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Abstract

Singh et al. (1986) proposed an almost unbiased ridge estimator using Jackknife
method that required transformation of the regression parameters. This article shows
that the same method can be used to derive the Jackknifed ridge estimator of the
original (untransformed) parameter without transformation. This method also leads in
deriving easily the second order Jackknifed ridge that may reduce the bias further. We
further investigate the performance of these estimators along with a recent method by
Batah et al. (2008) called modified Jackknifed ridge theoretically as well as numerically.
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1 Introduction

In regression analysis, the presence of multicollinearity among independent variables is a
common problem which exhibits serious undesirable effects on the analysis. Its one of the
major consequence on ordinary least squares (OLS) is that the estimator produces huge sam-
pling variances which may result in the exclusion of significant coefficients from the model
(see Farrar and Glauber 1967). To deal with such instability, number of methods were devel-
oped, the most popular amongst them being the ridge regression (RR) estimator proposed
by Hoerl and Kennard (1970) that has been the benchmark for almost all the estimators
developed later in this context. Ridge estimation procedure was based on adding small
positive quantities to the diagonal of X ′X which made RR estimator biased but ensured a
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smaller mean square error (MSE) than the OLS. Swindel (1976) illustrated a technique for
combining the prior information with ridge regression. Sarkar (1992) proposed a restricted
ridge regression estimator based on RR estimator and restricted least squares (RLS) estima-
tor and derived the superiority of this estimator over the other two by the criteria of MSE
when the restrictions are correct and also the conditions when they are not correct. A large
number of research articles have appeared since then in this context, see Farebrother (1976),
Firinguetti (1989), Crouse et al. (1995) and other references there in. These ridge based
estimators received considerable attention due to their computational feasibility and some
optimal properties but they may carry serious bias.

Singh et al. (1986) noted that the general ridge estimators may carry a substantial amount
of bias which had been ignored in the literature. To circumvent this problem, they proposed
an almost unbiased ridge estimator using the Jackknife procedure of bias reduction. They
demonstrated that the Jackknifed estimator had smaller bias as well as MSE than the gen-
eralized ridge estimator (GRE) under some conditions. Thereafter, a number of papers have
proposed and studied Jackknifed versions of ridge estimator and some other variants. Gruber
(1991) compared the efficiency of Jackknifed and usual ridge-type estimators, Batah et al.
(2008) studied the effect of Jackknifing on various ridge-type estimators. Interesting liter-
ature on the general Jackknife procedures may be found in Miller (1974) and Hinkley (1977).

In all these papers, Jackknife is performed on a linear set of parameters (to be explained
later), using a transformed set of regressors so that the matrix of normal equations becomes
diagonal. This introduces simplicity in computing the Jackknife, however, adds the compli-
cation of re-transformation to get the estimators of the original regression parameter vector.
In the next section, we show that such a transformation is not really necessary and derive
the Jackknifed RR estimator of the original regression parameter which is basically of the
same form as obtained in Singh et al. (1986). This direct strategy of jackknifing also en-
ables one to carry out the Jackknife procedure for other estimators of interest in this context.

Section 3 considers other estimators such as those studied by Batah et al. (2008) and the
second-order Jackknifed RR estimator, that may have relevance for further reduction in bias.
This section also presents a theoretical comparison of bias and MSE of different estimators.
A comparative study of these estimators based on simulations is carried out in Section 4.
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2 Jackknifed Ridge Estimator for the Multiple Linear

Regression

Consider the following multiple linear regression model

y = Xβ + u (2.1)

where y is an (n× 1) vector of observations on the variable to be explained, X is an (n× p)
matrix of n observations on p explanatory variables assumed to be of full column rank, β
is a (p× 1) vector of regression coefficients associated with them and u is an (n× 1) vector
of disturbances, the elements of which are assumed to be independently and identically nor-
mally distributed with E(u) = 0 and E(uu′) = σ2I.

Since the exposition of Gauss-Markov theorem, and especially during the past fifty years or
so, practically all fields in the natural and social sciences have widely or sometimes blindly
used the classical method of estimation, in particular, the OLS estimation method. In
least squares approach to linear regression model, the unknown parameters are estimated by
minimizing the sum of squared deviations between the data and the model. Applying the
least squares method to (2.1) yields the OLS estimator of β which is given by

β̂ = (X ′X)−1X ′y (2.2)

that is well known to be the best linear unbiased.

