
Models and Algorithms for Private Data Sharing

Noman Mohammed

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montréal, Québec, Canada

July 2012

c© Noman Mohammed, 2012

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Chair

 External Examiner

 External to Program

 Examiner

Examiner

Thesis Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Noman Mohammed

Models and Algorithms for Private Data Sharing

Doctor of Philosophy (Computer Science)

Dr. H. Akbari

Dr. C. Castelluccia

Dr. P. Grogono

Dr. S. P. Mudur

Dr. K. Schmitt

Drs. M. Debbabi and B. C. M. Fung

July, 2012

ABSTRACT

Models and Algorithms for Private Data Sharing

Noman Mohammed, Ph.D.

Concordia University, 2012

In recent years, there has been a tremendous growth in the collection of digital

information about individuals. Many organizations such as governmental agencies,

hospitals, and financial companies collect and disseminate various person-specific

data. Due to the rapid advance in the storing, processing, and networking capa-

bilities of the computing devices, the collected data can now be easily analyzed to

infer valuable information for research and business purposes. Data from different

sources can be integrated and further analyzed to gain better insights. On one hand,

the collected data offer tremendous opportunities for mining useful information. On

the other hand, the mining process poses a threat to individual privacy since these

data often contain sensitive information. In this thesis, we address the problem of

developing anonymization algorithms to thwart potential privacy attacks in different

real-life data sharing scenarios. In particular, we study two privacy models: LKC-

privacy and ε-differential privacy. For each of these models, we develop algorithms

for anonymizing different types of data such as relational data, trajectory data, and

heterogeneous data. We also develop algorithms for distributed data where multiple

data publishers cooperate to integrate their private data without violating the given

privacy requirements. Experimental results on the real-life data demonstrate that

the proposed anonymization algorithms can effectively retain the essential informa-

tion for data analysis and are scalable for large data sets.

iii

Dedicated to the memory of my grandfather,

Abdul Wadud Khan

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to Almighty God for granting me the

ability and opportunity to write this thesis.

I would like to thank my supervisors, Drs. Mourad Debbabi and Benjamin C.

M. Fung for giving me the opportunity to work under their supervision. I am very

grateful to them for their guidance, suggestions, and feedback throughout the prepa-

ration of this thesis. Without their enormous support and encouragement, I would

not have been able to finish this thesis. I am thankful to the other members of my

committee, Drs. Claude Castelluccia, Peter Grogono, Sudhir P. Mudur, and Ketra

Schmitt for the comment and advice they provided. I am also grateful to all my

co-authors for their support and everything they have taught me.

At Concordia, I was fortunate to receive a lot of input and support from my

friends, in particular, Dima Alhadidi, Khalil Al-Hussaeni, Hamad Binsalleeh, Amine

Boukhetouta, Rui Chen, Farkhund Iqbal, Wenming Liu, Hadi Otrok, and Amin

Ranjbar. Their help, support, and company made the graduate school much enjoy-

able, eased the difficulty of my pursuit, and enabled me to finish my thesis in time.

Special thanks to Hadi Otrok for guiding my every step during my initial years in

Concordia. I am also grateful to Concordia University and to the Natural Sciences

and Engineering Research Council (NSERC) of Canada for supporting my research

during my graduate studies.

Looking back, I find that two wonderful mentors had enormous impact on my aca-

demic life; my college computer science teacher, Mohammad Anisul Islam and my

high school tutor and our family friend, Mohammad Abdullah Sadeque. I owe a

huge debt of gratitude to them. Finally, I am grateful to my parents for their love

and endless support over the years and to my wife who has been a constant source

of support and encouragement. Without their love and support, I would never have

made it this far.

v

TABLE OF CONTENTS

FIGURES . x

TABLES . xii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.2.1 Relational Data Anonymization 4

1.2.2 Trajectory Data Anonymization 5

1.2.3 Heterogeneous Data Anonymization 6

1.2.4 Distributed Data Anonymization 6

1.3 Organization . 7

2 Background 8

2.1 Preliminaries . 9

2.1.1 Privacy Models . 10

2.1.2 Anonymization Techniques . 13

2.1.3 Utility Metrics . 15

2.2 Related Work . 17

2.2.1 Privacy-Preserving Data Publishing 17

2.2.2 Privacy-Preserving Distributed Data Sharing 22

2.2.3 Statistical Disclosure Control 22

2.2.4 Privacy-Preserving Distributed Data Mining 23

I LKC -Privacy Model 25

3 Anonymizing Relational Data 26

3.1 Introduction . 26

vi

3.2 Problem Definition . 32

3.2.1 Privacy Model . 32

3.2.2 Utility Metric . 35

3.2.3 Problem Statement . 37

3.3 Anonymization Algorithm . 38

3.3.1 Overview . 38

3.3.2 Implementation . 39

3.3.3 Analysis . 43

3.4 Experimental Evaluation . 43

3.5 Discussion . 49

4 Anonymizing Trajectory Data 50

4.1 Introduction . 50

4.2 Problem Definition . 54

4.2.1 Trajectory Database . 54

4.2.2 Privacy Model . 56

4.2.3 Utility Metric . 57

4.2.4 Problem Statement . 59

4.3 Anonymization Algorithm . 60

4.3.1 Identifying Violating Sequences 61

4.3.2 Eliminating Violating Sequences 66

4.3.3 Analysis . 70

4.4 Experimental Evaluation . 71

4.5 Discussion . 77

5 Distributed Anonymization 79

5.1 Introduction . 79

5.2 Problem Definition . 85

5.2.1 Anonymization for Vertically-Partitioned Data 85

vii

5.2.2 Anonymization for Horizontally-Partitioned Data 85

5.3 Algorithm for Vertically-Partitioned Data 87

5.3.1 Overview . 87

5.3.2 Implementation . 88

5.3.3 Analysis . 91

5.4 Algorithm for Horizontally-Partitioned Data 93

5.4.1 Overview . 94

5.4.2 Implementation . 95

5.4.3 Analysis . 100

5.5 Experimental Evaluation . 102

5.6 Discussion . 104

II Differential Privacy Model 106

6 Anonymizing Heterogeneous Data 107

6.1 Introduction . 107

6.2 Problem Definition . 112

6.2.1 Differential Privacy . 113

6.2.2 Generalization . 115

6.2.3 Problem Statement . 116

6.3 Anonymization Algorithm . 117

6.3.1 Overview . 117

6.3.2 Privacy Analysis . 119

6.3.3 Implementation . 124

6.4 Experimental Evaluation . 127

6.5 Discussion . 132

7 Two-Party Data Anonymization 134

7.1 Introduction . 134

viii

7.2 Security Model . 135

7.2.1 Semi-Honest Adversary Model 135

7.2.2 Cryptographic Primitives . 135

7.3 Problem Definition . 136

7.3.1 Anonymization for Vertically-Partitioned Data 137

7.3.2 Anonymization for Horizontally-Partitioned Data 137

7.4 Algorithm for Vertically-Partitioned Data 138

7.4.1 Anonymization Algorithm . 138

7.4.2 Exponential Mechanism for Vertically-Partitioned Data 142

7.4.3 Analysis . 146

7.5 Algorithm for Horizontally-Partitioned Data 149

7.5.1 Anonymization Algorithm . 150

7.5.2 Exponential Mechanism for Horizontally-Partitioned Data . . 151

7.5.3 Analysis . 155

7.6 Experimental Evaluation . 158

7.7 Discussion . 159

8 Conclusion 160

8.1 Summary . 160

8.2 Looking Ahead . 161

Bibliography 163

ix

FIGURES

2.1 Data flow in privacy-preserving data publishing 9

2.2 Taxonomy trees for Job, Sex, Age . 14

3.1 Data flow in Hong Kong Red Cross Blood Transfusion Service (BTS) 27

3.2 Taxonomy trees and QIDs . 28

3.3 Tree for partitioning records . 40

3.4 Data utility for Blood data set . 45

3.5 Classification error for Adult data set 46

3.6 Discernibility ratio for Adult data set 47

3.7 Scalability (L = 4, K = 20, C = 100%) 48

4.1 Taxonomy tree on location . 59

4.2 MVS-tree and MFS-tree for efficient Score updates 69

4.3 MVS-tree and MFS-tree after suppressing c4 69

4.4 Utility loss vs. K on City80K (L = 3, C = 60%) 74

4.5 Utility loss vs. C on City80K (L = 3, K = 30) 74

4.6 Utility loss vs. L on City80K (K = 30, C = 60%) 74

4.7 Utility loss vs. K on Metro100K (L = 3, C = 60%) 75

4.8 Utility loss vs. C on Metro100K (L = 3, K = 30) 75

4.9 Scalability (K = 30, C = 60%, K ′ = 1%) 76

5.1 Distributed anonymization model for multiple data publishers 80

5.2 Distributed anonymization for vertically-partitioned data 89

5.3 Distributed anonymization for horizontally-partitioned data 98

5.4 Classification error for vertically-partitioned data (L = 4, C = 20%) . 103

5.5 Classification error for horizontally-partitioned data (L = 4, C = 20%)104

x

6.1 Taxonomy tree of attributes . 109

6.2 Tree for partitioning records . 120

6.3 Classification accuracy for MIMIC data set 128

6.4 Classification accuracy for Adult data set 129

6.5 Comparison . 131

6.6 Scalability . 132

7.1 Generalized data table . 142

7.2 Classification accuracy for two-party 158

xi

TABLES

1.1 Summary of the thesis contributions 4

2.1 Examples for illustrating attacks . 11

2.2 Bucketized data . 14

3.1 Raw patient data . 29

3.2 Anonymous data (L = 2, K = 2, C = 50%) 29

4.1 Raw trajectory and health data . 53

4.2 Anonymous trajectory data (L = 2, K = 2, C = 50%) 53

4.3 Counter example for monotonic property 62

4.4 Initial Score . 70

4.5 Score after suppressing c4 . 70

4.6 Data sets statistics . 72

5.1 Raw tables for vertically-partitioned data 81

5.2 Raw tables for horizontally-partitioned data 82

5.3 Naïve approach (L = 2, K = 2, C = 50%) 83

5.4 Anonymous distributed data (L = 2, K = 2, C = 50%) 84

5.5 Attributes for the Adult data set . 102

6.1 Heterogeneous health data . 108

6.2 Anonymous heterogeneous health data 108

6.3 A raw data table and its anonymized versions 110

7.1 Original tables . 140

7.2 Binary vectors . 142

7.3 Cost analysis . 145

xii

Chapter 1

Introduction

Numerous organizations such as governmental agencies, hospitals, and financial com-

panies collect and disseminate various person-specific data for research and business

purposes. Worldwide governments systematically collect personal information about

their citizens through censuses. These data are released to public for demographic

research. In medical domain, gaining access to high-quality healthcare data is a vital

requirement to informed decision making for medical practitioners and researchers.

Driven by mutual benefits and regulations, there is a demand for healthcare insti-

tutes to share patient data with various parties for research purposes. For example,

licensed hospitals in California are required to periodically submit specific demo-

graphic data on every discharged patient [20].

Data collection and publishing are also ubiquitous in other domains. With the

emergence of new technologies, data about individuals get collected at various places

in various ways. Grocery stores collect a large amount of customer purchase data

by store courtesy cards. These data are analyzed to model customer behavior and

used by advertisement companies. In online world, websites and service providers

(e.g. Google) collect search requests of users for future analysis. Recent data release

by AOL is a unique example of this kind [10].

1

Finally, the use of location-aware devices such as RFID tags, GPS-based de-

vices, and cell phones raises new privacy concerns. These devices are used extensively

in many network systems including mass transportation [90], car navigation [49], and

healthcare management [105]. The collected trajectory data capture the detailed

movement information of the tagged objects, offering tremendous opportunities for

mining useful knowledge. However, these trajectory data contain people’s visited

locations and thus reveal identifiable sensitive information such as social customs,

religious preferences, and sexual preferences.

The explosion of digital data collection has given rise to a number of complex

privacy questions regarding the ownership, collection and dissemination of personal

data. The answers to these questions connect many avenues of research: social, legal,

ethical and technical. The objective of this thesis is to answer the following question:

How can a data publisher safeguard data privacy while keeping the released data

useful?

1.1 Motivation

The current practice in data sharing primarily relies on policies and guidelines on

the types of data that can be shared and agreements on the use of shared data. This

approach alone may lead to excessive data distortion or insufficient protection. The

most common practice is to remove the identifiable attributes (e.g. name, social

security number) of individuals before releasing the data. However, this simple

technique though apparently looks innocuous, in reality fails to protect the privacy

of record holders. In this section, we present a number of real-world attacks to

emphasize the need of privacy-preserving techniques and to illustrate the challenges

in developing such tools.

The most illustrious privacy attack was demonstrated by Sweeney [96]. In

Massachusetts, Group Insurance Commission (GIC) collected the medical data of

2

the state employees. The data set had no identifiable attributes such as name, social

security number or phone numbers and thus was believed to be anonymous. GIC

gave a copy of the data to researchers and sold a copy to industry. However, the

data set did contain demographic information such as date of birth, gender, and ZIP

code. Sweeney reported that 87% of the U.S. population can be uniquely identified

based on 5-digit zip code, gender and date of birth. It is not common to find many

people with the same date of birth, less likely for them to live in the same place and

very less likely having same gender. She bought a copy of the Massachusetts voter

registration list by $20 and identified the record of William Weld, governor of the

state of Massachusetts, by joining both the tables. This kind of attack where an

external data can be used to identify an anonymous data is called linking attack. The

concern of linking attack has escalated in recent years due to the ease of collecting

external information over Internet.

Not all linking attacks require external information. Sometimes the semantic

information of the data itself reveals the identity of a user. The case of AOL data

release is a notable example. On August 6, 2006, AOL released a 2GB file containing

the search queries of its 650,000 users. There are approximately 20 million search

queries collected over three months period. As a privacy protection mechanism, AOL

removed all user identities except the search queries and assigned a random number

to each of its users. Three days later, two New York Times reporters identified and

interviewed the user # 4417749 from the release data [10]. Ms. Thelma Arnold was

re-identified from the semantic information of her search queries. She said, “We all

have a right to privacy. Nobody should have found this all out."

Few months later, Netflix, a movie renting service, announced a $1, 000, 000

prize for 10% improvement for their recommendation system. To assist the competi-

tion, they also provided a real data set which contains 100 million ratings for 18,000

movie titles from 480,000 randomly chosen users. According to the Netflix web-

site, “To protect customer privacy, all personal information identifying individual

3

Table 1.1: Summary of the thesis contributions
Algorithms Data Publisher Privacy Model

Single Multiple Differential Privacy LKC-privacy
Chapters 3 and 4 � �

Chapter 5 � �
Chapter 6 � �
Chapter 7 � �

customers has been removed and all customer ids have been replaced by randomly-

assigned ids." Narayanan and Shmatikov shortly attacked the Netflix data by linking

information from the International Movie Database (IMDb) site, where users post

their reviews (not anonymous) [85]. They showed “With 8 movie ratings (of which 2

may be completely wrong) and dates that may have a 14-day error, 99% of records

can be uniquely identified in the data set. For 68%, two ratings and dates (with a

3-day error) are sufficient."

It is evident from the above examples that mere removal of the personal in-

formation does not ensure privacy to the users. Privacy-preserving data publishing

(PPDP) studies how to transform raw data into a version that is immunized against

privacy attacks but that still preserves useful information for data analysis.

1.2 Contributions

This thesis examines various privacy attacks and develops anonymization algorithms

for different application scenarios. The proposed anonymization algorithms adopt

two privacy models: LKC-privacy and differential privacy. Table 1.1 summaries

different characteristics of the proposed algorithms. Following we detail the technical

contributions of this thesis.

1.2.1 Relational Data Anonymization

Sharing healthcare data has become a vital requirement in healthcare system man-

agement; however, inappropriate sharing and usage of healthcare data could threaten

4

patients’ privacy. We study the privacy concerns of the blood transfusion information-

sharing system between the Hong Kong Red Cross Blood Transfusion Service (BTS)

and public hospitals, and identify the major challenges that make existing data

anonymization methods not applicable. Furthermore, we propose a new privacy

model called LKC-privacy, together with an anonymization algorithm, to effec-

tively preserve both privacy and utility in high-dimensional relational data sharing.

Experiments on real-life data demonstrate that our anonymization algorithm can

effectively retain the essential information in anonymous data for data analysis and

is scalable for anonymizing large data sets.

1.2.2 Trajectory Data Anonymization

Location-aware devices are used extensively in many network systems, such as mass

transportation, car navigation, and healthcare management. The collected trajec-

tory data capture the detailed movement information of the tagged objects, offering

tremendous opportunities for mining useful knowledge. Yet, publishing the raw

trajectory data for data mining would reveal specific locations, times, and other

potentially sensitive information of the tagged objects or individuals. We study the

privacy threats in trajectory data publishing and show that existing anonymization

methods are not applicable for trajectory data due to its challenging properties:

high-dimensional, sparse, and sequential. Our primary contributions are (1) to

adopt LKC-privacy model for trajectory data that overcomes these challenges, and

(2) to develop an anonymization algorithm to achieve LKC-privacy while preserving

the data utility for trajectory pattern mining. We evaluate the privacy model and

anonymization algorithm, in terms of data utility, and scalability, on data sets that

simulate real-life traffic.

5

1.2.3 Heterogeneous Data Anonymization

Among the existing privacy models, ε-differential privacy provides one of the strongest

privacy guarantees and has no assumptions about an adversary’s background knowl-

edge. All existing solutions that ensure ε-differential privacy handle the problem of

anonymizing relational and set-valued data separately. Our contribution is the pro-

posal of the first anonymization algorithm for heterogenous data that contain both

relational and set-valued data. The proposed approach makes a simple yet funda-

mental switch in anonymization algorithm design: instead of listing all the possible

records (i.e., contingency table) for noise addition, records are generalized before

noise addition. The anonymization algorithm first probabilistically generalizes the

raw data and then adds noise to guarantee ε-differential privacy. We show that the

anonymized data can be used effectively to build a decision tree induction classi-

fier. Experimental results demonstrate that the proposed algorithm is scalable and

performs better than the existing solutions for classification analysis.

1.2.4 Distributed Data Anonymization

Data integration and sharing methods enable different data providers to flexibly in-

tegrate their expertise and deliver highly customizable services to their customers.

Nonetheless, combining data from different sources could potentially reveal person-

specific sensitive information. Our contribution is the proposal of distributed algo-

rithms to securely integrate private data from multiple parties where the database is

divided either vertically or horizontally among the parties. The vertically-partitioned

data problem problem was discovered in a collaborative project with a financial

industry. The horizontally-partitioned data problem was generalized from the in-

formation sharing scenario of the Hong Kong Red Cross Blood Transfusion Service

(BTS). For both the scenarios, we devise algorithms that achieve both LKC-privacy

and differential privacy models.

6

1.3 Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides an overview of various privacy models, anonymization

techniques, and utility metrics of privacy-preserving data publishing. In this

chapter, we also provide an overview of the related literature.

• Chapter 3 formalizes the LKC-privacy model and presents the algorithm for

anonymizing relational data. The results of this chapter appear in [80].

• Chapter 4 studies the privacy threat of releasing trajectory data. We adopt

LKC-privacy model and propose an algorithm for trajectory data anonymiza-

tion. The results of this chapter appear in [78].

• Chapter 5 addresses the problem of distributed anonymization from multiple

data publishers while ensuring LKC-privacy model. The results of this chapter

appear in [79,81,82].

• Chapter 6 provides an overview of ε-differential privacy and describes a

differentially-private data release algorithm for heterogeneous health data.

The results of this chapter appear in [77].

• Chapter 7 presents the two-party differentially private data release algo-

rithms. The results of this chapter appear in [8].

• Chapter 8 offers some concluding remarks.

7

Chapter 2

Background

Data privacy has been an active area of research in statistics, database, and security

community for the last three decades [2, 37]. These works can be broadly classi-

fied into two frameworks: interactive and non-interactive. In interactive framework,

users pose aggregate queries through a private mechanism and the data holder out-

puts macro-data (e.g., SUM, COUNT) in response. This approach is also known as

statistical disclosure control (SDC) [2]. In non-interactive setting, the original data

are first sanitized and the entire anonymous data about individuals (micro-data) are

published for data analysis. Once the data are published, the data publisher has

no further control on the published data. This approach is also known as privacy-

preserving data publishing (PPDP) [37]. The existing research works can also be

categorized into two scenarios, which are somehow orthogonal to the above classifica-

tion: centralized vs. distributed. Data may be owned by a single party (centralized)

or by multiple parties (distributed). In the case of distributed scenario, the data

owners want to achieve the same goal like single party on their integrated data

without sharing their data with others.

In this thesis, we address the centralized and the distributed scenarios for the

non-interactive framework. In Section 2.1, we first present an overview of various

privacy models, anonymization technique, and utility metrics of privacy-preserving

8

Figure 2.1: Data flow in privacy-preserving data publishing

data publishing. We then discuss the related research proposals in Section 2.2.

2.1 Preliminaries

Privacy-preserving data publishing (PPDP) has two phases: data collection and

data publishing. Figure 2.1 depicts the data flow in PPDP. In data collection phase,

the data publisher collects data from the individuals. There are two models in the

data collection phase: trusted and untrusted. In the trusted model, individuals trust

the data publisher and give all the required data. For example, patients give their

true information to hospitals to receive proper treatment. In this scenario, it is the

responsibility of the data publisher to protect privacy of the individuals’ personal

data. In untrusted model, individuals do not trust their data publisher. They add

some noise to their data to protect sensitive information from the data publisher [31].

A typical example of this model is participants responding to a survey. In this thesis,

we assume that the data publisher is trusted and study how to anonymize data in

the data publishing phase to protect privacy of the individuals.

Data publishing phase includes sharing the data with specific recipients and

releasing the data for public download; the recipient could be a data user (researcher)

who wants to perform legitimate data analysis, or could potentially be an adversary

who attempts to associate sensitive information in the published data with a target

victim. Therefore, data publisher needs to transform the underlying raw data into

9

a version that is immunized against privacy attacks but still supports effective data

mining tasks. To achieve proper balance between privacy and utility, the data

publisher needs to decide three aspects: privacy model, anonymization techniques,

and utility metric.

2.1.1 Privacy Models

The collected micro-data set are stored in a data table where each row represents an

individual and each column is an attribute. We use the terms “data set” and “data

table” interchangeably in the rest of this thesis. Attributes can be divided into three

categories. (1) Attributes that explicitly identify an individual, such as SSN, and

name. These attributes are called explicit identifier and must be removed before

releasing the data. (2) A set of attributes whose combined value may potentially

identify an individual. For example, the combined values of zip code, date of birth,

and gender. These attributes are called quasi-identifier (QID) and the values of

these attributes may be publicly accessible from other sources. Finally, an attribute

is considered sensitive if an adversary is not permitted to link its value with an

identifer. Examples includes disease, salary, etc.

Different privacy models have been proposed to prevent an adversary from

linking an individual with a sensitive attribute given the knowledge of the quasi-

identifer. Following we briefly present some of the well-known privacy models.

k-Anonymity. Samarati and Sweeney [94, 96] show that removing explicit iden-

tifiers is not enough to protect privacy of the individuals. If a record in the table

is so specific that not many individuals match it, releasing the data may lead to

linking the individual’s record and, therefore, the value of her sensitive attribute.

Consider the raw patient data in Table 2.1(a), where each record represents a pa-

tient with the patient-specific information. Job, Sex, and Age are quasi-identifying

attributes. Suppose that the adversary knows that the target patient is a Lawyer

10

Table 2.1: Examples for illustrating attacks
(a) Patient table

Job Sex Age Disease
1 Engineer Male 35 Hepatitis
2 Engineer Male 38 Hepatitis
3 Lawyer Male 38 HIV
4 Writer Female 30 Flu
5 Writer Female 33 HIV
6 Dancer Male 30 HIV
7 Dancer Female 30 HIV

(b) 2-anonymous patient table

Job Sex Age Disease
1 Professional Male [35-40) Hepatitis
2 Professional Male [35-40) Hepatitis
3 Professional Male [35-40) HIV
4 Writer Female [30-35) Flu
5 Writer Female [30-35) HIV
6 Dancer * 30 HIV
7 Dancer * 30 HIV

and his age is 38. Hence, record #3, together with his sensitive value (HIV in this

case), can be identified since he is the only Lawyer who is 38 years old in the data.

k-anonymity requires that no individual should be uniquely identifiable from a group

of size smaller than k based on the values of QID attributes. A table satisfying this

requirement is called a k-anonymous table. Table 2.1(b) is a 2-anonymous table of

Table 2.1(a).

�-diversity. Machanavajjhala et al. [70] point out that k-anonymity only prevents

identity linkage attacks since an adversary can not identify a record corresponding to

an individual with confidence greater than 1/k. However, k-anonymous data table

is vulnerable against attribute linkage attacks. Suppose the adversary knows that

the patient is a dancer of age 30. In such case, even though there exist two such

records (#6 and #7), the adversary can infer that the patient has HIV with 100%

11

confidence since both the records contain HIV. To prevent such attribute linkage

attack, �-diversity requires that every QID group should contain at least � “well-

represented” values for the sensitive attribute. Machanavajjhala et al. [12] gave a

number of interpretations of the term “well-represented”. The simplest definition

requires every equivalent group to have � distinct values of the sensitive attribute.

Confidence Bounding. Wang et al. [103] consider bounding the confidence of in-

ferring a sensitive value from different combination of QID values by specifying one or

more privacy templates of the form, 〈QID → s, h〉, where s is a sensitive value, QID

is a quasi-identifier, and h is a threshold. For example, with QID = {Job, Sex, Age},

〈QID → HIV, 50%〉 states that the confidence of inferring HIV from any group

on QID is no more than 50%. For the data in Table 2.1(b), this privacy tem-

plate is violated because the confidence of inferring HIV is 100% in the group for

{Dancer, ∗, 30}. Unlike �-diversity, confidence bounding can have different privacy

templates with different confidence thresholds.

There are other privacy models. (α, k)-anonymity [108] requires every QID

group to satisfy both k-anonymity and confidence bounding. t-closeness requires

the distribution of a sensitive attribute in any group to be close to the distribution

of the attribute in the overall table [65]. Xiao and Tao [110] propose the notion of

personalized privacy to allow each record owner to specify her own privacy level.

This model assumes that a sensitive attribute has a taxonomy tree and each record

owner specifies a guarding node in the taxonomy tree. Thus, all these partition-

based privacy models have different assumptions about the adversary’s background

knowledge.

Recently, Wong et al. [106] and Zhang et al. [121] have shown that algorithms

that satisfy partition-based privacy models are vulnerable to minimality attack and

do not provide the claimed privacy guarantee. Although several fixes against a

12

minimality attack have been proposed [24, 54, 112], new type of attacks such as

composition attack [39], deFinetti attack [58], and foreground knowledge attack [107]

have emerged against algorithms that adopt partition-based privacy models.

Differential privacy [28] has received considerable attention as a substitute

for partition-based privacy models in privacy-preserving data publishing. Differen-

tial privacy provides strong privacy guarantees independent of an adversary’s back-

ground knowledge, computational power or subsequent behavior. Differential pri-

vacy, in general, requires that the outcome of any analysis should not overly depend

on a single data record. Thus, if a user had opted in the database, there would not be

a significant change in any computation based on the database. Therefore, this as-

sures every record owner that any privacy breach will not be a result of participating

in a database. We further discuss about differential privacy in Chapter 6.

2.1.2 Anonymization Techniques

Given a privacy model, different anonymization techniques are used to transform the

original data set into a version that satisfies the privacy requirements. Anonymiza-

tion techniques are used to make the data less precise to protect privacy. Following,

we present some common techniques that are often used for anonymization.

Suppression. The simplest technique to achieve anonymity is to suppress the value

of a cell. Suppression is done by replacing an attribute value with a special sym-

bol “*” or “Any”. It has been widely used to satisfy privacy requirement such as

k-anonymity. For example in Table 2.1(b), the values of Sex attribute of records #6

and #7 are suppressed to ensure 2-anonymity. Both Meyerson and Williams [83]

and Aggarwal et al. [4] prove that it is NP-hard to achieve optimal k-anonymization

by suppression. Meyerson and Williams [83] propose an O(k log k) approximation

algorithm. Aggarwal et al. [4] improve the approximation to O(k). Finally, Park

and Shim [87] further improve the result to O(log k) approximation.

13

Engineer

ANY

Professional Artist

Lawyer Dancer Writer

ANY

Male Female

SexJob

[30-33)

[30-40)

[30-35) [35-40)

[33-35)

Age

Figure 2.2: Taxonomy trees for Job, Sex, Age

Table 2.2: Bucketized data
(a) QID Attribute

Job Sex Age Bucket
Engineer Male 35 1
Engineer Male 38 2
Lawyer Male 38 1
Writer Female 30 3
Writer Female 33 2
Dancer Male 30 3
Dancer Female 30 3

(b) Sensitive Attribute

Bucket Disease
1 Hepatitis
1 HIV
2 Hepatitis
2 HIV
3 Flu
3 HIV
3 HIV

Generalization. Generalization provides better data utility compared to suppres-

sion by replacing the specific value with a more general value. While suppression

works in a binary fashion (keep the original value or suppress), generalization has a

number of intermediate states according to a taxonomy tree for each attribute. Fig-

ure 2.2 depicts the taxonomy trees for the attributes Job, Sex and Age. For example

in Table 2.1(b), the values Engineer and Lawyer are replaced by a more general

value Professional according to the taxonomy tree. Generalization techniques can

be classified mainly into two categories: global vs. local [61]. In global generaliza-

tion, all instances of a value are mapped to the same general value. While in local

generalization, different instances can be generalized to different general values. A

range of algorithms have been proposed that use generalization technique to enforce

different privacy models. Some of these algorithms are optimal under restricted form

of generalization [11,61,94], while others are based on heuristics [38,62,104].

14

Bucketization. Unlike generalization and suppression, bucketization [73,111] does

not modify the QID and the sensitive attribute (SA), but de-associates the relation-

ship between the two. However, it thus also disguises the correlation between SA

and other attributes; therefore, hinders data analysis that depends on such corre-

lation. Bucketization was proposed to achieve �-diversity. It divides all the records

into different buckets in such a way that each bucket contains � distinct values of

sensitive attribute. Tables 2.2(a) and 2.2(b) are the bucketized data, which satisfies

2-diversity for the patient data Table 2.1(a).

Other anonymization techniques include randomization-based approach, and

output perturbation-based approach. Randomization-based approach modifies the

underling data randomly by either adding noise to the numerical values or replacing

the categorical values with other values from the domain [6, 32]. Randomized data

are useful at the aggregated level (such as average or sum), but not at the record

level [6, 36]. Data recipients can no longer interpret the semantic of each individ-

ual record, which is important in some knowledge exploration tasks, such as visual

data mining [122]. Yet, they are still useful techniques if the applications do not

require preserving data truthfulness at the record level. On the other hand, output

perturbation-based approach first computes the correct result and outputs a per-

turbed version of the result by adding noise. This technique is often used to achieve

differential privacy (more discussion in Chapter 6). Though randomization-based

approach can also ensure differential privacy [92], it requires higher degree of noise

than output perturbation-based approach [29,30].

2.1.3 Utility Metrics

While protecting privacy is a critical element in data publishing, it is equally im-

portant to preserve the utility of the published data because this is the primary

15

reason for publication. A number of utility metrics have been proposed to quantify

the information that is present in the anonymized data. Data publishers use these

metrics to evaluate and optimize the data utility of the anonymized data. In gen-

eral, utility metrics can be classified into two categories: general purpose metric and

special purpose metric.

General Purpose Metric. In many cases, data publisher does not know how the

released data will be used by the data recipient. In such cases, data publisher uses

general purpose metric that measures the similarity between the original data and

the anonymized data. The objective is to minimize the distortion in the anonymized

data. The simplest and most intuitive measure is to count the number of anonymiza-

tion operations performed on the data set. For example, in case of suppression, the

data utility is measured by counting the number of suppressed values [83]. Less

suppression means more utility. Similarly, for generalization, the information loss is

measured by the number of generalization steps performed. Samarati proposes one

metric that measures the utility in terms of generalization height [94]. Other met-

rics include Loss Metric (LM) [51] and Normalized Certainty Penalty (NCP) [98]

that also takes into consideration the domain size of the attribute. Bayardo and

Agrawal [11] propose another metric called Discernibility Metric (DM) to measure

the data distortion in the anonymized data. The metric charges a penalty to each

record for being indistinguishable from other records. This metric has been used to

measure the data utility in [62,70].

Special Purpose Metric. The type of information that should be preserved de-

pends on the data mining task to be conducted on the published data. If the purpose

of the data publishing is known before the data release, then customized anonymiza-

tion techniques can be adapted to preserve certain information that is useful for that

16

particular task. Iyengar [51] shows that optimizing data utility with respect to gen-

eral purpose metrics (LM, DM, etc.) does not preserve enough information for a

particular data mining task such as classification analysis. In such scenario, the

target data mining model is first built on the anonymized data to compare the accu-

racy of the model with respect to the model built from the original data. Different

techniques have been proposed to optimize the accuracy of the data mining tasks

such as classification, clustering, and regression [38,63].

2.2 Related Work

In this section, we first present an overview of various PPDP research proposals for

sharing different types of data. We then briefly discuss the related research areas in

the subsequent sections.

2.2.1 Privacy-Preserving Data Publishing

Relational Data. Partition-based privacy models divide a given data set into

disjoint groups and release some general information about the groups. There is

a large body of work on anonymizing relational data based on partitioned-based

privacy models. As discussed earlier, k-anonymity [94] [96], �-diversity [70], and

confidence bounding [103] are based on a predefined set of QID attributes. These

single QID-based approaches suffer from the curse of high dimensionality [3] and

render the high-dimensional data useless for data mining. In Chapter 3, we address

the problem of high dimensionality by assuming that the adversary knows at most

L values of QID attributes of any target patient.

Many algorithms have been proposed to preserve privacy, but only a few have

considered the goal for classification [37]. Iyengar [51] has presented the anonymity

problem for classification and proposed a genetic algorithmic solution. Bayardo and

17

Agrawal [11] have also addressed the classification problem using the same classifica-

tion metric of [51]. Fung et al. [38] have proposed a top-down specialization (TDS)

approach to generalize a data table. Recently, LeFevre et al. [63] have proposed

another anonymization technique for classification using multidimensional recod-

ing [62]. More discussion about the partition-based approach can be found in a

survey paper [37].

Differential privacy has received considerable attention recently as a substi-

tute for partition-based privacy models for PPDP. However, most of the research

on differential privacy so far concentrates on the interactive setting with the goal

of reducing the magnitude of added noise [26, 30, 93], releasing certain data mining

results [13,35], or determining the feasibility and infeasibility results of differentially-

private mechanisms [15,57]. A general overview of various research works on differ-

ential privacy can be found in the recent survey [29]. Below, we briefly review some

current techniques that adopt the non-interactive approach.

