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Abstract Statistical quantities, such as expectation (mean) and variance, play a vital

role in the present age probabilistic analysis. In this paper, we present some formal-

ization of expectation theory that can be used to verify the expectation and variance

characteristics of discrete random variables within the HOL theorem prover. The mo-

tivation behind this is the ability to perform error free probabilistic analysis, which in

turn can be very useful for the performance and reliability analysis of systems used in

safety-critical domains, such as space travel, medicine and military. We first present

a formal definition of expectation of a function of a discrete random variable. Build-

ing upon this definition, we formalize the mathematical concept of variance and verify

some classical properties of expectation and variance in HOL. We then utilize these for-

mal definitions to verify the expectation and variance characteristics of the Geometric

random variable. In order to demonstrate the practical effectiveness of the formaliza-

tion presented in this paper, we also present the probabilistic analysis of the Coupon

Collector’s problem in HOL.

Keywords Coupon Collector’s Problem · Higher-order-logic · HOL Theorem Prover ·
Probabilistic Analysis · Probability Theory · Statistical Properties

1 Introduction

Probability has become an essential component of performance and reliability analysis

in almost every field of science. The random and unpredictable elements are mathemat-

ically modeled by appropriate random variables and the performance and reliability

issues are judged based on the corresponding statistical quantities such as mean and
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variance. Due to the wide application domain of probability, many researchers around

the world are trying to improve the existing computer based probabilistic analysis ap-

proaches. The ultimate goal is to come up with a probabilistic analysis framework that

includes robust and accurate analysis methods, has the ability to perform analysis for

large-scale problems and is user friendly.

Nowadays, probabilistic analysis is usually performed using simulation techniques

[BFS87], where the main idea is to approximately answer a query on a probability

distribution by analyzing a large number of samples. The simulation approach is quite

user friendly as most of the analysis can be automated and really shines in handling

problems that cannot be solved analytically. On the other hand, the results are usu-

ally inaccurate and large problems cannot be handled because of enormous CPU time

requirements. The inaccuracy of the results poses a serious problem when some safety-

critical section of the system is being analyzed. An alternative is to use probabilistic

model checking [BHHK03,RKNP04], which is a formal state-based approach. Due to

the formal nature of the models and analysis techniques, the results are always accu-

rate but, like traditional model-checking, this approach is limited by the state-space

explosion problem [CGP00]. Another recently proposed formal probabilistic analysis

approach is to use higher-order-logic theorem proving to verify probabilistic properties

[Hur02]. Due to its inherent soundness and the high expressive nature of the higher-

order-logic, this approach not only allows us to acquire accurate results but is also

capable of handling any probabilistic problem that can be expressed mathematically.

The downside is the enormous amount of user guided formalization that is required

to handle various probabilistic analysis issues. Though, a positive aspect is that some

foundational formalization in this regard is already available in the open literature, such

as the formalization of probability theory and the commonly used discrete [Hur02] and

continuous [HT07a] random variables.

In this paper, we further strengthen the higher-order-logic probabilistic analysis ap-

proach by presenting the formalization of some expectation theory for discrete random

variables in the HOL theorem prover [GM93]. We mainly develop a formal definition

of expectation, which is further utilized to formally define variance as well. In prob-

abilistic analysis, expectation and variance are the most useful characteristics of a

random variable, which basically present the average and the dispersion of a random

variable, respectively. The paper also includes the verification of some classical proper-

ties of expectation and variance in HOL. These properties play a vital role in verifying

expectation and variance quantities of discrete probabilistic systems within the HOL

theorem prover.

Computer science is one of the key application areas of probabilistic analysis. For

example, the average case analysis is usually considered more useful in characterizing

an algorithm’s performance rather than its worst case analysis. Therefore, in order to

illustrate the practical effectiveness of the formalization presented in this paper, we

present the probabilistic analysis of the Coupon Collector’s problem [MU05], a well

known commercially used algorithm. Some of the recent applications of the Coupon

Collector’s problem include its usage in packet delivery systems [MU05], load balancing

in peer-to-peer networks [AHKV03,DP05] and a coalescing particle model which is

applicable to population biology [AAKR03]. In this paper, We present a higher-order-

logic formalization of the Coupon Collector’s problem as a probabilistic algorithm using

the summation of a list of Geometric random variables. Then, the formally verified

expectation and variance properties are used to verify the expectation and a variance

bound of the Coupon Collector’s problem in HOL.



3

The rest of the paper is organized as follows: Section 2 gives a review of the related

work. In Section 3, we provide some preliminaries including a brief introduction to the

HOL theorem prover and some technical background regarding probabilistic analysis

in HOL. Next, we present the HOL formalization of the expectation and variance

functions for discrete random variables along with the verification of some of their

classical properties in Sections 4 and 5, respectively. We utilize these definitions and

properties to verify the mean and variance relations of the Geometric random variable

in Section 6, which is followed by the probabilistic analysis of the Coupon Collector’s

problem in Section 7. Finally, Section 8 concludes the paper.

2 Related Work

Nȩdzusiak [Ned89] and Bialas [Bia90] were among the first ones to formalize some

probability theory in higher-order-logic. Hurd [Hur02] extended their work and devel-

oped a framework for the verification of probabilistic algorithms in the HOL theorem

prover. He demonstrated the practical effectiveness of his formal framework by suc-

cessfully verifying the sampling algorithms for four discrete probability distributions,

some optimal procedures for generating dice rolls from coin flips, the symmetric simple

random walk and the Miller-Rabin primality test based on the corresponding prob-

ability distribution properties. Hurd et. al [HMM05] also formalized the probabilis-

tic guarded-command language (pGCL) in HOL. The pGCL contains both demonic

and probabilistic nondeterminism and is thus quite suitable for reasoning about dis-

tributed random algorithms. Celiku [Cel05] built upon the formalization of the pGCL

to mechanize the quantitative Temporal Logic (qtl) and demonstrated the ability to

verify temporal properties of probabilistic systems in HOL. An alternative method for

probabilistic verification in higher-order-logic has been presented by Audebaud et. al

[APM06]. Instead of using the measure theoretic concepts of probability space, as is the

case in Hurd’s approach, Audebaud et. al based their methodology on the monadic in-

terpretation of randomized programs as probabilistic distribution. This approach only

uses functional and algebraic properties of the unit interval and has been successfully

used to verify a sampling algorithm of the Bernoulli distribution and the termination

of various probabilistic programs in the Coq theorem prover.

Building upon Hurd’s formalization framework, we have been able to successfully

verify the sampling algorithms of a few continuous random variables [HT07a] and the

classical Cumulative Distribution Function (CDF) properties [HT07c], which play a

vital role in verifying arbitrary probabilistic properties of both discrete and contin-

uous random variables. The sampling algorithms for discrete random variables are

either guaranteed to terminate or they satisfy probabilistic termination, meaning that

the probability that the algorithm terminates is 1. Thus, they can be expressed in

HOL by either well formed recursive functions or the probabilistic while loop [Hur02].

On the other hand, the implementation of continuous random variables requires non-

terminating programs and hence calls for a different approach. In [HT07a], we pre-

sented a methodology that can be used to formalize any continuous random variable

for which the inverse of the CDF can be expressed in a closed mathematical form.

