
On the Verification of a WiMax Design Using

Symbolic Simulation

Salim Ismail Al-Akhras

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical & Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

April 2012

c© Salim Ismail Al-Akhras, 2012

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Salim Ismail Al-Akhras

Entitled: On the Verification of a WiMax Design Using Symbolic Sim-

ulation

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science (Electrical & Computer Engi-

neering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Samar Abdi (ECE)

Dr. Nizar Bouguila (CIISE)

Dr. Gabriela Nicolescu (École

Polytechnique de Montréal)

Dr. Sofiène Tahar

Approved by

Chair of the ECE Department

2012

Dean of Engineering

ABSTRACT

On the Verification of a WiMax Design Using Symbolic Simulation

Salim Ismail Al-Akhras

The system-On-Chip design process is continuously increasing in terms of cost

and complexity. This imposes new modeling and verification challenges. A partic-

ular example is heavy computational applications and functionality, such as digital

signal processing and telecommunication applications, which are increasingly inte-

grated in embedded systems nowadays. To meet these challenges, designers use a

multilevel model based approach, which is a top-down design methodology where

the behavior of the system is first modeled at a higher level of abstraction. Then,

design decisions are made to refine those models in a number of transformations

until the final product is realized. In this thesis we verify an implementation of a

WiMax modem physical layer that has been designed according to the multilevel de-

sign approach. This implementation is provided by STMicroelectronics. We propose

the utilization of two verification methodologies to verify designs at higher levels of

abstraction. The first one is an equivalence checking methodology that is based

on symbolic simulation, which provides high speed and computational capabilities.

The main purpose of this methodology is to verify the functional equivalence of

refined system models in the design process. The second methodology is a property

checking approach, which is also based on symbolic simulation. It verifies the con-

formance of models at different levels of abstraction with the system specification.

We verified the equivalence of three models of the WiMax system at different levels

of abstraction, and we verified the correctness of various system properties on those

models.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my great thanks to the Almighty

God, Who gave me the strength and patience to complete this work.

I would like to extend my sincerest gratitude for my supervisor Dr. Sofiène

Tahar, who has been a constant source of thoughtful guidance in pursuing this work.

Because of his input, advice, and challenge, I have matured as a researcher and as

a graduate student. I am very thankful for the verification team at STMicroelec-

tronics Montreal Canada and Dr. Gabriela Nicolescu from École Polytechnique de

Montréal for giving me an opportunity to do my Master’s project in collaboration

with STMicroelectronics Canada in Ottawa. I would also like to acknowledge my

thesis committee: Dr. Samar Abdi and Dr. Nizar Bouguila for their valuable feed-

back on the thesis.

I would also like to take this opportunity to express my sincere thanks to my

colleagues in the Hardware Verification Group (HVG) of Concordia University for

their motivation and constructive suggestions. In particular, I would like to thank

Dr. Naeem Abbasi for his time and valuable help during my thesis writing.

During my stay in Montreal, I became acquainted with some great people who

shared with me both difficult and easy times throughout this project. I would like to

thank my friends, Maher Alhalabi, Suliman Albashir, Hani and Haitham Altelbani,

for their huge support and motivation. My brother and very special friend Zaid

Abdulhadi whom I relied on for many matters deserve also great thanks for those

years of friendship.

I am very very grateful for my wife, Hanaa, for my sisters, Rasha, Rola and Ola

and for my brothers, Mohammad and Ahmad for the support and happiness they

always provide me with. Finally, my sincere thanks and deepest appreciation go out

to my parents, Khawla and Ismail for their affection, love, support, encouragement,

and prayers to success in my missions.

iv

This thesis is dedicated to

My Father

Ismail Alakhras

My Mother

Khawla Almasri

My Wife

Hanaa Almasri

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF ACRONYMS . xi

1 Introduction 1

1.1 Motivation . 1

1.2 System Verification Techniques . 4

1.2.1 Simulation Based Methods . 4

1.2.2 Formal Verification Methods 6

1.2.3 Semi-Formal Verification Technique 9

1.3 Related Work . 11

1.3.1 WiMax and OFDM PHY Verification 13

1.3.2 Equivalence Checking . 14

1.3.3 Property Checking . 15

1.4 Proposed Verification Methodology 16

1.5 Thesis Contributions . 18

1.6 Thesis Outline . 19

2 IEEE 802.16 Standard and ST WiMax Design Overview 20

2.1 WiMax IEEE 802.16 Standard Overview 20

2.2 WiMax Modem Physical Layer (PHY) 22

2.2.1 Error Control . 23

2.2.2 Framing . 24

2.2.3 Transmission Convergence (TC) Sublayer 24

2.3 STMicroelectronics WiMax OFDMA Transmitter Overview 25

2.3.1 WiMax Transceiver Major Processing Blocks 26

2.3.2 Model Based Design Methodology 28

vi

3 Symbolic Simulation Based Verification Methodology 32

3.1 Preliminaries . 32

3.1.1 Symbolic Simulation . 33

3.1.2 Sequence of Recurrence Equations (SRE) 34

3.2 Equivalence Checking . 36

3.2.1 Symbolic Simulation Algorithm 36

3.2.2 Verification of the Symbolic Trace 38

3.2.3 Verification of Computational Equivalence 38

3.3 Property Checking . 40

3.4 Summary . 42

4 ST WiMax Modem Verification 44

4.1 Model Realization . 45

4.2 Symbolic Simulation . 50

4.2.1 Single Control Scenario . 51

4.2.2 Multiple Control Scenarios . 52

4.3 Equivalence Checking . 54

4.4 Property Checking . 57

4.5 Summary . 61

5 Conclusion and Future Work 62

5.1 Conclusion . 62

5.2 Future Work . 64

A Appendix : Sample Mathematica Code 66

A.1 Sample Mathematica Recurrence Equations 66

A.2 FIFO’s Tail Index Update Using Recurrence Equations 67

A.3 Dynamic Scheduler in Recurrence Equations 67

A.4 Traffic Generator Sets FEC Code Type 68

vii

A.5 Sample Property in Recurrence Equation 69

Bibliography 70

viii

LIST OF FIGURES

1.1 A Typical Simulation Environment. 5

1.2 A Typical Model Checking System. 8

1.3 A Typical Equivalence Checking System. 9

1.4 Symbolic Simulation Illustration Circuit. 10

1.5 A Typical Symbolic Equivalence Checking System. 11

1.6 Proposed Verification Methodology Framework. 18

2.1 WiMax Wireless-MAN Transmitter Architecture. 26

2.2 WiMax Transmitter Model - Sequential. 29

2.3 WiMax Transmitter Model - FIFO Based. 30

2.4 WiMax Transmitter Model - FIFO and Scheduler. 30

3.1 Equivalence Checking Methodology. 37

3.2 Property Checking Methodology. 41

4.1 Functional Level Model. 46

4.2 FIFO Based Process Transfer Model. 47

4.3 FIFO and Scheduler Based Process Transfer Model. 49

ix

LIST OF TABLES

2.1 WiMax Supported FEC Code Types 28

4.1 FIFO Design Details . 48

4.2 Numerical and Symbolic Simulation (Single Control Scenario) 52

4.3 Model Coding Requirements (Single Control Scenario) 52

4.4 Numerical and Mixed Simulation (Multiple Control Scenario) 54

4.5 Model Coding Requirements (Multiple Control Scenario) 54

4.6 Equivalence Checking Experiments 56

4.7 Equivalence Checking Experiments - Injected Bug 56

4.8 Property Checking (Single Control Scenario) 59

4.9 Property Checking (Multiple Control Scenario) 59

4.10 Property Checking (Single Control Scenario) - Injected Bug 60

4.11 Property Checking (Multiple Control Scenario) - Injected Bug 60

x

LIST OF ACRONYMS

AMS Analog and Mixed Signal

AP Access Point

API Application Programming Interface

ARQ Automatic Repeat Request

BDD Binary Decision Diagram

BS Base Station

CC Convolution Coding

DAMA Demand Assigned Multiple Access

DSL Digital Subscriber Line

DSP Digital Signal Processing

DUT Design Under Test

FDD Frequency Division Duplexing

FEC Forward Error Correction

FFT Fast Fourier Transform

FIFO First In First Out Structure

FPGA Field-Programmable Gate Array

HARQ Hybrid Automatic Repeat Request

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

ILP Instruction Level Parallelism

LOS Line of Sight

MA Model Algebra

MAC Medium Access Control Layer

MAN Metropolitan Area Networks

NLOS Non-Line of Sight

OO-VHDL Object Oriented VHDL

xi

OFDMA Orthogonal Frequency-Division Multiple Access

PDU Protocol Data unit

PDU Protocol Data Units

PSL Property Specification Language

PHY Physical Layer

PSL Property Specification Language

PTL Process Transfer Level

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

RS Reed Solomon

RTL Register Transfer Level

SLDL System Level Description Language

SC Single Carrier Modulation

SoC System On Chip

SRE Sequence Recurrence Equations

SS Subscriber Stations

ST STMicroelectronics

SW Software

SWSR Single Write Single Read

TC Transmission Convergence

TDD Time Division Duplexing

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

TLM Transaction Level Modeling

UL-MAP Uplink Map

VHDL VHSIC Hardware Description Language

xii

VHSIC Very High-Speed Integrated Circuit

WEP Wireless Equivalent Privacy

WiMax Worldwide Interoperability for Microwave Access

WPA WI-FI Protected Access

xiii

Chapter 1

Introduction

1.1 Motivation

In today’s electronics technology, a single chip can accommodate a large and complex

system that has a wide variety of components and functionalities; called System-

On-Chip (SoC). SoCs have a wide range of applications in consumer electronics and

embedded systems like telecommunication devices. A single SoC can contain more

than 10 million gates which make their design a very complicated and costly process.

As a result, it becomes increasingly complex to identify design bugs in SoCs before

the chip manufacturing stage.

On the other hand, if design bugs are discovered after chip fabrication, a com-

plete and expensive system redesign may be required to fix this bug. Nowadays,

design verification takes 80% or more of the whole design process [6]. Therefore,

performing system verification at each level of the design process is extremely impor-

tant, especially in earlier design stages, since the cost of fixing bugs at later stages

is very high.

To increase system verification efficiency, it is crucial to verify designs at a high

level of abstraction. For state-of-the-art SoCs and embedded systems, designs at

levels higher than register transfer level (RTL) are described in high level languages

1

like C/C++. High level design support is still in its infancy and the process is mainly

manual or interactive. So developing verification techniques at this level becomes a

more critical issue.

One very important issue in high level design methodology is to maintain

the correctness of the design descriptions while they are refined into more detailed

models and finally into RTL and implementation descriptions. This is basically

an equivalence checking problem between two high level descriptions of the system

design. Due to this nature of high level design processes of incremental refinement

steps, equivalence checking is a very efficient verification methodology in this design

paradigm.

Simulation techniques are widely used to verify systems at various levels of

abstraction. Those techniques use simulation models to compute output values for

given input patterns (test cases) and then compare them with expected correct

values. The number of test patterns exponentially increases when the number of

state variables in the system increases. So, it is infeasible to perform an overall

design verification using simulation alone. In addition, because the quality of the

simulation depends on the quality of the chosen test patterns, it is possible that

some design bugs are not discovered during the simulation process. To compensate

for those weaknesses, formal verification techniques [28] have been investigated and

developed.

In formal verification, system specification and design are translated into math-

ematical models. Then, mathematical reasoning is used to verify the correctness of

the design according to the specifications. Verification using formal techniques is ex-

haustive by nature because it explores all cases in the mathematical representation.

This solves the test coverage problems of simulation techniques. The mathemat-

ical models used in formal verification include Boolean functions and expressions,

first-order logic and others. Due to recent advances in mathematical modeling and

reasoning techniques, formal verification techniques can now deal with larger and

2

more complex designs.

High level design descriptions in C/C++ are very easy to simulate. Hence

verification by simulation techniques is the first thing to do. However, corner-case

bugs coverage and performance problems reduce the efficiency of those techniques.

Formal verification, on the other hand, can provide adequate coverage. However,

it cannot efficiently handle the complexity and size of system descriptions at high

levels of abstraction. Thus, semi-formal verification techniques have advanced a lot

during the last decade.

Semi-formal verification tries to provide the coverage of formal methods and

the scalability of simulation methods. Symbolic simulation [22] is a very important

example of semi-formal verification techniques. Symbolic simulation is a technique

first used to evaluate behavior under multiple input values or scenarios by encoding

and evaluating them as symbols rather than numerical values. In the context of

system verification, mathematical reasoning is used in conjunction with the results

of symbolic simulation to answer the verification questions.

