
Formalization of the Standard Uniform

Random Variable

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering,
Concordia University

Montreal, Quebec, H3G 1M8, Canada

Abstract

Continuous random variables are widely used to mathematically describe random
phenomenon in engineering and physical sciences. In this paper, we present a higher-
order logic formalization of the Standard Uniform random variable as the limit value
of the sequence of its discrete approximations. We then show the correctness of
this specification by proving the corresponding probability distribution properties
within the HOL theorem prover and the proof steps have been summarized. The
formalized Standard Uniform random variable can be transformed to formalize other
continuous random variables, such as Uniform, Exponential, Normal, etc., by using
various Non-uniform random number generation techniques. The formalization of
these continuous random variables will enable us to perform error free probabilistic
analysis of systems within the framework of a higher-order-logic theorem prover.
For illustration purposes, we present the formalization of the Continuous Uniform
random variable based on the formalized Standard Uniform random variable and
then utilize it to perform a simple probabilistic analysis of roundoff error in HOL.

Key words: Continuous Probability Distributions, Probabilistic Analysis, Formal
Verification, Theorem Proving, HOL Theorem Prover.

1 Introduction

The engineering and physical science approach to mastering the unavoidable
elements of randomness and uncertainty is to use random variables to mathe-

Email addresses: o hasan@ece.concordia.ca (Osman Hasan),
tahar@ece.concordia.ca (Sofiène Tahar).

Preprint submitted to Elsevier 9 March 2007

matically describe random phenomenon. Random variables are basically func-
tions that map random events to numbers. Every random variable gives rise
to a probability distribution, which contains most of the important informa-
tion about this random variable. The probability distribution of a random
variable X can be uniquely described by its cumulative distribution function
(CDF), which is defined by FX(x) = P(X ≤ x) for any real number x, where
P represents the probability. A distribution is called discrete if its CDF con-
sists of a sequence of finite jumps, which means that it belongs to a random
variable that can only attain values from a certain finite or countable set.
Similarly, a distribution is called continuous if its CDF is continuous, which
means that it belongs to a random variable that ranges over a continuous set
of real numbers. A continuous set of real numbers, sometimes referred to as
an interval, contains all real numbers between two limits. An interval can be
open (a,b) corresponding to the set {x|a < x < b}, closed [a,b] which repre-
sents the set {x|a ≤ x ≤ b}, or half-open (a,b], [a,b). Continuous probability
distributions are widely used to mathematically describe random phenomenon
in engineering and scientific applications. For example, Continuous Uniform
distribution is used to model quantization errors in computer arithmetic appli-
cations [25], Exponential distribution occurs in applications such as queuing
theory to model interarrival and service times and Normal distribution is
extensively used to model signals in data transmission and digital signal pro-
cessing systems [24].

Today, simulation is the most commonly used computer based probabilistic
analysis technique. Most simulation softwares provide a programming environ-
ment for defining functions that approximate random variables for probability
distributions. The random elements in a given system are modeled by these
functions and the system is analyzed using computer simulation techniques [5],
such as the Monte Carlo Method [16], where the main idea is to approximately
answer a query on a probability distribution by analyzing a large number of
samples. Due to these approximations the results can be quite unreliable at
times. It is a common occurrence that different software packages come up
with different solutions to the same probabilistic problem. This unreliability
mainly arises because of three major reasons. First, the primary source of ran-
domness in these simulation based packages is pseudorandom numbers [14].
Secondly, functions for evaluating probability distributions are approximated
using a variety of efficient but less accurate numerical methods [13]. Finally,
like all computer based computations, roundoff and truncation errors also
creep into the numerical computations conducted in these simulation based
software packages. In [17], McCullough proposed a collection of intermediate-
level tests for assessing the numerical reliability of a statistical package and
uncovered flaws in most of the mainframe statistical packages, e.g., [18]. These
unreliable results pose a serious problem in safety critical applications, such as
space travel, military and medicine, where a mismatch between the predicted
and the actual system performance may result in either inefficient usage of

2

the available resources or paying higher costs to meet some performance or
reliability criteria unnecessarily. Another major limitation of simulation based
probabilistic analysis is the enormous amount of CPU time requirement for
attaining meaningful estimates. This approach generally requires hundreds of
thousands of simulations to calculate the probabilistic quantities and becomes
impractical when each simulation step involves extensive computations.

As an alternative to simulation techniques, we propose to use higher-order
logic interactive theorem proving [7] for probabilistic analysis. Higher-order
logic is a system of deduction with a precise semantics and can be used for
the development of almost all classical mathematics theories. Interactive theo-
rem proving is the field of computer science and mathematical logic concerned
with computer based formal proof tools that require some sort of human assis-
tance. We believe that probabilistic analysis can be performed by specifying
the behavior of systems which exhibit randomness in higher-order logic and
formally proving the intended probabilistic properties within the environment
of an interactive theorem prover. The probabilistic analysis carried out in this
way will be free from approximation and precision issues, and the accuracy of
the results will be independent of the CPU time.

