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ABSTRACT 

CFD Modelling of Turbulent Flow in Open-Channel Expansions 

Sahar Najmeddin, M. A. Sc. 

Concordia University, 2012 

 

Channel expansions provide a transition from a narrow to a relatively wide channel-

section, which is necessary in many hydraulic structures. In the transition, flow tends to separate 

from its diverging sidewalls and create turbulent eddies, if the angle of divergence exceeds a 

threshold value. This phenomenon can cause undesirable flow energy losses and erosion to the 

sidewalls locally and even further downstream. Previously, researchers have tried to optimise the 

transition’s horizontal shape in order to reduce flow separation; the results are inconclusive. The 

purpose of this study is to extend earlier investigations about fitting a hump in the vertical to 

eliminate flow separation. This study uses the CFD modelling approach. This approach permits 

an efficient and systematic exploration of the effects of different angles of divergence, crest 

height of the hump and the Froude number of subcritical flow. The model results are validated 

using existent analytical solutions under simplified conditions and available experimental data 

for a limited number of cases. Flow quantities presented in this thesis include details of the 

velocity, vorticity, eddy structure, and cross-sectional area of flow reversal; these quantities are 

distributed at selected vertical and horizontal planes, and are available for the cases of with and 

without a hump. It is shown that the use of a hump effectively reduces flow separation and eddy 

motion in the transition. This is because the flow is forced to accelerate over the hump, and as a 

result, the otherwise adverse pressure gradient, which is known to be responsible for flow 

separation, diminishes. A hump in the vertical can easily be incorporated into the bed of existent 

channel expansions, and would be less expensive to construct than to modify the horizontal 

shape (or the sidewalls) of existent expansions. The results presented in this thesis are of 

practical values for the optimal design of humps. 
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Chapter One Introduction 

 

1.1   Background 

In general, channel transitions are defined as changes in cross-sectional area in the direction of 

open channel flow. Transitions can also include changes in bed level. A channel expansion is a 

transition that connects a relatively narrow upstream channel-section to a wide downstream 

channel-section. Such a transition is an important component of many hydraulic structures. Due 

to an increase in cross-sectional area, channel expansions cause flowing water to decelerate. 

Under steady flow conditions, flow deceleration will lead to an increase in water pressure that in 

turn triggers flow separation and creates turbulent eddy motions. These turbulent eddy motions 

can exist over a long distance downstream of the transition. They cause undesirable energy 

losses and sidewall erosion. 

In order to control energy losses and erosion, we need to improve our understanding of 

the problem of flow in a channel expansion. This problem has not been thoroughly investigated 

in the past. A lack of thorough knowledge about the problem has motivated this study. From the 

energy conservation perspective, it is particularly important to be able to reduce or even 

eliminate areas of turbulent eddy motions in the expansion. 

The problem of turbulent flow in an open channel expansion is very complicated, with 

turbulent eddy motions, flow separation and so on. It is difficult to use the analytical approach to 

obtain solutions to the problem even under highly simplified conditions. The experimental 

approach may be taken to tackle the problem, but experiments are very expensive to carry out. 

Therefore, it may not be feasible to experimentally investigate the effects of many factors that 

potentially control the behaviour of flow in a channel expansion. In this study, the CFD 
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modelling approach is taken. This approach permits an efficient and systematic exploration of 

the effects of such factors as the angle of divergence, the crest height of a hump fitted at the 

channel bed and the Froude number on the flow in an expansion. The idea of using a hump in the 

vertical to reduce eddy motions and flow separation in expansions is interesting, because it is an 

easier and more economic solution compared to optimising the horizontal shape (or the 

sidewalls) of existing expansions. 

This study focuses on subcritical flows (with the Froude number less than unity) as they 

prevail in open channels. A number of important questions need to be answered. How does the 

flow field, in particular the distribution of eddy motions, vary with the angle of divergence? How 

does the velocity field change with elevation above the channel bed? In what way we can 

evaluate flow reversal in the expansion? Qualitatively, the use of a hump fitted at the channel 

bed is known to help reduce flow reversal and eddy motions, but quantitatively, how efficient is 

the use of it? Will answers to the above questions be different at different Froude numbers? 

 

1.2   Specific objectives     

The objectives of this study are 

 to numerically simulate subcritical flow in channel expansions with different angles 

of divergence. We will consider an angle of divergence equal to 10.34º, 7.54º and 

5.04º in order to match experimental conditions. This will allow data comparison. 

 to quantify areas of eddy motions and flow reversal in expansions (at different cross-

sections and longitudinal planes). 

 to investigate the effects of the Froude number. 
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 to determine the effectiveness of fitting a hump at the channel bed to suppress eddy 

motions and flow separation. We will consider two simple humps: one with a crest 

height of 1/4″ (or 0.00635 m, with %54.2/  yz ), and the other with a crest height 

of 1/2″ (or 0.0127 m, with %08.5/  yz ). These selections are consistent with 

experimental setup used in previous studies. 

 

1.3   Scope of the work 

To achieve the above-mentioned objectives, the rest of this thesis is organized as follows. 

Chapter 2 gives a summary of previous studies on the topic of flow in expansions, including 

experimental and analytical studies on flow separation and the formation of turbulent eddies. 

Previous works on other established facts concerning the design of hydraulically efficient 

channel expansions are reviewed in this chapter. This chapter also summarises previous studies 

about the effects of a hump in the vertical on the reduction of eddy motions and flow reversal.  

Chapter 3 describes the modelling methodologies used in this study. This chapter 

provides the theoretical background and fundamental concepts of CFD modelling of free surface 

flow. The k-ω turbulence model is explained in details, and reasons for choosing this model are 

discussed. Details of the boundary conditions, including conditions at inlet, outlet, bottom and 

sidewalls of the model channel are discussed. Also, the choice of meshes, including volume 

mesh and inflations (near bottom and sidewalls) for accuracy improvement is discussed in this 

chapter. 

In Chapter 4, the energy principle and the concept of specific energy for flow in channel 

expansions are discussed, together with the concept of E-y curve. The expected behaviour of 

flow in channel expansions and over a hump is also explained. 
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Chapter 5 presents the numerical results of the flow field in a flat-bottom expansion and 

expansions with a 1/4″ (or 0.00635 m, with %54.2/  yz ) or 1/2″ (or 0.0127 m, with

%08.5/  yz ) hump. The results include velocity, flow streamlines, vorticity contours, and 

along-channel velocity contours at different cross-sections along the length of expansions. In 

longitudinal planes at different elevations above the channel bed, areas of eddy motions are 

determined. In cross-sections, eddy motions are evaluated as regions where flow reversal occurs. 

Percentages in area of low-velocities and high-vorticity areas are evaluated. A comparison of the 

percentages between a flat-bottom expansion and expansions with a 1/4″ (or 0.00635 m, with

%54.2/  yz ) or 1/2″ (or 0.0127 m, with %08.5/  yz ), are made. Percentages in area of 

backward flow (flow reversal) at different cross-sections are evaluated and compared. This 

chapter also discusses the effects of the Froude number, ranging from 0.3 to 0.7. 

In chapter 6, we draw conclusions and make suggestions for future work.  
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Chapter Two Literature Review  

 

2.1   Experimental studies of subcritical flow in expansions 

Previously, a number of researchers have experimentally studied the problem of subcritical     

flow in expansions. Alauddin and Basak (2006) took the experimental approach to study flow 

separation in an expanding transition and further downstream. The purpose was to design an 

expanding transition with minimum flow separation and hence small energy head losses. The 

authors made measurements of velocity profiles at the inlet, in the expansion, and at the outlet of 

a sudden expansion, and determined a transition profile closely matching to the shape of 

separating streamlines in the expansion. Presumably, using the transition profile to build an 

expanding transition diminishes the energy-dissipating effects of eddies associated with flow 

separation.  

Alauddin and Basak (2006) reported that such an expanding transition gave an overall 

efficiency of 80.3%, representing an improvement from previous work. The overall efficiency is 

defined as the ratio of the potential-energy gain to the kinetic-energy loss as water flows through 

the transition. A higher efficiency means less energy head losses. Alauddin and Basak (2006) 

suggested that all other existent transitions had a lower efficiency because of their abrupt ending 

at the downstream end. They concluded that the provision of a smooth outlet by their transition 

profile was the key to virtually eliminate flow separation and eddy formation. 

 

2.2   Channel expansions fitted with a local hump 

Ramamurthy and Basak (1970) conducted an experimental study of flow separation in an 

expanding transition and the suppression of flow separation by fitting a simple hump at the 
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channel bottom. Flow through expansions would encounter an adverse pressure gradient, 

decelerate, and therefore separate from the sidewalls. As a result, turbulent eddies form along the 

sidewalls and cause flow energy dissipations. Ramamurthy and Basak (1970) showed that both 

the angle of divergence and the length of transition relative to the inlet dimension have effects on 

flow separation. They also showed that inserting a hump in the bottom profile could suppress 

flow separation. As they explained, the specific energy head remains the same before and after a 

horizontal transition, if the energy losses due to friction are negligible. In the presence of a 

hump, there is a loss of velocity head up to the crest of the hump, and a gain of velocity head 

after passing the crest.  

The results of Ramamurthy and Basak (1970) were based on measurements of depth and 

velocity at a number of selected sections including the entrance and exit sections of the 

transition. Without a hump, the flow became more turbulent and asymmetric at a larger Reynolds 

number, and even with a hump, the same asymmetry appeared at large Reynolds numbers, as 

revealed by velocity contours. Flow separation was reduced or eliminated after inserting a hump. 

In conclusion, expanding transitions fitted with a hump perform well in terms of flow energy 

conservation. The experimental investigation of Ramamurthy and Basak (1970) was limited to a 

couple of humps with specific crest heights. 

 

2.3   Flow patterns in a channel expansion 

2.3.1   Asymmetric behaviour of flow in symmetric expansion 

Some previous researchers of fluid flow in expansions have dealt with the case of sudden 

expansions (see e.g. Mehta 1979, 1981; Graber 1982; Nashta and Garde 1988; Manica and 

Bortoli 2003). The results reported in their studies highlighted the effects of different expansion 



7 
 

ratios on mean flow velocities, fluid pressure distributions and turbulence characteristics. 

Specially, the asymmetric behaviour of the flow field in perfectly symmetric expansions is very 

important. First, Abbott and Kline (1962) observed asymmetric flow patterns in their 

experimental investigations. They also found that the Reynolds numbers and turbulence 

intensities have no effect on flow pattern. Filetti and Kays (1967) found that the flow in 

rectangular channel with expansion ratios of 2.125 and 3.1 is asymmetric. 

 Also, Mehta (1979) conducted an experiment with a two-dimensional rectangular 

channel and found that the flow is symmetric at an expansion ratio of 1.25 and asymmetric at 

expansion ratios of 2.0, 2.5 and 3.0. He also found that the expansion ratio has an important 

effect on asymmetrical behaviour of channel expansions. According to Graber (1982), flows are 

symmetric in symmetric, two-dimensional rectangular channels with the expansion ratio of less 

than 1.5. He presented the cause of the asymmetric behaviour of the flow is a static instability of 

the flow system.  

The stability of the system depends on the forces acting on the system and their variation 

as the system undergoes a small deflection. If the change in stabilizing momentum reaction 

exceeds the change in the destabilizing pressure force, the system is stable. If not, the 

asymmetric behaviour of the flow would be expected. The results of the stability analysis of 

Graber (1982) show that channels have the limitation that the maximum Froude number is less 

than 0.2. The result also predicts instability for expansion ratios greater than 1.5 that is in good 

agreement with experimental observations. 

 Manica and Bortoli (2003) considered laminar flow with low Reynolds number in a 

symmetric sudden expansion (Figure 2.1). Their numerical results show that below a certain 

critical Reynolds number (about 50), the flow pattern is symmetric about the channel central 
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line; the two vortices in the expansion corners are more or less of the same size. The symmetric 

flow pattern becomes unstable at Reynolds number above the critical value. Pair of steady 

asymmetrical vortices appears as one recirculation region grows at the expense of the other. 

 

 

Figure 2.1   Streamlines computed for flow in a 1:3 symmetric sudden expansion. The Reynolds 

number Re is: (a) 40, (b) 50, (c) 80, and (d) 140. The flow patterns are symmetric when Re = 40 

in (a) and asymmetric when 50Re  in (b-d) (from Manica and de Bortoli, 2003).  

 

Nashta and Garde (1988) presented the results of analytical and experimental 

investigations in channels with a sudden expansion with expansion ratios of 1.5 to 3 for 

subcritical flow. The theoretical analysis assumed that the optimum shape for the transition is the 

shape in which the total energy loss, defined as the sum of the friction loss at the bed and loss 

due to expansion, is minimum. The functional relationship for the total loss is the objective 

function to be minimized for obtaining the optimum transition profile. To solve this problem, the 
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boundary condition at one end is relaxed and the solution is forced to satisfy the relaxed 

condition. 

For 
1

2

B

B
 ratios equal to or greater than 1.5, the flow is asymmetric (where 1B is the width 

of the main channel and 2B is the width of expanded channel). In such a case, the centerline of 

the jet does not coincide with the axis of expansion and the angle between the two lines, called 

the deflection angle, dependents on
1

2

B

B
. Nashta and Garde (1988) observed that velocity 

distributions tend to be more uniform as 
b

x
 increases (b is equal to

 
2

12 BB 
). The reason for this 

uniformity is the diffusion of turbulence generated at high shear zone, which has influence on 

velocity distribution. Nashta and Garde (1988) derived the mean velocity profile and separating 

streamline in the expansion and found that discharge and hence the Reynolds number have no 

effect on mean velocity and streamline.  

Nashta and Garde (1988) concluded that the transition Lebedev’s equation with bn

around 0.6 is preferable for determining the transition shapes because of the smaller separation 

zones and smaller head loss, where 1bn  is the highest degree in the normalized distance. The 

lengths of longer and shorter eddy can be predicted by Abbott and Kline’s curve (Abbott and 

Kline, 1962). An expression for energy loss in a sudden expansion was obtained from the 

continuity, momentum and energy equations. The length scales for velocity and shear 

distributions are functions of 
1B

x
and

1

2

B

B
, where x is the distance from the entrance of the 

transition. 