Barak et al. [9] address the problem of releasing a set of consistent marginals

of a contingency table. Their method ensures that each count of the marginals is

non-negative and their sum is consistent for a set of marginals. Xiao et al. [113]

propose Privelet, a wavelet-transformation-based approach that lowers the magni-

tude of noise needed to ensure differential privacy to publish a multidimensional

frequency matrix. Hay et al. [46] propose a method to publish differentially pri-

vate histograms for a one-dimensional data set. Although Privelet and Hay et al.’s

approach can achieve differential privacy by adding polylogarithmic noise variance,

the latter is only limited to a one-dimensional data set. Xiao et al. [115] propose

a two-step algorithm for releasing relational data. It first issues queries for every

possible combination of attribute values to the Privacy Integrated Queries (PINQ)

interface [74], and then produces a generalized output using the perturbed data set

returned by PINQ.

18

Some recent proposals [45, 64] address how to compute the results of a num-

ber of given queries while minimizing the added noise. However, these methods

require the set of queries to be given first altogether to compute the results. In

contrast, our proposed algorithm described in Chapter 6 complements the above

methods by determining how to partition the data adaptively so that the released

data can be useful for a given data mining task. In addition, a number of recent

works propose differentially-private mechanisms for different applications such as

record linkage [50], and recommender systems [75]. Though closely related, these

methods do not address the problem of privacy-preserving data publishing, the pri-

mary theme of this thesis.

Set-Valued Data. The increasing prevalence of set-valued data has resulted in new

types of privacy attacks. For example, Loukides et al. [67] show that diagnosis codes,

a kind of set-valued data, could be used by an adversary as a linkage to patients’

identities. A large number of research works on privacy-preserving set-valued data

publishing [19, 40, 47, 98, 99, 116, 117] have appeared in the literature. These works

can be broadly divided into two categories according to whether they distinguish

the items between sensitive and non-sensitive.

Ghinita et al. [40] and Xu et al. [116,117] divide all items into either sensitive

or non-sensitive, and assume that an adversary’s background knowledge is strictly

confined to non-sensitive items. Ghinita et al. [40] propose a bucketization-based

approach that limits the probability of inferring a sensitive item to a specified thresh-

old, while preserving correlations among items for frequent pattern mining. Xu et

al. [117] bound the background knowledge of an adversary to at most p non-sensitive

items, and employ global suppression to preserve as many item instances as possi-

ble. Xu et al. [116] improve the technique in [117] by preserving frequent itemsets

and presenting a border representation. All these works have two main drawbacks.

First, when an adversary is aware of some, even few, sensitive items, other sensitive

19

items could be learned. Second, in many cases there does not exist a consensus

of “sensitive”. Items sensitive to someone may not be sensitive to others. Cao et

al. [19] address the first concern by assuming that an adversary may possess back-

ground knowledge on sensitive items and propose a privacy notion ρ-uncertainty,

which bounds the confidence of inferring a sensitive item from any subset of items

(sensitive or non-sensitive) to ρ. Terrovitis et al. [98,99], and He and Naughton [47]

eliminate the distinction between sensitive and non-sensitive. Any item could be

both sensitive and non-sensitive at the same time.

Consequently, He and Naughton [47] and Terrovitis et al. [98,99] consider only

identity attacks. Similar to the idea of [116] and [117], Terrovitis et al. [98] propose

to bound the background knowledge of an adversary by the maximum number m of

items and propose a new privacy model km-anonymity, a relaxation of k-anonymity.

They achieve km-anonymity by a bottom-up global generalization solution. To im-

prove the utility, recently Terrovitis et al. [99] provide a local recoding method for

achieving km-anonymity. He and Naughton [47] point out that km-anonymity pro-

vides a weaker privacy protection than k-anonymity and propose a top-down local

generalization solution under k-anonymity. However, recent research [39,58,106,107]

has indicated that even k-anonymity provides insufficient privacy protection for set-

valued data. Lately, Chen et al. [21], for the first time, apply differential privacy to

set-valued data sanitization. They propose a probabilistic top-down partitioning al-

gorithm, which scales linearly with the input data size. The published data provides

guaranteed utility for count queries and other data analysis tasks based on counts,

such as frequent itemset mining.

Trajectory Data. Some recent works [1, 49, 88, 97, 120] address the anonymity of

moving objects. Abul et al. [1] propose a new privacy model called (k, δ)-anonymity

that exploits the inherent uncertainty of moving objects’ locations. Their method

20

relies on a basic assumption that every trajectory is continuous. Though this as-

sumption is valid for GPS-like devices where the object can be traced all the time,

it does not hold for RFID-based moving objects. Moreover, Abul et al. [1] achieve

anonymity by space translation that changes the actual location of an object. In

contrast, our proposed algorithm described in Chapter 4 employs suppression for

anonymity and thus preserves the data truthfulness and maximal frequent sequences

with true support counts. Hoh et al. [49] present an uncertainly-aware privacy al-

gorithm for GPS traces. They selectively remove trajectory pairs to increase un-

certainly between trajectories to hinder identification. Both the works target GPS

traces and can not be employed for anonymizing RFID data.

The privacy model proposed in [97] assumes that different adversaries have

different background knowledge about the trajectories, and thus their objective is

to prevent adversaries from gaining any further information from the published data.

They consider the locations in a trajectory as sensitive information and assume that

the data publisher has the background knowledge of all the adversaries. In reality,

such information is difficult to obtain. Pensa et al. [88] propose a k-anonymity

notion for sequence datasets. The proposed algorithm also aims to preserve frequent

sequential patterns. However to achieve anonymity, they transform a sequence into

the other by insertion, deletion or substitution of a single item. Thus, their approach

also spoils data truthfulness. Yarovoy et al. [120] consider time as a QID attribute.

However, there is no fixed set of time for all moving objects. Each trajectory has

its own set of times as its QID. It is unclear how the data holder can determine the

QID attributes for each trajectory.

21

2.2.2 Privacy-Preserving Distributed Data Sharing

This approach allows anonymizing data from different sources for data release with-

out exposing the sensitive information. We categorise this approach as the dis-

tributed non-interactive scenario. Jurczyk and Xiong [56] have proposed an algo-

rithm to securely integrate horizontally-partitioned data from multiple data owners

without disclosing data from one party to another. Jiang and Clifton [52] have pro-

posed a method to integrate vertically-partitioned data by maintaining k-anonymity

among the participating parties. However, this approach does not fulfill the security

requirements of a semi-honest adversary model. To satisfy this requirement, Jiang

and Clifton [53] have proposed Distributed k-Anonymity (DkA) framework to se-

curely integrate two distributed data tables satisfying k-anonymity requirement. To

the best of our knowledge, Jiang and Clifton’s works are the only ones that generate

a k-anonymous table in a distributed setting for vertically-partitioned data. Our

proposed algorithm presented in Chapter 5 outperforms DkA framework in terms

of algorithmic complexity and scalability for handling large data sets.

All the previous research proposals adopt k-anonymity [94, 96] or its exten-

sions [70, 103] as the underlying privacy principle and, therefore, are vulnerable to

the recently discovered privacy attacks [39, 58, 106, 107]. To thwart these privacy

attacks, we propose differentially-private distributed algorithms in Chapter 7.

2.2.3 Statistical Disclosure Control

Information sharing while protecting individuals’ privacy has also been well studied

in statistical databases [2]. We can categorize these works as centralized-interactive

approach. Unlike PPDP, here the users (researchers) are only interested in the

aggregate properties of the data such as SUM, MAX, MIN, COUNT, MEDIAN, etc.

These aggregate values are computed over a set of values and should not disclose

any sensitive value of an individual. However, it is possible for an adversary to

22

construct a set of queries that unveils the detailed underlying data. The challenge

is to answer the queries in such a way that no inference can be made based on the

aggregate statistics.

The proposed approaches can be roughly divided into two categories: restriction-

based techniques and perturbation-based techniques. Restriction-based techniques

ensure privacy by putting restriction on the query [16, 25, 33, 48, 72, 100]. In the

response to a query, the system determines whether the answer can or cannot be

safely delivered without inference and thus controls the amount of information to

be released. In perturbation-based approach, the system first computes the cor-

rect result and outputs a perturbed version of the result by adding noise [14,26,30].

The fundamental difference between the two approaches is that while the restriction-

based approaches either answer the query result correctly or reject to avoid inference,

the perturbation-based approaches add noise to the query output. All these works

prohibit data publishing, which is the basic requirement of PPDP.

2.2.4 Privacy-Preserving Distributed Data Mining

This category of works can be classified as distributed-interactive approach. In

privacy-preserving distributed data mining (PPDDM), multiple data holders want

to compute a function based on their inputs without sharing their data with others.

This function can be as simple as a count query or as complex as a data mining task

such as classification, clustering, etc. For example, multiple hospitals may want to

build a data mining model (e.g. classifier for predicting disease based on patients’

history) without sharing their data with one another. The usual assumption is

that the data holders are semi-honest where they follow the protocol but may try to

deduce additional information from the received messages. In recent years, extensive

research has been conducted to design secure protocols that can construct different

data mining models. These protocols are based on cryptographic techniques known

as Secure Multiparty Computation (SMC). For example, Yang et al. [118] proposed a

23

method to acquire classification rules from a large number of data holders while their

sensitive values are protected. Different methods have been proposed for different

data mining tasks including association rules mining [101], clustering [102], ID3

decision tree [66]. Refer to [22, 89] for surveys on privacy-preserving distributed

data mining.

However, compared to data mining result sharing, data sharing gives greater

flexibility because data recipients (researchers) can perform their required analysis

and data exploration, such as mining patterns in a specific group of records, visu-

alizing the transactions containing a specific pattern, and trying different modeling

methods and parameters.

24

Part I

LKC -Privacy Model

25

Chapter 3

Anonymizing Relational Data

3.1 Introduction

Gaining access to high-quality health data is a vital requirement to informed de-

cision making for medical practitioners and pharmaceutical researchers. Driven by

mutual benefits and regulations, there is a demand for healthcare institutes to share

patient data with various parties for research purposes. However, health data in its

raw form often contains sensitive information about individuals, and publishing such

data will violate their privacy. In this chapter, we study the challenges in a real-

life information-sharing scenario in the Hong Kong Red Cross Blood Transfusion

Service (BTS) and propose a new privacy model, together with a data anonymiza-

tion algorithm, to effectively preserve individuals’ privacy and meet the information

requirements specified by the BTS.

Figure 3.1 illustrates the data flow in the BTS. After collecting and examining

the blood collected from donors, the BTS distributes the blood to different public

hospitals. The hospitals collect and maintain the health records of their patients and

transfuse the blood to the patients if necessary. The blood transfusion information,

such as the patient data, type of surgery, names of medical practitioners in charge,

and reason for transfusion, is clearly documented and is stored in the database

26

Figure 3.1: Data flow in Hong Kong Red Cross Blood Transfusion Service (BTS)

owned by each individual hospital. Periodically, the public hospitals are required to

submit the blood usage data, together with the patient-specific surgery data, to the

BTS for the purpose of data analysis. Hospitals transfer their data to BTS in two

ways. Sometimes, hospitals begin by transferring their data to the to the central

government health agency. The department then integrates the data from different

hospitals and gives it to the BTS for data analysis. At other times, hospitals directly

submit their data to BTS. These information sharing scenarios in BTS illustrate a

typical dilemma in information sharing and privacy protection faced by many health

institutes. For example, licensed hospitals in California are also required to submit

demographic data on every discharged patient [20] which can provide a multitude

of privacy concerns outside of the realm of health care. Our proposed solution,

designed for the BTS case, will also benefit other health institutes that face similar

challenges in information sharing.

The problems with this BTS case can be generalized into two scenarios. In

the first scenario, there exists a trustworthy entity such as the central government

health agency to collect the raw patient data from multiple hospitals and submit

the data to BTS after performing the centralized anonymization. In this chapter,

we address the problem of centralized anonymization. In the second scenario, the

hospitals have to directly submit the integration of their data to the BTS while

27

QID1 = {Job, Sex}

QID2 = {Job, Age}

QID3 = {Sex, Age}

Blue-collar White-collar

Non-Technical

Carpenter

Manager

ANY

Technical

Lawyer

Professional

Job

TechnicianMoverJanitor [1-30)

ANY

[1-99)

[1-60) [60-99)

[30-60)

Age

ANY

Male Female

Sex

Accountant

Figure 3.2: Taxonomy trees and QIDs

protecting the patients’ privacy. In Chapter 5, we address the distributed scenario.

Below, we summarize the privacy concerns and challenges of the BTS case.

Privacy Model. Giving the BTS access to blood transfusion data for data analy-

sis is clearly legitimate. However, it raises some concerns on patients’ privacy. The

patients are willing to submit their data to a hospital because they consider the

hospital to be a trustworthy entity. Yet, the trust in the hospital may not neces-

sarily be transitive to a third party. Many agencies and institutes consider that the

released data is privacy-preserved if explicit identifying information, such as name,

social security number, address, and telephone number, is removed. However, sub-

stantial research has shown that simply removing explicit identifying information

is insufficient for privacy protection. Sweeney [96] showed that an individual can

be re-identified by simply matching other attributes, called quasi-identifiers (QID),

such as gender, date of birth, and postal code. Below, we illustrate the privacy

threats by a simplified BTS example.

Example 3.1.1. Consider the raw patient data in Table 3.1, where each record

represents a surgery case with the patient-specific information. Job, Sex, and Age

are quasi-identifying attributes. The hospital wants to release Table 3.1 to the BTS

for the purpose of classification analysis on the class attribute, Transfuse, which

has two values, Y and N , indicating whether or not the patient has received blood

28

Table 3.1: Raw patient data
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery
1 Janitor M 34 Y Transgender
2 Doctor M 58 N Plastic
3 Mover M 34 Y Transgender
4 Lawyer M 24 N Vascular
5 Mover M 58 N Urology
6 Janitor M 44 Y Plastic
7 Doctor M 24 N Urology
8 Lawyer F 58 N Plastic
9 Doctor F 44 N Vascular
10 Carpenter F 63 Y Vascular
11 Technician F 63 Y Plastic

Table 3.2: Anonymous data (L = 2, K = 2, C = 50%)
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery
1 Non-Technical M [30 − 60) Y Transgender
2 Professional M [30 − 60) N Plastic
3 Non-Technical M [30 − 60) Y Transgender
4 Professional M [1 − 30) N Vascular
5 Non-Technical M [30 − 60) N Urology
6 Non-Technical M [30 − 60) Y Plastic
7 Professional M [1 − 30) N Urology
8 Professional F [30 − 60) N Plastic
9 Professional F [30 − 60) N Vascular
10 Technical F [60 − 99) Y Vascular
11 Technical F [60 − 99) Y Plastic

transfusion. Without a loss of generality, we assume that the only sensitive value in

Surgery is Transgender. The hospital expresses concern on two types of privacy

threats:

Identity linkage: If a record in the table is so specific that not many patients

match it, releasing the data may lead to linking the patient’s record and, therefore,

her received surgery. Suppose that the adversary knows that the target patient is

a Mover and his age is 34. Hence, record #3, together with his sensitive value

(Transgender in this case), can be uniquely identified since he is the only Mover

who is 34 years old in the raw data.

29

Attribute linkage: If a sensitive value occurs frequently together with some

QID attributes, then the sensitive information can be inferred from such attributes

even though the exact record of the patient cannot be identified. Suppose the

adversary knows that the patient is a male of age 34. In such case, even though

there exist two such records (#1 and #3), the adversary can infer that the patient

has received a Transgender surgery with 100% confidence since both the records

contain Transgender.

High Dimensionality. Many privacy models, such as k-anonymity [94] [96] and its

extensions [70] [103], have been proposed to thwart privacy threats caused by identity

and attribute linkages in the context of relational databases. The usual approach is

to generalize the records into equivalence groups so that each group contains at least

k records with respect to some QID attributes, and the sensitive values in each QID

group are diversified enough to disorient confident inferences. However, Aggarwal [3]

has shown that when the number of QID attributes is large, that is, when the

dimensionality of data is high, most of the data have to be suppressed in order to

achieve k-anonymity. Our experiments confirm this curse of high dimensionality

on k-anonymity [3]. Applying k-anonymity on the high-dimensional patient data

would significantly degrade the data quality. In order to overcome this bottleneck,

we exploit one of the limitations of the adversary: in real-life privacy attacks, it

is very difficult for an adversary to acquire all the information of a target patient

because it requires non-trivial effort to gather each piece of prior knowledge from so

many possible values. Thus, it is reasonable to assume that the adversary’s prior

knowledge is bounded by at most L values of the QID attributes of the patient.

Based on this assumption, we define a new privacy model called LKC-privacy for

anonymizing high-dimensional data.

The general intuition of LKC-privacy is to ensure that every combination of

values in QIDj ⊆ QID with maximum length L in the data table T is shared by

at least K records, and the confidence of inferring any sensitive values in S is not

30

greater than C, where L, K, C are thresholds and S is a set of sensitive values

specified by the data publisher (the hospital). LKC-privacy bounds the probabil-

ity of a successful identity linkage to be ≤ 1/K and the probability of a successful

attribute linkage to be ≤ C, provided that the adversary’s prior knowledge does

not exceed L. Table 3.2 shows an example of an anonymous table that satisfies

(2, 2, 50%)-privacy by generalizing all the values from Table 3.1 according to the

taxonomies in Figure 3.2 (Ignore the dashed curve for now). Every possible value

of QIDj with maximum length 2 in Table 3.2 (namely, QID1, QID2, and QID3

in Figure 3.2) is shared by at least 2 records, and the confidence of inferring the

sensitive value Transgender is not greater than 50%. In contrast, enforcing tra-

ditional 2-anonymity will require further generalization. For example, in order to

make 〈Professional, M, [30 − 60)〉 to satisfy traditional 2-anonymity, we may fur-

ther generalize [1 − 30) and [30 − 60) to [1 − 60), resulting in higher utility loss.

Data Utility. The BTS wants to perform two types of data analysis on the blood

transfusion data collected from the hospitals. First, it wants to obtain some general

count statistics. Second, it wants to employ the surgery information as training

data for building a classification model on blood transfusion. One frequently raised

question is: To avoid the privacy concern, why doesn’t the hospital simply release

the statistical data or a classifier to the BTS? The BTS wants to have access to

the blood transfusion data, not statistics, from the hospitals for several reasons.

First, the practitioners in hospitals have no expertise and interest in doing the data

mining. They simply want to share the patient data with the BTS, who needs the

health data for legitimate reasons. Second, having access to the data, the BTS has

much better flexibility to perform the required data analysis. It is impractical to

continuously request practitioners in a hospital to produce different types of statis-

tical information and fine-tune the data mining results for research purposes.

31

Contributions. The contributions of this chapter are summarized as follows:

1. We use the BTS as a real-life example to present the challenges of privacy-

aware information sharing for data analysis.

2. To thwart the privacy threats caused by identity and attribute linkage, we

propose a new privacy model called LKC-privacy that overcomes the chal-

lenge of anonymizing high-dimensional relational data without significantly

compromising the data quality (Section 3.2).

3. We present an efficient anonymization algorithm for achieving LKC-privacy

with two different adaptations. The first adaptation maximizes the informa-

tion preserved for classification analysis; the second one minimizes the distor-

tion on the anonymous data for general data analysis. Minimizing distortion

is useful when the particular information requirement is unknown during in-

formation sharing or the shared data is used for various kinds of data mining

tasks (Section 3.3).

4. Experiments suggest that our developed algorithm is flexible and scalable

enough to handle large volumes of blood transfusion data that include both cat-

egorical and numerical attributes. In 2008, the BTS received 150,000 records

from the public hospitals (Section 3.4).

3.2 Problem Definition

Based on the privacy threats, we first present our LKC-privacy model. Then, we

address the data utility requirements, followed by the problem statement.

3.2.1 Privacy Model

Suppose a data publisher (e.g., the government health agency) wants to publish a

health data table T (ID, A1, . . . , Am, Class, Sens) (e.g., Table 3.1) to some recipient

32

(e.g., the Red Cross BTS) for data analysis. ID is an explicit identifier, such as SSN ,

and it should be removed before publication. We keep the ID in our examples for

discussion purpose only. Each Ai is either a categorical or a numerical attribute.

Sens is a sensitive attribute. A record has the form 〈v1, . . . , vm, cls, s〉, where vi is a

domain value of Ai, cls is a class value of Class, and s is a sensitive value of Sens.

The data publisher wants to protect against linking an individual to a record or

some sensitive value in T through some subset of attributes called a quasi-identifier

or QID, where QID ⊆ {A1, . . . , Am}.

One recipient, who is an adversary, seeks to identify the record or sensitive

values of some target victim patient V in T . As explained in Section 3.1, we assume

that the adversary knows at most L values of QID attributes of the victim patient.

We use qid to denote such prior known values, where |qid| ≤ L. Based on the prior

knowledge qid, the adversary could identify a group of records, denoted by T [qid],

that contains qid. |T [qid]| denotes the number of records in T [qid]. For example,

T [〈Janitor,M〉] = {ID#1, 6} and |T [qid]| = 2. Then, the adversary could launch

two types of privacy attacks:

1. Identity linkage: Given prior knowledge qid, T [qid] is a set of candidate records

that contains the victim patient V ’s record. If the group size of T [qid], denoted

by |T [qid]|, is small, then the adversary may identify V ’s record from T [qid]

and, therefore, V ’s sensitive value. For example, if qid = 〈Mover, 34〉 in

Table 3.1, T [qid] = {ID#3}. Thus, the adversary can easily infer that V has

received a Transgender surgery.

2. Attribute linkage: Given prior knowledge qid, the adversary can identify T [qid]

and infer that V has sensitive value s with confidence P (s|qid) = |T [qid∧s]|
|T [qid]| ,

where T [qid∧s] denotes the set of records containing both qid and s. P (s|qid)

is the percentage of the records in T [qid] containing s. The privacy of V

33

is at risk if P (s|qid) is high. For example, given qid = 〈M, 34〉 in Ta-

ble 3.1, T [qid ∧ Transgender] = {ID#1, 3} and T [qid] = {ID#1, 3}, hence

P (Transgender|qid) = 2/2 = 100%.

To thwart the identity and attribute linkages on any patient in the table T ,

we require every qid with a maximum length L in the anonymous table to be shared

by at least a certain number of records, and the ratio of sensitive value(s) in every

group cannot be too high. Our privacy model, LKC-privacy, reflects this intuition.

Definition 3.1 (LKC-privacy). Let L be the maximum number of values of the

prior knowledge. Let S ⊆ Domain(Sens) be a set of sensitive values. A data table

T satisfies LKC-privacy if and only if for any qid with |qid| ≤ L,

1. |T [qid]| ≥ K, where K > 0 is an integer anonymity threshold, and

2. P (s|qid) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a real number confidence

threshold. Sometimes, we write C in percentage.

The data publisher specifies the thresholds L, K, and C. The maximum length

L reflects the assumption of the adversary’s power. LKC-privacy guarantees that

the probability of a successful identity linkage to be ≤ 1/K and the probability of

a successful attribute linkage to be ≤ C. LKC-privacy has several nice properties

that make it suitable for anonymizing high-dimensional data. First, it only requires

a subset of QID attributes to be shared by at least K records. This is a major

relaxation from traditional k-anonymity, based on a very reasonable assumption

that the adversary has limited power. Second, LKC-privacy generalizes several

traditional privacy models. k-anonymity [94, 96] is a special case of LKC-privacy

with L = |QID| and C = 100%, where |QID| is the number of QID attributes in

the data table. Confidence bounding [103] is also a special case of LKC-privacy with

L = |QID| and K = 1. (α, k)-anonymity [108] is also a special case of LKC-privacy

with L = |QID|, K = k, and C = α. Thus, the data publisher can still achieve the

traditional models, if needed.

34

3.2.2 Utility Metric

The measure of data utility varies depending on the data analysis task to be per-

formed on the published data. Based on the information requirements specified by

the BTS, we define two utility measures. First, we aim at preserving the maximal

information for classification analysis. Second, we aim at minimizing the overall

data distortion when the data analysis task is unknown.

We propose a top-down specialization algorithm to achieve LKC-privacy. The

general idea is to anonymize a table by a sequence of specializations starting from the

topmost general state in which each attribute has the topmost value of its taxonomy

tree. We assume that a taxonomy tree is specified for each categorical attribute in

QID. A leaf node represents a domain value and a parent node represents a less

specific value. For a numerical attribute in QID, a taxonomy tree can be grown

at runtime, where each node represents an interval, and each non-leaf node has two

child nodes representing some optimal binary split of the parent interval. Figure 3.2

shows a dynamically grown taxonomy tree for Age.

A specialization, written v → child(v), where child(v) denotes the set of child

values of v, replaces the parent value v with the child value that generalizes the

domain value in a record. A specialization is valid if the specialization results in a

table satisfying the anonymity requirement after the specialization. A specialization

is performed only if it is valid. The specialization process can be viewed as pushing

the “cut” of each taxonomy tree downwards. A cut of the taxonomy tree for an

attribute Ai, denoted by Cuti, contains exactly one value on each root-to-leaf path.

Figure 3.2 shows a solution cut indicated by the dashed curve representing the

anonymous Table 3.2. Our specialization starts from the topmost cut and pushes

down the cut iteratively by specializing some value in the current cut until violating

the anonymity requirement. In other words, the specialization process pushes the

cut downwards until no valid specialization is possible. Each specialization tends to

increase data utility and decrease privacy because records are more distinguishable

35

by specific values. We define two utility measures depending on the information

requirement to evaluate the “goodness” of a specialization. We assume that BTS

only receives one version of the sanitized data for a given data set anonymized by

one of the following Score functions.

Case 1: Score for Classification Analysis For the requirement of classification

analysis, we use information gain, denoted by InfoGain(v), to measure the goodness

of a specialization. Our selection criterion, Score(v), is to favor the specialization

v → child(v) that has the maximum InfoGain(v):

Score(v) = InfoGain(v). (3.1)

InfoGain(v): Let T [x] denote the set of records in T generalized to the value x.

Let freq(T [x], cls) denote the number of records in T [x] having the class cls. Note

that |T [v]| =
∑

c |T [c]|, where c ∈ child(v). We have

InfoGain(v) = E(T [v]) −
∑

c

|T [c]|
|T [v]|E(T [c]), (3.2)

where E(T [x]) is the entropy of T [x] [91]:

E(T [x]) = −
∑

cls

freq(T [x], cls)

|T [x]| × log2
freq(T [x], cls)

|T [x]| , (3.3)

Intuitively, I(T [x]) measures the mix of classes for the records in T [x], and

InfoGain(v) is the reduction of the mix by specializing v into c ∈ child(v).

For a numerical attribute, the specialization of an interval refers to the optimal

binary split that maximizes information gain on the Class attribute. See [91] for

details.

Case 2: Score for General Data Analysis Sometimes, the data is shared

without a specific task. In this case of general data analysis, we use discernibility

36

cost [11] to measure the data distortion in the anonymous data table. The discerni-

bility cost charges a penalty to each record for being indistinguishable from other

records. For each record in an equivalence group qid, the penalty is |T [qid]|. Thus,

the penalty on a group is |T [qid]|2. To minimize the discernibility cost, we choose

the specialization v → child(v) that maximizes the value of

Score(v) =
∑

qidv

|T [qidv]|2 (3.4)

over all qidv containing v.

3.2.3 Problem Statement

Our goal is to transform a given data set T into an anonymous version T ′ that

satisfies a given LKC-privacy requirement and preserves as much information as

possible for the intended data analysis task. Based on the information requirements

specified by the BTS, we define the problems as follows.

Definition 3.2 (Anonymization for data analysis). Given a data table T , a LKC-

privacy requirement, and a taxonomy tree for each categorical attribute contained

in QID, the anonymization problem for classification analysis is to generalize T

on the attributes QID to satisfy the LKC-privacy requirement while preserving

as much information as possible for the classification analysis. The anonymization

problem for general analysis is to generalize T on the attributes QID to satisfy the

LKC-privacy requirement while minimizing the overall discernibility cost.

Computing the optimal LKC-privacy solution is NP-hard. Given a QID, there

are
(|QID|

L

)
combinations of decomposed QIDj with maximum size L. For any value

of K and C, each combination of QIDj in LKC-privacy is an instance of the (α, k)-

anonymity problem with α = C and k = K. Wong et al. [108] have proven that

computing the optimal (α, k)-anonymous solution is NP-hard; therefore, computing

37

optimal LKC-privacy is also NP-hard. Below, we provide a greedy approach to

efficiently identify a sub-optimal solution.

3.3 Anonymization Algorithm

In this section, we first present an overview of our anonymization algorithm. We then

elaborate the implementation details and analyze the complexity of the algorithm.

3.3.1 Overview

Algorithm 3.1 provides an overview of our anonymization algorithm for achieving

LKC-privacy. Initially, all values in QID are generalized to the topmost value

in their taxonomy trees, and Cuti contains the topmost value for each attribute

Ai. At each iteration, the algorithm finds the Best specialization, which has the

highest Score among the candidates that are valid specializations in ∪Cuti (Line

4). Then, apply Best to T and update ∪Cuti (Line 5). Finally, update the Score

of the affected candidates due to the specialization (Line 6). The algorithm is

terminated when there are no more valid candidates in ∪Cuti. In other words, the

algorithm is terminated if any further specialization would lead to a violation of

the LKC-privacy requirement. An important property of Algorithm 1 is that if a

generalized table violates LKC-privacy before a specialization, it remains violated

after the specialization because a specialization never increases the |T [qid]| and never

decreases the maximum P (s|qid). This property guarantees that the final solution

cut is a sub-optimal solution.

Example 3.3.1. Consider the integrated raw patient data in Table 3.1 with L = 2,

K = 2, C = 50%, and QID = {Job, Sex, Age}. Initially, all data records are

generalized to 〈ANY _Job, ANY _Sex, [1-99)〉, and ∪Cuti = {ANY _Job, ANY

_Sex, [1-99)}. To find the Best specialization among the candidates in ∪Cuti, we

compute Score(ANY _Job), Score(ANY _Sex), and Score([1-99)).

38

Algorithm 3.1: Anonymization Algorithm
1: Initialize every value in T to the topmost value;
2: Initialize Cuti to include the topmost value;
3: while some x ∈ ∪Cuti is valid do
4: Find the Best specialization from ∪Cuti;
5: Perform Best on T and update ∪Cuti;
6: Update Score(x) and validity for x ∈ ∪Cuti;
7: end while;
8: Output T and ∪Cuti.;

3.3.2 Implementation

A simple yet inefficient implementation of Lines 4-6 is to scan all data records and

recompute Score(x) for all candidates in ∪Cuti. The key to the efficiency of our

algorithm is having direct access to the data records to be specialized, and updating

Score(x) and validity for x ∈ ∪Cuti based on some statistics maintained for candi-

dates in ∪Cuti, instead of scanning all data records. In the rest of this section, we

explain our scalable implementation and data structures in detail.

Line 4. Initially, we compute Score for all candidates x in ∪Cuti. For each subse-

quent iteration, information needed to calculate Score comes from the update of the

previous iteration (Line 6). Finding the best specialization Best involves at most

| ∪ Cuti| computations of Score without accessing data records. The procedure for

updating Score will be discussed in Line 6.

Example 3.3.2. Continue from Example 3.3.1. We show the computation of

Score(ANY _Job) for the specialization ANY _Job → {Blue-collar,White-collar}.

For classification analysis,

E(T [ANY _Job]) = − 6
11

× log2
6
11

− 5
11

× log2
5
11

= 0.994

E(T [Blue-collar]) = −1
6
× log2

1
6
− 5

6
× log2

5
6

= 0.6499

E(T [White-collar]) = −5
5
× log2

5
5
− 0

5
× log2

0
5

= 0.0

InfoGain(ANY _Job) = E(T [ANY _Job]) − (6
11
×

39

Link[1-60)

Head of Link[1-60)

Job Sex Age
ANY_Job ANY_Sex [1-99)

Blue-collar ANY_Sex [1-60)

Head of Link[60-99)

[1-99) {[1-60), [60-99)}

11
of Recs.

45White-collar ANY_Sex [1-60)

5White-collar ANY_Sex [1-99) Blue-collar ANY_Sex [1-99) 6

Blue-collar ANY_Sex [60-99) 2

ANY_Job { White-collar , Blue-collar }

Figure 3.3: Tree for partitioning records

E(T [Blue-collar]) + 5
11

× E(T [White-collar])) = 0.6396

Score(ANY _Job) = InfoGain(ANY _Job) = 0.6396.

Line 5. Consider a specialization Best → child(Best), where Best ∈ Ai and

Ai ∈ QID. First, we replace Best with child(Best) in ∪Cuti. Then, we need to

retrieve T [Best], the set of data records generalized to Best, to tell the child value

in child(Best) for individual data records. We employ a tree like data structure to

facilitate this operation. This data structure is also crucial for updating Score(x) for

candidates x. The general idea is to group data records according to their generalized

records on QID.

Each leaf node stores the set of data records having the same generalized value

for all the QID attributes of the node. Each node is called a leaf partition. For

each x in ∪Cuti, Px denotes a leaf partition whose generalized record contains x,

and Linkx denotes the link of all Px, with the head of Linkx stored with x. At any

time, the generalized data is represented by the leaf partitions of the tree, but the

original data records remain unchanged. Linkx provides a direct access to T [x], the

set of data records generalized to the value x. The tree has several useful properties.

First, all data records in the same leaf partition have the same generalized record

although they may have different raw values. Second, every data record appears in

exactly one leaf partition. Third, each leaf partition Px has exactly one generalized

qid on QID and contributes the count |Px| towards |T [qid]|.

40

Initially, the tree has only one leaf partition containing all data records, gen-

eralized to the topmost value on every attribute in QID. In each iteration, we

perform the best specialization Best by refining the leaf partitions on LinkBest. We

refine each leaf partition PBest found on LinkBest as follows. For each value c in

child(Best), a new partition Pc is created from PBest, and records in PBest are split

among the new partitions: Pc contains a record in PBest if c generalizes the corre-

sponding domain value in the record. An empty Pc is removed. Linkc is created to

link up all Pc’s for the same c. Also, link Pc to every Linkx to which PBest was previ-

ously linked, except for LinkBest. We emphasize that this is the only operation in the

algorithm that requires accessing data records. The overhead of maintaining Linkx

is small. For each attribute in ∪QIDj and each leaf partition on LinkBest, there are

at most |child(Best)| “relinkings”, or at most | ∪QIDj| × |LinkBest| × |child(Best)|

“relinkings” in total for applying Best.