The core components of our methodology are the Standard Uniform random variable

and the Inverse Transform method [Dev86], which is a well known nonuniform ran-

dom generation technique for generating nonuniform random variates for continuous

probability distributions for which the inverse of the CDF can be represented in a
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closed mathematical form. Using the formalized Standard Uniform random variable

and the Inverse Transform method, we were able to formalize continuous random vari-

ables, such as Exponential, Rayleigh, etc. and verify their correctness by proving the

corresponding CDF properties in HOL.

The formalization, mentioned so far, allows us to express random behaviors as

random variables in a higher-order-logic theorem prover and verify the corresponding

quantitative probability distribution properties, which is a significant aspect of a prob-

abilistic analysis framework. With the probability distribution properties of a random

variable, such as the Probability Mass Function (PMF) and the CDF, we are able to

completely characterize the behavior of their respective random variables. Though for

comparison purposes, it is frequently desirable to summarize the characteristic of the

distribution of a random variable by a single number, such as its expectation or vari-

ance, rather than an entire function. For example, it is more interesting to find out

the expected value of the runtime of an algorithm for an NP-hard problem, rather

than the probability of the event that the algorithm succeeds within a certain number

of steps. In [HT07b], we tackled the verification of expectation properties in HOL for

the first time. We extended Hurd’s formalization framework with a formal definition

of expectation, which can be utilized to verify the expected values associated with

discrete random variables that attain values in positive integers only. In the current

paper, rather than restricting our higher-order-logic formalization to simply the ex-

pected value of a random variable, we consider the formalization of the expected value

of a function of a discrete random variable, whereas the function accepts a positive

integer and returns a real value. This includes as a special case the identity function,

which covers the formalization of the expected value of a random variable that attains

values in the positive integers only. The main advantage of this new definition is that it

allows us to formally specify and verify variance properties of discrete random variables

within a higher-order-logic theorem prover; a novelty that has not been available so

far.

Richter [Ric03] formalized a significant portion of the Lebesgue integration theory

in higher-order logic using Isabelle/Isar [Pau94]. He also linked the Lebesgue integra-

tion theory to probabilistic algorithms, developing upon Hurd’s [Hur02] framework,

and presented the formalization of the first moment method. The formalization and

verification of statistical characteristics regarding continuous random variables in a

theorem prover requires a higher-order-logic formalization of an integration function

that can also handle functions with domains other than real numbers. Lebesgue inte-

gration provides this feature and thus Richter’s formalization [Ric03] can be built upon

for formalizing the mathematical concepts of expectation and variance for continuous

random variables.

Statistical characteristics, such as expectation and variance, are one of the most

useful tools in probabilistic analysis and therefore their evaluation within a model

checker is being explored in the probabilistic model checking community [BHHK03,

RKNP04]. Some probabilistic model checkers, such as PRISM [KNP05] and VESTA

[SVA05], offer the capability of verifying expected values in a semi-formal manner.

For example, in the PRISM model checker, the basic idea is to augment probabilistic

models with cost or rewards: real values associated with certain states or transitions

of the model. This way, the expected value properties, related to these rewards, can

be analyzed by PRISM. It is important to note that the meaning ascribed to the these

properties is, of course, dependent on the definitions of the rewards themselves and

thus there is always some risk of verifying false properties. Similarly, to the best of our
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knowledge, no model checking algorithm exists in the open literature so far that allows

us to verify variance properties. On the other hand, the proposed theorem proving

based probabilistic analysis can be used to precisely reason about both expectation

and variance characteristics due to the high expressivity of higher-order-logic.

Probabilistic model checking is capable of providing exact solutions to probabilistic

properties in an automated way; however it is also limited to systems that can only

be expressed as a probabilistic finite state machine. In contrast, the theorem proving

based probabilistic verification is an interactive approach but is capable of handling all

kinds of probabilistic systems including the unbounded ones. Another major limitation

of the probabilistic model checking approach is the state space explosion [CGP00],

which is not an issue with the proposed theorem proving based probabilistic analysis

approach.

3 Preliminaries

In this section, we provide a brief introduction to the HOL theorem prover and veri-

fication of probabilistic algorithms in HOL. The intent is to introduce the main ideas

along with some notation that is going to be used in the next few sections.

3.1 HOL Theorem Prover

The HOL theorem prover is an interactive theorem prover that is capable of conducting

proofs in higher-order logic. It utilizes the simple type theory of Church [Chu40] along

with Hindley-Milner polymorphism [Mil77] to implement higher-order logic. HOL has

been successfully used as a verification framework for both software and hardware

systems as well as a platform for the formalization of pure mathematics. It supports

the formalization of various mathematical theories including sets, natural numbers,

real numbers, measure and probability. The HOL theorem prover includes many proof

assistants and automatic proof procedures. The user interacts with a proof editor and

provides the necessary tactics to prove goals while some of the proof steps are solved

automatically by the automatic decision procedures.

In order to ensure secure theorem proving, the logic in the HOL system is repre-

sented in the strongly-typed functional programming language ML [Pau96]. The ML

abstract data types are then used to represent higher-order-logic theorems and the

only way to interact with the theorem prover is by executing ML procedures that

operate on values of these data types. Users can prove theorems using a natural de-

duction style by applying inference rules to axioms or previously generated theorems.

The HOL core consists of only basic 5 axioms and 8 primitive inference rules, which

are implemented as ML functions. Soundness is assured as every new theorem must

be created from the 5 basic axioms and the 8 primitive inference rules or any other

pre-existing theorems/inference rules.

We selected the HOL theorem prover for the proposed formalization mainly be-

cause of its inherent soundness, ability to handle higher-order logic and in order to

benefit from the in-built mathematical theories for measure and probability. Table

1 summarizes some of the HOL symbols used in this paper and their corresponding

mathematical interpretations.
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Table 1 HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning
∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list

el n L Ln nth element of list L
mem a L a ∈ L True if a is a member of list L
length L |L| Length of list L
(a, b) a x b A pair of two elements
fst fst (a, b) = a First component of a pair
snd snd (a, b) = b Second component of a pair
λx.t λx.t Function that maps x to t(x)
{x|P(x)} {λx.P (x)} Set of all x such that P (x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type

suminf(λn.f(n)) lim
k→∞

∑k
n=0 f(n) Infinite summation of f

summable(λn.f(n)) ∃x. lim
k→∞

∑k
n=0 f(n) = x Summation of f is convergent

3.2 Verifying Probabilistic Algorithms in HOL

The foremost criterion for developing a higher-order-logic theorem-proving based prob-

abilistic analysis framework is to be able to formalize random variables in higher-order

logic. This section presents a methodology, initially proposed in [Hur02], for the for-

malization of probabilistic algorithms, which in turn can be used to model random

variables in HOL.

The probabilistic algorithms can be formalized in higher-order logic by thinking

of them as deterministic functions with access to an infinite Boolean sequence B∞; a

source of infinite random bits with data type (num → bool) [Hur02]. These determin-

istic functions make random choices based on the result of popping the top most bit

in the infinite Boolean sequence and may pop as many random bits as they need for

their computation. When the algorithms terminate, they return the result along with

the remaining portion of the infinite Boolean sequence to be used by other programs.

Thus, a probabilistic algorithm which takes a parameter of type α and ranges over

values of type β can be represented in HOL by the function.

F : α → B∞ → β ×B∞

For example, a Bernoulli( 1
2 ) random variable that returns 1 or 0 with equal prob-

ability 1
2 can be modeled as follows

` bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence equivalents

of the list operation ’head’ and ’tail’. The probabilistic programs can also be expressed

in the more general state-transforming monad where the states are the infinite Boolean

sequences.

