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Abstract

The Intrinsic Shape of Point Clouds

Stefan Ohrhallinger, PhD

Concordia University, 2012

Given a point cloud, in the form of unorganized points, the problem of auto-

matically connecting the dots to obtain an aesthetically pleasing and piecewise-linear

closed interpolating boundary shape has been extensively researched for over three

decades. In R
3, it is even more complicated to find an aesthetic closed oriented sur-

face. Most previous methods for shape reconstruction exclusively from coordinates

work well only when the point spacing on the shape boundary is dense and locally uni-

form. The problem of shape construction from non-dense and locally non-uniformly

spaced point sets is in our opinion not yet satisfactorily solved. Various extensions to

earlier methods do not work that well and do not provide any performance guarantees

either.

Our main thesis in this research is that a point set, even with non-dense and locally

non-uniform spacing, has an intrinsic shape which optimizes in some way the Gestalt

principles of form perception. This shape can be formally defined as the minimum

of an energy function over all possible closed linear piece-wise interpolations of this

point set. Further, while finding this optimal shape is NP-hard, it is possible to

heuristically search for an acceptable approximation within reasonable time.
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Our minimization objective is guided by Gestalt’s laws of Proximity, Good Con-

tinuity and Closure. Minimizing curvature tends to satisfy proximity and good con-

tinuity. For computational simplification, we globally minimize the longest-edge-in-

simplex, since it is intrinsic to a single facet and also a factor in mean curvature. And

we require a closed shape.

Using such an intrinsic criterion permits the extraction of an approximate shape

with a linearithmic algorithm as a simplicial complex, which we have named the

Minimum Boundary Complex. Experiments show that it seems to be a very close

approximation to the desired boundary shape and that it retains its genus. Further it

can be constructed locally and can also handle sensor data with significant noise. Its

quick construction is due to not being restricted by the manifold property, required in

the boundary shape. Therefore it has many applications where a manifold shape is not

necessary, e.g. visualization, shape retrieval, shadow mapping, and topological data

analysis in higher dimensions. The definition of the Minimum Boundary Complex is

our first major contribution.

Our next two contributions include new methods for constructing boundary shapes

by transforming the boundary complex into a close approximation of the minimum

boundary shape. These algorithms vary a topological constraint to first inflate the

boundary complex to recover a manifold hull and then sculpture it to extract a Mini-

mum Boundary approximation, which interpolates all the points. In the R
3 method,

we show how local minima can be avoided by covering holes in the hull. Finally, we

apply a mesh fairing step to optimize mean curvature directly. We present results

for shape construction in R
2 and R

3, which clearly demonstrate that our methods

work better than the best performing earlier methods for non-dense and locally non-

uniformly spaced point sets, while maintaining competitive linearithmic complexity.
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Chapter 1

Introduction

Determining the surface topology of an aesthetically pleasing shape from a large set of data points

given just their coordinates finds many applications. In this chapter, we review the motivation for

researching this problem, along with its challenges, and introduce the concept of intrinsic shape.

The progress of the development of this idea and the solutions it has led to so far are documented

in this thesis.

1.1 Motivation

Defining the piece-wise linear boundary shape for a solid object in R
2 or R

3, and

possibly higher dimensions, for which only the surface point coordinates but nothing

of its topology is known, is a difficult problem (see Figure 1.1). It is recognized as such,

quite some time back, by Boissonnat [17] and understandably, has been the subject of

a lot of continuous research over the last 3 decades. Specifically, in these days, given

1



CHAPTER 1. INTRODUCTION 2

(a) Unorganized point set (b) Reconstructed intrinsic shape

Figure 1.1: Searching for the intrinsic shape of a point set yields far superior results than
what sampling-based methods can deliver.

the advances in sensor technology and computing capabilities, unorganized point sets

on the boundary surfaces of objects are increasingly encountered. These result from

simulations of objects with temporally incoherent topology or from sensing devices,

like 3D scanners. Scanning techniques may supply the topology partly though not

reliably, say in the form of estimated normals, contours, or overlaps from different
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perspectives. However, the need for solving the problem as a generic one is argued

very well in Hoppe et al. [52].

In R
2, shape construction is useful for reverse engineering of geometric models,

outline reconstruction from feature points in medical image analysis, pattern recog-

nition, etc. The closed boundary is essential for calculating various moments of the

shape, a characteristic property which finds many applications.

In R
3 it is even more complex to find a manifold shape in the form of an interpo-

lating oriented surface, bounding a volume. Automating this shape construction is,

in our opinion, a problem that has not yet been satisfactorily solved.

Fast construction of a close approximate shape with not necessarily a manifold

boundary surface also has many applications. This could be useful where the overall

shape is more important than the exact interpolating boundary surface, such as visu-

alization, shadow mapping, extracting a smoothed surface, checking 3D scan quality,

generating shape descriptors, topological data analysis etc.

1.2 Problem Statement

The problem researched in this thesis can now be stated as follows:

Given a set of points with just their coordinate data and no other shape infor-

mation, efficiently derive the connectivity graph among all these points for defining

a piecewise linear, interpolating, closed and oriented surface, satisfying the Gestalt
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laws of proximity, i.e., connectivity to nearby points on the surface, good continu-

ity, i.e., avoidance of abrupt changes in curvature and closure, i.e., surface bounds a

solid region, without assuming dense and locally uniform spacing of the points on the

surface.

The point distribution in any given point set cannot be completely arbitrary. Point

sets which are excluded as part of our problem domain are described next.

Visualization of the constructed shape is an important requirement in most ap-

plications. Therefore determining the connectivity which corresponds to the good

shape in the given point set is most important, assuming the point distribution does

possess this good shape. On the other side of that spectrum there exist sparse point

distributions, which do not fulfill the Shannon-Nyquist theorem for sampling on the

boundary of a desired shape. These require prior knowledge to construct and would

appear more or less random otherwise. The topology of such a shape is also not robust

with respect to minor point displacements. Therefore we exclude from our problem

domain such extreme point distributions, which contain largely sparse sampling.

Presence of noise is an important theme in shape reconstruction and has led to

the popularity of methods approximating the points. While we acknowledge its sig-

nificance, we believe that in the context of shape reconstruction from sample points,

noise filtering requires either the existence of a noise model, or an assumed surface.

Since in our work, we do not assume any prior knowledge of the resulting shape other

than that its boundary is closed, we treat de-noising as either a pre- or post-processing
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task. Therefore our focus in this research is on what we see as the basic research task,

determining connectivity for the given point data as they are, i.e. interpolation, while

nevertheless demonstrating that this works also for data sets with significant noise.

1.3 Challenges

Previous methods for reconstructing a surface exclusively from point coordinates often

rely on a sampling criterion for the spacing of points on the surface. A sampling

criterion for orientable surfaces was first formulated in Amenta et al. [6]. Such criteria

give a guarantee of homeomorphy, meaning that a point set is interpolated locally by

a unique surface. However, these criteria require that the resulting surface curvature

be severely restricted so as to permit only a unique fit. In practice, sampling-based

algorithms try to reconstruct surfaces for point sets outside these theoretical limits.

They operate therefore without these guarantees and the resulting surfaces could

have undesirable artifacts, say, holes, or do not interpolate many of the given points,

because real-world point sets are not locally uniformly and densely spaced, and are

often contaminated with noise.

Consequently, these techniques often fail to produce a manifold surface, or a close

approximation to the shape, even with added corrective operations like hole-filling.

Hence the first challenge is to devise a method for this surface construction which

does not require dense and locally uniform sampling for the given point set, can deal

with a reasonable amount of noise, and also is able to do that efficiently in terms of
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computational resources.

Another major challenge is to be able to construct point sets which are so large

that they can only be stored out-of-core. This requires not only that the surface can

be constructed locally (local as in sub-sets which can be contained in-memory), but

that this construction is also deterministic, so that the locally constructed shapes

always match at a global level to yield the same closed and oriented surface. It is

clear that for point sets of such size their boundary can only be constructed by an

algorithm of near-linear computational complexity.

Some kinds of data sets, i.e. those acquired from sensing devices, contain inherent

noise. Hence another challenge is to be able to construct shapes even in the presence of

noise in the coordinate data. Ideally, a shape construction method which interpolates

the given points should be able to handle a certain amount of noise. It must be

noted that the higher the noise level present in the data, the less it makes sense to

interpolate the noisy samples. Methods for approximate fitting of a smoothed surface

would be the better solution.

1.4 Thesis

Our main thesis in this research is that a point set, even with non-dense and locally

non-uniform spacing, has an intrinsic shape which optimizes in some way the Gestalt

principles of form perception. This shape can be formally defined as the minimum

of an energy function over all possible closed linear piece-wise interpolations of this
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point set. Further, while finding this optimal shape is NP-hard, it is possible to

heuristically search for an acceptable approximation within reasonable time.

1.5 Contributions

As mentioned above, finding an oriented boundary for an unorganized set of points

in R
3 is a difficult problem. Our research methodology was to approach this by first

addressing the problem in R
2 (less complex to handle) with the goal to extend our

solution into higher dimensions.

1.5.1 Finding the Interpolating Boundary in R
2 as Minimizing Problem

From all previously published work in this area, we know that shapes made up from

edges in the Delaunay Graph (DG) of the given points yield good results due to the

intrinsic properties of that graph, namely, maximizing angles and minimizing edge

lengths. Our desired boundary shape must satisfy Gestalt laws of shape perception

to the extent possible. We therefore derive a formal definition for the desired in-

terpolating shape as a non-self intersecting and manifold closed boundary (Closure)

made up from DG edges with minimal perimeter (Proximity and Good Continuity).

Basically, this optimal shape is the minimum perimeter interpolating loop of DG

edges, the Minimum Boundary (Bmin). This minimization problem is NP-hard and

is very closely related to the highly researched Traveling Salesman Problem (TSP).

Its difference arises from our requirement of an aesthetic interpolating shape (not
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necessarily the exact minimum) and efficient construction. Hence we have restricted

the solutions to edges in DG. We are also not interested in completely arbitrary

point distributions, but only interested in that sub-domain of point sets in which the

good shape exists. For this we have developed our own heuristic solution. We noticed

that the Euclidean Minimum Spanning Tree (EMST ) by its definition is very similar

to Bmin, with the single difference of relaxing a topological constraint. The number

of edges incident at a vertex in Bmin is exactly 2, while it is greater than or equal

to 1 for the EMST . We exploit this similarity to locally partition the problem and

define a transformation from EMST to Bmin, which guarantees finding the minimum

boundary for a large class of point sets. The results show quality excelling currently

known solutions.

This was initial work which led to the main findings described in more detail in

this thesis. Appendix A includes more details of this initial work in the form of a

paper published as Stefan Ohrhallinger and Sudhir Mudur: Interpolating Unorganized

2D Point Clouds with Closed Shapes, in Computer-Aided Design Journal, 2011.

1.5.2 Finding a Methodology which extends to higher Dimensions

This algorithm, while it is of linearithmic complexity (O(n log n)) for a certain class

of point distributions, does not guarantee the same performance for a number of

other point distributions encountered in practice. Also it does not extend into R
3.

However, there are three major findings from this work which prompted most of the
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further research reported in this thesis. These findings are:

• Most given point sets have an intrinsic interpolating shape which can be defined

as the one optimizing an objective function satisfying certain Gestalt laws of

shape perception and is also aesthetically pleasing. This shape or connectivity

graph is referred throughout this thesis as Bmin.

• Computation of Bmin is NP-hard, since finding it would require a search over all

possible boundaries interpolating the given point set. There are related graphs

which minimize the same objective, but may be faster to compute because of

the slightly different topological constraint. An example in R
2 is the Euclidean

Minimum Spanning Tree (EMST ). If suitable heuristics can be developed to

transform the related graph into Bmin or a close approximation, then we would

have an efficient solution to our problem.

• It is important to develop an approach that extends to higher dimensions, par-

ticularly to R
3.

Based on the above findings, and noting the similarity between both EMST and

Bmin as minimizing graphs, we define theMinimum Boundary Complex (BCmin). It is

another minimizing graph, varying from the two former graphs only in its topological

constraint, the vertex degree. While computation of BCmin is also NP-hard, we found

that a close approximation can be constructed quickly using a greedy algorithm, since

we have relaxed its manifold constraint. We noticed that the graph computed by this
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greedy algorithm is actually also a close approximation to Bmin, since the vertex

degree varies only slightly. Next, we developed our heuristic method for transforming

it into Bmin or a close approximation as follows. We adapt a technique from R
3,

sculpturing by Boissonnat [17] and also introduce a dual to it, which we call inflating,

and use them together to transform BCmin into Bmin or an acceptable approximation.

The entire algorithm is straight-forward, is of linearithmic time complexity and is

also extensible into higher dimensions. Its results are of competitive quality with

our previous algorithm, and it works well, especially for shapes with sharp corners,

yielding results superior to those from currently known solutions for this problem.

Source code is available on-line [65].

1.5.3 Constructing the Intrinsic Shape in R
3

The ideas developed in the previous work extend well into 3D.

We first needed to develop the criterion for minimization of a boundary in higher

dimensions. Minimizing curvature globally seemed to be a good objective considering

that surfaces in nature also do that, for example, the surface of merged bubbles. Given

that we are considering piece-wise linear surfaces, curvature at vertices (or edges)

would depend on the many entities incident at the vertices (edges). For simplicity in

developing a search strategy, we prefer that the criterion be computable independently

for each entity in the surface. Based on experimentation, we decided to use the

longest-edge-in-simplex (i.e. longest-edge-in-triangle for R
3). Edge length is one of
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the two factors in the calculation of mean curvature for a piecewise linear surface.

Our experiments confirm that this criterion works especially well in R
3. Further,

using such a criterion, which is intrinsic to a facet in the boundary, enables us to

extend this approach into higher dimensions, if needed.

The next step is to define the relaxation of the topological constraint in R
3. For

this we define u-valence as the number of umbrellas incident at a vertex. In R
2, an

umbrella at a vertex is formed by its pair of incident edges. An umbrella at a vertex

v in R
3 is defined as the set of triangles incident at v such that all edges incident to

v have exactly two incident triangles. Clearly, Bmin being manifold, it has u-valence

= 1 at every vertex. We relax this constraint and permit u-valence ≥ 1, to construct

BCmin. A greedy algorithm computes an approximation which, as we see again from

extensive experiments, is a close approximation to the boundary shape.

Our final step is to extend the transformation algorithm to R
3. We note that from

our previously introduced algorithm, the two main steps of inflating and sculpturing

extend very well directly. But since the topology of the boundary complex in R
3

is more complex, we need to enhance our method. After the inflating step we find

that the boundary triangles form a thin-thick triangulation, which we call as the hull.

We adapt sculpturing to work from both inside and outside of the thin-thick hull.

Directly inflating the boundary complex, which results from the greedy algorithm,

however tends to terminate quite often at local minima. This manifests in the form

of holes in the hull. Hence, prior to the inflate step, we need to detect and cover
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these hull-holes. We describe the heuristic method we have developed for that, which

is based on careful topological analysis of the boundary complex. Lastly, we apply

a mesh fairing step, to directly minimize global mean curvature. The results from

our method are far superior to those from previous solutions, especially for non-dense

and locally non-uniform point sets. Our method is also efficient as it completes in

expected O(n log n) time.

A concise overview was presented as a poster and published in the Poster Pro-

ceedings of Eurographics 2012 in Cagliari, Italy. It won the Best Poster Award.

1.5.4 Other Applications of the Boundary Complex

The boundary complex is a very interesting constrained simplicial complex and using

it to extract an orientable interpolating boundary is just one application. Its ease

of construction makes it a much more powerful shape characteristic. We analyze its

properties, note its tolerance to noise and capability for local construction and present

quick visualization as another application, since it retains all the important features,

including the genus. Outside the field of visualization we believe that it can contribute

to shape descriptor construction of point sets, collision detection, topological data

analysis in higher dimensions and combinatorial optimization.
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1.6 Thesis Organization

First we give relevant background in Chapter 2 consisting of related work in Sec-

tion 2.1 for R
2 and in Section 2.2 for R

3. The terminology used in the rest of this

thesis is listed in Section 2.3.

In Chapter 3, the development of the Minimum Boundary Complex in R
2 is pre-

sented in Section 3.1. Then, in Section 3.2, we extend it to R
3. Finally, we present

relevant properties of the Minimum Boundary Complex in Section 3.3.

Its main application in boundary construction of the intrinsic shape is discussed

in detail in Chapter 4 for R2 and in Chapter 5 for R3.

We present various experimental results from our implementation of these methods

in Chapter 6, both for R2 (Section 6.1) and for R3 (Section 6.2).

In Chapter 7 we present important extensions and in Chapter 8 we give our con-

clusions and potential for future work.



Chapter 2

Background and Related Work

In this chapter we present work related to our thesis, structured in two-dimensional and

three-dimensional approaches, give an overview of our approach and introduce basic terminology

used throughout this thesis.

Shape construction has been well researched in both R
2 and R

3. Many approaches,

especially those based on the Delaunay graph, extend well between those two spaces.

2.1 Related Work in R
2

In the literature we find two major approaches. One is to cast this problem as R
2

shape reconstruction by considering the points as samples on a known R
2 object.

This then makes it possible for algorithms to work for point sets satisfying specified

sampling criteria. Usually these criteria impose quite strict conditions with regard

14
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to point spacing properties, requiring high density, uniformity and smoothness. The

second approach is to view this problem as a global search through all possible so-

lutions. Below, we provide a comprehensive review of previous work using these two

approaches.

2.1.1 Local Sampling Condition Approach

Algorithms using this approach and discussed further below, connect the points using

edges in the Delaunay Graph (DG) and results have shown that this is a very reason-

able choice. The DG has the property of maximizing its angles and minimizing its

edge lengths, which conform to the Gestalt laws of good continuity and proximity.

α-shapes, introduced by Edelsbrunner et al. [36] and extended by Bernardini and

Bajaj [15], minimum spanning tree-based methods by Figueiredo and Gomes [39], the

β-skeleton by Kirkpatrick and Radke [57], the γ-neighborhood graph by Veltkamp [73]

and r-regular shapes from Attali [12] are among the early methods which worked only

on smooth and uniformly sampled point sets. For example, α-shapes requires user-

specification of a global constant which depends on sampling. It does not work for

non-uniformly sampled point sets.

Amenta et al. [8] with their Crust algorithm introduced the concept of local

feature size which allows reconstruction from non-uniformly sampled point sets. The

stated sampling requirements of the Crust method and its successors by Dey and

Kumar [30] and Dey et al. [31] are however quite restrictive in theory and difficult
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to ensure in practice. The Gathan algorithm from Dey et al. [32] which is based on

their work handles sharp corners, but without performance guarantees, and does not

take aesthetic aspects into consideration. In spite of this, it provides in our opinion

the best sampling-oriented solution for this R2 shape reconstruction problem.

Zeng et al. use in [75] the two properties of proximity and smoothness derived

from Gestalt laws but still require rather dense sampling in sharp corners. Some

improvements on these aspects have been made in Nguyen and Zeng [64], but they

rely very much on several user-tuned parameters.

A fundamental disadvantage of using a local criterion is that one cannot guarantee

reconstruction of a closed and manifold shape, the way our method does. In fact,

our observation from the many experiments we have conducted is that enforcing the

Gestalt law of closure actually yields more pleasing shapes. This can be seen later e.g.

in Figure 6.4 in Chapter 6 which shows a number of such cases. And if one indeed

desires to get an open shape, then an openness condition, such as large distance

between points, very sharp turns and other such conditions, can be applied to the

resulting closed curve to make it open.

2.1.2 Global Search Approach

A first attempt using a global search approach is the one presented by Glanvill and

Broughan [44]. They construct spanning Voronoi trees and select the one with min-

imal length by integer programming, with O(n2 log n) complexity. It does not work
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well for sharp angles and non-uniform sampling; obviously it prunes good solutions

too early.

Giesen shows in [42] that the solution for the Euclidean traveling salesman prob-

lem (ETSP ), called a tour, can reconstruct the shape for sufficiently dense sampling.

Later Althaus and Mehlhorn show in [4] that such a tour reconstructs aesthetic shapes

also for non-uniform sampling with a specified density. They show that this NP-hard

problem can be solved in polynomial time if the point set is restricted to a certain

sampling criterion. For unrestricted sets Arora [11] gives a (1 + 1/c)-approximation

to the optimal ETSP tour in O(n(log n)O(c)) time complexity. But these approxima-

tions fail to guarantee an aesthetically pleasing solution as per our requirement. Our

experiments showed that non-optimal solutions include polygons with crossed edges,

violating our requirement of non-intersection.

In the work by Althaus et al. [5], the exact TSP based solution is compared with

Crust-type family of algorithms and TSP-approximations. They note that the latter

two methods fail for certain curves with sparser sampling which the exact TSP method

handles well. They also mention that the exponential complexity of the TSP decreases

with denser sampling. With the exception of the method in Giesen [42], these methods

do not require user-specified parameters. Unfortunately, finding the exact solution

using a naive TSP solver takes unreasonable time O(2n) even for small P . The

concorde exact TSP solver [10] scales sub-exponentially and can take hundreds of

CPU-years for medium-sized point sets, its complexity is discussed in detail here [51].
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While, in principle, a TSP solution constrained to DG would yield Bmin, we consider

the TSP as too generic to be applicable for the problem we have stated. Our focus is

on an algorithm for quick construction of an interpolating and aesthetic closed shape,

and it only needs to work on point sets that are reasonably distributed and contain

humanly recognizable shape boundaries.

