
NONLINEAR VIBRATION ANALYSIS AND OPTIMAL 

DAMPING DESIGN OF SANDWICH CYLINDRICAL 

SHELLS WITH VISCOELASTIC AND ER-FLUID 

TREATMENTS  

 

Farough Mohammadi 

 

 

A thesis  

In the Department of  

Mechanical and Industrial Engineering 

 

Presented in Partial Fulfillment of the Requirements  

for the Degree of Doctor of Philosophy at  

Concordia University  

Montreal, Quebec, Canada 

 

June 2012 

 

 © Farough Mohammadi, 2012 



ii 

 

CONCORDIA UNIVERSITY 

 

SCHOOL OF GRADUATE STUDIES 
 

This is to certify that the thesis prepared 

 

By:  Farough Mohammadi 

 

 Entitled: Nonlinear Vibration Analysis and Optimal Damping Design of 

Sandwich Cylindrical Shells with Viscoelastic and ER-Fluid 

Treatment 

 

and submitted in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY (Mechanical Engineering) 

 

complies with the regulations of the University and meets the accepted standards with 

respect to originality and quality. 

 

Signed by the final examining committee: 

 

 

                                          Chair 

 Dr. C. Mulligan 

 

                                                                             External Examiner 

 Dr. N. Wereley 

 

                                                                              External to Program 

 Dr. F. Haghighat 

 

                                                                              Examiner 

 Dr. S. Rakheja 

 

                                                                              Examiner 

 Dr. I. Stiharu 

 

                                                               Thesis Supervisor 

 Dr. R. Sedaghati 

 

 

Approved by                                                                                                                      

    Dr. A. Dolatabadi, Graduate Program Director  

 

 

June 4, 2012            

    Dr. Robin A.L. Drew, Dean 

    Faculty of Engineering & Computer Science  



iii 

 

ABSTRACT 

Nonlinear vibration analysis and optimal damping design of 

sandwich cylindrical shells with viscoelastic and ER-fluid treatments  

 

Farough Mohammadi, Ph.D. 

Concordia University, 2012. 

 

Viscoelastic and smart fluid materials such as electro-rheological (ER) and magneto-

rheological fluids have been used in many applications in industry to suppress vibration 

in sandwich shell structures. The main objective of this dissertation is to investigate and 

develop analysis models and design optimization strategies to optimally suppress the 

vibration of cylindrical shell/panel type structures using both passive and semi-active 

treatments. This dissertation constitutes two major related parts. In the first part, passive 

treatment using viscoelastic layer is studied for sandwich cylindrical shell using semi-

analytical finite element modeling. In order to provide more accuracy a higher order 

Taylor’s expansion of transverse and in-plane displacement fields is developed for the 

core layer of sandwich cylindrical shell structures including the least number of degrees 

of freedom.  The developed model is then employed to formulate cut and partial 

treatment modeling which are applied to increase damping and reduce the weight of the 

structure. The formulations are also modified in order to consider the slippage between 

layers at the interfaces. A systematic parametric study is presented to investigate the 

effect of main parameters such as temperature, vibration amplitude, pre-stress 

components, slippage and etc on vibration damping characteristics of sandwich shell 

structure. The temperature distribution at each layer is obtained by solving the transient 

heat transfer equation for axisymmetric cylindrical structure based on the finite difference 
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method using irregular grid. Finally, by combining the semi-analytical finite element 

method and the optimization algorithms a design optimization methodology has been 

formulated to maximize the damping characteristics in sandwich cylindrical shell using 

the optimal number and location of cuts and partial treatments with the optimal 

thicknesses of the treating layers.  

In the second part of the dissertation, semi-active treatment using smart ER fluid layer 

is studied. The shear stress response and the dynamic mechanical properties of the ER 

fluid created by dispersing cornstarch into corn oil are experimentally explored for 

small/large shear strain amplitude, moderate range of frequencies and different field 

intensities. A new constitutive model has been also proposed to predict accurately the 

measured experimental data in both frequency and time domains. Then, the nonlinear 

vibration analysis of sandwich shell/panel structure with constrained electrorheological 

(ER) fluid is investigated for different boundary conditions using the finite element 

method. In order to reduce the computational costs, a new notation referred to as H-

notation is also developed over the two well known notations referred to as B and N 

notations in order to represent the nonlinear equations of motion. Finally, a design 

optimization methodology has been presented to maximize damping in sandwich 

cylindrical panel using both unconstrained viscoelastic and constrained ER fluid damping 

layers. The unconstrained viscoelastic layer is employed in order to practically seal the 

constrained ER fluid patches and boundaries of the ER based sandwich structure. Then, 

an optimization problem has been formulated to find simultaneously the optimum 

number and distribution of unconstrained viscoelastic and constrained ER fluid patches, 

electric field intensity and thickness ratios of the treating layers. 
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NOMENCLATURE 

bols Nomenclature 

a radius of the cylinder 

Cp specific heat 

E Young’s modulus 

F the equivalent nodal force 

G' storage modulus 

G" loss modulus 

H rate of internal heat generation 

h coefficient of convection 

hi ,  i= t,b, c thickness of the top (i=t), bottom (i=b) and core (i=c) layers 

K
*
 

frequency dependent complex shear stiffness parameter of the adhesive 

layer 

K stiffness matrix 

k(ω) 
real part of the frequency dependent complex shear stiffness parameter of 

the adhesive layer 

L length of the cylinder 

M mass matrix 

Nj ,  j=1,2, 3 Lagrangian shape functions 

q vector of nodal displacements 

x axial coordinate 

t,b, c indices for representing top, bottom and core, respectively. 

u, v, w 
translational displacement field in axial, circumferential and thickness 

directions, through the thickness off each layer, respectively 

u0, v0 , w0 
translational displacement field of the middle plane in axial, circumferential 

and thickness directions, respectively 
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Greek letters 

s , s ,   in-plane shear strain,  transverse shear strain in axial direction, transverse 

shear strain in hoop direction, respectively 

~  shear strain amplitude 


~
  shear strain rate amplitude 

ss ,  ,   normal strains in axial, hoop and transverse direction, respectively 

η(ω) frequency dependent loss factor  

ηeff effective loss factor 

θ circumferential coordinate 

υ Poisson’s ratio 

ξ 1, ξ 2, ξ3  
thickness coordinates located at  the middle plane of the top, bottom and 

core layers, respectively 

ρ density 

ss ,  ,   normal stresses in axial, hoop and transverse direction, respectively 

0
  

pre-stress components due to the thermal field and internal/external 

pressure 

s , s ,   in-plane shear stress,  transverse shear stress in axial direction, transverse 

shear stress in hoop  direction respectively 

~  shear stress amplitude 

φ  eigenvector 

cccc

cccc

2132

1321

,,

,,,,





 ,

 

higher order terms of displacement fields in the Taylor’s series expansions 

in the core layer 

ψ1, ψ2 
rotations of the normals to the middle plane in axial and circumferential 

directions, respectively 

ω frequency 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Suppression of noise and vibration is a major concern in many load-bearing structures 

such as automotive, aerospace and marine vehicles. Although the vibration can be 

suppressed using vibration isolator by shifting the natural frequency for certain modes, 

the sandwich structures with damping layers can be effectively used to overcome this 

issue for wide frequencies. Amongst these structures, sandwich cylindrical shells or 

panels are widely used for many applications such as boilers, pressurized gas tanks and 

aircraft fuselage. There are three different treatment methods in order to suppress the 

unwanted vibration in continuous elastic structures. In the first method, the base layer is 

covered by constrained or unconstrained viscoelastic layer to achieve a passive treatment. 

Due to the ability of viscoelastic material in converting strain energy into heat, they are 

frequently used in sandwich beam, plate and shell structures where damping is desired for 

a designed frequency range. This method is simple, economical and easy to implement as 

no external energy source is required to operate the system. Although passive viscoelastic 

layers can be designed to reliably suppress vibration in a designed frequency range, the 

damping performance in viscoelastic materials is typically limited to narrow frequency 

bands and also highly affected by the environmental disturbances such as temperature. 

To overcome this limitation, another method is to cover the base layer with the 

constrained smart controllable fluid such as Magnetorheological (MR) and 

Electrorheological (ER) fluids to achieve a semi-active treatment.  The rheological 

properties of these smart fluids are changed when they are exposed to external magnetic 
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or electric fields. These semi-active configurations may address the limitations of passive 

viscoelastic treatments by effectively utilizing the motion of the structure to develop the 

control forces using adaptive smart fluids in order to configure the structural system 

under different excitation conditions. Considering this, ER or MR treatments can 

potentially offer the reliability and fail-safe feature of the passive viscoelastic treatments 

while maintaining the adaptability to be tuned for different frequency ranges without 

requiring large power sources or expensive hardwares needed by fully active systems.  

In the third method, the vibration of the elastic structure may be controlled actively by 

smart piezoelectric materials in the form of distributed actuators and sensors attached to 

the main structure. This material can convert mechanical forces to electric charge as 

sensors and also it can develop elastic normal or shear strain under external electrical 

field as actuators. Due to the requirement of complex hardware and also large power 

consumption, the active control systems may not be practically feasible for vibration 

control of large structural systems. Moreover, as active control systems deliver energy 

into the system, they must be carefully designed with respect to control stability.  

Considering above, the main focus in this research is on passive viscoelastic and semi-

active smart fluid treatments and their combinations to damp vibration of multilayer 

shells. For semi-active treatment, ER fluid has been used as smart controllable fluid due 

to its low density which can be used to treat the structure without significant increase in 

the total mass of structure. Also, the electric field can be generated much easier than the 

magnetic field in sandwich cylindrical shell along the radial direction. In passive 

treatment, the damping layer in sandwich structures are viscoelastic material which can 

be used in two different configurations as constrained and unconstrained damping layers. 
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In the following a systematic literature review on the recent pertinent works regarding 

vibration damping in viscoelastic and smart fluid based sandwich structures has been 

presented. 

1.2 Viscoelastic based Sandwich Structure 

Many polymers exhibit viscoelastic properties which can be effectively used to 

suppress vibration in different structures in which they are able to dissipate mechanical 

strain energy into heat. However, their mechanical properties are highly affected by many 

parameters such as temperature, frequency of the vibration, strain amplitude and pre-

stress components due to external pre-loads.  Different mathematical models including 

Voigt, Maxwell, Zenner and fractional derivative models have been previously developed 

for viscoelastic materials in order to establish the constitutive equation relating the stress 

and strain components. Using these classical models, the constitutive equation under 

small harmonic shear loading for a constant temperature can be generally written as: 

  ~)()(~ GG  i  (1.1) 

where G'(ω) and G"(ω) are respectively storage and loss modulus which depends on 

the frequency, ~ and ~ are respectively the amplitude of the shear stress and shear strain 

components. The classical models determine the mathematical expressions for G'(ω) and 

G"(ω). The energy dissipated per each cycle depends on the imaginary part of the 

complex shear modulus G
*
=G'(ω)+iG"(ω). Material loss factor is also defined based on 

the ratio of the loss modulus to storage modulus. The damping layer made of viscoelastic 

material can be used in the sandwich structure in order to suppress noise and vibration. 

The following addresses the literature review on the application of the viscoelastic 

materials in vibration damping of structures. 
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The analysis of constrained and unconstrained viscoelastic sandwich plate structure 

was conducted by Ross et al. [1]. In their work, loss factor was defined in terms of strain 

energy.  Loss factor has been considered as an indicator to measure damping 

characteristic of a sandwich structure which is proportional to the ratio of the dissipated 

energy due to the damping layer to the maximum potential energy. This definition was 

examined by Ungar and Kerwin [2] who showed that it is meaningful for massless 

structure; however it may not be applied for the structure with mass except at the natural 

frequencies. Mead and Markus [3] presented sixth-order differential equation for three-

layered sandwich beam in terms of the transverse deflection. Different boundary 

conditions were investigated in their studies. Classical theory has been considerably used 

to model sandwich structures [4-6]. The effects of shear deformation and rotational 

inertia have been investigated by Rao [7] for short sandwich beam.  He also developed an 

analysis procedure to obtain loss factor and natural frequency for various boundary 

conditions [8].  Vibration damping analysis of sandwich viscoelastic beam has been 

investigated by Wang and Wereley [9] using spectral finite element method. The 

damping behavior of sandwich viscoelastic plate using analytical approach was studied 

by Wang et al. [10].  Ramesh and Ganesan [11] formulated semi analytical finite element 

model based on the first order shear deformation theory (FSDT) for obtaining the 

damping properties of cylindrical and conical shells. Parametric studies were also 

conducted to investigate the effect of some parameters such as geometry and material 

properties on the damping properties. Sainsbury and Masti [12] developed a combination 

of two elements named as FEM_1 (rectangular curved shape with four corner nodes) and 

FEM_2 (rectangular curved shape with four corner nodes and four mid-side nodes) in the 
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finite element formulation of partial treatment in sandwich cylindrical shell. Ramesh and 

Ganesan [13] compared the results from different theories including Wilkins Theory 

(WT), Khatua’s Theory (KT) and Discrete Layer Theory (DLT) in semi-analytical finite 

element modeling of the sandwich shell structure.  

Higher order expansion in displacement fields of the core layer considering slippage at 

the interfaces in sandwich beam structure was assumed by Bai and Sun [14]. They 

implemented the physical Lagrange multiplier in order to consider the higher order 

displacement fields in the core of the beam structure.  It was shown that the slippage may 

increase damping characteristics of the beam structure. The effect of slippage between 

fiber and matrix on damping characteristics in composite structures was also investigated 

by McLean and Read [15] and Nelson and Hancock [16]. They experimentally 

demonstrated that slippage reduces damping properties and therefore it should be 

avoided. The higher order model of the displacement fields in the core layer of sandwich 

beam structure was also examined by Babert et al [17]. Using the Green function, they 

presented an approximate solution by assuming perfect bonding at the interfaces to find 

the displacement fields at the core layer. By comparing the damping behavior resulted 

from their analysis to the experimental data, they showed that assuming the higher 

expansion of displacement field for sandwich beam structure provides more accurate 

model. Araújoet et al. [18] used the higher order shear deformation theory to represent 

the displacement field at the viscoelastic core layer in vibration analysis of sandwich 

composite plate structure. However, there is a lack of the compatibility between the 

displacement fields at the different layers in which implementing the boundary conditions 
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does not compatibly give the displacement fields at the core layer in terms of the 

displacement fields at the top and bottom layers.  

Material properties and damping behavior of viscoelastic materials are strongly 

frequency/ temperature dependent. Jones [19] used "temperature-frequency equivalence" 

principle to measure complex modulus of damping material in terms of temperature and 

frequency. Lesieutre et al. [20] implemented anelastic displacement field model with 

temperature dependence to investigate the heat dissipating effect on elastomeric specimen 

based on the one-dimensional model of simple shear. Teng and Hu [21] investigated the 

effect of frequency, temperature and also the dimension of damping material on vibration 

characteristics of sandwich beam structure. Hao and Rao [22], presented analytical 

formulation to analyze damping in three layered sandwich beams considering the effect 

of temperature. Moreira et al. [23] developed the viscoelastic modeling based on 

isothermal model in order to contribute temperature and frequency effects directly in the 

model.  Gupta and Kumar [24] used the Kelvin model to analyze vibration of non-

homogenous viscoelastic rectangular plate under various value of thermal gradient.  

Effect of pre-stress components on the buckling and vibration behavior has been also 

investigated by many researchers.  The vibration analysis of pressurized bare cylindrical 

shell was studied by Ross et al. [25-27]. Sabri and Lakis [28] used classical finite element 

method and Sanders shell theory to investigate the dynamic stability of partially fluid-

filled cylindrical shell under external and internal pressure. Using semi-analytical finite 

element method and the concept of geometric stiffness matrix, Ganesan and Pradeep [29]  

analyzed vibration and buckling behavior of a bare cylindrical shell containing hot liquid. 

The temperature effect on damping behavior of cylindrical sandwich structure was 
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considered by Xia and Lukasiewicz [30]. Ganesan et al. [31], Pradeep et al. [32] and 

Pradeep and Ganesan [33] presented comprehensive studies on the damping behavior and 

vibration analysis of piezothermoelastic composite cylindrical shell, composite sandwich 

beam and composite sandwich plate under thermal loading. These studies indicate that 

the damping behavior of sandwich structures is affected by pre-stress components and 

temperature condition. Due to the damping in the viscoelastic sandwich structure, the 

dissipated energy related to the hysteresis mechanism will be generated in the core 

viscoelastic layer as a source of heat. This phenomenon has been reported in some 

application such as self heating of elastomeric lead–lag dampers used in articulated rotors 

of helicopters [34, 35].  

From the previous studies it can be realized that the vibration damping analysis has 

been mainly investigated for beam/plate type structures and there are few works reported 

in the literature for sandwich shell structure. Linear or lower order displacement field has 

been frequently assumed to represent the displacement in the constrained core layer for 

sandwich shell structure. However for thick core layer, the lower order expansion of 

displacement field may not be accurate enough and thus higher order models should be 

used. This is particularly very important for partial treatment and cut modeling in design 

optimization which may lead to thick viscoelastic core layer. 

1.3 ER and MR based Sandwich Structures 

ER and MR fluids have many applications in engineering such as shock absorption, 

vibration control of structures and flow control of fluids due to their ability to provide 

reversible and rapid response [36-40]. An ER fluid consists of suspension of solid 

dielectric particle dispersed in an insulating oil [41]. Similarly, MR fluids can be 
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prepared by dispersing magnetic particles such as nickel and iron in a carrying fluid such 

as oil [42]. The rheological properties of the MR and ER fluids are immediately changed 

when they are subjected to external magnetic and electric field, respectively. ER fluids 

naturally behave as Newtonian fluid and immediately transform to the plastic (semi-

solid) state under electric field due to the formation of polarized particle chains in the 

direction of electric field. This phenomenon was first reported by Winslow [43]. 

Compared with the MR fluid, ER fluids have lower yielding strength but relatively lower 

response time and density [44]. ER and MR fluids can be used in three different modes, 

namely flow mode, squeeze-flow mode and shear mode in which the mode of operation 

depends on the applications [45-47]. The flow mode can be used in shock absorber, 

dampers and servo-valves in which the fluid flow can be tuned by altering the electric or 

magnetic field. The shear mode can be applied in brakes, clutches and also damping layer 

of sandwich structure in order to suppress noise and vibration. The squeeze mode is used 

in impact dampers to control small amplitude vibration with large force.  

In this dissertation, it has been focused on ER fluid materials and their application in 

sandwich structures. However the methodology can be easily extended to MR fluid 

materials. Various types of ER fluids reported in the literatures were discussed by Block 

and Kelly [48]. For instance, Winslow [43] used different ER fluids which consist of 

solid particles such as starch, gypsum, stone, carbon, lime and silica dispersed in 

insulating oil such as mineral oil and kerosene. Steady shear response of ER fluids has 

been studied in literatures for different electric field intensities and particle 

concentrations [49, 50]. Plenty of studies on dynamic characteristics of smart fluids are 

available in literatures. The material properties and stress response generally depend on 
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the electric field intensity, frequency and amplitude of the deformation in ER fluid 

material. In the linear region the properties mainly depend on frequency and external 

field intensity. Linear viscoelastic properties of alumina dispersed in silicone oil in terms 

of frequency and electric field was investigated by Parthasarathy et al. [51]. The dynamic 

behavior under large amplitude oscillatory shear was also investigated by Parthasarathy 

and Klingenberg [52] using particle-level simulation method. They showed that under 

very small shear strain amplitude, the fluid exhibits linear viscoelastic behavior. The 

nonlinear behavior could easily be achieved by slight change of particles localization, 

instability in external field and large strain amplitude [53]. Consequently, due to the 

instability in external field regardless the sensibility of the rheometers, there is no 

assurance that linear properties are obtained in a real experiment [54]. Gamota and 

Filisco [55-57] investigated ER fluid responses under moderate frequencies (10-50 Hz) 

and high frequencies (300-400 Hz). They showed that the ER fluid response is mainly 

affected by shear strain amplitude and electric field strength. Based on the Fourier 

transformation technique, Gamota et al. [58] discovered that for certain strain amplitude 

the response is linear under small field intensity, however, with increasing field intensity 

the ER fluid shows nonlinear behavior since the higher order harmonic terms appear in 

the Fourier transformation analysis. This indicates that not only large shear strain 

amplitude leads to nonlinear viscoelastic behavior of the smart fluid, but it can also be 

resulted from high field intensity. Furthermore, they showed that yielding stress of the 

smart fluid depends on the field intensity and frequency. Nonlinear viscoelastic properties 

of MR fluid for different shear strain amplitudes and frequencies were investigated by Li 

et al. [59]. It was shown that at angular frequency ω=5 rad/s and magnetic field of 340 
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mT, the nonlinearity in stress response occurs for shear strain amplitudes greater than 0.1 

% in which the storage modulus depends on the strain amplitude. They also presented 

different critical frequencies where the trend of effective complex modulus is changed at 

these frequencies. It was shown that with increasing shear strain amplitude, the critical 

frequencies decrease. Therefore, if the amplitude is small enough then the effective 

complex modulus remains constant over a moderate range of frequency. Choi et al. [60] 

obtained complex modulus of an ER fluid using free oscillation response of sandwich 

beam in which the ER fluid was constrained by thin polystyrene faces. They employed 

ER fluids consisting of zeolite-silicone oil and cornstarch-corn oil with different particle 

weight fraction. Although their method provides a condition to catch the linear 

viscoelastic behavior, the properties could be affected by the constraining faces. The 

complex modulus of the ER fluid consisting of cornstarch suspensions in silicone oil 

under large amplitude oscillatory shear strain was investigated by Lee and Cheng [61]. 

They showed that for large strain amplitude, the material properties of the ER fluid can 

be approximately frequency independent.  

In many applications, ER and MR fluids are subjected to oscillatory shear [62]. The 

dynamic properties of ER and MR fluids under oscillating shear strains in both pre-

yielding and post yielding regimes are mathematically investigated by many researchers. 

Under external field, these smart fluids show linear viscoelastic behavior for small 

amplitude oscillatory shear strain )sin(~ t  in which ω is the angular frequency. The 

shear stress response then can be expresses as: 

 )cos(),()sin(),(~ tEGtEG    
(1.2) 
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where G'(ω,E) and G"(ω,E) are respectively storage and loss modulus which depends on 

the frequency and field intensity. For large amplitude oscillatory shear, dynamic 

properties of the smart material not only depends on the frequency and the external field, 

but it also depends on the amplitude. In this case, the Fourier transformation technique is 

the most common method to quantify the behavior of material [63]. According to this 

method, the stress response under the harmonic shear strain may be expressed as: 

      
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 (1.3) 

For small amplitude G'2n+1 and G"2n+1 are respectively small enough compared to G'1 

and G"1. Noteworthy, by reversing the coordinate system the stress response does not 

change [64] which explains why only odd harmonic terms are included in Eq. (1.3). In 

the nonlinear regime, the behavior of the smart fluid material changes through the cycle 

(intercycle nonlinearities).  The reported experimental data for storage and loss modulus 

in the literature using the rheometer device are obtained based on the either the lower 

order terms G'1 and G"1 in Fourier transformation or based on the shear stress amplitude 

and phase behavior at the fundamental frequency as: 

)cos(~

~
)~,,( 




  EG  )sin(~

~
)~,,( 




  EG  (1.4) 

where ~ and ~ are respectively shear stress and strain amplitudes and is the phase 

difference between shear stress and strain at the fundamental frequency. Linear and 

nonlinear viscoelastic properties of ER and MR fluids were studied by Weiss et al. [65]. 

According to their results, at constant amplitude the nonlinearity in storage modulus-

frequency relation increases as the external field intensity increases. As mentioned 
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before, in the linear regime the nonlinear terms in Fourier transformation relation are 

negligible compared to G'1 and G"1. In this region the viscoelasticity can be modeled 

using classic viscoelastic models such as Voigt, Maxwell, Zenner and fractional 

derivative models. Although the Fourier transformation technique is suitable to show the 

nonlinear viscoelastic behavior under large amplitude oscillation shear (LAOS), it does 

not give the physical interpretation of the material response. Cho et al. [66] proposed a 

new method to physically interpret the LAOS data by decomposing the nonlinear stress 

response into the elastic and viscoelastic components using Taylor expansion. However, 

the coefficients of the polynomial which define the material properties are not unique and 

depend on the order of the polynomial in the Taylor expansion. To overcome this issue, 

Ewoldt et al. [67] suggested a framework using Chebyshev polynomials Tn(x) as the basis 

functions in order to avoid the effect of incorporating the higher order terms in the lower 

order terms. Also the Chebyshev polynomials can be easily related to the Fourier 

coefficients using the identities Tn(cos(θ))=cos(nθ) and Tn(sin(θ))=sin(nθ)(-1)
(n-1)/2

. 

Furthermore, they presented different first order modulus of viscoelasticity in nonlinear 

regime and defined their physical interpretation. They showed that G'1 and G"1 in Eq. 

(1.3) averagely exhibit dynamic properties of the smart fluids for nonlinear viscoelastic 

behavior. 

For large amplitude, the Bingham plastic model or other purely viscous Newtonian 

fluid models such as Cross model [68], Papanastasiou model [69], Carreau-Yasuda model 

[64] can be employed in the nonlinear regime. In addition to these models, some studies 

were presented to show the nonlinear behavior of these materials such as the study 

reported by Gopalakrishna and Wereley [70] who presented a model using nonlinear 
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combination of viscoelastic element for pre-yield and simple viscous element for post-

yield regimes to capture nonlinear behavior of ER fluid under oscillatory shear loading. 

Based on the non-parametric identification method, Ehrgott and Masri [71] modeled the 

force response of the ER fluid (alumino-silicate dispersed in fluorinated liquids) obtained 

by the experiment using Chebyshev polynomials in terms of displacement and velocity 

with 64 corresponding coefficients for a single field strength value. Considering different 

field intensities, the number of the coefficients to be estimated is too numerous. Lee [72] 

used a nonlinear stress-strain relation to obtain a constitutive model for ER fluids in 

nonlinear regime. He neglected the effect of frequency on the stress response of the ER 

fluid. Based on this constitutive model for representing the hysteresis loop and using the 

energy method proposed by Ungar and Kerwin [2], Lee and Cheng [73] obtained the 

equivalent linearized storage and loss modulus and then compared the results to the 

experimental data based on Eq. (1.4). The comparison showed a good agreement between 

the complex modulus resulted by the simulation and the experiment. However, the stress 

amplitudes predicted by the model were considerably different from those obtained by 

the experiment. The reason is that the complex modulus obtained experimentally based 

on the Eq. (1.4) does not represent the equivalent complex modulus and consequently 

they should not be compared to each other. Therefore the constitutive model does not 

represent the true hysteresis loop. The Bingham-Hooke model was used by Laun et al. 

[74] to describe material properties of MR fluids in the linear and nonlinear regimes for 

single field intensity and single frequency. The model has been expressed as: 

 
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in which τy is yielding stress, G0 is elastic modulus, ηB is Bingham viscosity, λ is 

relaxation time and γB is a constant shear deformation. They showed that this model fails 

to capture loss modulus at small amplitude. Considering this, they added a viscous term

 p  to the total stress component without changing the Bingham-Hooke model element. 

The parameters of the model were then adjusted to predict the experimental results. They 

also improved the results by considering weighted sum of the contributions from different 

yielding stress into the total shear stress response. According to the results, the complex 

modulus was not still close to the experimental data in the nonlinear regime.  

Using the material properties in small oscillation, some studies have been reported on 

vibration damping of structures with MR/ER fluid damping layers. Yalcintas and Coulter 

[75, 76] analytically investigated vibration behavior of sandwich beam with ER fluid core 

layer. Choi et al. [60] obtained complex modulus of ER fluid using free oscillation 

response of sandwich beam. They also studied vibration characteristics of a composite 

sandwich beam structure with constrained ER fluid layer [77]. Jia-Yi [78] studied the 

vibration and damping characteristics of constrained ER fluid sandwich cylindrical shell 

using semi-analytical finite element modeling in linear region. Similar study was 

presented by Kang et al. [79] on ER fluid sandwich beam structure using finite element 

method. Sun et al. [80] studied vibration analysis of MR fluid sandwich beam structure 

under small amplitude oscillation Shear. Zhou and Wang [81] analyzed damping 

characteristics of partially magnetized sandwich beam with MR fluid core layer. 

Dwivedy et al. [82] also studied instability of MR fluid sandwich beam with MR fluid 

under oscillating axial load. Vibration damping analysis for constrained fully and 

partially treated MR fluid beam structure was also presented by Rajamohan et al.  [83, 
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84] . Dynamic behavior of 3D space truss structure including embedded MR fluid damper 

was studied by Dominguez et al. [85]. 

As it can be realized, the studies on structural vibration damping using MR/ER semi-

active treatment are mainly limited to the linear region of MR/ER fluids where the 

complex modulus is independent from amplitude of the shear strain.  Due to the small 

linear region in ER fluid, vibration analysis of the sandwich structure containing ER fluid 

should be investigated in nonlinear region where the material properties depend on 

frequency, amplitude and electric field. Currently, there are no available studies on 

vibration damping in ER/MR based sandwich cylindrical shells/panels subjected to large 

deformation. 

1.4 Nonlinear Vibration Analysis of Sandwich Structures 

Nonlinear vibration analysis of shell/plate structures has been widely studied by many 

researchers. The extensive reviews are reported in references [86-89]. Different 

frameworks have been employed in these studies in order to define the displacement 

fields through the shell/plate type structures including classical theory (CT), first order 

shear deformation theory (FSDT) and higher order shear deformation theory (HSDT). 

Based on the displacement distribution in the shell/plate structures and also strain-

displacement relationships, different nonlinear shell theories have been also developed 

such as Donnell [90], Flügge-Lur'e-Byrne [91], Novozhilov [92] and Sanders-Koiter [93] 

shell theories which are extensively reported by Amabili [94]. By employing the 

Lagrange equations or Hamilton principle, the equations of motion are then established 

using the total strain and kinetic energies in the shell/plate structures. The nonlinear 

equations of motion can be solved using numerical methods such as finite element, finite 
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difference and Rayleigh-Ritz methods. Also it can be solved analytically using the 

perturbation technique. By employing the finite element method, the partial differential 

equations of motion are converted to set of ordinary differential equations and techniques 

such as collocation method, harmonic balance method and Galerkin methods can be used 

to solve the free nonlinear vibration problem.  Xia and Lukaziewicz [95, 96] analyzed 

nonlinear free vibration damping of sandwich plates and sandwich cylindrical panels 

using harmonic balance method and the multi-mode Galerkin technique. Nonlinear 

vibration analysis of viscoelastic sandwich beam was investigated by Daya et al. [97] 

based on the harmonic balance method coupled with one mode Galerkin technique. Using 

asymptotic–numerical method and perturbation techniques, Azrar [98] investigated 

vibration analysis of plate structure. The nonlinearity appeared in the stiffness matrix due 

to the large deformation can be also solved by the simple iteration technique or Newton-

Raphson method. This methodology has been addressed in many studies as follows. 