` ∀ a s. unit a s = (a,s)

` ∀ f g s. bind f g s = g (fst (f s)) (snd (f s))
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The HOL functions fst and snd, used above, return the first and second components

of a pair, respectively. The unit operator is used to lift values to the monad, and the

bind is the monadic analogue of function application. All monad laws hold for this

definition, and the notation allows us to write functions without explicitly mentioning

the sequence that is passed around, e.g., function bit can be defined as

` bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).

[Hur02] also presents some formalization of the mathematical measure theory in

HOL, which can be used to define a probability function P from sets of infinite Boolean

sequences to real numbers between 0 and 1. The domain of P is the set E of events of

the probability. Both P and E are defined using the Carathéodory’s Extension theorem,

which ensures that E is a σ-algebra: closed under complements and countable unions.

The formalized P and E can be used to prove probabilistic properties for probabilistic

programs such as

` P {s | fst (bit s) = 1} = 1
2

where {x|C(x)} represents a set of all x that satisfy the condition C in HOL.

The measurability and independence of a probabilistic function are important con-

cepts in probability theory. A property indep fn, called strong function independence,

is introduced in [Hur02] such that if f ∈ indep fn, then f will be both measurable and

independent. It has been shown in [Hur02] that a function is guaranteed to preserve

strong function independence, if it accesses the infinite Boolean sequence using only the

unit, bind and sdest primitives. All reasonable probabilistic programs preserve strong

function independence, and these extra properties are a great aid to verification.

4 Expectation for Discrete Random Variables

In this section, we first present a higher-order-logic formalization of the expectation

function for discrete random variables. We later utilize this definition to verify a few

classical expectation properties in HOL and some details about the proofs are also

included.

4.1 Formalization of Expectation in HOL

Expectation basically provides the average of a random variable, where each of the

possible outcomes of this random variable is weighted according to its probability

[Bil95]

Ex[X] =
∑

i

xiPr(X = xi) (1)

where Pr and
∑

i denote the probability function and the summation carried over

all the possible values of the random variable X, respectively. The above definition

only holds if the summation is convergent, i.e.,
∑

i xiPr(X = xi) < ∞. Instead of

formalizing this general definition of expectation based on the principles of probability

space, we concentrate on one of its variants that deals with discrete random variables

that take on values only in the positive integers, i.e., {0, 1, 2, · · · }.
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This choice has been made mainly because of two reasons. First of all, in most of

the engineering and scientific probabilistic analysis problems, we end up dealing with

discrete random variables that attain values in positive integers only. For example,

consider the cases of analyzing the performance of algorithms [MU05], cryptographic

[Mao03] and communication protocols [LGW04], etc. Secondly, this simplification al-

lows us to model the expectation function using the summation of a real sequence,

which has already been formalized in the HOL theorem prover [Har98], and thus speed

up the associated formalization and verification process by a considerable extent.

The expectation for a function of a discrete random variable, which attains values

in the positive integers only, is defined as follows [Lev71]

Ex[f(R)] =

∞∑

n=0

f(n)Pr(R = n) (2)

where R is the discrete random variable and f represents a function of the random

variable R. The above definition only holds if the associated summation is convergent,

i.e.,
∑∞

n=0 f(n)Pr(R = n) < ∞.

Equation (2) can be formalized in HOL, for a discrete random variable R that

attains values in positive integers only and a function f that maps this random variable

to a real value, as follows

Definition 1: Expectation of Function of a Discrete Random Variable

` ∀ f R. expec fn f R =

suminf (λn. (f n) P{s | fst(R s) = n})

where the mathematical notions of the probability function P and random variable R

have been inherited from [Hur02], as presented in Section 3.2. The HOL function suminf

represents the infinite summation of a real sequence [Har98]. The function expec fn

accepts two parameters, the function f of type (num → real) and the positive integer

valued random variable R and returns a real number.

Next, we define the expected value of a discrete random variable that attains values

in positive integers only as a special case of the expected value of a function of a discrete

random variable.

Definition 2: Expectation of a Discrete Random Variable

` ∀ R. expec R = expec fn (λn. n) R

where the lambda abstraction function (λn. n) implements the identity function. The

function expec accepts a positive integer valued random variable R and returns its

expectation as a real number.

4.2 Verification of Expectation Properties in HOL

In this section, we utilize the formal definitions of expectation, developed in the last

section, to prove some classical properties of the expectation [Sti03]. These properties

not only verify the correctness of our definitions but also play a vital role in verifying

the expectation characteristic of discrete random components of probabilistic systems,

as will be seen in Section 7 for the case of the Coupon’s Collector’s problem.
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4.2.1 Expectation of a Constant

Ex[c] = c (3)

where c is a positive integer. The random variable in this case is the degenerate random

variable R ≡ c, where R(s) = c for every s ∈ sample space. It can be formally

expressed as unit c, where the monadic operator unit is described in Section 3.2.

Using this representation and the definition of expectation, given in Definition 2, the

above property can be expressed in HOL as follows.

Theorem 1: Expectation of a Constant

` ∀ c. expec (unit c) = c

Rewriting the proof goal of the above property with Definition 2, we get

lim
k→∞(

k∑

n=0

n P{s | fst(unit c s) = n}) = c (4)

where according to the HOL definition of the summation of a real sequence, the ex-

pression
∑b

n=a f means the summation of b subsequent terms of the real sequence

f starting from the term f(a). Thus, in this paper, the term
∑k

n=0 f represents

f(0) + f(1) · · ·+ f(k− 1). Now, the probability term on the left-and-side (LHS) of the

above subgoal can be expressed as follows

∀ n c. P{s | fst(unit c s) = n} = (if (c = n) then 1 else 0) (5)

and the proof is based on the basic probability theory laws and the functional inde-

pendence property of the random variable unit c. Using this property, the subgoal of

Equation (4) can be rewritten as follows

lim
k→∞(

k∑

n=0

n (if (c = n) then 1 else 0)) = c (6)

The summation on the right-hand-side (RHS) of the above subgoal can be proved to

be convergent since its value remains the same for all values of n that are greater than

c. Using this fact and the summation properties of a real sequence the above subgoal

can be verified in HOL, which concludes the proof of Theorem 1.

4.2.2 Linearity of Expectation for Discrete Random Variables

Ex[

n∑

i=1

Ri] =

n∑

i=1

Ex[Ri] (7)

where Ri represents a sequence of n discrete random variables. According to the lin-

earity of expectation property, the expectation of a sum of random variables equals

the sum of their individual expectations. It is one of the most important properties

of expectation as it allows us to verify the expectation properties of random behav-

iors involving multiple random variables without going into the complex verification

of their joint probability distribution properties. Thus, its verification is a significant

step towards using HOL as a successful probabilistic analysis framework.
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We split the verification of linearity of expectation property in two major steps.

Firstly, we verify the property for two discrete random variables and then extend the

results by induction to prove the general case. The linearity of expectation property

can be defined for any two discrete random variables X and Y as follows.

Ex[X + Y ] = Ex[X] + Ex[Y ] (8)

To prove the above relationship in HOL, we proceed by first defining a function

that models the summation of two random variables.

