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Abstract

The chase procedure and its applications

Adrian Constantin Onet, Ph.D.
Concodria University, 2012

The goal of this thesis is not only to introduce and present new chase-

based algorithms, but also to investigate the differences between the

main existing chase procedures. In order to achieve this, first we will

investigate and do a clear delimitation between the existing chase al-

gorithms based on their termination criteria. This will give a better

picture of which chase algorithm can be used for different dependency

classes. Next, we will investigate the data exchange, data repair and

data correspondence problems and show how the chase algorithm can

be used to characterize different types of solutions. For the later two

problems, we will also investigate the data complexity of solution-

existence and solution-check problems. Further, we will introduce a

new chase based algorithm which computes representative solutions

under constructible models, a new closed world semantics. This new

semantics is, in our view, appropriate to be used as a closed world

semantics in data exchange. We will also show that the conditional

table computed by this chase algorithm can help to get both pos-

sible and certain answers for general queries. And finally, we will

investigate strong representation systems and strong data exchange

representation system. We will prove, by introducing a new chase

based algorithm, that mappings specified by source-to-target second

order dependencies and target richly acyclic TGD’s are strong data

exchange representation systems for the class of first order queries.
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Chapter 1

Introduction

The key notion of this research, the chase, is an algebraic proof procedure that

repeatedly applies a series of chase steps in order to repair inconsistent database

instances. This general definition needs a more accurate specification. There-

fore, it is known that each chase step takes a dependency that is not satisfied by

the database instance, a set of tuples that violates the dependency and changes

the database instance so that the resulting instance satisfies the dependency for

the given set of tuples. Consider, for example, a database instance I contain-

ing tuples {R(a, b), S(b, b)} and a dependency specified by the following formula

∀x ∀y (R(x, y) → S(y, x)) (mentioning that for each tuple R(x, y) there needs

to be a corresponding tuple of the form S(y, x)). For the tuple R(a, b), the

given dependency is not satisfied because there does not exist a corresponding

tuple S(b, a) in I as specified by the dependency. In this case, the chase step

will simply add the missing tuple S(b, a) to I and the resulting instance will

be I ′ = {R(a, b), S(b, b), S(b, a)}. It is easy to note that the resulting instance

satisfies the dependency for the tuple R(a, b), and that it actually satisfies the

dependency for all sets of tuples in I ′.
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1. Introduction

This procedure was originally developed for testing logical implication be-

tween sets of embedded dependencies [58]. In their work, Maier, Mendelzon and

Sagiv used the chase procedure as a tool able to check if a set of embedded

dependencies Σ, specified by a set of functional dependencies (FDs) and join de-

pendencies (JDs), logically implies a given join dependency ξ. For this, Maier

et al. represented ξ as a tableau chased with Σ and finally checked if the resulting

tableau represents the identity mapping for all instances that satisfy Σ. For a

better view of this process, consider the following trivial example with named

attributes. Let ξ be the join dependency ∗[ABC,BCD] and Σ specified by only

one join dependency ∗[ABC,CD]. First, ξ is transformed into the following

tableau representation:

A B C D

x1 x2 x3 y1

y2 x2 x3 x4

where x1,x2,x3 and x4 are distinguished variables and y1,y2 are nondistinguished

variables (note the presence of the repeated variables x2 and x3 in the columns

B and C respectively). By applying the chase procedure to this tableau with Σ,

the following tableau is obtained:

A B C D

x1 x2 x3 y1

y2 x2 x3 x4

x1 x2 x3 x4

The resulting tableau contains the tuple (x1, x2, x3, x4) only with distinguished

variables. This tells us that the tableau has an identity mapping on all instances.

Thus, the dependency ξ is logically implied by Σ. This result is useful, for ex-

ample, if one needs to remove redundant dependencies from a set of join and

2



1. Introduction

functional dependencies over a database. Later on, the chase was reformulated

for other types of dependencies as well [74]. In [13] a unified treatment was pro-

posed for the implication problem by extending the chase procedure for classes

of tuple-generating and equality generating dependencies. These two classes of

dependencies were shown to be expressible enough to capture all the previous

classes.

The chase procedure was also shown to be useful in determining the equiv-

alence of database states known to satisfy a set of dependencies [64]. For this,

Mendelzon used the chase procedure to compute a weak instance associated with

database state. A weak instance represents all possible universal relations that

satisfy all integrity constraints and whose projections on the given relation sym-

bols contain each of the relation in the database. Similarly to the logical implica-

tion problem for embedded dependencies, the chase proved to be efficient in de-

termining query-equivalence and containment-under-database constraints [6; 50].

Johnson and Klug [50] showed that for two conjunctive queries Q, Q′ and Σ, a

set of functional and inclusion dependencies, Q(I) ⊆ Q′(I) holds for all instances

I satisfying Σ if and only if there exists a homomorphism from IQ′ to the instance

resulting by applying the chase procedure on IQ with Σ (where IQ denotes the

instance containing all conjuncts of Q as tuples).

More recently, the chase procedure has gained a lot of attention due to its

usefulness in: data integration [15; 53], ontologies [17; 18], inconsistent databases

and data repairs [4; 8; 37], data exchange [27], query optimization [24; 63], peer

data exchange [11], and data correspondence [37]. In this thesis we will review

the chase procedure and its application in data exchange, data repair and data

correspondence problems.

3



1. Introduction

1.1 The Application Areas

1.1.1 Data Exchange

Data Exchange is an important concept harking way back to federated and het-

erogeneous databases. The problem was finally put on a sound formal basis by

the fundamental work of Fagin, Kolaitis, Miller and Popa [27]. The data ex-

change problem can be described as follows: given a ”source” database schema,

a ”target” database schema, a database instance over the source schema and a

set of statements describing the relationship between the source schema and the

target schema, find an instance on the target schema such that together with the

source instance satisfies those statements. In most cases the relationship between

the source schema and target schema is specified by a set of logical formulae of

a special format called dependencies. In data exchange these dependencies are

classified as source-to-target dependencies, the ones representing the relationship

between the source and the target schema, and target dependencies, specifying

the set of constraints that needs to be satisfied by the target instance.

Figure 1.1: Data Exchange

Figure 1.1 is a graphical representation of the data exchange problem, where

4



1. Introduction

S and T represent the source and target schemata, the input source instance

is represented by I, Σst - the set of source-to-target dependencies, Σt - the set

target dependencies, and finally J is the target instance that needs to be com-

puted. Such target instance J is called a solution for the data exchange problem.

However, the solution J that needs to be found is not guaranteed to be unique.

There may exist instances, different than J , that are also solutions for the same

problem. Actually, it may be that there are infinitely many such solutions. For

example, let us consider the source schema S containing a single unary relation

symbol Emp corresponding to the employees names; and the target schema T

with a single binary relation symbol EmpDept denoting the employees and their

department. The relationship between the source and target schemata states

that each employee belongs to at least one department. This relationship can be

specified by the following logical expression:

∀x (Emp(x) → ∃y EmpDept(x, y))

Consider instance I = {Emp(john),Emp(mary)}. For this setting the following

instances over the target schema represent solutions for the given problem:

J1

EmpDept(john,hr)
EmpDept(mary, qa)

J2

EmpDept(john,hr)
EmpDept(mary, hr)

J3

EmpDept(john,hr)
EmpDept(mary, qa)
EmpDept(mike, hr)
EmpDept(john, prod)

On the other hand, the target instance J ′ = {EmpDept(john,hr)} is not a solution

since it does not contain the information that mary also is part of at least one depart-

ment. One may observe that if in the instance J1 we replace the departments with any

two other departments, the resulting instance will still be a solution. Abstracting even

5



1. Introduction

more, we may replace the departments values in J1 with two null values X and Y as

place holders for the department names. The instance J4 obtained this way is also a

solution of the given problem:

J4

EmpDept(john,X)
EmpDept(mary,Y )

The previous instance has the property that, for any solution K, we may construct

instance JK by replacing nulls X and Y in J4 with some constants or nulls such that

JK ⊆ K. This makes, in some aspects, J4 a more general solution than the others

and, consequently, it is called a universal solution. In [27] it is shown that in order to

obtain the certain answers for conjunctive queries over the target database, one have

to materialize only a universal solution. Furthermore, in the same paper, it is also

noted that the universal solutions are not unique in general, not even up to variable

renaming. Even more, there is a data exchange configuration that does not have a

universal solution. As it was shown later [23], it is undecidable if there exists a universal

solution for a data exchange problem. In case there exist universal solutions, it would

be preferable to materialize the smallest such universal solution on the target. In [28]

it is proved that in case there exist universal solutions for a data exchange problem,

then there is a smallest universal solution that is unique up to variable renaming.

Such a solution was called the core solution or simply the core. These results are

fundamental for our research, since the chase procedure plays an important role in

finding universal solutions in data exchange [27]. In [23] it was noted that there is

a direct correlation between the chase termination and the existence of the universal

solutions (see Section 5).

6



1. Introduction

1.1.2 Data Repair

Data repair is the transformation process applied to an inconsistent database instance

such that the resulting instance is consistent and it differs ”minimally” from the initial

instance. In this case, the consistency of a database instance is considered against a

set of integrity constraints over the database schema. Such constraints may be: key,

foreign-key, join, or more generally, any constraints specified by a set of embedded

dependencies. Let us denote by Σ the set of constraints. Based on the ”minimality”

restrictions used when comparing the repair with the initial instance, we differentiate

the following types of repairs:

• Superset repair. An instance J is said to be a superset repair of an instance I with

respect of Σ, if instance J contains all tuples from I, satisfies all constraints in Σ,

and there is no other instance J ′ properly contained in J with these properties.

• Subset repair. An instance J is said to be a subset repair of an instance I with

respect of Σ, if instance J contains only tuples from I, satisfies all constraints in

Σ, and there is no other instance J ′ properly containing J with these properties.

• Symmetric-difference repair. An instance J is said to be a symmetric-difference

repair of an instance I with respect to Σ, if instance J is obtained by adding and

removing tuples to/from I, satisfies all constraints in Σ, and there is no other

instance J ′ obtained from a subset of steps used to obtain instance J .

Figure 1.2 gives a visual representation of the aforementioned repair problems, where

Σ represents the set of constraints, S represents the database schema, I the initial

instance and instance J represents a superset, subset and symmetric-difference repairs

respectively.

A general point of view of the literature introducing the types of repairs is, of course,

necessary. The research makes it obvious that data repair represents a major interest

7



1. Introduction

Figure 1.2: Data Repair

in this area. The symmetric-difference repair was introduced by Arenas et al. in [8].

The subset repair as studied by Chomicki and Marcinkowski in [21] requires the repair

to be a maximal consistent subset of the inconsistent instance. In [37] the superset

repair problem is tackled. Lopatenko and Bertossi, in [57], also consider cardinality

repairs, where the repair is to be a subset of maximal cardinality. Afrati and Kolaitis,

in [4], recently introduced the component-cardinality repair which is similar to the

cardinality repair except that it considers the cardinality of each relation separately.

The data complexity of checking if a given instance is a cardinality repair for a given

set of constraints is coNP-hard even for simple sets of constraints. For this reason

we will not cover this type of repairs in our thesis. As we will see in section 5.2, the

chase process plays an important role in determining the existence and checking if an

instance is a subset/superset/symmetric-difference repairs for a given instance under a

set of constraints.

To exemplify the difference between the three data repairs mentioned before let us

consider the following trivial example. The database schema S consisting of two relation

names {Emp,EmpDept}, similarly to the data exchange example, considers also in-

stance the I with tuples I = {Emp(ben),Emp(john),Emp(mary),EmpDept(ben, hr)}.

Consider the constraints on schema S specified by the following formula:

8



1. Introduction

∀x (Emp(x) → ∃y EmpDept(x, y)).

Clearly I is inconsistent as there are no departments assigned for employee “john“

and “mary“. The only subset repair for I under the given constraint is the instance

J sub = {Emp(ben),EmpDept(ben, hr)}. The three instances below represent a few

superset repairs from the infinitely many such repairs. Observe that each of the superset

repairs in this example has exactly 6 tuples and that, by removing any of the added

tuples, the instance will become inconsistent with respect to the given constraint, while

by adding tuples, the repairs are no longer minimal:

J sup

1

Emp(ben)
Emp(john)
Emp(mary)
EmpDept(ben, hr)
EmpDept(john,hr)
EmpDept(mary, hr)

J sup

2

Emp(ben)
Emp(john)
Emp(mary)
EmpDept(ben, hr)
EmpDept(john, prod)
EmpDept(mary, qa)

J sup

3

Emp(ben)
Emp(john)
Emp(mary)
EmpDept(ben, hr)
EmpDept(john, qa)
EmpDept(mary, hr)

Finally, below are represented another three instances which are symmetric-difference

repairs for I with the given constraint. Note that any subset and superset repair is also

a symmetric-difference repair:

J sym

1

Emp(ben)
Emp(mary)
EmpDept(ben, hr)
EmpDept(mary, hr)

J sym

2

Emp(ben)
Emp(john)
EmpDept(ben, hr)
EmpDept(john, prod)

J sym

3

Emp(ben)
Emp(john)
Emp(mary)
EmpDept(ben, hr)
EmpDept(john, qa)
EmpDept(mary, hr)

9



1. Introduction

1.2 Thesis Structure

Our thesis is structured in two main parts. The first one, covered by chapters 3 and 4,

presents the chase algorithm. Based on its applicability and performance in different

cases, the chase algorithm comes in different variations. Chapter 3 is dedicated to the

reviewing of the most used of these chase variations and to the highlighting of their

difference. It is well known that the chase algorithm does not always terminate. Even

more, it is also known that testing if the chase algorithm terminates is undecidable

in general [23]. In Chapter 4 we revisit the most recent work related to the chase

termination and present the main known classes of dependencies for which the standard-

chase algorithm termination is guaranteed on all instances. In the same chapter we

also investigate if these classes of dependencies ensure termination for different chase

variations already introduced in Chapter 3.

The second part of the thesis is reserved to the some of the applications of the

chase procedure. More precisely, chapter 5 shows why the chase algorithm plays an

important role in data exchange, data repair and the newly introduced data correspon-

dence problems. This is followed by Chapter 6 where we introduce a chase variation

that relies on a new closed world semantics, the constructible models semantics. This

new chase variation helps, in data exchange, to materialize a conditional table over

the target schema used to get the certain answer for general first order queries (FO)

over the target instance compared to the standard chase that materializes an instance

over the target schema used only to get the certain answer for union of conjunctive

queries (UCQ). In Chapter 7 we extend the standard-chase algorithm for second-order

tuple-generating-dependencies under a closed world semantics and show that st-SO de-

pendencies with a target richly acyclic set of TGD’s represent a strong data exchange

system. Finally, Chapter 8 is allocated for conclusions and further work related to the

chase procedure and its applications.

10



1. Introduction

1.3 Contributions

This dissertation covers the results published by the author in [37; 38; 39; 40; 67] ( first

four being a joint work with prof. Gösta Grahne). In this thesis we review the most

prominently used chase variations and make a clear distinction between them based on

the followings:

(a) the result computed by the chase and

(b) the chase algorithm termination.

Part of this study was first presented in [67]. It is well known that the problem of

deciding if the standard-chase procedure terminates1 for a given instance is undecidable

[23]. In Chapter 4 we show that this undecidability result can be extended to the

oblivious-chase algorithm. The chase termination undecidability result motivated the

research community to find classes of dependencies that ensure the chase termination

[23; 27; 59; 61; 63; 70]. Most of these classes guarantee the chase termination for the

standard chase or parallelized standard chase. Unfortunately, none of these classes of

dependencies ensure the termination for the oblivious-chase algorithm. In this thesis

we extend this set of classes of dependencies by unveiling a class of dependencies that

ensures the oblivious-chase termination for all input instances. As it will be shown in

Chapter 6, this class of dependencies lays the foundation of the more restrictive class

of dependencies ensuring that the newly introduced conditional-chase terminates.

Next we show how the chase procedure plays an important role in data repair by

focusing on the following two problems:

1. Solution-Existence: given an instance I and a set of dependencies Σ, is there an

instance J that is a subset repair for I with Σ?
1As we will see in Chapters 3 and 4, the chase termination is defined over two aspects:

1. the chase procedure terminates for any non-deterministic choices made in the algorithm;
2. there exists a series of non-deterministic choices that makes the algorithm to terminate.
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2. Solution-Check: given the instances I,J and a the set of dependencies Σ, is J a

superset/subset/symmetric-difference repair for I with Σ?

We evaluate these problems when Σ is specified by a set of weakly acyclic tuple

generating dependencies, a class of dependencies that ensures the standard-chase algo-

rithm termination for any input instance. For this class of dependencies, we show that

the subset repair existence problem can be solved in polynomial time. On the other

hand, testing if an instance is a subset or symmetric-difference solution was proved [4]

to be an NP-complete problem (data complexity) for the same class of dependencies.

More recently, this work was also extended by computing consistent answers over the

data repairs [72]. In this thesis we extend the data complexity results by showing that

the NP-completeness result also holds for the superset repair. Next, we introduce a

new large class of dependencies, called semi-LAV, that properly contains both full and

weakly acyclic LAV1 dependencies. For this new class of dependencies we show that

there exists a polynomial time algorithm able to decide all the previously presented

problems.

In Chapter 5 we introduce and investigate a new problem with large practical

implications, the data correspondence problem. Part of this work was first presented

in [37]. Data correspondence is a generalization of data exchange [27] and peer data

exchange [11], and a special case of the data repair problem. More specifically, data

correspondence is the constructive testing between two (or more) database instances in

order to verify if they represent the same information. The challenge arises when the two

databases may be structured according to different schemata. The prototypical example

is to compare a decomposed, normalized instance to the initial universal instance.

As an example, consider the following concrete scenario from a virtual financial

brokerage firm where the employees enter their working hours into a database with the

1We allow duplicated variables in the body for LAV dependencies.
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following schema:

EmpHours(EmpId,ProjId,TotHours)
HourlyRate(EmpId,Rate)
Sponsor(MgrId, ProjId)
ExpenseP lan(PlanId, Rate)

The relation EmpHours specifies that an employee with EmpId worked on the project

ProjId for a total of TotHours. Then, the relation HourlyRate records the hourly

salary of the employee on a project. We have a tuple associated with each project in

the relation Sponsor, with the meaning that the project ProjId is sponsored from the

funds of the manager with MgrId. The relation ExpenseP lan represents, of course,

the hourly rate used for different expense plans. On the other hand, the Managers have

to justify their use of funds by entering data in a different database with the schema:

Contribution(MgrId,EmpId,TotHours,Rate)

meaning that the manager with MgrId has paid the employee with EmpId for TotHours

hours at the rate of Rate. In order to verify that funds have been appropriately dis-

persed, the company relies on the constraints specified by the following logical expres-

sions:

∀ei ∀pi ∀th ∀mi ∀r (EmpHours(ei, pi, th) ∧ Sponsor(mi, pi) ∧HourlyRate(ei, r)

�→ Contribution(mi, ei, th, r)),

∀mi ∀ei ∀th ∀r (Contribution(mi, ei, th, r)

�→ ∃pl HourlyRate(ei, r) ∧ExpenseP lan(pl, r)).

If the two instances do not satisfy the given set of dependencies, the company

needs to bring the two database instances up to date, by entering some missing tuples

in the employee database (assuming that the managers financial reports are correct).
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Consider, for example, the instance I1 over the first schema and the instance I2 over

the second schema, described by the following tuples:

I1

EmpHours(john,”issuers”,100)
EmpHours(ben,”issuers”,50)
EmpHours(anne,”capital”,50)
HourlyRate(john,20$)
HourlyRate(ben,25$)
HourlyRate(anne,25$)
Sponsor(rico,”issuers”)
Sponsor(rico,”capital”)
ExpenseP lan(”A”,20)
ExpenseP lan(”B”,30)

I2

Contribution(rico, john,100,20$)
Contribution(rico, ben,50,25$)
Contribution(rico, anne,50,20$)

In this case, for the instances I1, I2 to satisfy the given constraints, the followings are

a few of the minimal changes that may be applied:

• replace Contribution(rico, anne,50,20$) with Contribution(rico, anne,50,25$)

in I2, in order to satisfy the first formula, and add tuple ExpenseP lan(X,25),

where X may be replaced with any constant value, in order for the second formula

to be satisfied, or

• remove tuples EmpHours(anne,”capital”,50), ExpenseP lan(X,25) from I1,

and remove tuple Contribution(rico, anne,50,20$) from I2, or

• remove tuples HourlyRate(ben,25$), HourlyRate(anne,25$) from I1 and re-

move tuples Contribution(rico, ben,50,25$), Contribution(rico, anne,50,20$)

from instance I2.

The resulting instances are called solutions for the correspondence problem. In case we

allow in data correspondence problem both instances to be changed, we talk about the

uniform-data correspondence problem, which is graphically depicted in figure 1.3, where
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S1 and S2 represent the two database schemata; Σ12 and Σ21 the set of constraints; I1

and I2 the initial instances; and I ′1, I ′2 represent some superset solutions for the uniform-

data correspondence problem. Note that the uniform-data correspondence problem can

be viewed as a special case of data repair problem [4; 8; 21].

Figure 1.3: Uniform-Data Correspondence

In some cases, one of the sources needs to be authoritative, meaning that it is

sound and complete and can not therefore be modified. By considering in the previous

example, for the second source to be authoritative, we can apply the following mini-

mal transformation to I1 (the non-authoritative instance) in order to satisfy the given

constraints: remove tuple HourlyRate(anne,25$), add tuples HourlyRate(anne,20$)

and ExpenseP lan(X,25). This correspondence problem is called the non-uniform-data

correspondence problem and it is graphically depicted in figure 1.4. Even if the non-

uniform-data correspondence problem looks similar to the peer data exchange problem

[11] they are different in the sense that for the non-uniform correspondence problem

we are looking for ”minimal” solution rather than superset solutions. In the follow-

ing, by mentioning data correspondence problem we refer to both uniform-data and

non-uniform-data cases.

Similarly to the data repair problem, for the data correspondence problem we con-

sider the superset, subset and symmetric-difference solutions cases. From the previous
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Figure 1.4: Non-Uniform-Data Correspondence

example we observe that there may be several solutions to the correspondence prob-

lem; however it may also be the case that there does not exist any solution. We will

show in Section 5.3 that the chase procedure plays an important role in checking the

existence of solutions and also in testing if a pair of instances is a solution for a data

correspondence problem.

Similarly to data repair, we investigate the problem of deciding if there exists a solu-

tion and the problem of testing if a given pair of ground instances is a solution for both

uniform and non-uniform data correspondence settings. Tables 1.1 and 1.2 summarize

the data complexity results found for these problems under weakly acyclic and semi-

LAV classes of dependencies. The coNP-completeness data complexity result occurs

for the symmetric-difference solution-check for the non-uniform-data correspondence

problem under a weakly acyclic set of dependencies. This result is rather surprising

considering that the subset and superset solution-check problems are both polynomial

under same settings. Also, from the complexity results table, it can be noted that the

new class of semi-LAV dependencies is tractable for all previously mentioned problems.

The data exchange problem, as first presented in [27], relies on an open world

semantics. Following that, one may get only certain answers for union of conjunctive

queries. As we can see in the following example, the open world semantics is not suitable
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Table 1.1: The data complexity of solution-existence for the correspondence problem
Existence unif. corr. sol. non-unif. corr. sol. non-unif. corr. sol.
Σ weakly acyc. weakly acyc. semi-LAV

subset P NPC P
superset - NPC P
⊕ - NPC P

Table 1.2: The data complexity of solution-check for the correspondence problem
Solution-Check uniform uniform non-uniform non-uniform
Σ weakly acyc. semi-LAV weakly acyc. semi-LAV

subset coNPC P P P
superset coNPC P P P
⊕ coNPC P coNPC P

for general first order queries. Consider, for example, a data exchange mapping over

the source schema S = {EmpCostCenterLocation} and the target schema specified by

T = {EmpCostCenter,LocationCostCenter}. Consider also the relationship between

the source and the target schema specified by the following formula, which normalizes

the relation from the source schema into two relations over the target schema:

∀ei ∀cc ∀loc (EmpCostCenterLocation(ei, cc, loc)

→ EmpCostCenter(ei, cc) ∧LocationCostCenter(cc, loc)) (1.1)

Consider now the source instance I with the following tuples:

I

EmpCostCenterLocation(joe, c1, new york)
EmpCostCenterLocation(bill, c2,montreal)
EmpCostCenterLocation(ann, c1, new york)

Let us now consider the following non-monotone query over the target instance:

Give all employees allocated to a cost center different than New York. Using notations
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from [1], this query can be expressed as:

ans(ei) ← EmpCostCenter(ei, cc),¬LocationCostCenter(cc,“New Y ork“) (1.2)

The certain answer to this query will be empty under the OWA semantics . On the

other hand, as each employee may belong to a single cost center and each cost center

is uniquely located, we may expect that query 1.2 returns as certain answer “bill“.

Realizing that the open world semantics had some anomalies, Libkin [54] proposed a

first CWA semantics for data exchange; his work was followed by [44; 45; 47; 56]. In

this thesis we continue this line of work by proposing a new CWA semantics, called

constructible solution semantics, which we argue is a natural fit for the data exchange

problem. Intuitively constructible solution semantics only considers those tuples in the

target instance that can be constructed from the source instance. We will show that the

instance based representation is not enough to capture the new CWA semantics and

we extend this by using conditional tables as representation of the possible solutions.

Where the conditional tables are structures that extend tabular instances by associating

local conditions for each tuple, such that a tuple exists under some valuation if the

local condition is evaluated to true. Next, we extend the chase procedure to properly

capture this new semantics. To illustrate this, consider the relationship between source

and target schema specified by the following source-to-target dependency:

∀ei (Employee(ei) → ∃mi EmpMgr(ei,mi)) (1.3)

and the target dependency:

∀ei (EmpMgr(ei, ei) → SelfMgr(ei)) (1.4)
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The following two instances correspond to the target representation of the source

instance I = {employee(john), employee(ann)} when chasing I with the standard chase

and with new conditional chase respectively:

J

EmpMgr(john,X)
EmpMgr(ann,Y )

t ϕ(t)

EmpMgr(john,X) true

EmpMgr(ann,Y ) true

SelfMgr(john) X = john

SelfMgr(ann) Y = ann

As it can be seen, the standard-chase algorithm with the input dependencies 1.3 and

1.4 can not capture the possibility that the employees ”john” and ”ann” can be their

own manager. We introduce a new class of dependencies that ensures the conditional-

chase termination for any input instances and then relates the conditional-chase termi-

nation to the oblivious-chase termination.

Finally, in the last chapter we focus on the representation systems for data exchange.

The notion of representation systems describes structures that are algebraically closed

under queries. We extend the notion of representation system to encompass data ex-

change mappings. Seen through this lens, two major classes of representation systems

emerge, namely homomorphic data exchange systems and strong data exchange sys-

tems. The monotone systems encompass the classical OWA data exchange semantics,

in which reasoning is modulo homomorphic equivalence and only union of conjunctive

queries are supported. We develop new technical tools that allow us to prove that

there is a class of CWA strong representation systems in which reasoning is modulo

isomorphic equivalence. These systems are based on conditional tables and support

first-order queries and data exchange mappings specified by a large class of second-

order dependencies. We achieve this by showing that under the constructible models

closed world semantics, conditional tables are chaseable with the aforementioned class

of second-order dependencies.
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Chapter 2

Notations and Preliminaries

This chapter covers the notations and notions used in our thesis. Let N denote the

set of natural numbers. We use as placeholders for natural numbers lowercase letters,

possibly subscripted and/or superscripted (for example i,kn,ml
j). For any two natural

numbers n,m with m ≤ n let [m,n] be the set of all natural numbers p with m ≤ p ≤ n.

The set [1, n] is also denoted by [n]. For a set A, by ∣A∣ we denote its cardinality, and

by P(A) we identify its powerset, that is all subsets of A. By “⊕“ we represent the

symmetric difference operator between sets. Thus for two sets A and B by A ⊕B we

mean the set (A∖B) ∪ (B ∖A). For a given set I, we say that A ≤I B if A⊕ I ⊆ B ⊕ I.

Clearly ≤I , for a given set I, is a partial order over sets. We say that sets A and B

are incomparable, denoted A ∦ B, if A ⊈ B and B ⊈ A. A tuple ā over a set A is a

sequence of the form (a1, . . . , an), with ai ∈ A for all i ∈ [n]. The length of a tuple ā,

denoted ∣ā∣, is the number of elements in ā. By abusing the notation, we sometimes

treat tuples as sets, that is we write a ∈ ā to denote that element a is part of the

tuple, and we write ā ⊆ A to denote that all elements in ā are in set A. Given two

sets A, B and the mapping f ∶ A → B, we define Dom(f) = A (the domain of f) and

Im(f) = {f(a) ∣ a ∈ Dom(f)} (the image of f), clearly Im(f) ⊆ B. We sometimes
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specify a mapping f as {a1/f(a1), . . . , an/f(an)}, where {a1, . . . , an} ⊆ Dom(f) and

for all a ∈ Dom(f) ∖ {a1, . . . , an} we have f(a) = a. A mapping f is said to extend

mapping g, denoted g ⋐ f , if Dom(g) ⊆ Dom(f) and f(a) = g(a) for all a ∈ Dom(g).

For two mappings f and g such that Dom(f) ∩Dom(g) = ∅, by f ⊔ g, we denote the

smallest mapping on the domain Dom(f) ∪Dom(g) such that f ⋐ f ⊔ g and g ⋐ f ⊔ g.

For a set D by Id(D) we denote the identity mapping on D, that is Id(D)(a) = a for

all a ∈ D. By Id we denote the set of all identity mappings. Mappings are extended

to tuples as follows: let f be a mapping and ā = (a1, . . . , an) ⊆ Dom(f). By f(ā) we

denote the tuple (f(a1), . . . , f(an)). In the natural way, we extend a mapping f to a

set A as follow, f(A) = {f(a) ∣ a ∈ A}, where f(a) is defined for all a ∈ A (note that A

may be a set of tuples, not only elements from Dom(f)).

2.1 Relational Databases

A database schema R, or simply schema, is a finite set {R1, . . . ,Rn} of relation symbols.

For each relation symbol R ∈R, we assign a positive integer arity(R) representing the

relation arity. Let ΔC and ΔN be two disjoint countable infinite sets of constants and

nulls respectively. In this thesis, we will denote the constants by lowercase letters,

possibly subscripted/superscripted, from the beginning of the alphabet (eg. a, b1, . . .).

The nulls are denoted by possibly subscripted/superscripted uppercase letters from the

end of the alphabet (eg. X, Y1, . . .). Let D = ΔC ∪ΔN. A finite instance for a schema

R is a mapping I that assigns for each relational symbol R a finite set of tuples from

Darity(R) (i.e. I(R) ⊆ Darity(R)). In some cases we will also allow instances to assign

infinite sets of tuples, in this case we talk about infinite instances. In this dissertation,

if not mentioned otherwise, by instance we mean a finite instance. If a tuple ā belongs

to I(R), we say that R(ā) is a fact for I. For ease of notation we will also denote by I

the set of facts for mapping I. We use two distinct tabular representations to specify
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instances. For example, instance I = {R(a, b,X),R(b, Y,Z), S(c, d)} will be represented

in one of the following formats:

I

R(a,b,X)

R(b,Y,Z)

S(c,d,a)

or
RI

a b X

b Y Z

SI

c d

where, by RI and SI we denote the sets I(R) and I(S) respectively. The set Inst(R)

contains all the instances over schema R. Let R1, R2 be two database schemata, such

that R2 ⊆R1, for any instance I ∈ Inst(R1) by I ∣R2 we denote the instance over schema

R2 that contains only the facts from I over relational symbols in R2. For two instances

I, J ∈ Inst(R) we may write I ⊆ J to denote that all the facts in instance I are also

in instance J . The set of all elements in an instance I is denoted with dom(I), thus

dom(I) will contain all the constants and nulls occurring in I. By ΔN(I) we denote

the set ΔN ∩ dom(I). Similarly by ΔC(I) we denote the set ΔC ∩ dom(I). An instance

I is called a ground (or complete) , if dom(I) ⊆ ΔC, or equivalently ΔC(I) = dom(I).

By Inst∗(R) we denote the set of all ground instances over schema R. The presence of

null values in an instance makes the instance incomplete. Intuitively, the nulls values

in an instance I are placeholders for unknown constant values. Sometimes, to make

a more clear distinction between a ground instance and an instance that may contain

null values we will call the later tableau.

Let I, J ∈ Inst(R), a mapping h ∶ dom(I) → dom(J) is said be a homomorphism

between I and J if h(I) ⊆ J and h(c) = c for all constants c ∈ ΔC(I). We write

I
h
�→ J to denote that there exists a homomorphism h between I and J . When the

homomorphism is not relevant in the context we simply write I �→ J . Instances I

and J are said to be homomorphically equivalent, denoted I ↔ J , if I �→ J and J �→

I. A homomorphism h from I to J is said to be full if h(I) = J . A full injective

homomorphism is called embedding . An embedding h from I to J such that h−1 is
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also an embedding from J to I is called isomorphism. Two instances I and J are said

to be isomorphically equivalent if there exists an isomorphism between I and J . This

is denoted by I ≅ J . Note that not all embeddings are isomorphisms. For example,

consider the two instances I = {R(a,X),R(b, Y )} and J = {R(a,Z),R(b, c)}. Clearly

the embedding e = {X/Z,Y /c} is not an isomorphism as e−1(c) = Z, that is e−1 is not

an embedding. A homomorphism ĥ is said to be an extension of homomorphism h if

h ⋐ ĥ.

A homomorphism h from I to I is said to be an endomorphism . A retraction is

a endomorphism h from I to J = h(I) such that h is identity on dom(J), in this case

J is called a retract of I. An instance J is said to be a proper retract of an instance I

if J is a retract of I and J ⊊ I. An instance I is said to be a core if it does not have

any proper retract. An instance J is said to be a core of I, if J is a retract of I and

it is also a core. The cores of an instance I are unique up to isomorphism [27; 43] and

therefore we can talk about the core of an instance I and denote it core(I).

2.2 Queries

Consider ΔV to be a countable infinite set of variables, such that it is disjoint of ΔC and

ΔN. In this dissertation we will denote the variables with lowercase letters, possibly

subscripted/superscripted, from the end of the alphabet (eg. x, z1, y2, . . .). A relational

atom , or simply atom, over schema R is an expression of the form R(x̄), where R ∈R

and x̄ is a tuple from (ΔC⋃ΔV)arity(R). A conjunctive query q over schema R is an

expression of the form:

q(x̄) ← R1(x̄1), . . . ,Rn(x̄n) (2.1)

where for all i ∈ [n] we have Ri(x̄i) which is an atom over R; the elements in x̄ are from
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the set ΔC⋃ΔV, and all variables in x̄ appear in at least one tuple x̄i, i ∈ [n]. The size

∣x̄∣ represents the arity of the query q, denoted with arity(q). By CQ we denote the set

of all conjunctive queries over any schema. The semantics for a conjunctive query q on

a ground instance I ∈ Inst∗(R) is defined as, where a valuation is a mapping identity

on constants and its image is over constants:

q(I) = {v(x̄) ∣ v - valuation, and v(x̄i) ∈ I(Ri), ∀i ∈ [n]} (2.2)

In case ∣x̄∣ = 0, then we say that q is a boolean query . The semantics for a boolean

query q on a ground instance I is:

q(I) =
⎧⎪⎪
⎨
⎪⎪⎩

true if ∃v - valuation, and v(x̄i) ∈ I(Ri), ∀i ∈ [n]
false otherwise

(2.3)

For a conjunctive query q ∈ CQ, we denote by db(q) the instance containing the

facts Ri(X̄i), i ∈ [n], where X̄i is obtained from x̄i by replacing each variable with a

fresh new null from ΔN. Consider the following query:

q(x1, x3, x5) ← R(a, x1, x2), S(x2, x3),R(x3, x4, x5), T (x5, b) (2.4)

For this query we have db(q) = {R(a,X1,X2), S(X2,X3),R(X3,X4,X5), T (X5, b)}. Re-

call that the variables are denoted with lowercase letters and the nulls with uppercase

letters.

Consider q1,. . ., qn be n conjunctive queries with the same arity. Then a query

Q specified as Q ← q1 ∨ . . . ∨ qn is called a union of conjunctive queries and has the

following semantics: Q(I) = q1(I) ∪ . . . ∪ qn(I). By UCQ we denote the set of all union

of conjunctive queries. For a better distinction, in this thesis, we will denote conjunc-

tive queries with lowercase letters and union of conjunctive queries with upper case

letters. For a query Q ∈ UCQ, Q ← q1 ∨ . . .∨ qn, we define db(Q) = {db(q1), . . . , db(qn)}.

24



2. Notations and Preliminaries

By CQ≠ is denoted the set of all conjunctive queries that also allow the unequality

atom. The extension of the previous classes of queries by allowing negated atoms gives

CQ¬,UCQ¬,CQ¬,≠ and UCQ¬,≠. The semantics of these types of queries is naturally ex-

tended from the semantics of conjunctive queries. A more detailed description of these

semantics can be found in [1].

Note that the query semantics previously defined mentions only ground instances,

that is complete databases. An incomplete database (over a schema R) is conceptually

a set I of ground instances (over schema R), or possible worlds I. Given a query q and

an incomplete database I, the result of q on I is q(I) = {q(I)∣ I ∈ I}. To this exact

answer [36] there are two approximations [48], namely:

• certain answer evaluation: certain(q,I) = ⋂I∈I q(I), and

• possible answer evaluation: possible(q,I) = ⋃I∈I q(I).

In some cases an incomplete database I over schema R can be specified by a single,

not necessarily ground, instance I such that

I = {J ∣ v is a valuation, v(I) ⊆ J, J ∈ Inst∗(R)}

Where a valuation v is mapping with domain ΔC ∪ ΔN and image ΔC. In this case,

for any query q ∈ UCQ, the certain answer certain(q,I) can be computed by executing

these two steps [27]: a) evaluate q on instance I by treating each null values as a new

constant; b) the certain answer result will contain all the tuples from the previous

evaluation that contains only constants. Libkin showed in [55] that UCQ is the largest

class of queries for which the certain answer can be evaluated in this way. In [1; 35] it is

also shown that if I is specified by instance I, J is specified by instance J and I ↔ J ,

then certain(q,I) = certain(q,J ) for any q ∈ UCQ. Thus, if two incomplete instances

are represented by two homomorphically equivalent instances, then the certain answers

for any union of conjunctive query will be the same for both incomplete databases.
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Given Q ∈ UCQ over database schema R and instance I ∈ Inst(R) we say that I is

a model for Q, denoted I ⊧ Q, if there exists instance J ∈ db(Q) such that J → I.

2.3 Dependencies

In most real life applications, database schemata have attached a set of constraints that

needs to be satisfied by each instance over the given schema. Some of the most fre-

quent constraints of this type are: primary-key, foreign-key and functional dependency.

It is very common to use first order logic as a representation language for database

constraints.

In this dissertation we will focus mainly on constraints specified as embedded de-

pendencies (for a survey on database dependencies see [31]). An embedded dependency

over schema R is a first order sentence ξ of the form:

∀x̄,∀ȳ (α(x̄, ȳ) → ∃z̄ β(x̄, z̄)) (2.5)

where all variables in x̄ appear both in α and β. The expression α is a conjunction of

possible negated relational atoms over R and unequalities atoms. The expression β is

a first order expression over relational atoms over R, unequalities and equalities atoms.

We usually refer to the formula given by α as the body of the embedded dependency,

and the formula given by β as the head of the dependency.

The following subclasses of embedded dependencies play an important role in rep-

resenting database constraints:

• A tuple-generating-dependency (TGD) is an embedded dependency where both

the body and the head are formulae logically equivalent with a conjunction of

relational atoms;

• An equality-generating-dependency (EGD) is an embedded dependency where the
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body is a formula logically equivalent with a conjunction of relational atoms and

the head is represented by an equality atom;

• A tuple-generating-dependency with disjunctions (TGD∨) is an embedded de-

pendency where the body is a formula logically equivalent with a conjunction

of relational atoms and the head is equivalent with a disjunction of the form

β1 ∨ β2 ∨ . . . βn where, for all i ∈ [n], βi is a conjunction of relational atoms;

• A tuple-generating-dependency with negations (TGD¬) is a tuple generating de-

pendency where we allow negated relation atoms both in the body and the head;

• A tuple-generating-dependency with negations and disjunctions (TGD∨,¬) is a

tuple-generating-dependency with disjunctions where we also allow negated re-

lation atoms in the body and the head.

The following three subclasses of TGD are also of importance in our work:

• A full TGD is a TGD without any existentially quantified variables;

• A local-as-view dependency (LAV) is a TGD with only one relational atom in

the body of the dependency;

• A true-local-as-view dependency (LAV∗) is a LAV dependency without repeating

variables in the body;

Sometimes, when referring to a generic tuple-generating-dependency, we may also

use the notation α → β; and when referring to an equality-generating-dependency, we

use the notation α → x = y. For simplicity we will omit the universal quantifiers; also

the conjunction between atoms will be denoted by comma. For example the embedded

dependency:

∀x∀y∀z (R(x, y, z) ∧ S(y, z) → ∃v (R(v, y, z) ∧ S(v, z)) ∨ (R(x, y, v) ∧ ¬S(v, z)))
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will be simply denoted as:

R(x, y, z), S(y, z) → ∃v R(v, y, z), S(v, z) ∨R(x, y, v),¬S(v, z)

Given two distinct schemata R1 and R2, a set Σ of TGD’s is said to be source-

to-target TGD’s if the relational symbols in the body of each dependency are from

schema R1 and the relational symbols in the head of each dependency are from schema

R2. In this case we say that Σ is a set of source-to-target dependencies over schema

(R1,R2).

For a schema R, by TGD(R) we denote the set of all TGD’s over schema R. Sim-

ilarly are defined the dependency class restrictions to a database schema. An instance

I is said to satisfy a set of embedded dependencies Σ, denoted I ⊧ Σ, if I satisfies all

dependencies in Σ in the standard model theoretic sense.

Finally, given a tuple-generating-dependency ξ of the form α(x̄, ȳ) → ∃z̄ β(x̄, z̄), by

body(ξ) we denote the instance containing the tuples obtained by replacing all variables

in the relational atoms from the body of the dependency with fresh new null values.

Similarly, by head(ξ) we denote the instance obtained from the head of the dependency.

In case ξ ∈TGD∨, head(ξ) represents a set of instances corresponding to each disjunct

in the head of the dependency. For ease of reference, we consider that each variable

x from ξ is replaced by null X in body(ξ) and head(ξ) (that is each variable name

from the dependency is kept with the same as null in the instance but upper case, thus

the same variable is mapped to the same null both in the body and the head of the

dependency).
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Chapter 3

The Chase Procedure

3.1 The Chase Procedure

The chase procedure is an iteration a chase steps that either adds a new tuple to satisfy

a TGD, either changes the instance to model some equality-generating-dependency,

or fails when the instance could not be changed to satisfy an equality-generating-

dependency. Depending on when or how the chase step is applied, different chase

variations have been considered lately [16; 23; 27; 38; 59; 63]. To differentiate be-

tween the variations of the chase procedure, we will call the the standard chase the

chase procedure considered by Fagin et al [27] for the data exchange problem. Most of

the practical constraints in databases can be represented as a set of tuple-generating

(TGD) and equality-generating (EGD) dependencies. The first part of this chapter is

devoted to present the chase procedure applied on an instance over a set of of TGD’s

and EGD’s. Later on, in Section 3.2, we will also consider the chase under other types

of dependencies such as TGD∨, TGD¬ and TGD∨,¬ (as defined in the preliminar-

ies). For ease of notation, through this section, if not mentioned otherwise, we will use

the notation I to represent an arbitrary instance and Σ to represent an arbitrary set of
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TGD’s and EGD’s over the same schema. Also, the database schema will be explicitly

mentioned if it is not obvious from the context. Part of this section was also published

in [67].

3.1.1 The Chase Step

As stipulated at the beginning of this chapter, the chase procedure is a repetitive

application of a chase step. Each chase step “applies“ a dependency (in this case TGD

or EGD) on a subset of the instance.

3.1.1.1 The TGD Chase Step

Let I be an instance over schema R and let ξ be the TGD: α(x̄, ȳ) → ∃z̄ β(ȳ, z̄) over

the same schema R. In this case, it is said that the TGD ξ is applicable to instance I

with homomorphism h if the following two conditions hold:

1. h is a homomorphism between instances body(ξ) and I, i.e. body(ξ)
h
�→ I and

2. there is no extension ĥ of h such that head(ξ)
ĥ
�→ I.

If TGD ξ is applicable to I with h, we say that the pair (ξ, h) is a standard TGD

trigger for instance I. In addition, if (ξ, h) is a trigger for I, construct an extension ĥ

of h, such that ĥ(Z) = Z ′, for all nulls Z ∈ Z̄ (recall that each variable x corresponds

to null X in body(ξ) and head(ξ)), with Z ′ a fresh new labeled null from ΔN. The

instance J obtained as J = I ∪ ĥ(head(ξ)) is called the result of applying a standard

TGD chase step on I with trigger (ξ, h). The notation I
(ξ,h)
���→ J represents a standard

TGD chase step applied on I with trigger (ξ, h).

Example 1 Consider instance I = {R(a, b),R(b, a), S(b, c)} over schema R = {R,S},

and consider TGD ξ: R(x, y),R(y, x) → ∃z S(x, z). For this dependency we have

body(ξ) = {R(X,Y ),R(Y,X)} and head(ξ) = {S(X,Z)}. For these settings there exists
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homomorphism h = {X/a, Y /b} that maps body(ξ) to I; and there is no extension

of h that maps head(ξ) to I. This makes ξ applicable to I with homomorphism h,

yielding the chase step I
(ξ,h)
���→ J , where J = I ∪{S(a,Z′)} and where the extension ĥ of

homomorphism h maps Z to Z′. Note that the homomorphism h1 = {X/b, Y /a} together

with dependency ξ does not form a trigger for I because there exists ĥ1 extension of h1,

namely ĥ1 = {X/b, Y /a,Z/c}, such that ĥ1(head(ξ)) ⊆ I.

3.1.1.2 The EGD Chase Step

Let I be an instance for schema R, and ξ be the EGD: α(x̄) → xi = xj , where xi, xj ∈ x̄.

The EGD ξ is said to be applicable to I with homomorphism h, if the following two

conditions hold:

1. body(ξ)
h
�→ I and

2. h(xi) ≠ h(xj).

Similarly to the TGD case, the pair (ξ, h) is called an EGD trigger for I, or simply a

trigger for I. For a trigger (ξ, h) over instance I, if h maps both nulls Xi and Xj to

constants, then we say that the EGD chase step fails, and this is denoted as I
(ξ,h)
���→ %.

In case the homomorphism h does not map both nulls Xi and Xj to (distinct) constants,

then we say that the chase step does not fail. This is denoted with I
(ξ,h)
���→ J , where

the instance J is computed as follows:

1. If h(Xi) and h(Xj) are both mapped to labeled nulls, then construct instance J

from instance I by replacing either all occurrences of h(Xi) with h(Xj), or all

occurrences of h(Xj) with h(Xi).
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2. If one of h(Xi), h(Xj) is a constant and the other is a labeled null, then J is

constructed by replacing in I all occurrences of the labeled null with the constant.

It can also be noted that the choice in the first condition makes the step nondeter-

ministic, unless we assume an enumeration of the variables.

Example 2 Let us consider instance I = {R(a, b),R(c,Z1),R(Z1, Z2)} and EGD ξ:

R(x, y) → x = y. For this dependency we have body(ξ) = {R(X,Y )}. There are three

distinct homomorphisms that map body(ξ) to I: h1 = {X/a, Y /b}, h2 = {X/c, Y /Z1}

and h3 = {X/Z1, Y /Z2}. All these homomorphisms map X and Y to different values,

meaning that the EGD ξ is applicable for all. As both h1(x) and h1(y) are constants, it

follows that I
(ξ,h1)���→ %. On the other hand, for homomorphism h2, we have h2(X) ∈ ΔC

and h2(Y ) ∈ ΔN. Thus I
(ξ,h2)���→ J2, where J2 = {R(a, b),R(c, c),R(c, Y )} is obtained

by replacing all occurrences of X in I with constant c. Finally, h3 maps both nulls X

and Y to distinct labeled nulls, making the EGD ξ applicable on I with homomorphism

h3. Thus I
(ξ,h3)���→ J3, where J3 = {R(a, b),R(c, Y ),R(Y,Y )} is obtained from I by

replacing X with Y . Another correct EGD chase step would have been I
(ξ,h3)���→ J ′

3,

where J ′
3 = {R(a, b),R(c,X),R(X,X)} is obtained from I by replacing Y with X.

Observe that J3 and J ′
3 are equivalent up to variable renaming.

3.1.2 The Chase Algorithm

Using the previously introduced standard-chase steps, we are now ready to present the

standard-chase algorithm. This algorithm can be described as an iterative application

of the standard-chase steps. In case one of these EGD chase steps fails, then the chase

algorithm is said to fail. If the algorithm does not fail due to an EGD, it chooses

nondeterministically another trigger and proceeds with the corresponding standard-

chase step. The algorithm terminates either when one of the standard EGD chase
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step fails, or when there are no other EGD or TGD triggers. Figure 3.1 depicts the

pseudo-code for the standard-chase algorithm.

STANDARD-CHASE(I,Σ)

1 I0 ← I; i← 0;
2 if exists standard trigger (ξ, h) with ξ ∈ Σ for Ii

3 then

4 if Ii

(ξ,h)


→ �

5 then return FAIL

6 else Ii

(ξ,h)


→ Ii+1; i← i + 1

7 else return Ii

8 goto 2

Figure 3.1: The standard-chase algorithm

The presented algorithm has a nondeterministic step at line 2 induced by the trigger

choice. With this the chase process to be viewed as a tree, also called chase execution

tree, where level i in the tree represents the i-th step in the chase algorithm, and

where to each node a new edge is added for each of the applicable trigger. Each path

from the root of the tree to a leaf node represents an execution branch, or simply

a branch, similarly to a nondeterministic finite automata. Thus the algorithm may

return different instances depending on the branch considered. Figure 3.2 depicts a

chase execution tree for the algorithm 3.1, where the highlighted edges represent a

possible execution branch for the algorithm (note that if selecting trigger (ξ0
2 , h

0
2) in

the presented chase tree the algorithm fails).