Based on the von Karman’s hypothesis, Han and Petyt [99] analyzed nonlinear vibration 

analysis for fundamental mode of thin plate structure using hierarchical finite element 

method. They employed harmonic balance method considering the first term in the time 

series in order to establish the nonlinear eigenvalue problem which was solved using the 

simple iteration technique. Due to nonlinearity in the equations of motion, the 

displacement in free vibration can be expressed using the higher order terms in the time 

domain. However, as shown by Prabhakara and Chia [100], small difference exists 

between the results using the first term and first two terms in the time series. Liu and 

Huang [101] investigated nonlinear vibration analysis of composite laminated plate based 

on FSDT and von Karman’s hypothesis using finite element modeling and the direct 
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iteration procedure. Similar study has been reported by Nanda and Bandyopadhyay [102] 

for laminated composite cylindrical panel. Based on HSDT, Panda and Singh [103, 104] 

studied nonlinear free vibration analysis of laminated composite cylindrical and spherical 

shell panels using finite element modeling and the direct iteration technique. Singha and 

Daripa [105] used finite element method and von Karman’s hypothesis to analyze 

nonlinear free vibration of laminated composite skew plates and the direct iteration 

technique was used to solve the nonlinear amplitude dependent eigenvalue problem 

obtained by the Galerkin method.  

The nonlinear amplitude dependent stiffness matrices in equations of motion have 

been expressed by two notations. In B-notation, according to the procedure developed by 

Mallet and Marcal [106], an asymmetric amplitude dependent stiffness matrix is 

achieved. However, Rajasekaran and Murray [107] showed that the derivation can be 

performed in a way that a symmetric form of the nonlinear stiffness matrices in N-

notation is resulted. The correlation between these two notations has been also shown by 

Wood and Schrefler [108]. These two notations are not efficient enough regarding the 

computational costs associated with integrations repeatedly performed in the direct 

integration technique.  

1.5 Design Optimization of Sandwich Structures 

Parametric studies and optimization to investigate the effect of the main parameters 

such as dimensions of the layers, material properties and partial treatment on the damping 

characteristics in passive and semi-active treatments have been investigated by many 

researchers. Ramesh and Ganesan [11, 109] presented the effect of geometry and material 

properties of viscoelastic layer on loss factor using semi-analytical finite element 
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modeling based on the first order shear deformation theory (FSDT) for shells of 

revolution. Plunkett and Lee [110] optimized damping characteristics of a viscoelastic 

sandwich beam structure using partial treatment by cutting the constraining layer into 

optimal lengths. Mantena et al. [111], maximized loss factor in constrained viscoelastic 

sandwich beam structure by optimizing side length of the treatments. Optimal size and 

dimension of treatments in sandwich layered plate structure was also investigated by 

Huang et al. [112]. Trompette and Fatemi [113] obtained the best position of one cut 

considering lack of continuity in longitudinal displacement in cantilever viscoelastic 

sandwich beam to maximize loss factor. Ajmi and Bourisli [114] maximized loss factor 

by considering the optimized number of treatments in partial treatment of viscoelastic 

sandwich beam structure and appropriate thickness ratio of top and core layers. 

Lepoittevin and Kress [115] optimized the distribution of cuts in constraining and 

constrained layers of sandwich viscoelastic beam structures. They showed that by 

embedding the cuts, transverse shear strain at core layer increases and consequently the 

damping increases. Design optimization of MR based sandwich beam structure has been 

investigated by Rajamohan et al. [116] in which optimal location of MR fluid treatment 

patches was found in order to maximize loss factor. Lepik [117] optimized thickness 

distribution of axisymmetric viscoelastic cylindrical shell layer in order to minimize the 

deflection under impulsive loading. Zheng et al. [118] minimized vibration response of 

cylindrical shell using the optimal size and location of viscoelastic treatment patches. 

As it can be realized, the design optimization reported in the literature are based on 

optimizing thicknesses of the damping and constraining layers or optimizing the side 

length of certain number of treating patches to maximize damping. These studies are 
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mainly conducted for beam/plate type structures [110-116]. Fewer studies on design 

optimization of sandwich shell/panel structures are available in literatures which have 

been presented only for passive damping [117, 118]. Also there is no study available in 

the literature in which the both viscoelastic and smart fluid materials are used in a way 

that the configuration of the treatments, the thicknesses of the treating layers and the 

electric field intensity are simultaneously optimized in order to maximize the damping in 

sandwich panel structure. 

1.6 Motivation and Objectives 

In the first part of this dissertation, passive treatment using viscoelastic layer is studied 

for sandwich cylindrical shell structure using the semi-analytical finite element modeling 

and the design optimization has been carried out to achieve the maximum damping. In 

the second part of this dissertation, the semi-active treatment using ER fluid material has 

been analyzed for the sandwich shell structure using the finite element modeling. Finally, 

the design optimization has been conducted in order to obtain optimum damping using 

both viscoelastic and ER fluid treatments. 

As mentioned before, damping characteristics of sandwich structure are mainly 

investigated for plate-beam sandwich structure and there are few works on vibration 

damping analysis of sandwich shell structure. The lower order expansion has been often 

used for the displacement field of core layer which may not be accurate enough for the 

thick core layers.  

Compared with viscoelastic material, the ER fluids have much lower yielding stress. 

Thus for relatively large deformation, these smart fluids enter to the post-yielding region 

and therefore the vibration damping analysis should be conducted considering the 
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nonlinear regime. As mentioned before, currently there are no available studies on 

vibration damping in ER sandwich cylindrical shells/panels considering the nonlinear 

behavior of the smart fluid material. In the nonlinear regime, material properties depend 

on frequency, shear strain amplitude and electric field intensity. These properties are 

required in order to investigate the nonlinear vibration analysis of sandwich panel 

structure. However, the material properties in post yielding provided in the literatures are 

not sufficient to be used in nonlinear vibration analysis of sandwich structure. Also a 

constitutive model is required to accurately predict the experimental data for different 

shear strain amplitudes, frequencies and electric field intensities. 

 The nonlinear vibration analysis of sandwich shell structures is computationally very 

expensive. An efficient finite element modeling is required to model vibration damping 

in these structures. The two well-known B and N notations used for representing the 

nonlinear equation of motion are not computationally efficient as they require numerous 

integrations iteratively performed throughout the direct iteration technique.  

  Considering the abovementioned limitations in the literature, in the following the 

objectives accomplished in this dissertation have been summarized:  

i. Semi-analytical finite element modeling for vibration damping analysis of 

passive viscoelastic sandwich cylindrical shell structure and investigating the 

effect of main parameters on vibration damping characteristics. These 

parameters include the core rigidity, ambient temperature, internal temperature 

and the resulted thermal stress components introduced at each layer, heat 

dissipation, slippage between layers at the interfaces, large deformation, stress 

components due to internal/external pressure, thickness ratio of the layers, 
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partial treatment and its distribution, cutting and its distribution at the top and 

core layers, and the method of treating the viscoelastic layer including the 

constrained and unconstrained treatment processes. 

ii. Developing a higher-order expansion for representing the displacement fields 

in a thick viscoelastic damping layer with the least number of degrees of 

freedom. The higher order model provide the compatibility between the 

displacement fields at different layers so that implementing the boundary 

conditions provide the displacement fields at the core layer in terms of those at 

the top and bottom layers. Considering this, the higher order model can be 

implemented to model cut and partial treatment. The results are also compared 

with those obtained by the lower order expansion. Although the higher order 

models include the least number of variable and provide more accuracy than 

the linear order model, however it results in more complexity in formulations.  

iii. Deriving the formulation based on considering slippage between the layers at 

the interfaces and investigating the effect of slippage on vibration damping 

characteristics in viscoelastic sandwich shell structures. Also the higher order 

model has been employed in the finite element modeling of sandwich 

cylindrical shell under thermal and internal/external pressure loading. 

iv. Optimizing damping characteristics in passive viscoelastic treatment using 

optimum number of cuts/treatments and their distribution as well as the 

optimum thickness ratios of viscoelastic core and elastic top layers of sandwich 

cylindrical shell structure. 
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v. Conducting experimental study to obtain material properties of ER fluid 

material for different shear strain amplitudes, frequencies and electric field 

intensities. A constitutive model is also developed to predict the experimental 

results in both frequency and time domains. 

vi. Nonlinear vibration analysis of ER based sandwich shell structure using finite 

element modeling and developing a new notation (referred to as H-notation) in 

order to efficiently represent the nonlinear equations of motion. Using this 

notation leads to considerable reduction in the computational costs caused by 

the time consuming integrations in the nonlinear vibration analysis of structure 

using direct iterating technique. 

vii. Design optimization in sandwich shell structure with both viscoelastic and 

smart fluid patches in which simultaneously the configuration of the 

viscoelastic and ER fluid treatments, the thicknesses of the treating layers and 

the electric field intensity are optimized to maximize the damping in sandwich 

shell structure. 

1.7 Organization of the Dissertation-Manuscript based Format 

The dissertation has been written according to the manuscript-based format based on 

the requirements described in “Thesis Preparation and Thesis Examination Regulation” 

booklet of the School of graduate Studies at Concordia University. The dissertation 

includes eight chapters which addresses the objectives illustrated in the previous sections. 

Chapter 1 presents the relevant studies reported in the literature regarding the viscoelastic 

and smart fluid materials and their application in vibration damping of sandwich 

structure. Six articles extracted from this dissertation have been included in Chapters 2 
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through 7 stating the abovementioned objectives and the method of accomplishment. 

These articles are published in peer-reviewed and high ranked journals. These chapters 

are organized in sequential manner which describe the methodologies to address the 

objectives of the dissertation. Finally, the main conclusions extracted from the 

dissertation, recommendation and future work have been summarized and included in the 

chapter 8. In the following the summary of chapters has been presented. It should be 

mentioned that some repetitions in the developed formulation and the experimental study 

in some chapters cannot be avoided since they are required to present the integrity of the 

articles and to illustrate the entire developed methodology.  

Chapter 2 presents the following article published in the “International Journal of 

Mechanical Sciences”: 

F. Mohammadi and R. Sedaghati, "Linear and nonlinear vibration analysis of sandwich 

cylindrical shell with constrained viscoelastic core layer," International Journal of 

Mechanical Sciences, vol. 54, pp. 156–171, 2011 

In this article damping characteristics of three-layered sandwich cylindrical shell for 

thin and thick core viscoelastic layers are studied using semi-analytical finite element 

method. Higher order expansion of displacement is developed to represent the 

displacement field of the core layer. The results are also compared with those using the 

lower order expansion in both frequency and time domains. The effect of geometric 

nonlinearity due to the large deformation of the sandwich shell structure has also been 

considered assuming small strain and moderate rotation. Different assumptions based on 

the continuity and discontinuity in transverse shear stresses and slope of in-plane 

displacements are considered in the finite element formulation and their effects have been 
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investigated for compliant and rigid core layers. This has been followed by investigating 

the effect of thickness ratios of the damping and constraining layers on damping 

characteristics. Finally, the effect of imperfect bonding between the layers on vibration 

behavior has been presented and it is shown that slippage between layers at the interfaces 

leads to reduction in loss factor at the majority of modes. 

Chapter 3 presents the following article published in the “Journal of Sandwich 

Structures and Materials”: 

F. Mohammadi, R. Sedaghati, “Damping characteristics of sandwich cylindrical shell 

under pressure and thermal load,” Journal of Sandwich Structures and Materials, vol. 14, 

pp. 157–180, 2012. 

In this article, damping characteristics of viscoelastic sandwich cylindrical shell under 

internal/external pressure and internal temperature is investigated. By implementing finite 

difference method for irregular grids in the sandwich cylinder, temperature distribution at 

each layer is determined. Using the higher order model for displacement fields at the 

viscoelastic core layer described in chapter 2 and considering the effects of temperature 

and frequency on material properties of damping layer, vibration behavior of a 

pressurized sandwich cylindrical shell under the temperature variation has been 

investigated. The thermal stresses introduced at each layer and also the stress components 

due to internal/external pressure are obtained and then considered in the vibration 

analysis using the concept of geometric stiffness matrix.  Effect of heat dissipation on 

vibration behavior of a pressurized cylinder under harmonic variation of the pressure has 

also been investigated  
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Chapter 4 presents the following article published in the “Journal of sound and 

vibration”: 

F. Mohammadi, R. Sedaghati, “Vibration analysis and design optimization of viscoelastic 

sandwich cylindrical shell,” Journal of Sound and Vibration, vol. 331, pp. 2729–2752, 

2012. 

In this article, the developed higher order expansion is formulated to model cut and 

partial treatment in which the displacement fields at the core layer are compatibly 

described in terms of the displacement fields at the elastic faces. The developed model 

includes the least number of degree of freedom in the finite element modeling. The 

formulation has also been modified to consider the slippage between layers at the 

interfaces.  Finally, by combining the finite element method and the optimization 

algorithms based on the genetic algorithm and sequential quadratic programming 

technique, a design optimization methodology has been formulated to maximize the 

damping characteristics using the optimal number and location of cuts and partial 

treatments with optimal thicknesses of top and core layers. 

Chapter 5 presents the following article published in the “Journal of Intelligent 

Material Systems and Structures”: 

F. Mohammadi, R. Sedaghati, “Dynamic mechanical properties of an electrorheological 

fluid under large amplitude oscillatory shear strain,” Journal of Intelligent Material 

Systems and Structures, Accepted to be published, doi: 10.1177/1045389X12442013. 

In this article, the shear stress response and the dynamic mechanical properties of an 

ER fluid are experimentally investigated for small/large shear strain amplitude at 

moderate range of frequencies and different field intensities. A new efficient constitutive 
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model has also been also proposed which can accurately predict the measured 

experimental data. Compared with the Fourier transformation rheology, the proposed 

model requires less number of parameters in order to predict the stress response and the 

mechanical properties including storage and loss modulus for different strain amplitudes, 

frequencies and field intensities. This leads to considerable simplification in parameter 

identification process using optimization methods. 

Chapter 6 presents the following article published in the “Journal of Smart Materials 

and Structures”: 

F. Mohammadi, R. Sedaghati. “Nonlinear free vibration analysis of sandwich shell 

structures with constrained electrorheological fluid layer,” Smart Materials and 

Structures 21 (2012) 075035 (18pp). 

In this article, nonlinear vibration analysis of sandwich shell structure with constrained 

ER fluid is investigated for different boundary conditions. To accomplish this, the 

nonlinear finite element model of a multilayer shell structure with ER fluid layer as the 

core layer has been developed. A new notation referred to as H-notation is presented over 

the two well-known notations referred to as B and N notations in order to represent the 

nonlinear equations of motion. This notation leads to considerable reduction in the 

computational costs caused by the time consuming integrations in the nonlinear vibration 

analysis of structure using direct iterating technique. Particularly, this notation is very 

useful for solving the nonlinear vibration analysis of sandwich layered shell structures in 

which large numbers of integrations are required to be repeatedly performed throughout 

the direct iteration method. Finally, for different boundary conditions the effects of small 
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and large displacements, core thickness ratio and electric field intensity on nonlinear 

vibration damping behavior of the sandwich shell structure are presented. 

Chapter 7 presents the following article published in the “Journal of Intelligent 

Material Systems and Structures”: 

F. Mohammadi, R. Sedaghati. “Vibration Analysis and Design Optimization of Sandwich 

Cylindrical Panels Fully and Partially Treated with Electrorheological Fluid Materials,” 

Journal of Intelligent Material Systems and Structures, DOI: 

10.1177/1045389X12451195, June 2012.  

In this article, vibration analysis and damping characteristics of sandwich cylindrical 

panel structures using semi-active electrorheological (ER) fluid treatments have been 

investigated for different boundary conditions. Unconstrained viscoelastic material has 

been used at boundaries and untreated locations to seal ER fluids. First, an efficient finite 

element method has been formulated to investigate the effect of electric field intensity 

and thickness of top constrained elastic layer on the vibration and damping performance 

of the viscoelastic and ER based sandwich cylindrical panel. Then a design optimization 

methodology has been developed to simultaneously optimize the number of 

unconstrained viscoelastic and constrained ER fluid patches and their distributions, 

thickness ratios of the ER core and constrained elastic layers to base layers and the 

external electric field intensity. The methodology integrates the finite element model of 

the sandwich panel with the combined genetic algorithm and sequential quadratic 

programming to effectively identify the global optimal solutions. The results show that 

for some boundary conditions the sandwich panel partially treated with ER fluids 

provides better damping performance compared with that of fully treated. 
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Chapter 8 includes the highlights and conclusion of the dissertation with some 

recommendations for further works. 
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CHAPTER 2  

VIBRATION ANALYSIS OF SANDWICH CYLINDRICAL 

SHELL WITH CONSTRAINED VISCOELASTIC CORE 

LAYER 

2.1 Introduction 

Sandwich structures have many applications in industries such as automotive, 

aerospace and marine vehicles especially where suppression of vibration and noises are 

required. The sandwich structures are composed of number of layers. Depending on the 

application, these layers are made of different types of material such as aluminum, steel, 

composite and viscoelastic material.  Vibration analysis of sandwich structures with 

viscoelastic core layer such as viscoelastic sandwich beam, plate and shell type structures 

have been studied by many researchers [1-14]. These studies as addressed in Chapter 1 

mainly include analytical solution, finite element modeling, experimental works, 

parametric studies and optimization in order to increase damping properties. Increasing 

the thickness of the damping layer has basically no significant effect on the total mass of 

the sandwich cylindrical structure; however it can cause significant increase in the 

damping properties. A higher order model is then required for analyzing sandwich 

cylindrical shell with thick core layer. 

 In this chapter, semi-analytical finite element model is developed to analyze the 

sandwich cylindrical shell structure and the results including loss factors, natural 

frequencies and frequency response function (FRF) are obtained using both lower and 

higher order expansions of the displacement field through the thickness of the core layer. 

Continuity and discontinuity in transverse shear stresses and slopes of in-plane 

displacements in axial direction are considered in the finite element formulations and the 
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results are compared for stiff and compliant core layers.  Effect of slippage between the 

layers is also analyzed and is shown that the imperfect bonding leads to reduction in loss 

factor for the majority of modes suggesting that the slippage should be prevented.  The 

developed finite element model is then extended to consider the effect of large deflection 

on natural frequency and loss factor. Loss factor is calculated based on the concept of 

modal strain energy dissipated in each cycle for the sandwich structure. Transient 

vibration analysis under impulsive load is also presented using the lower and higher order 

models to observe the damping behavior of each model. 

In the following, first, the formulation for displacement fields through the core layer is 

determined using the lower order model. Then, the continuity and discontinuity in 

transverse shear stresses and in-plane displacements (slippage effect) are formulated. 

This is followed by developing a higher order model for representing displacement 

distribution through the thickness of core layer in which the slippage between the layers 

is considered at interfaces. Next, the Lagrange equations are employed to develop the 

semi-analytical finite element formulation. The effect of large deflection is considered 

using non-linear Green’s Strain Tensor which is based on small strain and moderate 

rotation.  Proper shape functions and the degrees of freedom (DOF) have been chosen to 

accommodate different configurations considering the continuities and discontinuities in 

transverse shear stresses and slope of in-plane displacements. 

2.2 Linear Distribution of Displacement through Thickness of the 

Viscoelastic Core Layer 

Here, a three-layered sandwich cylindrical shell with core viscoelastic layer shown in 

Figure 2.1 has been considered. According to the FSDT, the dynamic displacement fields 
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(in terms of time) for a three layered sandwich cylindrical shell, are defined in terms of 

the displacements of the middle planes including u0, v0 and w0 and the rotations of the 

normals to the middle plane in axial and circumferential directions denoted by ψ1 and ψ2, 

respectively.  The total displacement field is then given as: 

The indices i=t, b and c represent respectively top, bottom and core layers and i  is 

the coordinate in thickness direction at the middle plane of the top, bottom and core 

layers, respectively and    321 ,,,,  cbt . u, v and w are respectively the total 

displacement in axial (x), circumferential (θ) and thickness directions.  The in-plane 

displacements are linear through the thickness and the transverse deflection is assumed to 

be constant with respect to the thickness coordinate of the sandwich cylinder. It should be 

noted that in classical theory, since the transverse shear stresses at the elastic faces are 

neglected, rotations ψ1 and ψ2 for the top and bottom elastic layers can be represented as: 

where a is the radius of the cylinder. The results from both theories are different for 

very thin and very thick layers due to the poor performance of classical theory for thick 

layers and poor performance of FSDT for very thin layers. However for very thin layers, 

the FSDT is in very good agreement with the classical theory if sufficient number of 

higher order elements is employed in the finite element modeling.  In the following 

subsections, the displacement field for the different configurations has been derived 

based on the lower order expansion of the displacement fields. 
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Figure 2.1 Sandwich cylindrical shell; displacements and rotations at each layer 

2.2.1 Continuity in displacements and discontinuity in transverse shear stresses at the 

interfaces 

For sandwich viscoelastic structures with compliant core layer, continuity in 

transverse shear stresses provides a rigid model which cannot correctly show the 

vibration damping behavior of the sandwich structure. In this section, the continuity is 

only considered for in-plane displacements and transverse deflection (perfect bonding). 

By implementing boundary conditions at the interfaces, displacement fields at the top and 

bottom layers are calculated using the displacement field at the core layer. The boundary 

conditions for perfect bonding can be described as: 

ξ1 = -ht /2 and ξ3 = hc /2: ut = uc vt = vc wt = wc 
(2.3) 

ξ2 = hb /2 and ξ3 = -hc /2: ub = uc vb = vc wb = wc 

Therefore, the displacement fields of the top and bottom layers are obtained as 

follows: 
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2.2.2 Continuity in both displacements and transverse shear stresses at the interfaces 

For viscoelastic sandwich structure, the continuity in transverse stresses is generally 

disregarded since the rigidity of the model for sandwich structure increases. In this 

chapter, the effect of this continuity has been fundamentally investigated for compliant 

and stiff core layers. The assumption of the continuity in transverse stresses leads to 

elimination of rotational displacement at the top and bottom layers. Therefore number of 

DOF is reduced and subsequently more rigidity in the finite element formulation is 

provided.  In sandwich structure in which the core material is stiff enough compared to 

the constrained layers, this assumption provides more accurate solution. On the other 

hand, this assumption is not suitable for compliant viscoelastic sandwich structure. To 

obtain displacement fields in this case, in addition to the continuity of translational 

displacements, the transverse shear stresses are also equated at the interfaces as follows: 
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in which transverse shear stresses and  shear modulus are denoted by τ and G in each 

layer, respectively. According to the boundary conditions in Eq. (2.6), the rotations at the 

top and bottom faces are obtained as: 
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By substituting Eq. (2.7) into Eqs (2.4) and (2.5), the displacement fields at the top 

and bottom elastic layers can be written in terms of the displacements and rotations of the 

core layer as: 

and 

2.2.3 Slippage between layers; discontinuity in in-plane displacements and transverse 

shear stresses at the interfaces 

The effect of slippage between fiber and matrix on damping properties of composite 

structures was investigated by McLean and Read [15] and Nelson and Hancock [16].  

They demonstrated that slippage reduces damping properties and should be prevented. 

However, by implementing complex shear modulus for the adhesive layer at the 

interfaces, Bai and Sun [14] showed that slippage can increase loss factor in sandwich 
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beam structure for a certain range of material property for the adhesive layer.  In order to 

consider slippage and therefore discontinuity of displacements between layers, it is 

assumed that the core layer and the constraining elastic layers are glued by a viscoelastic 

adhesive layer at the interfaces [14]. Transverse shear stresses at the interfaces are 

calculated using the difference between in-plane displacements at the interfaces. 

Therefore, the boundary conditions at the interfaces given in Eq. (2.3) are modified to the 

following expressions: 

where K* = k(ω)(1+ iη(ω)) is the complex shear stiffness parameter of the adhesive 

layer which is a function of frequency. Large values of k(ω) leads to small slippage 

between layers. Perfect bonding would be achieved when k(ω) is very large. By 

substituting displacements from Eq. (2.1) into the Eq. (2.10), the following relations are 

obtained: 
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Considering Eq. (2.11), the displacement fields in the elastic faces given in Eq. (2.1) 

may be rewritten as: 
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2.3 Nonlinear Distribution of Displacements through Thickness of the 

Viscoelastic Core Layer 

In a thick viscoelastic layer with compliant material property, the displacement fields 

vary through the thickness and therefore the lower order expansion of displacement field 

through the thickness may not be accurate enough. In this section, a nonlinear model for 

distribution of the displacement fields through the thickness of the core layer is 

formulated. Here, it is assumed that the in-plane normal and shear stresses at the core 

layer are negligible. According to the equilibrium equations, transverse shear stresses are 

constant with respect to the transfer direction through the thickness of the core layer. The 

normal stress in thickness direction and the slippage between layers at the interfaces, 

however, are considered. The following nonlinear polynomial displacement fields for the 

core layer are assumed: 

Transverse shear strains are related to the constant transverse shear stresses as: 
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Shear strains can be calculated using the displacement distribution stated in Eq. (2.14) as 

follows: 
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2
 in Eqs (2.15) and (2.16) yields the following 

relations: 
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Now, substituting 
cccccc
321321 ,,,,   and from Eq. (2.17) into Eq. (2.14) yields the 

in-plane displacement fields through the thickness of the core layer as: 

 
  112

12

3

3

3



 


 cx

c

c

c

x
x

EG



  

 
  212

12

3

3

3



 


 c

c

c

c EG



  

 
 

(2.15) 

 
xxx

w
uu

ccc

ccc



























 2

3
31

2
30

13
0

32
12


  

(2.18) 

 








































aaa

w
vv

ccc

ccc
2

3
31

2
30

23
0

32
12  



38 

 

The relation between normal stress and normal strain can be expressed as: 

in which σxx, σθθ  and σξ3ξ3  are normal stresses in axial, hoop and transverse direction, 

respectively, and εxx, εθθ  and εξ3ξ3  are the corresponding normal strains. As mentioned 

before, the in-plane normal stresses are neglected. This assumption is reasonable since 

the strain energy related to these stresses is small compared with the strain energy due to 

the transverse shear stresses. Also the forces in these directions are carried by the elastic 

faces. Thus σxx ≈ 0 and
 
σθθ ≈ 0 and from Eq. (2.19) the in-plane normal strains can be 

written as: 

In order to define the profile of the displacement field in the core layer, the relative 

governing equilibrium equation with neglecting the inertia forces is employed which can 

be written as: 

The displacement field is afterward adjusted to fulfill the dynamic motion of the core 

layer. Substituting τξ3x, τξ3θ and σξ3ξ3 from Eq. (2.15) and (2.19) into Eq. (2.21) gives the 

following relation between β1 and β2: 
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Using Eq. (2.20) and normal transverse strain-displacement relation (εξ3ξ3 = ∂w/∂ξ3),  

Eq. (2.22) is simplified to the following equation: 

Now, by substituting wc from Eq. (2.14) into Eq. (2.23), c
2

  is obtained as: 

Finally, substituting Eq (2.24) into Eq. (2.14) yields the transverse displacement 

through the thickness of the core layer as follows: 

The boundary conditions mentioned in Eq. (2.10) which include the slippage effect are 

implemented in order to obtain the displacement distribution at the elastic faces. If cu0 , 
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1

 ,  β1 and  β2 are the translational and rotational displacements at the middle of 

core layer, then the translational displacements at the middle of top and bottom elastic 

faces are obtained in terms of  the displacements fields at the core layer. Therefore, the 

displacement fields through the top and bottom layers are determined as follows: 
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2.4 Semi-Analytical Finite Element Method 

In order to drive the equations of motion in the finite element form, the Lagrange’s 

equation is employed. Considering this, the kinetic and potential energies in sandwich 

cylindrical shell should be determined in terms of the displacements. In this chapter the 

effect of geometric nonlinearity has been also investigated using von Karman’s 

hypothesis. According to this hypothesis, for infinitesimal in-plane displacements u and 

v, the nonlinear terms which only depend on w are contributed in the strain-displacement 

relations. The nonlinear strain–displacement relation using non-linear Green’s Strain 
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Tensor which are based on small strain and moderate rotation for a cylindrical shell 

element can be expressed as follows [94]: 

 It should be noted that if the thickness of each layer is small compared to the radius, 

then the ratio ξi/a can be neglected. Kinetic energy T and strain energy U of an element 

can be expresses as follows: 

where i=t, b and c, dVi =(a + i )dθdx id , Le is the length of cylindrical shell element 

and ρ is density. Using the constitutive equation and strain-displacement relations, kinetic 

and strain energies are determined for each layer. The displacements fields derived before 

for different combinations of assumption including slippage, continuity in transverse 

shear stress, and nonlinearity in the distribution of displacements through the thickness of 

core, will be substituted into Eq. (2.28) and subsequently into Eq. (2.29) and (2.30) to 

obtain the kinetic and strain energies with respect to relative displacement components.  

In order to develop the governing differential equations in the finite element form, the 

displacement fields should be related to the identified nodal displacement components 
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using the shape functions. Here, the semi-analytical finite element approach has been 

used in which the displacement fields in circumferential direction has been expressed 

analytically using Fourier expansion and discretized in the axial direction using 

appropriate shape functions. Considering this, the displacement fields for the different 

assumptions discussed before can be presented in the following form: 
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in which i=t, b and c, and m is the number of nodes for each cylindrical shell element 

in axial direction. Since in the cylindrical shell there is no preference for the orientation 

of circumferential modes, an arbitrary phase angle denoted by φ must be included [119]. 

The orientations of the modes depend on the distribution of the external forces. In 

general, φ=φ0 and φ=φ0+π/2 in which φ0 is an arbitrary constant. 

Table 2.1 Required DOFs for different finite element models based on the different assumptions and 

theories. 
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Continuity in transverse shear stresses Continuity in in-plane slopes Model 

][ 212121000
bbttccccc

wvu DOF  

Discontinuous Discontinuous Lower Order 

][ 21000
ccccc

wvu DOF  

Continuous Discontinuous Lower Order 

][ 00
21000

s

v

s

u
wvu

cc
ccccc








 DOF  

Continuous Continuous Lower Order 

][ 2121121000
bbttcccccc

wvu DOF  

Discontinuous Discontinuous Higher Order 



43 

 

The nodal displacements associated with the different assumptions and approaches are 

summarized in Table 2.1. Considering three-node elements in axial direction, the 

Lagrangian shape functions N1, N2 and N3 according to FSDT can be expressed as: 
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 (2.32) 

where the coordinate is located at the center of element. The continuity in the slope of 

in-plane displacements provided in Table 2.1 can also be applied by considering these 

rotations as a part of the degrees of freedom. Therefore the in-plane displacements u and 

v at the core layer can be written as: 

where the Lagrangian shape functions N4 through N9 are determined as: 

Now the displacement fields for each layer, strain-displacement relation and stress-

strain relations are substituted into Eqs (2.29) and (2.30) to obtain the strain and kinetic 

energies in each layer. Consequently, the kinetic and strain energies in each element can 

be expressed as:  
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As mentioned before, Lagrange’s equation is used here to establish the governing 

equations of motion: 

where n is the total DOF in the sandwich panel structure, q and F are the nodal 

displacements and applied external force, respectively, and T and U are respectively the 

kinetic and potential energies in the sandwich shell structure. Substituting Eq. (2.36) into 

the Lagrange’s equation and assembling all the elements in the axial direction will yield 

the following finite element equation of motions: 

where  F  is the equivalent nodal force, [K]=[K'(ω)+iK"(ω)] is a complex frequency 

dependent stiffness matrix, [M] is the mass matrix and  q  is the vector of nodal 

displacements in cylindrical shell. To obtain the modal characteristics of the viscoelastic 

structures, one can write Eq. (2.38) in the following form: 

It should be noted that two sources of nonlinearity including frequency and large 

deformation exist in the stiffness matrix. Considering this, one cannot use the direct 

eigenvalue analysis to identify the natural frequencies and associated mode shapes. To 

calculate the effect of large deformation, the nonlinear terms in Eq. (2.28) are expressed 

as follows: 
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Thus, the total stiffness matrix has two distinct linear and nonlinear parts as follows.  