Definition 3: Summation of Two Random Variables

` ∀ X Y. sum two rv X Y =

bind X (λa. bind Y (λb. unit (a + b)))

The function, sum two rv, accepts two random variables and returns one random vari-

able that represents the sum of the two argument random variables. It is important to

note that the above definition implicitly ensures that the call of the random variable

Y is independent of the result of the random variable X. This is true because the infi-

nite Boolean sequence that is used for the computation of Y is the remaining portion

of the infinite Boolean sequence that has been used for the computation of X. This

characteristic led us to prove that the function sum two rv preserves strong function

independence, which is the most significant property in terms of verifying properties

on probabilistic functions.

Lemma 1: sum two rv Preserves Strong Function Independence

` ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn

⇒ ((sum two rv X Y) ∈ indep fn)

The above property can be verified in HOL using the fact that the function sum two rv

accesses the infinite Boolean sequence using the unit and bind operators.

Now, the linearity of expectation property for two discrete random variables, which

preserve strong function independence, with well-defined expectation values, i.e., the

summation in their expectation definition is convergent, can be stated in HOL using

the sum two rv function as follows.

Lemma 2: Linearity of Expectation for Two Discrete Random Variables

` ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧
summable(λn. n P{s | fst(X s) = n}) ∧
summable(λn. n P{s | fst(Y s) = n})

⇒ (expec (sum two rv X Y) = expec X + expec Y)

where summable accepts a real sequence and returns True if the infinite summation of

this sequence is convergent (i.e., summmable M = ∃x. lim
k→∞

(
∑k

n=0 M(n)) = x).

Rewriting the proof goal of Lemma 2 with the definitions of the functions expec,

sum two rv and summable, simplifying it with some infinite summation properties and

removing the monad notation, we reach the following subgoal in HOL.
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( lim
k→∞(

k∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞(

k∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ ( lim
k→∞(

k∑

n=0

(n P{s | fst(X s) + fst(Y (snd (X s)) = n}))) = (p + q))

(9)

The set in the conclusion of the above implication can be proved to be equal to the

countable union of a sequence of events as follows

∀ X Y n. X ∈ indep fn ∧ Y ∈ indep fn

⇒ {s | fst(X s) + fst(Y (snd(X s))) = n}
=

⋃

i≤n

{s | (fst(X s) = i) ∧ (fst(Y(snd(X s))) = n− i)}
(10)

using the properties verified in the HOL theory of sets. All the events in the above

sequence of events are mutually exclusive. Thus, Equation (10) along with the additive

law of probability, given in the HOL theory of probability, can be used to simplify the

subgoal, given in Equation (9), as follows.

( lim
k→∞(

k∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞(

k∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ lim
k→∞(

k∑

n=0

(n

n+1∑

i=0

P{s | (fst(X s) = i) ∧ (fst(Y(snd(X s))) = n− i)})) = (p + q)

(11)

Next, we found a real sequence that is easier to handle and has the same limit value

as the real sequence given in the conclusion of the above implication.

( lim
k→∞(

k∑

n=0

n(

n+1∑

i=0

P{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n− i)}))) =

( lim
k→∞(

k∑

a=0

k∑

b=0

(a + b)(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})))
(12)

Using this new real sequence and rearranging the terms based on summation proper-

ties given in the HOL theories of real numbers, we can rewrite the subgoal, given in

Equation (11), as follows.
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( lim
k→∞(

k∑

n=0

(n P {s | fst(X s) = n})) = p) ∧ ( lim
k→∞(

k∑

n=0

(n P {s | fst(Y s) = n})) = q)

⇒ ( lim
k→∞(

k∑

a=0

k∑

b=0

a(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})) = p) ∧

( lim
k→∞(

k∑

a=0

k∑

b=0

b(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})) = q)

(13)

The two limit expressions in the conclusion of the above implication can now be proved

to be True using some elementary properties in the HOL theories of probability, sets

and real numbers, which also concludes the proof for Lemma 2.

The next step is to generalize Lemma 2 to verify the linearity of expectation prop-

erty, given in Equation (7), using induction. For this purpose, we define a function that

models the summation of a list of discrete random variables.

Definition 4: Summation of n Random Variables

` (sum rv lst [] = unit 0) ∧
∀ h t. (sum rv lst (h::t) =

bind h (λa. bind (sum rv lst t)

(λb. unit (a + b))))

The function, sum rv lst, accepts a list of random variables and returns their sum

as a single random variable. Just like the function, sum two rv, the function sum rv lst

also preserves strong function independence, if all random variables in the given list

preserve it. This property can be verified using the fact that it accesses the infinite

Boolean sequence using the unit and bind primitives only.

Lemma 3: sum rv lst Preserves Strong Function Independence

` ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn)

⇒ ((sum rv lst L) ∈ indep fn)

where the predicate mem is defined in the HOL list theory and returns True if its first

argument is an element of the list that it accepts as the second argument.

Now, the linearity of expectation property for n discrete random variables, which

preserve strong function independence and for which the infinite summation in the

expectation definition converges, can be stated in HOL as follows

Theorem 2: Linearity of Expectation Property

` ∀ L. (∀ R. (mem R L) ⇒ (R ∈ indep fn) ∧
(summable (λn. n P{s | fst(R s) = n})))

⇒ (expec (sum rv lst L) =∑length L
n=0 (expec (el (length L - (n+1)) L)))

where the function length, defined in the HOL list theory, returns the length of its list

argument and the function el, also defined in the list theory, accepts a positive integer

number, say n, and a list and returns the nth element of the given list. Thus, the LHS of
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Theorem 2 represents the expectation of the summation of a list L of random variables.

Whereas, the RHS represents the summation of the expectations of all elements in the

same list L. Theorem 2 can be proved by applying induction on the list argument of

the function sum rv lst, and simplifying the subgoals using Lemmas 2 and 3.

4.2.3 Expectation of a Discrete Random Variable Multiplied by a Constant

Ex[aR] = aEx[R] (14)

where R is a discrete random variable that attains values in the positive integers only

and a is a positive integer. This property can be expressed in HOL for a random

variable R that preserves strong function independence and has a well-defined expected

value as follows.

Theorem 3: Expectation of a Discrete Random Variable Multiplied by a

Constant

` ∀ R a. R ∈ indep fn ∧
summable(λn. n P{s | fst(R s) = n})

⇒ expec (bind R (λm. unit (a m))) = a (expec R)

The HOL proof proceeds by first performing case analysis on the variable a. For the

case when a is 0, the RHS of the proof goal becomes 0. Whereas, using the definition

of expectation, the LHS reduces to the expression

lim
k→∞(

k∑

n=0

n P{s| 0 = n}) (15)

which is also equal to 0 as ∀n.n P{s | 0 = n} = 0, since ∀n. 0 < n ⇒ P {s | 0 =

n}=0. On the other hand, when a is not equal to 0, i.e., (0 < a), the proof goal may

be simplified as follows

lim
k→∞(

k∑

n=0

n P{s| a fst(R s) = n}) = a lim
k→∞(

k∑

n=0

n P{s| a fst(R s) = a n}) (16)

using the definition of expectation and the multiplication cancelation property of pos-

itive integers. Next, we proved in HOL that

∀k.(
k∑

n=0

n P{s| a fst(R s) = n}) = a(

B(k)∑

n=0

n P{s| a fst(R s) = a n}) (17)

where B(k) = if (k MOD a = 0) then (k DIV a) else ((k DIV a) + 1) and MOD and DIV

represent the modulo and division functions for positive integers in HOL. This allows

us to rewrite our proof goal as follows

lim
k→∞ a (

B(k)∑

n=0

n P{s| a fst(R s) = a n}) = a lim
k→∞(

k∑

n=0

n P{s| a fst(R s) = a n}) (18)

which can be proved using the properties of limit of a real sequence in HOL [Har98],

since both of the real sequences in the above equation converge to the same value as

the value of k becomes very very large. This concludes the proof of the expectation

property given in Theorem 3.
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4.2.4 Expectation of a Discrete Random Variable Added and Multiplied by Constants

Ex[a + bR] = a + bEx[R] (19)

This property allows us to express the expectation value of a positive integer valued

random variable R added and multiplied by two positive integers a and b, respectively,

in terms of the expectation of the random variable R. It can be expressed in HOL for a

random variable R that preserves strong function independence and has a well-defined

expected value as follows.