In this thesis we verify high level designs of the STMicroelectronics WiMax

modem. To perform this system verification, we propose a complete semi-formal

verification methodology to verify high level system designs. The methodology is

based on modeling the system under verification using a mathematical description,

then, utilizing an equivalence checking technique and an assertion based verification

technique to address the verification problem.

The modeling technique uses system of recurrence equations (SRE) [1] to write

the mathematical description of the system at various levels of abstraction. SRE

is a flexible and easy tool to describe the functionality of systems at higher levels

of abstraction [1]. Our proposed verification techniques use symbolic simulation

of SRE descriptions of the system in conjunction with mathematical reasoning to

perform the verification tasks. This methodology was successfully applied on the

STMicroelectronics WiMax modem.

3

WiMax, (Worldwide Interoperability for Microwave Access) is a telecommuni-

cations technology that is grabbing increasing attention. 78 % of North America’s

telecom operators anticipate an investment in the WiMax deployment by the end

of 2014 [5]. This popularity is driven by developments in worldwide spectrum allo-

cation and standardization. As a result, the ability of WiMax to take advantage of

emerging market opportunities is tied to the ability to test its products for regulatory

and standards compliance. The main objective of this thesis is to verify a modem

implementation provided by STMicroelectrics [19]. We focus on the verification

problem for high level design descriptions of the WiMax modem.

In the following section we will discuss system verification techniques. We also

focus on high level design in multi-level design methodologies.

1.2 System Verification Techniques

Verification consumes more than 80 % of the system design process. Most of this

effort is dedicated to functional logic verification. The rest is used in performance

verification, where the designer tries to check if the final manufactured device will

meet the specified constraints of timing, area and power [11]. In this section, we

will give a brief overview of the state-of-the-art in design verification techniques and

their application in high level of abstraction.

1.2.1 Simulation Based Methods

Simulation is the most commonly used method for validation of models in industry.

A typical simulation environment is shown in Figure 1.1. First, the design to be

tested is described in some modeling language and is referred to as Design Under

Test (DUT). The design specification is then used to generate the input and the

expected output test vectors. The stimulus routine applies the input vectors to

the DUT. The inputs are propagated through the model by a simulation tool and

4

finally the outputs are generated. Then, a monitor routine checks the output of

the DUT against the expected outputs for each input test vector. If a mismatch is

found, the designer can use debugging tools to trace back and find the source of the

problem. The problem arises from either incorrect design or incorrect timing. Once

the problem source is identified, the designer can fix it and simulate the new model.

Figure 1.1: A Typical Simulation Environment.

Ideally, the designer should test the model for all possible scenarios. However,

this would require an unreasonable number of test vectors and simulation time.

So, the designer must use only a limited number of test vectors that are useful.

The usefulness of a test case is usually defined by the number of components and

connections it can excite in the simulation. Therefore, several coverage metrics have

been suggested to quantify the usefulness of a test case.

One approach to reduce functional verification time is by modeling the system

at higher abstraction levels. By abstracting away unnecessary implementation de-

tails, the model not only becomes more understandable, but also simulates faster.

For this purpose, System Level Description Languages (SLDL) are used [31]. SLDL

provide tools that help the designer to describe the concurrency, communications,

5

and synchronization required for the modeling. In addition, those languages provide

sufficient abstraction support to hide low level implementation details in models of

higher levels of abstraction [31].

In general SLDLs can be categorized into two main categories. The first group

of languages builds upon C++, and adds libraries and templates to model con-

currency and temporal characteristics. SystemC [29] is the most commonly used

language that belongs to this category. The second group of languages builds upon

hardware description languages such as VHDL and Verilog and extends them by

adding mechanisms for modeling abstract data. OO-VHDL [30] and SystemVerilog

[36] belong to this category of SLDLs.

1.2.2 Formal Verification Methods

Formal verification techniques use mathematical formulations to verify designs. In

this subsection, we will give a brief overview about three basic techniques of formal

verification, namely equivalence checking [33], model checking [20] and theorem

proving [21]. Theorem proving takes formal representations of both the specification

and the implementation using mathematical logic and proves their equivalence using

the axioms and inference rules of the logic. Model checking, on the other hand, takes

a formal representation of both the model and a given property, and checks if the

property is satisfied by the model. Equivalence checking can be used to check for

correctness of model refinements in high level designs or to verify models synthesis

and optimization for processes. Some notion of equivalence such as logic equivalence

or state machine equivalence should be defined and the equivalence checker proves

or disproves the equivalence of the models at different stages of the design process.

Theorem Proving

Theorem proving is a method that provides mathematical proofs for given systems

interactively. Due to its generality and mathematical basis, theorem proving can

6

be applied to almost any verification problem in any domain. The theorem proving

problem from system verification point of view can be described as follows: Given

two expressions in some logic (usually first or higher-order logic) [21], derive a proof

for the equivalence or non equivalence of some expressions using the rules of that

logic and the problem domain. Those expressions can be descriptions of specific

functionality of a design at different levels of abstraction. Due to the underlying

logic, this process is interactive where the user is the one who actually develops

the proofs. So, theorem proving provides expressive and powerful reasoning. But,

it is very difficult to automate the process and it is required to have expert-level

mathematical knowledge to use this system effectively.

The focus of our thesis is to solve the verification problem at higher levels of

abstraction. Theorem proving, in principle, can be used to verify the correctness

of the design refinements at those levels. Each one of the models can be described

in a specific formalism. Then, theorem proving tools can be used to prove the

functional equivalence of those models. However, due to the large size and complex

functionality of todays systems and the large number of design refinements, an

interactive verification technique is very expensive. It is not efficient to use a pure

theorem proving methodology to verify the whole system design process. However,

theorem proving is a very practical solution to verify complex functional sections of

the design where other verification techniques fail.

Model Checking

Model checking [20] is a formal technique for property verification. A typical model

checking system is illustrated in Figure 1.2. First, the model is represented as a state

transition system (also called a Kripke structure [34]), which consists of a finite set

of states, transitions between states and labels on each state. The state labels are

atomic properties that hold true in that state. The model checking problem is simply

defined as a verification that a temporal property P is satisfied by the model defined

7

as a state transition system (M,s), where s is the start state for the model execution.

Figure 1.2: A Typical Model Checking System.

The major problem with model checking is the state space explosion. The state

transition system grows exponentially with the number of state variables. Therefore,

memory for storing the state transition system becomes insufficient as the design size

grows. So, model checking can scale only to small sizes of high level design descrip-

tions. However, some techniques are proposed to abstract large designs and focus

on communication and synchronization properties of the system [6]. In this case,

model checking is a practical solution to verify communication and synchronization

components of the system, but not the datapath and computational components.

Equivalence Checking

In digital system design and during system design refinements of logic circuits, the

design encounters a number of design transformations. The designer is responsible

for the logical correctness of any such transformation. A logic equivalence checker

verifies that the result of the design refinements is equivalent to the original design.

This is achieved by dividing the model into logic areas separated by registers, latches

or black-boxes. Those logic areas are called logic cones, as shown in Figure 1.3. The

corresponding logic cones in the original and refined models are then compared.

8

Figure 1.3: A Typical Equivalence Checking System.

Equivalence checking techniques are well developed and widely used in industry

today due to their efficiency and scalability. For example, those techniques are used

to prove the functional equivalence of system models at different levels of abstraction.

Because of that, equivalence checking is a suitable formal technique to verify the

design refinement decisions in a multi-level design approach.

1.2.3 Semi-Formal Verification Technique

It is a well-established fact that classical simulation techniques, while scalable, are

unable to discover bugs in the hard to reach corner areas of nowadays complex

design space. Formal verification, on the other hand, provides the coverage, but

does not efficiently scale to large designs. Due to this complementary nature of

available verification techniques, hybrid, semi-formal, techniques were developed to

merge the advantages of simulation and formal method-based system verification

techniques. Nowadays, the most widely used semi-formal verification technique is

symbolic simulation [22].

9

Symbolic Simulation

In digital system design, symbolic simulation encodes and evaluates system signals as

symbolic expressions. For example, considering the circuit in Figure 1.4, to simulate

the circuit, we need to evaluate 23 concrete sets of inputs. However, using symbolic

simulation by replacing inputs by the symbols a, b and c, the output symbolic

expression can be evaluated in a single run of the simulation engine. The symbolic

expression (a.b+b’.c) represents the value of the output for all 8 sets of inputs.

Figure 1.4: Symbolic Simulation Illustration Circuit.

From the verification point of view, replacing the expensive numerical simu-

lations with symbolic simulation is another hybrid verification technique. The idea

behind symbolic simulation is to significantly minimize the number of simulation

test vectors, for the same coverage, by using symbols instead of explicit test vectors.

In symbolic simulation, the stimulus applies symbols as inputs to the simulation

model. During simulation, the internal variables and outputs are computed as sym-

bolic expressions of the input variables. In order to check for correctness, the output

expression is compared with the expected output expression for logic equivalence.

Due to its efficiency, symbolic simulation techniques can be used to compare

high level design descriptions at different levels of abstraction. This is called sym-

bolic equivalence checking. Figure 1.5 shows a typical symbolic equivalence checking

system. This system, in principle, is similar to the classical equivalence checking sys-

tem. Symbolic inputs and outputs are used to evaluate the corresponding functional

area of each of the system descriptions (shown in the figure as C 1, C 2, C 1’ and

C 2’). Then advanced decision procedures are used to decide about the equivalence

10

of the generated equivalence traces, hence, the functional equivalence of the models.

Figure 1.5: A Typical Symbolic Equivalence Checking System.

1.3 Related Work

Due to the increase in size and complexity of telecommunication hardware applica-

tions, major advances in design methodologies and automation occurred. The main

trend to face this challenge is to use a top down multilevel design approach. In [12],

Deb et al proposed a Transaction Level Modeling (TLM) based design methodology.

In this work, the design process starts by writing a system level description of the

system in C or Matlab. Then a series of design decisions are taken to refine the

model into more realistic ones in terms of computation and communication struc-

tures. The authors of [12] defined systematically three transaction level models,

which reside at different levels of abstraction between the functional and the im-

plementation model of a digital signal processing (DSP) system. They are Process

Transaction Model, System Transaction Model and Bus Transaction Model.

11

In [6], Fujita et al presented a similar multi-level system design methodol-

ogy. They discussed the proposed methodology in the context of C/C++ based

design and other system design languages like SpecC [35] and SystemC [29]. The

major levels specified in this work are Functional Model, Architecture Model and

Communication Model.

In industry, various leaders in telecommunications follow a multilevel design

process that starts with highly abstracted functional models of the system. In [23],

Altera presented a framework called “Altera DSP Builder” to transfer functional

description in Matlab/Simulink of DSP systems into Alteraś FPGA Hardware im-

plementation. Altera shows the application guidelines of this framework to physical

layer implementation of the WiMax OFDMA modem.

In [17] [18] STMicroelectronics presented a complete framework for designing

DSP systems using a set of design refinements that are applied on C/C++ descrip-

tions of the target system. The WiMax OFDMA modem PHY layer implementation

[19], our case study in this thesis, is a direct application of the multi-level system

design framework.

There are many proposed system level models of the WiMax modem. In [13],

the authors presented a high level model of the WiMax modem using Transaction

Level modeling (TLM) in SystemC. Jie He et al provided in [14] a system-level

time domain behavioral model for a mobile WiMax transceiver. Their model was

implemented in Matlab/Simulink. The main purpose of this model is to be used

for evaluating the functionality and the performance of design alternatives at higher

levels of abstraction.

This literature survey shows that multi-level design and high-level (system-

level) design approaches are widely accepted in VLSI and SoC designs. Thus, func-

tional verification in those levels is very important since designers sometimes need

to go back to high-level or system-level when functional bugs are found in the later

design phases such as RTL or gate-level. This implies that efficient verification

12

methods for high-level designs can significantly improve the design productivity by

detecting more bugs in high-level.

1.3.1 WiMax and OFDM PHY Verification

WiMax physical layer designers chose to use the Orthogonal Frequency Division

Multiplexing (OFDM) technology. This technology is also used in designing the

physical layer of Wi-Fi modems. There have been some active industrial and research

contributions to address the OFDM physical layer verification problem.

In [26], Agilent Technologies present their WiMax design and verification kit.

This kit includes the reference values and measurements to which the final product

should conform in order to be a WiMax certified product. This verification kit

depends on pure simulation techniques to verify the correctness of the system.

Chiang et al used SystemVerilog to validate the physical access layer of WiMax

systems [25]. Again, their methodology proposes simulation as the verification tech-

nology. However they improved the simulation process by using SystemVerilog to

generate random and valid test frames for the WiMax modem.