For the case of small deflection (ignoring [K2(ω)]
NL

 in Eq. (2.41)), one may use the 

direct forced harmonic response method for a wide frequency range to obtain the natural 

frequencies. If the harmonic force function is expressed as F = F0 e
iωt

 then the Eq. (2.38) 

can be written as: 

where q~  is the amplitude of the vibration. The natural frequencies associated with 

transverse vibration can be calculated using the frequency response by solving the set of 

linear equations solved at different frequencies. Thus the solution strongly depends on the 

resolution of frequency axis and the computational costs may be expensive. Another 

method to find the natural frequency and the corresponding mode shapes is iterative 

process. The eigenvalue problem of Eq. (2.39) is solved iteratively using the evaluated 

stiffness matrix at the natural frequencies. The starting points for each mode in the 

iteration can be the evaluated stiffness matrix at the natural frequencies of the bare 

cylinder. Here an iterative procedure has also been implemented to identify modal 

characteristics considering large deformation. Therefore, two iterative procedures (one 

due to dependency on the natural frequencies and another due to large deformation) are 
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required to evaluate natural frequencies and the corresponding mode shapes for large 

deflection of sandwich layered structure. The developed algorithm for this iterative 

process is summarized as follows: 

1. By neglecting the nonlinear terms f1 and f2, the eigenvalue problem is solved for small 

deflection. 

2. The solution of nonlinear eigenvalue problem is started using the stiffness matrix 

evaluated at the natural frequency of the bare cylinder for each fundamental mode in 

circumferential direction. The properties of the viscoelastic material are evaluated at 

the new natural frequency. New eigenvalue problem is then established using the new 

properties.  

3. The iteration continues until the following defined criteria is achieved: 

1
1,

1,,













ij

ijij
 

where ωj,i and ωj,i-1 are the current and previous states of the real part of the 

frequency at iteration j related to the nonlinearity in large deformation and λ1 is 

tolerance of convergence and is chosen to be 10
-6

. 

4. The corresponding eigenvectors 0V associated to the eigenvalues are calculated using 

the standard algorithms for extracting eigenvectors. 

5. The obtained eigenvectors should be normalized and scaled up. In nonlinear free 

vibration, natural frequencies depend on the deformed configuration of the structure. 

After normalization, in order to scale up the eigenvectors, maximum deflection is 

assumed to be proportional to the thickness of the cylinder. Therefore an arbitrary 

configuration can be expressed as follows: 
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   0VDhV   

where h is the thickness of the cylinder and D is the coefficient of proportion. Since 

the effect of the large deformation is investigated assuming linear elastic and 

viscoelastic properties respectively for the constraining and constrained layers, the 

maximum transverse displacement should not be large so that the materials enter the 

nonlinear regime.  Consequently the coefficient of the proportion D should not exceed 

some certain value which depends on the material properties and the dimensions of the 

layers. For large deformation, the maximum deflection considered in the literatures 

has been assumed to be of the same order as the thickness. Here, the maximum 

deflection is chosen to be less than twice of the bare layer thickness (D≤ 2) which can 

be applied for the layers with high enough yielding stress in which they do not enter 

the nonlinear regime. 

6.  The nonlinear terms f1 and f2 can now be calculated to update the non-linear relation 

between the strain and displacement. 

7.  Steps 2-6 are repeated until to reach a frequency which provides the desired 

convergence as follows: 

2
,1

,1,
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

ij

ijij
 

in which λ2 is the tolerance of convergence and is chosen to be 10
-5

. 

8. The whole procedure is repeated for diffrenet value of D. 

Damping property of sandwich structure is related to the imaginary part of stiffness 

matrix. As mentioned before, the loss factor is defined as the ratio of dissipated energy 

per radian and maximum potential energy at natural frequency. Thus: 
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where ηi is the loss factor related to the i
th

 mode,   is the normalized eigenvector in 

free vibration, K' and K" are respectively real and imaginary parts of the stiffness matrix. 

2.5 Transient Vibration 

In this section, transient response for the lower or higher order models is formulated. The 

forced vibration of a sandwich structure with viscoelastic layer is given in Eq. (2.38). 

Since the viscoelastic material properties depend on the frequency, the above equation 

cannot be solved using direct integration method or modal superposition method as the 

material property should be expressed in the time domain. Using the Discrete Fourier 

Transform (DFT) technique, Eq. (2.38) can be solved in frequency domain [120-122]. 

The time response of the equation subsequently is obtained by using Inverse Discrete 

Fourier Transform (IDFT).  Implementing DFT on Eq. (2.38) yields the following 

equation in frequency domain as: 

where 
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Eq. (2.44) can be solved for  jq ~ as follows: 

Time response of the Eq. (2.45) can be obtained using IDFT as: 

The choice of N depends on the shape of frequency response, accuracy and the capacity 

of computation [120]. For the inverse transformation, the interval of frequency Δω must 

be the reciprocal of the total time as follows: 

2.6 Results and Discussion 

The finite element model is first validated for a bare cylindrical shell by comparing the 

natural frequencies presented in this chapter with the results reported in literatures. For 

sandwich cylindrical structure, the natural frequency and loss factor resulted by different 

finite element formulations are also compared with those in the literatures. The different 

finite element formulations are developed based on the different assumptions including 

the continuity or discontinuity in transverse stress and slopes of in-plane displacements in 

axial direction. Also, the results based on the lower and higher order expansions of 

displacement through thickness of the core layer have been compared for different 

boundary conditions. Furthermore, parametric studies are presented to show the effect of 

slippage on the loss factors. The effect of large deformation on the natural frequencies 

and the corresponding loss factors is also investigated and finally, to show the damping 
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behavior of both lower and higher order models, the transient response of the sandwich 

structure shell under impulse loading is presented using both models.   

2.6.1 Validation of the finite element model 

The free vibration characteristics of bare cylindrical shell at different circumferential 

and axial modes are compared with those presented in literatures. Djoudi and Bahai [123] 

investigated finite element model of cylindrical shallow shell based on assumed strain 

fields developed by Ashwel and Sabir [124]. Chung [125] developed analytical method to 

evaluate natural frequencies in the bare cylindrical shell. The length, thickness and radius 

of the cylinder are respectively 511.2 mm, 1.5 mm and 216.2 mm.  

Table 2.2 Natural frequencies (Hz) of clamped-free bare cylindrical shell 
m n Present study Reference [123] Nastran [125]  Analytical [125]  

1 

1 857.5 - - - 

2 405.6 403.91 410.1 403.72 

3 225.1 224.79 232.2 223.34 

4 174.6 172.4 180.5 171.77 

5 203.6 203.37 206.2 199.16 

6 274.9 274.04 275.5 268.86 

7 369.8 369.8 370.1 361.92 

8 482.5 482.96 483.5 472.54 

9 611.1 611.42 614 599.03 

10 755.4 755.14 — 740 

2 

2 1440.5 1446.56 — 1437.11 

3 932.9 940.2 943.2 928.28 

4 649.4 647.25 671.4 644.48 

5 500.0 509.11 529.3 494.69 

6 448.6 442.16 478 442 

7 473.1 477.32 496.9 464.59 

8 550.0 542.69 567.2 539.45 

9 661.2 656.06 673.2 648.34 

10 796.5 788.39 — 781.15 

3 

2 2491.3 2530.79 — 2487.6 

3 1841.5 1876.8 — 1834.82 

4 1376.1 1412.72 — 1367.64 

5 1066.3 1103.56 — 1057.12 

6 874.7 875.29 — 864.82 

7 795.97 789.5 — 767.65 

8 763.3 748.35 — 750.67 

9 812.9 809.48 — 798.18 

10 910.8 884.6 — 893.6 
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Also Young modules, Poisson’s ratio and density are respectively 1.83 × 10
11

 N/m
2
, 

7492 kg/m
3
 and 0.3. In Table 2.2, the natural frequencies for clamped-free boundary 

condition (C-F) are given and compared to these studies. As it can be realized, good 

agreement exists between the presented results and those reported in References  [123, 

125]. 

Comprehensive investigation has been presented to model the sandwich cylindrical 

shell with viscoelastic core under different assumptions. In axial direction, 15 three-node 

elements are used. Based on the different types of continuity at the interfaces discussed in 

Table 2.1, three finite element models using FSDT are developed. FEM (a) is based on 

the linear distribution of displacement through the thickness of viscoelastic layer and 

discontinuity in transverse shear stresses at the interfaces. FEM (b) is similar to FEM (a) 

except that the transverse shear stresses at the interfaces are continuous. For FEM (c), in 

addition to the continuity in transverse shear stresses, the slopes of in-plane 

displacements in axial direction are also considered to be continuous. First, the frequency 

response of these finite element formulations for three-layered sandwich cylindrical shell, 

in which all three layers are made of the same elastic material and same size, is compared 

with the frequency response of an equivalent single layer cylinder made of the same 

elastic material. To have a fair comparison, the thickness of the single-layer cylindrical 

shell is the same as the entire thickness of the three-layered sandwich cylindrical shell 

and also the radius and length are the same in both structures. Using this way, the 

frequency response using different assumptions can be compared to the exact frequency 

response from the equivalent single elastic layer modeling. The clamped-free boundary 

condition has been considered.  
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Figure 2.2 Frequency response in clamped free sandwich cylindrical shell with identical properties in each 

layer; Compression between FEMs (a), (b) and (c) 

 
Figure 2.3 . Non-dimensional frequency (Ω = ρbhbaω

2
/Eb) of clamped-clamped cylinder; comparison 

between different FEMs 

  

Figure 2.4 Loss Factor of clamped-clamped cylinder, comparison between different FEMs 



53 

 

The frequency response under unit transverse harmonic point load applied at the tip of 

the cylinder is shown in Figure 2.2.  The deflection is measured at the point where the 

load is exerted. As it can be realized, frequency response of FEM (a) and (b) are 

generally in agreement with the single elastic layer cylinder at lower frequencies. At high 

frequencies, the results based on FEM (a) slightly differ from those based on FEM (b). 

The frequency response of FEM (c), on the other hand, deviates significantly from single 

elastic layer especially at higher natural frequencies. FEM (c) exhibits more continuity at 

nodes which leads to more rigid model and consequently larger natural frequencies. FEM 

(b), perfectly match with single elastic layer cylinder since the continuity in transverse 

shear stress provide better model for sandwich structures where the material properties of 

layers are relatively close to each other.   

Next, the FEM (a), (b) and (c) are implemented in viscoelastic sandwich cylindrical 

shell where the viscoelastic core is compliant. The results including natural frequency 

and loss factor for different circumferential and first axial modes are compared with the 

results presented by other researchers [12, 13]. Sainsbury and Masti [12] developed a 

combination of two elements named as FEM1 and FEM2 in the finite element 

formulation for sandwich cylindrical shell in a way that both top and core layers were 

discretized by FEM2 and the bottom layer was discretized by FEM1. Ramesh and 

Ganesan [13] compared three different theories including Discrete Layer Theory (DLT), 

Wilkins Theory (WT) and Khatua’s Theory (KT) in the semi-analytical finite element 

modeling of sandwich viscoelastic cylindrical shells.  The length and radius of the 

cylinder are 100 mm. The thicknesses of the three layers are equal to 1 mm.  Young 

modules, Poisson’s ratio and density of the elastic layer are respectively 2.1 × 10
11

 N/m
2
, 
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0.3 and 7850 kg/m
3
. Young modules, density and Poisson’s ratio of the viscoelastic layer 

are respectively (2.3+0.8i) × 10
7
 N/m

2
, 1340 kg/m

3
 and 0.34. In this case, the material 

property of the core layer is independent of frequency. The natural frequencies and 

corresponding loss factors for different circumferential and first axial modes are shown in 

Figures 2.3 and 2.4, respectively.  Results show a good agreement between the natural 

frequencies obtained by the FEM (a), (b) and (c) and those reported in the references. The 

loss factor resulted by FEM (b) and  (c), on the other hand deviate from the results by 

FEM (a) and other theories at higher modes meaning that the FEM (a) is a suitable model 

for the compliant viscoelastic sandwich cylindrical shells. As mentioned before, where 

the core layer is stiff, the FEM (b) provides more precise results. FEM (c) is not accurate 

for sandwich structures due to the high rigidity in the model.  

2.6.2   Comparison between lower and higher order models for damping analysis of 

sandwich cylindrical shell 

The results based on lower and higher order models are developed for thick and thin 

core viscoelastic layers.  The core layer material is assumed to be frequency dependent. 

The length, thickness and radius of the cylinder are respectively 511.2 mm 1.5 mm and 

216.2 mm. Also Young modules, density and Poisson’s ratio of the elastic layer are 

respectively 1.83 × 10
11

 N/m
2
, 7492 kg/m

3
 and 0.3. Shear modules, density and Poisson’s 

ratio of the viscoelastic layer are respectively 0.142 (ω/2π)
0.475

(1+1.46i) N/m
2
, 1140 

kg/m
3
 and 0.34. In the case of thin core layer, loss factor and natural frequencies for 

different circumferential and axial modes of clamped-clamped and clamped-free 

sandwich cylindrical shells are presented in Tables 2.3 and 2.4, respectively. The results 

show that the loss factor and natural frequency for both models are close for thin core 

layer. Only at higher modes (n = 1and 2) in which the loss factor is small, the results are 
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different. It can be observed that the higher order model, generally exhibits higher 

damping properties and the natural frequencies are nearly similar for both models.   

Table 2.3 Loss factor of sandwich cylindrical shell for different circumferential and axial modes; hb=1.5 

mm, hc=ht=0.3 mm 

  C-F C-C 

  m m 

n Model 1 2 3 1 2 3 

1 
Lower order 4.621E-05 7.87E-05 0.00029 0.00010421 0.000287 0.000826 

Higher order 0.000416 0.001189 0.002395 0.001312 0.003578 0.004996 

2 
Lower order 0.00069996 0.0004 0.000579 0.000382 0.000681 0.001338 

Higher order 0.0099458 0.001312 0.00303 0.001224 0.002697 0.004325 

3 
Lower order 0.019287 0.002298 0.001797 0.002302 0.001942 0.002589 

Higher order 0.01974 0.002941 0.003325 0.003074 0.003206 0.004749 

4 
Lower order 0.098567 0.012651 0.005575 0.012392 0.005923 0.005419 

Higher order 0.09967 0.012828 0.006492 0.013414 0.006922 0.00709 

5 
Lower order 0.16073 0.041707 0.015202 0.041095 0.015952 0.011145 

Higher order 0.1612 0.0419 0.01584 0.042076 0.017051 0.012666 

6 
Lower order 0.17091 0.085623 0.034256 0.085064 0.036346 0.022214 

Higher order 0.1713 0.085828 0.034693 0.086327 0.03668 0.023151 

7 
Lower order 0.16408 0.1202 0.061683 0.12023 0.063793 0.038271 

Higher order 0.1644 0.1203 0.061381 0.1218 0.063846 0.039161 

8 
Lower order 0.15393 0.13381 0.087161 0.13455 0.089033 0.058572 

Higher order 0.1542 0.1339 0.087713 0.13548 0.090113 0.058769 

9 
Lower order 0.14375 0.1343 0.10511 0.13523 0.1078 0.077222 

Higher order 0.1441 0.1343 0.10532 0.13565 0.1073 0.077417 

10 
Lower order 0.13431 0.1294 0.11198 0.13029 0.11402 0.09121 

Higher order 0.1346 0.1295 0.11271 0.13051 0.11403 0.09126 

Table 2.4 Natural frequencies of sandwich cylindrical shell for different circumferential and axial modes; 

hb=1.5 mm, hc=ht=0.3 mm 

  C-F C-C 

  m m 

n Model 1 2 3 1 2 3 

1 
Lower order 844.9 2286.2 3036.1 1912.1 3011.7 3348.4 

Higher order 844.8 2286.0 3033.8 1911.3 3008.3 3343.6 

2 
Lower order 400.2 1420.1 2456.6 1198.8 2185.5 2818.2 

Higher order 400.1 1419.5 2454.5 1198.5 2183.5 2815.1 

3 
Lower order 225.1 921.1 1816.8 807.8 1588.9 2269.0 

Higher order 225.1 921.0 1815.8 807.6 1588.2 2267.3 

4 
Lower order 179.0 644.5 1360.1 584.9 1201.8 1822.7 

Higher order 179.0 644.4 1359.6 584.8 1201.5 1821.7 

5 
Lower order 208.6 500.0 1057.1 466.1 952.0 1491.1 

Higher order 208.6 499. 9 1056.8 466 951.9 1490.6 

6 
Lower order 277. 5 449. 4 869.2 426.8 798.8 1257.0 

Higher order 277. 5 449. 3 869.1 426.8 798.8 1256.7 

7 
Lower order 367.9 470.4 773.0 452.3 723.6 1104.3 

Higher order 367.9 470.4 772.9 452.3 723.6 1104.2 

8 
Lower order 474.3 541.2 753.1 524.6 715.7 1023.1 

Higher order 474.3 541.2 753 524.6 715.7 1023.1 

9 
Lower order 595.3 644.2 794.6 628.4 763.7 1006.1 

Higher order 595.3 644.2 794.6 628.4 763.7 1006.1 

10 
Lower order 730.2 769.9 882.3 754.6 854.5 1044.7 

Higher order 730.2 769.9 882.3 754.6 854.5 1044.7 
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Figure 2.5 Frequency response of clamped-free sandwich cylindrical shell (hb=1.5 mm, ht= hc= 0.3 mm)- 

comparison between the nonlinear and linear models for thin core layer 

 
Figure 2.6 Frequency response of clamped-free sandwich cylindrical shell (hb=1.5 mm, ht=0.3 mm, hc=3 

mm)- comparison between nonlinear and linear models for tick core 

Frequency responses for thin (hc= 0.3 mm) and thick (hc=3 mm) viscoelastic layers in 

clamped–free sandwich shell is also shown in Figures 2.5 and 2.6, respectively. 

Compared to the lower order model, the higher order model shows smaller deflection at 

the natural frequencies. As it can be realized, the results from the lower and higher order 

models deviate for thick viscoelastic core layer considerably at higher natural 

frequencies. Parametric study is also conducted to demonstrate the effect of the 

constraining layer and the core layer thicknesses on the loss factor associated with the 
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first four circumferential and first axial modes. The results are shown in Figures 2.7 and 

2.8 for clamped-free and clamped-clamped boundary conditions, respectively. Rt and Rc 

represent the ratio of constraining layer and core layer thicknesses to the base layer 

thickness, respectively. According to the results, in order to achieve higher damping in 

the case of the thin core, thickness of constraining layer should increase. However the 

effect is more significant up to certain ranges of Rt. After these ranges, the increase in Rt 

slightly increase the loss factor in the expense of increasing the mass of the structure.  In 

the case of the thick viscoelastic core layer, increasing Rt leads to decrease in loss factor. 

When the constraining layer is thin, thick core layer show higher damping property than 

the thin core. On the other hand, for thick constraining layer, by increasing the thickness 

of core layer, loss factor first decreases and then increases. Optimization study may be 

conducted in order to find the best set of Rt and Rc in order to achieve a light structure 

with high damping property.  

 
 

 
 

Figure 2.7 Variation of loss factor at different circumferential and first axial modes versus Rt and Rc for 

clamped-free sandwich cylinder 
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Figure 2.8 Variation of loss factor at different circumferential and first axial modes versus Rt and Rc for 

clamped-clamped sandwich cylinder 

 

 
Figure 2.9 Comparison between the results from the linear and nonlinear models at different 

circumferential and first axial modes for clamped-free boundary condition, Rt = 0.2 
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Figure 2.10 Comparison between the results from the linear and nonlinear models at different 

circumferential and first axial modes for clamped-free boundary condition, Rt = 1 

Figures 2.9 and 2.10 show the behavior of the loss factor versus Rc for thin (Rt =0.2) 

and thick (Rt =1) constraining layers in clamped-free sandwich cylindrical shell. As it can 

be observed, the results from the linear and nonlinear models deviate for thick cores.  

Also as mentioned before, at higher frequencies these models result in different loss 

factors. 

2.6.3 Effect of slippage at the interfaces  

The shear stiffness parameter K
*
 of the adhesive layer can be related to the shear 

modulus of the core layer as K
*
hc = CGc in which C is a non-dimensional parameter 

which determine the bonding at the interfaces. It should be noted that in order to achieve 

a perfect bonding, large value of C should be assigned.  
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Figure 2.11 Loss factor versus shear rigidity of adhesive layer in clamped-free boundary condition at first 

axial mode and different circumferential modes, hb=1.5 mm, Rc = Rt =0.2  

 
Figure 2.12 Loss factor versus shear rigidity of adhesive layer in clamped- clamped boundary condition at 

first axial mode and different circumferential modes, hb=1.5 mm, Rc = Rt =0.2 

The results are developed based on the lower order model of displacement distribution 

through the thickness of the core layer. Figures 2.11 and 2.12 show the loss factor at first 

five circumferential and first axial modes for clamped-clamped and clamped-free 

boundary conditions, respectively. It can be realized that the loss factor decreases as the 

bonding at the interfaces becomes weaker except at the first circumferential mode in both 

clamped-free and clamped-clamped boundary conditions. Also, small amount of the 

slippage leads to increase in loss factor at the second circumferential mode (n=2).  One 

can observe that as C increases, the loss factors approaches to the results from perfect 
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bonding model. Consequently, in order to achieve more conservative design it is better to 

provide perfect bonding between the layers.  

2.6.4 Effect of large deflection  

In this section the effect of large deflection on the loss factors and natural frequencies 

is presented. It has been assumed that the top and bottom layers remain in elastic region 

and the material property of the viscoelastic layer is linear. First, the effect of large 

deflection on the natural frequency is presented for bare cylindrical shell and the results 

are compared to the works done by other researchers. The maximum deflection is 

considered to be proportional to the thickness as Wmax=Dh in which D is the proportional 

factor.  Table 2.5 shows the linear period of oscillation TL and also the ratio of nonlinear 

period TNL to the linear value associated with the forth circumferential and first axial 

mode for simply supported boundary condition. In Table 2.6, another comparison is 

presented for different boundary condition (v = 0 on edges) at different modes. The 

results are in good agreement with those presented in References [126, 127]. The material 

property and dimensions are also given in caption of the Tables 2.5 and 2.6.  After the 

validation of the procedure, the developed iterative processes mentioned before are used 

to extract natural frequencies and the loss factors of the sandwich structure. The material 

property and geometrical dimensions given for sandwich shell structure with frequency 

dependent viscoelastic damping layer mentioned before has been used and hc=0.3mm is 

chosen for the core thickness. Since the thickness of the core is small, linear distribution 

model for displacement fields is considered for the core layer. The results including loss 

factors and natural frequencies for clamped-clamped and clamped-free boundary 

conditions are shown in Tables 2.7 and 2.8, respectively. The results show that 
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consideration of geometrical nonlinearity condition leads to larger natural frequency and 

consequently smaller amount of loss factor. 

Table 2.5 TNL/TL in bare cylindrical shell, E = 2.96 × l0
7
 lb/in

2
, υ = 0.3, ρ= 7.33 × 10

4
 lb-s

2
/in

4
, hb= 0.01 in, 

L=π/2 in, a =1 in, boundary conditions: w = u= v = 0 on edges; n =4, m=1 

   TNL/TL  

 TL×10
-5

(s) D=1 D=2 D=3 

Ref [126] 1.8898 0.98 0.94 0.89 

Ref [127] 1.8607 0.9777 0.9182 0.8382 

Present
 
study

 
1.9031 0.9711 0.8968 0.8022 

 

Table 2.6 TNL/TL in bare cylindrical shell, E = 2.96 × l0
7
 lb/in

2
, υ = 0.3, ρ= 7.33 × 10

4
 lb-s

2
/in

4
, hb= 0.01 in, 

L=π/2 in, a =1 in, boundary conditions: v = 0 on the edges 

   TNL/TL  

 TL×10
-5

(s) D=1 D=2 D=3 

 Ref [126] 
Present 

study 
Ref. [127] 

Present 

study 
Ref. [127] 

Present 

study 
Ref.[127] 

Present 

study 

n=2, m=1 1.0844 1.0851 0.9992 0.9989 0.9971 0.9958 0.9937 0.9910 

n=3, m=1 1.6967 1.7074 0.9940 0.9916 0.977 0.9678 0.9509 0.9321 

n=4, m=1 2.4761 2.5728 0.9617 0.9011 0.8684 0.8322 0.7588 0.7063 

 

 

Table 2.7 Large deformation effects on the loss factors of clamped-clamped and clamped-free sandwich 

cylindrical shell; hb=1.5 mm, Rc = Rt =0.2 

n m=1 
Small 

Deformation 

Large Deformation 

D=0.5 

Large Deformation 

D=1 

Large Deformation  

D=2 

1 
C-F 0.00004621 0.000046205 0.00004619 0.00004613 

C-C 0.00010421 0.00010417 0.00010403 0.00010321 

2 
C-F 0.00069996 0.00069872 0.00069503 0.00068072 

C-C 0.000382 0.0003818 0.0003812 0.00037881 

3 
C-F 0.019287 0.01866 0.016998 0.012508 

C-C 0.002302 0.0022961 0.0022772 0.0022046 

4 
C-F 0.098567 0.084697 0.059766 0.027392 

C-C 0.012392 0.012199 0.011652 0.0098645 

5 
C-F 0.16073 0.12452 0.074435 0.051457 

C-C 0.041095 0.025497 0.033346 0.021192 

6 
C-F 0.17091 0.12708 0.092086 0.089926 

C-C 0.085064 0.074564 0.054506 0.025497 

7 
C-F 0.16408 0.11572 0.1262 0.1187 

C-C 0.12023 0.097581 0.062181 0.039765 

8 
C-F 0.15393 0.13839 0.13403 0.12599 

C-C 0.13455 0.10369 0.060684 0.061101 

9 
C-F 0.14375 0.13585 0.13474 0.1294 

C-C 0.13523 0.10067 0.0833515 0.0770855 

10 
C-F 0.13431 0.13004 0.127705 0.12508 

C-C 0.13029 0.09287 0.092203 0.088498 
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Table 2.8 Large deformation effects on the natural frequencies of clamped-clamped and clamped-free 

sandwich cylindrical shell; hb=1.5 mm, Rc = Rt =0.2 mm 

n m=1 
Small 

Deformation 

Large Deformation 

D=0.5 

Large Deformation 

 D=1 

Large Deformation  

D=2 

1 
C-F 844.9 844.9 844.93 845.03 

C-C 1912.1 1912.2 1912.3 1912.8 

2 
C-F 400.2 400.6 401.7 407.5 

C-C 1198.8 1220 1220.6 1220.8 

3 
C-F 225.0 228.8 239.5 278.7 

C-C 808.8 830.9 813.2 826.5 

4 
C-F 179.0 195.1 235.2 354.5 

C-C 584.9 589.6 603.7 657.4 

5 
C-F 208.6 240.7 320.4 418.2 

C-C 466.1 490.1 522.6 666.7 

6 
C-F 277. 5 329.3 429.5 520.8 

C-C 426.8 460.2 550.6 833.6 

7 
C-F 367.9 454.1 446.5 456.3 

C-C 452.3 511.3 663.8 1008.5 

8 
C-F 474.3 526.8 527.8 554.4 

C-C 524.6 615.6 842.5 906.0 

9 
C-F 595.3 630.9 631.1 653.7 

C-C 628.4 751.3 956.2 958.3 

10 
C-F 730.2 757.6 768.0 781.1 

C-C 754.6 919.8 967.8 1032.0 

The deviation of the results considering large deflection effect from those based on the 

small deflection is more considerable for the modes with the lower natural frequencies. 

2.6.5 Time response under impulsive loading 

Transient response has been developed here for both lower and higher order models 

under impulse loading using DFT/IDFT method. First, the methodology is validated by 

implementing it on the single degree of freedom model of viscoelastic structure and 

comparing the obtained results with the analytical approach presented by Nashif et al. 

[128]. For the sake of comparison, the material properties are directly extracted from 

reference [128]. First the viscoelastic material is considered to be frequency independent 

in which the real part of the modulus is 2910 N/m
2
, the loss factor is 1.4 and the mass is 

given to be 0.007382 kg. For the frequency dependent property, the real part of the 

modulus is 1158(1+100(ω/2π))
0.1 

N/m
2
 and the loss factor is 0.15.  
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(a) (b) 

 
Figure 2.13 Transient response of the single degree of freedom; (a) constant complex modulus (b) 

frequency dependent complex modulus 

The maximum frequency is considered to be 2500 Hz. The time interval Δt is assumed 

to be 0.0001 resulting the sampling frequency of fs=10000 which according to the 

Nyquist theorem should be greater than twice of the considered maximum frequency. 

Number of samples is assumed to be 10000 and therefore the frequency domain which is 

[-5000, 5000] is discretized using frequency interval of Δf=1 Hz. Figures 2.13 (a) and (b) 

compares the time response of the single degree of freedom using the DFT/IDFT 

approach and the analytical solution under unit impulsive point load for the constant and 

frequency dependent modulus, respectively. It can be observed that the presented results 

are in excellent agreement with the analytical results. For the viscoelastic cylindrical 

sandwich shell, the time response under unit impulse point loading  at the tip point of the 

sandwich cylinder is obtained using the same parameters except that the number of 

samples is now assumed to be 100000 which result in Δf=0.1 Hz. The thickness of the 

core is chosen here to be hc=1.5 mm. Deflection is calculated at the point where the load 

is exerted. The displacement response at first four circumferential modes for the lower 

and higher models is shown in Figure 2.14.  
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Figure 2.14 Time response for different circumferential modes (n=1,2,3,4) 

 
(a) (b) 

 
Figure 2.15 Time response obtained by superimposing all circumferential (n=1,...,10) and axial modes; (a) 

0≤ t <0.03 and (b) 0.03≤ t <4 

The time response based on the summation of all the circumferential and axial modes 

is also shown in Figure 2.15 (a) and (b) in which Figure 2.15 (a) shows the transient part 

in the first 0.03 (s). As concluded before, it can be noticed that the higher order model 
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exhibits more damping property than the lower order model. Therefore, for the higher 

order model the displacement is expected to reach its initial value faster than the lower 

order model as is shown in Figures 2.14 and 2.15. 