Theorem 4: Expectation of a Discrete Random Variable Added and Multiplied

by Constants

` ∀ R a b. R ∈ indep fn ∧
summable(λn. n P{s | fst(R s) = n})
⇒ expec (bind R (λm. unit (a + b m))) =

a + b (expec R)

Theorem 4 can be proved in HOL using the expectation properties, given in Theorems

1, 2 and 3.

5 Variance for Discrete Random Variables

In this section, we utilize the formal definition of expectation of a function of a random

variable, developed in Section 4, to define a variance function for discrete random

variables that attain values in positive integers only. We later utilize this definition

to verify a couple of classical variance properties in HOL and some details about the

proofs are also included.

5.1 Formalization of Variance in HOL

In the field of probabilistic analysis, it is often desirable to summarize the essential

properties of distribution of a random variable by certain suitably defined measures.

In the previous section, we formalized one such measure, i.e., the expectation, which

yields the weighted average of the possible values of a random variable. Quite frequently,

along with the average value, we are also interested in finding how typical is the average

value or in other words the chances of observing an event far from the average. One

possible way to measure the variation, or spread, of these values is to consider the

quantity Ex[|R−Ex[R]|], where || denote the abs function. However, it turns out to be

mathematically inconvenient to deal with this quantity, so a more tractable quantity

called variance is usually considered, which returns the expectation of the square of

the difference between R and its expectation [Bil95].

V ar[R] = Ex[(R− Ex[R])2] (20)

Now, we formalize this definition of variance in HOL for the case of discrete random

variables that can attain values in the positive integers only. For this purpose, we utilize

the definitions of expectation, given in Definitions 1 and 2.
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Definition 5: Variance of a Discrete Random Variable

` ∀ R. variance R = expec fn (λn. (n - expec R)2) R

The function, variance, accepts a discrete random variable R that attains values in

the positive integers only and returns its variance as a real number.

5.2 Verification of Variance Properties in HOL

In this section, we prove two of the most significant and widely used properties of

the variance function [MU05]. These properties not only verify the correctness of our

definition but also play a vital role in verifying the variance properties of discrete

random variables as will be seen in Sections 6 and 7 of this paper.

5.2.1 Variance in Terms of Moments

V ar[R] = Ex[R2]− (Ex[R])2 (21)

where R is a discrete random variable that can attain values in the positive integers

only. This alternative definition of variance is much easier to work with than the pre-

vious one and thus aids significantly in the process of verifying variance properties

for discrete random variables. This property can be stated in HOL using the formal

definition of variance and expectation as follows.

Theorem 5: Variance in Terms of Moments

` ∀ R. R ∈ indep fn ∧
(summable(λn. n P{s | fst(R s) = n})) ∧
(summable(λn. n2 P{s | fst(R s) = n}))

⇒ (variance R =

expec fn (λn. n2) R - (expec R)2)

The assumption in Theorem 5 ensures that the random variable R preserves the

strong function independence and its expectation and second moment are well-defined.

The theorem can be proved by using the function definitions of expec fn, expec and

variance along with some arithmetic reasoning and properties from the HOL real

number theories.

5.2.2 Linearity of Variance for Independent Discrete Random Variables

V ar[

n∑

i=1

Ri] =

n∑

i=1

V ar[Ri] (22)

where Ri represents a sequence of n independent discrete random variables. Like the

linearity of expectation property, the linearity of variance property also allows us to

verify the variance properties of probabilistic systems involving multiple random vari-

ables without going into the complex verification of their joint probability distribution

properties.

The proof steps for the linearity of variance property are quite similar to the proof

steps for the linearity of expectation property. We split the verification task in two
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major steps. Firstly, we verify the property for two discrete random variables and then

extend the results by induction to prove the general case. The linearity of variance

property can be defined for any two independent discrete random variables X and Y

as follows

V ar[X + Y ] = V ar[X] + V ar[Y ] (23)

Using the function sum two rv, given in Definition 3, the linearity of variance prop-

erty for two independent discrete random variables, which attain values in the positive

integers only, preserve the strong function independence and have well-defined expec-

tation and second moment, can be stated in HOL as follows.

Lemma 4: Linearity of Variance for Two Discrete Random Variables

` ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧
(summable(λn. n P{s | fst(X s) = n})) ∧
(summable(λn. n P{s | fst(Y s) = n})) ∧
(summable(λn. n2 P{s | fst(X s) = n})) ∧
(summable(λn. n2 P{s | fst(Y s) = n}))

⇒ (variance (sum two rv X Y) =

variance X + variance Y)

Rewriting the above theorem with the definitions of the functions variance, expec fn,

expec and summable, simplifying it with some infinite summation properties and The-

orem 2 and removing the monad notation, we reach the following subgoal.

( lim
k→∞

k∑

n=0

(n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k∑

n=0

(n P {s | fst(Y s) = n}) = q) ∧

( lim
k→∞

k∑

n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k∑

n=0

(n2 P {s | fst(Y s) = n}) = t) ∧

( lim
k→∞(

k∑

n=0

((n− expec X)2 P {s | fst(X s) = n})) = u) ∧

( lim
k→∞(

k∑

n=0

((n− expec Y)2 P {s | fst(Y s) = n})) = v)

⇒ lim
k→∞

k∑

n=0

((n− (expec X + expec Y))2) P{s | fst(X s) + fst(Y (snd (X s))) = n}

= (u + v)

(24)

Using the uniqueness of the limit value of a real sequence, and some properties of

summation of real sequences, it can be proved in a straight forward manner that

u = r− p2 and v = t− q2 under the given assumptions in the above subgoal. This

allows us to rewrite the above subgoal as follows.
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( lim
k→∞

k∑

n=0

(n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k∑

n=0

(n P {s | fst(Y s) = n}) = q)∧

( lim
k→∞

k∑

n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k∑

n=0

(n2 P {s | fst(Y s) = n}) = t)

⇒ lim
k→∞

k∑

n=0

((n2 − 2(p + q)n + (p + q)2) P{s | fst(X s) + fst(Y (snd (X s))) = n})

= (r + t− (p2 + q
2))

(25)

Next we split the real sequence of the conclusion, in the above subgoal, in a sum of

three real sequences, corresponding to the terms n2, −2(p + q)n and (p + q)2 found

on the LHS. Now, using the results of Theorem 2 along with some probability laws,

it can be shown that the second and third sequences out of these three converge to

(−2(p + q)(p + q)) and (p + q)2, respectively. This allows us to rewrite the subgoal of

Equation (25) as follows.

