
i

Quality Validation through Pattern Detection – A Semantic

Web Perspective

David Walsh

A Thesis

In

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Sciences (Software Engineering) at

Concordia University

Montreal, Quebec, Canada

May 2012

© David Walsh

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: David Walsh

Entitled: Quality Validation through Pattern Detection – A Semantic Web

Perspective

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Sciences (Software Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final Examining Committee:

 Dr Joey Paquet Chair

 Dr Gregory Butler Examiner

 Dr Olga Ormandijeva Examiner

 Dr Juergen Rilling Supervisor

Approved by __

 Chair of Department of Graduate Program Director

 _______________2012 ______________________________

 Dean of Faculty

iii

Abstract

Quality Validation through Pattern Detection – A Semantic

Web Perspective

David Walsh

Given the ongoing trend towards a globalization of software systems, open networks and

distributed platforms, validating non-functional requirements and qualities becomes an

essential requirement. Our research addresses this challenge from two different

perspectives: (1) the integration of knowledge and tool resources through semantic web

technologies as part of our SE-PAD environment in order to reduce or eliminate existing

traditional information and analysis silos. (2) The ability to reason upon linked resources

to infer both explicit and implicit patterns to support the validation of quality aspects. We

illustrate the flexibility and applicability of our approach through several use cases,

including the detection of security and design patterns, violations of secure programming

guideline violations.

iv

Table of contents

List of Figures ... v
List of Tables .. v
1. Introduction ... 1

1.1 Contributions ... 3
1.2 Thesis Outline ... 4

2. Quality Validation through Pattern Detection – a Semantic Web Perspective 5
2.1 Motivation ... 5
2.2 Goals and Requirements ... 6
2.3 Research Hypothesis ... 8

3. Background ... 10

3.1 Ontologies and Semantic Web Technologies ... 10
3.1.1 RDF .. 11

3.1.2 RDFS.. 12
3.1.3 OWL-DL .. 12

3.1.4 Reasoning ... 14
3.1.5 SPARQL queries .. 17

3.1.6 Putting it all together .. 18
3.2 Software Patterns and Quality Inspection ... 19

3.2.1 Software Quality Inspection .. 20

3.2.2 Functional Inspections ... 21
3.2.3 Design Inspection... 22

3.2.4 Inspection of Source Code ... 24
3.3 Ontologies in Software Engineering ... 27

3.3.1 Knowledge modeling: information silos .. 28

3.3.2 Conceptualization .. 29

4. SE-PAD as a Semantic Web based quality validation platform 32
4.1 SE-PAD Architecture .. 32
4.2 SE-PAD and the use of Ontologies ... 33

4.2.1 Design (t-box) .. 34
4.2.2 Population and Realization (a-box) ... 38

4.3 A Semantic Web Approach to Software Quality .. 42
4.4 Programming Guidelines .. 44

4.4.1 General Programming Guidelines .. 44
4.4.2 Secure Coding Guidelines.. 53

4.5 Modeling Design Patterns ... 59
4.5.1 Adapter Pattern .. 61
4.5.2 Proxy Pattern .. 64

4.5.3 Strategy Pattern .. 67
4.5.4 Template Pattern .. 71

4.6 Tool integration ... 74
4.7 Cross artefact analysis ... 77

5. Case Studies .. 80
5.1 Security violations .. 80
5.2 Design Pattern Automated Recovery .. 82

5.3 Integration of external static analysis tool results (PMD and FindBugs) 83

v

5.4 Integration of SCM Ontology ... 85

6. Discussion ... 88
6.1 Revisiting the hypothesis .. 88
6.2 The Open World Assumption problem ... 89

6.3 Threats to Validity .. 91
6.3.1 Semantic web technologies fail in bridging the information silos (R1). 91
6.3.2 Implicit versus explicit knowledge (R2) .. 92
6.3.3 Establishing Trustworthiness (R3) ... 92
6.3.4 Pattern and knowledge base have to be extensible (R4) 94

7. Conclusions and Future Work .. 95
8. References ... 97

List of Figures

Figure 1-1: High level view of our approach .. 4
Figure 3-1: A simple semantic network .. 11

Figure 3-2: Semantic Web technologies working together... 18
Figure 3-3: Software abstraction scale .. 21

Figure 3-4: Information Silos for a generic domain of knowledge 29
Figure 4-1: SE-PAD's architecture ... 32
Figure 4-2: Sample of SE-PAD's t-box ... 38

Figure 4-3: SE-PAD's partial resulting ontology example ... 40
Figure 4-4: SE-PAD’s support for external tool rules .. 41

Figure 4-5: The semantic levels supported by SE-PAD ... 42
Figure 4-6: Mutable class realization .. 56
Figure 4-7: SCM rule violation search algorithm ... 78

 List of Tables

Table 3-1: Research goal, sub-goals, and related requirements .. 6
Table 2-1: Examples of software patterns .. 19

Table 2-2: Software engineering responsibilities ... 28
Table 2-3: SOM Ontology relations, domain and range concepts 31
Table 4-1: SE-PAD's set of extended data properties ... 35

Table 4-2: SE-PAD's set of extended object properties .. 36
Table 4-3: Extension of SOM's Attribute concept .. 36
Table 4-4: Extension of SOM's Method concept .. 37
Table 4-5: Extension of SOM's Class concept .. 37
Table 4-6: Pattern presentation template .. 43

Table 5-1: JabRef population summary .. 80
Table 5-2: SE-PAD vs. PMD .. 81

Table 5-3: SE-PAD vs. DPR ... 82
Table 5-4: ArgoUML population summary .. 83
Table 5-5: Ratio of unsafe classes in ArgoUML .. 84
Table 5-6: Integration of SCM Ontology results .. 86
Table 6-1: Semantic classification and identification of pattern support 89

file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779332
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779333
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779334
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779335
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779336
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779338
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779339
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779340
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779341
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779342
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779343

1

1. Introduction

Syntax errors are part of any programmer’s daily life: missing parenthesis, misspelled

variable names are easily caught by compilers and immediately fixed by the programmer.

In contrast to these syntax errors, other forms of programmer mistakes, such as violating

coding guidelines, programming patterns, introducing vulnerabilities and lack of good

programming practices often lead to mistakes that are not discovered by traditional IDEs.

These problems are often part of what constitutes code quality, a Non-Functional

Requirements (NFR). Such qualities can be divided into two main categories: (1)

Execution qualities, such as performance and usability, which are observable at run time;

and (2) evolution qualities, such as testability, maintainability, extensibility, and

scalability, which are embodied in the static structure of the software system.

Given the large, complex and global systems being developed, it becomes essential for

organizations to validate and assess software qualities. However, a lack of requirements

and artifact traceability often results in situations where validating qualities in post-

mortem systems becomes an inherently difficult task.

Patterns and programming guidelines have been promoted for some time to help to detect

problem areas and improve various quality aspects of the final software product. The

challenge is that these already implemented problems lead to situations where people (1)

reuse code with flaws without being aware of it or even worst (2) the same mistakes or

bad programming practices are repeated and become recurring patterns. These issues

become even more aggravating, in our global software economy, with its collaborative

workspaces and diversified knowledge distribution among project stakeholders.

2

One approach to detect such common coding problems or for enforcing best practice

coding patterns are manual code reviews [18]. However, the quality of these reviews will

largely depend on the expertise (pattern and guidelines to be validated) of the reviewer

and the thoroughness of the review process itself. Source code analysis can be applied to

automatically detect many of these common coding problems. Furthermore, these

analysis tools can capture relevant domain expertise in their analysis without requiring

the tool operator to have the same expertise level as required during manual code

reviews. Many analysis techniques have been developed over the years to detect different

form of patterns in software, with many of these techniques relying on formal methods

and sophisticated program analysis. Most existing source code analysis approaches have

failed to address these challenges associated with the new global software economy. As a

result, most of the existing analysis tools have remained in technology silos, focusing

mainly on improving precision and performance rather than outreaching and integrating

with other tools or deal with data at a global scale.

More precisely, we will describe an approach relying on a Semantic Web based

automated source code quality analysis tool that can perform the following tasks:

 detect the violations of coding good practices, including security related

guidelines

 integrate knowledge reported by external static analysis tools to enrich its own

knowledge base

 recover well design patterns such as those described in well known GoF book [17]

3

 share concepts with knowledge bases of other artefacts such as Source Code

Management tools to perform historical quality mining

Research results presented in this thesis have been published in proceedings of two

recognized international conferences including:

 Proceedings of the 35th IEEE Conference on Computers, Software, and

Applications (COMPSAC 2011) where our complete SE-PAD approach was

presented.