Example 3.3.3. Initially, the tree has only one leaf partition containing all data

records and representing the generalized record 〈ANY_Job, ANY_Sex, [1-99)〉. Let

the best specialization be ANY_Job → {White-collar, Blue-collar} on Job. We

create two new partitions under the root partition as in Figure 3.3, and split data

records between them. Both the leaf partitions are on LinkANY_Sex and Link[1-99).

∪Cuti is updated into {White-collar, Blue-collar, ANY_Sex, [1-99)}. Suppose that

the next best specialization is [1-99) → {[1-60),[60-99)}, which specializes the two

leaf partitions on Link[1-99), resulting in the tree in Figure 3.3.

A scalable feature of our algorithm is maintaining some statistical informa-

tion for each candidate x in ∪Cuti for updating Score(x) without accessing data

records. For each new value c in child(Best) added to ∪Cuti in the current iter-

ation, we collect the following count statistics of c while scanning data records in

PBest for updating the tree: |T [c]|, |T [d]|, freq(T [c], cls), and freq(T [d], cls), where

d ∈ child(c) and cls is a class label. These information will be used in Line 6.

41

Line 6. This step updates Score(x) and validity for candidates x in ∪Cuti to reflect

the impact of the Best specialization. The key to the scalability of our algorithm is

updating Score(x) using the count statistics maintained in Line 5 without accessing

raw records again. The procedure for updating Score is different depending on the

information requirement.

1. Case 1 classification analysis: An observation is that InfoGain(x) is not

affected by Best → child(Best), except that we need to compute InfoGain(c)

for each newly added value c in child(Best). InfoGain(c) can be computed

from the count statistics for c collected in Line 5.

2. Case 2 general data analysis: Each leaf partition Pc keeps the count |T [qidc]|.

By following Linkc in the tree, we can compute
∑

qidc
|T [qidc]|2 for all the qidc

on Linkc.

A specialization Best → child(Best) may change the validity status of other

candidates x ∈ ∪Cuti if Best and x are contained in the same qid with size not

greater than L. Thus, in order to check the validity, we need to keep track of the

count of every qid with |qid| = L. Note, we can ignore qid with size less than L

because if a table satisfies LKC-privacy, then it must satisfy L′KC-privacy where

L′ < L. We present an efficient method for checking the validity of a candidate.

First, given a QID in T , we identify all QIDj ⊆ QID with size L. Then, for

each QIDj, we use another tree like data structure to index all qidj on QIDj.

Each root-to-leaf path represents an existing qidj on QIDj in the generalized data,

with |T [qidj]| and |T [qidj ∧ s]| for every s ∈ S stored at the leaf node. A candidate

x ∈ ∪Cuti is valid if, for every c ∈ child(x), every qidj containing c has |T [qidj]| ≥ K

and P (s|qidj) ≤ C for any s ∈ S. If x is invalid, remove it from ∪Cuti.

42

3.3.3 Analysis

Each iteration involves: (1) Accessing the records in T [Best] for updating the tree

and count statistics (Line 5), and (2) Updating Score(x) and validity status for the

affected candidates x in ∪Cuti (Line 6). Only the work in (1) involves accessing

data records, which is in the order of O(|T |); the work in (2) makes use of the

count statistics without accessing data records and can be performed in constant

time. This feature makes our approach scalable. We will empirically evaluate the

scalability of the algorithm on a real-life data set in Section 3.4. For one iteration,

the computation cost is O(|T |) and the total number of iterations is bounded by

O(log|T |); therefore, the total computation cost is O(|T |log|T |).

3.4 Experimental Evaluation

In this section, our objectives are to study the impact of enforcing various LKC-

privacy requirements on the data quality in terms of classification error and discerni-

bility cost, and to evaluate the efficiency and scalability of our proposed anonymiza-

tion method by varying the thresholds of maximum adversary’s knowledge L, min-

imum anonymity K, and maximum confidence C.

We employ two real-life data sets, Blood and Adult. Blood is a real-life blood

transfusion data set owned by an anonymous health institute. Blood has 62 at-

tributes after removing explicit identifiers; 41 of them are QID attributes. The

Class attribute represents the Blood Group with 8 possible values. Diagnosis Codes,

which has 15 possible values representing 15 categories of diagnosis, is considered to

be the sensitive attribute. The remaining attributes are neither quasi-identifiers nor

sensitive. Blood contains 10,000 blood transfusion records. Each record represents

one incident of blood transfusion. The publicly available Adult data set [34] is a

de facto benchmark for testing anonymization algorithms [11, 38, 51, 70, 103]. Adult

has 45,222 census records on 6 numerical attributes, 8 categorical attributes, and a

43

binary Class column representing two income levels, ≤50K or >50K. We consider

Divorced and Separated in the attribute Marital-status as sensitive, and the remain-

ing 13 attributes as QID. All experiments were conducted on an Intel Core2 2.4GHz

PC with 2GB RAM.

Data Utility. To evaluate the impact on classification quality (Case 1 in Sec-

tion 3.2.2), we use all records for generalization, build a classifier on 2/3 of the

generalized records as the training set, and measure the classification error (CE)

on 1/3 of the generalized records as the testing set. For classification models, we

use the well-known C4.5 classifier [91]. To better visualize the cost and benefit

of our approach, we measure additional errors: Baseline Error (BE) is the error

measured on the raw data without generalization. BE − CE represents the cost in

terms of classification quality for achieving a given LKC-privacy requirement. A

naïve method to avoid identity and attributes linkages is to simply remove all QID

attributes. Thus, we also measure upper bound error (UE), which is the error on

the raw data with all QID attributes removed. UE − CE represents the benefit of

our method over the naïve approach.

To evaluate the impact on general analysis quality (Case 2 in Section 3.2.2),

we use all records for generalization and measure the discernibility ratio (DR) on

the final anonymous data. DR =
∑

qid |T [qid]|2
|T |2 . DR is the normalized discernibility

cost, with 0 ≤ DR ≤ 1. Lower DR means higher data quality. Following we present

the experimental results for centralized and distributed anonymization respectively.

Figure 3.4a depicts the classification error CE with adversary’s knowledge

L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C = 20%

on the Blood data set. This setting allows us to measure the performance of the

centralized algorithm against identity linkages for a fixed C. CE generally increases

as K or L increases. However, the increase is not monotonic. For example, the

error drops slightly when K increases from 20 to 40 for L = 4. This is due to

44

14.0

19.0

24.0

29.0

34.0

39.0

44.0

49.0

20 40 60 80 100

C
la

s
s
if

ic
a
ti

o
n

 E
rr

o
r

(C
E

)

Threshold K

L=2 L=4 L=6
BE=22.1% UE=44.1%

0.00

0.20

0.40

0.60

0.80

1.00

20 40 60 80 100

D
is

c
e
rn

ib
il
it

y
 R

a
ti

o
 (

D
R

)

Threshold K

L=2 L=4 L=6 Traditional K-Anonymity

(a) C = 20% (b) C = 20%

Figure 3.4: Data utility for Blood data set

the fact that generalization has removed some noise from the data, resulting in a

better classification structure in a more general state. For the same reason, some

test cases on L = 2 and L = 4 have CE < BE, implying that generalization not

only achieves the given LKC-privacy requirement but sometimes may also improve

the classification quality. BE = 22.1% and UE = 44.1%. For L = 2 and L = 4,

CE − BE spans from -2.9% to 5.2% and UE − CE spans from 16.8% to 24.9%,

suggesting that the cost for achieving LKC-privacy is small, but the benefit is large

when L is not large. However, as L increases to 6, CE quickly increases to about

40%, the cost increases to about 17%, and the benefit decreases to 5%. For a greater

value of L, the difference between LKC-privacy and k-anonymity is very small in

terms of classification error since more generalized data does not necessarily worse

classification error. This result confirms that the assumption of an adversary’s prior

knowledge has a significant impact on the classification quality. It also indirectly

confirms the curse of high dimensionality [3].

Figure 3.4b depicts the discernibility ratio DR with adversary’s knowledge

L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and a fixed confidence thresh-

old C = 20%. DR generally increases as K increases, so it exhibits some trade-

off between data privacy and data utility. As L increases, DR increases rapidly

because more generalization is required to ensure each equivalence group has at

least K records. To illustrate the benefit of our proposed LKC-privacy model

45

14.0

16.0

18.0

20.0

22.0

24.0

26.0

20 40 60 80 100

C
la

s
s
if

ic
a
ti

o
n

 E
rr

o
r

(C
E

)

Threshold K

L=2 L=4 L=6
BE=14.7% UE=24.6%

14.0

16.0

18.0

20.0

22.0

24.0

26.0

5 10 15 20 25 30

C
la

s
s
if

ic
a
ti

o
n

 E
rr

o
r

(C
E

)

Threshold C (%)

L=2 L=4 L=6
BE = 14.7% UE = 24.6%

(a) C = 20% (b) K = 100

Figure 3.5: Classification error for Adult data set

over the traditional k-anonymity model, we measure the discernibility ratio, de-

noted DRTradK , on traditional k-anonymous solutions produced by the TDS method

in [38]. DRTradK − DR, representing the benefit of our model, spans from 0.1 to

0.45. This indicates a significant improvement on data quality by making a rea-

sonable assumption on limiting the adversary’s knowledge within L known values.

Note, the solutions produced by TDS do not prevent attribute linkages although

they have higher discernibility ratio.

Figure 3.5a depicts the classification error CE with adversary’s knowledge

L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C = 20%

on the Adult data set. BE = 14.7% and UE = 24.5%. For L = 2, CE −BE is less

than 1% and UE −CE spans from 8.9% to 9.5%. For L = 4 and L = 6, CE −BE

spans from 1.1% to 4.1%, and UE − CE spans from 5.8% to 8.8%. These results

suggest that the cost for achieving LKC-privacy is small, while the benefit of our

method over the naïve method is large.

Figure 3.5b depicts the CE with adversary’s knowledge L = 2, 4, 6, confi-

dence threshold 5% ≤ C ≤ 30%, and anonymity threshold K = 100. This setting

allows us to measure the performance of the algorithm against attribute linkages for

a fixed K. The result suggests that CE is insensitive to the change of confidence

threshold C. CE slightly increases as the adversary’s knowledge L increases.

Figure 3.6a depicts the discernibility ratio DR with adversary’s knowledge

46

0.00

0.02

0.04

0.06

0.08

0.10

20 40 60 80 100

D
is

c
e
rn

ib
il
it

y
 R

a
ti

o
 (

D
R

)

Threshold K

L=2 L=4 L=6 Traditional K-Anonymity

0.00

0.02

0.04

0.06

0.08

0.10

5 10 15 20 25 30

D
is

c
e
rn

ib
il
it

y
 R

a
ti

o
 (

D
R

)

Threshold C (%)

L=2 L=4 L=6

(a) C = 20% (b) K = 100

Figure 3.6: Discernibility ratio for Adult data set

L = 2, 4, 6, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C = 20%.

DR sometimes has a drop when K increases. This is a result of the greedy algorithm

only identifying the sub-optimal solution. DR is insensitive to the increase of K

and stays close to 0 for L = 2. As L increases to 4, DR increases significantly

and finally equals traditional k-anonymity when L = 6 because the number of

attributes in Adult is relatively smaller than in Blood. Yet, k-anonymity does not

prevent attribute linkages, while our LKC-privacy provides this additional privacy

guarantee.

Figure 3.6b depicts the DR with adversary’s knowledge L = 2, 4, 6, confi-

dence threshold 5% ≤ C ≤ 30%, and anonymity threshold K = 100. In general,

DR increases as L increases due to a more restrictive privacy requirement. Similar

to Figure 3.5b, the DR is insensitive to the change of confidence threshold C. It

implies that the primary driving forces for generalization are L and K, not C.

Scalability. One major contribution of our work is the development of an efficient

and scalable algorithm for achieving LKC-privacy on high-dimensional healthcare

data. Every previous test case can finish the entire anonymization process within

30 seconds. We further evaluate the scalability of our algorithm with respect to

data volume by blowing up the size of the Adult data set. First, we combined the

training and testing sets, giving 45,222 records. For each original record r in the

47

0

20

40

60

80

100

120

0 200 400 600 800 1000

T
im

e
 (

s
e
c
o

n
d

s
)

of Records (in thousands)

Reading Anonymization

Writing Total

Figure 3.7: Scalability (L = 4, K = 20, C = 100%)

combined set, we created α − 1 “variations” of r, where α > 1 is the blowup scale.

Together with all original records, the enlarged data set has α × 45, 222 records.

Figure 3.7 depicts the runtime of the centralized anonymization algorithm

from 200,000 to 1 million records for L = 4, K = 20, C = 100%. The total runtime

for anonymizing 1 million records is 107s, where 50s are spent on reading raw data,

33s are spent on anonymizing, and 24s are spent on writing the anonymous data.

Our algorithm is scalable due to the fact that we use the count statistics to update

the Score, and thus it only takes one scan of data per iteration to anonymize the

data. As the number of records increases, the total runtime increases linearly.

Summary. The experimental results on the two real-life data sets can be sum-

marized as follows: (1) Our anonymization method can effectively preserve both

privacy and data utility in the anonymous data for a wide range of LKC-privacy re-

quirements. There is a trade-off between data privacy and data utility with respect

to K and L, but the trend is less obvious on C. (2) Our proposed LKC-privacy

model retains more information than the traditional k-anonymity model and pro-

vides the flexibility to adjust privacy requirements according to the assumption of

adversary’s background knowledge. (3) The proposed method is highly scalable for

large data sets. These characteristics make our algorithm a promising component

for anonymizing healthcare data.

48

3.5 Discussion

What is the effect of specialization ordering on the information content of the

anonymized data set? Can the algorithm be easily modified to use local general-

ization or multi-dimensional generalization? Following we provide answers to these

questions.

Effect of Specialization Ordering. Our proposed algorithm does not yield an

optimal solution cut rather it is suboptimal. We take a greedy approach and choose

an attribute with highest Score in every iteration. Thus, it is possible that a differ-

ent solution cut may provide better utility. However, it is important to note that

maximizing the overall sum of the Score for specializations in the training data does

not guarantee having the lowest classification error in the testing data.

Other Anonymization Techniques. Our algorithm performs the anonymization

process by determining a good solution cut. The solution cut is obtained through

specializing an attribute in every iteration based on its Score value. In order to

adopt local/multi-dimensional generalization, we need to modify the definition of

cut and redesign the Score function. Thus, these anonymization techniques cannot

be implemented directly by our present algorithm.

Though local and multi-dimensional generalization cause less data distortion,

these techniques have a number of limitations. Local and multi-dimensional general-

ization allow a value v to be independently generalized into different values. Mining

classification rules from local/multi-dimensional recoded data may result in ambigu-

ous classification rules, e.g., White-collar → Class A and Lawyer → Class B [37].

Furthermore, local and multi-dimensional recoded data cannot be directly analyzed

by the off-the-shelf data analysis softwares (e.g., SPSS, Stata) due to the complex

relationships among QID values [114].

49

Chapter 4

Anonymizing Trajectory Data

4.1 Introduction

In recent years, there has been an explosive growth of location-aware devices such

as RFID tags, GPS-based devices, cell phones, and PDAs. The use of these devices

facilitates new and exciting location-based applications that consequently generate

a huge collection of trajectory data. Recent research reveals that these trajectory

data can be used for various data analysis purposes to improve current systems,

such as city traffic control, mobility management, urban planning, and location-

based service advertisements. Clearly, publication of these trajectory data threatens

individuals’ privacy since these raw trajectory data provide location information that

identifies individuals and, potentially, their sensitive information. Below, we present

some real-life applications of publishing trajectory data.

Transit company: Transit companies have started to use smart cards for pas-

sengers, such as the Octopus card in Hong Kong, the OPUS card in Montreal, and

the Oyster Travel card in London. Passengers register personal information when

they first purchase their smart cards, so that appropriate fare is charged based on

their status. The transit companies want to share the personal journey data with

internal and external parties to further improve their services.

50

LBS provider: Many companies provide location-based services (LBS) for mo-

bile devices. With the help of triangulation and GPS devices, the location infor-

mation of users can be precisely determined. Various data mining tasks can be

performed on these trajectory data for different applications, such as traffic analysis

and location-based advertisements. However, these trajectory data contain people’s

visited locations and thus reveal identifiable sensitive information such as social

customs, religious preferences, and sexual preferences.

Hospital: Radio Frequency IDentification (RFID) is a technology for the auto-

matic identification of objects. Some hospitals have adopted RFID sensory system

to track the positions of patients, doctors, and medical equipment inside the hospital

with the goals of minimizing life-threatening medical errors and improving the man-

agement of patients and resources [55] [105]. Analyzing trajectory data, however, is

a non-trivial task. Hospitals often do not have the expertise to perform the analysis

themselves but outsource this process and, therefore, require granting a third party

access to the patient-specific location and health data.

In this chapter, we study privacy threats in the data publishing phase and

adopt a practical privacy model to accommodate the special challenges of anonymiz-

ing trajectory data. We also propose an algorithm to transform the underlying raw

data into a version that is immunized against privacy attacks but still useful for

effective data mining tasks.

Privacy Model. Many privacy models, such as k-anonymity [94] [96] and its

extensions [62] [70] [111], have been proposed to thwart privacy threats caused by

identity and attribute linkages in the context of relational databases. These privacy

models are effective for anonymizing relational data, but they are not applicable to

trajectory data due to the following challenges.

(1) High dimensionality: Consider a transit system having 50 stations that

51

operate 24 hours per day. There are 50 × 24 = 1200 possible combinations (di-

mensions) of locations and timestamps. Each dimension could be a potential QID

attribute used for identity and attribute linkages. Traditional k-anonymity would

require every trajectory to be shared by at least k records. Due to the curse of high

dimensionality [3], most of the data have to be suppressed in order to achieve k-

anonymity. For example, to achieve 2-anonymity on the trajectory data in Table 4.1,

all instances of {b2, d3, c4, c5} have to be suppressed even though k is small.

(2) Data sparseness: Consider passengers in a public transit system or patients

in a hospital. They usually visit only a few locations compared to all available

locations, so each trajectory is relatively short. Anonymizing these short, little-

overlapping trajectories in a high-dimensional space poses a significant challenge for

traditional anonymization techniques because it is difficult to identify and group the

trajectories together. Enforcing traditional k-anonymity on high-dimensional and

sparse data would render the data useless.

(3) Sequential: Time is an essential factor of trajectory data, which may incur

unique privacy threats. Consider two trajectories b3 → e6 and e3 → b6. Both

the trajectories have same timestamps but different locations; and thus, they are

different from each other. Furthermore, the same location when associated with

different timestamps should be considered different in the context of trajectory data.

For example, b2 → e8 and b3 → e6 are different due to different timestamps. These

differences may provide an adversary more opportunities to succeed in a privacy

attack; therefore, require more efforts in the anonymization algorithm.

We adopt a new privacy model called LKC-privacy for anonymizing trajectory

data. The general idea of LKC-privacy has been previously applied on relational

data (Chapter 3). In this chapter, we modify the model to address the problem of

anonymizing trajectory data. The general intuition is to ensure that every sequence

q with maximum length L of any trajectory in a data table T is shared by at least

K records in T , and the confidence of inferring any sensitive value in S from q is not

52

Table 4.1: Raw trajectory and health data
ID Path Diagnosis ...
1 〈b2 → d3 → c4 → f6 → c7〉 AIDS ...
2 〈f6 → c7 → e8〉 Flu ...
3 〈d3 → c4 → f6 → e8〉 Fever ...
4 〈b2 → c5 → c7 → e8〉 Flu ...
5 〈d3 → c7 → e8〉 Fever ...
6 〈c5 → f6 → e8〉 Diabetes ...
7 〈b2 → f6 → c7 → e8〉 Diabetes ...
8 〈b2 → c5 → f6 → c7〉 AIDS ...

Table 4.2: Anonymous trajectory data (L = 2, K = 2, C = 50%)
ID Path Diagnosis ...
1 〈d3 → f6 → c7〉 AIDS ...
2 〈f6 → c7 → e8〉 Flu ...
3 〈d3 → f6 → e8〉 Fever ...
4 〈c5 → c7 → e8〉 Flu ...
5 〈d3 → c7 → e8〉 Fever ...
6 〈c5 → f6 → e8〉 Diabetes ...
7 〈f6 → c7 → e8〉 Diabetes ...
8 〈c5 → f6 → c7〉 AIDS ...

greater than C, where L and K are positive integer thresholds, C is a positive real

number threshold, and S is a set of sensitive values specified by the data publisher.

LKC-privacy bounds the probability of a successful identity linkage to be ≤ 1/K

and the probability of a successful attribute linkage to be ≤ C. Table 4.2 shows

an example of an anonymous table that satisfies (2, 2, 50%)-privacy by suppressing

b2 and c4 from Table 4.1. Every possible sequence q with maximum length 2 in

Table 4.2 is shared by at least 2 records and the confidence of inferring the sensitive

value AIDS from q is not greater than 50%.

Data Utility. While protecting privacy is a critical element in data publishing, it

is equally important to preserve the utility of the published data because this is the

primary reason for publication. In this chapter, we aim at preserving the maximal

frequent sequences (MFS) because MFS often serves as the information basis for

different primitive data mining tasks on trajectory data. MFS represents the set

53

of longest sequences of visited locations by some minimum number of moving ob-

jects within a particular time interval. In the context of trajectory data, frequent

sequences can capture the major trajectories of moving objects [12]. MFS is also

useful for trajectory pattern mining [41] and workflow mining [44].

Contributions. The contributions of this chapter are summarized as follows:

1. We adopt LKC-privacy model to address the special challenges of anonymizing

high-dimensional, sparse, and sequential trajectory data.

2. We present an efficient anonymization algorithm to achieve LKC-privacy while

preserving maximal frequent sequences in the anonymous trajectory data (Sec-

tion 4.3).

3. Experimental results suggest that the proposed anonymization algorithm is

scalable and can retain data utility for data mining (Section 4.4). To the best

of our knowledge, this is the first work addressing the anonymization problem

for trajectory data and preserving maximal frequent sequences for data mining.

4.2 Problem Definition

We first describe the trajectory database and then formally define the privacy and

utility requirements.

4.2.1 Trajectory Database

Trajectory from RFID Tags. RFID is a technology for objects’ automatic iden-

tification. A tag is a small device attached to a moving object or a person, such as

patients in hospitals or passengers in public transit systems. A reader broadcasts a

radio signal to the tag, which then transmits its unique identifier called Electronic

54

Product Code (EPC) back to the reader. Streams of RFID data entries, in the for-

mat of (EPC, loc, t), are then stored in a RFID database, where loc is the location

of the reader and t is the time of detection. A reader reads a tag either continuously

or on a fixed interval basis. Thus, the database may have duplicate entries showing

the same location if the object has not moved. Gonzalez et al. [44] suggest some

preprocessing methods to compress RFID data.

A pair (lociti) represents the visited location loci of an object at time ti. The

path of an object, denoted by 〈(loc1t1) → . . . → (locntn)〉, is a sequence of pairs that

can be obtained by first grouping the RFID entries by EPC, then sorting the entries

in each group by their timestamps. A timestamp is the entry time to a location,

so the object is assumed to stay in the same location until it has been detected

again. An object may revisit the same location at different times. At any time, an

object can appear at only one location, so 〈a1 → b1〉 is not a valid sequence and

timestamps in a path increase monotonically.

Trajectory from Mobile Devices. The trajectory from a mobile device can

be considered as a sequence of spatio-temporal points in the form 〈(x1, y1, t1), (x2, y2,

t2), . . . , (xn, yn, tn)〉, where t1 < t2 < . . . tn and the coordinate (xi, yi) represents the

location of the device at time ti, obtained with the help of GPS devices and/or

by localization techniques. Though these techniques can provide fairly accurate

positions, yet they are not the exact locations. Each point is associated with an

uncertainty threshold δ such that the location of the moving object can be (xi ±

δ, yi ± δ) [1]. We assume that the space is divided into ε × ε grids, where each

coordinate is represented by a grid. In the preprocessing step, we transform the

continuous spatio-temporal points into discrete (lociti) pairs, where each grid is

represented by loci.

Thus, a trajectory database T is a collection of records in the form 〈(loc1t1) →

. . . → (locntn)〉 : s1, . . . , sp : d1, . . . , dm, where 〈(loc1t1) → . . . → (locntn)〉 is the

55

path, si ∈ Si are the sensitive values, and di ∈ Di are the quasi-identifying (QID)

values of an object. The sensitive and QID values are the object-specific data in

the form of relational data. Identity and attribute linkages via the QID attributes

can be avoided by applying existing anonymization methods for relational data [38]

[61] [63] [70] [103]. In this chapter, we focus on eliminating identity and attribute

linkages via trajectory data.

4.2.2 Privacy Model

Suppose a data publisher wants to publish a trajectory data table T (e.g., Table 4.1)

to some recipient(s) for data mining. Explicit identifiers, e.g., name, SSN, and ID,

are removed. Note, we keep the ID in our examples for discussion purpose only.

The trajectory, the object-specific QID, and sensitive attributes are assumed to be

important for the data mining task; otherwise, they should be removed.

One recipient, who is an adversary, seeks to identify the record or sensitive

values of some target victim V in T . As explained earlier, we assume that the

adversary knows at most L pairs of location and timestamp that V has previously

visited. We use q to denote such prior known sequence of pairs, where |q| ≤ L.

Based on the prior knowledge q, the adversary could identify a group of records,

denoted by T (q), that “contains” q. A record in T contains q if q is a subsequence

of the trajectory in the record. For example in Table 4.1, records with ID#1, 2, 7, 8

contain q = 〈f6 → c7〉, written as T (q) = {ID#1, 2, 7, 8}. The prior knowledge

q, may consist of any L pairs, not necessarily consecutive, such as q = 〈b2 → c7〉.

Based on T (q), the adversary could launch two types of privacy attacks:

1. Identity linkage: Given prior knowledge q, T (q) is a set of candidate records

that contains the victim V ’s record. If the group size of T (q), denoted by

|T (q)|, is small, then the adversary may identify V ’s record from T (q) and,

therefore, V ’s sensitive value. For example, if q = 〈b2 → d3〉 in Table 4.1,

56

T (q) = {ID#1}. Thus, the adversary can easily infer that V ’s sensitive value

is AIDS.

2. Attribute linkage: Given prior knowledge q, the adversary can identify T (q)

and infer that V has sensitive value s with confidence P (s|q) = |T (q∧s)|
|T (q)| , where

T (q ∧ s) denotes the set of records containing both q and s. P (s|q) is the

percentage of the records in T (q) containing s. The privacy of V is at risk if

P (s|q) is high. For example, given q = 〈b2 → f6〉 in Table 4.1, T (q∧AIDS) =

{ID#1, 8} and T (q) = {ID#1, 7, 8}; therefore, P (AIDS|q) = 2/3 = 67%.

To thwart the identity and attribute linkages, we require that every sequence

with a maximum length L in the trajectory data has to be shared by at least a certain

number of records, and the ratio of sensitive value(s) in every group cannot be too

high. Here, we adopt LKC-privacy model as defined in Definition 3.1. Following

we restate the definition in the context of trajectory database T .

Definition 4.1 (LKC-privacy). Let L be the maximum length of the prior knowl-

edge. Let S be a set of sensitive values. A trajectory data table T satisfies LKC-

privacy if and only if for any sequence q with |q| ≤ L of any trajectory in T ,

1. |T (q)| ≥ K, where K > 0 is an integer anonymity threshold, and

2. P (s|q) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a real number confidence

threshold.

LKC-privacy is a general privacy model that thwarts both identity linkage

and attribute linkage, i.e., the privacy model is applicable to anonymize trajectory

data with or without sensitive attributes.

4.2.3 Utility Metric

The measure of data utility varies depending on the data mining task to be per-

formed on the published data. In this chapter, we aim at preserving the maximal

57

frequent sequences. A sequence q = 〈(loc1t1) → . . . → (locntn)〉 is an ordered set

of locations. A sequence q is frequent in a trajectory data table T if |T (q)| ≥ K ′,

where T (q) is the set of records containing q and K ′ is a minimum support threshold.

Frequent sequences (FS) capture the major trajectories of the moving objects [12],

and often form the information basis for different primitive data mining tasks on

sequential data, e.g., association rules mining [7]. In the context of trajectory data,

association rules can be used to determine the subsequent locations of the mov-

ing object given the previously visited locations. This knowledge is important for

workflow mining [44].

There is no doubt that FS are useful. Yet, mining all FS is a computationally

expensive operation. When the data volume is large and FS are long, it is infea-

sible to identify all FS because all subsequences of an FS are also frequent. Since

trajectory data is high-dimensional and in large volume, a more feasible solution is

to preserve only the maximal frequent sequences (MFS).

Definition 4.2 (Maximal frequent sequence). For a given minimum support thresh-

old K ′ > 0, a sequence x is maximal frequent in a trajectory data table T if x is

frequent and no super sequence of x is frequent.

The set of MFS in T , denoted by U(T), is much smaller than the set of FS

in T given the same K ′. MFS still contains the essential information for different

kinds of data analysis [68]. For example, MFS captures the longest frequently visited

trajectories. Any subsequence of an MFS is also a FS. Once all the MFS have been

determined, the support counts of any particular FS can be computed by scanning

the database once. Our data utility goal is to preserve as many MFS as possible,

i.e., maximize |U(T)|, in the anonymous trajectory database.

58

a b c d

ab cd

abcdLevel 0

Level 1

Level 2

Figure 4.1: Taxonomy tree on location

4.2.4 Problem Statement

LKC-privacy can be achieved by performing a sequence of generalization and/or

suppression operations on the trajectory data table. Generalization replaces a spe-

cific value with a more general value for a given attribute according to a taxonomy

tree. For example, location a can be generalized into a broader location ab accord-

ing to the taxonomy tree in Figure 4.1. Similarly, ab can be further generalized into

abcd. The same generalization can be performed on the time dimension. Suppres-

sion removes a pair from one or more trajectories in the trajectory data table T . For

example, Table 4.2 is the result of suppressing b2 and c4 from Table 4.1. In both the

above schemes, if all the instances of a value are generalized or suppressed, then it

is called global recoding. In contrast, if some instances of a value remain unchanged

while other instances are generalized or suppressed, then it is called local recoding.

Refer to [61] for detailed descriptions on different global and local recoding schemes.

In this chapter, we employ global suppression, meaning that if a pair p is chosen

to be suppressed, all instances of p in T are suppressed. Global suppression offers

several advantages over generalization and local suppression. First, suppression does

not require a predefined taxonomy tree for generalization, which often is unavailable

in real-life databases. Second, trajectory data could be extremely sparse. Enforcing

global generalization on trajectory data will result in generalizing many sibling lo-

cation or time values even if there is only a small number of outlier pairs, such as

c4 in Table 4.1. Suppression offers the flexibility of removing those outliers without

59

affecting the rest of the data. Note, we do not intend to claim that global suppres-

sion is always better than other schemes. For example, LeFevre et al. [61] present

some local generalization schemes that may result in less data loss depending on the

utility measure. Third, global suppression retains exactly the same support counts

of the preserved MFS in the anonymous trajectory data table as there were in the

raw data. In contrast, a local suppression scheme may delete some instances of the

chosen pair and, therefore, change the support counts of the preserved MFS. For

example, if the support count of a sequence 〈(loc1t1)〉 is 20 and the support count

of its super sequence 〈(loc1t1) → (loc2t2)〉 is 10, then the confidence of inferring the

occurrence of (loc2t2) from (loc1t1) is 10/20 = 50%. Now, suppose we suppress only

10 instances of (loc1t1) from T . The support of 〈(loc1t1) → (loc2t2)〉 will vary from

0 to 10 and the confidence of inferring the occurrence of (loc2t2) from (loc1t1) will

vary from 0% to 100% depending on which instances have been suppressed. Hence,

employing local suppression cannot preserve the truthful support counts of the pre-

served frequent sequences, implying that the derived knowledge, such as association

rules, is not truthful, too.

Definition 4.3 (Trajectory Anonymity for MFS). Given a trajectory data table T , a

LKC-privacy requirement, a minimum support threshold K ′, a set of sensitive values

S, the problem of trajecoty anonymity for MFS is to identify a transformed version

of T that satisfies the LKC-privacy requirement while preserving the maximum

number of MFS.

4.3 Anonymization Algorithm

Given a trajectory data table T , our first step is to identify all sequences that

violate the given LKC-privacy requirement. Section 4.3.1 describes a method to

identify violating sequences efficiently. Section 4.3.2 presents a greedy algorithm

to eliminate the violating sequences with the goal of preserving as many maximal

60

frequent sequences as possible.

4.3.1 Identifying Violating Sequences

An adversary may use any sequence with length not greater than L as background

knowledge to launch a linkage attack. Thus, any non-empty sequence q with |q| ≤ L

in T is a violating sequence if its group T (q) does not satisfy condition 1, condition

2, or both in LKC-privacy in Definition 4.1.

Definition 4.4 (Violating sequence). Let q be a sequence of a trajectory in T with

|q| ≤ L. q is a violating sequence with respect to a LKC-privacy requirement if (1)

q is non-empty, and (2) |T (q)| < K or P (s|q) > C for any sensitive value s ∈ S.

Example 4.3.1. Let L = 2, K = 2, C = 50%, and S = {AIDS}. In Table 4.1,

a sequence q1 = 〈b2 → c4〉 is a violating sequence because |T (q1)| = 1 < K. A

sequence q2 = 〈b2 → f6〉 is a violating sequence because P (AIDS|q2) = 67% > C.

However, a sequence q3 = 〈b2 → c5 → f6 → c7〉 is not a violating sequence even if

|T (q3)| = 1 < K and P (AIDS|q3) = 100% > C because |q3| > L.

A trajectory data table satisfies a given LKC-privacy requirement, if all vio-

lating sequences with respect to the privacy requirement are removed, because all

possible channels for identity and attribute linkages are eliminated. A naïve ap-

proach is to first enumerate all possible violating sequences and then remove them.

This approach is infeasible because of the huge number of violating sequences. Con-

sider a violating sequence q with |T (q)| < K. Any super sequence of q with length

less than or equal to L, denoted by q′′, in the database T is also a violating sequence

because |T (q′′)| ≤ |T (q)| < K.

One incorrect approach to achieve LKC-privacy is to ignore the sequences

with size less than L and assume that if a table T satisfies LKC-privacy, then T

satisfies L′KC-privacy where L′ < L. Unfortunately, this monotonic property with

respect to L does not hold in LKC-privacy.

61

Table 4.3: Counter example for monotonic property
ID Trajectory Status ...
1 〈a1 → d2〉 Flu ...
2 〈a1 → b2〉 AIDS ...
3 〈a1 → b2 → c3〉 AIDS ...
4 〈a1 → b2 → c3〉 Fever ...