2.7 Conclusion 

Different finite element models have been developed for sandwich viscoelastic 

structures. According to the results, the finite element model in which considers the 

continuity in transverse shear stresses at the interfaces, gives more accurate results for the 

three-layered structure with stiff core layer. For viscoelastic sandwich structures in which 

the material of the core layer is compliant, the continuity in transverse shear stresses 

should not be considered. Lower and higher order models for representing displacement 

distribution through the thickness of the core layer in sandwich viscoelastic cylindrical 

shell were developed. According to the results, the higher order model exhibits more 

damping properties than the lower order model which leads to less time required to reach 

the steady state response in the transient vibration. Both models almost result in identical 

natural frequencies. Effects of slippage were also considered in this chapter. The results 

showed that slippage must be prevented in order to achieve higher damping behavior. In 

large deformation, natural frequency increases which leads to the smaller amount of loss 

factor. The nonlinearity problem due to large deflection and frequency dependent 

complex modulus has been solved using two iterative procedures. The presented analysis 

can be extended to the other types of shell of revolution. 
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CHAPTER 3  

EFFECT OF PRESSURE AND TEMPERATURE ON 

VIBRATION BEHAVIOR OF SANDWICH CYLINDRICAL 

SHELLS 

3.1 Introduction 

Cylindrical shell structures are widely used for many applications in industries such as 

boilers, pressurized gas tanks and aircraft fuselage. Vibration suppression can be 

achieved in these structures using passive damping treatment. Due to ability of 

viscoelastic materials in converting strain energy into heat for a designed range of 

frequency, they have been successfully used in the damping layers of the sandwich 

structures. However, the damping characteristics of viscoelastic materials are strongly 

affected by the ambient temperature and the excitation frequency [19-24].  

In this chapter, the higher order model for displacement field at the core layer 

presented in the chapter 2 has been employed to achieve better approximation of damping 

behavior of sandwich structure with thick/thin core layers. Based on the energy balance 

and using irregular grid, finite difference method is formulated to obtain temperature 

distribution at each layer due to the temperature inside the sandwich cylindrical shell and 

heat dissipation caused by cyclic loading. Considering the effects of temperature and 

frequency on material properties of damping layer, vibration behavior of a pressurized 

sandwich cylindrical shell under the temperature variation has been investigated. The 

thermal stresses introduced at each layer and also the stress components due to 

internal/external pressure are obtained to be considered in the vibration analysis using the 

concept of geometric stiffness matrix in the semi-analytical finite element modeling. 

Then parametric studies have been presented to show the effect of all the above 
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mentioned parameters on frequency response and damping characteristics of sandwich 

cylindrical shell. The generated heat raised by dissipated energy not only changes the 

material properties of the viscoelastic layer, it can also introduce additional thermal stress 

at each layer.  An illustrative example is presented to observe this phenomena for a 

pressurized sandwich cylinder in which the internal pressure varies periodically between 

certain ranges of amplitudes. 

3.2 Displacement Field  

In this section the higher order displacement field derived in the previous chapter has 

been briefly explained. Displacement field through the thickness of sandwich cylindrical 

can be expressed in terms of the displacements of the middle plane including u0, v0 and 

w0 and the rotations of the normals to the middle plane in axial and circumferential 

directions which are respectively denoted by ψ1 and ψ2. The translational and rotational 

displacements at each layer are shown in Figure 2.1. According to the first order shear 

deformation theory, the total displacement field can be expressed as:  

),,(),,(),,,( 1 txtxutxu
i

i
i
oii    

22

i
i

i hh
   (3.1) ),,(),,(),,,( 2 txtxvtxv

i
i

i
oii    

),,( txww ii   

The bottom, top and core layers are labeled by the indices i=b, t and c, respectively. 

i  is the coordinate in thickness direction at the middle of each layer and

   321 ,,,,  cbt . u, v and w are the displacement in axial (x), circumferential (θ) 

and thickness direction through the thickness of each layer, respectively.  Based on the 

boundary conditions at the interfaces, displacements at bottom and top elastic layers are 
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calculated using the displacement field at core. The boundary conditions considering 

perfect bonding at the interfaces can be described as: 

ξ1 = -ht /2 and ξ3= hc /2: ut = uc vt = vc wt = wc 

(3.2) 
ξ2 = hb /2 and ξ3= -hc /2: ub = uc vb = vc wb = wc 

Using the above boundary conditions, the displacement fields at the top and bottom 

elastic layers are determined as: 

In sandwich structures where the core layer is thick, the linear displacement 

distribution through the compliant core layer is not accurate enough. Thus, the following 

nonlinear distribution of displacements is considered at the viscoelastic core layer: 

Here it is assumed that in-plane normal and shear stresses are negligible in viscoelastic 

structures due to the corresponding small energies. However normal stress in thickness 

direction of viscoelastic layer is considered. The relation between transverse shear 

stresses and strains can be written as 
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and Ec and υc are respectively Young modules and Poisson’s ratio of elasticity. 

Considering the mentioned assumptions and also using constitutive relations and 

equilibrium equation, the displacement fields at the core layer are obtained as: 
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According to the boundary condition in Eq. (3.2), the translational displacements at 

the top and bottom elastic layers are obtained in terms of translational displacements cu0 ,

cv0 , cw0 and rotational displacement
c

1 , 1  and 2  as follows: 
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3.3 Semi-Analytical Finite Element Method 

Semi-analytical finite element approach has been used so that the displacement fields 

in circumferential direction is expressed analytically using Fourier expansion and also is 

discretized in the axial direction using appropriate shape functions. Considering this, the 

displacement fields can be presented in the following form: 
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in which m is the number of nodes in axial direction, i=b and t, and Nj are the 

Lagrangian shape functions.  Since there is no preference for the orientation of 

circumferential modes, thus an arbitrary phase angle φ must be included [119]. The mode 
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orientations depend on the distribution of the external loading. In general, φ=φ0 and 

φ=φ0+π/2 in which φ0 is an arbitrary constant.  For three nodes along the axial direction, 

the shape functions N1, N2 and N3 in FSDT are given as: 

ee
L

x

L

x
N 

2

2

1
2

 
2

2

2
4

1

eL

x
N   

ee
L

x

L

x
N 

2

2

3
2  (3.11) 

The displacement fields in each layer can now be used to obtain kinetic and potential 

energies for that layer. For the core layer, either lower or higher order expansions of 

displacement fields as discussed before can be implemented. The kinetic and strain 

energies for each cylindrical shell layer can be obtained using: 

in which dVi =(a + i )dθds id , ρ is density, a is the radius of the cylinder and Le is 

the length of cylindrical shell element. To obtain the strain energy in Eq. (3.13), 

constitutive equation and strain-displacement relation should be employed. Strain–

displacement relation using linear Green’s Strain for cylindrical shell element can be 

expressed as follows [94]: 
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To develop the governing differential equations in the finite element form, 

displacement fields should be related to the identified nodal displacement components 

using the shape functions. After substituting stress and strain and also the displacement 

fields into the Eqs (3.12) and (3.13), the energy of each layer is determined. The total 

kinetic and strain energies are then: 
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Eq. (3.15) can be rewritten for each element in the matrix form: 

    eeTe
T qMqU 

2

1
  

(3.16) 

        eeTe

h

h

L

L

T
E qKqdVU

e

e
2

1

2

12

2

2

0

2

2

   
 


  

where {σ} and {ε} are respectively stress and strain components, {q
e
} is the nodal 

displacement at each element, [M
e
] and [K

e
] are elemental mass and stiffness matrices 

which can be found by summing the kinetic and strain energies of each layer as: 
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Pre-stress components due to the thermal field and internal/external pressure in 

sandwich cylindrical shell can be expressed as: 
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The energies of these stresses are contributing in the total strain energy by 

implementing the nonlinear strain components which are expressed as follows [94]: 
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in which i = t and b is the index for the elastic top and bottom layers. Since the initial 

normal stress in viscoelastic material for the higher order model is the stress in thickness 

direction, therefore the corresponding nonlinear terms of normal strain in thickness 

direction should be considered which is given as: 
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(3.20) 

The works done by initial stresses (UG) at each layer is then calculated and stored in 

the total strain energy: 
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in which: 
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Considering all the energies mentioned before, the Hamilton’s principle is employed 

to establish the equations of motion: 
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(3.22) 

where W is the work done by the external forces, UT is the total kinetic energy, U is 

the total strain energy (U=UE +UG) and times t1 and t2 are arbitrary times in which at 
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those times all variation are zero [129]. Substituting all energies into Eq. (3.22) and 

assembling the elemental stiffness and mass matrices yields the equations of motion as: 

     )(][][ tFqKqM   (3.23) 

in which {F(t)} is equivalent nodal forces of the system, [K]=[KG]+[KE] and [M] are, 

respectively, the system stiffness and mass matrices.  

It should be noted that the initial stresses in Eq. (3.18) can be obtained considering 

static deformation under thermal field and internal/external pressure. The constitutive 

equation for each layer considering temperature distributions can be written as: 
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where i= t, b. The strain energy is determined with substituting Eq. (3.24) into 

Equation (3.13) as follows: 
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Using Hamilton’s principle for static case, the variation of strain energy is equated to 

the energy variation introduced into the cylindrical shell by internal/external pressure 

(δUs = δWp). After substituting the energies, the thermal terms in US are appeared as the 

thermal forces: 
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in which F
Th

 and F
P 

are, respectively, the thermal and external forces, [Ks] is elemental 

static stiffness matrix and qs is static deflection. After assembling, the displacement field 

and subsequently the stress components in each layer are determined as the initial 

stresses. Considering these pre-stress components, the dynamic response is determined 

using Eq. (3.23). In the case of free vibration analysis, the Eq. (3.23) becomes: 
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in which      KKK  i][  is a complex frequency dependent stiffness matrix due 

to frequency dependent properties of the damping layer and therefore the eigenvalue 

problem cannot be directly solved. One method to calculate natural frequencies is 

developing frequency response of the structure under harmonic loading for wide range of 

frequencies. This method is expensive since it strongly depends on the resolution of 

frequency. Alternatively the eigenvalue problem of Eq. (3.27) can be iteratively solved 

using the evaluated stiffness matrix at the natural frequencies. The best point to start the 

iteration process could be the natural frequency of bare cylinder.  The iteration must be 

continued until a desired convergence is provided as follows: 
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in which λ1 is  the tolerance of convergence and it is chosen to be 10
-5

. The energy per 

volume dissipated in each cycle under displacement q(t) with amplitude q0 is given by: 
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For a lossless structure including mass which is vibrating at steady state, the total 

energy including potential and kinetic energies throughout a cycle can be easily 

expressed as: 
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The loss factor can be defined as the ratio of dissipated energy per radian and 

maximum potential energy. According to the Eq. (3.29), energy remain constant at 

natural frequency (ω
2
 = ωn

2
). Therefore, a meaningful definition for the loss factor is 

obtained only at natural frequencies. The dissipated energy (Wd) and the maximum 

potential equation (U) for the sandwich structure which is discretized into number of 

elements can be expressed in the following form: 

     KWd  T       KU 
T

2

1
 

in which    is the normalized eigenvector in free vibration. Thus, the loss factor η at 

each mode i can be defined as: 
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3.4 Transient Heat Transfer 

Transient heat transfer equation for axisymmetric cylindrical structure shown in 

Figure 3.1 can be expressed as 
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 (3.31) 

in which H is the rate of internal heat generation, Cp is the specific heat, ρ is the 

density and T is the time-dependent distribution of temperature.  
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Figure 3.1 Irregular gridding in finite difference model and the boundary conditions 

Using finite difference method for irregular grid [130] based on the energy balance for 

the control volume shown in Figure 3.1, the finite difference equation for point P is 

formulated in this dissertation as: 
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(3.32) 

where aP, is radial distance between point P and central axis of the sandwich cylinder, 

PT   and TP are respectively current and next state of temperature for a time step ∆t 

(implicit method), Kij (i =S, N, E, W and j=P) is the effective thermal conductivity 

through the thickness and axial direction of the cylinder. According to grid shown in 

Figure 3.1, in radial direction only one material contributes in the effective conductivity 

for each point. However for the nodes at the interfaces the effective conductivity along 

the axial direction is obtained as:  
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where KN and KS are respectively conductivity at points N and S. Temperature at the 

inner side of the sandwich cylinder is Tint and heat is transferred from the outer side to 

surrounding environment by convection as: 

)( ambTThAQ o   

in which Q is the rate of heat transfer, h is coefficient of convection, A is the area of 

contact between sandwich cylinder and environment, To is the outer side temperature of 

each element and Tamb is the ambient temperature. Also the temperature gradient in axial 

direction at the end sides of the sandwich cylinder is assumed to be zero (isolated) and 

therefore extra column of points at the outer sides of boundary points at the ends of the 

cylinder are considered in order to equate their temperature to the temperature of the 

points at the inner side of the boundary points (Figure 3.1).   

3.5 Material Property of the Layers 

The material properties of the top and bottom elastic layers (Steel AISI 304) and core 

viscoelastic layer (Viton_B) are given in Table 3.1.  The material loss factor and shear 

modulus of the damping core layer highly depend on temperature and frequency as 

shown in Figure 3.2.  

Table 3.1 Material property of elastic and viscoelastic layers 

 

Shear 

modules 

(N/m2) 

Density 

(kg/m3) 

Poisson’s 

ratio 

Loss 

Factor 

Specific heat 

(J/Kg °C) 

Conductivity 

(W/m°C) 

Thermal 

expansion 

coefficients          

(10-6/°C) 

Steel 

AISI 304 
74.2× 10

9
 7830 0.3 - 503 80.5 17 

Viton_B Figure 3.2 1050 0.4 Figure 3.2 1360 0.2 100 
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Figure 3.2 Loss Factor and real part of shear modulus versus temperature for Viton-B 

These data are directly extracted from Nashif et al. [128] in which the temperature-

frequency superposition principle was employed to relate viscoelastic properties at 

different temperature to the so-called reduced frequency parameter αTω in which αT is the 

temperature-dependent shift factor and ω is the actual frequency. Thus, the material 

properties can be expressed as 
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where T0 is the reference temperature. Since there is no available explicit formulation 

to express the properties in terms of temperature and frequencies, all the points in those 

nomogram are read and digitized with high resolution. According to the data, changing of 

the material properties with respect to frequencies can be formulated using linear 

interpolations between each frequency in logarithmic scale. Considering this, an artificial 

neural network available in MATLAB has been trained to interpolate the shear modulus 

and loss factor versus temperature and frequency. The effect of temperature rise Tcore(t) 

within the damping layer due to heat dissipation can be accounted by replacing T in Eq. 

(3.34) by T + Tcore(t) [131]. It should be noted that, the rate of dissipated energy per unit 
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volume in each element is determined using Eq. (3.28) and then substituted in Eq. (3.32) 

as H to obtain the temperature distribution at each layer in terms of time.   

3.6 Results and Discussion 

In the following, first the developed finite element modeling for a simply-supported 

cylinder under internal/external pressure has been validated by comparing the results with 

other studies. The temperature distribution using finite difference method for irregular 

grid is validated by comparing the results to those obtained from finite element method. 

The natural frequencies and the corresponding loss factors resulted from the lower and 

higher order models are also compared. Using the nonlinear model, the parametric studies 

are presented to show the effect of temperature variation, the resulted thermal stress and 

pressure on damping characteristics of clamped-clamped sandwich cylindrical shell. 

3.6.1 Validations 

The natural frequency under internal and external pressure for simply supported 

cylinder is shown in Figure 3.3. The results are compared to the results presented by 

Sabri and Lakis [28]. The length, radius and thickness of the cylinder are, respectively, 

231 mm, 77.25 mm and 1.5 mm. The Poisson’s ratio, Young modules and density of the 

material are 0.3, 200 GPa and 7800 Kg/m
3
, respectively.   As it can be seen, excellent 

agreements between the results are observed.  
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Figure 3.3 Natural frequency of simply supported shell under external/internal pressure; - - - - - - Present 

study, ____ Reference [28];  □, Pint = 9 MPa; ∆, Pint = 0. 9 MPa; ◊, Pint =0.0 MPa; O, Pext = 0.9 MPa 

 
Figure 3.4 Transient temperature relative to the ambient temperature at the middle point of the core and top 

layers subjected to internal temperature Tint
realative

=40 
o
C (Tint=60 

o
C); comparison between results obtained 

by FEM and FDM. 

 

Table 3.2 Comparison between linear and nonlinear models for different circumferential mode number n 

 n 1 2 3 4 5 6 7 8 9 10 

Loss 

factor 

Linear 

Model 
0.0004 0.035 0.184 0.256 0.262 0.249 0.232 0.215 0.198 0.192 

Nonlinear 

Model 
0.0012 0.036 0.184 0.256 0.262 0.250 0.233 0.215 0.199 0.194 

Natural 

Frequency  

(Hz) 

 

Linear 

Model 
335 158 137 211 324 460 619 799 1001 1236 

Nonlinear 

Model 
335 157 137 211 324 460 619 799 1001 1236 
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Table 3.2 shows comparison between the lower and higher order models at different 

natural frequencies and corresponding loss factors for a clamped-clamped sandwich 

cylinder. The material properties of the elastic and viscoelastic layers are given in Table 

3.1. In this case the length of the clamped-clamped cylinder is assumed to be L = 2.52 m, 

the radius is a = 0.3 m and the thickness of bottom, core and top layers are, respectively, 

5 mm, 5 mm and 1 mm. The comparison shows that higher order model exhibits more 

damping characteristics than the lower order model. Both models almost result in same 

natural frequencies. For these dimensions and the material properties given in Table 3.1, 

transient temperature at the middle point of viscoelastic core and elastic top layers is 

shown in Figure 3.4. The results are compared with the results obtained by finite element 

modeling in ANSYS. The ambient temperature is assumed to be 20 °C and the heat at the 

top layer is transferred to the environment where h = 20 W/m
2
K. The temperature inside 

the cylinder relative to the ambient temperature is 40 °C and the ends of the cylinder are 

isolated. As it can be realized, excellent agreement exists between the results.  

3.6.2 Effect of temperature and internal/external pressure on frequency response and 

loss factor 

Increase in external pressure leads to increase in the flexibility. Consequently, as 

shown in Figure 3.5, the natural frequencies decrease and the corresponding loss factors 

increase. Similar results are presented to show the effect of internal pressure on damping 

and the natural frequencies. According to the results shown in Figure 3.6, the natural 

frequencies increase and accordingly the corresponding loss factors decrease because of 

higher stiffness introduced in the sandwich cylinder under internal pressure. Although 

external pressure provides more damping but due to decrease in stiffness of the sandwich 

cylinder, larger deflection is expected which is illustrated in Figure 3.7.  
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Figure 3.5 Effect of external pressure on loss factor and natural frequency at different circumferential 

mode 

 
Figure 3.6 Effect of internal pressure on loss factor and natural frequency at different circumferential mode 

 
Figure 3.7 Frequency response functions at the middle point of pressurized clamped-clamped sandwich 

cylinder 
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However, more decrease in relative displacement at the natural frequencies is 

observed. On the other hand, the static displacement is decreased under internal pressure 

compared with that in unpressurized sandwich cylinder. Due to less damping under 

internal pressure, more increase in relative displacements at the natural frequencies is 

resulted. Effect of temperature on structural loss factor and frequency response is also 

investigated. Figure 3.8 shows frequency response for different ambient temperatures. 

The results indicate that decrease in loss factor and shear modulus of the damping layer 

caused by environmental temperature leads to decrease in damping characteristics of the 

viscoelastic layer. In practice, internal temperature of a cylinder differs from ambient 

temperature. The effect of internal temperature on the natural frequencies and loss factors 

at the steady state is shown in Figure 3.9. This figure also includes the temperature 

distribution at the mid section of each layer in the sandwich cylinder. Internal 

temperature affects the material properties of the core layer and also introduces thermal 

stresses at each layer. According to Figure 3.2 loss factor and real part of the viscoelastic 

layer decrease. This leads to decrease in damping behavior and natural frequencies. 

However the resulted pre-stresses due to the thermal loads increase the stiffness of the 

structure.  Consequently the natural frequencies almost remain unchanged except at 

higher natural frequencies. However, decline in damping performance of the viscoelastic 

material and the developed thermal stresses considerably decrease the loss factor of the 

structure. These can be also observed from the frequency response shown in Figure 3.10.  
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Figure 3.8 Ambient temperature effect on frequency response of empty clamped-clamped sandwich 

cylindrical shell 

 
Figure 3.9 Effect of internal temperature on loss factor and natural frequency of clamped-clamped 

sandwich cylinder 

 
Figure 3.10 Frequency response function at the middle point of sandwich cylinder under internal 

temperature 
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3.6.3 Heat dissipation effect of viscoelastic layer 

For a pressurized sandwich cylinder in which the pressure is periodically oscillating 

during time, according to the Eq. (3.28) the mechanical strain energy will be dissipated 

after each cycle. The internal pressure is assumed to be Pint =3 MPa and the amplitude of 

oscillation is 1 MPa.  The rate of dissipated energy for unit volume should be substituted 

into the Eq. (3.32) as H.  This energy will be accumulated inside the viscoelastic layer. 

Since the conductivity of the viscoelastic material is low, the generated heat will be 

transferred to constraining layer after long time. The heat then is transformed to the 

environment through convection. Therefore the temperature keeps on increasing at the 

viscoelastic layer which leads to decrease in loss factor and shear modulus, and 

consequently larger amplitude of displacement is resulted. This behavior is shown in 

Figure 3.11 at frequency of f=100 Hz. For low frequencies small amount of heat is 

generated with time comparing to the high frequencies. Figure 3.12 shows the 

temperature distribution along the axial coordinate of the cylinder at the center axis of 

core layer for high frequency (f = 400 Hz) after 20 s. Figure 3.13 also shows the variation 

of amplitude at the midpoint of core layer for different convection coefficient. As it can 

be realized, the amplitude reaches its steady state faster under forced convection. From 

the results one can conclude that the definition of loss factor is not unique even at natural 

frequencies. The heat dissipation changes the material properties and also introduces 

thermal loads in the structure and consequently the structural loss factor changes. Figure 

3.14 shows the hysteresis loops after every 10 s under cyclic loading for free convection. 

According to the shapes and slopes of the trajectories, the area of the ellipse that 

represents dissipated energy (and consequently loss factor) is changing during time.  

Thus, in the definition of loss factor the number of cycles should also be considered. 
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Figure 3.11 Heat dissipation effect on harmonic response of the middle point due to cyclic internal 

pressure f= 100 Hz 

 
Figure 3.12 Increase in temperature distribution at the core layer along the axial direction of sandwich 

cylinder due to cyclic internal pressure after 20 (s), f=400 Hz 

 
Figure 3.13 Steady state amplitude under convection effect of environment 
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Figure 3.14 Hysteresis loops after every 10 (s) under cyclic loading (f = 400 Hz) 

3.7 Conclusion 

The frequency response function and vibration characteristics of a pressurized 

sandwich cylindrical shell under thermal loading were investigated. Not only pre-stress 

components (resulted from pressure and temperature) affect the damping properties, 

change in the material properties of the damping layer due to temperature variation can 

change the frequency response and vibration characteristics. The internal temperature 

introduces different temperature distribution and consequently different stress distribution 

at each layer. The heat dissipation from damping layer releases energy which can be 

considered as a heat source in the heat transfer equation. It was shown that, the thermal 

load and change in material properties due to the heat generated change the amplitude of 

response. Therefore, not only the temperature and frequency affect the damping behavior, 

number of cycles of the harmonic loading can affect the damping characteristics of a 

sandwich structure. 
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CHAPTER 4  

VIBRATION ANALYSIS AND DESIGN OPTIMIZATION 

OF VISCOELASTIC SANDWICH CYLINDRICAL SHELL  

4.1 Introduction 

Damping properties of viscoelastic sandwich structure can be improved by changing 

some parameters such as thickness of the layers, distribution of partial treatments, 

slippage between layers at the interfaces, cutting and its distribution at the top and core 

layers. The optimization problem in literature has been studied to obtain maximum 

damping in sandwich structures [103-111] which has been addressed in chapter 1.  Since 

the optimization problem may result in a thick core layer, for achieving more accuracy a 

higher order Taylor’s expansion of transverse and in-plane displacement fields should be 

considered for the core layer as discussed in chapter 2. As shown in chapter 2, this higher 

order model differs from the lower order at higher frequencies for the thick core layer. 

Considering this, the higher order model should be employed where the design 

optimization is desired for higher frequencies. This higher order model is now formulated 

to model cut and partial treatment in sandwich viscoelastic cylindrical shell. 

Two different methods can be used to determine the displacement fields through the 

thickness of viscoelastic sandwich structures. In the first method, named method_1, the 

translational displacements at the top and bottom elastic layers are determined using the 

displacement fields at the core layer by implementing the boundary conditions at the 

interfaces which was discussed in chapter 2. As shown in this chapter, this method 

facilitates determination of the displacement fields considering higher order expansion of 

displacements through the thick core layer but fails to model the cuts and partial 
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treatment in the sandwich structure. In the second method, named method_2, the 

displacement fields at the core layer are obtained in terms of the displacements at the 

bottom and top elastic layers. In spite of the fact that this method brings intricacy into the 

formulations particularly where the higher order expansion of the core displacement 

fields is considered, it can effectively model the cuts and partial treatments in the 

sandwich structure.  Both methods should give identical results for fully treated sandwich 

cylindrical shell.  

The main limitation in the previously developed higher order displacement fields in 

the core layer such as the higher order model considered by Araújoet al. [10] is lack of 

the compatibility between the displacement fields at the different layers in which 

implementing the boundary conditions does not compatibly give the displacement fields 

at the core layer in terms of the displacement fields at the top and bottom layers.  Here, 

based on the profile of displacement fields of the core layer in static deformation, the 

higher order expansion of transverse and in-plane displacement fields in the thickness 

direction of the core layer are developed to analyze the vibration damping of the 

sandwich cylindrical shell with thin or thick core layer. Using this way, not only a good 

approximation for the shape of the displacement profile in the thickness coordinate can 

be obtained, but also it is possible to drive the higher order expansion in which the 

displacement field of the core layer can be represented by those of the elastic faces (i.e. 

the least number of variable). As explained further, the partial treatment and cut can be 

then modeled using the developed higher order expansion. By combining the finite 

element model with the optimization algorithms based on the genetic algorithm (GA) and 

sequential quadratic programming (SQP) technique, the optimal number, distribution and 
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thicknesses of the elastic top and core layers in the partial treatments are simultaneously 

optimized to improve damping of the structure. The results show that damping can 

significantly improve while the total mass of the structure decreases. In order to improve 

damping, cuts can be embedded in the sandwich structure to increase transverse shear 

strains in the core layer at the cut locations. Considering this, cutting in this study has 

been modeled using the discontinuity at the nodal displacements in the elements at the 

top and core layers. Here, distribution and the total number of cuts are simultaneously 

optimized to improve the damping behavior in the sandwich cylindrical shell considering 

different boundary conditions. The objective function is considered to be an effective loss 

factor defined based on combinations of loss factor in different circumferential and axial 

directions and also their contributions in the forced vibration. 

4.2 Lower Order Expansion of Displacement Fields through the 

Thickness of Viscoelastic Core Layer 

First order shear deformation theory (FSDT) can be used to define the displacement 

distribution through the thickness of elastic and viscoelastic layers. As shown in Figure. 

2.1, displacement fields for a three layered sandwich shell of revolution are defined in 

terms of the displacements of the middle plane including u0, v0 and w0 and the rotations 

of the normals to the middle plane in axial and circumferential directions denoted by ψ1 

and ψ2, respectively. Considering lower order expansion of displacement fields, the total 

displacement fields for each layer can be written as: 
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Here, slippage between layers at the interface has been considered in the formulations. 

Based on the methodology presented by Bai and Sun [14], for demonstrating the effect of 

slippage, it can be assumed that a very thin adhesive layer glues the top and bottom layers 

to the core layer. Considering this, at the interfaces the in-plane displacements are 

discontinuous. Using the displacement variation at the interfaces and the viscoelastic 

property of the adhesive layers, transverse shear stresses at the interfaces are obtained. 

Therefore the boundary conditions at the interfaces can be expressed as follows: 

in which s3
 and  3

are respectively transverse shear stresses in axial and 

circumferential directions and K
*
=k(ω)(1+iη(ω)) is a complex shear stiffness parameter 

of the adhesive layer representing the bonding at the interfaces which is assumed to be 

frequency dependent. The adhesive layer is assumed to be completely in contact with the 

core and faces. If a large value is assigned to k(ω) then: 
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and consequently the in-plane displacements are equal at the interfaces which means 

that the perfect bonding is provided. Substituting displacements from Eqs (4.1)-(4.3) into 

Eq. (4.4) and shear stress-strain relationship yields: 
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According to the method_1, by obtaining the translational displacement field at the top 

and bottom layers from Eq. (4.5) and then substituting into Eqs (4.1)-( 4.3), the total 

displacements at the elastic faces are obtained as: 

According to the method_2, the in-plane displacements (uc and vc) are related to the 

displacement fields at the elastic top and bottom layers. To implement this, the first two 

equations in Eq. (4.5) are simultaneously solved for 
cu0  and 

c
1 , and similarly the last 

two equations in Eq. (4.5) are simultaneously solved for 
cv0  and 

c
2 . These obtained 

parameters are subsequently substituted into Eq. (4.3) to derive:  
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where  -hc/2 < ξ3< hc/2.  For the lower order model, deflection w is considered to be 

constant through thickness of the sandwich cylinder.  

4.3 Higher Order Expansion of Displacement Fields through the 

Thickness of Viscoelastic Core Layer 

The lower order model can satisfy the compatibility in the displacement fields through 

the thickness of the sandwich structure in which according to the method_2 the in-plane 

displacements and the rotations are obtained in terms of the displacements at the top and 

bottom layers as shown in section 4.2. However, in sandwich structures the lower order 

expansion of displacement distribution through the thickness of the compliant core layer 

is not accurate enough particularly where the core layer is thick.  

The following distribution of displacements is considered at the core layer of the 

sandwich cylindrical shell: 

In order to achieve the compatibility in the deformation of the layers in the sandwich 

structure, all displacement fields in the core layer including rotations and translations 

should be identified in terms of the displacements at the top and bottom layers. Since the 
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boundary conditions at the two interfaces including the continuity in transverse deflection 

and slippage (or perfect bonding) give six equations for in-plane and transverse 

displacements, the following developed approach is considered to reduce the eleven 

parameters of the displacement fields in Eq. (4.10) to six parameters. The total 

displacement fields in the core layer for harmonic motion can be expressed as follow: 

)i t
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The profile of displacements with respect to the thickness coordinate of the core layer 

can be defined based on the static deformation. However, the displacement functions are 

afterward adjusted to fulfill the dynamic motion of the core layer. Considering this, by 

neglecting the inertia forces the equilibrium equations are written as: 
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(4.12) 

By neglecting the in-plane normal and in-plane shear stresses, the first and second 

equations in Eq. (4.12) can be rewritten as: 
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Eq. (4.13) indicates that the transverse shear stresses are constant through the 

viscoelastic core layer.  

The relation between the transverse shear stresses and strains can be written as: 
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Equating the coefficient of ξ3
0
, ξ3

1
 and ξ3

2
 from Eqs (4.14) and (4.15) yields the 

following relations: 
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By neglecting the in-plane normal stresses, the constitutive equations are written as: 

Substituting x3
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33

 from Eq. (4.18) into the last 

equation from Eq. (4.12) gives the following relation between β1 and β2: 
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According to the method_1, the boundary conditions from Eq. (4.5) and also the 

continuity in transverse deflection can be implemented to obtain translational 

displacements at the top and bottom layers in terms of displacement fields in the core 

layer. Therefore, the displacement fields through the thickness of top and bottom layers 

are derived as follows: 

According to the method_2, the displacements distribution through the thickness of 

the core layer should be obtained in terms of the displacement fields at the top and 

bottom layers. According to the continuity of transverse displacement either considering 
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slippage or perfect bonding, the transverse displacements at the top and bottom of the 

core layer are respectively equal to those at the elastic top and bottom layers as: 

ccccc
t

hh
ww 2

2

10
42
   ccccc

b

hh
ww 2

2

10
42
   

Using Eq. (4.21) and solving the abovementioned equations for 
c

1 and cw0 yields:  

Considering the slippage condition at the interfaces, the in-plane translational 

displacements cu0  
and cv0  at the core layer are directly obtained in terms of the 

displacement fields at the top and bottom layers. However, the rotations β1 and β2 are 

related to the displacement fields in the elastic layers by two coupled partial differential 

equations. Substituting Eqs (4.1), (4.2) and (4.17) for in-plane displacement into Eq. 