In [27], Nasser formally specified and verified an implementation of the Or-

thogonal Frequency Division Multiplexing (OFDM) Physical Layer using theorem

proving techniques based on the HOL (Higher Order Logic) system. In his work

he followed a framework, developed at Concordia University, incorporating formal

methods in the design flow of digital signal processing (DSP) systems in a rigorous

way. This methodology addressed the verification problem at the register transfer

level (RTL).

The verification of the WiMax modem design at high levels of abstraction is

still an open problem. Due to the complexity of the design of the WiMax physical

layer and its dynamic operation modes, it is a challenging task to formally spec-

ify and verify the design efficiently at all levels of abstraction. We focus on the

verification problem of the functional and architecture levels of the WiMax design.

13

1.3.2 Equivalence Checking

In [3], Ritter et al proposed a new symbolic simulation based methodology to verify

the equivalence of design descriptions at register transfer level. In this methodology,

information on internal equivalent point pairs (verification objectives) is collected

to verify the output equivalence. Although this methodology is efficient, it requires

more knowledge about the internal implementation of the system in order to identify

the equivalence points. In addition, this method focuses on designs at lower levels of

abstraction and relies on binary expressions which are not adequate to reason about

word-level variables in high level designs.

In the field of formal software verification, Matsumoto et al presented in [2] an

equivalence checking method for two C descriptions. Their method uses symbolic

simulation to prove the equivalence of all variables in the descriptions. In addition,

the method identifies textual differences between descriptions to reduce the number

of equivalence checking tests among variables and increase the speed of the process.

We use a similar concept to improve the performance of our methodology to compare

high level descriptions of hardware designs.

In [11], Abdi et al presented a formal method to verify system model level

transformations in a multilevel design methodology paradigm. In this work, a model

algebra (MA) is defined and used to describe the systems to be checked for equiva-

lence. Then (MA) expressions of the system are manipulated to realize the model

transformations. Finally, the equivalence of the models is checked by proving the

correctness of the encountered model transformations. The only limitation of this

methodology is that it defines a set of rules (laws) that are used to transform one

model into a functionally equivalent one. If the logical transformations between two

models does not use those predefined rules, then the correctness of this transforma-

tion cannot be proven. This bounds the application to the set of supported design

methodologies and model transformations. This work focuses on the correctness

of the transitions rather than the functional correctness of the transformed models

14

themselves.

Fujita et al [6] proposed an algorithm to verify the equivalence of high level

design description in C/C++ using symbolic simulation. Their algorithm identifies

functional differences between descriptions by looking at the corresponding input,

output and internal signals of the two models. It also uses identification of tex-

tual differences in symbolic traces to reduce the number of equivalence checking

operations.

All this research relies on symbolic simulation to compare similarities between

different descriptions of the system under test. We also follow a symbolic simulation

paradigm. However, we use a higher level of symbolic simulation that is based on

sequence of recurrence equations (SRE) and pattern matching. In [1], the notion of

recurrence equation is extended to describe digital systems for formal verification

purposes. Due to the flexibility and ease of describing the functionality of systems

at higher levels of abstraction using SRE, it is more adequate for the multilevel

design methodology. In addition, the powerful mathematical reasoning developed

in the symbolic algebra and recurrence equations supports the verification process

and decision procedures.

1.3.3 Property Checking

In [24], the authors proposed a symbolic simulation methodology to verify Property

Specification Language (PSL) [37] properties in VHDL system descriptions. The

advantage in their proposed methodology is that it uses word-level variables and it

does not depend on binary decomposition of variables and BDD representation of

assertions. This increases the scalability of the verification technique to larger and

more complex designs. In fact, it is one of the strong points of symbolic simulation

that it supports word-level simulation and reasoning.

In [6], the authors also proposed a methodology to verify synchronization and

15

concurrency properties in high level design descriptions. In their methodology, tim-

ing constraints (properties) are written in SpecC [35] as equalities and inequalities.

Then reachability analysis of the model is performed to find error states. Finally,

integer linear programming (ILP) solvers [6] are used to evaluate timing constraints.

This methodology can also be applied to other liveness and safety properties of the

system.

In [15] and [16], Zaki et al used symbolic simulation and SRE to verify proper-

ties in continuous systems and Analog and Mixed Signal (AMS) systems in partic-

ular. This methodology showed great results in terms of speed of system modeling

for verification, speed of the verification and the coverage of the verification. This

success in the AMS field inspired us in the field of system level verification of digital

systems.

1.4 Proposed Verification Methodology

The main objective of this thesis is to verify STMicroelectronics WiMax modem

physical layer design at higher levels of abstraction. The verification problem of

WiMax is a challenging task due to the following reasons:

• The WiMax specification is complex. The IEEE 802.16 standard [38] that

specifies the physical and MAC layers of the WiMax OFDM modem is 900

pages long!

• The WiMax modem implementation is left totally to the designer which may

introduce unexpected bugs.

• The WiMax modem operation is highly dynamic and complex due to various

operation modes supported by the modem.

The WiMax modem implementation follows a multi-level design paradigm.

An efficient verification methodology that integrates with today’s multi-level design

16

process of complex SoC is needed. And this verification has to meet the following

characteristics and challenges:

• Efficient internal modeling technique that can scale to large system function-

ality.

• Efficient verification methodology that supports the large number of design

refinements and backtracking at different levels of abstraction.

• Powerful mathematical reasoning that supports the word-level signal verifica-

tion process at high levels of abstraction.

• Exhaustive methodology that provides enough coverage of increasingly com-

plex designs.

To address those issues we propose the utilization of a multi-level semi-formal

methodology. Figure 1.6 shows a basic block diagram of the proposed methodology.

First, key system specifications (properties) of the system under verification are

written using Sequences of Recurrence Equations (SRE)s. Then, model descriptions

of the design under verification at each level of abstraction are translated into SREs

as well. Finally, two complementary verification processes are used on those models.

The first one uses symbolic simulation to verify the conformance of SRE models to

key features of the system, written in the first step. The second verification process

also uses symbolic simulation to prove the functional equivalence of SRE models,

hence the correctness of incremental design refinement. This methodology guaran-

tees the verification coverage of the design refinements at each level of abstraction

and corner specification points in the design.

In this thesis, we present the application of our proposed methodology to the

functional and architectural models of STMicroelectronics WiMax OFDM modem

[19].

17

Figure 1.6: Proposed Verification Methodology Framework.

1.5 Thesis Contributions

In this thesis, we present the utilization of semi-formal functional verification method-

ologies to verify high level descriptions of WiMax system design in the multi-level

design paradigm. We applied this methodology on the design of STMicroelectronics

WiMax modem physical layer. Specifically, we focused on the verification of three de-

sign models of this system, one functional level description (executable specification)

and two design refinements of architectural level descriptions. The contributions of

this thesis can be summarized as follows:

• A symbolic simulation based property checking methodology to verify the con-

formance of system models at the functional and architecture levels of abstrac-

tion with key system properties. We successfully utilized this methodology to

verify the conformance of a WiMax PHY layer implementation provided by

STMicroelectronics with key WiMax system properties, based on the IEEE

802.16 (WiMax) standard [38]. We applied this methodology on the three

functional and architectural level models.

18

• A symbolic simulation based equivalence verification methodology to verify the

functional equivalence of two system models at the functional and architecture

levels of abstraction. We successfully utilized this methodology to verify the

functional equivalence of WiMax PHY system models at different levels of

abstraction. We verified the equivalence of the functional model and the first

architectural model. We also verified the equivalence of the two architectural

models.

1.6 Thesis Outline

The rest of the thesis is organized as follows: Background information about WiMax

IEEE 802.16 standard and a description of the basic components of WiMax modem

physical layer is presented in Chapter 2. In this chapter we also discuss the verifi-

cation goals based on the WiMax standard. In addition, an overview of STMicro-

electronics WiMax modem design process and main functional blocks are presented.

Chapter 3 explains in detail our proposed methodologies based on equivalence and

property checking. The chapter also includes some preliminary mathematical back-

ground about symbolic simulation and sequence of recurrence equations. In Chapter

4, we describe the modeling and verification of STMicroelectronics WiMax modem

using the proposed methodology. Experimental results of the process are also dis-

cussed in this chapter. Finally, Chapter 5 concludes the thesis and discusses future

directions of our work.

19

Chapter 2

IEEE 802.16 Standard and ST

WiMax Design Overview

This chapter will give a brief overview of the WiMax IEEE 802.16 standard and

the capabilities that this technology enables. It will also provide some important

background information about the main components in the physical layer of an IEEE

802.16 modem. This chapter will also provide an overview of STMicroelectronics

(ST) WiMax modem design methodology, verification goals and main components.

2.1 WiMax IEEE 802.16 Standard Overview

The IEEE 802.16 standard was designed for fixed broadband wireless access to the

local and metropolitan area networks (MAN). Although the 802.16 family of stan-

dards is officially called WirelessMAN in IEEE, it has been commercialized under the

name “WiMAX” (for “Worldwide Interoperability for Microwave Access”) by the

WiMAX Forum industry alliance. The Forum promotes and certifies compatibility

and interoperability of products based on the IEEE 802.16 standards.

IEEE802.16 systems are capable of transmitting and receiving shared data at

rates up to 120 Mbps for Line of Sight (LOS) transmission and 70 Mbps Non-Line

20

of Sight NLOS. This puts the performance of the air interface comparable to that

of cable, DSL or T1 systems. For example it can simultaneously support more than

60 businesses at T1 level and hundreds of homes with DSL rate connectivity at 20

MHz bandwidth [5]. In addition to those very high data rates, IEEE 802.16 systems

is capable of providing:

• Long range operation: radius up to 30 miles

• Guaranteed service levels and Quality of Service (QoS) control.

• Superior scalability due to advanced multiplexing and link sharing techniques.

• Routable networks within existing wireless solutions such as WiFi.

• Cost savings and quick network setup compared to wired solutions.

Typical commercial sector applications for IEEE 802.16 include a cellular back-

bone. The robust bandwidth management schemes of the IEEE 802.16 makes it a

good replacement of leased wire lines or microwave links as a cellular backbone. This

technology also provides a very good solution for businesses that relocate frequently

within a metropolitan area, such as construction companies. The broadband wire-

less service can be very quickly provided to these companies in a very short time

as they move from one location to another without the need to re-wire. Current

research in the WiMax applications area focuses on higher reliability networks and

on Enhancements to Support Machine-to-Machine Applications [5].

This long list of advantages in the WiMax technology imposes challenges and

complications on both network deployment and hardware system design. In this

thesis we will focus on the hardware design and verification part of the story. Specif-

ically, we will address the issue of verifying the design correctness of the physical

layer (PHY) of the WiMax modem.

21

2.2 WiMax Modem Physical Layer (PHY)

The IEEE 802.16 standard essentially standardizes two aspects of the air interface

- the physical layer (PHY) and the Media Access Control layer (MAC). This sec-

tion provides an overview of the technology employed in the physical layer in the

specification.

WiMax uses Scalable OFDMA (Orthogonal Frequency Division Multiple Ac-

cess) technique to carry data, supporting channel bandwidths between 1.25 MHz

and 20 MHz, with up to 2048 sub-carriers. This technique distributes data over a

large number of carriers separated at precise frequencies. The orthogonality pro-

vided by the spacing in the OFDMA technique prevents the demodulators from

seeing frequencies other than their own. The benefits of OFDM are the high spec-

tral efficiency, resiliency to Radio Frequency (RF) interference, and lower multi-path

distortion [7].

The IEEE 802.16 standard utilizes modulation using either:

• Quadrature phase shift keying (QPSK).

• 16-bit quadrature amplitude modulation (16 QAM).

• 64-bit quadrature amplitude modulation (64 QAM).

A unique feature of the IEEE 802.16 standard is its use of adaptive burst

profiling. Adaptive burst profiling allows the radio to make adjustments to the

modulation and coding schemes being used in response to changing environmental

conditions and the resulting signal quality [8]. Systems using adaptive burst profiling

constantly monitor signal quality. Adaptive adjustments on a frame by frame basis

can then be made by shifting between more efficient and less robust QAM to less

efficient but more robust QPSK when needed.

In downlink communication, that is when one base station (BS) talks to mul-

tiple subscriber stations (SS)s, time division multiplexing (TDM) is used [8]. Each

22

uplink channel is divided into several time slots and these slots are dynamically

assigned based on the moment to moment needs of the systems by the MAC layer

of the BS.

Both time division duplexing (TDD) and frequency division duplexing (FDD)

are allowed in the IEEE 802.16 standard. In TDD, the uplink and downlink take

turns transmitting on a shared channel, whereas FDD allocates separate channels for

uplink and downlink. The standard also allows half duplex FDD where the uplink

and the downlink use one channel similar to TDD.