 2nd IEEE International Workshop on Software Engineering for Context Aware

Systems and Applications (SECASA 2009) where we introduced the theoretical

aspects of a contextual approach to security pattern detections based on Semantic

Web technologies.

1.1 Contributions

The objective of our research is to provide a novel approach that takes advantage of

Semantic Web technologies to represent software artifacts and related knowledge

resources. The research builds the basis (1) to integrate and eliminate some existing

technology and knowledge silos found in the software engineering community. (2)

Taking advantage of Semantic Web technologies to support both, implicit and explicit

pattern detection to support the use of quality guidelines. (3) Develop a prototype (SE-

PAD) as a proof of concept that takes advantage of the Semantic Web to support both

knowledge integration and pattern detection. (4) Demonstrate through several motivating

examples and case studies, the flexibility and applicability of our approach. Figure 1-1

4

shows a high level overview of the Semantic Web based quality validation approach

developed as part of this research.

1.2 Thesis Outline

Section 2 presents the research hypothesis and goals are exposed. The relevant theoretical

background on which this research is based is presented in section 3, followed by the

description of the approach in section 4. Case studies are detailed in section 5 followed

by a discussion which includes the Open World Assumption and threats to validity in

section 6. Finally, section 7 concludes the thesis and discusses future work.

Figure 1-1: High level overview of SE-PAD

5

2. Quality Validation through Pattern Detection – a Semantic Web

Perspective

2.1 Motivation

Nowadays, driven by a globalization of economical activities [35], software is being

more and more developed in a global and distributed fashion. Teams are geographically

scattered across the globe: they live in different time zones, use different languages, have

different cultural background, etc. Not only does this pose organizational, cultural and

technical challenges but software development has to adapt to the generally increased

complexity of such an environment to maintain an acceptable level of quality.

At the same time, relevant knowledge is being distributed across multiple resources,

making the assessment and maintenance of the quality of a system inherently more

difficult. In this thesis, we address some of these challenges for the next generation of

software engineering quality validation tools, the need to unify quality patterns with

system engineering and models. We in particular focus on the second challenge, the

integration of resources and knowledge related to patterns within a common Ontological

representation. We introduce our SE-PAD tool implementation, to illustrate how

Semantic Web technologies can support the integration of knowledge resources at

various abstraction and semantic levels. We also show how the Semantic Web can

provide the foundation for a knowledge base that supports the extension of new resources

and patterns.

A key motivation for our approach is to guide maintainers and developers to validate and

ensure that source code meets certain qualities. Supporting global software development

6

processes with artefacts and knowledge resources distributed across organization

boundaries and systems will require the modeling and integration of these knowledge

resources.

Quality software increases its stakeholders trust and is perceived by many as an indicator

of improved evolvability and lower maintenance cost. Semantic information represents a

basis for the validation of quality aspects in source code and other resources. We argue

that the Semantic Web can provide the required technologies to create semantic rich

models unifying knowledge resources and enabling semantic rich forms of source code

analysis [39, 40, 48].

2.2 Goals and Requirements

The main goal of our research is to provide a novel approach that takes advantage of

Semantic Web technologies to represent software artefacts and related knowledge

resources in order to support the assessment of quality aspects of post-mortem systems in

a distributed and global setting. What follows details how each requirement is linked to

its respective sub-goal and consequently to the main goal, as summarized in table 3-1.

Main Goal Sub-Goal Requirement

Support the assessment of

quality aspects of post-mortem

systems in a global setting

Knowledge

dissemination
(R1) Bridge information silos

Knowledge modeling
(R2) Retrieve implicit and

explicit knowledge

Quality validation (R3) Establish trustworthiness

Knowledge enrichment (R4) Model extendibility

Table 2-1: Research goal, sub-goals, and related requirements

7

Requirement #1: Bridging information silos (R1)

Maintenance activities are often performed across organizational boundaries with

knowledge and expertise being distributed across these resources. In order to avoid the

creation of information silos in heterogeneous development environments, knowledge

dissemination and integration among stakeholders or resources has to become an

essential part of global software system.

Requirement #2: Retrieve implicit and explicit knowledge (R2)

From a programmer perspective, locating and extracting relevant knowledge and

resources becomes a major challenge. In order to support programmers and maintainers

in their current work context, new modeling techniques and representations have to be

applied to support both explicit and implicit knowledge retrieval. In a global and

distributed development environment, developers are often geographically separated and

located in different time zones, making communication difficult. The ability to

automatically retrieve implicit and explicit knowledge becomes crucial to achieve many

software engineering tasks, such as program comprehension.

Requirement #3: Establishing Trustworthiness (R3)

Establishing trustworthiness in the quality of a system requires maintainers to apply

organization and application domain specific processes and activities to document that an

application meets or exceeds the expected quality. Validating system qualities creates

trustworthiness, by ensuring that that various patterns (e.g. design and security patterns)

have been respected and good programming practices and guidelines have not been

violated.

8

Requirement #4: Model extendibility (R4)

Pattern and knowledge base have to be extendible in order to detect new patterns and to

ensure the future quality of systems. There is a need to support knowledge enrichment in

the form of modeling and integrating new patterns and guidelines as part of an existing

and global knowledge base.

2.3 Research Hypothesis

We argue that it is possible to build an Ontology based prototype that can support the

four requirements described in the previous section, and therefore address the main

research goal of supporting the assessment of quality aspects of post-mortem systems by

its associated research sub-goals. Consequently, the hypothesis will hold if and only if

our SE-PAD prototype can provide support for all four requirements.

As discussed earlier in section 2, SE-PAD extends the SOM Ontology [4, 5] with new

concepts and relationships to form a semantically richer Ontology. Once populated with

source code and external tools quality related information, the knowledge base can be

queried and enriched. Users can introduce additional concepts and relationships or share

existing concepts with other Ontologies through Ontology alignment [56].

Capturing programming expertise and best practices is a well recognized research and

application domain. Many forms of patterns (e.g. security, design, guidelines) and

programming guidelines have been established describing benefits, limitations and their

potential application contexts. The objective of our research is not to compete with

existing specialized tools. Rather, we see SE-PAD as a complementary, knowledge

integration approach. Furthermore, given the ongoing globalization of software

9

development processes, we do believe that a standardized representation using Semantic

Web technologies will become an important enabling factor. It allows for information

and knowledge while providing supporting technology infrastructures.

A key objective of SE-PAD is to provide a flexible approach that allows queries to be

applied either in a standalone fashion or as embedded within an IDE (e.g. Eclipse [73]),

to retrieve different type of source code related knowledge: good practices violations,

design pattern implementations, code metrics, module usages, etc.

10

3. Background

This chapter reviews background literature relevant to the research presented in this

thesis. The topics include Semantic Web Technologies and Ontologies, software design

and inspection, as well as code quality.

3.1 Ontologies and Semantic Web Technologies

This section examines features of Semantic Web technologies, going from the most

trivial (RDF) to the more sophisticated (OWL-DL). Both their querying and reasoning

features will also be discussed.

The Semantic Web was originally introduced to organize knowledge available on web

sites to make it interpretable by machines [69]. As with any information intensive

systems and similarly to those backed by relational databases, Semantic Web

technologies involve modeling formalization. Whereas entity-relationship models are

often used to represent database information, the Semantic Web paradigm relies on

Ontologies.

More formally, Ontologies consist of graphs whose nodes are linked by named and

directed vertices representing relationships. Nodes may symbolize concrete Individuals or

Classes. To compare with the Set theory, Ontology Classes equate to Sets and Ontology

Individuals equate to items belonging to zero or more of these sets.

Nodes in Ontologies are linked by means of relationships. They may link individuals

amongst themselves or to Classes to explicit an Individual’s types. In the latter case, a

11

pre-determined relationship exists and is systematically involved to make an Individual’s

types explicit.

3.1.1 RDF

The Resource Description Framework (RDF) consists of a set of W3C specifications

which were initially introduced by Ramanathan V. Guha [51] to implement a metadata

data model for the Web. Technically, RDF models typically contain a number of directed

sub-graphs. Figure 2-1 shows a simple graph linking node A to node B through the

named edge C.

Such graphs are typically represented in the form of triples, which may formally be

denoted as:

In RDF, the graph semantics has been enhanced by defining the participants in a triple.