As referred to earlier, the OLS procedure may result in large sampling variances in the
presence of multicollinearity and therefore may produce estimators which are not in tune with
the researcher’s prior belief. To combat this problem, Hoerl and Kennard (1970) proposed the
generalized ridge estimator (GRE) by allowing some bias into the estimator which resulted
in smaller MSE. The estimator is given by

β̂GRE = (X ′X +D)−1X ′y (2.3)

where D is a known matrix. Note that D may not necessarily be diagonal, though, in their
original paper Hoerl and Kennard (1970) considered it to be so. This makes sense in the
context of a transformed model where the matrix X ′X is diagonal (see later development).
The GRE defined in (2.3) reduces to OLS for D being a p × p zero matrix. It was demon-
strated that there always exists a di > 0 such that β̂GRE performs better than β̂ in terms
of MSE. It may also be noted that ordinary ridge estimator (ORE) is a special case of (2.3)
when all di ≡ d,∀i.

To alleviate the problem of bias in GRE, Singh et al. (1986) proposed an almost unbiased
ridge estimator using the Jackknife technique that was introduced by Quenouille (1956) as
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a general method for reducing the bias of an estimator. Later Tukey (1958) proposed that
this technique may also offer a simple method to obtain the confidence intervals for the pa-
rameters of interest. A number of papers appeared dealing with large-sample properties and
empirical validations in common applications like estimation of variances, correlations and
ratios. See also the paper by Thorburn (1976) for an excellent exposition of the asymptotic
properties of the Jackknife estimator. Jackknife procedure was initially applied to balanced
situations i.e., equal sample sizes, equal variances, etc. A commendable review of the same
may be found in Miller (1974a). Miller (1974b) gave the detailed account of jackknifing lin-
ear model estimates, and demonstrated that the Jackknife produces consistent results when
the sample is large. Further, Hinkley (1977) examined the small sample properties of the
standard Jackknife in the general linear model, and compared it to an alternative weighted
Jackknife procedure.

The use of Jackknife procedure to reduce the bias of the ridge estimator and the properties
of the Jackknifed ridge estimator were also studied by Singh and Chaubey (1987), Nomura
(1988) and Gruber (1998). Singh et al. (1986), start with model (2.1) and for convenience
decompose it as

y = Zγ + u (2.4)

where, Z = XG and γ = G′β. Here G is a (p × p) matrix whose columns are normalized
eigen vectors of X ′X. Also, Z ′Z = G′X ′XG = Λ = diag(λ1, . . . , λp), λi being the i-th
eigenvalue of X ′X. The GRE of γ may be written as

γ̂GRE = (Λ +K)−1Z ′y = A−1Z ′y = A−1Λγ̂ = (I − A−1K)γ̂ (2.5)

where K=diag(k1, . . . , kp), ki > 0, A = Λ + K and γ̂ is the OLS estimator of γ. Since
γ = G′β and GG′ = I, the GRE of β is

β̂GRE = Gγ̂GRE = A−1∗ X
′y, (2.6)

where A∗ = X ′X +K∗ and K∗ = GKG′.

Following Hinkley (1977), Singh et al. (1986) derived the Jackknifed form of γ̂GRE as

γ̂JRE = [I − (A−1K)2]γ̂. (2.7)

It was shown that the bias of γ̂JRE is smaller than that of γ̂GRE.

Here, it is important to note that Jackknife procedure is applied on a transformed set of
regressors for inducing simplicity of computation which however leads complication of re-
transformation to get the estimator of original regression parameters. We have shown that
it is easy to get the estimator for original regression parameter explicitly. We know that

β̂JRE = Gγ̂JRE (2.8)
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Using (2.7) in (2.8), we get

β̂JRE = G[I + (A−1K)][I − (A−1K)]γ̂

= G[I + (A−1K)](A−1Λ)Λ−1Z ′y

= G[I + (A−1K)]A−1G′X ′y

= [GA−1G′ +GA−1KA−1G′]X ′y (2.9)

Now writing A = Z ′Z +K = G′[X ′X +GKG′]G, so that, GA−1G′ = (X ′X +K∗)
−1 = A∗

−1

(say), and GA−1KA−1G′ = A∗
−1K∗A∗

−1, where K∗ = GKG′.