10 
 

Foumeny et al. (1996) carried out experiments and showed that the asymmetric 

behaviour of the flow is related to the Reynolds number.  Also, Mehta (1981) showed that the 

flow patterns become more asymmetric and unsteady with increasing expansion ratios. Smith 

and Yu (1966) observed in a rapid expansion that the fluid flowing from upstream follow one 

sidewall and large turbulent eddies exist between the flowing jet and the other sidewall. 

 

2.3.2    Flow characteristics in expansions 

Mehta (1979, 1981) showed that flow separation can take place on both sides of the expansion 

with the maximum velocity line deviating from the centerline of the expansion. Mehta (1979) 

investigated flow separation in two-dimensional, sudden rectangular channel with width ratios 

ranging from 1.25 to 3.0, using numerical model and experiments.  

 The experimental investigations covered both symmetric and asymmetric flow patterns. 

Mehta (1979) reported that flows in two-dimensional sudden expansions are asymmetric and 

unstable, with three-dimensional character when the expansion ratio is larger than 1.25; 

Reynolds number in the range of 0.5 to 5100.1   has no influence on the asymmetric behaviour 

of the flow. Also, unequal pressure occurs in eddy pockets on both sides of the axis of symmetry. 

All the important parameters of flow are influenced by the expansion ratio. 

Mehta (1981) conducted an experimental study of the behaviour of the mean flow pattern 

and the turbulent characteristics for two-dimensional flow through large, sudden expansions. The 

flow patterns become more asymmetric and unsteady with increasing expansion ratios, whereas 

the degree of turbulence does not change except the peak values develop earlier and decay faster 

compared to cases of low expansion ratio. 
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Seetharamiah and Ramamurthy (1968) presented the idea of using a triangular sill in a 

channel expansion to decrease separation and eddy formation downstream of the expansion. The 

sill increases the transition length, and therefore reduces the sharpness of deceleration. They 

assumed that the amount of energy losses over the sill is negligible and showed two stages of 

deceleration of subcritical flow in the specific energy diagram.  Seetharamiah and Ramamurthy 

(1968) also pointed out that the geometry of the sill can be chosen such that the theoretical 

retardation is nearly uniform along the sill, although it can be chosen to accelerate the flow up to 

the crest of the sill in canals where to reducing silting resulting from deceleration in the transition 

is very important. 

Swamee and Basak (1991) presented a design method for subcritical expansions for 

rectangular channels, in order to achieve a minimum head loss. By analysing a large number of 

profiles, they obtained an equation for the design of rectangular expansion, producing the 

optimal bed-width profile.  

Swamee and Basak (1992) discussed an analytical method for the design of expansions 

that connect a rectangular channel section with a trapezoidal channel section for subcritical flow. 

They suggested that flow separation in the expansion and the associated energy losses were 

considerably reduced through the optimal design of bed-width as well as side-slope profiles, on 

the basis of the momentum and energy equations. They claimed that the optimal profiles 

represent an improvement from the design of Vittal and Chiranjeevi (1983) in terms of reducing 

flow head losses. Swamee and Basak (1993) used the optimal control theory for the design of 

rectangular-to-trapezoidal expansions for gradually varied subcritical flow. They obtained 

equations for bed-width, side-slope and bed profiles based on the minimization of the transition 

head losses 
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Escudier et al. (2002) conducted an experimental study of turbulent flow in a sudden 

expansion with an expansion ratio of 4 and an aspect ratio of 5.33. A laser Doppler anemometer 

was used to measure mean flow velocity fluctuations and the Reynolds shear stress. They 

reported that the flow downstream of the expansion is asymmetric. They concluded that the 

effect of inlet of expansion is the reason for asymmetrical behaviour of flow. 

 

2.4   The effect of solid surface friction  

Babarrutsi et al. (1989) experimentally investigated re-circulating flows in a sudden open-

channel expansion, considering the frictional effects of the channel bed. Their measurements 

showed that the re-circulating flow rate and length decrease due to friction. They recommended 

the use of materials with insignificant roughness height when studying flow separation in 

expansions. 

 

2.5   Geometric shape of expansions 

As shown in Figure 2.2, channel expansions can be classified into five categories, namely, 

straight line expansions, square end expansions, cylindrical quadrant expansions, warped 

expansions, and wedge expansions. 

Hinds (1927) considered different empirical design methods for various geometries of 

flumes and siphons. The design criterion was to minimize the transition length and energy losses. 

To achieve this objective, Hinds (1927) assumed a water-surface profile as two reversed 

parabolas with equal length, merging tangentially with the upstream and downstream water 

surface. The energy principle was used to expresses the expanding width as a function of the 
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distance from the inlet of the expansion, with an assumed energy loss coefficient. Hinds (1927) 

concluded that an S-curved warped wall expansion is the most suitable one. 

Smith and Yu (1966) examined the results of Hinds (1927) and found that the S-curved 

warped wall expansion is inefficient results, and causes flow separation. Smith and Yu (1966) 

recommended a straight walled diverging expansion (Figure 2.2, “straight line” type).         

 

 

Figure 2.2   Channel expansion types (from U.S. Department of Transportation 1983, Chapter 4). 

All the expansions have geometry symmetric about the centerline. 

 

2.6   Energy loss analyse for expansions 

Using a rational method based on the concept of specific energy, Vittal and Chiranjeevi (1983) 

attempted to determine the boundary shape of expansions and flow conditions, with minimum 

head losses. Through experiments, they derived functions for the geometric features of 

expansions such as the bed width, bed elevation and sidewall slope. Their method was for 

designing a trapezoidal expansion. 
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When subcritical flow passes through an expansion, there is a decrease in velocity and an 

increase in pressure.  Without any change in bed level, the water surface will rise by a vertical 

distance that is equal to the amount of drop of velocity head between the entrance and exit of the 

expansion.  This means a conversion from kinetic to potential energy. However, this conversion 

is accompanied by energy losses. Mathematic analyses of energy losses in expansions of 

arbitrary geometry are difficult to perform. Therefore, it is a good alternative to find the energy 

losses for specific expansions and then extend the results by careful interpolations. Kalinske 

(1944) found that the rate of loss of energy in a 30° expansion is more than that in a sudden 

expansion. He found a major portion of the energy in the expansions is lost by direct conversion 

into heat at the high shear region in the fluid, and the total loss of energy is much higher than the 

turbulence energy. 

Using the energy principle, Skogerboe et al. (1971) expressed the head loss in an 

expansion as a function of the velocity head at the entrance of the expansion. However, there was 

a small head loss correction which will varied for each expansion. The head loss coefficient was 

expressed as a function of the inlet Froude number as well as the expansion ratio, instead of a 

function of the specific energy ratio, as suggested by other researchers.   

Skogerboe et al. (1971) argued that since a unique relationship exists between the head 

loss coefficient and specific energy ratio for any particular geometry of open channel expansion, 

and since a unique relationship between the specific energy ratio and the inlet Froude number, a 

unique relationship exists between the inlet Froude number and head loss coefficient for any 

particular expansion geometry.  This means that the Froude number is a factor to consider. 

As stated in Morris and Wiggert (1972, p. 185), the efficiency of energy conversion 

requires the flow profile to be continuous and as smooth as possible. Also, the profile should be 
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tangent to the water-surface curves in the upstream and downstream sections of the expansion.   

In summary, for the design of expansions, the water-surface profile is computed using the energy 

principle. The accuracy of computations relies on more or less guessed energy losses.  

 

2.7   Hydraulic behaviour of channel expansions 

An expansion with a large amount of change of the differential kinetic energy to potential energy 

is considered to be hydraulically efficient. In fact, the rise of the water surface or the recovery of 

energy head is less than the theoretical vertical distance (Hinds 1927). Smith and Yu (1966) 

considered expansions as gradual if the total central angle between sidewalls, is smaller than 

28°10'. Separation can occur when  reaches 19°, except at the expansion ratio less than 2. Note 

that  = 28°10' corresponds to a 1:4 ratio of flare; this is a rapid expansion. Except when the 

expansion ratio is between 1 and 2, separation cannot be avoided. However, reducing  to avoid 

flow separation in an expansion is not practical because the length of the expansion will increase 

and the cost to build such an expansion is high. 

According to Smith and Yu (1966), in a rapid expansion, flow from contracted section 

leans toward one of the sidewalls and a large turbulent eddy forms between the jet and the other 

sidewall. A straight wall flare is better than curved wall flare of equal length (Smith and Yu, 

1966), because when the curved wall flare is used, the central angle between wall tangents 

continuously increases, and the flow may separate on one side of the expansion when the central 

angle becomes too large.  They concluded that the same benefit could be obtained at less cost by 

using a shorter gradual expansion so that there is no justification for using the rapid expansion.  

 Kalinske (1944) found that the rate of loss of energy in a 30° expansion is more than the 

sudden expansion. The author indicated that a major portion of the energy in the expansion is 
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lost by a direct conversion into heat at the high shear region in the fluid, and the total loss of 

energy is much higher than the turbulence energy. 
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Chapter Three   Modelling Methodologies 

 

This study aims to model subcritical turbulent flow in the expansion section of an open channel. 

CFX software (ANSYS 2010a, 2010b) was used to create an appropriate model channel of 

different geometric configurations and to predict the three orthogonal components of water 

velocity along with the depth of flow in the model channel. This chapter begins with a 

description of the model domain. Then, the hydrodynamics equations and turbulence closure 

schemes are presented. This is followed by specifications of boundary and initial conditions. 

Next, strategies for the generation of finite volume meshes for flow computation are discussed. 

 

3.1 Model domain 

The model domain for flow computations consists of an upstream channel section, an expansion 

and a downstream channel section, with or without a hump fitted at the channel bottom of the 

expansion section (Figure 3.1). In some cases, the model domain allows for an additional 

extension channel section at downstream. The length of the expansion section matches that of an 

existent physical model in the Hydraulics Lab at Concordia University; experimental data from 

the physical model are available for comparison. 

The velocity and pressure fields of steady state are computed for given conditions of 

inflow at the upstream end and outflow at the downstream end of the model channel. Inclusion of 

an upstream channel section of efficient length allows the development of realistic flow profiles 

or vertically distributed flow velocities that approach the expansion, whereas inclusion of a 

downstream channel section is helpful for removing possible end effects, which are artificial, on 

the computed flow field in the expansion. 
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(a) Elevation 

 

(b) Plan view 

 

Figure 3.1   Geometry of the model channel, showing dimensions of various channel sections 

and bottom configurations. Uniform water flow enters (arrow) the model channel from the 

relatively narrow channel section. 
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3.2    Reynolds-averaged continuity and momentum equations 

3.2.1      Continuity equation 

Let (u, v, w) denote the three orthogonal components of the instantaneous velocity field in the 

Cartesian coordinates (x, y, z). The positive direction of the z-axis points upward. For an 

incompressible fluid, the equation of continuity is given by 
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                                                                                                         (3.1) 

Open channel flows are always fluctuating or turbulent; practically it is extremely 

difficult to resolve the instantaneous flow field. One way to deal with turbulent flow is to split 

the instantaneous velocity into mean components (U, V, W) and fluctuations (u, v, w) through 

the so-called Reynolds decomposition, expressed as 

uUu            (3.2) 

vVv            (3.3) 

wWw            (3.4) 

Substitutions of Eqs. (3.2)-(3.4) into Eq. (3.1) give:
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The operation of the Reynolds time average gives rise to
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Since the averages of velocity fluctuations are zero, resultant equation become the Reynolds-

averaged equation of continuity
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The three Reynolds-averaged velocity components (U, V, W) are unknowns. 

 

3.2.2      Momentum equations 

Let ρ denote the density of water, t denote the time,  denote the dynamic viscosity of water, and 

p denote the instantaneous pressure field. The momentum equations for open channel flow can 

be written as  
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On the left hand side of the above equations, the first term is a transient term that describes the 

local rate of change of the velocity, and the remaining three terms are convection terms. On the 

right side of the equations, there are a pressure gradient term, and three molecular diffusion 

terms. It is assumed that the fluid is incompressible, and therefore, the density of water is 

constant with respect to time and space. 

Because of the difficulty in dealing with the instantaneous velocity field, the Reynolds 

decomposition is applied to Eqs. (3.8)-(3.10). Similar to the instantaneous velocity components 

decomposed in Eqs. (3.2)- (3.4), the instantaneous pressure p is split into a mean value P and a 

fluctuation p, i.e. 

pPp            (3.11) 

Substituting Eqs. (3.2)-(3.4) and (3.11) into (3.8)-(3.10) and taking the Reynolds average yield 
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In these equations, there are four unknowns: the Reynolds-averaged pressure field P and
 
the 

three unknown Reynolds-averaged velocity components (U, V, W). 

In addition, the Reynolds average operation produces six extra unknown
 

quantities 

involving velocity component fluctuations. These quantities are the so-called specific Reynolds 

shear stresses: uuxx
 , vuxy

 , wuxz
 , uvyx

 , vvyy
 , wvyz

 , 

uwzx
 , vwzy

  and wwzz
 , some of which are identical. These unknown shear 

stresses must be modelled, giving rise to a turbulence closure problem. 

 

3.3     Turbulence models 

3.3.1    The concept of turbulent eddy viscosity 

In this study, turbulence closure makes use of the concept of turbulent eddy viscosity t. The 

specific Reynolds shear stresses are related to the mean flow strain rates using the Boussinesq 

approximation: 
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xxtxx S 2 ,
 

xytxy S 2 , 
xztxz S 2      (3.15a,b,c) 

yxtyx S 2 ,
 

yytyy S 2 , 
yztyz S 2      (3.16a,b,c) 

zxtzx S 2 ,
 

zytzy S 2 , 
zztzz S 2      (3.17a,b,c) 

The mean flow strain rates are given below 
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These terms can readily be evaluated once the Reynolds-averaged velocity components. The 

eddy viscosity is obtained from the k-ω turbulence model. 