For instance, using the previous example, node A is called the Subject, node B the Object

and the edge C is a Relationship. RDF models also have the particularity of identifying its

elements with Uniform Resources Identifiers (URI), which are easily processed by a

computer program. Subjects and Relationships must be URIs whereas Objects can be

either a URI or a literal such as a String, an Integer, etc. For instance, the previous triple

can be expressed as follows:

Figure 3-1: A simple semantic network

12

τ =<http://www.example.com/test#A,
http://www.example.com/test#C,

http://www.example.com/test#B>

RDF injects larger semantics to semantic networks by predefining richer axioms to

construct Ontologies. One of the most notables is the rdf:Property axiom which

allows Ontology designers to create relationships bearing specific meanings. In the

previous example, the Relationship C could be replaced by "hasChild", the subject A by

"Julius Caesar" and the object B by "Brutus" to model the parent relationship between

Julius Caesar and his son Brutus.

3.1.2 RDFS

RDFS extends RDF by adding more predefined constructs. Classes are introduced and

with them, further semantics including sub/super-classing, inheritance, etc. Relationships

are enhanced through additional restrictions, like domain/range restrictions and new

properties, such as the Sub/Super properties. RDFS also introduces a clearer separation

between the two main constituents of an Ontology: the t-box is composed of domain

Concepts and Relationships whereas Instances, or a-box, refers to concrete individuals

whose type (class) and possible relationships are defined in the t-box. To recall the set

theory again, the set of Sets equates to the t-box, the a-box to the available items and their

union, the Ontology, to the set theory's Universe.

3.1.3 OWL-DL

OWL-DL[13] increases Ontologies expressivity by adding a rich set of semantics to

RDF(S). However, contrarily to the pre-existing Semantic Web architecture, which is

13

based on the Semantic Web Stack [70, 71], it does not so by building a new layer through

the extension of RDFS. Instead, OWL combines RDFS with Description Logics (DL)

[53] by borrowing its XML syntax and style to define rich, formal DL-based class

restrictions, hence giving birth to the decidable language OWL-DL. Here are a few

examples of the semantic constructs introduced in OWL-DL [13, 69]:

1. Local scope of properties

The rdfs:range statement defines the range of a relationship for all the classes of

a given Ontology. For example, defining the range of the relationship eats as plants

in RDFS means that everything eaten is a plant whereas OWL-DL allows restrictions

to be declared for some classes only. It would then be possible to state that cows eat

plants while other animals eat meat.

2. Disjointness of classes

RDFS only allows for subclass relationships amongst classes. Classes in OWL-DL

can also be defined as disjointed from one another, as having no intersection so that

no individuals can be part of both. For instance, the class male would be modeled as

disjoint from the class female.

3. Boolean combination of classes

OWL-DL supports a combination of first order logic and set operations by allowing

classes to be combined with other classes using union, intersection, and complement

operators. For example, drivers could be modeled as the union of car_driver and

bus_driver.

14

4. Cardinality restrictions

Restrictions in OWL-DL can include the number of range items a property should or

must bear. For instance, a class car may restrict the has_wheels property so that the

cardinality is equal or greater than 4.

5. Special characteristic of properties

In OWL-DL, properties may have special features. Taking for example the various

familial relationships, transitivity is illustrated by is_ancestor_of and inversion by

has_parent/ is_parent_of.

3.1.4 Reasoning

Reasoners process OWL-DL Ontologies to explicit facts implicitly presented in the a-box

[14] based on DL formal class restrictions or in other words, to perform automated

inferences. More specifically, this research makes use of the following features offered

by typical reasoners [15, 52]:

1. Computation of reverse properties

Assume X and Y are sets and L is a relation from X to Y. Then, the reverse

relation of L, , is formally defined in first order logic as:

In Ontologies relationships are represented by triples and they can be declared

as the reverse of another one. As an example, suppose the following triple

exists in an Ontology's knowledge base:

15

τ A C B

Suppose also that Z is a property that was defined as the reverse property of C.

In that case, the reasoner can infer the following triple:

τ' B Z A

2. Computation of transitive properties

Assume X is a set and R a relation from X to X. The transitivity of R is

formally defined in first order logic as:

Suppose an OWL knowledge base contains the following two triples:

τ A C B τ' B,C,D>

If C was labelled as a transitive property, the reasoner can infer the following

triple:

τ''= <A,C,D>

3. Computation of sub-properties

Assume X is a set and suppose R and S are relationships over X. In first order

logic, sub-properties can be expressed as follows:

Suppose the following triple exists in an Ontology's knowledge base:

16

τ A C B

If C was labelled as a sub-property of D, the reasoner can infer the following

triple:

τ' A D B

4. Classification

An OWL-DL reasoner calculates the subclass mapping amongst all identified

class in an Ontology’s t-box to infer the entire class and subclasses hierarchy

of the knowledge base. During the classification process, the reasoner can

detect inconsistencies in the hierarchy. A class is inconsistent if it is restricted

in such a way that it cannot have any instances. For example, a class restricted

for humans that are male and not male at the same time will always remain

empty, and therefore is considered inconsistent. In first order logic, an

inconsistent set R restricted along the relationship S can be represented by the

following expression:

5. Realization

Once a hierarchy is computed, it becomes possible to infer all the types to

which an Ontology’s individuals (a-box) belong. The realization process

determines the most precise classes to which the individuals base belong by

relying namely on the computation of sub-properties. It then becomes possible

to determine all the classes an individual is part of through the hierarchy

17

computed in the classification process. As an example, a reasoner can

compute the following implication, based on the formal definition of sub-

properties:

3.1.5 SPARQL queries

SPARQL[16] is a query language for RDF, i.e. a language to query triple stores. A query

consists of triple patterns, conjunctions, disjunctions, and optional patterns. Here is a

SPARQL query example. It queries a fictitious Ontology for all the cities and states in the

whole Asia, except China.

SELECT

 ?city ?state

WHERE {

 ?x name ?city;

 isCityOf ?y.

 ?y stateName ?state;

 isInRegion "Asia".

}

Filter ?state != "China".

Each SPARQL SELECT query includes an ensemble of ordered sections. A query

begins with prefix definitions; next a SELECT section describes which variables will be

listed in the results. The following WHERE clauses describe the graph patterns the results

are expected to match, including the variables defined by the SELECT clause (e.g. the

statements contained within the WHERE clause brackets in the example above).

The next section of a SPARQL query is where solution modifiers like FILTER are

applied. The FILTER keyword limits a query’s results by forcing constraints on the

18

values assigned to the variables defined in the SELECT section. Constraints are

implemented by logical expressions that result in Boolean. For example, a query

returning a set of string values could be modified with a filter to return only the ones

matching a specific regular expression. In the last example, the FILTER statement is

used to remove all cities in China from the results.

3.1.6 Putting it all together

The Semantic Web encompasses many technologies. The following directed and named

graph shows how we take advantage of the different Semantic Web technologies in our

research.

The most important component is the OWL-DL Ontology. It combines elements of

RDFS (e.g. XML syntax, notions of Classes and Relationships) with Description Logics

to create the powerful and expressive language OWL-DL. During the realization process,

Figure 3-2: Semantic Web technologies working together

19

a reasoner is applied on instances of OWL-DL Ontologies to infer new facts based on the

Description Logics they contain.

Everything composing a knowledge base, including the new facts inferred by the

reasoner, is materialized by triples as discussed in section 2.1.1. SPARQL queries are

ultimately applied to the resulting set of triples of an Ontology, e.g. the a-box, in order to

retrieve the inferred knowledge.

3.2 Software Patterns and Quality Inspection

Software patterns are reusable solutions applicable to repeatable problems in software

engineering. Since such solutions are reputed as valuable and working once adapted to a

specific context and properly implemented, their presence or absence directly affects the

overall software quality. Patterns have been defined for different software abstraction

levels such as architecture, design and implementation. Table 2-1 presents a few well

known patterns for each abstraction level [17, 24, 31].

Abstraction Level Pattern example

Architecture patterns Pipe and Filters

Peer to Peer

Client-Server

…

Design patterns Strategy

Composite

Adaptor

Decorator

…

Implementation patterns Naming conventions

Exception processing

Secure coding

…

Table 3-1: Examples of software patterns

20

Architectural patterns will not be discussed any further as they are outside the scope of

this research. They are presented as examples only. Design patterns are best known from

the GoF book [17] and capture reoccurring design level solutions. Implementation

patterns are directly concerned with code constructs, most of the time language specific.