There are cases when, for some execution branches, the algorithm fails while it does

not fail for other execution branches, as it is shown in Example 4. This may happen

if one exhaustively chooses triggers for the same dependencies in the nondeterministic

step. As we will see in subsection 3.1.3.3, this does not occur when we consider the
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Figure 3.2: A chase execution tree

restricted-chase variation.

Moreover, the standard-chase algorithm stops if either it fails, due to an EGD

trigger at step 4, or there are no other triggers to be applied. As the TGD’s are

adding new tuples to the instance, it may be that the chase algorithm never terminates

as shown in example 3.

The following proposition ensures that if the standard-chase algorithm fails on one

execution branch, then for any other execution branch for which the algorithm termi-

nates in a finite number of steps, the algorithm will also fail.

Proposition 1 [27] Let I be an instance and Σ a set of TGD’s and EGD’s. If for

some nondeterministic choice the standard-chase algorithm fails, then it will fail for

any nondeterministic choice for which the algorithm terminates in a finite number of

steps.
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For each execution branch, for which the algorithm does not fail, define the chase se-

quence associated with that branch as a finite or infinite sequence (I0, I1, I2, . . . , In, . . .),

such that I0 = I and Ii
(ξ,h)
���→ Ii+1, for all i ≥ 0 and some trigger (ξ, h). In the example

depicted in Figure 3.2 the chase sequence associated with the highlighted execution

branch has the first four instances: I0, I3
1 , Ik

2 and Im
3 . For ease of notation, in this

dissertation, we identify the execution branch by its associated chase sequence. If for

some execution branch (I0, I1, I2, . . .) the algorithm terminates in the finite, then there

exists a positive integer n such that there is no trigger for In.

As shown in the following example, the standard-chase sequence may be finite or

infinite for the same set of TGD’s and for the same input instance.

Example 3 Consider instance I = {R(a, b)} and TGD’s:

ξ1 ∶ R(x, y) → R(y, x)

ξ2 ∶ R(x, y) → ∃z R(y, z)

If in the chase tree we first chose the TGD trigger (ξ1,{X/a, Y /b}), the tuple

R(b, a) is added to instance I resulting in instance I1. It can be noticed that, after this

choice, the standard-chase step can’t be applied on I1 with ξ2 and with homomorphism

h = {X/a, Y /b} as there exists the extension ĥ = {X/a, Y /b,Z/a} of h, such that ĥ

maps head(ξ2) into I1. Similarly, the standard-chase step can’t be applied on I1 with

dependency ξ1. From this it follows that sequence (I0, I1), with I0 = I, is a finite

standard-chase sequence. On the other hand, if in the algorithm we first choose the

trigger (ξ2,{X/a, Y /b}), and from there on only chose triggers over dependency ξ2, the

following infinite chase sequence is obtained:
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RI0

a b

(ξ2,h1)����→ RI1

a b

b X1

(ξ2,h2)����→ . . .
(ξ2,hn)
����→ RIn

a b

b X1

X1 X2

. . .

Xn−1 Xn

(ξ2,hn+1)�����→ . . .

The following example shows a case when the standard-chase algorithm fails for

some execution branches and does not terminate (implicitly does not fail) for others.

Note that this does not contradict Proposition 1 as the non-failing execution branch is

infinite.

Example 4 Consider a slightly changed set of dependencies from the previous example:

ξ1 ∶ R(x, y) → T (y, x)

ξ2 ∶ T (x, y) → x = y

ξ3 ∶ R(x, y) → ∃z R(y, z)

Let I = {R(a, b)} be an instance. By applying TGD trigger (ξ1,{X/a, Y /b}) it will add

the tuple T (b, a) to I. Next, if applied EGD trigger (ξ2,{X/a, Y /b}), the standard-

chase algorithm will fail. On the other hand, if the chosen execution branch would have

only used the triggers over ξ3, the standard-chase algorithm would not have terminated,

as shown in the previous example.

The next proposition shows the relationship between all the finite instances resulting

by following different finite execution branches of the standard-chase algorithm.

Proposition 2 [27] Let K and J be two finite instances returned by the standard-chase

algorithm on two distinct execution branches, with input I and Σ, then K and J are

homomorphically equivalent, that is K ↔ J .

36



3. The Chase Procedure

From this proposition it follows that whatever execution branch we choose in the

standard-chase algorithm, if it terminates, the result is indistinguishable using certain

answer over union of conjunctive queries. Based on this result, if there exists an exe-

cution branch for which the standard-chase algorithm on input I and Σ terminates in

the finite and does not fail, then we denote chasestd
Σ (I) to be one representative from

the homomorphic equivalence class of the instances returned by the standard-chase al-

gorithm. If the standard-chase algorithm fails or if it does not terminate in the finite

on all execution branches, then we set chasestd
Σ (I) = %.

Using a notation similar to [61] we denote by CTstd
∀∀ the class of all sets of dependen-

cies for which the standard-chase algorithm terminates for all instances on all execution

branches. Then, CTstd
∀∃ symbolizes the class of all sets of dependencies for which the

standard-chase algorithm terminates for all instances on at least one execution branch.

Given an instance I, define CTstd
I,∀ and CTstd

I,∃ to be the class of sets of dependencies for

which the standard-chase algorithm terminates for instance I on all execution branches

and on at least one execution branch respectively.

The following theorem, obtained by Fagin, Kolaitis, Miller and Popa, ensures that

the finite instances returned by the standard-chase algorithm are actually models for

the set of input dependencies and input instance.

Theorem 1 [27] Let Σ be a set of TGD’s and EGD’s and I be an instance, then for

all instances J returned by the standard-chase algorithm with input I and Σ we have:

J ⊧ Σ and I → J .

The previous theorem does not hold in case the standard-chase algorithm does not

terminate. Consider, for example, the infinite standard-chase sequence (I0, I1, . . . , In, . . .),

from Example 3. It is easy to verify that Ii /⊧ ξ1, for any positive i, as the tuple R(b, a)

is not added in a finite number of steps to the computed instance. From the previous

theorem we get the following corollary:
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Corollary 1 If chasestd
Σ (I) ≠ %, then chasestd

Σ (I) ⊧ Σ and I → chasestd
Σ (I).

Deutsch, Nash and Remmel showed in [23] that given I and Σ the problems of test-

ing whether the standard-chase terminates on all execution branches or if it terminates

for some execution branches are, in general, undecidable.

Theorem 2 [23] Let Σ be a set of TGD’s and I an instance. Then:

1. It is undecidable if Σ ∈ CTstd
I,∃ , and

2. It is undecidable if Σ ∈ CTstd
I,∀ .

The next best hope is to either find classes of dependencies for which it is decid-

able if the standard-chase algorithm terminates for a given instance on some branches

(i.e. data dependent chase termination), or to find classes of dependencies that guaran-

tee the standard-chase termination on all execution branches for all instances (i.e. data

independent chase termination). Even if most of the research focused on data indepen-

dent chase termination (see Chapter 4), there was some work done on data dependent

chase termination as well, first by Meier et al. [61] and more recently by Hernich [46],

who showed that for guarded dependencies (a class that properly contain LAV depen-

dencies) it is decidable if the core chase (a variation of the standard chase, see Section

3.1.3.4) terminates for a given instance. One such class of dependencies, that ensures

the standard-chase termination for all instances, is the full TGD, that is TGD’s with-

out existential quantifiers. For full TGD’s, it is not only known that the standard chase

always terminates, but it is also known that all instances returned by the nondeter-

ministic standard-chase algorithm are identical. In Chapter 4 we review other larger

classes of dependencies for which it is known that they belong to either CTstd
∀∀ or CTstd

∀∃ .
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3.1.3 Chase Variations

Since its revival, the standard-chase algorithm proved to have some weak points. One

of them represents the complexity of testing if an instance satisfies a TGD, for this

one needs to find all the sub-instances that satisfy the body of the dependency and

also check if the corresponding head of the dependency satisfies the given instance.

Another weak point is that, by using the standard-chase algorithm, we may get two

different instances for two distinct execution branches. Even more, as shown in ex-

ample 3, we may have that one execution branch of the algorithm is finite, thus the

algorithm terminates returning an instance, while another execution branch with the

same input is not finite, thus the algorithm does not terminate. After the standard

chase was proposed as a method of computing ”general” solutions in data exchange

[27], many variations of the standard-chase algorithm were introduced in the literature

[16; 23; 27; 38; 59; 63] . In the remaining part of this chapter we present each of the

main chase variations and highlight the differences from the standard chase based on

their termination criteria, instances returned by different finite execution branches and

complexity of the algorithm implementation.

3.1.3.1 The Oblivious Chase

In this subsection we focus on one of the simplest, based on the complexity of its

implementation, variation of the standard chase named the oblivious chase (also known

as the naive chase). The oblivious-chase algorithm counts on the relaxation of the

chase step. The oblivious chase presented here differs from the one described by Cali

et al. [16] by not relying on any order of the constants, nulls or tuples. As it will be

shown in Proposition 4, this does not affect the instance returned by a terminating

chase sequence.

The oblivious-chase step is defined by the removal of the second applicability con-
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dition from the standard-chase step (see page 30). We say that a pair (ξ, h) is an

oblivious-chase trigger for instance I if the homomorphism h maps body(ξ) into I. If

ξ is a TGD: α(x̄, ȳ) → ∃z̄ β(x̄, z̄), and ĥ is an extension of h that assigns a new fresh

labeled null for each null Z ∈ Z̄, then instance J = I ∪ ĥ(head(ξ)) is said to be the

result of obliviously applying a TGD chase step on instance I with trigger (ξ, h). This

oblivious-chase step is denoted with I
∗(ξ,h)
���→ J . Clearly if (ξ, h) is a standard TGD

chase trigger for instance I, then (ξ, h) is also an oblivious-chase trigger for I. The

converse, on the other hand, does not hold in general. In case of EGD’s, the oblivious-

chase step is identical with the standard-chase step. In order to avoid confusion, we

will denote the oblivious EGD chase step as I
∗(ξ,h)
���→ J .

Example 5 Consider instance I = {R(a, b),R(b, a), S(b, c)} and the tuple-generating-

dependency ξ: R(x, y),R(y, x) → ∃z S(x, z) as in Example 1. The homomorphism

h = {X/a, Y /b}, maps body(ξ) to I, and there is no extension of h that maps head(ξ)

to I. In this case (ξ, h) is both a standard and an oblivious-chase trigger. On the other

hand, the homomorphism h1 = {X/b, Y /a} also maps body(ξ) to I, but in this case there

exists an extension ĥ1 = {X/b, Y /a,Z/c} of h1, such that ĥ1 maps head(ξ) into I. That

is (ξ, h1) is an oblivious-chase trigger but not a standard-chase trigger. The instance

J is obtained by applying the oblivious-chase step I
∗(ξ,h1)����→ J , where J = I ∪ {S(b,Z′)}

and Z′ is a new fresh labeled null.

The oblivious-chase algorithm is based on the repeated application of the oblivious-

chase step, see Figure 3.3. As mentioned, the oblivious step does not check for the

existence of the homomorphism extension, it just blindly applies all dependencies.

Moreover, the algorithm applies each oblivious trigger exactly once.

The oblivious-chase sequence (finite and infinite) is defined similarly to the standard-

chase sequence. The same way are defined the classes: CTobl
∀∀ - containing all sets of

dependencies for which the oblivious-chase terminates for all instances on all execution
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OBLIVIOUS-CHASE(I,Σ)

1 I0 ← I; i← 0;
2 if exists oblivious trigger (ξ, h) with ξ ∈ Σ for Ii not applied before
3 then

4 if Ii

∗(ξ,h)



→ �

5 then return FAIL

6 else Ii

∗(ξ,h)



→ Ii+1; i← i + 1

7 else return Ii

8 goto 2

Figure 3.3: The oblivious-chase algorithm

branches; CTobl
∀∃ - containing all sets of dependencies for which the oblivious chase ter-

minates for all instances on at least one execution branch; CTobl
I,∀ - containing all sets

of dependencies for which the oblivious chase terminates for instance I on all execution

branches; and finally CTobl
I,∃ - containing all sets of dependencies for which the oblivious

chase terminates for instance I on at least one execution branch.

The nondeterminism introduced at step 2 of the oblivious-chase algorithm may re-

turn different results for two distinct execution branches even with the same input. The

following proposition states that, in the oblivious chase case, the notions of termination

on all branches and of termination on at least one branch are interchangeable.

Proposition 3 CTobl
∀∀ = CTobl

∀∃ and CTobl
I,∀ = CTobl

I,∃ for any instance I.

Proof: Let us denote by TriggΣ(I) the set of all oblivious triggers over instance I

and dependencies Σ. With this notation, the statement from the proposition derives

directly from the following observation: for the oblivious-chase algorithm, with input

I and Σ, at any step i if there exists a terminating execution branch in the oblivious-

chase tree, then all the triggers from TriggΣ(Ii) are applied on that branch. Thus if
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the branch is terminating all execution branches will terminate as well, as those will

apply the same set of triggers, possibly in another order ∎

This result adds a benefit to the oblivious-chase algorithm when compared with the

standard-chase algorithm as one may not need to worry that the nondeterministically

chosen execution branch does not terminate when another may terminate.

The following proposition extends the previous result by showing that if the oblivious-

chase algorithm terminates on one execution branch for input I and Σ, then it will

terminate on any execution branch and the instances resulting in this case for any two

distinct execution branches are equivalent up to variable renaming. This is a stronger

result than the one shown for the standard chase (Proposition 2), since in the standard

chase case it may be that two instances returned by two finite execution branches are

not isomorphically equivalent even if they are homomorphically equivalent.

Proposition 4 If the oblivious chase terminates with input I and Σ, then the instances

returned by any nondeterministic choice of the execution branch are isomorphically

equivalent.

Proof: Let J1 and J2 be two instances returned by running the oblivious-chase algo-

rithm, with input I and Σ, on two distinct execution branches. Let T0 be the set of

oblivious triggers for I. First we need to define the notion of isomorphically equivalent

triggers. Two triggers (ξ, h1) and (ξ, h2) are said to be isomorphically equivalent if there

exists a bijection f , identity on constants, such that h1 = f ○h2 and h2 = f−1○h1. We de-

note this relation by (ξ, h1) ≅ (ξ, h2). Assume that the order of triggers applied by the

oblivious-chase algorithm to return instance J1 is γ1 = ((ξ1
1 , h

1
1), (ξ

2
1 , h

2
1), . . . , (ξ

n
1 , hn

1))

such that J i−1
1

∗(ξi
1,hi

1)����→ J i
1 for all i ∈ [n] and I = J0

1 , Jn
1 = J1. Similarly, consider sequence

γ2 = ((ξ1
2 , h

1
2), (ξ

2
2 , h

2
2), . . . , (ξ

m
2 , hm

2 )) such that J i−1
2

∗(ξi
2,hi

2)����→ J i
2 for all i ∈ [m] and

I = J0
2 , Jm

2 = J2. We will inductively construct a sequence of injections (f1, f2, . . . , fn)
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such that fi ⋐ fi1 , for all i ∈ [n − 1], and for all i ∈ [n] there exists an integer j ∈ [m]

such that fi(J i
1) ⊆ J j

2 , as follows:

• if i = 1, as trigger (ξ1
1 , h

1
1) ∈ T0 and T0 ⊆ γ2, it follows that (ξ1

1 , h
1
1) ∈ γ2. Let

j1 be the position of (ξ1
1 , h

1
1) in γ2; also let ĥ∗1 and ĥ∗2 be the extensions of h1

1

used by the oblivious-chase step on the first and second run of the algorithm.

Define f1 = {ĥ∗1(Z1)/ĥ∗2(Z1), ĥ∗1(Z2)/ĥ∗2(Z2), . . . , ĥ∗1(Zt)/ĥ∗2(Zt)} ⊔ Id(dom(I)),

where (z1, z2, . . . , zt) is the sequence of existentially quantified variables in ξ1.

Clearly f1 is an injection as both extensions ĥ∗1 and ĥ∗2 map the nulls associated

with the existentially quantified variables to new fresh nulls. Also, from the

definition of the oblivious-chase step, it directly follows that f1(J1
1 ) ⊆ J j1

2 ;

• if i ∈ [2, n], then, from the induction assumption and the assumption that the

oblivious chase terminates, it follows that trigger (ξi
1, fi−1 ○ hi

1) ∈ γ2, and let

ji be the position of (ξi
1, fi−1 ○ hi

1) in γ2. Let ĥ∗1 and ĥ∗2 be the extensions of

homomorphisms hi
1 and fi−1 ○ hi

1 respectively used by the oblivious-chase step

on the first and second run of the algorithm respectively. Let us now define

mapping fi = {ĥ∗1(Z1)/ĥ∗2(Z1), ĥ∗1(Z2)/ĥ∗2(Z2), . . . , ĥ∗1(Zt)/ĥ∗2(Zt)} ⊔ fi−1 where

(z1, z2, . . . , zt) is the sequence of existentially quantified variables in ξi
1. Clearly

fi is an injection as both extensions ĥ∗1 and ĥ∗2 map the nulls associated with the

existentially quantified variables to new fresh nulls. Also from the definition of

the oblivious-chase step and the induction assumption, it directly follows that

f1(J1
1 ) ⊆ J j∗

2 , where j∗ is the maximum from the set {j1, j2, . . . , ji}.

From this inductive definition, from the definition of the oblivious-chase algorithm

that it applies each trigger only once, and also from the assumption that both γ1 and γ2

are finite, it implies that there is a one-to-one correspondence between the triggers from

γ1 and triggers in γ2. From this it follows that ∣γ1∣ = ∣γ2∣. This means, from the way fn

was defined, that fn(J1) ⊆ J2, even more because ∣γ1∣ = ∣γ2∣, it means that fn(J1) = J2
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(otherwise it would mean that there exists at least one trigger in γ2 that generates the

extra tuples in J2 without a corresponding trigger in γ1). As fn is an injection, it also

follows that J1 = f−1
n (J1). This means that J1 and J2 are isomorphically equivalent ∎

Similarly to the standard chase case, if Σ ∈ CTobl
I,∀ , then we denote by chaseobl

Σ (I)

one representative instance of the isomorphic equivalence class. If the oblivious chase

fails or if it does not terminate, we set chaseobl
Σ (I) = %. Clearly if chaseobl

Σ (I) ≠ %, then

chaseobl
Σ (I) ⊧ Σ.

The next corollary establishes an order between the dependency classes defined for

standard and oblivious-chase algorithms termination.

Corollary 2 CTobl
∀∀ ⊂ CTstd

∀∀ and CTobl
I,∀ ⊂ CTstd

I,∀ for any instance I.

Proof: Both statements follow directly from the observation that a standard trigger for

an instance I is also an oblivious trigger for I. The strict inclusion for the first statement

is proved in 6. For the second statement of the corollary, consider I = {R(ā)}, then for

Σ = {R(x̄) → ∃ȳ R(ȳ)} the oblivious-chase algorithm will not terminate with I and Σ,

but clearly the standard chase will terminate as there is no standard trigger for instance

I and set of dependencies Σ ∎

As shown in the following example there are sets of dependencies Σ ∈ CTstd
∀∀ ∖ CTobl

∀∀ .

Example 6 Consider Σ containing a single TGD ξ: R(x, y) → ∃zR(x, z). It can

easily be noted that for any instance I, the standard-chase algorithm terminates on

input I and Σ. On the other hand, for instance I = {R(a, b)}, the oblivious-chase

algorithm creates the following infinite chase sequence:
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RI0

a b

∗(ξ,h1)����→ RI1

a b

a X1

∗(ξ,h2)����→
. . .

∗(ξ,hn)
����→ RIn

a b

a X1

a X2

. . .

a Xn

∗(ξ,hn+1)�����→
. . .

In order to relate termination of the standard and the oblivious chase, we introduce

a transformation called enrichment that takes a TGD ξ = α(x̄,y) → ∃z̄ β(x̄, z̄) over

schema R and converts it into the TGD ξ̂ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄),H(x̄, ȳ), where H is

a new relational symbol that does not appear in R. For a set Σ of TGD’s defined on

schema R, the transformed set is Σ̂ = {ξ̂ ∶ ξ ∈ Σ}. Using the enrichment notion, we can

present the relation between the standard and oblivious-chase terminations.

Theorem 3 Σ ∈ CTobl
∀∀ iff Σ̂ ∈ CTstd

∀∀ .

Proof: Let Σ ∈TGD(R), and suppose that there is instance I for which the standard

chase with Σ̂ does not terminate. This means that there is an infinite standard-chase

sequence

I = I0
(ξ̂0,h0)����→ I1

(ξ̂1,h1)����→ . . . . . .
(ξ̂n−1,hn−1)������→ In

(ξ̂n,hn)
����→ . . . . (3.1)

Thus hi(body(ξ̂i)) ⊆ Ii, for all positive i. Since body(ξ̂i) = body(ξi), we have that

I = J0
(ξ0,h0)����→ J1

(ξ1,h1)����→ . . . . . .
(ξn−1,hn−1)������→ Jn

(ξn,hn)
����→ . . . . (3.2)

where Ji = Ii∣R, is an infinite oblivious-chase sequence with Σ on I. From this follows

by contraposition that Σ ∈ CTobl
∀∀ implies Σ̂ ∈ CTstd

∀∀ .

For the second part, let us suppose that there is an instance I for which the oblivious
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chase with Σ does not terminate. Then there is an infinite oblivious-chase sequence

I = I0
(ξ0,h0)����→ I1

(ξ1,h1)����→ . . . . . .
(ξn−1,hn−1)������→ In

(ξn,hn)
����→ . . . . (3.3)

Let J0 = I0, and for all i ∈ ω, let Ji+1 = Ii+1 ∪ {H(hi(x̄), hi( ȳ))}. We claim that

I = J0
(ξ̂0,h0)����→ J1

(ξ̂1,h1)����→ . . . . . .
(ξ̂n−1,hn−1)������→ Jn

(ξ̂n,hn)
����→ . . . . (3.4)

is an infinite standard-chase sequence with Σ̂ and I. Toward a contradiction, suppose it

is not. Then there must be an i ∈ ω, such that the standard-chase step cannot be applied

with hi and ξ̂i on Ji. Let ξi = α(x̄, ȳ) → β(x̄, z̄). Then ξ̂i = α(x̄, ȳ) → β(x̄, z̄),H(x̄, ȳ).

If (ξ̂i, hi) is not a trigger for Ji, then there exists an extension ĥi of hi such that

ĥi(body(ξ̂i)) ⊆ Ji. Since ĥi is an extension of hi, it follows that ĥi(X̄) = hi(X̄) and

ĥi(Ȳ ) = hi(Ȳ ), meaning that H(hi(x̄), hi( ȳ))) ∈ Ji. Because the facts over H are only

introduced by the standard chase, it follows that the homomorphism hi has already

been applied with ξ̂i earlier in the standard-chase sequence. But then hi must also

have been applied with ξi at the same earlier stage in the oblivious-chase sequence.

This is a contradiction, since it entails that trigger (ξi, hi) would have been applied

twice in the oblivious-chase sequence ∎

This characterization of the oblivious-chase termination based on the standard-

chase termination was used in [39] to find a sufficient condition for the termination of

another chase variation called the conditional chase.

The following corollary shows that the undecidability result from Theorem 2 also

holds for the oblivious chase case.

Corollary 3 Let a I be an instance and Σ a set of TGD’s. Then it is undecidable if

Σ ∈ CTobl
I,∀ .

Proof: Toward a contradiction, let us suppose that it is decidable if the oblivious-
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chase algorithm terminates for a given instance I with dependencies Σ. Thus, one may

decide if, for a given instance J , it is that J = chaseobl
Σ (I), contradicting with the

undecidability result given by Theorem 15 in [16] ∎

We close the presentation of the oblivious-chase algorithm by comparing the in-

stances returned by the different execution branches of the oblivious-chase algorithm

and the standard-chase algorithm. This result is a particularization of the result pre-

sented by Cali et al. in [16].

Theorem 4 [16] Let I be and instance and let Σ be a set of TGD’s and EGD’s, such

that chaseobl
Σ (I) ≠ %. Then chasestd

Σ (I) ↔ chaseobl
Σ (I) and chaseobl

Σ (I) ⊧ Σ.

3.1.3.2 The Semi-Oblivious Chase

Another variation of the standard-chase algorithm is the semi-oblivious chase described

by Marnette [59]1. In order to be consistent with the other chase algorithms presented,

we will now define the semi-oblivious chase without the Skolem terms (used in [59]).

Intuitively, the semi-oblivious chase differs from the oblivious one by not distinguishing

between two triggers (ξ, h1) and (ξ, h2), if h1 and h2 differ only on nulls corresponding

with universally quantified variables that occur only in the body of ξ.

Before presenting the semi-oblivious-chase algorithm, let us introduce a few notations:

• for a TGD ξ of the form α(x̄, ȳ) → ∃z β(x̄, z̄), we denote Xξ to be the set

ΔN(body(ξ))∩ΔN(head(ξ)), that is the null values from body(ξ) that also occur

in head(ξ);

• for homomorphism h and dependency ξ, we denote by h∣Xξ
the homomorphism

h restricted to the nulls in Xξ.

1 In his paper, Marnette called the chase algorithm Oblivious Skolem Chase. In order to
maintain a uniform description of the chase algorithms, we removed the Skolem terms and
renamed the algorithm semi-oblivious.
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Figure 3.4 presents the semi-oblivious-chase algorithm. Note that the algorithm

uses the oblivious-chase step and not the standard-chase one.

SEMI-OBLIVIOUS-CHASE(I,Σ)

1 I0 ← I; i← 0;
2 if exists oblivious trigger (ξ, h) for Ii, such that

no trigger (ξ, h′) with h∣Xξ
= h′∣Xξ

was applied before
3 then

4 if Ii

∗(ξ,h)



→ �

5 then return FAIL

6 else Ii

∗(ξ,h)



→ Ii+1; i← i + 1

7 else return Ii

8 goto 2

Figure 3.4: The semi-oblivious-chase algorithm

The following example presents the difference between the presented chase algo-

rithms based on their output instances.

Example 7 Let Σ contain a single TGD ξ ∶ R(x, y) → ∃z T (x, z), and consider in-

stance I = {R(a, b),R(a, c),R(d, e), T (a, a)}. For this configuration there exists only

one standard TGD trigger (ξ,{X/d, Y /e}). By applying this trigger, it will add a

new tuple T (d,X1) to I resulting instance Jstd. In the semi-oblivious chase, besides

generating the tuple T (d,X1), similarly to the standard chase, it will also apply the

oblivious trigger (ξ,{X/a, Y /b}), generating the tuple T (a,X2). Still the oblivious trig-

ger (ξ,{X/a, Y /c}) will not be applied in step 2 of the algorithm 3.4 as the homomor-

phism restricted to {X} was already applied with dependency ξ. The instance returned

by the semi-oblivious-chase algorithm is denoted with Jsobl. The oblivious-chase algo-

rithm applies all three oblivious triggers, returning instance Jobl. Below are the tabular

representations of the instances returned, restricted to relation symbol T :
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Jstd

T

a a

d X1

Jsobl

T

a a

d X1

a X2

Jobl

T

a a

d X1

a X2

a X3

Similarly to the previous chase algorithm, we define CTsobl
∀∀ to be the class of de-

pendency sets for which the semi-oblivious chase terminates for all instances for all

execution branches; CTsobl
∀∃ - to be the class of dependency sets for which the semi-

oblivious chase terminates for all instances on at least one execution branch; CTsobl
I,∀ -

to be the class of dependency sets for which the semi-oblivious chase terminates for in-

stance I on all execution branches; CTsobl
I,∃ - to be the class of dependency sets for which

the semi-oblivious chase terminates for instance I on at least one execution branch.

Similarly to the oblivious chase case, the classes CTsobl
∀∀ and CTsobl

∀∃ are indistin-

guishable:

Proposition 5 CTsobl
∀∀ = CTsobl

∀∃ and CTsobl
I,∀ = CTsobl

I,∃ for any instance I.

Proof: It follows directly from the observation that with the semi-oblivious-chase al-

gorithm at any step i, with Ti being the set of all oblivious triggers for instance Ii, if

there exists a terminating execution branch for the oblivious-chase tree, then for any

trigger (ξ, h) ∈ Ti there exists a trigger (ξ, h′) ∈ Ti with h∣Xξ
= h′∣Xξ

such that the trigger

(ξ, h′) is applied on the terminating branch ∎

Proposition 6 If the semi-oblivious-chase algorithm terminates with input I and Σ,

then any two instance, returned by the semi-oblivious-chase algorithm with input I and

Σ by choosing different execution branches, are isomorphically equivalent.

49



3. The Chase Procedure

Proof: Similar to the proof from Proposition 4, but in this case the trigger being

partitioned in equivalence classes such that two triggers (ξ, h), (ξ′, h′) are considered

equivalent if ξ = ξ′ and h∣Xξ
= h′∣Xξ ∎

Let I be an instance over schema R and Σ a set of TGD’s and EGD’s over R,

if Σ ∈ CTsobl
I,∀ , then by chasesobl

Σ (I) we denote one representative of the isomorphic

equivalence class mentioned in the previous proposition. In case the semi-oblivious-

chase algorithm fails or is non-terminating with input instance I and dependencies Σ,

then we set chasesobl
Σ (I) = %.

Similarly to the oblivious chase case, we can find a rewriting of the dependencies

such that we can relate the semi-oblivious-chase algorithm termination to the standard-

chase algorithm termination. For this, we introduce a transformation, called semi-

enrichment, that takes a TGD ξ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄) over a schema R and converts it

into the TGD ξ̃ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄),H(x̄), where H is a new relational symbol which

does not appear in R. For a set Σ of TGD’s defined on schema R, the transformed set

is Σ̃ = {ξ̃ ∶ ξ ∈ Σ}. Using the semi-enrichment notion, the relation between the standard

and semi-oblivious chase terminations can be presented as follows.

Theorem 5 Σ ∈ CTsobl
I,∀ iff Σ̃ ∈ CTstd

I,∀ .

Proof: The reasoning is similar to the one used in Theorem 3 ∎

The homomorphic equivalence between the instances returned by a terminating

oblivious chase and the standard chase can be extended for semi-oblivious chase as

well.

Theorem 6 Let I be and instance and let Σ be a set of TGD’s and EGD’s, such that

chasesobl
Σ (I) ≠ %. Then chasestd

Σ (I) ↔ chasesobl
Σ (I) and chasesobl

Σ (I) ⊧ Σ.
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Proof: The direction chasestd
Σ (I) → chasesobl

Σ (I) follows directly from the fact that

each standard trigger is also a semi-oblivious trigger. For the other direction, we can

observe that the tuples generated by applying a semi-oblivious trigger which is not a

standard trigger can be mapped to chasesobl
Σ (I) ∎

Clearly CTobl
∀∀ ⊂ CTsobl

∀∀ . Also, for any non empty instance I we have CTobl
I,∀ ⊂ CTsobl

I,∃ .

For this consider a non-empty instance I and the set Σ containing a set of TGD’s

defined as follows: for each n-ary relation R in the database schema the TGD below

occurs in Σ:

R(x1, x2, . . . , xn−1, xn) → ∃y R(x1, x2, . . . , xn−1, y) (3.5)

It is obvious to see that the oblivious-chase algorithm with input I and Σ will

not terminate for any non-empty instance I. On the other hand, the semi-oblivious

chase will terminate for any instance I and Σ. From this and Theorems 6 and 4, it

follows that if chaseobl
Σ (I) ≠ %, then chaseobl

Σ (I), chasesobl
Σ (I) and chasestd

Σ (I) are

homomorphically equivalent.

The following proposition relates the termination classes for the three chase algo-

rithms presented.

Proposition 7 CTobl
∀∀ = CTobl

∀∃ ⊂ CTsobl
∀∀ = CTsobl

∀∃ ⊂ CTstd
∀∀ ⊂ CTstd

∀∃

Proof: To prove that CTobl
∀∃ ⊂ CTsobl

∀∀ see Example 6. Example 3 shows a set of depen-

dencies for which for any instance there exists a branch under the standard chase that

terminates. Clearly, as shown in the example, not all the branches terminate proving

that CTstd
∀∀ ⊂ CTstd

∀∃ . Finally, to prove that CTsobl
∀∀ ⊂ CTstd

∀∀ , consider the following set
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of dependencies Σ = {ξ1, ξ2} where:

ξ1 ∶ R(x) → ∃z S(z), T (z, x) (3.6)

ξ2 ∶ S(x) → ∃w R(w), T (x,w) (3.7)

Clearly, the semi-oblivious chase on instance I = {R} does not terminate. To show that

the standard chase terminates for any instance I on Σ, consider I to be an arbitrary

instance with ∣RI ∣ = n and ∣SI ∣ = m. We will show that the standard chase on I with Σ

will terminate in maximum n +m steps. To prove this, observe that the dependencies

are triggered only by tuples over R or S. It can be noted that for each tuple R(a) the

dependencies will be triggered at most once by the standard chase. For example, for

the tuple R(a) the standard trigger (ξ1,{X/a}) will generate the two tuples S(X1) and

T (X1, a), which will not be applied by the standard-chase algorithm on any dependency

as {R(a), S(X1), T (X1, a)} ⊧ Σ ∎

We conclude this subsection with the undecidability result for the semi-oblivious-

chase algorithm given by Marnette [59]:

Theorem 7 [59] Given an instance I and a set of TGD’s Σ, it is undecidable if

Σ ∈ CTsobl
I,∀ .

From this theorem and Proposition 5, we can conclude that, given an instance I

and a set of TGD’s Σ, it is undecidable if Σ ∈ CTsobl
I,∃ too.

3.1.3.3 The Restricted Chase

As shown in section 3.1.2 the standard-chase algorithm involves a non-deterministic

trigger selection that introduces new problems related to the result of the chase algo-

rithm (see Example 3). In this subsection, a variation of the standard chase is described
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that eliminates the non-deterministic behavior by ordering all the objects involved, thus

applying the chase steps in a specific deterministic order. The resulting algorithm is

called the restricted chase (introduced by Cali et al. in [16]).

The restricted chase presented here differs slightly from the algorithm described in

[16], as in order to fully eliminate the non-deterministic choice we had to order the set

of dependencies as well.

First let us consider a total order for the set ΔC ∪ΔN, such that all the symbols in

ΔN follow the symbols in ΔC. Let us also consider a total order for the dependencies

in Σ. And let (ξ, h) be a standard-chase trigger for I and Σ. The restricted-chase step

behaves like the standard one, with the exception that, when applied to instance I, all

the new labeled nulls introduced follow the ones existing in I. Consider I to be the

initial instance. Then the level of a tuple is defined recursively as follows:

1. all atoms in I0 = I are considered of level 0.

2. if Ii
(ξ,h)
���→ Ii+1, then, if the highest level of an atom in h(body(ξ)) is k, all the

tuples created by applying this trigger have level k + 1.

The notion of level is extended to an instance as follows: level(I) is the highest

level of any tuples in I. An instance I is said to lexicographically precede an instance

J if, for all symbols a in I, there is a symbol b in J such that a precedes b. If I

does not precede J and J does not precede I, then we say that instances I and J are

lexicographically incomparable.

We are now ready to define the order ⋖ between the set of triggers applicable for an

instance I and for the set of dependencies Σ. A trigger (ξ, h) is said to precede trigger

(ξ′, h′) denoted by (ξ, h) ⋖ (ξ′, h′), if:

1. level(h(body(ξ))) < level(h′(body(ξ′))), or
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2. level(h(body(ξ))) = level(h′(body(ξ′))) and h(body(ξ)) lexicographically pre-

cedes instance h′(body(ξ′)), or

3. level(h(body(ξ))) = level(h′(body(ξ′))) and h(body(ξ)), h′(body(ξ′)) are lexico-

graphically incomparable and ξ precedes ξ′

Note that ⋖ is a total order on the triggers. With the use of this order, Figure 3.5

summarizes the restricted-chase algorithm.

RESTRICTED-CHASE(I,Σ)

1 I0 ← I; i← 0;
2 if exists a standard trigger for Ii

3 then
4 Let (ξ, h) be the smallest ”⋖” trigger for Ii

5 if Ii

(ξ,h)


→ �

6 then return FAIL

7 else Ii

(ξ,h)


→ Ii+1; i← i + 1

8 else
9 return Ii

10 goto 2

Figure 3.5: The restricted-chase algorithm

If the restricted-chase algorithm terminates and does not fail for input I and Σ,

we denote by chaseres
Σ (I) the result of this algorithm. In case the algorithm does not

terminate or if it fails, we set chaseres
Σ (I) = %. Similarly to the other chase algorithms,

we introduce the classes CTres
∀∀ ,CTres

∀∃ ,CTres
I,∀ and CTres

I,∃ for an instance I. As the non-

deterministic choice was eliminated, it follows that CTres
∀∀ = CTres

∀∃ and CTres
I,∀ = CTres

I,∃

for any instance I.

Proposition 8 CTstd
I,∀ ⊂ CTres

I,∀ and CTres
I,∀ ⊂ CTstd

I,∃ for any non-empty instance I.
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Proof: The inclusion parts for both statements are trivial. Let us next prove the strict

inclusion part for both inclusions. Without loss of generality, consider the schema

containing a single binary relation R. In case it contains more relational symbols of

different arities, we need to create a set of TGD’s similarly to the one in formula 3.5.

To prove the first inclusion, consider the set of dependencies from Example 3. For

this example, it was shown that there are execution branches for which the standard

chase does not terminate. On the other hand, if we consider ξ2 to precede ξ1, the

restricted-chase algorithm will terminate. In order to prove the strict inclusion of the

second formula, we may use the same example but with ξ1 preceding ξ2. For this set

of dependencies, the restricted chase does not terminate but there exists a standard

execution branch for which the standard-chase terminates∎

The following proposition positions the class of dependencies that ensures the

restricted-chase algorithm termination compared to the other classes of dependencies.

Proposition 9 CTstd
∀∀ ⊂ CTres

∀∀ ⊂ CTstd
∀∃ .

Proof: The inclusion part follows directly from the definition of the standard and

restricted-chase algorithms. The strict inclusion can be easily verified with the depen-

dencies from Example 3 ∎

As expected, it is undecidable if the restricted chase terminates on a given input.

Theorem 8 [16] Let Σ be a set of TGD’s and I an instance, then it is undecidable if

Σ ∈ CTstd
I,∃

The results of Theorem 4 can be now extended to the restricted chase as follows:

Theorem 9 [16] Let I be an instance and let Σ be a set of TGD’s and EGD’s such

that chaseres
Σ (I) ≠ %. Then chasestd

Σ (I) ↔ chaseres
Σ (I) and chaseres

Σ (I) ⊧ Σ.
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Cali et al. in [16] considered adding an ordering for the oblivious chase too. Still in

our context, it is not necessary, as it was shown in Proposition 3, since the oblivious

chase terminates, the instances returned by any execution branch are isomorphically

equivalent. Thus, the instance returned by an ordered version of the oblivious-chase

algorithm is isomorphically equivalent to any instance returned by the non-deterministic

oblivious-chase algorithm.

3.1.3.4 The Core Chase

The class of chase algorithms is enriched by the core-chase algorithm introduced by

Deutsch et al. [23]. We need to clarify from the very beginning that the core-chase

differs from the other variations by the parallel execution of the standard TGD chase

steps. Note that we may only apply the standard TGD chase steps in parallel and

not the EGD ones, as the latter may modify the given instance by equating existing

labeled nulls to constants or to other labeled nulls.

In this dissertation we slightly changed the algorithm from [23] by applying all the

EGD triggers before applying in parallel the TGD triggers. This modification does not

change the instance returned or the complexity of the given algorithm, see Figure 3.6.

Intuitively, the core-chase step does the following: first, it sequentially applies all

EGD triggers; next, it applies in parallel all the standard TGD triggers; and finally, the

core-chase step will compute the core of the instance computed before. By applying all

the triggers in parallel the core-chase algorithm eliminates the nondeterministic choice

introduced by the standard one. If the core-chase algorithm terminates and does not

fail for input I and Σ, we denote the returned instance by chasecore
Σ (I). In case the

core chase fails or it is non-terminating, we set chasecore
Σ (I) = %.

Similar classes to the core-chase algorithm termination are introduced: CTcore
∀∀ ,

CTcore
∀∃ , CTcore

I,∀ and CTcore
I,∃ for some instance I. As the nondeterministic step is elim-
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3. The Chase Procedure

CORE-CHASE(I,Σ)

1 I0 ← I; i← 0;
2 if exists a standard EGD trigger (ξ, h) for Ii

3 then

4 if Ii

(ξ,h)


→ �

5 then return FAIL

6 else Ii

(ξ,h)


→ Ii+1; i← i + 1 goto 2

7 if exists a standard TGD trigger for Ii

8 then

9 For all triggers (ξ, h) for Ii, compute in parallel Ii

(ξ,h)


→ Jj

10 Ii+1 ← core(⋃j Jj); i← i + 1
11 else
12 return Ii

13 goto 2

Figure 3.6: The core-chase algorithm

inated for the core chase, we have: CTcore
∀∀ = CTcore

∀∃ and CTcore
I,∀ = CTcore

I,∃ for any

instance I.

The following theorem gives us a convenient property of the core-chase algorithm

that ensures that if the standard chase terminates on some execution branches, then

the core-chase algorithm terminates.

Theorem 10 [23] Let I be an instance and Σ a set of TGD’s, then CTstd
I,∃ ⊂ CTcore

I,∀

and CTstd
∀∃ ⊂ CTcore

∀∀ .

Proof: We will only show the strict inclusion part of the theorem, the rest is proved

by Deutsch et al. in [23]. Let us consider the set Σ containing a single dependency

{R(x) → ∃z R(z)S(x)}, and consider instance I = {R(a)}. For this instance and Σ,

at each loop in the standard-chase algorithm, there exists exactly one trigger, and the

algorithm will not terminate generating at step n the following instance In:
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RIn

a

X1

X2

. . .

Xn−1

Xn

SIn

a

X1

X2

. . .

Xn−1

From this, it follows that Σ ∉ CTstd
∀∀ and Σ ∉ CTstd

∀∃ . Note that for any integer n, the

core of instance In is core(In) = {R(a), S(a)}. From this, it follows directly that the

core-chase algorithm will stop after only one loop returning instance J = {R(a), S(a)}∎

The following example shows a set of TGD’s for which the standard-chase algorithm

does not terminate on any execution branch but the core-chase algorithm does.

Example 8 Consider instance I = {R(a, b)} and the following set Σ of TGD’s :

ξ1 ∶ ∀x, y R(x, y) → ∃z R(y, z)

ξ2 ∶ ∀x, y R(x, y),R(y, z) → R(y, y)

Clearly the standard-chase algorithm will not terminate for I and for Σ on any

execution branch, as after the first iteration the algorithm will add the tuple R(b,X1)

which will fire an infinite standard-chase sequence. On the other hand, let us not

forget that, at the first iteration, the core chase will apply the trigger (ξ1,{X/a, Y /b}),

resulting the instance I1 = {R(a, b),R(b,X1)}. After that, the core chase will of course

generate the instance I2 = {R(a, b),R(b, b)}, which is obviously the core of the instance

J1 = {R(a, b),R(b,X1),R(X1,X2),R(b, b)}. After this second iteration, there are no

other triggers on I2 and the core-chase algorithm terminates.

As expected, it is shown that the core-chase termination problem is undecidable.
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Theorem 11 [23] Let Σ be a set of TGD’s and I an instance, then it is undecidable

if Σ ∈ CTcore
I,∀ .

Note that at line 10 the core-chase algorithm does not simply compute the union

between all the instances computed at line 9, but it also computes its core. This gives

the following result which links the result of the core-chase algorithm to the result of

the standard-chase algorithm:

Theorem 12 [23] Let I be and instance and let Σ be a set of TGD’s and EGD’s, such

that chasestd
Σ (I) ≠ %. Then chasestd

Σ (I) ↔ chasecore
Σ (I) and chasecore

Σ (I) ⊧ Σ, even

more, core(chasestd
Σ (I)) = chasecore

Σ (I).

As a final remark, the core-chase algorithm computes the core of an instance at

line 10 of the algorithm. Hell and Nesetril [42] showed that the decision problem

is a graph a core?, or equivalently is an instance a core? is coNP-complete. This

result was improved afterward by Fagin et al. in [28] by proving that the decision

problem: is instance I the core of J? (the Core-Identification problem) is DP-

complete. Where the class DP consists of all decision problems that can be written as

the intersection of an NP-problem and a coNP-problem. Fagin et al. used a reduction

from 3-Colorability/Non-3-Colorability. Armed with these results, we can now

state the following proposition:

Proposition 10 The core-identification problem in the CORE-CHASE algorithm is

DP-complete.

Proof: We will reduce the Core-Identification problem (known to be a DP-complete

problem [28]) to the stated problem as follows. Given instances I and J over schema

R consider Σ = {S(x) → T (x)}, where S and T are two relations symbols not in R.
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Consider also the CORE-CHASE algorithm running with input I ∪ {S(a)} and Σ. It

is easy to see that there is only one trigger to be applied, thus J1 = I ∪ {S(a), T (a)}

from line 10 of the algorithm. From this, it follows that the Core-Identification

problem: is J the core of I? is equivalent with the following decision problem: is

J = core(J1)? from the CORE-CHASE algorithm∎

3.1.3.5 Summary

We are now ready to summarize the main properties of the different chase algorithm

variations and compare the instances computed by these different algorithms.

1. for all the chase variation algorithms presented, in case they terminate for a given

input, the instance returned is a model for the input instance and the input set

of dependencies.

2. for all the chase algorithms, in case they terminate for a given input, the instances

returned from each of these algorithms are homomorphically equivalent. On the

other hand, if the instances are homomorphically equivalent, it follows that they

preserve the certain answers to any UCQ query (see page 25). This means that

one may use any of these chase algorithms to compute the certain answers over

the “solution“ instances for UCQ queries.

3. Figure 3.7 illustrates the relationship between the termination classes for all the

chase algorithms presented in this chapter.

Finally, from a practical perspective, it is natural to observe that the easiest imple-

mentations are those of the oblivious and semi-oblivious chase algorithms, as they need

only to apply each possible trigger only once, without testing if it satisfies or not the

given dependency. In contrast, the core-chase algorithm is the hardest to implement

as it needs to also implement a core computation module.
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Figure 3.7: Termination classes for different chase variation

3.2 Chase Extensions

The chase algorithms presented in the previous sections considered only TGD’s and

EGD’s as constraints. In this section, we will add some extensions to the core-chase

algorithm in order to deal with the more general TGD∨,¬ dependencies (also referred as

negation disjunctive embedded dependencies). As we will see in Section 5.1, chasing

TGD∨,¬ dependencies helps in finding universal solution sets for the data exchange

problem. These, afterwards, are used in computing certain answers for queries from the

more general class UCQ¬,≠. To present this extension, we will use the chase algorithm

introduced by Nash et al. in [23]. Recently, chasing disjunctive dependencies was also

investigated by Marnette et al. in [60]. Also, chasing TGD’s with unequalities are

investigated by Karvounarakis and Tannen in [51], and chasing TGD∨,¬ dependencies

over queries were studied by Meier et al. in [63].
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Let us review the extended chase step for disjunctive embedded dependencies. A

disjunctive TGD∨ is an embedded dependency of the form:

ξ ∶ ∀x̄ α(x̄) → ⋁
1≤i≤n

∃z̄i βi(x̄i, z̄i) (3.8)

where, x̄i ⊆ x̄, for every i ∈ [n]. The formulae α and each βi are conjunctions of

relational and equality atoms. For each i ∈ [n], let us denote by ξi the dependency:

∀x̄ α(x̄) → ∃z̄i βi(x̄i, z̄i). The extended chase step is defined as follows: let I be an

instance and h a homomorphism such that the pair (ξi, h) is a trigger for I. If for all

i ∈ [n], I
(ξi,h)���→ %, then we say that the extended chase step on I with trigger (ξ, h)

failed, and we denote it as I
(ξ,h)
���→ %. Otherwise, if it does not fail, let J be the set

containing all instances Ji, such that I
(ξi,h)���→ Ji. The set J is said to be obtained from

I in one extended chase step with trigger (ξ, h) and it is denoted as I
(ξ,h)
���→ J .

Example 9 Let us consider the following TGD∨:

ξ ∶ ∀x, y, z R(x, y),R(y, z) → R(x, z) ∨ x = y ∨ ∃v R(v, z) (3.9)

Consider instance I = {R(a, b),R(b, c)} and let h = {X/a, Y /b,Z/c} be the homomor-

phism that maps body(ξ) to I. The three disjuncts from the head of ξ give the following

dependencies:

ξ1 ∶ ∀x, y, z R(x, y),R(y, z) → R(x, z)

ξ2 ∶ ∀x, y, z R(x, y),R(y, z) → x = y

ξ3 ∶ ∀x, y, z R(x, y),R(y, z) → ∃v R(v, z)

For these dependencies, we have I
(ξ1,h)
���→ J , where J = I ∪ {R(a, c)}, I

(ξ2,h)
���→ % and

I ⊧ ξ3. Thus I
(ξ,h)
���→ J , where J = {J}.

A dependency ξ of the form ∀x̄ α(x̄) → %, where α is a conjunction of atoms, is called
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falsehood [23]. If for instance I there exists homomorphism h, such that h(α(x̄)) ⊆ I,

then we say that the extended chase fails on I with (ξ, h) and it is denoted as I
(ξ,h)
���→ %.