Theorem 4.1. LKC-privacy is not monotonic with respect to adversary’s knowl-

edge L.

Proof. To prove that LKC-privacy is not monotonic with respect to L, it is suffi-

cient to prove that one of the conditions of LKC-privacy in Definition 4.1 is not

monotonic. Following we provide a counter example for both the conditions.

Condition 1: Anonymity threshold k is not monotonic with respect to L. If all

the size-L sequences are non-violating, it does not guarantee that a sequence with

size L′ ≤ L is also non-violating. In Table 4.3, though the size-3 sequences satisfy

privacy requirement for K = 2, the size-2 sequence, q = 〈a1 → d2〉 does not satisfy

the requirement.

Condition 2: Confidence threshold C is not monotonic with respect to L. If q

is a non-violating sequence with P (s|q) ≤ C and |T (q)| ≥ K, its subsequence q′ may

not be a non-violating sequence. We use a counter example to show that P (s|q′) ≤

P (s|q) ≤ C does not always hold. In Table 4.3, the sequence q = 〈a1 → b2 → c3〉

satisfies P (AIDS|q) = 50% ≤ C. However, its subsequence q′ = 〈a1 → b2〉 does not

satisfy P (AIDS|q′) = 100% > C.

To satisfy LKC-privacy, it is insufficient to ensure that every sequence q with

only length L in T satisfies both the conditions of Definition 4.1. Instead, we need

to ensure that every sequence q with length not greater than L in T satisfies both

the conditions. To overcome this bottleneck of violating sequence enumeration, our

insight is that there exists some “minimal” violating sequences among the violating

sequences, and it is sufficient to achieve LKC-privacy by removing only the minimal

62

violating sequences.

Definition 4.5 (Minimal violating sequence). A violating sequence q is a mini-

mal violating sequence (MVS) if every proper subsequence of q is not a violating

sequence.

Example 4.3.2. In Table 4.1, given L = 3, K = 2, C = 50%, S = {AIDS}, the

sequence q = 〈b2 → d3〉 is a MVS because 〈b2〉 and 〈d3〉 are not violating sequences.

The sequence q = 〈b2 → d3 → c4〉 is a violating sequence but not a MVS because

its subsequence 〈b2 → d3〉 is a violating sequence.

Every violating sequence is either a MVS or it contains a MVS. Thus, if T

contains no MVS, then T contains no violating sequences.

Lemma 4.1. A trajectory data table T satisfies LKC-privacy if and only if T

contains no MVS.

Proof. Suppose a data table T does not satisfy LKC-privacy even if T contains

no MVS. Then, by Definition 4.4, the table T contains violating sequence. But, a

violating sequence must be a MVS or its subset is MVS, which is the contradiction of

the initial assumption. Therefore, the data table T must satisfy LKC-privacy.

Next, we propose an algorithm to efficiently identify all MVS in T with respect

to a LKC-privacy requirement. Based on Definition 4.5, we generate all MVS of

size i + 1, denoted by Vi+1, by incrementally extending a non-violating sequence of

size i, denoted by Wi, with an additional pair.

Algorithm 4.1 presents a method to efficiently generate all MVS. Line 1 puts

all the size-1 sequences, i.e., all distinct pairs, as candidates X1 of MVS. Line 4 scans

T once to compute |T (q)| and P (s|q) for each sequence q ∈ Xi and for each sensitive

value s ∈ S. If the sequence q violates the LKC-privacy requirement in Line 6, then

we add q to the MVS set Vi (Line 7); otherwise, add q to the non-violating sequence

set Wi (Line 9) for generating the next candidate set Xi+1, which is a self-join of

63

Algorithm 4.1: MVS Generator
Input: Raw trajectory data table T
Input: Thresholds L, K, and C
Input: Sensitive values S
Output: Minimal violating sequence V (T)

1: X1 ← set of all distinct pairs in T ;
2: i = 1;
3: while i ≤ L and Xi �= ∅ do
4: Scan T to compute |T (q)| and P (s|q), for ∀q ∈ Xi, ∀s ∈ S;
5: for ∀q ∈ Xi where |T (q)| > 0 do
6: if |T (q)| < K or P (s|q) > C then
7: Add q to Vi;
8: else
9: Add q to Wi;

10: end if
11: end for
12: Xi+1 ← Wi �� Wi;
13: for ∀q ∈ Xi+1 do
14: if q is a super sequence of any v ∈ Vi then
15: Remove q from Xi+1;
16: end if
17: end for
18: i++;
19: end while
20: return V (T) = V1 ∪ . . . ∪ Vi−1;

Wi (Line 12). Two sequences qx = 〈(locx
1t

x
1) → . . . → (locx

i t
x
i)〉 and qy = 〈(locy

1t
y
1) →

. . . → (locy
i t

y
i)〉 in Wi can be joined only if the first i − 1 pairs of qx and qy are

identical and txi < tyi . The joined sequence is 〈(locx
1t

x
1) → . . . → (locx

i t
x
i) → (locy

i t
y
i)〉.

Lines 13-17 remove a candidate q from Xi+1 if q is a super sequence of any sequence

in Vi because any proper subsequence of a MVS cannot be a violating sequence. The

set of MVS, denoted by V (T), is the union of all Vi.

Example 4.3.3. Consider Table 4.1 with L = 2, K = 2, C = 50%, and S =

{AIDS}. X1 = {b2, d3, c4, c5, f6, c7, e8}. After scanning T , we divide X1 into V1 = ∅

and W1 = {b2, d3, c4, c5, f6, c7, e8}. Next, from W1 we generate the candidate set

X2 = {b2d3, b2c4, b2c5, b2f6, b2c7, b2e8, d3c4, d3c5, d3f6, d3c7, d3e8, c4c5, c4f6,

c4c7, c4e8, c5f6, c5c7, c5e8, f6c7, f6e8, c7e8}. We scan T again to determine

64

V2 = {b2d3, b2c4, b2f6, c4c7, c4e8}. We do not further generate X3 because L = 2.

Lemma 4.2. Algorithm 4.1 generates all the minimal violating sequences (MVS)

of size ≤ L.

Proof. We use a loop invariant to proof the correctness of Algorithm 4.1.

Loop Invariant: At the start of each iteration i of the while loop (Line 3), the MVS

set V (T) contains all the MVS of size ≤ (i − 1).

Initialization: Prior to the first iteration of the loop, i = 1, the MVS set V (T) is

empty. Invariant is true because by Definition 4.4 violating sequence can not be of

size-0.

Maintenance: During the iteration, every candidate sequence q ∈ Xi that does

not satisfy |T (q)| ≥ K or P (s|q) ≤ C is added to the MVS set V (T). Since, the

candidate set contains all size-i sequences and the algorithm verifies all candidates,

we conclude that loop invariant indeed remains true before the next iteration i + 1.

Termination: At termination, i = L + 1, by loop invariant, the MVS set V (T)

contains all the MVS of size ≤ L.

Definition 4.6 (Violating pair). A pair p is a violating pair if it is part of a violating

sequence.

Example 4.3.4. Given the set of minimal violating sequence, V (T) = {b2d3, b2c4,

b2f6, c4c7, c4e8}, the violating pairs are {b2, d3, c4, f6, c7, e8}.

From Lemma 4.1, we have to remove all the MVS to satisfy LKC-privacy

requirement. We can remove all the MVS by suppressing a subset of violating pairs.

Given, V (T) = {b2d3, b2c4, b2f6, c4c7, c4e8}, we can either suppress {b2, c4} or

{b2, c7, e8} and so on. Next, we prove that it is NP-hard to find an optimal subset

of violating pairs.

Theorem 4.2. Given a trajectory data table T and a LKC-privacy requirement,

it is NP-hard to find the optimal anonymous solution.

65

Proof. The problem of finding the optimal anonymous solution can be converted into

the vertex cover problem [23]. The vertex cover problem is a well-known problem

in which, given an undirected graph G = (V,E), it is NP-hard to find the smallest

set of vertices S such that each edge has at least one endpoint in S. To reduce our

problem into the vertex cover problem, we only consider the set of MVS of length 2.

Then, the set of violating pairs represents the set of vertices V , and the set of MVS,

denoted by V (T), is analogous to the set of edges E. Hence, the optimal vertex

cover, S, means finding the smallest set of violating pairs that must be suppressed

to obtain the optimal anonymous data set T ′. Given that it is NP-hard to determine

the smallest set of vertices S, it is also NP-hard to find the optimal set of violating

pairs for suppression.

Finding an optimal solution for LKC-privacy is NP-hard. Thus, we propose

a greedy algorithm to efficiently identify a reasonably “good” sub-optimal solution.

4.3.2 Eliminating Violating Sequences

We propose a greedy algorithm to transform the raw trajectory data table T to

an anonymous table T ′ with respect to a given LKC-privacy requirement by a

sequence of suppressions. In each iteration, the algorithm selects a violating pair

p for suppression based on a greedy selection function. In general, a suppression

on a violating pair p in T increases privacy because it removes minimal violating

sequences (MVS), and decreases data utility because it eliminates maximal frequent

sequences (MFS) in T . Therefore, we define the greedy function, Score(p), to select

a suppression on a violating pair p that maximizes the number of MVS removed but

minimizes the number of MFS removed in T . Score(p) is defined as follows:

Score(p) =
PrivGain(p)

UtilityLoss(p) + 1
(4.1)

66

Algorithm 4.2: Data Anonymizer
Input: Raw trajectory data table T
Input: Thresholds L, k, C, and K ′

Input: Sensitive values S
Output: Anonymous T ′ that satisfies LKC-privacy
1: Generate V (T) by Algorithm 4.1 and build MVS-tree;
2: Generate U(T) by MFS algorithm and build MFS-tree;
3: while PG table is not empty do
4: Select a pair w that has the highest Score to suppress;
5: Delete all MVS and MFS containing w from MVS-tree and MFS-tree;
6: Update the Score(p) if both w and p are contained in the same MVS or MFS;
7: Remove w from PG Table;
8: Add w to Sup;
9: end while

10: For ∀w ∈ Sup, suppress all instances of w from T ;
11: return the suppressed T as T ′;

where PrivGain(p) and UtilityLoss(p) are the number of MVS and the number of

MFS containing the violating pair p, respectively. A violating pair p may not belong

to any MFS, resulting in UtilityLoss(p) = 0. To avoid dividing by zero, we add

1 to the denominator. The violating pair p with the highest Score(p) is called the

winner pair, denoted by w.

Algorithm 4.2 summarizes the anonymization algorithm that removes all MVS.

Line 1 calls Algorithm 4.1 to identify all MVS, denoted by V (T), and then builds

a MVS-tree with a PG table that keeps track of the PrivGain(p) of all violating

pairs for suppressions. Line 2 calls a maximal frequent sequence mining algorithm

to identify all MFS, denoted by U(T), and then builds a MFS-tree with a UL

table that keeps track of the UtilityLoss(p) of all candidate pairs. We modified

MAFIA [18], which was originally designed for mining maximal frequent itemsets, to

mine MFS. Any alternative MFS algorithm can be used as a plug-in to our method.

At each iteration in Lines 3-9, the algorithm selects the winner pair w that has the

highest Score(w) from the PG table, removes all the MVS and MFS that contain w,

incrementally updates the Score of the affected violating pairs, and adds w to the

67

set of suppressed values, denoted by Sup. Values in Sup are collectively suppressed

in Line 10 in one scan of T . Finally, Algorithm 4.2 returns the anonymized T as

T ′. The most expensive operations are identifying the MVS and MFS containing

w and updating the Score of the affected candidates. Below, we propose two tree

structures to efficiently perform these operations.

Definition 4.7 (MVS-tree). MVS-tree is a tree structure that represents each MVS

as a tree path from root-to-leaf. Each node keeps track of a count of MVS sharing

the same prefix. The count at the root is the total number of MVS. MVS-tree has

a PG table that maintains every violating pair p for suppression, together with its

PrivGain(p). Each violating pair p in the PG table has a link, denoted by Linkp,

that links up all the nodes in an MVS-tree containing p. PrivGain(p) is the sum of

the counts of MVS on Linkp.

Definition 4.8 (MFS-tree). MFS-tree is a tree structure that represents each MFS

as a tree path from root-to-leaf. Each node keeps track of a count of MFS sharing

the same prefix. The count at the root is the total number of MFS. MFS-tree has

a UL table that keeps the UtilityLoss(p) for every violating pair p. Each violating

pair p in the UL table has a link, denoted by Linkp, that links up all the nodes in

MFS-tree containing p. UtilityLoss(p) is the sum of the counts of MFS on Linkp.

Example 4.3.5. Figure 4.2 depicts both MVS-tree and MFS-tree generated from

Table 4.1, where V (T) = {b2d3, b2c4, b2f6, c4c7, c4e8} and U(T) = {b2c5c7, b2f6c7,

b2c7e8, d3c4f6, f6c7e8, c5f6, c5e8, d3c7, d3e8} with L = 2, K = 2, C = 50%, and

K ′ = 2. Each root-to-leaf path represents one sequence of MVS or MFS. To find

all the MVS (or MFS) containing c4, follow Linkc4 starting from the PG (or UL)

table. For illustration purposes, we show PG and UL as a single table.

Table 4.4 shows the initial Score(p) of every violating pair. Identify the winner

pair c4 from violating pairs. Then traverse Linkc4 to identify all MVS and MFS

containing c4 and delete them from the MVS-tree and MFS-tree accordingly. These

68

Figure 4.2: MVS-tree and MFS-tree for efficient Score updates

Figure 4.3: MVS-tree and MFS-tree after suppressing c4

links are the key to efficient Score updates and suppressions. When a winner pair

w is suppressed from the trees, the entire branch of w is trimmed. The trees provide

an efficient structure for updating the counts of MVS and MFS. For example, when

c4 is suppressed, all its descendants are removed as well. The counts of c4’s ancestor

nodes are decremented by the counts of the deleted c4 node. If a violating pair p and

the winner pair w are contained in some common MVS or MFS, then UtilityLoss(p),

PrivGain(p), and Score(p), have to be updated by adding up the counts on Linkp.

A violating pair p is removed from the PG table if PrivGain(p) = 0 because there

is no more any MVS containing this pair. The resultant MVS-tree and MFS-tree

are shown in Figures 4.3 after suppressing c4. Table 4.5 shows the updated Score

of the remaining violating pairs. In the next iteration, b2 is suppressed and thus all

the remaining MVS are removed. Table 4.2 shows the resulting anonymous table T ′

for (2, 2, 50%)-privacy.

Lemma 4.3. Algorithm 4.2 eliminates all MVS without generating new MVS.

69

Table 4.4: Initial Score
b2 d3 c4 f6 c7 e8

PrivGain 3 1 3 1 1 1
UtilityLoss (+1) 4 4 2 5 6 5
Score 0.75 0.25 1.5 0.2 0.16 0.2

Table 4.5: Score after suppressing c4
b2 d3 f6

PrivGain 2 1 1
UtilityLoss (+1) 4 3 4
Score 0.5 0.33 0.25

Proof. By Definition 4.7, MVS-tree represents all the MVS in a tree structure. Thus

by suppressing the violating sequences iteratively, the algorithm eliminates all the

MVS. However, global suppression does not generate any new MVS. Consider a new

sequence q, which resulted from the suppression of its super sequence. The sequence

q can not be a MVS since by Definition 4.5, all the subsequence of a MVS is a

non-violating sequence.

We now prove that the anonymous data table T ′ is the LKC-private version

of the raw data table T .

Theorem 4.3. Given a trajectory data table T , the anonymous data table T ′ pro-

duced by the anonymization algorithm satisfies LKC-privacy.

Proof. The proof follows directly from Lemmas 4.1, 4.2 and 4.3. Since, the anonymiza-

tion algorithm can enumerate all the MVS (Lemma 4.2) and subsequently remove

them without generating new MVS (Lemma 4.3), the anonymous table contains

no MVS. Finally, according to Lemma 4.1, the anonymous data table T ′ satisfies

LKC-privacy because it has no MVS.

4.3.3 Analysis

Our anonymization algorithm has two steps. In the first step, we determine the

set of MVS and the set of MFS. In the second step, we build the MVS-tree and

70

MFS-tree, and suppress the violating pairs iteratively according to their Score. The

most expensive operation of our algorithm is scanning the raw trajectory data table

T once to compute |T (q)| and P (s|q) for all sequence q in the candidate set Xi.

This operation takes place during MVS generation. The cost of this operation is

approximated as Cost =
∑L

i=1 mii, where mi = |Xi|. Note that the searching cost

depends on the value of L and size of the candidate set. When i = 1, the candidate

set Xi is the set of all distinct pairs in T . Hence, the upper limit of mi = |d|, where

|d| is the number of dimensions. It is unlikely to have any single pair violating the

LKC-privacy; therefore, m2 = |d|(|d| − 1)/2. However, when i ≥ 3, the sizes of the

candidate sets do not increase significantly. It is because all candidates are generated

by self-joining, which requires that only if two sequences share the same prefix, their

resulting sequence can be considered a future candidate. When i is relatively large,

the chance of finding two such sequences decreases significantly. Therefore, a good

approximation of the size of the candidate set,
∑L

i=1 mi ≈ d2. However, in the

worst case, the size of the candidate set is bounded by O(dL). Finally, including the

dependence on the data size, the time complexity of our algorithm is O(|d|Ln).

In the second step, we insert the MVS and MFS into the respective trees and

delete them iteratively afterward. This operation is proportional to the number of

MVS and thus in the order of O(|V (T)|). Due to MVS-tree and MFS-tree data

structures, our approach can efficiently calculate and update the the score of the

violating pairs.

4.4 Experimental Evaluation

The main objective of our empirical study is to evaluate the performance of our

proposed algorithm in terms of utility loss caused by anonymization, and scalability

for handling large data sets. The utility loss is defined as |U(T)|−|U(T)′|
|U(T)| , where |U(T)|

and |U(T)′| are the numbers of maximal frequent sequences before and after the

71

Table 4.6: Data sets statistics
data set Records Avg. trajectory Dimensions Data size

|T | length |d| (K bytes)
City80K 80,000 8 624 2,297

Metro100K 100,000 8 3,900 6,184

anonymization of the data set T . It measures the percentage of MFS loss due to

suppressions, so lower utility loss implies better data quality. We could not directly

compare our methods with others because no method exists that can anonymize

trajectory data while preserving maximal frequent sequences. We evaluate our al-

gorithm with three different Score functions:

• Score1(p) = PrivGain(p)
UtilityLoss(p)+1

(from Equation 4.1)

• Score2(p) = PrivGain(p)

• Score3(p) = 1
UtilityLoss(p)+1

We used two data sets for the experiments: City80K and Metro100K. City80K

is a data set simulating the routes of 80,000 citizens in a metropolitan area with

26 city blocks in 24 hours, thus forming 624 dimensions (different possible pairs).

Metro100K is a data set simulating the travel routes of 100,000 passengers in the

Montreal subway transit system with 65 stations in 60 minutes, forming 3,900 di-

mensions. Each record in the data set corresponds to the route of one passenger.

The passengers’ traffic patterns are simulated based on information obtained from

the Montreal metro information website1. Based on the published annual report, all

the passengers have an average trajectory length of 8 stations. The data generator

also simulates the trajectories according to the current metro map and passengers’

flow in each station. In both data sets, each record contains an attribute with five

possible values, where one of them is considered to be sensitive.

Following the convention for extracting MFS, we specify the minimum support

threshold K ′ as the percentage of the total number of records in the database. For
1http://www.metrodemontreal.com

72

both data sets, we set K ′ = 0.5%, 1%, and 1.5% and vary the thresholds of minimum

anonymity K, maximum confidence C, and maximum adversary’s knowledge L to

evaluate the performance of the algorithm. All experiments are conducted on a PC

with Intel Core2 Duo 1.6GHz CPU with 2GB of RAM.

Figure 4.4. We vary the threshold K from 10 to 50 while fixing L = 3

and C = 100% on City80K. This setting allows us to measure the performance of

the algorithm against identity linkages without considering attribute linkages. The

utility loss of Score1 and Score3 generally increases as K increases, so it exhibits

some trade-off between data privacy and data utility. The utility loss, sometimes,

has a slight drop when K increases. This is due to the fact that the greedy algorithm

finds only the sub-optimal solution. Score2 has higher utility loss than Score1 and

Score3 because Score2 does not take into account the number of MFS lost during

the elimination of MVS. As K ′ increases, the utility loss decreases because the

number of MFS decreases and there is less overlapping between V (T) and U(T), so

suppressions have less effect on MFS.

As mentioned, our method can also achieve k-anonymity by setting L = |d|,

where |d| is the number of dimensions. The result strongly suggests that apply-

ing LKC-privacy would result in significantly lowering the utility loss than would

applying traditional k-anonymity.

Figure 4.5. We vary the threshold C from 20% to 100% while fixing L = 3

and K = 30 on City80K. This allows us to examine the effect of attribute linkages.

Approximately 1/5 of the records contain a sensitive value, so the utility loss is high

at C = 0.2. As C increases, the effect of attribute linkages becomes insignificant.

As K ′ increases, the utility loss drops quickly due to less overlapping between V (T)

and U(T). Again, the traditional confidence bounding model results in significantly

higher utility loss.

Figure 4.6. We vary the threshold L from 1 to 5 while fixing K = 30 and

C = 60% on City80K. This allows us to quantify the utility loss with the increment

73

(a) K ′ = 0.5% (b) K ′ = 1% (c) K ′ = 1.5%

Figure 4.4: Utility loss vs. K on City80K (L = 3, C = 60%)

(a) K ′ = 0.5% (b) K ′ = 1% (c) K ′ = 1.5%

Figure 4.5: Utility loss vs. C on City80K (L = 3, K = 30)

(a) K ′ = 0.5% (b) K ′ = 1% (c) K ′ = 1.5%

Figure 4.6: Utility loss vs. L on City80K (K = 30, C = 60%)

74

(a) K ′ = 0.5% (b) K ′ = 1% (c) K ′ = 1.5%

Figure 4.7: Utility loss vs. K on Metro100K (L = 3, C = 60%)

(a) K ′ = 0.5% (b) K ′ = 1% (c) K ′ = 1.5%

Figure 4.8: Utility loss vs. C on Metro100K (L = 3, K = 30)

of an adversary’s background knowledge. The result suggests that up to L = 2,

there is no utility loss. As L increases, the loss increases quickly due to the increase

in the number of violating sequences.

Figure 4.7. Metro100K is a relatively higher dimensional data set (3,900

dimensions) compared to City80K (624 dimensions). Unlike in City80K, passengers

follow predefined tracks based on the metro map. In Figure 4.7, following the same

setting of City80K, we vary the value of K from 10 to 50, while fixing L = 3 and

C = 100% on Metro100K. Metro100K has a large number of violating sequences

and thus many pairs are suppressed during anonymization. The general trend in

Metro100K is more obvious than in City80K. For example, in Figure 4.7(a), as K

increases from 10 to 50, the utility loss of Score1 increases from 29% to 66%. As K ′

increases from 0.5% to 1.5%, the utility loss of Score1 at K = 30 drops from 66% to

21%. In all test cases, Score1 and Score3 consistently outperform Score2, suggesting

that it is vital to consider the loss of MVS in the greedy function. Interestingly, the

75

0
20
40
60
80

100
120
140

200 400 600 800 1000

T
im

e
(s

ec
on

ds
)

Number of records (in thousands)

R/W Identifying MVS Sup Total

(a) Runtime vs. # of records

0
50

100
150
200
250
300
350

200 400 600 800 1000

T
im

e
(s

ec
on

ds
)

Number of records (in thousands)

L=2 L=3 Traditional (L=|d|)

(b) Runtime vs. # of L

0

50

100

150

200

250

3900 4900 5900 6900 7900

T
im

e
(s

ec
on

ds
)

Number of dimensions (location x time)

R/W Identifying MVS Sup Total

(c) Runtime vs. dimensionality

Figure 4.9: Scalability (K = 30, C = 60%, K ′ = 1%)

utility loss is the same for L = 3 and L = |d| because most of the MVS are of size-3

or less. In other words, there is no difference between L = 3 and L = 4 or above in

terms of the generated MVS. Hence, the utility loss for L ≥ 3 remains unchanged;

therefore, we omit the figure on utility loss vs. L.

Figure 4.8. We vary the value of C from 20% to 100% while fixing L = 3 and

K = 30 on Metro100K. The results have characteristics similar to those in Figure

4.5. The utility loss increases when C < 40%. Moreover, as K ′ increases, the utility

loss decreases significantly.

One major contribution of our work is the development of an efficient and scal-

able algorithm for achieving LKC-privacy, traditional k-anonymity, and confidence

bounding on high-dimensional trajectory data. Every previous test case can finish

the entire anonymization process within 15 seconds. We further evaluate scalability

with respect to data volume and dimensionality. We conduct all the experiments

on the data set Metro100K since it is larger in size and dimensionality. Unless

otherwise specified, we fix L = 3, K = 30, C = 60%, and K ′ = 1%.

Figure 4.9.a depicts the runtime in seconds from 200,000 to 1 million records.

The total runtime for anonymizing 1 million records is 125 seconds, of which 46

seconds are spent identifying MVS and 79 seconds are spent reading the raw data

set and writing the anonymous data set. It takes less than 1 second to suppress all

the MVS due to our efficient MVS-tree and MFS-tree. As the number of records

76

increases from 200,000 towards 1 million, the runtime for read/write and identifying

MVS also increases linearly, suggesting that our algorithm is scalable to anonymize

large data sets. Figure 4.9.b compares the total runtime for L = 2, L = 3, and

L = |d|. L = |d| represents the runtime for achieving traditional k-anonymity and

confidence bounding. The runtime for achieving those models is much longer than

ours because L = |d| requires verifying many sequences up to L = |d|. In Fig-

ure 4.9.c, we increase the dimension on the data set with 1 million records. As the

number of dimensions increases, the number of MVS also increases due to sparse-

ness; therefore, the runtime for identifying MVS also increases.

Summary. (1) As anonymity threshold K or an adversary’s knowledge L increases,

the data utility decreases. The trend is less obvious on C. (2) As minimum support

threshold K ′ increases, the set of MVS and the set of MFS have less overlapping, so

suppressing pairs in MVS has less effect on MFS. (3) Score1 and Score3 outperforms

Score2, suggesting it is important to consider the loss of MFS in the greedy function.

(4) High-dimensional data generally has more violating sequences and, therefore,

higher utility loss. (5) Our proposed method is scalable with respect to the data

size.

4.5 Discussion

In this section, we provide answers to the following frequently raised questions: Why

does the data publisher want to publish the sensitive attributes when the goal is to

preserve maximal frequent sequences? What if the adversary only uses time or lo-

cation to identify an individual?

Sensitive Attribute. The data publisher may publish the sensitive attributes

because some data mining tasks on trajectory data require both trajectory and

77

object-specific data. Analyzing the workflow (traffic flow) without understanding

what the objects are often meaningless. For example, transit companies like to un-

derstand the characteristics of the passengers’ traffic. However, if there is no such

data mining purpose, the sensitive attributes should be removed. Our proposed

anonymization algorithm (Section 4.3) is flexible enough to handle trajectory data

with or without sensitive attributes. Note that, none of the previous works consider

the privacy threats caused by attribute linkages between the trajectory and the sen-

sitive attributes.

Time and Location. It is possible that the adversary’s background knowledge q′

contains only the location loci or only the timestamp ti. This type of attack is obvi-

ously weaker than the attack based on background knowledge q containing (lociti)

because the identified group |T (q′)| ≥ |T (q)|. Thus, an LKC-privacy preserved

table that can thwart linkages on q can also thwart linkages on q′.

78

Chapter 5

Distributed Anonymization

5.1 Introduction

In the contemporary business environment, data sharing is an essential requirement

for making better decisions and providing high-quality services. Often, multiple ser-

vice providers need to collaborate and integrate their data and expertise to deliver

highly customizable services to their customers. While data sharing can help their

clients obtain the required information or explore new knowledge, it can also be

misused by adversaries to reveal sensitive information that was not available before

the data integration. In this chapter, we study the privacy threats caused by data

sharing and present two algorithms to securely integrate person-specific sensitive

data from multiple data publishers, whereby the integrated data still retains the es-

sential information for supporting general data exploration or a specific data mining

task, such as classification analysis. In particular, we study two real-life scenarios,

where the data is divided either horizontally or vertically among the data publishers.

Vertically-Partitioned Data. This research problem was discovered in a col-

laborative project with a financial industry. We generalize their problem as fol-

lows: A loan company A and a bank B observe different sets of attributes about

79

Figure 5.1: Distributed anonymization model for multiple data publishers

the same set of individuals identified by the common identifier attribute (ID), e.g.,

TA(ID, Job, Balance) and TB(ID, Sex, Salary). These companies want to integrate

their data to support better decision making such as loan or credit limit approval,

which is basically a data mining task on classification analysis. In additional to

companies A and B, their partnered credit card company C also has access to the

integrated data, so all three companies A, B, and C are data recipients of the final

integrated data. Figure 5.1 illustrates the data flow model of secure data integration

generalized from the project. Companies A and B have two privacy concerns. First,

simply joining TA and TB would reveal the sensitive information to the other party.

Second, even if TA and TB individually do not contain person-specific or sensitive

information, the integrated data can increase the possibility of identifying the record

of an individual. The next example illustrates this point.

Example 5.1.1. Consider the data in Table 5.1. Party A (the loan company) and

Party B (the bank) own TA(ID, Job, . . . , Class) and TB(ID, Sex, Salary, . . . , Class),

respectively. Each row in the table represents the information of an individual. The

attribute Class contains the class label Y or N, representing whether or not the loan

has been approved. Both parties want to integrate their data and use the integrated

data to build a classifier on the Class attribute. After integrating the two tables (by

matching the ID field), the female lawyer becomes unique and, therefore, vulnerable

80

Table 5.1: Raw tables for vertically-partitioned data

Shared Party A Party B
ID Class Job ... Sex Salary ...
1 N Writer Male 30K
2 N Dancer Male 25K
3 Y Writer Male 35K
4 N Dancer Female 37K
5 Y Engineer Female 65K
6 Y Engineer Female 35K
7 Y Engineer Male 30K
8 N Dancer Female 44K
9 Y Lawyer Male 44K
10 Y Lawyer Female 44K

to be linked to sensitive information such as Salary. In other words, linking attack

is possible on the fields Sex and Job.

In this chapter, we first consider the problem of distributed anonymization for

vertically-partitioned Data. Given multiple private tables for the same set of records

on different sets of attributes (i.e., vertically-partitioned tables), we want to effi-

ciently produce an integrated table on all attributes for release to different parties.

There are two obvious, yet incorrect approaches. The first one is “integrate-then-

generalize”: first integrate the local tables and then generalize the integrated table

using some single table anonymization methods [11, 38, 51, 63, 80]. Unfortunately,

this approach does not preserve privacy in the studied scenario because any party

holding the integrated table will immediately know all private information of all par-

ties. The second approach is “generalize-then-integrate”: first generalize each table

locally and then integrate the generalized tables. This approach does not work for a

quasi-identifier that spans multiple tables. In Example 5.1.1, achieving k-anonymity

on Sex and Job separately does not imply achieving k-anonymity on (Sex,Job) as

a single QID.

81

Table 5.2: Raw tables for horizontally-partitioned data

Quasi-identifier (QID) Class Sensitive
ID Job Sex Age Transfuse Surgery

Party A
1 Janitor M 34 Y Transgender
2 Lawyer F 58 N Plastic
3 Mover M 58 N Urology

Party B

4 Lawyer M 24 N Vascular
5 Mover M 34 Y Transgender
6 Janitor M 44 Y Plastic
7 Doctor F 44 N Vascular

Party C

8 Doctor M 58 N Plastic
9 Doctor M 24 N Urology
10 Carpenter F 63 Y Vascular
11 Technician F 63 Y Plastic

Horizontally-Partitioned Data. The problems with this BTS case can be gen-

eralized into two scenarios (See Chapter 3). In the first scenario, there exists a

trustworthy entity such as the central government health agency to collect the raw

patient data from multiple hospitals and submit the data to BTS after performing

the centralized anonymization. In the second scenario, the hospitals have to directly

submit the integration of their data to the BTS while protecting the patients’ pri-

vacy. In Chapter 3, we addressed the first scenario and presented the centralized

anonymization algorithm. The centralized anonymization method can be viewed as

“integrate-then-generalize” approach, where the central government health agency

first integrates the data from different hospitals then performs generalization. In

real-life information sharing, a trustworthy central authority may not always exist.

Sometimes, it is more flexible for the data recipient to make requests to the data

publishers, and the data publishers directly send the requested data to the recipient.

For example, in some special occasions, BTS has to directly collect data from the

hospitals without going through the government health agency.

In this distributed scenario, each hospital owns a set of raw patient data

82

Table 5.3: Naïve approach (L = 2, K = 2, C = 50%)

Quasi-identifier (QID) Class Sensitive
ID Job Sex Age Transfuse Surgery
1 ANY ANY [30 − 60) Y Transgender
2 ANY ANY [30 − 60) N Plastic
3 ANY ANY [30 − 60) N Urology
4 Professional ANY [1 − 60) N Vascular
5 Non-Technical M [30 − 60) Y Transgender
6 Non-Technical M [30 − 60) Y Plastic
7 Professional ANY [1 − 60) N Vascular
8 Professional M [1 − 60) N Plastic
9 Professional M [1 − 60) N Urology
10 Technical F [60 − 99) Y Vascular
11 Technical F [60 − 99) Y Plastic

records. The data can be viewed as horizontally partitioned among the data pub-

lishers over the same set of attributes. Consider the raw patient data in Table 5.2,

where records 1 − 3 are from Party A, records 4 − 7 are from Party B, and records

8 − 11 are from Party C. To achieve distributed anonymization, a naïve approach

is to anonymize the patient data independently by the hospitals and then inte-

grate as shown in Table 5.3. However, such a distributed “generalize-then-integrate”

approach suffers significant utility loss compared to the centralized “integrate-then-

generalize” approach as shown in Table 5.4.

Both the distributed anonymization problems face two major challenges. First,

the data utility of the anonymous integrated data should be as good as the data

quality produced by the centralized anonymization algorithm. Second, in the pro-

cess of anonymization, the algorithm should not reveal more specific information

than the final anonymous integrated table. For example in Table 5.1, Engineer and

Lawyer are more detailed than Professional. If the final anonymous table contains

Professaional, then Party B should not able to determine whether the one is an

Engineer or a Lawyer.