In the algorithm included in Appendix A [66] it is shown that for a certain class of

point sets, there exists a relation between minimum perimeter polygon in DG and the

Euclidean minimum spanning tree (EMST ) of P . This relation is characterized by

well-defined edge exchange operations. While this algorithm gives very good results

for sharp corners, it cannot guarantee linearithmic complexity since in some cases a

global search of the solution space may be required. The very important contribution

there is in the approach to formulate curve reconstruction as a minimization problem,

by relating to properties of the Gestalt laws for aesthetic shape.

All of the previously discussed work assumes points sampled on a noise-free curve.

Cheng et al. [23] discuss curve reconstruction in the presence of a noise model, which

they define artificially, and give reconstruction guarantees in terms of probability.

Mehra et al. [61] adapt the point-based visibility method proposed in Katz et al. [55]

for reconstruction of noisy samples, but their method is quite ad-hoc. It does not

fulfill its aim of constructing closed shapes and also their removal of outliers seems

somewhat arbitrary.
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2.2 Related Work in R
3

Surface reconstruction methods can be classified into two distinct groups by their

guarantees with respect to closeness of the given points to the constructed surface.

Interpolating methods try to fit a surface, e.g. a piece-wise linear one, through the

points and may filter outliers to achieve that goal well. Approximating methods fit

an implicit surface within a threshold distance to the points by creating a signed

distance function and then extract a polygonal mesh. Consequently their resulting

boundaries will not interpolate the input points, but this enables them to deal better

with noisy data. Some of the methods give further topological guarantees such as

homeomorphy, genus and water-tightness for the constructed surface.

2.2.1 Interpolating a Point Set

α-shapes

Based on the three-dimensional Delaunay triangulation of the points, the concept of

α-shapes was extended into R
3 by Edelsbrunner and Mücke [38]. This formulation

requires a globally uniform parameter, which leads to a tradeoff between loss of detail

and hole filling. Edelsbrunner’s work is further extended in Veltkamp [74] with a γ-

neighborhood graph that adapts locally to variable point density, however the results

are not convincing. Still, the fact that many point sets are determined by mostly

(although rarely exclusively) locally uniform sampling has motivated the extraction
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of such a guarantee from point sets and to apply local reconstruction to avoid the

more expensive construction of the global Delaunay graph.

Advancing-front Algorithms

Bernardini et al. [16] introduced an advancing-front algorithm based on α-shapes,

which for the reasons listed above fails for non-uniformly spaced point sets. Cohen-

Steiner and Da [25] extended it to locally non-uniform sampling, but it still does not

interpolate all points. Since such algorithms depend on a seed-triangle, their results

are also not deterministic.

Local Tangent Plane Estimation

Boissonnat [17] estimates at each given point a local tangent plane using nearby points

and then determines the local neighborhood by projecting those points on that plane.

He assigns points as neighbors based on an angle criterion. Gopi et al. [45] derive

natural neighbors from the Delaunay graph projected on such a plane. For both

methods, a plane is fit using the k-nearest neighbors. Using a single value for k

globally has the disadvantage that for many points this value will either be too small

or too large to give suitable local support. Where these neighbors are distributed an-

isotropically, the resulting normal will not be representative. The more recent method

of Dumitriu et al. [34] based on theoretical guarantees of Funke and Ramos [40] for

uniformly sampled point sets suffers from the same problem. They require prior
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extraction of a dense uniformly sampled point set whose quality depends again on

estimation of the underlying surface.

Umbrella Matching

Adamy et al. [1] create umbrellas locally at the vertices from the set of Gabriel trian-

gles. They use topological post-processing to match these umbrellas and fill holes by

solving a system of integer linear inequalities, but this becomes very slow for larger

sparsely spaced sub-sets of points. The surface is guaranteed to be watertight, but

no aspect of the surface is optimized and these inequalities lead to undesired discon-

nection of some of the surface components. Kós [58] creates umbrellas for a selected

sub-set of points and then re-inserts unprocessed points. Contrary to our requirement

of the water-tightness guarantee, his work is targeted to include unorientable surfaces.

Shape from Sculpturing

Boissonnat [17] introduced, in a second approach in that paper, the technique of

sculpturing. He mentions a proof that any polyhedron of genus 0 can be extracted from

the convex hull by removing tetrahedra in the Delaunay graph, based on certain rules.

Since this is also of combinatorial complexity, he proposed a greedy algorithm which

removes such tetrahedra from the outside of the convex hull of the point set, sorted by

an intrinsic criterion. However, this process ends up quickly in local minima and may

therefore miss interpolating many of the given points. Further, the resulting shape is
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restricted to a genus of 0. Attene and Spagnuolo [13] constrain sculpturing such that

Gabriel triangles are not removed from the boundary. They detect and create holes

in the object (genus > 0) where edges in the Euclidean Minimum Spanning Tree span

non-neighbor vertices on its boundary, but the object can become hollowed out at

under-sampled regions. Chaine [22] uses surface tension as criterion for sculpturing,

but does not give any guarantees for the resulting surface. Allègre et al. [2] present an

out-of-core extension of that algorithm by first decimating the point set and then sub-

sampling to a criterion. Given the way the sculpturing operation is defined, all the

above methods are global and hence do not scale well to very large point sets. Being

able to limit the sculpturing operation and more generally the surface construction

operation to a local subset of points is therefore very important.

Homeomorphic Guarantees

Amenta and Bern [7] were the first to prove homeomorphic surface reconstruction

(their Crust algorithm), given a sampling criterion, although the resulting surface

may contain many slivers and is therefore not manifold. They however do guarantee

such a surface for an ε-dense sampling in proportion to medial axis distance, where

ε=0.06. This sampling criterion is extremely stringent, permitting only very blunt

dihedral angles (an averaged ≈ 166◦) at the edges, in order to be able to fit a surface

uniquely. Except in some parts of the surface, these criteria are not met by point

sets usually encountered in practice. The actual surface triangles are extracted by
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locally filtering the Delaunay graph. Following this work, Amenta et al. [9] present

the Power Crust algorithm which reconstructs under-sampled regions better, but

introduces many additional points. Amenta et al. [6] simplified the original Crust to

the Cocone algorithm. Later, Dey and Goswami [28] extended it to their TightCocone

algorithm which fills holes, provided the under-sampling is local. In a follow up

paper [29], they propose some filtering of the restricted Delaunay graph to remove

noisy points, which are not clearly oriented outside or inside its envelope. A recent

extension by Dey et al. [27] focused on localizing reconstruction while maintaining its

theoretical guarantees, which enables parallel and out-of-core handling of large point

sets.

Other Delaunay-Based Methods

Both Giesen and John [43] and Edelsbrunner [35] used flow, based on critical points of

a distance function, to restrict the Delaunay complex. However they give no guarantee

other than that the resulting surface will be water-tight. Guibas and Oudot [46] used

the witness complex to extract an interpolating surface from noisy point sets.

Optimization Approaches

In one of the first attempts to use an optimization approach Petitjean and Boyer [67]

use an initial set of Gabriel triangles and then select triangles by minimal circumradius

to extract a manifold. Labatut et al. [59] formulate the problem as a graph cut
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by weighting approximate visibility and minimizing the longest-to-shortest ratio of

edges in triangles, but they require carefully optimized parameters for each point set.

Hiyoshi [50] proposes a global algorithm which minimizes a criterion for the surface

and analyzes different heuristics. He extends the edge length criterion from R
2 to

correspond to area or circumradius of triangles in R
3. But his heuristic of inserting

triangles into a set to fulfill the constraint of ≤ 2 triangles per edge, as well as its

proposed dual, get very easily stuck in local minima, yielding sub-optimal results.

Concluding remarks

While interpolating algorithms, which are based on a global structure (Delaunay

graph), yield in practice the best results, they are slower and not easy to implement

in parallel. Fast advancing-front and umbrella-matching algorithms fail in turn for

locally non-uniform point sets, since closedness cannot be guaranteed from local anal-

ysis alone (see the Gestalt law of Closure). Based on our experiments we judge the

above-mentioned TightCocone [28] algorithm to be a good solution for interpolating

point sets which include non-dense, locally non-uniformly spaced points. There are no

recent significant extensions of this work and the more lately proposed minimization

approaches are not competitive in our view.
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2.2.2 Fitting an Approximate Surface to a Point Set

Much more recent work has been done on approximation of surfaces, given that sensor

data is often noisy and contains outliers. We find however that it deals with a practical

aspect of the shape construction problem and that the basic research problem still

remains one of interpolation. Approximating methods either require oriented normals,

which are unreliable if coming from sensing devices, or they try to estimate them,

with variable success, since this depends on the choice of neighborhood.

Methods Assuming Normals

Methods assuming existing normals were for example proposed by Boissonnat and

Cazals [18]. They use natural neighbors interpolation, but the resulting surface is

often not manifold. Carr et al. [21] describe a method in which they apply radial

basis functions (RBF ). Their method yields good results but is rather slow. Mederos

et al. [60] use curvature-variant vertex clustering to create a representative point set

and then do an advancing-front triangulation. Kazhdan et al. [56] introduced Poisson

surface reconstruction, which handles noise well. Bolitho et al. extend it first to a

streaming [19] and then to a parallel approach [20].

Methods Estimating Normals

In yet another seminal contribution in this area, Hoppe et al. [52] estimate the normals

and propagate their orientation so that they become globally consistent. Alliez et
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al. [3] search k-nearest neighbors, until an anisotropy threshold is reached or k reaches

a global maximum, to fit the implicit surface to a tensor field. Samozino et al. [69]

extended the work of [21] by clustering points in the Voronoi diagram to reduce the

complexity of RBF . Hornung and Kobbelt [53] dilate the surface crust by volumetric

expansion and create a confidence-weighted graph for which a minimal cut yields a

watertight surface, however its resolution is restricted by that grid. Mullen et al. [63]

eliminated this restriction by defining an ε-band enveloping the surface with ε globally

estimated from the Delaunay graph. Shalom et al. [71] construct visibility cones in

order to use global visibility information to improve fitting holes with RBF . Avron

et al. [14] utilize sparsity, using the theory of compressed sensing given in Mishali and

Eldar [62], to implement a l1-based method which avoids the over-smoothing of the

l2-norm and therefore can reconstruct surfaces with sharp features.

Concluding remarks

Approximating a surface is difficult to do well, locally. Also, unreliable normals and

the fact that the surface is not required to pass through the given points might work

better in the presence of noise, but generally does not yield as good a shape as

interpolating methods do.



CHAPTER 2. BACKGROUND AND RELATED WORK 27

2.3 Terminology and Notations

2.3.1 Definitions

Let P in d-dimensional Euclidean space (Rd), with d = 2 or d = 3, denote the given

unorganized Point set for which an aesthetic closed, non-intersecting and manifold

interpolating piece-wise linear boundary B has to be constructed. P is assumed to

belong to the boundary surface of some closed object in R
d.

Let Bmin refer to the Bi ∈ {B} for a given P such that it minimizes an intrinsic

criterion of Bi.

Let DG(P ) denote the Delaunay graph of the point set P . DG(P ) is by definition

a simplicial complex, denoted generically as C. For the various types of elements in C,

we will use the following naming convention: v for vertices, e for edges, t for triangles,

q for tetrahedra, f for facets, s for d-simplices in R
d and x for generic entities in that

list.

Euclidean minimum spanning tree EMST is the tree spanning all points in P in

R
2 such that the sum of its edge lengths is the minimum. EMST ⊂ DG (Jaromczyk

and Toussaint [54]).

A facet is a boundary primitive, therefore in R
2 an edge and in R

3 a triangle. We

define a facet f in C as a boundary facet if f has at most 1 incident d-simplex s in C.

We name the sub-set of boundary facets for a connected set of facets F as its hull

H(F ). This implies that the facets in the remaining sub-set F \H(F ) are all interior
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Figure 2.1: Three Gestalt laws illustrated: Proximity connects close points. Good continuity
minimizes curvature. Closedness keeps the shape water-tight.

to the hull. We call a vertex vi in H(F ) as manifold if vi is only visited once when

traversing the hull. We further call a hull H as manifold if all vertices v in H are

manifold.

‖n‖ denotes the Euclidean norm in R
d for a vector n.

2.4 Our Proposed Approach

Despite the wide range of methods developed so far, we believe that the fundamental

problem of determining the shape of unorganized point sets has not been addressed

that well. This is confirmed by the unwanted artifacts and the lack of surface construc-

tion guarantees in these methods. We believe that most point sets have an intrinsic

shape which optimizes in some way the Gestalt principles of form perception. This

shape is well defined and can be formulated using an optimization metric based on
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Gestalt laws of visual perception (see Figure 2.1). Further, our various experiments

with point sets in 2D and 3D have confirmed this very strongly. Most previous sur-

face reconstruction and rendering algorithms do an estimation of the local surface and

can give some theoretical guarantees, but only under extremely stringent conditions

required of the point set configuration.

In our approach, we propose that there is a good surface, well-defined by mini-

mizing an energy functional, which is based on aesthetics. We propose further that

while we can not guarantee its exact construction always, we can approximate it well,

depending on a time-budget. This good surface exists in a much larger sub-class of

point sets with not too extreme spacing, basically point sets bounding aesthetically

pleasing shapes. By assuming such a good surface, every given point set has a shape

in the form of the topology of that surface. We can then search for that shape or

an acceptable approximation, instead of estimating something that we cannot give

guarantees on.



Chapter 3

The Minimum Boundary Complex

In this chapter we present our first major contribution, the Minimum Boundary Complex

(BCmin), a subgraph of the Delaunay graph of the given point set. BCmin closely approximates

the minimum boundary shape (Bmin) and its approximation can be constructed fast using a

greedy algorithm. It is also robust to noise. We first define it in R
2 and R

3, and are able to

generalize it to R
d. Further, we show that it can also be constructed locally.

(a) Points (b) EMST (c) BCmin (d) Bmin

Figure 3.1: Comparison of spanning graphs with upper constraints on vertex degree c: a)
Point set from Dey and Wenger [32]. b) EMST (c ≥ 1). c) BCmin (c ≥ 2) with the interior
of its manifold hull shaded. d) Bmin (c = 2) with interior shaded.

30
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This chapter is organized as follows. In Section 3.1 we describe how we obtain

a formalized definition for an aesthetic shape boundary based on Gestalt laws. We

provide this definition first for R
2. Then we give the inspiration for developing the

Minimum Boundary Complex from this concept. By finding a suitable surface cri-

terion to minimize, in Section 3.2 we extend these definitions of both the Minimum

Boundary and the Minimum Boundary Complex into R
3. Finally, we generalize their

definitions into R
d and describe some properties of the Minimum Boundary Complex

in Section 3.3.

3.1 Shape Boundaries in R
2

Althaus and Mehlhorn showed in [5] that the travelling salesman problem (TSP)

solves the curve reconstruction problem for non-uniformly sampled smooth curves

under the assumption of a sampling condition similar to Amenta et al. [8]. Our own

experiments in [66] have shown that minimal length polygonizations of point sets

yields very good results and the shapes produced are aesthetically pleasing to human

viewers. This led us to the idea that every given point set, unless it is random or

extremely non-uniform, has an intrinsic shape which minimizes an energy function

over all possible closed linear piece-wise interpolations of the point set. And it this

idea that is pursued throughout the research reported in this thesis.
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(a) Point set (b) Bmin

Figure 3.2: a) Unorganized point set P . b) A pleasing shape connecting P , which is a
closed, non-intersecting and interpolating curve with minimal boundary length, Bmin.

3.1.1 The Minimum Boundary (Bmin)

In R
2, we select edge length λ(e) = ‖e‖ as the criterion for the Minimum Boundary

(Bmin). This criterion is used for creating an aesthetic boundary shape of a point set,

by minimizing its total over B. λ(e) relates directly to the Gestalt law of Proximity.

Closure is fulfilled as well by the constraint of minimum two incident edges for every

interpolated point.

Good continuity is not always strictly followed, since it can conflict with closure

(for an example see Figure 3.2 where the uppermost point of the tail and the rightmost

point of the wing are not connected as one would expect following good continuity).

We therefore restrict the edges in Bmin to those in the Delaunay graph (DG). Then

the law of Good continuity is fulfilled implicitly, since restricting the edges to DG

maximizes angles between edges and selects small edges, which in turn correlates well

to low curvature.
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Finding Bmin by minimizing some criterion in its geometric primitives is a non-

polynomial (NP)-hard problem.

3.1.2 The Minimum Boundary Complex (BCmin)

We observed that for point sets, except in those which are random or extremely

non-uniformly spaced, the EMST graph characterizes the above-mentioned intrinsic

boundary shape rather well. Contrary to Bmin, it can be constructed in O(n log n)

time. However, there are leaf vertices in EMST and there are no leaf vertices in the

interpolating, closed manifold curve Bmin.

Based on this observation we formulate an extension to the EMST by requiring

that each vertex must have at least two incident edges. The manifold hull of the

resulting graph approximates the shape boundary much better (see Figure 3.1c). It

shares a large sub-set of edges with Bmin, because the only change in definition is a

topological constraint, its vertex degree, which is slightly different. Since it is not a

tree, but a simplicial complex consisting of edges and triangles, we have chosen to

name it the minimum boundary complex (BCmin).

Definition 1 The boundary complex BC ⊆ DG in R
2 is defined as a graph G =

(V,E) spanning P such that each vertex vi in BC has ≥ 2 incident edges in BC.

Note that DG is a BC.

For any given set of points, BCmin is the BC satisfying the following objective:
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BCmin =
E∑

ei

λ(ei) → min (3.1)

An approximation of BCmin can be constructed using a greedy algorithm in

O(n log n) time, which we denote as BC0 (see Algorithm 1).

Extensive experiments using this algorithm show that the manifold hull of BC0

closely resembles the boundary shape, i.e., Bmin or a close approximation, since many

edges of these two graphs overlap (see Figure 3.1). We will look more closely at the

properties of BC0, after we have presented its extension in R
3.

Input: P,DG
Output: BC0

BC0 = {};
PQ := priority-queue of ei in DG, sorted by λ(ei);
while (BC0 �= connected component) ∨ (∃vi in P with < 2 incident edges in BC0)
do

Remove first ei from PQ;
if (ei connects components in BC0) ∨ (ei contains leaf vertex in BC0) then

Insert ei into BC0;
end

end

Algorithm 1: Construction of the BC0-complex in R
2

Lemma 1 Given a point set P with n points and its Delaunay graph DG(P ), Algo-

rithm 1 constructs BC0 in O(n log n) time.

Proof 1 Creating PQ inserts at most the O(n) edges of DG, with each insert opera-

tion being O(n log n). The while loop is executed O(n) times. Testing for and keeping

track of connectedness is done via a disjoint set. Its operations are an amortized
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O(α(n)), with α(n) as inverse of the Ackermann function. Total complexity of the

algorithm is therefore O(n log n).

Note that Algorithm 1 may not have a unique result if the DG contains edges of

equal length. However, this is not a problem, as based on perception either result

will be equally valid.

3.2 Shape Boundaries in R
3

3.2.1 Choosing a Suitable Criterion for Bmin

As shown above, in R
2 we use edge length as criterion to minimize a piece-wise

linear curve, as it corresponds well to Gestalt laws. This needs to be extended for a

triangulated boundary in R
3. We prefer that this criterion be contained in a single

primitive (point, edge or triangle) to avoid combinatorial dependencies in the design

of any optimal search algorithm.

Different triangle measures in R
3 could be considered as extensions of this R2 min-

imization criterion. These include area, circumradius, inradius, longest side, perime-

ter, aspect ratio, and possibly others.

We have evaluated these measures by plugging them into Algorithm 2, the R
3

version of Algorithm 1, which is presented later in Sub-section 3.2.3 (see Figure 3.3).

Using area or inradius produces many long, thin triangles. The circumradius gives in

general good results, but may also include long, thin triangles because it avoids small
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(a) Circumradius (b) Area (c) Aspect ratio (d) Longest edge λ(t)

Figure 3.3: Comparing surface minimization criteria.

triangles with near coplanar vertices. Minimizing the longest edge in a triangle seems

to work the best (see Figure 3.3d). We relate this to the fact that short edges also

tend to minimize curvature, as discussed next.

3.2.2 Minimizing Curvature gives Good Shape

Hildebrandt and Polthier [49] definemean curvature for edges in polyhedral surfaces as

He = 2‖e‖cos θe
2
, where θe is the dihedral angle at edge e. Intuitively, this corresponds

to the amount of work for bending a metal sheet, with the two factors being largeness

of the sheet and the angle to bend. Subsequently, we define Bmin as the B for which
B∑

ei

He → min. However, He can not be evaluated independently for a single triangle.

Edge length is one of the two factors in the definition of He. Hence selecting

triangles with short edges still yields small
∑

He for the entire triangulation since it

also seems to increase the obtuseness of dihedral angles. This relates well to both of

the Gestalt laws of Proximity and Good Continuity, (Closure is satisfied by requiring

a closed surface). Accordingly we define our measurable criterion for an individual
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(a) u=1 (b) u=2 (c) u=1 (d) u=2

Figure 3.4: The u-valence is the number of umbrellas at a vertex: a, b) In 2D the interior
of boundary is shaded yellow. c, d): In 3D.

triangle t as:

λ(t) = max(‖ei‖int) (3.2)

Like in R
2, we restrict boundary triangles to the Delaunay graph, as it maximizes

their minimal angle and therefore tends to yield both short edges and obtuse dihedral

angles between triangles.

3.2.3 The Minimum Boundary Complex (BCmin) in R
3

In R
3, an umbrella U(v) for a vertex v is any set of triangles incident to v such that

each edge in U(v) incident to v is contained by exactly two triangles in U(v). We

shall use the term u-valence to denote the number of umbrellas incident at a vertex

(see Figure 3.4). Different umbrellas at a vertex can overlap partially.