Thus using the above values of GA−1G′ and GA−1KA−1G′ in (2.9), we get

β̂JRE = [A−1∗ + A−1∗ K∗A
−1
∗ ]X ′y

= [I + A−1∗ K∗]A∗
−1X ′y

= [I + A−1∗ K∗]A∗
−1(X ′X)β̂

= [I + A−1∗ K∗][I − A−1∗ K∗]β̂
= [I − (A−1∗ K∗)

2]β̂ (2.10)

where A∗ and K∗ are as described earlier. We see that β̂JRE has exactly the same form as
γ̂JRE with A = A∗ and K = K∗.

We note that this form of β̂JRE still requires knowledge of G. However, as shown below di-
rect jackknifing β̂GRE gives the same form of β̂JRE and it does not require the knowledge of G.

Let us write β̂GRE, defined in (2.3) as

β̂GRE = (X ′X +D)−1X ′y = B−1X ′y

For this, we first obtain β̂GRE(−i), that is the GRE obtained from the data after deleting the
i− th observation as given by,

β̂GRE(−i) = (X ′X − xixi′ +D)−1(X ′y − xiyi)
= (B − xixi′)−1(X ′y − xiyi)

which may be written as

β̂GRE(−i) =

[
B−1 +

B−1xixi
′B−1

1− wi

]
(X ′y − xiyi)

where
wi = xi

′B−1xi.
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This on simplification, gives

β̂GRE(−i) = β̂GRE −
B−1xi
1− wi

(yi − xi′β̂GRE)

Now defining pseudo-values as

Qi = β̂GRE + n(1− wi)(β̂GRE − β̂GRE(−i))

= β̂GRE + nB−1xiei

where ei = yi−xi′β̂GRE are the residuals using the ridge estimator. Using these pseudo-values
the Jackknifed ridge estimator of β is given by

β̂JRE = Q =
1

n

∑
Qi = β̂GRE +B−1X ′e

= β̂GRE +B−1X ′(y −Xβ̂GRE)

= β̂GRE + β̂GRE −B−1X ′Xβ̂GRE
= β̂GRE + [I −B−1X ′X]β̂GRE

= β̂GRE + (B−1D)β̂GRE

= [I +B−1D]β̂GRE (2.11)

Also, β̂GRE = B−1(X ′X)β̂ = [I − B−1D]β̂. Using this in (2.11) gives us the Jackknife
estimator β̂GRE as

β̂JRE = [I − (B−1D)2]β̂ (2.12)

We note that the JRE as obtained in (2.12) is of the same form as γ̂JRE and this form makes
it easier to study the properties of Jackknifed form of β. In the next section, we are going
to introduce second-order Jackknife estimator and compare its performance with JRE and
MJR (Batah et al. 2008). Since MJR was introduced for the transformed parameter γ,
therefore for the remaining sections we will make use of the transformed model as defined
in (2.4).

3 Modified Jackknifed Ridge and Second-Order Jack-

knifed Ridge

Batah et al. (2008) proposed a new estimator namely, Modified Jackknife ridge regression
estimator (MJR) combining the ideas of GRE and JRE given by Singh et al. (1986). They
obtained conditions for superiority of MJR over JRE and showed through a simulation study
that the MJR estimator is generally superior to both GRE and JRE using MSE criterion.
The MJR estimator is of the following form

γ̂MJR = [I − (A−1K)2][I − A−1K]γ̂ = [I − (A−1ΦK)]γ̂ (3.1)
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where Φ = (I + A−1K − A−1K∗) and K∗ = KA−1K. This method is a bit adhoc because
it just consists of replacing the OLS in (2.7) by ridge estimator. They have demonstrated
that this estimator outperforms the JRE under some conditions which, however, can not
be verified in practice. Further in this paper there is no discussion of bias of the resulting
estimator. If further bias reduction of the ridge estimator was required, we could Jackknife
β̂JRE again. Noting that we can write γ̂JRE as the ridge estimator in the form

γ̂JRE = [I − A−1K∗]γ̂ (3.2)

that is similar to the ridge estimator as given in (2.5) with K replaced by K∗ = KA−1K,
hence its Jackknifed form that results in the second-order Jackknife (J2R) estimator can be
readily written as

γ̂J2R = [I − (A−1K∗)2]γ̂. (3.3)

Similarly, the second-order Jackknifed ridge estimator for β is given by

β̂J2R = [I − (B−1D∗)2]β̂, (3.4)

where D∗ = DB−1D.