83

Table 5.4: Anonymous distributed data (L = 2, K = 2, C = 50%)

Quasi-identifier (QID) Class Sensitive
ID Job Sex Age Transfuse Surgery
1 Non-Technical M [30 − 60) Y Transgender
2 Professional F [30 − 60) N Plastic
3 Non-Technical M [30 − 60) N Urology
4 Professional M [1 − 30) N Vascular
5 Non-Technical M [30 − 60) Y Transgender
6 Non-Technical M [30 − 60) Y Plastic
7 Professional F [30 − 60) N Vascular
8 Professional M [30 − 60) N Plastic
9 Professional M [1 − 30) N Urology
10 Technical F [60 − 99) Y Vascular
11 Technical F [60 − 99) Y Plastic

Contributions. The contributions of this chapter are summarized as follows:

1. We use real-life examples to present the challenges of distributed anonymiza-

tion for privacy-aware information sharing and define the problems of dis-

tributed anonymization for vertically and horizontally partitioned data.

2. We present two algorithms to securely integrate private data from multiple

parties for two different application scenarios (Sections 5.3 and 5.4). Both the

algorithms achieve LKC-privacy model for the semi-honest adversary model.

In the semi-honest adversarial model, it is assumed that parties follow protocol

but may try to deduce additional information.

3. We implement the proposed algorithms and evaluate the performance (Sec-

tion 5.5). Experimental results on real-life data suggest that the distributed

algorithms perform better than naïve solutions, and effectively preserve data

utility for classification.

84

5.2 Problem Definition

The privacy and the utility requirements are similar to the centralized anonymization

algorithm as presented in Chapter 3. In particular, we adopt the LKC -privacy

model and preserve information for classification analysis. Following, we present

the problem of distributed anonymization for vertically and horizontally partitioned

data.

5.2.1 Anonymization for Vertically-Partitioned Data

We assume that there are n data publishers such that each Party y, where 1 ≤

y ≤ n owns a private table Ty(ID, Attribsy, Class) over the same set of records.

We also assume that parties hold mutually exclusive set of attributes. That is,

Attribsy ∩ Attribsz = ∅ for any 1 ≤ y, z ≤ n (See Section 5.6 for further discussion

on same set of records and mutually exclusive set of attributes). ID and Class are

shared attributes among all parties.

Definition 5.1 (Distributed Anonymization for Vertically-Partitioned Data). Given

multiple private tables T1, . . . , Tn, a LKC-privacy requirement, and a taxonomy tree

for each categorical attribute in ∪QIDj, the problem of distributed anonymization

for vertically-partitioned data is to efficiently produce a generalized integrated table

T such that (1) T satisfies the joint anonymity requirement, (2) T contains as much

information as possible for classification, and (3) each party learns nothing about

the other party that is more specific than the information in the final anonymous

integrated table T .

5.2.2 Anonymization for Horizontally-Partitioned Data

We assume that there are n data publishers (i.e., hospitals for the BTS case), where

each Party i owns a private table Ti(ID, D1, . . . , Dm, Class) over the same set of

attributes. Each data publisher owns a disjoint set of records, where recordi ∩

85

recordj = ∅ for any 1 ≤ i, j ≤ n. These parties are required to form an integrated

table T for conducting a joint data analysis.

Definition 5.2 (Distributed Anonymization for Horizontally-Partitioned Data).

When given multiple private tables T1, . . . , Tn, where each Ti is owned by dif-

ferent Party i, a LKC-privacy requirement, and a taxonomy tree for each cate-

gorical attribute contained in QID, the problem of distributed anonymization for

horizontally-partitioned data is to efficiently produce a generalized integrated table

T such that (1) T satisfies the LKC-privacy requirement, (2) T contains as much

information as possible for data analysis, and (3) each party learns nothing about

the other party more specific than what is in the final anonymous integrated table

T .

The requirement (3) in Definitions 5.1 and 5.2 requires that each party should

not reveal any additional information to other parties than what is in the final

anonymous integrated table. This requirement is similar to the secure multiparty

computation (SMC) protocols, where no participant learns more information than

the outcome of a function. In the problem of distributed anonymization, we assume

that the parties are semi-honest. In the semi-honest adversary model, each party

obeys the protocol. However, they may be curious to derive more information from

the received messages in the course of the protocol execution. This is the com-

mon security definition adopted in the SMC literature [53] and it is realistic in our

problem scenario since different organizations are collaborating to share their data

securely for mutual benefits. Hence, it is reasonable to assume that parties will not

deviate from the defined protocol. However, they may be curious to learn additional

information from the messages they received during the protocol execution.

86

5.3 Algorithm for Vertically-Partitioned Data

Without loss of generality, we first present our solution in a scenario of two parties

(n = 2). Section 5.3.3 describes the extension to multiple parties (n > 2). Consider

a table T that is given by two tables TA and TB with a common key ID, where Party

A holds TA and Party B holds TB. At first glance, it seems that the change from

one party to two parties is trivial because the change of Score due to specializing on

a single attribute depends only on that attribute and the Class attribute, and each

party knows about Class and the attributes they have. This observation is wrong

because parties will not be able to determine the validity of the candidate attributes

in case the QID spans multiple tables.

To overcome this problem, each party keeps a copy of the current ∪Cuti and

generalized T , denoted by Tg, in addition to the private TA or TB. The nature

of the top-down approach implies that Tg is more general than the final answer

and, therefore, does not violate the requirement (3) in Definition 5.1. At each

iteration, the two parties cooperate to perform the same specialization as identified

in the centralized anonymization algorithm by communicating certain information

that satisfies the requirement (3) in Definition 5.1. Algorithm 5.1 describes the

algorithm at Party A (same for Party B).

5.3.1 Overview

First, Party A finds the local best candidate using the specialization criterion (See

Section 3.2.2) and communicates with Party B to identify the overall global best

candidate, denoted by w (Lines 4-9). To avoid disclosing the Score to each other,

the secure multiparty maximum protocol [119] can be employed. Suppose the best

w is local to Party A. Party A performs w → child(w) on its copy of ∪Cuti and

Tg. This means specializing each record t ∈ Tg containing w into more specialized

records, t′1, . . . , t
′
z containing the child values of child(w) (Lines 11-12). Since Party

87

Algorithm 5.1: Algorithm for Vertically-Partitioned Data
1: initialize Tg to include one record containing top most values;
2: initialize ∪Cuti to include only top most values;
3: while there exists some valid candidate in ∪Cuti do
4: find the local candidate x of highest Score(x);
5: if the party has valid candidate then
6: communicate Score(x) with Party B to find the winner;
7: else
8: send Not-participate;
9: end if

10: if the best candidate w is local then
11: specialize w on Tg and update ∪Cuti;
12: instruct Party B to specialize w;
13: else
14: wait for the instruction from Party B;
15: specialize w on Tg and update ∪Cuti using the instruction;
16: end if
17: update Score(x) and validity for candidates x in ∪Cuti;
18: end while
19: return Tg and ∪Cuti;

B does not have the attribute for w, Party A needs to instruct Party B how to

partition these records in terms of IDs. Similarly, Party B updates its ∪Cuti and

Tg, and partitions TB[t] into TB[t′1], . . . , TB[t′z] (Lines 14-15). If the best w is local

to Party B, then the role of the two parties is exchanged in this discussion. The

algorithm terminates when there are no more valid candidate in ∪Cuti.

Example 5.3.1. Consider Table 5.1. Initially, Tg = {〈ANY_Job, ANY_Sex, [1-99)〉}

and ∪Cuti = {ANY_Job,ANY_Sex, [1-99)}, and all specializations in ∪Cuti are

candidates. To find the candidate, Party A computes Score(ANY_Job), and Party

B computes Score(ANY_Sex) and Score([1-99)).

5.3.2 Implementation

Below, we describe the key steps: find the best candidate (Lines 4-9), perform the

best specialization (Lines 10-16), and update the score and status of candidates

88

Figure 5.2: Distributed anonymization for vertically-partitioned data

(Line 17). For Party A, a local attribute refers to an attribute from TA, and a local

specialization refers to that of a local attribute.

Lines 4-9. Party A first finds the local candidate x with highest Score(x), then

communicates with Party B to find the best candidate. If Party A has no valid

candidate, then it sends Not-participate. This message indicates that the party has

no attribute to specialize. Score(x) come from the update done in the previous iter-

ation or the initialization prior to the first iteration. This is similar to single-party

algorithm and this step does not access data records.

Lines 10-16. Suppose that the best candidate w is local at Party A (otherwise,

replace Party A with Party B). For each record t in Tg containing w, Party A accesses

the raw records in TA[t] to tell how to specialize t. To facilitate this operation, we

represent Tg by the tree data structure as discussed in Section 3.3. The idea is to

group the raw records in TA according to their generalized records t in Tg. Given the

tree, we can find all raw records generalized to x by following Linkx for a candidate

x in ∪Cuti. To ensure that each party has access only to its own raw records, a

leaf partition at Party A contains only raw records from TA and a leaf partition at

Party B contains only raw records from TB. Initially, the tree has only the root node

representing the most generalized record and all raw records. In each iteration, the

two parties cooperate to perform the specialization w by refining the leaf partitions

Pw on Linkw in their own trees.

89

Example 5.3.2. Continue with Example 5.3.1. Initially, the tree has the root node

representing the most generalized record 〈ANY _Job, ANY _Sex, [1-99)〉, TA[root] =

TA and TB[root] = TB. The root node is on LinkANY_Sex, LinkANY_Job, and

Link[1−99). See the root node in Figure 5.2. The shaded field contains the num-

ber of raw records generalized by a node. Suppose that the best candidate w is

[1-99) → {[1-37), [37-99)} (on Salary). Party B first creates two child nodes under

the root node and partitions TB[root] between them. The root node is deleted from

LinkANY_Sex, LinkANY_Job, and Link[1−99); the child nodes are added to Link[1−37)

and Link[37−99), respectively, and both are added to LinkANY_Job and LinkANY_Sex.

Party B then sends the following instruction to Party A:

IDs 1-3, 6, and 7 go to the node for [1-37).

IDs 4, 5, and 8-10 go to the node for [37-99).

On receiving this instruction, Party A creates the two child nodes under the

root node in its copy of the tree and partitions TA[root] similarly. Suppose, the

next best candidate is ANY_Job → {Blue-collar,White-collar}. Similarly, the two

parties cooperate to specialize each leaf node on LinkANY_Job, resulting in the tree

in Figure 5.2.

Next, we summarize the operations at the two parties. We assume that the

best w is local at Party A.

Party A. Refine each leaf partition Pw on Linkw into child partitions Pc.

Linkc is created to link up the new Pcs for the same c. Add Pc to every Linkx other

than Linkw to which Pw was previously linked. While scanning the records in Pw,

Party A also collects the following information.

• Instruction for Party B. If a record in Pw is specialized to a child value c,

collect the pair (id, c), where id is the ID of the record. This information will

be sent to B to refine the corresponding leaf partitions there.

• Count statistics. The following information is collected for updating Score. (1)

90

For each c in child(w): |TA[c]|, |TA[d]|, freq(TA[c], cls), and freq(TA[d], cls),

where d ∈ child(c) and cls is a class label. |TA[c]| (similarly |TA[d]|) is com-

puted by
∑

|Pc| for Pc on Linkc. (2) For each Pc on Linkc: |Pd|, where Pd is

a child partition under Pc as if c was specialized.

Party B. On receiving the instruction from Party A, Party B creates child

partitions Pc in its own tree. At Party B, Pcs contain raw records from TB. Pcs are

obtained by splitting Pw among Pcs according to the (id, c) pairs received.

Line 18. This step is similar to the single-party algorithm. Essentially, it makes

use of the count statistics in to do the update. We omit the details here.

5.3.3 Analysis

Generalization to Multi-party Case. Algorithm 5.1 is extendable for multiple

parties with minor changes: In Line 6, each party should communicate with all other

parties for determining the best. Similarly, in Line 12, the party holding the best

candidate should instruct the other parties, and in Line 14, a party should wait for

instruction from the best party.

Algorithmic Correctness. For the information requirement, our approach pro-

duces the same integrated table as the single party (See Algorithm 3.1 in Chapter 3)

on a joint table, and ensures that no party learns more detailed information about

the other party other than what they agree to share. This claim follows from the

fact that Algorithm 5.1 performs exactly the same sequence of specializations as in

single party in a distributed manner where TA and TB are kept locally at the sources.

For the privacy requirement, the only information revealed to each other are

the Score (Line 6) and the instruction (Line 12) for specializing the best candidate.

The disclosure of the Score does not breach privacy because Score is calculated by

91

the frequency of the class attribute. This value only indicates how good an attribute

is for classification analysis, and does not provide any information for a particular

record. Although the Score does not reveal any information for a particular record,

the data providers can further enhance the protection and employ the secure max

protocol [119] to securely determine the best with the highest Score without dis-

closing the Score to other data providers. The instruction for specializing the best

candidate includes (id, c) pairs, where id is the ID of the record and c is the child

value of the best candidate. This information is more general than the final inte-

grated table that the two parties agree to share and hence does not violate privacy

requirement.

Complexity Analysis. The cost of our proposed algorithm can be summarized as

follows. Each iteration involves the following work: (1) Scan the records in TA[w] and

TB[w] for updating the tree and maintaining count statistics. (2) Update Score(x)

for affected candidates x. (3) Send “instruction” to the remote party. Only the work

in (1) involves accessing data records, which is in the order of O(|T |); the work

in (2) makes use of the count statistics without accessing data records and can be

performed in constant time. This feature makes our approach scalable. Thus, for one

iteration the computation cost is O(|T |). The total number of iterations is bounded

by O(log|T |), resulting in the total computation cost to be O(|T |log|T |). For the

communication cost (3), the instruction contains only IDs of the records in TA[w]

or TB[w] and child values c in child(w) and, therefore, is compact. The number

of bits to be transmitted is proportional to the number of records in the database

and thus in the order of O(|T |). However, the instruction is sent only by a party.

Assuming the availability of a broadcast channel, the maximum communication

cost of a single party is bounded by O(|T |log|T |). If secure sum protocol is used,

then there is an additional cost in every iteration. The running time of secure max

protocol is bounded by O(p(n)), where p(n) is the polynomial of n parties [119].

92

5.4 Algorithm for Horizontally-Partitioned Data

In the section, we similarly extend the single-party (centralized) algorithm to ad-

dress the problem of distributed anonymization for horizontally-partitioned data as

described in Definition 5.2. Each Party i (hospital) owns a private database Ti.

The union of the local databases constructs the complete view of the data table,

T =
⋃

Ti, where 1 ≤ i ≤ n. Note that the quasi-identifiers are uniform across all

the local databases.

As discussed earlier, if the data publishers perform anonymization indepen-

dently before data integration (Table 5.3), then it results in higher utility loss than

the centralized approach. To prevent utility loss, parties need to know whether a

locally identifiable record will or will not satisfy the privacy requirement after inte-

gration. Moreover, to satisfy the utility requirement, all the parties should perform

the same sequence of anonymization operations. In other words, parties need to

calculate the Score of the candidates over the integrated data table. To overcome

these problems, each party keeps a copy of the current ∪Cuti and generalized T ,

denoted by Tg, in addition to the private Ti. The nature of the top-down approach

implies that Tg is more general than the final answer, therefore, does not violate

the requirement (3) in Definition 5.2. At each iteration, all the parties cooperate to

determine the Best specialization that has the highest Score and perform the same

specialization.

The proposed distributed anonymization algorithm requires one party to act

as a leader. It is important to note that any party can act as a leader and the

leader is not necessarily to be more trustworthy than others. Unlike the centralized

approach, parties do not share their data with the leader and after the anonymization

the data resides with the respective data publishers. The only purpose of the leader

is to synchronize the anonymization process. Algorithms 5.2 and 5.3 describe the

algorithms for leader and non-leader parties.

93

Algorithm 5.2: Algorithm for horizontally-partitioned data (Leader)
1: Initialize Tg to include one record containing the top most values;
2: Initialize Cuti to include all the valid top most values;
3: Send Information to Party 2;
4: Read Information from Party n;
5: while some x ∈ ∪Cuti is valid do
6: Find the Best specialization from ∪Cuti;
7: Send Instruction to Party 2 to specialize Best on Tg;
8: Perform Best on Tg and update ∪Cuti;
9: Send Information to Party 2;

10: Read Information from Party n;
11: Update the Score(x) and validity for ∀x ∈ ∪Cuti;
12: end while
13: Send End to Party 2 and terminate;

5.4.1 Overview

Without loss of generality, we assume that Party 1 is the leader in the explana-

tion. The sequence of specialization operations performed by the parties in this

distributed anonymization algorithm is the same as the centralized anonymization

algorithm. Initially, each party initializes Tg to include one record containing the

top most values and ∪Cuti to include the top most value for each attribute Di

(Lines 1-2 of Algorithms 5.2 and 5.3). First, the leader collects all the count statis-

tics from all the parties to determine the Best candidate. The count statistics are

collected through the propagation of the Information message by using secure sum

protocol [95] (Lines 3-4 of Algorithms 5.2 and 5.3). Secure sum protocol ensures

that the leader only knows the global count statistics without the knowledge of the

specific individuals’ contribution. Once the leader determines the Best candidate

(Line 6 of Algorithm 5.2), it informs the other parties through the propagation of

the Instruction message to specialize the Best on Tg (Line 7 of Algorithm 5.2 and

Lines 6-7 of Algorithm 5.3). Then the leader performs Best → child(Best) on its

copy of ∪Cuti and Tg (Line 8 of Algorithm 5.2). This means specializing each record

94

Algorithm 5.3: Algorithm for horizontally-partitioned data (Non-leader)
1: Initialize Tg to include one record containing the top most values;
2: Initialize Cuti to include all the valid top most values;
3: Read Information from Party (i − 1);
4: Send Information to Party (i + 1) % n after adding its own information;
5: while received message �= End do
6: Read Instruction from Party (i − 1);
7: Send Instruction to Party (i + 1) % n;
8: Perform specialization on Tg according to the received Instruction;
9: Read Information from Party (i − 1);

10: Send Information to Party (i + 1) % n after adding its own counts;
11: end while
12: Send message End to Party (i + 1) % n and terminate;

t ∈ Tg containing the value of Best into more specialized records, t′1, . . . , t
′
z contain-

ing the child values of child(Best). Similarly, other parties updates its ∪Cuti and

Tg, and partitions Tg[t] into Tg[t
′
1], . . . , Tg[t

′
z] (Line 8 of Algorithm 5.3). Finally, the

leader again collects global count statistics from the other parties (Lines 9-10 of

Algorithms 5.2 and 5.3) to update the Score and validity of the candidates (Line

11 of Algorithm 5.2). The algorithm terminates when there are no valid candidates

in ∪Cuti. Finally, all the parties integrate their local anonymous databases after

anonymization.

Example 5.4.1. Consider Table 5.2. Initially, all data records are generalized to

〈ANY _Job, ANY _Sex, [1-99)〉 in Tg, and ∪Cuti = {ANY _Job, ANY _Sex, [1-99)}.

To find the Best specialization among the candidates in ∪Cuti, the leader collects

the global count statistics to compute Score(ANY _Job), Score(ANY _Sex), and

Score([1-99)).

5.4.2 Implementation

Similar to the centralized algorithm, following we describe the key steps for the

leader. Note that, only the leader determines the Best candidate and updates the

95

Score and validity of the candidates. All the other parties perform the Best spe-

cialization according to the instruction of the leader.

Lines 3-6 of Algorithm 5.2. Initially, the leader computes the Score for all

candidates x in ∪Cuti to determine the Best candidate. For each subsequent it-

eration, Score(x) come from the update done in the previous iteration (Line 11

of Algorithm 5.2). To calculate the Score of a candidate x, the leader needs the

value of |T [x]|, |T [c]|, freq(T [x], cls), and freq(T [c], cls), where c ∈ child(x) and

cls is a class label. Refer to Equation 3.2 for Score function. These values can

be obtained by summing up the individual count statistics from all the parties:

|T [x]| =
∑

i |Ti[x]|, |T [c]| =
∑

i |Ti[c]|, freq(T [x], cls) =
∑

i freq(Ti[x], cls), and

freq(T [c], cls) =
∑

i freq(Ti[c], cls). However, disclosing these values for summation

violates the privacy requirement, since a party should not know the count statistics

of other parties. To overcome this problem, we use secure sum protocol [22].

Secure sum protocol calculates the sum of the values from different parties

without disclosing the value of any individual. Suppose there are n (> 2) different

parties each holding a secret number, where Party 1 is the leader. The leader first

generates a random number R, adds it to its local value v1 and sends the sum R+v1

to Party 2. Thus, Party 2 does not know the value of v1. For the remaining parties,

2 ≤ i ≤ n − 1, each party receives V = R +
∑i−1

j=1 vj, adds its own value to the

sum and passes it to Party i + 1. Finally, Party n receives the sum, adds its value,

and passes it to Party 1. Since Party 1 (leader) knows the random number, it can

obtain the summation by subtracting R from V . Hence, the leader can determine

the summation without knowing the secret value of the individual parties. However,

secure sum protocol does not work when n = 2 because Party 1 can always know

the value of Party 2 by subtracting its own value from the summation. We further

discuss about this issue in Section 5.4.3.

To obtain the global count statistics, the leader first creates an Information

96

message by adding random numbers to its own local count statistics and passes

the message to Party 2 (Line 3 of Algorithm 5.2). Similarly, all of the non-leader

parties add their count statistics to the Information and pass it to the next party

(Lines 3-4 of Algorithm 5.3). Finally, the leader gets the message from Party n and

subtracts the random numbers to get the global count statistics for computing the

Score of the candidates.

Example 5.4.2. Continue with Example 5.4.1. First, the leader (Party 1) computes

the Information message by its local count statistics. The Information message

has two parts: validity and score. The validity portion contains count statistics

needed to determine the validity of the candidates. Specifically, it contains the

number of records generalized to a particular equivalence group and the size of the

new sub-groups if any of the attribute is specialized. Following is the validity part

of an Information message.

Validity= {(ANY_Job, ANY_Sex, [1-99), 3(1)), (ANY_Job, 2(1), 1(0)),

(ANY_Sex, 2(1), 1(0)), ([1-99), 3(1), 0(0))}

This means that Party 1 has three records in an equivalence group with qid =

{ANY _Job, ANY _Sex, [1-99)}, where one of the records contains sensitive value.

If ANY_Job is specialized, then it generates two equivalence groups, where the first

group contains two records including one sensitive value and the other group contains

one record with no sensitive value. Similarly, it also contains the count statistics if

ANY_Sex and [1-99) are specialized. Note that, validity part also provides enough

count statistics to compute the Score for general data analysis.

Score part contains count statistics needed to compute the Score for classifi-

cation analysis. It contains the number of records for all the class labels for each

candidate in the ∪Cuti. Following is the score part of an Information message.

Score = {(ANY_Job, 1, 2) (Blue-collar, 1, 1) (White-collar, 0, 1),

(ANY_Sex, 1, 2) (M, 1, 1) (F, 0, 1), ([1-99), 1, 2) ([1-60), 1, 2) ([60-99), 0, 0)}

97

Figure 5.3: Distributed anonymization for horizontally-partitioned data

98

The number of records are one and two for the class labels “Yes” and “No”

respectively for the ANY_Job. It also provides the detailed counts when ANY_-

Job is specialized into Blue-collar and White-collar. Blue-collar has one record

containing “Yes” and one record containing “No” class label. White-collar has only

one record with “No” class label. Similarly, it provides necessary counts for the other

candidates. After computing the Information message, Party 1 adds a random

number to each of the values and sends the message to Party 2. As mentioned earlier,

all of the parties add their part into the Information and thus the message comes

back to the leader with the global count statistics. Then, the leader subtracts the

random numbers to get the real global counts for computing the Score and validity

of the candidates. Figure 5.3 shows the information flow among the parties.

Lines 7-10 of Algorithm 5.2. Once the Best candidate is determined, the leader

instructs all the other parties to specialize Best → child(Best) on their local Tg

(Line 7 of Algorithm 5.2). The Instruction message contains the Best attribute

and the number of global generalized records in each new subgroups. Similar to

the centralized anonymization algorithm, each party uses the tree data structure to

facilitate the operations on Tg. The difference is that in the centralized approach,

one party (central government health agency) specializes the records, but in the

distributed setting, every data publisher concurrently specialize its own records. If
⋃

Cuti has no valid attributes, then the leader sends the End message to terminate

the anonymization algorithm. Thus, both centralized and distributed anonymization

algorithms produce the same anonymous integrated table by performing the same

sequence of operations.

Example 5.4.3. Continue with Example 5.4.2. Initially, the tree has one partition

(root) representing the most generalized record 〈ANY _Job, ANY _Sex, [1-99)〉.

Suppose that the Best candidate is ANY_Job → {Blue-collar,White-collar}. The

leader creates two child nodes under the root and partitions Tg[root] between them

resulting in the tree in Figure 5.3 and further instructs Party 2 to perform the same

99

specialization. On receiving this instruction, Party 2 sends the message to the next

party and similarly creates two child nodes under the root in its copy of the tree.

Thus, all the parties perform the same operation on their tree. This specialization

process continues as long as there is a valid candidate in
⋃

Cuti.

Line 11 of Algorithm 5.2. This step is performed only by the leader and is

similar to the centralized approach. All of the count statistics that are needed to

update Score(x) and validity for candidates x in ∪Cuti are collected through the

Information message from all the other parties.

Data Integration. After executing Algorithms 5.2 and 5.3, each party generates

a local anonymous database which by itself may not satisfy LKC -privacy, but the

union of the local anonymous databases is guaranteed to satisfy the privacy require-

ments. The final task is to integrate these local anonymous databases before giving

it to the BTS. Therefore, each data publisher sends its local anonymous data to the

leader for data integration.

5.4.3 Analysis

Two-party Case. Due to the limitation of the employed secure sum protocol in

our proposed distributed anonymization algorithm, the present solution is applicable

only if there are more than two parties. A distributed anonymization algorithm for

two parties requires a different cryptographic technique, which is not as simple as

the secure sum protocol [27]. A possible solution for the two party case is presented

in Chapter 7.

Algorithmic Correctness. The distributed anonymization algorithm produces

the same anonymous integrated table as the centralized anonymization algorithm.

This claim follows from the fact that Algorithms 5.2 and 5.3 perform exactly the

100

same sequence of specializations as the centralized anonymization algorithm in a

distributed manner where Ti is kept locally at each party.

For the privacy requirement, the only information revealed to the leader is

content found in the global count statistics of Information message. The count

statistics are needed for the calculation of Score and validity of the candidates. The

validity part of the Information message determines whether a candidate can be

further specialized or not. However, such information can also be determined from

the final integrated table because a specialization should take place as long as it is

valid. The disclosure of the score part does not breach privacy because it contains

only the frequency of the class labels for the candidates. These values only indi-

cate how good a candidate is for classification analysis, and does not provide any

information for a particular record. Moreover, the Score is computed by the leader

over the global count statistics without the knowledge of the individual local counts.

Complexity Analysis. The computation cost of the distributed algorithm is simi-

lar to the centralized approach. Each party only scans its own data in every iteration.

As a result, the computational cost for each party is bounded by O(|Ti|log|Ti|). How-

ever, distributed algorithm has some additional communication overhead. In every

iteration, each party sends one Instruction and one Information message. The

Instruction message contains the Best candidate that needs to be specialized. The

Information message contains different count statistics for every candidate in the

∪Cuti. Thus, these messages are compact. Moreover, there is a synchronization

delay in every iteration, which is proportional to the number of parties n since the

parties form a ring topology.

101

Table 5.5: Attributes for the Adult data set
Attribute Type Numerical Range

Leaves # Levels

Age (Ag) continuous 17 - 90
Education-num (En) continuous 1 - 16
Final-weight (Fw) continuous 13492 - 1490400
Relationship (Re) categorical 6 3
Race (Ra) categorical 5 3
Sex (Sx) categorical 2 2
Martial-status (Ms) categorical 7 4
Native-country (Nc) categorical 40 5
Education (Ed) categorical 16 5
Hours-per-week (Hw) continuous 1 - 99
Capital-gain (Cg) continuous 0 - 99999
Capital-loss (Cl) continuous 0 - 4356
Work-class (Wc) categorical 8 5
Occupation (Oc) categorical 14 3

5.5 Experimental Evaluation

We implemented the proposed algorithms by simulating the distributed environment

on a single PC. The distributed anonymization algorithms achieve the same data

utility as the centralized anonymization algorithm and thus all the previous results

(Section 3.4) also hold for distributed anonymization algorithms. The main objective

of this section is to evaluate the benefit of the distributed algorithms over the naïve

approach for data utility. We measure the utility of the anonymous data by doing

classification analysis.

Vertically-Partitioned Data. We use the publicly available Adult data set [34].

We model two private tables TA and TB as follows: TA contains the first 9 attributes

of Table 5.5, interesting to the Immigration Department, and TB contains the re-

maining 5 attributes, interesting to the Taxation Department. A common key ID for

joining the two tables is added to both tables. We would like to emphasize that the

results of classification error (CE) do not depend on the number of parties because

102

14.0

16.0

18.0

20.0

22.0

24.0

26.0

20 40 60 80 100

C
la

ss
if

ic
at

io
n

E
rr

o
r

(C
E

)

Threshold K

DistributedAlgorithm BE=14.7% UE=24.6%
SE(A) = 17.7% SE(B) = 17.9%

Figure 5.4: Classification error for vertically-partitioned data (L = 4, C = 20%)

the sequence of specializations performed does not depend on the decision of the

participating parties.

In addition to classification error (CE), Baseline Error (BE) and upper bound

error (UE) (Section 3.4 for details), we also measure Source error (SE). SE is

the error without data integration at all, i.e., the error of classifiers built from an

individual raw private table. Each party has a SE. Thus, SE − CE measures the

benefit of data integration over an individual private table. UE − CE measures

the benefit of generalization compared to the brute removal of the attributes in the

QID. CE−BE measures the quality loss due to the generalization for achieving the

privacy requirement.

Figure 5.4 evaluates the benefit of data integration over individual private

table, measured by SE −CE. SE for TA, denoted by SE(A), is 17.7% and SE for

TB, denoted by SE(B), is 17.9%. The figure also shows different classification error

CE for different values of K. For example, CE = 16.8% for K = 100, suggesting

that the benefit of integration, SE − CE, for each party is approximately 1.5%. In

practice, the benefit is more than the accuracy consideration because our method

allows the participating parties to share information for joint data analysis.

Horizontally-Partitioned Data. We show the benefit of our distributed anonymiza-

tion algorithm over the naïve “generalize-then-integrate” approach. We divide the

103

14.0

16.0

18.0

20.0

22.0

24.0

26.0

20 40 60 80 100

Cl
as

si
fic

at
io

n
Er

ro
r (

CE
)

Threshold K

Distributed Algorithm Naïve Approach
BE=14.7% UE=24.6%

Figure 5.5: Classification error for horizontally-partitioned data (L = 4, C = 20%)

45, 222 records of Adult data set equally among three parties. In the naïve approach,

parties first generalizes their data to satisfy LKC-privacy. Classification error is then

calculated on the integrated anonymous data collected from the parties.

Figure 5.5 depicts the classification error CE with adversary’s knowledge

L = 4, anonymity threshold 20 ≤ K ≤ 100, and confidence threshold C = 20% on

the Adult data set. For the naïve approach, CE−BE spans from 3.8% to 8.2%, and

UE − CE spans from 1.7% to 6.1%. This result confirms that the naïve approach

losses significant amount of data due to prior generalization before integration.

5.6 Discussion

How reasonable is it to assume that the parties can identify the same set of records,

and hold a mutually exclusive set of attributes for the vertically-partitioned data?

Following we provide answers to these questions.

Same Set of Records. Parties can identify the same set of records by execut-

ing a secure set intersection protocol (based on [5]) on the global unique identifiers

(ID). The secure set intersection protocol of [5] uses commutation encryption. Com-

mutative encryption has the property that when multiple parties encrypt a value

successively by their keys, the result of the encryption is identical irrespective of

104

the order of encryptions. Following, we briefly present the protocol for two parties

which can be extended for n parties similarly.

Initially, both the parties encrypt the values of their global identifier and send

EK(V) to the other party, where K is the secret key and V is the set of global

identifier values. Each party then encrypts the received values by its own key and

sends back the double encrypted values along with the received values to the other

party in the same order. For example, Party 1 receives EK2(V2) from Party 2 and

sends back the pair 〈EK2(V2), EK1(EK2(V2))〉 to Party 2. Similarly, Party 1 receives

the pair 〈EK1(V1), EK2(EK1(V1))〉 from Party 2. Now, both the parities can deter-

mine the common value set V1 ∩ V2 by comparing the values in EK2(EK1(V1)) and

EK1(EK2(V2)) and thus can identifies the same set of records without disclosing the

identifiers of the records that are not common between the parties. Note, parties

also obtain an encrypted value EK1(EK2(v)) for each v ∈ V1 ∩ V2 that uniquely

identify the records. These encrypted ID values are exchanged (Section 5.3) to facil-

itate the anonymization process but removed (along with the real ID values) before

publishing the data to third parties.

Mutually Exclusive Set of Attributes. Our secure data integration algorithms

require that parties hold mutually exclusive set of attributes. We assume that each

party knows what attributes the other parties hold. Therefore, if there is a com-

mon attribute among the parties, there are two possible alternative solutions that

parties can adopt before executing the secure data integration algorithms. First, if

the attribute is common among all the parties then they can exclude the common

attributes from integration since parties already know the values of the attribute.

Second, parties can make an agreement that outlines who will contribute the com-

mon attribute so that multiple parties do not contribute the same attribute. Hence,

common attribute is not a problem since parties will communication and agree on

a setting that ensures that attributes are disjoint.

105

Part II

Differential Privacy Model

106

Chapter 6

Anonymizing Heterogeneous Data

6.1 Introduction

Anonymizing health data is a challenging task due to its inherent heterogeneity.

Modern health data are typically composed of different types, for example relational

data (e.g., demographics) and set-valued data (e.g., diagnostic codes). For many

medical problems, different types of data need to be published simultaneously so

that the correlation between different data types can be preserved. In spite of the

extensive research on privacy-preserving relational and set-valued data publishing

(see Chapter 2.2 for more discussion), the emerging publishing scenario in which

relational data and set-valued data need to be published simultaneously, a very

common scenario in secondary use of health data, is seldom addressed in the existing

literature related to privacy technology. Current techniques primarily focus on a

single type of data [37], and, therefore unable to thwart privacy attacks caused by

inferences involving different data types. In this chapter, we propose an algorithm

to publish heterogeneous health data that can retain the essential information for

supporting data mining tasks. The following real-life scenario further illustrates the

privacy threats due to heterogeneous health data sharing.