 

3.3.2    The standard k-ω model 

For open channel flow applications, a variety of turbulence models have been developed, each 

with certain advantages and disadvantages. The choice of a specific turbulence model depends 

on the type and nature of the flow field to be simulated and the desired accuracy of results. The 

k-ω model is one of the most commonly used turbulence models.  

This model is the first two-equation model of turbulence proposed by Kolmogorov 

(1942). It is a two equation model; i.e. it includes two extra transport equations to represent the 

turbulent properties of the flow. This allows a two equation model to account for history effects 

like convection and diffusion of turbulent energy. Kolmogorov (1942) chose the kinetic energy 

of turbulence, k, as one of his turbulence parameters, and modeled the partial differential 

equation that governs the behaviour of k. His second parameter was the dissipation per unit 

http://www.cfd-online.com/Wiki/Turbulence_modeling
http://www.cfd-online.com/Wiki/Two_equation_models
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turbulence kinetic energy i.e. 
k


. This is the so-called ω. In his k-ω model, ω satisfies a partial 

differential equation similar to the equation for k. Kolmogorov’s justifications for introducing the 

k-ω model are: 

 Because k already appears in
ijijtij kS 

3

2
2  , it is conceivable that kt  . 

 The dimensions of eddy viscosity are
s

m 2

, whereas the dimensions of k are 
2

2

s

m
. 

 Therefore, 
k

t
 has the dimension of time. 

 Turbulence dissipation, ε, has dimension of
3

2

s

m
. 

 Consequently 
k


has a dimension of

s

1
. 

 Thus, we can close 
ijijtij kS 

3

2
2   and the transport equation for k by introducing a 

variable with dimension s or
s

1
. 

Given that the most common processes in fluid motion are unsteadiness, convection, 

diffusion, dissipation, dispersion and production, Kolmogorov (1942) combined the physical 

processes with dimensional arguments and proposed a transport equation for ω as below         
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where β and ζ are two new closure coefficients. This equation is not written in terms of 2 . In 

fact, 2 is the mean square vorticity of the “energy containing” eddies and k is the kinetic energy 
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of the motion induced by this vorticity. Therefore, it is better to write the equation in terms of 

2 . A production term was added to the equations later by other researchers. The k-ω model 

equations, closure coefficients and relationships are as follows: 

Kinematic eddy viscosity is given by 
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T                                                                                                                        (3.22) 

where  
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It means that the eddy viscosity depends on ~  rather than ω and this makes the eddy viscosity a 

function of k and ω and effectively, the ratio of the turbulence-energy production to the 

turbulence-energy dissipation. 

The two model equations are given by 
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where Pr is the turbulence production term, given by 
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Closure coefficients and auxiliary relations are as below 
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The two tensors in Equation (3.28) are the mean rotation (vorticity) and mean-strain-rate tensors. 

In Equation (3.24), the cross diffusion term,
jj

d

xx

k







 




, is added to the equation to 

remove the original model’s sensitivity to the free stream value of ω, and to remove the 

sensitivity to the imposed boundary condition. This is good for applications to wall-bounded 

flows. The reciprocal of ω is the time scale on which dissipation of turbulence energy occurs. 

While the actual process of dissipation takes place in the smallest eddies, the rate of dissipation 

is the transfer rate of turbulence kinetic energy to the smallest eddies. Therefore, the dissipation 

rate is set by the properties of the large eddies (scales with k and l). Therefore, ω is indirectly 

associated with the dissipative process. 
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3.4    The volume of fluid method 

The interface between the gas and liquid, where the difference in density between these two 

phases is quite large, is considered as a free surface. The inertia of the gas could usually be 

neglected due to a low density. Therefore, the only influence of the gas is the pressure acted on 

the interface and it is not necessary to model details of the gas phase. Hence, the free surface is 

simply modelled as a boundary with constant pressure.  

The volume of fluid method is used to determine the shape and location of free surface 

based on the concept of a fractional volume of fluid. A unity value of the volume fraction 

corresponds to a full element occupied by the fluid (or liquid), and a zero value indicates an 

empty element containing no fluid (or gas). A value of volume fraction between zero and one 

means that the corresponding element is the surface (or partial) element. The equation of the 

volume of fluid method for determining the shape of the free surface is given by 
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where F is the volume fraction. 

 

3.5     Boundary conditions 

The appropriate use of boundary conditions is required to fully define the fluid flow problem. 

The external boundaries of the model domain are the inlet, outlet, sidewalls and channel-bed. 

 

3.5.1      Inlet condition 

Inlets are used mostly for regions where inflow is expected. At the inlet where the fluid flows 

into the domain (Fig. 3.1), the imposed mass and momentum conditions is the normal speed vn. 

The magnitude of the inlet velocity is specified and the direction is taken to be normal to the 
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boundary. The normal speed is steady and uniform. For instance, vn equals 0.78 m/s for some 

simulations. Also, the relative pressure at the inlet is specified 

   zgFP waw  1         (3.31) 

where the subscripts w and a indicate water and the air, respectively, g is gravity, η1 is the 

elevation (above the channel bed) of the free surface at the inlet, and z changes from zero at the 

channel bed to η1 at the free surface. A value for η1 is given (e.g. η1 = 0.25 m for some 

simulations). 

At the inlet, the turbulence intensity and turbulence length scale are specified. The 

turbulence intensity is given in terms of a fractional intensity (5%), and the turbulence length 

scale is taken to be equal to η1. 

 

3.5.2      Outlet condition 

At the outlet where the fluid leaves the model domain (Fig. 3.1), the appropriate condition to 

impose is the relative static pressure, given by 

   zgFP waw  2         (3.32) 

where η2 is the elevation (above the channel bed) of the free surface at the outlet, and z changes 

from zero at the channel bed to η2 at the free surface. Usually, η2 must be known as part of the 

problem definition. For the case of flows in expansions, the elevation is not known in advance. 

However, it is sufficient to provide an estimate of η2 using the energy principle (Henderson 

1966) for the purpose of determining the distribution of the relative static pressure with depth 

below the free surface. 
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3.5.3      Solid surface condition 

Channel sidewalls and the channel bed (Fig. 3.1) are solid surfaces where conditions to be 

imposed can be a no-slip wall, a free slip wall or specified shear. In this study, the no-slip wall 

condition is applied. The flow near to the no-slip wall is modelled using wall function approach. 

Based on the wall function approach , the near wall tangential velocity in the log-law region is 

related to the wall-shear-stress , w , by means of a logarithmic relation. The logarithmic relation 

for the near wall velocity is given by 

          Cy
u

U
u t   ln

1



                                                                                                   (3.33) 

where  

      


 yu
y


 ,                                                                                                                      (3.34) 
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wu                                                                                                                      (3.35) 

u is the near wall velocity , tU  is the known velocity tangent to the wall at a distance of y

from the wall, u is the friction velocity, 
y is the dimensionless distance from the wall, w  is the 

shear stress of the wall, is the von Karman constant, and C is the log-layer constant that 

depends on the wall roughness. 

 

3.6     Initial conditions  

Let wh denote the initial depth of water. Initially, the volume of fraction for air is given by a step 

function  wa hzf   , where z is the vertical coordinates pointing upward with z = 0 at the 

channel bed. The step function  gives 1af  for 0whz  , and 0af  for 0 whz . The 
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initial volume of fluid for water is aw ff 1 . Initially, the relative pressure field, P, in water is 

hydrostatic or  zhgP ww    and is uniformly zero in the air (the pressure in the air is set to 

zero). Thus, the initial conditions for the pressure field and the volume fraction are consistent. 

 

3.7      Finite volume meshes 

It is desirable to use fine meshes for flow computations in order to capture detailed flow features 

such as eddies and velocity shears. Meshes were generated on the basis of a number of criteria: 

First, meshes are fine enough in order to resolve rapid spatial variations in the velocity fields, 

especially near wall boundaries. This requirement is satisfied by performing inflation on meshes 

adjacent to solid walls where eddies and velocity shear are expected to appear (Fig. 3.2). 

Second, the structure of meshes used for flow computations must not affect the 

computational results. In other words, the model results produced should be independent of the 

configurations of the meshes used. The strategies used to satisfy this requirement were to several 

mesh systems of progressive fine sizes (e.g. 10*10
-3 

m, 7*10
-3

 m, 5*10
-3

 m and 4*10
-3 

m) and to 

carry out model runs using the different meshes under identical flow conditions. The 

independence of the computed flow field for these runs was verified through comparisons of the 

results among these runs. 

Third, the total number mesh points must not be excessively larger, resulting in 

prohibitively high computation cost. An excessively large number of mesh points will also create 

difficulties in the post processing of model output. 
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Figure 3.2   A sample finite volume mesh system used for flow computations, showing the 

inflation of meshes near all solid walls. The solid surface on the top is set to be slippery. 

 

3.7.1   Determination of the near-wall mesh spacing 

As described in ANSYS (2010b), for fluid flow of characteristic velocity Uo over a flat surface 

of characteristic length L, the Reynolds number can be defined as: 



LU
L

Re           (3.36) 

An empirical correlation between the wall shear stress coefficient cf and the Reynolds number is 

given by 

7/1Re027.0  xfc          (3.37) 

where x is the distance along the plate from the leading edge, and the Reynolds number is based 

on x, i.e. 



xU
x

Re           (3.38) 
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For near-wall spacing estimate, the definition of the dimensionless wall distance y
+ 

is 

given by 


 yu

y


            (3.39) 

where u is the friction velocity, which is unknown, y is the mesh spacing between the wall and 

the first mesh point away from the wall. If we can eliminate the unknown friction velocity, for 

target values of y
+
, we will be able to determine y. Using the definition 

2
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we can eliminate the friction velocity in Eq. (3.39) to yield 
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         (3.41) 

The wall shear stress coefficient cf in equation (3.41) can be eliminated using the 

empirical correlation given in Eq. (3.37), to give 
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yy x

7/1Re
027.0

2
        (3.42) 

Using the definition in Eq. (3.36), we may rewrite Eq. (3.42) as 

L

xyLy
Re

1
Re74 14/1         (3.43) 

Assume that Lx C ReRe  , where C is some fraction. If C is assumed to be 0.5 with C
1/14 

 0.952, 

Eq. (3.43) is reduced to 

14/13Re9141.7  LyLy         (3.44) 

Except for very small Rex (very close to the leading edge of the flat surface), Eq. (3.44) is 

suitable for estimates of the near wall mesh spacing. 
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For target values of y
+
, the mesh spacing y can be determined. Some sample 

calculations are shown in Table 3.1. Values for the characteristic quantities used in these 

calculations are: L = 0.30 m (the approximate length of the expansion in question) and Uo = 0.70 

m/s (the approximate normal speed of water flow at the inlet). The viscosity of water is taken as 

ν = 10
-6

 m
2
/s. The Reynolds number [Eq. (3.36)] is ReL = 2.1×10

5
. 

 

Table 3.1   Mesh spacing (Δy) for various target values of the dimensionless wall distance (y
+
). 

 

 

The calculations shown in Table 3.1 provide some guidelines for generating appropriate 

meshes. It is well established that the wall function of the form 

  Cy
u

U
 ln

1



         (3.45) 

is valid for the wall distance y
+
 in the range of 30 < y

+
 < 400. In the equation, U denotes the 

tangential velocity parallel to the solid wall; κ (= 5.5) is the von Karman constant; the wall 

distance is defined as  /yuy  , where y measures the normal distance of a point in question 

from the solid wall. From Table 3.1, we make several observations: First, if the wall function 

[Eq. (3.45)] is to be used as the condition at the solid wall, it would be acceptable to place the 

first mesh point at a normal distance of about 1*10
-3

 m from the solid wall. This is because the 

corresponding y+ value is between 30 and 40, and the first mesh point is within the logarithmic 

layer where Eq. (3.45) is valid. Note that if the first mesh point is placed at a normal distance of 

y+ 1 10 20 30 40 50 60 70 80 90 100 110 120

y (mm) 0.03 0.3 0.6 0.8 1.1 1.4 1.7 2.0 2.2 2.5 2.8 3.1 3.4

y+ 130 140 150 160 180 200 220 240 260 280 300 320 340

y (mm) 3.6 3.9 4.2 4.5 5.1 5.6 6.2 6.7 7.3 7.9 8.4 9.0 9.5
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less than 0.3*10
-3

 m, the corresponding y+ value is less than 11, meaning that the first mesh 

point is in the viscous sublayer. 

Second, if meshes are created using 10*10
-3

 m as the size, there is a great uncertainty 

whether or not the first mesh point away from the wall is inside the logarithmic layer, since the 

corresponding y+ value is larger than 340. The first mesh point is at best in the outer edge of the 

logarithmic layer, and there will not be enough mesh points inside the logarithmic layer for the 

k-ε model to work accurately. Meshes created using 7*10
-3

 m as the size give a slight 

improvement from 10*10
-3

 m meshes; the corresponding y
+
 value of the first mesh point is still 

too high, being about 250. 

Third, if meshes are created using 5 or 4*10
-3

 m or smaller as the size and if subsequent 

inflation is performed on the meshes adjacent to the solid wall, the locally refined meshes for 

flow computations should contain several mesh points inside the logarithmic layer due to the 

presence of the wall. Also, the first mesh point from the solid wall of the refined meshes is about 

1*10
-3

 m away from the wall, and the corresponding y
+
 value is between 30 and 50. This makes 

it ideal to apply the wall function [Eq. (3.45)] as the boundary condition at the solid wall. The 

independence of model results on the meshes (4*10
-3

 m, 5*10
-3

 m, 7*10
-3

 m and 10*10
-3

 m) will 

be verified. 

 

3.7.2   Estimates of boundary layer thickness 

Although we do not intend to resolve the boundary layer due to the presence of a solid wall, it 

would be constructive to obtain estimates of the boundary layer thickness δ. On the basis of the 

correlation
7/6Re14.0Re x , with






U
Re , δ can be estimated as 
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           (3.46a,b) 

As in the calculations of near-wall mesh spacing [Eq. (3.43)], the Reynolds number Rex is some 

fraction of ReL. If we assume that the fraction is 50%, Eq. (3.46b) will be simplified to 

7/1
Re0773.0


 LL          (3.47) 

which gives an estimate of δ = 4*10
-3 

m, for L = 30*10
-2 

m (the approximate length of the 

expansion), Uo = 0.70 m/s (the appropriate normal speed at the inlet), and  =10
-6

 m
2
/s (the 

viscosity of water). 