If we allow unequalities both in the body and head of TGD∨, we obtain the class

TGD∨,≠. Let Σ be a set of TGD∨,≠ over schema R. In this case, the set of dependencies

Σ will be replaced by the set Σ≠, in which each unequality of the from x ≠ y from Σ is

replaced by atom N(x, y), where N is a new relational symbol that does not occur in

Σ. To this we add the following two new dependencies to Σ≠:

∀x, y x = y ∨N(x, y) (3.10)

∀x, y x = y ∧N(x, y) → % (3.11)

It may be noticed that the new schema for Σ≠ contains one extra relational symbol

compared to the schema of Σ and that the set of dependencies also contains two new

dependencies.

Finally, by considering the negation to the class TGD∨, we obtain the class TGD∨,¬.

Let Σ be a set of TGD∨,¬ over schema R. By Σ≠,¬ is denoted the set of dependencies

Σ≠ in which each negated atom of the form ¬R(x̄) is replaced by a new atom R̂(x̄),

and also for each relation R ∈R the following two dependencies are added to Σ≠,¬:

∀x̄ R(x̄) ∨ R̂(x̄) (3.12)

∀x̄ R(x̄) ∧ R̂(x̄) → % (3.13)

Note that, for any set Σ of TGD∨,¬, the set of dependencies Σ≠,¬ is in TGD∨.

Example 10 Consider the following set of dependency Σ = {ξ1, ξ2}:

ξ1 ∶ ∀x, y R(x, y) → x ≠ y

ξ2 ∶ ∀x, y R(x, y), S(x) → ¬S(y)

The corresponding set Σ≠,¬ will contain the following TGD∨’s:
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ξ1 ∶ ∀x, y R(x, y) → N(x, y)
ξ2 ∶ ∀x, y R(x, y), S(x) → Ŝ(y)
ξ3 ∶ ∀x, y (x = y ∨N(x, y))

ξ4 ∶ ∀x, y (x = y ∧N(x, y) → %)

ξ3 ∶ ∀x, y R(x, y) ∨ R̂(x, y)
ξ4 ∶ ∀x, y R(x, y) ∧ R̂(x, y) → %
ξ5 ∶ ∀x S(x) ∨ Ŝ(x)
ξ6 ∶ ∀x S(x) ∧ Ŝ(x) → %

Using the previous notations, Figure 3.8 illustrates the extended core-chase algo-

rithm introduced by Deutsch, Nash and Remmel in [23]. The algorithm has as input

an instance I ∈ Inst(R) and a set Σ of TGD∨,¬ and returns a set of instances over

schema R.

EXTENDED-CORE-CHASE(I,Σ)

1 L0 ← {I}; i← 0;

2 Compute in parallel for each instance J ∈ Li the set KJ

where K ∈ KJ iff J
(ξ,h)


→K for some ξ ∈ Σ≠,¬ and homomorphism h

3 L′ ← ⋃J∈Li ⋃K∈KJ
{core(K)}

4 compute Li+1 by removing from L′ all K such that ∃L ∈ L′, L→K;

5 i← i + 1;

6 if Li = Li−1

7 then

8 return the set of instances from Li restricted to R

9 else

10 goto 2

Figure 3.8: The extended core-chase algorithm

Note that at Step 2 of the algorithm the trigger (ξ, h) is either an EGD or a TGD
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trigger for J . Also observe that line 8 of the algorithm removes from the set of instances

Li all the tuples not in the initial schema of I, that is all the new extra relations added

to the initial schema.

Example 11 Consider Σ = {T (x) → R(x)} over schema {R,S,T} and consider in-

stance I = {T (a)}. Running the extended chase algorithm with input I and Σ the value

of L1 after executing first time step 4 is:

L1 = {{T (a),R(a), S(a)},{T (a),R(a), Ŝ(a)}},

thus the algorithm will return the following set, after eliminating all the relational sym-

bols not in the initial schema: {{T (a),R(a), S(a)},{T (a),R(a)}}.

Intuitively, the algorithm, if it terminates, returns an incomplete database with

each of the instance representing possible worlds that model I and Σ. The semantic

used for the result is a closed world semantics. That is if I is a possible world and R(x̄)

is an atom such that I /⊧ R(x̄), it follows that I ⊧ ¬R(x̄).

Proposition 11 [27] Let L be the set of instances returned by the extended core-chase

algorithm for input I and Σ a set of TGD∨,¬’s. Then for all J ∈ L it holds that J ⊧ Σ.

We conclude this section with the corollary which follows directly from Theorem

11 and the fact that TGD ⊂ TGD∨,¬.

Corollary 4 Let I be an instance and Σ a set of TGD∨,¬. Then it is undecidable if

the extended core-chase algorithm terminates with input I and Σ.
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Chapter 4

Sufficient Conditions for Chase

Termination

4.1 The Chase Termination Problem

The undecidability results for the different chase variation algorithms presented in

Chapter 3 motivated the research community to find classes of tuple-generating depen-

dencies that ensure the termination for some of the chase variation algorithms for all

input instances. In this chapter we focus on part of these classes of dependencies for

which it is known that the standard chase terminates on all instances. Even if most of

these classes were constructed to ensure the standard-chase termination, we will show

in this chapter that all these classes guarantee the termination for a more easily im-

plementable algorithm, that is the semi-oblivious-chase algorithm. Therefore, we will

pairwise compare these classes of dependencies and conclude with a Hasse diagram for

the subset relation between these classes which will give us a clear overview of these

results.
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4.2 Dependencies with Stratified-Witness

This first class of TGD’s that guarantees the standard-chase termination was intro-

duced [25] simultaneously with the class of weakly acyclic TGD’s [27], the later one

being a strict superset of the first one.

Definition 1 [16; 27] For a given database schema R define a position in R to be a

pair (R,k), where R is a relation symbol from R and k ∈ [arity(R)].

Definition 2 [25] Let Σ be a set of TGD’s over schema R. The chase flow graph

associated with Σ is a directed edge-labeled graph GF
Σ = (V,E), such that each vertex

represents a position in R and ((R, i), (S, j)) ∈ E if there exists a TGD ξ ∈ Σ of the

form ∀x̄, ȳ α(x̄, ȳ) → ∃z̄ β(x̄, z̄), and if there exists a variable x ∈ x̄ ∪ ȳ occuring in

position (R, i) in α and variable y ∈ x̄ ∪ z̄ that occurs in position (S, j) in β. In case

y ∈ z̄, the edge is labeled as existential, otherwise the label is considered universal.

Example 12 Consider schema R = {S,R}, with arity(S) = 2 and arity(R) = 2. The

positions in R are {(S,2), (S,1), (R,1), (R,2)}. Let Σ1 contain the following TGD

over R:

ξ11 ∶ S(x, y) → ∃z R(x, z)

let Σ2 be:

ξ21 ∶ S(x, y) → ∃z R(x, z)
ξ22 ∶ R(x, y) → S(x,x)

let Σ3 be:

ξ31 ∶ S(x, y) → ∃z R(x, z)
ξ32 ∶ R(x, y) → ∃z R(x, z)
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and, finally, let Σ4 be a slight modification of Σ3:

ξ41 ∶ S(x, y) → ∃z R(x, z)
ξ42 ∶ R(x, y) → ∃z R(y, z)

Figure 4.1 captures the chase flow graphs associated with Σ1, Σ2, Σ3 and Σ4 (the

existential edges are represented as dotted lines in the graphs). Note that the graphs

for Σ3 and Σ4 are the same because the flow graph does not distinguish the universal

variables.

Figure 4.1: Chase flow graph

Definition 3 [25] A set Σ of TGD’s has stratified-witness if its corresponding flow

graph has no cycles through an existential edge. By SW we denote the class of all sets

of dependencies with stratified-witness.
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Returning to example 12, only Σ1 has stratified-witness, all Σ2,Σ3 and Σ4 have

in their corresponding chase flow graph at least one cycle through an existential edge

(see Figure 4.1). The following theorem allows us to know that the standard chase

terminates for any set of TGD’s with stratified-witness.

Theorem 13 [25] If Σ ∈ TGD(R) such that Σ ∈SW, then Σ ∈ CTstd
∀∀ . Even more, if i

denotes the maximum arity in R and k represents the number of existential edges in the

flow graph, then the standard-chase algorithm terminates for instance I in O(∣I ∣i
k+1
)

time.

From this theorem and the termination class hierarchy presented in Figure 3.7, it

follows that if Σ is a set of TGD’s with stratified-witness, then Σ ensures termination

on all instances also for the core chase and restricted-chase algorithms. In the following

section we will extend this result by showing that there exists a larger class of TGD’s

that guarantees the termination on all instances for the oblivious case following that

any set of TGD’s with stratified-witness are also in CTobl
∀∀ and CTsobl

∀∀ .

4.3 Rich Acyclicity

The class of richly acyclic set of dependencies was introduced by Hernich and Schweikardt

in [47] in a different context. We will show here that any set of dependencies from this

new class ensures the oblivious-chase algorithm termination for all input instances.

Definition 4 [47] Let Σ be a set of TGD’s over schema R. The extended dependency

graph associated with Σ is a directed edge-labeled graph GE
Σ = (V,E), such that each

vertex represents a position in R and ((R, i), (S, j)) ∈ E, if there exists a TGD ξ ∈ Σ

of the form ∀x̄, ȳ α(x̄, ȳ) → ∃z̄ β(x̄, z̄), and if one of the following holds:

1. x ∈ x̄ and x occurs in α on position (R, i) and in β on position (S, j). In this

case the edge is labeled as universal;
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2. x ∈ x̄ ∪ ȳ and x occurs in α on position (R, i) and variable z ∈ z̄ that occurs in β

on position (S, j). In this case the edge is labeled as existential.

Figure 4.2 illustrates the extended dependency graph for the sets of dependencies

specified in Example 12 (the existential edges are represented as dotted lines in the

graphs). Note that the extended dependency graph for Σ3 and Σ4 are not identical,

as they were for the flow graph. This is due to the fact that the extended dependency

graph distinguishes between the universally quantified variables.

Figure 4.2: Extended dependency graph

Definition 5 [47] A set Σ of TGD’s is said to be richly acyclic if the corresponding

extended dependency graph has no cycles through an existential edge. By RA we denote

the class of all richly acyclic sets of dependencies.
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Returning to Example 12 from page 67, we may note that both Σ1 and Σ2 are

richly acyclic but that Σ3 and Σ4 are not. It is obvious that the problem of testing if

a given set of dependency Σ is in RA has polynomial complexity in the size of Σ. It

also follows directly from the definitions that SW⊂RA. For the strict inclusion part see

Σ2 from the previous example.

The following theorem shows that rich acyclicity implies oblivious-chase algorithm

termination on all instances in polynomial time in the size of the input instance.

Theorem 14 RA⊂ CTobl
∀∀ and for any Σ ∈RA and any instance I there is a polynomial

in the size of I that bounds the execution time of the oblivious-chase algorithm with I

and Σ.

Proof: The proof of this theorem uses some of the notions introduced in the following

section, therefore the proof will be detailed in the next section at page 75∎

From this theorem and the class hierarchy illustrated in Figure 3.7, it follows that

if Σ is a richly acyclic set of dependencies, then Σ ensures termination on all instances

for all chase variations presented in Section 3.1.3.

4.4 Weak Acyclicity

Fagin et al. [27] introduced the class of weakly acyclic dependencies as a class that

ensures termination of the standard-chase algorithm on all execution branches for all

instances. This class of dependencies was initially introduced in the context of finding

universal solutions for the data exchange problem.

Definition 6 [27] Let Σ be a set of TGD’s over schema R. The dependency graph

associated with Σ is a directed edge-labeled graph GD
Σ = (V,E), such that each vertex
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represents a position in R and ((R, i), (S, j)) ∈ E, if there exists a TGD ξ ∈ Σ of the

form ∀x̄, ȳ α(x̄, ȳ) → ∃z̄ β(x̄, z̄), and if one of the following holds:

1. x ∈ x̄ and x occurs in α on position (R, i) and in β on position (S, j). In this

case the edge is labeled as universal;

2. x ∈ x̄ and x occurs in α on position (R, i) and variable z ∈ z̄ that occurs in β on

position (S, j). In this case the edge is labeled as existential.

The previous definition differs from Definition 4 only by considering existential

edges only from positions occupied by universally quantified variables that occur both

in the body and head of dependency.

Figure 4.3 illustrates the dependency graphs for the sets of dependencies described

in Example 12 (the existential edges are represented as dotted lines in the graphs).

Figure 4.3: Dependency graph
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Definition 7 [27] A set of TGD’s Σ is said to be weakly acyclic if the corresponding

dependency graph does not have any cycle going trough an existential edge. By WA we

denote the class of all weakly acyclic sets of dependencies.

Returning to Example 12 (see page 67), the first three sets of dependencies are

weakly acyclic, there are no edges through existentially labeled edges. The set Σ3 was

shown not to be richly acyclic but weakly acyclic, which gives us the strict inclusion

RA⊂WA. On the other hand, Gottlob and Nash noticed [34] that any weakly acyclic set

of dependency can be changed in a logically equivalent richly acyclic set of dependencies.

To obtain this, each tgd of the form α(x̄, ȳ) → ∃z̄ β(x̄, z̄), in case ∣ȳ∣ > 0, is replaced

with the following two TGD’s:

α(x̄, ȳ) → B(x̄) (4.1)

B(x̄) → ∃z̄ β(x̄, z̄) (4.2)

The following theorem by Fagin et al. [27] shows that, for a weakly acyclic set of

dependencies, the standard-chase algorithm will terminate on all execution branches

for all instances in a polynomial number of steps, in the size of the input instance.

Theorem 15 [27] WA ⊂ CTstd
∀∀ and for any Σ ∈ WA and any instance I there is a

polynomial, in the size of the input instance, that bounds the execution time of the

standard-chase algorithm with I and Σ.

Because of this theorem and the class hierarchy shown in Figure 3.7, it follows that

if Σ is a richly acyclic set of dependencies, then Σ ensures termination for standard,

restricted and core-chase algorithms. For the strict inclusion part from the previous

theorem, let us consider the following set of tgds Σ = {R(x,x) → ∃y R(y, x)}. Clearly,

Σ is not weakly acyclic. Still, for any instance I none of the tuples generated by
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the head of the dependency will trigger the body. Thus the standard-chase algorithm

terminates on all branches for all input instances.

The following result extends the previous theorem by relating the WA class with

the CTsobl
∀∀ and CTobl

∀∀ classes.

Proposition 12 WA⊂ CTsobl
∀∀ and WA ∦ CTobl

∀∀ .

Proof: First it can be easily observed that if Σ ∈WA, then its semi-enrichment Σ̃ ∈WA.

From this and Theorems 5 and 15, it directly follows that WA⊆ CTsobl
∀∀ . For the strict

inclusion part, consider Σ1 = {S(y),R(x, y) → ∃z R(x, z)}. It is clear that Σ1 ∉WA , but

the standard-chase algorithm terminates on all branches for any instance I and Σ1. For

the second part, consider Σ2 = {R(x, y) → ∃z R(x, z)}, then clearly Σ2 ∈WAȦnd from

Example 6 we have that Σ2 ∉ CTobl
∀∀ . On the other hand, the previous set Σ1 ∈ CTobl

∀∀

and as shown Σ1 ∉WA. From this, it follows that WA ∦ CTobl
∀∀ ∎

Lemma 1 Let Σ be a richly acyclic set of TGD’s then Σ̂, the enrichment of Σ, is a

weakly acyclic set of TGD’s.

Proof: Let Σ be a set of TGD’s with the corresponding extended dependency graph

GE
Σ = (V E ,EE). Let Σ̂ be the enrichment of Σ with the corresponding dependency

graph GD
Σ̂
= (V D,ED). We will show first that the graph GD

Σ̂
restricted to the vertexes

V E is the same as GE
Σ . For this, let us consider a tgd ξ ∈ Σ of the form:

∀x̄,∀ȳ R1(x̄1, ȳ1),R2(x̄2, ȳ2), . . . ,Rn(x̄n, ȳn) → ∃z̄ S1(x̄′1, z̄1), S2(x̄′2, z̄2), . . . , Sm(x̄′m, z̄n)

where x̄ = ∪i∈[n]x̄i = ∪j∈[m]x̄
′
j , z̄ = ∪i∈[m]z̄i and ȳ = ∪i∈[n]ȳi. The corresponding enriched

dependency ξ̂ belonging to Σ̂ will have the following form:

∀x̄,∀ȳ R1(x̄1, ȳ1),R2(x̄2, ȳ2), . . . ,Rn(x̄n, ȳn) →

∃z̄ S1(x̄′1, z̄1), S2(x̄′2, z̄2), . . . , Sm(x̄′m, z̄n),H(x̄, ȳ)
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where H is a new relational symbol. Let us suppose that ξ creates the universal edge

((Ri, k), (Sj , l)) in the extended dependency graph GE
Σ . From this it follows that the

same universal edge is also part of GD
Σ̂

because both dependencies use the same set of

universal variables that occurs in the same positions in both ξ and ξ̂. Let us now suppose

that ξ creates the existential edge ((Ri, k), (Sj , l)) in the extended dependency graph

GE
Σ . This means that on position (Ri, k) occurs a variable either from x̄ or ȳ and that

on position (Sj , l) from the head occurs a variable from z̄. Clearly, ((Ri, k), (Sj , l))

is also an existential edge in the dependency graph GD
Σ̂

. The only edges in GD
Σ̂

not

occurring in GE
Σ are the universal edges oriented to the positions over relation H. As

relation H does not appear in the body of any dependency in Σ̂, it follows that there

can’t be any cycle in GD
Σ̂

through a position over H. But this means that any cycle in

GE
Σ is also a cycle in GD

Σ̂
and vice versa. From this it directly follows that Σ is a richly

acyclic set of TGD’s if and only if Σ̂ is a weakly acyclic set of TGD’s∎

Now we are ready to prove Theorem 14 stated at page 71.

Theorem 14 RA⊂ CTobl
∀∀ and for any Σ ∈RA and any instance I there is a polynomial,

in the size of the instance I, that bounds the execution time of the oblivious-chase

algorithm with I and Σ.

Proof: Let Σ be a richly acyclic set of TGD’s. From the previous theorem we have that

Σ̂ is a weakly acyclic set of TGD’s. On the other hand, from Theorem 15 it follows that

the standard-chase procedure terminates with Σ̂ for any instance I, that is Σ̂ ∈ CTstd
∀∀ .

From this and Theorem 3 follows that Σ ∈ CTobl
∀∀ . For the strict part inclusion it is easy

to verify that the dependency Σ = {R(x,x) → ∃y R(x, y), T (x)} ensures the oblivious

chase termination for any input instance, that is Σ ∈ CTobl
∀∀ , but Σ ∉RA. For the second

part of the theorem, let I and let kI be the polynomial that bounds the execution time

for the standard chase on input Σ̂ and I, as given by Theorem 15. But from the proof of
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Theorem 3 we have that the number of steps executed by the standard-chase algorithm

on input Σ̂ and I is the same with the number of steps executed by the oblivious-chase

algorithm on input Σ and I. Thus kI is also a polynomial that bounds the execution

time for the oblivious chase on input Σ and I∎

4.5 Safe Dependencies

Meier, Schmidt and Lausen [61] observed that the weak acyclicity condition restricts

also tgds that introduce new nulls that may not create infinite standard-chase se-

quences.

Example 13 Let us consider an example from [61] with Σ containing only one depen-

dency TGD:

ξ ∶ R(x, y, z), S(y) → ∃w R(y,w, x)

Figure 4.4 represents the dependency graph corresponding to Σ. As it can be seen

in the figure, the dependency graph contains a cycle going through an existential edge.

Thus Σ is not weakly acyclic. On the other hand, the newly created null in position

(R,2) may create new null values only if the same null also appears in position (S,1).

Based on the given dependency, new nulls cannot be generated in position (S,1). Thus

this dependency can not cyclically create new nulls.

In order to be able to capture the type of dependencies presented in the previous

example, Meier et al. observed that we need to change the dependency graph such that

it does not contain as vertexes all the position in the schema, but only the ones that

may contribute to an infinite cycle, that is positions in which new null values can occur.

Before introducing the notion of safe dependencies, let us first present the definition

of the affected position introduced by Cali et al. in [16].
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Figure 4.4: Dependency graph with cycles through existential labeled edges

Definition 8 [16] The affected positions associated with a set of TGD’s Σ is the set

aff(Σ) defined recursively as follows. Position (R, i) ∈ aff(Σ) if: ξ ∈ Σ, then

1. if an existential variable appears in position (R, i) in ξ, or;

2. if universally quantified variable x appears in position (R, i) in the head of some

dependency ξ ∈ Σ and x occurs only in affected positions in the body of ξ.

Returning to Example 13, it can be easily noted that aff(Σ) = {(R,2)}. Similarly

to the dependency graph, the propagation graph is defined as:

Definition 9 [61] Let Σ be a set of TGD’s . The propagation graph associated with

Σ is a directed edge labeled graph GP
Σ = (aff(Σ),E), where ((R, i), (S, j)) ∈ E if there

exists a dependency ξ ∈ Σ of the form ∀x̄, ȳ α(x̄, ȳ) → ∃z̄ β(x̄, z̄), and there exists a

variable x ∈ x̄ that occurs in the body of ξ in position (R, i), such that x occurs only in

affected positions in body of ξ and either

• x occurs in position (S, j) in β, or
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• there exists a variable z ∈ z̄ in position (S, j) in β.

In the first case, the edge is labeled as universal and, in the second case, the edge is

labeled as existential.

Considering again Example 13, as shown, the only affected position is (R,2). On

the other hand, only the universally quantified variable y occurs in this affect position

in the body of the dependency, variable that occurs in a non-affected position (R,1) in

the head of the dependency.

Example 14 [61] Consider Σ consisting of the following two TGD’s:

ξ1 ∶ S(x),R(x, y) → R(y, x)

ξ2 ∶ S(x),R(x, y) → ∃z R(y, z),R(z, x)

asserting that all nodes in S have cycles of length 2 (ξ1) and 3 (ξ2). The set of affected

positions in this case is aff(Σ) = {(R,1), (R,2)}. Figure 4.5 shows the propagation

graph corresponding to Σ (the dotted lines represent the existential edges).

Figure 4.5: Propagation graph
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Definition 10 [61] A set Σ of TGD’s is called safe if its propagation graph GP
Σ does

not have a cycle going trough an existential edge. By SD to be the class of all safe

dependency sets.

Using this definition, it follows that the set of dependencies from Example 13 is

safe as the corresponding propagation graph contains a single vertex and no edges.

On the other hand, the dependencies from Example 14 are not safe. Note the cycle

through an existentially labeled edge in Figure 4.5. It may be also noted that the set

of dependencies from Example 14 guarantees the standard-chase termination for all

instances.

Theorem 16 [61] SD⊂ CTstd
∀∀ and for any Σ ∈SD and any instance I there is a poly-

nomial, in the size of I, that bounds the execution time of the oblivious-chase algorithm

with I and Σ.

For the strict inclusion part of the previous theorem, consider that the set of de-

pendencies from Example 14 is in CTstd
∀∀ but it is not safe. Meier et al. [61] also proved

that WA⊂SD. However, this does not hold with the propagation graph defined in their

paper. For the strict inclusion between the classes WA and SD consider the set of

dependencies from Example 13 which is safe but not weakly acyclic. The following

proposition extends the previous result by showing that the safe dependencies also en-

sure the semi-oblivious-chase termination for all instances but do not guarantee the

oblivious-chase termination on all instances.

Proposition 13 SD⊂ CTsobl
∀∀ and SD ∦ CTobl

∀∀ .

Proof: First it can be observed that if Σ ∈SD, then its semi-enrichment Σ̂ ∈SD, as the

corresponding propagation graphs restricted to the positions over Σ are the same, and
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the new relations introduced in Σ̂ do not induce any cycle in the corresponding prop-

agation graph. From this and Theorems 5 and 16 it directly follows that SD⊆ CTsobl
∀∀ .

For the strict inclusion part, consider Σ1 = {R(x,x) → ∃y R(x, y)}. It is obvious that

Σ1 ∉SD , but the semi-oblivious-chase algorithm terminates for any instance I and Σ1.

For the second part, consider Σ2 = {R(x, y) → ∃z R(x, z)}. Clearly Σ2 ∈SD and from

Example 6 we have that Σ2 ∉ CTobl
∀∀ . Let us not forget that the previous set Σ1 ∈ CTobl

∀∀

and, as shown, Σ1 ∉SD. The consequence is that SD ∦ CTobl
∀∀ ∎

4.6 Super Weak Acyclicity

The following class of dependencies properly extends the class of safe dependencies

and consequently the class of weakly acyclic, richly acyclic dependencies and the class

of dependencies with stratified witness. This class of dependencies, introduced by

Marnette [59], beside omitting the nulls that can’t generate infinite chase sequences, as

in the case of safe dependencies, also takes into account the repeating variables. For

a uniform presentation of the dependency classes, we will slightly change the notation

used in [59]

We assume that the set of dependencies Σ has distinct variable names in each

dependency. We also assume that there exists a total order between the atoms in

each dependency. With this, we can now define the notion of atom position to be a

triple (ξ,R, i), where ξ ∈ Σ, R is a relation name that occurs in ξ, i ∈ [n], where n is

the maximum number of occurrences of R in ξ, given by the total order between the

atoms in the dependency. Clearly each atom position uniquely identifies an atom in

Σ. Similarly to the notion of position, a place can be defined as a pair ((ξ,R, i), k),

where (ξ,R, i) is an atom position and k ∈ [arity(R)]. Intuitively, the place identifies

the variable that appears in the k-th position in the atom given by the atom position

(ξ,R, i).
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Let V ar(ξ) define the set of all variables that occur in dependency ξ ∈ Σ. As men-

tioned, for any two distinct dependencies ξ1 and ξ2 in Σ, we have V ar(ξ1)∩V ar(ξ2) = ∅.

The mapping V ar is extended to a set of dependencies Σ as V ar(Σ) = ∪ξ∈Σ V ar(ξ).

Similarly, we define mappings V ar∃ and V ar∀ that map each dependency ξ to the set

of existentially marked variables in ξ and to the universally quantified variables in ξ re-

spectively. Clearly, for each dependency ξ, V ar∃(ξ) and V ar∀(ξ) represent a partition

of V ar(ξ).

Given a TGD ξ and y ∈ V ar∃(ξ), Out(ξ, y) is defined to be the set of places in the

head of ξ where y occurs. Given a set a TGD ξ and x ∈ V ar∀(ξ), In(ξ, x) is defined to

be the set of places in the body of ξ where x occurs.

A substitution for Σ is a function θ with Dom(θ) = ΔV and Im(θ) = ΔC such that

for any x ∈ V ar∃(Σ) there is no variable y ∈ V ar(Σ) with x ≠ y such that θ(x) = θ(y).

Given a substitution θ for Σ and an atom (ξ,R, i) from Σ, the new atom resulting by

replacing each variable x in (ξ,R, i) with θ(x) is denoted by θ(ξ,R, i). Two atoms,

(ξ1,R, i1) and (ξ2,R, i2), are said to be unifiable if there exist two substitutions θ1

and θ2 for Σ such that θ1(ξ1,R, i1) = θ2(ξ2,R, i2). Two places p1 = ((ξ1,R, i1), k1) and

p2 = ((ξ2,R, i2), k2) are said to be unifiable if k1 = k2 and (ξ1,R, i1) is unifiable with

(ξ2,R, i2). By p1 ∼ p2 we denote that p1 and p2 are unifiable. Let us define ΓΣ to be

a function that maps each variable x to the set of places where x occurs in Σ. The

function ΓH
Σ maps each variable x to the set of places from the head of some dependency

where x occurs. Similarly, the function ΓB
Σ maps each variable x to the set of places

from the body of some dependency where x occurs.

For a better understanding of the previous notions, consider the example:

Example 15 [70] Let Σ contain two dependencies:
ξ1 ∶ R(x) → ∃y, z S(x, y, z)

ξ2 ∶ S(v,w,w) → R(w)
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The following are the atom positions for Σ:

• (ξ1,R,1), corresponding to atom R(x);

• (ξ1, S,1), corresponding to atom S(x, y, z);

• (ξ2, S,1), corresponding to atom S(v,w,w);

• (ξ2,R,1), corresponding to atom R(w).

For this setting we have the set V ar∀(Σ) = {x, v,w}, V ar∃(Σ) = {y, z} and the set

V ar∀(Σ) = V ar∀(Σ) ∪ V ar∃(Σ). Clearly (ξ1,R,1) is unifiable with (ξ2,R,1), consider

unifier θ1 = {x/a} and θ2 = {w/a}. On the other hand, atom positions (ξ1, S,1) and

(ξ2, S,1) are not unifiable as there do not exist two unifiers θ1 and θ2 for the atoms

S(x, y, z) and S(v,w,w) such that the existential variables y, z each are mapped to a

new constant. From this we have that ((ξ1,R,1),1) ∼ ((ξ2,R,1),1). For variable x,

we have the sets ΓΣ(x) = {((ξ1,R,1),1), ((ξ1, S,1),1)}, ΓB
Σ(x) = {((ξ1,R,1),1)} and

ΓH
Σ (x) = {((ξ1, S,1),1)}.

Given two sets of places P and Q, we denote P ⊑ Q if for all p ∈ P if p ∼ q, then

q ∈ Q. The mapping Move(Σ,Q) is defined to return the smallest set of places P ,

with Q ⊆ P and for all variables x that occur in a body of some dependency ξ ∈ Σ

if ΓB
Σ(x) ⊑ P then ΓH

Σ (x) ⊆ P . Intuitively, the Move(Σ,Q) returns the smallest set of

places such that the values generated in those places by chasing some tuples that contain

the places in Q are dependent on the values in tuples in places Q. Returning to the

dependencies from the previous example and considering the place p1 = (ξ2,R,1),1),

with this place we have only place p2 = (ξ1,R,1),1) such that p1 ∼ p2. Also we have

ΓB
Σ(x) = {p2} and ΓH

Σ (x) = {p3}, where p3 = ((ξ1, S,1),1). From this it follows that

Move(Σ,{p1}) = {p1, p2, p3}.

Definition 11 [59] Given Σ a set of TGD’s and ξ1, ξ2 ∈ Σ, we say ξ1 triggers ξ2 in Σ,

and it is denoted with ξ1 ↝Σ ξ2, iff there exists a variable y ∈ V ar∃(ξ1) and a variable

x ∈ V ar∀(ξ2) occurring in both the body and the head of ξ2 such that:
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In(ξ2, x) ⊑ Move(Σ,Out(ξ1, y))

Definition 12 [59] A set of TGD’s Σ is said to be super-weakly acyclic iff the trigger

relation ↝Σ is acyclic. By SwA we denote the set of all super-weakly acyclic depen-

dencies.

Example 16 Consider Σ = {ξ1, ξ2} as in Example 15. The place ((ξ1, S,1),1) is not

unifiable with ((ξ2, S,1),1) and In(ξ2,w) /⊑ Move(Σ,Out(ξ1, y)), thus ξ1 /↝Σ ξ2. Simi-

larly, ξ2 does not contain any existential variables and so it follows that ξ2 /↝Σ ξ1. As

both dependencies do not share common relation names in the head and the body, it

follows that ξ1 /↝Σ ξ1 and ξ2 /↝Σ ξ2. That is the relation ↝Σ does not induce any cycle,

following that Σ is super-weakly acyclic. Moreover, it can be seen that Σ ∉SD, as be-

tween the affected positions (R,1) and (S,2) there exists a cycle through an existential

edge in the corresponding propagation graph.

Marnette [59] showed that the membership problem Is Σ ∈SwA? has a polynomial

complexity in the size of Σ. The following theorem proves that super-weakly acyclicity

is a sufficient condition for the semi-oblivious-chase termination on all instances.

Theorem 17 SwA⊂ CTstd
∀∀ and for any Σ ∈SwA and any instance I there exists a

polynomial, in size of I, that bounds the execution time of the semi-oblivious-chase

algorithm with I and Σ.

Proof: It follows directly from Theorem 2 and Theorem 5 in [59].

Proposition 14 [59] WA⊂SwA.
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Later, Spezzano and Greco [70] also showed that SD⊂SwA, that is the super-weak

acyclic dependencies properly contain all safe dependencies. A nice property of the

class SwA is that it is closed in adding atoms in the body of dependencies, thus given

a set of TGD’s Σ ∈SwA, then any set of dependencies Σ′, obtained from Σ by adding

new atoms in the body of any dependencies, remains super-weakly acyclic.

The previous theorem together with Proposition 7 give us the following corollary:

Corollary 5 Let Σ ∈SwA and let I be an instance. Then there exists a polynomial, in

the size of I, that bounds the length of every standard-chase sequence of I and Σ.

The following proposition shows that super-weak acyclicity class is incomparable

with the class of dependencies that ensures the oblivious-chase termination on all in-

stances.

Proposition 15 SwA ∦ CTobl
∀∀ .

Proof: Let us consider Σ1 = {R(x, y) → ∃z R(x, z)}. It is clear that Σ1 ∈SwA but

the oblivious-chase algorithm does not terminate with input I = {R(a, b)} and Σ1.

Let us now consider Σ2 = {S(x),R(x, y) → ∃z R(y, z)} and denote the dependency in

Σ2 by ξ. With this we have In(ξ, x) = {((ξ,R,1),2)}, Out(ξ, z) = {((ξ,R,2),2)} and

Move(Σ,Out(ξ, z)) = {((ξ,R,2),2), ((ξ,R,1),2)}, that is In(ξ, x) ⊑ Move(Σ,Out(ξ, z)).

Thus, based on Definition 11, ξ ↝Σ2 ξ following that Σ2 ∉SwA. On the other hand it

can be observed that the oblivious-chase algorithm terminates for any instance I. This

is because the dependency may be obliviously fired only if the first position in R does

not contain a null value∎

This concludes that the super-weakly acyclic class of dependencies ensures that the

standard, semi-oblivious, restricted and core-chase algorithms terminate for all input

instances.

84



4. Sufficient Conditions for the Chase Termination

4.7 Stratification

The stratified model of dependencies was introduced by Deutsch et al. in [23]. This

class relaxes the condition imposed by weak acyclicity by stratifying the dependencies

and checking for weak acyclicity on each of these strata.

Before presenting the notion of stratification let us introduce a new notation. Given

ξ a tgd of the form:

α(x̄, ȳ) → ∃z̄ β(x̄, z̄)

and a vector ā = (a1, . . . , an, an+1, . . . , an+m) of constants where n = ∣x̄∣ and m = ∣ȳ∣, by

ξ(ā) we denote the following formula without any universally quantified variables:

α((a1, . . . , an), (an+1, . . . , an+m)) → ∃z̄ β((a1, . . . , an), z̄)

Definition 13 [23] Let ξ1 and ξ2 be two TGD’s , we write ξ1 ≺ ξ2, if there exist in-

stances I, J and vector ā ⊆ dom(J), such that

1. I ⊧ ξ2(ā), and

2. there exists a standard trigger (ξ1, h), such that I
(ξ1,h)
���→ J , and

3. J /⊧ ξ2(ā).

Example 17 Consider the following two TGD’s:

ξ1 ∶ ∀x, y R(x, y) → S(x)

ξ2 ∶ ∀x, y S(x) → R(x,x)

For the instance I = {R(a, b)} and ā = (a) we have that I ⊧ ξ2(a); and for homo-

morphism h = {X/a, Y /b} we have I
(ξ1,h)
���→ J , where J = {R(a, b), S(a)}. Because

J /⊧ ξ2(a), it follows that ξ1 ≺ ξ2. On the other hand, ξ2 /≺ ξ1 because for any vector of
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constants b̄ = (a, b) and instance I such that I ⊧ ξ1(b̄) and for any trigger (ξ, h) such

that I
(ξ2,h)
���→ J , it follows that J ⊧ ξ1(b̄).

Given two TGD’s ξ1 and ξ2, the decision problem Is ξ1 ≺ ξ2? is known to be in NP

[23]. To the best of our knowledge there yet is no result proving the lower bound of

this problem.

Given a set of TGD’s Σ, the chase graph associated with Σ is a directed graph

GC
Σ = (V,E), where V = Σ and (ξ1, ξ2) ∈ E iff ξ1 ≺ ξ2.

Definition 14 [23] A set of TGD’s Σ is said to be stratified if the set of dependencies

in every cycle in the corresponding chase graph is weakly acyclic. The class of all

stratified sets of dependencies is denoted with Str.

In [61] it is shown that stratification does not guarantee that the standard-chase

algorithm terminates on all execution branches for all instances (see example bellow).

Example 18 [61] Consider the following set of TGD’s:

ξ1 ∶ R(x) → S(x,x)

ξ2 ∶ S(x, y) → ∃z T (y, z)

ξ3 ∶ S(x, y) → T (x, y), T (y, z)

ξ4 ∶ T (x, y), T (x, z), T (z, x) → R(y)

The set Σ = {ξ1, ξ2, ξ3, ξ4} is stratified since ξ1 ≺ ξ2, ξ1 ≺ ξ3 ≺ ξ4 ≺ ξ1; and the set

{ξ1, ξ3, ξ4} is weakly acyclic. Let us consider instance I = {R(a)}. The standard-chase

algorithm that triggers repeatedly dependencies ξ1, ξ2, ξ3 and ξ4 never terminates. On

the other hand, the chase sequence that never triggers ξ2 terminates.

Since the stratification does not ensure termination for the standard chase for all

instances, the following question arises: does the stratification sometimes guarantee
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termination of the standard-chase algorithm on some branches for all instances? The

answer to this question is given by the following theorem:

Theorem 18 Str⊂ CTstd
∀∃ and Str ∦ CTstd

∀∀

Proof: The first part of the theorem is proved in [61]. For the strict inclusion part,

consider Σ1 = {ξ1 ∶ S(x),R(x, y) → ∃z R(y, z)}. Of course, there is no doubt that

Σ1 ∈ CTstd
∀∀ ⊂ CTstd

∀∃ . On the other hand, ξ1 ≺ ξ1; as for instance I = {R(b, a), S(a), S(b)}

we have I ⊧ ξ(a, b), I
(ξ,h)
���→ J , where h = {X/a, Y /b}, J = I∪{R(a,Z),} and J /⊧ ξ(a,Z),

thus Σ is not stratified. Example 18 shows a set of TGD’s Σ such that Σ ∈Str but

Σ ∉ CTstd
∀∀ ∎

From the previous theorem and Theorem 10 it follows that the core-chase algorithm

terminates for all instances over a set of stratified TGD’s.

Meier et al. [61] improved the stratification notion in order to ensure also that the

standard-chase algorithm terminates on all execution branches for all instances. For

this they changed the ≺ relation as follows:

Definition 15 [61] Let ξ1 and ξ2 be two TGD’s. We write ξ1 ≺c ξ2, if there exist

instances I, J and vector ā ⊆ dom(I), such that

1. I ⊧ ξ2(ā), and

2. there exists an oblivious trigger (ξ1, h), such that I
∗(ξ1,h)
����→ J , and

3. J /⊧ ξ2(ā).

Given a set of TGD’s Σ, the c-chase graph associated with Σ is a directed graph

GCC
c = (V,E). With V = Σ and (ξ1, ξ2) ∈ E iff ξ1 ≺c ξ2. A set of TGD’s Σ is said to

be c-stratified if the set of dependencies in every cycle in the c-chase graph is weakly

acyclic. The set of all c-stratified dependencies is denoted by CStr.
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Theorem 19 [61] CStr⊂ CTstd
∀∀ and for any Σ ∈CStr and any instance I there exists

a polynomial, in the size of I, that bounds the execution time of the standard-chase

algorithm with I and Σ.

The previous theorem showed that CStr ensures termination for the standard chase.

We can now extend this result by showing that CStr ensures the termination of the

semi-oblivious-chase algorithm.

Theorem 20 CStr⊂ CTsobl
∀∀ and CStr ∦ CTobl

∀∀ .

Proof: Let us first prove that CStr⊆ CTsobl
∀∀ . For this, consider a set of TGD’s Σ ∈CStr.

Let us now consider the semi-enrichment Σ̃. We will show that if ξ1 ≺c ξ2 for ξ1, ξ2 ∈ Σ,

then ξ̃1 ≺c ξ̃2 for ξ̃1, ξ̃2 ∈ Σ̃. Let I, J be two instances and ā and b̄ be the vectors

such that I ⊧ ξ2(ā), I
∗(ξ1,h)
����→ J for some homomorphism h and J /⊧ ξ2(b̄). Consider

instance I ′ = I ∪ {H2(ā)}, where H2 is the relation symbol introduced by the semi-

enrichment for ξ2. By abusing the notation by H2(ā) we denote the tuple over H2 that

contains the values from ā that occurs in both the body and the head of ξ2. Let us also

consider instance J ′ = J ∪ {H1(h(x̄))}, where H1 is the relational symbol introduced

by the semi-enrichment for ξ1 and x̄ is the vector of universally quantified variables

that occurs both in the body and the head of ξ1. It is easy to observe that I ′ ⊧ ξ̃2(ā),

I ′
∗(ξ̃1,h)
����→ J ′ for homomorphism h, and J ′ /⊧ ξ̃2(b̄), thus ξ̃1 ≺c ξ̃2. From this it follows

that Σ̃ has an isomorphic c-chase graph with Σ (note that the same result holds for

the enrichment Σ̂). Also, we know that the dependency graphs corresponding to Σ̃ and

Σ are isomorphic as well (this property does not hold for the enrichment Σ̂). Thus

Σ ∈CStr implies that Σ̃ ∈CStr. Because we know from Theorem 19 that CStr ∈ CTstd
∀∀ ,

it follows that Σ̃ ∈ CTstd
∀∀ . On the other hand, Theorem 5 shows that if Σ̃ ∈ CTstd

∀∀ then

Σ ∈ CTsobl
∀∀ . Thus it follows that CStr⊆ CTsobl

∀∀ . For the strict part of the inclusion,

consider Σ1 = {ξ1 ∶ S(x),R(x, y) → ∃z R(y, z)}. Similarly to the proof from 18, it
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can be shown that Σ1 ∉CStr, but Σ1 ∈ CTobl
∀∀ ⊂ CTsobl

∀∀ . It remained to show only

that CStr/⊆ CTobl
∀∀ . For this consider Σ2 = {ξ ∶ R(x, y) → ∃z R(y, z)}. For this set of

dependencies we know from the previous proofs that Σ2 ∈WA⊂CStr and Σ2 ∉ CTobl
∀∀ ∎

The problem of checking if a set of Σ is in Str (or CStr) is known to be in coNP [23]

([61]). To the best of our knowledge the lower bound is still an open problem.

The following Theorem gives the relationship between CStr and the classes WA,

SD and SwA.

Theorem 21 WA ⊂ CStr, SD ∦ CStr [61] and SwA ∦ CStr [70]

4.8 Inductively Restricted Dependencies

Another class of dependencies that guarantees the standard-chase termination is the

inductively restricted set of dependencies. Note that the stratification method lifts

the weakly acyclic class of dependencies to the class of c-stratified dependencies. The

inductively restricted class generalizes the stratification method while still keeping the

termination property for the standard-chase algorithm. This generalization is done

using the so-called restriction systems [61]. With the help of the restriction systems,

Meier et al. [61] define the new sufficient condition called inductive restriction which

guarantees the standard-chase algorithm termination for all instances on all branches.

From this condition a new hierarchy of classes of dependencies is revealed with the

same termination property, called the T-hierarchy. Note that the inductive restriction

condition presented here is given from the erratum [62] and not from [61], where the

presented condition, as mentioned in the erratum, does not guarantee the standard-

chase termination on all execution branches for all instances.

89



4. Sufficient Conditions for the Chase Termination

Let Σ be a set of TGD’s, I an instance and A a set of null, A ⊆ ΔN. The set of

all positions (R, i) such that there exists a tuple in I which contains a null from A in

position (R, i) and which is denoted by null-pos(A, I) .

Similarly with ”≺” relation for the stratified dependencies, the binary relation ”≺P”

is defined for the inductive restriction condition for P a set of positions.

Definition 16 [61] Let Σ be a set of TGD’s and P a set of positions from Σ. Let ξ1,

ξ2 be two dependencies in Σ. It is said that ξ1 ≺P ξ2, if there exist instances I, J and

vector ā such that:

1. I ⊧ ξ2(ā), and

2. there exists an oblivious trigger (ξ1, h), such that I
∗(ξ1,h)
����→ J , for a homomor-

phism h, and

3. J /⊧ ξ2(ā), and

4. there exists X ∈ ā ∩ΔN in head(ξ2(ā)) such that null-pos({X}, I) ⊆ P .

Example 19 Consider Σ containing a single TGD ξ ∶ R(x, y) → ∃z R(y, z). Example

3 showed that there exists an instance I such that standard-chase algorithm does not ter-

minate for I and Σ. Consider I = {R(a, b)} and vector ā = (b,X1). It is easy to see that

condition 1 from the previous definition is satisfied, thus I ⊧ ξ(ā) as there is no homo-

morphism from body(ξ) to I. On the other hand, for homomorphism h = {X/b, Y /X1},

we have I
∗(ξ1,h)
����→ J , where J = {R(a, b),R(b,X)}, thus the second condition from the

previous definition is fulfilled as well. The third condition is also met as J /⊧ ξ(ā). The

4th condition is also satisfied. For this consider the null X1 ∈ ā, then we have ξ(ā)

representing formula R(a,X1) → ∃zR(X1, z). Thus, X1 occurs in head(ξ(ā)). On the

other hand, null-pos({X1}, I) = ∅, because instance I does not contain any nulls, that

is for any set P , null-pos({X}, I) ⊆ P . Thus ξ ≺P ξ, for any set P of positions.
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Definition 17 [61] Let P be a set of positions and ξ a TGD. aff-cl(ξ,P ) is the set of

positions (R, i) from the head of ξ such that:

1. for all x ∈ V ar∀(ξ), with x occurs in (R, i), x occurs in the body of ξ only in

positions from P , or

2. position (R, i) contains a variable x ∈ V ar∃(ξ).

Considering the dependency from Example 19, we have aff-cl(ξ,P ) = {(R,1), (R,2)},

where P = {(R,2)}. Given a set of dependencies Σ, by pos(Σ) is denoted the set of all

positions in Σ.

Definition 18 [61] A 2-restriction system is a pair (G(Σ), P ), where G(Σ) is a di-

rected graph (Σ,E) and P ⊆ pos(Σ) such that:

1. for all (ξ1, ξ2) ∈ E, aff-cl(ξ1, P ) ∩ pos(Σ) ⊆ P and aff-cl(ξ2, P ) ∩ pos(Σ) ⊆ P ,

2. for all ξ1 ≺P ξ2, (ξ1, ξ2) ∈ P .

A 2-restriction system is minimal if it is obtained from ((Σ,∅),∅) by a repeated

application of constraints 1 and 2, from the previous definition, such that P is extended

only by those positions that are required to satisfy condition 1. Let us denote part(Σ,2)

to contain the sets of all strongly connected components in minimal 2-restriction system.

Example 20 Considering Σ from Example 19, the minimal 2-restriction system is

computed as follows. Consider pair (({ξ},∅),∅). We previously showed that ξ ≺P ξ,

for any set of positions P . And by particularization we have ξ ≺∅ ξ. Thus, we add

edge (ξ, ξ) to E. Let us remember that the condition 1 from definition 18 stipulates

that aff-cl(ξ,∅) = {(R,2)}. Therefore, we add position (R,2) to P . By repeating this

process with P = {(R,2)}, we also add to P the position (R,1). Thus, the minimal

2-restriction system is ((Σ,{(ξ, ξ)),{(R,1), (R,2)}}). The only connected component

in this restriction system is {ξ}.
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Meier et al. provide in [61] a simple algorithm to compute the set part(Σ,2).

Definition 19 [61] A set Σ of TGD’s is called inductively restricted if every stratum

Σ′ ∈ part(Σ,2) is safe dependency. The set of all inductively restricted dependencies is

denoted with IR.

Note that the notion of inductively restricted set of dependency is defined very

similarly to the classes Str and CStr, in the sense that both classes consider stratification

of their set of dependencies and then test each stratum separately. In the case of Str and

CStr, each stratum is checked to satisfy the weak acyclicity condition. For the class

IR, each stratum is verified to satisfy the safe dependency condition. Similarly to the

stratification case, the membership problem (is Σ ∈ IR?) is known to be in coNP [61].

To the best of our knowledge no lower bound was proved. Next, let us review the

position of the IR class compared to the presented classes.

Theorem 22 [61] SD⊂IR and Str⊂IR.

From the second part of the theorem and definition of CStr class it follows that we

also have CStr⊂IR.

Theorem 23 [70] SwA ∦ IR.

The following example presents a set of dependencies in IR but not stratified.

Example 21 [61] Consider the following set of TGD’s Σ:

ξ1 ∶ S(x),E(x, y) → E(y, x)

ξ2 ∶ S(x),E(x, y) → ∃z E(y, z),E(z, x)

It can be easily observed that Σ is neither stratified nor safe, but inductively re-

stricted.
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Theorem 24 [61] IR⊂ CTstd
∀∀ and for any Σ ∈IR and any instance I there exists a

polynomial, in size of I, that bounds the execution time of the standard-chase algorithm

with I and Σ.

Meier, Schmidt and Lausen [61] observed that the inductive restriction criterion can

be extended to form a hierarchy of classes that ensures the standard-chase termination

on all branches for all instances. Intuitively, the lowest level of this hierarchy, noted

T [2], is the class of inductively restricted dependencies, thus T [2] =IR. Level T [k], k > 2,

is obtained by extending the binary relation ≺P to a k-ary relation ≺k,P. Based on this

new relation the set part(Σ, k) is computed similarly to part(Σ,2). In [61] is given the

algorithm that computes part(Σ, k). For all k ≤ 2, it is shown that T [k] ⊂ T [k + 1] and

also that the complexity of the membership problem remains in coNP for a fixed k.