(4.4), yields the following relations: 
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After substituting 
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2  from Eq. (4.21) into the abovementioned relations in Eq. (4.27) 

and solving for cu0 , cv0 , β1 and β2, one can obtain the following equations: 
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Now, the only unknown parameters are the rotations β1 and β2 which can be obtained 

by solving Eqs (4.30) and (4.31). The solution is given in the next section.  

4.4  Semi-Analytical Finite Element Method  

Lagrange’s equation is used to establish the equations of motion. The kinetic and 

potential energies are obtained in each layer using the following equations: 

where i=t, b and c, dVi =(a + i )dθdx id  and i  is the coordinate in thickness 

direction at the middle of each layer and    321 ,,,,  cbt . In Eq. (4.33) the energy 

terms related to the in-plan and normal stresses of the core layer, i.e. 
c
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neglected due to the much small modulus in the core layer compared to the elastic faces 

as the normal and in-plane shear stresses are mainly carried by the elastic faces. This 

approximation is also reported in many literatures such as references [14, 17]. Strain–

displacement relation using linear Green’s Strain for the cylindrical shell element is [94]:  
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The ratio i /a is negligible if the thickness of each layer is small compared to the 

radius. Using the constitutive equations and substituting displacement fields for each 

layer into Eqs (4.32) and (4.33), the kinetic and potential energies are obtained in terms 

of the displacements. Semi-analytical finite element modeling can be used to define the 

translational and rotational displacement fields at the top, bottom and core layers in 

which the displacements in the circumferential direction are expressed analytically using 

the Fourier series and also are discretized in the axial direction using the Lagrangian 

shape functions. Considering this, the possible displacement fields at the top, bottom and 

core layers for the lower or higher order model of displacement distribution based on the 

method_1 or method_2 can be defined as: 
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in which m is the number of nodes for each cylindrical shell element in axial direction 

and i=b,t and c. Since there is no preference for the orientation of circumferential modes, 

an arbitrary phase angle φ must be included [119]. Generally, φ = φ0 and φ = φ0 + π/2 in 

which φ0 is an arbitrary constant. For the free vibration φ0=0 and for the forced vibration 

φ0 depends on the distribution of the forces. For example in the case of point loading, if 

the coordinates are located at the same point where the load is exerted, then φ0=0. Using 

the configurations of the mode shapes, the physical intuition of the displacement 

functions are well explained by Soedel [129]. If three nodes are considered in axial 

direction, the shape functions N1, N2 and N3  are given as: 
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As mentioned before, the rotations β1 and β2 are two known rotations in method_1 

however, according to the method_2, they should be determined by solving partial 

differential equations given in Eqs (4.30) and (4.31).  Here, briefly the solution of theses 

equations for β1 and β2 has been briefly discussed. The solution consists of homogenous 

and particular parts. The general solution of the coupled differential equations stated in 

Eqs (4.30) and (4.31) can be obtained by solving the following differential equations 

which are obtained after eliminating the nonhomogenous terms in Eqs (4.30) and (4.31) 

as: 
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Equations (4.37) and (4.38) can be rewritten in the following form: 
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0)( 22121   xxx DCDCC  (4.39) 

0)( 12221    xDCDCC  (4.40) 
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Multiplying Eq. (4.39) by )( 21 DCC  and Eq. (4.40) by )( 2 SDC and subtracting 

from each other give: 
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According to the Clairaut's theorem, for a function which has continuous second 

derivative with respect to θ and s: 
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After simplifying Eq. (4.41), using the Clairaut's theorem and then dividing Eq. (4.41) 

by C1C2, one can obtain the following partial differential equation:  
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Similarly, one can obtain the following equation: 
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It can be realized that for a moderate thick core layer,  is a large non-dimensional 

value. The solution is now presented for β1 and the similar results can be concluded for 

β2. The boundary conditions may be expressed as follow: 

According to the superposition principle, the homogenous solution of β1 is expressed 

as:  

in which the boundary conditions are rewritten as follows: 

The partial differential equation for β11 can be written as 

Using the separation of variables method, β11 is expressed as 

where by separating the equation and implementing the boundary conditions X and Y 

are obtained as: 
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Considering this fact that   is a large value, the second term in the Eq. (4.50) is 

eliminated. Using Eqs (4.49) and (4.50), β11 is now obtained as follows: 

where A3n=A1nA2n. Using the boundary condition and the Fourier series, A3n is 

obtained as follows: 

Substituting A3n into Eq. (4.51) yields: 
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Assuming that A is the maximum value of An(x) in the interval 0 < x < x0, β11 satisfies 

the following inequality: 

For 0 < θ < θ0 all exponential terms are negative values. Thus, one can write the 

following inequalities: 
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Using Eq. (4.55), Eq. (4.54) is splitted into two segments as: 

where m1 is an arbitrary finite integer value. By implementing the geometric 

progression formula, the inequality in Eq. (4.56) can be rewritten as: 

Since the argument of exponential function is a negative value within the interval 

0<θ<θ0 and  is a large non-dimensional value, the first and second terms in Eq. (4.57) 

are negligible. The Eq. (4.57) is only violated when θ is sufficiently close to θ0 in which 

β11 approaches to a finite value within a small interval. Considering this, the kinetic and 

strain energies associated with β11 are negligible after the integrations. Using the same 

approach, it can be proved that β12 and β14 are zero and one can obtain an inequality for 

β13 similar to Eq. (4.57). Therefore the homogenous solution can be neglected. The 

particular solution can be written in the following forms: 
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Three terms of the polynomial in axial direction can be considered for the three nodes 

along the axial direction of the cylinder. By substituting Eq. (4.58) into Eqs (4.30) and 

(4.31) and also equating the coefficient of x
0
, x

1
 and x

2
 in both differential equations, six 

linear equations are obtained which can be solved for a0, a1, a2, b0, b1 and b2. These 

equations are given in the Appendix. The coefficients are then substituted into the Eq. 

(4.58) to find the displacement fields at the damping layer.  

Degrees of freedom at each node considering the lower and higher order Taylor’s 

expansion in the thickness coordinate based on the method _1 and method _2 are 

summarized in Table 4.1. The kinetic and strain energy must be calculated for each layer 

using the described displacement distributions. The total kinetic and strain energies are 

then obtained by summing of the energies in top, bottom and core layers as:  

Lagrange’s equation can be employed to establish the equations of motion which can 

be written as follows: 

 

Table 4.1 DOF required in linear and nonlinear displacement distribution models based on method_1 and 

method_2. 

 
Displacement expansion 
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FEM (d) Higher order method_2 ][ 2100021000

tttttbbbbb wvuwvu   

bct UUUU 
 

 
bct TTTT     (4.59) 

nkF
q

U

q

T

q

T

t
k

kkk

,,1
























































d

d
 

 

(4.60) 



109 

 

where n is the total DOF in the sandwich panel structure, q and F are the nodal 

displacements and applied external force, respectively and T and U are respectively the 

kinetic and potential energies in the sandwich shell structure.  

Substituting Eq. (4.59) into the Eq. (4.60) and assembling for all elements gives the 

equations of motion in the finite element form as: 

where     KKK  i  is a complex frequency dependent stiffness matrix. Due to 

the frequency dependency of viscoelastic properties of the damping layer, stiffness matrix 

is nonlinear with respect to frequency.  In the case of free vibration, Eq. (4.61) can be 

written in the following form: 

Eq. (4.62) can not directly be solved due to the nonlinearity in stiffness matrix. Natural 

frequencies can be found directly using forced harmonic response method for a certain 

range of frequency. Under harmonic load F = F0e
iωt

, the Eq. (4.61) can be expressed as: 

Therefore, the natural frequencies and consequently the corresponding loss factors can 

be calculated using the frequency response by solving a set of linear equations in Eq. 

(4.63). This method can be expensive since the solution strongly depends on the 

resolution of frequency axis. The alternative method is to solve eigenvalue problem of 

Eq. (4.62) iteratively using the evaluated stiffness matrix at the natural frequencies.  The 

evaluated stiffness matrix at the natural frequency of the bare cylinder could be the best 

starting point for each mode in the iteration process.  

FKqqM   
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As mentioned before, the modal loss factor is defined as the ratio of dissipated energy 

per radian and maximum potential energy at natural frequency which can be described as 

[132]: 

in which iφ  is the normalized eigenvector in free vibration and ηi is the loss factor 

related to the ith mode.  

4.4.1 Unconstrained treatment 

Unconstrained treatment can be modeled by eliminating the constraining elastic layer. 

Therefore the three-layered structure is substituted by two-layered structure which is 

simpler but inefficient considering the weight point of view [133]. Due to small shear 

strain at viscoelastic layer in unconstrained treatment, this configuration is useful when a 

light structure exhibiting small damping behavior is desired. However, as shown in this 

chapter, in order to achieve considerable damping in unconstrained sandwich structure, 

thick viscoelastic layer should be considered which leads to increase in the structural 

weight. The method_1 can effectively be used to formulate the unconstrained treatment. 

In order to contribute the strain energy related to the in-plane stresses which are 

predominant in the damping layer for unconstrained treatment, the lower order model is 

employed which is more reasonable since both shear stresses and in-plane normal stresses 

are considered in the model. According to the method_1, the displacement distributions 

for the bottom and viscoelastic layers given in Eqs (4.3) and (4.7) are used in the finite 

element modeling. 
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Figure 4.1 Configuration of treatments on the bare cylindrical shell 

4.4.2  Partial treatment 

Partial treatment leads to reduction of the total weight in sandwich structure and may 

provide better vibration suppression performance. This can be efficient for the sandwich 

structures where the objective is reducing the weight while maximizing the damping.  

Partial treatment in the developed finite element method can be modeled by eliminating 

the top and core layers for the untreated elements. Considering this, the stiffness and 

mass matrices of the bare and treated elements are assembled at the base layer during the 

assembly process. This can be possible by utilizing method_2 that includes the FEMs (b) 

and (d) shown in Table 4.1 which are describing respectively lower and higher order 

Taylor’s expansion of displacement fields in the thickness coordinate of the core layer. 

The configuration of treatments (8 configurations) on the bare cylinder for parametric 

studies presented in this chapter is shown in Figure 4.1 in which fifteen cylindrical shell 

elements are considered in finite element modeling and the symbol × shows the location 

of the treatments for each configuration.  
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Figure 4.2 (a) Discontinuity of nodal displacements at the cut location. (b) Configuration of cuts on the 

sandwich cylindrical shell. 

4.4.3 Cut modeling 

The configuration of one cut is shown in Figure 4.2 (a). Lepoittevin and Kress [20] 

showed that the cut leads to increase in the transverse shear strain at the core layer and 

consequently the damping increases.  Cuts could be considered as untreated elements in 

which the size of the elements is very small. Therefore after assembling, the size of 

stiffness and mass matrices would be too large in which the numerical calculations 

become too expensive. The cuts here are modeled by considering this fact that the nodal 

displacement at the elastic top and viscoelastic core layers are discontinuous at the 

location of the cuts [113] (Figure 4.2 (a)). Considering this, the nodal displacements and 

the entries of the corresponding mass and stiffness matrices at the cut locations are taken 

apart in the system stiffness and mass matrices. Although, the effect of damping due to 

the friction between the elements is not considered in this model but it can show the 

effect of additional shear strain in the core layer on the damping behavior.  As it has been 

mentioned before, the FEM (b) and (d) which are based on the method_2 can be used to 

model the cuts since considering the discontinuity in the nodal displacements at the top 

layer bring about discontinuity of displacement at the core layer so that the displacements 

at the base layer are still continuous. Discontinuity in the nodal displacements of the core 
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in the method_1, leads to discontinuity of displacement at top and bottom layers which 

does not exhibit the behavior and the effect of the cuts in the finite element modeling. 

Numerical studies show that cutting influences damping properties. The location of cuts 

is important for different boundary conditions. The best position of the cuts seems to be 

between the elements of the sandwich structure with higher modal strain energy since the 

cuts leads to additional shear deformation and consequently more dissipation of energy. 

In order to observe the effect of the cuts and their distribution, seven configurations of 

cuts as shown in Figure 4.2 (b) have been used for the parametric studies presented in this 

chapter in which the discontinuity are considered between different elements according to 

the number of cuts.  

4.5 Optimization Problem 

The parametric studies presented in this chapter and chapter 2 show that the damping 

characteristics are affected by the ratio of the top and core thicknesses to the base layer 

thickness, slippage between layers, total number and distribution of untreated elements in 

the partial treatment process and also total number of cuts and their distribution along the 

axis of the sandwich cylindrical shell. These parameters can be optimized simultaneously 

or separately in the optimization problem. The objective function can also be the loss 

factor for each mode or combinations (linear or logarithmic) of all loss factors at different 

modes. In this study, an effective loss factor is introduced according to combinations of 

all circumferential and axial modes. As mentioned before, loss factor can be determined 

at the corresponding natural frequencies in circumferential and axial modes. In practice, 

the contribution of each mode is different for a particular displacement vector X0. 

Therefore, a weighted combination of loss factor is required to be defined as an objective 
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function. The participation value of each mode can be evaluated in an undamped 

structure. This value is then considered as a weighting factor for the corresponding loss 

factor and consequently the weighted combinations of all loss factors related to all modes 

is considered to be the objective function. For the undamped structure under harmonic 

loading, the amplitude vector for each circumferential mode can be written as [134]: 

where n
iφ  is the normalized eigenvector (|| n

iφ || = 1) for nth circumferential and ith
 

axial mode,
n
ic  indicates how much of each axial mode is present in the nth 

circumferential mode and n
0X  represents displacement vector through the cylindrical 

shell due to a particular loading. For each circumferential mode, 
n
iφ  are orthonormal with 

respect to stiffness and mass matrices as follows: 

According to this property, 
n
ic can be obtained as: 

In order to realize the effect of each particular axial mode on the displacement vector

n
0X , all the eigenvectors should be projected on the n

0X . Therefore a meaningful relation 

can be defined to determine the participation of each mode as follows: 
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The percentage of each circumferential mode can be directly calculated from the total 

displacement at each point P in the axial direction: 

Therefore the effective loss factor is determined by combining the percentage of all 

modes in circumferential and axial direction which are participating to form the 

displacement vector X0 as follows: 

where n
i  is the loss factor at circumferential mode n and axial mode i and ηeff is the 

effective loss factor. The effective loss factor ηeff  is now considered as the objective 

function to be maximized.  The constraint of the optimization problem is the total mass of 

the sandwich structure. The goal here is to suppress the vibration of the base layer. The 

core and top layers should not have significant impact on the total mass of the structure 

(mass constraint). Here, first the optimized number of cuts and their distributions are 

obtained for fully treated sandwich cylinder using the genetic algorithm available in 

MATLAB. Binary numbers [0 1] are employed to define the location of the cuts in the 

sandwich cylinder. Therefore the initial populations are created using random binary 

vectors in a way that 0 is assigned to a place where there is no cut and 1 is assigned to the 

cut location.  For the individuals which include only binary numbers, the useful 

“Scattered” function is employed for creating the Crossover Children which merges the 
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parents by choosing randomly from the variables of the first and second parent. The 

Mutation function has been customized in a way that with probability less than 10% 

random numbers of the variables are switched from 0 to 1 and vice versa. Another 

optimization has been conducted to optimize simultaneously total number of treatments, 

the distribution of the treatment and thickness of the top and core layers.  In this case, the 

total mass of the structure is the constraint of the optimization problem. The genetic 

algorithm (GA) combined with sequential quadratic programming (SQP) available in 

MATLAB are used in the optimization process. First all parameters are optimized by 

employing GA in which the binary vectors, 0 and 1 are assigned to the treated and 

untreated elements, respectively. Since the thicknesses of the top and bottom layers at the 

treatments are real value, therefore a crossover function is customized to create the 

children so that the “Scattered” function is used to create binary vector for the location of 

the treatments and the “Intermediate” function is used to create the thicknesses of the top 

and bottom layers in which weighted average of the thicknesses from the parents are 

evaluated. The same Mutation function mentioned before is used to create mutation 

children except that for the elements of an individual representing the top and core 

thicknesses, the Gaussian function is used to add random number to these elements.  The 

optimum thickness can be further improved using SQP subjected to the constraint on total 

mass. The result obtained by GA is used as the starting point for SQP solution.  

4.6 Results and Discussion 

First, the finite element models based on the lower and higher order of Taylor’s 

expansion of displacement fields in the thickness coordinate of the core layer using 

method_1 and method_2 are compared with each other.  
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Parametric studies are also presented to observe the effect of the partial treatment and 

the distribution of treated elements on the loss factor of constrained sandwich cylindrical 

shell. Similar results are presented for the effects of cuts and their distribution on 

damping behavior. The optimization problem is first solved to find the optimum number 

and distribution of cuts in a fully treated sandwich cylinder and, finally, the optimization 

problem is solved to decrease the weight of the sandwich structure using partial 

treatments in a way that a light structure with maximum effective loss factor is achieved. 

The results from the parametric study are presented for clamped-free boundary conditions 

and the optimization results are presented for clamped-free, simply supported and 

clamped-clamped boundary conditions.  

4.6.1 Comparison between lower and higher order models 

The properties of the sandwich cylindrical shell structure and the dimensions are given 

in Table 4.2. Using method_1, the frequency response under point load at the end of the 

clamped-free cylinder is obtained at the point where the load is exerted. Figure 4.3 shows 

that for a relatively thin damping layer the FRF for the lower and higher order models are 

nearly similar. However, at the natural frequencies the damping behavior of the higher 

order model is slightly more than the lower order model. The ratio of damping layer and 

top elastic layers to the base layer is assumed to be Rc and Rt, respectively. In Figure 4.4 

for Rt =0.2 and different values of Rc, the effective loss factors resulted from different 

finite element models (mentioned in Table 4.1) are compared for  the clamped-free 

boundary condition. It should be noted that the effective loss factor is calculated here 

based on considering 10 circumferential modes and their first 3 axial modes for sandwich 

cylindrical shell under point loading. 
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Figure 4.3 Frequency response for clamped-free constrained sandwich cylindrical shell; hb= hc=1.5 mm, 

ht= 0.3 mm, comparison between lower and higher order models 

 
Figure 4.4 Comparison between the results of the lower and higher order models for effective loss factor in 

clamped-free boundary condition using, Rt = 0.2 

As expected, the results from the lower and higher order models deviate as Rc 

becomes larger (core viscoelastic becomes thicker). One can realize that the difference 

between lower and higher order models are insignificant (l%) for value of Rc up to 3. 

Table 4.2 Properties and dimension of the three layered sandwich cylinder- Properties of damping layer is 

frequency dependent 

 
Radius 

(mm) 

Length 

(mm) 

Thickness 

(mm) 

Young modules 

 (N m
-2

) 

Density 

 (kg m
-3

) 

Poisson’s 

ratio 

Base Layer 216.2 511.2 1.5 1.83× 10
11

 7492 0.3 

Viscoelastic 

Layer 
216.2 511.2 hc 380560 (ω/2π)

0.475
(1+1.46i) 1140 0.34 

Constraining 

Layer 
216.2 511.2 ht 1.83× 10

11
 7492 0.3 

F 
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Figure 4.5 Frequency response for clamped-free unconstrained sandwich cylindrical shell; comparison 

between thin and thick core layers 

 
Figure 4.6 Effect of core layer thickness on the loss factor of unconstraint sandwich cylindrical shell at 

different fundamental circumferential mode for clamped-free boundary condition 

The difference of 2.5% is observed for the thick core layer (3 < Rc < 5). The results 

also show that the method_1 and method_2 for the lower and higher order models 

generate similar results. The small difference (0.8%) between FEM (c) and (d) arises 

from neglecting the general solution in Eqs (4.30) and (4.31).  

4.6.2  Unconstrained sandwich cylinder 

Figure 4.5 shows frequency response of the unconstrained sandwich cylindrical shell. 

According to the previous discussions in section 4.4.1, the lower order model has been 

employed for the unconstrained treatment. The main disadvantage of unconstrained 
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sandwich structure is poor damping property due to small shear stress at the damping 

layer. Due to increase in the total mass of the structure while small change in the 

stiffness, the natural frequency considerably decreases as the thickness of the core layer 

increases. The effect of the core thickness on the loss factor of the clamped–free 

uncontained sandwich cylindrical shell is also demonstrated in Figure 4.6.  As expected, 

the loss factor increases as the core layers become thicker. This is especially more 

pronounced for the lower modes.   

4.6.3  Effect of cuts, partial treatments and their distribution on loss factor and 

frequency response function 

First, the sandwich structure layer is assumed to be fully treated without cut at the core 

and top layers. The damping property using the lower and higher order models in terms 

of the loss factor at each fundamental circumferential mode and also in terms of the 

effective loss factor for Rc= 1 and Rt= 0.2 is shown in Figure 4.7.  According to the 

results, the higher order model exhibits more damping properties than the lower order 

model. Effects of partial treatment on the loss factor considering the treatment 

configurations shown in Figure 4.1 are presented in Figure 4.8. According to these 

configurations, although the partial treatment process can reduce significantly total 

weight of the structure, an inappropriate distribution may decrease the damping 

properties. It will be shown further that one can optimize the partial treatment locations 

and thickness ratio to achieve higher loss factor compared with that of fully treated 

structure. The effect of cuts considering the configurations given in Figure 4.2 (b) is also 

shown in Figure 4.9. One can realize that cutting in the core and top layers can increase 

the damping property compared with the fully treated sandwich cylinder. Also increasing 

the total number of cuts does not guarantee increase in damping properties.  
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Figure 4.7 Damping properties of fully treated sandwich cylindrical shell without cutting; Rc =1, Rt = 0.2, 

comparison between lower and higher order models using FEM (b) and (d) 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
Figure 4.8 Partial treatment and its distribution effect on damping properties; Rc =1, Rt = 0.2, (a) 1 

treatment, (b) 2 treatments, (c) 3 treatments, (d) 4 treatments, (e) 5 treatments, (f) 6 treatments, (g) 7 

treatments, (h) 8 treatments 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) 

 
Figure 4.9 Cut and its distribution effect on damping properties; Rc =1, Rt = 0.2, (a) 2 cut, (b) 4 cuts, (c) 6 

cuts, (d) 8 cuts, (e) 10 cuts, (f) 12 cuts, (g) 14 cuts 

The FRFs for the sandwich cylindrical shell including 14 cuts and also for the same 

cylinder with 8 treatments (no cutting) are compared with FRF of the fully treated 

cylindrical shell in Figure 4.10. Increase in damping due to the cuts leads to smaller 

amplitude in the frequency response. However, less damping due to the partial treatment 

using the configuration of 8 elements leads to higher amplitudes at the natural 

frequencies.  



123 

 

 
Figure 4.10 Effect of cuts and partial treatments on frequency response function; Rc =1, Rt = 0.2 

4.6.4 Optimization results  

The parametric studies in this chapter and the chapter 2 demonstrated that damping 

characteristics are highly affected by thickness ratios of the treating layers, cut/partial 

treatment and their distribution and slippage between layers at the interfaces. As shown in 

the chapter 2, in order to increase damping the slippage should be prevented. Therefore 

the results here are presented considering perfect bonding at the interfaces.   

Table 4.3 Optimum cutting distribution on fully treated cylinder, Rt = 0.2, Rc= 1 

Cut distribution for clamped-free sandwich cylinder (ηeff = 0.1481) No cutting 

               ηeff = 0.1408 

Cut distribution for simply supported sandwich cylinder (ηeff = 0.1003) 

               ηeff = 0.0942 

Cut distribution for clamped-clamped sandwich cylinder (ηeff = 0.0997) 

               ηeff = 0.0935 

 

Table 4.4 Optimum partial treating and thickness ratio of top and core layers 

Treatment distribution for clamped-free sandwich cylinder (ηeff = 0.1716) Rt Rc 

               0.163 2.083 

Treatment distribution for simply supported sandwich cylinder (ηeff = 0.1207) 

               0.098 1.781 

Treatment distribution for clamped-clamped sandwich cylinder (ηeff = 0.1106) 

               0.079 1.881 
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As mentioned before, the displacement vector X0 resulted from harmonic point loading 

condition is considered to find the effective loss factor. The load is applied at the tip of 

the clamped-free and at the middle of the simply supported and clamped- clamped 

sandwich cylinders. Optimization results for number of cuts and their distribution along 

the axial direction considering different boundary conditions are shown in Table 4.3. 

According to the results, the effective loss factor is improved for clamped-free, simply 

support and clamped-clamped respectively by 5.2%, 6.5% and 6.6% with respect to that 

of fully treated sandwich cylinder with no cut.  Symmetric distribution of cuts is observed 

for the clamped-clamped and simply supported boundary conditions. Since X0 resulted 

from point loading at the middle of the cylinder has similar configuration for both simply 

supported and clamped-clamped boundary conditions, the optimization results are similar 

in both cases. To observe the damping effect of the optimized cutting on the clamped-free 

sandwich cylinder, its frequency response is compared to the frequency response of the 

fully treated sandwich cylinder without cutting in Figure 4.11. One can realize that the 

optimum cutting can considerably decrease the amplitude in the frequency response 

function especially at higher frequencies.  

Another optimization is performed to find optimum treatment in which a light 

structure exhibiting maximum damping property is achieved. The total number of 

treatments, distribution of treatments, and thickness of top and core layer are 

simultaneously optimized. It has been assumed that the total mass of the structure does 

not exceed 25% of the bare structure mass. The optimum treatment distribution with the 

optimum thickness ratio of the core and top layers for different boundary conditions are 

presented in Table 4.4.  
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Figure 4.11 Frequency response of fully treated clamped-free sandwich cylinder; Rc =1, Rt = 0.2, 

comparison between optimum cutting and no cutting. 

 
Figure 4.12 Comparison between frequency responses of optimum treating and full treating in clamped-

free sandwich cylinder. 

The optimum number of treatment for clamped-free boundary condition is found to be 

7 and they are clustered at the free end of the shell. However for the simply-supported 

and clamped-clamped boundary conditions the optimum number of partial treatments is 

found to be 9 and they are clustered at the middle of the shell due to symmetry condition. 

It can be realized that for achieving maximum shear strain, the treated elements are 

mainly placed at the locations in which the deflection is high. The percentages of 

improvement of effective loss factor for the clamped-free, simply-supported and 
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clamped-clamped are respectively 25.1%, 28.1% and 18.3%.  Therefore the damping 

characteristics can considerably improved whilst the total weight of the structure is 

decreased. In order to understand the effect of the optimum treatment on damping, the 

frequency responses for the optimum design and the primary design in the clamped-free 

sandwich cylinder are shown in Figure 4.12. It can be concluded that the optimum 

treatment provides better damping comparing to the initial design especially at the lower 

modes. 

4.7 Conclusion 

Considering slippage between layers at the interfaces, new higher order Taylor’s 

expansions of displacement fields in the core layer were developed to investigate 

damping characteristics of sandwich cylindrical shell. The developed higher order model 

can compatibly describe the displacement field in the core layer in terms of 

displacements at the elastic faces. The higher order model was considered in the 

optimization problems due to the feasible displacement profile achieved by this model 

especially for thick constrained viscoelastic core layer. Optimization results showed that 

by embedding an optimum distribution of the cuts, the loss factors particularly at the 

higher modes are considerably increased. It was also shown that a light structure with 

high damping characteristics can be achieved by optimizing simultaneously partial 

treatment distribution and the thicknesses of treating layers.  
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CHAPTER 5  

DYNAMIC MECHANICAL PROPERTIES OF AN 

ELECTRO-RHEOLOGICAL FLUID UNDER LARGE 

AMPLITUDE OSCILLATORY SHEAR STRAIN 

5.1 Introduction 

Electrorheological (ER) fluids have many applications in engineering such as shock 

absorption, vibration control of structures and flow control of fluids due to their ability to 

provide reversible and rapid response. An ER fluid consists of suspension of solid 

dielectric particle dispersed in an insulating oil [41]. The rheological properties of the ER 

fluids are immediately changed when they are subjected to external electric field. ER 

fluids naturally behave as Newtonian fluid and immediately transform to the plastic 

(semi-solid) state under electric field due to the formation of polarized particle chains in 

the direction of electric field. In many applications, ER and MR fluids are subjected to 

oscillatory shear [62]. The dynamic properties of ER and MR fluids under oscillating 

shear strains in both pre-yielding and post yielding regimes are investigated by many 

researchers [43-74] as discussed in chapter 1.  

From previous studies, it can be concluded that the shear response of ER fluids and the 

material properties under large deformation at certain field intensity are highly nonlinear 

with respect to strain amplitude and frequency. In the present chapter, based on the 

dynamic mechanical analysis (DMA), linear and nonlinear viscoelastic properties of an 

ER fluid material consists of cornstarch dispersed in corn oil is systematically 

investigated experimentally under small and large amplitude oscillatory shear strain. The 

experimental data are extracted for moderate range of frequencies and different electric 

field strengths. However, for relatively high frequencies the device fails to capture the 
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properties at small shear strain amplitude. Finally, a constitutive model has been 

proposed to predict the experimental data and also extrapolate the mechanical behavior at 

the immeasurable regions. The proposed model requires less number of parameters 

compared with the Fourier transformation rheology for predicting the stress response and 

the mechanical properties for different strain amplitudes, frequencies and field intensities. 

This leads to simplify the parameter identification using the optimization techniques. As 

shown in the results, the proposed constitutive model is able to predict material response 

for large amplitudes and also the transition between the linear and nonlinear regimes is 

observable using this model.  

5.2 Experiment 

The ER fluid is prepared by dispersing cornstarch into corn oil with viscosity of 40 

mPa s. The weight fraction of the particles is chosen to be 30 %. Figure 5.1 (a) shows the 

dispersed cornstarch particles in the corn oil which are distributed randomly in the 

absence of electric field. As the electric field is applied inside the fluid, the polarized 

particles form chains in the direction of the electric field as shown in Figure 5.1 (b) and 

(c) for the field intensity of E=0.1 KV/mm and E=0.5 KV/mm, respectively. In order to 

increase the accuracy and also safety of the experiment, an acrylic box is designed with 

number of grooves at certain height of the box. The fabricated conductive aluminum 

plates are then fixed inside the grooves and by applying high voltage to these plates the 

electric field is established in the ER fluid. With this feature, an approximate pure shear 

force can be generated inside the ER fluid.  
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(a) 

 
(b) (c) 

  
Figure 5.1 Electrorheological fluid (cornstarch suspensions in corn oil); E=0 KV/mm, (b) E= 0.1 

KV/mm, (c) E= 0.5 KV/mm 

 
Figure 5.2 Experimental setup to measure dynamic properties of the ER fluid material 
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The shear area of the ER fluid contacting with the oscillating plate is 844 mm
2
. The 

distance between the fixed aluminum plates is 5.4 mm and the thickness of the oscillating 

plate inserted between the fixed plates is 2.8 mm. The experiment has been carried out 

using Bose ElectroForce 3200 device. Figure 5.2 shows the experimental setup 

demonstrating the positions of the acrylic box containing the ER fluid, oscillating plate, 

fixed plates, low voltage power supply and DC to high voltage DC converters.  The 

electric field is induced in the ER fluid by applying voltage between the fixed plates. Low 

input voltage is first generated by the low voltage power supply (o to 15 Volt) and then 

the DC to high voltage DC converter provides the high DC voltage (0 to 10000 Volts) 

inside the fixed plates. The oscillating plate generates the shear strain in the ER fluid and 

the resulted axial force is measured by the force transducer. The timed data of the 

measured force and the input displacement are analyzed by the DMA software using 

Fourier transform technique. The amplitude and also the phase of the fundamental 

frequency for the measured force and displacement are considered to calculate the 

complex modulus based on Eq. (1.4). In order to prevent sedimentation of the cornstarch 

particles, the ER fluid is carefully blended after each frequency sweep.  