If Δy is set to 4*10
-3

 m in Eq. (3.44), the corresponding y+ value is between 140 and 150. 

Eq. (3.47) appears to give conservative estimates or underestimates of δ based on

7/6Re14.0Re x . Importantly, meshes created using 4*10
-3

 m as the size with subsequent 

inflation are expected to satisfy the requirement that the several mesh points are inside the 

logarithmic layer; this not only justifies the use of the wall function as the condition at the wall 

but also provides the condition for the turbulence model to work properly. 
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Chapter Four   The Energy Principle  

 

4.1   Energy balance for flow in expansions 

In this study the expansion connects a cross section of rectangular shape with a smaller width to 

a cross section of rectangular shape with a larger width. Figure 4.1 shows the plan view of the 

channel expansion. The width of the expansion changes from 2b  at its upstream end (CS2) to 3b  

at its downstream end (CS3) .With the assumption of hydrostatic pressure, an energy equation 

could be written between sections CS2 and CS3, as below: 

Lhy
g

v
zy

g

v
z  3

2

3
32

2

2
2

22
                                                                                  (4.1) 

where g is the gravity; 2y  and 
3y are the depth of flow ; 2v  and 

3v  are the cross sectional mean 

flow velocity; 2z  and 
3z  are the height of the bed above datum ;

 Lh is the energy loss in the 

expansion; the subscripts 2 and 3 refer to CS2 and CS3 , respectively. 

 

 

Figure 4.1   Plan view of a channel expansion. 

 

 =Angle of divergence 
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If the channel bed is at the same level, 2z  and 
3z are the same. Also if Lh is neglected, 

Equation (4.1) will be simplified  

g

v
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g

v
y

22
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3
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2

2
2                                                                                                               (4.2) 

Equation (4.2) shows that the flow at the two cross sections has the same specific energy. The 

term Lh in equation (4.1) is the energy loss in the expansion, including the energy loss fh   due to 

friction at the channel bed and on the sidewalls, and the energy loss eh  due to flow separation and 

eddy motions. eh is expected to be much larger than 
fh .Therefore, 

fh can be neglected. 

eL hh                                                                                                                            (4.3) 

The energy loss, eh , can be evaluated from 
























g

v
y

g

v
yhe

22

2

3
3

2

2
2                                                                                          (4.4) 

For the special case where the channel is rectangular, the discharge per unit width of 

channel; q, is related to the depth of flow, y, and flow velocity, v, through the equation of 

continuity,  

2
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v  ,                                                                                                                                     (4.5) 
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Equation (4.4) can be rewritten as 
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This equation is used for obtaining energy loss in the expansion due to flow separation and eddy 

motions. An energy loss coefficient can be defined as 

 2

2

2

2 2/ gyg

h
k e

E                                                                                                               (4.8) 

 

4.2 The concept of specific energy 

The concept of specific energy is very important in the study of open-channel flows. Using the 

channel bed as datum, the specific energy, E, is defined as 

g

v
yE

2
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                                                                                               (4.9)  

For the special case where the channel is rectangular, the equation of continuity is given by 

vy
b

Q
q              (4.10) 

where Q is the total discharge ; b is the width of the channel. The specific energy equation (4.9) 

can be rewritten as 

2

2

2gy

q
yE              (4.11) 

Thus, for a given value of q, we have 

g

q
yyE

2
)(

2
2   = constant          (4.12) 

 

4. 3     E-y curve 

Consider water flow at two cross sections (CS2 and CS3) in an expansion, the corresponding 

per-unit-width discharges are q2= Q/b2 and q3= Q/b3. Since b3 > b2, we have q3 < q2. The state of 
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flow at cross sections 2 and 3 is represented by the two E-y curves (marked by q2 and q3, 

respectively). 

 The so-called E-y curve (Figure 4.2) shows how E will vary with y for a given value of q 

in a horizontal channel. More interestingly, as water flows through a channel expansion, the state 

of flow will change; this is equivalent to moving from one specific energy curve to another.  

If there is no energy loss between cross sections 2 and 3, i.e. when the specific energy at cross 

sections 2 and 3 is the same (represented by the vertical line). The depth of flow, y, (dashed, 

horizontal lines) will increase from upstream (the E-y curve marked by q2) to downstream (the 

E-y curve marked by q3).   

 

 

Figure 4.2   The specific energy curve and its application in the expansion problem. 

 

4.4     Critical flow and the concept of the Froude number  

The concept of critical flow is graphically illustrated in the E-y curve (Figure 4.2). For a given 

per-unit-width discharge, the flow is critical when the specific energy of flow is at a minimum 
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level. In a channel expansion when flow at high velocity discharges into a zone of lower 

velocity, a rather abrupt rise occurs in the flow surface. The rapidly flowing flow is abruptly 

slowed and increases in height, converting some of the flow's initial kinetic energy into an 

increase in potential energy (Henderson, 1966). 

The specific energy equation (4.9) is valid only for small slopes (< 10%), where the flow 

has negligible acceleration in the vertical and hence the pressure distribution is hydrostatic. The 

velocity coefficient is usually quite high, between 0.95 and 0.99 for the rivers. Since the effects 

of the velocity variations across the flow section are neglected, the velocity coefficient, , is 

assumed to be equal 1.0 in this study. This assumption implies that surface waves with high 

amplitudes are not generated and propagate during the expansion. This could be ensured when 

the Froude number is less than one at upstream, however, for large Froude numbers, the presence 

of such surface waves is inevitable. 

The Froude number, rF , is defined as the ratio of actual water velocity, v, to surface wave 

celerity, gy .The Froude number at cross section CS1(Figure 4.1) is defined as  

1

1

1
gy

v
Fr                        (4.13) 

The Froude number is only defined for channel sections that have a free surface. When 

Fr < 1, the flow is said to be subcritical; when Fr > 1, the flow is said to be supercritical; when 

Fr = 1, the flow is said to be critical.  

On the specific energy diagram (Figure 4.2), the parts corresponding to subcritical and 

supercritical flows are divided by the line 
Cc EY

3

2
 (the crest point C), below which we have 

supercritical flow (the lower limb), whereas above which we have subcritical flow (the upper 
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limb). For critical flow denoted by the subscript c, the depth of flow, flow velocity and the 

specific energy are interrelated as 

cc gyv                         (4.14) 

cc Ey
3

2
                      (4.15)  

 

4. 5 Flow over a step in the vertical (hump)  

Consider an open channel of constant width but with a change in the bed level such as an upward 

step and divergence angle shown in Figure 4.1. If  is zero, the per-unit-width discharge will 

not change (Figure 4.3) .In Figure 4.3, CS2 and CS3 are cross sections, upstream of the vertical 

step and at the vertical step, respectively.  

The behaviour of flow over a step in the vertical can be analyzed using the energy 

principle, written between cross sections CS2 and CS3  

3322 EzEz                                                                                                          (4.16) 

where 2z and 3z  are the bottom elevations at the two cross sections, respectively. The maximum 

permissible height of step, 13 zzz  , is equal to the difference energy, 2E , and the minimum  

possible specific energy   cEE 
min3  for the given per-unit-width discharge, q. Consider 

subcritical flow, represented by point A on the upper limb of the specific energy curve  (Figure 

4.4). Subcritical flow approaches the vertical step (hump). 
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Figure 4.3   Water surface profile for flow over a vertical step (hump) fitted on the bottom of a 

uniform channel. The depth of flow decreases over the hump on the basis of the energy Principle. 

From cross section CS 2 to cross section CS 3, the bed level rises and the water pressure 

decreases; from cross section CS 3 toward downstream, the water pressure increases while the 

bed level drops. 

 

 

Figure 4.4   Specific energy diagram for a channel expansion. 

 

∆zmax 
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Point C represents critical flow with the minimum specific energy for the given per- unit -width 

discharge. maxz is the maximum permissible difference between the two elevations or the 

distance between two vertical lines that passes from point A and point C (Figure 4.4) . 

We assume a point B on the upper limb of the same E-y curve on which point A is. The 

distance between the vertical lines that passes through points A and B shows the elevation 

difference, z , being smaller than the maximum permissible value maxz . Point B represents the 

flow over the hump and the ordinate of this point shows the depth of flow over the hump. The 

depth of flow decreases over the hump. 

 

4. 6 Flow in a combination of a horizontal expansion and a vertical step 

A vertical step (Figure 4.3) causes the depth of the flow to decrease, whereas an expansion 

(Figure 4.1) causes the depth of flow to increase. The effects of a hump and expansion have been 

discussed separately. Now, we consider the effects of an expansion fitted with a hump.  

The expanding width and rising bottom (hump) work against each other. A channel 

expansion causes the flow to decelerate and the depth of flow to increase, whereas a hump 

causes the flow to accelerate and the depth of flow to decrease. With a combination of two 

geometric factors, at high Froude numbers, the former is more influential, whereas at low Froude 

numbers, the latter has dominant effects. 

 

 4.7 Limitations on the use of the energy principle 

There is a limitation on the use of the energy principle in short channel expansions. First of all, 

the assumption of zero energy head losses along the length of expansions is questionable. There 
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are energy losses not only due to friction on the sidewalls and at the channel bottom, but also due 

to eddy motions associated with flow separation.  

Second, the depth of flow as well as flow velocity are never uniform across the section 

immediately following the expanding section, although, after reaching a certain point at some 

distance downstream, uniform flow conditions can be established again. The second limitation is 

less problematic if one is interested mainly in the cross-sectionally averaged flow velocity and 

the depth of flow. However, it is necessary to pay a great attention to this limitation when one 

deals with flow in boundary layers very close to the sidewalls and the bottom. 
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Chapter Five   Results  

 

In this chapter we present and compare results for flat bottom channels and channels with a 

hump. Different flow quantities including the velocity field, vorticity contours at different 

depths, and u-velocity contours at different cross-sections in the expansion length are compared. 

We consider channel expansions with different angles of divergence, different Froude numbers, 

and different hump crest heights. Table 5.1 shows the geometric properties of all channel 

expansions. We examine regions of flow and eddy motions in flat bottom channels, and the 

effect of humps on reducing the separation region and on the velocity field in the expansion and 

further down. We further examine the effects of the Froude number varying between 0.3 and 0.7. 

In all cases, subcritical flows, i.e. flows with Froude numbers less than unity are considered.  

 

5.1  The model channel 

The most important section of the channel is the expansion, without or with bottom variation 

(hump). The specifications of the expansion for different runs and the specifications of the hump 

fitted in the expansion are listed in Table 5.1. The expanding width and rising bottom (the hump) 

work against each other. The expanding width causes the flow to decelerate and the depth of 

flow to increase; whereas the rising bottom causes the flow to accelerate and the depth of flow to 

decrease. At low Froude numbers, the rising bottom is dominant; whereas at high Froude 

numbers the expanding width is dominant parameter. Therefore, we expect that humps will be 

more effective for flows with lower Froude numbers.   
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Table5.1   Geometric properties of channel expansions used in 13 model runs, for which the 

Froude number is equal to 0.5.These parameters, include upstream channel width (B1), 

downstream channel width (B2), upstream channel length (L1), expansion length (L2), 

downstream channel length (L3), expansion angle (α), downstream extension length (L4), hump 

crest height (H), and mesh resolution(∆x). 

Run B1 (m) B2 (m) L1 (m) L2 (m) L3 (m) α   (   ) L4 (m) H (m) ∆x (m) 

FB1 0.172 0.290 0.300 0.3233 0.300 10.34 0 0 0.010 

FB2 0.172 0.290 0.300 0.3233 0.300 10.34 0 0 0.007 

FB8 0.172 0.290 0.300 0.3233 0.300 10.34 0 0 0.005 

FB3 0.172 0.290 0.300 0.3233 0.300 10.34 0 0 0.004 

FB4 0.172 0.290 0.300 0.3233 0.300 10.34 0.150 0 0.004 

FB5 0.1996 0.2852 0.300 0.3233 0.300 7.54 0.150 0 0.004 

FB6 0.2282 0.2852 0.300 0.3233 0.300 5.04 0.150 0 0.004 

HQ1 0.172 0.290 0.300 0.3233 0.300 10.34 0.150 0.00635 0.004 

HH1 0.172 0.290 0.300 0.3233 0.300 10.34 0.150 0.0127 0.004 

HQ2 0.1996 0.2852 0.300 0.3233 0.300 7.54 0.150 0.00635 0.004 

HH2 0.1996 0.2852 0.300 0.3233 0.300 7.54 0.150 0.0127 0.004 

HQ3 0.2282 0.2852 0.300 0.3233 0.300 5.04 0.150 0.00635 0.004 

HH3 0.2282 0.2852 0.300 0.3233 0.300 5.04 0.150 0.0127 0.004 

 

Mehta (1979) reported that in pipe flow experiments, flows in a two-dimensional sudden 

expansion are asymmetric and unstable, with three-dimensional character, when the expansion 

ratio is larger than 1.25. In this study, the ratios for different angles are shown in Table 5.2. The 

expansion with  34.10 is considered as a gradual expansion because it satisfies the condition 
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  25.0/5.0 213  LBB
 

(see Chapter 4, Figure 4.1). Nevertheless, since for the angle of 

divergence of 34.10 , we have 5.168.1/ 13 BB , the expansion is expected to be more 

influential to flow energy losses than the condition (the Froude number) of the upstream flow, as 

is the case for an abrupt expansion. However, for smaller angles of divergence, i.e.  54.7  

and  04.5 , the gradual expansion condition as expressed above is satisfied and therefore 

these expansions are considered as gradual expansions. 

 

Table 5.2   The width ratio for different divergence angles. 

