (5) so that from the estimates for the nonlinearityve havea, =
C/e + O(1), whereC is a constant independentaf Lemma 2
with the estimatei(x) — t(x) = O(g) on [0, 1]. Requiring that produces the bour@/2 + O(e) for the solution. Note that from
(1) = O results in the condition the approximationi(x) in (5) we have for the two solutions
2o = u(0). s, () = Uy () = O(&)

which is the same expression obtained in the preceding suffrom (4) it is now easy to conclude thatu/dxands?d?u/dx
section by matched asymptotic expansions. Note that the aé'€ also bounded by aB(1) constant. We conclude from the
tual construction of the asymptotic approximation by shapt uniqueness Theorem 1 of Chapter 11 of [7] ha(X) = Ua,(X).
is more complicated, but that it also provides a proof of gsym
totic validity. Another point of interest is that for the fial O]
value problem the solutions approach the slow manifdjctie-
scribed by the outer solution.

3. TheCase f(u) = exp(u)
2.4. A condition for uniqueness

In Section 2.2 we found that there is only one significant de- Consider the equation
generation iff (u) is bounded forx € [0,1] ande — 0. For
a case likef(u) = € we have found two solutions numeri- eu’ +2u +expu) =0, 0<x<1, (6)
cally; see also [12]. On the other hand in [3] and [7] theorems
are given guaranteeing existence and uniqueness of bgundawith boundary conditions(0) = 0, u(1) = 0.
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3.1. Asymptotic expansions 3.2. The conservative case

Following the procedure outlined in Section 2 we find The conservative part of (7) is
2 u” + Aexpu) =0, (8)
UO(X) = |n (_X n 1) 5 U(O) — U(l) — O ,
and for the asymptotic approximation which is a special case of the well-known 1idoville-Bratu-

Gelfand BVP[10, 6, 1], used as a test-example in BVP-
continuation packages,g.AUTO [4].

Remark: A problem equivalent to (8) appears fbir= 1
from the classical 1D Liuoville-Bratu-Gelfand problem
In the construction of this example there is the explicit as-

2 2
U(x) = In| —— | - In2e7*.
a(x) n(x+1) n2e

. . - N-1

sumptlon thag! |s_bounde<_j by a constantindependent.ofhe Nan U +dexpl) =0, 9)

maximum ofu(x) is found in the boundary layer near= 0. If X

it becomes large we have affdirent significant degeneration; u@)=u)=0,

unfortunately this is not a ‘degeneration’, it is descrilbgdhe . . . . .

full equation. which describes radially symmetric solutionstaf+ 1 exp) =

0 inside the unit sphere subject to the Dirichlet boundaryco
eoo1 ditions. Itis remarkable that the solution behaviour in\{&h
06 : : : : : respect to parametardepends strongly ol (see [8]) and is

—Asymptoticsolution very different forN = 1 [10], N = 2 [10], andN = 3 [6]. We
= Solution through numercial integration

will not further discuss these phenomena here and condentra
on caseN = 1 when thas'-term vanishesoe

We shall prove that solutions of the conservative BVP (8) re-
main close to those of the nonconsevative BVP on the timescal
O(1). Thus, we now focus on the asymptotics of the conserva-
tive BVP. The diterential equation in this case can be solved
implicitly through integration. We get the following exf@son
from the integral:

0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
« U = ++/c— 21exp),

Figure 1: Numerical and first-order asymptotic approxiuragiof the two-point with
boundary problem witH (u) = exp() in Eqn. (1). c=ad’+21, (10)

u

Thus we have constructed a solution through first Orderanda as defined in Section 2.3. The orbits in this case are given

asymptotic approximation for small In[12] it has been shown In Fig. 2 for4 = 0.01.
that a second solution exists, which becomes unbounded as

.. Orbits of the conservative systemr! + 1expl) =0, 1 =0.01
tends to zero. In an attempt to understand the origin of the

second solution, we focus in this section on the asymptetic b 150 |
haviour of the solution of this specific BVP for largeWe will 10r .
show that this BVP has two solutions andu, such that sl |
a1 = Uy(0) = 2In(e) + O(In(l In(e)l)) , = o ) 1
5 4

and
-10+ 1

@z 1= Uy(0) = 1/(25) + O(s™?) ,

-15F ]

ase — oo. A numerical bifurcation study producing several -2 0 2 4 6 8 10
bifurcation diagrams clarifies the origin of the second sofu
) ) Figure 2: Orbits corresponding to the conservative cése 1exp@) = 0
Introducing the perturbation parameter0 1 = 1/e < 1,
the BVP (6), which from now on will be referred to as the