3.2.1 Software Quality Inspection

Quality inspection refers to “examining a product by following a prescribed, systematic

process that is intended to determine whether or not the product is fit for its intended use”

[18]. Inspections often occur on items of a product at their exit the production lines.

Then, a statistically representative lot is collected and analyzed.

 In the Software Engineering domain, the inspection principle relates to the detailed and

organized examination of a program’s source code. Similarly to classic inspections, the

goal of software inspection is to assess overall quality. They are defined in [54] as an

“approach that involves a well-defined and disciplined process in which qualified

personnel analyse a software product using a reading technique for the purpose of

detecting defects”.

 They are typically performed before new code goes in production in order, for example,

to prevent side-effects in the case of a modification performed in the maintenance phase.

Inspections can also be applied in the development phase to prevent defects which would

be costly to fix post-mortem and to maintain a high level of quality during the whole life-

cycle.

21

Inspections can be divided in three types, according to the granularity factor:

 Functional inspection (coarse grained)

 Design inspection (medium grained)

 Implementation inspection (fine grained)

3.2.2 Functional Inspections

Functional modification, the modification of an application feature or the addition of a

new feature, is the main type of activity occurring during the maintenance phase of the

software lifecycle [22]. Such changes are significant because application features involve

many software modules, as illustrated in the software abstraction scale (figure 2-3).

Figure 3-3: Software abstraction scale

22

Features are abstract requirements, which constitute the first step down the scale. Then,

requirements abstract architectural components, which abstract design components which

in turn abstract code or implementation components. Consequently, any functional

change may potentially involve an exponential number of modifications to many

abstraction layers of a software application.

Functional inspections are performed prior to feature modifications, by applying impact

analysis to determine which software components might be affected by the modification.

The complexity of the task is such that it is hard to automate [47]. Human intervention is

often necessary to namely create the necessary traceability links [46] amongst the

components across the abstraction scale.

3.2.3 Design Inspection

At the design level, patterns have been promoted as a good way to ensure software

quality. Bushman et al [24] have the following view of design patterns:

“A pattern for software architecture describes a particular

recurring design problem that arises in specific design contexts

and presents a well-proven generic scheme for its solution. The

solution scheme is specified by describing its constituent

components, their responsibilities and relationships, and the ways

in which they collaborate.”

In other words, design patterns are object-oriented elements (classes, methods and

attributes) organized to implement a solution to a recurring software problem. The key

23

idea is reusability: patterns are to be applied in a specific context and can be reused

whenever an appropriate context presents itself.

Design Patterns are classified in three categories: structural, behavioural and creational.

Structural patterns are solutions applicable to the composition of classes or objects.

Behavioural patterns are concerned with the way objects or classes interact, exchange

messages and assume various responsibilities. Creational patterns describe solutions

involving the instantiation of objects.

Inspections of design patterns can take various shapes in terms of software quality:

 applicability assessment: inspect whether a pattern is appropriately applied and

fits the context

 implementation assessment: inspect whether a pattern is properly implemented,

according to the theoretical definition

 impact assessment: in the case of a change performed in the maintenance phase,

the inspection should ensure that the modification does not break a previously

implemented pattern

Applicability [11] can be inspected by assessing the context of a specific component. If it

contains a design pattern, its context must be similar to the one described in the reference

of the pattern. For example, suppose a component X handles files and folders organized

in a tree-like structure. This context is very similar to the one used to exemplify the

Composite pattern [17]. Consequently, the inspection should indicate that the context of

X is suitable for the Composite design pattern.

24

Implementation assessment requires that a sound documentation of the component under

inspection is available to the code reviewer. When it is established that the component is

supposed to implement a design pattern, the inspection must ensure that:

1. the implemented object oriented structure -e.g. classes, methods, parameters and

attributes- match the theoretical pattern definition

2. the implemented pattern constituents bear the responsibilities required by the

theoretical definition

3. the pattern constituents have the relationships required by the theoretical

definition

The impact assessment involves the same process with the difference that the inspection

targets components to be modified, for example, in the case of a maintenance

intervention. If one of these components is supposed to implement a design pattern, the

inspection must verify that the modification will not break it by performing the three

assessments previously described.

3.2.4 Inspection of Source Code

3.2.4.1 Static Source Code Analysis

At the implementation level, software inspection focuses almost exclusively on non-

functional requirements pertaining to one or many qualities. Generally speaking, these

qualities evolve around the maintainability concept, that is “…the ease with which a

software system can be modified” [28]. More precisely and according to [27],

maintainability is defined as:

25

 “…an integrated measure of many characteristics of software

like readability of source code, documentation quality and

understandability of the software”.

In other words, the maintainability quality comprises various sub-qualities such as code

readability and software understandability.

Since source code is essentially composed of text which will potentially be read by

humans, it benefits from being organized and presented in a way that eases its grasping.

Readability refers to the physical aspect of source code: its style, its syntax, etc. It is the

consequence of the way language elements are organized and presented in text files,

making code apprehension variably easy.

Some languages have conventions with respect to readability. For instance, the Java

language [23, 32] has a set of guidelines in that matter and tools to support the detection

of their violation [29]. Guidelines include recommendations for lines length and spacing,

conventions for naming object oriented elements (packages, classes, methods, attributes,

etc.) and more.

However, readability goes beyond the aesthetics of text appearance. The concept can be

extended to include some elements of understandability, meaning that not only is the

code readable but it is understandable. Software understandability is put to the test during

the comprehension activity [12], which is when a developer reads code in order to

understand a software module. To achieve comprehension, it is necessary to decode the

semantics of said module. However nowadays, systems have become large and complex,

comprising millions of lines of codes. In these conditions, the comprehension task

26

through manual source code analysis may become overwhelming for a human being. The

activity would consequently benefit from a form of automated assistance.

Automated source code analysis is a topic of interest for researchers as well as

practitioners. More specifically, the latter often rely on CASE tools to perform static

source code analysis [21]. For the Java language, FindBugs [49] and PMD [50] are

amongst the most commonly used tools. They parse Java source or compiled code and

report units that violate pre-defined rules.

These reports constitute a form of quality evaluation: the more violations a tool detects,

the lower the quality of a software module is. Moreover, in [30], the authors show that

there is a direct correlation between the bugs reported by static analysis tools and the

readability and understandability of a source code unit.

3.2.4.2 Secure Coding Guidelines

Nowadays, the quality of a system often implies how secure the software is [31, 36, 45,

59, 67]. Indeed, software is present in critical systems in domains such as finance,

military, health, transportation, etc., making the assessment of security features more

relevant than ever. Security covers a broad range of topics, including hardware, network

and software related issues, depending on the threat at stake. For instance, Denial of

Service (DoS) [33] vulnerabilities might be handled by a proper network configuration

whereas malware or virus vulnerabilities require software solutions.

Security is also important to consider in the daily life of a developer. Some programming

languages are more vulnerable to be exploited by an attacker, such as C and C++ that are

subject to buffer overflow attacks [34] by taking advantage of the memory manipulation

27

features of the languages. In Java, memory is automatically managed, making buffer

overflow attacks harder. However, it does not mean the language is immune to malicious

intentions: developers are strongly encouraged to follow the Java Secure Coding

Guidelines [31], to reduce the risk of introducing vulnerabilities in their Java programs.

Similarly to the previous description of static source code analysis, one of the goals of

this research is to perform an automated detection of security flaws caused by violations

of Java Secure Coding Guidelines. In particular we are interested in the following

specific guideline [72]:

 Design APIs to avoid security concerns: it is preferable to pre-emptively design

for security than to reactively apply corrections once vulnerabilities are

discovered.

In other words, the guideline states that it is desirable to prevent security issues than to

correct them post-mortem. If flaws or bad practices are detected at design time, the

overall security of a system should improve.

3.3 Ontologies in Software Engineering

Ontologies and Semantic Web technologies have generated a significant amount of

interest as a mean to model various aspects of software engineering [1, 2, 3], a knowledge

intensive domain [7]. Recent research has explored its application on activities of the

development process: from requirements engineering to system verification and

validation [8]. Our research focuses on the implementation activity or more precisely, the

source code artefact.