The foremost criteria for implementing a formalized probabilistic analysis
framework is to be able to formalize random variables in higher-order logic.
Hurd’s PhD thesis [12] can be considered a pioneering work in this regard as it
presents a methodology for the formalization of probabilistic algorithms in the
higher-order-logic (HOL) theorem prover [8]. Random variables are basically
probabilistic algorithms and Hurd formalized some discrete random variables
in [12]. On the other hand, to the best of our knowledge no higher-order logic
formalization of continuous random variables exists in the literature so far. In
this paper, we show how to extend Hurd’s formalization framework for the for-
malization of continuous random variables using Non-uniform random number
generation methods [5]. The main advantage of this approach is that only one
continuous random variable needs to be formalized from scratch, i.e., the Stan-
dard Uniform random variable. Other continuous random variables can then
be formalized by using the definition of Standard Uniform random variable
and formalizing the corresponding Non-uniform random number generation
method.

The rest of the paper is organized as follows: In Section 2, we provide some
preliminaries including a brief introduction to the HOL theorem prover and
an overview of Hurd’s methodology for the formalization of probabilistic al-
gorithms in HOL. In Section 3, we formally specify the Standard Uniform
random variable in the HOL theorem prover as the limit value of a discrete
uniform random variable in the interval [0, 1−(1

2
)n]. In Section 4, we verify the

correctness of the above specification by proving its corresponding probabil-
ity distribution properties. In order to illustrate the fact that the formalized

3

Standard Uniform random variable can be utilized to formalize other con-
tinuous random variables using Non-uniform random number methods, we
formally specify and verify the Continuous Uniform random variable in Sec-
tion 5. Then in Section 6, we present the process of evaluating probabilistic
quantities within the HOL theorem prover by considering a simplified proba-
bilistic analysis example of roundoff error in a digital processor. We present a
review of related work in the open literature in Section 7 and finally conclude
the paper in Section 8.

2 Preliminaries

In this section we give a brief introduction to the HOL theorem prover and
present an overview of Hurd’s methodology for the formalization of proba-
bilistic algorithms proposed in [12]. The intent is to introduce the main ideas
along with some notation that is going to be used in the coming sections.

2.1 HOL Theorem Prover

The HOL theorem prover is an interactive theorem prover which is capable of
conducting proofs in higher-order logic. It utilizes the simple type theory of
Church [3] along with Hindley-Milner polymorphism [19] to implement higher-
order logic. HOL has been successfully used as a verification framework for
both software and hardware as well as a platform for the formalization of
pure mathematics. It supports the formalization of various mathematical the-
ories including sets, natural numbers, real numbers, measure and probability.
The HOL theorem prover includes many proof assistants and automatic proof
procedures. The user interacts with a proof editor and provides it with the
necessary tactics to prove goals while some of the proof steps are solved au-
tomatically by the automatic proof procedures.

In order to ensure secure theorem proving, the logic in the HOL system is rep-
resented in the strongly-typed functional programming language ML [21]. The
ML abstract data types are then used to represent higher-order-logic theorems
and the only way to interact with the theorem prover is by executing ML pro-
cedures that operate on values of these data types. Users can prove theorems
using a natural deduction style by applying inference rules to axioms or previ-
ously generated theorems. The HOL core consists of only basic 5 axioms and 8
primitive inference rules, which are implemented as ML functions. Soundness
is assured as every new theorem must be created from these basic axioms and
primitive inference rules or any other pre-existing theorems/inference rules.

4

We selected the HOL theorem prover for the proposed formalization mainly
because of its inherent soundness and ability to handle higher-order logic and
in order to benefit from the built-in mathematical theories for measure and
probability. The table below summarizes some of the HOL symbols used in
this paper and their corresponding mathematical interpretation [8].

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or

∼ t ¬t Not t

num {0, 1, 2, . . .} Natural data type

real All Real numbers Real data type

SUC n n + 1 Successor of a num

λx.t λx.t Function that maps x to t(x)

{x|P (x)} {λx.P (x)} Set of all x that satisfy the condition P

(a, b) a x b A mathematical pair of two elements
Table 1
HOL Symbols

2.2 Verifying Probabilistic Algorithms in HOL

Hurd [12] proposed to formalize the probabilistic algorithms in higher-order
logic by thinking of them as deterministic functions with access to an infinite
Boolean sequence B∞; a source of infinite random bits. These deterministic
functions make random choices based on the result of popping the top most
bit in the infinite Boolean sequence and may pop as many random bits as
they need for their computation. When the algorithms terminate, they return
the result along with the remaining portion of the infinite Boolean sequence
to be used by other programs. Thus, a probabilistic algorithm which takes a
parameter of type α and ranges over values of type β can be represented in
HOL by the function

F : α → B∞ → β ×B∞

For example, a Bernoulli(1
2
) random variable that returns 1 or 0 with equal

probability 1
2

can be modeled as follows

` bit = λs. (if shd s then 1 else 0, stl s)

5

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The function bit accepts
the infinite Boolean sequence and returns a random number, which is either
0 or 1 together with a sequence of unused Boolean sequence, which in this
case is the tail of the sequence. The above methodology can be used to model
most probabilistic algorithms. All probabilistic algorithms that compute a
finite number of values equal to 2n, each having a probability of the form m

2n :
where m represents the hol data type nat and is always less than 2n, can be
modeled, using Hurd’s framework, by well-founded recursive functions. The
probabilistic algorithms that do not satisfy the above conditions but are sure
to terminate can be modeled by the probabilistic while loop proposed in [12].