We have shown above in Subsection 3.1.2 that in R
2, the two graphs BCmin and

Bmin minimize the same criterion and differ only in a single topological condition,

their vertex degree. Let us note that for R2, an umbrella corresponds to an incident
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pair of edges in the boundary (see Figure 3.4). So we shall use u-valence for consistent

values between R
2 and R

3.

We name a vertex v in a set of triangles T as manifold if it has exactly one umbrella

in T . We further say that T is manifold if it is bounded by a single closed edge chain

L (which may be an empty set) and all its vertices not in L, which we call interior,

are also manifold.

Each vertex in Bmin has exactly one umbrella in Bmin, and therefore the u-valence

= 1. Allowing ≥ 2 triangles per edge corresponds to relaxing the u-valence to be ≥ 1.

This way we can define the minimum boundary complex (BCmin) in R
3 formally as:

Definition 2 The boundary complex BC ⊆ DG in R
3 is defined as a connected set

of triangles spanning P such that each edge ei in BC has ≥ 2 incident triangles in

BC. Note that DG is a BC.

For any given set of points, BCmin is the BC satisfying the following objective:

BCmin =
T∑

ti

λ(ti) → min

BCmin has the following important properties:

• Since an edge can have two or more incident triangles, BCmin is a single con-

nected set but in general, not manifold.

• The relaxed topology constraint enables us to construct a close approximation

using the greedy Algorithm 2 in O(n log n) time (Lemma 2). Since the output

of this greedy construction algorithm is not guaranteed to be minimal, we call
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(a) BC0 (b) Desired surface B

Figure 3.5: Yellow triangles overlap in the boundary complex and in the manifold interpo-
lating oriented surface: a) BC0. b) Bmin approximation.

it BC0. Note that BC0 construction is not an advancing-front algorithm, since

it adds triangles sorted by a criterion independent of locality.

• BC0 is a very good shape approximation because its triangles overlap largely

with those in the desired boundary shape (see Figure 3.5). This is due to the

fact that the only difference in its definition, compared to Bmin, is the slightly

relaxed topological constraint.

• This sub-set of BC0 triangles overlapping with Bmin can be easily identified by

querying BC0 (see conjecture next).

Our conjecture is that vertices, which in BC0 are uniquely interpolated by a single

umbrella, are very likely to be interpolated by that same umbrella in Bmin, since the

triangles in BC0 are selected by the same minimization criterion.
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In Algorithm 2 a boundary edge in a given triangle set T is any edge which has

just a single incident triangle in T .

Input: P,DG
Output: BC0

BC0 := {};
PQ := priority-queue of ti in DG, sorted by λ(ti);
while (BC0 is not a connected component) ∨ (∃ ((vi in DG) not in BC0)) ∨ (∃
boundary edge ei in BC0) do

Remove first ti from PQ;
if (ti connects unconnected triangles in BC0) ∨ (ti contains a boundary edge in
BC0) then

Insert ti into BC0;
foreach boundary edge ej in ti do

Insert all tj not in BC0 containing ej into PQ, together with their λ(tj);
end

end

end
Algorithm 2: Construction of the BC0-complex

Lemma 2 Given a point set P with n points and its Delaunay graph DG, Algorithm 2

constructs BC0 in O(n log n) time.

Proof 2 Creating PQ inserts at most the O(n) triangles of DG, with each insert

operation being O(log n). The while loop is executed O(n) times. Testing for and

keeping track of connectedness is done via a disjoint set. Its operations are an amor-

tized O(α(n)), with α(n) as inverse of the Ackermann function. The inner loop is

executed at most 3 times. Total complexity of the algorithm is therefore O(n log n).
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3.3 Properties of the BC

3.3.1 Topological Properties of the BC in R
3

As we have mentioned before, the boundary complex is a very close approximation

to the desired boundary shape, as can be seen here in comparison with the surface

reconstruction method of Dey and Wenger [28] (Figure 3.6). It can therefore be

used to do a quick and dirty visualization of point sets, especially non-dense and

locally non-uniformly spaced, a class of point sets which are not handled that well by

currently available point rendering methods.

For obtaining a closed interpolating oriented surface we would have to eliminate

artifacts, which are due to the greedy BC0 construction algorithm terminating in a

local minimum, and enforce the manifold constraint. To determine these artifacts we

need to analyze the topological properties of the entities in the boundary complex.

For readability, we present those by an example in R
3, with illustrative figures

in R
2. However, since they are based on the properties of the Delaunay graph, they

extend into R
d, d ≥ 2.

The BC in R
3 is also a simplicial complex C ⊆ DG.

Let Pinf denote the point set P enhanced by an infinite Steiner vertex pinf , and

let DGinf = DG(Pinf ). Using DGinf instead of DG ensures that triangles in the

convex hull of P also have two incident tetrahedra (one of them is infinite) and thus

we can deal with all triangles in DG in a generic way.
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(a) Splats, 448 points (b) Splats, 2k points (c) Splats, 24k points (d) Splats, 54k
points

(e) TightCocone (f) TightCocone (g) TightCocone (h) TightCocone

(i) BC0 (j) BC0 (k) BC0 (l) BC0

Figure 3.6: Comparing visualizing point sets as (row 1) splats (MeshLab, with default
parameters), with (row 2) BC0 and (row 3) with complete reconstruction TightCocone [28]
for varied point sets. Note the poor results (TightCocone) and complete failures (splats)
where point spacing is non-dense or locally non-uniform. The small holes in BC0 are
artifacts of local minima.
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(a) Deflated entities in 2D (b) Polyhedral hull

Figure 3.7: Deflated entities illustrated by 2D example with dotted lines showing the De-
launay graph: a) Deflated vertices and edges shown as continuous lines, with the inside of
closed components shaded yellow, remaining space is Cext. The star of the deflated vertex p,
shaded grey, consists of two connected components in Cext. b) Polyhedral-hull components,
shaded yellow, have no deflated entities on their boundary.

Let Cext be the connected C ∈ (DGinf \ BC) which is incident to pinf . We call

Cext as the external space of BC.

We refer to a connected set of triangles T as a polyhedral-hull component if its hull

H(T ) is manifold. Clearly, DG is one such polyhedral-hull component.

A deflated entity x ∈ BC is a d-simplex with d ≤ 2 (vertices, edges and triangles)

such that its star in Cext is not connected (see Figure 3.7 for an example in 2D).

A deflated component denoted by OC, OC ⊆ BC, is any connected set of deflated

entities x such that no other deflated entity in BC is incident to that OC. Intuitively,

this term comes to mind by looking at the BCmin as a not entirely inflated air mat-

tress. Its hull is still deflated in some places, causing depressed pockets in the surface

of the mattress.

It is easy to see that if a BC has no deflated entities, then H(BC) is polyhedral.

BC minus the set of all its deflated triangles (deflated edges and vertices are not
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considered, since if they are not part of deflated triangles, they belong to non-deflated

triangles) consists of a set of (possibly vertex- or edge-connected) triangle sets, which

we name as closed components. By this definition a closed component, denoted by

CC, has no deflated entities and hence it is a polyhedral-hull component, i.e. H(CC)

is a polyhedron for every CC.

Separating these closed and deflated components, as will be shown later, is the key

to identify artifacts due to the local minima and to transform BC0 into a manifold

boundary.

3.3.2 Local Construction of BC0

Effectively visualizing large out-of-core data sets requires construction of the shape

in parts by just considering local sub-sets of points (see Figure 3.10a), which however

must be deterministic for the global point set P with n points. We prove that BC0

construction has this property. The proof is based on a well-known property of its

underlying Delaunay graph DG. The set of natural neighbors Z(p) for a p ∈ P is its

1-neighborhood in DG(P ) and ρ(p) is the radius of its circumsphere (ρ-circumsphere)

containing Z(p). We name the i-nearest neighbor of p ∈ P as NNi(p). The Delaunay

property for a set of tetrahedra Q incident to p ∈ P is fulfilled if the circumsphere of

each q ∈ Q does not include any other point of P . We define the shadow space of a

point p w.r.t. a tetrahedron q as the collection of all half rays originating at a point

p and intersecting q. The Delaunay graph DG(p) at p containing the non-empty set
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Q is complete if all tetrahedra q ∈ Q fulfill the Delaunay property and the ambient

space at p which is not shadowed w.r.t. any q ∈ Q, does not contain any points

in P . We base Algorithm 3 on incremental Delaunay graph construction, for which

Edelsbrunner and Shah [37] have given an expected complexity of O(n log n+ n[d/2]),

although they use randomized insertion order.

Input: P , p
Output: DG(p)
DG(p) := q(p,NN1(p), NN2(p), NN3(p));
i := 4;
while DG(p) is not the complete Delaunay graph for p do

Insert NNi(p) into DG(p);
i := i+ 1;

end
Algorithm 3: Find DG locally for p

Lemma 3 For Psub ⊂ P , DG(Z(Psub)) can be found by querying just the space inside

and on the ρ-circumsphere of Psub in P , provided P contains no 4 co-planar points.

Proof 3 Assuming that P is non-degenerate (no 4 points are co-planar), DG(P )

has the property that no tetrahedron in DG(P ) contains in its interior any p ∈ P .

For finding the local DG(p), no pi outside its circumsphere with radius ρ needs to

be queried, since its farthest natural neighbor has distance ρ to p. If pi were to be

contained inside the circumsphere of any tetrahedron q in DG(p), then DG(p) would

have to be modified to contain pi, and it would also become one of its natural neighbors.

By employing a suitable searching strategy which, for already constructed tetra-

hedra containing p, does not query points in their sector outside their circumsphere,
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(a) Local DG (b) Local BC

Figure 3.8: Illustration in R
2: Delaunay graph with the empty circumcircles of its triangles

shown as grey circles. a) Local construction of Delaunay graph, shaded yellow. The natural
neighbors of p (linked by an edge) are bound by the red circle with radius ρ. b) Local
construction of boundary complex, for both p0 and p1, shaded yellow. The triangles incident
to their shared edge, shaded green, are identical for both points.

the number of queried points could be further limited to the set of natural neighbor

points Z(p).

Now we can prove that the Boundary Complex can be constructed locally from a

sub-set of P such that it is deterministic for P (see also Figure 7.2).

Theorem 1 BC0(Psub) ⊆ BC0(P ) for Psub ⊆ P .

Proof 4 Lemma 3 states that for any pi ∈ P , DG(pi) ⊂ DG(P ), the set of incident

Delaunay tetrahedra, can be constructed by querying only a local sub-set of P . It

follows that for an edge e in DG(pi) incident to pi all triangles incident to e are also

in DG(pi). Then the condition of ≥ 2 triangles per edge and their sorting order are

deterministic at each end-point of e. Induction extends it from pi to Psub ⊂ P .
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3.3.3 Point Spacing Density

The boundary complex is very robust with respect to density of point spacing and is

hardly affected by down-sampling (see Figure 3.9, with up to 99.7% points removed).

Let us note that down-sampling a point set not only increases sparsity, but could also

affect uniformity, depending on the method used.

3.3.4 Noise Tolerance

The presence of significant noise can cause major problems for visualization methods

which require construction of an interpolating surface, especially where the noise

level not only exceeds feature size but leads to regions with very sparse point spacing.

The boundary complex relaxes the requirement of a manifold interpolating surface to

simply interpolating the points. Even extremely noisy points are simply incorporated

into a thick crust surface, with some points becoming interior to the visible boundary

(see Figure 3.10b- 3.10d).

The reason for this robustness to noise is that the requirement of separating noise

from features is dropped altogether when we relax the manifold constraint. That

separation requires either an assumed surface, which is manifold or with restricted

curvature, or else the availability of a noise model. Since our algorithm is agnostic to

both, it treats noise exceeding feature size just as features of different extent and in

the extreme case, noisy points are seen as a sparsely sampled signal representation.
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(a) Splats, 100% (b) Splats, 4% (c) Splats, 0.3%, failed

(d) TightCocone, 100% (e) TightCocone, 4% (f) TightCocone, 0.3%

(g) BC0, 100% (h) BC0, 4% (i) BC0, 0.3%

Figure 3.9: Comparing results of heavily down-sampled point sets (vertices are clustered and
decimated on a uniform grid, with MeshLab). Left: Original Stanford bunny, 36k points.
Center: Bunny, down-sampled to 1270 points (4%). Right: Bunny, down-sampled to 107
points (0.3%). Row 1: Rendered as uniformly-sized splats, note the errors at silhouettes
and (complete) failure at the non-dense or locally non-uniformly spaced points at the ears.
Row 2: TightCocone [28] reconstruction results for the challenging regions in disconnected
components. Row 3: Our boundary complex handles the challenging regions gracefully.



CHAPTER 3. THE MINIMUM BOUNDARY COMPLEX 49

(a) BC0, 174k points (b) 0.4% perturbed (c) 4% perturbed (d) 10% perturbed

Figure 3.10: a) Noisy range-scan data (catacomb corridor section), 174k points. b-d) addi-
tionally perturbed by given percentage of z-extent of model. Note that neither MeshLab can
construct splats, nor TightCocone outputs any boundary for all of these models, including
the original data on the left. Figure d has been slightly turned to show the opening.

3.4 Concluding Remarks on Minimum Boundary Complex

As can be seen from the above, the Minimum Boundary Complex is a very interesting

simplicial complex with potentially many applications in dealing with point sets.

These applications include quick and dirty visualization, generating shape descriptors

for use in point set retrieval, topological analysis, providing a good starting structure

for boundary shape construction, etc. Constructing an aesthetically pleasing shape

for an unorganized set of points, given just the coordinate data is a complex problem

and especially if the spacing of points on the desired shape is not dense or is locally

non-uniform. In subsequent chapters we describe in detail the new algorithms we

have developed for shape construction based on the minimum boundary complex.

The results from these algorithms are superior to current solutions for this problem.



Chapter 4

Boundary Construction in R
2

In this chapter we present an application of the minimum boundary complex, a new method for

constructing the boundary shape of a given unorganized point set in R
2. This method significantly

improves quality of results compared to previous methods, especially for non-dense and locally

non-uniform point sets. Its complexity is competitive with an expected O(n log n).

Figure 4.1: Comparing the minimizing graphs in R
2 with their u-valence.

50
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4.1 Overview

We have mentioned above in Subsection 3.1.2 that the boundary complex BC is close

to Bmin because the only difference is a slightly varying topological constraint, namely

vertex degree, or more generally, umbrella count per vertex.

The EMST has vertices with u-valence ≥ 0 and Bmin has u-valence = 1. Based

on this, we have defined BCmin as a minimizing graph with u-valence ≥ 1. We further

show that its close approximation, which we name BC0, can be efficiently constructed

by a greedy algorithm.

Figure 4.1 illustrates how BC0 can be transformed by two steps into the desired

interpolating boundary shape Bmin or its close approximation. It also demonstrates

how the u-valence varies during this transformation (a u-valence of 0 signifies vertices

inside of the boundary).

Once BC0 has been constructed based on the DG, the next stage of our method is

to transform BC0 so that each vertex in BC0 is contained in exactly 1 umbrella each

to yield Bmin. For this, we start with H(BC0), the manifold hull of BC0. Let us note

that H(BC0) has both manifold vertices (= 1 umbrella) and non-manifold vertices

(> 1 umbrellas). To better understand the steps in this transformation process,

we employ for H(BC0) the metaphor of a yet partially inflated air mattress. This

mattress can be fully inflated by adding triangles from DG to the triangulation inside

its H(BC0) until all its non-manifold vertices have either become manifold or become

inside of the resulting new H(BC)′. We call this first step in transforming BC0 to



CHAPTER 4. BOUNDARY CONSTRUCTION IN R
2 52

Bmin or at least a close approximation, as the inflating operation and the result as

inflated boundary H(BC ′). BC ′ is then a closed component CC.

The vertices in CC therefore have as their degree in H(CC) either 0 if interior to

H(CC), or 1 if on H(CC). For the second step, we use the dual of the inflating oper-

ation, namely, sculpturing, to remove triangles from the triangulation inside H(CC)

until all interior vertices get exposed on the boundary.

In Table 4.1 we compare the properties of the graphs described so far (see also

Figure 3.1).

This sculpturing operation results in an interpolating boundary B. Boissonnat [17]

first introduced this term in 3D where he defined it as removing boundary tetrahedra

from the convex hull in order to expose all interior vertices on that boundary. A

criterion such as tetrahedron circumsphere radius is used to determine the order of

removal. His algorithm is guaranteed to expose all vertices in a combinatorial search.

However, with the convex hull as start set and using only heuristic sorting, it ends

up quickly in local minima.

Our contribution to sculpturing is to appropriately choose the sorting criterion for

shape characteristic minimization, and to apply it starting from a close approximation

of the desired shape, namely H(CC). This way we can avoid getting stuck in a local

minimum frequently.

Given P and DG(P ), the entire algorithm consists of the following steps (see

Figure 4.2):
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Graph Vertex Degree Umbrellas
EMST c ≥ 1 u ≥ 0
BC c ≥ 2 u ≥ 1
Binfl c = 0, or c = 2 u = 0, or u = 1
Bmin c = 2 u = 1

Table 4.1: A comparison of the described graphs by their constraints of vertex degree c and
corresponding umbrella count u.

(a) Point set (b) Bound. complex (c) Manifold hull (d) Desired boundary

Figure 4.2: Area inside hull always shaded: a) Point set. b) BC0. c) After inflating:
Manifold boundary H(CC). d) After sculpturing: Interpolating boundary Bmin.

• Construct BC0 from DG.

• Identify edges in BC0 which make up H(BC0).

• Apply inflating operation to H(BC0) to transform it into a manifold boundary

H(CC).

• Apply sculpturing operation to H(CC) to determine interpolating boundary

Bmin or its near minimum.
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Figure 4.3: Vertex classification. Dotted edges are in DG, solid edges in BC0, here equal
to its H(BC0). Large dots are manifold (v0 is interior, v1, v2, v3 are deflated). v3 has two
umbrellas on the manifold hull (delimited by the arcs): e0-e1 bounds t0, e1-e2 bounds the
triangle fan {t1, t2, t3}.

For the exact minimum boundary, the number of combinations of triangles which

have to be considered in the process of inflating and sculpturing can be very large,

and this is what makes our problem NP-hard. In our method, we use the heuristic

of sorting triangle candidates based on their Δ‖B‖ impact on the boundary, so that

the total boundary length is minimized. This process results in Bmin or a close

approximation for a large class of point sets which we define more precisely later.

4.2 Find the Manifold Hull

We say an edge in BC is reachable from the convex hull of the point set if:

1. it is an edge of the convex hull, or
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2. it is an edge of a triangle (in DG) with at least one edge on the convex hull, or

3. starting from a triangle with an edge on the convex hull, it can be reached by

traversing connected triangle edges, without traversing any other BC edge.

All reachable edges of BC make up the manifold hull H(BC) (see Algorithm 4).

We define T (B) as all triangles inside of that boundary B.

Input: BC
Output: H(BC)
T = set of triangles in DG(P );
while (ei in H(T )) not in BC do

ti is triangle incident to ei inside of H(T );
T :=T \ ti

end
H(BC) = H(T )

Algorithm 4: Determine manifold hull H(BC) for BC

Lemma 4 The manifold hull H(BC) for BC in DG contains all vertices in P either

in H(BC) or in its interior. Further, Algorithm 4 computes H(BC) in O(n log n)

time.

Proof 5 The convex hull of P , denoted as the initial H(T ), includes all pi ∈ P on it

or in its interior. Removing a triangle from T never moves an edge ei in BC to the

outside of H(T ). Since BC interpolates all vertices in P , it follows that no pi ∈ P can

become exterior to H(T ), which eventually becomes H(BC). Since each loop removes

a triangle in DG from T , it is executed at most O(n) times. As local operation and

set operation its complexity is O(log n) and therefore the overall complexity of the

algorithm is O(n log n).
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(a) BC0 for point set (b) Before inflating (c) After inflating

Figure 4.4: a) BC with single non-manifold vertex v0 on its H(BC). Details inside the
frame, with DG as dotted and H(BC) as solid lines (inside shaded): b) t0 and t1 are both
candidates at v0. Since Δ‖t0‖ is minimal, t0 is selected to add to T (BC). c) v0 is now
manifold in H(BC ′), therefore t1 is no longer a candidate.

4.3 Inflating

Any vertex vi ∈ P can be classified by the number of umbrellas u its incident edges

form in H(BC) (see Figure 4.3) as follows: vi is interior to H(BC) if u = 0, manifold

on H(BC) if u = 1 and non-manifold otherwise.

We define an inflating-candidate triangle for H(BC) as a triangle ti on its outside

which is incident to a non-manifold vertex vi in H(BC).

Let T (BC) denote all triangles which are inside of H(BC). The operation ”Add a

triangle ti to T (BC)” combines their space inside the new enclosing boundaryH(BC ′)

which is formed by XORing the edges of ti in H(BC). Δ‖ti‖ provides a measure of
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the impact of changes to H(BC). It is the value calculated by adding ‖ej‖ for all its

edges ej �∈ H(BC) and removing it for its edges ej in H(BC) (see Figure 4.4).

To inflate H(BC) we select and add a triangle from the current set of inflating-

candidate triangles. This reduces the number of its non-manifold vertices. We repeat

this triangle addition process until H(BC) becomes manifold. The selection criterion

used is the smallest Δ‖ti‖ (value is always negative). It gives priority to adding the

largest triangles and such ones having the most acute angles at the non-manifold

vertices. In turn, this helps minimize the length of H(BC).

Every vertex vi in H(BC) which is non-manifold has candidate triangles. This is

so because of the following: if all its incident triangles were in H(BC), it would have

to be either interior or on the convex hull.