2.2.1 Error Control

Error control techniques are very important in the design and verification process

of the WiMax modem. Error control blocks constitute the largest portion of the

physical layer. The IEEE 802.16 standard uses two main methods of error control

in the PHY layer design. They are: Forward Error Correction (FEC) and Automatic

Retransmission Request (ARQ).

Forward Error Correction

FEC techniques typically use error-correcting codes that can detect with high prob-

ability the error location. The most commonly used FEC scheme in IEEE 802.16

utilizes Reed-Solomon (RS) based on the Galois field (GF) 256 code. Turbo code

(TC) is another more robust scheme that can be used to either increase the range of

the BS or to increase the throughput [8]. In Reed-Solomon error correction codes, a

polynomial is first constructed from the data symbols. Then an over-sampled plot of

this polynomial is transmitted rather than the original symbols themselves. Because

of the redundant information contained in the over-sampled data, it is possible to

reconstruct the original polynomial and thus the data symbols. The degree of error

tolerated by an error correcting code varies from code to code [9]. After applying the

error-correcting codes, the stream of Reed Solomon encoded data blocks is passed

23

through a rate compatible Convolutional Code (CC) block to interleave the data.

Here a code rate can be defined for convolutional codes as well. If there are k bits

per second input to the convolutional encoder and the output is n bits per second,

the code rate is k/n. more details about error correction blocks will be discussed in

the next section when we discuss STMicroelectronics WiMax modem design.

Hybrid Automatic Retransmission Request (HARQ)

The HARQ technique allows retransmission of individual bits of data that may have

been lost in the original transmission. This allows for a possibility to correct errors

before the data is sent to a higher layer for processing [38].

2.2.2 Framing

Frame durations of 0.5, 1 or 2 milliseconds are specified in the physical layer of

the IEEE 802.16. Each frame is further divided into physical slots each of which is

4-QAM symbols long. The details of the frame structure is out of the scope of this

thesis. However, it is very important to note that the data frame in the physical layer

in IEEE 802.16 is divided into control section and payload. The control section of

the frame provides SSs with the characteristics of the downlink channel and provides

BSs with the characteristics of the uplink channel [8].

2.2.3 Transmission Convergence (TC) Sublayer

The TC sublayer exists between the PHY and the MAC. The TC sublayer takes

variable length MAC protocol data units (PDU) and organizes them within fixed

length FEC blocks prior to transmission. A 1-byte pointer is then added at the

beginning of the TC PDU to indicate the first byte of the next MAC PDU within

the TC PDU. In the event of lost data transmissions, this pointer allows for resyn-

chronization between the SS and the BS [8].

24

2.3 STMicroelectronics WiMax OFDMA Trans-

mitter Overview

In this section we will provide an overview of ST WiMax modem. An overview of

the WiMax Wireless-MAN transmitter architecture is shown in Figure 2.1 [10]. In

summary the different data processing steps are:

1. Randomization: scrambling is used to avoid long sequence of 0s or 1s. This

improves the coding performance in the next steps.

2. Convolution Coding: first part of the FEC processing. It adds redundancy to

the signal to help identify error locations in the transmitted data. This coder

is implemented as a Reed-Solomon Coder and a Convolutional Coder.

3. Puncturing: Second part of the FEC processing. It is used to reduce the

number of bits to be transmitted based on coding rate.

4. Interleaving: changes bit ordering to minimize impact of burst transfer error

impact (e.g., fading, signal level drop or other RF conditions).

5. Modulation: mapping bit on carrier amplitude, depending on the QPSK,

16QAM or 64QAM mode.

6. Burst mapping: maps modulated amplitude on specific subcarrier used for

data, depending on the subframe zone defined by the OFDMA burst mapper.

7. Pilot insertion map pilot amplitude on subcarrier used for pilot.

8. Inverse FFT: generate signal in time domain from the subcarrier amplitude,

for each OFDMA symbol.

9. Insert guard period: add a guard time to each OFDMA symbol.

25

Figure 2.1: WiMax Wireless-MAN Transmitter Architecture.

The receiver architecture is mainly the inverse of the transmitter with at least

the following additional processing:

• Data decoding (the inverse of convolution encoding) is more complex with

respect to processing complexity.

• Require extra processing for frequency synchronization and equalization.

2.3.1 WiMax Transceiver Major Processing Blocks

STMicroelectronics have divided the Transmitter/Receiver into each one of the ma-

jor processing blocks. This section will provide an overview of the scope of each of

those processing blocks.

26

Transmitter

• Data source: Data source is a variable rate random data generator. De-

pending on preset parameters, the blocks will generate a certain amount of

data at each sampling time. This block will not be part of the mapped blocks.

The application rate and throughput is taken into account to set the sampling

time.

• Modulator bank blocks: This block includes all algorithms related to chan-

nel coding. It is composed of seven subsystems, each one representing the

modulation mode mandatory in the WiMax Wireless-MAN OFDM [38].Only

one subsystem is active at any point of time. A control signal is used to enable

a specific subsystem (modulation mode) dynamically during the operation of

the modem. An RS-CC encoder followed by interleaving and digital modula-

tion blocks compose each subsystem. RS block encodes an input stream vector

using an (N, K) Reed-Solomon encoder. For full description of each block see

[38].

• OFDM frame assembly: The frame assembly is an example of simple oper-

ation on data streams. Those operations are selective vertical and horizontal

concatenation. Elementary operations on streams could be regarded as spe-

cialized instructions to the processing unit.

• IFFT: Once the bits are mapped and the frame is assembled, a 256 points

IFFT block moves information from frequency domain to time domain.

Receiver

• FTT: 256 points FTT block extracts the amplitude value of each subcarrier.

• Channel estimation and equalization: Channel estimation is responsible

of estimating the channel using the pilot and/or preamble. The estimated

27

channel is used to perform data equalization.

• Frame disassembly: This block manipulates the data stream to disassemble

the frame by removing the preamble and pilots.

• Demodulator bank: It implements the inverse operation of the modula-

tor bank. For each modulation mode a chain of processing blocks is acti-

vated. Each processing chain is formed by a demodulator followed by a de-

interleaving, zero padding Viterbi decoder and Reed Solomon decoder.

ST’s implementation of the physical layer model of the WiMax is an extension

of a WiFi OFDM model. The burst mapping step is the main difference between the

two models. The mapping is simpler in OFDM than OFDMA. OFDMA supports

many more options: different zone types, further combinations of encoding and

modulation (up to 52 combinations of encoding and modulation are supported in

the IEEE 802.16 standard [38], yet only 7 are mandatory, as in the case of OFDM).

Table 2.1 shows the mandatory modes of operation in the WiMax system.

Table 2.1: WiMax Supported FEC Code Types

Value Modulation Encoding Scheme Puncturing Mode
0 QPSK Convolution Coding (CC) 1/2
1 QPSK (CC) 3/4
2 16-QAM (CC) 1/2
3 16-QAM (CC) 3/4
4 64-QAM (CC) 1/2
5 64-QAM (CC) 2/3
6 64-QAM (CC) 3/4

2.3.2 Model Based Design Methodology

STMicroelectronics follow model-based design methodology. In this design method-

ology a set of design refinements are performed from stage to stage in the design

28

process. ST’s model-bases design methodology for embedded systems is explained

in details in [42].

The WiMax Transmitter design that was provided by ST has been provided as

an example for the functional requirement mapping into hardware platform. This

mapping proposal is not bound to any ST product. We identified three refined

models of abstraction in the provided design. We will discuss those models and

their implementation details in Chapter 4.

• model 1: In this model all functional blocks of the outer modem are executed

sequentially in a single thread. No parallelism or communication structures

are involved in this modeling level (see Figure 2.2).

Figure 2.2: WiMax Transmitter Model - Sequential.

• model 2: In this experiment, the transmit-only part of the outer modem is

mapped to 8 STxP70 processors - one processor per block - using multi-STxP

FIFO Application Programming Interface (API) implementation [17] as shown

in Figure 2.3.

• model 3:The transmit-only part of the outer modem is mapped to 4 STxP70

processors - one for the input block, one for the output block, and two for a

partitioning of the six core functional blocks - using multi-STxP FIFO API

29

Figure 2.3: WiMax Transmitter Model - FIFO Based.

implementation, and a dynamic scheduler to distribute the tasks over the

computing resources (see Figure 2.4).

Figure 2.4: WiMax Transmitter Model - FIFO and Scheduler.

ST’s design framework includes APIs for block definition, block configuration,

and block communication as well as a run-time API for block execution. To un-

derstand some high-level application characteristics, we studied a simplified model

of a WiMax Wireless-MAN OFDMA transceiver with a simple channel estimation

30

algorithm implemented in Matlab/Simulink. The model uses the default Simulink

blocks for digital transmission (channel coding, interleaving, modulation and FFT

processing).

The focus of our verification work will be on the modulation/demodulation

and the channel estimation blocks. After identifying the three refined models of

ST’s WiMax modem. Our verification objectives can now be defined more clearly

as:

• Prove the functional equivalence between the three models which shows the

correctness of the refinement process.

• Prove the conformance of those models to the system specifications.

31

Chapter 3

Symbolic Simulation Based

Verification Methodology

In this chapter, we present a detailed description of the proposed verification method-

ology. The methodology is based on symbolic simulation of mathematical models

which are syntactically equivalent to the models under test. Symbolic simulation

is faster than numerical simulation which saves the time needed for the verification

process. Specially for systems with large computational data path components.

This chapter will start by brief mathematical preliminary background that is

needed to fully understand the verification tasks. Then it will describe in detail

the two main parts of the verification process, Equivalence Checking and Property

Checking, by discussing all needed theories and algorithms.

3.1 Preliminaries

In this section some mathematical preliminaries about important concepts will be

discussed. In particular, the focus will be on Symbolic Simulation and Sequence of

Recurrence Equations (SRE).

32

3.1.1 Symbolic Simulation

Symbolic simulation is a form of simulation where many possible executions of a

system are considered simultaneously. This is typically achieved by abstracting the

domain over which the simulation takes place. A symbolic variable can be used in

the simulation state representation in order to refer to multiple executions of the

system. For each possible evaluation of these variables, there is a concrete system

state that is being indirectly simulated. The symbolic simulation described in this

section relies on rewriting rules based on the algorithms developed in [1] for digital

systems. In the context of functional programming and symbolic expressions, we

define the following functions.

Definition: Substitution.

Let u and t be two distinct terms, and x a variable. We call x → t a substi-

tution rule. We use Replace(u, x → t), read replace in u any occurrence of x by t ,

to apply the rule x → t on the expression u.

The function Replace can be generalized to include a list of rules. ReplaceList

takes as arguments an expression expr and a list of substitution rules � = {�1,�2, ...,�n}.
It applies each rule sequentially on the expression. The symbolic simulation function

ReplaceRepeated(Expr;�) shown in the definition below is based on rewriting by

repetitive substitution, which applies recursively a set of rewriting rules � on an

expression Expr until a fixpoint is reached.

Definition: Repetitive Substitution.

Repetitive Substitution is defined using the following procedure:

ReplaceRepeated(expr;�) applies a set of rules � on an expression expr until

a fixpoint is reached as shown in the next definition.

Definition: Substitution Fixpoint. A substitution fixpoint FP (expr;�)
is obtained, if:

Replace(expr,�) ≡ Replace(Replace(expr,�),�)
Depending on the type of expressions, we distinguish the following kinds of rewriting

33

Algorithm 3.1 Repetitive Substitution

1: ReplaceRepeated(Expr;�);
2: Begin
3: repeat
4: expr1 = ReplaceList(expr,�)
5: expr = expr1
6: until FP (expr1,�)
7: End

rules:

• Polynomial Symbolic Expressions RMath: are rules intended for the simplifica-

tion of polynomial expressions (Rn[x]).

• Logical Symbolic Expressions RLogic: are rules intended for the simplification

of Boolean expressions and to eliminate obvious ones like (and(a, a) → a) and

(not(not(a)) → a).

• If-formula Expressions RIF : are rules intended for the simplification of com-

putations over If-formulae. The definition and properties of the IF function,

like reduction and distribution, are defined as follows:

IF Reduction: IF (x; y; y) → y

IF Distribution: f(A1, ..., IF (x, y, z), ..., An) →
IF (x, f(A1, ..., y, ..., An), f(A1, ..., z, ..., An))

3.1.2 Sequence of Recurrence Equations (SRE)

A recurrence equation or a difference equation is the discrete version of an analogue

differential equation. In conventional system analysis, recurrence equations are used

in the definition of relations between consecutive elements of a sequence. In [1], the

notion of recurrence equation is extended to describe digital circuits using the normal

form: generalized If-formula.