The probabilistic programs can also be expressed in the more general state-
transforming monad where the states are the infinite Boolean sequences.

` ∀ a,s. unit a s = (a,s)

` ∀ f,g,s. bind f g s = let (x,s’)← f(s) in g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All the monad laws hold for this
definition, and the notation allows us to write functions without explicitly
mentioning the sequence that is passed around, e.g., function bit can be defined
as

` bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).

Hurd [12] also formalized some mathematical measure theory in HOL in order
to define a probability function P from sets of infinite Boolean sequences to
real numbers between 0 and 1. The domain of P is the set E of events of the
probability. Both P and E are defined using the Carathéodory’s Extension
theorem, which ensures that E is a σ-algebra: closed under complements and
countable unions. The formalized P and E can be used to derive the basic laws
of probability in the HOL prover, e,g., the additive law, which represents the
probability of two disjoint events as the sum of their probabilities:

` ∀ A B. A ∈ E ∧ B ∈ E ∧ A ∩ B = ∅ ⇒
P(A ∪ B) = P(A) + P(B)

The formalized P and E can also be used to prove probabilistic properties for
probabilistic programs such as

` P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair.

6

The measurability of a function is an important concept in probability theory
and also a useful practical tool for proving that sets are measurable [2]. In
Hurd’s formalization of probability theory, a set of infinite Boolean sequences,
S, is said to be measurable if and only if it is in E , i.e., S ∈ E . Since the
probability measure P is only defined on sets in E , it is very important to
prove that sets that arise in verification are measurable. Hurd [12] showed that
a function is guaranteed to be measurable if it accesses the infinite boolean
sequence using only the unit, bind and sdest primitives and thus leads to
only measurable sets.

Hurd formalized four discrete random variables and proved their correctness by
proving the corresponding Probability Mass Functions (PMF) properties [12].
Because of their discrete nature, all these random variables either compute a
finite number of values or are sure to terminate. Thus, they can be expressed
using Hurd’s methodology by either well formed recursive functions or the
probabilistic while loop [12]. On the other hand, continuous random variables
always compute an infinite number of values and therefore would require all
the random bits in the infinite Boolean sequence if they are to be represented
using Hurd’s methodology. The corresponding deterministic functions cannot
be expressed by either recursive functions or the probabilistic while loop and it
is mainly for this reason that the specification of continuous random variables
needs to be handled differently than their discrete counterparts.

3 Specification of Standard Uniform Random Variable in HOL

In this section, we present a formal specification of the Standard Uniform ran-
dom variable in HOL. Standard Uniform random variable can be formalized in
a number of different ways using the various formal semantics of probabilistic
programs available in the literature of theoretical computer science. In order
to minimize the effort and speed up the formalization process, our intent is to
find a solution that enables us to build upon the existing work of Hurd [12].

Standard Uniform random variable is a continuous random variable for which
the probability that it will belong to a subinterval of [0,1] is proportional to
the length of that subinterval. It can be characterized by the CDF as follows:

P(X ≤ x) =

0 if x < 0;

x if 0 ≤ x < 1;

1 if 1 ≤ x.

(1)

It is a well known mathematical fact, see [6] for example, that a Standard

7

Uniform random variate can be modeled by an infinite sequence of random
bits (informally coin flips) as follows

∞∑

k=0

(
1

2
)k+1Xk (2)

where, Xk denotes the outcome of the kth random bit; true or false rep-
resented as 1 or 0 respectively. The mathematical relation of Equation (2)
presents a sampling algorithm for the Standard Uniform random variable
which is quite consistent with Hurd’s formalization methodology, i.e, it al-
lows us to model the Standard Uniform random variable by a deterministic
function with access to the infinite Boolean sequence. The specification of this
sampling algorithm in higher-order logic is not very straight forward though.
Due to the infinite sampling, it cannot be modeled by either of the approaches
proposed in [12], i.e., a recursive function or the probabilistic while loop. We
approach this problem by splitting the corresponding mathematical relation
into two steps. The first step is to mathematically represent a discrete version
of the Standard Uniform random variable

(λn.
n−1∑

k=0

(
1

2
)k+1Xk) (3)

This lambda abstraction function accepts a natural number n and generates
an n-bit Standard Uniform random variable using the computation principle
of Equation (2). The continuous Standard Uniform random variable can now
be represented as a special case of Equation (3) when n tends to infinity

lim
n→∞(λn.

n−1∑

k=0

(
1

2
)k+1Xk) (4)

The advantage of expressing the sampling algorithm of Equation (2) in these
two steps is that now it can be specified in HOL. The mathematical relation-
ship of Equation (3) can be specified in HOL by a recursive function using
Hurd’s methodology as it consumes a finite number of random bits, i.e., n.
Then, the formalization of the mathematical concept of limit of a real sequence
[10] in HOL can be used to specify the mathematical relation of Equation (4).

Next, we present the HOL formalization of the above steps. We first formal-
ize a discrete Standard Uniform random variable that produces any one of
the equally spaced 2n dyadic rationals in the interval [0, 1 − (1

2
)n] with the

same probability (1
2
)n. This random variable is specified in HOL as a recursive

function using Hurd’s formalization framework of Section 2.2.