Input: BC
Output: CC
PQ:=priority-queue of candidate ti, sorted by Δ‖ti‖;
while PQ �= {} do

Remove first triangle ti from PQ;
BC:=BC ∪ ti;
foreach vj ∈ V (ti) do

Update state for vj
end
foreach tj in (DG \BC) and sharing a vertex with ti do

Determine if tj is a candidate and update PQ with it
end

end
CC:=BC

Algorithm 5: Inflating the manifold hull to a manifold boundary

Lemma 5 Given a manifold hull H(BC) in DG, Algorithm 5 inflates it in O(n log n)

time to construct H(CC), which is always a manifold.
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Proof 6 We first prove that the while loop is guaranteed to terminate. Any triangle

ti in DG which is on the outside of H(BC) is a candidate to add to T (BC), if it is

incident to a non-manifold vertex in Be. All triangles outside H(BC) can at most

be added once, since there is no removal operation. The while loop terminates if all

vertices in H(CC) are manifold or in the limit all candidate triangles are added.

In the latter case, H(CC) becomes identical to the convex hull, which is a manifold

boundary. Determining the manifold state of a vertex, if a triangle ti is a candidate,

and calculating its Δ‖ti‖ are all of O(1) complexity, since the computation is only

dependent on the k incident edges in DG. The O(n) triangles in DG are at most

inserted a constant 3k times into PQ. Both inner loops execute a number of local

operations, only the second loop contains operations on sorted lists or sets, which are

O(log n). The algorithm is therefore of complexity O(n log n).

4.4 Sculpturing

H(CC) is manifold, but may contain some points of P as interior vertices. In [17]

Boissonnat defines some well-defined rules in 3D for removing tetrahedra from the

convex hull of a point set. According to these rules, all interior vertices can be exposed

onto the boundary and any polyhedron with genus 0 can be reached.

It follows that in R
2 any triangle (in DG) can be removed from the convex hull

H(DG), if it has one edge on H(DG) and its opposing vertex is interior to H. With a

series of such removals, an interpolating polygon is reached. It is easy to see that this



CHAPTER 4. BOUNDARY CONSTRUCTION IN R
2 59

(a) Before removing t0 (b) Before removing t3

(c) After removing t3

Figure 4.5: Point set with manifold hull of closed componentH(CC) shown using thick lines,
other edges in DG shown with thin lines, interior vertices marked and triangle candidates
for sculpturing shown shaded. a) Of the 10 candidates, Δ‖t0‖ is minimal (t0 is small and
very thin). b) By removing t0 from T (B), interior v0 becomes interpolated by H(CC).
For v1, two new candidates are added (t1, t2) as they now share edges with H(CC). t3 is
selected next to remove. c) t4 is no longer a candidate, since it is not incident to an interior
vertex. t5 and t6 will be removed subsequently to interpolate v2 and v1 leading to Bmin.
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holds if we replace the convex hull with any manifold hull H(CC) in DG. Removal of

the triangle exposes the interior vertex onto H(CC) since its incident edges become

part of it, and this permits us to obtain any contained polygon in DG.

Of course, the DG must contain a Hamiltonian cycle. However we have not

encountered any point sets with non-Hamiltonian DG. Those have been observed to

be extremely rare by Genoud [41] (see Dillencourt [33] for a contrived example), it is

therefore not a real concern in practice.

We define a sculpturing-candidate triangle for a H(CC) as a triangle ti on its

inside with one edge in H(CC) and its opposite vertex as interior in H(CC).

Algorithm 8 exposes vertices efficiently to get an interpolating boundary (see Fig-

ure 4.5).

Input: H(CC)
Output: B
B = H(CC);
PQ:=priority-queue of candidate ti, sorted by Δ‖ti‖;
while PQ �= {} do

Remove first triangle ti from PQ;
vi in ti �∈ B;
T (B):=T (B) ∩ ti;
foreach tj ∈ T (B) and sharing a vertex with ti do

Determine if tj is a candidate and update PQ with it
end

end
Algorithm 6: Sculpture to an interpolating boundary

For unreasonably non-uniform point spacing, sculpturing may not expose all points

on the boundary. So the resulting boundary will still be manifold, but may not

interpolate the entire point set. That effect is limited to the local neighborhood of
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these points. We shall denote such points as dominantly interior.

Lemma 6 Sculpturing triangles from a boundary B in DG with Algorithm 6 is of

O(n log n) complexity and produces a manifold B interpolating all but dominantly

interior vertices.

Proof 7 Since H(CC) is manifold and each sculpturing operations preserves this

property, the resulting B is also guaranteed to be manifold. Points which are not

dominantly interior, are at some point contained in a triangle with an edge on the

current H(CC) and can therefore be exposed onto it. Determining if a vertex is inte-

rior is O(1) complexity and so are calculating Δ‖ti‖ for a triangle ti and determining

if it is a candidate. The outer loop is executed at most for the O(n) triangles in DG.

The inner loop contains operations on sorted lists or sets, which are O(log n). The

algorithm is therefore of complexity O(n log n).

4.5 Complexity

Theorem 2 Using the main algorithm in Section 4.1, a minimum, closed, non-

intersecting and manifold shape interpolating all but the dominantly interior points,

can be found in expected O(n log n) time, provided DG contains a Hamiltonian cycle.

Proof 8 The Delaunay triangulation step is of O(n log n) expected complexity as

shown in Guibas and Stolfi [47]. All the following steps are also of O(n log n) com-

plexity as proved in the respective lemmas: Construction of the boundary complex
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(Lemma 1), locating its manifold hull (Lemma 4), inflating it to a manifold bound-

ary (Lemma 5) and including its non-dominantly interior vertices on that boundary

while maintaining its manifold property (Lemma 6). The total complexity is therefore

linearithmic.

We have observed that in practice the performance is determined to a large factor

by the time for DG construction.

4.6 Concluding Remarks on Boundary Construction in R
2

In this chapter we have presented a new method for constructing the boundary shape

of a given set of unorganized points in R
2 by pursuing the idea of minimizing a shape

characteristic of the edges making up the shape. Our method is distinct from all

previous methods. It adapts the idea of sculpturing (originally defined for R3) [17])

by removing triangles. Further, it starts not from the convex hull, but from a close

approximation of the desired boundary shape. For deriving this close approxima-

tion, it first uses a greedy algorithm to construct an approximation of the minimum

boundary complex. Then it applied the new inflating operation, a dual of sculpturing,

which actually adds triangles to obtain a transformed boundary complex whose hull

is a closer approximation of the desired shape. An implementation of this method

and the results for different example point sets are presented in Chapter 6 clearly

showing that the results are superior to previous methods, especially for non-dense
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and locally non-uniform point sets. A very important aspect of this method is that it

extends well into R
3), even though the boundary shape construction problem in R

3)

is very much more complex. This is discussed in the following chapter.



Chapter 5

Boundary Construction in R
3

In this chapter we present the algorithms making up our new method which constructs the

boundary shape for a given set of unorganized points in R
3, extending the previously described R

2

method. It shows as well significant improvements over previous methods, especially for non-dense

and locally non-uniform point sets, and competitive complexity of expected O(n log n).

Figure 5.1: Our method in a nutshell. Red triangles surround hull-holes, the triangulation
is ”thick” (gray) or ”thin” (yellow). Left: Initial Boundary Complex. Center: Manifold
hull. Right: Interpolating manifold with minimized curvature.

64
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5.1 Overview

Sculpturing: From a given simplicial complex C, with B(C) denoting its triangulated

boundary surface, the sculpturing operation eliminates tetrahedra, ordered so as to

minimize curvature in the resulting surface. The goal of sculpturing is to expose

vertices which are interior to B(C) onto it. It guarantees that manifoldness and

genus of B(C) remain unchanged.

In its original proposal, sculpturing starts from the convex hull of a given point

set. Since this can quickly end up into local minima, our proposal is to start from the

boundary complex BC0, actually its hull, H(BC0). The main idea in this heuristic

is that, BC0 being a much closer shape approximation to the desired surface, the

sculpturing process would terminate closer to it. However since the hull H(BC0) is

not guaranteed to be manifold, we will first need to transform BC0 into a BC ′ so

that H(BC ′) is manifold, while remaining close to the optimal shape, Bmin.

For this, we introduce an operation called Inflating as the dual of sculpturing.

While sculpturing removes tetrahedra, inflating adds tetrahedra to BC0, sorted by

the same criterion, until the resulting BC ′ contains no more deflated components.

Its hull H(BC ′) is then manifold, although it may contain some points of P in its

interior. Ideally, H(BC ′) should minimize the same objective as BCmin and Bmin,

while also having the least number of points in its interior.

These two operations of inflating and sculpturing correspond to modifying the

topological constraints of the simplicial complexes in R
3 as shown in Figure 5.1. They
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are also directly parallel to the corresponding operations in R
2 shown in Figure 4.1.

Inflating has, as does sculpturing, problems of getting stuck at local minima re-

sulting in a BC ′ with a hull that could be far from the desired surface. This is

because of unwanted artifacts which show up in BC0 due to the greedy construction

algorithm used, particularly in regions where the density of point spacing decreases

non-uniformly. In such regions, the relaxed condition of ≥ 2 triangles per edge leads

the algorithm to fold back the surface onto itself (see Figure 5.2), resulting in pock-

ets (in the hull) with a closed edge chain L. That is, triangles incident to L with

smaller λ(t) get added to BC0, creating closed components everywhere at L. This

manifests as a hole in the polyhedral hull for BC0. Hence we shall refer to this as a

hull-hole. The hull-hole is such that a triangulated disk bounded by L would close

it. Since any H(CC) is polyhedral, a hull-hole can only exist in the presence of a

deflated component. It can be detected by inspecting its surrounding polyhedral-hull

components.

We introduce a hole-covering operation for closing hull-holes, which is applied

prior to inflating, to reduce the possibility of the inflating operation from quickly

falling into a local minimum. The main heuristic here is to get a deflated component

to become part of a larger closed component, while still keeping the operation local

to the components associated with this hull-hole.

In order to get to the main algorithm quickly, we shall defer a detailed description

of the operations involved in hole-covering till until later in this chapter and for now
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(a) Hull-hole (b) Covered hull-hole (c) Sculptured

Figure 5.2: Local minimum in BC0: a) A hull-hole (black) corresponding to a triangulated
disk with 4 vertices. Closed components (here, 4 tetrahedra) are shaded red, the deflated
component shaded yellow. The closed edge chain L shown by thick black edges encloses
the hull-hole, separating closed and deflated components. b) Hole-covering has added the
triangulated hole-cover. c) Sculpturing has removed redundant triangles from the tetrahedra
of the closed components.

only give a quick overview. The first step is to detect hull-holes in a given BC. For

this, we segment the BC into deflated (OC) and polyhedral-hull components (CC)

and determine their shared boundaries. Then we inspect CCs associated with these

shared boundaries to see if they surround a hull-hole which needs to be covered.

Lastly, a set of triangles is found which contains a triangulated disk for covering a

detected hull-hole.

All L containing hull-holes must be in the form of closed edge chains. For this, we

require the BC to conform to three properties, which we also list later. In practice,

non-conforming entities are rare. And further, it is easy to make a given BC to

conform to these properties.

Once the operations of hole-covering, inflating and sculpturing are completed,

we apply a simple mesh fairing algorithm to directly minimize curvature where not
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already achieved by the λ-criterion. For an overview of these steps in sequence, please

see Figure 5.3.

5.2 Inflating

We shall use BC to generically denote the simplicial complex which results from

successively performing the various operations starting from BC0. The inflating op-

eration (Algorithm 7) converts a given BC into a CC.

Let Vo denote the set of deflated vertices in BC. A tetrahedron q in (DG\BC) is

a candidate for adding if it contains ≥ 1 vertices in Vo and ≥ 1 triangles in H(BC).

Input: BC, Vo

Output: CCf

PQ := priority-queue of candidate qi, sorted by
∑

λ(ti in qi in BC);
while PQ �= {} do

Remove first tetrahedron qi from PQ;
BC:=BC ∪ qi;
foreach qj in (DG \BC) and sharing a vertex with qi do

Determine if qj is a candidate and update PQ with it;
end

end
CCf := BC;

Algorithm 7: Inflating

Lemma 7 Inflating BC converts it into a single polyhedral-hull component, denoted

as CCf , in O(n log n) time.

Proof 9 All finite tetrahedra in Cext can at most be added once to BC, since no

tetrahedra are ever removed from it. The while loop terminates if BC does not contain

any more deflated vertices. In the limit all n tetrahedra in (DG \ BC) would have
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Figure 5.3: The steps of our algorithm in order.
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(a) From H(DG) (b) From H(CCf )

Figure 5.4: Sculpturing with λ(t): a) Directly from the convex hull boundary - a large
hole in the bottom leads to a hollowing-out of the object. b) From the inflated boundary
complex, both from inside and outside.

been added to BC, resulting in H(BC) becoming the convex hull. The convex hull is a

manifold surface. The operation of updating the local neighborhood of a tetrahedron in

the priority-queue is O(log n). The complexity of the algorithm is therefore O(n log n).

5.3 Sculpturing

H(CCf ) is a manifold surface interpolating many of the given points but it may still

contain some of the given points in its interior. For obtaining a manifold interpolating

boundary B, we need to expose the interior vertices onto the boundary. We do this

by adapting the sculpturing method described by Boissonnat [17] in such a way as

to address its weaknesses, namely, quickly falling into local minima, restriction to
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(a) Interior vertex (b) Exposed vertex (c) Flipped edge

Figure 5.5: a) Tetrahedron q0 with single boundary triangle. b) Removal of q0 exposes its
interior vertex p. c) Removal of tetrahedron q1 flips edge e to e′.

genus 0 and the bias caused by removing from the outside only, as described later.

Figure 5.4 illustrates well the difference in resulting quality.

5.3.1 Sculpturing Operation as defined by Boissonnat

Boissonnat states that starting from the convex hull H(DG), a tetrahedron q can be

removed from a polyhedral hull H if it satisfies either of the following conditions (see

Figure 5.5):

• q has exactly 3 vertices, 3 edges and 1 triangle in H: this will add the single

interior vertex onto it.

• q has exactly 4 vertices, 5 edges and 2 triangles in H: the equivalent of an

edge-flip.

Boissonnat has further noted that the following can be proved: by combinatorially

removing tetrahedra in this fashion from the convex hull of the point set, H(DG),
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any polyhedron of genus 0 in DG can be obtained. We generalize this statement to

state that any boundary surface B′ in DG can be sculptured from another boundary

surface B in DG as long as B′ is contained entirely on or interior to B. Its genus is

retained.

5.3.2 Sculpturing From A Close Approximation

We therefore start sculpturing from H(CCf ). Since it is already a much better ap-

proximation to Bmin than H(DG) in terms of shape and genus, it is much less likely

to fall often into an unacceptable local minima. We sort tetrahedra for removal by

largest λ(t) in their triangles t in H(CCf ). However, we do not want to remove

all removable tetrahedra (i.e. all possible edge-flips), since the bias towards removal

from outside is likely to hollow out the surface. Hence we propose that sculpturing

be done simultaneously from spaces both outside and inside of H(CCf ) as described

next. This process will try to expose all points interior to H(CCf ) on the boundary.

We do not consider tetrahedra as removal candidates if their triangle with smallest

circumradius is in the boundary, as we have seen through our experimentations that

it leads to increased curvature. Therefore there could still be tetrahedra in the space

between the inside and the outside of H(CCf ). These are like thin membranes inside

the boundary. Hence, our sculpturing process includes a membrane removal operation

to correct this.
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5.3.3 Sculpturing From Both Inside and Outside

We decompose DGinf \ T (CCf ) into simplicial complexes, which are connected sets

of face-connected tetrahedra:

• Cext

• a usually large and single Cint interior to H(CCf )

• and a set of smaller ones, {Cenv}, which represent the thick parts of CCf . We

name C ∈ {Cenv} as bubbles, as in bubble-wrap.

The CCf we obtained after inflation can be thought of as a crust triangulation,

which is thick where there are bubbles, offering ambiguous local interpolation for

its vertices due to multiple umbrellas in CCf , and thin elsewhere (single umbrella).

By merging all tetrahedra inside bubbles either with Cext or Cint, we can transform

CCf into the manifold interpolating boundary B. This corresponds to sculpturing

simultaneously from inside and outside.

{Cint} contains all connected simplicial complexes in DGinf \CCf which are finite

and incident to manifold vertices vi in CCf . These manifold vi imply their unique

interpolation in H(CCf ). {Cint} may be empty for some contrived point sets, such

as a regular octahedron consisting of eight tetrahedra, which share its single interior

vertex. Our sculpturing algorithm handles such cases also well.

Let {Camb} = Cext ∪ {Cint}. Let TM denote the set of triangles which will not be

changed by sculpturing. TM consists of all triangles with both incident tetrahedra in
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(a) Boundary with bubbles (b) Manifold boundary

Figure 5.6: 2D illustration: a) Bubbles shaded yellow, TM shown as continuous lines, TB

as dotted lines. b) Sculpturing the tetrahedra from these bubbles makes the boundary thin
and manifold.

different Ci ∈ {Camb}. Let TB denote the set of triangles with one incident tetrahedron

in {Camb}. Each triangle ti ∈ TB has therefore its other incident tetrahedron in a

Ci ∈ {Cenv}. TB as the boundary of bubbles is therefore also the boundary for

sculpturing in Algorithm 8 (see Figure 5.6).

Input: {Camb}, {Cenv}, TB

Output: {Camb}, {Cenv}, TB

PQ := priority-queue of candidate pairs (qi,Camb), sorted by inverse max(λ(ti in qi
in Camb));
while PQ �= {} do

Remove first (qi,Camb) from PQ;
Camb := Camb ∪ qi;
Cenv(qi) := Cenv(qi) \ qi;
foreach qj in {Cenv} sharing a vertex with qi do

foreach Ci ∈ {Camb} do
if (qj ,Ci) is candidate then

PQ := PQ ∪ (qj ,Ci);
end

end

end

end
Algorithm 8: ExposeInteriorPoints
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Lemma 8 The total computation in Algorithm 8 is O(n log n) .

Proof 10 The above-mentioned sculpturing rules re-label a sub-set of tetrahedra in

{Cenv} as being in Camb. At most all of those tetrahedra are re-labeled once. The

operations in the inner loops are local and therefore of constant time. Since the re-

labeled tetrahedra are stored in a priority-queue, its total complexity is O(n log n).

5.3.4 Membrane Removal

After the above algorithm is terminated, bubbles may still exist. This is so because

of the condition of not sculpturing tetrahedra which have their triangle with smallest

circumradius in the boundary. Therefore we add a step in which we test if contiguous

sets of triangles can be removed from CCf such that the entire set of tetrahedra per

remaining bubble merges with {Camb}.

We call the two sets of triangles which a bubble shares with Cext and Cint as their

membranes Text respective Tint.

A membrane can be removed from CCf if it does not contain any interior manifold

vertices vi in T such that vi has a single umbrella in CCf . Otherwise, this would

disconnect vertices.

Text can only be removed if Tint is edge-connected, in order to retain CCf as a

connected component.

A membrane cannot be removed if it would add another umbrella in CCf to a

vertex already having an umbrella in it.
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(a) Boundary with membranes (b) Manifold boundary

Figure 5.7: 2D illustration of membrane removal: a) Thick CCf with membranes (Tint,
Text) for the bubbles. b) Removal of membranes yields a thin boundary. Handling of the
membrane-pairs: On the left, Text is removed, since Tint contains an interior vertex. At the
top, Tint is removed to minimize curvature. On the right, both membranes have interior
vertices, therefore Tint is removed, leaving the dominantly interior vertex pdom.

If both membranes of a bubble are removable, we remove the one with higher

mean curvature summed over its edges.

If none is removable, we label the interior manifold vertices of Tint as dominantly

interior, since they will not be interpolated in B due to their large distance from the

surface (see Figure 5.7). For the same reason we do not require that the DG contains

a Hamiltonian cycle, though in the case of R2, as already mentioned in Section 4.4,

it is required, at least in theory. Membrane removal is done by Algorithm 9.

The boundary surface B (unsmoothed) for the given point set P is defined as

H(TM ∪ TB).

Lemma 9 Algorithm 9 converts TM∪{Cenv} into a connected manifold triangulation,

resulting in a H(CCf ) which interpolates all but the dominantly interior vertices in

P and the computational complexity is O(n).
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Input: {Camb}, {Cenv}, TB

Output: TB

foreach Ci ∈ {Cenv} do
Text := T (Ci) ∩ T (Cext);
Tint := T (Ci) ∩ T ({Cint});
if (Text is removable) ∧ (Tint is removable) then

if He(Tint ∪ TM ) < He(Text ∪ TM ) then
TB := TB \ Text;

end
else

TB := TB \ Tint;
end

end
else if (Text is removable) then

TB := TB \ Text;
end
else if (Tint is removable) then

TB := TB \ Tint;
end

end
Algorithm 9: Membrane Removal

Proof 11 Each Ci ∈ {Cenv} is merged to a Cj ∈ {Camb}. This is done by removing

their shared set of triangles, the membrane. A membrane is never removed if this

operation would split CCf and therefore CCf remains a single connected component.

A membrane is also never removed if it contains interior vertices in its triangulation.

Therefore only dominantly interior vertices can become disconnected from H(CCf ),

contained in membranes remaining interior to it. It is also manifold because then

{Cenv} for H(CCf ) does not contain any tetrahedra and the merging operations have

not introduced additional umbrellas at its vertices. For both the operations of classify-

ing and removing membranes, each triangle in CCf is queried at most once. Therefore

the complexity of this algorithm is O(n).
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5.4 Surface Smoothing

Our choice for the minimization criterion can not minimize He exactly. As already

stated, if we were to use curvature as the criterion, then it would require querying

adjacent triangles of an edge. This interdependency among triangles not only makes

the search for the optimal triangle set very complex, but also from our experiments,

we have seen that applying the He criterion directly tends more often to very quickly

fall into local minima. Using λ gets us a close approximation of
∑

He for the B.