. . It is not difficult to see that the conservative BVP has a solu-
nonconservative BVP, can be rewritten as follows:

tiony if and only if

U’ +2u + dexpl) =0, (7) (%) du 1
u)=u(1)=0. 0 Jc—21exp(u) T2 -



This can be deduced from Fig. 2, in the sense that using the Remark: Lemma 1 is well-known and is given here for
symmetry, one can see that the timaeeded for a particle to completeness. Moreover, there exists an explicit formritgi-o
travel in the phase space from point ) to (0, y'(7)) is twice  nally due to Liouville [10] for the solutions(x) of the conser-
the time needed to travel from,(@) to (In(33),0). Requiringr  vative BVP (8), where roots of a transcendental equatioivequ
to be equal to 1 yields equation (11). Integrating the leftcha alent to (13) are involved (see, e.g. [2]). The critical eakyd

side of (11) gives corresponds to a fold bifurcation, at which these two sohsi
coalesce and disappear. We note that the valug @fan be
In[veZ+21+a|-In[VaZ+21-a| 1 w2 computed to any desired accuracy without the use of continua
=5. (12)  tion software.
Va2 + 22 2 ¢

Corollary 2. The following asymptotic expressions holddgr

Note that (12) gives a necessary anflisient condition for the andas, as tends to0 :
conservative BVP to have solutions. In other words the num-

ber of real positive roota of (12) is equal to the number of a1 =-2In1+0(n(InA)) , a»=1/2+0%?).
solutions of the conservative BVP.

Proof: One easily derives from (13) that:

Lemma5. Eqn.(12)has exactly two solutiong, > a, > 0for a1 —4Inat = —In 22 +In4+ o) (14)
A > 0 and small enough, such that — +c ena, — 0 as 5 ) 5/2
15 0. aj = A°/4+ O(2°7) (15)
_ from which it is straightforward to derive the asymptoticdies
Proof: EqQn. (12) can be rewritten as mates fora; andas.
2@-1) ,Q+Y 13 =
Q? : (Q - 1) - (13) We now prove that the two solutions of the conservative BVP

yield two neighboring solutions of the nonconservative BVP
— / 2 i
where Q = 1+2/a® > 1. We see from Fig. 3 that Theorem 2. The nonconservative BVP has two solutiong u

Asymptotic behaviour of asA tends to zero such tha‘SURE[O’lL yeD =] = 02(/1| in ) . -
4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ and SUR(o 1], yep U2 — Wo| = O(1%) as A — 0, with validity
on the timescale & O(1). Here w , are the solutions of the
conservative BVP as described above.

3.5F b

(@.2) 2 Proof: It is easy to see that,(t) < a1, for0 <t < 1.

251 / 1 Because of the damping, we have the following relationship:
u? (1) < wy,(t) for 0 < t < 1. Combining these results with

Corollary 2 yields the following estimate:

I
N

Din%(&)

op 15} 1
1, 2
o ] U, =0In(Y) , (16)
0 A S e —— (18)
0 1 2 3 4 5 6 7 8 9 10
Q The BVP for the nonconservative case can be rewritten irovect
Figure 3: Asymptotic behaviour of the roots of (13).&s> 0. form as follows:
@] =Fo(t, u1) + A IN(A)Fa(t, u) (19)
(12) has exactly 2 solutions; = /24/(Q?-1) anda, = @), =Fo(t, Up) + 12Gy(t, Uy) (20)
\J21/(Q5 - 1), providedt is small enough. It also follows from  ith
Fig. 3 thatQ; — 1 andQ, — +o0 asd — 0. This is equivalent
to a1 — +o0 andap — 0 asd — 0, which concludes the proof. Fo(t, X, X) =(X, —1exp())" (21)
O Fi(t, x, X) =(0,-24x)" = (0, -22In(2) f1(x))" (22)
Gi(t, %, X) =(0,-24x)" = (0, -22°g1(X))" (23)

Corollary 1. The conservative BV{8) has 0, 1 or 2 solutions,
depending on whether > Ac, 1 = Ac, or 0 < A < Ac respec-  Here the ternf represents the conservative part of the BVP. In
tively, with A, ~ 3.513830719125 this setting the nonconservative BVP can be seen as a parturb

tion of the conservative BVP. Theorems on formal expansion,
Proof:  This follows immediately from Lemma 5. For the (see, it e.g., [14], Chapter 9), guarantee the solutionksresl
computation of1; we look for the maximum of the curve in main close; in the one cag§¥11In(1) close and in the other case
Fig. 3. O 0O(4?), on the timescal®(1). This concludes the proof.