34

Definition: Generalized If-formula

In the context of symbolic expressions, the generalized If-formula is a class of

expressions that extend recurrence equations to describe digital systems. Let K be a

numerical domain (N,Z,Q,RandB), a generalized If-formula is one of the following:

• A variable Xi(n) or a constant C ∈ K

• Any arithmetical operation α ∈ {+,−,×,÷} between variables Xi(n) ∈ K

• A logical formula: any expression constructed using a set of variables Xi(n) ∈
B and logical operators: not, and, or, xor, nor . . . etc.

• A comparison formula: any expression constructed using a set of Xi(n) ∈ K

and comparison operator α ∈ {=, <>,<,=, >,=}.

• An expression IF(X, Y, Z), where X is a logical formula or a comparison

formula and Y, Z are any generalized If-formula. Here, IF(x, y, z): B ×K ×
K → K satisfies the axioms:

1. IF(True,X,Y) = X

2. IF(False,X,Y) =Y

Definition: A System of Recurrence Equations (SRE)

Consider a set of variables Xi(n) ∈ K, i ∈ V = 1...k, n ∈ Z, an SRE is a

system of the form:

Xi(n) = fi(Xj(n− γ)), (j, γ) ∈ εi, ∀n ∈ Z

where fi(Xj(n − γ)) is a generalized If-formula. The set εi is a finite non empty

subset of 1...k ×N . The integer γ is called the delay.

35

3.2 Equivalence Checking

The problem of the equivalence checking between a high-level and a lower description

level is a major challenge for system level design methodologies. We focus here on

the computational equivalence of models; two models are not equivalent from the

perspective of architecture but they still compute the same function. In particular

we establish a proof for the computational equivalence between different abstraction

models of the WiMax design.

The objective is to compare two descriptions of the system at deferent levels

of abstraction. The higher level is referred to as Specification Model (Spec) while the

lower description level is called Implementation Model (Imp). As shown in Figure

3.1. The first step in the equivalence checking process is to translate each of these

models to a mathematical model in terms of Systems of Recurrence Equations SRE

(Spec) for Spec and SRE (Imp) for Imp. Then, we execute each model for a certain

number of times using a rewriting based symbolic simulator.

The symbolic simulator is implemented inside the computer algebra system,

Mathematica 6.0 [4]. It is used as a symbolic computation engine and as database

of simplification rules. During symbolic simulation, a reduction is done on the

SRE model where recurrence equations are considered as rewriting rules. After

symbolic simulation,the obtained results are the symbolic traces of both models. The

verification is achieved by comparing the Spec trace with Imp trace using: Pattern

Matching and Equation solving in Symbolic Algebra. We chose Mathematica 6.0

because it has a very powerful computation engine. Also, it has many built in

functions that perform pattern matching and symbolic equation solving.

3.2.1 Symbolic Simulation Algorithm

The symbolic simulation algorithm used in the symbolic trace computation step is

based on rewriting by substitution. The idea is to compute the symbolic execution

36

Figure 3.1: Equivalence Checking Methodology.

trace of the SRE model after n simulation cycles. During each cycle, the symbolic

expressions of each design object are computed using a set of simplification rules.

This algorithm is based on repeated substitutions as defined in Algorithm 3.1. The

algorithm repeatedly applies a set of substitution rules R, until a fixed point is

reached. Three kinds of symbolic expressions are considered: Algebraic, Logical

and If-formula expressions. Each kind is associated with a set of rewriting rules:

RMath, RLogic and RIF .

• Algebraic expressions RMath: are Mathematica built-in rules intended for

the simplification of polynomial expressions (Rn[x]).

• Logical symbolic expressions RLogic: are rules intended for the simplifica-

tion of Boolean expressions and to eliminate obvious ones like (and(a,a)→ a)

and (not(not(a)) → a).

• If-formula expressions RIF : are rules intended for the simplification of

37

computations over If-formulas. The definition and properties of the IF func-

tion, like reduction and distribution, are used.

We add to these rules the trace of the equation at time n-1 that we consider

as rewriting rules of the time (n-1) see [1] for more details.

3.2.2 Verification of the Symbolic Trace

The result of the symbolic simulation is a set of expressions that represent the sym-

bolic trace of the system after n cycles. The comparison of expressions is achieved

using: Pattern Matching [39] and Equational Theorem Proving [40]. Pattern match-

ing is used to check that expressions have the desired structure, to find relevant

structure, and to substitute the matching part with other expressions.In Mathe-

matica, it is presented as of a regular expression language (Mathematica pattern

language) and a set of matching functions. The designer writes properties of the

form: P = verify (Ui,Si(tn)) where Ui is a regular expression that describes the ex-

pected symbolic expression of a simulated object. Si(tn) is the symbolic simulation

result of the element Si after tn simulation cycles.

Equational Theorem proving is an automatic technique that tries a wide range

of transformations on an expression and returns the simplest form it finds. One of

the more successful approaches to equational reasoning is the use of equations as

one-way rewrite rules, so that a formula can be simplified by repeatedly replacing

an instance of the left-hand side of a rule by its right-hand side until a simplest

possible form is obtained.

3.2.3 Verification of Computational Equivalence

Algorithm 3.2 presents the used Computational Equivalence checking algorithm.

38

Algorithm 3.2 Computational Equivalence Checking

1: t = t0;
2: φ(t0) = {Specj(t0)} 0 < j ≤ m;
3: while t ≤ KSpec do
4: φ(t) = SymSim Step(φ)
5: If NoDeltaCycle then t = t+1
6: end while
7: SPEC = φ(t0 +KSpec)
8: t = t0;
9: ϕ(t0) = {Impi(t0)} 0 < i ≤ m;
10: while t ≤ KImp do
11: ϕ(t) = SymSim Step(ϕ)
12: If NoDeltaCycle then t = t+1
13: end while
14: IMPL = ReplaceRepeated (ϕ(t0 +KImp), RAbst)
15: MatchQ (ϕ(T), φ(T)); // T = t0 + k

Computing the Trace of the SPEC

(Lines 1-7): Line 1 first initializes the simulation time t to t0 (equal to zero in most

cases). The purpose of line 2 is to store the initial SRE of the SPEC model in the

variable φ(t0). Lines 3-6 repeatedly execute a symbolic simulation for KSpec steps

using the symbolic simulation algorithm; the time is advanced only if no more delta

cycles are needed. KSpec is determined by the verifier and it depends on the temporal

complexity of the SRE description of the system. For the WiMax application we

set KSpec to 1 because the SRE describing the system is of first order. The variable

SPEC stores the computed expressions in line 7. This is equivalent to a new SRE

where the time variable is changed to T = t0 +KSpec. This traced SRE will be used

to compare the traces in line 15.

Computing the Trace of the IMPL

(Lines 8-14): In the same way, the trace of the IMPL model is computed using a

symbolic simulation for KImp steps (same as KSpec). The new SRE where the time

variable is changed to T = t0 +KImp is stored to be used to compare the trace of

39

the IMPL model in line 15. In fact, as the IMPL model is more detailed, the direct

comparison is not correct. Thus, we need to add some abstraction rules to refine

the computed expressions before comparing the results with SPEC. These rewriting

rules RAbst are intended to eliminate calls for functions that convert to integers and

rename signals in the IMPL model by their correspondent in SPEC. In line 14, these

abstracted expressions are stored in the variable IMPL.

Comparing Both Traces

(Line 15): Using pattern matching and algebraic verification, we verify that symbolic

expressions in SPEC can be substituted by variables computed in IMPL. The traced

symbolic expressions are put in a normal form, and then verified using the function

MatchQ. This is a built in function in the computer algebra system, Mathematica 6.0

[4] and it implements the Pattern Matching and the Equational Theorem Proving. If

the verification returns true, then computational equivalence is checked. Otherwise,

the pattern matcher gives the non equivalent patterns.

3.3 Property Checking

Our methodology aims to prove that a system description satisfies a set of prop-

erties using pattern matching and equation solving in Symbolic Algebra. This is

archived via several steps as shown in Figure 3.2. The system is described using

recurrence equations. The properties are algebraic relations between signals of the

system. The system description and properties are input to a symbolic simulator

that performs a set of transformations by rewriting rules in order to obtain an SRE.

These are combined recurrence relations that describe each property blended di-

rectly by the behavior of the system. The next step is to use Pattern Matching and

Equation solving in Symbolic Algebra which is defined over the normal structure

of the SRE. If the proof is obtained, then the property is verified. Otherwise, we

40

provide counterexamples for the non-proved properties.

Figure 3.2: Property Checking Methodology.

The proposed property checking approach is given in Algorithm 3.3 which is

described below.

Storing System Properties

(Line 1): Prop (IMPL) is the set of properties of the system that we want to verify.

Those properties are written manually as a system of recurrence equations (SRE).

Computing the Trace of IMPL

(Lines 2-8): Similar to what we have done in the equivalence checking part, the trace

of the IMPL model is computed using a symbolic simulation forKImp steps. In line 7

41

Algorithm 3.3 Property Checking

1: PROP = { Prop(IMPL) };
2: t = t0;
3: ϕ(t0) = {Impi(t0)} 0 < i ≤ m;
4: while t ≤ KImp do
5: ϕ(t) = SymSim Step(ϕ)
6: If NoDeltaCycle then t = t+1
7: end while
8: IMPL = ReplaceRepeated (ϕ(t0 +KImp), RAbst)
9: MatchQ (IMPL, PROP) // T = t0 + k

the new SRE where the time variable is changed to T = t0+KImp is stored in IMPL

to be used for property checking later. In fact, as the IMPL model is more detailed,

the direct property checking is not correct. Thus, we need to add some abstraction

rules to refine the computed expressions before comparing the results with PROP.

These rewriting rules RAbst are intended to eliminate calls for functions that convert

to integers and to rename signals in the IMPL model by their correspondent ones

in PROP. In line 8, these abstracted expressions are stored in the variable IMPL.

Comparing PROP and IMPL

(Line 9): Using pattern matching and algebraic verification, we verify that symbolic

expressions in PROP can be substituted by variables computed in IMPL. The traced

symbolic expressions are put in a normal form, and then verified using the function

MatchQ. If the verification returns True, then properties are checked. Otherwise,

the pattern matcher gives a counter example.

3.4 Summary

In this chapter we have discussed the detailed mathematical description of the two

approaches used in the verification process in this project, Symbolic Simulation

based Equivalence Checking and Symbolic Simulation based Property Checking.

42

We used those methods to form a verification framework for a specific case study,

the WiMax modem of STMicroelectronics.

We have described the main algorithms and mathematical characteristics of

the proposed methodology, which can be summarized in the following points:

• SRE are used to model systems at different levels of abstraction and they are

also used to model System Properties.

• Symbolic Simulation is used to compute Symbolic traces of the SRE models

of the system under test.

• Efficient symbolic equation solving and pattern matching algorithms are used

to prove the functional equivalence of the symbolic traces of each model, hence

the functional equivalence of the corresponding system descriptions. They

are used also to prove the conformance of those symbolic traces to the SRE

modeled properties.

43

Chapter 4

ST WiMax Modem Verification

In this chapter we will describe in details the application of the chosen methodology

on a WiMax modem design provided by STMicroelectronics.

The design complexity and wide range of functions and operational modes of

the WiMax modem made it a good case study to apply our proposed verification

methodologies. The objective of the project is to formally verify the WiMax modem

designed by STMicroelectronics. This includes the design’s conformance to the

specifications and the verification of the equivalence between the system models

implemented at different levels of abstraction.

ST provided us with three different C models of their proposed design, as

described in Chapter 2. Each one of those models is at a different level of abstraction.

They are:

• Model 1: Functional Level Model.

• Model 2: FIFO Based Process Transfer Model.

• Model 3: FIFO and Scheduler Based Process Transfer Model.

To achieve the goals of this project we applied the proposed verification method-

ology, described in Chapter 3.

44

We verified the functional equivalence of the first and second models and the

equivalence of the second and third model. We first wrote the SRE description of

each model using Mathematica. Then, we validated the correctness of their basic

functionality using sample numerical simulation. Next, we generated symbolic traces

for SRE models using symbolic simulation in Mathematica. Finally, we used Pattern

Matching on those symbolic traces to verify the functional equivalence of all SRE

models of the system (Algorithm 3.2). This equivalence implies the equivalence of

the corresponding C models.

We also verified the conformance of those models to sample important prop-

erties of the WiMax transmitter. We wrote those properties as an SRE. Then we

used Pattern Matching and Equational Solving Functions from Mathematica to ver-

ify those properties (Algorithm 3.3). The conformance of SRE models to those

properties implies also the conformance of the corresponding C models to the same

properties.

The modeling and verification experiments are divided into four main parts:

model realization, symbolic simulation, equivalence checking and property checking.

4.1 Model Realization

The first step in our verification methodology is to translate the models under test

from C models to SRE models. We used Mathematica 6.0 to write those SRE

models. We developed an SRE model for the WiMax modem corresponding to each

model of the three provided by STMicroelectronics as described in Chapter 2.