Similarly to the reduction used in the proof of Theorem 20, it can be shown that

for any k ≥ 2 and for any Σ ∈ T [k] the semi-enrichment Σ̃ ∈ T [k]. On the other hand,

this may not hold for the enrichment Σ̂. From this we have the following result:

Theorem 25 For any k ≥ 2 we have T [k] ⊂ CTsobl
∀∀ and T [k] ∦ CTobl

∀∀ .

More recently, the T [k] hierarchy of classes was extended by Meier et al. [63] to the

∀∃ − T [k] hierarchy of classes that ensures the standard-chase termination on at least

one execution branch. Without giving a formal description of this new class hierarchy,

let us just present an example of dependency set from [63] that is in ∀∃−T [2] but does

not belong to any of the classes from the T [k] hierarchy.

Example 22 [63] Let Σ be the following set of TGD’s:

93



4. Sufficient Conditions for the Chase Termination

ξ1 ∶ R(x) → S(x,x)

ξ2 ∶ S(x, y) → ∃z T (y, z)

ξ3 ∶ S(x, y) → T (x, y), T (y, x)

ξ4 ∶ T (x, y), T (x, z), T (z, x) → R(y)

ξ5 ∶ T (x, y) → E(x, y)

ξ6 ∶ U(x),E(x, y) → E(y, x)

ξ7 ∶ U(x),E(x, y) → ∃z E(y, z),E(z, x)

It is obvious that Σ ∈ CTstd
∀∃ , as one may apply a terminating chase sequence on

Σ′ = {ξ1, ξ2, ξ3, ξ4} and then apply the rest of the rules from Σ. Note that, by applying

the rest of the rules, it will not affect the satisfiability of Σ′. Also note that both chase

sequences applied are terminating for all instances. Even more, in [63] it is shown that

Σ does not belong to any class from the T [k] hierarchy and that Σ ∈ ∀∃ − T [2].

4.9 Comparison between Classes

Before concluding this chapter dedicated to present different classes of dependencies

which ensure the termination of one or more chase algorithms, let us review how these

classes compare to each other and for which chase variation algorithm they ensure

termination.

From the practical point of view one of most important questions is regarding the

complexity of testing if a set of dependencies belongs to a given class. Figure 4.6

illustrates the complexity for the following problem: given C a class of dependency

sets and Σ a set of dependencies Is Σ ∈S?, note that for the classes with membership

problem in NP there was not yet proved a lower bound.

Next let us review for which algorithm these classes ensure termination given the
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SW RA WA SD SwA Str CStr IR/T [k]
Complexity P P P P P in NP in NP in NP

Figure 4.6: Set order between the presented classes

classes presented in this chapter. In Figure 4.7 we present each class of dependency sets

described in this section together with the termination criteria introduced in Chapter

3. The symbol “+“ mentiones that the given class is sufficient for the chase algorithm

termination with the given criterion. Note also that there are not mentioned all the

termination criteria because of the following equalities: CTobl
∀∀ = CTobl

∀∃ , CTsobl
∀∀ = CTsobl

∀∃ ,

CTres
∀∀ = CTres

∀∃ and CTcore
∀∀ = CTcore

∀∃ .

CTobl
∀∀ CTsobl

∀∀ CTstd
∀∀ CTres

∀∀ CTstd
∀∃ CTcore

∀∀

SW + + + + + +
RA + + + + + +
WA + + + + +
SD + + + + +
SwA + + + + +
Str + +
CStr + + + + +
IR/T [k] + + + + +

Figure 4.7: Classes ensuring termination for different chase algorithms

For an easier view we represent the set based comparison between different classes of

dependency as a Hasse diagram in Figure 4.8. Before concluding this section we need to

mention that more recently Greco et al. [41] extended the classes of dependencies that

ensure the standard-chase termination to new larger classes based on the stratification

method.
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Figure 4.8: Hasse diagram corresponding to classes of dependency sets
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4.10 The Rewriting Approach

Spezzano and Greco [70] noticed that all the previous classes may be properly extended

using a rewriting technique similarly to the Magic Sets rewriting method [12]. Intu-

itively, if T is one of the classes WA, SD, SwA, Str and CStr, then instead of directly

checking if a set of dependencies Σ ∈ T, we check if Adn(Σ) ∈ T, where Adn(Σ) is an

adornment based rewriting of Σ such that, for any instance I, the universal solutions

under Σ and I are the ”same” (with some schema transformations) with the set of

universal solutions under Adn(Σ) and I. Where the adornment of a predicate p of

arity m is a string of length m over the alphabet {b, f }. An adorned atom is of the

form pα1,α2,...,αm(x1, x2, . . . , xm); if αi = b, then the variable xi is considered bounded,

otherwise the variable is considered free.

We will present this method by using an example from [70]. Consider the following

set of dependencies Σ = {ξ1, ξ2}:

ξ1 ∶ N(x) → ∃y E(x, y)

ξ2 ∶ S(x),E(x, y) → N(y)

The affected positions in Σ are (E,1),(E,2) and (N,1). Because the propaga-

tion graph corresponding to Σ contains a cycle through an existential edge involving

positions (N,1) and (E,2), it follows that Σ ∉SD.

Let us now construct the set of dependencies Adn(Σ) as follows:

1. For all predicate symbols p of arity m in Σ add the TGD:

∀x1, x2, . . . , xm p(x1, x2, . . . , xm) → pα1,α2,...,αm(x1, x2, . . . , xm)

where, for all positive i ∈ [m], αi = b.

In our example Σ contains the following relational symbols {E,S,N}, that is we
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add to Adn(Σ) the following set of TGD’s:

ξ′1 ∶ E(x, y) → Eb b(x, y)

ξ′2 ∶ N(x) → Nb(x)

ξ′3 ∶ S(x) → Sb(x)

2. Repeat to create new adornment predicate symbols based on the existing de-

pendencies, until none can be added. That is a variable in the head is marked

as bounded (free) and if it occurs only bounded (free) places in the body. All

existential variables in the head are marked as free.

Returning to the example, by using ξ1 from Σ and the new adornment Nb , we

add the following dependency to Adn(Σ)

ξ′4 ∶ Nb(x) → ∃y Eb f (x, y)

Similarly based on TGD ξ2 from Σ and new adornments Sb and Eb b , we add

the following dependency to Adn(Σ)

ξ′5 ∶ Sb(x),Eb b(x, y) → Nb(y)

Repeating this process, we add the following TGD’s to Adn(Σ):

ξ′6 ∶ Sb(x),Eb f (x, y) → N f (y)

ξ′7 ∶ N f (x) → ∃y Ef f (x, y)

After this point no other adornments can be created.

3. Finally, for each of the adornment predicate pα in Adn(Σ) add a new dependency

in Adn(Σ) that ”copies” pα to a new p̂ predicate symbol. For the previous
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example, the following new dependencies are added:

ξ′8 ∶ Nb(x) → N̂(x)

ξ′9 ∶ N f (x) → N̂(x)

ξ′10 ∶ Sb(x) → Ŝ(x)

ξ′11 ∶ Eb b(x, y) → Ê(x, y)

ξ′12 ∶ Eb f (x, y) → Ê(x, y)

ξ′13 ∶ Ef f (x, y) → Ê(x, y)

Greco and Spezzano [70] prove that for all instances I, if J is a finite instance

obtained by the standard-chase algorithm on some branch with I and Σ, then Ĵ is a

finite instance obtained by the standard-chase algorithm on some branch with I and

Adn(Σ), where Ĵ is the restriction of the chase result to the hatted predicates from Σ.

Returning to the example, it can be noted that the set Adn(Σ) is safe. Thus, even

if the set Σ was not safe, the standard chase will terminate on all branches on Σ with

any instances.

Theorem 26 [70] Let T be one of the classes WA, SD, SwA, Str and CStr, let Σ be a

set of TGD’s, and let I be an instance. Then, if Adn(Σ) ∈ T, then Σ ∈ CTstd
∀∀ and there

exists a polynomial, in the size of I, that bounds the length of every standard-chase

sequence of I and Σ.

Even more, Spezzano and Greco [61] proved that these rewritings strictly extend

the previous classes of dependencies.

Theorem 27 [61] Let T be one of the classes WA, SD, SwA, Str, CStr and let AdnT

be the set of all Σ such that Adn(Σ) ∈ T. Then, T ⊂ AdnT.

This rewriting method is further improved by Greco et al. [41] by indexing the

adornment used to specify the free positions. This will ensure that we may equate only

variables that have the adornment with the same index.
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Chapter 5

Data Exchange, Repair and

Correspondence

In this chapter we will review three of the problems that make use of the chase procedure

in the process of finding “solutions“. First we will review the Data Exchange problem

and see what type of solutions are computed by the standard-chase algorithm, next we

will show how this result is improved by using the extended-core-chase algorithm. The

third section will review the Data Repair problems and present how the standard-chase

procedure helps in solving some of these problems in polynomial time for special classes

of dependencies. Finally we formally introduce the Data Correspondence setting and

check two of the main problems associated with this setting, that is solution-existence

and solution-check problems; and we will show how the standard-chase algorithm helps

to get tractability results for some cases. Part of the results of this section was first

published in [37].
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5.1 Data Exchange

For a complete and coherent introduction to the application of the chase procedure in

data exchange, we need first to present the notion of universal models and their relation

with the chase algorithm. This will be followed by a short review of the data exchange

problem and the link between universal models and query answering in data exchange.

In the final part of this section we will review the query answering problem in case

there are no universal models.

5.1.1 Universal Models

Universal models play an important role in many database problems, starting with the

testing for conjunctive query containment under functional and inclusion dependencies

[50], to the most recent problems of data integration [53], data exchange [27] and query

answering over ontologies [18]. Where the notion of model is defined as follows:

Definition 20 [23] Given an instance I and Σ a set of dependencies, an instance J

(finite or infinite) is said to be a model of I and set Σ if J ⊧ Σ, and there exists a

homomorphism from I to J , that is I → J .

Example 23 Consider instance I = {R(a, b),R(b, c)} and the set of dependencies Σ

containing one single tuple generating dependency: R(x, y),R(y, z) → R(x, z). Under

these settings the following instance J = {R(a, b),R(b, c),R(a, c)} is a model of I and

Σ. So the instance J1 = J ∪ {R(a,X)}, with X a null value from ΔN. On the other

hand, instance J2 = {R(a, b),R(a, c)} is not a model of I and Σ. This happens even

if J2 ⊧ Σ, because there is no homomorphism from I to J2. Considering instance

J3 = {R(a, b),R(b, c),R(b, a)}, there is a homomorphism from I into J3, but J3 /⊧ Σ,

thus J3 is not a model of I and Σ.
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As it can be seen from in previous example, in the general case there may be an

infinite number of models of I and Σ. Still, some of these models are more general

than the others in the sense that they have a homomorphism into all the other models.

Such models are called universal. This brings us to the following definition:

Definition 21 [23] An instance1 U is said to be a weak universal model of I and Σ if

U is a model of I and Σ, and for any finite model J of I and Σ, we have U → J . If we

also have that U → J for all infinite models J of I and Σ, then U is said to be a strong

universal model or simply a universal model .

Example 24 Considering instance I and dependency Σ from example 23, it is easy to

observe that both instances J and J1 are strong universal models. On the other hand,

the model J3 = {R(a, b),R(b, c),R(a, c),R(a, a)} is neither a strong or weak universal

model because there does not exist a homomorphism from J3 to model J .

The following theorem links the instances returned by the standard-chase procedure

to universal models.

Theorem 28 [23; 27] Let I be an instance and Σ a set of TGD’s and EGD’s. Then

any finite instance returned by the standard-chase algorithm is a universal model of I

and Σ.

Intuitively, the theorem says that whenever the standard chase terminates and it

does not fail, it gives a universal model of I and Σ. Thus, if chasestd
Σ (I) ≠ %, then

chasestd
Σ (I) is a universal model of I and Σ.

The following proposition ensures that the previous property holds for other chase

algorithms as well.

1Note that in this dissertation by instance we mean finite instance if not specified otherwise
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Proposition 16 If chase∗Σ(I) ≠ %, then chase∗Σ(I) is a universal model of I and Σ,

where ∗ is one of the following chase variations: oblivious, semi-oblivious, restricted

and core.

Proof: In Chapter 3 we showed that for oblivious, semi-oblivious and restricted-chase

variations represented here by ∗, if chase∗Σ(I) ≠ %, then chasestd
Σ (I) ≠ %. Also, in

the same chapter it was shown that if chase∗Σ(I) ≠ %, then it is that chase∗Σ(I) ⊧ Σ

and chase∗Σ(I) ↔ chasestd
Σ (I). This property also holds for the core chase as shown

in Theorem 29. The direct consequence is that chase∗Σ(I) is a universal model of I

and Σ∎

The previous result ensures that the chase procedure computes universal models of

its input. Naturally the following question raises: are these algorithms also complete in

finding universal models? The following example shows that we have a negative answer

to this question in case of the standard chase.

Example 25 Let us consider the same instance I = {R(a, b)} and Σ = {ξ1, ξ2} a set of

TGD’s as in Example 8:

ξ1 ∶ ∀x, y R(x, y) → ∃z R(y, z)

ξ2 ∶ ∀x, y R(x, y),R(y, z) → R(y, y)

As shown in Example 8, there is no terminating branch for the standard-chase

algorithm, but there exists universal model J = {R(a, b),R(b, b)} of I and Σ. Thus the

standard chase is not complete in finding universal models.

The result below shows that there exists one chase variation, namely the core chase,

that is complete in finding universal models.
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Theorem 29 [23] Let I be an instance and Σ a set of TGD’s and EGD’s. Then there

exists a universal model of I and Σ iff the core-chase algorithm terminates on input I

and Σ. Even more, chasecore
Σ (I) is a universal model of I and Σ.

From the definition of the universal models it follows that all universal models are

also weak universal models. The following example shows that the converse does not

always hold.

Example 26 [23] Let us consider instance I = {T (a)} and set Σ = {ξ1, ξ2, ξ3} of

TGD’s:

ξ1 ∶ T (x) → ∃y, z E(y, z)

ξ2 ∶ E(x, y) → ∃z E(y, z)

ξ3 ∶ E(x, y),E(y, z) → E(x, z)

Considering that relation E contains edges of a graph, clearly all models have an

infinite walk in the graph. This means that for every finite model it has a cycle in the

corresponding graph. From this and ξ3, it follows that any finite model has a self loop.

Then the instance J = {T (a),E(X,X)} is a model of I and Σ containing a self loop.

Consequently, J is a weak universal model of I and Σ. On the other hand, the transitive

closure of an infinite path also satisfies Σ, however no finite instance with cycle has a

homomorphism into it. This means that J is not a strong universal model of I and Σ.

We cannot conclude this section on universal models without emphasizing the result

of Deutsch et al. [23] showing that it is undecidable to say if an instance U is a strong

(weak) universal model of instance I and Σ a set of tgds. Even more, they demonstrated

that there is no complete chase based procedure for finding weak universal models.
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5.1.2 Solutions in Data Exchange

Data exchange is an old database problem that earned more formal treatment only

recently. More precisely, data exchange is the problem of transforming data structured

under a source schema to data structured under a different target schema. The concept

of mappings between schemata was introduced by Bernstein et al. in [14] and by Miller

et al. [65] for relational schemata. Let S and T be two disjoint schemata, which we

call the source schema and the target schema, respectively. A data exchange mapping

(or simply mapping) M from source S to target T is a set of pairs (I, J), where I is

an instance over schema S and I is an instance over schema T. Thus

M = {(I, J) ∣ I ∈ Inst(S) and J ∈ Inst(T)}. (5.1)

In most of the practical applications the data exchange mapping M is specified as

a tuple (S,T,Σst,Σt), where S represents the source schema, T represents the target

schema, Σst is a set of constraints representing the relationship between the source and

target schema, and Σt represents a set of constraints over the target schema. Thus, if

I ∈ Inst(S) and J ∈ Inst(T), then (I, J) ∈ M iff I ∪J ⊧ Σst ∪Σt. In this dissertation if

not mentioned otherwise, we will consider a mapping specified as previously.

Definition 22 Given a data exchange mapping M = (S,T,Σst,Σt) and instance I

over the source schema S, the data exchange problem is to find instances J , over the

target schema T, such that I ∪ J is a model for I and Σst ∪ Σt. An instance J with

the previous properties is called a solution to the data exchange problem, or simply a

solution.

Note that the solution to the data exchange problem is not necessarily a ground

instance. By SolM(I) is denoted the set of all ground data exchange problem solution

for a mapping M and source instance I.
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The data exchange problem was first formalized by Fagin et al. in their seminal

paper [27]. Most of the data exchange problems considered have Σst specified by a set of

TGD’s and Σt specified by a set of TGD’s and EGD’s. The mapping over this classes

of dependencies covers most of the practical mappings. From now on, if not mentioned

otherwise, we assume that the data exchange dependencies are of this format.

As there may be an infinite number of solutions to a given data exchange problem, a

natural question raises: which solution, or finite set of solutions, should be materialized

on the target? Unfortunately, there is no simple answer to this question, because it

also depends on the use of the solutions. In this subsection, we consider one of the

common cases when solutions are used to get certain answers for a set of union of

conjunctive queries (UCQ) over the target instance. This can be formalized by the

following definition:

Definition 23 Let M = (S,T,Σst,Σt), also let I be a source instance and q a query

in UCQ over schema T. The certain answer of q for I under M is defined as

certainM(q, I) =def ⋂
J∈SolM (I)

Q(J)

Fagin et al. [27] showed that the universal solution is a good candidate for materi-

alization in data exchange problem under the certain UCQ answer semantics. For more

clarity, an instance J is a universal solution for source instance I and data exchange

setting M = (S,T,Σst,Σt) if J is a solution for I and M and for all solutions K for

I and M we have J → K. It can be noted that a strong correlation exists between

the notion of data exchange solution and that of model, and correspondingly between

the notion of universal solution and universal model. Thus, any solution for a data

exchange mapping M = (S,T,Σst,Σt) and instance I is the restriction over the target

schema T for a model of I and the dependencies Σst ∪ Σt. Similarly, any universal

solution for M and I is also a universal model of I and the dependencies of Σst ∪ Σt
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restricted to the target schema. This means that all results specified in subsection 5.1.1

also hold for universal solutions. In particular, it means that the universal solution can

be computed by the standard-chase algorithm and it is undecidable if the universal

solution exists for a given mapping M and a given instance I. The following propo-

sition extends this result by showing that it is undecidable for a given mapping if the

standard chase will terminate for all source instances.

Proposition 17 Given a mapping M , it is undecidable if the standard (oblivious/semi-

oblivious/restricted/core) chase terminates for all source instances.

Proof: We will reduce the problem of deciding if the standard (oblivious/semi-oblivious

/restricted/core) chase terminates for an instance I and set of dependencies Σ to the

stated problem. For this, let us consider an instance I and set of dependencies Σ both

over schema R. Construct TGD ξ from I as follows:

ξ ∶ → R1(ā1),R2(ā2), . . . ,Rn(ān)

such that head(ξ) = I. Consider Σt = Σ∪{ξ}, Σst = ∅ and mapping M = (∅,R,Σst,Σt).

We can observe that the standard chase for mapping M and any instance I ′ terminates

if and only if the standard chase terminates on input I and Σ. From this reduction and

Theorem 2 (and correspondingly Theorems 3, 7, 8, 11) it follows that it is undecidable if

the standard (oblivious/semi-oblivious/restricted/core) chase terminates for all source

instances for a given mapping M∎

In [27], Fagin et al. present a sufficient condition for the universal solution to not

exist, as shown in the following theorem:

Theorem 30 [27] Let M = (S,T,Σst,Σt) be a mapping and I be a source instance

such that there is a failing branch for the standard chase with input I and Σst ∪ Σt.

Then there is no universal solution for I and M .
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In data exchange we may also have settings for which there exist solutions, but

there is no universal solution.

Example 27 Consider the mapping specified as follows:

M = ({S},{R},{S(x, y) → R(x, y)},{R(x, y) → ∃z R(y, z)})

and the source instance I = {S(a, b)}. Clearly, because of the second dependency, there

is no universal solution for this setting, but there exists a solution J = {R(a, b),R(b, b)}.

Kolaitis et al. in [52] proved that it is undecidable to check for a given instance I

and a mapping M if there exists a solution for I and M .

Before presenting how to compute the certain answers on target schema for UCQ

queries in a data exchange mapping using a universal solution, let us introduce the

notion of näıve evaluation as presented in [55]. Let I be an instance, possible with

null values, and q be a UCQ query. The qnäıve(I) is defined by evaluating q on I by

treating each null as new special constant, and then by eliminating from the result all

the tuples that contain such special constants.

Theorem 31 [27] Let M = (S,T,Σst,Σt) be a mapping and I an instance over the

source schema that does not contain nulls. Suppose also that there exists a universal

solution J for I and M . Then, certainM(q, I) = qnäıve(J) for any q ∈UCQ.

Libkin [55] showed that UCQ is the largest class of queries with the property that

the certain answers may be computed using the näıve evaluation. We may note here

the result from [27] which states that for a data exchange mapping M specified by a

weakly acyclic set of TGD’s one may get the certain answers to a union of conjunctive

query with at most one unequality per disjunct over an instance I and M from the

universal solution in polynomial time in the size of the data. This does not contradict
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with Libkin’s result as the certain answer to the query is not computed using the näıve

evaluation. We conclude this subsection by reiterating the result which specifies that

between the infinite set of universal solution there exists a universal solution which is

minimal in size. Such universal solution is called the core solution and, as noted in

[28], it is unique up to variable renaming. Even more, in [23] it was proved that if

there exists a universal solution then its core can be computed using the core-chase

algorithm.

5.1.3 Data Exchange beyond Universal Solutions

It is known that there is no universal solution for the mapping and the source instance

from Example 27. On the other hand, when considering the query q(x) ← ∃y R(x, y),

the certain answer contains the tuples {(a), (b)} . In their seminal paper [16], Cali,

Gottlob and Kifer investigate the problem of conjunctive query answering when the

universal solution is not guaranteed to exist. For this, the authors unravel two classes

of TGD’s , namely guarded tuple generating dependencies (GTGD) and weakly guarded

tuple generating dependencies (WGTGD), for which the problem of conjunctive query

evaluation is decidable. Intuitively, a TGD is guarded if its body contains an atom

called guard that covers all the variables in the body. Clearly LAV dependencies are

GTGD’s. A set of TGD’s is said to be weakly guarded if for each TGD its body

contains one atom that covers all the variables that appear in the affected position.

That is predicate positions that may contain new labeled nulls generated during the

chase process.

Example 28 Let us consider the following dependencies:

ξ1 ∶ S(x),R(x, y) → ∃z R(y, z)

ξ2 ∶ R(x, z),R(z, y) → R(y, x)
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In ξ1, the atom R(x, y) covers all the variables in the body, meaning that it is a

GTGD. Clearly, ξ2 is not GTGD as there is no atom to cover all variables from the

body. The affected position for the set {ξ1, ξ2} is (R,2), meaning that we may introduce

new labeled nulls during the chase process only in the second position of R. Because in

ξ2 the atom R(z, y) covers both variables that appear in the affected position in ξ2, it

follows that ξ2 is a WGTGD.

Cali et al. [16] give data complexity bounds for the conjunctive query answering

problem. This problem is expressed as follows: Does a tuple t belong to the certain

answer for a mapping M and a source instance I? In their paper, the complexity

bounds discovered are: (1) for a fixed set GTGD’s , the conjunctive query answering

problem is NP-complete; (2) for atomic queries, the problem becomes polynomial; (3) in

case the fixed dependencies are WGTGD’s , the conjunctive query answering problem

becomes EXPTIME-complete. More recently other classes of dependencies for which

one may get the certain answers to conjunctive queries are revealed by Cali et al. in

[19].

A universal solution is enough to compute certain answer for any UCQ query under

the certain answer semantics for UCQ queries over the target schema. Therefore, the

following question rises: Is this semantics also a good model for general queries? As

shown in [7] and [54], this semantics is not suitable for general queries, as it may give

unintuitive answers even for simple copying data exchange settings.

Example 29 Let us consider a data exchange setting M = ({R},{R′},Σst,∅), where

Σst simply copies the source into target: R(x, y) → R′(x, y). Consider the source

instance I = {R(a, b)} and query over the target schema q(x, y) ← R′(x, y) ∧¬R′(x,x).

Since one of the solution is instance J = {R′(a, b),R′(a, a)}, it follows that the certain

answer certainM(q, I) = ∅. Now, when applying the same query on the source instance

(by replacing relation name R′ with R), it returns the set of tuples {(a, b)}. Clearly
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this is not the expected behavior as the target instance is supposed to be a copy of the

source instance.

In order to solve the problems related to general queries, new closed world seman-

tics were proposed for the data exchange problem [38; 44; 45; 47; 54]. Libkin [54]

replaced universal solutions with a set of CWA-solutions (that are in fact universal

solutions), used afterwards to compute certain answers for FO queries. Hernich and

Schweikardt [47] introduced a new chase based algorithm, called the α-chase, to com-

pute CWA-presolutions, these are instances useful to compute the set of CWA-solutions.

In Chapter 6 we introduce a new closed world semantics and we argue that it is suitable

for the data exchange problem. The representation of the solution set in this case will

be done using conditional tables. A similar chase process for conditional tables that

consider only source-to-target dependencies was recently introduced in [10].

We close this sub-chapter by also mentioning the work of Afrati, Li and Pavlaki [5]

that extended the data exchange problem by considering dependencies with arithmetic

comparisons.

5.2 Data Repair

Data repair (or database repair) is one of the main problems associated with incon-

sistent databases. A data repair solution for an inconsistent database instance is a

consistent database instance over the same schema that differs minimally from the

initial instance. Based on the minimality criterion, different approaches are used:

symmetric-difference repair presented by Arenas et al. in [8]; subset-repairs as devel-

oped by Chomicki and Marcinkowski in [22]; cardinality repair proposed by Lopatenko

and Bertosi in [57]; attribute based repairs proposed by Wijsen [75] and the newly in-

troduced component-cardinality repair by Afrati and Kolaitis in [4]. The most studied
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problems related to database repair are: the repair solution-existence checking and the

decision problem if a given instance is a repair solution. In their work, Afrati and Ko-

laitis [4] prove the intractability for the repair check problem in general case and also

prove that the subset-repair and symmetric-difference repair are tractable for weakly

acyclic LAV dependencies. On the other hand, Staworko and Chomicki [71] demon-

strate the tractability for the same problems in case of full dependencies. In this section

we will provide an extended class of dependencies, called semi-LAV that properly in-

cludes both weakly acyclic LAV and full dependencies and still keeps the polynomial

complexity for the subset-repair and symmetric-difference repair problems.

5.2.1 Data Repair Solutions

A tuple (I,Σ) is called data repair setting (or simply repair setting), if I is a ground

instance over schema R and Σ is a set of dependencies over the same schema R. In the

remaining part of this chapter, if not specified otherwise, the set of dependencies are

identified by TGD’s. An instance J is said to be a repair solution (or simply solution)

for repair setting (I,Σ) if J ⊧ Σ and J differs in a “minimal“ way from instance I. The

minimality condition gives a set of solutions types for the database repair problem.

Definition 24 Let (I,Σ) be a repair setting over schema R. A ground instance J over

R such that J ⊧ Σ is said to be:

• subset-solution if J ⊆ I and it is maximal among subsets of I satisfying Σ.

• superset-solution if J ⊇ I and it is minimal among supersets of I satisfying Σ.

• ⊕-solution if J is ≤I-minimal among instances satisfying Σ.

Example 30 Consider the set of dependencies Σ = {ξ ∶ R(x, y) → ∃z R(x, z)} and the

instance I = {R(a, b),R(a, c),R(a, d),R(d, a)}. Also consider the following instances:
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J1

R(a, d)
R(d, a)

J2

R(a, b)
R(a, c)
R(a, d)
R(d, a)
R(b, a)
R(c, a)

J3

R(a, b)
R(a, c)
R(a, d)
R(d, a)
R(b, e)
R(c, e)
R(e, e)

J4

R(a, b)
R(a, d)
R(d, a)
R(b, a)

J5

R(a, d)
R(d, a)
R(b, b)

For the data repair setting (I,Σ), instance J1 is the only subset-solution, J2 and J3

are two superset-solutions, J4 is a ⊕-solution and instance J5 is neither type of solution

even if J5 ⊧ Σ because J5 ∖ {R(b, b)} is a subset of I that satisfies the dependency.

Note that in the previous example both instances J2 and J3 are superset-repairs

even if ∣J2∣ < ∣J3∣. There are also other types of repairs that consider cardinality as

a measure for minimality. In [57] Lopatenko and Bertossi introduce the cardinality

repairs and later Afrati and Kolaitis [4] define the component-cardinality repairs. In

this dissertation we will not consider these types of repairs as these problems become

intractable (coNP-complete) even for the simple class of full TGD’s. In general, for

each type of repairs there may be several solutions or it may also be that there does

not exist a solution at all.

Definition 25 Decision problems considered:

• Existence-of-Repair(Σ, subset/superset/⊕-repair)

The input is an instance I and the question is whether I has a subset/superset/⊕-

repair for (I,Σ)

• Repair-Checking(Σ, subset/superset/⊕-repair)

The input is instances I and K and the question is whether the instance K is a

subset/superset/⊕ repair for (I,Σ)
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5.2.2 Basic Characterizations

Our first contribution is a general characterization of repairs, applicable to any set of

TGD’s. For this we need the following lemma and definition.

Lemma 2 [30] Let I and J be instances and Σ a set of TGD’s over a schema R. If

I ⊆ J , then there exists a homomorphism h such that h(chasestd
Σ (I)) ⊆ chasestd

Σ (J).

Before we introduce the next definition let us consider the following example.

Example 31 Let Σ contain the set of TGD’s:

ξ1 ∶ Emp(e) → ∃m EmpMgr(e,m)

ξ2 ∶ EmpMgr(e,m) → Manager(m)

ξ3 ∶ EmpMgr(e, e) → SelfMgr(e)

Also consider instance I = {Emp(john),Emp(ray)}. In this case the following instance

represents chasestd
Σ (I):

chasestd
Σ (I)

Emp(john)
Emp(ray)
Manager(X)
Manager(Y )
EmpMgr(john,Y )
EmpMgr(ray, Y )

Let us now consider ground instance J specified as follows: EmpJ = {(john), (ray)};

MgrEmpJ = {(john.john), (ray, john)}; ManagerJ = {(john)} and SelfMgrΣ = ∅.

It is easy to observe that h = {X/john,Y /john} is a homomorphism from chasestd
Σ (I)

into J actually h(chasestd
Σ (I)) = J , but on the other hand neither J or h(chasestd

Σ (I))

satisfy Σ.
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The previous example leads to the introduction of a new type of homomorphism

called Σ-satisfying homomorphism:

Definition 26 Given an instance K and a set Σ of TGD’s over a schema R, as

well as a ground instance I over R, a Σ-satisfying homomorphism from K into I is a

homomorphism h from K into I, such that h(K) ⊆ J ⊆ I, and J ⊧ Σ, for some J ⊆ I.

We can now state some necessary and sufficient conditions for which an instance

K, such that K ⊧ Σ, is a ⊕-repair for a given repair setting (I,Σ). The first condition

of this theorem assures that K ∖ I does not contain superfluous tuples. The second

condition guarantees that no more tuples from I could be added to K and still satisfy

the dependencies.

Theorem 32 Let Σ be a set of TGD’s, I and K two ground instances such that K ⊧ Σ.

Then K is a ⊕-repair for (I,Σ) if and only if the following conditions are satisfied:

1. For all Σ-satisfying homomorphisms h such that h(chasestd
Σ (I ∩K)) ⊆ K, and

all instances J ⊆ K, such that J ⊧ Σ and h(chasestd
Σ (I ∩K)) ⊆ J , it holds that

J = K.

2. There do not exist a tuple t ∈ I ∖K and Σ-satisfying homomorphism h with an

instance J ⊆ K ∪ I, J ⊧ Σ, such that h(chasestd
Σ ((I ∩K) ∪ {t})) ⊆ J ⊆ K ∪ I.

Proof: Suppose K is a ⊕-repair for (I,Σ). As K ⊧ Σ, we have chasestd
Σ (K) = K. From

Lemma 2 it is that there exists h with h(chasestd
Σ (I ∩K)) ⊆ K. Toward a contradiction,

suppose that there exists a ground instance J , such that h(chasestd
Σ (I ∩K)) ⊆ J ⊂ K

and J ⊧ Σ. Then J ∖ I ⊂ K ∖ I and, since I ∩K ⊆ chasestd
Σ (I ∩K) and I ∩K is ground,

we have that I ∩K ⊆ J , meaning that I ∖ J ⊆ I ∖K, and consequently that J ≤I K.

But this contradicts the assumption that K is a ⊕-repair. Therefore it must be that

J = K, meaning that K satisfies condition 1.
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Suppose then that condition 2 is violated, and tuple t, Σ-satisfying homomorphism

h and instance J exist. Since, for such a J , we would have I ∖J ⊂ I ∖K, it would follow

that J ≤I K, contradicting the assumption that K is a ⊕-repair.

For the only if direction, let K be an instance such that K ⊧ Σ and K satisfies

conditions 1 and 2. We need to show that K is ≤I -minimal. If this is not the case,

there must be an instance J , such that J ⊧ Σ and J <I K. Thus J ∖ I ⊆ K ∖ I,

and I ∖ J ⊆ I ∖ K, and at least one of the inclusions is proper. Suppose first that

it were the case that I ∖ J = I ∖ K. Then we would have J ⊆ K. Thus, if J ∖ I

were to be a proper subset of K ∖ I, it would necessarily be that J ⊂ K. Since then

I ∩ K = I ∩ J , we have chasestd
Σ (I ∩K) = chasestd

Σ (I ∩ J). By Lemma 2 we have a

homomorphism h, such that h(chasestd
Σ (I ∩ J)) ⊆ chasestd

Σ (J) = J . Then it would hold

that h(chasestd
Σ (I ∩K)) ⊆ J ⊂ K, contradicting condition 1.

If it were the case that I ∖ J ⊂ I ∖K, we would find a tuple t ∈ (J ∩ I) ∖ (K ∩ I),

that is in I ∖K, such that by Lemma 2 we would have a homomorphism h, such that

h(chasestd
Σ ((I ∩K) ∪ {t})) ⊆ J ⊆ K ∪ I, a contradiction to the assumption that K

satisfies condition 2∎

5.2.3 Complexity Results

In order to introduce the data complexity results for the problems formalized in Defi-

nition 25, we need first to define some preliminary notions.

Definition 27 The Gaifman graph GI for an instance I is an undirected graph with

vertex set dom(I) and an edge between two vertices x and y if x and y appear together

in a tuple of I.

Definition 28 The Gaifman graph of nulls GI
ΔN

is the Gaifman graph GI restricted

to the nulls occurring in I.
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Definition 29 A block is a connected set of nulls in GI
ΔN

. Let N ⊆ ΔN. We denote

by blocks(N, I) the set of all blocks from the Gaifman graph of nulls GI
ΔN

restricted to

the nulls in N . If b is a block we denote by blocksize(b) the cardinality of b.

The blocksize definition is extended to an instance I. Thus blocksize(I) is the size

of the largest block of nulls in I. For an instance I, we said that it had a bounded block

size if there existed a constant c such that blocksize(I) ≤ c. In this case we say that

the blocksize is bounded by c. Clearly any finite instance has a bounded blocksize.

The next theorem is due to Fagin, Kolaitis and Popa [28] and was further highlighted

by Gottlob and Nash [34]. Note that any set of source-to-target tgds is non-recursive,

hence weakly acyclic.

Theorem 33 [28]

1. Let I be a ground instance, and Σ a weakly acyclic set of TGD’s. Then the size

of chasestd
Σ (I) is polynomial in I.

2. Let I1 be a ground instance over R1 and I2 be a ground instance over R2. Let Σ

be a set of source-to-target TGD’s. Then chasestd
Σ12

(I1 ∪ I2) has bounded blocksize.

3. Let I and K be instances such that blocksize(K) ≤ c, for some constant c. Then it

can be tested whether there exists a homomorphism from K to I in time O(∣K ∣c).

We will also use the following result obtained by Afrati and Kolaitis.

Theorem 34 [4] Let Σ be a set of weakly acyclic TGD’s and I an instance, such that

I ⊧ Σ. Then there exists a constant c, depending only on Σ, such that for each tuple

t ∈ I there is an instance Kt ⊆ I, such that t ∈ Kt,Kt ⊧ Σ, and ∣Kt∣ ≤ c.

Armed with these results we will derive a polynomial time algorithm that determines

the existence of database repair solution for weakly acyclic set of TGD’s.
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Theorem 35 Let Σ be a weakly acyclic set of TGD’s. Then the problem

Existence-of-Repair(Σ, subset)

can be solved in polynomial time.

Proof: Let (I,Σ) be a repair setting and c the constant mentioned in Theorem 34

Consider the following algorithm:

Repair-Search(I,Σ, c)

1 for i ← 1 to c

2 do for K ⊆ I, ∣K ∣ = i

3 do if K ⊧ Σ return true

4 return False

The algorithm is obviously sound. The completeness follows directly from Theo-

rem 34. The inner loop on line 2 is executed at most (∣I ∣i ) times and the outer loop on

line 1 at most c times. Thus, line 3 is executed at most ∣I ∣c times. Each execution of

line 3 is done in space logarithmic in at most c. Consequently, the algorithm runs in

time polynomial in the size of I∎

We note that Existence-of-Repair(Σ, superset) is a non-problem, since superset-

solutions always exist (recall that no egd’s are present). We now turn our attention to

the solution checking problem.

Afrati and Kolaitis derived the following complexity theoretic characterization for

repair checking with weakly acyclic TGD’s.

Theorem 36 [4] There is a weakly acyclic set Σ of TGD’s such that the following

problems: Repair-Checking(Σ, subset), Repair-Checking(Σ,⊕) are both coNP-

complete.

To this we can now add the missing piece.
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Theorem 37 There is a weakly acyclic set Σ of TGD’s such that the problem of

Repair-Checking(Σ, superset) is coNP-complete.

Proof: We will show that the complementary problem of deciding whether an instance

K is not a superset-repair of I w.r.t. Σ is NP-complete.

For the upper bound, we check in logarithmic space if K ⊧ Σ, if not, K is not

a superset-repair. Otherwise non-deterministically choose an instance J such that

K ⊃ J ⊇ I. It follows that K is not a superset-repair if and only if J ⊧ Σ. Again

the satisfaction can be tested in logarithmic space.

For the lower bound we will again reduce the Positive 1-In-3-SAT problem to

the superset-repair checking problem.

Recall the Positive 1-In-3-SAT is the following decision problem: given a Boolean

formula ϕ in a conjunctive normal form with each conjunct is a disjunction of exactly 3

literals, is there a truth assignment for ϕ that makes true exactly one variable in each

conjunct? This problem was showed by Schaefer [69] to be NP-complete.

Returning to our reduction, consider the schema having five relations P,T,S,D,E

of arities 3,2,3,2 and 1 respectively. The dependencies Σ will be :

P (x, y, z) → ∃u, v,w T (x,u), T (y, v), T (z,w), S(u, v,w)

T (x,u), T (x,u′),D(u,u′) → ∃y E(y)

T (x,u),E(y) → ∃u′ T (x,u′),D(u,u′)

Given an instance P of the Positive 1-In-3-SAT problem we construct I as

P I = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

T I = ∅

SI = {(0,0,1), (0,1,0), (1,0,0)}

EI = ∅

DI = {(0,1), (1,0)}

and instance K as containing I plus the following tuples:
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TK = {(x,1), (x,0) ∶ x is a variable in P}

EK = {(0)}

This reduction clearly is being polynomial and, since obviously K ⊧ Σ, it remains only

to prove that there exists a truth assignment for P making exactly one variable in each

clause true if and only if K is not a superset-repair. For the if part suppose that there

exists such a truth assignment. Let J be an instance that contains I plus:

T J = {(x,u) ∶ u is the assignment for variable x in the solution of P}

It is easy to see that J ⊧ Σ and that K ⊃ J ⊇ I. In other words, K is not a

superset-repair.

For the only if part, suppose that K is not a superset-repair. This means that

there exists an instance J such that K ⊃ J ⊇ I, and J ⊧ Σ. As the inclusion between

J and K is proper, it means that there exists at least one tuple in K ∖ J . From the

construction of K it follows that the tuple is either in TK or in EK . If the tuple is in

TK , since J ⊧ Σ, the last dependency tells us that the tuple (0) cannot be in EJ . Then

the second dependency implies that T J contains a proper truth assignment, and the

first dependency implies that this truth assignment actually is Positive 1-In-3 and

satisfies P∎

In order to overcome the intractability barriers for the previous problems, it is clear

that the set Σ of dependencies has to be restricted. We next introduce a large class

of TGD’s for which all of the considered problems can be solved in polynomial time.

The proofs rely on recently developed homomorphism techniques (i.e. [4; 27; 33]), and

on the Σ-satisfying homomorphisms introduced in Definition 26.

First, we introduce the new class of TGD’s. For this, we need the concept of the

rank of a node in the dependency graph (see Definition 6) of a set Σ of TGD’s.
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Definition 30 ([27]) Let (R, i) be a vertex in the dependency graph of a set Σ of

TGD’s. Then rank(R, i) is the maximum number of existential edges along any path

in the graph ending in (R, i).

Lemma 3 ([27]) If Σ is a weakly acyclic set of TGD’s, then for each vertex (R, i)

of the dependency graph of Σ, rank(R, i) is finite and is bounded by some constant c

depending only on Σ.

Definition 31 Let Σ be a set of TGD’s over a schema R. For all relational symbols

R ∈ R that occur in Σ, we say that a position (R, i) is unsafe if rank(R, i) > 0. Any

relational symbol R that contains an unsafe position is said to be unsafe. A set Σ of

weakly acyclic dependencies is said to be semi-LAV if all unsafe relational symbols occur

in the body of LAV-dependencies only.

Example 32 Consider the following simple set of dependencies that is neither full or

LAV:

ξ1 ∶ R(x, y) → ∃z R(x, z), S(x)

ξ2 ∶ S(x), S(y) → ∃z R(x, z),R(z, y)

In this set we have rank(R,1) = 1, rank(R,2) = 2 and rank(S,1) = 0. Thus,

relation R is unsafe. On the other hand, relation R is safe so it may appear in the body

of the non-LAV dependency ξ2.

The class of semi-LAV TGD’s possesses several useful properties, as it will be shown

next.

Lemma 4 Let Σ be a set of semi-LAV TGD’s, let I be a ground instance and K be

the result of an arbitrary standard-chase sequence using Σ starting from I. Then for

any null X that occurs in K, the number of tuples in K containing X is bounded by a

constant that depends only on Σ.
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Proof: Let J be the first instance in the chase sequence from I to K where the null

X appears, and denote with JX the subset of tuples of J where X appears. If r is the

maximum number of atoms in the consequent of any dependency in Σ, it is clear that

∣JX ∣ ≤ r. Furthermore, as null value X can appear only in tuples of unsafe relations

(called unsafe tuples), it means that the tuples in JX can only be matched with the body

of some LAV-dependencies, each such body consisting of a single atom. Consequently,

the set of tuples KX in K that contain X can be generated by chasing JX using only

the LAV-dependencies in Σ. As Σ is weakly acyclic, it follows from Theorem 33 that

there is a polynomial p such that ∣KX ≤ p(∣JX ∣). Thus ∣KX ∣ ≤ p(r), which is a constant

depending only on Σ∎

Lemma 5 Let Σ be a set of weakly acyclic TGD’s, I a ground instance, and K the

result of some arbitrary standard -chase sequence using Σ starting from I. Then there

exists a partitioning {V0, V1, . . . , Vm} of the nulls in K, such that null X ∈ Vi iff X was

generated during the chase process using only nulls from {V0, . . . , Vi−1}.

Proof: Let N0,N1, . . . ,Nm be a partition of the nodes in the dependency graph of Σ

based on their rank. Since Σ is weakly acyclic, such a partitioning exists and, for any

dependency in Σ, the rank of the positions in the consequent is larger than or equal to

the rank of any position in the body of the dependency [27]. We show the existence

of the null partitioning constructively based on the chase steps. Initially let Vi be the

empty set for all i ∈ {0,1, . . . ,m}. During the chase process, when a new null X is

created in a position (R, i), we add this null to set V1, if there were no nulls in the

tuples that triggered the dependency. We add the null X to the set Vi if the set of nulls

belonging to the tuples that triggered the dependency that generated X is a subset of

{V0∪V1∪. . .∪Vi−1} and if there exists a null Y in that set such that Y ∈ Vi−1. Because the

rank of each position is at most m, it means that null X cannot be generated by a null
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belonging to Vm or higher. This proves the existence of partitioning {V0, V1, . . . , Vm}

of the nulls. Note that V0 = ∅∎

Theorem 38 Let Σ be a set of semi-LAV TGD’s, let I be a ground instance, and K

be the result of some arbitrary standard-chase sequence using Σ starting from I. Then

there is a constant c, depending only on Σ, such that blocksize(GK) ≤ c.

Proof: Recall that we denote by GK the Gaifman graph of nulls for instance K (see

Definition 28). Let {V0, V1, . . . , Vm} be the partitioning of the variables in K, as de-

scribed in Lemma 5. We prove by an induction on i that there are constants ci, such

that, for any block b ∈ blocks(V0 ∪⋯∪Vi,G
K), we have blocksize(b) ≤ ci, meaning that

blocksize(GK) = max{blocksize(b) ∶ b ∈ blocks(V0 ∪⋯∪ Vm,GK)} ≤ cm.

Basis: Clearly V0 = ∅, and blocks(V0,G
K) = ∅. We can therefore set c0 = 0.

Inductive step: Let b be a block in blocks(V0 ∪⋯∪ Vi,G
K). If all the nulls in b are

in V0 ∪⋯ ∪ Vi−1, the block b is also in blocks(V0 ∪⋯ ∪ Vi−1,G
K) and, by the inductive

hypothesis, we have blocksize(b) ≤ ci−1. Suppose then that X is a null in b from Vi.

This means that X was generated from variables in V0 ∪ ⋯ ∪ Vi−1 by an existential

dependency ξ. There are three cases to consider:

Case 1: ξ is a dependency with possibly several atoms in the body. Then all these

atoms are over safe relations, thus not mapped to nulls during the chase process. Thus

X, along with the other existential nulls in the consequent of ξ will form their own

block in blocks(V0 ∪ ⋯ ∪ Vi,G
K), with blocksize at most s, where s is the maximum

number of special edges incident from any node in the dependency graph of Σ.

Case 2: ξ has a single unsafe atom in the body, but none of the (universally quan-

tified) variables in the body occurs in the head. Then ξ does not propagate any nulls

from the body to the head and, as in case 1, the null X will belong to a block in

blocks(V0 ∪⋯∪ Vi,G
K), with blocksize at most s.
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Case 3: ξ has a single unsafe atom in the antecedent. Then ξ was triggered by

a single tuple containing only variables in V0 ∪ ⋯ ∪ Vi−1. Thus each of these variables

belong to a block b′ ∈ blocks(V0 ∪ ⋯ ∪ Vi−1,G
K) and, by the inductive hypothesis,

blocksize(b′) ≤ ci−1. Therefore b′ consists of at most ci−1 nulls, say N = {Y1, . . . , Yci−1}.

Let KN symbolize the subset of tuples of K that contains nulls in N and let KN�
denote

the tuples that contain null y�. By Lemma 4, there are constants d1, . . . , dci−1 such that

∣Ky�
∣ ≤ d�, for 	 ∈ {1, . . . , ci−1}. Consequently ∣KN ∣ ≤ ∑ci−1

�=1 d�. Each tuple in KN can

generate at most D ⋅ s new null X in Vi, where D is the number of dependencies in Σ.

Each such generated null X increases the blocksize of b′ by at most one. Consequently

blocksize(b) ≤ blocksize(b′) + ∣KN ∣ ⋅D ⋅ s ≤ ci−1 +∑ci−1

�=1 d� ⋅D ⋅ s∎

The following theorem shows that for the semi-LAV class of dependency sets the

existence of the Σ-satisfying homomorphism can be done in polynomial time. This is

a crucial result proving the tractability results for the repair problems.

Theorem 39 Let Σ be a set of semi-LAV TGD’s, and I and K be two ground in-

stances such that K ⊆ I. Then the problem of deciding if there exists a Σ-satisfying

homomorphism from chasestd
Σ (K) into I is polynomial.

Proof: We know that the result of chasing a ground instance with a set of semi-LAV

TGD’s has the size of each block bounded by a constant that depends only on Σ. Also,

we know from the definition of semi-LAV TGD’s that unsafe relational symbols (that

is relational symbols that may contain nulls generated during the chase process) in Σ

appear only in the body of LAV TGD’s.

The following algorithm takes as input a set Σ of semi-LAV TGD’s, a ground

instance I and the constant c from Theorem 34. The algorithm returns true if there is

a Σ-satisfying homomorphism from chasestd
Σ (K) into I and it returns false otherwise.

For a block b of nulls of J , we denote by Jb the set of all tuples where nulls of b occur.

Also, for an instance I, we denote by Iu the subset of unsafe tuples in I.
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Homom-Search(K,I,Σ, c)

1 J ← chasestd
Σ (K), result ← true

2 for each block b ∈ blocks(GJ) do

3 resultb ← false

4 for each homom. hb from b to I do

5 for each tuple t ∈ hb(Jb) do

6 for i ← 1 to c do

7 for Ab,t ∶ {t} ⊆ Ab,t ⊆ Iu, ∣Ab,t∣ = i do

8 if (hb(b) ∪Ab,t) ⊧ Σ

9 then resultb ← true

10 result ← result & resultb

11 return result

Suppose that the algorithm returns true. Let b be a block in GJ . Based on an

enumeration of dom(K ∪ I), let hb be the first homomorphism the algorithm discovers

and, for each t ∈ Jb, let Ab,t, the smallest corresponding set, such that (hb(Jb)∪Ab,t) ⊧ Σ.

Let

JΣ = ⋃
b∈blocks(GJ)

(hb(Jb) ∪ {Ab,t ∶ t ∈ hb(Jb)}) .