α (   ) Width ratio (
1

3

B

B
) 

34.10  1.68 

54.7  1.42 

04.5  1.25 

 

In order to make comparisons between channel expansions without and with a hump, 

simulations were carried out for channel expansions with a flat bottom and for expansions fitted 

with humps with a crest height of 1/4” (or 0.00635 m, with %54.2/  yz , where yz /  is the 

ratio of the crest height of hump to the height of water at the entrance of the channel) and 1/2" (or 

0.0127 m, with %08.5/  yz ). An upstream flow depth of 0.250 m is considered for all the runs 

listed in Table 5.1.  



47 
 

The channel expansion of 0.3233 m in length is short, relative to its width (ranging from 

0.2852 to 0.290 m) at the downstream end.  For short expansions frictional losses of energy head 

are not significant, compared to those caused by potential flow separation. According to 

laboratory experiments (Najafi-Nejad-Nasser, 2011), a 10% energy loss is assumed. Based on 

this assumed energy loss, elevations at the downstream end of the expansion are found and listed 

in Table 5.3 for the Froude number of 0.5. Table 5.3 also contains other parameters and 

boundary specifications of the simulated channels. 

The flow simulations consider two fluids: air (at 25º C) and water (with density of 997 

kg/m
3
). The air interacts with water at the free surface where proper boundary conditions are 

given in terms of pressure and volume fraction. The volume fraction of air is 1 above the free 

surface and 0 below, whereas the volume fraction of water is 0 above the free surface and 1 

below. At the free surface, the pressure is equal to the atmospheric pressure. Below the free 

surface, hydrostatic pressure is assumed. 

The solution procedures in all the model runs allow a minimum of 100 iterations and a 

maximum of 200 iterations, with a convergence criterion set to10
-5

. 

We study two types of hump, with a crest height of 1/4” (or 0.00635 m, with

%54.2/  yz ), and 1/2" (or 0.0127 m, with %08.5/  yz ), respectively, for different angles of 

divergence. Figure 3.1 shows the position of the hump fitted on the channel bottom. The design 

of the hump is as follows: 

The hump begins from the entrance to the expansion. The bottom of the channel 

expansion has a slope of slightly less than 2% and 4% for 1/4" (or 0.00635 m, with

%54.2/  yz ), and 1/2" (or 0.0127 m, with %08.5/  yz ) humps, respectively, which is steep 
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Table 5.3   Parameters and boundary specifications for nine model runs with the Froude number 

of 0.5. Solid walls are taken as non-slippery. Turbulence model used is k-ω. 

Parameter FB4 HQ1 HH1 FB5 HQ2 HH2 FB6 HQ3 HH3 

Upstream flow depth  (m) 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 

Downstream flow depth (m) 0.270 0.270 0.270 0.265 0.265 0.265 0.260 0.260 0.260 

Water density (kg/m3) 997 997 997 997 997 997 997 997 997 

Normal flow speed at inlet (m/s) 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 

Turbulence fractional intensity at 

inlet 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Eddy length scale at  inlet (m) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Physical timescale (s) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 

compared to typical slopes in natural river channels. The channel bottom is raised linearly, 

reaching its crest height at the exit of the expansion, and then drops linearly with a favourable 

slope equal to 2% and 4%, down to the bottom level at the downstream end of the model 

channel. Variations in the channel bottom are almost symmetric above the downstream end of 

the channel expansion. 

The effects of a longitudinal slope are not important in this study, where the expansions 

considered are short. Long expansions are expensive to build, although they have smaller angles 

of divergence and are less likely to trigger flow separation. In short expansions, flow mainly 

changes in response to changes in channel width at different cross-sections and therefore varying 

channel width is a more influential parameter than the longitudinal slope. Therefore, we focus on 

the effects of different angles of divergence. 
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It is possible to scale up the model expansions discussed in this thesis, because scaling up 

will not change the angle of divergence, which is the most influential factor. The other influential 

factor is the dimensionless Froude number. It is possible to keep the same Froude numbers when 

scaling up. 

 

5.2  Considerations of mesh resolution and downstream channel extension 

To ensure that model results are independent of meshes used, water surface profiles for model 

runs FB1, FB2, FB8 and FB3, where mesh sizes are about 10, 7, 5and 4 mm, respectively, were 

compared. It was observed that water surface profiles for FB8 and FB3 are close to each other, 

meaning that a mesh resolution of 5 or 4 mm is sufficiently accurate. To have the best accuracy, 

4mm mesh is used for the rest of model runs.  

Also we compared the water surface profiles for FB3 and FB4, where FB4 has an extra 

downstream section of 0.150 m long (see Table 5.1). The water surface profiles were close to 

each other. However, changes to flow field (including flow depth and flow velocity) in the 

extended channel may persist over a long distance downstream of the expansion, even though the 

expansion itself is short. Therefore, for more realistic flow simulations, the model channel with a 

longer downstream length, i.e. FB4, is used for the rest of simulations.   

In summary, the 4 mm mesh resolution and the model channel with the extended downstream 

length, i.e., extended by 0.150 m, is used for simulations. 

 

5.3 Velocity field and flow separation for  34.10 and 5.0rF  

In this section we examine the results of velocity for the channel expansion with  34.10  

(profiles for runs FB4, HQ1, and HH1 in Table 5.1). Figures 5.1a and 5.1b show the velocity 
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field for FB4 (flat-bottom channel). The velocity field is plotted in the xy-plane, at an elevation 

of 0.230 m above the channel bed. We observe non-uniform water velocities, starting from the 

entrance to the expansion and continuing until about one-third of the expansion. The velocities 

decrease in the longitudinal direction as a result of the widening of the channel. The average 

velocity is 0.804 m/s before the entrance to the expansion and 0.496 m/s in the expansion. The 

minimum velocity is 0.203 m/s before the entrance to the expansion and 0.005 m/s in the 

expansion. These small velocities are an indicator of the formation of turbulent eddies. 

Regions of eddies (Figures 5.1a and 5.1b) are displayed as the dark blue areas next to the 

right (to an observer facing downstream) sidewall as well as next to the left sidewall of the 

expansion. These turbulent eddies result from flow separation from the diverging sidewalls and 

cause energy losses. In a given xy-plane (i.e. a given elevation above the channel bed), the region 

of eddy motions is assumed as the flow area where velocities are below 20% of the average 

velocity for the upstream channel section. This velocity range is consistent with the eddy regions 

(dark blue area) as shown in Figures 5.1a and 5.1b. For Run FB4, the average velocity is 0.804 

m/s, and the corresponding threshold velocity for eddy motion delineation is 0.16 m/s. According 

to this criterion, eddies in the expansion occupy 10.6 % of the flow area, and eddies occupy 4.5% 

of the flow area between the downstream end of the expansion and the downstream end of the 

model channel.   

From Figures 5.1a and 5.1b, it is observed that the distribution of eddies is asymmetric. 

Eddies to the right side are larger than those to the left. The percentages of area, occupied by 

eddies near the right sidewall (to an observer facing downstream) and near the left sidewall of 

the channel expansion, are 15.1% and 5.1%, respectively. These values confirm that the eddies 

are more active near the right sidewall of the channel.   



51 
 

 

 

 

(a) 
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(b) 

Figure 5.1 (a) Velocity vectors at an elevation of 0.230 m above the channel bed for Run FB4 for 

the Froude number of 0.5.  The maximum velocity is 0.86 m/s. (b) The close up of velocity 

vectors in (a). Regions of eddies are observed near both sidewalls. 

 

We found that the region of eddies near the right sidewall begins immediately after the 

entrance to the expansion and continues up to 4 mm before the exit of the expansion. However, 

on the left side, the region of eddies begins 0.030 m after the entrance of the expansion and 

extends up to 4 mm before the exit of the expansion. We observe a difference between the 

vertical ranges of eddies on the right and left sidewalls. On the right sidewall, eddies are located 

at a distance of up to 0.0774 m from the channel centerline, whereas on the left sidewall eddies 

are up to 81.8 mm from the centerline. It means that eddies to the left are closer to the wall or the 

region of eddies is narrower to the left. The presence of eddies to the right and the left and the 
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asymmetric behaviour are shown in Figure 5.2, where the flow separation (eddies) from both 

sidewalls are clearly illustrated by velocity streamlines. 

 

 

Figure 5.2    Flow streamlines at an elevation of 0.230 m above the channel bed in the expansion 

for Run FB4. The Froude number is 0.5. 

 

At different elevations above the channel bed, the average velocities exhibit similar 

features. The average velocities decrease after the entrance to the expansion. The minimum 

velocities after the entrance to the expansion decrease to very small values. The average 

velocities are listed in Table 5.4, where h  represents the elevation above the channel bed, bV  and 

aV  represent the average velocities before and after the entrance to the expansion, respectively. 

The minimum velocities before and after the entrance to the expansion are also listed in Table 

5.5 ( bVmin, represents the minimum velocity before the entrance to the expansion and aVmin,  

represents the minimum velocity after the entrance to the expansion). In all the cases, aVmin,  is 

close to zero, which confirms the presence of eddies at all elevations down to 0.050 m above the 

channel bed. 
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The area occupied by eddies (Eex in Table 5.6) in the expansion almost monotonically 

decreases with decreasing elevation (i.e. toward the channel bed). The area occupied by eddies 

between the downstream end of the expansion and the downstream end of the model channel 

(Ed/s in Table 5.6) decreases at elevations below 0.230 m and will remain almost the same for 

different elevations.  

The asymmetric behaviour of eddies at different elevations is persistent. The area 

occupied by eddies to the right is present at all elevations, however, its percentage in area at 

elevations closer to the surface is larger than its percentage at elevations close to the channel bed, 

as shown as Er in Table 5.7. The area occupied by eddies to the left diminishes at elevations 

below 0.230 m, shown as El in Table 5.7. Eddies are more asymmetric close to the channel bed. 

 

Table 5.4      Average velocities at different elevations above the channel bed, 

before and after the entrance to the expansion for Run FB4. 

h(m) 0.230 0.200 0.150 0.100 0.050 

 smV b /  0.804 0.806 0.791 0.782 0.780 

 smV a /  0.496 0.555 0.596 0.580 0.565 

 

Table 5.5    Minimum velocities at different elevations above the 

channel bed, before and after the entrance to the expansion for FB4. 

h(m) 0.230 0.200 0.150 0.100 0.050 

)/(min, smV b  

)/(min, smV a  

0.203 

0.005 

0.564 

0.007 

0.558 

0.009 

0.547 

0.003 

0.544 

0.003 
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Table 5.6      Percentage in area of eddies at different elevations above 

the channel bed, in the expansion and downstream of the expansion for 

Run FB4. 

h(m) 0.230 0.200 0.150 0.100 0.050 

Eex (%) 10.6 9.5 3.9 5.6 4.5 

Ed/s  (%) 4.5 1.7 1.9 1.8 1.6 

 

Table 5.7   Percentage in area of eddies near the right and left 

sidewalls in the expansion for Run FB4. 

h(m) 0.230 0.200 0.150 0.100 0.050 

Er (%) 15.1 16.4 6.8 9.9 7.6 

El (%) 5.1 2.5 0.2 0.2 0.08 

 

Figure 5.3 shows the velocity vectors for Run FB4 at an elevation of 0.200 m above the 

channel bed. The area occupied by eddies to the left is negligible below 0.230 and the area to the 

right reduces at elevations below the surface. 

 

5.3.1  The effects of a hump  

The effects of a hump on flow velocity and eddies are revealed through Runs HQ1 and HH1. The 

presence of a hump tends to increase the flow velocity and reduce eddy motions. The simulation 

conditions with a hump for  34.10  are given in Table 5.1, where HQ1 refers to a 1/4″ (or 

0.00635 m, with %54.2/  yz ) hump, and HH1 refers to a 1/2″ (or 0.0127 m, with

%08.5/  yz ) hump At an elevation of h=0.200 m, we compare the velocity field and eddy 
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motion area for Runs FB4, HQ1and HH1.In Table 5.8 the average and minimum velocities 

before and after the entrance to the expansion for FB4, HQ1, and HH1are listed. 

 

Figure 5.3   Velocity vectors in the expansion at an elevation of 0.200 m above the channel bed 

for Run FB4. The Froude number is 0.5. The maximum velocity is 0.89m/s. 

 

Table 5.8    Average and minimum velocities before and after the 

entrance to the expansion for a flat-bottom expansion, and expansions 

with a hump. The elevation is 0.200 m above channel bed. 

Runs FB4 HQ1 HH1 

 smV b /  0.805 0.772 0.807 

 smV a /  0.555 0.530 0.571 

)/(min, smV b  0.564 0.132 0.390 

)/(min, smV a  0.007 0.001 0.088 
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It is observed that the use of a 1/4″ (or 0.00635 m, with %54.2/  yz ) hump, (HQ1), does not 

have a considerable effect on the average and minimum velocities; however, the use of a1/2″ (or 

0.0127 m, with %08.5/  yz ) hump, (HH1), increases the average and minimum velocities 

after the entrance to the expansion. 

In Table 5.9, we compare the percentage in area of eddies for a flat-bottom channel and 

channels with a hump at an elevation of 0.200 m above the channel bed.  It is observed that the 

1/4″ (or 0.00635 m, with %54.2/  yz ) hump, has reduced the percentage of eddies in the 

expansion area from 9.5% to 7.8%. The use of the 1/2″ (or 0.0127 m, with %08.5/  yz ) hump 

reduces the percentage to a negligible value of 0.5%. Similar trends are observed for percentages 

to the right sidewall of the channel expansion. The percentage of eddies in the downstream 

region is small and remains almost the same for channels without and with a hump.  

In Figure 5.4 we show the velocity vectors for a flat bottom channel (panel a) and a 

channel with a 1/2" (or 0.0127 m) hump (panel b), around the exit of the expansion. The region of  

Table 5.9   Percentage in area of eddies in the expansion and between the downstream 

end of the expansion and downstream of the model channel for a flat-bottom expansion, 

and expansions with a hump. The elevation from channel bed is 0.200 m. 