To get even closer to the optimal triangle set, we apply a simple mesh fairing

operation, which minimizes He locally. We have found that this substantially re-

duces
∑

He(B), taking the computed surface even closer towards
∑

He(Bmin). Al-

gorithm 10 iterates over all edges ei ∈ B and flips ei where that operation reduces He

locally in B.

An edge ei in the closed manifold triangulation B has the incident pair of triangles

T (ei) in B, which are contained by a tetrahedron q in DG. If there exist both an

edge ek and a triangle pair T (ek) in q which are not in B, we name the operation of

replacing them in B with ei, T (ei) to create B′ as edge-flipping and call ei as flippable,

since it guarantees that B′ remains an interpolating manifold. We only flip those

edges which lead to further minimization of curvature for B.

We define the difference in mean curvature for flipping an edge ei inB as ΔHe(ei) =

He(B
′)−He(B), which requires evaluating He for all the edges in the tetrahedron q.

Note that to the best of our knowledge there is no known upper bound for the
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Input: B
Output: B
E:= set of all edges in B;
while E �= {} do

Remove first ei from E;
if (ei is flippable) ∧(ΔHe(ei) < 0) then

Edge-flip ei in B;
foreach et in T (ei) do

E := E ∪ et;
end

end

end
Algorithm 10: Mesh Fairing

complexity of flipping edges in a surface mesh until such a non-intrinsic global value

is minimized, unless points are densely spaced with minimum angle, as described in

Cheng and Jin [24]. Although based on our experimentations (see also Table 6.2) it

seems to be linear and fast for practical cases.

5.5 Segmenting Deflated from Closed Components

5.5.1 Hull-Holes

We describe next the details of procedures for detecting and covering hull-holes in a

BC, which as mentioned earlier is done prior to applying the inflating operation. A

hull-hole exists in a BC at the places where a deflated component OC and one or

more closed components CC are connected together. We therefore have to segment

these types of components in the BC.

Adding a hole-cover Di transforms this subset of deflated and closed components
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(a) Hull-hole (b) Covered hole

Figure 5.8: a) Inside of closed components (CC) is shaded yellow, OC is shown using
continuous edges, hole-cover is D. b) Adding D transforms the BC into a single CC with
the manifold hull H(CC).

into a single closed component (see Figure 5.8). Let us note here that Di is made up

from entities in DG as a whole, and not just from BC. We can visualize the deflated

OC as being surrounded by the CCs connected to its edges. Hence, we shall denote

the side with CCs incident to triangles in Di \DG as the outside of the L enclosing

the hull-hole and the other side, where both OC and other CC can be incident, as

its inside. We traverse the edges of L in an orientation consistent with this.

BC has no boundary triangles, since each edge in BC has ≥ 2 incident triangles,

which are also in BC. Any triangle in the hole-cover must therefore be such that it is

incident to an H(CC) but not to any OC. Otherwise in places where the hole-cover

touches the deflated component, the hull would remain deflated.
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5.5.2 Properties of a Conforming BC

Let us recall the following. The L enclosing a hull-hole is made up of edges shared by

an OC with one or more CCs. The OC has to be on the inside of L. Lastly, covering

of hull-holes must not add further deflated entities. In order to ensure the above, we

will need entities in BC to conform to the following properties:

1. The shared entities between an OC and associated CCs must not include any

isolated deflated vertex.

2. The inside OC and all CCs associated with the hull-hole must be uniquely

identifiable. This requires that each edge in L is contained in exactly two com-

ponents (made up of either CCs incident to L or the inside OC with incident

deflated triangles).

3. An OC must satisfy the following: Any vertex v in the OC must be manifold

with respect to OC, that is, there exists a single umbrella in DG which contains

all its incident deflated entities. The latter are contained in the OC. Since some

of the umbrella triangles may be in DG but not in BC, it should be noted that

v need not have an umbrella in BC.

We call vertices or edges not satisfying the above properties as non-conforming

entities. As previously mentioned, we have observed in the many point sets we have

experimented with, that cases not conforming to these properties are indeed quite

rare. Where found, they are mostly contained in sparsely sampled regions. Later in
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Sub-section 5.7, we specify a simple procedure which converts non-conforming entities

into conforming entities.

5.5.3 Topology of Hull-Holes

Assuming a conforming BC, let an OC boundary (OCB) denote a closed edge chain

in an OC such that each edge in the OCB is shared with a CC. Let {CC} denote

this set of CCs associated with this OCB. Further, edges in OCB are traversed

so that OC is on the inside. If we cannot find a manifold triangulation T on or

interior to H({CC}) with the boundary of T exactly coinciding with the OCB, then

this OCB is likely to be an L enclosing a hull-hole. Hence, we say that this is a

potential-hole-OCB.

5.5.4 Locating the OCBs

We use the following procedure for locating the OCBs in a conforming BC.

Let SE denote the set of boundary edges of all OC in BC. Since H(BC) is

conforming, its last two properties require that the edges e ∈ SE incident at any

vertex in H(BC) can be mapped without self-intersections onto a plane. Because

of that local property it follows that the loops and trees formed in SE also do not

self-intersect if mapped onto a plane.

First we traverse subsequent edges in SE in consistent direction in order to locate

OCB loops in it, such that at one side, which we denote as the outside of the OCB,



CHAPTER 5. BOUNDARY CONSTRUCTION IN R
3 83

no other e ∈ SE are contained.

Then, we traverse again edges in SE to find new loops as OCBs, but now require

that they contain at least one edge in SE ′ = SE \ OCB and permit edges e ∈ SE ′

to be contained at their outside, as long as they are not contained in any loop in SE

(see Figure 5.9).

Let {OCB} denote the set all of OCBs located using the above algorithm.

Lemma 10 Edges of SE in BC can be assigned to OCBs in O(n) time such that

only trees remain in SE \ {OCB}.

Proof 12 The above-mentioned algorithm maps each edge e ∈ SE to an OCB which

is contained in a loop in SE. Therefore SE \ {OCB} consists entirely of trees in

SE. Since any e ∈ SE can only be contained in at most two loops, it traverses each

e ∈ SE at most twice. Therefore the complexity of this operation is O(n).

5.6 Detecting and Covering Hull-Holes

5.6.1 Classifying Potential-Hole-OCBs

• If the OCB has more than one associated CC (as is the case in Figure 5.2 or 5.9),

it is a potential-hole-OCB, since it will not have a covering triangulation T in

H({CC}). Otherwise, this would edge-connect the CCs by deflated edges, and

then the OCB would not be a boundary of the OC.
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(a) SE in H(BC) (b) OCB from loop (c) OCB from trees

Figure 5.9: a) Hull-hole (in center) with multiple CC outside (shaded yellow) and another,
CC1, with genus= 0. Edges in SE are dotted. b) The single loop is labeled as OCB0. c)
Multiple trees are assembled to OCB1.

• If the OCB has just one single associated CC with genus 0, there will always

exists a covering triangulation in H(CC) for this OCB.

• If the OCB has just one single associated CC, but with genus > 0, there may

or may not exist a covering triangulation in H(CC), making this a potential-

hole-OCB.

For the last case we use the following test to determine whether its genus is > 0. If

there exists an orientable triangle strip T ∈ H(CC) such that two triangles ti, tk ∈ T

contain the same edge e ∈ OCB, then this is a potential-hole-OCB, i.e. not covered.

The linearithmic Algorithm 11 detects the existence of such a triangle strip. It

requires the following definition:

Each edge in OCB has a pair of incident triangles in H(CC). These triangles can

be classified as belonging to the top-side or the bottom-side, by assigning OCB edges
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a consistent orientation.

Input: OCB
Output: IsOpen
Ecurr:=OCB;
IsOpen := false;
while Ecurr �= {} do

Remove an ei from Ecurr;
ti:=top-side triangle in H(CC) incident to ei and outside Ecurr ;
foreach ej in ti do

Ecurr := Ecurr ⊕ ej ;
if (ej ∈ Ecurr) ∧ (ej ∈ OCB) then

IsOpen=true;
end

end

end
Algorithm 11: Test if OCB with single CC encloses a potential hull-hole.

5.6.2 Determining Hole-OCBs

Inflating adds tetrahedra incident to deflated entities to make them non-deflated.

Many of the hull-holes in potential-hole-OCBs get covered by this inflating operation.

However, since this operation adds tetrahedra by order of edge length, it is not able

to cover certain hull-holes in a manner that minimizes our criterion. This happens

when an OC has edges which are longer than all edges in any hole cover D for that

hole. It is only to such hull-holes that we would add a hole cover prior to inflating.

On the other hand, we prefer to handle all other potential hull-holes by inflating,

since for those due to their configuration a hole cover may add many more triangles

and result in a local minimum.

We detect the desired hole-OCBs using the following heuristic:
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(a) Hole-OCB (b) Its local minimum (c) Not a hole-OCB

Figure 5.10: 2D example illustrating the process of determining hole-OCBs, CC are shaded
yellow, deflated entities are shown as continuous lines and large dots, DG as dotted lines,
hole-cover is D: a) Is a hole-OCB because the OC contains interior vertices (v0..5). b)
Inflating of the OCB in (a) leads to a local minimum, since interior edges in DG are longer
than D. c) Not a hole-OCB since the OC contains no interior vertices. It can be inflated.

A potential-hole-OCB is designated as hole-OCB if there exists a vertex v1 on

H(BC) not contained in any other open OCB, and the vertex is connected by an

edge in H(BC) to a vertex v2 in that OCB. v1 can be either in an OC or in the

hull of a CC with genus = 0. If such a vertex does not exist, it means that there can

not exist any deflated vertices in the OC inside the OCB and the inflation operation

would be sufficient to cover it (see Figure 5.10).

5.6.3 Covering the Hull-Holes

To find a hole-cover for a hole-OCB, we determine a covering triangulation based on

the following lemma.

We define the hull H(V ), for a set of vertices V in DG, as the set of triangles T

in DG such that V (T ) ⊆ V and each edge e in T has ≥ 2 incident triangles in T .

Vertices in V \ V (T ) are interior to H(V ).
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Lemma 11 Let H(V ) be the hull for V , the set of all vertices in {CC} associated

with a hole-OCB. Let T be the set of triangles on and interior to H(V ). Then T

contains all disks of triangles Di in DG, which have that hole-OCB as their boundary

and for which V (Di) ⊆ V . H(V ) can be constructed for all hole-OCBs in BC in

O(n log n) time.

Proof 13 The set of disks {D} bounded by the hole-OCB can only contain triangles

which have no external edges in BC ∪ (Di ∈ {D}) and whose vertices are entirely

contained in V . Since H(V ) contains all triangles with these conditions, it follows that

all such disks are in H(V ). Based on the definition of a hull for a set of vertices, H(V )

can be constructed by first evaluating the k triangles in DG incident to V . Then all its

triangles having a single-triangle edge are removed to yield H(V ). This computation is

of order O(k log k) for k triangles in H(V ). Since the triangles in H(V ) are contained

in the {CC} associated with the hole-OCB, and those do not overlap for different

hole-OCBs, k ≤ n and total computation time therefore O(n log n).

As part of this hole-covering operation we have added new entities to BC. Could

this introduce new non-conforming entities? In the point sets we have investigated so

far, this has not happened. We feel that this is so, because little of BC is changed by

the hole-covering operation. Further, if at all some non-conforming entities are added,

then we can easily handle these subsequently using the same procedure described later

in Sub-section 5.5.2.

From above Lemma 11 it is clear that this hole-covering operation does not work
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if among the covering triangulations in DG there is none with vertices entirely in V .

However this is the case only for thin and very sparsely spaced point sets for which

the surface forms a saddle, resulting in a twisted hole-OCB1 (e.g. in Figure 6.12e).

5.7 Handling Non-conforming Entities

Prior to performing the segmentation of BC0, we have to determine and correct non-

conforming entities. The linearithmic Algorithm 12 below guarantees this by adding a

number of tetrahedra in DG to BC. Of course, we would like to add as few tetrahedra

as possible.

For a non-conforming entity (vertex or edge) xi in H(BC0) we name T (xi) as the

set of its incident triangles in H(BC0). V (T (xi)) is then the 1-neighborhood for xi on

H(BC0).

We define a finite tetrahedron qj in Cext as addable to an entity xi if qj contains a

triangle tk ∈ H(BC0) which in turn contains xi.

Let Xnc be the set of non-conforming vertices and edges in H(BC0).

We give the following intuitive explanation for the two successive main loops in

this algorithm:

First we try to add only the hull for the 1-neighborhood of non-conforming entities

1It is however possible to close even such a twisted hole by letting the covering triangulation connect
partially to vertices in P \ V . It can be determined by firstly relating the top and bottom sides of the
OCB to its OC, then determining at these sides tetrahedra which are oriented clearly to one side and lastly
walking the orientation along face-connected tetrahedra. This results in a simplicial complex similar to the
above hull, containing the covering triangulation.
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Input: BC, Xnc

Output: BC
while Xnc �= {} do

X ′
nc = {};

repeat
X ′

nc = Xnc;
foreach xi ∈ Xnc do

Add hull H(V (T (xi))) to BC;
if xi is conforming then

Xnc := Xnc \ xi;
end
foreach non-conforming xk in h do

Xnc := Xnc ∪ xk;
end

end

until Xnc = X ′
nc ;

foreach xi ∈ Xnc do
T := {};
PQ := priority-queue of qi addable to xi, sorted by

∑
λ(ti in qi not in BC);

while xi is non-conforming do
Remove first qj from PQ;
Tj := tj in qj not in BC;
T := T ∪ Tj ;
BC := BC ∪ Tj ;

end
foreach non-conforming xi in T do

Xnc := Xnc ∪ xi;
end

end

end
Algorithm 12: Correct nonconforming entities
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to the BC0. This adds relatively few triangles, makes most of these entities conform-

ing. For the point sets we have experimented with, it creates only very rarely, new

non-conforming entities.

For the non-conforming entities remaining after that step, we add all their incident

tetrahedra to BC0 such that the entities become interior, then resume with the first

loop.

Lemma 12 All non-conforming entities in BC0 can be transformed into conforming

ones in O(n log n) time.

Proof 14 The algorithm adds triangles incident to non-conforming vertices to BC,

until all vertices in BC have become conforming. In the limit, at most all triangles

in DG \ BC would have been added to BC, yielding a CC such that H(CC) is the

convex hull. Determining for each added triangles, which of its vertices have changed

their conforming state, is a local operation. Since at most n triangles are added, using

priority queue operations, the total complexity of the algorithm is O(n log n).

5.8 Complexity and Quality Analysis

Theorem 3 Using the main algorithm in section 5.1, a closed, non-intersecting and

manifold boundary B interpolating all but the dominantly interior points can be found

in expected O(n log n) time, provided BC0 contains no twisted holes.
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Proof 15 The construction of the Delaunay Graph DG is of O(n log n) expected com-

plexity as shown in Guibas and Stolfi [47]. Based on the DG we can construct the

Boundary Complex BC0 (Lemma 2) and make it conforming (Lemma 12) in order

to detect hull-holes (Lemma 10). We then cover all non-twisted holes in that BC

(Lemma 11) and inflate the BC to a CC with a manifold hull (Lemma 7). Then

we sculpture that CC (Lemma 8) and remove membranes (Lemma 9) to extract a B

which interpolates all but dominantly interior points, with total O(n log n) complexity.

5.9 Concluding remarks

Pursuing the idea of the intrinsic shape in a point set, the method developed for

boundary shape construction in R
2 extends well into R

3, although requiring a number

of enhancements like hull-hole covering. Implementation details of this new method,

and results of experiments on various unorganized point sets are presented and an-

alyzed in the next chapter. As we shall see, the results from our new method are

superior to the results of previous algorithms, especially for non-dense and locally

non-uniform point spacing.



Chapter 6

Results

In this chapter we present and analyze the results from our implementations of boundary shape

construction methods, for both R
2 and R

3.

6.1 Results for R
2

The complete source-code for our method in R
2 is available online [65]. We use

existing implementations for Delaunay triangulation from CGAL [48] and disjoint

sets from Stefanov [72].

6.1.1 Comparison

We have tested our method with a very large number of point data sets (some ex-

amples are shown in Figures 6.1, 6.2, 6.3, 6.4). Since many other algorithms also

92
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(a) Point set [4] (b) GathanG (c) Our method

(d) Point set [26] (e) GathanG (f) Our method

(g) Point set [75] (h) GathanG (i) Our method

Figure 6.1: Boundary construction of nicely sampled point sets: Left column: Point set.
Center column: GathanG with default parameters [26]. Right column: Our manifold result.
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(a) Runner point set (b) GathanG (c) Our method

(d) Railjoint point set (e) GathanG (f) Our method

(g) Dragon point set (h) GathanG (i) Our method

Figure 6.2: Boundary construction of challenging point sets: Left column: Point set. Center
column: GathanG with default parameters [26]. Right column: Our manifold result. a)
Point set sub-sampled from a silhouette video image. d) Rail-joint, an engineering part [66].
g) Dragon point set, with many sharp corners.
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(a) 10k points

(b) GathanG (c) Our method

Figure 6.3: 10000 points sampled from silhouette image. a) Point set. b) GathanG with
default parameters [26]. Note the false connections, disconnections and doubled boundaries.
c) Our method constructs a closed manifold, even for the extremely close boundaries.
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(a) Close curves (b) GathanG (c) Our method

(d) 3 circles (e) GathanG (f) Our method

(g) Random, 10 (h) GathanG (i) Our method

(j) Concave, 5 (k) GathanG (l) Our method

Figure 6.4: Left column: Point set. Center column: GathanG with default parameters [26].
Right column: Our manifold result. a) Shape with extremely narrow portion. d) 10 random
points. g) Three loops [66]. j) Concave polygon.
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(a) Mehra et al. (b) Our method

Figure 6.5: Constructing the shape boundary from a noisy set of points. a) Figure presented
in Mehra et al. [61]: It eliminates outliers rather arbitrarily, and does not fulfill its aim of
producing a closed shape. b) Result of our method: It interpolates all the points and
approximates very well Bmin.

work for typical large point sets such as Figure 6.3a which are usually uniformly and

densely spaced, we focus on showing critical details of point sets which sampling-

oriented reconstruction algorithms have not been able to handle correctly and effi-

ciently (see Figure 6.4). We compare our results for a number of difficult point sets

withGathanG from Dey andWenger [26], using default parameters ofminAngle = 10

and maxIter = 4 (see center column in the above-mentioned figures). Zeng et al. [75]

has already compared their results with many of the other methods mentioned ear-

lier. The results demonstrate that closely spaced boundary parts and sharp corners

as artifacts of sparsely and non-uniformly spaced points are all handled very well by

our algorithm.

Our method handles also well, shape boundaries which have been perturbed by

a significant amount of noise (see Figure 6.5). Once the topology of the boundary
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(a) Points (b) Reconstruction, not Bmin (c) With Steiner points

Figure 6.6: a) Goose point set from Amenta et al. [8]. It does not represent a solid. b) B
construction by our method is not Bmin. c) After two Steiner points have been added to
the point set (indicated by arrows), Bmin is constructed correctly.

shape is created, outliers could more effectively be detected and eliminated by a

post-processing step.

We demonstrate the limits of our method by showing two point sets for which the

constructed shape is not the desired one. In the first case (see Figure 6.6) this is due

to poor point spacing in certain places of the desired boundary. It is easy to see this,

because after insertion of just two Steiner points, in the places where points are poorly

spaced, our algorithm produces the desired result. In the second case (see Figure 6.7)

our algorithm yields a local minimum. Both examples can be constructed correctly

by using an exhaustive search algorithm such as in Ohrhallinger and Mudur [66] (see

Appendix A), but with much higher complexity than O(n log n).
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(a) Points (b) Reconstruction, not Bmin (c) Bmin

Figure 6.7: a) Crocodile point set from Ohrhallinger and Mudur [66]. b) B construction by
our method has a local minimum (see arrow). c) Exhaustive non-linearithmic search as in
Ohrhallinger and Mudur [66] yields Bmin.

6.1.2 Class of Well-Spaced Point Sets

Our method reconstructs Bmin faithfully and in linearithmic time for a class of point

sets which we shall call X. Since the condition of closedness is global, it is not possible

to give a point spacing criterion. The latter operates on a local neighborhood and thus

can not consider the configuration of points outside that neighborhood. Formulating

a criterion to precisely specify X is difficult.

We, however, give below a criterion which is somewhat restrictive (i.e. permitting

only a sub-class of point sets in X):

Definition 3 Let Bmin(P ), a manifold closed boundary interpolating the point set

P , denote the desired boundary. A vertex v in Bmin(P ) is said to be strictly well-

spaced if its two neighbor vertices in Bmin(P ) are also its nearest neighbors in P by

Euclidean distance. A vertex v in Bmin(P ) is said to be well-spaced if either itself or

its two neighbor vertices in Bmin(P ) are strictly well-spaced. A point set P is said to
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be well-spaced if each p ∈ P is well-spaced in Bmin(P ).

Note that edges between strictly well-spaced points are also contained in the near-

est neighbor graph (NNG) for P .

Conjecture 1 For a well-spaced P its Bmin(P ) can be found in linearithmic time.

We base our conjecture on the following observation: Non-neighbor vertices in

Bmin(P ) are only connected by single edges, and its cycle has only holes of single

edges in BC, as opposed to edge-chains.

Actually, we would require a proof that inflating and sculpturing are deterministic

such that their results do not depend on their heuristic ordering. We have not been

able to construct any counter-example and are investigating further on developing a

proof for this conjecture.

Figure 6.8 shows an example of a well-spaced point set. Note that each point

which is manifold in BC is also necessarily strictly well-spaced, while the reverse is

not true.