8

Definition 1:

` (std unif disc 0 = unit 0) ∧
∀ n. (std unif disc (SUC n) =

bind (std unif disc n)

(λm. bind sdest

(λb. unit (if b then ((1
2
)n+1 + m) else m))))

The function, std unif disc, models an n-bit discrete Standard Uniform ran-
dom variable based on the principle of Equation (2) by simply converting the
first n random bits B0, B1, B2, . . . Bn−1 of the infinite Boolean sequence to their
equivalent real number with the binary representation 0.B0B1B2 . . . Bn−1. It
returns a pair such that the first component is the n-bit discrete Standard
Uniform random variable and the second component is the unused portion of
the infinite Boolean sequence. The following properties for the discrete Stan-
dard Uniform random variable may be proved by induction on its argument
n

Lemma 1:

` ∀ n,s. 0 ≤ fst(std unif disc n s) ≤ 1 - (1
2
)n

Lemma 2:

` ∀ m,n,x. P{s | fst(std unif disc n s) ≤ x} =

if (x < 0) then 0 else

if (x ≥ 1) then 1 else

if (x = m
2n) then SUCm

2n

else 0

Lemma 3:

` ∀ m,n,x. P{s | fst(std unif disc n s) = x} =

if (x < 0) then 0 else

if (x ≥ 1) then 0 else

if (x = m
2n) then 1

2n

else 0

The term m
2n in Lemmas 2 and 3 represents all the dyadic rationals in the

interval [0, 1 − (1
2
)n] since the variable m belongs to the HOL datatype num

for natural numbers {0, 1, 2, · · · }. Collectively Lemmas 1, 2 and 3, illustrated in
Figure 1, formally prove that the first component of the function std unif disc
is a discrete uniform random variable.

The function std unif disc can now be used to model the real sequence of
Equation (3). We proved in HOL that this sequence is convergent, i.e., it
approaches a unique value when n tends to infinity.

Lemma 4:

` ∀ s. convergent (λn. fst(std unif disc n s))

9

Fig. 1. CDF and PMF for std unif disc

where, convergent represents the HOL function of a convergent real sequence
[10]. Based on Lemma 4, we are able to formally specify the Standard Uniform
random variable in HOL according to Equation (4).

Definition 2:

` ∀ s. std unif cont s = lim (λn. fst(std unif disc n s))

where, lim M represents the HOL formalization of the limit of a real se-
quence M (i.e., lim

n→∞M(n) = lim M) [10]. The following properties may be

proved using the real analysis theorems [10] and the function definition for
std unif disc.

Lemma 5:

` ∀ s. 0 ≤ std unif cont s ≤ 1

Lemma 6:

` ∀ s,n. fst(std unif disc n s) ≤
std unif cont s ≤

fst(std unif disc n s)+(1
2
)n

Lemma 5 formally shows that the value for the function std unif cont always
lies in the real interval [0,1]. The minimum and maximum values of 0 and 1
correspond to the cases when all the elements of the infinite Boolean sequence s
are False or True respectively. Lemma 6 highlights the relationship between the
values of the first component of the function std unif disc and the function
std unif cont, i.e., if the value for the former is a, then the value of the later
lies in the interval [a, a + (1

2
)n].

(fst(std unif disc n s) = a) ⇒
(a ≤ (std unif cont s) ≤ a + (

1

2
)n)

(5)

10

4 Verification of Standard Uniform Random Variable in HOL

In this section, we verify the correctness of the proposed specification of the
Standard Uniform random variable using its probability distribution proper-
ties. We present the major lemmas and theorems regarding this verification in
this paper and more details can be found in [11].

The CDF of a random variable represents the probability that its value is
less than or equal to some real number x and is a distinguishing character-
istic for all random variables. We formally verify in HOL that the function
std unif cont correctly models the Standard Uniform random variable by
proving its CDF to be equal to the theoretical CDF of a Standard Uniform
random variable.

P{s | std unif cont s ≤ x} =

0 if x < 0;

x if 0 ≤ x < 1;

1 if 1 ≤ x.

(6)

The proof for the cases (x<0) and (1≤x) is a straightforward implication of
Lemma 5 which states that for all infinite Boolean sequences the value of
the function std unif cont lies in the interval [0,1]. The probability that the
function std unif cont acquires a value less than 0 is 0 as there is no infinite
Boolean sequence that satisfies this condition. Similarly, the probability that
the function std unif cont acquires a value less than or equal to 1 is 1 since
all infinite Boolean sequences fulfill this condition.