Runs FB4 HQ1 HH1 

Eex (%) 9.5 7.8 0.5 

Er (%) 16.4 12.2 0.5 

El (%) 2.5 3.4 0.4 

Ed/s  (%) 1.7 2.0 1.8 
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(a) 

                              

(b) 

Figure 5.4   A comparison of velocity vector around the exit of the expansion between a flat 

bottom channel (a) and a channel with a 1/2" (0.0127 m) hump (b). The elevation is 0.200 m 

above the channel bed.  

 

eddies (flow separation area) to the right is clearly present for Run FB4, and almost vanishes for 

Run HH1. Similar behaviours are observed at other elevations above the channel bed. 

Figure 5.5 shows the velocity streamlines for Runs FB4 and HH1 at an elevation of 0.200 

m above the channel bed. The presence of eddies (flow separation) to the right for Run FB4 

(panel a) is clearly shown. The effect of the hump on reducing the eddy area is clearly observed 

in panel (b). 
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(a) 

 

(b) 

 

Figure 5.5   Velocity streamlines at an elevation of 0.200 m above the channel bed for Runs FB4 

and HH1. The Froude number is 0.5.  
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5.4 Velocity field and flow separation for  54.7 and 5.0rF  

In this section we compare results of the velocity field for expansions with a divergence angle of 

7.54º (FB5, HQ2, and HH2 in Table 5.1).  Using a smaller angle of divergence (FB5 in table 

5.1), we carried out model runs for a flat bottom expansion and expansions with a hump. The 

angles and other parameters of the different expansions are given in Table 5.1. For  54.7 , 

FB5 is for a flat bottom expansion and HQ2 and HH2 are for expansions with 1/4" (or 0.00635 

m), and 1/2"(or 0.0127 m), respectively.   

The results of Run FB5 show the same features as for Run FB4. However, due to the use 

of a smaller angle of divergence, eddies are reduced and the velocity vectors are more uniform, 

i.e. the difference between the average velocity before and after the entrance to the expansion 

decreases. Tables 5.10 and 5.11 show the average and minimum velocities for Run FB5. In Table 

5.11, the minimum velocities after the entrance to the expansion are close to zero, which 

confirms the presence of eddies. To show the effects of the angle of divergence on velocity drop 

after the entrance to the expansion, we compare the velocity drops for Runs FB4 and FB5. The 

velocity drop is defined as the absolute value of the difference between the average velocities 

before and after the entrance to the expansion. 

 

Table 5.10    Average velocities at different elevations above the channel bed, 

before and after the entrance to the expansion for Run FB5. 

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

 smV b /
 

 smV a /  

0.765 

0.512 

0.763 

0.592 

0.759 

0.602 

0.759 

0.613 

0.754 

0.608 
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Table 5.11   Minimum velocities at different elevations above the channel 

bed, before and after the entrance to the expansion for Run FB5. 

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

)/(min, smV b  

)/(min, smV a  

0.121 

0.009 

0.152 

0.004 

0.155 

0.002 

0.148 

0.007 

0.144 

0.005 

 

Table 5.12 shows the velocity drops for Runs FB4 and FB5 at different elevations above 

the channel bed. Smaller velocity drops are observed for Run FB5 which indicates more 

uniformity for water velocity before and after the entrance to the expansion. 

 

Table 5.12   A comparison of velocity drops between Runs FB4 and FB5. 

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

Velocity drop for FB4 (m/s) 

Velocity drop for FB5 (m/s) 

0.308 

0.253 

0.250 

0.171 

0.195 

0.157 

0.202 

0.146 

0.216 

0.146 

 

Table 5.13 shows the area occupied by eddies in the expansion region and the area 

occupied by eddies downstream of the expansion (i.e. between the exit of the expansion and the 

downstream end of the model channel). The area occupied by eddies increases with increasing 

elevation. As given in Table 5.13 and Table 5.6, the results for FB4 show that the area of eddy 

motions reduces for smaller angles of divergence. The region of eddies in downstream is similar 

between Runs FB4 and FB5.  The results for Run FB5show less flow separation and hence less 

energy losses, however, the drawback of using small angles of divergence is the increase in 

length of the expansion, which is not an economic solution. 
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 Table 5.14 shows the area of eddy motions to the right and the left, respectively. The 

asymmetric behaviour of eddy motions is clear; no eddy motions are observed to the left 

sidewall, whereas eddy motions are present to the right.  

 

Table 5.13   Percentage in area of eddies at different elevations above the channel  

bed, in the expansion and downstream for Run FB5. 

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

Eex (%) 8.2 3.3 3.7 1.9 1.0 

Ed/s (%) 3.5 2.2 1.9 2.2 1.6 

 

Table 5.14   Percentage in area of eddies near the right and left sidewalls in 

the expansion for Run FB5. 

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

Er (%) 16.5 6.6 7.4 3.6 2.0 

El (%) 0.0 0.0 0.0 0.0 0.0 

 

5.4.1   The effects of a hump  

The effects of a hump on velocity vectors and eddies are evaluated through Runs HQ2 and HH2 

at an elevation of 0.230 m above the channel bed. The average and minimum velocities before 

and after the entrance to the expansion are listed in Table 5.15. The use of a 1/4″(or 0.00635 m, 

with %54.2/  yz  )hump,(HQ2), does not have a considerable effect on the average and 

minimum velocities, however, the use of a1/2″(or 0.0127 m, with %08.5/  yz ) hump, (HH2), 

increases the average and minimum velocities after the entrance to the expansion. The minimum 
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velocity before the entrance to the expansion is considerably increased in Run HH2. This is a 

decrease in the eddy motions right before the entrance to the expansion. 

In Table 5.16 the percentage in area of eddies for a flat-bottom channel and channels with 

a hump are compared .The elevation is 0.230 m above the channel bed. The 1/4″ (or 0.00635 m, 

with %54.2/  yz  ) hump, has reduced the percentage in area of eddies in the expansion from 

8.2% to 4.3%. The 1/2″ (or 0.0127 m, with %08.5/  yz  ) hump reduces the percentage to a 

considerably smaller value of 1.4%. Similar trends are observed for percentages to the right of 

the channel expansion. Note that due to the use of a smaller angle of divergence, the expansion is 

more gradual. Thus, the asymmetric behaviour of eddies is more clear, where in Table 5.16 it is 

observed that the eddy percentage to the left is zero, even for a flat bottom expansion. 

The eddy motions are persistent over a long distance downstream of the expansion. 

Therefore, the eddies are observed even after the expansion (the last row of Table 5.16). The 

percentage in area of eddies in the downstream region is small for expansions without and with a 

hump, however, the percentage in area occupied by eddies decreases when a hump is used. 

Table 5.15   Average and minimum velocities before and after the 

entrance to the expansion for a flat-bottom channel (FB5) and channels 

with a hump. The elevation above the channel bed is 0.230 m. 

Runs FB5 HQ2 HH2 

 smV b /  0.765 0.766 0.793 

 smV a /  0.512 0.571 0.582 

)/(min, smV b  0.121 0.118 0.236 

)/(min, smV a  0.009 0.008 0.033 
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Table 5.16    Percentage in area of eddies in the expansion and 

between the downstream end of the expansion and downstream end 

of the model channel for flat-bottom channel (FB5) and channels 

with a hump. The elevation above the channel bed is 0.230 m. 

Runs FB5 HQ2 HH2 

Eex (%) 8.2 4.3 1.4 

Er (%) 16.5 8.8 2.6 

El (%) 0.0 0.0 0.0 

Ed/s (%) 3.5 2.0 1.4 

 

5.5 Velocity field and flow separation for  04.5 and 5.0rF  

In this section we compare the results of the velocity field for expansions with a divergence 

angle of 5.04 º for Runs FB6, HQ3, and HH3 (See Table 5.1).  For  04.5 , the results for a 

flat-bottom expansion (FB6) and expansions with a hump (HQ3, and HH3) are similar to the 

results for previous Runs with larger angles. Due to the use of a small angle of divergence, 

compared to Runs FB4 and FB5, the percentage in area of eddies considerably drop in case of 

FB6. Tables 5.17 and 5.18 compare the velocity field and flow separation for Runs FB6, HQ3, 

and HH3.The elevation is 0.200 m above the channel bed. The results for all the expansions 

confirm that a hump, especially a 1/2" (or 0.0127 m, with %08.5/  yz  ) hump have significant 

effects on reducing eddy motions and hence eddy areas and on increasing flow velocities after 

the entrance to the expansion. Although the area percentages are small even for the case of FB6, 

the use of a hump (especially a 1/2″ hump) will reduce these percentages to a negligible level.  
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Table 5.17   Average and minimum velocities before and after the entrance 

to the expansion for a flat-bottom expansion (FB6), and expansions with a 

hump (HQ3 and HH3). The elevation above the channel bed is 0.200 m. 

Runs FB6 HQ3 HH3 

 smV b /  0.772 0.769 0.774 

 smV a /  0.585 0.594 0.602 

)/(min, smV b  0.179 0.183 0.324 

)/(min, smV a  0.063 0.090 0.120 

 

Table5.18   Percentage in area of eddies in the expansion and between 

the downstream end of the expansion and downstream of the model 

channel for a flat-bottom expansion (FB6), and expansions with a hump 

(HQ3and HH3). The elevation above the channel bed is 0.200 m. 

Runs FB6 HQ3 HH3 

Eex(%) 1.1 0.7 0.2 

Er (%) 2.0 1.4 0.4 

El (%) 0.0 0.0 0.0 

Ed/s (%) 0.1 0.7 0.3 

 

5.6    Velocity field at different Froude numbers 

The effects of an expansion on creating eddies and the effects of a hump on reducing eddy 

motions are the most profound for a large angle of divergence (  34.10 ), we use this angle in 
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Runs FB4, HQ1, and HH1 in order to study the effects of different Froude numbers. The purpose 

is to show how the percentage in area of eddies changes with the Froude number. We consider 

different humps at different Froude numbers, i.e. to what extent the humps will reduce the 

percentage in area of eddies.  

For Runs FB4, HQ1and HH1 (Table 5.1), the Froude number ranges from Fr = 0.3 to 0.7. 

In addition to varying the Froude number, the downstream elevation of water above the channel 

bed has changed to 0.257 m for the Froude number 3.0rF and 0.291 m for 7.0rF .   

At the inlet, velocity is 0.47 m/s for Froude number 3.0rF , and 1.1 m/s in 

corresponded to the Froude number 7.0rF . At smaller inlet velocities, smaller regions of 

separating waves and eddies are expected. Therefore, we expect to observe less eddies at smaller 

Froude numbers. Tables 5.19 shows the percentage in area of eddies for a flat bottom channel     

(FB4) at the Froude number 3.0rF . A Comparison of the results given in Table 5.19 with the 

results in Table 5.6 (for FB4 at the Froude number 5.0rF ) shows a considerable reduction in 

eddy motions in the expansion. 

 

Table 5.19   Percentage in area of eddies at different elevations above the channel 

bed, in the expansion and downstream for Run FB4 at the Froude number 3.0rF .  

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

Eex (%) 3.8 4.9 4.0 5.4 3.0 

Ed/s  (%) 3.3 2.5 2.7 2.6 5.0 

 

 The effects of a hump on decreasing the eddy area are summarised in Table 5.20. The use of a 

1/4″ (or 0.00635 m, with %54.2/  yz  ) hump helps reduce the eddy motion area in the 
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expansion. The use of a 1/2″ (or 0.0127 m, with %08.5/  yz  ) hump has a considerably better 

effect, where the area of eddies in the expansion has reduced to a negligible value of 1.2%. 

Figure 5.6 shows that, for large Froude numbers (i.e. 7.0rF ), the eddies appear in 

almost all the regions of the expansion, beginning from the area before the entrance to the 

expansion. The percentage in area of eddies is larger at elevations closer to the water surface 

(Table 5.21).  Therefore, the flow is more turbulent closer to the surface, with larger areas of 

eddies. A comparison among Table 5.21 with Tables 5.19 and 5.6, indicates that the area of 

eddies inside the expansion considerably increases at the Froude number 7.0rF .  

Table 5.22   compares effect of 1/4” (or 0.00635 m), and 1/2" (or 0.0127 m) humps on the 

eddy motion areas for Froude number of 0.7, at elevation of 0.200 m above the channel bed. As 

observed, HQ1 does not have a constructive effect; however, the 1/2" (or 0.0127 m) hump, i.e. 

HH1, considerably reduces the area of eddy motions and completely vanishes this area in the left 

sidewall.   

Table 5.20    Percentage in area of eddies in the expansion and between 

the downstream end of the expansion and downstream of the model 

channel for a flat-bottom expansion, and expansions with a hump. The 

Froude number is 0.3. The elevation above the channel bed is 0.200 m. 

Runs FB4 HQ1 HH1 

Eex (%) 3.8 3.0 1.2 

Er (%) 7.6 5.9 2.4 

El (%) 0.0 0.0 0.0 

Ed/s (%) 3.3 2.9 1.7 
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Figure 5.6 Velocity streamlines at an elevation of 0.230 m above the channel bed for Run FB4. 

The Froude number is 0.7. 

 

Table5.21   Percentage in area of eddies at different elevations above the channel bed, in 

the expansion and downstream for Run FB4 .The Froude number is 0.7.  

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

Eex(%) 27.5 20.5 3.1 2.8 5.3 

Ed/s (%) 7.5 9.3 3.5 5.5 4.5 

 

Table 5.22   Percentage in area of eddies in the expansion and between the downstream 

end of the expansion and downstream of the model channel for a flat-bottom expansion, 
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and expansions with a hump. The Froude number is 0.7. The elevation above the channel 

bed is 0.200 m. 