The experiment has been conducted to explore the material properties for frequency 

range of 0.1 Hz to 60 Hz and the shear strain amplitude ranging from 0.1538 % to 7.69 

%. It should be noted that at higher frequencies the device could not maintain the small 

oscillatory displacement. Considering this, it was not possible to provide accurate 

properties at high frequencies and small strain amplitude.  
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5.3 Proposed Constitutive Model 

According to the rheology analysis based on Fourier transform, the stress response of 

ER fluids under large amplitude oscillatory shear strain depends on many variables 

including amplitude, frequency and field intensity. For a given frequency, strain 

amplitude and electric field, too many terms and coefficients in Fourier transform relation 

should be determined to accurately express the stress response in the time domain. The 

coefficients should be also expressed in terms of these variables using appropriate 

functions to incorporate them in the stress response. Therefore, evaluating the stress 

response mathematically could be too complicated. In this study, a modified form of the 

Bingham-Hooke model used by Laun et al. [74] which has been shown in Eq. (1.5) has 

been developed. As mentioned before, according to their results the material properties 

obtained by the Bingham-Hooke model represented by Eq. (1.5) deviate from the 

experimental data at the nonlinear regime. In this chapter, this model has been considered 

as the starting point for developing a model to accurately describe the experimental 

results. The strain amplitude variable is included in the developed model to provide more 

accurate results particularly at the nonlinear regime. Considering this, the following 

relation has been proposed for the stress response under the oscillatory shear strain: 

where η, μ, K, D and G0 are the model parameters which are generally frequency and 

field dependent,~ and ~ represent, respectively the shear stress and strain amplitudes and 


~
 is shear strain rate amplitude (  ~~

 ).  
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(a) 

 
(b) 

 
Figure 5.3 Typical hysteresis loops of the proposed model, f= 0.1 Hz, E=1.9 KV/mm, (a) stress-strain (b) 

stress-strain rate 

For frequency of 0.1 Hz and electric field of 1.9 KV/mm, the typical hysteresis loops 

according to the proposed model is shown in Figure 5.3. At the unloading stage where

0  , the material properties are assumed to be linear viscoelastic. In order to provide 

continuity in the hysteresis loop, )sgn(~  and ~ (in bottom line of Eq. (5.1)) and also 

shear strain γR and shear strain rate R at τ=0 (in top line of Equation (5.1)) are included in 

the model.  In the nonlinear regime where 0  , an amplitude dependent relation defines 
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the shear stress response which governs the response in the beginning of the loading stage 

(τ=0) up to the unloading stage. Consequently, the yielding stress is practically assumed 

to be negligible in this model. However as shown further in the results for stress 

amplitude versus strain amplitude, the proposed model is able to predict the transition 

between the linear and nonlinear regimes. Without considering variables ~ and
~
 in the 

top line of Eq. (5.1), the amplitude of shear stress significantly increases as the shear 

strain amplitude increases. Therefore, the rate of increase in the shear stress amplitude is 

reduced by dividing the viscous and elastic terms respectively over the strain rate and 

strain amplitudes. However, an elastic term (with parameter K) is added to the stress 

response in order to maintain the increase of the stress amplitude with increasing the 

strain amplitude. This model provides a simple relation between stress and strain which 

includes the variable of shear strain amplitude. Based on the results from the experiment 

and the parametric study of the proposed model at different amplitudes and field 

intensities, the following functions are chosen to describe parameters η, μ and D as: 

where f=ω/2π is frequency (Hz), the coefficients c1, c3, c5, c6, c8 and c10 are assumed 

to be second order polynomial functions of electric field and c2, c4, c7, c9, c11 are assumed 

to be constant. The frequency independent elastic parameters K and G0 are also assumed 

to be second order polynomial functions of electric field. Using the genetic algorithm 

(GA) combined with sequential quadratic programming (SQP) available in MATLAB, K, 

  )(
321

4)exp( cfcfcc   

(5.2) )exp( 765 fccc 

 
)exp()exp( 111098 fccfccD 
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D and the coefficients c1 through c11 are obtained to minimize the following objective 

function: 

in which the experimental mechanical properties including storage and loss modulus 

(G'Exp and G"Exp) are obtained using Eq. (1.4) based on the time data of the shear stress 

and strain. It should be noted that in the optimization problem, the results from GA are 

used as the starting point for the SQP solution in order to catch the global optimum 

solution as accurate as possible. The phase difference between the stress and strain at the 

fundamental frequency for the proposed model can be found using the first order terms in 

the stress response as: 

where T is the time period. The phase difference between the strain and stress is then 

calculated as: 

The storage and loss modulus are now obtained as:  

which can be compared to the complex modulus from the experiment.  The results 

from the optimization problem are provided in Table 5.1 which can be then substituted 

into Eq. (5.2) to define the model’s parameters.  
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5.4 Results and Discussion 

First, the results from the Bingham-Hooke and proposed constitutive models are 

compared to the experimental data. As shown by Laun et al [74], the Bingham-Hooke 

model given in Eq. (1.5) fails to capture loss modulus at small amplitude. Therefore they 

added  p  to the total stress component without changing the Bingham-Hooke model 

element. As shown in Figure 5.4, by assigning optimum value to the parameters of Eq. 

(1.5), the Bingham-Hooke model is not able to predict the experimental data particularly 

at large shear strain amplitude. The parameters  YpBG  ,,,0 of the Bingham-Hooke 

model (λ=ηB/G0) for E=0.7, 1.3 and 1.9 KV/mm are respectively (0.4 MPa, 0.28 KPa s, 

10.2 KPa s, 57 Pa), (0.65 MPa, 0.31 KPa s, 20.5 KPa s, 88 Pa) and (1.3 MPa, 0.52 KPa s, 

51.3 KPa s, 151 Pa).  On the other hand, good agreement exists between the results from 

the proposed constitutive model and experiment. 

In the following, the stress response and the complex modulus resulted from the 

proposed model are presented and compared with the experimental data. The results are 

presented for different amplitudes, frequencies and electric field intensities.  

Table 5.1 The field dependent coefficients of the model’s parameters 

c1 c2 c3 c4 c5 

3064-4997E+2698E2 0.3744 2602-2885E+2893E2 0.7717 -3.07+15.86E-3.92E2 

c6 c7 c8 c9 c10 

39.71-44.76E+24.88E2 1.7188 55.34-49.22E+53.65E2 7.31E-05 -31.84+45.83E-24.97E2 

c11 K G0 

0.6273 288.5-231E+359.7E2 21909-3228E+19732E2 
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(a)  

 
(b) 

 
Figure 5.4 (a) Storage and (b) Loss modulus of the ER fluid versus shear strain amplitudes for f=0.1 Hz and 

different electric field intensities; Symbols represent the experimental results; dashed and solid lines 

respectively represent simulation results using the Bingham-Hooke and proposed models. □ E=0.7 

KV/mm;   E=1.3 KV/mm; ○ E=1.9 KV/mm 
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f=0.1 Hz 

 
f=1 Hz 

 
f=10 Hz 

 

f=15 Hz 

 
Figure 5.5 Complex modulus of the ER fluid versus shear strain amplitudes for different electric field 

intensities and frequencies; Symbols represent the experimental results and the solid lines represent 

simulation results using the proposed model. □ E=0.7 KV/mm;   E=1.3 KV/mm; ○ E=1.9 KV/mm 
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f=20 Hz 

 
f=30 Hz 

 
f=40 Hz 

 
Figure 5.5 Continued 

5.4.1  Complex modulus 

Using the proposed model, the complex modulus including the storage and loss 

modulus is compared to the experimental data.  Figure 5.5 shows the variation of storage 

and loss modulus with respect to shear strain amplitude at different frequencies varying 

from 0.1 Hz to 40 Hz and different electric field intensities (E=0.7 KV/mm, E=1.3 

KV/mm, E=1.9 KV/mm). The symbols and solid lines represent, respectively, 

experimental data and the model’s estimation. According to results, the storage modulus 



139 

 

generally decreases with increasing shear strain amplitude. On the other hand, the loss 

modulus first increases and then decreases. This behavior is also reported in literature 

such as references [65, 74, 135, 136] which is referred to "weak-strain overshoot 

behavior". The behavior is related to the complex structures which show resistance to 

strain deformation up to critical strain amplitude where the loss modulus starts to 

decrease [135, 136]. For the shear strain larger than the critical shear strain, the material 

shows "strain thinning" behavior in which both storage and loss modulus decrease with 

increasing the strain amplitude. As shown in Figure 5.5, the proposed model is able to 

catch the weak-strain overshoot and strain thinning behaviors accurately. Also, very good 

agreement exists between the results obtained by the experiment and the proposed model 

at different frequencies and field intensities. As expected, the results show that with 

increasing the electric field intensity, the storage and shear modulus increase. The model 

also reasonably predicts the material behavior for the immeasurable regions with small 

strain amplitude and higher frequencies.  

The material behavior with respect to frequency at different strain amplitudes and field 

intensities is also shown in Figure 5.6. According to the results, the nonlinear behavior in 

the complex modulus versus frequency increases with increasing the electric field 

intensity. This behavior has also been reported in literature such as reference [65]. For 

each frequency sweep at different strain amplitudes and field intensities, the complex 

modulus resulted by the present model is in a good agreement with the experimental data. 

Furthermore, one can observe that with increasing the frequency up to 5 Hz, the storage 

and loss modulus first increase and then remain nearly constant with further increasing 

the frequency. 
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%1538.0~   

 
%538.1~   

 
%6923.2~   

 
Figure 5.6 Complex modulus of the ER fluid versus frequency for different electric field intensities 

and shear strain amplitudes; Symbols represent the experimental results and the solid lines represent 

simulation results using the proposed model. .  □ E=0.7 KV/mm;  E=1.3 KV/mm; ○ E=1.9 KV/mm 
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%7692.5~   

 
Figure 5.6 Continued  

It is noted that the proposed model is capable to reasonably predict the material 

behavior for wide range of strain amplitudes, frequencies and electric field intensities. 

This is due to that fact that, the characteristic parameters of the model are obtained to 

consider all these variables simultaneously and provide smooth function in order to 

predict the data at different ranges of the input variables. Considering this, some slight 

deviation is expected between the results obtained by the proposed model and experiment 

since many variables are contributing in the stress response.  

5.4.2    Stress-strain amplitude 

Figure 5.7 shows the stress-strain amplitude predicted by the proposed model 

compared with the experimental data at different frequencies and field intensities. It is 

interesting to note that despite the fact that in the proposed model the yielding stress in 

loading stage is assumed to be negligible, nevertheless due to the strain amplitude 

parameters included in the model the linear regime is well predicted in which by 

increasing the strain amplitude the rate of increase in the stress amplitude decreases. 
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f= 0.1 Hz f= 1 Hz 

 
f= 10 Hz f=20 Hz 

 
Figure 5.7 Shear stress amplitude versus shear strain amplitude for different electric field intensities and 

frequencies; Symbols represent the experimental results and the solid lines represent simulation results 

using the proposed model.  □ E=0.7 KV/mm;   E=1.3 KV/mm; ○ E=1.9 KV/mm 

 At the lower frequencies, very good agreement can be observed between the results. 

At the higher frequencies and high electric fields, the results obtained by the model 

deviates from the experimental data. However, considering the nonlinearity due to the 

different variables including shear amplitude, frequency and electric field, very good 

agreement still exists between the model and experiment. It should be noted that the slope 

of the stress-strain amplitude curve in the nonlinear regime depends on the elastic term in 

the top line of Eq. (5.1) in which with increasing K the slope increases.  

5.4.3 Time history of the stress response 

Figures 5.8 though 5.10 show the time history of the shear force response measured in 

the experiment and compare with the results predicted by the model for different field 

intensities at frequencies f=0.1 Hz and f=1 Hz and large strain amplitude %8462.3~  . 
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f= 0.1 Hz f= 1 Hz 

 
Figure 5.8 Time history of the shear force for  %8462.3~   and E=0.7 KV/mm. 

f= 0.1 Hz f= 1 Hz 

 
Figure 5.9 Time history of the shear force for  %8462.3~   and E=1.3 KV/mm. 

f= 0.1 Hz f= 1 Hz 

 
Figure 5.10 Time history of the shear force for  %8462.3~   and E=1.9 KV/mm. 

As it can be realized, a very good agreement can be observed between the proposed 

model and experiment for the results in both loading and unloading stages. Therefore the 

proposed model is able to predict the timed data of the shear stress obtained from 

experiment as well as the storage and loss modulus of the ER fluid.      
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5.5 Conclusion 

Dynamic mechanical properties of an electrorheological fluid consisting of cornstarch 

dispersed into corn oil were investigated based on the experiment and the proposed 

model. The results show that the complex modulus increases with increasing the field 

intensity. Furthermore, as the amplitude of the shear strain increases the storage modulus 

decreases, however, the loss modulus first increases and then decrease. The complex 

modulus increases with increasing the frequency up to certain point and then remains 

constant for moderate range of the frequency. It has been shown that the proposed model 

provides good estimation of the complex modulus as well as the time history of the shear 

stress response. Although the yielding stress in the proposed model was assumed to be 

negligible, due to including the strain amplitude in the model the linear regime was 

discernible whereas by increasing the strain amplitude the rate of increase in the stress 

amplitude decreases. 
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CHAPTER 6  

 NONLINEAR FREE VIBRATION ANALYSIS OF 

SANDWICH SHELL STRUCTURES WITH CONSTRAINED 

ELECTRORHEOLOGICAL FLUID LAYER 

6.1 Introduction  

As mentioned in chapter 1, the studies on structural vibration damping using MR/ER 

semi-active treatment are mainly limited to the beam and plate type sandwich structures 

and also to the linear region of MR/ER fluids where the complex modulus is independent 

from amplitude of the shear strain [75-85]. Geometrically nonlinear vibration of bare and 

sandwich structure has been reported in literature [86-101] and discussed in chapter 1. 

Due to the small linear region in ER fluid, here the vibration analysis of the sandwich 

structure containing ER fluid has been investigated in nonlinear region in which the 

material properties depend on frequency, amplitude and electric field. Currently, there are 

no available studies on vibration damping of ER or MR based sandwich cylindrical 

shells/panels subjected to large deformation. The main objective in this chapter is to 

investigate the nonlinear free vibration analysis of sandwich shell/plate structure with 

constrained ER fluid. 

In this chapter, by considering kinetic and potential energies attributed to the elastic 

and  ER fluid layers and  using Lagrange equations, nonlinear finite element formulation 

has been derived for the ER based sandwich shell structures. The developed nonlinear 

model is then used to investigate the nonlinear vibration behavior of sandwich shell 

structure with constrained ER fluid layer. As mentioned before, the main problem in 

nonlinear vibration analysis of structure using direct integration technique is the time-

consuming integrations, which should be performed for several times throughout this 



146 

 

method. This is especially very critical for finite element modeling of sandwich shell 

structures where the number of degrees of freedom drastically increases compared with 

beam type structures. Here, a new technique is presented to represent the equations of 

motion in a new notation referred to as H-notation which fundamentally reduces the 

computational costs in nonlinear vibration damping analysis of sandwich shell structure. 

Finally, parametric study is conducted to show the effect of small/ large displacement, 

electric field intensities and core thickness ratios on damping behavior of the ER based 

sandwich shell structures for different boundary conditions. 

6.2 Finite Element Modeling of Constrained ER Fluid Sandwich Shell 

Structure 

Nonlinear vibration analysis of shell structures using finite element method is 

computationally expensive particularly for sandwich shell structures in which number of 

degree of freedom and integrations increases. Therefore, an efficient element is required 

for discretizing the shell structure in which less number of element and degrees of 

freedom are required. Ashwel and Sabir [124] presented a four-node shell element with 

20 degrees of freedom (5 degrees of freedom per node) based on assumed strain 

functions. This element includes higher order displacement field without additional nodes 

[123]. Compared with the conventional ordinary and high-order elements, this element 

has shown a superior convergence using less number of elements [123, 124]. In this 

chapter, this element (shown in Figure 6.1) has been used to develop the finite element 

modeling of the sandwich shell structure. Considering the degrees of freedom associated 

with the top and bottom elastic layers in the three-layer sandwich structure, the element 

consists of 40 degrees of freedom.  
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Figure 6.1 (a): Sandwich panel demonstrating displacement fields at each layer, (b) Shell element to model 

the panel 

It should be noted that by applying boundary conditions at interfaces, degrees of 

freedom associated with the core layer can be obtained using those at top and bottom 

elastic layers as will be discussed later. If the deflection is considered to be constant 

through the thickness of the sandwich shell, then the total number of degrees of freedom 

can be reduced to 28. The displacement through the top and bottom elastic layers can be 

obtained using the assumed strain function based on considering rigid body motion and 

the compatibility equations [123, 124] as written in the following for the bottom layer: 
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where r is the radius of the cylindrical shell element, b
ou  and b

ov  are, respectively, in-

plane translations at the middle plane in axial (x) and circumferential (θ) directions of the 

bottom layer. w is transverse displacement which is considered to be constant with 

respect to the thickness coordinates in each layer and the rotations of the normals to the 

middle plane of the sandwich shell element in axial and circumferential directions are, 

respectively, denoted by ∂w/∂x and ∂w/r∂θ. The coefficients a1 through a20 can be 

obtained using the 20 nodal displacements in the shell element where each node of the 

element consists of five degrees of freedom including ub, vb, w, ∂w/∂x and ∂w/r∂θ. After 

obtaining these coefficients, the displacement fields can be represented by the shape 

functions and the nodal displacement vector as: 

in which Nu, Nv and Nw are row vectors of the shape functions depending on the axial 

and circumferential coordinates and Qb is a column vector of the nodal displacements in 

the bottom layer given as: 

where T denotes vector transpose. Similarly, the displacement at the top layer can be 

represented using the same shape function and following nodal displacement vector as: 

Considering the element nodal displacement vector, Q, consists of all independent 

degrees of freedom in the sandwich shell element, the displacement fields at the top and 

bottom layers can be described as: 
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where the element nodal displacement vector, Q is written as: 

and b
uN , b

vN , wN , t
vN ,and t

uN  are row vectors of the element shape functions which 

can be written as: 

in which 
j

dN is the jth component of the vector Nd (d=u,v and w) and
ji

dN
,

are the ith 

through jth components of vector Nd. Now, based on the classical shell theory, the 

displacements through the thickness of the top and bottom layers can be written as: 
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Using FSDT, the displacement field in the core layer can be also expressed as: 

in which c
ou  and c

ov  are, respectively, in-plane translations at the middle plane of the 

core layer in axial and circumferential directions, ht, hb and hc are the thicknesses of top, 

bottom and core layers, c
1 and c

2  are, respectively, the rotations of the normals to the 

middle plane of the core layer in axial and circumferential directions, and i (i= 1,2 and 

3) are the coordinates in thickness direction at the middle of each layer. According to the 

boundary conditions for perfect bonding, the in-plane and transverse displacements are 

continuous at the interfaces. Therefore the in-plane displacements and rotations in the 

core layer can be described with respect to those in top and bottle layers as: 
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Lagrange’s equation has been used here to establish the governing equations of 

motion: 

where n is the total DOF in the sandwich panel structure, Q and F are the nodal 

displacements and applied external force, respectively and T and U are respectively the 

kinetic and potential energies in the sandwich shell structure. The kinetic and potential 

energies are obtained in each layer using the following equations: 

where i=t, b and c, respectively, represent the top, bottom and core layers, dVi =rdθdx

id  and    321 ,,,,  cbt  are, respectively, thickness coordinates at top, bottom 

and core layers. Also l0 and θ0 respectively represent the length and the angle of the panel 

element. σ and τ are normal and shear stress, ε and γ are normal and shear strain.  x, θ and 

ξi  are the coordinates in axial, circumferential and transverse directions, respectively. It 

should be noted that in Eq. (6.14) the energy terms related to the in-plane and normal 

stresses of the core layer, i.e.
c
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linear Green’s Strain Tensor which is based on small strain and moderate rotation for a 

cylindrical shell element can be expressed as follows: 

The following constitutive equations give the relation between stress and strain 

components at the top and bottom elastic layers as follows: 

where i=t, b, and also E and υ are respectively the Young’s modulus and Poisson’s 

ratio . For the core layer, the constitutive equation will be described in the next section.  

In order to define the stiffness matrix, the strain components in Eq. (6.15) are rewritten in 

terms of the shape functions and element nodal displacement vector using Eq. (6.5) as: 
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 where N1 through N7 are written as: 

Eqs (6.16) and (6.17) are now substituted into Eq. (6.14) in order to obtain the strain 

energy in the sandwich shell element. It should be noted that the energy terms associated 

with transverse shear strains at the elastic top and bottom layers are zero (according to the 

classical shell theories). Also the kinetic energy can be found using the displacement 

fields given in Eqs (6.8)-(6.11) substituted in Eq. (6.13).  The obtained kinetic and strain 

energies in Eqs (6.13) and (6.14) are then substituted into Lagrange’s equation given in 

Eq. (6.12) to establish stiffness and mass matrices of the sandwich shell structure. These 

matrices are obtained by summing the stiffness matrices of different layers. In the 

following, the stiffness matrices associated with the top and bottom elastic layers are 

formulated which includes the constant, linear and quadratic displacement dependent 

stiffness matrices. The stiffness matrix of the ER-fluid core layer is a nonlinear matrix 
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depending on the displacement due to the amplitude dependent dynamic properties of 

ER-fluid material which is presented in the next section. It should be noted that the mass 

matrix of the sandwich shell structure is independent of the displacement.  

After substituting the energy terms into the Lagrange equation, the nonlinear equations 

of motion is directly obtained in the B-notation form as: 

where M is the mass matrix and Kc is a nonlinear complex stiffness matrix of the core 

layer given in the next section. As shown in the following K0 is a symmetric matrix 

independent of displacement, K1 is asymmetric matrix linearly depends on the 

displacement and K2 is asymmetric matrix quadratically depends on the displacement. 

These are given in the following as: 
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The abovementioned displacement dependent matrices are found in B-Notations in 

which the nonlinear stiffness matrices are asymmetric. If the derivation is performed 

carefully, then a symmetric form can be obtained for the nonlinear stiffness matrices. One 

can observe that K1 and K2 are multiplied by nodal displacement vector Q in Eq. (6.19). 

Considering this and also using this fact that QN i
k

(k =1, 2..., 5) is scalar, Eqs (6.21) and 

(6.22) can be manipulated to find a symmetric form of the displacement dependent 

matrices.  Consequently, Eq. (6.19) can be rewritten in the following form known as N-

notation: 

where  

The main problem in nonlinear vibration analysis using the abovementioned notations 

is the time-consuming integrations which should be performed for several times in the 

direct iteration method. Here, a new approach is presented to obtain the nonlinear 
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stiffness matrices once and use it throughout the iteration procedure. The main idea is to 

remove the vector Q in the nonlinear stiffness matrices KN1 and KN2. According to Eq. 

(6.24), one can observe that matrix KN1 includes the scalar terms in the form of QN i
k

which are pre-multiplied by a matrix in the form of i
k

i
knn NN

21
A . This can be 

represented in the following form: 

where kI  is a diagonal matrix with the size of nn  in which all the components on 

the main diagonal are equal to QN i
k . Also, n represents the number of degrees of 

freedom in an element which is 28 as discussed before. kI  can be written in the following 

form: 

where 

in which n10 is a row null vector, 10 n  is a column null vector, 1nQ  is the column 

nodal displacement vector and i
kN  is row vectors of the element shape functions given in 
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Eq. (6.18). 2nn
Z  is multiplied by the matrix nnA  and consequently the nodal 

displacement vector included in matrix 2nn
X  is separated in Eq. (6.26). The integration 

is now required to be performed only once over the matrix kAZ with the size of 2nn in 

the nonlinear matrix KN1.  Similar formulations can be developed for KN2. This matrix 

includes the terms in the following form:  

where  

in which 
3kZ and 

4kZ are the matrices with the size 2nn which can be obtained by 

replacing the index k with k3 and k4 in Eq. (6.28), respectively. The integration is required 

now to be performed only once over the 43 kk AZZ
T with the size of 22 nn  in the nonlinear 

matrix KN2. It should be noted that in these relations the k, k1, k2, k3 and k4 are integer 

numbers ranging from 1 to 5. Now the nonlinear equations of motion can be rewritten in 

the following form referred here to as H-notation: 

where H1 is the matrix with the size 2nn established by summing the multiplications 

of i
k

i
k

NN
21

A and kZ  for different k, k1 and k2 at top and bottom layers. H2 is the matrix 

with the size 22 nn  established by summing the multiplication of 43 kk AZZ
T  for different 

k, k1, k2, k3 and k4. The matrix X including the nodal displacement vector is then 

substituted into Eq. (6.31) while the integration has already been performed. This 
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technique significantly reduces the computational costs particularly for nonlinear 

vibration analysis of sandwich structures. The only drawback of this method might be the 

computation of the large matrix H2. Compared with the computational time required to 

perform the integrations for several times using B-notation (Eq. (6.19)) or N-notation 

(Eq. (6.23)), the H-notation (Eq. (6.31)) is much more efficient.  

6.3 Material Properties of ER Fluid and Evaluating the Stiffness 

Matrix of the ER Fluid Core Layer  

In order to calculate the stiffness matrix Kc, the material properties of the core layer 

should be determined. The dynamic mechanical properties of the ER-fluid layer have 

been experimentally obtained as explained in chapter 5. The experiment was carried out 

using Bose ElectroForce 3200 device. The ER fluid was prepared by dispersing 

cornstarch into corn oil with viscosity of 40 mPa s. The weight fraction of the particles 

was considered to be 30 %.  Based on the Fourier transform technique, the timed data of 

the measured force and the input displacement were analyzed by the dynamic mechanical 

analysis (DMA) software. The dynamic material properties of the ER fluid have been 

explored for frequency range of 0.1 Hz to 60 Hz and for the shear strain amplitudes 

ranging from 0.1538 % to 7.69 %. A constitutive model has been proposed to predict the 

experimental data including storage/loss modulus and stress response. Here, this model 

has been briefly explained as it will be used to develop the stiffness matrix of the ER-core 

layer required for the finite element model of the ER based sandwich structure discussed 

in section 6.2.   

For free nonlinear vibration analysis of the sandwich structure with constrained core 

layer, the mechanical properties under large amplitude oscillatory shear strain is desired. 
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As shown in Eq. (1.3), the stress response of ER fluids under large amplitude depends on 

many variables including amplitude, frequency and field intensity. Too many terms and 

coefficients in Fourier transform relation should be determined to accurately express the 

stress response in the time domain. Besides, appropriate functions should be assigned to 

the coefficients G'2n+1 and G"2n+1 to incorporate the main variables in the stress response. 

Therefore, evaluating the stress response based on Fourier transform could be 

mathematically very complicated. In this study, the Bingham-Hooke model which was 

used by Laun et al. [74] has been modified to represent the hysteresis loop. According to 

their results, the material properties obtained by the Bingham-Hooke model deviate from 

the experimental data in the nonlinear regime. Here, considered this model has been 

considered as the starting point to develop a model predicting the experimental results 

more accurately.  The variable of strain amplitude is included in the developed model to 

provide more accurate results particularly at the nonlinear regime. Considering this, the 

following relation has been proposed for the stress response under the oscillatory shear 

strain: 

where η, μ, K, D and G0 are the model parameters which are generally frequency and 

electric field dependent. 
~
 is shear strain rate amplitude (  ~~

 ) and ~ and ~ are, 

respectively, the shear stress and strain amplitudes. At the unloading stage where 0  , 

the material properties are assumed to be linear viscoelastic. For providing continuity in 

the hysteresis loop, )sgn(~  and ~ (in bottom line of Eq. (6.32)) and also shear strain γR 

and shear strain rate R at τ=0 (in top line of Eq. (6.32)) are included in the model.  In the 
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nonlinear regime where 0  , an amplitude dependent relation has been defined for the 

shear stress response which governs the response in the beginning of the loading stage (τ 

= 0) up to the unloading stage. Therefore, the yielding stress is practically assumed to be 

negligible in this model. However, as shown in the results in chapter 5, the proposed 

model is able to show the transition between the linear and nonlinear regimes accurately. 

Without considering variables ~  and 
~
  in top line of Eq. (6.32), the amplitude of shear 

stress highly increases with increasing shear strain amplitude. Therefore, the rate of 

increase in the shear stress amplitude has been reduced by dividing the viscous and 

elastic terms respectively over the strain rate and strain amplitudes. However, an elastic 

term (with parameter K) is added to the stress response in order to maintain the 

reasonable increase of the stress amplitude with increasing the strain amplitude. The 

abovementioned parameters are given in Table 5.1. The material properties including the 

storage and loss modulus, stress-strain amplitude and the stress response in time domain 

for different frequencies and shear strain amplitudes are also given in chapter 5. As 

shown in the results good agreement exists between the results by the experiment and the 

proposed constitutive model. The first order terms then can be obtained using the 

following equations: 

In nonlinear free vibration damping analysis of the sandwich shell structure, in order 

to quantify damping the material properties of the ER fluid material can be approximated 

by different first order complex modulus as shown in Figure 6.2. The loss modulus of the 

dt
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complex modulus for all cases is G"2 which leads to identical dissipated energy equal to 

the dissipated energy resulted by the nonlinear stress response given in Eq. (6.32). 

However, the slopes of the ellipses are different. 

 
Figure 6.2 Different first order approximation of hysteresis loops versus the nonlinear hysteresis loop, f= 

0.1 Hz, e =1.9 KVmm
-1

 

As shown by Ewoldt et al. [67], considering G'min = dτ ∕d   (at 0 ) leads to 

minimum storage modulus and consequently the maximum shear stress provided by this 

storage modulus is smaller than that in the nonlinear stress amplitude. Considering the 

storage modulus as G'max=τ/   (at  ~ ) results in larger amplitude for the stress 

response.  G"1 can averagely show the stress response in the nonlinear regime however, 

the stress amplitude is smaller compared to that from the exact nonlinear stress.  