28

3.3.1 Knowledge modeling: information silos

Nowadays, organizations like businesses and governments have adopted a decentralized

structure. One aspect of this decentralization is the assignment of responsibilities to sub-

groups, teams and departments contributing to the organization reaching its goals. This

principle can be applied to software engineering. Table 2-2 shows an example of non-

overlapping responsibilities related to a typical software development project:

SE Activity Responsibilities

Requirements Analysis Stakeholders identification

Users interview

Requirements elicitation

Use cases

…

Design High level architecture

Modules modeling

Responsibility assignation

…

Implementation Interpretation of design documents

Coding

Unit testing

…

Testing Test cases creation

Quality assurance assessment

…

Table 3-2: Software engineering responsibilities

This decentralization ultimately leads to instances of the “silo syndrome” [6, 9].

Concretely, silos can be thought of as large cylindrical containers. The fact that their

content is isolated from the outside world leads to the “information silo” metaphor. It

describes the knowledge circulation in a decentralized organization. More formally,

information silos are a structural scheme in which knowledge and activities related to an

organization's 2..n sub-domains occur mostly exclusively amongst their direct

stakeholders, although a sub-domain would benefit from the knowledge generated by one

29

or many of the other 1..n-1 sub-domains to improve the general state of the organization

they compose. Figure 2-5 illustrates this definition of information silos.

Knowledge related to software engineering shares the characteristics of the knowledge

system resultant of a decentralized organization [10] where communication across sub-

domains is often not actively promoted. Indeed, software development involves a

significant amount of supporting tools and resources covering all steps of any given

process. Knowledge relevant to a particular activity is typically dispersed over a range of

artefacts in different representational formats and at different abstraction levels. In other

words, the software engineering domain spans a wide set of sub-domains.

3.3.2 Conceptualization

Ontologies as a modeling technique have been promoted to conceptualize software

engineering artefacts, processes, metrics, terminology, development environment, and

more. For example, in [55], the authors designed an Ontology for the software

maintenance process, including concepts such as developers’ skills, development process,

Figure 3-4: Information Silos for a generic domain of knowledge

30

their steps and tasks. They performed a post-mortem analysis to gather facts from the

stakeholders and improve knowledge on the system to be maintained. This is a

knowledge base that maintainers can use, for example, to increase their comprehension of

the code.

Developing a structured Ontology for the object-oriented source code artefact implies the

analysis of concepts and relationships in this specific area of discourse. In other words,

from a software practitioner’s point of view, the Ontological model must include

concepts and relationships that match those found in the object oriented world.

Our research is based on previous work that has addressed different aspects of such

modeling: the SOM Ontology from the Dynamic and Distributed Information Systems

Group at the University of Zurich [4, 5]. This Ontology includes the necessary object-

oriented concepts such as Class, Method, Attribute, etc. These concepts are linked

amongst themselves by relationships like hasAttribute, hasMethod and

hasFormalParameter. Table 2-3 shows a few relevant roles and for each, the

concepts part of their ranges and the concepts part of their domains.

31

Range Concept Relation Domain Concept

Class hasMethod Method

Class hasAttibute Attribute

Method hasFormalParameter FormalParameter

FormalParameter hasDeclaredClass Class

Attribute hasDeclaredClass Class

Method hasDeclaredReturnClass Class

Method hasLocalVariable LocalVariable

LocalVariable hasDeclaredClass Class

Table 3-3: SOM Ontology relations, domain and range concepts

It has to be noted that these general semantics roughly represent a Class defined in UML

2.0 [60] notation although some details are missing, such as access control and visibility

information. In other words, it is possible to "translate" the definition of an object-

oriented Class in a graph interpretable by Semantic Web technologies enabled tools.

This research incorporates the SOM Ontology and extends it with richer object-oriented

concepts and relationships in order to (1) obtain a sounder representation of code

constructs and by using more expressive description logics, to (2) optimize the usage of

the Ontology to support the use of DL-Reasoners such as Racer [43] or Pellet [52]. These

reasoners support the classification of constructs and compute transitive, reflexive and

reverse relationships and to (3) fill the semantic gap of the SOM Ontology.

32

4. SE-PAD as a Semantic Web based quality validation platform

In this chapter, we present SE-PAD, a semantic web based tool implantation which

supports a pattern based approach to the analysis and assessment of different code

qualities. In section 4.1, we introduce the overall architecture of SE-PAD and its main

components. Section 4.2 presents how Ontologies are an integral part of SE-PAD.

The remaining sections focus on the different quality aspects and how they are supported

within our SE-PAD approach.

4.1 SE-PAD Architecture

This section provides a general overview of the SE-PAD architecture and its major

components (Figure 4-1).

 Figure 4-1: SE-PAD's architecture

Java Parser [41] is an open source library that parses Java source code to extract the

corresponding Abstract Syntax Tree (AST). It supports the Visitor pattern to browse the

results, is fairly easy to use and has excellent performances –thousands of classes are

parsed in seconds.

33

SE-PAD uses the results of Java Parser’s API to extract facts about Java programs. It

converts AST information into Ontology triples through the Jena OWL API [42]. Jena is

an open-source framework providing libraries for the creation of Semantic Web

applications. Its main role is to help SE-PAD manipulate Ontology triples

programmatically.

Racer [43] is an OWL-DL reasoner which performs the realization operation described in

section 3.1.4. It has been selected because it is reputed to provide timely support for

cardinality restrictions higher than one. It is applied on SE-PAD's Ontology to realize

OWL individuals who belong to concepts restricted in this fashion.

Sesame [57] is a RDF triple store. It provides features, among others, for semantic

knowledge storage and querying. The OWLIM reasoner plug-in [44] was integrated to

the triple store to perform the remainder of the reasoning. It complements RACER

because of it is limited to cardinality restrictions of 0 (zero) or 1 (one). It also allows

results inferred statements to be included in the queries results.

4.2 SE-PAD and the use of Ontologies

As discussed earlier, the Semantic Web and more specifically Ontologies have been

widely accepted as a knowledge modeling platform [39, 40, 48]. Ontologies provide

direct support for addressing the research requirements stated previously. This section

describes the design (t-box) and the population mechanism (a-box) of SE-PAD's

Ontology.

34

4.2.1 Design (t-box)

The SE-PAD Ontology is an extension of the SOM Ontology [4, 5]. It takes advantage of

the extensibility feature [58] of Semantic Web technologies by adding new OWL data

properties, object properties, and concepts in order to achieve a richer set of formal

semantics representing the various object-oriented code constructs specific to the Java

language. This section describes SE-PAD's t-box, the predefined concepts and data/object

relationships.

SE-PAD's extended data properties are shown in table 4-1, which also includes their

domain, range
1
 and a brief description of their representation in SE-PAD. Here are a few

notes on these properties:

 Most properties are based on Java keywords, access or visibility modifiers.

 All properties are functional, e.g. each element of the range must be assigned one

and only one value from the domain to create an RDF triple.

 Qualified names are built according to the Java namespace principle, extended to

Class attributes and methods, as well as method parameters and local variables.

Data Property Domain Range Representation in SE-PAD

hasRank Parameters Integer The rank of a parameter in a method's

signature
isAbstract Classes

Methods

Boolean Whether the element bears the abstract

Java keyword or not

isConstructor Methods Boolean Whether the method is a constructor or not

isDefault Classes

Methods

Attributes

Boolean Whether the element has the default

access modifier or not

1
 The domain and ranges mentioned here are not formally parts of SE-PAD's ontology as it is considered a

bad design practice. They are listed here to illustrate with which concepts a relationship's Subject and

Object are populated.

35

isInterface Classes Boolean Whether the class is an Interface or not

isPrivate Classes

Methods

Attributes

Boolean Whether the element has the private

access modifier or not

isFinal Classes

Methods

Attributes

Boolean Whether the element bears the abstract

Java keyword or not

isProtected Classes

Methods

Attributes

Boolean Whether the element has the protected

access modifier or not

isPublic Classes

Methods

Attributes

Boolean Whether the element has the public

access modifier or not

isStatic Methods

Attributes

Boolean Whether the element bears the static Java

keyword or not

Name All String The element's short name

hasVersion Classes Integer The source code management system

generated revision number

qualifiedName All String The element's qualified name

Table 4-1: SE-PAD's set of extended data properties

SE-PAD's extended object properties are shown in table 4-2, which also includes their

domain, range and a brief usage description. These properties all have their respective

reverse properties which were omitted in this table for the sake of simplicity.