In the following subsections, we compare the performance of J2R with JRE and MJR in terms
of bias and MSE. It is expected that J2R will reduce the bias of JRE and could provide a
valid estimator of its variance-covariance matrix, using the general Jackknife methodology
as indicated in Singh et al. (1986) for the Jackknifed ridge estimator. However, there is no
guarantee that J2R will also be efficient in terms of MSE. This is the line of investigation in
the remaining subsection.

3.1 Comparison between the bias of JRE, MJR and J2R

The following theorem compares the total squared bias of JRE and J2R, similar to that
between JRE and GRE compared by Singh et al. (1986).

Theorem 1. Let K be a (p × p) diagonal matrix with non-negative entries. Then the
second-order Jackknifed estimator γ̂J2R(i) reduces the bias of the Jackknifed estimator γ̂JRE(i),
assuming ki > 0. Further, the difference of total squared biases of the Jackknifed ridge (JRE)
and second-order Jackknifed ridge (J2R) estimators of β as given by

D1 =
∑
{|Bias(β̂JRE)|i

2
− |Bias(β̂J2R)|i

2
}

is non-negative. It is strictly positive if at least one ki, i = 1, ..., n is positive.
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Proof: Recall from (2.5), we have

γ̂JRE = [I − (A−1K)2]γ̂ = [I − A−1K∗]γ̂

where K∗ = KA−1K, thus

Bias(γ̂JRE) = E(γ̂JRE)− γ = −A−1K∗γ (3.5)

Similarly using the expression for γ̂J2R from (3.3)

γ̂J2R = [I − (A−1K∗)2]γ̂

we find
Bias(γ̂J2R) = E(γ̂J2R)− γ = −(A−1K∗)2γ. (3.6)

Comparing |Bias(γ̂JRE)|i with |Bias(γ̂J2R)|i where |.|i denotes the absolute value of the i−th
component, we have

|Bias(γ̂JRE)|i − |Bias(γ̂J2R)|i =
k∗i

λi + ki
|γi| −

(k∗i )
2

(λi + ki)2
|γi|

=
(λiki)

2 + 2λik
3
i

(λi + ki)4
|γi| (3.7)

that is clearly positive assuming ki > 0, which proves that the second-order Jackknife reduces
the bias of the Jackknifed ridge estimator.

Also, if we look at the expression of total squared bias in terms of original parameter vector
β, we find that

D1 =
∑
{|Bias(β̂JRE)|i

2
− |Bias(β̂J2R)|i

2
}

= β′
{
G[(A−1K∗)2 − (A−1K∗)4]G′

}
β (3.8)

where use has been made of the fact that Bias(β̂) = GBias(γ̂). Clearly, the matrix in braces
in R.H.S of (3.8) is positive definite due to the non-negativity of the expression in (3.7),
hence D1 > 0. This proves the theorem.

Next we compare the total squared bias of MJR with GRE of the original parameter vector β.
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Theorem 2. Let K be a (p × p) diagonal matrix with non-negative entries, then the
difference of total squared biases of the modified Jackknifed ridge (MJR) and generalized
ridge estimators (GRE) of β as given by

D2 =
∑
{|Bias(β̂MJR)|i

2
− |Bias(β̂GRE)|i

2
}

is positive.

Proof: Using the expression for MJR as given in (3.1)

γ̂MJR = [I − (A−1K)2][I − A−1K]γ̂ = [I − (A−1ΦK)]

where Φ = (I + A−1K − A−1K∗) and K∗ = KA−1K, we have

Bias(γ̂MJR) = −A−1ΦKγ. (3.9)

Also, using the expression for GRE of γ from (2.5), we have

Bias(γ̂GRE) = −A−1Kγ. (3.10)

Comparing the expression for bias of MJR as given in (3.9) with that in (3.10) component
wise, we have

|Bias(γ̂MJR)|i − |Bias(γ̂GRE)|i =
kiφi
λi + ki

|γi| −
ki

λi + ki
|γi|

=
ki[1 + ki

λi+ki
− k2i

(λi+ki)2
]

λi + ki
|γi| −

ki
λi + ki

|γi|

=
λik

2
i

(λi + ki)3
|γi|

which is a positive quantity.