Lemma 7:

` ∀ x. (x < 0) ⇒ P{s | fst(std unif cont s) ≤ x} = 0

Lemma 8:

` ∀ x. (1 ≤ x) ⇒ P{s | fst(std unif cont s) ≤ x} = 1

Evaluating the probability of Equation (6) for the interval [0,1) is a surpris-
ingly difficult problem in the HOL theorem prover. However, given that we
have evaluated the CDF for the first component of the function std unif disc,
which represents a discrete Standard Uniform random variable, a reason-
able approach is to find a discrete approximation to the CDF of the func-
tion std unif cont, which represents the Standard Uniform random variable.
The key to this approach is to be able to express the CDF of the function
std unif cont in terms of the CDF of the first component of the function
std unif disc. In order to do this, we need to identify the closest values of the
first component of the function std unif disc corresponding to any given value
of the function std unif cont. We known from Lemmas 1, 2 and 3 that the

11

first component of the function std unif disc generates dyadic rationals with
denominator 2n in the interval [0, 1 − (1

2
)n]. On the other hand, the function

std unif cont can attain any real value in the interval [0,1]. Therefore, the two
values of the first component of the function std unif disc that are closest to
any given value, say y, of the function std unif cont are the two consecutive
dyadic rationals (with denominators 2n) such that the smaller dyadic rational
is less than y and the greater dyadic rational is greater than or equal to y. The
mathematical concept of ceiling, that represents the smallest integer number
greater than or equal to a real number, can be used in identifying these dyadic
rationals. We proved in HOL that for any positive real number y the above
mentioned dyadic rationals are d2nye−1

2n and d2nye
2n

Lemma 9:

` ∀ n,y. (0 ≤ y) ⇒ d2nye−1
2n < y ≤ d2nye

2n

where, dze denotes our HOL definition for the ceiling function that returns
the smallest num value greater than or equal to its real argument z.

Now we will show how to express the CDF of the function std unif cont in
terms of the CDF of the first component of the function std unif disc using
the above dyadic rationals. It is important to note that the set {s |fst(std unif
disc n s) ≤ m

2n} contains all the infinite Boolean sequences for which the
value of the first n bits based on the algorithm implemented by the function
std unif disc is less than or equal to the dyadic rational m

2n . Using Equation
(5), we can say that the value produced by the algorithm implemented by the
function std unif cont, for any infinite Boolean sequence that is present in
the set {s | std unif disc n s ≤ m

2n}, must be less than or equal to m+1
2n . We

used this useful reasoning along with Lemma 9 to prove the following

Lemma 10:

` ∀ x,n. (0 ≤ x) ⇒
{s | fst(std unif disc n s) ≤ d2nxe−2

2n } ⊆
{s | std unif cont s ≤ x} ⊆

{s | fst(std unif disc n s) ≤ d2nxe
2n }

The first set {s | fst(std unif disc n s) ≤ d2nxe−2
2n }, based on the above

reasoning, contains all the infinite Boolean sequences for which the value pro-
duced by the algorithm implemented by the function std unif cont lies in the
interval [0, d2

nxe−1
2n]. This set is a subset of the set {s | std unif cont s ≤ x},

which contains all the infinite Boolean sequences for which the value produced
by the algorithm implemented by the function std unif cont lies in the interval
[0, x], as d2nxe−1

2n is always less than x according to Lemma 9. Similarly, the set
{s | std unif cont s ≤ x} is a subset of the set {s | fst(std unif disc n s) ≤
d2nxe

2n }, which contains all the infinite Boolean sequences for which the value
produced by the algorithm implemented by the function std unif cont lies in

12

the interval [0, d2
nxe+1
2n], as x is always less than or equal to d2nxe+1

2n according
to Lemma 9.

Lemma 10 and the monotonic property of the probability function P, formal-
ized in [12], which states that the probability of a measurable set is always
less than or equal to the probability of its measurable superset

` ∀ s t. measurable(s) ∧ measurable(t) ∧ s ⊆ t ⇒ P s ≤ P t (7)

can be used to obtain the required relationship between the CDFs of the
function std unif cont and the first component of the function std unif disc.
But, in order to use Equation (7), we must prove all the sets in Lemma 10 to
be measurable, i.e., they are in E . It has been shown in [12], that if a function
accesses the infinite boolean sequence using only the unit, bind and sdest

primitives then the function is guaranteed to be measurable and thus leads to
measurable sets. The function std unif disc satisfies this condition and thus
Hurd’s formalization framework can be used to prove

Lemma 11:

` ∀ x,n. measurable {s | fst (std unif disc n s) ≤ x}

On the other hand, the definition of the function std unif cont involves the
lim function and thus the corresponding sets can not be proved to be measur-
able in a very straight forward manner. Therefore, in order to prove this, we
leveraged the fact that each set in the sequence of sets (λn.{s | FST (std unif
disc n s) ≤ x}) is a subset of the set before it, in other words, this se-
quence of sets is a monotonically decreasing sequence. Thus, the countable
intersection of all sets in this sequence can be proved to be equal to the set
{s | std unif cont s ≤ x}

Lemma 12:

` ∀ x. {s | std unif cont s ≤ x} =⋂
n (λ n. {s | fst (std unif disc n s) ≤ x})

Now the set {s | std unif cont s ≤ x} can be proved to be measurable
since measurable sets are closed under countable intersections [12] and all the
sets in the sequence (λn.{s | fst(std unif disc n s) ≤ x}) are measurable
according to Lemma 11.

Lemma 13:

` ∀ x. measurable {s | std unif cont s ≤ x}

Lemmas 10, 11 and 13 along with Equation (7) can be used to obtain the
desired relationship between the CDFs. The result can be further simplified

13

by using the CDF relation for the first component of the function std unif disc
given in Lemma 2.