In practice our method works for many more point sets than those which satisfy

above condition. We give some intuitive reasoning why this is the case: the above

condition guarantees that Bmin ⊆ BC and the enclosing boundary of BC already

equals Bmin. If that condition is not fulfilled, then there exist edges in Bmin which

are not in BC. In such cases the two steps of Inflating and subsequent Sculpturing

provide a good heuristic to locate those.
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(a) Point set (b) Boundary complex (c) Bmin

Figure 6.8: a) Point set P . b) Its BC. c) Bmin(P ) with strictly well-spaced points enlarged.
Each non-strictly well-spaced point has as neighbours on Bmin(P ) strictly well-spaced points
since P is a well-spaced point set.

This works also where points are sparsely placed on Bmin but are reasonably

uniformly spaced. However, in cases where points are too non-uniformly spaced,

such that unrelated boundaries are close, these would be wrongly connected (see

Figure 6.6), while only affecting the reconstruction locally.

6.2 Results for R
3

We have implemented all the algorithms in our method for R3 in C++, again using

the CGAL library [48] for Delaunay graph construction and the Disjoint set library

of Emil Stefanov.

In Figure 6.9 we show examples of boundary shapes constructed with our algo-

rithm. We compare our method with [28], taking a few examples of somewhat more
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(a) Mannequin, 13k (b) Armadillo, 172k (c) Dinosaur, 65k

(d) Mechpart, 4k (e) Torus, 0.2k (f) Basic

Figure 6.9: a-e): Example results of our reconstruction methods along with point set sizes.
f): The three point sets, regular tetrahedron, cube and polyhedron with 16 faces cannot be
reconstructed by TightCocone.



CHAPTER 6. RESULTS 103

(a) TightCocone (b) TightCocone (c) TightCocone

(d) Ours, 0.5k (e) Ours, 14k (f) Ours, 54k

(g) TightCocone (h) TightCocone (i) TightCocone

(j) Ours, 1k (k) Ours, 3k (l) Ours, 3k

Figure 6.10: Comparing (row 1, 3) our method with TightCocone (row 2, 4), for varied
point sets with extremely non-dense or non-uniform sub-sets; note the poor results for
TightCocone in those cases. Numbers of points in models are given.
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(a) Stanford Bunny (b) sub-sampled to 23% (c) sub-sampled to 5%

(d) sub-sampled to 1% (e) sub-sampled to 0.3% (f) sub-sampled to 0.1%

Figure 6.11: Robustness for non-dense point sets is demonstrated by the Stanford bunny
keeping its shape well, when down-sampling from the original 36k to just 33 points.
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(a) Original (b) 0.1% (c) 0.3% (d) 1% (e) 3% (f) 10%

(g) -14% (h) -19% (i) -38% (j) -70% (k) -90% (l) -96%

Figure 6.12: Row 1 demonstrates robustness to noise (and local non-uniformity) of our
method by perturbing the Mannequin model with noise of up to 10% of its z-extent. c) the
noise level exceeds point distances in the fine features such as the eyes. Row 2 reconstructs
the surface with RobustCocone [29]: Note that it does so by dropping many points (per-
centages given in the figure), and thus removes not only outliers but also features, already
in the original very dense point set (mouth, eyes, behind the ear).
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Name Vertices DG Total Dey unint.
Torus 0.2k 0.02s 0.7s 0.04s 0
Bunny 0.5k 0.02s 0.14s 0.08s 0
Knot 1k 0.06s 0.27s 0.14s 0
Triceratops 3k 0.14s 1.07s 0.74s 0
Bowl 3k 0.17s 2.67s 0.62s 3
Mechpart 4k 0.18s 1.35s 1.1s 0
Mannequin 13k 0.45s 3.75s 3.36s 0
Pegasus 14k 1.71s 9.25s 6.08s 564
Dragon 54k 3.58s 19.29s 22.36s 14
Dinosaur 65k 3.88s 17.56s 22.64s 0
Armadillo 172k 10.45s 60.86s 71.2s 0

Table 6.1: Runtime for our entire surface reconstruction algorithm (non-optimized imple-
mentation), with proportion of Delaunay Graph construction, and compared to TightCo-
cone, on a single 2.67Ghz 64bit AMD CPU. Actual complexity for our method seems to
decrease with model size compared to TightCocone. The number of un-interpolated vertices
in B are also given. TightCocone fails to interpolate far more points than our algorithm
does.

Name DG BC0 Conf Seg Hole Infl Scpt Fair
Mannequin 12% 15% 37% 4% 15% 1% 15% 2%
Pegasus 19% 6% 21% 6% 10% 6% 30% 1%
Dragon 19% 15% 33% 3% 16% 1% 13% 2%
Dinosaur 22% 13% 35% 2% 15% 0% 10% 2%
Armadillo 17% 16% 33% 4% 15% 0% 12% 2%

Table 6.2: Proportional timings for the steps of our algorithm, for the larger models, in
order: Delaunay graph construction, boundary complex, making entities conforming, seg-
mentation, hole-covering, inflating, sculpturing and mesh fairing.

challenging non-uniform point sets in Figure 6.10. That shapes for non-dense point

sets are robustly constructed by our method is well illustrated in Figure 6.11. It

shows results for point sets obtained by down-sampling the Stanford bunny up to the

factor 1000. Finally, the tolerance of our method for construction from noisy point

sets is demonstrated in Figure 6.12 by perturbing the points to up to 100 times the

feature size (average point distance). We compare it with RobustCocone [29]. Their

algorithm removes many outliers and over-smoothes already very densely sampled

point sets, therefore losing features which we still can preserve in our method.
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We show in Table 6.1 that our algorithm (non-optimized implementation) has

nevertheless competitive run-time, compared with TightCocone [28], and that it is

linearithmic and proportional to that of the Delaunay graph construction. The im-

plementations of detecting non-conforming entities and making them conforming, as

well as hole-covering and sculpturing still have a large potential for optimization.

This can be seen in Table 6.2. Since the steps of our algorithm only need to operate

on sub-sets of the entire Delaunay graph, we expect the run-time of an optimized

implementation to be smaller than the Delaunay graph construction.

6.3 Concluding Remarks

Efficiently constructing the interpolating boundary surface for a set of unorganized

points, given just the coordinate data and no other surface or topology information,

is known to be a difficult problem. It gets even more difficult when the spacing

in the given point sets is non-dense or locally non-uniform. The solution we have

proposed in this thesis is based on a few clever heuristics which have been developed

over a number of years of careful study of point sets with different spacing and the

successes respective failures of previous solutions. The experimental results presented

and discussed in this chapter clearly show that our solution yields better results than

previous solutions for this problem. There is plenty of scope for further extensions,

more theoretical analysis of the limits of our solutions, etc. which form the content

of the next chapter.
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Extensions

In this chapter we present potential extensions of our work, namely, generalizing the definition of

boundary complex in Rd and defining the conditions for a locally constructible minimum boundary

complex. Lastly, we extend the Euclidean Minimum Spanning Tree (EMST ) in Rd as the

Minimum Spanning Surface (MSS), which is a simplicial complex.

7.1 Extension of the Minimum Boundary Complex into R
d

The boundary complex definition can be easily extended into R
d with d >= 2 since

both its base concepts, the criterion of longest-edge-in-simplex and its property of

umbrella-count-per-vertex in the hull of the boundary are dimension-agnostic. We can

therefore give this generalized definition based on the following generalized umbrella

definition:

An umbrella U(v) for a vertex v in Rd is a connected set of facets containing v
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such that U(v) can be mapped without self-intersections to Rd−1.

Definition 4 The boundary complex BC ⊆ DG in R
d, d ≥ 2, is defined as a con-

nected set of facets spanning P such that each vertex vi in BC has ≥ 1 umbrellas in

BC. Note that DG is a BC.

For any given set of points, BCmin is the BC satisfying the following objective:

BCmin =
F∑

fi

λ(fi) → min

The properties mentioned before in Subsection 3.2.3 extend as well.

7.2 The Boundary Operator

7.2.1 The Boundary Operator in R
2

The boundary complex needs to be constructed globally because of its closedness

condition. By dropping this condition we can construct another simplicial complex

by merging umbrellas locally computed at its vertices. We shall call this as the

Boundary Operator.

For a given point set P , we define the boundary operator as the minimal umbrella

Umin(p) of a point p ∈ P , formed by the edges connecting it to its two nearest

neighbors in P . The simplicial complex B for an unorganized point set P is defined

as the union of all Umin(pi) for each point pi ∈ P (see Figure 7.1). Note that B is also

a graph, but only in R
2, since in higher dimensions it contains higher-order simplices,

such as triangles.
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Figure 7.1: Illustration of ρ-sampling for a densely sampled C, which can be reconstructed
exactly as its merged umbrellas: ρ is given for two sample points in C. Neighbors circles
(red) include neighbor samples in C, empty circles (blue) exclude non-neighbor points. In
a densely sampled C empty circles are always larger than neighbor circles.

Our aim is to prove that a piece-wise linear curve C interpolating P can be re-

constructed just from its point coordinates, under the condition that the neighbors of

any point p ∈ P on C are identical to its two nearest neighbors in Euclidean distance.

First we give some definitions to define a measure for such a local density condition.

We call the minimum circle which contains both the two neighbor sample points

for a point p in C as its neighbor circle, with its radius as rn. The maximum empty

circle which contains no non-neighbor sample points is called as its empty circle, with

its radius as re. Then, ρ(p) = rn/re.

If ρ(p) < 1, then the two nearest neighbor sample points of p are its neighbors in

C. If ρ < 1 for every point p ∈ P , we say P is densely sampled with respect to C.
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Theorem 4 For a given point set P , the minimum length piece-wise linear curve C

interpolating all p ∈ P can be reconstructed by the boundary operator, provided P is

densely sampled with respect to C.

Proof 16 Proof by counter-example: If a non-boundary neighbor q is nearer to a

point p in C than the two neighbors of p in C, then ρ ≥ 1.

Corollary 1 A densely sampled piece-wise linear curve C is locally reconstructible.

Corollary 2 For a point set P which is not densely sampled with respect to C, then

for all such p ∈ P with ρ(p) < 1, the boundary operator correctly constructs those

parts of C.

Following Corollary 2, we name a vertex v in B as well-configured if it is contained

by a single umbrella in B, because it is locally uniquely interpolated by the boundary

operator.

B for non-densely sampled curves shares the property of no leaf vertices with

the boundary complex, making the two graphs appear quite similar. But unlike

the BC, B is not necessarily connected, since the minimal umbrellas created by the

boundary operator are local (see Figure 7.2). A global post-processing step such as

hole-covering, similar to the one described in the R
3 surface reconstruction method,

could connect them. This can then be followed by inflating and sculpturing as already

described in the R
2 method in Chapter 4.
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(a) 3 Circles (b) Dragon (c) Goose (d) Inverted heart

(e) Mushroom (f) Rail joint (g) Tulip (h) Close curves

Figure 7.2: B (union of umbrellas from the boundary operator), for sparsely sampled C.
Well-configured vertices have a single umbrella. Note that in (b, f, g) B does not form a
connected set.

7.2.2 Relating the Sampling Theorem to Boundaries

In the literature, to the best of our knowledge, relating boundaries to the sampling

theorem has only been addressed by Poliannikov and Krim [68] as follows: transposing

a closed curve in a polar coordinate form to create a function space.

As we can see in the back of the crocodile (Figure 7.3), ρ close to 1 approximates an

angle of 120◦ between the umbrella edges. Intuitively, this corresponds to the angle of

an equilateral triangle, if both sides are of equal length. We use the conjecture below
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(a) B (b) Detail

Figure 7.3: a) B (union of umbrellas from the boundary operator) for a partially densely
sampled point set. ρ oscillates around 1 at the back and the tail. b) Detail mapped to
function space with pi at the origin of the local coordinate system.

to relate the sampling theorem, which is defined in function space, to a boundary in

space.

Theorem 5 A densely sampled piece-wise linear curve C fulfills locally the Nyquist-

Shannon theorem.

Proof 17 For C with with ρ < 1, at any sample point p in C, its boundary neighbors

are uniquely defined by the boundary operator (see Theorem 4). Therefore it is possible

to find a rigid transformation such that p maps to the origin and its two neighbors

locally onto a function space x(t), such that x(t) fulfills the Nyquist-Shannon theorem.

Theorem 5 further permits us to state that the Gestalt law of Proximity relates

rather well to the sampling theorem.
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(a) B (b) Reconstruction

Figure 7.4: Reconstruction for sparse point spacing. Red circles are the neighbor circles
centered at pi, pk which contain their neighbors on the boundary. p0 is contained in an-
other segment in the minimum circle of pi. p1, p2 are contained in another segment for pk.
Our inflating operation reconstructs the boundary correctly in these cases (maximally two
contiguous and isolatedly densely sampled segments inside the neighbor circle).

7.2.3 Reconstructing Sub-Nyquist Point Spacing

With a priori assumptions, a sparse (= non-dense) function can be reconstructed

beyond the limits of the Nyquist-Shannon theorem, e.g. as is done in compressed

sensing, for which the theory is described in Mishali and Eldar [62]. Avron et al. [14]

implement this using a solver for reconstructing surfaces with sharp features.

Our shape boundary construction method (presented in Chapters 4, 5) manages

to reconstruct the boundary from a sparse point sampling, because we assume the

inherent property of an object’s boundary shape, namely that it is always closed,

which is also Gestalt law of Closedness. We describe the conditions for the permitted

sparsity of point spacing in Theorem 6 (see Figure 7.4 for an illustration).
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Theorem 6 A piece-wise linear curve C can be reconstructed by the boundary oper-

ator at a sparsely sampled point (ρ ≥ 1), if its neighbor circle contains at most two

contiguous segments s in C whose points are densely sampled if not considering the

points interior to the other segment.

Proof 18 If sample points of more than one contiguous segment are contained in

the minimum radius circle centered at a sample point p in B, these will be joined

as a non-manifold boundary, containing deflated vertices. By applying the inflating

operation, these deflated vertices are transformed into non-deflated ones which permits

the construction of at most two contiguous segments inside that circle.

7.2.4 The Boundary Operator in R
3

The above definitions extend very well into R
3, as follows.

Let B denote the piece-wise linear oriented surface interpolating P in R
3.

The following algorithm constructs the minimal umbrella at a vertex p: Add the

triangles in DG incident to p sorted by minimal longest edge in ascending order, but

only those, whose adding keeps this resulting triangle fan manifold. Triangles are

added until they form an umbrella at p.

This algorithm results in a deterministically unique umbrella for each p, for which

no simplex in that umbrella is traversed more than once in any single orientation. We

call this the boundary operator and Bu as the union of all umbrellas of p ∈ P . Since

DG can be constructed locally, this property makes the boundary operator local as
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well.

We call the minimum radius sphere which contains all the sample points of the

umbrella U(p) for a point p ∈ P as its neighbor sphere, with its radius as rn. The

maximum radius sphere which contains just the sample points in its minimal umbrella

and no other sample points is called as its empty sphere, with its radius as re.

Based on this, we can extend all the previously stated definitions and results into

R
3, namely Theorem 4, Corollary 1, Corollary 2, Theorem 5 and Theorem 6.

Unlike the boundary complex, Bu can contain triangles with boundary edges (edge

with only one incident triangle). Such triangles with boundary edges, which only

belong to a single umbrella can be removed. Then only triangles with boundary

edges which are contained by two or more umbrellas, are retained, so that Bu forms

a bounded manifold. Its boundaries are then manifold and the bounded holes can be

triangulated using existing methods.

The greedy construction of boundary complex suffers from artifacts created by

local minima which manifest as tetrahedra and hull holes, sometimes even in densely

sampled regions of the point set. We give the following conjecture (without attempt-

ing a proof here) that our shape boundary construction in R
3 could be improved by

using Bu instead of the boundary complex.

Conjecture 2 Bu does not contain the artifacts due to local minima, which exist in

the boundary complex. Hull holes with local non-uniformity of factor ≥ 2 in the point

spacing are perceived as holes by human viewers.
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We conjecture that the boundary operator can be generalized in R
d with d ≥ 2,

based on the easily extensible definitions of umbrella and ρ.

7.3 The Minimum Spanning Surface (MSS)

As we noted before in Section 4.1, in R
2 the EMST , BCmin and Bmin are all graphs

which minimize the same criterion of edge length, λ, and differ only in their vertex

degree, alternatively umbrella count denoted as u-valence. Based on the criterion λ,

both BCmin and Bmin can be extended into higher dimensions, while their respective

umbrella count stays the same. There exists no equivalent for the EMST , whose

u-valence is ≥ 0. By applying λ and this u-valence, we can define its extension into

R
d.

Definition 5 The spanning surface SS ⊆ DG in R
d is defined as a connected set of

facets spanning P such that each vertex vi in SS has ≥ 1 incident facets in SS.

For any given set of points, MSS is the SS satisfying the following objective:

MSS =
F∑

fi

λ(fi) → min

The MSS in R2 is just the EMST .

Similar to the boundary complex, a close approximationMSS0 can be constructed

efficiently by extending the topological entities to higher dimensions, as we show in

Algorithm 13.

Theorem 7 Given a point set P with n points and its Delaunay graph DG(P ), the
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Input: P,DG in Rd

Output: MSS0

F = {};
PQ:=priority-queue of fi in DG, sorted by λ(fi);
while F is not a connected and interpolating set do

Remove first facet fi from PQ;
if (fi contains vi not in F ) ∨ (fi connects sets of facets in F ) then

F :=F ∪ fi;
end

end
MSS0 = F

Algorithm 13: Greedy construction of MSS0 in Rd

MSS can be constructed in O(n log n) time.

Proof 19 Creating PQ inserts at most the O(n) facets of DG, an operation of

O(log n) complexity. The while loop which follows is executed at most O(n) times.

Testing for and keeping track of connectedness is done via a disjoint set. Its opera-

tions are an amortized O(α(n)), where α(n) is the inverse of the Ackermann func-

tion. Insertion into set F is O(log n). Total complexity of the algorithm is therefore

O(n log n).

7.3.1 Properties of the MSS

• Connectedness: By its definition, it is vertex connected and interpolates all of

P .

• Sub-set of DG: Again by definition, its facets are contained in DG and therefore

the MSS is also a simplicial complex, consisting of simplices up to dimension

d− 1.
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• Not closed: This is because the vertex connected requirement can be fulfilled by

just a single facet incident to a vertex.

• Not manifold: This follows partly from above property of the surface not being

closed - a vertex may have insufficient incident facets to form an umbrella which

is required for it to be manifold and partly from the minimization criterion - a

vertex may have more incident facets than can be contained in a manifold.

The MSS generalizes well the properties of EMST into R
d. Contrary to the

minimum boundary complex, its surface is not closed. The edges in its simplicial

complex reflect well the neighborhood connectivity, which is far more dense than the

EMST in dimensions greater than two. We believe that the MSS is an interesting

dimension-agnostic spanning structure which needs to be investigated further both for

its mathematical properties and applications, such as in clustering of high-dimensional

data points.



Chapter 8

Conclusions and Future Work

In this chapter we first present our main conclusions of the research work reported in this thesis.

Then we introduce some avenues for future work, as well as implications to other areas of research.

8.1 Conclusion

8.1.1 The Intrinsic Shape of Unorganized Point Sets

All the research reported in this thesis has been the pursuit of one principal idea,

that, there exists an intrinsic shape in any given set of unorganized points, assuming

that the given point set configuration is not random and that such a shape when

rendered should be aesthetically pleasing to a human viewer. We therefore posed

this as a problem of constructing the boundary shape interpolating the given points.

The desired shape should be based on Gestalt principles of visual perception. Our
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solution to this problem forms the main contributions of this research. We formulate

the problem as finding the global minimum, then define the derivation of a structure

which has close resemblance to the desired boundary, and yet can be computed effi-

ciently. This closely resembling shape has many applications including visualization

and transformation into the desired shape, the methods developed for that form a

good part of this thesis. Results from these methods show superior results when com-

pared to the previous best solutions for the same problem, especially when dealing

with points whose spacing is non-dense or locally non-uniform.

8.1.2 Boundary Shape Derivation using Gestalt Laws

From the Gestalt laws, we derived that determining the boundary is a minimization

problem, which is NP-hard. Concretely, the laws of Proximity and Good Continuity

translate to minimizing the total mean curvature (in R
3) of the boundary. In R

2

this corresponds to length minimization, similar to the Traveling Salesman Problem.

Additionally, we require a closed boundary, from the law of Closure. In practice,

based on our extensive experiments, the results we get get seem to support these

criteria extremely well.

8.1.3 Complexity can be Minimized with a Facet-Based Criterion

In order to find a solution for an aesthetic boundary, approximating this minimum

in reasonable time, we have proposed a criterion intrinsic to facets of the boundary,



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 122

namely longest-edge-in-simplex, which corresponds to edge length in R
2 and longest-

edge-in-triangle in R
3.

8.1.4 Minimum Boundary Complex for Shape Representation

By relaxing the manifold constraint of the boundary shape that we need to con-

struct, we present an interesting and powerful restrained simplicial complex, which

we have named the minimum boundary complex. A simple heuristic constructs its

close approximation in linearithmic time. This close approximation of the minimum

boundary complex may not be a manifold, but our experiments show that when it

is rendered it seems to yield results closely resembling the desired boundary shape.

This serves as a ”quick and dirty” visualization of point clouds and in addition we

show several nice properties of the minimum boundary complex, such as its capability

to represent shape well even if points are non-densely or non-uniformly spaced, high

noise tolerance and construction from any local sub-set of the point set. It can also

be efficiently transformed into the desired boundary shape.