Now comparing the expressions for the total bias as in Theorem 1, we have

D2 =
∑
{|Bias(β̂MJR)|i

2
− |Bias(β̂GRE)|i

2
}

= β′
{
G[(A−1ΦK)2 − (A−1K)2]G′

}
β

= β′
{
G[(A−1ΦKA−1ΦK − A−1KA−1K]G′

}
β

= β′
{
GA−1[(ΦK)2 −K2]A−1G′

}
β. (3.11)

It is easy to see that the matrix in braces in the above equation is positive definite that
proves the result.
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Remark 1. Using the result in Singh et al. (1986) that proves that JRE dominates the
GRE in terms of total squared bias, and combining the results of theorems 1 and 2, we have
the following ordering,

SB(β̂J2R) < SB(β̂JRE) < SB(β̂GRE) < SB(β̂MJR), (3.12)

where SB denotes, the total squared bias. This automatically shows that J2R dominates
MJR in terms of total squared bias.

Remark 2. It was shown using simulation studies by Batah et al. (2008) that MJR has
better performance as compared to JRE in terms of MSE, however no bias comparisons were
made. The following section provides some theoretical comparisons of MSE of JRE, MJR
and J2R on the similar lines as in Batah et al. (2008).

3.2 Comparison between MSE’s of JRE, MJR and J2R

Batah et al. (2008) stated conditions under which MJR dominates the JRE in terms of MSE
matrix. The following theorem provides a similar comparison between γ̂J2R and γ̂JRE. First
we state a lemma that has been used by many researchers working in this context.

Lemma 1. [Farebrother (1976)] Let A be a positive definite matrix, γ be a p × 1 vector.
Then A− γγ′ is a nonnegative definite matrix if and only if γ′A−1γ ≤ 1 is satisfied.

Theorem 3. Let K be a (p × p) diagonal matrix with non-negative entries. Then the
difference of the MSE matrix of the second-order Jackknife estimator and the Jackknifed
ridge estimator,

∆1 = MSE(γ̂J2R)−MSE(γ̂JRE)

is a positive definite matrix if and only if the following inequality is satisfied

γ′{L−1[σ2M + (A−1K∗)2γγ′(K∗A−1)2]L−1}−1γ ≤ 1

where L = A−1K∗, K∗ = KA−1K and M = [I − A−1K∗]Λ−1[I − A−1K∗]′{[I + A−1K∗ +
I]A−1K∗}.

Proof: Using the expression of the variance-covariance matrix of the least squares estimator,
i.e. V ar(γ̂) = σ2(Z ′Z)−1 = σ2Λ−1, and the expression for JRE as given in (3.2), we can
write

V ar(γ̂JRE) = E[(γ̂JRE − E(γ̂JRE))(γ̂JRE − E(γ̂JRE))′]

= [I − A−1K∗]V ar(γ̂)[I − A−1K∗]′

= [I − A−1K∗]σ2Λ−1[I − A−1K∗]′.
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Further using the expression for Bias(γ̂JRE) from (3.5), we can write

MSE(γ̂JRE) = [I − A−1K∗]σ2Λ−1[I − A−1K∗]′ + A−1K∗γγ′K∗A−1. (3.13)

Similarly using the expression for V ar(γ̂J2R) as given by

V ar(γ̂J2R) = [I − (A−1K∗)2]σ2Λ−1[I − (A−1K∗)2]′

and the expression for Bias(γ̂J2R) as given in (3.6) we have

MSE(γ̂J2R) = [I − (A−1K∗)2]σ2Λ−1[I − (A−1K∗)2]′ + (A−1K∗)2γγ′(K∗A−1)2. (3.14)