( lim
k→∞(

k∑

n=0

n P {s | fst(X s) = n}) = p) ∧ ( lim
k→∞

k∑

n=0

(n P {s | fst(Y s) = n}) = q)∧

( lim
k→∞

k∑

n=0

(n2 P {s | fst(X s) = n}) = r) ∧ ( lim
k→∞

k∑

n=0

(n2 P {s | fst(Y s) = n}) = t)

⇒ lim
k→∞

k∑

n=0

((n2) P{s | fst(X s) + fst(Y (snd (X s))) = n}) = (r + t + 2pq)

(26)

Just like the proof of the linearity of expectation property, we replace the real sequence

in the conclusion of the above subgoal by a real sequence that is simpler to handle and

shares the same limit value as this one, under the given assumptions.

( lim
k→∞(

k∑

n=0

n
2(P{s | fst(X s) +fst(Y (snd(X s))) = n}))) =

( lim
k→∞(

k∑

a=0

k∑

b=0

(a2 + ab)(P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)} +

P{s | (fst(X s) = b) ∧ (fst(Y (snd(X s))) = a)})))
(27)

The subgoal given in Equation (26) can now be proved using the above result and some

arithmetic reasoning in HOL, which concludes the proof of Lemma 4.

The next step is to generalize Lemma 4 to verify the linearity of variance property

for n discrete random variables (Equation (22)), which can be stated in HOL as follows.
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Theorem 6: Linearity of Variance Property

` ∀ L. (∀ R. (mem R L) ⇒ ((R ∈ indep fn) ∧
(summable (λn. n P{s | fst(R s) = n}))∧
(summable (λn. n2 P{s | fst(R s) = n}))))

⇒ (variance (sum rv lst L) =∑length L
n=0 (variance (el (length L - (n+1)) L)))

Theorem 6 can be proved by applying induction on the list argument of the function

sum rv lst, and simplifying the subgoals using Lemmas 3 and 4.

6 Geometric Random Variable

In this section, we present the formalization and verification of expectation and vari-

ance properties for the Geometric random variable in HOL. This exercise illustrates

the usefulness of the definitions that we developed in Sections 4 and 5 for the verifica-

tion of expectation and variance properties associated with discrete random variables,

respectively. The theorems developed in the current section, also play a central role

in conducting the probabilistic analysis of the Coupon Collector’s problem, which is

modeled as a list of Geometric random variables, given in Section 7.

6.1 Formalization of Geometric(p) Random Variable in HOL

Geometric(p) random variable can be modeled as a function that returns the index of

the first success in an infinite sequence of Bernoulli(p) trials [DeG89]. Therefore, we

first need to have a formal definition of the Bernoulli(p) random variable before we

consider the formalization of Geometric(p) random variable in HOL. For this purpose,

we utilized a sampling algorithm of the Bernoulli(p) random variable, presented in

[Hur02], which returns True with probability p and False otherwise. This sampling

algorithm of Bernoulli(p) random variable was verified to be correct by proving its

PMF property in HOL [Hur02].

` ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | fst (prob bern p s)} = p

The Geometric(p) random variable can now be sampled by extracting random bits

from the function prob bern and stopping as soon as the first False is encountered

and returning the number of trials performed till this point. We modeled it using the

probabilistic while loop [Hur02] in HOL as follows.

Definition 6: A Sampling Algorithm for Geometric(p) Distribution

` ∀ p s. prob geom iter p n =

bind (prob bern (1-p)) (λb. unit (b, (snd n) + 1))

` ∀ p. prob geom loop p =

prob while fst (prob geom iter p)

` ∀ p. prob geom p = bind (bind (unit (T, 1))

(prob geom loop p)) (λs. unit (snd s - 1))

In the above algorithm, the state is a pair with the first component containing the

last value of the Bernoulli random variable, and the second component containing the
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number of Bernoulli trials performed so far. This pair is initialized to (True, 1) and

updated by the probabilistic while loop until the first component becomes False, at

which point the algorithm terminates and outputs the second component (subtracting

one because we do not count the final False).

The function, prob geom, accepts a real number p, which represents the probability

of success for the Geometric(p) random variable, and returns the corresponding Geo-

metric random variable. It is important to note that p cannot be assigned a value equal

to 0 as this will lead to a non-terminating while loop.

We verify the PMF property of the Geometric(p) random variable using the fact

that the function prob geom preserves strong function independence along with some

theorems from probability and set theories in HOL.

Theorem 7: PMF of Geometric random variable

` ∀ n p. 0 < p ∧ p ≤ 1 ⇒
P {s | fst (prob geom p s) = (n + 1)} = p (1 - p)n

6.2 Verification of Expectation of Geometric(p) Random Variable

The expectation property of Geometric(p) random variable can be stated in terms of

Definitions 2 and 6 as follows.

Theorem 8: Expectation of Geometric random variable

` ∀ p. 0 < p ∧ p ≤ 1 ⇒ expec (λs. prob geom p s) = 1
p

Rewriting the above proof goal with the definition of expectation and simplifying using

the PMF relation for the Geometric(p) random variable, given in Theorem 7, along with

some arithmetic reasoning, we reach the following subgoal.

lim
k→∞(

k∑

n=0

((n + 1)p(1− p)n)) =
1

p
(28)

Substituting 1−q for p and after some rearrangement of the terms, based on arithmetic

reasoning, the above subgoal can be rewritten as follows.

lim
k→∞(

k∑

n=0

((n + 1)qn)) =
1

(1− q)2
(29)

Now, using the properties of summation of a real sequence in HOL, we proved the

following relationship

∀q k.

k∑

n=0

((n + 1)qn) =

k∑

n=0

(

k∑

i=0

q
i −

n∑

i=0

q
i) (30)

which allows us to rewrite the subgoal under consideration, given in Equation (29) as

follows.

lim
k→∞(

k∑

n=0

(

k∑

i=0

q
i −

n∑

i=0

q
i)) =

1

(1− q)2
(31)
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The above subgoal can now be proved using the summation of a finite geometric series

along with some properties of summation and limit of real sequences available in the

real number theories in HOL. This also concludes the proof of Theorem 8 in HOL.

6.3 Verification of Variance of the Geometric(p) Random Variable

The variance property of Geometric(p) random variable can be stated in terms of

Definitions 5 and 6 as follows.

Theorem 9: Variance of Geometric(p) Random Variable

` ∀ p. 0 < p ∧ p ≤ 1

⇒ (variance (λs. prob geom p s) =
1−p
p2

)

We utilize the variance property, given in Theorem 5, to verify Theorem 9. The fore-

most step in this regard is to verify the second moment relationship for the Geometric(p)

random variable.