8.1.5 Application: Boundary Shape Construction

We have developed clever heuristics to transform the boundary complex into a closed

manifold boundary shape interpolating all the points. This corresponds to re-imposing

the previously relaxed manifold constraint. Our innovation here is the definition of

the inflating operation, which is the dual of the sculpturing operation, and is applied
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first to get a good starting shape for sculpturing. Our entire method completes in lin-

earithmic time, which is of competitive complexity compared with previous methods,

but with far superior results, especially for non-dense and locally non-uniform point

sets. The goal of getting closer to the global minimum defined for an aesthetic bound-

ary shape permits us to overcome the major challenges in handling non-uniformly

spaced point sets. Furthermore, enforcing the law of closure as an a priori assump-

tion, which is inherent to a shape boundary, enables our method to construct even

extremely sparsely sampled point sets. Unlike earlier methods, we do not rely on any

sampling criterion. For the R
3 case, which is of greater topological complexity, we

have introduced additional steps to handle the problem of the operations terminating

in local minima. For the R2 case, we show also how for a large sub-class of point sets,

the minimum can be guaranteed to be extracted, although with higher computational

complexity.

8.1.6 Well-Suited Heuristics

For the kind of point sets (those with an intrinsic shape) we are interested in, our shape

boundary construction algorithm seems to solve or approximate this NP-hard problem

quite well in linearithmic time. It clearly prunes the solution space rather efficiently.

We explain this with the fact that any reasonable input point set is well-distributed

in space (along a lower-dimensional boundary) to accommodate the implicit pruning

of our algorithm steps. We think it makes little sense to search for an aesthetic shape
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in the ill-defined situation of randomly distributed point sets, as it is not robust with

respect to small perturbations.

8.2 Future Work

8.2.1 Topological Terms and Definitions

In the algorithm for boundary construction in R
3, we have defined some new terms

for topological properties of a well-behaved sub-class of simplicial complexes and

operations on those, which extend significantly from their equivalents already defined

in R
2. We believe that these terms will very likely find use in other topics such as mesh

repairing, resolving of self-intersections, topological post-processing and hole-filling.

8.2.2 Extensions of Shape Boundary Construction

Search for Optimality

If desired, the steps of the algorithm can be altered to permit searching more exhaus-

tively for an even closer approximation towards Bmin within a given time budget. It

would be very interesting to investigate theoretical bounds for this optimal search

problem in 3D, as is extensively done in the domain of Linear Programming for 2D

by Schrijver [70].
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Minimizing other Aspects than Curvature

Minimizing curvature does not support construction of sharp edges in a surface. This

is a local feature and does not affect the topology of the surface. We believe that

Bmin, as minimizing curvature, is a member of an isotopic family {Bf}, in which there

exist members Bi minimizing other aesthetic criteria (area, sharp edges, volume, etc.)

either locally or globally. Further, that there exists a simplicial complex containing

{Bf} which proves that other members or their close approximations can be deter-

mined in reasonable time from any Bi by edge-flipping its triangulation. Thus, for

example, a shape with sharp edges can be constructed from Bmin by applying a local

operator on the 1-neighborhood of vertices as a post-processing step.

Efficient Construction for Uniform Point Spacing

For shape construction, finding the exact minimal BC is not essential. So, it is the

required prior DG construction operation which determines to a larger extent the

performance of a method to compute minimal BC approximation. Point sets which

are partially uniformly distributed, as is often the case for laser-range data, may be

binned locally to efficiently determine their approximate nearest neighbors and thus

locally the relevant parts of the minimal BC approximation. Then only a constrained

DG between non-uniform points has to be determined to complete the global BC.

This would lead to a parallel and closer to linear computation.
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Local Construction

In Section 7.2 we have shown how the boundary complex can be adapted to design

the boundary operator, which approximates the shape boundary locally, both in R
2

and in R
3. By extending it with the subsequent steps for manifold shape boundary

construction, we believe that it can yield an even better approximation, because more

local minima are avoided by the local computation of the operator. A local algorithm

cannot construct a closed shape as such. But by considering a greater local context,

where the point spacing is not well-configured, it can become equivalent to global

construction and therefore construct a closed shape. Extremely sparse sampling can

be addressed in the same way. We further note that local construction can be exploited

very well on parallel architectures such as today’s GPUs.

Out-of-core Construction

As BC0 can be constructed locally, our boundary construction method is local within

the extent of its topological features and can thus easily be adapted to out-of-core

processing.

Compression

Triangulated models may be compressed and streamed by suitably ordering and trans-

mitting the points along with just the topology differing from the deterministic shape

constructed by our boundary construction algorithm.
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Smoothing for R
2

For shape boundaries of noisy point sets in R
2 (e.g. Figure 6.5) we can, not unlike

to mesh fairing in R
3, where edges are swapped, exchange sub-tours (edge-chains

between vertices) with shorter ones, up to a certain size corresponding to a time

budget, to reduce the length of B and attain a better approximation of Bmin.

Deformable Point Sets

The boundary shape of deformable point sets can in principle be determined anew

after each deformation. However, changes with locally limited impact could be de-

tected by properties of the deformation, or changes to the Delaunay graph at vertices.

Then the manifold triangulation of the boundary can be kept and repaired locally.

8.2.3 Applications of the Boundary Complex

Shape Characteristic

In shape retrieval, the boundary complex can serve as an effective base for the gen-

eration of many kinds of shape descriptors, since it is not affected by noise and can

be constructed on arbitrary sub-sampled sets of the points. There are other appli-

cations, concerning dynamic point sets or sub-sampled geometry, where finding the

exact manifold is not essential, e.g. shadow mapping, collision detection and possibly

others.
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Approximating with an Implicit Surface

The alternatively thin and thick crust triangulation of the boundary complex permits

the construction of a signed distance function, to approximate an implicit surface

inheriting the same properties. Its potential applications are quite a few, de-noising,

silhouette rendering, etc.

De-noising

The boundary complex in R
3 is not manifold but still represents close neighbors as

the connectivity graph of its edges. Laplace smoothing could be applied to the points

of a noisy point set, based on their connectivity, as in Mehra et al. [61], as well as

out-lier detection, before attempting to construct the shape boundary.

Visibility Culling for Point Clouds

Using the minimum boundary complex approximation, a level-of-detail surface could

be dynamically constructed when rendering from an out-of-core multi-resolution data

structure. Construction is then just needed for the visible set of points, filtered by the

view frustum and with representation proportional to camera distance. This could

be an effective way to do visibility culling. Also, huge point clouds could be handled

with entirely output-sensitive complexity. This would permit fly-throughs for simu-

lations of such data with only having to operate on the view-dependent in-memory

detail. The GPU architecture is ideally suited to handle the massively parallel needs
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of e.g. physics-based calculations, or global illumination, on such a low-resolution

representation.

Segmentation

It can also be used to segment point sets containing distinct objects, by both relaxing

its condition of a single connected set and specifying a local non-uniformity threshold

factor for λ(t).

8.3 Implications for Other Areas

In many areas related to computer graphics, such as the simulation of solid or de-

formable bodies, continuous topology changes are necessary. Examples for this are

virtual surgeries and simulations of collapsing buildings or avalanches. However, algo-

rithms and data structures for such basic mesh modification operations are complex,

and difficult to implement on massively parallel architectures. Therefore the capa-

bility of rebuilding the surface, even if only an approximate one, just from point

coordinates, is of great importance for many areas of scientific research. We believe

that the novel concept of a point set possessing an intrinsic shape will permeate re-

lated scientific domains and sparkle new interest in researching point-based graphics,

especially with the prospect of handling enormous point sets from sensing devices on

the horizon.



Appendix A

Interpolating Unorganized 2D

Point Clouds with Closed Shapes

The paper which follows was the initial attempt to cast the desired aesthetic shape as a

minimization problem and to give a solution for unorganized points in R
2. Given a large

unorganized two-dimensional point cloud, this work addressed the problem of efficiently

reconstructing an aesthetically pleasing closed interpolating shape. Using Gestalt’s laws of

proximity, closure and good continuity as guidance for visual aesthetics, it was required that the

reconstructed shape be minimal perimeter, non-self intersecting and manifold. This yielded

visually pleasing results. The algorithm exploits a related minimal graph, the EMST , to locally

partition and solve the problem efficiently. While this solution required an exhaustive search for a

number of practical cases and it did not extend to R
3, it was the basis for the principal idea

pursued in this research, namely the existence of an intrinsic shape in unorganized point sets.
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Given an unorganized two-dimensional point cloud, we address the problem of efficiently constructing
a single aesthetically pleasing closed interpolating shape, without requiring dense or uniform spacing.
Using Gestalt’s laws of proximity, closure and good continuity as guidance for visual aesthetics, we require
that our constructed shape be aminimal perimeter, non-self intersectingmanifold.We find that this yields
visually pleasing results. Our algorithm is distinct from earlier shape reconstruction approaches, in that
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Spanning Tree (EMST ). Our algorithm segments the EMST to retain as much of it as required and then
locally partitions and solves the problem efficiently. Comparison with some of the best currently known
solutions shows that our algorithm yields better results.
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1. Introduction

The goal is to identify a single aesthetically pleasing shape
connecting points in a 2D unorganized point set, without requiring
dense or uniform spacing. To fulfil the aesthetic requirement, we
use, for guidance, Gestalt’s laws of proximity (human tendency to
connect close dots), closure and good continuity (smoothness) [1] to
obtain measurable and objective criteria. Accordingly, we require
that the shape be a closed, non-selfintersecting manifold (law of
closure) which interpolates all the points with minimum length
(law of proximity), henceforth denoted by Smin. For the law of
good continuity, we will present a further constraint below. If we
exclude extreme point distributions from our problemdomain, the
algorithm presented in this paper provides an efficient solution
(see Fig. 1).

The task of 2D shape reconstruction from boundary sampled
points plays an especially important role in a number of engineer-
ing fields: reverse engineering of geometric models, outline re-
construction from feature points in medical image analysis, etc.
The closed boundary is essential for calculating various shape mo-
ments, a characteristic property with many applications.

2. Related work

Polygons interpolating a point set are also a topic in compu-
tational geometry, but the focus there is mostly on investigating

∗ Corresponding author. Tel.: +1 43 681 20170567.
E-mail addresses: s_ohrhal@cse.concordia.ca, stefango@gmail.com

(S. Ohrhallinger), mudur@cse.concordia.ca (S.P. Mudur).

lower and upper bounds on the total number of interpolating poly-
gons based on the size of the given point set, say, as in [2].

If we consider all the methods in the literature for 2D shape
reconstruction, they can be classified according to two major
approaches, which are discussed further below.

2.1. Reconstruction with a local sampling condition

Early methods worked only on smooth and uniformly sampled
point sets, such as α-shapes [3,4], Figueiredo and Gomes [5], β-
skeleton [6], γ -neighbourhood graph [7] and r-regular shapes [8].
For example, α-shapes require user-specification of a global
constant which depends on sampling. It does not work for non-
uniformly sampled point sets. It also cannot guarantee a manifold
the way our algorithm does.

Amenta et al. [9] with their Crust algorithm introduced the
concept of local feature sizewhich allows reconstruction fromnon-
uniformly sampled point sets. The stated sampling requirements
of the Crust method and its successors [10,11] are however quite
restrictive in theory and difficult to ensure in practice. Not only
is it difficult to check if a given point cloud satisfies the sampling
requirement, but it is even more difficult to construct a sampling
satisfying the requirement. It should be noted though that the
presented algorithms often show reconstruction of less restricted
point sets but with no guarantees. DISCUR [12] uses the two
properties of proximity and smoothness but still requires rather
dense sampling in sharp corners. Some improvements on these
aspects have been made in VICUR [13], but it relies very much
on user-tuned parameters and regresses for other point sets.
The Gathan algorithm from Dey and Wenger [14] also handles
sharp corners, but again without guarantees. GathanG [15] is an

0010-4485/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2011.09.009
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Fig. 1. (a) A sparsely sampled unorganized point set. (b) Its closed manifold
interpolating boundary with minimum perimeter.

extension which, like our work, is targeted at closed shapes and
gives guarantees exclusively for certain conditions. It still does not
work for many cases we tested. In spite of this, it provides in our
opinion the best solution to date for this 2D shape reconstruction
problem.

All of the above-mentioned algorithms reconstruct a boundary
using edges in the Delaunay Graph (DG) and results have shown
that this is a very reasonable choice. The DG has the property
of maximizing its angles and minimizing its edge lengths, which
conform to the Gestalt laws of good continuity and proximity. A
minimum boundary which is not constrained to DG may trade in
longer edges and sharper angles instead.

A fundamental advantage of our method versus using a local
criterion is that we can achieve far superior results for the recon-
struction of the single closedmanifold shape which we require, for
the particular subclass of point sets which represent such a shape.
Instead, the output of the previous methods only partially recon-
structs such a shape as one or more open curves or as a number of
ambiguous shapes (Fig. 13 shows a number of such cases).

2.2. Construction as global minimization of a criterion

Finding the minimum perimeter closed boundary actually
requires a global search of the solution space.

A first attempt on global construction presented in [16] finds
spanning Voronoi trees and selects the one with minimal length
by integer programming, with O(n2 log n) complexity. It does not
work well for sharp angles and non-uniform sampling; obviously
it prunes good solutions too early.

Giesen shows in [17] that the exact solution to the travelling
salesman problem (TSP) can reconstruct the shape for sufficiently
dense sampling. Althaus et al. extend this work in [18] to
non-uniform sampling with some conditions, and in [19], they
compare it with both the Crust-type family of algorithms and TSP-
approximations. They note that the latter two methods fail for
certain curves with sparser sampling which the exact TSP method
handles well. They also mention that the exponential complexity
of the TSP decreases with denser sampling. With the exception
of [17], these methods do not require user-specified parameters.
Unfortunately, finding the exact solution using the TSP approach
takes unreasonable timeO(2n) even for small P . The concorde exact
TSP solver [20] scales sub-exponentially and can take hundreds of
CPU-years for medium-sized point sets. A detailed discussion on
its complexity is available in [21].

TSP approximations show more reasonable complexity but are
not linearithmic, i.e. O(n2.2) [22] or O(n(log n)O(c)) for a (1 +
1/c) approximation of the optimal tour of an Euclidean TSP [23],
and O(nO(1/ε)) for (1 + ε) times the solution for a planar graph
TSP [24]. More importantly, they fail to guarantee the minimum
solution and even a single wrongly connected edge may have
a significant impact on aesthetic quality of the reconstruction.
Hence, approximation schemes for TSP cannot guarantee the
desired interpolating and manifold shape.

Fig. 2. EMST and Smin have considerable overlap even for sparsely sampled point
sets like the tulip: (a) EMST has 78 edges; (b) Smin has 79 edges; (c) 57 of their edges
are shared.

While we too impose the minimum perimeter requirement,
by restricting the sub-domain of that problem to edges in DG,
we exploit the relationship between the Euclidean minimum
Spanning Tree (EMST ) and Smin (constrained to DG). Our algorithm
segments the EMST and classifies the segments so as to retain as
many of them as possible in the reconstruction of Smin. Thiswaywe
partition the problem and provide an efficient solution. Smin differs
from EMST only by restricting its vertices to be manifold, which in
turn increases its length (see Fig. 2).

This relationship between the minimum spanning tree and the
shape has beenmentioned by Figueiredo and Gomes [5]. However,
they only prove reconstruction for very densely sampled point
sets: an EMST without branches. They do suggest some parameter-
based heuristics for more sparsely sampled point sets, but do not
really exploit this relationship in the unique way we do in our
algorithm.We show that our algorithmcan quickly find the desired
solution and scales well to handle very large point sets. And if we
exclude extremely sparse and highly non-uniformly sampled point
sets, our algorithm’s complexity is justO(n log n).Whilewedonote
that a constrained TSP solution restricted to the planar graph DG
would yield the same result, i.e., Smin, we are not aware of any TSP
solution with this performance.

2.3. Intuitive overview of our method

Our method starts from a Delaunay graph (DG) and the
Euclidean minimum spanning tree (EMST ) of the point set
(see Fig. 3(a) and (b)). EMST is a subset of DG (Attene and
Spagnuolo [25]) and can be constructed inO(n log n) (Kruskal [26]).

It can have a number of non-manifold vertices with degree not
equal to 2 (leaf or fork vertices). To such vertices, we apply edge
exchange operations like those used in the degree-constrained
spanning tree problem [27]. Determining this set of operations
so that EMST is transformed into Smin is NP-hard. Our main
contribution in this paper is an innovative way of efficiently
performing these edge exchange operations.

The other steps in our algorithm are the following.
• Segment the EMST at fork vertices and retain asmany segments

as possible, since such segments are already ofminimum length
(Fig. 3(c)).

• Adding an edge in DG to the EMST graph creates a loop. If two
loops share a single edge called a cut edge, then deleting just
the cut edge results in a single loop interpolating points in both
loops. On the other hand, if two loops share a single vertex or
an edge-chain, then removal of these shared vertices will result
in either a split graph or vertices which are not interpolated.
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Fig. 3. (a) Example point set P . (b) DG with edges in EMST emphasized. (c) Edges incident to leaf vertices (m0, m1 and s0) shown with dotted lines. (d) EMST with edges
added and envelope of inflatable branch shaded with its edges not in EMST shown with dotted lines. (e) Envelope edges added. (f) Removal of cut edges yields Smin.

Fig. 4. EMST with other edges in DG is shown with dotted lines: (a) Segments
labelled as segi , leaf vertices as vl and fork vertices as vf . seg1 is a trunk segment
and all other segments are branches. (b) One of the two non-manifold envelope
boundaries of seg0 (shaded grey) with base edge eb . seg0 is therefore a retained
segment. (c) First manifold envelope boundary of seg1 with two fork vertices and
a base edge each. seg1 is therefore a non-retained segment. (d) Second manifold
envelope boundary of seg1; the other two envelope boundaries are non-manifold.

Hence, we only add edges which lead to loops sharing a cut
edge. The next step is therefore to select and add the DG\EMST
edges, incident to leaf vertices, needed to make Smin.• The resulting graph will have the following configuration: (i) a
single loop ormultiple loops connected by pairs of loops sharing
cut edges, and (ii) segments (like strands) of EMST connected to
a loop at one end and open or connected to another loop at the
other end (Fig. 3(d)).

• In the next step, the strand-like segments are converted
(inflated) into loops and then all cut edges are removed to yield
a manifold interpolating shape (Fig. 3(d)–(f)).

In the following sections we present these steps in detail and
further identify the point configurations for which our algorithm
is guaranteed to work.

3. Definitions

Closed shape S is a singlemanifold polygon interpolating all vi ∈
point set P and consisting of edges ei ∈Delaunay graphDG of P . {Si}
denotes the set of all such closed shapes in P and Smin denotes the
one with minimum perimeter.

Hamiltonian graph is a graph G = (V , E)with at least one closed
shape S (Dillencourt [28]). Genoud [29] shows that DG for any P is
rarely non-Hamiltonian.

Loop is a cyclic sequence of edges.
Segment s is a sequence of manifoldly connected edges

terminated by non-manifold vertices (with degree �= 2), either leaf
vertices vl (degree 1) or fork vertices vf (degree>2). A segmentwith
at least one leaf vertex is called a branch b. All other segments are
trunk segments (see Fig. 4 for examples).

Cut is the set of vertices of a connected graph Gwhose removal
renders G disconnected. A cut edge has two cut vertices and a cut
edge-chain has more than two.

Uniformity of sampling u = di/dj where di, dj are the Euclidean
distances between a point p ∈ P and its neighbours in Smin, sorted

such that di > dj. umax is then the largest u for any p ∈ P . The larger
umax is, the less uniform P is.

Sharp angled features: in [9], the notion of Local Feature Size
was introduced, primarily for smooth shapes (no sharp corners),
which depends on local curvature and proximity. They state: for
an r-sampled curve in the plane, r < 1, the angle spanned by three
adjacent samples is at least π − 4 arcsin(r/2). This condition does
not evaluate for r >= 1, therefore it cannot support angles <=
60°. Since our method can handle much sharper angles, we use
instead αmin, the minimum angle between any three adjacent
points in the desired closed shape as a measure of sharp
features.

4. Defining operations

4.1. Segment classification

Weclassify EMST segments into thosewhich are part of Smin and
those which are not. This classification is based on the observation
that for retained segments, any other edge sequence connecting the
segment’s interior vertices (all except the end vertices) will either
result in an increase in length or will not be manifold.

Base edge eb for a segment s is defined as follows. Let the edge
ei ∈ s be incident to a fork vertex vf ∈ s. Then two base edges eb
are the immediately adjacent edges in cw and ccw sense, incident
to vf . It may be noted that a trunk segment has four base edges, a
branch with one leaf vertex has two and a branch with both ends
as leaf vertices has none. The vertex of eb opposite to vf is called a
base vertex vb.

Envelope env(s) for a segment s is the set of Delaunay triangles
for which the vertices consist of the vertex set ∈ s and one base
vertex per fork vertex. The envelope boundary may or may not be
manifold. A branch has two envelopes and a trunk has four.

Retained segment is a segment for which none of its envelope
boundaries is manifold. For such segments, there is no alternative
way of manifoldly interpolating the segment vertices without
increasing their length. All other segments are non-retained (see
Fig. 4 for both cases).

4.2. Inflate and select minimum loop operation

A non-retained segment for which a manifold envelope
boundary exists is a strand which may require to be modified to
become part of the desired closed shape. A manifold envelope
boundary can always bemodified to forma loopwhich interpolates
all the vertices in that segment. There may be a number of
different choices for forming these interpolating loops. We select
the one with minimum length. We call this as the inflate operation
associated with the segment. Since all loops of a segment share its
base edges with the remainder of Si, this operation corresponds to
solving the reconstruction problem locally, i.e., segment-wise.
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Fig. 5. (a) Example of EMST withmoves:m0(v0, v1) andm1(v4, v5) both associated
with the trunk segment e−(v2, v3). (b). Another example of EMST with move and
snaps: s0(v1, v0) with e−(v1, v2) has two leaf vertices, s1(v3, v1) with e−(v3, v4)

and s2(v6, v7) with e−(v6, v5). For s0: v− = v0, v= = v1, v+ = v2.