And therefore from (3.13) and (3.14), ∆1 becomes

∆1 = σ2M + (A−1K∗)2γγ′(K∗A−1)2 − A−1K∗γγ′K∗A−1 (3.15)

where

M = [I − (A−1K∗)2]Λ−1[I − (A−1K∗)2]′ − [I − A−1K∗]Λ−1[I − A−1K∗]′

= [I − A−1K∗]Λ−1[I − A−1K∗]′{[I + A−1K∗][I + A−1K∗]′ − I}
= [I − A−1K∗]Λ−1[I − A−1K∗]′{[I + A−1K∗ + I][I + A−1K∗ − I]}
= [I − A−1K∗]Λ−1[I − A−1K∗]′{[I + A−1K∗ + I]A−1K∗} (3.16)

We know that [I−A−1K∗] is a diagonal matrix with positive entries and the matrix in braces
of (3.16) is also positive definite. Therefore we conclude that M is also a positive definite
matrix and hence the difference ∆1 is positive definite if and only if L−1∆1L

−1 is positive
definite. We see that

L−1∆1L
−1 = L−1[σ2M + (A−1K∗)2γγ′(K∗A−1)2]L−1 − γγ′ (3.17)

The matrix [σ2M + (A−1K∗)2γγ′(K∗A−1)2] in the above equation is symmetric positive
definite. Therefore using Lemma 1, we conclude that L−1∆1L

−1 is positive definite if and
only if following inequality holds

γ′{L−1[σ2M + (A−1K∗)2γγ′(K∗A−1)2]L−1}−1γ ≤ 1.

Remark 3. We see that ∆1 = 0 if and only if L−1∆1L
−1 = 0, which gives
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L−1[σ2M + (A−1K∗)2γγ′(K∗A−1)2]L−1 = γγ′

which is not true because the rank of left hand matrix is p and the rank of right hand matrix
is either 0 or 1. So ∆1 can not be zero whenever p > 1.

Remark 4. Noting that the matrix (A−1K∗)2γγ′(K∗A−1)2 in (3.15) is positive definite, a
simple sufficient condition for ∆1 to be positive definite using Lemma 1 is given by

σ−2γ′LM−1Lγ ≤ 1.

The following theorem compares the MSE matrix of J2R and MJR, similar to the analysis
above.

Theorem 4. Let K be a (p × p) diagonal matrix with non-negative entries. Then the
difference

∆2 = MSE(γ̂J2R)−MSE(γ̂MJR)

is a positive definite matrix if and only if the following inequality is satisfied

γ′{N−1[σ2H + (A−1K∗)2γγ′(K∗A−1)2]N−1}−1γ ≤ 1

where H = [I−A−1K∗]Λ−1[I−A−1K∗]′{[I+A−1K∗][I+A−1K∗]′− [I−A−1K][I−A−1K]′},
N = A−1ΦK, Φ and K∗ are as defined earlier.

Proof: Writing γ̂MJR as
γ̂MJR = [I − (A−1ΦK)]γ̂

where Φ = (I + A−1K − A−1K∗) and K∗ = KA−1K, we have

V ar(γ̂MJR) = [I − (A−1ΦK)]σ2Λ−1[I − (A−1ΦK)]′

and
Bias(γ̂MJR) = −A−1ΦKγ

Thus

MSE(γ̂MJR) = [I − (A−1ΦK)]σ2Λ−1[I − (A−1ΦK)]′ + (A−1ΦK)γγ′(KΦA−1) (3.18)

Now using (3.14) and (3.18), we get

∆2 = σ2H + (A−1K∗)2γγ′(K∗A−1)2 − (A−1ΦK)γγ′(KΦA−1) (3.19)
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where

H = [I − (A−1K∗)2]Λ−1[I − (A−1K∗)2]′ − [I − A−1ΦK]Λ−1[I − A−1ΦK]′

= [I − (A−1K∗)2]Λ−1[I − (A−1K∗)2]′

−[I − A−1K∗][I − A−1K]Λ−1[I − A−1K]′[I − A−1K∗]′

= [I − A−1K∗]Λ−1[I − A−1K∗]′{[I + A−1K∗][I + A−1K∗]′

−[I − A−1K][I − A−1K]′} (3.20)

We see that the matrix in braces of (3.20) is a positive definite and that [I −A−1K∗] is also
positive. This implies that H is also a positive definite matrix. Now, proceeding as in the
proof of Theorem 3, we get the desired result.