∀ p. 0 < p ∧ p ≤ 1 ⇒ (expec fn(λn. n2(λs. prob geom p s)) =
2

p2
− 1

p
) (32)

Rewriting the above proof goal with the definition of function expec fn and simplifying

using the PMF relation of the Geometric random variable along with some properties

from HOL real number theories, we reach the following subgoal.

lim
k→∞(

k∑

n=0

((n + 1)2p(1− p)n)) =
2

p2
− 1

p
(33)

Now, substituting 1 − q for p and after some rearrangement of the terms, based on

arithmetic reasoning, the above subgoal can be rewritten as follows.

lim
k→∞(

k∑

n=0

((n + 1)2qn)) =
2

(1− q)3
− 1

(1− q)2
(34)

Using the properties of summation of a real sequence in HOL, we prove the following

∀q k.

k∑

n=0

((n + 1)2qn) =

k∑

n=0

((2n + 1)(

k∑

i=0

q
i −

n∑

i=0

q
i)) (35)

which allows us to rewrite the subgoal under consideration, given in Equation (34), as

follows.

lim
k→∞(

k∑

n=0

((2n + 1)(

k∑

i=0

q
i −

n∑

i=0

q
i))) =

2

(1− q)3
− 1

(1− q)2
(36)

The above subgoal can now be proved using the summation of a finite geometric series

along with some properties of summation and limit of real sequences available in the

real number theories in HOL. This concludes the proof of the second moment relation

for the Geometric(p) random variable, which can now be used along with Theorems 5

and 8 and some arithmetic reasoning to prove Theorem 9 in HOL.
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7 Coupon Collector’s Problem

In this section, we utilize the HOL formalizations presented so far to verify the expec-

tation and variance properties of the Coupon Collector’s problem [MU05]. Firstly, we

present a brief overview of the algorithm and present its formalization in HOL. This is

followed by the details about the verification steps.

7.1 Formalization of Coupon Collector’s Problem in HOL

The Coupon Collector’s problem is motivated by “collect all n coupons and win” con-

tests. Assuming that a coupon is drawn independently and uniformly at random from

n possibilities, how many times do we need to draw new coupons until we find them

all? This simple problem arises in many different scenarios. For example, suppose that

packets are sent in a stream from source to destination host along a fixed path of

routers. It is often the case that the destination host would like to know all routers

that the stream of data has passed through. This may be done by appending the iden-

tification of each router to the packet header but this is not a practical solution as

usually we do not have this much room available. An alternate way of meeting this re-

quirement is to store the identification of only one router, uniformly selected at random

between all routers on the path, in each packet header. Then, from the point of view of

the destination host, determining all routers on the path is like a Coupon Collector’s

problem.

The Coupon Collector’s problem can be modeled as a probabilistic algorithm in

higher-order logic. Let X be the number of trials until at least one of every type of

coupon is obtained. Now, if Xi is the number of trials required to obtain the ith coupon,

while we had already acquired i− 1 distinct coupons, then clearly X =
∑n

i=1 Xi. The

advantage of breaking the random variable X into the sum of n random variables

X1, X2 · · · , Xn is that each Xi can be modeled as a Geometric random variable, which

enables us to represent the Coupon Collector’s problem as a sum of Geometric random

variables. Furthermore, the expectation and variance of this probabilistic algorithm

can then be verified using the linearity of expectation and variance properties, which

we have already verified in Sections 4 and 5, respectively.

The first step in the formalization of the Coupon Collector’s problem is to define

a list of Geometric random variables in order to model the Xi’s mentioned above. It

is important to note that the probability of success for each one of these Geometric

random variables is different from one another and depends on the number of distinct

coupons acquired so far. Since, every coupon is drawn independently and uniformly at

random from the n possibilities, we can use the Uniform(n) random variable, which

returns any positive integer in the interval [0, n-1] with the same probability, to model

the probability of acquiring a new coupon or the probability of succuss for each one of

the Xi’s mentioned above. For this purpose, we identify distinct coupons in numerical

order as they are acquired, i.e., the first coupon acquired is identified by number 0, the

second by 1 and so on. Now, the probability of success for acquiring the kth coupon, in

a Coupon Collector problem with n distinct coupons, can be modeled as the probability

of the event when the outcome of the Uniform(n) random variable is greater than or

equal to k− 1, where the Uniform(n) random variable is used to represent the coupon

identification numbers. Based on the above proposition, the following higher-order-
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logic function generates the list of Geometric random variables that can be added to

model the Coupon Collecting process of n distinct coupons.

Definition 7: Geometric Variable List for Coupon Collector’s Problem

` ∀ n. (geom rv lst 0 n = []) ∧
∀ h t n. (geom rv lst (k+1) n =

(prob geom P{s | k ≤ fst (prob unif n s) }) ::

(geom rv lst k n))

In the above definition, the function prob unif represents the HOL definition of the

Uniform(n) random variable, which has been formalized in [Hur02]. The function

geom rv lst accepts two arguments; a positive integer n that represents the total num-

ber of distinct coupons and a positive integer, say k, that represents the number of

distinct coupons acquired by the coupon collector out of the all possible n coupons

at any particular instant. It returns, a list of Geometric random variables that can

be added to model the number of trials required to collect k coupons in the Coupon

Collector’s problem. The base case in the above recursive definition corresponds to the

condition when the coupon collector does not have any coupon and thus the corre-

sponding Geometric random variable list is empty. For the particular case when the

variable k is assigned a value of 1, i.e., the coupon collector has acquired a single coupon

out of the n possible distinct coupons, the function geom rv lst will return a list with

one Geometric random variable element with probability of success equal to 1, since

the probability that a Uniform(n) random variable would generate a number greater

than or equal to 0 is 1. This is obviously the intended behavior since we are always

certain to acquire a new coupon in the first trial of the Coupon Collector’s problem.

In a similar way, the function geom rv lst generates a list of k Geometric random

variables which can be added to find the number of trials to acquire the first k distinct

coupons.

Using the above definition along with the function sum rv lst, given in Definition 4,

the Coupon Collector’s problem can be represented now by the following probabilistic

algorithm in HOL.

Definition 8: Probabilistic Algorithm for Coupon Collector’s Problem

` ∀ n. coupon collector n = (sum rv lst (geo rv lst n n))

The function, coupon collector, accepts a positive integer n that represents the

total number of distinct coupons that are required to be collected. It returns the total

number of trials required for collecting all the n coupons by adding the contents of

the list of Geometric random variables modeled by the function geo rv lst with both

arguments equal to n.

7.2 Verification of Expectation for the Coupon Collector’s Problem

In this section, we verify that the expected value of acquiring all n distinct coupons in

the Coupon Collector’s problem can be represented by the following expression.

n

n∑

i=0

1

i + 1
(37)
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Sometimes, the mathematical expression of Equation (37) is expressed in terms of the

harmonic number as nH(n), where H(n) =
∑n

i=0 1/(i + 1). The expectation property

of the Coupon Collector’s problem, given in Equation (37), can be stated using the

functions coupon collector and expec as a higher-order-logic theorem as follows.

Theorem 10: Expectation of Coupon Collector’s Problem

` ∀ n. expec (coupon collector n) = n (
∑n

i=0
1

i+1)

We proceed with the verification of the above theorem by simplifying it with the

definition of the function coupon collector, given in Definition 8, and splitting the

subgoal into two cases, i.e., when the value of n is 0 and when it is not 0.

expec(sum rv lst (geo rv lst 0 0)) = 0 (38)

expec (sum rv lst (geo rv lst (n + 1) (n + 1))) = (n + 1)

n+1∑

i=0

1

i + 1
(39)

The subgoal of Equation (38) can be simply proved by using the definitions of the

functions expec, sum rv lst and geo rv lst given in Definitions 2, 4 and 7, respec-

tively, along with some arithmetic and probabilistic reasoning. On the other hand, we

utilize the linearity of expectation property, given in Theorem 2, in order to rewrite

the subgoal of Equation (39) as follows

n+1∑

j=0

expec(el((n + 1)− (j + 1))(geo rv lst (n + 1) (n + 1))) = (n + 1)

n+1∑

i=0

1

i + 1

(40)

It is important to note that in order to use the linearity of expectation property, in the

above step, we had to prove that all elements in the list (geo rv lst (n + 1) (n + 1))

preserve strong function independence and have well-defined expectations. Similarly,

we also had to prove that the length of the list (geo rv lst (n + 1) (n + 1)) is equal to

n + 1.