Example 6.1.1. Consider the raw patient data in Table 6.1 (the attribute ID is

107

Table 6.1: Heterogeneous health data

ID Job Age Diagnostic Code Class
1 Engineer 34 11, 12, 21, 22 Y
2 Lawyer 50 12, 22 N
3 Engineer 38 12 N
4 Lawyer 33 11, 12 Y
5 Dancer 20 12 Y
6 Writer 37 11 N
7 Writer 32 11, 12, 21, 22 Y
8 Dancer 25 12, 21, 22 N

Table 6.2: Anonymous heterogeneous health data

Job Age Diagnostic Code Class Count
Professional [18-65) 1* Y 3
Professional [18-65) 1* N 2

Artist [18-65) 1* Y 1
Artist [18-65) 1* N 3

Professional [18-65) 1*, 2* Y 2
Professional [18-65) 1*, 2* N 0

Artist [18-65) 1*, 2* Y 2
Artist [18-65) 1*, 2* N 4

just for the purpose of illustration). Each row in the table represents the information

of a patient. Job, Age, and Diagnostic Code are the categorical, numerical, and set-

valued attribute, respectively. Suppose, the data publisher needs to release Table 6.1

for the purpose of classification analysis on the class attribute, which has two values,

Y and N , indicating whether or not the patient is deceased. However, if a record

in the table is so specific such that not many patients can match it, releasing the

data may lead to the re-identification of a patient. For example, Loukides et al. [67]

show that for the International Classification of Disease (ICD) version 9 codes (or

“diagnostic codes” for brevity), one source of set-valued data, could be used by an

adversary as a linkage to patients’ identities. Needless to say, the knowledge of both

relational and set-valued data about a victim makes the privacy attack easier for an

adversary. Suppose that the adversary knows that the target patient is a Lawyer

108

Figure 6.1: Taxonomy tree of attributes

and his diagnostic codes contain {11}. Hence, record #4 can be uniquely identified

since he is the only Lawyer with diagnostic codes {11, 12} in the raw data. Thus,

identifying his record results in disclosing he also has {12}.

To prevent such linking attacks, a number of partition-based privacy models

have been proposed [65, 70, 96, 108]. However, recent research has indicated that

these models are vulnerable to various privacy attacks [39,58,106,107] and provide

insufficient privacy protection. In this chapter, we adopt differential privacy [28,30],

a privacy model that provides provable privacy guarantees and that is, by defi-

nition, immune against all aforementioned attacks. Differential privacy makes no

assumption about an adversary’s background knowledge. A differentially-private

mechanism ensures that the probability of any output (released data) is equally

likely from all nearly identical input data sets and thus guarantees that all outputs

are insensitive to any individual’s data. In other words, an individual’s privacy is

not at risk because of inclusion in the disclosed data set.

Motivation. Existing algorithms that provide differential privacy guarantee are

based on two approaches: interactive and non-interactive. In an interactive frame-

work, a data miner can pose aggregate queries through a private mechanism, and a

database owner answers these queries in response. Most of the proposed methods for

ensuring differential privacy are based on an interactive framework [26,30,35,93]. In

a non-interactive framework the database owner first anonymizes the raw data and

then releases the anonymized version for public use. In this chapter, we adopt the

109

Table 6.3: A raw data table and its anonymized versions

(a) Raw data table

Job Age Class
Engineer 34 Y
Lawyer 50 N

Engineer 38 N
Lawyer 33 Y
Dancer 20 Y
Writer 37 N
Writer 32 Y
Dancer 25 N

(b) Contingency table

Job Age Count
Engineer [18-40) 2
Engineer [40-65) 0
Lawyer [18-40) 1
Lawyer [40-65) 1
Dancer [18-40) 2
Dancer [40-65) 0
Writer [18-40) 2
Writer [40-65) 0

(c) Generalized contingency table

Job Age Count
Professional [18-40) 3
Professional [40-65) 1

Artist [18-40) 4
Artist [40-65) 0

non-interactive framework and argue that this approach has a number of advantages

for data mining.

In an interactive framework privacy is ensured by adding noise to each query

response. To ensure privacy a database owner can answer only a limited number of

queries before she has to increase the noise level to a point that the answer is no

longer useful. Thus, the database can only support a fixed number of queries for a

given privacy budget. This is a big problem when there are a large number of data

miners because each user (data miner) can only ask a small number of queries. Even

for a small number of users, it is not possible to explore the data for testing various

hypotheses. On the other hand, by releasing the data, all data miners get full access

to the anonymized data. This gives researchers greater flexibility in performing

the required data analysis, and they can fine-tune the data mining results for their

research purposes.

110

Current techniques that adopt the non-interactive approach publish contin-

gency table or marginals of the raw data [9, 30, 46, 113, 115]. The general structure

of these approaches is to first derive a frequency matrix1 of the raw data over the

database domain. For example, Table 6.3.b shows the contingency table of Ta-

ble 6.3.a. After that, noise is added to each count to satisfy the privacy require-

ment. Finally, the noisy frequency matrix is published. However, this approach is

not suitable for high-dimensional data with a large domain because when the added

noise is relatively large compared to the count, the utility of the data is significantly

destroyed. We also confirm this point in our experimental results (Section 6.4).

Contributions We propose a novel technique for publishing heterogeneous health

data that provides an ε-differential privacy [28] guarantee. While protecting privacy

is a critical element in data publishing, it is equally important to preserve the utility

of the published data since this is the primary reason for data release. Taking the

decision tree induction classifier as an example, we show that our anonymization

algorithm can be effectively tailored for preserving information in the data mining

task. The contributions of this chapter are summarized as follows:

1. To our knowledge, a differentially private data disclosure algorithm that can

simultaneously handle both relational and set-valued data has not been previ-

ously developed. The proposed differentially private data release algorithm is

based on generalization technique and preserves information for classification

analysis (Section 6.3). Previous work [69] suggests that generalization tech-

niques cannot be used to achieve ε-differential privacy as they depend heavily

on the underlying data. Yet, we show that differentially private data can be

released by adding uncertainty in the generalization procedure. The proposed

solution first probabilistically generates a generalized contingency table and
1For a contingency table, a frequency matrix is computed over all the attributes, whereas a

marginal is derived by projecting some of the attributes.

111

then adds noise to the counts. For example, Table 6.3.c is a generalized con-

tingency table of Table 6.3.a. Thus the count of each partition is typically

much larger than the added noise.

2. The proposed algorithm can also handle numerical attributes. Unlike existing

methods [113], it does not require the numerical attribute to be pre-discretized.

The algorithm adaptively determines the split points for numerical attributes

and partitions the data based on the workload, while guaranteeing ε-differential

privacy. This is an essential requirement for getting accurate classification, as

we show in Section 6.4. Moreover, the algorithm is computationally efficient.

3. It is well acknowledged that ε-differential privacy provides strong privacy guar-

antee. However, the utility aspect of the differentially-private algorithms has

received much less study. Does the interactive approach offer better data min-

ing results than the non-interactive approach? Does differentially private data

provide less utility than k-anonymous data? Experimental results suggest that

our algorithm outperforms the recently proposed differentially-private interac-

tive algorithm for building classifier [35] and the top-down specialization (TDS)

approach [38] that publishes k-anonymous data for classification analysis (Sec-

tion 6.4).

6.2 Problem Definition

In this section, we first present an overview of ε-differential privacy and the core

mechanisms to achieve ε-differential privacy. We then introduce the notion of gener-

alization in the context of microdata publishing, followed by a problem statement.

112

6.2.1 Differential Privacy

Differential privacy is a recent privacy definition that provides a strong privacy guar-

antee. Partition-based privacy models ensure privacy by imposing syntactic con-

straints on the output. For example, the output is required to be indistinguishable

among k records, or the sensitive value to be well represented in every equivalence

group. Instead, differential privacy guarantees that an adversary learns nothing

more about an individual, regardless of whether her record is present or absent in

the data. Informally, a differentially private output is insensitive to any particular

record. Therefore, from an individual’s point of view, the output is computed as if

from a data set that does not contain her record.

Definition 6.1 (ε-differential privacy). A randomized algorithm Ag is differentially

private if for all data sets D and D′ where their symmetric difference contains at

most one record (i.e., |D�D′| ≤ 1), and for all possible anonymized data sets D̂,

Pr[Ag(D) = D̂] ≤ eε × Pr[Ag(D′) = D̂], (6.1)

where the probabilities are over the randomness of the Ag.

The parameter ε > 0 is public and specified by a data publisher. Lower values

of ε provide a stronger privacy guarantee. Typically, the values of ε should be small,

such as 0.01, 0.1, or in some cases ln 2, or ln 3 [29]. When ε is very small, we have

eε ≈ 1 + ε.

A standard mechanism to achieve differential privacy is to add random noise to

the true output of a function. The noise is calibrated according to the sensitivity of

the function. The sensitivity of a function is the maximum difference of its outputs

from two data sets that differ only in one record.

113

Definition 6.2 (Sensitivity). For any function f : D → R
d, the sensitivity of f is

Δf = max
D,D′

||f(D) − f(D′)||1 (6.2)

for all D, D′ differing in at most one record.

Example 6.2.1. Consider the raw data set of Table 6.1. Let f be a function that

counts the number of records with Age less than 40. Then, the Δf is 1 because

f(D) can differ at most 1 due to the addition or removal of a single record.

Laplace Mechanism. For the analysis whose outputs are real, a standard mecha-

nism to achieve differential privacy is to add Laplace noise to the true output of a

function. Dwork et al. [30] propose the Laplace mechanism which takes as inputs

a data set D, a function f , and the privacy parameter λ. The privacy parameter

λ determines the magnitude of noise added to the output. The mechanism first

computes the true output f(D), and then perturbs the output by adding noise.

The noise is generated according to a Laplace distribution with probability density

function Pr(x|λ) = 1
2λ
exp(−|x|/λ); its variance is 2λ2 and mean is 0. The following

theorem connects the sensitivity to the magnitude of noise and guarantees that the

perturbed output ˆf(D) = f(D)+Lap(λ) satisfies ε-differential privacy, where Lap(λ)

is a random variable sampled from the Laplace distribution.

Theorem 6.1. [30] For any function f : D → R
d, the algorithm Ag that adds

independently generated noise with distribution Lap(Δf/ε) to each of the d outputs

satisfies ε-differential privacy.

Example 6.2.2. Continue from Example 6.2.1. The mechanism that returns ˆf(D) =

f(D) + Lap(1/ε) gives ε-differential privacy.

Exponential Mechanism. For the analysis whose outputs are not real or make

no sense after adding noise, McSherry and Talwar [76] propose the exponential

mechanism. The exponential mechanism chooses an output t ∈ T that is close to

114

the optimum with respect to a utility function while preserving differential privacy.

The exponential mechanism takes as inputs a data set D, output range T , privacy

parameter ε, and a utility function u : (D×T) → R that assigns a real valued score

to every output t ∈ T , where a higher score means better utility.

The mechanism induces a probability distribution over the range T and then

samples an output t. Let Δu = max∀t,D,D′ |u(D, t) − u(D′, t)| be the sensitivity of

the utility function. The probability associated with each output is proportional to

exp(εu(D,t)
2Δu

); that is, the output with a higher score is exponentially more likely to

be chosen.

Theorem 6.2. [76] For any function u : (D×T) → R, an algorithm Ag that chooses

an output t with probability proportional to exp(εu(D,t)
2Δu

) satisfies ε-differential pri-

vacy.

6.2.2 Generalization

Let D = {r1, . . . , rn} be a multiset of records, where each record ri represents the

information of an individual with d attributes A = {A1, . . . , Ad}. We assume that

each attribute Ai has a finite domain, denoted by Ω(Ai). The domain of D is

defined as Ω(D) = Ω(A1)× . . .×Ω(Ad). To anonymize a data set D, generalization

replaces a value of an attribute with a more general value. The exact general value

is determined according to the attribute partition.

Definition 6.3 (Attribute Partition). The partitions P (Ai) of a numerical attribute

are the intervals 〈I1, I2, . . . , Ik〉 in Ω(Ai) such that
⋃k

j=1 Ij = Ω(Ai). For categorical

and set-valued attribute, partitions are defined by a set of nodes from the taxonomy

tree such that it covers the whole tree, and each leaf node belongs to exactly one

partition.

For example, Artist is the general value of Dancer according to the taxonomy

tree of Job in Figure 6.1. Similarly, age 23 and diagnostic code 11 can be represented

115

by the interval [18 − 40) and code 1*, respectively. For numerical attributes, these

intervals are determined adaptively from the data set.

Definition 6.4 (Generalization). Generalization is defined by a function Φ =

{φ1, φ2, . . . , φd}, where φi : v → p maps each value v ∈ Ω(Ai) to a p ∈ P (Ai).

Clearly, given a data set D over a set of attributes A = {A1, . . . , Ad}, many

alternative generalization functions are feasible. Each generalization function par-

titions the attribute domains differently. To satisfy ε-differential privacy, the algo-

rithm must determine a generalization function that is insensitive to the underlying

data. More formally, for any two data sets D and D′, where |D�D′| = 1, the

algorithm must ensure that the ratio of Pr[Ag(D) = Φ] and Pr[Ag(D′) = Φ] is

bounded.

One naive solution that satisfies ε-differential privacy is to have a fixed gen-

eralization function, irrespective of the input data set. However, a proper choice of

generalization function is very crucial since the data mining result varies significantly

for different choices of partitioning. In Section 6.3 we present an efficient algorithm

for determining an adaptive partitioning technique for classification analysis that

guarantees ε-differential privacy.

6.2.3 Problem Statement

Suppose a data publisher wants to release an anonymous data table D̂(Apr
1 , . . . ,

Apr
d , Acls) to the public for classification analysis. The attributes in D are classified

into three categories: (1) An explicit identifier Ai attribute that explicitly identifies

an individual, such as SSN, and Name. These attributes are removed before releasing

the data as per the HIPAA Privacy Rule [71]. (2) A class attribute Acls that

contains the class value, and the goal of the data miner is to build a classifier to

accurately predict the value of this attribute. (3) A set of d predictor attributes

Apr = {Apr
1 , . . . , Apr

d }, whose values are used to predict the class attribute. We

116

require the class attribute to be categorical, and the predictor attribute can be either

categorical, numerical or set-valued. Further, we assume that for each categorical

or set-valued attribute Apr
i , a taxonomy tree is provided. The taxonomy tree of an

attribute Apr
i specifies the hierarchy among the values. Next, we give our problem

statement.

Given a data table D and the privacy parameter ε, our objective is to generate

an anonymized data table D̂ such that (1) D̂ satisfies ε-differential privacy, and (2)

preserves as much information as possible for classification analysis.

6.3 Anonymization Algorithm

In this section, we first present an overview of our Diff erentially-private anonymiza-

tion algorithm based on Generalization (DiffGen). We then elaborate the key steps,

and prove that the algorithm is ε-differential private. Finally, we present the imple-

mentation details and analyze the complexity of the algorithm.

6.3.1 Overview

Algorithm 6.1 first generalizes the predictor attributes Apr and thus divides the raw

data into several equivalence groups, where all the records within a group have the

same attribute values. Then the algorithm publishes the noisy counts of the groups.

The general idea is to anonymize the raw data by a sequence of specializations,

starting from the topmost general state as shown in Figure 6.2. A specialization,

written v → child(v), where child(v) denotes the set of child values of v, replaces

the parent value v with a child value. The specialization process can be viewed as

pushing the “cut” of each taxonomy tree downwards. A cut of the taxonomy tree for

an attribute Apr
i , denoted by Cuti, contains exactly one value on each root-to-leaf

path. The value of the set-valued attribute of a record can be generalized to a cut if

every item in the record can be generalized to a node in the cut and every node in

117

Algorithm 6.1: DiffGen
Input: Raw data set D, privacy budget ε, and number of specializations h
Output: Generalized data set D̂

1: Initialize every value in D to the topmost value;
2: Initialize Cuti to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h)

;
4: Determine the split value for each vn ∈ ∪Cuti with probability ∝

exp(ε′
2Δuu(D, vn));

5: Compute the score for ∀v ∈ ∪Cuti;
6: for i = 1 to h do
7: Select v ∈ ∪Cuti with probability ∝ exp(ε′

2Δuu(D, v));
8: Specialize v on D and update ∪Cuti;
9: Determine the split value for each new vn ∈ ∪Cuti with probability ∝

exp(ε′
2Δuu(D, vn));

10: Update score for v ∈ ∪Cuti;
11: end for
12: return each group with count (C + Lap(2/ε))

the cut generalizes some items in the record. For example, the value {21, 22} can be

generalized to the hierarchy cuts {2∗} and {∗∗}, but not {1∗, 2∗}. Figure 6.1 shows

a solution cut indicated by the dashed curve representing the anonymous Table 6.2.

Initially, DiffGen creates a single partition by generalizing all values in Apr

to the topmost value in their taxonomy trees (Line 1). Cuti contains the topmost

value for each attribute Apr
i (Line 2). The specialization starts from the topmost

cut and pushes down the cut iteratively by specializing some value in the current

cut. At each iteration DiffGen uses exponential mechanism to select a candidate

v ∈ ∪Cuti for specialization (Line 7). Candidates are selected based on their score

values, and different heuristics (e.g., information gain) can be used to determine the

score of the candidates. Then, the algorithm specializes v and updates ∪Cuti (Line

8). As taxonomy tree for the numerical attributes are not given, DiffGen again

uses the exponential mechanism to determine the split value dynamically for each

numerical candidate vn ∈ ∪Cuti (Lines 4 and 9). DiffGen specializes v by recur-

sively distributing the records from the parent partition into disjoint child partitions

118

with more specific value based on the taxonomy tree. For set-valued attribute, the

algorithm computes the noisy count of each child partition to determine whether

it is empty or not. Only “non-empty” partitions are considered for further split in

the next iteration. DiffGen also calculates the scores of each new candidates due

to the specialization (Line 10). The algorithm terminates after a given number of

specializations. The proposed algorithm can also be used to publish a contingency

table by allowing the specialization to continue until it reaches the leaf level of the

attribute domains. Finally, for each leaf-partition, the algorithm computes the noisy

count of the equivalence groups to construct the anonymous data table D̂.

Example 6.3.1. Consider Table 6.1 with ε = 1 and h = 2. Initially the algo-

rithm creates one root partition containing all the records that are generalized to

〈Any_Job, [18-65), ∗∗〉. ∪Cuti includes {Any_Job, [18-65), ∗∗}. To find the first

specialization among the candidates in ∪Cuti, we compute score of (Any_Job),

[18-65), and ∗∗.

6.3.2 Privacy Analysis

We next elaborate the key steps of the algorithm: (1) selecting a candidate for spe-

cialization, (2) determining the split value, and (3) publishing the noisy counts. We

show that each of these steps preserves privacy, and then we use the composition

properties of differential privacy to guarantee that DiffGen is ε-differentially private.

Candidate Selection. We use an exponential mechanism (see Section 6.2) to

select a candidate for specialization in each round. We define two utility functions

to calculate the score of each candidate v ∈ ∪Cuti. The first utility function is

information gain. Let Dv denote the set of records in D generalized to the value v.

Let |Dcls
v | denote the number of records in Dv having the class value cls ∈ Ω(Acls).

119

Figure 6.2: Tree for partitioning records

Note that |Dv| =
∑

c |Dc|, where c ∈ child(v). Then, we get

InfoGain(D, v) = Hv(D) − Hv|c(D), (6.3)

where Hv(D) = −
∑

cls
|Dcls

v |
|Dv | × log2

|Dcls
v |

|Dv| is the entropy of candidate v with respect to

the class attribute Acls and Hv|c(D) =
∑

c
|Dc|
|Dv |Hc(D) is the conditional entropy given

the candidate is specialized. The sensitivity of InfoGain(D, v) is log2 |Ω(Acls)|,

where |Ω(Acls)| is the domain size of the class attribute Acls. It is because the value

of the entropy Hv(D) must be between 0 and log2 |Ω(Acls)|. And, the value of the

conditional entropy Hv|c(D) lies between 0 and Hv(D). Therefore, the maximum

change of InfoGain(D, v) due to the addition or removal of a record is bounded by

log2 |Ω(Acls)|.

The second utility function is:

Max(D, v) =
∑

c∈child(v)

(max
cls

(|Dcls
c |)). (6.4)

Max(D, v) is the summation of the highest class frequencies over all child values and

the sensitivity of this function is 1 because the value of Max(D, v) can vary at most

1 due to the change of a record.

120

Given the scores of all the candidates, exponential mechanism selects a candi-

date vi with the following probability,

exp(ε′
2Δuu(D, vi))∑

v∈∪Cuti
exp(ε′

2Δuu(D, v))
, (6.5)

where u(D, v) is either InfoGain(D, v) or Max(D, v) and the sensitivity of the func-

tion Δu is log2 |Ω(Acls)| and 1, respectively. Thus, from Theorem 6.2, Line 7 of

Algorithm 6.1 satisfies ε′-differential privacy. The beauty of the exponential mech-

anism is that while it ensures privacy, it also exponentially favors a candidate with

a high score.

Split Value. Once a candidate is determined, DiffGen splits the records into child

partitions. The split value of a categorical attribute is determined according to the

taxonomy tree of the attribute. Since the taxonomy tree is fixed, the sensitivity of

the split value is 0. Therefore, splitting the records according to the taxonomy tree

does not violate differential privacy.

For numerical attributes, a split value cannot be directly chosen from the

attribute values that appear in the data set D, because the probability of selecting

the same split value from a different data set D′ not containing this value is 0. We

again use an exponential mechanism to determine the split value. We first partition

the domain into intervals I1, . . . , Ik such that all values within an interval have the

same score. Then, the exponential mechanism is used to select an interval Ii with

the following probability,

exp(ε′
2Δuu(D, vi)) × |Ω(Ii)|∑k

j=1(exp(
ε′

2Δuu(D, vj)) × |Ω(Ij)|)
, (6.6)

where vi ∈ Ω(Ii), and |Ω(Ii)| is the length of the interval. After selecting the interval,

the split value is determined by sampling a value uniformly from the interval. Thus,

121

the probability of selecting a value vi ∈ Ω(Ai) is

exp(ε′
2Δuu(D, vi))∫

v∈Ω(Ai)
exp(ε′

2Δuu(D, v)) dv
(6.7)

This satisfies ε′-differential privacy because the probability of choosing any

value is proportional to exp(ε′u(D,vi)
2Δu

).

For set-valued attributes, specialization results a total of 2|child(v)| child parti-

tions, where |child(v)| is the number of v’s children. Hence, we want to prune empty

child partitions as early as possible. Due to noise required by differential privacy,

a child partition cannot be deterministically identified as non-empty. We issue a

counting query for the noisy size of each child partition by Laplace mechanism. We

use the noisy size to make our decision. We consider a sub-partition “non-empty”

if its noisy size ≥
√

2/ε′. We design the threshold as the standard deviation of the

noise. While this heuristic is arbitrary, it performs well experimentally.

Noisy Counts. Each leaf partition contains |Ω(Acls)| equivalence groups. Publish-

ing the exact counts of these groups does not satisfy differential privacy since for a

different data set D′, the counts may change. This change can be easily offset by

adding noise to the count of each group according to the Laplace mechanism (See

Theorem 6.1). As discussed earlier, the sensitivity of count query is 1; therefore,

to satisfy ε
2
-differential privacy, DiffGen adds Lap(2/ε) noise to each true count of

the groups (Line 12). We post-process the noisy counts by rounding each count

to the nearest non-negative integer. Note that post-processing does not violate the

differential privacy [59].

Example 6.3.2. Continue from Example 6.3.1. Let the first specialization be

∗∗ → {1∗, 2∗}. The algorithm then creates three child partitions with the child

values {1∗}, {2∗}, and {1∗, 2∗} respectively by replacing the node {∗∗} by different

combinations of its children, leading r3, r4, r5, and r6 to the child partition {1∗} and

122

r1, r2, r7 and r8 to the child partition {1∗, 2∗}. Suppose that the noisy count indicate

that these two child partitions are “non-empty”. Therefore, further splits are needed

on these partitions. However, there is no need to explore the child partition {2∗} any

more as it is considered “empty”. ∪Cuti is updated to {Any_Job, [18-65), 1∗, 2∗}.

Suppose that the next specialization is Any_Job → {Professional, Artist}, which

creates further specialized partitions. Finally, the algorithm outputs the equivalence

groups of each leaf partition along with their noisy counts as shown in Figure 6.2

under the dotted line.

Next, we use composition properties of differential privacy to guarantee that

the proposed algorithm satisfies ε-differential privacy as a whole.

Lemma 6.1 (Sequential composition [74]). Let each Agi provide εi-differential pri-

vacy. A sequence of Agi(D) over the data set D provides (
∑

i εi)-differential pri-

vacy.

Lemma 6.2 (Parallel composition [74]). Let each Agi provide ε-differential privacy.

A sequence of Agi(Di) over a set of disjoint data sets Di provides ε-differential

privacy.

Any sequence of computations that each provides differential privacy in iso-

lation also provides differential privacy in sequence, which is known as sequential

composition. However, if the sequence of computations is conducted on disjoint

data sets, the privacy cost does not accumulate but depends only on the worst

guarantee of all computations. This is known as parallel composition.

Theorem 6.3. DiffGen is ε-differentially private.

Proof. The algorithm first determines the split value for each numerical attribute

using the exponential mechanism (Line 4). Since the cost of each exponential mech-

anism is ε′, Line 4 of the algorithm preserves ε′|Apr
n |-differential privacy, where |Apr

n |

is the number of numerical attributes.

123

In Line 7, the algorithm selects a candidate for specialization. This step

uses the exponential mechanism and thus, candidate selection step guarantees ε′-

differential privacy for each iteration. In Line 8, the algorithm splits the records

into child partitions. For set-valued candidate, ε′ privacy budget is used to deter-

mine the non-empty partitions. In Line 9, the algorithm determines the split value

for each new numerical candidate vn ∈ ∪Cuti. All records in the same partition

have the same generalized values on Apr; therefore, each partition can only con-

tain at most one candidate value vn. Thus, determining the split value for the new

candidates requires at most ε′ privacy budget for each iteration due to the parallel

composition property. Thus, for each iteration (Lines 6-11), the required privacy

budget is ε′, 2ε′, or 2ε′, if the candidate is categorical, set-valued, or numerical, re-

spectively. We reserve 2ε′h privacy budget in total for all iterations. Any privacy

budget left from the partitioning process (Lines 6-11) is added to the remaining

budget to generate noisy count (Line 12).

Finally, the algorithm outputs the noisy count of each group (Line 12) us-

ing the Laplace mechanism and guarantees ε
2
-differential privacy. Therefore, for

ε′ = ε
2(|Apr

n |+2h)
, DiffGen is ε-differentially private due to the sequential composition

property.

6.3.3 Implementation

A simple implementation of DiffGen is to scan all data records to compute scores

for all candidates in ∪Cuti. Then scan all the records again to perform the spe-

cialization. A key contribution of this work is an efficient implementation of the

proposed algorithm that computes scores based on some information maintained

for candidates in ∪Cuti and provides direct access to the records to be specialized,

instead of scanning all data records. We briefly explain the efficient implementation

of the algorithm as follows.

124

Initial Steps (Lines 1-5). Initially, we determine split points for all numerical

candidates (Line 4). First, the data is sorted with respect to the split attribute,

which requires O(|D| log |D|). Then the data is scanned once to determine the score

for all attribute values that appear in the data set D. An interval is represented

by two successive different attribute values. Finally, the exponential mechanism is

used to determine the split point. We also compute the scores for all candidates

v ∈ ∪Cuti (Line 5). This can be done by scanning the data set once. However, for

each subsequent iteration, information needed to calculate scores comes from the

update of the previous iteration (Line 10). Thus the worst-case runtime of this step

is O(|Apr| × |D| log |D|).

Perform Specialization (Line 8). To perform a specialization v → child(v),

we need to retrieve Dv, the set of data records generalized to v. To facilitate this

operation we organize the records in a tree structure, with each root-to-leaf path

representing a generalized record over Apr, as shown in Figure 6.2. Each leaf parti-

tion (node) stores the set of data records having the same generalized record for Apr

attributes. For each v in ∪Cuti, Pv denotes a leaf partition whose generalized record

contains v, and Linkv provides direct access to all Pv partitions generalized to v.

For example, LinkProfessional provides a direct access to all partitions containing the

value Professional as shown in Figure 6.2.

Initially, the tree has only one leaf partition containing all data records, gener-

alized to the topmost value on every attribute in Apr. In each iteration we perform a

specialization v by refining the leaf partitions on Linkv. For each value c ∈ child(v)

for the categorical and numerical attribute, a new child partition Pc is created from

Pv, and data records in Pv are split among the new partitions. For set-valued at-

tribute, the child partitions can be exhaustively generated by replacing v by the

combinations of its children c ∈ child(v). For example, the partition {∗∗} generates

125

three child partitions: {1∗}, {2∗} and {1∗, 2∗}. This technique, however, is inef-

ficient. We propose an efficient implementation by separately handling non-empty

and empty child partitions of a partition Pv. Non-empty child partitions, usually

of a small number, need to be explicitly generated. For empty child partitions, we

do not explicitly generate all possible ones, but employ a test-and-generate method:

generate a uniformly random empty child partition without replacement only if the

noisy count of an empty child partition is greater than or equal to a threshold. To

satisfy differential privacy, empty and non-empty child partitions must use the same

threshold
√

2/ε′.

This is the only operation in the whole algorithm that requires scanning data

records. In the same scan, we also collect the following information for each c: |Dc|,

|Dg|, |Dcls
c | and |Dcls

g |, where g ∈ child(c) and cls is a class label. These pieces of

information are used in Line 10 to update scores. The main computational cost

comes from the distribution of records from a partition to its child partitions. Thus,

the total runtime of this step is O(|D|) because the partitioning process for special-

ization can affect at most |D| records in each iteration.

Determine the Split Value (Line 9). If a numerical candidate vn is selected in

Line 7, then we need to determine the split points for two new numerical candidates

cn ∈ child(vn). This step takes time O(|D| log |D|).

Update Score (Line 10). Both InfoGain and Max scores of the other candidates

x ∈ ∪Cuti are not affected by v → child(v), except that we need to compute the

scores of each newly added value c ∈ child(v). The scores of the new candidates are

computed using the information collected in Line 8. Thus, this step can be done in

constant O(1) time.

126

Exponential Mechanism (Lines 4, 7 and 9). The cost of the exponential mech-

anism is proportional to the number of discrete alternatives from which it chooses

a candidate. For Line 7, the cost is O(| ∪ Cuti|), and for Lines 4 and 9 the cost is

O(|I|), where |I| is the number of intervals. Usually both | ∪Cuti| and |I| are much

smaller than |D|.

In summary, the cost of the initial steps and Lines 7-10 are O(|Apr|×|D| log |D|)

and O(h×|D| log |D|), respectively. Hence, for a fixed number of attributes the total

runtime of DiffGen is O(h × |D| log |D|).

6.4 Experimental Evaluation

In this section our objectives are to study the impact of enforcing differential privacy

on the data quality in terms of classification accuracy, and to evaluate the scalability

of the proposed algorithm for handling large data sets. We also compare DiffGen

with DiffP-C4.5 [35], a differentially-private interactive algorithm for building a

classifier, and with the top-down specialization (TDS) approach [38] that publishes

k-anonymous data for classification analysis. All experiments were conducted on an

Intel Core i7 2.7GHz PC with 12GB RAM.

We employ two real-life data sets: MIMIC and Adult. MIMIC is a Mulitipa-

rameter Intelligent Monitoring in Intensive Care data set owned by an anonymous

health institute. MIMIC contains over 36,000 intensive care unit (ICU) episodes.

The data set has eight predictor attributes (i.e., marital status, gender, ethnic, pay-

ment description, religion description, admission type, admission source, and ICD9

code) and a class attribute (i.e., mortality). Among all eight attributes, the first

seven are categorical attributes and the last one is a set-valued attribute. The pub-

licly available Adult [34] data set is a real-life census data set that has been used for

127

��
����
��

����
��

����
��

����
��

��� ��	� ��� �

 �
�
�
��

 ��
�
�
�
�� �
�

������� ��� !"

#$%
&'()*$&'

Number of specializations, h = 5

Figure 6.3: Classification accuracy for MIMIC data set

testing many anonymization algorithms. Adult has 45, 222 census records with 6 nu-

merical attributes, 8 categorical attributes, and a binary class column representing

two income levels, ≤50K or >50K.

To evaluate the impact on classification quality we divide the data into training

and testing sets. First, we apply our algorithm to anonymize the training set and to

determine the ∪Cuti. Then, the same ∪Cuti is applied to the testing set to produce

a generalized testing set. Next, we build a classifier on the anonymized training

set and measure the classification accuracy (CA) on the generalized records of the

testing set. For classification models we use the well-known C4.5 classifier [91].For

each experiment we executed 10 runs and averaged the results over the runs.

MIMIC Data Set. We applied DiffGen to MIMIC data set for both the utility

functions Max and InfoGain. Figure 6.3 shows the classification accuracy CA, where

the privacy budget ε = 0.1, 0.25, 0.5, 1, and the number of specializations, h = 5.

We use 2/3 of the records to build the classifier and measure the accuracy on the

remaining 1/3 of the records. Both the utility functions have similar performance,

where CA spans from 86% to 89% for different privacy budgets. The experimental

result suggests that the proposed algorithm can achieve good classification accuracy

on heterogeneous health data. We could not directly compare our method with

128

��

��

��

��

��

��

��

� � �� �� ��

	

��

��

	 ��
��

�
���

�

������ �� ���� !" #!$ �%�

& ' ()* & ' ()+, & ' (), & ' *
-. / �01�2

3. / �0102

-. / �01�2

3. / �0102
��

��

��

��

��

��

��

� � �� �� ��

	

��

��

	 ��
��

�
���

�

������ �� ���� !" #!$ �%�

& ' ()* & ' ()+, & ' (), & ' *

-. / �01�2

3. / �0102

-. / �01�2

3. / �0102

(a) Max (b) Information gain
Figure 6.4: Classification accuracy for Adult data set

others for the MIMIC data set because no method exists that can anonymize het-

erogeneous data while ensuring ε-differential privacy.

Adult Data Set. To better visualize the cost and benefit of our approach we

provide additional measures: Baseline Accuracy (BA) is the classification accuracy

measured on the raw data without anonymization. BA − CA represents the cost

in terms of classification quality for achieving a given ε-differential privacy require-

ment. On the other extreme, we measure Lower bound Accuracy (LA), which is

the accuracy on the raw data with all attributes (except for the class attribute) re-

moved. CA−LA represents the benefit of our method over the naive non-disclosure

approach.