SRE Functional Level Model

Figure 4.1 shows the main building blocks of this model. First, we extracted the

equations representing each of the system functional blocks according to ST’s model.

Then, we used those equations to model all Forward Error Correction (FEC) blocks

45

using SRE. Finally, we connected those SRE blocks serially in the correct order

without using any extra communication components.

Figure 4.1: Functional Level Model.

FIFO Based Process Transfer Model

In this model, a FIFO structure is used for the communication between the func-

tional blocks of the system (see Figure 4.2). The main purpose of introducing FIFOs

in the system is to handle different timing requirements of the system blocks. The

current implementation of the system considers that all blocks have zero delay.

However, adding communication components to the system’s functional blocks is a

design decision which is important for more detailed system implementations. The

following subsection describes the main features of the implemented FIFO structure.

FIFO Structure

We Modeled the FIFO structure based on the generic model provided by

STMicroelectronics. This model implements the FIFO structure using the UNIX

semaphores [41]. In our design we replaced the UNIX semaphores with guard local

variables to synchronize access to different parts of the code. This determines the

behavior and the interface of the FIFO.

46

Figure 4.2: FIFO Based Process Transfer Model.

The FIFO used in the provided model supports only a single-writer-single-

reader (SWSR) mode, this means that at any point of time, only one process is

allowed to read from or write to the FIFO module. This FIFO supports four op-

erations as its basic API. Two operations are used to insert and retrieve data from

the FIFO. The other two operations are used by the processes to inquire about the

status of the FIFO (full or empty). Four parameters are used to describe the char-

acteristics of each instance of this FIFO structure (see Table 4.1 for the name and

description of each parameter and basic API of the FIFO structure).

47

Table 4.1: FIFO Design Details

FIFO Operation

Mode SWSR (single writer single reader mode)

FIFO Parameters

NBFIFOs Number of FIFOs in the system

FIFOCellSize Width of the FIFO cell (number of bits)

FIFONBCells Depth of the FIFO (number of cells in the FIFO)

FIFOsTail Pointer to the last populated cell of the FIFO

FIFO basic API

Push (data) Increments the FIFOsTail value and insert the data in

the new position.

Pop () Decrements the FIFOsTail value.

IsFull() Return True if the FIFOsTail value equals to the FI-

FONBCells.

IsEmpty() Return True if the FIFOsTail value equals to the 0.

We described the FIFO structure as a sequence of recurrence equations. the

SRE description of the FIFO module has one to one mapping with the model pro-

vided by STMicroelectronics. After implementing the FIFO in SRE, we make sure

that its basic functionality is correct. This is achieved by a simple numerical execu-

tion of the FIFO SRE code. Finally, this module was integrated into the complete

system SRE model.

FIFO and Scheduler based Process Transfer Model

The main feature of this model is mapping the functionality of more than one

functional block to a single processing element (resource) in the system. Figure 4.3

shows the structure of this model. This mapping is based on time sharing, where

48

each one of the functional blocks sharing the same processing element will have a

time slot to utilize the processor. To synchronize this time sharing of resources, a

dynamic scheduling module is attached to each processing element. The main task

of the dynamic scheduler is to assign the next time slot to a specific functional block.

The following subsection describes the dynamic scheduler unit.

Figure 4.3: FIFO and Scheduler Based Process Transfer Model.

Dynamic Scheduler

In our implementation of the scheduler we followed the generic scheduler model

provided by ST in the WiMax package. In this model, two of the CPUs need to be

associated with a dynamic scheduler; CPU#2 and CPU#3. The basic functionality

of the scheduler is to scan the functional blocks associated with a specific CPU in a

round robin manner with a predefined order of the blocks. Then it chooses the first

block which is ready for execution and marks it to have the control of the CPU in

the next time step.

It is important to mention that each functional block of the system can take one

of the following three atomic execution phases during the operation of the system:

1. Read: pops the input data blocks from the input FIFO.

49

2. Run: runs the block functionality on the input and computes the output.

3. Write: pushes the output data blocks to the output FIFO.

The block is considered to be ready for execution if it satisfies one of the

following conditions:

1. If the block is in the read execution phase and its input FIFO is not empty.

2. If the block is in the run execution phase.

3. If the block is in the write execution phase and its output FIFO is not full.

We described the dynamic scheduler as a sequence of recurrence equations.

Then the basic functionality of the module was validated using a simple numerical

execution of the SRE model. Finally, this module was integrated into the complete

system SRE model.

4.2 Symbolic Simulation

This is the second step in our verification methodology. Its main objective is to

symbolically simulate the SRE models developed in the first step and generate their

symbolic traces. Again we used Mathematica 6.0 as a rewriting engine to run our

symbolic simulation.

The WiMax modem system is a dynamic system that supports varies modes

of operation, Chapter 2 described briefly those modes of operation and their param-

eters values. Based on the system’s operation flexibility we divided the symbolic

simulation part into two phases. The first phase is called (Single Control Scenario).

In this phase we considered a default mode of operation of the system. In the sec-

ond phase (Multiple Control Scenarios) we coded the system so that it can work in

different modes.

50

4.2.1 Single Control Scenario

The main objective of this phase is to perform symbolic simulation of the three SRE

models of the WiMax modem. In this phase we have fixed the control signals of

the WiMax system to support mode 0 of operation according to the IEEE 802.16

standard (see Table 2.1).

We validated the correctness of the basic functionality of the SRE models

using numerical simulation. We simulated SRE models in Mathematica using 100

randomly generated numerical test vectors. Then we ran ST C++ models using

the same generated inputs. We compared the results and found that both ST and

SRE corresponding models are sending exactly the same sequence of signals. This

step is only performed to provide basic validation of the correctness of the manual

translation between C++ and SRE models.

Finally we completed this phase by computing symbolic traces of the three

SRE models using Mathematica.

Table 4.2 shows the time and memory utilization of the symbolic simulation

experiments. We can notice the following:

• While numerical simulations take a relatively long time to generate numerical

traces of 100 test vectors, symbolic simulation can compute symbolic traces

in a much shorter time. Knowing that a symbolic trace of a system covers

all possible input scenarios, we can say that symbolic simulation is definitely

more efficient.

• Memory requirements for both numerical and symbolic simulation are close.

Table 4.3 Summarizes SRE models coding requirements with respect to the

number of code lines and the number of SRE equations in the system.

51

Table 4.2: Numerical and Symbolic Simulation (Single Control Scenario)

Model Run Time (sec) Memory
C-Executable Functional Level
- Numerical Simulation, 100 iterations 3.21 sec 2.3 MB
SRE Functional Level (FL)
- Numerical Simulation, 100 iterations 10 sec 13.45
SRE Functional Level (FL)
- Symbolic Simulation 0.321 sec 13.6 MB
SRE Process Transfer Level (PTL-8)
(8 processors) 252.4 sec 16.54 MB
- Numerical Simulation, 100 iterations
SRE Process Transfer Level (PTL-8)
(8 processors) 5.17 sec 19.59 MB
- Symbolic Simulation
SRE Process Transfer Level (PTL-4)
(4 processors + scheduler) 266.4 sec 25.32 MB
- Numerical Simulation, 100 iterations
SRE Process Transfer Level (PTL-4)
(4 processors + scheduler) 5.26 sec 28.31 MB
- Symbolic Simulation

Table 4.3: Model Coding Requirements (Single Control Scenario)

Model SRE Eqns Code Lines
SRE Functional Level (FL) (1 Processor) 8 280
SRE Process Transfer Level (PTL-8)
(8 processors + FIFO) 46 772
SRE Process Transfer Level (PTL-4)
(4 processors + FIFO + scheduler) 50 882

4.2.2 Multiple Control Scenarios

In this phase we focused on adding variable control signals to the system. Those

control variables determine the systems mode of operation. The WiMax system

supports 52 different modes of operation. Each one of them is coded with a value

between 0 and 51, which is called FEC Code Type. The IEEE 802.16 standard

specifies that modes 0-6 are mandatory. We modeled the control signals required to

52

support those modes. Also, we rewrote the recurrence equation description of some

of the blocks to support these dynamic characteristics.

One of the design requirements by STMicroelectronics is to forward the control

information inband with the data. That means the control information will be set

at the traffic generator and then passed from one block to the other together with

the transmitted data. Each block extracts all required control information from its

input data at run time and decides about its functional behavior. Again we updated

our models to support this feature.

We validated the correctness of the basic functionality of our SRE models using

numerical simulation and comparison with the corresponding ST functional models.

We simulated each of the models for 100 test vectors with a random selection of

operation modes. All of the models gave the same numerical values to the one

transmitted by the original ST Model.

Finally, we generated symbolic traces for those models. Now, we have three

SRE models of the WiMax modem, each one can run in any of the supported

seven operation modes. So, we modified our symbolic simulation script so that it

enumerated all supported control scenarios and generated 7 symbolic traces for each

model. We call this “mixed simulation mode” because it uses both symbolic and

numerical simulation to generate the symbolic traces.

Table 4.4 shows the time and memory utilization of those experiments, which

shows the superiority of symbolic simulation over numerical simulation in terms of

time requirements.

Table 4.5 Summarizes the coding requirements of SRE models in this phase

with respect to the number of code lines and the number of SRE equations in the

system.

53

Table 4.4: Numerical and Mixed Simulation (Multiple Control Scenario)

.

Model Run Time (sec) Memory (MB)
SRE Functional Level (FL)
- Numerical Simulation, 100 iterations 10.1 10.11
SRE Functional Level (FL)
- Mixed Simulation 2.05 11.96
SRE Process Transfer Level (PTL-8)
(8 processors) 211.3 10.00
- Numerical Simulation, 10 iterations
SRE Process Transfer Level (PTL-8)
(8 processors) 33.70 12.91
- Mixed Simulation
SRE Process Transfer Level (PTL-4)
(4 processors. + scheduler) 222.3 11.44
- Numerical Simulation, 10 iterations
SRE Process Transfer Level (PTL-4)
(4 processors. + scheduler) 34.18 13.37
- Mixed Simulation

Table 4.5: Model Coding Requirements (Multiple Control Scenario)

Model SRE Eqns Code Lines
SRE Functional Level (FL)
(1 Processor) 8 290
SRE Process Transfer Level (PTL-8)
(8 processors + FIFO) 46 840
SRE Process Transfer Level (PTL-4)
(4 processors + FIFO + scheduler) 50 940

4.3 Equivalence Checking

In this part of the project we verified the computational equivalence between SRE

models of different levels of abstraction. We applied the Pattern Matching tech-

niques on the symbolic traces calculated by symbolic simulation.

We used Mathematica Pattern Matching built-in function to compare sym-

bolic traces as described in Algorithm 3.2. We conducted four equivalence checking

54

experiments to prove the following relations:

• Equivalence of Functional Model and FIFO based Process Transfer Model in

the Single Control scenario.

• Equivalence of FIFO based Process Transfer Model and FIFO and Scheduler

based Process Transfer Model in the Single Control scenario.

• Equivalence of Functional Model and FIFO based Process Transfer Model in

the Multiple Control scenario.

• Equivalence of FIFO based Process Transfer Model and FIFO and Scheduler

based Process Transfer Model in the Multiple Control scenario.

The results show that the SRE models at different levels of abstraction are

functionally equivalent. Therefore we concluded that the corresponding C models

are also functionally equivalent.

In order to grantee the basic functionality of our equivalence checking al-

gorithm, we injected one bug in one of the SRE models and reran the symbolic

simulation and equivalence checking experiment. The bug was injected in the SRE

FIFO based Process Transfer Model. We changed the functional description of the

mapping block. Then we ran the equivalence experiments again. Now, the results

showed non equivalence between the models and returned the nonequivalent sym-

bols from the model’s symbolic trace. By inspecting those symbols we found that

they were generated only at three modes of operation (0, 1, or 2) From these results

and by looking at Table 2.1 we concluded that the bug was injected in the mapping

block implementation only when its puncturing value equals 1/2.

Tables 4.6 and 4.7 summarize the performed equivalence and non equivalence

experiments along with their time and memory utilization results. By studying

those tables we conclude the following:

55

• The run time of the experiments is linearly proportional to the number of

control scenarios. This is interesting because other techniques have exponential

increase in time requirements when we increase the execution paths.

• Memory requirements of various experiments are comparable to each other.

• Since our verification technique depends on pattern matching we obtained

interesting results in the case of non-equivalence. Both time and memory

requirements stayed at the same rank as in the equivalence experiments.