Object Property Domain Range Representation in SE-PAD

invokes Method Method A method invokes another

method of any scope: the same

class, an attribute, a parameter or

a local variable

overrides Method Method A method overrides another, e.g.

in a subclass or in an interface

implementation. Transitive.
isSubClassOf Class Class A class subclasses another.

Transitive.
implements Class Interface A class implements an interface.

Transitive.
isSubInterfaceOf Interface Interface An interface subclasses another

interface. Transitive.
violates Method Rule violation A method is reported by a static

source code analysis tool to

violate a coding rule

assignsValueTo Method Attribute A method assigns a value to a

36

class attribute

isAppliedTo Method Local variable,

FormalParameter,

Attribute

The scope of a method

invocation in a method

implementation

Table 4-2: SE-PAD's set of extended object properties

SE-PAD's extended concepts are based on the following SOM's Ontology [4, 5] concepts:

Class, Method and Attribute. They form the foundation of a BNF-Grammar style

concept definition which will be used to form DL classes representing richer object

oriented semantics. Tables 4-3, 4-4 and 4-5 respectively detail the how SE-PAD extends

SOM Attribute, Method and Class concepts. The related DL is expressed in

Manchester-OWL [38] syntax and forms restrictions from which the set of individuals

belonging to the concept will be inferred by the reasoner during the realization process.

Attribute Concept Description Logics

Restriction

Representation within SE-

PAD

InstanceAttribute Attribute and

isStatic value false

Attributes part of a class'

state, as opposed to static

attributes

PackageAttribute Attribute and

isDefault value true

Attribute bearing the default

access modifier

PrivateAttribute Attribute and

isPrivate value true

Attribute bearing the

private access modifier

ProtectedAttribute Attribute and

isProtected value

true

Attribute bearing the

protected access modifier

PublicAttribute Attribute and

isPublic value true

Attribute bearing the

public access modifier

StaticAttribute Attribute and

isStatic value true

Attributes bearing the

static Java keyword

Table 4-3: Extension of SOM's Attribute concept

Method Concept Description Logics

Restriction

Representation within SE-

PAD
AbstractMethod Method and

isAbstract value

true

Methods bearing the

abstract Java keyword

ConcreteMethod Method and

isAbstract value

false

Methods not bearing the

abstract Java keyword

ConstructorMethod Method and

isConstructor value

Class constructors

37

true

PackageMethod Method and

isDefault value

true

Methods bearing the default

access modifier

FinalMethod Method and isFinal

value true

Methods bearing the final

Java keyword

InstanceMethod Method and isStatic

value false

Methods not bearing the

static Java keyword

NonFinalMethod Method and isFinal

value false

Methods not bearing the final

Java keyword

NonPrivateMethod Method and

isPrivate value

false

Methods not bearing the

private access modifier

PrivateMethod Method and

isPrivate value

true

Methods bearing the private

access modifier

ProtectedMethod Method and

isProtected value

false

Methods bearing the

protected access modifier

PublicMethod Method and isPublic

value true

Methods bearing the public

access modifier

StaticMethod Method and isStatic

value true

Methods not bearing the

static Java keyword

Table 4-4: Extension of SOM's Method concept

Class Concept Description Logics Restriction Representation within SE-

PAD

ConcreteClass Class and isAbstract

value false

Classes not bearing the

abstract Java keyword

ExtensibleClass Class and isFinal value

false

Classes not bearing the final

Java keyword
AbstractClass ExtensibleClass and

isAbstract value true

Classes bearing the

abstract Java keyword

FinalClass Class and isFinal value

true

Classes bearing the final

Java keyword

PackageClass Class and isDefault

value true

Classes bearing the default

access modifier

ProtectedClass Class and isProtected

value true

Classes bearing the

protected access modifier

PublicClass Class and isFinal value

true

Classes bearing the public

access modifier

Table 4-5: Extension of SOM's Class concept

Figure 4-2 shows a sample of SE-PAD's resulting t-box:

38

4.2.2 Population and Realization (a-box)

An Ontology's a-box refers to its OWL individuals. Recall that in the mathematical set

theory, individuals amount to items part of one or more sets. Populating an Ontology

means explicitly assigning OWL individuals to Classes through the rdf:type

relationship. SE-PAD completes its Ontology population in multiple steps:

1- AST Population phase 1

2- AST Population phase 2

3- External Static Analysis tool population

4- Realization

Figure 4-2: Sample of SE-PAD's t-box

39

In the first population phase, SE-PAD populates the concepts and relationships along

with the data properties introduced earlier. After completion, the Ontology's content is

equivalent to a Java application's set of classes typically described in a UML class

diagram. Figure 4-2 shows an example of SE-PAD's resulting Ontology after the class

FooBar of package foo has been parsed.

The rdf:type relationship as well as part of an individual's URI were omitted for the

sake of readability. For instance, according to figure 4-2, the class attribute attr1

would be the subject of the following triple, added to SE-PAD's Ontology:

<a_foo.FooBar.attri1, rdf:type, Attribute>

Individuals URI naming convention is as follows:

 the prefix is built by concatenating:

o the Ontology prefix ending with a pound sign (e.g.

"http://aseg.sepad.org/argoUML#")

o the acronym of the individual's RDF type (e.g. "a" for Attributes,

"fp" for FormalParameters, "c" for Classes, etc.)

o the underscore character ("_")

 the suffix is built with the element's Java qualified and unique name

40

During the second population phase, SE- PAD re-parses the AST but this time it focuses

on method implementations, in order to extract the relationships shown in table 4-2. For

instance, to populate the INVOKES relationship which models method calls within a

method implementation, SE-PAD queries its populated Ontology from the first

population phase and determines the individuals representing the caller and the called

method. Once identified, SE-PAD completes the triple with the INVOKES relationship.

SE-PAD currently supports the integration of results from two major static Java source

code analysis tools: PMD [49] and FindBugs [50]. In order to limit the scope of the

Figure 4-3: SE-PAD's partial resulting Ontology example

41

thesis, we focused on the detection of security concerns that can be detected by these

tools. Security concern results obtained from both of these tools were then analyzed,

categorized and added explicitly to SE-PAD's a-box as individuals belonging to the class

hierarchies shown in figure 4-3. For a detailed description of the security concerns and

the rules used to detect them, we refer the reader to the respective tool documentation

[49, 50].

SE-PAD identifies the OWL individual representing the Java Method M violating a rule

and creates a new triple with M as a subject, violates as a property and the pre-

populated violated rule individual as an object.

As part of the population process, new a-box elements' rdf:type are inferred based on

the t-box’s description logics and the use of OWL reasoners (in our case Racer and

OWLIM [44]). More specifically, after the population phase, the Ontology is uploaded to

an OWLIM enabled Sesame triple store –OWLIM is a semantic reasoner implementation

that is bundled as a Sesame plug-in. OWLIM realizes SE-PAD's Ontology upon reception

and by doing so, populates the richer concepts presented in tables 4-3, 4-4 and 4-5.

Figure 4-4: SE-PAD’s support for external tool rules

42

4.3 A Semantic Web Approach to Software Quality

Figure 4-4 provides a high-level view of the semantic support provided by SE-PAD for

our pattern-based quality validation approach. As shown, our approach focuses on the

integration of knowledge and resources, which are essential aspects to eliminate current

information and analysis tool silos and to support a more global quality validation

perspective.

The next sections detail our SE-PAD approach combining semantic analysis and

Semantic Web technologies. For the programming and patterns levels, table 4-6

introduces our pattern presentation template. It will be reused for the programming and

pattern semantic modeling levels.

Figure 4-5: The semantic levels supported by SE-PAD

43

Ontology Extension A visual representation of the Ontology concepts involved. Shows

concepts and concept inheritance through the Is-A relationship as well

as the rdf:type relationship. The following visual notation is used:

 SOM concepts

 SE-PAD concepts

 Concepts extending SE-

PAD's Ontology to support

the current pattern

The section will be omitted if the pattern does not require an extension to

SE-PAD's Ontology.

OWL-DL involved Description logics (DL) used as class restrictions in Manchester-OWL

syntax [38]. The concepts are often defined in a recursive BNF grammar

style.

SPARQL Query The SPARQL query retrieving relevant knowledge from SE-PAD's

extended knowledge base. For improved readability, the required URI

prefixes (SPARQL PREFIX keyword) will be omitted in the queries,

except for the rdf:type prefix given its important semantic value.

Role of Semantic

Reasoner

The concepts realized and the relationships computed by the semantic

reasoner in the pattern detection process.