Figure 6.4.a depicts the classification accuracy CA for the utility function Max,

where the privacy budget ε = 0.1, 0.25, 0.5, 1, and the number of specializations

4 ≤ h ≤ 16. The BA and LA are 85.3% and 75.5%, respectively, as shown in the

figure by the dotted lines. We use 2/3 of the records to build the classifier and

measure the accuracy on the remaining 1/3 of the records. For ε = 1 and h = 10,

BA − CA is around 3% and CA − LA is 6.74%. For ε = 0.5, BA − CA spans from

3.57% to 4.8%, and CA−LA spans from 5% to 6.23%. However, as ε decreases to 0.1,

CA quickly decreases to about 78% (highest point), the cost increases to about 7%,

129

and the benefit decreases to about 3%. These results suggest that for an acceptable

privacy budget such as 1, the cost for achieving ε-differential privacy is small, while

the benefit of our method over the naive method is large. Figure 6.4.b depicts the

classification accuracy CA for the utility function InfoGain. The performance of the

InfoGain is not as good as Max because the difference between the scores of a good

and a bad attribute is much smaller for InfoGain as compared to Max. Therefore,

exponential mechanism does not work effectively in the case of InfoGain as it does

for Max.

We observe two general trends from the experiments. First, the privacy bud-

get has a direct impact on the classification accuracy. A higher budget results in

better accuracy since it ensures better attribute partitioning and lowers the mag-

nitude of noise that is added to the count of each equivalence group. Second, the

classification accuracy initially increases with the increase of the number of special-

izations. However, after a certain threshold the accuracy decreases with the increase

of the number of specializations. This is an interesting observation. The number of

equivalence groups increases quite rapidly with an increase in the number of spe-

cializations, resulting in a smaller count per group. Up to a certain threshold it has

a positive impact due to more precise values; however, the influence of the Laplace

noise gets stronger as the number of specializations grows. Note that if the noise

is as big as the count, then the data is useless. This confirms that listing all the

possible combination of values (i.e., contingency table) and then adding noise to

their counts is not a good approach for high-dimensional data since the noise will

be as big as the count.

Figure 6.5 shows the classification accuracy CA of DiffGen, DiffP-C4.5, and

TDS. For DiffGen, we use utility function Max and fix the number of specializations

h = 15. DiffP-C4.5 also uses Adult data set and all the results of the DiffP-C4.5 are

taken from their paper [35]. For TDS we fixed the anonymity threshold k = 5 and

conducted the experiment ourselves. Following the same setting of [35], we executed

130

��

��

��

��

��

��

��

���� 	 �
 �

� �

��
�

� ��
���
�
���
�

������� �� !"#

$%&&'()�*� $%&&+,- ./0	�1 2$3 .40�1

56 0 ���
7

86 0 ����7

Figure 6.5: Comparison

10 runs of 10-fold cross-validation to measure the CA. 10-fold cross-validation yields

higher CA since more training records are available.

The accuracy of DiffGen is clearly better than DiffP-C4.5 for privacy budget

ε ≤ 2. Note that the privacy budget should be typically smaller than 1 [28, 29, 35].

Even for a higher budget, the accuracy of DiffGen is comparable to DiffP-C4.5. The

major advantage of our algorithm is that we publish data and the data miner has

much better flexibility to perform the required data analysis. On the other hand, in

DiffP-C4.5 the classifier is built through interactive queries; therefore, the database

has to be permanently shut down to satisfy the privacy requirement after generating

only one classifier.

The experimental result also shows that DiffGen performs better than TDS.

For a higher anonymity threshold k, the accuracy of TDS will be lower. One advan-

tage of DiffGen is that, unlike TDS, it does not need to ensure that every equivalence

group contains k records; therefore, DiffGen is able to provide more detailed informa-

tion than TDS. This result demonstrates for the first time that, if designed properly,

a differentially private algorithm can provide better utility than a partition-based

approach.

Scalability. All the previous experiments can finish the anonymization process

131

�
��
��
��
��

���
���
���
���
���

��� ��� ��� ��� ����

��
	

� �

�
�� �
�

� �� ������� ��� ����� ���!

"#$%&'()'*'+,&-$.&*' /0&.&'(1*.$2

345
6457

Figure 6.6: Scalability

within 30 seconds. We further study the scalability of our algorithm over large data

sets. We generate different data sets of different sizes by randomly adding records

to the Adult data set. For each original record r, we create α − 1 variations of the

record by replacing some of the attribute values randomly from the same domain.

Here α is the blowup scale and thus the total number of records is α× 45, 222 after

adding random records. Figure 6.6 depicts the runtime from 200,000 to 1 million

records for h = 15 and ε = 1. The total runtime for anonymizing 1 million records

is 154s, where 50s are spent on reading raw data, 33s are spent on anonymizing, and

24s are spent on writing the anonymous data.

6.5 Discussion

Is differential privacy good enough? How to determine the number of specializa-

tions? In this section, we provide answers to these questions.

Differential Privacy. Differential privacy is a strong privacy definition. However,

Kifer and Machanavajjhala [60] have shown that if the records are not independent

or an adversary has access to aggregate level background knowledge about the data,

132

then privacy attack is possible. In our application scenario, each record is indepen-

dent of each other and we assume that no deterministic statistics of the raw database

have ever been released. Hence, differential privacy is appropriate for our problem.

Number of Specializations. Since this is a non-interactive approach, the data

publisher can try different values for the number of specializations h to find the

threshold and then release the anonymized data. Determining a good value of h

adaptively, given the data set and the privacy budget, is an interesting future work.

133

Chapter 7

Two-Party Data Anonymization

7.1 Introduction

In this chapter, we revisit the problem of distributed anonymization described in

Chapter 5 for achieving differential privacy. We take the single-party algorithm

DiffGen (see Chapter 6) as a basis and extend it to the two-party setting. The main

contribution of this chapter can be summarized as follows:

• We present two-party protocols for the exponential mechanism for both ver-

tically and horizontally partitioned data. These protocols can be considered

as primitives and are used by the proposed anonymization algorithms. They

can also be used by other algorithms that require exponential mechanism in a

distributed setting.

• We present the two-party data anonymization algorithm for vertically-partitioned

data that achieves differential privacy and satisfies the security definition of

semi-honest adversary model (Section 7.4).

• We present the two-party data anonymization algorithm for horizontally-partitioned

data that achieves differential privacy and satisfies the security definition of

semi-honest adversary model (Section 7.5).

134

7.2 Security Model

In this section, we briefly present the privacy definition in the semi-honest adversary

model and provide an overview of the required cryptographic primitives that are

instrumented inside the proposed algorithms.

7.2.1 Semi-Honest Adversary Model

In the semi-honest model, adversaries follow the protocol but may try to deduce

additional information from the received messages. A protocol is private according

to the semi-honest environment if the view of each party during the execution of the

protocol can be effectively simulated by a probabilistic polynomial-time algorithm

knowing only the input and the output of that party [42].

Many of the protocols, as it is the case with the proposed algorithms in this

paper, involve the composition of privacy-preserving subprotocols in which all in-

termediate outputs from one subprotocol are inputs to the next subprotocol. These

intermediate outputs are either simulated given the final output and the local input

for each party or computed as random shares. Using the composition theorem [42],

it can be shown that if each subprotocol is privacy-preserving, then the resulting

composition is also privacy-preserving.

7.2.2 Cryptographic Primitives

Following we provide an overview of all the cryptographic primitives that are utilized

by the proposed algorithms in this chapter.

• Yao’s Protocol [119]. It is a constant-round protocol for secure computa-

tion of any probabilistic polynomial-time function in the semi-honest adversary

model. To give a general view about this protocol, assume that we have two

parties, P1 and P2, with their inputs respectively x and y. Let assume that

135

both parties wish to compute the same value f(x, y). Let P1 generate an en-

crypted circuit computing f(x, .) and send it to P2. The received circuit is

encrypted and accordingly P2 learns nothing from this step. Afterwards, P2

computes the output f(x, y) by decrypting the circuit. This can be achieved

by having P2 obtaining a series of keys corresponding to its input y from P1

such that the function f(x, y) can be computed given these keys and the en-

crypted circuit. However, P2 must obtain these keys from P1 without revealing

any thing about y. This is done by using oblivious transfer protocol [42].

• Random Value Protocol (RVP) [17]. It describes how two parties can

share a value R ∈ ZQ where R has been chosen uniformly at random and Q ∈

ZN is not known by either party, but is shared between them. More specifically,

P1 has R1 ∈ ZN and P2 has R2 ∈ ZN such that R = R1+R2 mod N ∈ [0, Q−1]

where N is the public key for the additive homomorphic scheme utilized in

this protocol, namely Paillier’s scheme [86].

• Secure Scalar Product Protocol (SSPP) [109]. It privately com-

putes the scalar product of two binary vectors Z1 = (a1, . . . , an) and Z2 =

(b1, . . . , bn) owned by the parties P1 and P2, respectively. At the end of this

protocol, P1 and P2 have random shares of the result.

• Oblivious Polynomial Evaluation (OPE) [84]. It is a protocol involving

two parties, a sender whose input is a polynomial P , and a receiver whose input

is a value α. At the end of the protocol, the receiver learns P (α) and the sender

learns nothing.

7.3 Problem Definition

The privacy and the utility requirements are similar to the single-party anonymiza-

tion algorithm as presented in Chapter 6. In particular, we adopt the differential

136

privacy model and preserve information for classification analysis. Following, we

present the problems of two-party anonymization for vertically and horizontally

partitioned data.

7.3.1 Anonymization for Vertically-Partitioned Data

We assume that there are two data publishers such that Party 1 (P1) and Party

2 (P2) own data tables D1(ID,Apr
1 , . . . , Apr

j , Acls) and D2(ID, Apr
j+1, . . . , Apr

d , Acls)

over the same set of records, respectively. This can be achieved by executing a secure

set intersection protocol on the explicit identifiers (ID) (See Section 5.6 for details).

We also assume that parties hold mutually exclusive set of attributes. ID and the

class attribute Acls are shared between the parties.

Definition 7.1 (Two-Party Anonymization for Vertically-Partitioned Data). Given

two vertically-partitioned data tables D1 and D2, where Di is owned by Pi, and a pri-

vacy parameter ε, the problem of two-party anonymization for vertically-partitioned

data is to efficiently produce an anonymous integrated table D̂ such that (1) D̂ sat-

isfies the ε-differential privacy requirement, (2) D̂ contains as much information as

possible for classification, and (3) the algorithm to generate D̂ satisfies the security

definition of the semi-honest adversary model.

7.3.2 Anonymization for Horizontally-Partitioned Data

We assume that there are two data publishers such that Party 1 (P1) and Party 2

(P2) own data tables D1(ID, Apr
1 , . . . , Apr

d , Acls) and D2(ID, Apr
1 , . . . , Apr

d , Acls) over

the same set of attributes, respectively. Each data publisher owns a disjoint set of

records, where record1 ∩ record2 = ∅.

Definition 7.2 (Two-Party Anonymization for Horizontally-Partitioned Data). Given

two horizontally-partitioned data tables D1 and D2, where Di is owned by Pi, and

137

a privacy parameter ε, the problem of two-party anonymization for horizontally-

partitioned data is to efficiently produce an anonymous integrated table D̂ such that

(1) D̂ satisfies the ε-differential privacy requirement, (2) D̂ contains as much infor-

mation as possible for classification, and (3) the algorithm to generate D̂ satisfies

the security definition of the semi-honest adversary model.

For both the problem scenarios, we require the class attribute to be categor-

ical. However, the values of the predictor attribute can be either numerical vn or

categorical vc. Further, we require that for each categorical-predictor attribute Apr
i ,

a taxonomy tree is provided. We assume that there is no trusted third party who

computes the output table D̂ and the parties are semi-honest.

7.4 Algorithm for Vertically-Partitioned Data

In this section, we first describe the two-party anonymization algorithm for vertically-

partitioned data. We then present the distributed exponential mechanism for vertically-

partitioned data along with detailed analysis.

7.4.1 Anonymization Algorithm

Algorithm 7.1 presents the anonymization algorithm for vertically-partitioned data.

Each party keeps a copy of the current ∪Cuti and a generalized table Dg as shown in

Fig. 7.1, in addition to the private table D1 or D2. We assume that both the explicit

identifier and the class attribute are shared among the two parties. For some utility

functions such as information gain and maximum function [77], the class attribute

is needed to calculate the scores of the candidates locally by the parties. However, if

the class attribute is not shard among the parties, we can use other utility functions

that do not depend on the class attribute (e.g., the widest (normalized) range of

candidates [62]) to calculate the scores. In all cases, the parties are able to calculate

the scores of their candidates locally. Algorithm 7.1 is executed by the party P1

138

Algorithm 7.1: Algorithm for vertically-partitioned data
Input: Raw data set D1, privacy budget ε, and number of specializations h
Output: Anonymized data set D̂

1: Initialize Dg with one record containing top most values;
2: Initialize Cuti to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h)

;
4: Determine the split value for each vn ∈ ∪Cuti with probability ∝

exp(ε′
2Δuu(D, vn));

5: Compute the score ∀v ∈ ∪Cuti;
6: for l = 1 to h do
7: Determine winner candidate w by Algorithm 7.2;
8: if w is local then
9: Specialize w on Dg;

10: Replace w with child(w) in the local copy of ∪Cuti;
11: Instruct P2 to specialize and update ∪Cuti;
12: Determine the split value for each new vn ∈ ∪Cuti with probability ∝

exp(ε′
2Δuu(D, vn));

13: Compute the score for each new v ∈ ∪Cuti;
14: else
15: Wait for the instruction from P2;
16: Specialize w and update ∪Cuti using the instruction;
17: end if
18: end for
19: for each leaf node of Dg do
20: Execute the SSPP Protocol to compute the shares C1 and C2 of the true

count C;
21: Compute X1 = C1 + Lap(2/ε);
22: Exchange X1 with P2 to compute (C + 2 × Lap(2/ε));
23: end for
24: return Each leaf node with count (C + 2 × Lap(2/ε))

139

Table 7.1: Original tables

Shared Party A Party B
ID Class Job ... Sex Salary ...
1 N Writer Male 30K
2 N Dancer Male 25K
3 Y Writer Male 35K
4 N Dancer Female 37K
5 Y Engineer Female 65K
6 Y Engineer Female 35K
7 Y Engineer Male 30K
8 N Dancer Female 44K
9 Y Lawyer Male 44K
10 Y Lawyer Female 44K

(same for the party P2) and can be summarized as follows.

Candidate Selection. We use the distributed exponential mechanism for vertically-

partitioned data (Algorithm 7.2) to select a candidate w, which is owned by P1 or P2,

for specialization in each round (Line 7). Algorithm 7.2 is detailed in Section 7.4.2.

If the winner w is one of P1’s candidates, P1 specializes w on Dg (Line 9), updates its

local copy of ∪Cuti (Line 10) and instructs P2 to specialize and update its local copy

of ∪Cuti accordingly (Line 11). P1 also calculates the scores of the new candidates

due to the specialization (Line 12 and Line 13). If the winner w is not one of P1’s

candidates, P1 waits for instruction from P2 to specialize w and to update its local

copy of ∪Cuti (Line 15 and Line 16). Thus, at each iteration, the two parties cooper-

ate to perform the same specialization as identified in the single-party algorithm by

communicating certain information that satisfies the semi-honest adversary model.

Example 7.4.1. Consider the raw data set of Table 7.1. Party A owns the data set

DA(ID, Job, . . . , Class) whereas Party B owns the data set DB(ID, Sex, Salary, . . . ,

Class). Initially, Dg contains one root node representing all the records that are gen-

eralized to 〈Any_Job,Any_Sex, [18-99]〉. ∪Cuti is represented as {Any_Job, Any_Sex,

140

[18-99]} and includes the initial candidates. To find the winner candidate, both par-

ties run Algorithm 7.2. Suppose the winning candidate w is Any_Job →{Professional,

Artist}. The party P1 first creates two child nodes under the root node as shown in

Fig. 7.1 and updates ∪Cuti to {Professional, Artist, Any_Sex, [18-99]}. Then, P1

sends instruction to P2. On receiving this instruction, P2 creates the two child nodes

under the root node in its copy of Dg and updates the ∪Cuti. Suppose that the

next winning candidate is Any_Sex → {Male, Female}. Similarly, the two parties

cooperate to create further specialized partitions resulting the generalized table in

Fig. 7.1. We do not show the class attribute in Fig. 7.1.

Computing the Noisy Count. For each leaf node in the resulted Dg from the

previous step, parties need to compute the true count C before adding noise. Us-

ing the Secure Scalar Product Protocol (SSPP) [109] (Line 20), the parties privately

compute the product of the binary vectors Z1 and Z2 provided by P1 and P2, respec-

tively, to produce the shares C1 and C2 of the true count C such that C = C1 + C2.

For each leaf node, the first party P1 (similarly P2) computes the binary vector Z1

such that |Z1|=|D1|=|D2| and Z1[i] = 1 if D1[i] matches the generalized value of the

leaf node; otherwise, Z1[i] = 0.

Example 7.4.2. Consider the bottom most left leaf in Fig. 7.1 where the count of

all male professionals whose salaries in the range [18-99] is needed. P1 generates the

binary vector Z1 = [0, 0, 0, 0, 1, 1, 1, 0, 1, 1] whereas P2 generates the binary vector

Z2 = [1, 1, 1, 0, 0, 0, 1, 0, 1, 0] as detailed in Table 7.2. In the secure scalar product

protocol, the goal is to privately compute the scalar product Z1 ∗ Z2 such that:

Z1 ∗ Z2 =
∑10

i=1(Z1[i] × Z2[i])

= 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0

= 2

At the end of the protocol, the two parties have random shares of the result

Z1 ∗ Z2, which is equal to 2.

141

�

�

Figure 7.1: Generalized data table

Table 7.2: Binary vectors
Shared Party A Party B

ID Job Z1[i] Sex Salary Z2[i]
1 Artist 0 Male [18-99]K 1
2 Artist 0 Male [18-99]K 1
3 Artist 0 Male [18-99]K 1
4 Artist 0 Female [18-99]K 0
5 Professional 1 Female [18-99]K 0
6 Professional 1 Female [18-99]K 0
7 Professional 1 Male [18-99]K 1
8 Artist 0 Female [18-99]K 0
9 Professional 1 Male [18-99]K 1
10 Professional 1 Female [18-99]K 0

Finally, each party adds a Laplace noise to its count (Line 21) and sends the

result to the other party (Line 22). The protocol ends up with two Laplace noises

added to the count of each leaf (Line 23). We experimentally measure the impact

of adding two Laplace noise in Section 7.6.

7.4.2 Exponential Mechanism for Vertically-Partitioned Data

Exponential mechanism (See Section 6.2.1) chooses a candidate that is close to

optimum with respect to a utility function while preserving differential privacy. In

the distributed setting, the candidates are owned by two parties and, therefore,

requires a private mechanism to compute the same output while ensuring that no

142

Algorithm 7.2: Exponential mechanism for vertically-partitioned data
Input: Finite discrete alternatives 〈(v1, u1), . . . , (vn, un)〉 owned by the
parties, and privacy budget ε
Output: Winner w

1: P1 evaluates s1 ←
∑j

i=1 exp(
εui

2Δu);
2: P2 evaluates s2 ←

∑n
i=j+1 exp(

εui

2Δu);
3: P1 and P2 execute RVP to compute random shares R1 and R2, where

(R1 + R2) ∈ Z(S1+S2);
4: for k = 1 to n do
5: if k ≤ j then
6: P1 evaluates L1 ←

∑k
i=1 exp(

εui

2Δu);
7: P2 evaluates L2 ← 0;
8: else
9: P1 evaluates L1 ←

∑j
i=1 exp(

εui

2Δu);
10: P2 evaluates L2 ←

∑k
i=j+1 exp(

εui

2Δu);
11: end if
12: P1 and P2 execute COMPARISON(R1, R2, L1, L2);
13: if b = 0 then
14: w ← vk;
15: return w;
16: end if
17: end for

extra information is leaked to any party.

The distributed exponential mechanism for vertically-partitioned data presented

in Algorithm 7.2 takes two inputs: (1) Finite discrete alternatives 〈(v1, u1), . . . , (vn, un)〉,

where a pair (vi, ui) is composed of the candidate vi and its score ui. Parties P1

and P2 own (v1, u1), . . . , (vj, uj) and (vj+1, uj+1) . . . (vn, un), respectively. (2) Privacy

budget ε.

The protocol outputs a winner candidate depending on its score using the ex-

ponential mechanism. The scores of the candidates can be calculated using different

utility functions [77]. Given the scores of all the candidates, exponential mechanism

selects the candidate vj with the following probability where Δu is the sensitivity

143

Algorithm 7.3: COMPARISON
Input: Random shares R1 and R2, and values L1 and L2

Output: b

1: R = R1 + R2;
2: L = L1 + L2;
3: if (R ≤ L) then
4: b = 0;
5: end if
6: return b;

of the chosen utility function.

exp(εuj

2Δu)∑n
i=1 exp(

εui

2Δu)
(7.1)

The distributed exponential mechanism can be summarized as follows.

Computing the Probability. A simple implementation of the exponential mech-

anism is to have the interval [0,1] partitioned into segments according to the prob-

ability mass defined in Equation 7.1 for the candidates. Next, we sample a random

number uniformly in the range [0,1] and the partition in which the random number

falls determines the winner candidate. However, this method involves computing

a secure division (Equation 7.1). Unfortunately, we are not aware of any secure

division scheme that fits our scenario where the nominator value is less than the

denominator value.

Alternatively, we solve this problem without a secure division protocol. We

first partition the interval [0,
∑n

i=1 exp(
εui

2Δu)] into n segments where each segment

corresponds to a candidate vi and has a subinterval of length equal to exp(εui

2Δu). We

then sample a random number uniformly in the range [0,
∑n

i=1 exp(
εui

2Δu)] and the

segment in which the random number falls determines the winner candidate.

Picking a Random Number. Each party first computes individually exp(εui

2Δu)

144

Table 7.3: Cost analysis
l Scaling Floor Value Cost (Extra Bits)
1 2.718281828 × 101 27 log2101

2 2.718281828 × 102 271 log2102

3 2.718281828 × 103 2718 log2103

4 2.718281828 × 104 27182 log2104

for its candidates. Then both P1 and P2 compute s1 =
∑j

i=1 exp(
εui

2Δu) and s2 =
∑n

i=j+1 exp(
εui

2Δu), respectively. P1 and P2 need to pick a random number uniformly

in the range [0, s1+s2], where s1+s2=
∑n

k=1 exp(εuk

2Δu). This can be achieved by

using the random value protocol (RVP) [17]. RVP takes s1 and s2 from the parties

as input and outputs the random value shares R1 and R2 to the respective parties,

where R = R1 + R2. However, RVP works only in an integer setting but s1 and s2

can be decimal numbers because of the exponential function exp.

We address this issue by scaling and take the floor value of exp(εui

2Δu) × 10l.

Here, l is a predefined number between the parties which indicates the number of

the considered digits after the decimal point. For example, the value 2.718281828 of

exp(εui

2Δu) can be scaled in different ways according to the considered digits after the

decimal point as shown in Table 7.3. The parties should agree on a specific value for

l and only consider the integer portion using the floor function. The higher accuracy

(in terms of the number of the considered digits after the decimal point) we demand,

the higher cost we pay (in terms of bits) as shown also in Table 7.3. These extra bits

result additional computation and communication cost. Note that restricting the

values of exp(εui

2Δu) to a finite range is completely natural as calculations performed

on computers are handled in this manner due to memory constraints.

Example 7.4.3. Suppose P1 has two candidates and the values of exp(εui

2Δu) for

these candidates are 54.59815003 and 403.4287935, respectively whereas P2 has one

candidate that has a computed value of 7.389056099. After deciding that the value

of l is one and considering the floor value, P1 ends up with the integer values 545 and

145

4034 whereas P2 ends up with the value 73. Both parties then pick a random number

in the range [0, 4652] using the RVP where 4652 = 545 + 4034 + 73. Similarly, if the

parties decide that the value of l is two, P1 ends up with the integer values 5459 and

40342 whereas P2 ends up with the value 738. The two parties then pick a random

number in the range [0, 46539] using the RVP where 46539 = 5459 + 40342 + 738.

Picking a Winner. The two parties engage in a simple secure circuit evaluation

process using Yao’s Protocol [119] in Line 12. The circuit COMPARISON compares

their random number R with the sum (L1 +L2) provided by P1 and P2, respectively.

The winner vi is the first candidate such that R ≤ L1 + L2, where

L1 =
∑j

i=1 exp(
εui

2Δu) and L2 = 0, or

L1 = s1 and L2 =
∑n

i=j+1 exp(
εui

2Δu)

Example 7.4.4. (Continued from Example 7.4.3) Suppose the two parties pick

a random number in [0, 4652] using RVP. The circuit first checks if the random

number is less than or equal to 545. If so, the first candidate of P1 is the winner;

otherwise, the circuit checks again if the random number is less than or equal to

4579 (545 + 4034). If so, the second candidate of P1 is the winner; otherwise, the

candidate of P2 is the winner since the random number must be within the range

[0, 4652] according to the RVP [17].

Remark. The proposed distributed exponential mechanism is independent from

the choice of the utility function. Any function that can be computed locally, such

as information gain, maximum function, or the widest (normalized) range of values,

can be used readily in our algorithm. However, if the data owners (parties) prefer

to use a utility function that cannot be computed locally, then extra measures must

be taken to compute the score privately prior running Algorithm 7.2.

7.4.3 Analysis

We next discuss the correctness, security and efficiency of Algorithm 7.1.

146

Proposition 7.1. (Correctness) Assuming both parties are semi-honest, Algorithm 7.1

computes a ε-differentially private output when both the parties hold different at-

tributes for the same set of individuals.

Proof. Algorithm 7.1 performs the same function as the single-party algorithm (Dif-

fGen) but in a distributed setting. DiffGen is ε-differentially private [77]. Therefore,

we prove the correctness of Algorithm 7.1 by just proving the steps that are different

from DiffGen:

• Candidate selection. Algorithm 7.1 selects a candidate for specialization (Line7)

using Algorithm 7.2. Algorithm 7.2 selects a candidate vi with probability ∝

exp(εui

2Δu)). Each party computes exp(εui

2Δu) for its candidates. Then the par-

ties build an interval in the range [0,
∑n

k=1 exp(
εuk

2Δu)] and partition it among

the candidates where each subinterval has a length equal to exp(εui

2Δu). Since,

the random value lies uniformly between [0,
∑n

k=1 exp(
εuk

2Δu)] and a candidate

is chosen according to this value, the probability of choosing any candidate

is exp(εui
2Δu)

∑n
k=1 exp(

εuk
2Δu)

. Therefore, Algorithm 7.2 correctly implements exponential

mechanism and step guarantees ε′-differential privacy.

• Updating the tree Dg and ∪Cuti. Each party has its own copy of Dg and

∪Cuti. Each party updates these items exactly like DiffGen either using the

local information or using the instruction provided by the other party (Lines

8-17).

• Computing the noisy count. Algorithm 7.1 outputs the noisy count of each leaf

node (Line 24), where the noise is equal to 2 × Lap(2/ε). Thus, it guarantees
ε
2
-differential privacy.

Since Algorithm 7.1 performs exactly the same sequence of operations as in

DiffGen in a distributed manner where D1 and D2 are kept locally, it is also ε-

differentially private.

147

Proposition 7.2. (Security) Algorithm 7.1 is secure under the semi-honest adver-

sary model.

Proof. The security of Algorithm 7.1 depends on the steps where the parties ex-

change information and it is conducted as follows:

• Line 7 (Algorithm 7.2): The only communication between P1 and P2 in Algo-

rithm 7.2 takes place in executing the random value protocol (RVP) and the

circuit COMPARISON. Since RVP [17] and COMPARISON [42, 43] have proven to

be secure, Algorithm 7.2 is secure due to composition theorem [42].

• Line 11 and Line 15: The party that owns the winner candidate instructs the

other party to specialize w and update its local copy of ∪Cuti. The nature of

the top-down approach implies that Dg is more general than the final answer

and, therefore, does not leak any additional information.

• Line 20: The secure scalar product protocol is proven to be secure [109].

• Line 22: The two parties exchange the noisy count shares to compute the

noisy count. This does not violate differential privacy because the noisy count

shares are already private according to Laplace mechanism [30].

Therefore, due to composition theorem [42], Algorithm 7.1 is secure.

Proposition 7.3. (Complexity) The encryption and the communication costs of

Algorithm 7.1 are bounded by O(2h|D|) and O(2hE|D|), respectively.

Proof. Most of the encryptions and the communications occur in Line 7 and Line

20 of Algorithm 7.1. Following we analyse the cost of each of these lines separately.

• Line 7 (Algorithm 7.2): Both parties run RVP where O(ξ) and O(ζ) are the

encryption and the communication costs of RVP, respectively. The add and

the compare operations determine the complexity of the COMPARISON circuit.

148

Since these operations can be implemented by the number of gates linear to

the input size, the COMPARISON circuit requires evaluation of O(log F) gates,

where F =
∑n

i=1 exp(
ε′ui

2Δu) × 10l. Hence, the number of the encryptions and

the communication complexity of COMPARISON are bounded by O(log F) and

O(K log F), respectively, where K is the length of the key for a pseudoran-

dom function. The COMPARISON protocol is called at most n times in Line

12. Therefore, the encryption and the communication costs are bounded by

O(ξ + n log F) and O(ζ + nK log F), respectively. Assuming, n log F � ξ

and nK log F � ζ, the total encryption and communication costs of Algo-

rithm 7.2 are bounded by O(n log F) and O(nK log F), respectively. However,

Line 7 is executed h times in total. Hence, the number of encryptions and

the communication complexity of Line 7 are O(hn log F) and O(hnK log F),

respectively.

• Line 20: Parties run the SSPP to compute the count of each leaf node. The

total number of leaf nodes is 2h. The encryption and the communication costs

of the SSPP are O(|D|) and O(E|D|), where E is the bit length of an encrypted

item [109]. Therefore, the costs of this step are O(2h|D|) and O(2hE|D|) for

encryption and communication, respectively.

Thus, the total costs of the encryption and the communication of Algorithm 7.1

are bounded by O(max{hn log F, 2h|D|}) and O(max{hnK log F, 2hE|D|}), respec-

tively. Since the value of 2h|D| is usually very large, the encryption and communi-

cation costs can be defined as O(2h|D|) and O(2hE|D|), respectively.

7.5 Algorithm for Horizontally-Partitioned Data

In this section, we first describe the two-party anonymization algorithm for horizontally-

partitioned data. We then present the distributed exponential mechanism for horizontally-

partitioned data along with detailed analysis.

149

Algorithm 7.4: Algorithm for horizontally-partitioned data
Input: Raw data set D1, privacy budget ε, and number of specializations h
Output: Anonymized data set D̂

1: Initialize Dg with one record containing top most values;
2: Initialize Cuti to include the topmost value;
3: ε′ ← ε

2(|Apr
n |+2h)

;
4: for l = 1 to h do
5: Determine winner candidate w by Algorithm 7.5;
6: Specialize w on Dg;
7: Replace w with child(w) in ∪Cuti;
8: end for
9: for each leaf node of Dg do

10: Compute the share C1 of the true count C;
11: Compute X1 = C1 + Lap(2/ε);
12: Exchange X1 with P2 to compute (C + 2 × Lap(2/ε));
13: end for
14: return Each leaf node with count (C + 2 × Lap(2/ε))

7.5.1 Anonymization Algorithm

Algorithm 7.4 presents the anonymization algorithm for horizontally-partitioned

data, and is executed by the party P1 (same for the party P2). The algorithm follows

the same top-down approach like the single-party algorithm. The general idea is to

anonymize the raw data by a sequence of specializations starting from the topmost

general state. Each party keeps a copy of the current ∪Cuti and a generalized table

Dg, in addition to the private table D1 or D2. Initially, all values in Apr are gener-

alized to the topmost value in their taxonomy trees, and Cuti contains the topmost

value for each attribute Apr
i . At each iteration, Algorithm 7.4 uses the distributed

exponential mechanism for horizontally-partitioned data to select a candidate for

specialization (Line 5). This can be achieved by calling Algorithm 7.5 detailed in

Section 7.5.2. Once a candidate is determined, both the parties specialize the winner

candidate w on Dg (Line 6) by splitting their records into child partitions according

to the provided taxonomy trees. Then, the parties update their local copy of ∪Cuti

(Line 7). This process is repeated according to the number of specializations h.

150

Algorithm 7.5: Exponential mechanism for horizontally-partitioned data
Input: A set of candidates {v1, . . . , vk} and, privacy budget ε
Output: Winner w

1: for each candidate vx where x = 1 to k do
2: for (each possible value of aj of vx where j = 1 to m) do
3: for (each class value ci where i = 1 to l) do
4: P1 computes |D1(aj, ci)|;
5: P2 computes |D2(aj, ci)|;
6: end for
7: end for
8: P2 generates a random share α2;
9: (P1 ← α1, P2 ← ⊥) ←

MAX(|D1(aj, ci)|i=1 to l,j=1 to m, |D2(aj, ci)|i=1 to l,j=1 to m, α2);
10: P1 chooses a random share βx and defines the following polynomial

Q(z) = lcm(2!, . . . , w!).10s(w−1).
∑w

i=0

((ε
2Δu)s.10s.(α1+z))i

10s(i−1).i!
− βx;

11: P1 and P2 execute a private polynomial with P1 inputting Q(.) and P2

inputting α2, in which P2 obtains β′
x = Q(α2).

12: end for
13: (P1 ← γ1, P2 ← ⊥) ← SUM(βx,x=1 to k, β

′
x,x=1 to k, γ2);

14: P1 and P2 execute RVP to compute random shares R1 and R2, where
(R1 + R2) ∈ Z(γ1+γ2);

15: P1 and P2 evaluates x ← COMPARISON(R1, R2, βx,x=1 to k, β
′
x,x=1 to k);

16: return vx;

Finally, each party computes the number of its records under each leaf node (Line

10), adds a Laplace noise to its count (Line 11), and sends the result to the other

party (Line 12). Thus, two Laplace noises are added to each leaf count similar to

the algorithm for vertically-partitioned data.

7.5.2 Exponential Mechanism for Horizontally-Partitioned Data

The distributed exponential mechanism for horizontally-partitioned data pre-

sented in Algorithm 7.5 takes the followings as inputs: (1) A set of candidates

{v1, . . . , vk}, and (2) privacy budget ε. Similarly, the protocol outputs a winner

151

Algorithm 7.6: MAX circuit
Input: |D1(aj, ci)|i=1 to l,j=1 to m, |D2(aj, ci)|i=1 to l,j=1 to m and α2

Output: α1 to P1,⊥ to P2

1: sum = 0;
2: for j = 1 to m do
3: max = 0;
4: for i = 1 to l do
5: ss= |D1(aj, ci)| + |D2(aj, ci)|;
6: if (ss > max) then
7: max = ss;
8: end if
9: end for

10: sum = sum + max;
11: end for
12: α1 = sum - α2;
13: return α1,⊥;

candidate with the following probability.

exp(εu
2Δu)∑k

n=1 exp(
εun

2Δu)
(7.2)

Here, we use the Max utility function as described in Chapter 6. More discussion

about other utility functions are provided in Section 7.7.