Solution withu’'(0) = @;, 1=0.01

12

x10 Solution withu’'(0) = @, 1 =0.01

,
Conservative case 14

T T
Conservative case
Nonconservative case

Nonconservative case

i i i i i i i i i i i i i i i i i i
0 0.1 02 03 04 05 06 07 08 0.9 1 0 01 02 0.3 04 05 06 07 08 09 1

Figure 4: Plot of the solutions of the conservative and noseovative BVP with initial conditioni; 2(0) = wy 2(0) = 0, u;(0) = w;(0) = a1 (left) andu,(0) =~
W, (0) = a2 (right).
2

O

Fig. 4 shows that the solutions, here obtained by shooting, o
both the conservative BVP and nonconservative BVP are close 63 : . ; 1
Note that the values af; anda, can be derived from Egs. 14
and 15. We find in the case= 0.01 5

ay =2316, (24)
@, =0.005, (25)

ab

integral_u

which is in agreement with the slopes witnessed in Fig. 4.

3.3. Numerical bifurcation analysis
One might try to obtain the second solution by numerical I

continuation of the “small” solution of the nonconservativ

BVP with respect the parametgére.g, using the sofware pack- 8005 10 15 20 25 30 35 a0

age AUTO [4]. Unfortunately no folds are encountered. This lambda

suggests that the two solutions probably never merge. Hexev

unfolding the fold bifurcation encountered for largé.e. small

) explains what happens.

Consider a linear homotopy between (7) and (8), that we ) ]
write as small 2. However, these solutions either belong to the same

u” + Auu’ + 1exp) 0, 26 branch or to two disconnected branches. In particular,itits
u©) = u(®) = o0, (26) plies that foru = 2 the upper solution cannot be obtained by
where the homotopy parameter takes values jaJj0 continuation of the trivial solution, since no folds occlir.is
Wheng = 0, this BVP has the trivial solution = 0 at1 = 0 also clear that Eqn. (26) with = 2 also has two solutions for

that can be continued w.r.t. the parametesind which exhibits sufficiently big values Oﬂ' _Notice that such values correspond
a fold (or “limit point” LP) atA,» ~ 3.5138 (see Fig. 5). This to smallvalues of the original parameteyr when the BVP be-

agrees with the results of Section 3.2 and implies thaifer ~ COMes singularly perturbed.

Ap the Egn. (26) has no solutions, while for01 < A.p two At u ~ 1.076 abranch pointoccurs where the solution

solutions coexist, one “small” and one “large”. branches cross. The figures clearly illustrate that thiadireng
Our aim is to study the evolution of the bifurcation diagramis generic [9] and disappears under small variations ofrpara

whenu changes between 0 and 2. Ror= 2, at least two eteru. Since this branch point can be viewed as a collision of

different solutions still exist for smadl. It turns out that these two folds on diferent branches, we can locate it accurately by

solutions belong to two lierent families (or "branches”), one continuing a curve of folds in the two parametetsd), and by

of which does not pass through the trivial solutiomat O. locating a (maximum) on this curve with respect to the param-
The numerical results are presented in Fig. 6 indicate titat f eteru. The results are shown in Fig. 7. The maximum value

all 0 < u < 2 the BVP (26) has two ¢tierent solutions with  ugp ~ 1.07532 corresponds to the branch point.

6

Figure 5: The bifurcation diagram far= 0; label2 indicates a fold.
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Figure 6: One-parameter bifurcation diagrams fdfeslent values ofi.
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Figure 7: (a) Fold curve; (b) Detail of the fold curve: The rimaxm valueugp ~ 1.07532 corresponds to the branch point.



4. Conclusions

We studied a nonlinear boundary value problem by tradi-
tional methods. The identification of a slow manifold in the
shooting approach provides some information. However, ap-
proximation by local expansions and matching is mdfieient.

For the existence of two solutions, the behaviour of thegéar
solution is quite surprising, but can be fully understoodaby
combination of analytical and numerical methods, whicleedv
a generic branch point where two folds collide, therebyatisc
necting the “large” solution from the “small” one.
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