We claim that h = ⋃{hb ∶ b ∈ blocks(GJ)} is a Σ-satisfying homomorphism form J to

I. Clearly h(J) ⊆ JΣ ⊆ I. We thus have to show that JΣ ⊧ Σ, that is that JΣ ⊧ ξ for

each ξ ∈ Σ. There are two cases to consider:

Case 1: ξ is a LAV-tgd whose body consists of a single atom over an unsafe pred-

icate. Let t ∈ JΣ be an unsafe tuple triggering ξ. Then there is a block b in GJ , such

that t ∈ hb(Jb), or t ∈ Ab,t. Then (hb(b)∪Ab,t) ⊧ ξ. Since LAV TGD’s are closed under

union [73] and all sets Ab,t contain only unsafe tuples, it follows that JΣ ⊧ ξ.

Case 2: The body of ξ consists of possibly several atoms and all these atoms are

over safe predicates. Since any possible set of triggering tuples is already present in J

and J was obtained by chasing K with Σ, it follows that JΣ ⊧ ξ.
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To show that the algorithm is complete, let J = chasestd
Σ (K) and suppose that

there exists a homomorphism h and an instance L ⊧ Σ, such that h(J) ⊆ L ⊆ I. Let

h be the smallest such homomorphism, based on the enumeration of dom(K ∪ I). We

need to show that the algorithm returns true. The homomorphism h can obviously

be expressed as a union of homomorphisms hb, each from a block of b ∈ blocks(GJ).

Thus, the algorithm will certainly discover h. Since h(J) ⊆ L, and L ⊧ Σ, Theorem 34

guarantees that, for each b and tuple t ∈ Iu, the corresponding set Ab,t ⊆ L will be

discovered by the algorithm. Consequently, the algorithm will return true.

It remains to analyze the time complexity of the algorithm. We know from Theo-

rem 33 that the size of J is polynomial in the size of K and that J , therefore, has a

polynomial number of blocks. The same theorem also tells us that, for each block of

b ∈ blocks(GJ), there are at most ∣I ∣c homomorphisms from b into I. Similarly to the

algorithm in Theorem 35, line 8 is repeated at most O(∣I ∣c) times. Finally, the test if

(hb(b) ∪Ab,t) ⊧ Σ can be done in space logarithmic in ∣I ∣. In conclusion, the algorithm

runs in time polynomial in ∣K ∣ + ∣I ∣∎

The preceding theorems allow us to derive polynomial time algorithms for the repair

problems, for the case when Σ is a set of semi-LAV TGD’s.

Theorem 40 Let Σ be a set of semi-LAV dependencies. Then the following problems

Repair-Checking(Σ, superset/subset/⊕) are polynomial.

Proof: Let us first consider the ⊕-case. We want to check if an instance K is a ⊕-

repair of I w.r.t. Σ. First test if K ⊧ Σ. If so, K is indeed a ⊕-repair if and only

if both conditions in Theorem 32 are fulfilled. Since Σ is semi-LAV, the required

homomorphism tests can be done in polynomial time, as per Theorem 39. For the

subset and superset cases, it suffices to test condition 2 and condition 1 respectively, of

Theorem 32∎
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We conclude this complexity result section with a review of the complexity results

known for data repair problems. For the repair existence problem, we showed that

for a weakly acyclic set of TGD’s deciding of the existence of the subset-repair can

be done in polynomial time (Theorem 35). Clearly, the existence of the superset and

⊕ repairs are non-problems for weakly acyclic set of TGD’s. The table bellow shows

the complexity results for the repair checking problem based on the weakly acyclic and

semi-LAV classes of TGD’s.

Repair Check Σ weakly acyc. Σ semi-LAV

subset coNPC [4] P Thrm. 40

superset coNPC Thrm. 37 P Thrm. 40

⊕ coNPC [4] P Thrm. 40

Figure 5.1: The complexity of data repair

5.3 Data Correspondence

Data correspondence is an old practical problem that has not yet been formalized. For

a better intuition behind the correspondence problem, consider a company that keeps

periodical backups of its database. Through schema evolution the database structure

may change in time. Now, one may want to verify the consistency of the current

database instance with a backup made when the database had a different schema.

Figure 5.2 presents such a scenario when the current database instance at time tn

becomes inconsistent and the “repair“ of this instance is done in correspondence with

the backup instance Ibak from time t0 when the schema was not normalized. Note

that the arrows are in both directions. The direction from instance Ibak to the current

instance In ensures the completeness criterion. The direction from In to Ibak represents
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the soundness criterion.

Figure 5.2: Data Correspondence for schema evolution

5.3.1 The Data Correspondence Problem

In this subsection we will formally introduce the data correspondence setting, the data

corresponding problems and we will also introduce some results needed in order to

provide complexity bounds for these problems.

Let R1 and R2 be two schemata with no relation symbols in common. A (data)

correspondence TGD for (R1,R2) is either a TGD of the form

φ1(x̄) → ∃ȳ φ2(x̄, ȳ),

or a TGD of the form

φ2(x̄) → ∃ȳ φ1(x̄, ȳ),

where all the atoms of φ1 are over R1 and the atoms of φ2 are over R2. We consider

finite sets Σ = Σ12 ∪ Σ21 of such correspondence TGD’s, where Σ12 contains all the
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TGD’s of the first form, and Σ21 the TGD’s of the second form. Note that Σ12 are

used to specify a data exchange mapping [26], where the source schema is R1 and the

target schema is R2.

A (data) correspondence mapping is as a triple of the form (R1,R2,Σ), where

Σ = Σ12 ∪Σ21 is a set of correspondence mappings for (R1,R2) as above. We say that

a ground instance (I1, I2) over (R1,R2) satisfies the setting if (I1, I2) ⊧ Σ.

Let (R1,R2,Σ) be a data correspondence setting, and (I1, I2) a ground instance

over (R1,R2). Then ⟨(I1, I2), (R1,R2,Σ)⟩ denotes an instance of the uniform-data

correspondence problem. For simplicity, we call it uniform correspondence problem. For

such an instance, usually simply denoted (I1, I2,Σ), there are three types of solutions,

namely: subset-solutions, superset-solutions, and ⊕-solutions.

Definition 32 Let (I1, I2,Σ) be an instance of the uniform data correspondence prob-

lem and (K1,K2) a ground instance over (R1,R2). If (K1,K2) satisfies Σ and K1 ∪

K2 ≠ ∅, we say that (K1,K2) is a

• subset-solution if (K1,K2) ⊆ (I1, I2) and (K1,K2) is maximal among the subsets

of (I1, I2) satisfying Σ;

• superset-solution if (K1,K2) ⊇ (I1, I2) and (K1,K2) is minimal among the su-

persets of (I1, I2) satisfying Σ;

• ⊕-solution if (K1,K2) is ≤(I1,I2)-minimal among the instances satisfying Σ,

where the notion of subset is extended to pair of sets as follows: (A,B) ⊆ (C,D)

iff A ⊆ C and B ⊆ D. Note, in the previous definition, that in all cases an instance

can have one or several solutions. Subset and ⊕-solutions might not exist, whereas

superset-solutions always do.

The non-uniform-data correspondence problem (shortly called the non-unform cor-

respondence problem) is similar to the uniform one, except that the instance I1 is kept
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fixed when looking for solutions. This has, among other things, the consequence that

not even superset-solutions are guaranteed to exist.

Definition 33 Let (I1, I2,Σ12 ∪ Σ21) be an instance of the non-uniform-data corre-

spondence problem and K2 a ground instance over R2. If (I1,K2) satisfies Σ, we say

that K2 is a

• subset-solution if K2 ⊆ I2 and K2 is maximal among the subsets of I2, such that

(I1,K2) satisfies Σ;

• superset-solution if K2 ⊇ I2 and K2 is minimal among the supersets of I2, such

that (I1,K2) satisfies Σ;

• ⊕-solution if K2 is ≤I2-minimal among the instances of R2, such that (I1,K2)

satisfies Σ.

Example 33 Consider schemata R1 = {R} and R1 = {S}. Consider also instance

(I1, I2) over schema (R1,R2), where I1 = {R(a, b),R(c, d)} and I2 = {S(c, a)}. Finally,

let Σ12 = {R(x, y) → ∃z S(x, z)} and Σ21 = {S(x, y), S(y, z) → R(x, z)}. Now consider

the following pairs of instances (we used square boxes as pair delimiter):

K1
1

R(c, d)

K1
2

S(c, a)

K2
1

R(a, b)
R(c, d)
R(c, b)

K2
2

S(c, a)
R(a, b)

K3
1

R(a, b)

K3
2

S(a, d)

For the uniform correspondence problem (I1, I2,Σ12 ∪ Σ21), instance (K1
1 ,K1

2) is a

subset-solution; similarly, instance (K2
1 ,K2

2) is a superset-solution; and (K2
1 ,K2

2) is a

⊕-solution. In the case of uniform correspondence problem (I1, I2,Σ12 ∪Σ21), instance

J2 = {S(c, a), S(c, a)} is a superset-solution because (I1, J2) ⊧ Σ12 ∪ Σ21 and because

J2 = I2∪{S(a, d)}. We may also note that there does not exist a subset-solution for the
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non-uniform correspondence problem, following that all ⊕-solutions are the superset-

solutions.

Similarly to the data repair case, the above definitions give rise to classes of decision

problems that we will study in the next subsection. The first class is the existence of

solutions to the correspondence problem. While the second class is to check whether

a given instance is a solution. We note that Fuxman, Kolaitis, Miller and Tan [11]

have investigated, under the name of Peer Data Exchange, the existence of superset-

solutions to the non-uniform correspondence problem. However, they do not require

a solution to be minimal, which in fact leaves out an additional computational hurdle

similar to computing the core of a solution. In addition, it turns out that the uniform

correspondence problem can be seen as a special case of the problem of the repair

checking problem.

Lemma 6 Let (I1, I2,Σ1,Σ2) be an instance of the uniform-data correspondence prob-

lem and (K1,K2) a ground instance. Then (K1,K2) is a subset(superset, ⊕)-solution

to the uniform correspondence problem if and only if K1 ∪K2 is a subset (superset, ⊕,

respectively) repair of I1 ∪ I2 w.r.t. Σ1 ∪Σ2.

From this lemma it follows that the characterization used for the ⊕-solution in The-

orem 32 works for ⊕-uniform-data correspondence solutions as well. In case of solutions

to the non-uniform correspondence problem, we have a similar characterization.

Theorem 41 Let (I1, I2,Σ12,Σ21), with Σ = Σ12 ∪ Σ21, be an instance of the non-

uniform correspondence problem, and K2 an instance such that (I1,K2) ⊧ Σ. Then K2

is a ⊕-solution for (I1, I2,Σ12,Σ21) if and only if the following conditions are satisfied:
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1. For all Σ-satisfying homomorphism h with h(chasestd
Σ (I1, I2 ∩K2)) ⊆ (I1,K2)

and all J2 ⊆ K2 with (I1, J2) ⊧ Σ and h(chasestd
Σ (I1, I2 ∩K2)) ⊆ (I1, J2), it holds

that J2 = K2.

2. There does not exist a tuple t ∈ I2 ∖K2 and a Σ-satisfying homomorphism h with

J2 ⊆ (I2 ∪K2), s.t. (I1, J2) ⊧ Σ and h(chasestd
Σ (I1, I2 ∩K2 ∪ {t})) ⊆ (I1, J2).

Proof: Suppose instance K2 is a ⊕-solution. As (I1,K2) ⊧ Σ, we have the result

of the chase, chasestd
Σ (I1,K2) = (I1,K2). By Lemma 2 there then exists a homo-

morphism h such that h(chasestd
Σ (I1, I2 ∩K2)) ⊆ (I1,K2). Toward a contradiction,

suppose that condition 1 is violated. This means that there exists an instance J2 such

that h(chasestd
Σ (I1, I2 ∩K2)) ⊆ (I1, J2) ⊂ (I1,K2) and (I1, J2) ⊧ Σ. Then we have

(J2 ∖ I2) ⊂ (K2 ∖ I2) and, since (I1, I2 ∩K2) ⊆ chasestd
Σ (I1, I2 ∩K2) and (I1, I2 ∩K2)

is a ground instance, we have that (I1, I2 ∩K2) ⊆ (I1, J2). As the two schemata are

distinct, it follows that (I2 ∩K2) ⊆ J2. Thus (I2 ∖ J2) ⊆ (I2 ∖K2) and J2 <I2 K2. But

this contradicts the assumption that K2 is a ⊕-solution. Therefore it must be that

J2 = K2, meaning that K2 satisfies condition 1.

Suppose then that condition 2 is violated and tuple t, Σ-satisfying homomorphism

h and instance J2 exist. Since for such a J2 we would have (I2 ∖ J2) ⊂ (I2 ∖ K2), it

would follow that J2 <I2 K2, contradicting the assumption that K2 is a ⊕-solution.

For the only if direction let K2 be an instance such that (I1,K2) ⊧ Σ and K2 satisfies

conditions 1 and 2. We need to show that K2 is ⊕-minimal. If this is not the case there

must be an instance J2, such that J2 <I2 K2 and (I1, J2) ⊧ Σ. Thus (J2∖I2) ⊆ (K2∖I2)

and (I2 ∖ J2) ⊆ (I2 ∖K2), and at least one of the inclusions is proper. Suppose first

that it were the case that (I2 ∖ J2) = (I2 ∖K2). Then we would have J2 ⊆ K2. So if

J2∖I2 were to be a proper subset of K ∖I2, it would necessarily be that J2 ⊂ K2. Since

(I2∩J2) = (I2∩K2), chasestd
Σ (I1, I2 ∩ J2) = chasestd

Σ (I1, I2 ∩K2), and by Lemma 2 there

is a homomorphism h such that h(chasestd
Σ (I1, I2 ∩ J)) ⊆ chasestd

Σ (I1, J2) = (I1, J2).
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But then it would hold that h(chasestd
Σ (I1, I2 ∩ J)) ⊆ (I1, J2) ⊂ (I1,K2), contradicting

condition 1.

On the other hand, if it were the case that (I2 ∖ J2) ⊂ (I2 ∖ K2), we would find

a tuple t ∈ (I2 ∩ J2) ∖ (I2 ∩ K2), and Lemma 2 would give us a homomorphism h,

such that h(chasestd
Σ (I1, I2 ∩K ∪ {t})) ⊆ (I1, J2) ⊂ (I1, I2 ∪K2), a contradiction to the

assumption that K2 satisfies condition 2∎

In the following subsection we will consider the following decisions problems for

the uniform and non-uniform correspondence cases. Note that, even if by Lemma 6

the uniform correspondence problem can be reduced to a corresponding data repair

problem, the reverse does not always hold; as in data correspondence problem we

consider only correspondence TGD’s, which is not the case in data repair.

Definition 34 Decision problems considered:

• Existence-of-Solution(Σ12 ∪Σ21, subset/superset/⊕,uniform/non-uniform)

The input is (I1, I2) and the question is whether the uniform/non-uniform cor-

respondence problem (I1, I2,Σ12 ∪Σ21) has a subset/superset/⊕-solution;

• Solution-Checking(Σ12 ∪Σ21, subset/superset/⊕,uniform/non-uniform)

The input is pairs of instances (I1, I2) and (K1,K2) and the question is whether

the (K1,K2) is a subset/superset/⊕-solution for the uniform/non-uniform cor-

respondence problem (I1, I2,Σ12 ∪Σ21).

5.3.2 Complexity Results

In this section we are going over all previously defined decision problems using different

classes of dependencies and investigate the corresponding data complexity results. The

Existence-of-Solution(Σ, superset/⊕, uniform) decision problem is a non-problem
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for the class of weakly acyclic set of TGD’s, since superset-solutions always exist (recall

that no denial constraints are present). In this subsection we shall see that the uniform

version of the correspondence problem is coNP-complete for weakly acyclic TGD’s and

for all types of solutions. However, using homomorphism techniques, we are able to

show that the non-uniform version of the problem is polynomial for subset and superset-

solutions. Somewhat surprisingly then it turns out that the non-uniform version is

coNP-complete for ⊕-solutions.

Let us first start considering the problems when Σ is specified by a weakly acyclic

set of TGD’s.

Corollary 6 Let Σ = Σ12 ∪ Σ21 be a set of weakly acyclic TGD’s. Then the problem

Existence-of-Solution(Σ, subset, uniform) can be solved in polynomial time.

Proof: Follows directly from Lemma 6∎

Theorem 42 Let Σ = Σ12 ∪Σ21 be a set of weakly acyclic TGD’s. Then the problem

Solution-Checking(Σ, subset, non-uniform) can be solved in polynomial time.

Proof: Let (I1, I2) be an instance, Then instance K2 ⊆ I2 is a subset-solution for

(I1, I2,Σ12,Σ21), if (I1,K2) ⊧ Σ and there does not exist an instance J2 such that

K2 ⊂ J2 ⊆ I2 and (I1, J2) ⊧ Σ. The test (I1,K2) ⊧ Σ can be done in space logarithmic

in the size of (I1,K2). It is obvious that J2, as mentioned above, does exist iff there is a

tuple t ∈ I2∖K2 and homomorphism h such that h(chasestd
Σ21

(K2 ∪ {t})) ⊆ I1. It follows

from Theorem 33 that the existence of such a homomorphism h can be determined in

polynomial time in the size of I1. The chase with Σ21 and the homomorphism test is

repeated for each tuple in I2 ∖K2. The whole process thus runs in polynomial time in

the size of ∣I1∣ + ∣I2∣∎

Theorem 43 Let Σ = Σ12 ∪Σ21 be a set of weakly acyclic TGD’s. Then the problem

Solution-Checking(Σ, superset, non-uniform) can be solved in polynomial time.
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Proof: Consider the non-uniform correspondence problem (I1, I2,Σ). And also consider

K2 the candidate-solution. First test if (I1,K2) ⊧ Σ. If so, look for a tuple t ∈ K2 ∖ I2

and a homomorphism h from chasestd
Σ12

(I1) to K2∖{t}. By Theorem 33 this process can

be carried out in polynomial time in the size of (I1,K2). Evidently, if such a tuple t and

homomorphism h are found, K2 is not a superset-solution, since then (I1,K2∖{t}) ⊧ Σ,

meaning that K2 is not minimal. If no tuple t and homomorphism h is found, K2 is

obviously minimal∎

We just saw that for the non-uniform correspondence problem, checking whether an

instance is a subset-solution or a superset-solution is polynomial. If we allow a solution

to be in part a subset, and in part a superset the problem becomes coNP-complete.

Theorem 44 Let Σ = Σ12 ∪ Σ21 be a set of tuple generating dependencies. Then the

problem Solution-Checking(Σ,⊕,non-uniform) is in coNP, and is coNP-hard even

for weakly acyclic TGD’s.

Proof: Let (I1, I2,Σ) be the non-uniform correspondence problem and K2 the candidate

solution. To see that the problem is in coNP, consider the complementary problem:

Does there exist an instance J2 such that (I1, J2) ⊧ Σ, and J2 <I2 K2? This problem

is clearly in NP, since we can guess J2 and then check in logarithmic space whether

(I2, J2) ⊧ Σ.

For the lower bound we will reduce the Positive 1-In-3-SAT problem to the

⊕-repair checking one. The Positive 1-In-3-SAT problem asks whether a set of

disjunctive clauses, each having three positive variables, is satisfiable with a truth

assignment that makes exactly one variable in each clause true. This problem is known

to be NP-complete.

We consider the schema (R1,R2), where R1 = {P,E,V,F} and R2 = {T,S,D}. Let

Σ12 consist of the following dependencies:
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P (x, y, z) → ∃u, v,w ∶ T (x,u), T (y, v), T (z,w), S(u, v,w) (5.2)

F (u, v,w, u′, v′,w′) → D(u, v,w, u′, v′,w′) (5.3)

and Σ21 consist of

T (x,u), T (x,u′) → E(u,u′) (5.4)

S(u, v,w), S(u′, v′,w′),D(u, v,w, u′, v′,w′) → V (u, v,w). (5.5)

Note that Σ12 ∪Σ21 is a weakly acyclic set.

Given an instance P of the Positive 1-In-3-SAT problem we construct I1 as

P I1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

EI1 = {(0,1), (1,0)}

V I1 = {(0,0,1), (0,1,0) (1,0,0)}

F I1 = {(u, v,w) (u′, v′,w′) ∶ u, v,w, u′, v′,w′ ∈ {1,0}, (u, v,w) ≠ (u′, v′.w′)}

and I2 as

T I2 = {(x,0) ∶ x variable in P}

SI2 = {(0,0,1), (0,1,0), (1,0,0)}

DI2 = F I1 .

Finally, let K2 be

TK2 = {(x,1) ∶ x is a variable in P}

SK2 = {(1,1,1)}

DK2 = DI2 .

It is straightforward to verify that (I1,K2) ⊧ Σ. The reduction clearly being polyno-

mial, it remains only to prove that there exists a truth assignment for P making exactly
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one variable in each clause true, if and only if K2 is not a ⊕-repair.

Suppose that there exists such a Positive 1-In-3 truth assignment making P true.

Let this truth assignment be represented by a mapping ν from the variables of P to

{0,1}. Consider then an instance J2 with

T J2 = {(x, ν(x)) ∶ x is a variable in P}

SJ2 = {(0,0,1), (0,1,0), (1,0,0)}

DJ2 = DK2 .

It is easy to verify that (I1, J2) ⊧ Σ and that J2 <I2 K2. Thus K2 is not a ⊕-repair.

For the other direction, suppose that there does not exist a Positive 1-In-3 truth

assignment making P true. Let us try to construct an instance J2 such that (I1, J2) ⊧ Σ

and J2 <I2 K2, by manipulating K2 to become ⊕-closer to I2.

First we note that dependencies 5.2 and 5.4 force the interpretation of T to contain

exactly a truth assignment for each variable and that dependency 5.3 blocks us from

deleting tuples from DK2 .

We could make K2 closer to I2 by replacing some tuples (x,1) in TK2 with (x,0).

But then, in order to satisfy dependency 5.2, we would have to replace the tuple

(1,1,1) ∈ SK2 with at least one tuple containing at least one ’0’. Suppose first that

there were only one new tuple and that this tuple would contain only one ’0’. This

would make the resulting instance ≤I2-incomparable with K2. To avoid this, we could

leave tuple (1,1,1) in the interpretation of S. But then the interpretation of S would

contain at least two tuples. So, in any case, dependency 5.5 will be triggered, forcing the

interpretation of S to contain only tuples from V I1 . We would then have constructed

a Positive 1-In-3 truth assignment for P in the interpretation of T . We have now

exhausted all possibilities to improve the solution K2 and can therefore conclude that

K2 indeed is a ⊕-solution∎
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The next theorem shows that the result of Afrati and Kolaitis [4] can actually be

sharpened to also hold for subset-solution checking for the correspondence problem.

Theorem 45 There are weakly acyclic sets Σ = Σ12 ∪ Σ21 of TGD’s such that the

problem Solution-Checking(Σ, subset,uniform) is coNP-complete.

Proof: Let (I1, I2,Σ) be a uniform correspondence problem and (K1,K2) a candi-

date solution. As before, in order to see that the problem is in coNP, we will con-

sider complementary problem of deciding if there exists an instance (J1, J2) such that

(K1,K2) ⊂ (J1, J2) ⊆ (I1, I2) and (J1, J2) ⊧ Σ. This problem is clearly in sf NP as some

may guess such an instance (J1, J2) and using a polynomial verifier check if (J1, J2) ⊧ Σ.

For the lower bound we will reduce the Positive 1-In-3-SAT to the subset-solution

checking problem.

We consider the schemata R1 = {A,P,E} and R2 = {T,S,D}. The dependencies

considered are Σ = Σ12 ∪Σ21, where Σ12 consists of the following:

A(n), P (x, y, z) → ∃u, v,w ∶ T (x,u), T (y, v), T (z,w), S(u, v,w)

and Σ21 consists of:

T (x,u), T (x,u′),D(u,u′) → E(u)
T (x,u) → A(x)

Now we construct I1 from the instance P of the Positive 1-In-3-SAT to be as:

AI1 = {(x) ∶ x is a variable in P}
P I1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}
EI1 = ∅

and instance I2 as
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T I2 = {(x,0), (x,1) ∶ x is a variable in P}
DI2 = {(1,0), (0,1)}
SI2 = {(1,0,0), (0,1,0), (0,0,1)}.

Instance K1 contains all the tuples from I1 with the exception of tuples from AI1 ,

that is AK1 = ∅. Instance K2 contains the tuples from I2 with the exception of tuples

from T I2 , that is TK2 = ∅. We have that (K1,K2) ⊆ (I1, I2) and (K1,K2) ⊧ Σ.

This reduction clearly being polynomial, it remains only to prove that there exists a

truth assignment for P making exactly one variable in each clause true if and only if

(K1,K2) is not a subset-solution to the uniform correspondence problem.

Suppose that there exists such a truth assignment for the variables in P and let v

representing the mapping from variables in P to {0,1} representing this truth assign-

ment. We construct the instance (J1, J2) to contain all the tuples from (K1,K2) to

which we add the following:

AJ1 = {(x) ∶ x is a variable in P}
T J2 = {(x, v(x)) ∶ x variable in P}

It is easy to verify that (J1, J2) satisfies Σ and that (K1,K2) ⊂ (J1, J2) ⊆ (I1, I2).

In other words, (K1,K2) is not a solution.

For the other direction, suppose that (K1,K2) is not a subset-solution to the uni-

form correspondence problem. This means that there exists an instance (J1, J2) such

that (K1,K2) ⊂ (J1, J2) ⊆ (I1, I2) and (J1, J2) ⊧ Σ. As the inclusion between (K1,K2)

and (J1, J2) is proper, it means that there is at least one tuple in (J1, J2) ∖ (K1,K2).

From the construction of (I1, I2) it is clear that this tuple is either in instance AI1

or in instance T I2 . Since (J1, J2) satisfies Σ21, the second dependency tells us that

AJ1 is non-empty, implying that the first dependency in Σ12 is triggered for each tuple
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(x, y, z) in P J1 , thus forcing each variable to have valuation (0 or 1) in T J2 , and by the

tuples in SJ2 , each ”clause” must have exactly one variable valuated to true. The first

dependency in Σ21 together with the tuples in DJ2 ensure that each variable gets only

one value in T J2 . Clearly now the values recorded in T J2 constitute a desired truth

assignment of P∎

From Lemma 6 and Theorem 45 we get

Corollary 7 There is a weakly acyclic set set Σ = Σ12 ∪Σ21 of TGD’s such that the

Solution-Checking(Σ,⊕,uniform) problem is coNP-complete.

Let us now turn our attention to the superset problem for the uniform correspon-

dence.

Theorem 46 There is a weakly acyclic set Σ = Σ12 ∪ Σ21, of TGD’s, such that the

problem Solution-Checking(Σ, superset, uniform) is coNP-complete.

Proof: The upper bound follows directly from Lemma 6 and Theorem 37.

For the lower bound we will use a reduction from the same Positive 1-In-3-

SAT problem with a set of dependencies slightly modified from the proof of Theorem

37. Consider the schemata R1 = {P,R,E} and R2 = {T,S,D} together with the

dependencies Σ = Σ12 ∪Σ21, with Σ12 containing the following set of dependencies:

P (x, y, z) → ∃u, v,w T (x,u), T (y, v), T (z,w), S(u, v,w) (5.6)

R(x,u),E(y) → ∃u′ T (x,u′),D(u,u′). (5.7)

and Σ21 containing:

T (x,u), T (x,u′),D(u,u′) → ∃y E(y) (5.8)

T (x,u) → R(x,u). (5.9)
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Let P be an instance of the Positive 1-In-3-SAT problem. Also consider (I1, I2)

as an instance and (K1,K2) a candidate superset-solution for the corresponding uni-

form correspondence problem. Similarly to the previous proofs, we will consider the

complementary problem of deciding if there exists an instance (J1, J2) such that the

following holds (I1, I2) ⊆ (J1, J2) ⊂ (K1,K2) and (J1, J2) ⊧ Σ.

Instance I1 is constructed from instance P in the following way:

P I1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

RI1 = ∅

EI1 = ∅

Instance I2 is built to contain the following constant tuples:

T I2 = ∅

SI2 = {(1,0,0), (0,1,0), (0,0,1)}

DI2 = {(1,0), (0,1)}

The candidate superset-solution (K1,K2) is also constructed from instance P , with

K1 containing the following tuples:

PK1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

RK1 = {(x,0), (x,1) ∶ x variable in P}

EK1 = {(0)}

We consider the following tuples for K2:

TK2 = {(x,0), (x,1) ∶ x variable in P}

SK2 = {(1,0,0), (0,1,0), (0,0,1)}

DK2 = {(1,0), (0,1)}

This reduction is clearly polynomial and we also have that (I1, I2) ⊆ (K1,K2) and
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(K1,K2) ⊧ Σ. It remains to prove that there exists a truth assignment for P that makes

exactly one variable true in each clause, if and only if (K1,K2) is not a superset-solution

for the given uniform correspondence problem.

First suppose that there exists such a truth assignment for the variables in P and

let v representing the mapping from variables in P to {0,1}, representing the truth

assignment. Using this mapping we can construct instance (J1, J2) as follows:

P J1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

RJ1 = {(x, v(x)) ∶ x variable in P}

EJ1 = ∅

T J2 = {(x, v(x)) ∶ x variable in P}

SJ2 = {(1,0,0), (0,1,0), (0,0,1)}

DJ2 = {(1,0), (0,1)}

Now clearly we have (I1, I2) ⊆ (J1, J2) ⊂ (K1,K2) and also, because v maps the

variables from P to the Positive 1-In-3-SAT solution assignment, we have that

(J1, J2) ⊧ Σ, that is (K1,K2) is not a superset-solution to the given uniform corre-

spondence settings.

For the other direction suppose that (K1,K2) is not a superset-solution for the given

uniform correspondence problem. This means that there exists an instance (J1, J2)

properly included in (K1,K2) such that (J1, J2) ⊧ Σ. As the inclusion is proper, it

implies that the set (K1,K2)∖(J1, J2) is not empty. On the other hand, we know that

(J1, J2) includes all the tuples from (I1, I2). This implies that the set (K1,K2)∖(J1, J2)

may contain only tuples corresponding to relational symbols T , R or E. But we have

a transitive relation forced by dependencies 5.8 and 5.9, that is if we take a tuple from

RK1 then in order to satisfy 5.9, we also have to remove a corresponding tuple from

TK2 implying from 5.8 that we need to remove also the tuple EK1 as well. From this

it follows that EJ1 = ∅, that is (using dependency 5.8) for each variable in P we have a
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single truth assignment given by instance T J2 . But now from dependency 5.6, it follows

that for each clause in P we have only one variable evaluated to true. Consequently the

assignment given by the instance T J2 is a solution for Positive 1-In-3-SAT problem

over instance P∎

Let us now consider the existence of the solution problem for the non-uniform corre-

spondence settings. For this, as it will be proved, all the three cases subset/superset/⊕

are intractable for general weakly acyclic set of tuple generating dependencies.

Theorem 47 There is a weakly acyclic set Σ = Σ12 ∪ Σ21 such that the problem

Existence-of-Solution(Σ, subset, non-uniform) is NP-complete.

Proof: Let (I1, I2,Σ) be a non-uniform correspondence problem. We need to decide if

there exists an instance J such that J ⊆ I2 and (I1, J) ⊧ Σ. This problem is clearly in

NP as some may guess such an instance and the verifier is polynomial.

For the lower bound we will use the same Positive 1-In-3-SAT problem to be

reduced to an existence subset-solution problem over a uniform correspondence setting.

For this let’s consider the schemata R1 = {P,V,E} and R2 = {T,S,D}. Let us also

consider the following set of dependencies for Σ12:

P (x, y, z) → ∃u, v,w T (x,u), T (y, v), T (z,w), S(u, v,w) (5.10)

V (u,u′) → U(u,u′) (5.11)

and for Σ21 the following set of dependencies:

T (x,u), T (x,u′),D(u,u′) → E(u) (5.12)

Now, given an instance P of the Positive 1-In-3-SAT problem, we construct

instance I1 as:
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P I1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

V I1 = {(0,1), (1,0)}

EI1 = ∅

and instance I2 as:

T I2 = {(x,0), (x,1) ∶ x variable in P}

DI2 = {(1,0), (0,1)}

SI2 = {(1,0,0), (0,1,0), (0,0,1)}.

The reduction is clearly polynomial. It remains only to prove that there exists a

truth assignment for P making exactly one variable in each clause true if and only

if there exists a subset-solution for the non-uniform correspondence problem given by

(I1, I2,Σ12,Σ21).

First let us suppose that there exists a solution for the Positive 1-In-3-SAT

problem over instance P . Consider v to be the mapping from variables in P to {0,1}

given by the solution. We can now construct the following instance J over schema R2:

T J = {(x, v(x)) ∶ x variable in P}

DJ = {(1,0), (0,1)}

SJ = {(1,0,0), (0,1,0), (0,0,1)}.

It is clear that J ⊆ I2 and (I1, J) ⊧ Σ. That is if there exists a Positive 1-In-3-

SAT truth assignment for instance P , then there exists a subset-solution for the created

non-uniform correspondence problem.

For the other direction, let us suppose that for the given non-uniform correspon-

dence instance (I1, I2) there exists an instance J over R2 such that J ⊆ I2 and

(I1, J) ⊧ Σ. From this last assumption it follows that (by using dependency 5.10)
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there exist truth and assignment for each variable in P , given by T J , such that it

makes true exactly one variable from each clause. On the other hand, dependency 5.11

ensures that the instance DJ contains the same tuples as V I1 . This ensures, by using

dependency 5.12, that there exists a unique assignment for each variable. From these

it follows that the assignment given by instance T J is a Positive 1-In-3-SAT truth

assignment for instance P∎

We get the same result if we consider the problem of the existence for a superset-

solution over a non-uniform correspondence setting.

Theorem 48 There is a set Σ = Σ12 ∪ Σ21 of weakly acyclic TGD’s such that the

problem Existence-of-Solution(Σ, superset, non-uniform) is NP-complete.

Proof: Let (I1, I2) be an instance. The problem is to decide if there exists an instance

J such that J ⊇ I2 and (I1, J) ⊧ Σ. This problem is clearly in NP as some may guess

such an instance over a finite domain given by the domain of dom(I1) ∪ dom(I2). Also

the verifier is polynomial.

Again, for the lower bound we will use Positive 1-In-3-SAT problem to be reduced

to an existence subset-solution problem over a uniform correspondence setting. For this

let’s consider the schemata R1 = {P,V,E} and R2 = {T,S,D}. Let us also consider the

following set of dependencies for Σ12:

P (x, y, z) → ∃u, v,w T (x,u), T (y, v), T (z,w), S(u, v,w) (5.13)

and for Σ21 the following dependencies:

T (x,u), T (x,u′),D(u,u′) → E(u,u, u) (5.14)

D(u, v) → V (u, v) (5.15)

S(u, v,w) → E(u, v,w). (5.16)
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Given an instance P for the Positive 1-In-3-SAT problem, we construct instance

I1 as follows:

P I1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

V I1 = {(1,0), (0,1)}

EI1 = {(1,0,0), (0,1,0), (0,0,1)}.

The instance I2 is considered to be empty. Using the same method as in Theorem 47,

it can be proved that there exists a Positive 1-In-3-SAT truth assignment for P if

and only if there exists a superset-solution for the given instance of the non-uniform

correspondence problem∎

The last result for the hard cases is the checking for existence of a ⊕-solution over a

non-uniform correspondence settings using weakly acyclic tuple generating dependen-

cies.

Theorem 49 There is a weakly acyclic set Σ = Σ12 ∪ Σ21, of TGD’s such that the

problem Existence-of-Solution(Σ,⊕,non-uniform) is NP-complete.

Proof: Let (I1, I2) be an instance. The problem is to decide if there exists an instance

J over R2 such that (I1, J) ⊧ Σ. As in the superset case, one may guess such an

instance over a finite domain given by dom(I1) ∪ dom(I2). Also, the verifier is clearly

polynomial for a set of weakly acyclic TGD’s. Observe that the found instance J is not

necessary a ⊕-solution but the existence of such an instance guarantees the existence

of a ⊕-solution. This means that the problem is in NP.

For the lower bound we will use the reduction from Positive 1-In-3-SAT problem

to the ⊕-solution over a non-uniform correspondence setting. We construct the instance

(I1, I2,Σ12 ∪ Σ21) using schemata R1 = {P,E,V } and R2 = {T,S}. The dependency

considered for Σ12 is:

146



5. Data Exchange, Repair and Correspondence

P (x, y, z) → ∃u, v,w T (x,u), T (y, v), T (z,w), S(u, v,w) (5.17)

And the dependencies in Σ21 will be:

T (x,u), T (x,u′) → E(u,u′) (5.18)

S(u, v,w) → V (u, v,w) (5.19)

Given an instance P of the Positive 1-In-3-SAT problem, we construct the in-

stance I1 as:

P I1 = {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

EI1 = {(0,0), (1,1)}

V I1 = {(0,0,1), (0,1,0), (1,0,0)}

and instance I2 is built as follows (it can be noted that, for symmetric difference in

a non-uniform environment, the instance I2 doesn’t play a key role, that is any instance

may be considered):

SI2 = {(0,0,1), (0,1,0), (1,0,0)}

T I2 = ∅

This reduction is clearly polynomial. Using a similar proof path as in the previous

theorem, it can be proved that there exists a Positive 1-In-3-SAT truth assignment

for instance P if and only if there exists a ⊕-solution for the non-uniform correspondence

problem∎

We will turn now our attention to the semi-LAV dependency class that, as we will

see, ensures polynomial time for all the previous mentioned problems.
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Theorem 50 Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV TGD’s. Then the problem

Existence-of-Solution(Σ, subset, non-uniform) can be solved in polynomial time.

Proof: Let (I1, I2,Σ12 ∪ Σ21) be an instance of the non-uniform correspondence. In

order to determine if there exists an instance K2 ⊆ I2, such that (I1,K2) ⊧ Σ, it

suffices to determine if there exists a Σ-satisfying homomorphism from chasestd
Σ (I1,∅)

to (I1, I2). Since Σ is a set of semi-LAV TGD’s, it follows from Theorems 39 and 33

that the latter condition can be tested in polynomial time∎

Theorem 51 Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV TGD’s. Then the problem

Existence-of-Solution(Σ, superset,non-uniform) is polynomial.

Proof: Let (I1, I2,Σ12∪Σ21) be an instance of the non-uniform correspondence problem.

First, compute (K1,K2) = chasestd
Σ (I1, I2). Then, search for a homomorphism h such

that h(K1) ⊆ I1 and (h(K1), h(K2)) ⊧ Σ. The crucial point is that (K1,K2) has

bounded blocksize, since Σ is semi-LAV∎

Theorem 52 Let Σ = Σ12 ∪Σ21 be a set of semi-LAV dependencies. Then the problem

Existence-of-Solution(Σ,⊕,non-uniform) is polynomial.

Proof: Search for a homomorphism h, such that (I1, h(chasestd
Σ12

(I1))) ⊧ Σ. From

Theorem 39 we know that we can find this in polynomial time∎

From Theorem 40 we conclude the following corollary:

Corollary 8 Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV dependencies. The problems

Solution-Checking(Σ, subset/superset/⊕, uniform) can be solved in polynomial time.

Proof: Follows directly from Lemma 6 and Theorem 40. ∎
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Theorem 53 Let Σ be a set of semi-LAV tuple generating dependencies. Then the

problems Solution-Checking(Σ, subset/superset/⊕, non-uniform) are polynomial.

Proof: The subset/superset cases follow directly from Theorems 42 and 43 respectively.

In the ⊕-case we need to check if an instance K is a ⊕-solution for the non-uniform

correspondence problem of (I1, I2) w.r.t. Σ = Σ12 ∪ Σ21. First, test if K ⊧ Σ. If

so, K is indeed a ⊕-solution for the non-uniform correspondence problem if and only

if both conditions in Theorem 41 are fulfilled. Since Σ is semi-LAV, the required

homomorphism tests can be done in polynomial time, as per Theorem 39∎

We can now conclude this section with two tables summarizing the data complexity

results for the correspondence solution-existence and for the correspondence solution-

check problems under different dependency classes.

Existence unif. corr. sol. non-unif. corr. sol. non-unif. corr. sol.

Σ weakly acyc. weakly acyc. semi-LAV

subset P Cor. 6 NPC Thrm. 47 P Thrm. 50

superset - NPC Thrm. 47 P Thrm. 51

⊕ - NPC Thrm. 47 P Thrm. 52

Figure 5.3: Data complexity for solution-existence problem

Solution uniform uniform non-uniform non-uniform

Check Σ weakly acyc. semi-LAV weakly acyc. semi-LAV

subset coNPC Thrm. 45 P Thrm. 53 P Thrm. 42 P Thrm. 42

superset coNPC Thrm. 45 P Thrm. 53 P Thrm. 43 P Thrm. 43

⊕ coNPC Thrm. 45 P Thrm. 53 coNPC Thrm. 44 P Thrm. 53

Figure 5.4: Data complexity for the solution-check problem
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Chapter 6

Closed World Chasing

In Chapter 5 we studied the chase procedure applicability in Data Exchange, Data

Repair and Data Correspondence problems. In Section 5.1 dedicated to data exchange,

we saw that the chase procedure could be used to materialize a “universal solution“ on

the target that may be used, after all, to get certain answers to any UCQ query. In

order to deal with a larger class of queries, Deutsch Nash and Remmel [23] introduced

the extended core chase to materialize on the target a set of universal solutions which

could answer a more larger class of queries, namely UCQ¬,≠. The semantics for certain

query answering in both cases is closed to the left and open to the right, that is the

source instance is considered closed, but the target instance open. As pointed out by

Libkin in [54], the tacit open world assumption creates anomalies in the (first order)

query evaluation even in the simplest data exchange setting where the target is declared

to be a copy of the source. To see this anomaly introduced by the open world semantics,

consider the following example:

Example 34 Recall the data exchange mapping M without target dependencies, from

Example 29, that simply copies the source instance to the target. Thus, as one may
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6. Close World Chasing

expect, the certain answer to queries over the source instance should return the same

result when running the similar query on the materialized target instance. Consider

mapping M = ({R},{R′},Σst,∅) with Σst = {R(x, y) → R′(x, y)}. Using the extended

core-chase algorithm presented in Section 3.2 with source instance I = {R(a, b)}, we get

J = {J1, J2, J3, J4, J5, J6, J7, J8} as the universal solution set materialized on the target,

where the instances J1 to J8 are tabularly represented as follows:

J1

R′(a, b)

J2

R′(a, b)
R′(a, a)

J3

R′(a, b)
R′(b, b)

J4

R′(a, b)
R′(a, a)
R′(b, b)

J5

R′(a, b)
R′(b, a)

J6

R′(a, b)
R′(a, a)
R′(b, a)

J7

R′(a, b)
R′(b, b)
R′(b, a)

J8

R′(a, b)
R′(a, a)
R′(b, b)
R′(b, a)

Considering the boolean UCQ¬ query over the target schema q′ ← R′(x, y) ∧ ¬R′(x,x),

the certain answer for q′ over the materialized target universal set J is false. On the

other hand, running the query q ← R(x, y) ∧ ¬R(x,x) over the source instance we get

the certain answer true.

Moreover, even under the open world (OWA) semantics, the universal solution set

returned by the extended core chase is not suitable to be used to answer arbitrary FO

queries, as it is shown in the following example:

Example 35 Consider data exchange mapping M = ({R},{S,T},{R(x) → S(x)},∅).

Then consider source instance I = {R(a)} and the boolean query over the target instance

q ← T (x) → S(x) (note that query q is not an UCQ¬,≠, thus not contradicting the results

from [23]). Clearly, if one may use an open world assumption on the target, the instance
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J = {S(a), T (b)} is a possible instance on the target schema for mapping M and source

instance I. It can be expected that the certain answer for query q to be false. By using

the extended core-chase algorithm for this setting the following universal solution set

{{S(a)},{S(a), T (a)}} is returned. The certain answer returned by running query q

on this universal solution set is, contrary to the expected result, true.

From the previous examples it follows that the OWA semantics does not ensure

intuitive answers for most of the non-monotonic queries. Thus, some sort of closed

world (CWA) semantics is needed in data exchange. In this chapter we will review a

few of the close world semantics considered in deductive databases and see why they

are not suitable for Data Exchange. Also, we will investigate some of the recently

proposed closed world semantics for Data Exchange and see some of the issues asso-

ciated with these approaches. We will then introduce a new closed world semantics,

the constructible models semantics, and argue that it is a suitable semantics for data

exchange. Finally, we will show that under this new constructible models semantics one

may materialize a conditional table on the target that may be used to obtain certain

and possible answers to any FO query under the constructible models semantics.

6.1 Closed World Semantics for Data Exchange

Let us now take a brief look at the main close world semantics proposed in deductive

databases and see why these are not suitable for Data Exchange. We will not give

a formal definition of all of these closed world semantics, but rather we will give the

intuition behind these semantics and show how they are reflected in Data Exchange.

For this we will consider a data exchange mapping M = (S,T,Σst,Σt), with Σ = Σst∪Σt,

and a source instance I. In the following, by data exchange solution space, we mean
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the set of possible solutions to a given data exchange problem under a given CWA

semantics.

Closed World Assumption (CWA). The closed world assumption semantics was

first introduced by Reiter [68] in reference to non-monotonic query answering in deduc-

tive databases. Reiter considers in his model any fact from the database that cannot

be directly inferred to be false. More formally, the data exchange solution space under

Reiter’s semantics can be specified as:

SolCWAM (I) = {J ∈ Inst(T) ∣ J ∪ I ⊧ Σ and J ⊆ K (6.1)

for all K ∈ Inst(T) such that K ∪ I ⊧ Σ}

Unfortunately, even if this semantics works well for deductive database specified by

a set of Datalog rules, it does not work as expected when considering a data exchange

mapping containing existentially quantified TGD’s. Consider for example the source-

to-target TGD :

Employee(emp) → ∃mgr Manages(emp,mgr),Manager(mgr) (6.2)

Intuitively, the dependency mentions that there exists a manager for each employee

and that the list of managers is stored under relation Manager. Consider now source

instance I consisting of a single tuple Employee(john) and the boolean query over the

target schema: q ← Manages(emp,mgr). Thus the query returns true if there exists

at least one employee in the Manages relation. Clearly under the specified settings,

one may expect this query to return true. Even more, as q ∈ UCQ it is easy to see that

the certain answer under OWA semantics for this query is true. On the other hand,

for the given data exchange mapping and instance SolCWAM (I) = ∅ that is the certain

answer to q under CWA semantics is false. Clearly this is not the expected result as
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the given dependency specifies that there needs to exists at least one manager for each

employee. From this we can conclude that the CWA semantics is not a good approach

for data exchange mappings specified by existential TGD’s.

Generalized Closed World Assumption (GCWA). As the name suggests it,

GCWA semantics, introduced by Minker [66], generalizes CWA such that a data ex-

change solution under this semantics needs not to be a subset of each model but to

be a subset of some union of subset minimal models. Before presenting the solution

space for data exchange under GCWA semantics, let us introduce the notion of subset

minimality w.r.t. a set of dependencies Σ:

⊆min (M,I) = {J ∈ Inst(T)∣ J ∪ I ⊧ Σ and /∃ K such that (6.3)

K ∈ Inst(T), K ∪ I ⊧ Σ and K ⊊ J}

Similarly to the CWA case, we are now ready to present the solution space under

the GCWA semantics for the data exchange mappings as the following set of ground

instances:

SolGCWAM (I) = {J ∈ Inst(T)∣ J ∪ I ⊧ Σ and J ⊆ ⋃
i∈[n]

Ki for some Ki ∈⊆min (M,I)} (6.4)

Consider under this semantics the same data exchange mapping from the CWA

semantics example:

Employee(emp) → ∃mgr Manages(emp,mgr),Manager(mgr) (6.5)

Consider also the boolean query q that returns true if for each manager there exists at

least one employee managed by the manager. Thus the query can be formally stated

as the following FO expression:

q ← ∀mgr Manager(mgr) → ∃emp Manages(emp,mgr) (6.6)
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Clearly from the definition of the source-to-target dependency, we would expect

this query to return truefor any non-empty source instance. Let I be the instance

consisting of a single tuple Employee(john). The data exchange solution space for

these settings under GCWA semantics is the following infinite set of instances:

J1

Manages(john, john)
Manager(john)

J2

Manages(john, ray)
Manager(ray)

J3

Manages(john, ray)
Manager(john)
Manager(ray)

. . .

For example, instance J3 is part of SolGCWAM (I) as J3 ∪ I ⊧ Σst and J3 ⊂ J1 ∪ J2. From

this it follows that certain answer to q under this semantics is false. As mentioned,

clearly this is not the expected result.

Possible World Semantics(PWS). The possible world semantics was introduced

by Chan [20] in the context of disjunctive databases. The solution space under this

semantics can be extended for data exchange settings without target dependencies and

it is formally defined as:

SolPWSM (I) = {J ∈ Inst(T) ∣ J ∪ I ⊧ Σst and ∀t ∈ J, ∃(α(x̄) → ∃ȳ β(x̄, ȳ)) ∈ Σst (6.7)

and ∃ ā, b̄ such that I ⊧ α(ā)

and J ⊧ β(ā, b̄) and t ∈ head(α(ā) → β(ā, b̄))}

Consider the previously used dependency:

Employee(emp) → ∃mgr Manages(emp,mgr),Manager(mgr) (6.8)

Also consider instance I = Employee(john)}. For this data exchange setting the fol-

lowing infinite set of instances represents the solution space under PWS semantics:
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K1

Manages(john, john)
Manager(john)

K2

Manages(john, ray)
Manager(ray)

K3

Manages(john, john)
Manages(john, ray)
Manager(john)
Manager(ray)

. . .

Note that, compared to the GCWA semantics, instance J3 is not present in the PWS

solution space. Thus the certain answer to the given query will be true, as expected.