Computing Max Utility Function. Unlike vertically-partitioned data, com-

puting score for each candidate requires additional work. To compute the Max

utility function for each candidate vx, the parties P1 and P2 compute |D1(aj, ci)|

and |D2(aj, ci)|, respectively for every possible value aj of vx and for every possible

value ci of the class attribute (Lines 2 to 7). Here, |D(a, c)| denotes the number

of records in D having the generalized value a and the class value c. After that,

the two parties engage in a secure circuit evaluation process using Yao’s Protocol

(Line 9). The values |D1(aj, ci)|i=1 to l,j=1 to m, |D2(aj, ci)|i=1 to l,j=1 to m, and α2 are

passed to the MAX circuit where α2 is randomly generated by P2. The MAX circuit is

152

used to compute the shares of Max utility function value for each candidate vx. For

each child value aj of the candidate vx, the circuit MAX, as shown in Algorithm 7.6,

adds the corresponding values |D1(aj, ci)| and |D2(aj, ci)| for every possible value ci

of the class attribute. It then computes the maximum value of the results. Next,

the maximum values associated with each child value aj are summed to get the Max

utility function value for the candidate vx. To produce random shares of the Max

utility function value, the circuit finally subtracts α2, which is randomly generated

by P2, from the resulted score and outputs the result α1 to P1.

Computing the Probability. The exponential function, exp(x) can be defined

using the following Taylor series:

1 +
x

1
+

x2

2!
+ · · · + xi

i!
+ . . . (7.3)

To evaluate the nominator of Equation 7.2 for each vx, we need to evaluate

the expression exp(εu
2Δu) that is equal to exp(ε(α1+α2)

2Δu). Given the aforementioned

Taylor series:

exp(
ε(α1 + α2)

2Δu
) =

w∑

i=0

(ε(α1+α2)
2Δu)i

i!
(7.4)

Hence, the next step involves computing shares of the Taylor series approxi-

mation. In fact, parties computes the shares of:

lcm(2!, . . . , w!).10sw.

w∑

i=0

((ε
2Δu)s.(α1 + α2))

i

i!
, where

• lcm(2!, . . . , w!) is the lowest common multiple of {2!,. . . ,w!} and we multiply

by it to ensure that there are no fractions.

• (ε
2Δu)s refers to approximating the value of ε

2Δu up to a predetermined number

s after the decimal point. For example, if we assume s = 4 and ε = ln2

then (ln2
2×1

)4 = (0.3465). Note that, this approximation does not effect privacy

153

guarantee since we are using less privacy budget. Also, the impact on the

utility is insignificant. In Section 7.6, we experimentally show the accuracy

for different privacy budgets.

• 10sw is multiplied to the series to ensure that the resulting value is an integer.

This equation is accurate up to an approximation error which depends on the

value of w. However, they may be made arbitrarily close to the true value. Since s

and w are known to both parties, the additional multiplicative factors lcm(2!, . . . , w!)

and 10sw are public and can be removed at the end (if desired).

To evaluate the nominator of Equation 7.2 for each candidate vx, P1 chooses

a random share βx and defines the following polynomial (Line 10):

Q(z) = lcm(2!, . . . , w!).10s(w−1).

w∑

i=0

((ε
2Δu)s.10s.(α1 + z))i

10s(i−1).i!
− βx

It is easy to see that

β′
x = Q(α2) = lcm(2!, . . . , w!).10sw.

w∑

i=0

((ε
2Δu)s.(α1 + α2))

i

i!
− βx

Afterwards, P1 and P2 execute a private polynomial with P1 inputting Q(.)

and P2 inputting α2, in which P2 obtains β′
x = Q(α2) (Line 11). To evaluate the

denominator of Equation 7.2, the two parties execute the circuit SUM which takes

as input the random shares βx and β′
x for each candidate vx and a random number

γ2 generated by P2 (Line 13). The circuit computes the total sum of the results by

adding the random shares βx and β′
x for each candidate vx. It then subtracts γ2,

which is randomly generated by P2, from the value of the total sum and outputs the

share γ1 to P1.

Once we compute the denominator and numerator of Equation 7.2, we can

implement the exponential mechanism like the distributed exponential mechanism

for vertically-partitioned data (See Algorithm 7.2). In particular, we first partition

154

Algorithm 7.7: COMPARISON circuit
Input: Random shares R1 and R2, βx,x=1 to k, and β′

x,x=1 to k

Output: Index x to P1 and P2

1: L = 0;
2: R = R1 + R2;
3: for x = 1 to k do
4: β = βx + β′

x;
5: L = L + β;
6: if (R ≤ L) then
7: return x;
8: end if
9: end for

the interval [0,
∑k

x=1 exp(
εux

2Δu)] into k segments where
∑k

x=1 exp(
εux

2Δu) = γ1 + γ2,

and each segment corresponds to a candidate vx with a subinterval of length equal

to βx + β′
x. We then sample a random number uniformly in the range [0, γ1 + γ2]

and the segment in which the random number falls determines the winner candidate.

Picking a Random Number. The parties P1 and P2 need to pick a random

number uniformly in the range [0, γ1 + γ2], where γ1 + γ2 =
∑k

x=1 exp(εux

2Δu). This

can be achieved by using RVP (Line 14). RVP takes γ1 and γ2 from the parties

as input and outputs the random value shares R1 and R2 to the respective parties,

where R = R1 + R2.

Picking a Winner. The two parties engage again in a simple secure circuit evalua-

tion process using Yao’s Protocol [119] (Line 15). The circuit COMPARISON compares

their random number R with the sum L. The winner vx is the first candidate such

that R ≤ L where L =
∑x

r=1(βx + β′
x).

7.5.3 Analysis

In this section, we discuss the correctness, security and efficiency of Algorithm 7.4.

155

Proposition 7.4. (Correctness) Assuming both parties are semi-honest, Algorithm 7.4

computes a ε-differentially private output when both the parties hold different

records for the same set of attributes.

Proof. The proof is identical to the algorithm for vertically-partitioned data (Sec

Section 7.4.3). Essentially, Algorithm 7.4 performs exactly the same sequence of

operations as the single-party algorithm and thus it also guarantees ε-differential

privacy.

Proposition 7.5. (Security) Algorithm 7.4 is secure under the semi-honest adver-

sary model.

Proof. The security of Algorithm 7.4 depends on the following steps where the par-

ties exchange information:

• Line 5 (Algorithm 7.5): The security proof is as follows:

– Circuit MAX: It can be evaluated securely [42]. Parties input their local

counts |D(aj, ci)| and receive the random share of the MAX value.

– Oblivious Polynomial Evaluation: It has been proven to be secure [84].

– Random Value Protocol (RVP): It has proven to be secure [17].

– Circuits SUM and COMPARISON: Similarly, these circuits can be evaluated

securely [42].

Since, all the above protocols produce random shares and proved to be secure,

Algorithm 7.5 is also secure due to the composition theorem [42].

• Line 12: Each party initially adds Laplace noise to its local count and then

exchange the noisy count with the other party. Therefore, the noisy count is

already private according to Laplace mechanism [30].

Hence, Algorithm 7.4 is secure due to Composition Theorem [42].

156

Proposition 7.6. (Complexity) The encryption and the communication costs of

Algorithm 7.4 are bounded by O(hk log F) and O(hk log FK), respectively.

Proof. Distributed exponential mechanism (Algorithm 7.5) dominates the overall

complexity of Algorithm 7.4. The complexity of Algorithm 7.5 is computed as

follows:

• Circuit MAX: This circuit is composed of simple add and compare operations and

thus can be implemented by the number of gates linear to the input size of the

circuit. The input includes m×l local counts |D(aj, ci)| and these values are of

size at most log |D|. Hence, the encryption and the communication complexity

of MAX are bounded by O(ml log |D|) and O(ml log |D|K), respectively, where

K is the length of the key for a pseudorandom function. The MAX protocol

is called at most k times. Therefore, the encryption and the communication

costs are O(kml log |D|) and O(kml log |D|K), respectively.

• Oblivious Polynomial Evaluation: This protocol involves the private evaluation

of a polynomial of degree w. Thus, the encryption and the communication

complexity are bounded by O(w) and O(wE), where E is the length of an

encrypted element [66]. This protocol is also called k times. Therefore, the

encryption and the communication cost are O(kw) and O(kwE), respectively.

• Random Value Protocol (RVP): The costs of RVP are negligible and therefore

they are ignored.

• Circuit SUM and COMPARISON: The analysis is similar to MAX circuit. The en-

cryption and the communication complexity of both the circuits are bounded

by O(k log F) and O(k log FK), where F = exp(ε′ux

2Δu) × 10s.

Both the parties execute Algorithm 7.5 h times to select the winner candidates. Note

that Lines 1-12 of Algorithm 7.5 are not executed in every iteration. Rather, these

lines are only invoked once for each candidate. Hence, the overall encryption and

157

��

��

��

��

��

��

��

��� ���	 ��	 �

 �
�
�
��

 ��
�
�
�
�� �
�

������� ��� !" #$%

&'()*+,-./01
234,-./01

Number of specializations, h = 10

�� � �����

	� �
����

Figure 7.2: Classification accuracy for two-party

communication costs are O(max{kml log |D|, kw, hk log F}) and O(max{kml log |D|K,

kwE, hk log FK}), respectively. Since the value of F is usually very large, the en-

cryption and communication costs can be defined as O(hk log F) and O(hk log FK),

respectively.

7.6 Experimental Evaluation

In this section, we evaluate the impact of adding two Laplace noises to the leaf counts

on the data quality in terms of classification accuracy. We employ the publicly

available data set Adult [34, 38] for the experiment and adopt the same procedure

like the single-party algorithm. In particular, we use 2/3 of the records (i.e., 30,162)

to build the classifier and measure the accuracy on the remaining 1/3 of the records

(i.e., 15060). For each experiment, we execute 10 runs and average the results over

the runs.

Figure 7.2 depicts the classification accuracy CA for the utility function Max

where the privacy budget ε ∈ {0.1, 0.25, 0.5, 1}. We observe that the impact of

adding two Laplace noises is insignificant. It is because around half of the time

the noises are canceled out (when the signs are opposite) resulting a more accurate

count compared to the single-party case. And, the other half of the time, the count

158

is more noisy (when the signs are same). Overall the impact of adding two Laplace

noises is negligible and the accuracy is comparable to adding only one Laplace noise.

7.7 Discussion

What changes are required if there are more than two parties? How reasonable it is

to assume that the parties are semi-honest and not malicious? Can the algorithms

be easily adapted to accommodate a different utility function? In this section, we

provide answers to these questions.

More than Two Parties. The proposed algorithms are only applicable for the

two-party scenario because the distributed exponential algorithms, and the other

primitives (e.g., random value protocol, secure scalar product protocol) are limited

to two-party scenario. The proposed algorithms can be extended for more than

two parties by modifying all the sub-protocols while keeping the general top-down

structure of the algorithms as it is.

Semi-Honest Adversary Model. This is the common security definition used in

the SMC literature [53] and it is realistic in our problem scenario since different or-

ganizations are collaborating to share their data securely for mutual benefits. Hence,

it is reasonable to assume that parties will not deviate from the defined protocol.

However, they may be curious to learn additional information from the messages

they received during the protocol execution. To extend the algorithm for malicious

parties, all the sub-protocols should be extended and must be secure under the ma-

licious adversary model.

Other Utility Functions. For each new utility function, we only need to devise

an algorithm to calculate the utility function, while the rest remains unchanged.

159

Chapter 8

Conclusion

We address the problem of data sharing while preserving the privacy of individuals.

Inspired by real-life scenarios, we develop algorithms for anonymizing relational, tra-

jectory, and heterogeneous data for different application scenarios. We also address

the problem of distributed anonymization to enable multiple parties to integrate and

share their date privately. The proposed algorithms guarantee two privacy models,

preserve data utility for data mining, and are scalable for handling large data sets.

Following we summarize the contributions of this thesis.

8.1 Summary

In the first part of the thesis, we begin by proposing a privacy-aware information

sharing method for healthcare institutes with the objective of supporting data min-

ing. Motivated by the Red Cross Blood Transfusion Service (BTS)’s privacy and in-

formation requirements, we formulate the LKC-privacy model for high-dimensional

relational data and develop an anonymization algorithm according to the BTS’ in-

formation need (Chapter 3). We then study the problem of anonymizing trajectory

data and illustrate that traditional QID-based anonymization methods, such as k-

anonymity and its variants, are not suitable for anonymizing trajectory data, due to

160

the curse of high dimensionality. To overcome the problem, we adopt LKC-privacy

model and present an efficient algorithm for preserving maximal frequent sequences,

which serves as the basis of many data mining tasks on sequential data (Chapter 4).

Following this, we define the problem of distributed anonymization for the purpose

of joint classification analysis. We formalize this problem as achieving the LKC -

privacy on the integrated data without revealing more detailed information in the

process. We present two solutions based on two different application scenarios and

evaluate the benefits of data integration (Chapter 5).

In the second part of the thesis, we focus on differential privacy and develop

an anonymization algorithm for heterogeneous data. The proposed solution con-

nects the classical generalization technique with output perturbation to effectively

anonymize raw data. Experimental results suggest that the proposed solution pro-

vides better utility than the interactive approach and the k-anonymous data, and

that it is more effective than publishing a contingency table (Chapter 6). Finally,

we present the two-party algorithms for differentially-private data release. The algo-

rithms similarly address two scenarios where the data are divided among the parties

either vertically or horizontally. We show that the algorithms are differentially pri-

vate and secure for semi-honest adversary model. These algorithms provide a prac-

tical solution to secure data integration where there is the dual need for information

sharing and privacy protection (Chapter 7).

Thus, the main contribution of this thesis is to develop anonymization algo-

rithms for different application scenarios while satisfying different notions of privacy.

8.2 Looking Ahead

At the end of the day, this thesis provides a technical response to the demand of

simultaneous information sharing and privacy protection. However, the problems of

data privacy can not be fully solved only by technology. We believe that there is

161

an urgent need to bridge the gap between advanced privacy preservation technology

and current policies. In the future, we expect that social and legal regulations will

complement the best practices of privacy-preserving technology. To this end, it

is also important to standardize some privacy models and algorithms for different

applications as it is unlikely that there exists a one-size-fit solution for all application

scenarios. Thus, the future research direction appears to lie in defining suitable

privacy models, and developing trustworthy algorithms and systems that provide

performance guarantees, and that ensure security and privacy of data for specific

applications.

162

Bibliography

[1] O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for

anonymity in moving objects databases. In Proceedings of the 24th IEEE

International Conference on Data Engineering (ICDE), pages 376–385, 2008.

[2] N. R. Adam and J. C. Wortman. Security control methods for statistical

databases. ACM Computer Surveys, 21(4):515–556, 1989.

[3] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In Proceed-

ings of the 31st International Conference on Very Large Data Bases (VLDB),

pages 901–909, 2005.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,

and A. Zhu. Anonymizing tables. In Proceedings of the 10th International

Conference on Database Theory (ICDT), pages 246–258, 2005.

[5] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private

databases. In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD), pages 86–97, 2003.

[6] R. Agrawal and R. Srikant. Privacy preserving data mining. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIG-

MOD), pages 439–450, 2000.

163

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-

sociation rules in large databases. In Proceedings of the 20th International

Conference on Very Large Data Bases (VLDB), pages 487–499, 1994.

[8] D. Alhadidi, N. Mohammed, B. C. M. Fung, and M. Debbabi. Secure dis-

tributed framework for achieving ε-differential privacy. In Proceedings of the

12th Privacy Enhancing Technologies Symposium (PETS), 2012.

[9] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar.

Privacy, accuracy, and consistency too: A holistic solution to contingency

table release. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS), pages 273–282, 2007.

[10] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no. 4417749.

New York Times, August 9, 2006.

[11] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-

anonymization. In Proceedings of the 21st IEEE International Conference

on Data Engineering (ICDE), pages 217 – 228, 2005.

[12] Z. Berenyi and H. Charaf. Retrieving frequent walks from tracking data in

RFID-equipped warehouses. In Proceedings of the IEEE International Con-

ference on Human System Interactions (HSI), pages 663 – 667, 2008.

[13] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent

patterns in sensitive data. In Proceedings of the 16th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (SIGKDD),

pages 503–512, 2010.

[14] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the SuLQ

framework. In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS), pages 128–138, 2005.

164

[15] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-

interactive database privacy. In Proceedings of the 40th ACM Symposium

on Theory of Computing (STOC), pages 609–618, 2008.

[16] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, infer-

ence channels, and monitoring disclosures. IEEE Transactions on Knowledge

and Data Engineering, 12:900–919, 2000.

[17] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In Pro-

ceedings of the ACM Conference on Computer and Communications Security

(CCS), pages 486–497, 2007.

[18] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal frequent itemset

algorithm for transactional databases. In Proceedings of the 17th IEEE Inter-

national Conference on Data Engineering (ICDE), pages 443 – 452, 2001.

[19] J. Cao, P. Karras, C. Raissi, and K.-L. Tan. ρ-uncertainty inference proof

transaction anonymization. In Proceedings of the 36st International Confer-

ence on Very Large Data Bases (VLDB), pages 1033–1044, 2010.

[20] D. M. Carlisle, M. L. Rodrian, and C. L. Diamond. California inpatient data

reporting manual, medical information reporting for california, 5th edition.

Technical report, Office of Statewide Health Planning and Development, July

2007.

[21] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and L. Xiong. Publishing

set-valued data via differential privacy. Proceedings of the VLDB Endowment,

4(2):1087–1098, 2011.

[22] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for pri-

vacy preserving distributed data mining. ACM SIGKDD Explorations Newslet-

ter, 4(2):28–34, 2002.

165

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press and McGraw-Hill, 2001.

[24] G. Cormode, D. Srivastava, N. Li, and T. Li. Minimizing minimality and max-

imizing utility: Analyzing methodbased attacks on anonymized data. Proceed-

ings of the VLDB Endowment, 3(1-2):1045–1056, 2010.

[25] D.E. Denning and J. Schlorer. Inference controls for statistical databases.

IEEE Computer, 16(7):69 – 82, 1983.

[26] I. Dinur and K. Nissim. Revealing information while preserving privacy.

In Proceedings of the 22th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS), pages 202–210, 2003.

[27] W. L. Du. A study of several specific secure two-party computation problems.

PhD thesis, Purdue University, West Lafayette, Indiana, 2001.

[28] C. Dwork. Differential privacy. In Proceedings of the 33rd International

Conference on Automata, Languages and Programming (ICALP), pages 1–12,

2006.

[29] C. Dwork. A firm foundation for private data analysis. Commun. ACM,

54(1):86–95, 2011.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensi-

tivity in private data analysis. In Proceedings of the 3rd conference on Theory

of Cryptography (TCC), pages 265–284, 2006.

[31] A. Evfimievski. Randomization in privacy-preserving data mining. ACM

SIGKDD Explorations Newsletter, 4(2):43–48, December 2002.

166

[32] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy

preserving data mining. In Proceedings of the 22nd ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (PODS), pages 211–

222, 2003.

[33] C. Farkas and S. Jajodia. The inference problem: A survey. ACM SIGKDD

Explorations Newsletter, 4(2):6–11, 2003.

[34] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[35] A. Friedman and A. Schuster. Data mining with differential privacy. In Pro-

ceedings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (SIGKDD), pages 493–502, 2010.

[36] W. A. Fuller. Masking procedures for microdata disclosure limitation. Official

Statistics, 9(2):383–406, 1993.

[37] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data pub-

lishing: A survey of recent developments. ACM Computing Surveys, 42(4):1–

53, June 2010.

[38] B. C. M. Fung, Ke Wang, and P. S. Yu. Anonymizing classification data for

privacy preservation. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 19(5):711–725, May 2007.

[39] S. R. Ganta, S. Kasiviswanathan, and A. Smith. Composition attacks and

auxiliary information in data privacy. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (SIGKDD), pages 265–273, 2008.

[40] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-

dimensional data. In Proceedings of the 24th IEEE International Conference

on Data Engineering (ICDE), pages 715–724, 2008.

167

[41] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Trajectory pattern

mining. In Proceedings of the 13th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (SIGKDD), pages 330–339, 2007.

[42] O. Goldreich. Foundations of Cryptography, volume 1. Cambridge University

Press, 2001.

[43] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game -

a completeness theorem for protocols with honest majority. In Proceedings of

the 19th ACM Symposium on Theory of Computing (STOC), pages 218–229,

1987.

[44] H. Gonzalez, J. Han, and X. Li. Mining compressed commodity workflows

from massive RFID data sets. In Proceedings of the 15th ACM International

Conference on Information and Knowledge Management (CIKM), pages 162–

171, 2006.

[45] M. Hardt and K. Talwar. On the geometry of differential privacy. In Proceed-

ings of the 42nd ACM Symposium on Theory of computing (STOC), pages

705–714, 2010.

[46] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of

differentially private histograms through consistency. Proceedings of the VLDB

Endowment, 3(1-2):1021–1032, 2010.

[47] Y. He and J. F. Naughton. Anonymization of set-valued data via top-down,

local generalization. Proceedings of the VLDB Endowment, 2(1):934–945, Au-

gust 2009.

[48] T. Hinke. Inference aggregation detection in database management systems.

In Proceedings of the IEEE Symposium on Security and Privacy (S&P), pages

96–106, 1988.

168

[49] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Preserving privacy in GPS

traces via uncertainty-aware path cloaking. In Proceedings of the 14th ACM

Conference on Computer and Communications Security (CCS), pages 161–

171, 2007.

[50] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino. Private record matching

using differential privacy. In Proceedings of the 13th International Conference

on Extending Database Technology (EDBT), pages 123–134, 2010.

[51] V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proceedings

of the 8th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (SIGKDD), pages 279–288, 2002.

[52] W. Jiang and C. Clifton. Privacy-preserving distributed k-anonymity. In

Proceedings of the 19th Annual IFIP WG 11.3 Working Conference on Data

and Applications Security (BDSec), pages 166–177, August 2005.

[53] W. Jiang and C. Clifton. A secure distributed framework for achieving k-

anonymity. Very Large Data Bases Journal (VLDBJ), 15(4):316–333, Novem-

ber 2006.

[54] X. Jin, N. Zhang, and G. Das. Algorithm-safe privacy-preserving data pub-

lishing. In Proceedings of the 13th International Conference on Extending

Database Technology (EDBT), pages 633–644, 2010.

[55] A. Juels. RFID security and privacy: a research survey. IEEE Journal on

Selected Areas in Communications (J-SAC), 24(2):381– 394, 2006.

[56] P. Jurczyk and L. Xiong. Distributed anonymization: Achieving privacy for

both data subjects and data providers. In Proceedings of the 23rd Annual IFIP

WG 11.3 Working Conference on Data and Applications Security (DBSec),

pages 191–207, 2009.

169

[57] S. P. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. The price

of privately releasing contingency tables and the spectra of random matrices

with correlated rows. In Proceedings of the 42nd ACM Symposium on Theory

of Computing (STOC), pages 775–784, 2010.

[58] D. Kifer. Attacks on privacy and de finetti’s theorem. In Proceedings of

the 35th ACM SIGMOD International Conference on Management of Data

(SIGMOD), pages 127–138, 2009.

[59] D. Kifer and B. Lin. Towards an axiomatization of statistical privacy and util-

ity. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems (PODS), pages 147–158, 2010.

[60] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In Proceedings

of the ACM Conference on Management of Data (SIGMOD), 2011.

[61] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-

domain k-anonymity. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data (SIGMOD), pages 49–60, 2005.

[62] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional

k-anonymity. In Proceedings of the 22nd International Conference on Data

Engineering (ICDE), 2006.

[63] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymiza-

tion techniques for large-scale data sets. ACM Transactions on Database Sys-

tems (TODS), 33(3):17:1–17:47, 2008.

[64] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear

counting queries under differential privacy. In Proceedings of the 29th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems

(PODS), pages 123–134, 2010.

170

[65] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-

anonymity and �-diversity. In Proceedings of the 23rd IEEE International

Conference on Data Engineering (ICDE), pages 106 – 115, 2007.

[66] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryp-

tology, 15(3):177–206, 2002.

[67] G. Loukides, J. Denny, and B. Malin. The disclosure of diagnosis codes can

breach research participants’ privacy. Journal of the American Medical Infor-

matics Association, 17(3):322–327, 2010.

[68] C. Luo and S.M. Chung. A scalable algorithm for mining maximal frequent

sequences using sampling. In Proceedings of the 16th IEEE International Con-

ference on Tools with Artificial Intelligence (ICTAI), pages 156–165, 2004.

[69] A. Machanavajjhala, J. Gehrke, and M. Gotz. Data publishing against realistic

adversaries. Proceedings of the VLDB Endowment, 2(1):790–801, 2009.

[70] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. �-

diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge

Discovery from Data (TKDD), 1(1), 2007.

[71] B. Malin, K. Benitez, and D. Masys. Never too old for anonymity: A statistical

standard for demographic data sharing via the hipaa privacy rule. Journal of

the American Medical Informatics Association, 18(1):3–10, 2011.

[72] F. M. Malvestuto, M. Mezzini, and M. Moscarini. Auditing sum-queries to

make a statistical database secure. ACM Transactions on Information and

System Security, 9(1):31–60, 2006.

171

[73] D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Halpern. Worst-

case background knowledge in privacy-preserving data publishing. In Proceed-

ings of the 23rd IEEE International Conference on Data Engineering (ICDE),

pages 126 – 135, 2007.

[74] F. McSherry. Privacy integrated queries. In Proceedings of the 35th SIGMOD

International Conference on Management of Data (SIGMOD), pages 19–30,

2009.

[75] F. McSherry and I. Mironov. Differentially private recommender systems:

building privacy into the net. In Proceedings of the 15th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining (SIGKDD),

pages 627–636, 2009.

[76] F. McSherry and K. Talwar. Mechanism design via differential privacy. In

Proceedings of the 48th IEEE Symposium on Foundations of Computer Science

(FOCS), pages 94–103, 2007.

[77] N. Mohammed, R. Chen, B. C. M. Fung, and P. S. Yu. Differentially private

data release for data mining. In Proceedings of the 17th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining (SIGKDD),

pages 493–501, 2011.

[78] N. Mohammed, B. C. M. Fung, and M. Debbabi. Walking in the crowd:

Anonymizing trajectory data for pattern analysis. In Proceedings of the 18th

ACM Conference on Information and Knowledge Management (CIKM), pages

1441–1444, 2009.

[79] N. Mohammed, B. C. M. Fung, and M. Debbabi. Anonymity meets game

theory: secure data integration with malicious participants. Journal on Very

Large Data Bases (VLDBJ), 20(4):567–588, 2011.

172

[80] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C. Lee. Anonymizing

healthcare data: A case study on the blood transfusion service. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (SIGKDD), pages 1285–1294, 2009.

[81] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C. Lee. Centralized

and distributed anonymization for high-dimensional healthcare data. ACM

Transactions on Knowledge Discovery from Data (TKDD), 4(4):18:1–18:33,

2010.

[82] N. Mohammed, B. C. M. Fung, K. Wang, and P. C. K. Hung. Privacy-

preserving data mashup. In Proceedings of the 12th International Conference

on Extending Database Technology (EDBT), pages 228–239, 2009.

[83] D. Molnar and D. Wagner. Privacy and security in library RFID issues, prac-

tices, and architectures. In Proceedings of the 11th ACM Conference on Com-

puter and Communications Security (CCS), pages 210–219, 2004.

[84] M. Naor and B. Pinkas. Efficient oblivious transfer protocol. In Proceedings

of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 448–457, 2001.

[85] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse

datasets. In Proceedings of the IEEE Symposium on Security and Privacy

(S&P), pages 111–125, 2008.

[86] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Proceedings of the 17th International Conference on Theory and

Application of Cryptographic Techniques, pages 223–238, 1999.

173

[87] H. Park and K. Shim. Approximation algorithms for k-anonymity. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of

Data (SIGMOD), pages 67–78, 2007.

[88] R. G. Pensa, A. Monreale, F. Pinelli, and D. Pedreschi. Pattern-preserving

k-anonymization of sequences and its application to mobility data mining. In

International Workshop on Privacy in Location-Based Applications, 2008.

[89] B. Pinkas. Cryptographic techniques for privacy-preserving data mining. ACM

SIGKDD Explorations Newsletter, 4(2):12–19, January 2002.

[90] R. A. Popa, A. Blumberg, H. Balakrishnan, and F. Li. Privacy and account-

ability for location-based aggregate statistics. In Proceedings of the 18th ACM

Conference on Computer and Communications Security (CCS), pages 653–

666, 2011.

[91] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[92] V. Rastogi, D. Suciu, and S. Hong. The boundary between privacy and utility

in data publishing. In Proceedings of the 33rd International Conference on

Very Large Data Bases (VLDB), pages 531–542, 2007.

[93] A. Roth and T. Roughgarden. Interactive privacy via the median mechanism.

In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC),

pages 765–774, 2010.

[94] P. Samarati. Protecting respondents’ identities in microdata release. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 13(6):1010–1027,

2001.

[95] B. Schneier. Applied Cryptography. 2nd edn. John Wiley & Sons, 1995.

174

[96] L. Sweeney. k-anonymity: A model for protecting privacy. In International

Journal on Uncertainty, Fuzziness and Knowledge-based Systems, volume 10,

pages 557–570, 2002.

[97] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of

trajectories. In Proceedings of the The 9th International Conference on Mobile

Data Management (MDM), pages 65–72, 2008.

[98] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization

of set-valued data. Proceedings of the VLDB Endowment, 1(1):115–125, 2008.

[99] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding methods

for anonymizing set-valued data. Journal on Very Large Data Bases (VLDBJ),

20(1):83–106, 2011.

[100] B. M. Thuraisingham. Security checking in relational database management

systems augmented with inference engines. Computers and Security, 6(6):479–

492, 1987.

[101] J. Vaidya and C. Clifton. Privacy preserving association rule mining in verti-

cally partitioned data. In Proceedings of the 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 639–

644, 2002.

[102] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically

partitioned data. In Proceedings of the 11th ACM SIGKDD International

Conference on Knowledge Discovery in Data Mining (SIGKDD), pages 593–

599, 2005.

[103] K. Wang, B. C. M. Fung, and P. S. Yu. Handicapping attacker’s confidence: An

alternative to k-anonymization. Knowledge and Information Systems (KAIS),

11(3):345–368, 2007.

175

[104] K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: a data

mining solution to privacy protection. In Proceedings of the 4thth IEEE In-

ternational Conference on Data Mining (ICDM), pages 249–256, 2004.

[105] S.-W. Wang, W.-H. Chen, C.-S. Ong, L. Liu, and Y.W. Chuang. RFID ap-

plications in hospitals: a case study on a demonstration RFID project in a

taiwan hospital. In Proceedings of the 39th Hawaii International Conference

on System Sciences (HICSS), 2006.

[106] R. C. W. Wong, A. W. C. Fu, K. Wang, and J. Pei. Minimality attack in

privacy preserving data publishing. In Proceedings of the 33rd International

Conference on Very Large Data Bases (VLDB), pages 543–554, 2007.

[107] R. C. W. Wong, A. W. C. Fu, K. Wang, Y. Xu, and P. S. Yu. Can the utility

of anonymized data be used for privacy breaches? ACM Transactions on

Knowledge Discovery from Data (TKDD), 5:16:1–16:24, 2011.

[108] R. C. W. Wong, J. Li., A. W. C. Fu, and K. Wang. (α,k)-anonymity: An

enhanced k-anonymity model for privacy preserving data publishing. In Pro-

ceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (SIGKDD), pages 754–759, 2006.

[109] R. Wright and Z. Yang. Privacy-preserving bayesian network structure com-

putation on distributed heterogeneous data. In Proceedings of the ACM In-

ternational Conference on Knowledge Discovery and Data Mining (SIGKDD),

pages 713–718, 2004.

[110] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation. In

Proceedings of the 32nd International Conference on Very Large Data Bases

(VLDB), pages 139–150, 2006.

176

[111] X. Xiao and Y. Tao. Personalized privacy preservation. In Proceedings of

the 2006 ACM SIGMOD International Conference on Management of Data

(SIGMOD), pages 229–240, 2006.

[112] X. Xiao, Y. Tao, and N. Koudas. Transparent anonymization: Thwarting

adversaries who know the algorithm. ACM Transactions on Database Systems

(TODS), 35(2), 2010.

[113] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms.

In Proceedings of the 26th IEEE International Conference on Data Engineering

(ICDE), pages 225 – 236, 2010.

[114] X. Xiao, K. Yi, and Y. Tao. The hardness and approximation algorithms for

l-diversity. In Proceedings of the 13th International Conference on Extending

Database Technology (EDBT), pages 135–146, 2010.

[115] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data release through

multidimensional partitioning. In Proceedings of the 7th VLDB Workshop on

Secure data management (SDM), pages 150–168, 2010.

[116] Y. Xu, B. C. M. Fung, K. Wang, A. W. C. Fu, and J. Pei. Publishing sensi-

tive transactions for itemset utility. In Proceedings of the IEEE International

Conference on Data Mining (ICDM), pages 1109–1114, 2008.

[117] Y. Xu, K. Wang, A. W. C. Fu, and P. S. Yu. Anonymizing transaction

databases for publication. In Proceedings of the 14th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (SIGKDD),

pages 767–775, 2008.

[118] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving classification of

customer data without loss of accuracy. In Proceedings of the 5th SIAM In-

ternational Conference on Data Mining (SDM), 2005.

177

[119] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd IEEE

Symposium on Foundations of Computer Science (FOCS), pages 160 – 164,

1982.

[120] R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, and W. H. Wang. Anonymizing

moving objects: How to hide a MOB in a crowd? In Proceedings of the 12th

International Conference on Extending Database Technology (EDBT), pages

72–83, 2009.

[121] L. Zhang, S. Jajodia, and A. Brodsky. Information disclosure under realistic

assumptions: Privacy versus optimality. In Proceedings of the 14th ACM Con-

ference on Computer and Communications Security (CCS), pages 573–583,

2007.

[122] K. Zhao, B. Liu, T. M. Tirpak, and W. Xiao. A visual data mining framework

for convenient identification of useful knowledge. In Proceedings of the 5th

IEEE International Conference on Data Mining (ICDM), pages 530–537, 2005.

178