Lemma 14:

` ∀ x,n. (0 ≤ x) ∧ (x < 1) ⇒
d2nxe−1

2n ≤ P{s | std unif cont s ≤ x} ≤ d2nxe+1
2n

As n approaches infinity both the fractions in Lemma 11 approach x. This
fact led us to prove the CDF relation of Equation (6) for the interval [0,1) in
the HOL theorem prover. Now, Lemmas 7, 8 and 14 can be used to prove the
desired CDF property for the function std unif cont

Theorem 1:

` ∀ x. P{s | std unif cont s ≤ x} =

if (x < 0) then 0 else (if (x < 1) then x else 1)

Theorem 1 proves that the CDF of the function std unif cont is the same as
the theoretical value of the CDF for a Standard Uniform random variable given
in Equation (1) and thus is a formal argument to support the correctness of
the fact that the function std unif cont models a Standard Uniform random
variable.

Using similar reasoning as above, we also proved in the HOL theorem prover
that the PMF of the function std unif cont is equal to 0.

Theorem 2:

` ∀ x. P{s | std unif cont s = x} = 0

It follows from Theorem 2 that every outcome of the function std unif cont
has a probability 0; which is a unique characteristic of all continuous ran-
dom variables. Thus, Theorem 2 can be used to formally regard the function
std unif cont as a continuous random variable.

Theorems 1 and 2 along with the measurability proofs of the corresponding
sets allow us to formally reason about interesting probabilistic properties of
the Standard Uniform random variable within the HOL theorem prover. The
measurability of the sets {s | std unif cont s = x} and {s | std unif cont s ≤
x} can be used to prove that any set that involves a relational property
with the random variable std unif cont, e.g. {s | std unif cont s < x} and
{s | std unif cont s ≥ x}, is measurable because of the closed under comple-
ments and countable unions property of E . The CDF and the PMF property
proofs given in Theorems 1 and 2 along with the proofs of some basic proba-
bility laws [12] can then be used to determine the corresponding probabilistic
quantities.

14

5 Formalization of Continuous Uniform Distribution

The Standard Uniform random variable defined in the previous section can be
used to formalize other continuous probability distributions in the HOL the-
orem prover using Non-uniform random number generation techniques [5]. In
this section, we illustrate this by formalizing the Continuous Uniform random
variable in the HOL theorem prover.

Continuous Uniform random variable is a random variable for which the prob-
ability that it will belong to a subinterval of [a,b] is proportional to the length
of that subinterval. It can be characterized by the CDF as follows

P(X ≤ x) =

0 if x ≤ a;

x−a
b−a

if a < x ≤ b;

1 if b < x.

(8)

The process of obtaining random variates with arbitrary distributions using a
uniform random number generator (RNG) is termed as Non-uniform random
number generation. All computer based RNGs generate uniformly distributed
numbers [14] in the interval [0,1] and Non-uniform random generation methods
are quite commonly used in applications which call for other kinds of distri-
butions. One such commonly used method is the Inverse Transform method
(ITM) [5] that is used to generate random variates for any continuous prob-
ability distribution for which the inverse of the CDF can be expressed in a
closed mathematical form. The ITM is based on the following proposition:

Let U be a Standard Uniform random variable. For any continuous distri-
bution F, the random variable X defined by X = F−1(U) has distribution
F, where F−1(u) is defined to be that value of x such that F (x) = u.

A formal proof for the above proposition may be found in [5].

The Continuous Uniform [a,b] random variable can be formally specified using
the ITM since the inverse of its CDF exists in a closed mathematical form.

Definition 3:

` ∀ a,b,s.

uniform cont a b s = (b - a) * (std unif cont s) + a

The probabilistic function uniform cont accepts two real valued parame-
ters a, b and the infinite Boolean sequence s and returns a real number in
the interval [a,b]. It can be verified that the function uniform cont cor-
rectly models a Continuous Uniform random variable by proving its CDF

15

(P{s|uniform cont a b s ≤ x}) to be equal to the theoretical value given in
Equation (8).

The first step is to express the set {s| uniform cont a b s ≤ x} in such
a way that (std unif cont s) is the only term that remains on the left side
of the inequality. This can be done by using the definition of the function
uniform cont and some real number theorems in HOL

Lemma 15:

` ∀ a b x. {s | uniform cont a b s ≤ x} =

{s | std unif cont s ≤ x−a
b−a
}

The measurability of the set {s| uniform cont a b s ≤ x} can be proved using
Lemmas 13 and 15.

Lemma 16:

` ∀ a b x. measurable {s | uniform cont a b s ≤ x}

Similarly, the CDF of the random variable uniform cont can now be proved
using the PMF and CDF properties of the Standard Uniform random variable
proved in Theorem 1 and 2.

Theorem 3:

` ∀ a,b,x. (a < b) ⇒
P{s | uniform cont a b s ≤ x} =

if (x ≤ a) then 0 else (if (x ≤ b) then x−a
b−a

else 1)

Other continuous distributions, for which the inverse of the CDF can be ex-
pressed in a closed mathematical form such as Rayleigh(σ), Exponential(λ)
and Cauchy(a, b), can also be formally specified in the HOL theorem prover
in terms of the formalized Standard Uniform random variable according to
the ITM [5]. Their corresponding CDF properties can then be proved using
the formal proofs of PMF and CDF properties of the Standard Uniform ran-
dom variable as was demonstrated in the case of Continuous Uniform random
variable in this section.