Let us now consider another example with the mapping specified by the following

source-to-target TGD:

Manages(emp,mgr) → ∃eid ManageIds(eid,mgr) (6.9)

Intuitively, this TGD replaces the employee names from relation Manages with em-

ployee id’s in relation ManageIds. Consider now the instance:

I = {Manages(john, ray),Manages(mike, ray)}. (6.10)

Based on the source-to-target TGD and the given instance we have the following

infinite PWS solution space:

U1

ManageIds(101, ray)

U2

ManageIds(101, ray)
ManageIds(102, ray)

U3

ManageIds(101, ray)
ManageIds(102, ray)
ManageIds(210, ray)

. . .

Let us now consider the following boolean query: Does each manager have at most two

employees reporting to him? The expected result, based on the source instance I, is

true. Using the PWS solution space to get the certain answer to this query, the result

is false. This is because in PWS solution space the same variable assignment to a TGD

may result in multiple tuples.

Before presenting the proposed semantic for data exchange let us review some new

semantics specially defined for the data exchange problem.
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CWA-solutions. The CWA-solutions approach was first introduced by Libkin [54]

for mappings specified by a set of source-to-target TGD’s. This approach is based on

the intuition that any fact in the target instance should follow logically from the source

instance and the set of dependencies, and also that no two nulls in the target should be

gratuitously equated. This is formalized using a new notion called justification. These

justifications conveniently restrict the solutions to the universal ones, called closed world

solutions in [54], here denoted as SolCWASOLM (I). Hernich and Schweikardt [47] extended

Libkin’s justification based approach by allowing the mapping to be specified by target

TGD’s and they generalize the set SolCWASOLM (I). Their solution space has the peculiarity

that there are generalized instances J ∈ SolCWASOLM (I) such that repCWA(J)∪I /⊧ Σst∪Σt.

The certain answer to a target query q under the previously presented data exchange

settings is defined as:

⋂
J∈Sol

CWASOL
M (I)

⋂
K∈repCWA(J),K∪I⊧Σ

q(K). (6.11)

Without going in too much detail, we need to mention that it is enough to materialize

the set of “maximal“ CWA-solutions in order to get certain answers to FO-queries.

Consider for example the data exchange mapping M specified by the following set of

TGD’s:

Σst ∶ Scholar(s) → Student(s) (6.12)

Scholar(s) → ∃m1,m2 Major(s,m1,m2) (6.13)

Σt ∶ Major(s,m,m) → StdOneMajor(s) (6.14)

Consider the source instance I = {Scholar(john)}. The unique maximal CWA-solution

is instance J = {Student(john),Major(john,M1,M2)}. Now, for the following query

q(x) → Student(x)∧¬StdOneMajor(x), one would expect the certain answer to return

the empty set, as it may be possible that student “john“ has only one major. On the
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other hand, running the query against the maximal solution, the certain answer for this

query is “john“. Clearly not the expected result.

GCWA∗. We conclude this section with the latest closed world semantics, namely

GCWA∗, introduced by Hernich [45], as an improvement for some of the previously

described anomalies. In certain query answering, GCWA∗ semantics was also proved

to be closed under logical equivalence of mappings. The new semantics generalizes the

GCWA one by considering a ground instance part of the data exchange solution space

if the instance is the union of some minimal solutions. More formally, the solution

space under GCWA∗ can be described as the following set:

SolGCWA
∗

M (I) = {J ∈ Inst(T)∣ J ∪ I ⊧ Σ, J = ⋃
i∈[n]

Ki for some Ki ∈⊆min (M,I)} (6.15)

For this semantics, Hernich proved that when the mappings are specified by a special

class of TGD’s, called packed TGD’s, and if the core of the universal solution is given,

then one may compute the certain answer in polynomial time. In case the core of the

universal solution is not provided and the core-chase algorithm terminates, then one

may find the certain answer in NP time with a DP oracle ([28]).

Let us now see an example of certain answer under GCWA∗ semantics. Consider a

mapping M specified by the following two source-to-target TGD’s:

Manages(emp,mgr) → ∃eid ManageIds(eid,mgr) (6.16)

SelfManager(mgr,mgrid) → ManageIds(mgrid,mgr) (6.17)

Where the first dependency has the same meaning as the second example used for

PWS semantics, and the second dependency specifies that each manager with the id

(“mgrid“) from the relation SelfManager is his own manager under target relation

ManageIds. Let us now add to this mapping the source instance:
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I = {Manages(john, ray),Manages(mike, ray), SelfManager(ray,411)}. (6.18)

Finally, consider the query: Does each manager manage exactly one employee? It

is easy to see that under natural semantics one may expect the certain answer to this

query to be false , as it may be that the employee id’s, assigned for each employee from

the Manages relation, are distinct. On the other hand, the set ⊆min (M,I contains

only the instance J = {ManageIds(ray,411)}. Thus, under the GCWA∗ semantics the

certain answer to the given query is true, which is clearly not the expected result. The

same unnatural behavior can be observed even in case the mapping is specified only by

the first dependency with the same source instance and the query: Do all the managers

manage at most 2 employees each? In this case, the certain answer will be false under

GCWA∗, because the solution space is infinite, whereas the expected natural result

should be true.

6.2 Constructible Models Semantics

In the previous section we saw a few closed world semantics and their unnatural be-

havior when getting the certain answers for some general queries. In this section (part

of these results were first presented in [38]) we propose a new closed world semantics

which, we argue, is a good candidate as a closed world semantics for data exchange,

even if there are a few drawbacks with it. One such drawback is that the constructible

models semantics are not closed under the mapping equivalence, as shown by the fol-

lowing example:

Example 36 Consider the following two sets of source-to-target mappings:
Σ1 = {R(x, y) → T (x, y)}

Σ2 = {R(x, y) → T (x, y); R(x, y) → ∃z T (x, z)}
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Clearly Σ1 is logically equivalent with Σ2, i.e. I ⊧ Σ1 iff I ⊧ Σ2 for any instance

I. On the other hand considering source instance I = {R(a, b)} under constructible

models semantics we have {{T (a, b)}} as the solution space under Σ1 and the infinite

set {{T (a, b)},{T (a, b), T (a, a)},{T (a, b), T (a, c)}, . . .} as the solution space under Σ2.

Here are some strong points attached to this new semantics:

1. natural certain/possible answers for most FO queries. At the end of this section

we will review all the previous examples and see that the certain answer obtained

under this new semantic is the expected one.

2. there exists a simple chase based procedure able to compute the target instance

that may be used to compute certain answers.

3. in case the chase procedure terminates, there exists a single instance, usually of

small size, that needs to be materialized on the target.

Let I be a ground instance and Σ a set of TGD’s. Consider a standard-chase step

on I with TGD ξ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄) and trigger (ξ, h). Instead of adding the tuple

head(β(h(x), z̄)), where Z̄ is a sequence of new fresh variables, we create a branch for

each sequence c̄ of constants and add the ground tuple β(h(x̄), c̄) to I. Continuing

in this fashion, we will have a chase tree, instead of a chase sequence. Notably, all

nodes in the tree will be ground instances. The leaves of the chase tree form the set

of constructible models of I and Σ, denoted Σ(I). If the initial input to the chase is

a general instance (that may contain nulls) J , the constructible solutions of J with Σ

will be Σ(repCWA(J)) = ⋃I∈repCWA(J) Σ(I).

More formally, let Σ be a finite set of TGD’s. Then the set of variables occurring in

Σ is finite. Consequently, there is an enumeration, say v0, v1, . . . , vn, . . ., of all mappings

(i.e. valuations) from this set of variables to ΔC. We define
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ground (∀x̄, ȳ α(x̄, ȳ) → ∃z̄ β(x̄, z̄)) = ⋃
i∈ω

⋃
j∈ω

⋃
k∈ω

{α(vi(x), vj(y)) → β(vi(x̄), vk(z̄))}.

We assume an enumeration ξ1, . . . , ξn of the dependencies under consideration. If

ξp = α(x̄, ȳ) → ∃z̄ β(x̄, z̄), a dependency α(vi(x̄), vj(ȳ)) → β(vi(x̄), vk(z̄)) in ground(ξp)

can uniquely be denoted ξp,i,j,k. For a set Σ = {ξ1, ξ2, . . . , ξn} of tuple generating depen-

dencies we have ground(Σ) = ground(ξ1) ∪ ⋯ ∪ ground(ξn). The set ground(Σ) thus

consists of all ground instances of the dependencies in Σ. The elements of ground(Σ)

are called ground dependencies, or ground TGD’s. A set G of ground TGD’s is said to

be finitely generated, if G ⊆ ground(Σ), for some finite set Σ of TGD’s.

Let I be an instance, G a set of finitely generated ground dependencies, and ground

dependency ξp,i,j,k = α → β in G. Then we say α → β applies to (I,G) if α ⊆ I.

Furthermore, we say that ξp,i,j,k = α→β derives (I ′,G′) from (I,G), if

(I ′,G′) = (I ∪ {β},G ∖ {ξp,i,j,� ∶ 	 ∈ ω}).

This relation is denoted (I,G) ⇒α→β (I ′,G′). The intuition behind deleting the

groundings ξp,i,j,� from G is that since dependency ξp was fired using valuations vi and

vj for the body, and with vk(z̄) as a “witness” for the existential variables in the head,

we do not want to fire this dependency again, using vi and vj .

Consider now a sequence

(I0,G0), (I1,G1), . . . , (In,Gn), . . . (6.19)

where (I0,G0) = (I,G) and (Ii,Gi)⇒α→β(Ii+1,Gi+1), for some ground dependency

α→β ∈ Gi that applies to Ii, or where (Ii,Gi) = (Ii+1,Gi+1), if no α→β ∈ Gi applies to

Ii. We call such a sequence a chase sequence originating from (I,G).
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A chase sequence originating from (I,G) is said to be fair if for all ground de-

pendencies ξp,i,j,k ∈ G, for which there exists an n ∈ ω such that ξp,i,j,k applies to

(In,Gn). There also exists m,	 ∈ ω, m ≥ n such that (Im,Gm)⇒α→β(Im+1,Gm+1),

where α → β = ξp,i,j,�. Fairness means that all applicable dependencies are eventually

fired for some instantiation of the existential variables in the head. From now on, unless

stated otherwise, we consider all chase sequences to be fair.

It is obvious that Ii ⊆ Ii+1 and that Gi ⊇ Gi+1, for each i ∈ ω. We can therefore

define the limit of a chase sequence as

(⋃
i∈ω

Ii,⋂
i∈ω

Gi). (6.20)

The notation C(I,G) will stand for the set of the limits of all chase sequences

originating from (I,G).

We are now ready to define Σ(I), the set of all constructible models of I and Σ, as

Σ(I) = {J ∶ (J,G) ∈ C(I, ground(Σ)),G ⊆ ground(Σ)}. (6.21)

It is clear that the definition of Σ(I) does not depend on the particular enumeration

of the valuations of the variables in the dependencies in Σ. Note also that Σ(I) may

contain finite as well as infinite ground instances.

The following lemma derives directly from the definition of Σ(I):

Lemma 7 Σ(I) ⊆ Sat(Σ), where Sat(Σ) denotes the set of all instances I such that

I ⊧ Σ.

The definition of function Σ(I) is extended to a set of ground instances I point-wise

as follows:

Σ(I) = ⋃
I∈I

Σ(I). (6.22)
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The data exchange solution space under constructible models semantics can be

formalized as follows:

Definition 35 Let M = (S,T,Σst,Σt) be a data exchange mapping specified by a set

of TGD’s. Let I ∈ Inst(S) be a source instance. The solution space for M and I

under constructible models semantics is the following set of ground instances, where

Σ = Σst ∪Σt:

SolCMM(I) = {J ∈ Inst(T)∣ ∃K ∈ Σ(I) and J = K ∣T} (6.23)

Let us consider the following example that captures all the previous notions.

Example 37 Let Σ = {ξ}, where ξ is the sample TGD 6.8 used to present the PWS

semantic.

Manages(emp,mgr) → ∃eid ManageIds(eid,mgr) (6.24)

The grounding ground(ξ) is the following infinite set of ground dependencies:

ground(ξ) = {Manages(john, ray) → ManageIds(101, ray); (6.25)

Manages(john, ray) → ManageIds(102, ray);

Manages(john, ray) → ManageIds(103, ray); . . .

Manages(mike, ray) → ManageIds(101, ray);

Manages(mike, ray) → ManageIds(102, ray);

Manages(mike, ray) → ManageIds(103, ray); . . .

Manages(ann, ray) → ManageIds(101, ray);

Manages(ann, ray) → ManageIds(102, ray);

Manages(ann, ray) → ManageIds(103, ray); . . .

. . .

Manages(ray, john) → ManageIds(101, john); . . .

. . . }
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As Σ = {ξ}, it follows that G = ground(ξ). Figure 6.1 represents the chase tree

corresponding to ground(Σ) and instance:

I = {Manages(john, ray),Manages(mike, ray)}. (6.26)

In figure 6.1 it can also be observed that, after applying to (I,G) the ground dependency

Manages(john, ray) → ManageIds(101, ray), we change the existing set of ground-

ings to G1 = G ∖ {Manages(john, ray) → ManageIds(*,*)}. That is G1 will not

contain any ground dependency with the body Manages(john, ray). Thus the tuple

Manages(john, ray) from I will not contribute to any other tuple in the limit instance.

This ensures that each tuple from the limit is “justified“ by different tuples in the in-

stance or by a different dependency. We may note that in this example, because the

dependency is a source-to-target TGD, the depth of the tree is 2. Thus there are finite

limits for each branch of the chase tree.

The solution space under constructible models semantics for the data exchange set-

tings specified in the previous example is given by the following infinite set of instances:

J1

ManageIds(101, ray)

J2

ManageIds(101, ray)
ManageIds(102, ray)

J3

ManageIds(102, ray) . . .

Let us now reconsider the query: Do all managers have at most two employees each? for

which the certain answer under PWS semantics was false. Under constructible models

semantics the certain answer is, the expected one, true, as each branch in chase tree

from Figure 6.1 has depth 2 with the target instance containing at most two tuples.

In the remaining part of this section we will review each of the examples used for

the different closed words semantics presented in Section 6.1. First let us start with the

mapping M specified by the TGD 6.5 presented for both CWA and GCWA semantics.
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Figure 6.1: Chase tree
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Employee(emp) → ∃mgr Manages(emp,mgr),Manager(mgr) (6.27)

Consider also the same source instance I = Employee(john). In this case the solu-

tion space under constructible models semantics is the following infinite set of ground

instances:

K1

Manages(john, john)
Manager(john)

K2

Manages(john, ray)
Manager(ray)

K3

Manages(john,mike)
Manager(mike)

. . .

Consider now the same query (6.6) presented for the CWA and GCWA semantics:

q ← ∀mgr Manager(mgr) → ∃emp Manages(emp,mgr) (6.28)

Under both semantics CWA and GCWA, the certain answer to this query was false.

Under our new semantic the certain answer to this query is, again the expected one,

true.

Under CWA-solution semantics we considered the mapping M specified by the

following source-to-target and target TGD’s :

Σst ∶ Scholar(s) → Student(s) (6.29)

Scholar(s) → ∃m1,m2 Major(s,m1,m2) (6.30)

Σt ∶ Major(s,m,m) → StdOneMajor(s) (6.31)

The solution space under constructible models semantics for M and source instance

I = {Scholar(john)} is the following infinite set of ground instances:

U1

Student(john)
Major(john, c1, c2)

U2

Student(john)
Major(john, c1, c3)

U3

Student(john)
Major(john, c1, c1)
StdOneMajor(john)

. . .
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Under this closed world semantics the certain answer to the safe conjunctive query

with one negation: q(x) → Student(x) ∧ ¬StdOneMajor(x) is, the expected one,

“john“.

Finally, let us consider the TGD’s specifying the mapping M presented for the

latest GCWA∗ semantics:

Manages(emp,mgr) → ∃eid ManageIds(eid,mgr) (6.32)

SelfManager(mgr,mgrid) → ManageIds(mgrid,mgr) (6.33)

Also consider the same source instance I used in presenting the GCWA∗ semantics:

I = {Manages(john, ray),Manages(mike, ray), SelfManager(ray,411)}. (6.34)

We saw that under GCWA∗ semantics the query: Do all the managers manage

exactly one employee each? for mapping M and source instance I has the certain

answer true. Under constructible models semantics the solutions space considered is

the following infinite set of ground instances:

V1

ManageIds(101, ray)
ManageIds(102, ray)
ManageIds(411, ray)

V2

ManageIds(101, ray)
ManageIds(411, ray)

V3

ManageIds(411, ray)
. . .

For the given query the certain answer under the constructible models semantics is

false, as expected, since there are instances part of the solution space for which “ray“

manages more than one employee.

In this section we presented the constructible models semantics which, as we saw,

is a good candidate for the closed world semantics in data exchange. After presenting

this new semantics, we need to find a tool to materialize, in some form, the solution

space associated with it. In the following sections we show that there exists a chase

based procedure able to return for a mapping and a source instance a conditional table
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such that its representation is exactly the solution space under constructible models

semantics.

6.3 Conditional Tables and Unification Process

Before presenting the chase procedure able to create the solution space under con-

structible models semantics, we introduce now some new notions and review some

existing ones needed to introduce the chase procedure based on conditional tables. For

this, first we present the conditional tables in a way that clearly shows that they are

generalizations of general instances. We then introduce the concept of unification of

two instances which is needed as a technical tool for generalizing the standard-chase

algorithm to our conditional chase, introduced in Section 6.4. For the ease of notation,

in this section, we will refer by instance to a ground instance. This, we will refer as

tableau to the instance that may contain null values.

6.3.1 Conditional Tables

A conditional table (c-table) [49] is a pair (T,ϕ), where T is a tableau, and ϕ is a

mapping that associates a local condition ϕ(t) with each tuple t ∈ T . A (local) condition

is a Boolean formula built up from atoms of the form x = y, x ≠ y, x = a, x ≠ a, a = b

and a ≠ b for x, y ∈ ΔN and a, b ∈ ΔC. An atomic equality of the form a = a for a ∈ ΔC

represents the logical constant true and for two distinct constants a and b the equality

a = b represents false. We denote the logical implication between conditions ϕ and φ

by ϕ ⊧ φ and their logical equivalence by ϕ ≡ φ.

If ϕ(t) ≡ true, for all t ∈ T , the conditional table (T,ϕ) is sometimes denoted simply

with T .

A conditional table (T,ϕ) represents a set of possible worlds (ground instances).
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Let v be a valuation, then:

v(T,ϕ) = {v(t) ∣ t ∈ T, and v(ϕ(t)) ≡ true}. (6.35)

The set of possible worlds represented by (T,ϕ) is:

repC(T,ϕ) = {v(T,ϕ) ∣ v is a valuation}. (6.36)

Note that we are making the closed world assumption [68], meaning that no ground

tuple can be true in a possible world, unless it is an instantions of a tuple in the c-table.

Furthermore, if (T,ϕ) and (U,φ) are c-tables such that repC(T,ϕ) = repC(U,φ), we

say (T,ϕ) and (U,φ) are equivalent. We denote this by (T,ϕ) ≡ (U,φ).

Example 38 Consider the conditional table (T,ϕ) with the tabular representation as

shown below:

t ϕ(t)

R(a,X) true

R(b, c) true

R(a, c) X = b

For the same conditional table we will use the following in-line representation:

(T,ϕ) = {(R(a,X), true), (R(b, c), true), (R(a, c),X = b)}

The set of possible worlds is given by the set of valuations for (T,ϕ). Bellow are

presented the tabular representations of some of possible instances for (T,ϕ), where

Ii = vi(T,ϕ), for i ∈ {1,2,3}, v1(X) = a, v2(X) = b, and v3(X) = c.

I1

R(a, a)
R(b, c)

I2

R(a, b)
R(b, c)
R(c, d)

I3

R(a, c)
R(b, c)
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When it comes to dependencies, a conditional table (T,ϕ) is said to satisfy a set

Σ of dependencies, if all possible worlds it represents satisfy Σ, that is, if we have

repC(T,ϕ) ⊆ Sat(Σ).

Example 39 Consider the conditional table (T,ϕ) from example 38 and the depen-

dencies Σ1 = {R(x, y),R(y, z) → R(x, z)} and Σ2 = {R(x, y) → ∃z R(y, z)}. Clearly we

have repC(T,ϕ) ⊆ Sat(Σ1). On the other hand, the same conditional table (T,ϕ) does

not satisfy Σ2 as, for example, in I1 we have tuple R(b, c) but there is no tuple in I1

that has c as value in the first column in relation R, thus I1 /⊧ Σ2.

The standard chase on instances is essentially a fixed point computation, where the

underlying partial order is that of set inclusion. The conditional chase will also be a

fixed point computation, so we will need a suitable partial order on conditional tables.

Let (T,ϕ) and (U,ψ) be c-tables, by (T,ϕ) ⊑ (U,φ) we mean that T ⊆ U and that, for

all valuations v, it is that v(T,ϕ) ⊆ v(U,φ).

If both (T,ϕ) ⊑ (U,φ) and (T,ϕ) ⊑ (U,φ), we write (T,ϕ) ≅ (U,φ) and say that

the c-tables are congruent. Obviously (T,ϕ) ≅ (U,φ) if and only if T = U and for all

valuations v, v(T,ϕ) = v(U,φ). Consider the following binary union operation between

conditional tables: (T,ϕ) ⊔ (U,φ) =def. (T ∪U,ϕ⊔φ), where

ϕ⊔φ (t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ϕ(t) ∨ φ(t) if t ∈ T ∩U,

ϕ(t) if t ∈ T ∖U,

φ(t) if t ∈ U ∖ T.

(6.37)

Thus ⊔ is a partial order on equivalence classes under ≅ of c-tables. Recall that two

conditional tables are equivalent if they represent the same set of possible worlds. The

following lemma states that congruence is stronger than equivalence.

Lemma 8 Let (T,ϕ) and (U,φ) be two conditional tables. If (T,ϕ) ≅ (U,φ), then

(T,ϕ) ≡ (U,φ). There are c-tables (T,ϕ) and (U,φ), such that (T,ϕ) ≡ (U,φ) and

(T,ϕ) /≅ (U,φ).
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Proof: Let us suppose that (T,ϕ) ≅ (U,φ). From the definition of ≅ it follows that

T = U and for all valuations v and tuples t ∈ T if φ(t) ≡ true, then v(t) ∈ v(T,ϕ) and

inverse. Let v be a valuation, we will show that v(U,φ) = v(T,ϕ). Let t ∈ v(U,φ).

It follows that there exists a tuple tU ∈ U such that v(tU) = t and v(φ(tU)) = true.

From this it follows that t = v(tU) ∈ v(T,ϕ), thus v(U,φ) ⊆ v(T,ϕ). Similarly, it can be

proved that v(T,ϕ) ⊆ v(U,φ). For the second part of this lemma, consider conditional

tables (T,ϕ) = {(R(a, b), true)} and (U,φ) = {(R(a,X),X = b)}. It is easy to see that

(T,ϕ) ≡ (U,φ) but (T,ϕ) /⊑ (U,φ)∎

6.3.2 Unification of Tableaux

In order to extend the standard-chase procedure to conditional tables, in this section

we introduce first the notions of unifiers and most general unifiers for pairs of tableaux.

For this, let us first extend the notion of retraction (as defined in Section 2.1) to the

notion of D-retraction, for a set of constants D.

Definition 36 Let T be a tableau and let D be a finite set of constants. A D-retraction

for T is a mapping h ∶ dom(T ) → dom(T ) ∪D, identity on ΔC ∪ dom(h(T )).

Note that if D = ∅, then a D-retraction for T is a retraction for T . From now on

we will refer to a ∅-retraction simply as retraction.

Example 40 Let T = {R(a,X),R(a, Y ),R(a, b)} and D = {c, d}, then the mappings

h1 = {X/c}, h2 = {X/a, Y /a} are D-retractions for T . On the other hand, the mapping

h3 = {X/Y,Y /a} is not a D-retraction because h3 maps X to Y and it is not identity

on Y .

We shall also need the concept of an h-core of an instance, for a retraction h.

171



6. Close World Chasing

Definition 37 Let T be a tableau, D a set of constants, and h a D-retraction for T .

Then we say that T is an h- core, if there is no T ′ ⊊ T , such that h(T ′) = h(T ).

It is easy to see that a tableau T is a core if and only if T is an h-core for all

retractions h on T .

Example 41 Consider T = {R(a,X),R(a, b)} and retraction h = {X/b}. It is easy to

see that T is not an h-core because for T ′ = {R(a, b)} we have T ′ ⊊ T and h(T ′) = h(T ).

On the other hand, retraction h′ = {X/c} is an h′-core. Clearly tableau T is not a core.

Recall that for a tableau T by ΔC(dom(T )) we denote the set of all constants in T .

Definition 38 Let T and U be two tableaux. A unifier for tableaux T and U , if it

exists, is a pair (θ1, θ2), where θ1 is a homomorphism from the set dom(T ) to the

set dom(U) ∪ ΔC(dom(T )) and θ2 is a ΔC(dom(T ))-retraction for U , such that the

following holds θ1(T ) = θ2(U).

Note the asymmetrical role of T and U : a unifier for (T,U) is not necessarily a

unifier for (U,T ).

Example 42 Consider tableaux T = {R(a,X1,X1,X2)} and U = {R(Y1, b, Y2, Y3)}.

The pair (θ1, θ2), where θ1 = {X1/b,X2/b} and θ2 = {Y1/a, Y2/b, Y3/b} is a unifier for

T and U as θ1(T ) = θ2(U) = {R(a, b, b, b)}. It can be noticed that (θ1, θ2) is not

the unique unifier for T and U . For example (θ′1, θ
′
2), where θ′1 = {X1/b,X2/Y3} and

θ′2 = {Y1/a, Y2/b}, is also a unifier for T and U .

Definition 39 A unifier (θ1, θ2) for tableaux T and U is more general than a unifier

(γ1, γ2), if there is a mapping f on dom(U), f ∉ Id, identity on constants, such that

γ1 = f ○ θ1 and γ2 = f ○ θ2.

172



6. Close World Chasing

Clearly this defines a partial preorder on unifiers and a partial order on equivalence

classes of isomorphic unifiers. Two unifiers (θ1, θ2) and (γ1, γ2) of (T,U) are considered

isomorphic if θ1(T ) is isomorphic with γ1(T ).

Definition 40 A unifier (θ1, θ2) is a most general unifier (mgu) for tableaux T and

U , if all unifiers (γ1, γ2) of T and U that are more general than (θ1, θ2) actually are

isomorphic with (θ1, θ2). We denote by mgu(T,U) the set of (representatives of the)

equivalence classes of all mgu’s of T and U .

Example 43 In Example 42 unifier (θ′1, θ
′
2) is a more general unifier than (θ1, θ2) and

it is also an mgu. Let us consider another example over instances T = {R(X,Y ),R(Y,Z)}

and U = {R(a, V ),R(W,b)}. In this case, the only mgu of T and U is given by the

equivalence class of unifier ({X/a, Y /W,Z/b},{V /W}).

It is well known that, if two atoms are unifiable, then there exists a most general

unifier that is unique up to isomorphism. But, when unifying two tableaux, there

might be several non-isomorphic mgu’s. For example, let us consider the following

tableaux T = {R(X,Y ),R(Y,Z)} and U = {R(a, V ),R(b,W )}. Then (θ1, θ2), with

θ1 = {X/a, Y /b, Z/W} and θ2 = {V /b}, is an mgu for T and U . On the other hand, the

unifier (γ1, γ2), with γ1 = {X/b, Y /a,Z/V } and γ2 = {W /a}, is also an mgu for T and

U . It is easy to see that (γ1, γ2) and (θ1, θ2) are not isomorphic.

The following step is to find an upper bound for the complexity of the membership

problem for the set mgu(T,U). The next lemma follows directly from Definition 37.

Lemma 9 Let T and U be two tableaux and (θ1, θ2) a most general unifier for T and

U . If U is θ2-core, then ∣U ∣ ≤ ∣T ∣.

173



6. Close World Chasing

Proof: Obviously, if tableau U is a θ2-core, then ∣U ∣ = ∣θ2(U)∣, on the contrary, we

would have instance U ′ = θ2(U) such that U ′ ⊊ U and θ2(U ′) = θ2(U) (note that this

does not work if θ2 would be an endomorphism and not a retraction see Example 40).

On the other hand, we have that θ1(T ) = θ2(U), thus ∣T ∣ ≥ ∣U ∣∎

From this we now have:

Proposition 18 Let ∣U ∣ ≤ ∣T ∣ = c. Then the set mgu(T,U) can be computed in time

O((2c)2cc2).

Proof: Giving a pair of mapping (θ1, θ2), we can check if (θ1, θ2) is a unifier for T and

U in O(c) time. Given a unifier (θ1, θ2), we can check if (θ1, θ2) is an mgu in time

O(c2) using the following algorithm:

1 for X/c ∈ θ2

2 do

3 θ′2 ← θ2 ∖ {X/c}
4 if exists θ′1 such that (θ′1, θ

′
2) is a unifier for T and U

5 then return false

6 else return true

The testing at Step 4 can be done in time O(c), thus the algorithm runs in time O(c2).

The number of mappings from U to dom(U) ∪ const(T ) is bounded by (2c)c; similarly

the number of mappings from T to dom(U) ∪ const(T ) is bounded by (2c)c. Thus we

need to check with the previous algorithm (2c)2c unifiers each such checking running

in time O(c2). That is, the time needed to find the set mgu(T,U) is O((2c)2cc2)∎

6.3.3 The Core of Conditional Tables

Contrary to the standard-chase step, the conditional-chase one is more sophisticated.

For this reason, before presenting the conditional-chase algorithm, we need to introduce
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a new function on conditional tables called the conditional core (or simply core). Given

a relation name R, we denote by R(X̄) a tuple over R, where X̄ ∈ (ΔN ∪ΔC)arity(R).

Definition 41 Let R(X̄) and R(Ȳ ) be two tuples over R. We say that θ is a tuple

unifier (or simply unifier) for R(X̄) and R(Ȳ ), if θ(R(X̄)) = θ(R(Ȳ )) and θ is a

mapping from set dom({R(X̄)})∪dom({R(Ȳ )}), identity on ΔC with values in the set

(ΔN ∖ΔN({R(X̄),R(Ȳ )})) ∪ΔC.

Note that it may be that there is no unifier between two tuples. Also, it can be

observed that the unifier is symmetric. That is, if θ is unifier for R(X̄) and R(Ȳ ), then

θ is also a unifier for R(Ȳ ) and R(X̄). We say that two tuples are unifiable if there

exists a unifier for those tuples. Also, note that the unifier assigns new null values, thus

the unifier does not reuse any nulls from the unified tuples.

Example 44 Consider tuples t1 ∶ R(a,X1, c) and t2 ∶ R(X2,X3, c). The mappings

θ1 = {X1/d,X2/a,X3/d}, θ2 = {X1/X,X2/a,X3/X} are unifiers for t1 and t2, where

X is a new null value. On the other hand, the mapping θ3 = {X1/X3,X2/a} is not a

unifier even if θ3(t1) = θ2(t2), because it maps null X1 to existing null X3.

Similarly to the unifiers between instances, we have the notion of more general

unifier for tuples.

Definition 42 Let also θ1, θ2 be two unifiers for tuples t1 and t2. We say that θ1 is

a more general unifier than θ2 if there exists a non-isomorphic mapping f ∉ Id, that is

identity on constants, such that θ2 = f ○ θ1.

Returning to Example 44, θ2 is a more general unifier than θ1 for tuples t1 and t2.

Definition 43 A unifier θ is said to be a most general unifier for tuples t1 and t2 if

there does not exist unifier θ′ such that θ′ is more general than θ.
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Clearly any two most general unifiers for two tuples t1 and t2 are isomorphic. By

mgu(t1, t2) we denote a representative unifier from the equivalence class of most general

unifiers for t1 and t2. For a unifier θ we shall use the abbreviation:

F (θ) =def ( ⋀
X,Y ∈ΔN, θ(X)=θ(Y )

X = Y ) ∧ ( ⋀
X∈ΔN, a∈ΔC, θ(X)=a

X = a) (6.38)

Example 45 Returning to the unifiers mentioned in Example 44, F(θ1) represents the

formula: X1 = d ∧X2 = a ∧X3 = d. and F(θ2) represents: X1 = X3 ∧X2 = a.

Definition 44 A conditional table (T,ϕ) is said to be a conditional core if for any

valuation v and for any two distinct tuples t1, t2 ∈ T it cannot be that v(t1) = v(t2) and

v(ϕ(t1)) ≡ v(ϕ(t2)) = true.

Example 46 Consider the following conditional table:

(T,ϕ)
t ϕ(t)

R(a,X1, c) X5 = a

R(a, b,X2) X6 = b

R(X3,X4, c) X7 = c

R(a, b, c) X8 = d

For valuation v = {X1/b,X2/c,X3/a,X4/b,X5/a,X6/b,X7/d,X8/d} we have for all

tuples t ∈ T , v(t) = R(a, b, c) and v(ϕ(t)) ≡ true. Thus (T,ϕ) is not a conditional core.

Lemma 10 Given a conditional table (T,ϕ) such that ϕ(t) ≡ true, for all t ∈ T , then

testing if (T,ϕ) is a conditional core can be done in time O(n2)

Proof: This testing comes up to checking if there are two unifiable tuples in T∎

The previous lemma considered the local conditions tautologies. However, for ar-

bitrary boolean formula over equalities and inequalities, the problem becomes coNP-

complete.
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Even if the complexity of checking if a conditional table is a conditional core is

coNP-complete in general, there exists a polynomial time algorithm that computes a

core for a conditional table, assuming that there exists a total order between the tuples

in the conditional table. Considering this, we denote the order relation between tuples

by the symbol “⋖“. In our conditional-chase algorithm, the order considered will be

the one in which the tuples are generated at each step. This is why in the following

algorithm we will traverse the tuples in descending order.

CORE-COMP((T,ϕ)

1 (U,φ) ← (T,ϕ), such that U = {t1, . . . , t∣T ∣} and tj ⋖ ti, for 1 ≤ i < j ≤ ∣T ∣.
2 for i← 1 to ∣T ∣ − 1
3 do
4 for j ← i + 1 to ∣T ∣
5 do
6 if ti is unifiable with tj
7 then
8 θ ←mgu(ti, tj)
9 φ(ti) ← φ(ti) ∧ ¬� (θ)

10 φ(tj) ← φ(tj) ∨ (φ(ti) ∧�(θ))
11 return (U,φ)

Figure 6.2: The Conditional Table Core Computation

Figure 6.2 presents the CORE-COMP (T,ϕ) algorithm which computes the core

of a given conditional table (T,ϕ) with the tuples ordered by ⋖. It is easy to observe

that this algorithm runs in time O(n2), where n = ∣T ∣. As the algorithm is deterministic

and terminates for all input conditional tables by CORE-COMP (T,ϕ), we will also

denote the conditional table returned by the algorithm. The following theorem states

the main result of this section:

Theorem 54 Let (T,ϕ) be a conditional table with a total order ⋖ on the tuples in T ,
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then CORE-COMP (T,ϕ) is a conditional core and CORE-COMP (T,ϕ) ≅ (T,ϕ).

Proof: First we will prove that CORE-COMP (T,ϕ) is a conditional core. Let us

denote (U,φ) = CORE-COMP (T,ϕ). Towards a contradiction let us assume that

(U,φ) is not a conditional core. Thus, there exist a valuation v and the tuples t1, t2 ∈ U ,

such that v(φ(t1)) ≡ v(φ(t2)) ≡ true and v(t1) = v(t2). Wlog. We may assume that

t2 ⋖ t1, if not we interchange the notation of the two tuples. Because v(t1) = v(t2), it

follows that v is a unifier for t1 and t2, thus there exists θ = mgu(t1, t2). On the other

hand, because t2 ⋖ t1, it follows, from the description of the algorithm, that φ(t1) is a

formula of the form μ∧¬F(θ). Where μ is an expression, because t1 is unified with t2

only after all the unification between t1 and t (line 6 of the algorithm) took place, for

all t such that t1 ⋖ t. On the other hand, because θ is a more general unifier than v, it

follows that F(v) ⊧ F(θ), v(φ(t1)) = v(μ ∧ ¬F (θ)), thus v(φ(t1)) = v(μ) ∧ ¬v(F(θ)).

But we have that v(F(θ)) ≡ true following v(φ(t1)) = false contradicting with the

initial assumption that v(φ(t1)) ≡ true.

Before continuing the proof, let us introduce a few notations, where t is a tuple and

v a valuation:

• Let parent(t) be the ordered sequence (t1, . . . , tn) such that tj ⋖ ti, for all integers

1 ≤ i < j ≤ n, ti ⋖ t (note that algorithm uses the descending order) and the tuples

ti and t are unifiable, for all i ∈ [n]. We denote by parentv(t) the subsequence of

sequence parent(t) such that, for any tuple t′ ∈ parentv(t), we have v(t′) = v(t).

• Let child(t) be the ordered sequence (t1, . . . , tn) such that tj ⋖ ti, for 1 ≤ i < j ≤ n,

t⋖ ti and the tuples t and ti are unifiable, for i ∈ [n]. We then denote by childv(t)
the subsequence of child(t) such that, for any tuple t′ ∈ childv(t), we then have

v(t′) = v(t).

• It is clear that for any t ∈ U , φ(t) is a formula of the form:
φ(t) = ((ϕ(t) ∨ μ1 ∨ . . . ∨ μn) ∧ γ1 ∧ . . . ∧ γm) (6.39)

where n = ∣parent(t)∣ and m = ∣child(t)∣. Each disjunct μi, i ∈ [n] was obtained
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by unifying tuples ti ∈ parent(t) and t on line 10 of the algorithm. And each

conjunct γj , j ∈ [m] was obtained by unifying tuples t and tj ∈ child(t) on line 9

of the algorithm.

• For each t ∈ U , we denote by φ∗(t) the conjunct: (ϕ(t) ∨ μ1 ∨ . . . ∨ μn) from the

formula φ(t) specified in 6.39.

It can be easily observed that ∣parentv(t)∣ > ∣parentv(t′)∣, for any t′ ∈ parentv(t).

Also ∣childv(t)∣ > ∣childv(t′)∣ for any t′ ∈ childv(t). Note that ∣parent(t)∣ > ∣parent(t′)∣

for any t′ ∈ parent(t) it does not always hold (the same for child sequence).

Returning to our proof, we need to show that (U,φ) ≅ (T,ϕ). Note that the

algorithm CORE-COMP does not add or eliminate tuples, thus U = T . Let us first

show that (U,φ) ⊑ (T,ϕ). For this let v be a valuation and t ∈ U . We need to prove

that if v(φ(t)) ≡ true then v(t) ∈ v(T,ϕ).

First we will prove that, by induction on the size of the set parentv(t) ∪ {t}, if

v(φ∗(t)) ≡ true, then there exists t′ ∈ (parentv(t) ∪ {t}) such that v(ϕ(t′)) ≡ true.

For the base case, let us suppose ∣parentv(t)∣ = 0 and v(φ∗(t)) ≡ true, where φ(t) is

of the form 6.39. Because ∣parentv(t)∣ = 0, it follows that there is no t′ ∈ parent(t) such

that v(t′) = v(t). On the other hand, because each disjunct μi, i ∈ [n] was obtained on

line 10 of the algorithm by unifying ti ∈ parent(t) to t using mgu θi, it follows that μi is

of the form λi ∧F(θi). But this means that v(F(θi)) ≡ false, because θi is the mgu for

ti, t and v is not a unifier for ti, t. Following that v(μi) ≡ false for all i ∈ [n], because

v(φ∗(t)) ≡ true, it follows that it needs to be that v(ϕ(t)) ≡ true. This proves the

base case.

For the induction step, we assume that, if for a tuple t we have ∣parentv(t)∣ = k and

v(φ∗(t)) ≡ true, then there exists tuple t′ ∈ (parentv(t)∪{t}) such that v(ϕ(t′)) ≡ true.

Let us now consider ∣parentv(t)∣ = k + 1 and v(φ∗(t)) ≡ true. If v(ϕ(t)) ≡ true, the

induction is proved. Let us suppose that v(ϕ(t)) ≡ false, thus there exists i ∈ [n] such
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that v(μi) ≡ true (see formula 6.39). Where condition μi was added in step 10 of the

algorithm due to tuple ti ∈ parent(t). From the construction of the disjunct μi, we

have μi = λi ∧ F(θ), where λi = φ∗(ti) ∧ ρ1 ∧ . . . ∧ ρh. From the assumption we have

v(μi) ≡ true, thus v(F(θ)) ≡ true and v(λi) ≡ true following that v(φ∗(ti)) ≡ true.

On the other hand, from v(F(θ)) ≡ true it follows that v(t) = v(ti), thus ti ∈ parentv(t).

Meaning that ∣parentv(ti)∣ < ∣parentv(t)∣ = k + 1 and having also v(φ∗(ti)) ≡ true.

From the induction steps it follows that there exists a t′ ∈ (parentv(ti)∪{ti}) such that

v(ϕ(t′)) ≡ true. This concludes the proof that if v(φ∗(t)) ≡ true, then there exists

t′ ∈ (parentv(t) ∪ {t}) such that v(ϕ(t′)) ≡ true. But from the main assumption we

know that v(φ(t)) ≡ true, thus v(φ∗(t)) ≡ true. From the previous inductive proof it

follows that there exists t′ ∈ parentv(t) such that v(ϕ(t′)) ≡ true. From the definition

of parentv(t) sequence it follows that v(t′) = v(t), thus v(t) ∈ v(T,ϕ). By this we

showed that (U,φ) ⊑ (T,ϕ).

It remains to be proved that (T,ϕ) ⊑ (U,φ). Let us consider v a valuation and t a

tuple in T such that v(ϕ(t)) ≡ true. We need to show that v(t) ∈ v(U,φ).

Similarly to the previous proof, first we will demonstrate by induction on the size

of childv(t) ∪ {t} that if φ∗(t) ≡ true, then there exists t′ ∈ (childv(t) ∪ {t}) such that

v(φ(t′)) ≡ true. For the induction base case, let us suppose that ∣childv(t)∣ = 0 and

v(φ∗(t)) ≡ true. For the ease of reading we rewrite below the general format of φ(t):

φ(t) = ((ϕ(t) ∨ μ1 ∨ . . . ∨ μn) ∧ γ1 ∧ . . . ∧ γm) (6.40)

The assumption is v(φ∗(t)) ≡ true, this means that either v(φ(t)) ≡ true or there

exists a positive integer j ∈ [m] such that v(γj) ≡ false. Towards a contradiction, let

us suppose that there exists positive integer i ∈ [m] such that v(γj) ≡ false. From the

description of the formula 6.40 we know that each γj , j ∈ [m] is generated on line 9 of

the algorithm by unifying tuples t, tj using an mgu θj . Thus γj is of the form ¬F(θj).
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Because v(γi) ≡ false, it follows that v(F(θj)) ≡ true, but because θj is an mgu for t,

tj , it follows that v(t) = v(tj), contradicting that ∣childv(t)∣ = 0. Thus it must be that

v(φ(t)) ≡ true, proving the base case.

For the induction step, let us suppose that for any tuple t if ∣childv(t)∣ = k and

v(φ∗(t)) ≡ true, then there tuple t′ ∈ (childv(t) ∪ {t}) such that v(φ(t′)) ≡ true. Let

us consider tuple t such that ∣childv(t)∣ = k+1 and v(φ∗(t)) ≡ true. If v(φ(t′)) ≡ true,

then the induction step is proved. Let us consider that we have v(φ(t′)) ≡ false, thus

from formula 6.40 it follows that there exists a smallest positive integer j ∈ [m] such that

v(γj) ≡ false and for all h ∈ [j] we have v(γh) ≡ true. As shown in the induction basic

case, γj is of the form ¬F (tj), where θj is the mgu between tuples t and tj ∈ child(t).

Because v(γi) ≡ false, then v(F(θj)) ≡ true. On the other hand, we have from line 10

of the algorithm that φ∗(tj) is a disjunctive formula that contains the following disjunct

λj = (φ∗(t) ∧ γ1 ∧ . . . ∧ γj−1 ∧ F(θj)). From the way j was chosen, it follows that, for

all h ∈ [j], we have that v(γh) ≡ true. We also have, from the induction assumption,

that v(φ∗(t)) ≡ true and we already showed that v(F(θj)) ≡ true. Therefore, we have

that v(λi) ≡ true. Because λj is a disjunct in φ∗(tj), it follows that v(φ∗(tj)) ≡ true.

Also we know that v(F(θj)) ≡ true, where θj is the mgu for tuples t, tj . It follows that

v(tj) = v(t) meaning that tj ∈ childv(t), thus ∣childv(tj)∣ < ∣childv(t)∣ = k + 1. Adding

that v(φ∗(tj)) ≡ true from the inductive assumption, it follows that there exists a

t′ ∈ (childv(tj) ∪ {tj}) such that v(φ(t′)) ≡ true. This concludes the inductive proof.

Now let t be a tuple from T such that v(ϕ(t)) ≡ true. As φ(t) is a disjunctive

formula containing the disjunct ϕ(t), it follows that v(φ∗(t)) ≡ true. From the previous

inductive proof, it follows that there exists a tuple t′ ∈ (childv(t)∪{t}) with the property

that v(φ(t′)) ≡ true. But because v(t′) = v(t), it follows that v(t) ∈ (U,φ), proving

that (T,ϕ) ⊑ (U,φ). From this and the previous result, it follows that (T,ϕ) ≅ (U,φ)∎

Example 47 Let us now exemplify some of the algorithm steps by considering the
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same conditional table from Example 46 shown not to be a core:

(T,ϕ)
t ϕ(t)

R(a,X1, c) X5 = a

R(a, b,X2) X6 = b

R(X3,X4, c) X7 = c

R(a, b, c) X8 = d

Let us label the tuples as follows: t1 = R(a,X1, c), t2 = R(a, b,X2), t3 = R(X3,X4, c)

and t4 = R(a, b, c).

Let us consider the following total order between tuples: t4 ⋖ t2 ⋖ t1 ⋖ t3. The algo-

rithm starts by setting (U,φ) ← (T,ϕ). Based on CORE-COMP algorithm presented

in Figure 6.2, the tuples are unified in the descending order, that is: t3 with t1, t3 with

t2, t3 with t4, t1 with t2, t1 with t4 and t2 with t4.

The unifier θ31 = {X3/a,X4/X,X1/X} is an mgu for tuples t3 and t1. Based on

formula 6.38 we have F(θ31) = (X4 = X1 ∧ X3 = a). From line 9 and 10 of the

CORE-COMP algorithm we change the local conditions of tuples t3 and t1 as follows:

φ(t3) = X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a)

φ(t1) = X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)

Similarly for tuples t3, t2, the mgu is θ32 = {X3/a,X4/b,X2/c}, thus changing the local

conditions as follows:

φ(t3) = X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

φ(t2) = X6 = b ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 = a ∧X4 = b ∧X2 = c))

We get for tuples t3 and t4by by using mgu θ34 = {X3/a,X4/b}:
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φ(t3) = X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

∧(X3 ≠ a ∨X4 ≠ b)

φ(t4) = X8 = d ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

∧(X3 = a ∧X4 = b))

The unifier θ12 = {X1/b,X2/c} is an mgu for t1 and t2, thus we have:

φ(t1) = (X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 ≠ b ∨X2 ≠ c)

φ(t2) = X6 = b ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 = a ∧X4 = b ∧X2 = c))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 = b ∧X2 = c))

We have mgu θ14 = {X1/b} for tuples t1 and t4:

φ(t1) = (X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 ≠ b ∨X2 ≠ c) ∧ (X1 ≠ b)

φ(t4) = X8 = d ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

∧(X3 = a ∧X4 = b))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 ≠ b ∨X2 ≠ c) ∧ (X1 = b))

Finally, the unifier θ24 = {X2/c} is the mgu for t2, t4 changing their local conditions

to:

φ(t2) = (X6 = b ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 = a ∧X4 = b ∧X2 = c))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 = b ∧X2 = c))) ∧ (X2 ≠ c)

φ(t4) = X8 = d ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

∧(X3 = a ∧X4 = b))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 ≠ b ∨X2 ≠ c) ∧ (X1 = b))

∨((X6 = b ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 = a ∧X4 = b ∧X2 = c))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 = b ∧X2 = c))) ∧ (X2 = c))

Putting all together, the conditional table (U,φ) returned by the CORE-COMP

algorithm has the same tuples as (T,ϕ) with the following local conditions:
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φ(t1) = (X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 ≠ b ∨X2 ≠ c) ∧ (X1 ≠ b)

φ(t2) = (X6 = b ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 = a ∧X4 = b ∧X2 = c))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 = b ∧X2 = c))) ∧ (X2 ≠ c)

φ(t3) = X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

∧(X3 ≠ a ∨X4 ≠ b)

φ(t4) = X8 = d ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 ≠ a ∨X4 ≠ b ∨X2 ≠ c)

∧(X3 = a ∧X4 = b))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 ≠ b ∨X2 ≠ c) ∧ (X1 = b))

∨((X6 = b ∨ (X7 = c ∧ (X4 ≠ X1 ∨X3 ≠ a) ∧ (X3 = a ∧X4 = b ∧X2 = c))

∨((X5 = a ∨ (X7 = c ∧X4 = X1 ∧X3 = a)) ∧ (X1 = b ∧X2 = c))) ∧ (X2 = c))

Consider v1 = {X1/d,X2/c,X3/a,X4/d,X5/a,X6/b,X7/c,X8/d} a valuation for (U,φ).

In this case we have v1(φ1) ≡ true, v1(φ2) ≡ false, v1(φ3) ≡ false and v1(φ4) ≡ true,

giving v1(U,φ) = {R(a, d, c),R(a, b, c)} equal to v1(T,ϕ). Note that v1(ϕ(t4)) ≡ false

and v1φ(t4)) ≡ true.