Runs FB4 HQ1 HH1 

Eex(%) 20.5 28.7 6.8 

Er(%) 28.3 32.0 12.6 

El(%) 13.9 22.3 0.0 

Ed/s (%) 9.3 3.3 3.7 

 

Figure 5.7 shows the effect of 1/2" (or 0.0127 m, with %08.5/  yz  ) hump in reducing 

eddies at elevation of 0.200 m above the channel bed. Also by comparing Figure 5.7 with Figure 

5.6, it is obvious that the region of eddies becomes smaller at lower elevations. 
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(a) 

 

(b) 

Figure 5.7   Velocity streamlines at an elevation of 0.200 m above the channel bed for Runs FB4 

(panel a) and HH1 (panel b). The Froude number is 0.7.  
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5.7   Vorticity field 

Vorticity is the curl of the fluid velocity. Vorticity can be considered as the circulation per unit 

area in a fluid flow field. For a two-dimensional flow, the vorticity vector is perpendicular to the 

two-dimensional plane. The components of vorticity in three-dimensional Cartesian coordinates 

are  
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Figure 5.8shows the velocity vectors (panel a) and associated vorticity (panel b) in the 

expansion. In the area near sidewalls where eddies are present, large vorticity are shown in red 

colour. 

Figure 5.9 shows the vorticity contours for a flat-bottom expansion (FB4), at an elevation 

of 0.200 m above the channel bed. The red areas next to the sidewalls of the expansion are areas 

where flow has circulation and flow separation occurs. Therefore, areas with high vorticity (red 

area) are undesirable from the energy conservation perspective, and thus it is desired to reduce 

them by using a hump. Figure 5.10 shows the vorticity contours for an expansion with a 1/2"(or 

0.0127 m, with %08.5/  yz  ) hump, (HH1), at an elevation of 0.200 m above the channel bed. 

A comparison between Figures 5.9 and 5.10 indicates that high-vorticity areas have decreased, 

especially near the exit of the expansion.   

 

http://en.wikipedia.org/wiki/Curl_%28mathematics%29
http://en.wikipedia.org/wiki/Velocity
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Figure 5.8   Velocity vectors and associated vorticity in the expansion. The area occupied by 

eddies is shown as high-vorticity region near the sidewall, in red color. The maximum velocity is 

0.86 m/s. The results are for Run FB4. 

To determine the high-vorticity area quantitatively, we calculate the ratio of area of   

high- vorticity to the whole area after the entrance to the expansion (i.e. from the entrance to the 

expansion to the downstream end of the model channel). Based on the color bar in Figure 5.9, we 

define the high-vorticity area as the area where vorticities are larger than 9.0( 1s ).  

Table 5.23 shows the percentage in area of high-vorticity region, highVor , at different elevations 

above the channel bed (h), for Run FB4. It is observed that the area of high-vorticity area 

monotonically decreases toward the channel bed.  
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Figure 5.9   Vorticity contours at an elevation of 0.200 m above the channel bed for a flat-bottom 

expansion, (FB4).  

 

 

Figure 5.10   Vorticity contours at an elevation of 0.200 m above the channel bed, for the 

expansion with a 1/2"(or 0.0127 m) hump, (HH1).  
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Table 5.23   Percentage in area of high vorticity area, at different elevations above 

the channel bed for Run FB4.  

h (m) 0.230 0.200 0.150 0.100 0.050 

 %highVor  25.7 18.2 16.8 16.6 14.3 

 %rightVor  29.8 26.4 23.8 23.6 21.2 

 %leftVor  21.7 10.2 9.8 9.5 7.4 

      

From Table 5.23 and Figures 5.9 and 5.10, it is clear that high-vorticity areas exist at all 

elevations to both the right and the left in the expansion; the asymmetric patterns of vorticity 

appear at all elevations (the high-vorticity region to the left sidewall is smaller).   

Tables 5.24 and 5.25 also show the percentage in area of high-vorticity regions for Runs 

FB5and FB6 (flat-bottom expansions with the angle of divergence  54.7 and 5.04  , 

respectively). Similar to Run FB4, the high-vorticity regions monotonically reduce toward the 

bottom. The high-vorticity regions for Runs FB5 and FB6 are smaller, compared to that for Run 

FB4. This is due to the fact that at smaller angles of divergence, less flow separation and hence 

lower vorticity are expected. 

 

Table 5.24   Percentage in area of high vorticity at different elevations above 

the channel bed for Run FB5. 

Elevation(m) 0.230 0.200 0.150 0.100 0.050 

 %highVor  19.5 15.2 15.6 15.0 14.1 
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Table 5.25   Percentage in area of high vorticity at different elevations 

above the channel bed for Run FB6.   

h (m) 0.230 0.200 0.150 0.100 0.050 

 %highVor  15.3 14.6 13.5 12.0 11.1 

      

5. 7. 1    Effects of a hump on vorticity  

To reveal the effect of a hump on the vorticity field, in Table 5.26, we compare the high-vorticity 

areas for a flat-bottom expansion (FB), expansion with a 1/4” (or 0.00635 m) hump, (HQ), and 

expansion with a 1/2" (or 0.0127 m) hump, (HH), at an elevation of 0.200 m above the channel 

bed. The 1/2"(or 0.0127 m, with %08.5/  yz  ) hump, has a stronger effect on reducing the 

high-vorticity region. For example, at an angle of divergence of 7.54  , the 1/4” (or 0.00635 m 

with %54.2/  yz ) hump, has reduced the high-vorticity region from 15.8% to 12.8%. The 1/2" 

(or 0.0127 m, with %08.5/  yz ) hump, has further reduced the area of this region to 10.5% of 

the whole area from the entrance to the expansion to the downstream end of the model channel. 

Table 5.26 A comparison of percentages in area of high-vorticity between a flat-

bottom expansion and expansion with a hump, at different angles of divergence at an 

elevation of 0.200 m above the channel bed. The Froude number is 0.5. 

Angle of divergence α 
Percentage in area of  vorticity larger than 9.0 s-1

 

Flat-bottom 1/4 hump 1/2 hump  

10.34   18.2% (FB4) 17.2% (HQ1) 14.6% (HH1) 

7.54   15.2% (FB5) 12.8% (HQ2) 10.5% (HH2) 

5.04   14.6% (FB6) 11.1% (HQ3) 9.3% (HH3) 
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5.7.2   Vorticity at different Froude numbers 

In this section, we focus on high-vorticity regions and flow separation for an angle of divergence 

equal to 10.34   and Froude numbers from 0.3 to 0.7. The run parameters are discussed in Section 

5.6. Figure 5.11 shows the vorticity contours for a flat-bottom expansion (FB4) at an elevation of 

0.200 m above the channel bed. The Froude number is 0.3. A Comparison between  Figures 5.11 

and 5.9 (at the Froude number of 0.5) shows that the general shapes of high-vorticity areas are 

similar at the two values for the Froude number, however, the percentage in area of high-

vorticity changes ,as shown in Table 5.27. 

 

Figure 5.11   Vorticity contours at an elevation of 0.200 m above the channel bed for a flat 

bottom expansion (FB4) .The Froude number is 0.3.  
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Table 5.27   Percentage in area of high vorticity at different elevations above the channel 

bed for Run FB4. The Froude number is 0.3.  

Elevation  (m) 0.230 0.200 0.150 0.100 0.050 

 %highVor  14.0 11.0 10.5 10.1 9.6 

 %rightVor  18.9 17.9 17.5 16.8 16.2 

 %leftVor  9.0 3.9 3.5 3.3 3.0 

      

A comparison between Tables 5.27 and 5.23 (for the Froude number of 0.5) shows that 

when the Froude number drops from 0.5 to 0.3, the high-vorticity region has reduced at all 

elevations above the channel bed.   Also, Table 5.27 shows that the high-vorticity region remains 

present at all elevations above the channel bed, however, it becomes smaller towards the bed. 

From Figure 5.11 and Table 5.27, it is obvious that the high-vorticity region is asymmetric; the 

region is smaller to the left. The region to the left considerably reduces at elevations lower than 

0.230 m.  

Figure 5.12 shows the vorticity contours for Run HH1. The Froude number is 0.3. The 

elevation is 0.200 m above the channel bed. A comparison between Figures 5.11 and 5.12 shows 

that the high-vorticity region reduces to the right and has almost vanished to the left. 
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Figure 5.12   Vorticity contours for flow at an elevation of 0.200 m above the channel bed for a 

flat bottom expansion. The Froude number is 0.3(HH1).  

 

Table 5.28 shows the effects of 1/4” (or 0.00635 m),   and 1/2" (or 0.0127 m) humps on reducing 

the high-vorticity region. The 1/2" (or 0.0127 m, with %08.5/  yz  ) hump, is more effective.  

 

Table5.28   Percentage in area of the high-vorticity for flat-bottom expansion and expansions 

with a hump. The Froude number is 0.3. The elevation is 0.200 m above the channel bed. 

Runs FB4 HQ1 HH1 

 %highVor  11.0 9.4 7.0 

 %rightVor  17.9 15.3 12.9 

 %leftVor  2.1 1.5 1.1 
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Figure 5.13 shows the vorticity contours for a flat-bottom channel (FB4), at an elevation 

of 0.200 m above the channel bed. The Froude number is 0.7. The high-vorticity region has 

occupied most of the expansion and extends toward downstream to some extent. Despite the case 

of Froude numbers of 0.5 and 0.3 (see Figure 5.9, 5.11), where the high-vorticity regions were 

mainly next to right and left sidewalls, in case of Froude number of 0.7, the high-vorticity 

regions are present in almost all expansion area.  

Figure 5.14 shows the vorticity contours for an expansion with 1/2" (or 0.0127 m, with

%08.5/  yz ) hump, (HH1).The Froude number is 0.7.The elevation is 0.200 m above the 

channel bed. A comparison between Figures 5.13 and 5.14 shows that the 1/2" (or 0.0127 m, with

%08.5/  yz ) hump has reduced the high-vorticity region, meaning that flow separation has 

been suppressed by using the 1/2"(or 0.0127 m, with %08.5/  yz  ) hump. In Figure 5.14 the 

high-vorticity regions are mostly limited to areas next to right and left sidewalls. 

 

Figure 5.13    Vorticity contours at an elevation of 0.200 m above the channel bed for a flat bottom 

expansion. The Froude number is 0.7 (FB4).  
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Figure 5.14   Vorticity contours at an elevation of 0.200 m above the channel bed for a flat 

bottom expansion. The Froude number is 0.7(HH1).  

 

Table 5.29 shows the effects of a 1/2" (or 0.0127 m, with %08.5/  yz ) hump on 

reducing the high-vorticity region at different elevations above the channel bed. The 1/4” (or 

0.00635 m, with %54.2/  yz ) hump, (HQ1), is not successful in reducing the high-vorticity 

region or flow separation.  

5.8   u-velocity contours at different cross-sections  

This section deals with u-velocity at selected cross-sections between the entrance to the 

expansion and the exit of the expansion. Eight cross-sections along the channel expansion are 

selected, labelled by cross-sections 1 to 8, where Cross-section 1 is located at the entrance to the 

expansion, Cross-section 8 is located at the exit of the expansion, and Cross-sections 2 to 7 are  
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Table 5.29 A comparison of percentage in area of high vorticity (> 9.0 s
-1

) at 

different elevations above the channel bed for Runs FB4, HQ1and HH1. The angle 

of divergence is  = 10.34. The Froude number is 0.7. 

Elevation(m) FB4 HQ1 HH1 

0.230 50.2 50.5 24.1 

0.200 35.1 37.0 24.4 

0.150 21.0 19.1 12.2 

 

equally-spaced between the entrance and the exit of the expansion.      

Figure 5.16 shows the u-velocity contours for Run FB4 at Cross-section 7 (i.e. one cross-

section before the exit of the expansion). Note that water flow direction is in the negative x- 

direction. Therefore, negative values in Figure 5.16 mean flow in the direction toward 

downstream, and positive u-velocity values show backward flow (i.e. flow separation or 

presence of eddies). As shown in Figure 5.16, backward flow appears in edges (sidewalls), and 

also appears in the corner of the channel bed. 

Figure 5.15 shows the percentage in area of backward flow at different cross-sections. 

The percentages are compared among a flat-bottom expansion (FB4), expansion with a 1/4″ (or 

0.00635 m, with %54.2/  yz ) hump, (HQ1), and expansion with a 1/2″ (or 0.0127 m, with

%08.5/  yz ) hump, (HH1).The effects of a hump on reducing the percentage of backward 

flow is clear; HH1 is more successful in reducing the percentage. For example, at Cross-section 

4 (at the middle of the expansion), the percentages of backward flow for Runs FB4, HQ1, and 

HH1 are 2.5, 1.9 and 1.0, respectively.   
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The effects of a hump on reducing the percentage of backward flow are also clear by 

comparing Figure 5.17, u-velocity contours for Run HH1 at Cross-section 7, to Figure 5.16, u-

velocity contours for Run FB4 at Cross-section 7. The use of a 1/2″ (or 0.0127 m, with

%08.5/  yz ) hump has made the region of backward flow narrower. At some elevations, the 

backward flow is totally eliminated. Also, the backward flow that was present in Run FB4 at the 

corners of the channel bed has vanished in Run HH1 (with a 1/2″ hump).  

Figures 5.18 and 5.19 show the u-velocity contours at Cross-section 4 (at the middle of 

the expansion), for Runs FB4 and HH1, respectively. The effects of a 1/2″ (or 0.0127 m, with

%08.5/  yz ) hump on removing the region of backward flow at the bottom corners are clear. 

The region of backward flow near the water surface shrinks due to the use of a 1/2″ (or 0.0127 

m, with %08.5/  yz ) hump.        

 

Figure 5.15   Percentage in area of backward flow in a flat-bottom expansion (FB4), and 

expansions with a hump (HQ1and HH1). 
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Figure 5.16   u-velocity contours for Run FB4 at Cross-section 7 (before the exit of the 

expansion). 

 

 

Fig. 5.17   u-velocity contours for Run HH1 at Cross-section 7 (before the exit of the expansion). 
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Figure5.18   u-velocity contours for Run FB4 at Cross-section 4 (at the middle of the expansion). 

 

Figure5.19   u-velocity contours for Run HH1 at Cross-section 4 (at the middle of the 

expansion). 
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For expansions with smaller angles of divergence (  54.7 and 5.04  ), due to a more 

gradual expansion, less eddies and lower percentages of backward flow are expected. Figure 5.20 

shows the u-velocity contours for flat-bottom expansion (FB5, with an angle of divergence

 54.7 ) at Cross-section 3. Compared to Run FB4, the region of backward flow has been 

reduced, at the corners of the channel bed. Figure 5.21 shows the u-velocity contours for an 

expansion with a 1/2″ (or 0.0127 m, with %08.5/  yz ) hump at Cross-section 3.  