6 Illustrative Example

In this section, we present a simplified probabilistic analysis example of round-
off error in a digital processor to illustrate how the proposed higher-order-logic
theorem proving based approach can be used to perform precise quantitative
analysis of probabilistic systems.

Consider the problem of determining the probability of the event when the

16

roundoff error in a digital processor fluctuates the actual value by ±4x10−12.
Assume that the roundoff error for this particular processor is uniformly dis-
tributed over the interval [-5x10−12, 5x10−12]. The formalized Continuous Uni-
form random variable of Section 5, represented by the function uniform cont,
can be used to determine this probability within the environment of the HOL
theorem prover. We use the measurability of the set {s| uniform cont a b s ≤
x}, proved in Lemma 16, along with the formalization of the the additive law
of probability, given in Section 2.2, and the set theory in HOL to prove

Lemma 17:

` ∀ a,b,x,y. (a < b) ⇒
P{s | (x ≤ uniform cont a b s) ∧

(uniform cont a b s ≤ y)} =

P{s | uniform cont a b s ≤ y} -

P{s | uniform cont a b s ≤ x}

Now, the CDF relation for the function uniform cont, that we proved in
Theorem 3, can be utilized to evaluate the probability under consideration by
specializing Lemma 17 for the case when a, b, x and y are equal to -5x10−12,
5x10−12, -4x10−12 and 4x10−12, respectively.

` P{s | (-4x10−12 ≤ uniform cont -5x10−12 5x10−12 s) ∧
(uniform cont -5x10−12 5x10−12 s ≤ 4x10−12)} = 0.8

Thus, we are able to able to determine the unknown probability with 100%
precision; a novelty which is not available in the simulation based approaches.
This added benefit comes at the cost of a significant amount of time and effort
spent, while formalizing the system behavior, by the user.

7 Related Work

Due to the vast application domain of continuous random variables, many re-
searchers around the world are trying to improve the modeling techniques for
continuous probability distributions in computer based environments. The ul-
timate goal is to come up with a probabilistic analysis framework that includes
robust and accurate analysis methods, has the ability to perform analysis for
large-scale problems and is easy to use. In this section, we provide a brief
account of the state-of-the-art and some related work in this field.

Hurd’s PhD thesis, reviewed in Section 2.2 of this paper, presents a method-
ology to formalize probabilistic algorithms in higher-order-logic. Hurd’s main
contributions include the formalization of the mathematical measure and prob-
ability theories along with the development of a framework to formalize prob-

17

abilistic algorithms in the HOL theorem prover. Hurd also presented the for-
malization of several discrete random variables but did not touch the topic
of formalizing continuous random variables, which has been the main topic
of discussion in the current paper. We have proposed to build upon Hurd’s
PhD thesis to formalize the continuous random variables so that the HOL
theorem prover can be used as a probabilistic analysis platform for systems
which exhibit continuous random behaviour.

A number of probabilistic languages, e.g., Probabilistic cc [9], λo [20] and
IBAL [22], have been proposed that are capable of modeling random vari-
ables. The probabilistic languages allow programmers to perform probabilistic
computations at the level of probability distributions by treating probability
distributions as primitive data types. These probabilistic languages are quite
expressive and have been successfully used to perform probabilistic analysis of
systems which exhibit continuous random behavior but they have their own
limitations. For example, either they require a special treatment such as the
lazy list evaluation strategy in IBAL and the limiting process in Probabilistic

cc or they do not support precise reasoning as in the case of λo. The proposed
theorem proving based approach, on the other hand, is not only capable of
formally expressing most continuous probability distributions but also to pre-
cisely reason about them.

It is interesting to note that one of the probabilistic languages, λo, proposed
by Park et. al in [20] is based on sampling functions. A sampling function
is defined as a mapping from the unit interval [0,1] to a probability domain
D. Given a random number drawn from a Standard Uniform distribution, it
returns a sample in D, and thus specifies a unique probability distribution.
Thus, this approach is very similar to what we have proposed in this pa-
per, as it also utilizes the Standard Uniform random variable to obtain other
continuous random variables. [20] contains sampling algorithms for various
continuous random variables which can be utilized to formalize the respective
random variables in the HOL theorem prover using our formalized Standard
Uniform random variable.

Another alternative for formal probabilistic verification is to use probabilistic
model checking techniques, e.g., [1], [23]. Like the traditional model checking,
it involves the construction of a precise mathematical model of the proba-
bilistic system which is then subjected to exhaustive analysis to verify if it
satisfies a set of formal properties. This approach is capable of providing pre-
cise solutions in an automated way; however it is limited for systems that can
only be expressed as a probabilistic finite state machine. Our proposed theo-
rem proving based approach, in contrast, is capable of handling all kinds of
probabilistic systems including the unbounded ones. Another major limitation
of the probabilistic model checking approach is the state space explosion [4],
which is not an issue with our approach.

18

Knuth and Yao [15] presented procedures that minimize the average number of
bits required to generate random numbers from arbitrary probability distribu-
tions in arbitrary systems of notation. This classical paper about Non-uniform
random number generation also covers the main ideas behind the formaliza-
tion that we have presented. An interesting topic for further research is to
utilize the formalized Standard Uniform random variable to formalize Knuth
and Yao’s results in the HOL theorem prover.