Here, a complex modulus has been considered which shows the same dissipated 

energy as well as the stress amplitude. Employing G"2 for the loss modulus, the storage 

modulus is defined in a way that amplitude of the stress response is equal to the 

amplitude of the nonlinear stress response. Considering this, the effective storage 

modulus 2
1

2~
GGG eff is defined for the storage modulus of the complex modulus in 
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which G
~

=~ / ~  is the amplitude of the complex modulus. The stress response using the 

effective storage modulus is shown by black solid line in Figure 6.2 for small/large 

amplitudes and compared to the other first order complex modulus. Compared with the 

nonlinear response, the complex modulus based on the effG  can effectively describes the 

stress response. The effective storage modulus depends on the amplitude, electric field 

and frequency. Now based on finite element formulation discussed in section 6.2, the 

stiffness matrix due to the ER fluid core layer is now expressed as follows: 

Since the transverse shear strain components are different in axial and circumferential 

directions, the complex modulus should be calculated according to shear strain associated 

with those directions. As shown in the results presented in chapter 5, the frequency 

dependency in the complex modulus of ER fluid is negligible.  Otherwise, an iteration 

procedure should be performed to evaluate the material properties at the natural 

frequencies. It should be noted that since shear strain components are linear in von 

Karman hypothesis, the integrations in Eq. (6.34) can be performed symbolically once in 

terms of the material properties which can be afterward evaluated by substituting the 

shear strain amplitude in the complex modulus of the core layer.   

6.4 Nonlinear Free Vibration Analysis 

Now, for the free vibration analysis, governing equations of motion given in Eq. (6.31) 

can be written as follows: 
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where Q
~

 is the amplitude of the displacement (eigenvector) and is the eigenvalue. 

Based on the direct iteration method given in Reference [101], the linear eigenvalue 

problem of Eq. (6.35) is solved by setting the nonlinear terms to zero.  Then, the 

fundamental frequency and the mode shape are calculated using the standard algorithms 

for extracting the eigenvalue and eigenvector. The mode shape is normalized and scaled 

up in way that the deflection at the center point of the shell element is proportional to the 

thickness of shell structure with the desired amplitude. The scaled up eigenvector is then 

used to calculate the matrix X and Kc. After calculating the nonlinear terms in Eq. (6.35), 

the eigenvalue problem is again solved and the scaled up eigenvector is used to update 

the nonlinear terms in the eigenvalue problem. The iteration continues until the desired 

convergence is provided for the frequency in which the two sequential frequencies are 

very close considering a pre-determined tolerance (<10
-4

). The frequency and loss factor 

are obtained at each iteration using the real and imaginary parts of the complex 

eigenvalue. As shown by Rikards [132], for the eigenvalue of 21  i  the angular 

frequency is 1  and loss factor is η=λ1/ λ2.  

6.5 Results and Discussions 

In the following, the developed finite element model has been validated by comparing 

the results to the experiments and the results available in the literatures. Finally, the 

parametric studies are presented for the nonlinear vibration damping analysis of sandwich 

shell structure for different boundary conditions including CCCC (all edges are clamped) 

SSSS (all edges are simply-supported) CFCF (the two edges in circumferential direction 

are clamped while the other two edges are free) and SFSF (the two edges in 

circumferential direction are simply-supported while the other two edges are free).   
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6.5.1  Validation of the finite element model 

The developed approach has been validated in this chapter by comparing the results to 

those in the literature. Table 6.1 shows the natural frequencies associated to the first two 

modes of bare cylindrical panel structure for clamped-clamped and simply-supported 

boundary conditions on the edges.  The numbers of elements in axial and circumferential 

directions are considered here to be 10. It should be noted that the material properties and 

the dimensions are given in the caption of each table in which L represents the length of 

the panel or complete cylinders in axial direction and b=rθ represents the edge length in 

circumferential direction.  Compared to the results presented by Djoudi and Bahai [123], 

excellent agreement exists between the results since the exact same higher order 

expansion of displacement fields are considered in axial and circumferential directions. 

Similar comparison has been provided in Table 6.2 for bare clamped-free complete 

cylinder in which the results using the developed finite element modeling have been 

compared with other approach including semi-analytical finite element and analytical 

methods. One can observe a very good agreement between the results. Also, the damping 

behavior of sandwich plate structure including loss factor and natural frequency for 

clamped-free and simply supported boundary conditions resulted from this study have 

been compared to the results given by Bilasse et al. [137] in Tables 6.3 and 6.4 .  

 Table 6.1 Comparing the results obtained by the developed approach and those in the literature for linear 

vibration analysis of bare panel; L=1 m, r = 2 m; h= 0.005 m, θ = 0.5 rad, E =208 ×10
9
 N m

-2
, ρ= 7833 

kgm
-3

; υ= 0.29 

Clamped-Clamped Present study Ref. [123] ABAQUS [123] 

First Mode 173.91 173.61 175.11 

Second Mode 180.5 180.37 181.6 

Simply Supported Present study Ref. [123] ABAQUS [123] 

First Mode 101.22 100.96 104.28 

Second Mode 127.78 127.33 135.3 
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The material and structural loss factors are respectively represented by ηc and ηl. As it 

can be realized excellent agreement exists between the results obtained by the developed 

finite element and the analytical methods. Similar comparison between the finite element 

and semi-analytical finite element methods is shown in Figure 6.3 for vibration damping 

of the complete sandwich viscoelastic cylinder which shows a very good agreement 

between the results. 

 Table 6.2 Comparing the results obtained by the developed approach and those in the literature for linear 

vibration analysis of clamped-free complete cylinder; L=0.5112 m, r = 0.2162 m; h= 0.0015 m, E =1.83 

×10
11 

N m
-2

, ρ=7492 kg m
-3

, υ=0.29 

m n 
Present 

study-FEM 

Semi Analytical FEM 

[138] 

Reference 

[123] 

Nastran  

[125] 

Analytical  

[125] 

1 

1 855.5 857.5 - - - 

2 400.8 405.6 403.91 410.1 403.72 

3 221.96 225.1 224.79 232.2 223.34 

4 175.2 174.6 172.4 180.5 171.77 

5 207.8 203.6 203.37 206.2 199.16 

6 279.0 274.9 274.04 275.5 268.86 

7 376.2 369.8 369.8 370.1 361.92 

8 489.6 482.5 482.96 483.5 472.54 

9 618.2 611.1 611.42 614 599.03 

10 763.1 755.4 755.14 — 740 

2 

2 1439.8 1440.5 1446.56 — 1437.11 

3 922.9 932.9 940.2 943.2 928.28 

4 639.1 649.4 647.25 671.4 644.48 

5 491.3 500.0 509.11 529.3 494.69 

6 443.3 448.6 442.16 478 442 

7 470.8 473.1 477.32 496.9 464.59 

8 549.1 550.0 542.69 567.2 539.45 

9 659.9 661.2 656.06 673.2 648.34 

10 793.7 796.5 788.39 — 781.15 

3 

2 2481.1 2491.3 2530.79 — 2487.6 

3 1839.7 1841.5 1876.8 — 1834.82 

4 1388.0 1376.1 1412.72 — 1367.64 

5 1072.1 1066.3 1103.56 — 1057.12 

6 878.8 874.7 875.29 — 864.82 

7 782.1 795.97 789.5 — 767.65 

8 764.1 763.3 748.35 — 750.67 

9 808.4 812.9 809.48 — 798.18 

10 899.4 910.8 884.6 — 893.6 
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Table 6.3 Comparing the results using the developed analysis and those in literature for linear vibration 

analysis of sandwich SFSF plate; L=0.1778 m, hi= 0.001524 m, b = 12.7 mm Ei = 6.9 ×10
10 

N m
-2

, ρi= 2766  

kg m
-3

, υi= 0.3, hc= 0.00127 m, Ec = 1794 ×  10
3 
N m

-2
, ρc= 968.1 kg m

-3
, υc= 0.3 

 SFSF Plate – Present study SFSF Plate – Ref. [137] Analytical SS beam Ref. [8] 

ηc f (Hz) ηl/ ηc f (Hz) ηl/ ηc f (Hz) ηl/ ηc 

0.1 

148.570 0.350 148.56 0.35 148.51 0.3502 

489.06 0.196 489.28 0.1954 488.47 0.1958 

1037.48 0.107 1038.74 0.1066 1034.69 0.1071 

1803.52 0.0649 1807.57 0.0647 1795.13 0.0653 

0.6 

151.488 0.3328 150.75 0.3327 150.71 0.3329 

491.144 0.1941 490.56 0.194 489.75 0.1944 

1038.69 0.1066 1039.43 0.1064 1035.38 0.1069 

1804.27 0.0649 1807.99 0.0646 1795.54 0.0652 

1 

156.21 0.305 154.47 0.3051 154.42 0.3052 

494.86 0.192 492.87 0.1914 492.06 0.1918 

1040.87 0.106 1040.69 0.106 1036.63 0.1065 

1805.63 0.0648 1808.75 0.0646 1796.3 0.0651 

1.5 

163.741 0.2626 160.77 0.2625 160.72 0.2626 

501.823 0.1868 497.3 0.1867 496.49 0.1871 

1045.09 0.1056 1043.13 0.1054 1039.07 0.1059 

1808.29 0.0646 1810.23 0.0644 1797.78 0.065 

 

 Table 6.4 Comparing the results using the developed analysis and those in literature for linear vibration 

analysis of sandwich CFFF plate, material properties are given in the caption of Table 6.3 

 CFFF Plate – Present study CFFF Plate – Ref. [137] FE method CF beam Ref. [139] 

ηc f (Hz) ηl/ ηc f (Hz) ηl/ ηc f (Hz) ηl/ ηc 

0.1 

64.3656 0.2810 64.3 0.281 64.1 0.281 

297.926 0.2417 298.1 0.242 296.7 0.242 

748.074 0.1533 749 0.153 744.5 0.154 

1403.88 0.0882 1406.9 0.088 1395.7 0.089 

0.6 

65.9498 0.2456 65.7 0.245 65.5 0.246 

301.118 0.2316 300.6 0.232 299.2 0.232 

750.605 0.1519 750.7 0.152 746.3 0.153 

1405.31 0.0879 1407.8 0.088 1396.6 0.089 

1 

68.0419 0.2018 67.7 0.202 67.5 0.202 

306.057 0.2171 304.5 0.217 303.1 0.218 

755.056 0.1495 753.9 0.149 749.4 0.15 

1407.84 0.0874 1409.5 0.087 1398.3 0.088 

1.5 

70.6342 0.1527 70.2 0.153 69.9 0.153 

313.668 0.1970 310.6 0.197 309.1 0.198 

763.233 0.1452 759.7 0.145 755.2 0.146 

1412.56 0.0866 1412.6 0.086 1401.4 0.087 
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Figure 6.3 Comparing the Non-dimensional frequency (Ω = ρbhbrω
2
/Eb) and loss factor using the 

developed approach and those in the literature for clamped-clamped complete sandwich cylinder; L=0.18 

m, r = 0.1 m, hi= 0.001 m, Ei = 2.1 × 10
11 

Nm
-2

, ρi= 7850 kgm
-3

, υi= 0.3, hc= 0.001 m, Ec = (2.3+0.8i) ×10
7 

Nm
-2

, ρc= 1340 kgm
-3

, υc= 0.34 

The ratios of nonlinear and linear angular frequency (ωNL/ωL) for various curvatures 

are compared to those reported by Shin [140]. The results are shown for different ratios 

of maximum amplitude at the center of the panel to the thickness of the bare layer 

(wmax/hb) which are provided in Table 6.5. 

Table 6.5 Frequency ratios ωNL/ωL for square isotropic cylindrical shells; b/L = 1, L/h = 10; simply-

supported boundary condition; u=0, v=0, w=0, ∂w/∂x=0 at the top and bottom edges; u=0, v=0, w=0, 

∂w/r∂θ=0 at the left and right edges 
  r/h 

 wmax/h 25 50 100 200 500 ∞ 

Ref. [140] 

0.2 1.0191 1.029 1.0331 1.0342 1.0342 1.0305 

0.4 1.0673 1.1024 1.114 1.1163 1.1159 1.1128 

0.6 1.1549 1.2201 1.2392 1.2417 1.2407 1.2365 

0.8 1.2723 1.3682 1.3945 1.3978 1.3961 1.3903 

1 1.4095 1.5355 1.5699 1.5749 1.5725 1.5649 

Present 

study 

0.2 1.0442 1.0563 1.0542 1.0409 1.0324 1.0266 

0.4 1.1027 1.1498 1.1527 1.129 1.1135 1.1027 

0.6 1.2157 1.3016 1.2857 1.255 1.2342 1.2196 

0.8 1.3745 1.4542 1.4445 1.4093 1.385 1.3675 

1 1.5523 1.6523 1.6223 1.5844 1.5577 1.5384 

Ref. [140] 

-0.2 1.0176 1.0273 1.0319 1.0334 1.0339 1.0305 

-0.4 1.0532 1.088 1.1054 1.1116 1.1142 1.1128 

-0.6 1.1137 1.1845 1.2182 1.231 1.2361 1.2365 

-0.8 1.1977 1.3093 1.3611 1.3801 1.3885 1.3903 

-1 1.3012 1.456 1.5258 1.5513 1.5624 1.5649 

Present 

study 

-0.2 0.9357 0.9891 0.9968 1.0117 1.0206 1.0266 

-0.4 0.9615 0.9979 1.0451 1.0744 1.0915 1.1027 

-0.6 1.0291 1.0841 1.139 1.1805 1.2043 1.2196 

-0.8 1.0873 1.1803 1.269 1.3203 1.3493 1.3675 

-1 1.2041 1.3274 1.426 1.4851 1.5179 1.5384 
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Figure 6.4 Nonlinear natural frequency of CFCF plate; comparison between hierarchical finite element 

method, the developed finite element modeling and experiment; L=0.58 m, b = 0.02 m; h= 0.002 m, E = 70 

× 10
9
 Nm

-2
, ρ= 2778 kgm

-3
; υ = 0.3 

 It should be noted that Shin [140] considered von Karman type nonlinear and FSDT 

in the nonlinear vibration analysis of panel structures in which fourth-order Runge-Kutta 

time integration method was used to solve the nonlinear equation. As it can be realized 

good agreement exists between the results. The deviation between the results which 

increases with decreasing the radius of curvature is reasonable since different frameworks 

including FSDT and CT have been used in these studies. Similar deviation between the 

results using HSDT and FSDT has been also addressed by Panda and Singh [104]. It 

should be noted that the negative and positive signs for transverse displacement wmax 

indicate that the shell structure begins to vibrate in the inward or outward directions, 

respectively [140]. In the inward direction, the equations of motion for free vibration of 

the bare shell structure can be easily formulated by changing the positive sign of the 

linearly displacement dependent matrix (K1 in B-notation, KN1 in N-notation and H1 in 

H-notation) to the negative sign since the other terms are the same odd functions with 

respect to the displacement. The developed methodology is also validated by comparing 

the results to experiment and hierarchical finite element method reported by Ribeiro 

[141] as shown in Figure 6.4.  Compared with the hierarchical finite element method, the 



169 

 

developed finite element modeling is more close to the experimental results particularly 

at larger amplitude, which indicates the accuracy of the developed finite element 

modeling.  

6.5.2  Parametric study 

The main parameters which influence the damping behavior of the sandwich shell 

structure with constrained ER fluid layer is the thickness ratios of the layers, boundary 

condition, electric field intensity and amplitude of the displacement. The material 

properties and the dimensions of the top and bottom layers are chosen in order to achieve 

moderate values of natural frequency for different boundary conditions.  The elastic top 

and bottom layers of the sandwich shell structure are aluminum sheets in which Ei= 68 

GPa, ρi=2766 kg/m
3 

and υi=0.3. The dimensions of the sandwich panel are chosen so that 

b/L=1, r/L=10, hb/L=0.01, hc/L=0.003 and ht/L=0.002.  

Figure 6.5 shows the effect of the electric field and amplitude on the natural frequency 

of the sandwich panel with ER-fluid core layer for different boundary conditions. 

According to the results, the natural frequency increases with increasing the amplitude 

indicating that the nonlinear behavior has hardening effect and stiffen the structure. As 

shown by Amabili [142], rotation constraints (in clamped boundary conditions) reduce 

the hardening type nonlinearity and consequently the frequency ratio ωNL/ωL. Therefore, 

as shown in Figure 6.5, the rate of increase in frequency ratio for simply supported 

boundary conditions is higher than the clamped boundary conditions. As can be observed, 

the electric field has a negligible effect on the frequency ratio so that with increasing the 

electric field intensity, the frequency ratio slightly decreases for different boundary 

conditions.  
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(a) 

 
(b) 

 
Figure 6.5 Effect of displacement and electric field intensity on the frequency ratio ωNL/ωL of sandwich 

cylindrical panel, (a) CCCC and SSSS boundary conditions, (b) CFCF and SFSF boundary conditions 

On the other hand, both the displacement and electric field intensity have significant 

effect on the loss factor ratio ηNL/ηL which is shown in Figure 6.6. As the displacement 

increases the loss factor ratio first increases and then decreases. Due to hardening type of 

the nonlinearity, it is expected that the loss factor ratio decreases. However, according to 

the experimental data and the results from the constitutive model shown in chapter 5, 

with small increase in the shear strain amplitude, the loss modulus of the ER fluid 

initially increases. This leads to increase in the structural loss factor ratio up to certain 

value as the amplitude increases. With more increase in amplitude, effects of decrease in 

loss modulus and the hardening of the structure considerably reduce the structural loss 

factor ratio. The loss modulus of the ER fluid material increases with increasing the 

electric field intensity, and consequently the structural loss factor increases. 
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(a) 

 
(b) 

 
Figure 6.6 Effect of displacement and electric field intensity on the loss factor ratio ηNL/ηL of sandwich 

cylindrical panel; (a) CCCC and SSSS boundary conditions, (b) CFCF and SFSF boundary conditions 

On the other hand, as shown in Figure 6.6, with increasing electric field intensity, the 

loss factor ratio first decreases and then increases. This indicates that for low and high 

values of field intensity, the nonlinearity due to the relatively small amplitude can 

desirably increase the structural loss factor. The transverse shear strain contours 

generated in the ER fluid core layer due to the displacement (shown in Figure 6.7) 

determines the structural loss factor.   
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(a) 

  
(b) 

  
(c) 

  
(d) 

  
Figure 6.7 Distribution of transverse shear strains of the ER fluid core layer in axial and circumferential 

directions of  the sandwich shell structure for different boundary conditions; Wmax/hb=1.5, e =1.3 KVmm
-1

; 

(a) CCCC boundary condition, (b) SSSS boundary condition, (c) CFCF boundary condition (d) SFSF 

boundary condition 

However, due to the larger shear strain amplitude in CFCF boundary condition 

compared with the SFSF boundary condition, the structural loss factor is slightly greater 

in CFCF boundary condition. The structural loss factor for different displacements and 

core thickness ratios at e =1.3 KV/mm and ht/L=0.002 is shown in Figure 6.8 for 

different boundary conditions. According to results shown in Figure 6.6, the structural 

loss factor for SSSS boundary condition is greater than that for CCCC boundary 
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condition since the transverse shear strains in the core layer are greater in SSSS boundary 

condition indicating more energy dissipating in the structure. 

(a) 

  
 (b) 

  
(c) 

  
(d) 

  
Figure 6.8 Effect of core thickness ratio and displacement on structural loss factor for different boundary 

conditions; e =1.3 KVmm
-1

; (a) CCCC boundary condition, (b) SSSS boundary condition, (c) CFCF 

boundary condition (d) SFSF boundary condition 

The loss factor initially decreases with increasing the core thickness for small 

displacements, and then increases with more increasing the core thickness. This behavior 

is also shown in reference [138] at the fundamental mode for small amplitudes. With 
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increasing the displacement, the variation rate of loss factor with respect to core thickness 

amplitude decreases and for large displacements the loss factor is almost constant with 

respect to core thickness ratio.  For the clamped (CCCC and CFCF) boundary conditions, 

at large displacements the natural frequency initially increases and then slightly decreases 

with increasing the core thickness ratio while at small displacements the natural 

frequency decreases as the core thickness ratio increases. Similarly, for the simply 

supported (SSSS and SFSF) boundary conditions, at small displacements the natural 

frequency decreases as the core thickness ratio increases.  However, at large 

displacements the natural frequency increases with increasing the core thickness ratio.  

6.6 Conclusion 

The nonlinear vibration analysis of sandwich shell structure with constrained ER fluid 

core layer was presented in this chapter. The finite element modeling based on assumed 

strain functions was efficiently used for discretizing the sandwich shell structure. A new 

notation referred to as H-notation for nonlinear stiffness matrices in equations of motion 

was developed in which the integrations are performed only once before implementing 

the direct iteration procedure and consequently the repeatedly time consuming 

integrations has been avoided in the direct iteration technique. According to the 

experimental data available in literature, the results show that the developed finite 

element modeling leads to more accurate results compared with the hierarchical finite 

element modeling for large displacements. Parametric studies on nonlinear vibration 

damping behavior for different boundary conditions showed the hardening type in the 

nonlinear behavior of sandwich panel in which the natural frequency increases with 

increasing the amplitude. The structural loss factor also depends on the shear strain 
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distribution in the shell structure. Similar to displacement, the electric field has 

significant effect on the structural loss factor while it has negligible effect on nonlinear 

frequency. The results also showed that the core thickness ratio can affect the loss factor 

and natural frequency, depending on the boundary conditions. 
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CHAPTER 7  

VIBRATION ANALYSIS AND DESIGN OPTIMIZATION 

OF SANDWICH CYLINDRICAL PANELS FULLY AND 

PARTIALLY TREATED WITH ELECTRORHEOLOGICAL 

FLUID MATERIALS 

7.1 Introduction 

Compared with viscoelastic materials, ER fluids can be effectively used to suppress 

the vibration over a broad frequency and temperature range. In current chapter, the design 

optimization is carried out to maximize damping in sandwich cylindrical panel using both 

unconstrained viscoelastic material and constrained ER fluid damping layers. The 

damping in sandwich structure is mainly due to constrained damping layer in which large 

amount of shear deformation is generated compared with the unconstrained damping 

layer. At lower temperatures, the treatment may be performed using only constrained 

viscoelastic patches since the complex modulus of the viscoelastic material is generally 

greater than that of the ER fluid material. However, at higher temperatures the complex 

modulus of the viscoelastic material considerably reduces and the passive treatment is not 

reliable [30-35]. Reliable treatment can be achieved using ER fluid treatment for wide 

range of frequency in which the material property of the damping layer can be tuned 

using the electric field. Here the unconstrained viscoelastic and constrained ER fluid 

patches are considered to treat the bare panel structure. The constrained ER fluid has 

considerable contribution in the damping of the structure since large deformation is 

generated in the constrained layer. The unconstrained viscoelastic layer is mainly used to 

seal the ER fluid. Also it can provide the possibility if the partial treatment of constrained 

ER fluid is required in order to achieve better damping. The optimization problem is then 
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conducted to find simultaneously the optimum number and distribution of unconstrained 

viscoelastic and constrained ER fluid patches, electric field intensity and thickness ratios 

of treating layers. An efficient shell element is employed to discretize the sandwich 

structure. An accurate design optimization algorithm has been developed in which the 

finite element model of the smart sandwich cylindrical has been combined with the 

genetic algorithm (GA) to approximately obtain optimum global variables. These 

optimum values are then used as the starting point for sequential quadratic programming 

(SQP) algorithm in order to obtain accurate optimum results. 

7.2 Finite Element Modeling 

The optimization process of cylindrical panel structure may be computationally very 

expensive since the higher order elements with additional nodes are required for 

discretizing the structure that leads to increase in number of degrees of freedom (DOF). 

This is even more critical for multi-layer sandwich panel structure with larger number of 

DOF compared with the bare structure. Therefore, an efficient element is required for 

discretizing the panel structure in a way that less number of elements/nodes and 

consequently less number of DOF are used in the finite element modeling. In this chapter 

the shell element developed by Ashwel and Sabir [124] is employed and generalized to 

discretize sandwich panel structure as shown in Figure 6.1. This element has been 

developed based on the assumed strain functions using compatibility equations and 

considering rigid body motion. Higher order displacement fields are obtained in this 

element without additional nodes in which each element contains four nodes with 20 

degrees of freedom. Using the higher order displacement fields, the element has shown 

excellent convergence [123, 124]. Considering this, the element can be efficiently used 
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for discretizing sandwich shell structure in the optimization problem in which large 

number of computations are performed. The element in this chapter is now generalized 

for three-layer sandwich panel structure and consequently the number of DOF increases 

to 40 which are associated with the top and bottom layers. It is noted that degrees of 

freedom associated with core layer, as it will be shown later, can be obtained with respect 

to those at the top and bottom layers. However, by assuming the constant transverse 

displacement through the thickness of the panel structure, the number of DOF in 

sandwich panel element reduces to 28. Using the compatibility equation and considering 

rigid body motion in the panel element, the displacement field at the bottom layer (base 

layer) can be described as [124]: 

in which b
ou  and b

ov are respectively in-plane translations at the middle plane in axial 

(x) and circumferential (θ) directions of the bottom layer, w is transverse displacement 

which is considered to be constant with respect to the thickness coordinates in each layer, 

and r is the radius of the cylindrical panel element. The rotations of the normals to the 

middle plane of the sandwich panel element in axial and circumferential directions are 

respectively represented by ∂w/∂x and ∂w/r∂θ. Each node of the element consists of five 
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degrees of freedom including ub, vb, w, ∂w/∂x and ∂w/r∂θ and consequently the 

coefficients a1 through a20 can be obtained using the 20 nodal displacements in the panel 

element. The displacement fields then can be represented by the shape functions and the 

nodal displacement as: 

where Nu, Nv and Nw are row vectors of the shape functions depending on the axial, 

circumferential coordinates x and θ, and Qb is a column vector of the nodal displacements 

of the bottom layer given in the following: 

in which the symbol T denotes vector transpose. The displacement field at the top 

layer can be similarly represented using the same shape functions and the nodal 

displacement at the top layer given in the following: 

The displacement field at the top and bottom layers can be expressed in terms of 

element nodal displacements in the sandwich panel element as follows: 

in which the element nodal displacement vector is written as: 

bwbv
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b
uN , b

vN , wN , t
vN ,and t

uN  are row vectors of the element shape functions which are 

given in the following: 

in which
j

dN is the jth component of the vector Nd (d=u,v and w) and
ji

dN
,

are the ith 

through jth components of vector Nd. Using the classical shell theory, the displacement 

through the thickness of the top and bottom layers can be represented as: 

For the core layer, the first order shear deformation theory (FSDT) has been used to 

define the displacement field through its thickness as follows: 
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where c
ou  and c

ov  are respectively the in-plane translations at the middle plane of the 

ER fluid core layer in axial and circumferential directions. Also ht, hb and hc are the 

thicknesses of top, bottom and ER fluid core layers, and c
1 and c

2  are respectively the 

rotations of the normals to the middle plane in axial and circumferential directions. i (i= 

1, 2 and 3) represent the coordinates in thickness direction at the middle of each layer. 

Perfect bonding or slippage between layers at the interfaces can be considered for the 

boundary conditions. However, as shown in chapter 4, the slippage should be avoided in 

order to increase the structural loss factor. According to the boundary conditions for 

perfect bonding, the in-plane and transverse displacements are continuous at the 

interfaces and consequently the in-plane displacements and the rotations are obtained as: 

It should be noted that in order to achieve a perfect sealing, the thickness of 

unconstrained viscoelastic layer has been considered to be equal to the thickness of 

constrained ER fluid core and its constraining layers. The unconstrained viscoelastic 

layer has been modeled by discretizing the layer into two layers in which the outer layer 

has the same thickness as the elastic face and the inner layer has the thickness of the ER 

fluid core layer. This allows providing the continuity in the displacement field of the 
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unconstrained viscoelastic layer, the ER fluid core layer, and its constraining layer. The 

equations of motion have been established using Lagrange’s equation written in the 

following: 

where n is the total DOF in the sandwich panel structure, Q and F are the nodal 

displacements and applied external force, respectively and T and U are respectively the 

kinetic and potential energies in the sandwich panel structure which can be written for 

each layer as follows: 

In Eqs (7.13) and (7.14), i=t, b and c respectively denotes the top, bottom and core 

layers and dVi =rdθds id . Also l0 and θ0 respectively represent the length and the angle 

of the panel element. σ and τ are normal and shear stress components, and ε and γ are 

normal and shear strain components.  x, θ and ξi  are the coordinates in axial, 

circumferential and transverse directions, respectively. It should be noted that in Eq. 

(7.14) the energy terms related to the in-plane and normal stresses of the constrained ER 

core layer, i.e. c
s , c


 
and c

ss
 
can be neglected due to the much small modulus in the 

core layer compared with the elastic faces so that the in-plane shear and normal stresses 

are carried only by the elastic faces.  
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Figure 7.1 Sketch of the experimental setup in order to measure dynamic properties of the ER fluid material 

However, they have been incorporated in the total strain energy in the sandwich panel 

structure to achieve more accuracy.  The strain–displacement relation for a cylindrical 

panel element can be expressed as follows: 

The following constitutive equations give the relationship between the stress and strain 

components at different layers:  

where E, G and υ are respectively the Young’s modulus, shear modulus and Poisson’s 

ratio. The experimental study has been extensively explained in chapter 5 in order to 

determine the material properties of the ER fluid and an efficient constitutive model has 

been also proposed to predict the experimental data including complex modulus and 
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stress response. The ER fluid has been prepared by dispersing cornstarch into corn oil 

with viscosity of 40 mPa s. The weight fraction of the particles has been chosen to be 30 

%. The sketch of the experimental setup is shown in Figure 7.1. The electric field is 

applied between the aluminum plates inside an acrylic box. First, low input voltage is 

generated using the low voltage power supply (o to 15 Volt) and then a DC to high 

voltage DC converter generates the high DC voltage (0 to 10000 Volts) between the fixed 

plates. The shear area of the oscillating plate contacting with the ER fluid is 844 mm
2
. 

The distance between the fixed aluminum plates and the thickness of the oscillating plate 

are, respectively, 5.4 mm and 2.8 mm. The complex modulus including storage and loss 

modulus are shown chapter 5 for different frequencies, shear strain amplitude and electric 

field intensities. The results show that proposed modulus given in chapter 5 reasonably 

predicts the experimental data. The details of the experiment and the proposed 

constitutive model have been extensively illustrated in chapter 5. The model is now used 

for small shear amplitudes, different frequencies and field intensities. The constitutive 

equations for ER fluid core layer regarding the transverse shear stress components can be 

generally written as: 

where the material properties of the ER fluid depend on electric field intensity e and 

frequency ω. The density of the ER fluid material is ρc = 970 kg/m
3
 and Poisson’s ratio is 

considered to be 0.4. The material properties of the viscoelastic patches are frequency 

dependent with the real part of the complex shear modulus of 799700(ω/2π)
0.026

 Pa, 

material loss factor of 0.0669(ω/2π)
0.17

, density of 1104 kg/m
3
 and Poisson’s ratio of 

0.34. The other components of the strain including in-plane normal and shear strains of 
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the ER fluid and viscoelastic layers can be obtained using the Eq. (7.16). As mentioned 

before strain energies associated with these components in ER fluid layer can be 

neglected due to its much small modulus compared with that of the elastic faces. 