By comparing Figures 5.20 and 5.21, the effects of a hump on removing the region of 

backward flow at the corners of the channel bed are revealed. Table 5.30 shows the percentage of 

backward flow for a flat-bottom expansion (FB5) and expansions with a 1/4″ (or 0.00635 m, 

with %54.2/  yz ), and a 1/2″ (or 0.0127 m, with %08.5/  yz  ) hump, (HQ2), and HH2, 

respectively. The percentage of backward flow is low for all the expansions, however, 

expansions with a hump show smaller percentages of backward flow.  

 

Table 5.30   Percentage in area of backward flow at different cross-sections for a flat-bottom 

expansion (FB5) and expansions with a hump (HQ2 and HH2). 

Cross-Section 1 2 3 4 5 6 7 8 

FB5 1.0 1.9 1.9 0.1 0.1 0.4 0.4 0.5 

HQ2 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.0 

HH2 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 
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Figure5.20   u-velocity contours for Run FB5 at Cross-section 3 (before the middle of the expansion). 

 

Figure 5.21 u-velocity contours for Run HH2 at Cross-section 3 (before the middle of the expansion). 
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At an angle of divergence  04.5 , the percentage of backward flow is negligible, even 

without the aid of a hump. Figure 5.22 shows the u-velocity contours for Run FB6 at Cross-

section 7 (before the exit of the expansion). Backward flow is negligible from this figure. 

 

 

 

Figure5.22 u-velocity contours for Run FB6 at Cross-section 7 (before the exit of the expansion). 
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5.8.1   The effects of the Froude numbers 

In this section we determine u-velocity contours at different cross-sections along the channel 

expansion, when the angle of divergence is  34.10 and the Froude number varies from 0.3 to 

0.7.  

Figure 5.23 shows the percentage in area of backward flow for a flat-bottom expansion 

(FB4) when the Froude number changes from 0.3 to 0.7. The percentage of backward flow 

increases at higher Froude numbers, as expected. At higher Froude numbers, the flow is stronger 

and flow separation in the expansion is more likely to occur. 

 

 

Figure 5.23   Percentage in area of backward flow at different cross sections for a flat-bottom 

expansion (FB4), at different Froude numbers. 
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Generally speaking, the percentage in area of backward flow at the Froude number 

3.0rF  is small, even in a flat-bottom expansion (see Figure 5.23). Therefore, it is not expected 

to observe considerable changes in this percentage when using humps. However, based on our 

observations, humps help reduce the percentage of backward flow at some cross-sections. 

The effects of a hump on changing the percentage of backward flow at the Froude 

number 7.0rF are shown in Figure 5.24. The 1/4″ (or 0.00635 m, with %54.2/  yz ) hump 

has maintained similar percentages for most cross-sections and has successfully reduced the 

percentage of backward flow in the middle of the expansion (Cross-section 4). The 1/2″ (or 

0.0127 m, with %08.5/  yz ) hump has reduced the percentage of backward flow from the 

beginning up to the middle of the expansion, however, it has increased the percentage at some 

cross-sections after the middle of the expansion. In general, based on Figure 5.24, we cannot 

recommend a 1/2″ (or 0.0127 m, with %08.5/  yz ) hump as a solution to reduce the 

percentage of backward flow at the Froude number 7.0rF . 

Cross-section 8, i.e. the exit of the expansion, is one of the cross-sections where the 1/4″ 

(or 0.00635 m, with %54.2/  yz ) hump has reduced the percentage of backward flow, 

compared to a flat-bottom expansion (FB4).  These effects are clearly shown by comparing 

Figure 5.25, u-velocity contour for Run FB4 at Cross-section 8, to Figure 5.26, u-velocity 

contours for Run HQ1 at Cross-section 8. The effects of a 1/4″ (or 0.00635 m, with

%54.2/  yz ) hump on reducing the backward flows (red region) are shown, especially next to 

the sidewalls, and next to the bottom corners.      
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Figure 5.24   Percentage in area of backward flow at different cross-sections for a flat-bottom 

expansion (FB4), and expansions with a hump (HQ1 and HH1). 
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Figure 5.25   u-velocity contours for Run FB4 at Cross-section 8 ( the exit of the expansion).The 

Froude number is 0.7. 

 

 

Figure 5.26   u-velocity contours for Run HQ1 at Cross-section 8 (the exit of the expansion).The 

Froude number is 0.7. 
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5.9   Comparison of model results with theoretical and experimental data 

To validate the modelling methodologies, we make comparisons of the model results with 

existent analytical solutions under simplified conditions and available experimental data for a 

limited number of cases. The procedures are as follows. Energy losses in the expansion are 

calculated by subtracting the specific energy at the exit of the expansion from the specific energy 

at the entrance of the expansion [equation 4.7]. Then, the energy loss coefficient Ek  is 

determined by dividing the energy loss by the velocity head at the entrance to the expansion 

[equation 4.8]. 

The energy loss coefficient is determined from the model results of velocity and flow 

depth found and compared with the average and standard deviation of the energy loss coefficient 

obtained from experimental data (Najafi-Nejad-Nasser, 2011). The experimental data is available 

for expansions FB4, HH1, and FB5 (See Table 5.1). Table 5.31 shows that the model results are 

very close to experimental data. Based on the agreement between our model results and 

experimental results, it is concluded that our channel model is a realistic model and the derived 

results are reliable.  

 

Table 5.31 Comparison of energy loss coefficient kE between numerical model and experiments. 

Runs 

              kE  

from model simulations  

Average and standard deviation of              

kE based on laboratory data 

FB4 0.55 0.54 0.058 

HH1 0.38 0.31 0.015 

FB5 0.38 0.37 0.095 

 

 



93 
 

Table 5.32 compares the energy loss coefficient from the numerical simulations to 

theoretical values for the coefficient (Henderson, 1966). The theoretical values appear to be 

higher than the corresponding numerical values. This is probably due to the assumption that the 

expansion is a sudden expansion, as made in the theoretical derivation of the coefficient. 

 

Table 5.32   A comparison of the energy loss coefficient between this modelling study and the 

theoretical analysis by Henderson (1966). For all the listed runs, the angle of divergence is 

10.34, the mesh resolutions are 4 mm, and the downstream channel extension is 0.150 m. 

Run Fr kE from model simulations Theoretical kE 

FB4 0.5 0.55 0.64 

HQ1 0.5 0.52 0.71 

HH1 0.5 0.38 0.35 

FB5 0.5 0.38 0.55 

HQ2 0.5 0.37 0.52 

HH2 0.5 0.35 0.32 

FB6 0.5 0.42 0.45 

HQ3 0.5 0.26 0.29 

HH3 0.5 0.09 0.16 

FB4 0.3 0.44 0.89 

HQ1 0.3 0.26 0.44 

HH1 0.3 0.08 0.27 

FB4 0.7 0.74 1.31 

HQ1 0.7 0.55 1.11 

HH1 0.7 0.53 0.98 
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Chapter Six  Discussions and Conclusion 

 

6.1 Discussions 

This study deals with the issue of flow separation, energy losses and eddy motions in flows 

through open-channel expansions, which is important. In hydraulic engineering systems such as 

irrigation networks and hydropower structures, expansions are useful for providing a necessary 

cross-sectional increase in the direction of flow. However, energy losses in expansions are 

undesirable from the perspective of energy conservation and possibly expansion-induced 

turbulent eddy motions must be controlled to prevent the hydraulic engineering systems from 

damage. This modelling study has made a number of contributions, including 

(1) an improved understanding of the behaviour of subcritical flows in expansions, e.g. 

variations in flow streamlines, velocities and eddy structures; 

(2) a successful extension of experimental results to cover a wide range of conditions in 

terms of the angle of divergence, bottom geometry and the Froude number; 

(3) quantitative evaluations of the effectiveness of altering the bottom geometry in the 

suppression of flow separation and eddy motions. 

These contributions have been made through CFD simulations of three-dimensional 

subcritical turbulent flows in channel expansions with or without a hump fitted at the channel 

bed. These simulations have produced steady state solutions of the flow field for given hydraulic 

conditions and channel geometry. We have ensured that the model solutions are independent of 

mesh resolutions and configurations, and are not subject to artificial end effects. The k-ω 

turbulence model was used for turbulence closure in the simulations, which is known to handle 

anticipated anisotropic turbulence well. 
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Comparisons of the velocity field, vorticity structure and flow reversal in the expansion 

between the cases with and without a hump have clearly revealed the effects of using humps on 

the control of flow separation and eddy motions. Sudden expansions are easy and presumably 

less expensive to build, but they are known to cause flow separation and contribute to the 

formation of turbulent eddies. Therefore, they are not hydraulically efficient. Previously, 

research efforts have been made to improve the hydraulic efficiency; the focus has been on 

optimising expansion’s shapes in the horizontal, but their research efforts have not produced 

consistent results (see e.g. Hinds, 1927; Smith and Yu, 1966; Swamee and Basak, 1992). 

This modelling study represents an extension to the interesting idea of making 

modifications to the expansion geometry in the vertical, which arguably would be easier and less 

expensive, compared to modifications to the expansion sidewalls. It is possible to incorporate a 

simple hump at the channel bed to achieve smooth water surface and flow profiles in expansions 

and hence to reduce flow energy losses there and further downstream. Thus, the results from this 

study have important implications to the design of hydraulically efficient channel expansions. 

Within the regime of subcritical flow, the actual values for the Froude number should be taken 

into account in the design; this is among the new findings from this study. 

The modelling strategies followed in this modelling study are appropriate, and the results 

are relevant, supported by reasonable comparisons with experimental data (for a limited number 

of cases) as well as with theoretical results (available for some simplified conditions). The 

comparisons are in terms of a dimensionless energy loss coefficient for channel expansions. The 

modelling strategies have allowed efficient and systematic explorations of combinations of 

different expansion geometry, flow conditions and hump configurations. 
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6.2 Conclusion 

In total, 19 model runs were carried out in this study for predictions of the flow field in channel 

expansions with or without a hump fitted at the channel bed. These model runs covered 

conditions of the angle of divergence  = 5.04, 7.54 and 10.34, and the Froude numbers Fr = 0.3, 

0.5 and 0.7. From the model results, we determined the percentage in area occupied by eddies, 

the percentage in area where the flow reverses direction, and the percentage in area where the 

vorticity is high. We have validated the modelling methodologies by achieving good 

comparisons with experimental data. Distributions of three-dimensional water velocities, 

vorticity contours, and along-channel velocity contours at selected vertical and horizontal planes 

for the cases of with and without a hump are presented. An analysis of the model results has 

leaded to the following conclusions: 

(1) When the angle of divergence reaches  = 7.54, flow separation from the expansion 

sidewalls occurs in the expansion and persistent eddy motions take place not only locally 

in the expansion but also cover a long distance further downstream. The flow patterns and 

eddy motions are asymmetric about the expansion’s centreline, although the expansion 

geometry is symmetric about the centreline. Also, there are significant variations in the 

velocity field with height above the channel bed. 

(2) When  reaches 10.34, intensive flow separation and eddy motions occur. The resultant 

energy losses are significant, with the energy loss coefficient being as large as 0.42 (for 

Fr = 0.5, see Tables 5.1 and 5.32) and 0.74 (Fr = 0.7). An erosion problem is expected if 

the expansion is built with erodible materials. 

(3) At moderate Froude numbers ( 5.0Fr ), the use of a 1/2(or 0.0127 m, with

%08.5/  yz  )hump, which is about 5% of the depth of flow imposed at the entrance of 
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a gradual channel expansion, suffices to suppress flow separation from the expansion 

sidewalls and eliminates almost completely flow reversal and expansion-induced flow 

energy losses. The energy loss coefficient is reduced from 0.42 to 0.09. With respect to 

the elimination of flow reversal, both a 1/2(or 0.0127 m, with %08.5/  yz ) hump and 

a 1/4(or 0.00635 m, with %54.2/  yz ) hump are very effective. 

(4) At high Froude numbers ( 7.0Fr ), the use of a 1/2 hump (with %08.5/  yz ) has 

limited effects of on the control of flow separation and energy losses, with the energy loss 

coefficient dropped from 0.74 to 0.53. The significance of this finding is that the design 

of hydraulically efficient needs to consider the actual Fr values. 

(5) The angle of divergence of the expansion in question is an influential factor in the 

hydraulic performance of humps. When the angle of divergence does not exceed 5.04, 

there are no significant flow separation and eddy motions, and therefore the use of a 

hump may be redundant. 

(6) When the angle of divergence and the Froude number are large ( = 10.34º and Fr = 0.7), 

the use of a 1/2(or 0.0127 m, with %08.5/  yz ) hump is shown to reduce the region 

in the expansion of high vorticity (defined as vorticity higher than 9.0 s
-1

) by about 50%. 

In terms of flow reversal control, the use of a 1/2(or 0.0127 m, with %08.5/  yz ) 

hump or a 1/4(or 0.00635 m, with %54.2/  yz ) hump works at some vertical cross 

sections bur does not at others.   

 The use of a hump is shown to force flow to accelerate, and as a result, the otherwise 

adverse pressure gradient, which is known to be responsible for flow separation, diminishes. A 

hump in the vertical can easily be incorporated into the bed of existent channel expansions, and 

would be less expensive to construct than to modify the horizontal shape (or the sidewalls) of 
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existent expansions. The results presented in this study are of practical values for the optimal 

design of humps. 

6.3 Suggestions for Future Research 

This study has limited to the case of expansions of rectangular cross section. Future research on 

the topic should consider expansions of other shapes (e.g. trapezoidal shape). This study should 

be extended to include more cases where the Froude number is high (Fr > 0.5). We have 

considered humps with a triangle profile. It is worthy a while to investigate whether or not 

humps with a smooth profile will lead to a substantially better performance. The combined 

numerical and experimental approach would be interesting to take to tackle the problem. Future 

research should remove the assumption that the approach flow is uniform.    
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