8 Conclusions

We have presented a formalization methodology for the Standard Uniform
random variable in higher-order logic. We also demonstrated that the for-
malized Standard Uniform random variable can be used in conjunction with
Non-uniform random number generation methods to formalize other contin-
uous random variables. To the best of our knowledge, this is the first time
that a methodology for the formal reasoning of continuous probability dis-
tributions in a mechanical theorem prover has been proposed. Therefore, the
presented work can be considered a significant step towards the development
of a formal reasoning framework for systems involving continuous probability
distributions.

The proposed formalization opens the doors for a new era in the fields of
computer science, operations research and statistics. Computer scientists may
use the formalized continuous random variables in program verification and
comparisons of algorithms. In operations research, the formalized probabilistic
analysis may be used to complement large scale simulations. Statisticians may
use the formalized continuous random variables to formally test and compare
estimators before using them in real life.

A distinguishing characteristic of the proposed probabilistic analysis approach
is the ability to perform precise quantitative analysis of probabilistic systems.
Though, this approach cannot be automated and thus involves considerable
user interaction. On the other hand, simulation is capable of handling analyt-
ically complex probabilistic analysis problems in an automated way but the
solutions provided are approximated. Therefore, we consider simulation and
higher-order theorem proving as complementary techniques, i.e., the methods
have to play together for a successful probabilistic analysis framework. For
example, the proposed theorem proving based approach can be used for the
safety critical parts of the design and simulation based approaches can handle
the rest.

As a next step towards a complete formalization framework for continuous
random variables, we are formalizing the ITM itself in HOL. This will con-

19

siderably ease the formalization process for the corresponding continuous ran-
dom variables. Similarly, the formalization of the Standard Uniform random
variable can also be transformed to formalize other continuous probability
distributions, for which the inverse CDF is not available in a closed math-
ematical form, by exploring the formalization of other Non-uniform random
number generation techniques such as Box-Muller and acceptance/rejection
[5]. In order to have a complete formal probabilistic analysis framework, it is
also essential to formalize the theory of expectation and the basic statistical
quantities of mean, moment, and variance. In order to have a complete formal
probabilistic analysis framework, it is also essential to formalize the theory of
expectation and the basic statistical quantities of mean, moment and variance.

Acknowledgements The authors would like to thank Joe Hurd from Oxford
University, UK, for his precious advice and feedback on our methodology. We
would also like to thank the anonymous referees for their comments on how
to improve the paper.

References

[1] C. Baier, B. Haverkort, H. Hermanns, and J. P. Katoen. Model Checking
Algorithms for Continuous time Markov chains. IEEE Transactions on Software
Engineering, 29(4):524–541, 2003.

[2] P. Billingsley. Probability and Measure. John Wiley, 1995.

[3] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

[5] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

[6] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2.
Wiley, 1971.

[7] M. J. C. Gordon. Mechanizing Programming Logics in Higher-0rder Logic.
In Current Trends in Hardware Verification and Automated Theorem Proving,
pages 387–439. Springer-Verlag, 1989.

[8] M. J. C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, 1993.

[9] V. T. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic Processes as
Concurrent Constraint Programs. In Principles of Programming Languages,
pages 189–202. ACM Press, 1999.

[10] J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

20

[11] O. Hasan and S .Tahar. Standard Uniform Distribution Theory in HOL-4.
Technical Report, Concordia University, Montreal, Canada, 2007.

[12] J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, Cambridge, UK, 2002.

[13] W. J. Kennedy and J. E. Gentle. Statistical Computing. Marcel-Dekker, 1980.

[14] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley
Professional, 1998.

[15] D. E. Knuth and A. C. Yao. The Complexity of Nonuniform Random Number
Generation. Algorithms and Complexity: New Directions and Recent Results,
pages 357–428, 1976.

[16] D. J. C. MacKay. Introduction to Monte Carlo methods. In Learning in
Graphical Models, NATO Science Series, pages 175–204. Kluwer Academic
Press, 1998.

[17] B. D. McCullough. Assessing the Reliability of Statistical Software: Part I. The
American Statistician, 52(4):358–366, 1998.

[18] B. D. McCullough. Assessing the Reliability of Statistical Software: Part II.
The American Statistician, 53(2):149–159, 1999.

[19] R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[20] S. Park, F. Pfenning, and S. Thrun. A Probabilistic Language based upon
Sampling Functions. In Principles of Programming Languages, pages 171–182.
ACM Press, 2005.

[21] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1996.

[22] A. Pfeffer. IBAL: A Probabilistic Rational Programming Language. In
International Joint Conferences on Artificial Intelligence, pages 733–740.
Morgan Kaufmann Publishers, 2001.

[23] J. Rutten, M. Kwaiatkowska, G. Normal, and D. Parker. Mathematical
Techniques for Analyzing Concurrent and Probabilisitc Systems. CRM
Monograph, 23, 2004.

[24] K. S. Tridevi. Probability and Statistics with Reliability, Queuing and Computer
Science Applications. Wiley-Interscience, 2002.

[25] B. Widrow. Statistical Analysis of Amplitude-quatized Samled Data Systems.
AIEE Trans. (Applications and Industry), 81:555–568, January 1961.

21