Table 4.6: Equivalence Checking Experiments

Control Experiment Run Time Memory Result
Scenario (sec) (MB)

Functional Level (FL). vs.
Single Process Transfer Level (PTL-8) 5.17 19.59 Equivalent

Process Transfer Level (PTL-8) vs.
Single Process Transfer Level (PTL-4) 5.26 28.31 Equivalent

Functional Level (FL) vs.
Multiple Process Transfer Level (PTL-8) 33.70 12.91 Equivalent

Process Transfer Level (PTL-8) vs.
Multiple Process Transfer Level (PTL-4) 34.18 13.37 Equivalent

Table 4.7: Equivalence Checking Experiments - Injected Bug

Control Experiment Run Time Memory Result
Scenario (sec) (MB)

Functional Level (FL). vs.
Single Process Transfer Level (PTL-8) 4.96 20.88 Not-Equiv

Process Transfer Level (PTL-8) vs.
Single Process Transfer Level (PTL-4) 6.21 27.21 Not-Equiv

Functional Level (FL) vs.
Multiple Process Transfer Level (PTL-8) 32.10 14.51 Not-Equiv

Process Transfer Level (PTL-8) vs.
Multiple Process Transfer Level (PTL-4) 30.26 15.67 Not-Equiv

56

It is to be noted that the results in Tables 4.6 and 4.7 show the time and

memory utilization for the complete equivalence checking process (i.e. symbolic

trace computation and pattern matching).

4.4 Property Checking

The purpose of this part of the project is to use the Property Checking algorithm

(Algorithm 3.3) to verify the conformance of the WiMax models to some important

properties of the system and generate counterexample for properties that are verified

to be false.

We divided the properties with respect to their scope into three categories:

1. Global Properties: specify a functionality of the whole system.

2. Local Properties: specify a functionality of a single block.

3. Control Properties: specify a functionality of a single control configuration

(Code Type in the WiMax case)

We wrote a sample property of each of those main categories:

• P1: Eventually all Input Data Bits will be transmitted

• P2: Eventually all Input Data Bits with the positions specified by the ran-

domizer bit list will be flipped.

• P3: Eventually the Appropriate Puncturing Function will be applied to all

Convolution Coded Data Bits in the same order.

Next, we translated those properties into SRE (see Appendix A.5 for a sample

property written in a form of SRE). After that we applied our proposed Property

Checking Algorithm to verify their correctness according to the symbolic traces

calculated in the symbolic simulation of the model under test. The results of our

57

experiments show that all tested properties are verified to be true under the three

models in both single and multiple control scenarios. This shows the conformance

of the corresponding C models from STMicroelectronics to the verified properties.

We also repeated our experiments after injecting the following bugs into all

the SRE models.

1. Cut one of the data lines between two of the internal blocks.

2. Changed the randomizer reference array.

3. Changed the condition checker at the mapping block that specifies the block

behavior when the control scenario changes.

The results of the simulation detected all the bugs and returned counterexam-

ples that specify the failed property and print the wrong signal value.

Tables 4.8, 4.9, 4.10 and 4.11 show all property checking experiments results,

together with their time and memory requirements. By looking at those results we

can conclude the following:

1. The run time of the experiments is linearly proportional to the number of

control scenarios.

2. Memory requirements of various experiments are close to each other.

3. Both time and memory requirements stayed at the same rank in both cases,

verified true and verified false cases.

Note that the results in Tables 4.8, 4.9, 4.10 and 4.11 show the time and

memory utilization for the complete property checking process (i.e., symbolic trace

computation and pattern matching).

58

Table 4.8: Property Checking (Single Control Scenario)

Experiment Property Run Time Memory Result
(sec) (MB)

SRE Functional Level (FL) 1 3.25 22.05 True
2 3.10 23.10 True
3 2.92 22.65 True

SRE Process Transfer Level (PTL-8) 1 10.52 22.81 True
2 11.10 20.60 True
3 10.30 13.80 True

SRE Process Transfer Level (PTL-4) 1 10.16 23.84 True
2 10.23 21.02 True
3 10.98 22.36 True

Table 4.9: Property Checking (Multiple Control Scenario)

Experiment Property Run Time Memory Result
(sec) (MB)

SRE Functional Level (FL) 1 25.70 20.15 True
2 24.32 21.23 True
3 24.10 23.10 True

SRE Process Transfer Level (PTL-8) 1 75.20 26.20 True
2 80.12 23.28 True
3 78.58 16.55 True

SRE Process Transfer Level (PTL-4) 1 79.95 22.23 True
2 78.55 21.25 True
3 72.00 20.36 True

59

Table 4.10: Property Checking (Single Control Scenario) - Injected Bug

Experiment Property Run Time Memory Result
(sec) (MB)

SRE Functional Level (FL) 1 3.00 22.23 False
2 3.58 21.25 False
3 3.10 20.36 False

SRE Process Transfer Level (PTL-8) 1 10.12 20.15 False
2 10.22 21.23 False
3 11.11 23.10 False

SRE Process Transfer Level (PTL-4) 1 10.16 26.20 False
2 11.22 23.28 False
3 11.94 16.55 False

Table 4.11: Property Checking (Multiple Control Scenario) - Injected Bug

Experiment Property Run Time Memory Result
(sec) (MB)

SRE Functional Level (FL) 1 30.71 22.81 False
2 25.22 20.60 False
3 26.10 13.80 False

SRE Process Transfer Level (PTL-8) 1 76.90 22.05 False
2 78.15 23.10 False
3 79.80 22.65 False

SRE Process Transfer Level (PTL-4) 1 80.94 22.81 False
2 79.78 20.60 False
3 71.02 13.80 False

60

4.5 Summary

In this chapter we have discussed the details of the modeling and verification of

the STMicroelectronics WiMax Transceiver. The effort can be divided into three

main phases. First, model realization, which includes the translation of ST C++

models into SRE models. Second is the symbolic simulation experiments that are

used to generate symbolic traces based on the models developed in the first phase.

The last phase is the verification experiments which in turn can be divided into

equivalence checking and property checking. In the verification section we have also

discussed error injection experiments, in which we introduce a bug in the model

design and rerun the verification algorithm. In addition, we discussed the memory

consumption and execution time for each phase of the process to be able to measure

the performance of the verification methodology used.

The experimental results in this chapter showed the successful application of

the multilevel verification approach discussed in Chapter 3 on STMicroelectron-

ics WiMax PHY implementation. The performance characteristics of the symbolic

modeling and verification experiments showed its advantage over its numerical coun-

terpart.

61

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The System-on-Chip design process is becoming increasingly complex and more

challenging because of the increasing demand from applications running on those

systems. To overcome this complexity in the design process, system designers have

started using an efficient multilevel design approach, in which, they start the design

process with a high level description of the system that captures its functionality

(called executable specs). Then, they refine this design into lower level design de-

scriptions that have more architectural and implementation details, until the phys-

ical implementation of the system is achieved.

On the other hand, this increasing design complexity makes it more critical

to find an optimal verification methodology. This verification process should be

efficient as the verification process is already claiming most of the scheduled time in

the SoC implementation. In addition it should have adequate coverage for all design

decisions involved in the design process. And, more importantly, this verification

methodology should be integrated with the design process from the beginning to

allow early detection of design bugs.

The main objective of this thesis is to verify the functional and architectural

62

level implementation models of a WiMax IEEE 802.16 transceiver that was provided

by STMicroelectronics, who adopted a multi-level design approach to design this

WiMax modem, in which multiple C++ system descriptions at different levels of

abstraction were provided.

To perform the system level functional verification of the WiMax modem,

we have proposed a semi-formal verification strategy that uses symbolic simulation

based equivalence and property checking techniques. We used system of recurrence

equations to model both the systems under test and the key system properties. SRE

is very powerful in describing functionality of complex systems at higher levels of

abstraction. With SRE, it was also very easy to write interesting system properties

with different scopes.

The equivalence of two models was verified by translating both models from

C++ to SRE. Then, symbolic simulation was performed on both models. Finally,

pattern matching was used to check for equivalence and return counterexamples

in case of non equivalence. Besides, the modeling flexibility, symbolic simulation of

SRE system description was much faster than numerical simulation. In addition, the

powerful mathematical reasoning infrastructure in symbolic algebra made symbolic

simulation one of the best candidates to answer our equivalence checking question, by

performing pattern matching and equation solving on the system’s symbolic traces.

In the context of property checking, we blended our SRE properties with the

system model in SRE and ran symbolic simulation in Mathematica 6.0 environ-

ment. Then, again pattern matching and equation solving were used to verify the

correctness of the properties and return counterexamples in case the properties fail

to prove.

We successfully applied our methodology to verify the WiMax system design

from STMicroelectronics at three different levels of abstraction, one functional level

model and two architectural level models. Our experimental results showed that

the three provided models are functionally equivalent which means that the design

63

decisions made in the design refinement process are correct and were implemented

correctly. In addition, the results showed that all models do conform with the

specified properties. We were also able to detect some manually injected bugs in

those models and counterexamples were provided. The performance measurements

showed in general that the used symbolic simulation based verification is much more

efficient than numerical simulation.

The main advantages of our proposed methodology are the following:

• The equivalence checking between models at different levels of abstraction is a

very important concept that enables the verification process to be integrated

with the multi-level design methodology.

• The flexibility and ease of describing systems at system level using SRE. This

step can easily be done by the modeling designers.

• The speed of the symbolic simulation which quickens the whole verification

process. This is important, especially, that this process is repeated at each

design iteration or whenever a new system level description is introduced in

the design process.

5.2 Future Work

The performance of our methodology is very good when verifying heavy compu-

tational systems at higher levels of abstraction. However, one limitation in the

existing SRE symbolic simulation algorithms is that simulation time grows expo-

nentially with number of control signals in the simulated model [1]. This makes this

technique more suitable for computational intensive systems rather than control in-

tensive systems. In this thesis, we used mixed simulation technique, described in

Chapter 4, to overcome this growth in simulation time and increase efficiency. How-

ever, one possible improvement is to investigate other techniques to reduce symbolic

64

simulation time with multiple control signals.

Another possible future work is to define transition rules to translate system

descriptions from standard programming languages such as C or C++ to SRE. This

will enable automating the modeling part of the methodology.

The semi-formal verification methodology used in this thesis can also be ap-

plied to other more complex system designs from STMicroelectronics or other com-

panies.

65

Appendix A

Appendix : Sample Mathematica

Code

A.1 Sample Mathematica Recurrence Equations

An example of recurrence equations used in the WiMax model written in Mathe-

matica

For [i = 1, i < NBDataBlocks + 1, i++, PunctOutputN[[i]] =

If[And[PunctCount != 0 , ExecPhase[[4]] == 2,

i == (NBDataBlocks - PunctCount + 1)], PunctOut, PunctOutput[[i]]];

];];

For[i = 0, i < Ncbps, i++,

InterleavOutN[[(IntegerPart[(((IntegerPart[((Ncbps/DD)* Mod[i, DD] +

(i/DD))])/SS)*SS + Mod[((IntegerPart[((Ncbps/DD)*Mod[i, DD] + (i/DD))]) + Ncbps -

(DD*(I t P t[((N b /DD)*M d[i DD] + (i/DD))])/N b)) (SS)])]) + 1]](DD*(IntegerPart[((Ncbps/DD)*Mod[i, DD] + (i/DD))])/Ncbps)), (SS)])]) + 1]] =

If[And[InterleavCount != 0, ExecPhase[[5]] == 1], InterleavIn[[i + 1]],

InterleavOut[[(IntegerPart[(((IntegerPart[((Ncbps/DD)* Mod[i, DD] +

(i/DD))])/SS)*SS + Mod[((IntegerPart[((Ncbps/DD)*Mod[i, DD] + (i/DD))]) + Ncbps -

(DD*(IntegerPart[((Ncbps/DD)* Mod[i, DD] + (i/DD))])/Ncbps)), (SS)])]) + 1]]];

]];

66

A.2 FIFO’s Tail Index Update Using Recurrence

Equations

A code fragment that is used to model the WiMax FIFO tail update using SRE in

Mathematica.