Remark 5. An analysis similar to that in Remark 4, noting that the matrix (A−1K∗)2γγ′(K∗A−1)2

in (3.19) is positive definite, a simple sufficient condition for the matrix ∆2 to be positive
definite is given by

σ−2γ′NH−1Nγ ≤ 1.

The conditions in Theorems 3 and 4 as well as those in Remarks 3 and 4 are not verifiable in
practice, hence it is important to investigate the relative performance of the new estimator
proposed here under a variety of conditions. In the following section we provide a simulation
study for this purpose that is similar to the one undertaken in Batah et al. (2008).

4 A Simulation Study

In the present section, our aim is to compare the performance of OLS, ORE, JRE, MJR,
and J2R estimators on the basis of associated bias and mean square error with the help of
Monte Carlo experiments. The true model is y = Xβ + u where u ∼ N(0, 1). Here β is
taken as the normalized eigen vector corresponding to the largest eigen value of X ′X. The
explanatory variables are generated from the following equation

xij = (1− ρ2)
1
2wij + ρwip, i = 1, 2. . . . , n; j = 1, 2, . . . , p. (4.1)

where wij are independent standard normal pseudo-random numbers and ρ2 is the correlation
between xij and xij′ for j, j′ < p and j 6= j′. When j or j′ = p, the correlation will be ρ. We
have taken ρ = 0.8, 0.95 and 0.99 to investigate the effects of different degrees of collinearity
with sample sizes n = 15, 50 and 100. The feasible value of k is obtained by the optimal
formula k = pσ2

β′β
as given by Hoerl et al. (1975), so that

k̂ =
pσ̂2

β̂′β̂
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where

σ̂2 =
(y −Xβ̂)′(y −Xβ̂)

n− p
.

This simulation study is patterned on that of McDonald and Galarnaeu (1975). For compu-
tations, the original model is first decomposed into a canonical form to get the estimator of
γ and then transformed back to the estimator of β. For these different choices of ρ and n,
the experiment is replicated 5000 times. The average absolute bias and average mean square
error are computed as follows:

Bias(β̂i) =
1

5000

∑
|β̂ij − βi| (4.2)

MSE(β̂i) =
1

5000

∑
(β̂ij − βi)2 (4.3)

Here, β̂ij denotes the estimate of i− th parameter in j− th replication and β1, β2 and β3 are
the true parameter values. Results of the simulation study are given in Table 1 and 2. Our
conclusions based on this study are summarized below:

1. From table 1, we note that bias of OLS is almost close to zero and bias of J2R is not
very far from OLS as expected. This shows that if we further increase the order of Jackknife
estimator, its bias will tend towards the bias of OLS.

2. JRE has also served its purpose by reducing the bias of ORE in all the cases.

3. We also notice that the bias of MJR is higher among all the estimators in almost all the
cases.

4. From table 2, we see that mean square error of all the estimators is increasing with the
increasing value of ρ and decreasing with the increasing value of n.

5. As expected, variance of OLS is highest amongst all and here also mean square error of
J2R is closer to that of OLS. We find that J2R does not improve upon JRE and MJR in
terms of MSE which we have also shown in theorems 3 and 4.

5 Other Concluding Remarks

In the present study, we derived the Jackknifed form of generalized ridge estimator β̂GRE
that avoid using any transformation, as had been the practice in the literature so far. We
also proposed a new estimator based on the second-order Jackknife (J2R) which ensures a

14



smaller bias than those of the Jackknifed ridge estimator (JRE) and modified Jackknifed
ridge estimator (MJR). It is seen that J2R may not be as efficient as JRE or MJR, however
MJR may carry a much larger bias as became evident through the simulation studies. It
may be useful to combine these estimators along the lines of Singh and Chaubey (1987) to
improve upon MJR, JRE and J2R in terms of both bias and mean squared error. This will
be investigated into another paper.
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Table 1: Comparison of Bias of Different Estimators

n ρ OLS ORE JRE MJR J2R
15 0.8 0.000796607 0.019932830 0.0023494510 0.021127870 0.000949268

0.003872392 0.019707720 0.0022376270 0.021139810 0.003831971
0.005912432 0.037625430 0.0071932280 0.039017160 0.005819491