We conclude this section with another example of a conditional table that has

isomorphic tuples:

Example 48 Let (T,ϕ) be the following conditional table:

(T,ϕ)
t ϕ(t)

R(a,X1) true

R(a,X2) true

R(a,X3) true

The CORE − COMP algorithm with this input will return the conditional table

(U,φ) with the following tabular specification:
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(U,φ)
t φ(t)

R(a,X1) X1 ≠ X2 ∧X1 ≠ X3

R(a,X2) X1 = X2 ∧X2 ≠ X3

R(a,X3) X1 = X3 ∨ (X1 = X2 ∧X2 = X3)

6.4 The Conditional Chase

In this section we generalize the classical chase procedure to work on conditional tables.

As we will prove, this new conditional chase will give a useful tool to compute a repre-

sentation (in this case a conditional table) for all the possible consistent instances under

the constructible models semantics. For this we need first to introduce the following

central concept:

Definition 45 Let Σ be a set of TGD’s and T a tableau. A conditional trigger for Σ

on T (or simply, a trigger) is a tuple τ = (ξ, θ, T ′), where ξ ∈ Σ, and θ = (θ1, θ2) is an

mgu that unifies body(ξ) with T ′, where T ′ ⊆ T and T ′ is a θ2-core. The set triggΣ(T )

contains the set of all triggers for Σ on T .

Example 49 Consider the following tableau T = {R(X1, b),R(b, c),R(X2, d)} and let

Σ = {ξ1, ξ2}, with ξ1: R(x, y),R(y, z) → S(x, z) and ξ2: S(x,x) → R(x,x). For this

example we have body(ξ1) = {R(X,Y ),R(Y,Z)}. Thus the conditional triggers are

triggΣ(T ) = {τ1, τ2, τ3, , τ4, τ5}, where

τ1 = (ξ1, ({X/X1, Y /b,Z/c},{}),{R(X1, b),R(b, c)}),

τ2 = (ξ1, ({X/X1, Y /b,Z/d},{X2/b}),{R(X1, b),R(X2, d)}),

τ3 = (ξ1, ({X/b, Y /c,Z/d},{X2/c}),{R(b, c),R(X2, d)}),

τ4 = (ξ1, ({X/X2, Y /d,Z/b},{X1/d}),{R(X2, d),R(X1, b)}),

τ5 = (ξ1, ({X/c, Y /c,Z/b},{X1/c}),{R(b, c),R(X1, b)}).
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Note that ξ2 does not generate any triggers as there are no tuples over relation name

S in instance T .

Regarding the complexity of computing the set triggΣ(T ), we have the following:

Lemma 11 The set triggΣ(T ) can be computed in polynomial time in the number of

tuples in T .

Proof: Let us consider Σ = {ξ1, ξ2, . . . , ξk}; also let c ≥ ∣body(ξi)∣ for all i ∈ [n]. For each

dependency ξ ∈ Σ there are a maximum of (∣T ∣c
) tableaux T ′ ⊆ T that may contribute

to a trigger. For each such T ′ and dependency ξ based on Proposition 18 we need

time O((2c)2cc2) to compute the set mgu(body(ξ), T ′). We have k dependencies and,

for each dependency, the number of subset tableaux of T that we need to check can

be approximated by ∣T ∣c. Thus, we need time O(k∣T ∣c(2c)2cc2) to compute triggΣ(T ).

As Σ is considered given, that is integers k and c are constants, it follows that the

computing time is O(∣T ∣c) in data complexity∎

Because applying a trigger to a c-table will generate new null values (unless the

TGD is full), we need a mechanism for controlling this generation in such a way that

the new nulls are true representatives of the implicit skolemization taking place. Let

τ = (ξ, (θ1, θ2), T ′) be a trigger, where ξ = α(x̄, ȳ) → ∃z̄ β(x̄, z̄). For each z in z̄,

consider a function Z ↦ Zτ , such that we have Zτ = Zρ for all triggers ρ of the form

ρ = (ξ, (θ1, γ2), T ′′). Clearly such a function exists (assuming that ΔV and ΔN can be

well ordered).

Example 50 For a better understanding of the previous notion, let us consider tableau

T = {R(a,X1),R(X2, a)} and dependency ξ ∶ R(x,x) → T (x). For this configuration

trigg{ξ}(T ) = {τ1, τ2}, where trigger τ1 = (ξ, ({X/a},{X1/a}),{R(a,X1)}) and trigger

τ2 = (ξ, ({X/a},{X2/a}),{R(X2, a)}). In this case both triggers are defined on the same

dependency and have the same first mapping as unifier. Therefore we have Xτ1 = Xτ2.
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Before introducing the conditional-chase micro-step, let us clarify some useful no-

tations. Let (T,ϕ) be a conditional table. Then we define:

⩕(T,ϕ) =def ⋀
t∈T

ϕ(t), (6.41)

Also, when θ is finite partial mapping from ΔN to the set ΔN ∪ΔC, we shall use

the abbreviation:

⩕(θ) =def ⋀
i

Xi = θ(Xi), (6.42)

where the Xi’s are all the nulls in the domain of θ.

We are now ready to define the conditional-chase step on an conditional table with

a total order on its tuples.

Definition 46 Let (T,ϕ) be a conditional table that is a conditional core such that

there exists a total order ⋖ on its tuples. Let τ = (ξ, (θ1, θ2), T ′) be a trigger from

triggΣ(T ). We denote by θτ
1 the extension of θ1 that maps each null Z from head(ξ)

associated with an existentially quantified variable z from ξ, to the variable Zτ . We say

that the conditional table (U,φ) is obtained from (T,ϕ) by applying trigger τ , if (U,φ)

contains all the c-tuples from T together with their possibly modified local conditions

and possibly a new c-tuple, as follows:

If T contains a tuple t syntactically equal to θτ
1(head(ξ)),

then for (U,φ) the local condition of t is changed to:

φ(t) =def ϕ(t) ∨ (⩕ (T ′, ϕ) ∧⩕(θ2)), (6.43)

else add the tuple t′ ∶ θτ
1(head(ξ)) with local condition:

φ(t′) =def ⩕(T ′, ϕ) ∧⩕(θ2) (6.44)

such that t⋖ t′ for all t ∈ T .
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If (U,φ) is obtained from (T,ϕ), in this way we write (T,ϕ) →τ (V,ψ), where (V,ψ)

is the conditional table computed by CORE-COMP algorithm with input (U,φ). This

transformation is called a conditional-chase micro-step (or simply micro-step).

Note that in this case the lexicographic order between tuples cannot be used as we

may generate tuples that precede lexicographically the existing ones. In this case, an

index based order may be used, that is to each tuple is assigned an index (numerical

value) based on the total order in the initial conditional table and for each of the tuples

added by the micro-step the index is increased by 11.

The intuition behind computing the core of the conditional table at each micro-step

is given by the way constructible models semantics is defined (we want the conditional

chase to mimic the constructible models semantics). To exemplify this case, consider

the following example:

Example 51 Let us consider the conditional table without any local conditions (that

is a tableau) T = {R(a, b),R(a, c)}. Let Σ = {ξ1, ξ2}, where:

ξ1 ∶ R(x, y) → ∃z S(x, z) (6.45)

ξ2 ∶ S(x, y) → ∃z P (x, z) (6.46)

Supposing that the core computation for the conditional table is no needed, then we

have the following triggers in triggΣ(T, true):

τ1 = (ξ1, ({X/a, Y /b},{}),{R(a, b)}) and

τ2 = (ξ1, ({X/a, Y /c},{}),{R(a, c)}).

By applying these triggers according to Definition 46, it will create the following

new tuples: S(a,X1) and S(a,X2) with tautological local condition. These new tuples

1Note that this is the reason why the CORE-COMP algorithm traverses the tuples in
descending order.
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will create new triggers:

τ3 = (ξ2, ({X/a, Y /X1},{}),{S(a,X1)}) and

τ4 = (ξ2, ({X/a, Y /X2},{}),{S(a,X2)}).

When applied, these new triggers will add the following two new tuples: P (a,X3)

and P (a,X4). It can be easily noted that there are no new triggers to be considered

and, by applying any of the triggers τ1, τ2, τ3 or τ4, no new tuples will be added. Thus

we get the following instance by conditional chasing T :

(T ′, ϕ′)
t ϕ′(t)

R(a, b) true

R(a, c) true

S(a,X1) true

S(a,X2) true

P (a,X3) true

P (a,X4) true

Applying valuation v = {X1/b,X2/b,X3/c,X4/d} on the resulting conditional table,

we obtain v(T ′, ϕ) ∉ Σ(T ). Thus, by applying all the conditional micro-steps without

adding the conditional core computation, it may generate inconsistent instances under

the constructible models semantics. By considering the micro-step with the conditional

core computation at each step (in this example we considered the tuples ordered lexi-

cographically for the initial conditional table) and by applying the triggers in the order

τ1, τ2, τ3 and τ4, we get the following conditional table:

(T ′′, ϕ′′)
t ϕ′(t)

R(a, b) true

R(a, c) true

S(a,X1) X1 ≠ X2

S(a,X2) true

P (a,X3) X1 ≠ X2 ∧X3 ≠ X4

P (a,X4) true
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The following lemma states, as expected, that a conditional micro-step is monotone

in the ⊑ partial order.

Lemma 12 If (T,ϕ) →τ (U,φ), then (T,ϕ) ⊑ (U,φ).

Proof: The proof is immediate from Definition 46 and Proposition 54∎

Having a table (T,ϕ) and a finite set Σ of TGD’s, the set of triggers triggΣ(T,ϕ)

is obviously finite. Consider a sequence

(T,ϕ) →τ1 (U1, ϕ1) →τ2 ⋯→τn (Un, ϕn),

where τ1, τ2, . . . , τn is an ordering of all the triggers from the set triggΣ(T,ϕ). We call

this a conditional-chase micro-sequence for (T,ϕ) using triggΣ(T,ϕ).

Example 52 Let us consider conditional table (T,ϕ):

(T,ϕ)
t ϕ(t)

R(a, b) X1 = c

R(b, a) X2 = d

P (a, b) X3 = e

To this let us add dependencies Σ = {ξ1, ξ2}, where

ξ1 ∶ R(x, y) → ∃z S(x, z)

ξ2 ∶ P (x, y) → ∃R(x, y)

For (T,ϕ) and Σ, we have the following set of triggers triggΣ(T,ϕ):

τ1 = (ξ1, ({X/a, Y /b},{}),{R(a, b)})

τ2 = (ξ1, ({X/b, Y /a},{}),{R(b, a)})

τ3 = (ξ2, ({X/a, Y /b},{}),{P (b, a)})
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Let us consider the following sequence of micro-steps, obtained by applying the trig-

gers τ1 followed by τ2 and τ3:

(T,ϕ) →τ1 (U1, ψ1) →τ2 (U2, ψ2) →τ3 (U3, ψ3).

where (U1, ψ1), (U2, ψ2) and (U3, ψ3) are the following conditional tables:

(U1, ψ1)
t ψ1(t)

R(a, b) X1 = c

R(b, a) X2 = d

P (a, b) X3 = e

S(a, Y1) X1 = c

(U2, ψ2)
t ψ2(t)

R(a, b) X1 = c

R(b, a) X2 = d

P (a, b) X3 = e

S(a, Y1) X1 = c

S(b, Y2) X2 = d

(U3, ψ3)
t ψ3(t)

R(a, b) X1 = c ∨X3 = e

R(b, a) X2 = d

P (a, b) X3 = e

S(a, Y1) X1 = c

S(b, Y2) X2 = d

Let us now consider another sequence of micro-steps obtained by applying first τ2

followed by τ3 and τ1:

(T,ϕ) →τ2 (V1, μ1) →τ3 (V2, μ2) →τ1 (V3, μ3).

where (V1, μ1), (V2, μ2) and (V3, μ3) are the following conditional tables:

(V1, μ1)
t μ1(t)

R(a, b) X1 = c

R(b, a) X2 = d

P (a, b) X3 = e

S(b, Y2) X2 = d

(V2, μ2)
t μ2(t)

R(a, b) X1 = c ∨X3 = e

R(b, a) X2 = d

P (a, b) X3 = e

S(b, Y2) X2 = d

(V3, μ3)
t μ3(t)

R(a, b) X1 = c ∨X3 = e

R(b, a) X2 = d

P (a, b) X3 = e

S(b, Y2) X2 = d

S(a, Y1) X1 = c ∨X3 = e

Note that even by applying the same set of triggers on conditional table (T,ϕ) we

have repC(U3, ψ3) ≠ repC(V3, μ3).

As it can be noted in the previous example, the order in which the triggers are

applied in a conditional micro-sequence does affect the outcome, but we shall see that

in the end the order will not matter.
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After a micro-sequence, it is not guaranteed that the representation of the result

will satisfy the set of dependencies. It may be that additional triggers will be generated.

We therefore abstract a micro-sequence into a macro-step, as follows:

Definition 47 Let (T,ϕ) and (U,φ) be conditional tables with a total order on the set

of tuples; and let Σ be a set of TGD’s. We write (T,ϕ) ⇒Σ (U,φ), if (U,φ) is obtained

from (T,ϕ) by applying all micro-steps generated from triggΣ(T ). The transformation

from (T,ϕ) to (U,φ) is called a conditional-chase macro-step using Σ.

For the conditional table and the set of dependencies from Example 52, we have

the macro-steps (T,ϕ) ⇒Σ (U3, ψ3) and (T,ϕ) ⇒Σ (V3, μ3). It is a corollary of Lemma

12 that the macro-step is monotone.

Corollary 9 If (T,ϕ) ⇒Σ (U,φ), then (T,ϕ) ⊑ (U,φ).

We are now ready to introduce the concept of a conditional-chase sequence.

Definition 48 Let (T,ϕ) be a c-table and Σ a set of TGD’s. A sequence

(T0, ϕ0), (T1, ϕ1), . . . , (Tn, ϕn), . . .

of c-tables, inductively constructed as

(T0, ϕ0) = (T,ϕ),

(Ti+1, ϕi+1) = (U,φ), where (Ti, ϕi) ⇒Σ (U,φ),

(Tω, ϕω) = ⊔
i∈ω

(Ti, ϕi),

is called a conditional-chase sequence associated with (T,ϕ) and Σ. We denote

chasecond
Σ (T0, ϕ0) = (Tω, ϕω).

Note that the separation of micro and macro sequences guarantees that the overall

sequence will be fair, as all applicable trigger is fired in each micro sequence.

The following lemma follows directly from the definition of the triggers:
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Lemma 13 If T ⊆ U , then triggΣ(T ) ⊆ triggΣ(U).

The next result gives us the necessary and sufficient condition for the conditional

chase to terminate.

Lemma 14 If in the conditional-chase sequence we have (Ti, ϕi) ≅ (Ti+1, ϕi+1) for

some i ∈ ω, then (Ti, ϕi) ≅ (Tj , ϕj) for all j > i.

Proof: In this proof we will suppose that there are no unifiable tuples in Ti, thus the

core computing step will not change the conditional table at any of the micro-steps.

This is not a restriction as it can be very easily seen that all the steps from this proof

hold for the computed core too by doing an induction, similar to the one in the proof

of Theorem 54, on the size of the set childv.

Let i ∈ ω such that (Ti, ϕi) ≅ (Ti+1, ϕi+1). From this it follows that Ti = Ti+1 and

that for each valuation v we have v(Ti, ϕi) = v(Ti+1, ϕi+1). Towards a contradiction,

let us suppose that (Ti+1, ϕi+1) /≅ (Ti+2, ϕi+2), thus it must be that either Ti+1 ≠ Ti+2,

or there exists valuation v such that v(Ti+1, ϕi+1) ≠ v(Ti+2, ϕi+2). Consider first that

Ti+1 ≠ Ti+2 from macro-step monotonicity Corollary 9 follows that there exists a tuple

t ∈ Ti+2 ∖ Ti+1. Thus, there exists trigger τ ∈ triggΣ(Ti+1), where Σ is the set of TGD’s

considered that generates the new tuple t. But from the assumption we know that

Ti = Ti+1, so τ ∈ triggΣ(Ti), meaning that tuple t needs to be also in Ti+1 giving a

contradiction with the assumption that t ∈ Ti+2∖Ti+1. From this it follows that it needs

to be that Ti = Ti+1 = Ti+2, thus also triggΣ(Ti) = triggΣ(Ti+1) = triggΣ(Ti+2). Next let

us suppose that there exists valuation v such that v(Ti+1, ϕi+1) ≠ v(Ti+2, ϕi+2). Let us

now unfold the macro-steps into micro-steps as follows, considering n = ∣triggΣ(Ti)∣:

(Ti, ϕi) →τ1 (U1, φ1) →τ2 . . . (Un, φn) →τn (Ti+1, ϕi+1) (6.47)

(Ti+1, ϕi+1) →τ ′1
(V1, ψ1) →τ ′2

. . . (Vn, ψn) →τ ′n (Ti+2, ϕi+2) (6.48)
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From the chase monotonicity property we have that there exists valuation v such

that v(Ti+2, ϕi+2) ∖ v(Ti+1, ϕi+1) ≠ ∅. That is there exists a smallest integer k such

that (Vk−1, ψk−1) →τ ′
k
(Vk, ψk) and there exists a tuple t ∈ v(Vk, ψk) ∖ v(Vk−1, ψk−1),

so that t ∈ v(Ti+2, ϕi+2) ∖ v(Ti+1, ϕi+1). From this we have that there exists a tuple

tT ∈ Ti such that v(tT ) = t and v(ψk(tT )) ≡ true. Because k is the smallest integer

with this property, it follows that v(ψl(tT )) ≡ false for all l ∈ [k − 1] and also that

v(φl(tT )) ≡ false for all l ∈ [n]. As the set of triggers in both sequences 6.47 and 6.48

is the same, it naturally follows that there exists an integer j ∈ [n] such that τj = τ ′k.

Let τ ′k = (ξ, (θ1, θ2), T ′). Now, because v(ψk(tT )) ≡ true and v(ψk−1(tT )) ≡ false,

it follows that, for the condition μk = ⩕(T ′, ψk−1) ∧ ⩕(θ2) induced by τ ′k, we have

v(μk) ≡ true. Meaning that v(⩕(T ′, ψk−1)) ≡ true and v(⩕(θ2)) ≡ true. On the other

hand, the condition induced by trigger τj in sequence 6.47 is μj = ⩕(T ′, φj−1) ∧⩕(θ2),

and from our assumption that t ∉ v(Uj , φj), it must be that v(μj) ≡ false. Thus,

because v(⩕(θ2)) ≡ true it follows that v(⩕(T ′, φj−1)) ≡ false. This means that there

exists a tuple t∗ ∈ T ′, such that v(φj(t∗)) ≡ false. On the other hand, we know that

v(ψk(t∗)) ≡ true. From this we have that one of the following needs to hold:

1. exists an integer j < l ≤ n, such that v(φl(t∗)) ≡ true, or

2. exists an integer 0 ≤ l < k, such that v(ψl(t∗)) ≡ true.

If the first case holds, because v(φl(t∗)) ≡ true and from the monotonicity corollary,

it follows that v(ϕi+1(t∗)) ≡ true and that v(ϕi(t∗)) ≡ false. But this is a contradiction

with the assumption that (Ti, ϕi) ≅ (Ti+1, ϕi+1). So it needs to be that the second

condition holds, that is v(φl(t∗)) ≡ true for a positive l < k. But again, this is a

contradiction with the way we choose k to be minimal as v(t∗) ∈ v(Vl, ϕl)∖v(Ti+1, ϕi+1).

From this it follows directly that it needs to be that (Ti+2, ϕi+2) ≅ (Ti+1, ϕi+1)∎
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From the previous lemma it follows that, if for some i ∈ ω, (Ti, ϕi) ≅ (Ti+1, ϕi+1),

then we have (Tω, ϕω) ≅ (Ti, ϕi). In this case we say that the chase sequence converges

in the finite. From [3] we know that testing for two conditional tables if (Tω, ϕω) ≅

(Ti, ϕi) is ΠP
2 -complete in general. In Section 6.5 we will present a class of dependencies

that ensures the conditional-chase termination in polynomial time without needing to

test the previous condition at each macro-step.

Example 53 Continuing with the conditional table and the triggers from Example 52

we have that (T,ϕ) ⇒Σ (T1, ϕ1), where (T1, ϕ1) is the conditional table (U3, ψ3) from

the given example. Applying the sets of triggers on (T1, ϕ1), we get the following micro-

step sequence:

(T1, ϕ1) →τ1 (U4, ψ4) →τ2 (U5, ψ5) →τ3 (T2, ϕ2).

Where (T2, ϕ2) is the following conditional table:

(T2, ϕ2)

t ϕ2(t)

R(a, b) X1 = c ∨X3 = e ∨X3 = e

R(b, a) X2 = d

P (a, b) X3 = e

S(a, Y1) X1 = c ∨ (X1 = c ∨X3 = e)

S(b, Y2) X2 = d ∨X2 = d

It is easy to check that (T1, ϕ1) /≅ (T2, ϕ2). Applying the triggers in the same

order yet another time, we get (T2, ϕ2) ⇒Σ (T3, ϕ3), where (T3, ϕ3) is the following

conditional table:
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(T3, ϕ3)
t ϕ3(t)

R(a, b) X1 = c ∨X3 = e ∨X3 = e ∨X3 = d

R(b, a) X2 = d

P (a, b) X3 = e

S(a, Y1) X1 = c ∨ (X1 = c ∨X3 = e) ∨ (X1 = c ∨X3 = e ∨X3 = e)
S(b, Y2) X2 = d ∨X2 = d ∨X2 = d

In this case we have that (T2, ϕ2) ≅ (T3, ϕ3), so that (Tω, ϕω) = (T2, ϕ2). Thus the

result of the conditional chase was computed after three conditional macro-steps. Note

that if we would apply the triggers in the second order from the same Example 52, then

we would only need two macro steps to get to a congruent table to the one previously

obtained.

Next we proceed with a series of lemmas which allow us to prove the main prop-

erty of the conditional chase, namely that the representation of the conditional table

returned by the chase process is the same with the instance form the constructible

models semantics, i.e. repC(chasecond
Σ (T,ϕ)) = Σ(repC(T,ϕ)).

Lemma 15 Let (T0, ϕ0) be a c-table, Σ a set of TGD’s , v a valuation for (T0, ϕ0),

I0 = v(T0, ϕ0) and G0 = ground(Σ). Also consider sequence:

(I0,G0) ⇒α1→β1 (I1,G1) ⇒α2→β2 ⋯⇒αn→βn (In,Gn) ⇒αn+1→βn+1 ⋯ (6.49)

and the unfolding of a conditional-chase sequence:

(T0, ϕ0) →τ1 (T1, ϕ1) →τ2 ⋯→τn (Tn, ϕn) →τn+1 ⋯ (6.50)

Then there exists a valuation v′, extending v, such that the following holds:

1. for any i ∈ ω (or i ∈ [n] if sequence 6.49 is finite of size n) there exists an integer

k such that Ii ⊆ v′(Tk, ϕk), and
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2. for any j ∈ ω (or j ∈ [m] if sequence 6.50 is finite of size m) there exists an

integer k such that v′(Tj , ϕj) ⊆ Ik.

Proof: First we will inductively construct sequences v0 ⋐ v1 ⋐ . . . ⋐ vn ⋐ . . . and

(m0,m1, . . . ,mn, . . .) such that for any integer i we have (Ii, true) ⊆ vi(Tmi , ϕmi).

Intuitively, mi will be the index of the last micro-step from the unfold conditional-

chase sequence 6.50, used to compute valuation vi which is an extension of vi−1.

First we set v0 = v and m0 = 0 having I0 = v0(To, ϕ0). Let us suppose we constructed

sequences v0 ⋐ v1 ⋐ . . . ⋐ vk−1 and (m0, . . . ,mk−1) such that for all i ∈ [k − 1] we have

(Ii, true) ⊆ vi(Tmi , ϕmi).

We construct now vk as an extension of vk−1 as follows: let αk → βk ∈ ground(ξ) be

the k-th grounding applied in sequence 6.49. From the way a grounding is applied in the

constructible models semantics (see Section 6.2), we have that αk ⊆ Ik−1. But from the

inductive assumption and from the monotonicity of the conditional micro-step we have

that (Ik−1, true) ⊆ vk−1(Tj , ϕj) for any j ≥ k − 1. From this it follows that there exist

an integer j ≥ mk−1 and a trigger τj = (ξ, (θ1, θ2), T ′) ( guaranteed to exist because the

way macro-steps are defined), such that (θ1, θ2) is a more general unifier than (w, vk−1),

where w(body(ξ)) = αk, vk−1(T ′, ϕj−1) = αk and T ′ is a vk−1-core. Let θ
τj

1 (head(ξ))

be the new tuples generated by trigger τj . This means that there exists a valuation v′

such that v′(vk−1(θ
τj

1 (head(ξ)))) = βk. Otherwise, if such a valuation would not exist,

it would mean that trigger τj was already used in the inductive process with grounding

αl → βl, l < k where αl = αk. But this is a contradiction since, after applying the ground-

ing αl → βl, the set of grounding Gl does not contain any groundings of the form αl → ∗.

Let (Uj , ψj) be the c-table obtained from c-table (Tj−1, ϕj−1) by applying trigger τj ,

without computing the conditional core. Thus (Tj , ϕj) = CORE-COMP (Uj , ψj). We

know that vk−1(T ′, ϕj−1) ≡ true from the way (Uj , ψj) is constructed (see Definition

46), so it follows that vk−1(⩕(T ′, ϕj−1)) ≡ true. Also, because (θ1, θ2) is a more
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general unifier than (w, vk−1), it follows that vk−1(⩕(θ2)) ≡ true. That is we have

βk ⊆ v′(vk−1(Uj , ψj)), thus because from the construction we have (Uj , ψj) ≅ (Tj , ϕj)

it follows that βk ∈ v′(vk−1(Tj , ϕj)) = v′(vk−1(Uj , ψj)). We now set vk = v′ ○ vk−1 and

mk = j. Clearly we have vk−1 ⋐ vj , mk > mk−1 and, because Ik = Ik−1 ∪ βk, we have

(Ik, true) ⊆ vk(Tmk
, ϕmk

).

Let v′ = v0 ○ v1 ○ . . . ○ vn ○ . . .. We first show that for any integer k, if v′(Tk, ϕk)

is a ground instance, then there exists an integer j such that v′(Tk, ϕk) ⊆ Ij . We will

prove this by induction on k. For the base chase suppose k = 0. From the assumption

we have v′(T0, ϕ0) = v0(T0, ϕ0) = I0. Now let us suppose k > 0, v′(Tk, ϕk) is a ground

instance and for any l < k there exists an integer jl such that v′(Tl, ϕl) ⊆ Ijl
. Towards a

contradiction, let us suppose that v′(Tk, ϕk) /⊆ Ii for any i ≥ 0. Let τk = (ξ, (θ1, θ2), T ′)

be the trigger from the chase sequence 6.50 used to obtain c-table (Tk, ϕk). Because,

from the induction assumption, v′(Tk−1, ϕk−1) ⊆ Ijl
, it follows that it must be that

v′(θτk
2 (head(ξ))) /⊆ Ii for any i > jl. Let v′(θτk

2 (head(ξ))) = β and v′(T ′, ϕk−1) = α,

clearly α ⊆ Ijl
. Because (T ′, ϕk−1) is a core, it follows that for any T ′′ ⊆ Tk−1, T ′′ ≠ T ′

it cannot be that v′(T ′′, ϕk−1) = α. Thus, because α → β is never applied in sequence

6.49, it follows that there exists β′, different than β, such that α → β′ is applied in

the constructible models sequence. But because there is no tableau T ′′ ≠ T ′ such that

v′(T ′′, ϕk−1) = α, it follows that, when constructing v′, in the previous paragraph, for

grounding α → β′ we used the trigger τn = τk (it may be that we chose the trigger

when applied at step n not at step k), thus making v′(θτn
2 (head(ξ))) = β′. But this is

a contradiction with the fact that v′(θτk
2 (head(ξ))) = β and β ≠ β′.

In the previous paragraph we proved that, for any integer k, if v′(Tk, ϕk) is a

ground instance, then there exists an integer j such that v′(Tk, ϕk) ⊆ Ij . Now we will

show that, for any integer k, the valuation v′(Tk, ϕk) is a ground instance. Towards a

contradiction let us suppose that there exists an integer k such that v′(Tk, ϕk) is not a
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ground instance and v′(Tk−1, ϕk−1) is a ground instance. This means that, for trigger

τk = (ξ, (θ1, θ2), T ′), we have that v′(θτk
2 (head(ξ))) contains nulls and v′(⩕(T ′, ϕk−1)∧

⩕(θ2)) ≡ true. Let α = v′(T ′, ϕk−1). This means that, for any β, such that α → β ∈

ground(ξ), the grounding α → β was not applied in the constructible models sequence.

But because v′(Tk−1, ϕk−1) is a ground instance, we previously proved that there exists

an integer j such that v′(Tk−1, ϕk−1) ⊆ Ij , thus α ∈ Ij . From the fairness applicability

of the groundings in the constructible models sequence, it follows that there must be

a grounding of the form α → β′ ∈ ground(ξ) that is applied in the sequence. But this

is a contradiction with our assumption that such grounding is never applied. Thus

v′(Tk, ϕk) is a ground instance for any k ≥ 0.

Adding all together, we constructed valuation v′ such that for all j ≥ 0 there exists

a k ≥ 0 such that Ij ⊆ v′(Tk, ϕk), proving point (1) of the lemma. We also proved that,

for all k > 0, v′(Tk, ϕk) is a ground instance and, for any i ≥ 0, there exists k ≥ 0 such

that v′(Ti, ϕi) ⊆ Ik, proving point (2) of the lemma∎

Lemma 16 Let (T0, ϕ0) be a c-table and Σ a set of TGD’s Also consider the unfolding

of a conditional-chase sequence:

(T0, ϕ0) →τ1 (T1, ϕ1) →τ2 ⋯→τn (Tn, ϕn) →τn+1 ⋯ (6.51)

and valuation v over ⊔i∈ω(Ti, ϕi), I0 = v0(T0, ϕ0).

Then there exists a constructible models sequence

(I0,G0) ⇒α1→β1 (I1,G1) ⇒α2→β2 ⋯⇒αn→βn (In,Gn) ⇒αn+1→βn+1 ⋯ (6.52)

and an ascending sequence (p0, p1, . . . , pm, . . .) such that, for any integer i ∈ ω (or

i ∈ [l] if sequence 6.51 is finite of size l ), v(Ti, ϕi) = Ipi. Even more, if sequence 6.51

is finite of size l, then sequence 6.52 is finite of size pl.
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Proof: We will inductively construct the sequences 6.52 and (p0, p1, . . . , pm, . . .) based

on the number of micro-steps in 6.51. For the base case k = 0, we have I0 = v(T0, ϕ0),

thus p0 = 0. Let us suppose that k > 0. We have the ascending sequence (p0, p1, . . . , pk−1)

such that Ipi = v(Ti, ϕi), i ∈ [k − 1]. If v(Tk, ϕk) = v(Tk−1, ϕk−1), then we set pk = pk−1.

Thus, by induction assumption, we have Ipk
= Ipk−1

= v(Tk−1, ϕk−1) = v(Tk, ϕk). Let us

now consider that v(Tk, ϕk) ≠ v(Tk−1, ϕk−1), from the monotonicity of the conditional

micro-steps it follows that v(Tk−1, ϕk−1) ⊂ v(Tk, ϕk). Let τk = (ξ, (θ1, θ2), T ′) be the

trigger used in 6.51 to generate c-table (Tk, ϕk) from (Tk−1, ϕk−1). Le us denote with

α = v(T ′, ϕk−1) and β = v(θτk
2 (head(ξ))). Clearly we have v(Tk, ϕk) = v(Tk−1, ϕk−1)∪β,

and α ∈ v(Tk−1, ϕk−1) = Imk−1
. It remains to be proved that the grounding α → β from

ground(ξ) is applicable on (Ipk−1
,Gpk−1

). That is, we need to prove that α → β ∈ Gpk−1
.

Towards a contradiction, let us suppose that α → β ∉ Gmk−1
, thus in the sequence:

(I0,G0) ⇒α1→β1 (I1,G1) ⇒α2→β2 ⋯⇒αpk−1
→βpk−1

(Ipk−1
,Gpk−1

) (6.53)

there exists an integer j < k such that αpj = α. Let τj = (ξ, (θ′1, θ
′
2), T

′′) be the trigger

used at step j in the chase sequence 6.51. Clearly τj ≠ τk, otherwise they would generate

the same output instance. Following that, it needs to be that T ′′ ≠ T ′. Thus from the

monotonicity of the micro-step, it needs to be that there exists a tuple t′ ∈ T ′ ∖T ′′. On

the other hand, we also have that α = v(T ′, ϕk) = v(T ′′, ϕk), but from the micro-step

definition we have that all new tuples generated in T ′ succeeds (based on ⋖ order) the

tuples in T ′′. Because v(T ′, ϕk) = v(T ′′, ϕk) it follows that there exists a tuple t′′ ∈ T ′′,

such that v(t′) = v(t′′) and v(ϕk(t′)) ≡ true and v(ϕj(t′′)) ≡ true. Thus t′ and t′′ are

unifiable and t′′ ⋖ t′. On the other hand, because t′′ ⋖ t′, the CORE-COMP algorithm

adds a new conjunction to the local condition t′ not allowing it to be equal with t′′.

Following that, it cannot be that v(ϕk(t′)) ≡ true, beacuse it is a contradiction with

our previous assumption on tuple t′. From this, it follows that α → β is applicable on
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(Ipk−1
,Gpk−1

). We set pk = pk−1 + 1 and Ipk
= Ipk−1

∪ β.

Let us now suppose that the conditional chase terminates after a chase sequence

of size l. Towards a contradiction let us suppose that there exists α → β ∈ ground(ξ)

such that α → β ∈ Gpl
and β /⊆ Ipl

. Because v(Tl, ϕl) = Ipl
, this would mean that

there exists trigger τ = (ξ, (θ1, θ2), T ′) such that v(⩕(T ′, ϕl) ∧ ⩕(θ2)) ≡ true and

v(T ′, ϕl) = α. On the other hand, because in the chase sequence we would add another

step (Tl, ϕl) →τ (U,ψ), we would have that v(Tl, ϕl) = v(U,ψ), meaning that the

trigger τ = (ξ, (θ1, θ2), T ′) from the sequence 6.51 was already applied at step k ≤ l.

Consequently, in the constructible models sequence we would have eliminated α → ∗

from Gk, which means that Gl cannot have a grounding of the form α → ∗. This

contradicts with our assumption that such grounding exists. Therefore it must be that

the constructible models sequence is also finite and it has size pl∎

From the construction of the sequence (p0, p1, . . . , pm, . . .) in the previous proof,

it can be noted that sequence (1,2, . . . ,m, . . .) is a subsequence of (p0, p1, . . . , pm, . . .).

This is because it may be that pi = pi+1 for some i.

We are now ready to state the main theorem of this chapter, which says that the

result of the conditional chase represents exactly the constructible models.

Theorem 55 Let (T0, ϕ0) be a conditional table and Σ a set of TGD’s, then:

Σ(repC(T,ϕ)) = repC(chasecond
Σ (T,ϕ)).

Proof: First we will show that Σ(repC(T,ϕ)) ⊆ repC(chasecond
Σ (T,ϕ)). For this let

us consider I0 ∈ repC(T,ϕ), so there exists a valuation v such that v(T,ϕ) = I0. Now

let J ∈ Σ(I0), this means there exists a sequence:

(I0,G0) ⇒α1→β1 (I1,G1) ⇒α2→β2 ⋯⇒αn→βn (In,Gn) ⇒αn+1→βn+1 ⋯
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such that J = ⋃i∈ω Ii. Let us now consider the unfolding of the conditional-chase

sequence, where (T0, ϕ0) = (T,ϕ):

(T0, ϕ0) →τ1 (T1, ϕ1) →τ2 ⋯→τn (Tn, ϕn) →τn+1 ⋯

From Lemma 15 we know that there exists a valuation v such that, for any i ∈ ω,

there exists a j ∈ ω such that Ii ⊆ v(Tj , ϕj), and, for any j ∈ ω, there is an i ∈ ω such

that v(Tj , ϕj) ⊆ Ii. From this it follows that ⋃i∈ω Ii = ⋃j∈ω v(Tj , ϕj). On the other

hand, we know that the valuation is continuous with respect to the union on c-tables,

⋃j∈ω v(Tj , ϕj) = v(⊔j∈ω(Tj , ϕj)). Thus we have:

J = ⋃
i∈ω

Ii = v(⊔
j∈ω

(Tj , ϕj)) = v(chasecond
Σ (T,ϕ))

Following that, J ∈ repC(chasecond
Σ (T,ϕ)). So by generalization it directly follows that

Σ(repC(T,ϕ)) ⊆ repC(chasecond
Σ (T,ϕ)).

Let us now prove the other direction, that is: repC(chasecond
Σ (T,ϕ)) ⊆ Σ(repC(T,ϕ)).

For this, let us consider the unfolded conditional-chase sequence:

(T0, ϕ0) →τ1 (T1, ϕ1) →τ2 ⋯→τn (Tn, ϕn) →τn+1 ⋯

and let us also consider a valuation v on this sequence. From Lemma 16, it follows that

there exists a constructible models sequence:

(I0,G0) ⇒α1→β1 (I1,G1) ⇒α2→β2 ⋯⇒αn→βn (In,Gn) ⇒αn+1→βn+1 ⋯

and an ascending sequence (p0, p1, . . . , pm, . . .) such that v(Tk, ϕk) = Ipk
. As noted, the

sequence (1,2, . . . ,m, . . .) is a subsequence of (p0, p1, . . . , pm, . . .). It then follows that

⋃i∈ω Ii = ⋃j∈ω v(Tj , ϕj). From this it follows directly that v(⊔j∈ω(Tj , ϕj)) = ⋃i∈ω Ii, thus

v(⊔j∈ω(Tj , ϕj)) ∈ Σ(I) and by generalization repC(chasecond
Σ (T,ϕ)) ⊆ Σ(repC(T,ϕ))∎
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A direct corollary of this theorem is that, by using conditional chase in data ex-

change, one may represent the target instance as a conditional table representing exactly

the solution space under constructible models semantics.

Corollary 10 Let M = (S,T,Σst,Σt) be a data exchange mapping and I be a ground

instance. If the conditional chase terminates with input I and Σ = Σst ∪Σt, then:

repC(chasecond
Σ (I, true))∣T = SolCMM(I).

6.5 On Conditional-Chase Termination

In Chapter 4 we presented some classes of TGD’s which guarantee the termination

for different chase variations. In this section we will present a class of TGD’s which

guarantees the conditional-chase termination. Let us denote by CTcond
∀∀ the class of

TGD’s such that for any Σ ∈ CTcond
∀∀ the conditional-chase algorithm terminates with

any c-tables (T,ϕ) and Σ.

The following proposition shows that the conditional chase does not terminate for

a more larger class of TGD’s than the oblivious chase.

Proposition 19 CTcond
∀∀ ⊊ CTobl

∀∀ .

Proof: For the subset part, it is easy to see that any conditional-chase sequence on

c-table (T,ϕ) with Σ set of TGD’s is a superset for the oblivious-chase sequence on

T and Σ. Thus, if the conditional chase terminates for all conditional tables on Σ, it

follows that the oblivious chase on all instances will terminate on Σ too. For the strict

inclusion part, let us consider Σ = {R(x, y, y) → ∃z, v R(x, z, v)}. Using the technique

in [59] it can easily be shown that the standard chase with Σ̂ terminates on all instances.

From this and Theorem 3 it follows that the oblivious chase with Σ terminates on all

instances. Consider then the conditional chase starting with c-table {R(a, b, b)} (the
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local condition of R(a, b, b) is true). The result of this chase can be represented by the

infinite conditional table below:

t ϕ(t)

R(a, b, b) true

R(a,X1,X2) true

R(a,X3,X4) X1 = X2

R(a,X5,X6) (X1 = X2) ∧ (X3 = X4)
. . . . . .

This proves the strict inclusion part as well∎

In order to obtain the sufficient condition for the conditional-chase termination,

we introduce a new rewriting of a set of TGD’s Σ, called disjoining, and denoted Σ̈.

Given a TGD ξ, we denote with ξ̈ the same dependency, where for each variable x

repeated in the body we replace all occurrences, except the first, of x in the body

with a fresh new universally quantified variable. For instance, if ξ denotes the de-

pendency R(x, y, x),R(y, z, x) → ∃v,w R(x, v,w), then ξ̈ will denote the dependency

R(x, y, x1),R(y1, z, x2) → ∃v,w R(x, v,w), where the subscripted variables are fresh.

The set Σ̈ is then {ξ̈ ∶ ξ ∈ Σ}.

There is of course a difference between the conditional and the oblivious chase: the

former may fire based on unifiers (θ1, θ2) and the latter based only on homomorphisms

θ1. From this observation we obtain the following lemma.

Lemma 17 chasecond
Σ (T,ϕ) terminates if chaseobl

Σ̈
(T ) terminates.

From Definition 4 we observe that the extended dependency graph for Σ̈ can be

obtained from the extended dependency graph of Σ by deleting edges, thus we have:

Lemma 18 If Σ is a richly acyclic set of TGD’s, then Σ̈ is also richly acyclic.

We now have the main result of this section
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Theorem 56 RA⊊ CTcond
∀∀ and for any Σ ∈RA and any conditional table (T,ϕ) there

is a polynomial that bounds the execution time of the conditional-chase algorithm with

(T,ϕ) and Σ.

Proof. Let (T,ϕ) be a conditional table and Σ a richly acyclic set of TGD’s. By

Lemma 18, the set Σ̈ is also richly acyclic, and by Lemma 1, the set ̂̈Σ is weakly acyclic.

By [27], chasestd
̂̈Σ
(T ) terminates in polynomial time. By Theorem 14, chaseobl

Σ̈
(T ) also

terminates in polynomial time, and then by Theorem 3, chasecond
Σ (T,ϕ) terminates in

polynomial time in size of (T,ϕ).

For the strict inclusion part, consider Σ = {R(x,x) → ∃y R(x, y)}. It is easy to

see that Σ ∉RA. On the other hand, for each tuple that is unified with the body of

the dependency a new tuple is created. But this new tuple contributes in creating a

new tuple if and only if it is the same as the initial tuple. Thus, the conditional-chase

procedure will terminate in maximum n macro steps, where n is the size of the input

conditional table∎
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Chapter 7

Chasing with Second Order

Dependencies

The notion of representation systems describes structures that are algebraically closed

under queries. For example, complete instances are closed under FO queries. This

means that given any ground instance and any FO query, one may represent the result

of the query as a ground instance. Unfortunately, as clarified in Chapter 6, the previous

property does not hold when dealing with incomplete databases. Therefore, the recent

conclusions stipulate that the representation systems are also highly relevant in the

context of data exchange. In the previous section we also have showed that if the

data exchange mapping is specified by a richly acyclic set of TGD’s, then for each

source data specified by a conditional table, there exists a conditional table over the

target such that it can be used to get the certain and possible answers to any FO

query. Unfortunately, there are many mappings that cannot be specified by sets of

TGD’s and EGD’s. In this chapter, we will develop the previous result showing that

we can extend the previous class of mappings to ordinary SO dependencies which are

specified by source-to-target second order dependencies and by richly acyclic target
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TGD’s and EGD’s. Second order dependencies plays an important role in composing

schema mappings. They were first introduced by Fagin et al. in [29] for source to target

dependencies and it was proved that the class of SO-tgd’s is the right language for

mapping composition. Later on this language was extended by adding weakly acyclic

target dependencies as well by Arenas, Fagin and Nash [9].

7.1 Second Order Dependencies

We introduced in Section 6.2 the constructible models semantics for dependencies spec-

ified by a set of TGD’s. Here we extend this semantics for a higher class of dependencies

source-to-target second order dependencies. For this, let us first present the notions of

term and source-to-target second order dependencies.

Definition 49 Let x̄ be a sequence of variables and f̄ be a sequence of function symbols.

A term based on x̄ and f̄ is defined recursively as follows:

• every variable in x̄ is a term;

• every 0-ary function symbol in f̄ is a term;

• if f is a function symbol of arity k, then f(t1, . . . , tk) is a term, where all ti are

terms for i ∈ [k].

Definition 50 Given a source schema S and a distinct target schema T, a source-to-

target second order dependency is a formula of the form:

∃f1 . . .∃fm((∀x̄1(α1 → β1)) ∧ . . . ∧ (∀x̄n(αn → βn)))

where for each i ∈ [m] and each k ∈ [n]:

• fi is a function symbol;
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• αk is a conjunction of atoms R(ȳ) or equalities t1 = t2. With R ∈ S, ȳ contains

variables from x̄k and t1, t2 are terms based on variables from x̄i and functions

f1, . . . , fn;

• βk is a conjunction of atoms S(t̄), where S ∈ T and t̄ are terms based on x̄k and

{f1, . . . , fm};

• each variable in x̄k occurs in some relational atomic formula in αk.

We denote by st-SO dependencies we denote the class of all source-to-target second

order dependencies.

The last item in the previous definition ensures the safeness of the dependency.

Thus, the formula:

∃f,∃g (∀x, y R(x, y), f(x) = g(y) → S(x, y)) ∧ (∀x, y R(x,x), f(x) = g(y) → T (x, y))

is not st-SO dependencies as the second dependency contains universally quantified

variable y which does not occur in any relational atomic formula in the body.

Given Σ a st-SO dependencies, a source instance I and a target instance J , we say

that (I, J) is a model for Σ, denoted by I ∪ J ⊧ Σ, if I ∪ J satisfies Σ in the standard

model theoretic sense.

Example 54 [29] Consider the source schema S = {Emp}, where Emp is a unary

relation containing a list of employees; and a target schema S = {Mgr,SelfMgr},

where Mgr is a binary relation for the employees; and their manager and relation

SelfMgr is a unary relation that maintains all the self managers. Let us also consider

st-SO dependencies:

∃f(∀e (Emp(e) → Mgr(e, f(e))) ∧ ∀e (Emp(e) ∧ (e = f(e)) → SelfMgr(e)))
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Intuitively, the dependencies mention that for each employee in Emp there exists a

manager given by the function f ; and if for an employee the manager is the same as

the employee ( e = f(e) ), then that employee is a self-manager. Consider, for example,

the following instances:

I1

Emp(john)

J1

Mgr(john,mike)

I2

Emp(john)
Emp(ann)
Emp(mike)

J2

Mgr(john,mike)
Mgr(ann,mike)
Mgr(mike,mike)
SelfMgr(mike)

I3

Emp(john)
Emp(ann)

J3

Mgr(john,mike)
Mgr(ann,mike)
Mgr(mike,mike)

I4

Emp(john)
Emp(ann)
Emp(mike)

J4

Mgr(john,mike)
Mgr(ann,mike)
Mgr(mike,mike)

In this example I1∪J1 ⊧ Σ, I2∪J2 ⊧ Σ, I3∪J3 ⊧ Σ, even if the tuple Mgr(mike,mike)

exists, there is no employee “mike“ under the source Emp relation. Finally, I4∪J4 /⊧ Σ

because there exists an employee “mike“ whose manager is himself, but there is no entry

for him in the SelfMgr relation.

The following example shows that the membership problem for st-SO dependencies

is NP-hard (i.e. Given I and Σ, does I ⊧ Σ? ).

Example 55 [29] Let us consider the followings schemata S = {E} and T = {D}; and

the following st-SO dependencies:

Σ ∶ ∃f (∀x, y E(x, y) → D(f(x), f(y)))

We will reduce now the problem of 3-colorability graph problem to the membership

problem: Is instance I ⊧ Σ? Consider a graph G = (V,E). We construct instance
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I as follows: for each edge (v1, v2) from G add tuple E(v1, v2) in I. Also consider

DI = {(g, y), (y, g), (g, b), (b, g), (b, y), (y, b)}, where g, b and y stand for colors green,

blue and yellow respectively.

It is obvious that, if there exists an interpretation for function f in Σ, then G is

3-colorable, as the interpretation for f gives the colors for the vertexes. Also clearly if

G is 3-colorable, then there exists an interpretation of f such that I ⊧ Σ.

Consider ΔF a countable set of function names and function arity that assigns an

integer for each function symbols in ΔF. A term over ΔF is defined recursively as

follows:

• any constant a ∈ ΔC is a term,

• any null a ∈ ΔC is a term,

• any function symbol f ∈ ΔF with arity(f) = 0 is a term,

• for any function symbol f ∈ ΔF with arity(f) = k, f(t1, t2, . . . , tk) is a term,

where for any i ∈ [k], ti are terms.

We extend the notion of instance to Skolem instance by allowing as elements in the

instance terms and not only constants and nulls.

Example 56 Consider f, g two function symbols from ΔF such that arity(f) = 2 and

arity(g) = 1. The following is a Skolem instance using the function symbols f and g:

I

R(a,X, b, Y )
R(b, f(X,a), c, Y )
R(g(Y ), f(a, a), c, f(a, g(X)))

Let Σ be st-SO dependencies:
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∃f1 . . .∃fm((∀x̄1(α1 → β1)) ∧ . . . ∧ (∀x̄n(αn → βn)))

For such st-SO dependencies we say that the size of Σ is n, denoted by ∣Σ∣. For

each dependency ξi ∶ ∀x̄i(αi → βi), we denote by body(ξi) to be the Skolem instance

that contains a tuple for each atom in α̂i, where each universally quantified variable

from x̄i is mapped by a fresh new null value; where α̂i is the formula obtained from αi

by replacing each equality atom by a new binary relational symbol E, called equality

relation. Similarly, we define the Skolem instance head(ξi).