FIFOsTailN[[1]] =

If[And [SourceCount != 0 ExecPhase[[1]] == 2If[And [SourceCount != 0, ExecPhase[[1]] == 2 ,

FIFOsTail[[1]] < FIFONBCells], FIFOsTail[[1]] + 1,

If[And [SourceCount != 0, ExecPhase[[1]] == 2 ,

ExecPhase[[2]] == 0, FIFOsTail[[1]] == FIFONBCells],FIFOsTail[[1]] - 1,

If[And [SourceCount != 0, ExecPhase[[1]] != 2 ,

ExecPhase[[2]] == 0, FIFOsTail[[1]] != 0], FIFOsTail[[1]] - 1,

If[And[SourceCount == 0, RandCount != 0 , ExecPhase[[2]] == 0,

FIFOsTail[[1]] != 0], FIFOsTail[[1]] - 1, FIFOsTail[[1]]]]]];

A.3 Dynamic Scheduler in Recurrence Equations

A code fragment that is used to model the WiMax dynamic scheduler using SRE in

Mathematica

CPUBlockN[[2]] =CPUBlockN[[2]] =

If[And [RandCount != 0, ExecPhase[[2]] == 2 , FIFOsTail[[2]] < FIFONBCells], 2,

If[And [CCCount != 0, ExecPhase[[3]] == 2 , FIFOsTail[[3]] < FIFONBCells], 3,

If[And [PunctCount != 0, ExecPhase[[4]] == 2 , FIFOsTail[[4]] < FIFONBCells], 4,

If[And [InterleavCount != 0, ExecPhase[[5]] == 2 ,

FIFOsTail[[5]] < FIFONBCells], 1, CPUBlock[[2]]]]]];[[]]], , [[]]]]]];

CPUBlockN[[3]] =

If[And [RepetitionCount != 0, ExecPhase[[6]] == 2 , FIFOsTail[[6]] < FIFONBCells], 2,

If[And [FraminCount != 0, ExecPhase[[7]] == 2], 1, CPUBlock[[3]]]];

67

A.4 Traffic Generator Sets FEC Code Type

A code fragment that is used to model traffic generator in Mathematica

If[FECMode == 0,

CodingRate = WMRATE12; (*WMRATE12,WMRATE23,WMRATE34*)

NbBitMapping = WMQPSK;

,

If[FECM d 1If[FECMode == 1,

CodingRate = WMRATE34; (*WMRATE12,WMRATE23,WMRATE34*)

NbBitMapping = WMQPSK;

,

If[FECMode == 2,

CodingRate = WMRATE12; (*WMRATE12,WMRATE23,WMRATE34*)CodingRate WMRATE12; (WMRATE12,WMRATE23,WMRATE34)

NbBitMapping = WM16QAM;

,

If[FECMode == 3,

CodingRate = WMRATE34; (*WMRATE12,WMRATE23,WMRATE34*)

NbBitMapping = WM16QAM;

,

If[FECMode == 4,

CodingRate = WMRATE12; (*WMRATE12,WMRATE23,WMRATE34*)

NbBitMapping = WM64QAM;

,

If[FECM d 5If[FECMode == 5,

CodingRate = WMRATE23; (*WMRATE12,WMRATE23,WMRATE34*)

NbBitMapping = WM64QAM;

,

If[FECMode == 6,

CodingRate = WMRATE34; (*WMRATE12,WMRATE23,WMRATE34*)CodingRate WMRATE34; (WMRATE12,WMRATE23,WMRATE34)

NbBitMapping = WM64QAM;

,

Print ["Invalid FEC Mode !!!"]

];

];

];

];

];

];

];

68

A.5 Sample Property in Recurrence Equation

An example of writing system properties using recurrence equations in Mathematica

If[CodeRate == WMRATE23,

For [i = 0 i < CycleCounter i++For [i = 0, i < CycleCounter, i++,

If[PunctOutput[[1, i*3 + 1]] == CCOutput[[1, i*4 + 1]],

PuncturedSymbols ++,

Print["Symbol Not Punctured Properly : PunctOutput [[", i*3 + 1,

"]] is not correct"];,]]];,

Print["Symbol Not Punctured Properly : PunctOutput [[" , i*3 + 1,

"]] is not correct"];

];

If[PunctOutput[[1, i*3 + 2]] == CCOutput[[1, i*4 + 2]],

PuncturedSymbols ++,

Print["Symbol Not Punctured Properly : PunctOutput [[", i*3 + 2,

"]] is not correct"];,

Print["Symbol Not Punctured Properly : PunctOutput [[" , i*3 + 2,

"]] i t t"]"]] is not correct"];

];

If[PunctOutput[[1, i*3 + 3]] == CCOutput[[1, i*4 + 4]],

PuncturedSymbols ++,

Print["Symbol Not Punctured Properly : PunctOutput [[", i*3 + 3,Print[Symbol Not Punctured Properly : PunctOutput [[, i 3 + 3,

"]] is not correct"];,

Print["Symbol Not Punctured Properly : PunctOutput [[" , i*3 + 3,

"]] is not correct"];

];

],

69

Bibliography

[1] G. Al Samman. “Simulation Symbolique des Circuits Decrits au Niveau Algo-

rithmique.” PhD Thesis, Universite Joseph Fourier Grenoble 1, July 2005.

[2] T. Matsumoto, H. Saito and M. Fujita. “An Equivalence Checking Method

for C Descriptions Based on Symbolic Simulation with Textual Differences.”

in Proceedings of the IASTED International Conference on Advances in Com-

puter Science and Technology, vol. 88, no. 12, Mar. 2004.

[3] G. Ritter, H. Eveking and H. Hinrichsen. “Formal verification of designs with

complex control by symbolic simulation.” in Proceedings of the 10th IFIP WG

10.5 Advanced Research Working Conference on Correct Hardware Design and

Verification Methods, 1999, pp. 234-249.

[4] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer.

Redwood City: Addison-Wesley Longman Publishing Co, 1991.

[5] G. S. V. Radha Krishna Rao and G. Radhamani. WiMAX a Wireless Tech-

nology Revolution. New York: Auerbach Publications, 2007.

[6] M. Fujita, I. Ghosh and M. Prasad. Verification Techniques for System-Level

Design. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2008.

[7] R. v. Nee and R. Prasad. OFDM for Wireless Multimedia Communications.

Norwood, MA, USA: Artech House, Inc, 2000.

70

[8] C. Eklund, K. L. Stanwood, S. Wang and R. B. Marks. “IEEE Standard

802.16: A technical overview of the WirelessMAN Air Interface for broadband

wireless access.” IEEE Communications Magazine, vol. 40, pp. 98-107, 2002.

[9] B. A. Cipra. “The Ubiquitous Reed-Solomon Codes.” SIAM News, vol. 26,

1993.

[10] Rohde & Shwarz. “WiMAX - General Information about the Stan-

dard 802.16 - Application Notes.” pp. 34, 2010. “http://www2.rohde-

schwarz.com/file 1782/1MA96” [Accessed April/2012].

[11] S. Abdi and D. Gajski. “Verification of system level model transformations.”

International Journal of Parallel Programming, vol. 34, pp. 29-59, Feb. 2006.

[12] A. K. Deb, A. Jantsch and J. Oberg. “System design for DSP applications

in transaction level modeling paradigm.” in Proceedings of the 41st Annual

Design Automation Conference, San Diego, CA, USA, June 2004, pp. 466-471.

[13] F. Qiao, P. Lin, J. Yu, K. Dong and Z. Wang. “System level modeling of

WiMAX SoC system.” in Proceedings of the 7th International Conference on

ASIC, Guillin, China, 2007, pp. 946-949.

[14] J. He, J. S. Yang, Y. Kim and A. S. Kim. “System-level Time-domain Behav-

ioral modeling for a Mobile WiMax Transceiver.” in Proceedings of the 2006

IEEE International Behavioral Modeling and Simulation Workshop, San Jose,

California, 2006, pp. 138-143.

[15] G. Al-Sammane, M. H. Zaki and S. Tahar. “A symbolic methodology for

the verification of analog and mixed signal designs.” in Proceedings of the

Conference on Design, Automation and Test in Europe, Nice, France, 2007,

pp. 249-254.

71

[16] M. H. Zaki, G. Al-Sammane and S. Tahar. “Formal verification of analog and

mixed signal designs in Mathematica.” in Proceedings of the 7th International

Conference on Computational Science, Part II, Beijing, China, 2007, pp. 263-

267.

[17] STMicroelectronics. “Model-based mapping to parallel architecture of 802.16a

(WiMax).” Ottawa, Canada, 2007.

[18] STMicroelectronics. “WiMAX wireless-MAN OFDMA functional refinement.”

Ottawa, Canada, 2007.

[19] STMicroelectronics. “Multiflex WiMax OFDMA Library 2007 - Code pack-

age.” Ottawa, Canada, 2007.

[20] E. M. Clarke, O. Grumberg and D. A. Peled. Model Checking. Cambridge,

MA, USA: MIT Press, 1999.

[21] D. Cyrluk, S. Rajan, N. Shankar and M. K. Srivas. “Effective theorem proving

for hardware verification.” in Proceedings of the Second International Confer-

ence on Theorem Provers in Circuit Design - Theory, Practice and Experience,

1994, pp. 203-222.

[22] R. E. Bryant. “Symbolic simulation - techniques and applications.” in Pro-

ceedings of the 27th ACM/IEEE Design Automation Conference, Orlando,

Florida, United States, 1990, pp. 517-521.

[23] Altera. “DSP Builder.” 2009. “http://www.altera.com/products/software/

products/dsp/dsp-builder.html” [Accessed April/2012].

[24] B. Alizadeh and Z. Navabi. “Word-level symbolic simulation in processor ver-

ification.” Computers and Digital Techniques, IEE Proceedings, vol. 151, pp.

356-366, Sept. 2004.

72

[25] A. Chiang, W. Han and B. Kapoor. “Validating physical access layer of

WiMAX using SystemVerilog.” in Proceedings of the 2009 10th International

Symposium on Quality of Electronic Design, 2009, pp. 356-359.

[26] Agilent Technologies. “Move Forward to What’s Possible in WiMAX.” pp.

8, 2009. “http://cp.literature.agilent.com/litweb/pdf/5989-5914EN.pdf” [Ac-

cessed April/2012].

[27] A. N. M. Abdullah, B. Akbarpour and S. Tahar. “Formal analysis and verifi-

cation of an OFDM modem design using HOL.” in Proceedings of the Formal

Methods in Computer Aided Design, 2006, pp. 189-190.

[28] A. Meyer. Principles of Functional Verification. Burlington, MA, USA: Newnes

- Elsevir Science, 2003.

[29] S. Liao, S. Tjiang and R. Gupta. “An efficient implementation of reactivity

for modeling hardware in the scenic design environment.” in Proceedings of

the 34th Annual Design Automation Conference, Anaheim, California, United

States, 1997, pp. 70-75.

[30] S. Swamy, A. Molin and B. Covnot. “OO-VHDL: Object-Oriented Extensions

to VHDL.” IEEE Computer, vol. 28, pp. 18-26, Oct. 1995.

[31] N. Medvidovic and R. N. Taylor. “A Classification and Comparison Frame-

work for Software Architecture Description Languages.” IEEE Transactions

on Software Engineering, vol. 26, pp. 70-93, Jan. 2000.

[32] E. M. Clarke, O. Grumberg and D. E. Long. “Verification tools for finite-

state concurrent systems.” in the proceedings of REX School/Symposium (A

Decade of Concurrency, Reflections and Perspectives), 1994, pp. 124-175.

73

[33] J. Fernandez, A. Kerbrat and L. Mounier. “Symbolic equivalence checking.”

in Proceedings of the 5th International Conference on Computer Aided Veri-

fication, 1993, pp. 85-96.

[34] F. Laroussinie, N. Markey and P. Schnoebelen. “On model checking dura-

tional kripke structures.” in Proceedings of the 5th International Conference

on Foundations of Software Science and Computation Structures, 2002, pp.

264-279.

[35] D. D. Gajski, J. Zhu, R. Dmer, A. Gerstlauer and S. Zhao. SpecC: Specifica-

tion Language and Methodology. Massachusetts: Kluwer Academic Publish-

ers, 2000.

[36] System Verilog. “SystemVerilog Overview.” 2008.

”http://www.systemverilog.org/” [Accessed April/2012]

[37] IEEE standard. “IEEE Standard for Property Specification Language

(PSL)(IEEE Std 1850-2005).” pp. 1-188, 2005.

[38] IEEE standard. “IEEE Standard for Local and Metropolitan Area Networks

Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Sys-

tems Amendment 2: Physical and Medium Access Control Layers for Com-

bined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1

(IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005).” pp. 1-822,

2006.

[39] F. Franek, C. G. Jennings and W. F. Smyth. “A simple fast hybrid pattern-

matching algorithm.” Jornal of Discrete Algorithms, vol. 5, pp. 682-695, Dec.

2007.

74

[40] L. Bachmair and H. Ganzinger. “Rewrite-based Equational Theorem Proving

with Selection and Simplification.” Journal of Logic and Computation, vol. 4,

pp. 217-247, July 1994.

[41] N. Dunstan and F. Ivan. “Process scheduling and UNIX semaphores.” Soft-

warepractice and Experience, vol. 25, pp. 1141-1153, Oct. 1995.

[42] G. Nicolescu and P. J. Mosterman. Model-Based Design for Embedded Sys-

tems (Computational Analysis, Synthesis, and Design of Dynamic Systems).

New York: CRC Press Taylor and Francis Group, 2010.

75