4.3. Edge displacement operations

Smin for a point set with n points has n edges, while its EMST has
one edge less since it is a tree.

Let E+ = Smin \ EMST denote the set of edges that we need
to add to EMST when transforming it into Smin. Note that the same
number of edgesminus 1must be removed from EMST tomaintain
the edge count.

A subset of potential edges in E+ is easily identifiable. In this,
subset edges are incident to leaf vertices. Each of them forms a
loop when added to EMST . We classify the operations of adding
edges into two types of edge displacement operations (see Fig. 5
for examples):

• move edge e+: between two leaf vertices. For satisfying the
manifold condition, there has to exist a corresponding edge
e− ∈ EMST incident to a fork vertex in the move’s loop. We
say that e− moves to e+ since the two edges do not share any
vertices. Let us recall that EMST has one edge less than Smin.
Therefore there will exist onemove without e−.• snap edge e+: incident to a leaf vertex v−. Its other vertex v= can
be a leaf or a manifold vertex. e−(v=, v+) is the edge incident
to a fork vertex v+ in the snap’s loop. We say that e− snaps from
v+ about v= to v−, to become e+.
We want to underline that only a subset of the move and snap

operations identified this way will actually need to be applied.
Therefore we will use the term candidate for them in the context
where they are just potential operations, as opposed to when they
have been definitely applied as operations.

The e− edge of a snap candidate can be locally identified.
The e− edge of a move could be anywhere in its loop, and in
principle entails a global search. However, asmentioned earlier,we
ingeniously avoid this global search, by clustering together all the
add edge operations (e+) and then removing all the corresponding
e− edges at once, as they are all identifiable as cut edges.

4.4. Associations of candidates to segments

In order to decide which of the candidate edges should be
added to make Smin, we create a segment–candidate association
table and then evaluate the candidate’s applicability based on three
conditions, interpolation, manifold and minimum length. This
table enables the evaluation of all potential solutions. One column
indicates the type (retained/non-retained) and another distinct
column lists all the candidates associated with each segment in
EMST .

Every segment entirely contained in the loop created by the
addition of a candidate edge is said to be associated with it and
vice versa. The only exception is the segment containing edge e−

a b

Fig. 6. (a) Single-edge trunk segment seg0 can be contained in the loops of two
candidates m0, m1 since it forms a cut edge. (b) Candidates m2, m3 cannot both be
permitted to be applied formultiple-edge trunk segment seg0: since its removalwill
disconnect v0.

Fig. 7. (a) EMST of a point set with DG edges shaded grey and segments and
candidates marked. (b) Manifold envelope of seg0 shaded. (c) Manifold envelope
of seg2 shaded.

in the loop formed by a snap edge e+, since this e− is removed
in a subsequent step. Let us note that this segment–candidate
association is many-to-many, see for example Fig. 6(b), in which
seg0 is contained in the loops of two move candidates m0 and m1.
Of course, we can only apply one of them while respecting the
condition of a manifold boundary.

4.5. The solution space tree

A set of candidates associated with a segment is said to be
multi-choice if not all of them can be applied simultaneously.
Table 1 shows this for the example point set shown in Fig. 7.
In this example, trunk #0 and branch #2 are the multi-choice
segments. Using such a table, we can explore all potential solutions
by viewing the solution space as a tree. Each candidate associated
with a multi-choice segment represents a branching point. Each
terminal node contains a potential solution with a permissible
subset of candidates per segment. The size of the solution space
tree is the product of its multi-choice candidate set sizes. So this
example contains 3 ∗ 2 = 6 potential solutions.

4.6. Pruning of the solution space tree

It is easy to see that the solution space tree can grow quickly.
For efficient searching, our algorithm prunes parts of this tree as
early as possible by eliminating any candidates leading to a non-
manifold solution. In fact it dynamically constructs the solution
tree, doing the branching required for exploring new solutions only
where it is unavoidable. If a candidate is the only one associated
with a segment, then it is applied. This in turn could lead to
reducing thenumber of candidates in othermulti-choice segments,
which may result in more such single candidates. Thus evaluation
of multiple solutions is only necessary when we are left with
nothing but multi-choice segments in the table.

We shall see in the examples later that even in problems with
very large solution spaces, this procedure of eliminating candidates
is very effective and typically results in construction of only a small
part of the solution tree. This iswhatmakes this algorithmefficient.



S. Ohrhallinger, S.P. Mudur / Computer-Aided Design 43 (2011) 1629–1638 1633

Table 1
Segment–candidate table for point set of Fig. 7.

Segment Segment type Candidate Ops

trunk #0 non-retained m4 m5 inflate
branch #1 retained m4
branch #2 non-retained m4 inflate
branch #3 retained m5
branch #4 retained m5

Fig. 8. A manifold envelope boundary env0 (shown using solid lines) with two
interior vertices: (a) shows triangles t0, t2 and t3 for removal from env0. (b) env1 =
env0 \ t2: new removal triangles are t0, t1 and t3. (c) env2 = env0 \ {t2, t1}: one
potential local loop since no interior vertices remain. (d) Finalminimum length local
loop for the example: env3 = env0 \ {t0, t2}.

More details of the algorithm follow, giving all the states when
candidates can be applied, eliminated andwhenmultiple solutions
have to be evaluated.

5. Algorithm

1. For a given point set P , create DG and EMST , segment EMST and
classify segments as retained or non-retained.

2. Identify candidate operations and create segment–candidate
association table.

3. Initialize Ecurr = EMST .
4. Apply an applicable move or snap candidate from the seg-

ment–candidate association table. A candidate is not applicable
if it results in a non-manifold condition, namely, a cut vertex, a
cut edge-chain or its e− causes a loop to become open.

5. Prune the segment–candidate association table by eliminating
all associations of invalidated candidates as follows. As a result
of the previous add edge operation, some segments will already
be part of a loop; their associated candidates are no longer
needed and are removed from the table. Some of the leaf
vertices will become manifold; candidates incident on such
vertices are also removed from the table. Finally, any candidate
which, if applied, will lead to a non-manifold boundary is also
removed.

6. Repeat steps 5 and 6 (Apply and Prune) until there are no more
move or snap operations left.

7. Carry out inflate operations remaining in the table.
8. Remove cut edges in Ecurr .

The above are the major steps in our algorithm. In the imple-
mentation, there is a detailed case analysis based on the type of
operation move or snap for detecting the non-manifold condition.

Once the association table contains onlymulti-choice segments,
we select the segment with least number of candidates, and
explore all the solutions. The order inwhich candidates are applied
(and thus the order in which the solution space is traversed) does
not matter. This is because our algorithm evaluates all potential
solutions.

5.1. Inflate operation

As already mentioned, we will need to apply the inflate
operation to all the connected sets of remaining segments

Fig. 9. (a) EMST with segments (blue: non-retained, green: retained) and candidates
(red) marked. (b) Applying m2 creates a loop in the lower half and leaves only one
candidate m5. (c) Applying m5 and removing the cut edge yields a single Si , which
is the desired solution. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(inflatable sub-trees), which do not form part of any loop. This
is described next. Triangles with a single edge on the envelope’s
boundary and one vertex in the interior are placed in a list and
removed until no interior vertices are left. This will yield a loop
interpolating all the vertices in the segment. The loop causing
minimum increase in the perimeter of Smin is chosen (see Fig. 8).

5.2. Remove cut edges

After all the inflate operations are carried out, there are nomore
operations in the segment–candidate association table to apply.
Ecurr will have a number of loops connected to each other through
cut edges, which have to be detected and deleted to yield an
interpolatingmanifold boundary. A generic algorithm to detect cut
edges in a graph is of higher than linear (worst case) complexity.
But we can do this with linear time worst case complexity by
exploiting the knowledge we have about the applied candidates
as follows.

We know that the cut edges of snaps are their e− and the
ones of the inflates are inside their chosen modified envelope.
The remaining cut edges are associated with moves. These are not
known but do not overlap among each other.

Therefore we just have to first remove all cut edges resulting
from application of snaps and inflates and then remove all edges
between vertices of degree >2.

5.3. Examples with multi-choice segments

The segment–candidate shown in Table 2 for our first example
(a figure-eight), has all multi-choice segments, except branch #2
Fig. 9. TheApply–Prune steps leading to the solution are also shown.

Let us briefly follow the progress of our algorithm for this
example. m2, the only operation associated with branch #2 is first
applied. Consequently, s1, m3 and s6 get eliminated. m5, the only
operation associated with branch #4 is applied next. All remaining
operations get eliminated, resulting in the desired shape.

5.4. Examples with several potential solutions

For the point set shown in Fig. 10 all are multi-choice segments
(see Table 3). The complete solution treewould have 4∗3∗3∗3∗3∗
4 ∗ 3 = 3888 terminal nodes (potential solutions). However, using
our algorithm, very large parts of this solution tree get pruned
and only a small number of potential solutions have to be actually
evaluated to get Smin.

The algorithm chooses the first segment with the minimum
number of (all applicable) associated candidates: seg1. It branches
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Table 2
Progression in segment–candidate table (right-most column is solution). Candidate to apply next is
marked by arrow.

Segment Type Candidate Ops m2 applied m5 applied

trunk #0 non-retained s1 s6 m2 m3 m5 inflate m2 m5 inflate m2 m5
branch #1 retained s1, m2,m3 m2 m2
branch #2 retained m2 ← m2 m2
branch #3 non-retained m3 m5 inflate m5 inflate m5
branch #4 retained s6m5 m5 ← m5

Fig. 10. (a) EMST for point set from [12] with segments marked: green =
retained, blue = non-retained. The multiple choice of candidates at seg1 creates
three potential solutions PSi . (b) PS0 applies m1: in the end seg6 remains without
candidates therefore PS0 becomes invalid. (c) PS1 applies m7 and produces S0.
(d) PS2 applies m8 and produces S1 which is Smin. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Initial segment–candidate table.

Segment Type Candidate Ops

trunk #0 non-retained m0 m1 s4 loop
trunk #1 retained m1 m7 m8
branch #2 non-retained m0 m1 s2
branch #3 non-retained s2 s3 s4
branch #4 non-retained m6 m7 loop
branch #5 non-retained m1 m6 m8 s9
branch #6 retained m0 m7 m8

into three potential solutions as shown in Fig. 10. All other parts
of the solution tree get pruned, so no further solutions need to be
explored. Thus the total size of the search remains at 3.

5.5. Conforming point set configurations

Like most other algorithms, dense, uniformly sampled point
sets are rather easily handled by our algorithm; this is also evident
from the proof given in [5]. For such dense point configurations,
the EMST already shares most edges with the desired boundary
and the solution space tree remains small. As example, we show

a b c d

Fig. 11. (a) EMST of non-conforming point set, with single operationm0. (b) Result
is S0 which is notminimal. (c) Smin. (d) Thereforem1 and s0 are the correct operations
to obtain Smin as their vertex degree changes cancel out at v0 but they are not
detectable.

a fairly large point set derived from a silhouette in Fig. 12(e).
Noisy data is also interpolated as long as shape features are not
significantly affected. If the noise is such that the point spacing
gets unreasonably non-uniform, then the algorithmwill terminate
with an incomplete or incorrect result. For such noisy data, an
approximation algorithm like the one presented in [30] should be
preferred. If one looks closely at the statistics in Table 4, those
point sets which are densely sampled (Fig. 12(e)) are relatively less
complex to reconstruct than sparsely sampled sets.

Belowwe shall define the class of point configurations forwhich
our algorithm can guarantee a minimum length boundary shape
and give the proof for this. In a subsequent section, we derive the
computational complexity of our algorithm.

Our algorithm can guarantee the result for point set configura-
tions in which edges in all requiredmoves and snaps operations are
connected to leaf vertices in EMST . Hence our algorithm requires
that the input point set satisfy the following condition:

move and snap operations must not overlap such that a e+ and
a e− are incident to the same vertex. While such an overlap does
not violate the manifold condition, the operations themselves are
individually non-detectable (see an example in Fig. 11).

We denote point sets satisfying the above condition as the
conforming class.

Theorem 1. Our algorithm always terminates for point sets in the
conforming class and produces their Smin.

Proof. All edges in retained segments of EMST , excepting the
edges at each end, are guaranteed to be in Smin. Since the vertices
of these edges are manifold, they do not permit any add edge
operation without creating a non-manifold result. This proves
that these edges do belong to Smin. For inflatable segments, all
interpolating loops through their vertices are evaluated and the
minimal one selected. Finally, by the above condition, all remaining
edge exchange combinations are detected and evaluated, and the
combination yielding the manifold closed shape with minimal
length is chosen. �

In our experience, the conforming class includes most sampled
point sets encountered in practice, as they are usually dense and
uniform. It also includes point configurations that are considerably
more non-uniform and sparse. Further, in practice, for many point
sets outside the conforming class, the algorithmwill terminate and
produce an interpolating shape, which is also aesthetic. However
the above guarantee does not apply. We suggest later an extension
to the algorithm to include an expanded class of point sets.
With this extension, except in places where points are highly
non-uniformly spaced or extremely sparse, our algorithm will
reconstruct an aesthetically pleasing shape.
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Fig. 12. Columns: (1) Point set. (2) Our reconstruction. (3) GathanGwith default parametersminAngle = 10 andmaxIter = 4. (4) DISCUR. Rows: (a) Goose (Amenta et al. [9]).
(b) Octopus: close curves with sparse sampling. (c) Crocodile: sharp features. (d) Elephant: non-uniform sampling and very sparsely sampled at corners. (e) 10k points
sampled on silhouette image: only our method produces a manifold. (f) Detail of e.

6. Results

We have implemented this algorithm and tested it with a
very large number of sample point data sets. Specifically, we
have tested the performance of our algorithm on many of what
are considered as problematic point sets, point data for which
the currently best known algorithms fail to produce desirable
results. We focus on critical details as typical point sets are likely

dense and thus not useful to properly illustrate the advantages
of using our method. We compare our results with the previous
best reconstruction method, GathanG from [15] (see Figs. 12 and
13) and also with DISCUR [12]. The latter have already compared
their results with many of the other methods mentioned earlier.
We have also comparedwith other approaches such asα-shapes or
greedy algorithms (i.e. Boissonnat’s sculpturing technique applied
to 2D [31]), butwe find that thesemethods settle rather too quickly
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Fig. 13. Columns: (1) Point set. (2) Our reconstruction. (3) GathanG with default parameters minAngle = 10 and maxIter = 4. (4) DISCUR. Rows: (a) Tulip (Althaus and
Mehlhorn [18]). (b) Rail-joint (engineering part). (c) Inverted heart (Zeng et al. [12]). (d) Close curves. (e) 10 random points. (f) Three loops.

into local minima and yield poor results for the non-uniform and
sparsely sampled cases that we are illustrating in our comparative
studies.

In our figures, we have excluded the normal well sampled
cases for which most methods including ours yield good results.
We have mainly included point sets which sampling-oriented
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Table 4
Complexity table: n = points, l = leaf vertices, m = vertices in largest inflatable sub-tree, i = largest number of interior vertices in such a sub-tree. Combinations give the
number of the terminal nodes (solutions) in the hypothetical complete solution tree. sg is the number of solutions evaluated globally. sl is the maximum number of solutions
evaluated locally for any inflatable sub-tree. αmin is the minimum angle. umax is the largest local non-uniformity factor.

Point set n l m i Comb. sg sl αmin umax

Tulip 79 15 18 2 > 1014 1 12 20° 4.2
Goose 74 14 10 1 > 108 1 4 61° 3.6
Octopus 166 37 20 3 > 1035 4 40 72° 2.7
Crocodile 129 8 7 1 46080 2 5 34° 2.5
Elephant 75 15 9 0 > 1014 5 2 13° 5.5
Inverted heart 34 5 6 0 3888 3 1 19° 3.3
Close curves 13 4 10 2 128 3 25 49° 2.1
Random10 10 4 0 0 270 3 1 40° 6.6
Three loops 18 5 8 0 540 1 1 76° 2.0
Rail joint 30 3 10 1 9 2 3 122° 16.5
Family 9990 33 5 1 > 1014 16 2 45° 1.4

reconstruction algorithms have not been able to handle correctly
and efficiently. This is clear from the examples. Further the results
demonstrate that closely spaced shape segments, sharp corners,
non-uniform and non-dense sampling are all handled very well
by our algorithm. What is a bit surprising to us is the fact that
the image silhouette data which is actually dense and uniform in
most places could not be handled correctly by the other algorithms.
Since we only had access to the executables of other algorithms,
we can only show their results using screen shots of the output.
Hence problems in connectivity are not always visible for highly
dense point sets. We have noted that the total run times for all
the algorithms are dominated by Delaunay graph computation
time, and hence are all nearly the same. We do not feel that other
comparisons such as actual run-times are illustrative. For example,
for DISCUR, only their binary is available to us. It strictly works
with integer coordinates and the implementation is probably not
optimized as it becomes very slow even for medium-sized point
sets.

It could be argued that our requirement of a single closed
shape (guided by the Gestalt law of closure) limits our algorithm’s
applicability. Where as Crust , Gathan, DISCUR and others are not.
And even GathanG, although it is mainly targeted towards closed
curves, handles open curves as well. However, the closed or open
result from these algorithms has to be user specified or based on
requiring the point configuration to satisfy a specified geometric
condition, such as limit on point separation distance, abrupt
curvature change, etc. In our algorithm, we could always apply
the same conditions in a post-processing operation to remove
offending edges and yield an open curve.

Also, if it is known that an open curve is to be generated, Steiner
points can be appropriately introduced as user input, although
deciding on the location for these Steiner points puts an additional
burden on the user. On the other hand, it is important to restate
that the imposition of Gestalt’s law of closure lets our method
realize far better results for sparsely sampled point sets.

Actually, we conjecture that our requirement of closed shape,
restriction to edges in DG, classification and retention of retained
segments and imposition of the manifold condition are what helps
us significantly prune the solution spacewhich otherwise has to be
explored in full by TSP algorithms.

6.1. Complexity

As can be seen in the results section above, actual run
time is nowhere near the worst case. However for theoretical
completeness, we derive the worst case performance of this
algorithm. The worst case is of course for data sets which have
completely random distribution of points in 2D space. We first
provide definitions of a few parameters needed in the complexity
formulation.

• Global solutions sg : denotes the number of calls to apply and
eliminate procedure (see start of Section 5).

• Local solutions sl: denotes the maximal number of solutions
evaluated in any call to inflate and select minimum loop
procedure (see Section 5.1).

Based on a point set with n vertices with l of them being leaf
vertices, Smin can be reconstructed in:

O(max(sg(n log n), sl)). (1)

Below we derive the worst case complexity for the individual
steps in the algorithm:

• Create DG, EMST , segment and classify: O(n log n).
• Create segment–candidate association table: in the worst case,

O(nl) for the traversal of all n edges of the tree for at most dl
candidates (d = 6 is the average of incident edges for a vertex
in DG). In practice, for non-randomly distributed point sets the
complexity is lower.

• apply and prune:O(n log n). It can be calledO(cr) times, where c
are the columns and r the rows of the segment–candidate table.

• inflate and select minimum loop: O((m logm)i!), where i is the
maximum number of interior vertices in an inflatable segment.

• remove cut edges: O(n).

Table 4 shows the actual values of these parameters for the
various point sets used in Figs. 12 and 13.

As can be derived from the global complexity equation above,
run-time increase is linearithmic with the number of points,
provided that the global factor sg is small w.r.t. n and local sl is
small w.r.t. n log n. This is the case for all figures in Table 4, even
for oneswhich are large, sparse and non-uniform at the same time.
These factors become large only when the point set configuration
is extreme in sparseness or non-uniformity of point spacing.

7. Conclusion and future work

We have presented a powerful and efficient algorithm which
is capable of reconstructing an aesthetically pleasing single closed
interpolating 2D shape for an unorganized point set without
requiring highly dense or uniform sampling. The results are better
than those of all other known solutions for this 2D reconstruction
problem. The actual run-time complexity statistics demonstrate
that it is linearithmic for most practical cases.

Our algorithm does not employ any user-specified parameters
and it does not require a sampling criterion. It does have a
limitation for the point configuration which is mainly a safeguard
to avoid very badly spaced points.

We also note that the number of leaf vertices in the EMST of
a point set correlates well with the running time required for the
reconstruction of its Smin.



1638 S. Ohrhallinger, S.P. Mudur / Computer-Aided Design 43 (2011) 1629–1638

Fig. 14. (a) The non-conforming mushroom point set (Dey and Wenger [14]).
(b) EMST with segments (blue: non-retained, green: retained)marked. The two snaps
s0, s1 share an impact at v1 but their e+ are not contained in one segment, contrary
to the required condition. (c) The consequence is incomplete reconstruction at
those snaps’ affected segments: the two retained segments seg0, seg1 remain
without candidates. We can extend our algorithm to consider the envelope of their
combined point set, including the base edges eb , shaded grey, and then carry out
the inflate operation to yield the desired shape. (d) Smin. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

For another class of point sets which fall in the non-conforming
category as they fail our required condition, i.e. as in the case seen
in Fig. 14, we show a potential extension.

Further, we believe that the primary methodology of starting
with a skeleton shape and then transforming it into the final
interpolating shape can be extended to 3D. We are presently
making progress on the formulation of such an extension for 3D
shape reconstruction, a much more difficult problem.
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