Example 57 Let Σ be st-SO dependencies from example 54:

∃f(∀e (Emp(e) → Mgr(e, f(e))) ∧ ∀e (Emp(e) ∧ (e = f(e)) → SelfMgr(e)))

For this we have ∣Σ∣ = 2. If we consider ξ1 = ∀e (Emp(e) → Mgr(e, f(e))) and

ξ2 = ∀e (Emp(e) ∧ (e = f(e)) → SelfMgr(e)), then:

body(ξ1) = {Emp(X)}

head(ξ1) = {Mgr(X,f(X))}

body(ξ2) = {Emp(Y ),E(Y, f(Y ))}

head(ξ2) = {SelfMgr(Y )}

Note that even if in the st-SO dependencies both dependencies use universally quantified

variable e, this variable is mapped to a new null according to its scope. Thus, in

the scope of the first occurrence, e is mapped to null X and, in the scope of second

occurrence, it is mapped to Y .
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7.2 Extending Constructible Models Semantics

7.2.1 Adding EGD’s

Before extending our constructible models semantics (introduced in Section 6.2) to

include st-SO dependencies, we have to define the constructible models semantics for

a more general set of dependencies, namely sets of TGD’s and EGD’s. For this, let us

see how an EGD is applied on a node (I,G). Let ∀x̄ α(x̄) → x = y be an EGD, where

x, y are variables in seqx. For this EGD, we define the set of groundings:

ground(∀x̄ α(x̄) → x = y) = ⋃
i∈ω, vi(x)≠vi(y)

{α(vi(x̄)) → %}

where vi, i ∈ ω, is an enumeration of all valuations from the set of variables from x̄ to

the countable set ΔC. Given a set Σ = {ξ1, . . . , ξn} and a set of TGD’s and EGD’s,

we define the set of groundings ground(Σ) = ground(ξ1) ∪ . . . ∪ ground(ξn). Let I be

a ground instance and G a set of finitely generated ground dependencies from Σ. Let

I be an instance and (α → %) ∈ G be a grounding of an EGD ξ ∈ Σ, if α ⊆ I, then we

say that (I,G) fails with the grounding (α → %) and it is denoted as (I,G) ⇒α→a=b %.

Consider now the sequence:

(I0,G0), (I1,G1), . . . , (In,Gn), . . .

where ((I0,G0) = (I,G) and (Ii,Gi) ⇒∗ (Ii+1,Gi+1), where ∗ ∈ Gi is either an TGD

or EGD grounding. If there exists an integer i such that (Ii,Gi) ⇒α→� %, we say that

the sequence is failing. For a non-failing sequence it is obvious that Ii ⊆ Ii+1 and that

Gi ⊇ Gi+1 for each i ∈ ω. For the non-falling sequence, we define the limit of a chase

sequence as:

(⋃
i∈ω

Ii,⋂
i∈ω

Gi).
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Similarly to the TGDcase, we use the notation C(I,G) for the set of the limits

of all chase sequences originating from (I,G). With this we can define the set of all

constructible models of I and Σ as:

Σ(I) = {J ∶ (J,G) ∈ C(I, ground(Σ)),G ⊆ ground(Σ)}.

Example 58 Figure 7.1 represents the constructible models chase tree corresponding

to the instance I = {R(a),R(b)} and Σ containing the following TGD and EGD:

R(x) → ∃y S(x, y)

S(x, y) → x = y.

Figure 7.1: Chase tree with TGD’s and EGD’s
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7.2.2 Adding st-SO dependencies

Now we are ready to extend even more the notion of constructible models semantics in

such a way that it also allows st-SO dependencies. For this, let Σ be st-SO dependencies

of the form:

∃f1 . . .∃fm((∀x̄(α1 → β1)) ∧ . . . ∧ (∀x̄n(αn → βn))) (7.1)

and let F = {f1, . . . , fm} be the set of function symbols therein. Let F ♭ be an interpre-

tation of F in the universe of ΔC. We construct with F ♭ the set of groundings GF ♭ as

follows: for each ∀x̄i αi → βi in 7.1, for i ∈ [n] and for each valuation vj , j ∈ ω, for x̄i

with values in ΔC add grounding α′
i → β′i to G. Where, α′

i and β′i are obtained from

αi and βi respectively by replacing recursively each variable x ∈ x̄i with the value vi(x)

and each term fk(ā), where ā is a sequence of constants, with the constant given by the

corresponding interpretation for fk in F ♭. We will not consider in GF ♭ the groundings

that have an equality of the form a = b in the body of the grounding, with a, b as two

distinct constants. Also, we will eliminate all the equalities of the form a = a from the

body of the grounding. Similarly, if there is a grounding α → β in GF ♭ such that there

exists an equality of the form a = b in the head, with a, b two distinct constants, the

grounding is replaced with α → %. Also, we eliminate from β all equalities of the form

a = a. Thus, there will be no groundings with equalities in GF ♭ .

Example 59 Let us also consider the same st-SO dependencies from Example 54:

∃f(∀e (Emp(e) → Mgr(e, f(e))) ∧ ∀e (Emp(e) ∧ (e = f(e)) → SelfMgr(e)))

Consider also F ♭
1 that interprets f as identity function. The set GF ♭

1
is defined under

this interpretation as the following TGD’s and EGD’s groundings:
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GF ♭

1
= {Emp(john) → Mgr(john, john); Emp(john) → SelfMgr(john)

Emp(ann) → Mgr(ann, ann);Emp(ann) → SelfMgr(ann);

Emp(mike) → Mgr(mike,mike);Emp(mike) → SelfMgr(mike), . . .}

Clearly under this interpretation all employees are self managers. Now let us con-

sider the interpretation that assigns f(a) = mike to all constants a.

GF ♭

2
= {Emp(john) → Mgr(john,mike); Emp(ann) → Mgr(ann,mike);

Emp(mike) → Mgr(mike,mike);Emp(mike) → SelfMgr(mike), . . . }

Note that we eliminated all the groundings in the GF ♭

2
of the form:

Emp(john), john = mike → SelfMgr(john).

Given an instance I and GF ♭ a set of groundings associated with the interpretation

F ♭ and st-SO dependencies Σ, we then define the sequence:

(I0,G0), (I1,G1),⋯, (In,Gn),⋯

where (I0,G0) = (I,GF ♭) and for each i > 0 instance Ii is obtained from Ii−1 by applying

grounding α → β with β ≠ %, where Gi = Gi−1 ∖ {α → ∗} and Ii = Ii−1 ∪ β. If there

exists an integer i and a grounding (α → %) ∈ Gi such that α ⊆ Ii, then we say that the

sequence fails.

Similarly to the embedded dependencies case, we define the limit for all non failing

sequences as:

(⋃
i∈ω

Ii,⋂
i∈ω

Gi).

The notation C(I,GF ♭) will stand for the set of the limits of all chase sequences
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originating from (I,GF ♭). We are now ready to defined ΣF ♭(I)

ΣF ♭(I) = {J ∶ (J,G) ∈ C(I,GF ♭)}

Finally for Σ a st-SO dependencies and I we define Σ(I) to be:

Σ(I) = ⋃
F ♭ - interpretation

ΣF ♭(I)

Example 60 Continuing with the st-SO dependencies from Example 59, with the in-

terpretation F ♭
1 and the instance I = {Emp(john),Emp(mike)}, we have:

ΣF ♭(I) = {{Emp(john),Emp(mike),Mgr(john, john),Mgr(mike,mike),

SelfMgr(john), SelfMgr(mike)}}

Given a mapping M = (S,T,Σ,∅), where Σ is a st-SO dependencies, and given a

source instance I, we extend the notion of constructible models solution space to st-SO

dependencies as follows:

SolCMM(I) = {J ∈ Inst(T)∣ ∃K ∈ Σ(I) and J = K ∣T}.

7.2.3 Adding st-SO dependencies and target TGD’s

We need to extend the constructible models semantics to allow, beside st-SO depen-

dencies, the target TGD’s. In order to achieve this, let us consider Σ = ΣstSO ∪ Σt,

where ΣstSO represents the st-SO dependencies and Σt identifies a set of TGD’s. Let

us denote by Gt the set of all groundings corresponding to Σt, as described in Section

6.2. For each interpretation F ♭ of the function symbols from ΣstSO, we consider the

set GF ♭ which corresponds to the source-to-target second order dependencies.
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Given an instance I and the sets of groundings GF ♭ associated with an interpretation

F ♭ and ΣstSO and Gt, we define the sequence:

(I0,G0), (I1,G1),⋯, (In,Gn)⋯

where (I0,G0) = (I,GF ♭ ∪Gt) and for each i > 0 instance Ii is obtained from Ii−1 by

applying the grounding α → β, where β ≠ %. In this case Gi = Gi−1 ∖ {α → ∗} and

Ii = Ii−1 ∪ β. In case there exist an integer i ≥ 0 and a grounding (α → %) ∈ Gi such

that α ⊆ Ii, then we say that the sequence fails. For a non failing sequence the limit is

defined as:

(⋃
i∈ω

Ii,⋂
i∈ω

Gi).

The notation C(I,GF ♭ ∪Gt) stands for the set of the limits of all chase sequences

originating from (I,GF ♭ ∪Gt). For Σ = ΣstSO ∪Σt, we define ΣF ♭(I):

ΣF ♭(I) = {J ∶ (J,G) ∈ C(I,GF ♭ ∪Gt)}

Finally, for Σ and I we define Σ(I) to be:

Σ(I) = ⋃
F ♭ - interpretation

ΣF ♭(I)

The following proposition is a direct result of the fact that st-SO dependencies are

non-recursive. For a set of instances I, we define Σ(I) = ⋃I∈I Σ(I).

Proposition 20 Let S and T be two distinct schemata and let ΣstSO st-SO dependen-

cies and Σt be a set of target TGD’s. If Σ = ΣstSO ∪Σt, then:

Σ(I) = Σt(ΣstSO(I)).

Let M = (S,T,Σst,Σt) be a data exchange mapping, where Σst is specified by st-SO

dependencies, Σt is specified by a set of target TGD’s. Given a source instance I and
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by denoting Σ = Σst ∪Σt, we extend the notion of constructible models solution space

to st-SO dependencies and target TGD’s as follows:

SolCMM(I) = {J ∈ Inst(T)∣ ∃K ∈ Σ(I) and J = K ∣T}.

7.3 Global Conditional Tables

We present now an extension of the conditional tables (introduced in Section 6.3.1)

called global conditional tables [35]. As we will see in the following section, this ex-

tension is needed in order to capture the constructible models semantics over st-SO

dependencies.

A global conditional table (global c-table) is a pair (T,ϕ), where T is a tableau,

and ϕ, beside associating a local condition ϕ(t) with each tuple t ∈ T , it also associates

a global condition ϕ(T ) to (T,ϕ). Similarly to local conditions, the global condition

is a boolean formula built up from atoms of the form x = y, x ≠ y, x = a, x ≠ a,

a = b and a ≠ b for x, y ∈ ΔN, and a, b ∈ ΔC. An atomic equality of the form a = a for

a ∈ ΔC represents the logical constant true, while for two distinct constants a and b,

the equality a = b represents false.

A global conditional table (T,ϕ) represents a set of possible worlds. Let v be a

valuation such that v(ϕ(T )) ≡ true, then:

v(T,ϕ) = {v(t)∣ t ∈ T, and v(ϕ(t)) ≡ true}. (7.2)

The set of possible worlds represented by global c-table (T,ϕ) is:

repC(T,ϕ) = ⋃
v, v(ϕ(T ))≡true

{v(T,ϕ)}. (7.3)

Note that any global conditional table (T,ϕ) with tautological global condition,
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that is for all valuation v we have v(ϕ(T )) ≡ true, is equivalent to the conditional

table (T,ϕ).

Example 61 Consider the global conditional table (T,ϕ) with the tabular representa-

tion shown below:

ϕ(T ) = (X = a ∨X = b ∨X = c)

t ϕ(t)

R(a,X) true

R(b, c) true

R(a, c) X = b

The set of possible worlds is given by the set of valuations for (T,ϕ) that makes the

global condition a tautology. The tabular representation of all the possible instances for

(T,ϕ), where Ii = vi(T,ϕ), for i ∈ {1,2,3}, v1(X) = a, v2(X) = b and v3(X) = c are

presented below:

I1

R(a, a)
R(b, c)

I2

R(a, b)
R(b, c)
R(c, d)

I3

R(a, c)
R(b, c)

The partial order “⊏“ is extended to the global conditional tables too. Let (T,ϕ)

and (U,ψ) be global c-tables. By (T,ϕ) ⊑ (U,φ) we mean that T ⊆ U , and that for all

valuations v such that v(ϕ(T )) ≡ true, it is that v(ϕ(U)) ≡ true and v(T,ϕ) ⊆ v(U,φ).

If both (T,ϕ) ⊑ (U,φ) and (T,ϕ) ⊑ (U,φ), we write (T,ϕ) ≅ (U,φ) and say that the

global c-tables are congruent.

Two global c-tables (T,ϕ), (U,φ) are said to be equivalent, denoted (T,ϕ) ≡ (U,φ),

if repC(T,ϕ) = repC(U,φ). Clearly Lemma 8 holds for global conditional tables as well.

The class of all global conditional tables is denoted by GCOND.

In the natural way, we extend the notion of conditional table and global conditional

table to the notions of Skolem conditional table and Skolem global conditional tables.
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Example 62 This is an example of Skolem global conditional table:

ϕ(T ) = (X = a ∨ f(X, c) = b ∨ g(X) = c)

t ϕ(t)

R(a, g(X)) true

R(b, c) true

R(a, c) X = b

The same as a global c-table, a Skolem global conditional table represents a set of

possible worlds. Let (T,ϕ) be a Skolem global c-table. Let F ♭ be an interpretation for

the Skolem functions in (T,ϕ) and let v be a valuation such that F ♭(v(ϕ(T ))) ≡ true,

where F ♭(ψ), for a formula ψ, represents the formula obtained by replacing recursively

each function symbol by its interpretation in F ♭. Note that formula F ♭(v(ϕ(T ))) is

well defined because v(ϕ(T )) does not contain any null symbols. We can now define

v(T,ϕ) to be:

F ♭(v(T,ϕ)) = {F ♭(v(t))∣ t ∈ T and F ♭(v(ϕ(t))) ≡ true} (7.4)

The set of possible worlds represented by Skolem global c-table (T,ϕ) is:

repC(T,ϕ) = ⋃
F ♭

⋃
v, F ♭(v(ϕ(T )))≡true

{F ♭(v(T,ϕ))}. (7.5)

Let us now present the notion of Skolem term unification. Let s1 = f(t11, t
1
2, . . . , t

1
k)

and s2 = f(t21, t
2
2, . . . , t

2
k) be two Skolem terms over the function symboldefined as f

with arity(f) = k. Let A = {t11, . . . , t
1
k, t

2
1, . . . , t

2
k}. A mapping θ from A to A ∪ΔN is

said to be a unifier for s1 and s2 if:

1. θ is identity on constants, and

2. for each θ(t) = X, where X ∉ A, X is a fresh new null value from ΔN, and

3. θ(s1) = θ(s2).
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A unifier θ1 for s1 and s2 is said to be more general than a unifier θ2, if there exists

a non-isomorphic function g, identity on constants, such that θ2 = g ○ θ1. Finally, a

unifier θ is said to be a most general unifier for the terms s1 and s2 if there does not

exist a unifier ψ for s1, s2 that is more general than θ. Clearly any two most general

unifiers for terms s1 and s2 are isomorphic. We denote by mgu(s1, s2) a representative

unifier from the equivalence class of the most general unifiers for s1 and s2. For a most

general unifier θ we will use the abbreviation:

F (θ) =def ( ⋀
t,s∉ΔC, θ(t)=θ(s)

t = s) ∧ ( ⋀
a∈ΔC, θ(t)=a

t = a) (7.6)

Example 63 Let s1 = f(a, g(X1, b),X2, h(X2)) and s2 = f(X1, h(X2), f(a,X2, b,X3), c),

then mgu(s1, s2) = {X1/a, g(X1, b)/c, h(X2)/c,X2/Y, f(a,X2, b,X3)/Y }, where Y is a

fresh new null value. For this we have:

F(mgu(s1, s2)) = (X2 = f(a,X2, b,X3) ∧X1 = a ∧ g(X1, b) = c ∧ h(X2)/c).

Given a Skolem global c-table (T,ϕ), we denote with (T ↓f , ϕ↓f) the global condi-

tional table obtained following these steps:

1. create table TERMS that has an entry for each term over a functional symbol

in T (i.e. we do not include constants and nulls);

2. construct conjunctive formula ψ with a conjunction F(mgu(t1, t2)) → t1 = t2 for

each two unifiable t1,t2 in TERMS;

3. assign for each term in TERMS a new fresh null value;

4. construct formula ψ̂ by replacing each highest level term ψ with its corresponding

null value from TERMS. Note that this process is not recursive, for example

if in TERMS we mapped g(X1) to Y and f(a, g(X1)) to Z, then the formula

f(a, g(X1)) = b is replaced with Z = b;

5. construct global c-table (U,φ) by replacing each highest level term in (T,ϕ) with

its corresponding null in TERMS;
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6. construct (T ↓f , ϕ↓f) such that T ↓f= U and for all t ∈ T ↓f we have ϕ↓f (t) = φ(t)
and ϕ↓f (T ↓f) = φ(U) ∧ ψ̂.

Because TERMS contains all the Skolem terms over the function symbols, it follows

that (T ↓f , ϕ ↓f) does not contain any function symbols, thus (T ↓f , ϕ ↓f) is a global

c-table.

Example 64 Let us exemplify the previous construction by considering (T,ϕ) to be

the following Skolemized global c-table:

ϕ(T ) = true

t ϕ(t)

R(a, f(X1, g(X2))) g(a) = f(a, b)
R(b,X1) f(a, f(a, b)) = c

R(f(a, g(X3)), c) X = b

Under this setting the table TERMS will contain the following set of terms:

{f(X1, g(X2)), f(a, g(X3)), f(a, f(a, b)), f(a, b), g(X2), g(X3), g(a)}

Formula ψ obtained by unifying each term from TERMS will be:

ψ = (X1 = a ∧ g(X2) = g(X3) → f(X1, g(X2)) = f(a, g(X3)))

∧(X1 = a ∧ g(X2) = f(a, b) → f(X1, g(X2)) = f(a, f(a, b)))

∧(X1 = a ∧ g(X2) = b → f(X1, g(X2)) = f(a, b))

∧(g(X3) = f(a, b) → f(a, g(X3)) = f(a, f(a, b)))

∧(g(X3) = b → f(a, g(X3)) = f(a, b))

∧(f(a, b) = b → f(a, f(a, b)) = f(a, b))

∧(X2 = X3 → g(X2) = g(X3))

∧(X2 = a → g(X2) = g(a))

∧(X3 = a → g(X3) = g(a))

Next we assign a fresh new variable for each term in terms as follows:
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TERMS

f(X1, g(X2)) Y1

f(a, g(X3)) Y2

f(a, f(a, b)) Y3

f(a, b) Y4

g(X2) Y5

g(X3) Y6

g(a) Y7

Due to these notations, the formula ψ is transformed in ψ̂:

ψ = (X1 = a ∧ Y5 = Y6 → Y1 = Y2) ∧ (X1 = a ∧ Y5 = Y4) → Y1 = Y3)

∧(X1 = a ∧ Y5 = b → Y1 = Y4) ∧ (Y6 = Y4 → Y2 = Y3)

∧(Y6 = b → Y2 = Y4) ∧ (Y4 = b → Y3 = Y4)

∧(X2 = X3 → Y5 = Y6) ∧ (X2 = a → Y5 = Y7) ∧ (X3 = a → Y6 = Y7)

Thus, the global c-table (T ↓f , ϕ↓f) is:

ϕ↓f (T ↓f) = ψ̂

t ϕ↓f (t)

R(a, Y1) Y7 = Y4

R(b,X1) Y3 = c

R(Y2, c) X = b

The following theorem tells us that by removing the function symbols as presented

before, we do not loose any information.

Theorem 57 Given (T,ϕ) a Skolemized global c-table, then

repC(T,ϕ) = repC(T ↓f , ϕ↓f).

Proof: Let I ∈ repC(T,ϕ). This means there exists an interpretation F ♭ for the

function symbols in (T,ϕ) and the valuation v such that F ♭(v(ϕ(T ))) ≡ true and

I = F ♭(v(T,ϕ)). Let v′ be the valuation that extends v as follows: for each term t
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in TERMS associated with the null value Y we set v′(Y ) = F ♭(v(t)). Let us also

define ϕ↓f (T ) = φ(U) ∧ ψ̂ (from the description of (T ↓f , ϕ↓f)). Now, from the used

construction, we have v′(φ(U)) = F ♭(ϕ(T )), thus v′(φ(U)) ≡ true. Let us consider a

conjunction α → Yi = Yj from ψ̂. Let us now replace Yi and Yj with the corresponding

terms ti and tj from TERMS. Thus, the formula becomes F(mgu(ti, tj)) → ti = tj .

But, from the construction of F(mgu(ti, tj)), it naturally follows that for any mapping

g such that g(F(mgu(ti, tj))) ≡ true, it is that g(ti) = g(tj). On the other hand, if

v(F(mgu(ti, tj))) ≡ true, from the construction of v′ we have that v′(α) ≡ true, and

also because v(ti) = v(tj) and because F ♭ is a well defined interpretation it follows that

v′(Yi) = v′(Yj). Thus, v′(α → Yi = Yj) ≡ true, meaning that v′(ϕ↓f (T ↓f)) ≡ true.

Now let t ∈ T . From the construction of (T ↓f , ϕ ↓f) it follows that there ex-

ists a tuple t′ ∈ T ↓f obtained from t by replacing each function symbols terms with

their corresponding null from TERMS table. Clearly, from the construction of v′,

we have that F ♭(v(t)) = v′(t′) and also that F ♭(v(ϕ(t))) = v′(ϕ ↓f (t′)). From

this it directly follows that F ♭(v(T,ϕ)) ⊆ v′(T ↓f , ϕ ↓f). Thus, by generalization,

repC(T,ϕ) ⊆ repC(T ↓f , ϕ↓f).

For the other direction, let us consider I ∈ repC(T ↓f , ϕ↓f). This means that there

exists a valuation v′ such that v′(ϕ↓f (T ↓f)) ≡ true. Let us set v to be the restriction

of v′ to all null values except the ones from TERMS. And let us define the inter-

pretation F ♭ such that for each term ti in TERMS with the associated labeled null

Yi set F ♭(v(ti)) = v′(Yi). Because v′(ψ̂) ≡ true, it follows that F ♭ is a well defined

interpretation. From this it follows, similarly to the proof for the other direction, that

v′(T ↓f , ϕ↓f) = F ♭(v(T,ϕ)) and, by generalization, that repC(T ↓f , ϕ↓f) ⊆ repC(T,ϕ)∎
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7.4 Chasing with Second Order Dependencies

In this section we will extend the conditional table chase with TGD’s to the global-

conditional chase with st-SO dependencies. To achieve this, first we need to extend

the tableau unification process to Skolem tableaux. For a Skolem tableau T , by T̂

we denote the tableau T restricted to all relational symbols except E. We denote by

ΔF(T ) the set of all terms in T . The homomorphism notion is extended in the natural

way to the Skolem tableaux too.

Definition 51 Let T and U be two Skolem tableaux such that only T may contain the

equality symbol E. A unifier for T and U , if it exists, is a pair (θ1, θ2), where θ1 is a

homomorphism from the set of terms ΔF(T ) to the set ΔF(U) ∪ΔC(dom(T )) and θ2

is a ΔC(dom(T ))-retraction for U , such that the following holds θ1(T̂ ) = θ2(U).

Example 65 Consider tableau T = {R(a, f(X1), f(X1),X2),E(a, f(X1))} and tableau

U = {R(Y1, b, g(Y2), Y3)}. The pair (θ1, θ2), with the mappings θ1 = {f(X1)/b,X2/c}

and θ2 = {Y1/a, g(Y2)/b, Y3/c}, is a unifier for T and U . Another unifier for T and U

is (θ′1, θ
′
2), where θ′1 = {f(X1)/b,X2/Y3} and θ2 = {Y1/a, g(Y2)/b}.

Definition 52 A unifier (θ1, θ2) for the Skolem tableaux T and U is more general than

a unifier (γ1, γ2), if there is a mapping f on dom(U), f ∉ Id, identity on constants,

such that γ1 = f ○ θ1 and γ2 = f ○ θ2.

The more general unifier definition is extended to the most general unifier as follows:

Definition 53 A unifier (θ1, θ2) is a most general unifier (mgu) for the Skolem in-

stances T and U , if all unifiers (γ1, γ2) of T and U that are more general than (θ1, θ2)

actually are isomorphic with (θ1, θ2). We denote by mgu(T,U) the set of (representa-

tives of the) equivalence classes of all mgu’s of T and U .
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The same as in the standard-conditional chase case, we need to introduce the notion

of Skolemized conditional trigger.

Definition 54 Let Σ be st-SO dependencies of the form: ∃f̄ ξ1, . . . , ξn, where each

ξi are of the form ∀x̄i αi → βi, for i ∈ [n]. Let T be a Skolem instance. A Skolem

conditional trigger for Σ on T (or simply a trigger) is a tuple τ = (ξi, θ, T
′), where

i ∈ [n] and θ = (θ1, θ2) is a mgu that unifies body(ξi) with T ′, where T ′ ⊆ T , and T ′ is

a θ2-core. The set triggΣ(T ) contains the set of all triggers for Σ on T .

Example 66 Going back to st-SO dependencies, from Example 54:

∃f(∀e (Emp(e) → Mgr(e, f(e))) ∧ ∀e (Emp(e) ∧ (e = f(e)) → SelfMgr(e)))

Let ξ1 = ∀e (Emp(e) → Mgr(e, f(e))) and ξ2 = ∀e (Emp(e)∧(e = f(e)) → SelfMgr(e)).

Consider a tableau T = {Emp(john),Emp(mike)}. For this configuration we have the

following set of triggers:

τ1 = (ξ1, ({e/john},{}),{Emp(john)})

τ2 = (ξ2, ({e/john},{}),{Emp(john)})

τ1 = (ξ1, ({e/mike},{}),{Emp(mike)})

τ2 = (ξ2, ({e/mike},{}),{Emp(mike)})

Note that when dealing with st-SO dependencies there are no existentially quanti-

fied variables, so there is no need to create new null values during the chase process. It

can also be observed that the presence of the Skolem functions ease the chase process

as there is no need anymore to compute the core for the conditional table.

Before introducing the Skolem-conditional chase micro-step, let us introduce some

notations similar to the ones presented for the conditional-chase process introduced in

Section 6.4. Let (T,ϕ) be a Skolem conditional table. Then we define:
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⩕ (T,ϕ) =def ⋀
t∈T

ϕ(t), (7.7)

When θ is a finite partial mapping from ΔN to the set ΔN ∪ΔC, we shall use the

abbreviation:

⩕ (θ) =def ⋀
i

Xi = θ(Xi), (7.8)

where the Xi’s are all the nulls in the domain of θ.

For a Skolem trigger τ = (ξ, (θ1, θ2), T ′) we define:

⩕L (τ) =def ⋀
E(t1,t2)∈body(ξ)

θ1(t1) = θ1(t2), (7.9)

⩕G (τ) =def ⋀
E(t1,t2)∈head(ξ)

⩕(θ2) ∧⩕(T ′, ϕ) ∧⩕L(τ) → θ1(t1) = θ1(t2). (7.10)

These new notations are now useful to define the conditional-chase step on the

Skolem conditional tables:

Definition 55 Let (T,ϕ) be a Skolem conditional table. Let τ = (ξ, (θ1, θ2), T ′) be a

trigger from triggΣ(T ). We say that the Skolem conditional table (U,φ) is obtained

from (T,ϕ) by applying trigger τ , if (U,φ) contains all the c-tuples from T together

with their possibly modified local and global conditions, and possibly a new c-tuple, as

follows:
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If T contains a tuple t syntactically equal to θ1(head(ξ)),

then for (U,φ) the local condition of t is changed to:

φ(t) =def ϕ(t) ∨ (⩕ (T ′, ϕ) ∧⩕(θ2) ∧⩕L(τ)), (7.11)

else add the tuple t′ ∶ θ1(head(ξ)) with local condition:

φ(t′) =def ⩕(T ′, ϕ) ∧⩕(θ2) ∧⩕L(τ). (7.12)

If (U,φ) is obtained from (T,ϕ) in this way and if φ(U) = ϕ(T ) ∧⩕G(τ) , then

we write (T,ϕ) →τ (U,φ). This transformation is called a Skolem-conditional chase

micro-step (or simply micro-step).

We are now ready to define the result of chasing a Skolem conditional table with

st-SO dependencies;

Definition 56 Let (T,ϕ) be a Skolem conditional table Σ st-SO dependencies from

schema S to schema T. Let also triggΣ(T ) = {τ1, τ2, . . . , τn}. The sequence:

(T0, ϕ0), (T1, ϕ1),⋯, (Tn, ϕn)

is said to be a Second-Order chase sequence if (T0, ϕ0) = (T,ϕ) and for all i ∈ [n] it

holds that (Ti−1, ϕi−1) →τi (Ti, ϕi) .

The following lemma follows directly from Definition 55 and the observation that

st-SO dependencies are non-recursive dependencies.

Lemma 19 Let (T,ϕ) be a Skolem conditional table and Σ st-SO dependencies, such

that ∣triggΣ(T )∣ = n. Let also (Tn, ϕn) and (T ′
n, ϕ′

n) be two Skolem c-tables from the

n-th position in two Second Order chase sequences for (T,ϕ) with Σ, then:
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repC(Tn, ϕn) = repC(T ′
n, ϕ′

n)

Intuitively, the previous lemma states that the order of applying the triggers when the

dependencies are specified as st-SO dependencies does not matter.

The Skolem conditional table (Tn, ϕn) from Definition 56 is called the result of

chasing (T,ϕ) with Σ and it is denoted by chasecond
Σ (T,ϕ).

The following theorem shows that the interpretation of the Skolem conditional

table gives exactly the set of constructible models for st-SO dependencies and the

interpretation of the initial Skolem conditional table.

Theorem 58 If (T,ϕ) is a Skolem conditional table and Σ st-SO dependencies such

that (T,ϕ) and Σ does not share any skolem function names, then:

Σ(repC(T,ϕ)) = repC(chasecond
Σ (T,ϕ))

Proof: Let I ∈ Σ(repC(T,ϕ)), that is there exists an interpretation F ♭ for the function

symbols in (T,ϕ) and there exists a valuation v such that J = F ♭(v(T,ϕ)) and I ∈ Σ(J).

This means that there exists an interpretation K♭ for the function symbols in Σ and

that there exists a non failing constructible models sequence:

(J0,G0), (J1,G1),⋯, (Jm,Gm)

such that (J0,G0) = (J,GK♭) and for all i ∈ [m] the instance Ji is obtained from the

instance Ji−1 by applying a grounding from Gi−1. There are no groundings in Gm to

be applied on Jm and Jm = I.

We will prove by induction that there is a sequence of Skolem c-tables:

(T0, ϕ0), (T1, ϕ1),⋯, (Tm, ϕm)
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such that (T0, ϕ0) = (T,ϕ) and for each i ∈ [m], K♭(F ♭(v(Ti, ϕi))) = Ji.

For the base case, let us consider i = 0, from the hypothesis J = J0 = F ♭(v(T0, ϕ0)).

But since (T0, ϕ0) = (T,ϕ) and because there are no common Skolem functions in Σ

and (T,ϕ), it follows that J0 = K♭(F ♭(v(T0, ϕ0))), proving the base case.

For the induction step, let us consider that for any integer i ∈ [k − 1], for a k ∈ [m],

the induction assumption holds. We need to prove that K♭(F ♭(v(Tk, ϕk))) = Jk.

Now, let (Jk−1,Gk−1) ⇒α→β (Jk,Gk). Thus (α → β) ∈ ground(ξ), α ⊆ Jk−1 and

Jk = Jk−1 ∪ β. Because α ⊆ Jk−1 and from the induction assumption we have that

Jk−1 = K♭(F ♭(v(Tk−1, ϕk−1))). Therefore, there exists a subset minimal T ′ ⊆ Tk−1 such

that α = K♭(F ♭(v(T ′, ϕk−1))). Moreover, α is K♭(v′(body(ξ))) restricted to all relation

names except the E relation, where v′ is a valuation for the nulls in v′(body(ξ)). The

consequence is that (K♭ ○ v′,K♭ ○F ♭ ○ v) is a unifier for body(ξ) and tableau T ′. Thus,

there exists a most general unifier (θ1, θ2) such that K♭○v′ = g○θ1 and K♭○F ♭○v = g○θ2.

That is τk = (ξ, (θ1, θ2), T ′) is a trigger in triggΣ(Tk−1). On the other hand, because

Σ is a source-to-target set of dependencies, it follows that τk ∈ triggΣ(T ). Based on

Definition 55, we create (Tk, ϕk) such that (Tk−1, ϕk−1) →τk
(Tk, ϕk). By the micro-

step definition, we have ϕk(Tk) = ϕk−1(Tk−1) ∧ ⩕G(τk) and by the induction step we

have K♭(F ♭(v(ϕk−1(Tk−1)))) ≡ true. Towards a contradiction, let us suppose that

K♭(F ♭(v(⩕G(τk)))) ≡ false, thus there exist terms t1 and t2 that are equated in

the head of ξ, such that K♭(F ♭(v(θ1(t1)))) ≠ K♭(F ♭(v(θ1(t2)))), because the local

conditions and unifications are evaluated to true. But this cannot be true as, on the

contrary, it will follow that (α → %) ∈ Gk−1. Thus, the sequence would be a failing one.

This means that it must be that K♭(F ♭(v(ϕk(Tk)))) ≡ true. Similarly, because, from

the induction assumption, α = K♭(F ♭(v(T ′, ϕk−1))), it follows that the local condition

for the tuples added/modified needs to be valuated to true by K♭ ○ F ♭ ○ v. Following

that, K♭(F ♭(v(Tk, ϕk))) = K♭(F ♭(v(Tk−1, ϕk−1))) ∪ β. Thus K♭(F ♭(v(Tk, ϕk))) = Jk,
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proving the induction step.

With this we demonstrated that for the constructible models sequence:

(J0,G0), (J1,G1),⋯, (Jm,Gm)

there exists a Second Order conditional-chase sequence:

(T0, ϕ0), (T1, ϕ1),⋯, (Tm, ϕm)

such that K♭(F ♭(v(Ti, ϕi))) = Ji for all i ∈ [m]. We will now have to prove that there

is no trigger τ ∈ triggΣ(T ) such that τ ∉ {τ1, . . . , τm}, with (Tm, ϕm) →τ (Tm+1, ϕm+1)

and K♭(F ♭(v(Tm, ϕm))) ≠ K♭(F ♭(v(Tm+1, ϕm+1))). Again, towards a contradiction,

let us suppose that such a trigger exists. Let us define τ = (ξ, (θ1, θ2), T ′) and let

us also denote α = K♭(F ♭(v(body(ξ)))) and β = K♭(F ♭(v(head(ξ)))). On the other

hand, because K♭(F ♭(v(Tm, ϕm))) ≠ K♭(F ♭(v(Tm+1, ϕm+1))) and from the monotonic-

ity property of the micro-chase step, it follows that K♭(F ♭(v(ϕm+1(Tm+1)))) ≡ true.

This means, from the construction of the global condition, that β ≠ %. From this, it

directly results that (α → β) ∈ triggΣ(T ). Finally, because τ ∉ {τ1, . . . , τm} and Σ

are source-to-target dependencies, it follows that α → β′ was not applied on the con-

structible models sequence, that is α → β ∈ Gm. In other words, it is applicable on

(Jm,Gm) and (Jm,Gm) ⇒α→β (Jm+1,Gm+1) with Jm ≠ Jm+1. This gives a contradic-

tion with the assumption that in the constructible models there are no other applicable

groundings on (Jm,Gm). Thus, it needs to be that there is no such trigger τ . This

means that the instance I is part of repC(chasecond
Σ (T,ϕ)) and, by generalization, that

Σ(repC(T,ϕ)) ⊆ repC(chasecond
Σ (T,ϕ)).

For the other direction, let us suppose I ∈ repC(chasecond
Σ (T,ϕ)). There exists the

interpretation H♭ of the function symbols in chasecond
Σ (T,ϕ) and the valuation v such

that I = H♭(v(chasecond
Σ (T,ϕ))). Let F ♭ be the interpretation H♭ restricted to the
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function symbols form (T,ϕ) and K♭ the interpretation H♭ restricted to the function

symbols from Σ. Clearly, H♭ = F ♭ ⊔K♭. Let triggΣ(T ) = {τ1, . . . , τm} and consider the

sequence:

(T0, ϕ0), (T1, ϕ1),⋯, (Tm, ϕm)

where (Ti−1, ϕi−1) →τi (Ti, ϕi), for all i ∈ [m]. Lemma 19 stipulates directly that

chasecond
Σ (T,ϕ) = (Tm, ϕm). Consider now the instance J = F ♭(v(T,ϕ)). We will show

that I ∈ ΣK♭(J). Similarly to the previous case, we can prove by induction that there

exists a constructible models sequence:

(J0,G0), (J1,G1),⋯, (Jm,Gm)

such that (J0,G0) = (J,GK♭) with Ji = H♭(v(Ti, ϕi)) and that there are no other

applicable groundings (α → β) ∈ Gm such that (Jm,Gm) ⇒α→β (Jm+1,Gm+1) with

Jm ≠ Jm+1. Meaning that Jm ∈ ΣK♭(J) and Jm = H♭(v(Tm, ϕm)). The conse-

quence is that Jm = H♭(v(chasecond
Σ (T,ϕ))) = I, so I ∈ ΣK♭(J) and, by generalization,

repC(chasecond
Σ (T,ϕ)) ⊆ Σ(repC(T,ϕ))∎

7.5 Strong Representation Systems

The notion of representation systems started lately to get more attention mainly in

concordance with data exchange mappings [10]. Before presenting the notion of strong

representation system, let us introduce some useful notions. In Section 2.2 we presented

the certain answers and possible answers in the context of incomplete databases. We

extend these notions with the exact answer to a query q for an incomplete database I,

denoted by q(I), to be the set ⋃I∈I{q(I)}.

Now we are ready to define the strong representation systems.

232



7. Chasing with Second Order Dependencies

Definition 57 Let T be a class of tables, REP an interpretation and C a class of

queries. Then the triple (T ,REP ,Q) is a strong representation system, if, for each

T ∈ T and q ∈ Q, there exists a table U ∈ T such that REP (U) = Rep(T ).

Example 67 Consider G to be the class of ground instances and FO the class of safe

first order queries. Then (G, repCWA,FO) is a strong representation system. That is

for any ground instance I and for any safe query q ∈ FO there exists a ground instance

J such that repCWA(J) = q(repCWA(I)). As we know that repCWA(I) = {I} for

any ground instance I, the previous formula becomes {J} = q({I}) or, equivalently,

J = q(I). Let us consider the query q(x) ← R(x, y),¬S(y) and the ground instance

I = {R(a, b),R(c, d), S(d)}. In this case q(I) can be represented by ground instance

J = {q(a)}. Note that (G, repOWA,FO) is also a strong representation system. On

the other hand, if we denote by I the class of instances (not necessarily ground), then

(I, repCWA,FO) is not a strong representation system. Even if we only consider the

class of CQ queries, (I, repCWA,CQ) is not a strong representation system. To show

this, consider instance I = {R(a,X)} and query x ← R(x, y),R(y, x). In this case, I

is the set containing either the empty instance or the instance containing tuple (a) (in

case X = a). Clearly this set cannot be represented by using a single instance.

It is well known [1; 49] that there are first order queries q and instances I such

that no instance J with repCWA(J) = q(repCWA(I)) exists (see the second query from

the previous example). It turns out that we need conditional tables to obtain a strong

representation system for first order queries.

Imielinski and Lipski [49] showed that conditional tables under closed world inter-

pretation are a strong representation for FO-queries. We denote the class of conditional

tables as COND .

Theorem 59 [49] (COND, repC,FO) is a strong representation system.
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Before introducing the representation systems for data exchange, let us recall the

definition of a data exchange mapping, as specified in Section 5.1.2. A mapping M

from a source schema S to a distinct target schema T is defined as a set of pairs

(I, J), where I ∈ Inst(S) and J ∈ Inst(T). With this definition the notion of data

exchange solution set can be presented as SolM(I) = {J ∣ (I, J) ∈ M}. In the previous

chapters we considered that the data exchange mappings are specified by a set of TGD’s.

Unfortunately, as shown in the following example, not all mappings can be specified by

TGD’s or/and EGD’s.

Example 68 Consider the source schema S = {V,E}, where V represents the set of

vertexes in a graph and E is a binary relation representing the set of edges in a graph.

The schema T = {C} contains only the unary relation C representing a set of colors.

Then we define mapping M from S to T as: (I, J) ∈ M , iff the vertexes of the graph

represented by I can be colored with only using colors from J in such a way that each

adjacent vertexes are colored with a different color. It is well known that the problem

of testing if a graph is k-colorable for a fixed number k, with k ≥ 3, is an NP-complete

problem [32]. On the other hand, it is easy to verify that the membership problem of

mappings specified by a set of TGD’s and EGD’s is polynomial. From this it follows

that there are mappings that cannot be specified by a set of TGD’s and EGD’s.

In Example 55 we showed a reduction of the graph 3-colorability problem to the

membership problem for st-SO dependencies.

Definition 58 Let T be a class of tables, REP a function that assigns a set of possible

worlds to each T ∈ T . Let M be a class of mappings and Q a class of queries. Then

a quadruple (T ,REP ,Q,M) is a strong data exchange system, if for each T ∈ T ,

M ∈ M, and q ∈ Q, there exists a table U ∈ T such that:
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Rep(U) = {q(J)∣ J ∈ SolM(I), I ∈ Rep(T )}.

Let us denote by fullTGDCM to be the class of mappings defined as follows: M ∈

fullTGDCM if there exists Σ as a set of source-to-target and target full TGD’s and

(I, J) ∈ M iff J ∈ SolCMΣ (I). With this definition we have our first strong data exchange

system:

Theorem 60 (G, repCWA,FO, fullTGDCM) is a strong data exchange system.

Proof: Let I be a ground instance, that is I ∈ G and Σ a set of full source-to-target and

target TGD’s and EGD’s. It is obvious that, for SolCMΣ (I), the constructible models

chase tree is isomorphic with the execution tree for the standard-chase algorithm when

it runs with I and the set of full TGD’s and EGD’s Σ. In Section 3.1.2 we showed

that the standard-chase algorithm returns the same instance on every execution branch.

From this it follows that the set SolCMΣ (I) will contain exactly one ground instance. The

result now follows directly from this and the strong representation system presented in

Example 67∎

Unfortunately, the previous theorem does not hold if the mappings are specified by

TGD’s that contain existentially quantified variables. The same theorem will not work

either if we change the class G by the class of general instances.

Let us denote TGDCM to be the class of mappings defined as: M ∈ TGDCM , iff there

exists Σ as a set of source-to-target and target TGD’s and (I, J) ∈ M , iff J ∈ SolCMΣ (I).

With this definition from Corollary 10 we can infer the following result:

Theorem 61 (COND, repC,FO,TGDCM) is a strong data exchange system.
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The following theorem extends the previous result to the class ordSO, where map-

ping M ∈ ordSO if the dependencies in M can be specified by st-SO dependencies and

the target richly acyclic TGD’s and (I, J) ∈ M , iff J ∈ SolCMΣ (I).

Theorem 62 (GCOND, repC,FO,ordSO) is a strong data exchange system.

Proof: Let (T,ϕ) be a global conditional table and M ∈ ordSO, thus M = (S,T,Σst,Σt),

where Σst are st-SO dependencies and Σt is specified by a richly acyclic set of TGD’s.

By Σ we denote the set Σst∪Σt. Let (U,φ) be the Skolemized c-table chasecond
Σst

(T,ϕ).

From Theorem 58 we have that Σst(repC(T,ϕ)) = repC(U,φ). On the other hand, we

know from Theorem 57 that there exists a global conditional table (U ↓f , φ↓f) such that

repC(U,φ) = repC(U ↓f , φ↓f). Thus, we have Σst(repC(T,ϕ)) = repC(U ↓f , φ↓f) (1).

From Theorem 56 we know that, because Σt is a richly acyclic set of TGD’s, the

conditional chase chasecond
Σt

(U ↓f , φ ↓f) will terminate. Let us now denote by (V,ψ)

the global conditional table resulting by this chase procedure. Theorem 55 tells us

that Σt(repC(U ↓f , φ↓f)) = repC(V,ψ) (2). Finally, from Proposition 20 we have

Σ(repC(T,ϕ)) = Σt(Σst(repC(T,ϕ))). From this and (1), it obviously follows that

Σ(repC(T,ϕ)) = Σt(repC(U ↓f , φ↓f)). At the same time, from this and (2) we have

Σ(repC(T,ϕ)) = repC(V,ψ) (3). By restricting the instances from (3) to schema T, it

follows the statement from the theorem∎

We may say now, in conclusion, that the main focus of this section was the introduc-

tion of a large class of dependencies which are closed under data exchange. To achieve

this, we showed, as it can be seen from the previous theorem, that the class ordSO, the

class of first order queries together with the global conditional tables represent a strong

data exchange system.
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Conclusions

The chase based procedures gained a lot of attention lately due to its applicability in

newly introduced problems: data integration, ontologies, data repairs, data exchange,

peer data exchange and data correspondence. Based on the studied research problem,

there were different variations of the chase procedure. A first contribution of this thesis

is to align together and compare the main chase variations: standard, oblivious, semi-

oblivious, restricted and core chase. As presented, for all these variations when run with

the same input values, if they terminate, the resulting instances are homomorphically

equivalent, so it can be used to get the certain answers to any query in the UCQ class.

We also extended the existing results by making a clear delimitation between the chase

variations based on their termination. Thus, for each chase variation four classes of

dependencies were identified:

• CT∀∀ - the class of dependencies for which the chase algorithm terminates on all

branches for all instances;

• CT∀∃ - the class of dependencies for which the chase algorithm terminates for all

instances on at least one branch;
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• CTI,∀ - the class of dependencies for which the chase algorithm terminates with

input I on all branches;

• CTI,∃ - the class of dependencies for each the chase algorithm terminates with

input I on at least one branch.

The first two cases generate the instance independent termination classes, whereas

the latter ones give the instance dependent termination classes. In this thesis we focused

on the instance independent classes and we showed that these collapse for all of the

chase variations except for the standard chase case. In Chapter 3 we clearly delimited

these instance independent classes for each of the chase variations. In the following

chapter we turned our attention to the decidable classes of dependencies introduced so

far that ensure the chase termination for all instances. We compared these termination

criteria and checked if for each chase variation the criterion ensures the termination.

For this we introduced a rather nice characterization of the oblivious and semi-oblivious

chase based on the standard-chase termination. This characterization served as a tool

to delimit these classes of dependencies.

Next we focused on three main problems that take advantage of the chase process

in order to compute different types of solutions. The problems we considered are: data

exchange, data repair and data correspondence. In this dissertation we formally intro-

duced the data correspondence problem as a new database problem of high practical

interest. For the data repair and data correspondence problems we introduce new com-

plexity boundaries for the solution-existence and solution-checking problems. These

boundaries are proved by giving a general characterization theorem for the symmetric-

difference solution based on a new notion of Σ-satisfying homomorphism.

The query answering problem on incomplete databases was always a challenge in

the research community. Unfortunately, the homomorphic equivalence property of the

instances returned by the presented chase variations does not help when dealing with
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general queries. This is why a closed world semantics needs to be adopted in order to get

more natural answers. We started Chapter 6 by presenting the most prominent closed

world semantics and showed, based on examples, that these are not “good“ candidates

when dealing with the data exchange problem. The next step was then to introduce

a more natural closed-world semantics which, even if it is not closed under logical

equivalence, is argued to be a good semantics for data exchange. Also it was shown

that, under this semantics, there exists a conditional-chase procedure able to compute a

representation, in this case a conditional table, for the solution space introduced by the

new semantics. As far as the termination of the conditional chase concerns, we showed

that any richly acyclic set of dependencies ensures the conditional-chase termination

(even more, we proved that the class of richly acyclic sets of dependencies ensure the

chase termination for oblivious chase as well).

Finally, in the last chapter we studied the problem of representation systems and

data exchange representation systems. As it is well known that the composition between

mappings is not closed under sets of TGD’s, we focused our attention on a higher

class of dependencies, namely st-SO dependencies, for which we extended our closed

world semantics. We also proved that even in this case there exists a conditional-chase

procedure able to compute a conditional table with a global condition which represents

the solution space under constructible models semantics.

Most of the time in this thesis, except for Chapter 7, we only considered dependen-

cies specified by sets of TGD’s. As a further work, we may also include the implication

of mixing EGD’s with TGD’s. Clearly the EGD’s addition may make the chase algo-

rithm terminate earlier by failure, so it may be that there exist classes of mixed depen-

dencies for which, because of the presence of the EGD’s, may give us larger classes of

dependencies that ensure the instance dependent chase termination. Another problem

that still remains open, to the best of the author’s knowledge, is if it is decidable to
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test if for a given set of TGD’s one of the chase algorithm variations terminates on all

instances (though this problem is considered to be highly undecidable). For now it is

known that it is undecidable to test if for a given instance and a given set of TGD’s the

chase process terminates. This means that it may even be possible that the problem of

chase termination on all instances could be decidable making all the classes that ensure

sufficient condition for the chase termination dispensable.

For the data correspondence problem, uniform and non-uniform cases, it will be

interesting to view the data complexity on getting the consistent answers to different

query types. Similar work was recently done by Cate, Fontaine and Kolaitis in [72] for

the database repair problem.

As presented in this thesis the conditional chase can be a good candidate for a closed

world semantics chase procedure. Still, there is more work to do regarding the data

complexity problems related to the resulting conditional tables. For example, testing

if a tuple is part of a possible world from the representation of a conditional table is

NP-hard in general [2]. Still, one may find some classes of dependencies such that when

conditional chasing a ground instance with a set of TGD’s from this class, the problem

will become tractable. The same may apply for certain and possible query answering

problems.
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