Requirements

covered

Lists and explains which requirements are covered by the current pattern

detection and by extension, which research sub-goals are consequently

reached.

Table 4-6: Pattern presentation template

44

4.4 Programming Guidelines

There exist a significant number of code review and analysis tools that support the

detection of good coding practices and guidelines at the source code level [45, 49, 50,

62]. These approaches range from string matching (codifiers) to semantic analysis tools

that allow the modeling of these guidelines as queries and rules to be executed over a

source code model [49, 63]. Most of these semantic query or rule based approaches use

an AST for extracting facts and then store these facts in their tool proprietary models.

These models are typically static (XML or relational), restricting the model typically to

the information available at design time of the tool.

SE-PAD takes advantage of its semantic rich representation of source code to support the

detection of basic violations of coding standards and guidelines, similar to ones supported

by existing tools [e.g., 49, 50]. We exemplify this guidelines support by automating the

detection of four violations, already supported by either Findbugs or PMD [49, 50].

4.4.1 General Programming Guidelines

This section describes how SE-PAD is able to support the detection of Java coding

guidelines violations. The violations are also detected by Findbugs and were selected to

show that SE-PAD offers comparable static analysis features. It should also be pointed

out that SE-PAD has the advantage of running on text files whereas Findbugs needs

compiled Java bytecode, which means an increased flexibility for SE-PAD. Indeed,

Findbugs requires either the context of an IDE or significant human intervention to run,

whereas SE-PAD is applicable to any Java project as long as its source code is accessible

in a file system.

45

Users can run the SPARQL query on a project's SE-PAD generated Ontology to assess

the state of the application with respect to the bad practice or guideline currently

discussed, helping developers perform the required modifications in order to redesign the

code.

4.4.1.1 Guideline: Do not write to static fields from instance methods

Pattern Description:

Since fooBar is static, only one instance exists in the Java Virtual Machine (JVM)

whereas Foo might be instantiated many times. Consequently, bar() or any other of

Foo’s methods has the opportunity to write different values to fooBar which can

become hazardous to manage in terms of concurrency, amongst other things. FindBug's

id for this pattern is: ST_WRITE_TO_STATIC_FROM_INSTANCE_METHOD.

Ontology Extension:

OWL-DL involved:

StaticAttribute ≡ Attribute and isStatic value true

InstanceMethod ≡ Method and isStatic value false

WritesToStaticFieldMethod ≡ InstanceMethod and

assignsValueTo some StaticAttribute

46

The first 2 concepts are basic SE-PAD concepts whereas the third one, added by SE-

PAD’s client to its t-box, categorizes the faulty methods with the following restriction:

they must not be static and they must assign a value to a static attribute.

SPARQL Query:

SELECT ?WritesToStaticFieldMethod ?Class WHERE

{

?WritesToStaticFieldMethod

rdf:type WritesToStaticFieldMethod;

som:isMethodOf ?Class.

}

This query returns the list of instance methods assigning values to static attributes and the

classes to which they belong.

Role of Semantic Reasoner

Computes the reverse relationship isMethodOf part of the SPARL query and realizes

the individuals belonging to concepts StaticAttribute, InstanceMethod and

WritesToStaticFieldMethod.

Requirements covered

Establish

trustworthiness

This pattern is a bad practice. The fewer instances are reported, higher

is the quality of the software analyzed.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query determines the

existence of the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

Model extendibility The concept WritesToStaticFieldMethod was created and

added to SE-Pad's Ontology to support the detection of this pattern.

47

4.4.1.2 Guideline: Final classes should not have protected attributes

Pattern Description

A Java class C is marked as final (e.g. it cannot be sub-classed) and has a

protected attribute A. This is inconsistent because the protected access modifier

makes A accessible throughout C’s subclass hierarchy. Since A belongs to C which

cannot have a hierarchy, marking the attribute as protected is pointless. FindBug's id for

this pattern is: CI_CONFUSED_INHERITANCE.

Ontology Extension

OWL-DL involved

ProtectedAttribute ≡ Attribute and isProtected value true

FinalClass ≡ Class and isFinal value true

ConfusedInheritanceClass ≡ FinalClass and hasAttribute some

ProtectedAttribute

The first two concepts are basic SE-PAD concepts whereas the third one categorizes the

faulty classes based on following restriction: the resulting classes must be final and

they must have at least one protected attribute.

48

SPARQL Query

SELECT ?ConfusedInheritanceClass WHERE {

?ConfusedInheritanceClass

rdf:type ConfusedInheritanceClass;

}

The query returns the list of classes matching the captured sub-classing hierarchy

violation.

Role of Semantic Reasoner: For this guideline, the reasoner realizes the individuals

belonging to concepts ProtectedAttribute, FinalClass and

ConfusedInheritanceClass.

Requirements covered:

Establish

trustworthiness

This pattern is a bad practice. The fewer instances are reported, higher

is the quality of the software analyzed.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query determines the

existence of the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

Model extendibility The concept ConfusedInheritanceClass was created and

added to SE-Pad's Ontology to support the detection of this pattern.

49

4.4.1.3 Guideline: Servlet classes should not have mutable attributes

Pattern Description

A class is a subclass of Java's Servlet (javax.servlet.http.HttpServlet) and

also has mutable instance variables. This creates race conditions because web containers

treat Servlets as singletons -e.g. 1 instance of each servlet class at most at runtime [64].

FindBug's id for this pattern is: MSF_MUTABLE_SERVLET_FIELD.

Ontology Extension

javax.servlet.http.HttpServlet is an OWL individual assigned at design

time to the ServletClass concept.

OWL-DL usage

The description logics related to the MutableClass concept will be described in detail

later in this thesis. The other concepts involved in this detection are as follows:

ServletClass ≡ Class and isSubclassOf value

javax.servlet.http.HttpServlet

50

ServletWithMutableAttributesClass ≡ ServletClass and

hasAttribute (hasDeclaredClass some MutableClass)

SPARQL Query:

SELECT ?ServletWithMutableAttributesClass WHERE {

?ServletWithMutableAttributesClass

rdf:type ServletWithMutableAttributesClass;

}

The query returns the list of Servlet classes having mutable attributes, and therefore

violating the “Servlet classes should not have mutable attributes” guideline.

Role of Semantic Reasoner

 realizes individuals belonging to concepts MutableClass and

FinalClass

 computes the isSubClassOf transitive relationship in order to support the

detection of classes located at any level of

javax.servlet.http.HttpServlet's subclass hierarchy

Requirements covered

Establish

trustworthiness

This pattern is a bad practice. The fewer instances are reported, higher is

the quality of the software analyzed.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query determines the

existence of the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

Model extendibility The concepts ServletClass,

ServletWithMutableAttributesClass,

StatefullClass and MutableClass were created and added

to SE-PAD's Ontology to support the detection of this pattern.

51

4.4.1.4 Guideline: Respect Naming Conventions

Pattern Description

Java follows a mixed case naming convention for methods and attributes whereas

CamelCase[65] is recommended for classes. FindBugs rules detect method and attribute

names with uppercase first letters and class names with lowercase first letters. SE-PAD

provides the same type of detection through SPARQL queries. The specific rules covered

are, by their Findbugs denomination: NM_CLASS_NAMING_CONVENTION,

NM_FIELD_NAMING_CONVENTION and

NM_METHOD_NAMING_CONVENTION.

SPARQL Queries

All queries use SPARQL's regex function to filter improperly named Java elements.

This query returns the list of classes whose names have a lowercase first letter:

SELECT DISTINCT ?ClassName WHERE

{

?Class

name ?ClassName;

rdf:type ?Class.

Filter (regex(?ClassName,"^[a-z]"))

}

This query returns the list of methods whose names have an uppercase first letter and the

class to which they belong.

SELECT DISTINCT ?MethodName ?Class WHERE

{

?Method

name ?MethodName;

isMethodOf ?Class;

rdf:type Method.

Filter (regex(?MethodName,"^[A-Z]"))

}

52

This query returns the list of attributes whose names have an uppercase first letter and the

class to which they belong.

 SELECT DISTINCT ?AttributeName ?Class WHERE

{

?Attribute

name ?AttributeName;

isAttributeOf ?Class;

rdf:type Attribute.

Filter (regex(?AttributeName,"^[A-Z]"))

}

Role of Semantic Reasoner

Computes the isAttributeOf and isMethodOf reverse properties used in the

queries retrieving attributes and methods.