0.95 0.001530710 0.017651900 0.0042949410 0.018535000 0.003007977
0.007440947 0.011722090 0.0044564130 0.013290280 0.006600416
0.009056449 0.023449020 0.0064332980 0.023187410 0.007344464

0.99 0.003388197 0.001115321 0.0089504600 0.001018375 0.008610536
0.016470394 0.012823031 0.0092888780 0.010947171 0.012506116
0.016593310 0.004931625 0.0049867870 0.007036277 0.008663070

50 0.8 0.002104420 0.009019226 0.0021982780 0.009114149 0.002103926
0.002389848 0.009439763 0.0024850460 0.009536641 0.002389148
0.001263187 0.010585202 0.0010410690 0.010799617 0.001262333

0.95 0.004043723 0.009288766 0.0039053630 0.009184668 0.004047090
0.004592184 0.010052440 0.0045481220 0.010019484 0.004596323
0.005052215 0.004450479 0.0046752720 0.004789447 0.005057859

0.99 0.008950703 0.009257118 0.0075440090 0.008329471 0.008886674
0.010164711 0.012574605 0.0107358930 0.012275974 0.010921653
0.015116081 0.006059302 0.0142715980 0.004874950 0.015720642

100 0.8 0.001884865 0.005252948 0.0018929420 0.005262753 0.001884693
0.002053578 0.005243242 0.0020486800 0.005241511 0.002053270
0.001758128 0.004140953 0.0016827520 0.004212672 0.001757826

0.95 0.003621840 0.005855833 0.0033506180 0.005664673 0.003601681
0.003946028 0.005736671 0.0035095580 0.005429302 0.003913498
0.005149614 0.000981643 0.0045466250 0.001424118 0.005109286

0.99 0.008016873 0.006672324 0.0063549840 0.005749086 0.007724603
0.008734457 0.005524346 0.0059544290 0.003997305 0.008243769
0.014052604 0.003385189 0.0101242140 0.001202657 0.013366352
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Table 2: Comparison of MSE of Different Estimators

n ρ OLS ORE JRE MJR J2R
15 0.8 0.19795727 0.10500900 0.16402858 0.09073415 0.19283316

0.10953435 0.07250247 0.09972949 0.06729506 0.10869350
0.09816408 0.06161525 0.08509099 0.05604219 0.09628443

0.95 0.73091920 0.26792930 0.48280620 0.20443050 0.65104220
0.40443450 0.19131410 0.31218970 0.15965990 0.38375670
0.52999470 0.19938030 0.35234710 0.15404340 0.47237980

0.99 3.58113700 1.10385200 2.06807900 0.80832700 2.93104800
1.98152600 0.77428360 1.33932100 0.61421620 1.75621100
3.51268700 1.04339250 1.97785700 0.75332770 2.83721400

50 0.8 0.04483244 0.03454313 0.04325834 0.03342195 0.04479028
0.03966295 0.03128027 0.03846737 0.03041172 0.03963371
0.03588494 0.02700028 0.03432280 0.02592576 0.03583691

0.95 0.16553520 0.08715341 0.13748780 0.07508182 0.16151240
0.14644780 0.08038150 0.12407930 0.07030963 0.14347200
0.19049110 0.08648805 0.14790440 0.06989500 0.18342920

0.99 0.81103920 0.29366640 0.53235850 0.22351450 0.71833940
0.71752070 0.27043880 0.48445320 0.20843790 0.64413030
1.23029320 0.36188230 0.71283780 0.25044860 1.03510770

100 0.8 0.02089901 0.01815047 0.02066509 0.01795757 0.02089680
0.03012368 0.02488273 0.02955958 0.02443416 0.03011663
0.02127735 0.01734774 0.02082090 0.01698969 0.02127124

0.95 0.07716557 0.05076290 0.07070845 0.04713234 0.07667902
0.11122591 0.06527134 0.09764992 0.05832660 0.10996109
0.11620775 0.06169573 0.09843280 0.05304472 0.11440034

0.99 0.37807250 0.16463220 0.28044560 0.13331800 0.35378040
0.54495100 0.20685190 0.37151590 0.15896210 0.49365910
0.74904350 0.23927770 0.46307450 0.16958470 0.65514070
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