In order to define the stiffness matrix, the strain components in Eq. (7.15) are rewritten 

in terms of the shape functions and the element nodal displacements as: 

 where N1 through N7 are: 
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The Eqs (7.16) and (7.18) should be substituted into Eq. (7.14) in order to obtain the 

strain energy in the sandwich panel element. Based on the classical shell theory, the 

energy terms associated with transverse shear strains at the top and bottom layers are 

zero. Similarly, substituting displacement fields given in Eqs (7.8)-(7.11) into Eq. (7.13) 

gives the total kinetic energy.  The obtained kinetic and strain energies are then 

substituted into the Lagrange’s equation given in Eq. (7.12) which leads to establishing 

the stiffness and mass matrices of the sandwich panel structure. These matrices are 

obtained by assembling systematically the stiffness matrices of the different layers. After 

substituting the energy terms into the Lagrange equation, the equations of motion under 

harmonic external loading can be written as: 

where M is the mass matrix, K= K'(e,ω)+iK"(e,ω) is a complex stiffness matrix 

depending on frequency and electric field intensity,  and F is the equivalent nodal force. 

The stiffness matrix is established based on the assembling the following matrices: 

where Ki is the stiffness matrices associated with the strain energy of the in-plane 

normal and shear strain components at different layers and i represents the top, bottom 

and core layers. Kc is the stiffness matrix associated with the strain energy of the 

transverse shear strain components at the core layer for viscoelastic and ER fluids 
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material. Gc is the complex shear modulus of either viscoelastic or ER fluid materials. 

The stiffness matrix is nonlinear with respect to frequency since the material properties of 

the core layer is frequency dependent. For free vibration analysis, Eq. (7.23) can be 

represented as: 

Due to the nonlinearity in the stiffness matrix, Eq. (7.26) cannot be directly solved. 

Although the natural frequency can be directly obtained according to the frequency 

response function under harmonic force F=F0e
iωt

 for a certain range of frequency, but this 

methodology is computationally expensive since the solution strongly depends on the 

resolution of the frequency axis. Alternatively, the eigenvalue problem of Eq. (7.26) can 

be solved iteratively using the evaluated stiffness matrix at the natural frequencies. The 

best starting point could be the natural frequency of the bare shell structure for each mode 

in the iteration procedure. The loss factor associated with each mode can be evaluated 

using the ratio of the dissipated energy per radian and the maximum potential energy at 

natural frequency as follows: 

where Φi is the normalized eigenvector in free vibration and ηi is the loss factor related 

to the ith mode. 

7.3 Optimization Problem 

The objective of the optimization problem can be defined as the loss factor at different 

mode shapes in which the panel structure is subjected to the excitation with the frequency 

related to that mode shape. Here, the objective is to maximize damping at the first two 
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modes of the transverse vibration. In the optimization problem the distribution of 

viscoelastic and constrained ER fluid patches, electric field intensity and the thicknesses 

of the treating layers are simultaneously optimized to achieve maximum damping in the 

panel structure. Noteworthy, for achieving perfect sealing it has been assumed that the 

core layer thickness is equal to total thickness of the ER fluid core and elastic 

constraining layers.  The constraint of the optimization problem is the total mass of the 

sandwich structure in which the treating layers should not increase the mass of the host 

structure more than 50%. First, the genetic algorithm is used in an attempt to find 

approximate global optimum results.  Then, to accurately capture the optimum results, 

the GA results are, in turn, fed as initial values into the powerful sequential quadratic 

programming technique available in MATLAB. The binary numbers [0 1] are employed 

to define the location of the viscoelastic and constrained ER fluid in the sandwich panel 

structure. Therefore the initial population is created using random binary vectors in a way 

that 0 is assigned to a place where there is a constrained ER fluid patch and 1 is assigned 

to the place where there is an unconstrained viscoelastic patch. The length of the vector 

depends on the number of the element. Here, the panel structure has been discretized 

using 8 by 8 elements in circumferential and axial directions. Also the edge of the panel 

structure has been treated using the viscoelastic patches in order to achieve sealing. 

Therefore, the binary numbers are assigned to the 6 by 6 elements to define the 

configuration of the treatments. Considering the other continuous variables including the 

thickness ratios of the treating layers and electric field intensity, the vector of design 

variables has 39 components. Since two types of variable are included in the genetic 

algorithm, the functions in the genetic algorithm should be customized to incorporate 
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both binary numbers and continuous values in the optimization process.  In genetic 

algorithm for the individuals which include only binary numbers, the useful “Scattered” 

function is employed for creating the Crossover Children which merges the parents by 

choosing randomly from the variables of the first and second parent. The crossover 

function is also customized to create the children. Considering this, the “Intermediate” 

function is used to create the thicknesses of the treating layers and electric field intensity 

in which weighted average of the thicknesses and field intensities from the parents are 

evaluated. The Mutation function has been also customized in a way that with probability 

less than 10%, random numbers of the variables are switched from 0 to 1 and vice versa. 

For the elements of an individual representing the thickness ratios and electric field 

intensity, the Gaussian function is used to add random values to these elements.  The 

optimum thicknesses and electric field intensity can be further improved using sequential 

quadratic programming subjected to the constraint on the total mass. The result obtained 

by genetic algorithm is used as the starting point for the sequential quadratic 

programming procedure. In summary, the optimization problem can be represented as: 

in which mtot is the total mass of the sandwich panel structure, mb is the mass of the 

bare layer, and χ is vector of design variable including binary numbers and continuous 

values, and β is the percentage of increase in the mass of the host structure which is 

assumed to be β=50 in present work. In the optimization problem, the electric field 

intensity has been constrained to not exceed 2kV/mm. In general, with increasing the 

electric field the material loss factor and consequently structural loss factor increases. 
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The reason to include the electric field intensity in design variable is to check if for all 

boundary conditions the electric field should be chosen as high as possible. 

7.4 Results and Discussion 

In the following the parametric study are presented to show the effect of electric field 

intensity and thickness ratios of the treating layers on damping characteristics of the 

sandwich panel structure including the natural frequency, loss factor and frequency 

response function for different boundary conditions. The boundary conditions include 

CCCC (all edges are clamped) SSSS (all edges are simply-supported) CFCF (the two 

edges along circumferential direction are clamped while the other two edges are free) and 

SFSF (the two edges along circumferential direction are simply-supported while the other 

two edges are free). Finally the optimization results have been presented for these 

boundary conditions. 

7.4.1 Effects of electric field intensity and thickness of the top layer on damping 

characteristics 

In linear regime, the main parameters which influence the damping behavior of the 

sandwich panel structure with constrained ER fluid layer is the thickness ratios of the 

layers, boundary condition and electric field intensity. The material properties and the 

dimensions of the top and bottom layers are chosen in order to achieve moderate values 

of natural frequency for different boundary conditions since the experimental data are 

extracted for moderate frequencies.  The elastic top and bottom layers of the sandwich 

panel structure are aluminum sheets in which Ei= 68 GPa, ρi=2766 kg/m
3 

and υi=0.3. 

The dimensions of the sandwich bare panel are chosen so that b/L=1, r/L=3, 

hb/L=0.0025. The material properties of the viscoelastic and ER fluid materials have been 
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explained in finite element modeling section and also given in chapter 5. Here parametric 

study has been conducted to realize the effect of electric field intensity, e, and the 

thickness ratio of the elastic face to base layer, Rt, on the vibration damping behavior at 

the first two natural frequencies of the ER based sandwich cylinder. The thickness ratio 

of the ER core layer to base layer, Rc, has been assume to be 0.5.  

The effect of electric field intensity and thickness of constraining face on natural 

frequency for first two modes is shown in Figure 7.2 for different boundary conditions. It 

has been assumed that the bare structure is treated with constrained ER fluid core layer 

and the unconstrained viscoelastic patches cover the elements along the edges. For SSSS 

and CCCC boundary conditions, the natural frequencies associated with the first two 

modes initially decrease with increasing the thickness of the elastic face indicating that 

the total mass of the structure increases rather than its stiffness. However, with more 

increasing the thickness of elastic face, the increase in the stiffness of the structure leads 

to increase in the natural frequencies. Similar behavior can be observed for the second 

natural frequency of the CFCF and SFSF boundary conditions. On the other hand, for the 

CFCF and SFSF boundary conditions, with increasing the thickness of the elastic face the 

first natural frequency slightly increases initially and then decreases until certain value 

which afterward starts increasing. Also, as the electric field intensity increases, the 

stiffness of the structure and consequently the natural frequencies increase for different 

boundary conditions.  
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(a) 

  
(b) 

  
(c) 

  
(d) 

  

Figure 7.2 Effect of electric field intensity and thickness ratio of the top layer on the first two natural 

frequencies in transverse vibration of sandwich panel  structure; (a) CCCC, (b) SSSS, (c) CFCF, (d) SFSF 

boundary conditions; Rc=0.5. 

The effect of the electric field intensity and thickness ratio of the elastic face on the 

loss factor associated with the first two modes is also shown in Figure 7.3. For the CCCC 

and SSSS boundary conditions, the structural loss factors increases as the thickness of 

elastic top layer increases, however, the rate of increase decreases at the larger 

thicknesses.  
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(a) 

  
(b)  

  
(c) 

  
(d) 

  

Figure 7.3 Effect of electric field intensity and thickness ratio of the top layer on the first two loss factors in 

transverse vibration of sandwich panel  structure; (a) CCCC, (b) SSSS, (c) CFCF, (d) SFSF boundary 

conditions; Rc=0.5 

The thickness of the top layer has greater effect at higher electric field intensities.  

Similar behavior can be observed for CFCF and SFSF at the fundamental frequency. 

However, for the second transverse mode of vibration at high electric field intensity the 

structural loss factor initially increases and then decreases.  
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Figure 7.4 Sandwich panel structure under point load exerted at the middle of the panel. The 

unconstrained viscoelastic and constrained ER fluid patches are respectively identified by light and dark 

grey squares 

(a) 

 
(b) 

 

Figure 7.5 Effect of electric field intensity on the frequency response function of sandwich panel  

structure fully treated with ER fluid patches; (a) CCCC, (b) SSSS boundary conditions; Rt=0.2, Rc=0.5 
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(a) 

 
(b) 

 
Figure 7.6  Effect of electric field intensity on the frequency response function of sandwich panel  structure 

fully treated with ER fluid patches; (a) CFCF, (b) SFSF boundary conditions; Rt=0.2, Rc=0.5 

This indicates that the for large electric field intensity, moderate value of thickness 

should be assigned to the elastic top layer. The structural loss factors for all types of 

boundary conditions increase with increasing the electric field intensity.  In order to 

observe the effect of electric field intensity on structural loss factor, the frequency 

response function (FRF) under a point load exerted in the middle of the sandwich panel 

shown in Figure 7.4 is investigated for different boundary conditions. As expected from 

the results shown in Figures 7.2 and 7.3, with increasing the electric field intensity the 
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natural frequencies increase and response amplitudes decrease for the sandwich panel as 

can be realized from Figures 7.5 and 7.6 for different boundary conditions. 

7.4.2 Optimization Results 

Using the optimization methodology described before, the optimal configurations of 

treating viscoelastic and ER patches for the first two modes in transverse vibration of the 

sandwich panel structure under different boundary conditions have been obtained.  

rθ 

(a)  (b)  (c)  (d) 

                                   

                                   

                                   

                                   

                                   

                                   

                                   

                                   

x 

Figure 7.7  Distribution of unconstrained viscoelastic and constrained ER fluid patches for different 

boundary conditions to optimally suppress vibration in the first mode; (a) CCCC, (b) SSSS, (c) CFCF, (d) 

SFSF boundary conditions. The unconstrained viscoelastic and constrained ER fluid patches are 

respectively identified by light and dark grey squares 

(a) (b) 

  
(c) (d) 

  
Figure 7.8  Mode shapes associated with the first transverse mode, (a) CCCC, (b) SSSS, (c) CFCF, (d) 

SFSF boundary conditions 
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 The geometrical and material characteristics of the sandwich panel are the same as 

those used in paramedic study in previous sub-section. The results for the first mode are 

shown in Figure 7.7. It should be noted that the unconstrained viscoelastic and 

constrained ER fluid patches are respectively identified by light and dark grey squares. 

As mentioned before, in order to achieve perfect sealing, the regions on the boundaries 

should be treated by the unconstrained viscoelastic patches.  

rθ 

(a)  (b)  (c)  (d) 
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Figure 7.9  Distribution of unconstrained viscoelastic and constrained ER fluid patches for different 

boundary conditions to optimally suppress vibration in the second mode; (a) CCCC, (b) SSSS, (c) CFCF, 

(d) SFSF boundary conditions. The unconstrained viscoelastic and constrained ER fluid patches are 

respectively identified by light and dark grey squares. 

 (a) (b) 

  
(c) (d) 

  
Figure 7.10  Mode shapes associated with the second transverse mode, (a) CCCC, (b) SSSS, (c) CFCF, (d) 

SFSF boundary conditions. 
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According to the optimization results, the regions near to the edges next to the region 

treated by unconstrained viscoelastic patches along the axial directions should be treated 

by the constrained ER fluid patches for CCCC and SSSS boundary conditions. The mode 

shapes associated to the first mode of the CCCC and SSSS boundary conditions are 

respectively shown in Figures 7.8 (a) and (b). One can observe that the constrained ER 

fluid patches are located on the elements with larger variation of transverse displacements 

which provide larger shear deformation energy and consequently more energy 

dissipation. On the other hand, the unconstrained viscoelastic patches are located on the 

elements with less variation in their transverse nodal displacements. For CFCF and SFSF 

boundary conditions, the optimization problem results in fully treated sandwich panel 

with constrained ER fluid patches. According to the mode shapes shown in Figures 7.8 

(c) and (d), the panel structure is under large variation of transverse nodal displacement at 

the first mode. Therefore the panel structure should be fully treated with the constrained 

ER fluid patches in which higher damping is resulted. Similar studies are presented for 

the second mode of the transverse vibration. The optimal configurations of the treatments 

for the second mode under different boundary conditions are shown in Figure 7.9. The 

mode shapes associated to the second natural frequency for different boundary conditions 

are also shown in Figure 7.10. According to the results, for the CCCC boundary 

condition the panel structure should be fully treated by the constrained ER fluid patches 

while for the SSSS boundary condition, unconstrained viscoelastic patches should be 

used to treat the elements located in the middle of the panel structure where there is less 

variation in transverse nodal displacement.  
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(a) 

 
(b) 

 
Figure 7.11  Frequency response functions due the different types of treatments; (a) CCCC, (b) SSSS 

boundary conditions 

For the CFCF and SFSF boundary conditions the configurations shown in Figures 7.9 

(c) and (d) give the maximum damping in the panel structure. In these configurations, the 

unconstrained viscoelastic treatments are distributed on the elements located in the 

middle region of the panel structure. The optimal thickness ratios of the constraining 

layers resulted from optimization problem for different boundary conditions associated 

with the first and second modes are provided in Table 7.1. It should be noted that the 

thickness of the unconstrained viscoelastic layer is equal to the summation of thickness of 

the outer elastic and ER core layers.  
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Table 7.1 The optimum thickness ratios of the treating layers for different boundary conditions and mode 

shapes 

Boundary condition Mode number Rt Rc Loss factor 

CCCC 
Mode 1 0.212 0.951 0.0229 

Mode 2 0.186 0.973 0.0139 

SSSS 
Mode 1 0.148 1.068 0.0240 

Mode 2 0.165 1.040 0.0214 

CFCF 
Mode 1 0.168 1.010 0.0168 

Mode 2 0.125 1.085 0.0226 

SFSF 
Mode 1 0.227 0.891 0.0218 

Mode 2 0.145 0.911 0.0230 

 

(a) 

 
(b) 

 

Figure 7.12  Frequency response functions due the different types of treatments; (a) CFCF, (b) SFSF 

boundary conditions 

It is interesting to note that the optimization problem for different boundary conditions 

and modes results in the maximum electric field intensity (e≈2 KV/mm). This indicates 

that with increasing the electric field intensity the structural loss factors increase as 
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shown in Figure 7.3. In order to observe the damping effect of different types of 

treatments, the FRF of the sandwich panel structure based on the optimum treatments for 

the first and second modes are compared with the FRF of the bare panel structure and 

fully treated sandwich panel structure using the unconstrained viscoelastic or constrained 

ER fluid patches. It is assumed that the structure is subjected to a point force in transverse 

direction at the middle point of the panel structure as shown in Figure 7.4. Figures 7.11 

and 7.12 show the FRFs for different boundary conditions. It should be noted that the 

thickness ratios in fully treated configurations are based on the results from the 

optimization problem for the first mode.  The results show that fully treated sandwich 

panel using the unconstrained viscoelastic patches exhibits less damping compared with 

other types of treatments. This can represent the damping behavior of constrained 

viscoelastic sandwich structures at high temperature which significantly affects the 

damping property. As shown before, for some boundary conditions the damping behavior 

based on the fully treated sandwich panel with constrained ER fluid patches can be 

improved by embedding the unconstrained viscoelastic patches. The results show that 

optimization problem for CCCC and SSSS boundary conditions based on the first mode 

leads to more damping at the higher modes (except at the second mode).  However, the 

optimization based on the second mode provides more damping at the higher modes of 

sandwich panel structure for CFCF and SFSF boundary conditions. 

7.5 Conclusion 

A design optimization methodology has been presented in this chapter to increase the 

damping behavior of sandwich panel structure using both unconstrained viscoelastic and 

constrained ER fluid patches. The unconstrained viscoelastic layer was mainly used to 
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seal the constrained ER fluid patches. An efficient element was employed to discretize 

sandwich panel structure. The finite element modeling was combined with the 

optimization algorithm including genetic algorithm and sequential quadratic 

programming to conduct the design optimization problem. The parameters of 

optimization including the configuration of the treating patches, thickness ratios of elastic 

faces and ER fluid core layer and also electric field intensity were effectively considered 

in the optimization problem using the vector of binary numbers and continuous values. 

The optimization problem for different boundary conditions and modes resulted in the 

maximum electric field intensity. At the first mode, fully treated configuration using ER 

fluid patches was resulted for CFCF and SFSF boundary conditions. On the other hand, 

the configurations including both unconstrained viscoelastic and constrained ER fluid 

patches were resulted for CCCC and SSSS boundary conditions. It was shown that only 

for the CCCC boundary condition at the second mode the treatment should be fully 

performed using the constraint ER fluid patches. 
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CHAPTER 8  

CONCLUSION, CONTRIBUTION AND FUTURE WORK 

8.1 Major Contributions and Achievements  

Vibration damping analysis of sandwich cylindrical shell/panel structure using passive 

and semi-active damping was investigated in this dissertation. The passive damping using 

viscoelastic material was studied based on the semi-analytical finite element modeling. In 

order to achieve more accuracy, a higher order expansion of displacement fields was 

developed for representing displacement field of the core layer. The higher order 

displacement field was then used to model cut and partial treatment since the 

displacement fields of the core layer can be represented in terms of those at the top and 

bottom layers. Also the formulations have been derived considering the slippage between 

the layers at the interfaces. The effect of the main parameters on damping behavior of 

viscoelastic based sandwich shell structure was also investigated. In order to realize the 

effect of temperature, the transient heat transfer equation was formulated and solved for 

axisymmetric cylindrical structure using the finite difference method for irregular grid. 

Furthermore the effect of temperature and the resulted thermal stress on damping 

behavior of viscoelastic sandwich cylinder was investigated using the higher order 

expansion of the displacement field in the core layer.  Using combined genetic algorithm 

and sequential quadratic programming technique, the design optimization was conducted 

to simultaneously optimize thickness ratios of treating layers, number of cuts and partial 

treatments and their distribution to achieve the highest damping for different boundary 

conditions. Considering semi-active damping treatment, the material properties of an ER 

fluid consisting suspension of cornstarch into corn oil were experimentally explored 
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systematically for small/large shear strain amplitude, moderate range of frequencies and 

different electric field intensities.  A new constitutive model was also presented to predict 

the experimental data. The constitutive model was able to predict the stress response and 

the mechanical properties including loss modulus and shear modulus. Using the proposed 

constitutive model, the nonlinear vibration analysis of sandwich ER based panel structure 

was investigated for different boundary conditions. An efficient shell element was used to 

discretize the sandwich structure. Also, a new notation referred to as H-notation was 

presented over the two well-known notations referred to as B and N notations to represent 

the nonlinear equations of motion. This notation considerably reduced the computational 

costs associated with the time consuming integrations in the nonlinear vibration analysis 

of structure using conventional direct iterating technique since the integrations was only 

performed once throughout this technique. Finally the optimization problem was 

conducted in order to achieve the highest damping in sandwich panel structure using both 

passive and semi-active damping treatment patches. In the following the major 

conclusions regarding the results presented in this dissertation have been summarized. 

8.2 Major Conclusions 

I. The finite element model which considers the continuity in transverse shear 

stresses at the interfaces provides more accurate results for the three-layered 

structure with stiff core layer. For viscoelastic sandwich structures in which the 

material of the core layer is compliant, the continuity in transverse shear stresses 

should not be considered. 
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II. The higher order model exhibits more damping properties than the lower order 

model which leads to less time required to reach the steady state response in the 

transient vibration. Both models almost result in identical natural frequencies. 

Also, the results from the lower and higher order models deviate for thick core 

layer considerably at higher natural frequencies. 

III. Slippage between layers at the interfaces reduces the damping characteristic and 

must be prevented in order to achieve higher damping in sandwich cylindrical 

shell structure. 

IV. In order to increase the damping of sandwich cylindrical shell with thin 

viscoelastic core layer, the thickness of the constraining layer should increase. For 

thick viscoelastic core layer, increase in top layer thickness leads to decrease in 

loss factor. Where the constraining layer is thin, thick viscoelastic core layer show 

higher damping property than the thin viscoelastic core layer. On the other hand, 

for thick constraining layer, by increasing the thickness of viscoelastic core layer, 

loss factor first decreases and then increases. 

V. Increase in external pressure of viscoelastic sandwich cylindrical shell leads to 

increase in the flexibility. Consequently, the natural frequencies decrease and the 

corresponding loss factors increase. On the other hand, in the sandwich cylinder 

under internal pressure the natural frequencies increase and accordingly the 

corresponding loss factors decrease because of higher stiffness introduced in the 

sandwich structure.  
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VI. With increasing the temperature, loss factor and real part of the viscoelastic layer 

decrease. This leads to decrease in damping behavior and natural frequencies of 

viscoelastic sandwich cylinder. Also, the resulted pre-stresses in the sandwich 

shell structure due to the thermal loads increase the stiffness of the structure.  

Consequently, the natural frequencies almost remain unchanged except at higher 

natural frequencies. However, reduction in damping performance of the 

viscoelastic material and the developed thermal stresses considerably decrease the 

loss factor of the structure. 

VII. The generated heat in the viscoelastic layer under oscillatory loading will be 

transferred to constraining layer after long time due to low conductivity in the 

viscoelastic material. Therefore the temperature keeps on increasing at the 

viscoelastic layer which leads to decrease in loss factor and shear modulus, and 

consequently larger amplitude of displacement is resulted. Also, the amplitude 

reaches its steady state faster under forced convection. According to the shapes 

and slopes of the hysteresis trajectories, the area of the ellipse that represents 

dissipated energy is changing during time.  Thus, the definition of loss factor is 

not unique even at the natural frequencies. 

VIII. Unconstrained viscoelastic sandwich structure exhibits poor damping property 

since small shear stress at the damping layer is generated. Due to increase in the 

total mass of the structure while small change in the stiffness, the natural 

frequency considerably decreases with increasing the thickness of the viscoelastic 

layer. The loss factor increases as the unconstrained viscoelastic layer becomes 

thicker which is especially more pronounced for the lower modes. 
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IX. Although the partial treatment process can reduce significantly total weight of the 

structure, an inappropriate distribution can reduce the damping properties. Thus a 

design optimization strategy is required to identify the optimal configuration.  

However, cutting in the core and top layers increases the damping property 

compared with the fully treated sandwich cylinder. Also increasing the total 

number of cuts does not guarantee to increase the damping properties. 

X. A systematic experimental study has been conducted to characterize the created 

in-house ER fluid and the proposed constitutive model was able to accurately 

predict the experimental results. The results show that the complex modulus of 

the ER fluid increases with increasing the field intensity. Furthermore, as the 

amplitude of the shear strain increases the storage modulus decreases, however, 

the loss modulus first increases and then decrease. Also, the complex modulus 

increases with increasing the frequency up to certain point and then remains 

constant for moderate range of the frequency. 

XI. Although the yielding stress in the proposed constitutive model for the ER fluid 

was assumed to be negligible, due to including the strain amplitude in the 

proposed model the linear regime was discernible whereas by increasing the strain 

amplitude the rate of increase in the stress amplitude decreases. 

XII. The new notation referred to as H-notation developed for nonlinear stiffness 

matrices in equations of motion considerably reduced the computational costs 

since the integrations were performed only once before implementing the direct 

iteration procedure and consequently the repeatedly time consuming integrations 
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has been avoided. According to the experimental data available in literature, the 

results showed that the developed finite element modeling leads to more accurate 

results compared with the hierarchical finite element modeling particularly at 

large displacements. 

XIII. According to the results, in ER based sandwich panel the natural frequency 

increases with increasing the displacement of vibration indicating that the 

nonlinear behavior has hardening effect and stiffen the structure. The rate of 

increase in frequency ratio for simply supported boundary conditions is higher 

than the clamped boundary conditions.  

XIV. The electric field has a negligible effect on the frequency ratio (ωNL/ωL) of the ER 

sandwich panel so that with increasing the electric field intensity, the frequency 

ratio slightly decreases for different boundary conditions. 

XV. With small increase in the shear strain amplitude, the loss modulus of the ER fluid 

initially increases. This leads to increase in the structural loss factor ratio up to 

certain value as the amplitude increases. With more increase in displacement, 

effects of decrease in material loss modulus and the hardening of the structure 

considerably reduce the structural loss factor ratio. 

XVI. With increasing the electric field intensity, the loss modulus of the ER fluid 

material increases and consequently the structural loss factor increases. On the 

other hand, with increasing electric field intensity, the loss factor ratio (ηNL/ηL) 

first decreases and then increases. 
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XVII. The structural loss factor for SSSS boundary condition of ER based sandwich 

panel structure is greater than that for CCCC boundary condition since the 

transverse shear strains in the core layer are greater in SSSS boundary condition 

indicating more energy dissipation in the structure. However, due to the larger 

shear strain amplitude in CFCF boundary condition compared with the SFSF 

boundary condition, the structural loss factor is slightly greater in CFCF boundary 

condition. 

XVIII. For ER based sandwich structure, with increasing the amplitude of vibration, the 

variation rate of loss factor with respect to core thickness amplitude decreases and 

for large amplitudes the loss factor is almost constant with respect to core 

thickness ratio.  For the clamped (CCCC and CFCF) boundary conditions, at large 

displacements with increasing the core thickness ratio the natural frequency 

initially increases and then slightly decreases while at small displacements the 

natural frequency increases as the core thickness ratio increases. Similarly, for the 

simply supported (SSSS and SFSF) boundary conditions, at small displacements 

the natural frequency increases as the core thickness ratio increases.  However, at 

large displacements the natural frequency decreases with increasing the core 

thickness ratio. 

XIX. For SSSS and CCCC boundary conditions, the natural frequencies associated with 

the first two modes of ER fluid sandwich panel initially decrease with increasing 

the thickness of the elastic face. However, with more increasing the thickness of 

elastic face, the increase in the stiffness of the structure leads to increase in the 

natural frequencies. Similar behavior can be observed for the second natural 
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frequency of the CFCF and SFSF boundary conditions. However, for the CFCF 

and SFSF boundary conditions, with increasing the thickness of the elastic face 

the first natural frequency slightly increases initially and then decreases until 

certain value which afterward starts increasing. As the electric field intensity 

increases, the stiffness of the structure and consequently the natural frequencies 

increase for different boundary conditions. 

XX. For the CCCC and SSSS boundary conditions of the ER based sandwich panel, 

the structural loss factors increases as the thickness of elastic top layer increases, 

however, the rate of increase decreases at the larger thicknesses. The thickness of 

the top layer has greater effect at higher electric field intensities.  Similar behavior 

can be observed for CFCF and SFSF at the fundamental frequency. However, for 

the second transverse mode of vibration at high electric field intensity the 

structural loss factor initially increases and then decreases. Therefore for large 

electric field intensity, moderate value of thickness should be assigned to the 

elastic top layer. However, for the second transverse mode of vibration at high 

electric field intensity the structural loss factor initially increases and then 

decreases. 

XXI. From the optimization results it can be concluded that the constrained ER fluid 

patches are located on the elements with larger variation of transverse 

displacements which provide larger shear deformation energy and consequently 

more energy dissipation. On the other hand, the unconstrained viscoelastic 

patches are located on the elements with less variation in their transverse nodal 

displacements. The optimization problem for different boundary conditions and 



211 

 

modes results in the maximum electric field intensity (e≈2 KV/mm). This 

indicates that with increasing the electric field intensity the structural loss factors 

increase. 

XXII. At the first mode, fully treated configuration using ER fluid patches was resulted 

in the optimization problem for CFCF and SFSF boundary conditions. On the 

other hand, the configurations including both unconstrained viscoelastic and 

constrained ER fluid patches were resulted for CCCC and SSSS boundary 

conditions. It was shown that only for the CCCC boundary condition at the 

second mode, the treatment should be fully performed using the constrained ER 

fluid patches. 

XXIII. Finally, the optimization results showed that for some boundary conditions the 

damping behavior of the partially treated ER based sandwich panel is higher than 

that of fully treated ER based sandwich panel. The optimization problem for 

CCCC and SSSS boundary conditions based on the first mode leads to more 

damping at the higher modes (except at the second mode).  However, the 

optimization based on the second mode provides more damping at the higher 

modes of sandwich panel structure for CFCF and SFSF boundary conditions. 

8.3 Recommendation for the future works 

In this dissertation the vibration damping analysis and optimization of sandwich 

shell/panel structure using both passive and semi-active damping treatments were 

systematically investigated. The developed models, analysis and design optimization 

formulations provide a unique platform to fundamentally design passive and adaptive 
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sandwich shell structures for optimal vibration suppression. Although the developed 

analytical, computational and experimental techniques have significantly advanced the 

state-of-the-art in the field of viscoelastic and smart fluid based multilayered structures, 

nevertheless, the following interesting aspects which are natural extension of the current 

work have been identified:  

i. The developed finite element and semi-analytical finite element modeling can 

be extended to analyze vibration damping of more complicated structures 

such as other type of shell of revolution including sandwich conical and 

spherical structures. 

ii. Semi-active control strategies based on different control techniques such as 

observer-based linear quadratic regulator (LQR), optimal control or fuzzy 

logic-based control can be developed to enhance vibration damping of the ER 

based sandwich structure in a closed-loop system under different loading 

conditions. 

iii. Experimental study can be conducted to observe the vibration damping and 

the effect of the main parameters on the damping behavior of the viscoelastic 

based, ER based sandwich shell structure and their combinations for different 

range of temperature. The results from the optimization can be employed and 

compared with the fully treated structure based on ER and viscoelastic based 

sandwich structure 

iv. The design optimization can be conducted in a way that the constrained ER 

fluid patches are induced with different field intensities. This can be 
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practically expensive or infeasible; however, the damping characteristics may 

increase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



214 

 

Appendix 

Six linear equations to be solved for finding the coefficients of the polynomials in the 

particular solution. 
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