Next, we verified in HOL that any element e of the list geo rv lst k n can be

mathematically expressed as follows.

∀ e n k. (0 < k) ∧ (k ≤ n) ∧ (e < k)

⇒ (el e (geo rv lst k n) = prob geom (
n− (k− (e + 1))

n
))

(41)

The above proof is based on the PMF property of the Uniform random variable, verified

in [Hur02], along with some arithmetic and probabilistic reasoning. Now, using the

result of Equation (??) along with some arithmetic reasoning, the subgoal of Equation

(40) can be expressed as follows

n+1∑

j=0

expec(prob geom (
(n− j + 1))

n + 1
))) = (n + 1)

n+1∑

i=0

1

i + 1
(42)
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The expectation of the Geometric random variable in the above equation can be

easily verified to be equal to n+1
(n+1)−j

, using the results of Theorem 8. The substitution

of the expectation value in the subgoal, given in Equation (42), gives us the following

expression

n+1∑

j=0

(n + 1)

(n + 1)− j
= (n + 1)

n+1∑

i=0

1

(i + 1)
(43)

which can be proved using properties of summation of a real sequence, given in the

real number theories in HOL. This also concludes the proof for Theorem 10.

7.3 Verification of Variance Bound for the Coupon Collector’s Problem

In this section, we verify the following upper bound on the variance of acquiring all n

coupons in the Coupon Collector’s problem

n2
n∑

i=0

1

(i + 1)2
(44)

This property can be expressed, using the functions coupon collector and variance,

as a higher-order-logic theorem as follows.

Theorem 11: Variance Upper Bound of Coupon Collector’s Problem

` ∀ n. variance (coupon collector n) ≤ n2
∑n

i=0 ( 1
(i+1)2

)

The proof steps for the above theorem are quite similar to Theorem 10. The proof

is based on the definition of the function coupon collector, the linearity of variance

property, given in Theorem 6, the PMF relation for the Uniform random variable and

the variance relation of Geometric random variable, given in Theorem 9, along with

some arithmetic and probabilistic reasoning.

Thus, we have been able to verify the expectation and variance properties of the

Coupon Collector’s problem with 100% precision, which is something that cannot be

achieved by any existing computer based probabilistic analysis tool. It is also worth

mentioning at this point that it is due to the formally verified linearity of expectation

and variance properties that the complex task of verifying the expectation property

and variance bound of the Coupon Collector’s problem, which involves multiple random

variables, was simply proved in HOL using summation over the expectation or variance

of a single Geometric(p) random variable.

8 Conclusions

This paper presents the formalization of some expectation theory in higher-order-logic

using the HOL theorem prover. The formalization can be utilized to verify statistical

quantities, such as mean and variance, for probabilistic systems that can be modeled

using discrete random variables in HOL. These statistical properties play a vital role

in probabilistic analysis and thus the ability of their verification in a theorem-proving

environment can be regarded as a significant step towards a complete theorem-proving
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based probabilistic analysis framework. Due to its inherent soundness, the theorem-

proving based probabilistic analysis can prove to be quite useful for the performance

and reliability optimization of safety critical and highly sensitive engineering and sci-

entific applications.

In [HT07b], we presented the higher-order-logic definition of an expectation func-

tion for discrete random variables that attain values in positive integers only and used

this formalization to verify the linearity of expectation property. The current paper

extends that work by first presenting a formal definition of expectation for a function

of a discrete random variable that can attain values in positive integers only. The main

benefit of this new definition is that it allows us to formalize the mathematical concept

of variance. This paper provides the formalization of variance and the verification of

four classical properties of expectation and two classical properties of variance using

the HOL theorem prover. The theorems corresponding to the classical properties of

expectation and variance not only verify the correctness of our expectation and vari-

ance definitions but also play a vital role in conducting probabilistic analysis in a

higher-order-logic theorem prover. For illustration purposes, we first utilize the formal-

ization presented in this paper to verify the expectation and variance relations of the

Geometric(p) random variable. Then, we formalized the Coupon Collector’s problem as

a probabilistic algorithm in HOL and verified its expectation and variance properties as

well. To the best of our knowledge, this is the first time that an approach to verify both

expectation and variance properties of probabilistic systems within a higher-order-logic

theorem proving environment has been presented in the open literature.

The HOL formalization presented in this paper can be used to verify the expectation

and variance properties of a number of other discrete random variables, e.g., Uniform,

Bernoulli, Binomial and Poisson [Kha76] and commercial computation problems, such

as the Chinese appetizer and the Hat-Check problems [GS97]. As a potential case

study for the formalization presented in this paper, we plan to conduct the analysis

of the two versions of Quicksort algorithm [MU05] in HOL. This project will enable

us to establish the distinction between the analysis of randomized algorithms and

probabilistic analysis of deterministic algorithms within the HOL theorem prover.

An alternative approach that can be used to formalize the expectation of a random

variable in higher-order logic is based on the mathematical concept of probability

space. Since every random variable can be expressed as a real-valued function defined

on the sample space, S, we can formalize expectation in terms of the probability space

(S, F, P ), where F is the sigma field of subsets of S, and P is the probability measure.

The main benefit of this approach is that it leads to the formalization of the general

definition of expectation, given in Equation (1), for discrete random variables. On the

other hand, in this approach we require the formal definition of a summation function

for functions with domain in the sample space S. Such definition does not exist in

the available HOL theories and thus needs to be formalized from scratch. It would be

an interesting future work to formalize this summation and define a higher-order-logic

definition of expectation based on the concept of probability space. A formal link may

then be established between this generalized definition and the formal definition of

expectation for discrete random variables with positive integers as their co-domain,

presented in this paper. Such a relationship would further increase the confidence in

our definitions.

Summarizing the experience of the work presented in this paper, we can say that

formalizing mathematics in a mechanical system is a tedious work that requires deep

understanding of both mathematical concepts and mechanical theorem-proving. We
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often came across proving subgoals that are commonly known to be true but their

formal proofs could not be found even after browsing quite a few mathematical texts

on that specific topic and thus we had to first develop a formal paper-pencil proof of

these lemmas before translating them to HOL. The HOL automated reasoners help

somewhat in the proof process by automatically verifying some of the first-order-logic

goals but most of the times we had to guide the tool by providing the appropriate

rewriting and simplification rules. Thus, the HOL code for the formalization presented

in this paper consists of more than 6000 lines. On the other hand, we found mechanical

theorem-proving very efficient in book keeping. For example, it is very common to

get confused with different variables and mathematical notations and make human

errors when working with large paper-pencil proofs, which leads to the loss of a lot of

effort, whereas in the case of mechanical theorem provers such problems do not exist.

Another major advantage of mechanical theorem proving is that once the proof of a

theorem is established, due to the inherent soundness of the approach, it is guaranteed

to be valid and the proof can be readily accessed, contrary to the case of paper-pencil

proofs where we have to explore the enormous amount of mathematical literature to

find proofs. Thus, it can be concluded that mechanical theorem-proving is a tedious

but promising field, which can help mathematicians to cope with the explosion in

mathematical knowledge and to save mathematical concepts from corruption. Also,

there are areas, such as security critical software, in military or medicine applications

for example, where mechanical theorem-proving will soon become a dire need.
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