Requirements covered

Establish

trustworthiness

These patterns are bad practices. The fewer instances are reported,

higher is the quality of the software analyzed.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query determines the

existence of the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

53

4.4.2 Secure Coding Guidelines

Nowadays, security as a non-functional requirement is an increasingly important concern

for various stakeholders within a software development process, especially given (1) the

level of code reuse through third party libraries, frameworks, etc. and (2) that systems

increasingly communicate across distributed networks or have communication ports

opened on the Internet. This section illustrates how SE-PAD supports security related

tasks by identifying violations based on Java's secure coding guidelines [31]. In what

follows, we demonstrate the automated detection of two of such coding violating

guidelines.

4.4.2.1 Coding Violation: Prefer immutable classes

Pattern Description

An immutable class is a class whose state does not change after it is instantiated, as

opposed to mutable classes. The volatile nature of mutable classes makes them a

hazardous design choice. They force developers to take extra precautions, especially

when objects of mutable classes are part of other classes’ state, making immutable classes

preferable. Consequently, mutable classes can be seen as implementing a coding

violation whose detection is desirable.

54

Ontology Extension

OWL-DL involved

PublicMethod ≡ Method and isPublic value true

PublicInstanceMethod ≡ PublicMethod and isStatic value

false

SetterMethod ≡ PublicInstanceMethod and assignsValueTo some

Attribute

StateFullClass ≡ Class and hasAttribute some

InstanceAttribute

MutableClass ≡ Class and hasMethod some SetterMethod

The first concept defines public methods with the isPublic data property. The second

concept subsumes PublicMethod and adds the restriction of not being static to

categorize PublicInstanceMethods, which require an object instance as an

invocation scope contrarily to static class methods. SetterMethod specializes

methods further by classifying those who assign a value to a class attribute, thus modifies

its state. The value assigned can be of any origin: parameter, computation, local variable,

result of a method call, etc. Next, StatefullClass defines classes who have

55

instance attributes, or a state. Finally, MutableClasses are StatefullClasses

who also have SetterMethods, meaning that their state may change after their

creation as the pattern prescribes.

SPARQL Query

SELECT ?MutableClass WHERE{

?MutableClass rdf:type MutableClass.}

The query returns the list of mutable classes ordered by their fully qualified names.

Role of Semantic Reasoner

 realizes individuals belonging to concepts PublicMethod,

PublicInstanceMethod, SetterMethod, StateFullClass and

MutableClass

Figure 4-5 is a visual representation of the reasoner’s work in the case of

MutableClass realization. The full arrows represent the explicit type assignment

performed by SE-PAD whereas the dotted arrows represent the type assignment

performed by the reasoner. In that case, m_foo is a method part of class c_Bar and

assigns a value to one of the class variables.

56

Requirements covered

Establish

trustworthiness

Identifying mutable classes can be part of a major software security

improvement to enforce secure coding guidelines. Once mutable classes

are identified, the inspection of their usage will reveal the need to

perform one or many of the following tasks to improve the security of

these mutable classes: (1) Make sure mutable classes have a clone (deep

copy) operation. (2) If a class has an internal mutable object used as a

method output, make sure the method clones (deep copies) the object

before returning it. (3) In cases then a class has an internal mutable

object, make sure a method assigning one of its parameters to it first

performs a clone (deep copy) operation.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query is used to

detect the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

Model extendibility The concepts SetterMethod, PublicInterfaceMethod,

StatefullClass and MutableClass were created and added to

SE-Pad's Ontology to support the detection of this pattern.

Figure 4-6: Mutable class realization

57

4.4.2.2 Prevent constructors from calling overridable methods

Pattern Description

A class has a constructor method that delegates control to an overridable method. It gives

eventual subclasses access to a reference to the object being constructed by overriding the

overridable method. Attackers could exploit this vulnerability to alter the behaviour of

the object being constructed and therefore occurrences of this pattern should be detected.

Ontology Extension

OWL-DL involved

OverridableMethod ≡ isFinal value false and isPrivate value

false and isConstructor value false and isStatic value

false

The central concept is OverridableMethod. In Java, a method is overridable if it

bears none of the following modifiers: Private, Final, and Static.

SPARQL Query

SELECT DISTINCT ?MethodName WHERE {

?Method rdf:type ConstructorMethod;

qualifiedName ?MethodName;

invokes ?OverridableMethod;

isMethodOf ?Class.

?OverridableMethod rdf:type OverridableMethod;

 isMethodOf ?Class.

?Class isFinal ?isFinal.

FILTER (?isFinal=false)

}

58

The query returns the list of classes with constructors calling overridable methods. An

additional constraint is included that selected methods cannot be part of a Final Java

class.

Role of Semantic Reasoner

Realizes individuals belonging to concept OverridableMethod and computes the

transitive relationship Invokes, part of the SPARQL query, which puts a method in

relationship with a method call within its implementation. Consequently, if a constructor

delegates to a non-overridable method delegating to an overridable one, SE-PAD will

detect the violation, no matter how far the overridable method call is located in the graph.

In other words, if a private method delegates to another private method, which

also delegates to a private method and so on, SE-PAD will detect any call to an

overridable method within such a chain.

Requirements covered

Establish

trustworthiness

These patterns are bad practices. The fewer instances are reported,

higher is the quality of the software analyzed.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query is used to

detect the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

Model extendibility The concepts CallsOverridableMethodConstructor ,

OverridableMethod, NonFinalMethod,

NonPrivateMethod and ConstructorMethod were created

and added to SE-Pad's Ontology to support the detection of this pattern.

59

4.5 Modeling Design Patterns

Patterns [17, 20] represent existing solutions in a structured way and allow knowledge

from these existing solutions to be reused. Patterns can speed up the development process

by providing tested, proven development paradigms that might often not become visible

until later in the implementation or the evolution of a system. Furthermore, they also

prevent subtle issues that may cause major problems later on, and they can improve code

readability and comprehensibility for programmers familiar with the patterns. Design

patterns, the most widely known type of patterns, provide a formal way to document a

solution to a design problem. Within our SE-PAD environment, we have formalized a

small subset of these GoF [17] patterns - four of the most common patterns. Detected

design pattern can convey important design and implementation decision associated with

the use of a pattern. This information can provide maintainers with additional insights in

software comprehension.

SE-PAD's support for the automated recovery of design patterns meets the following

research requirements:

Establish trustworthiness: A critical aspect of software maintenance is the risk for the

code modification to cause undesirable side effects by introducing new defects. Suppose

a maintenance developer has to rewrite code that is part of a design pattern to perform a

code fix and the related documentation is either outdated and does not mention the

pattern implemented. If the maintainer is otherwise unaware that a pattern is present in

the area of the code to be modified, there is a significant risk that the modification breaks

the pattern implementation. In other words, there is a need for impact analysis [47] to

60

prevent this from happening. Concretely, an IDE plug-in could detect the file a

maintainer has started to edit and query SE-PAD's Ontology to see if a pattern is involved

in the area. If so, the user receives a warning detailing the pattern implementation. Then,

when the code is committed, the plug-in would rerun the query to validate that no

patterns were broken by the developer's intervention.

Retrieve implicit and explicit knowledge: Sometimes, developers might implement a GoF

pattern without being aware of it, as shown in our preliminary case studies analysis: the

template pattern was for instance found without being documented as such. By

recovering instances of these patterns in code, SE-PAD can play a significant role in an

effort to update typical software engineering documentation such as code comments,

design diagrams, wiki pages, etc.

Model extendibility: The design patterns automated recovery is rather SPARQL querying

intensive, making heavy use of SE-PAD's basic Ontology. However, the Strategy design

pattern recovery required the addition of new concepts.

Bridge Information Silos: The source code and design model artifacts can be considered

as information silos. The best proof of this is how often they become out of sync:

developers change code but do not update the design documents, making the latter more

and more obsolete and useless. Given its reverse engineering nature, automated design

pattern recovery helps bridging the source code silo and the software design silo by

keeping the knowledge contained both artefacts synchronized. Also reverse engineering

and abstracting design patterns from low-level source code representations allows for the

recovery of some design related domain knowledge.

61

4.5.1 Adapter Pattern

Pattern Description

The Adapter pattern's main purpose is to encapsulate the behaviour of a component (the

Adaptee) for usage in new contexts. Note that the Client class was purposely left out as it

is the pattern's consumer rather than part of the pattern itself.

SPARQL Query

The query is based on the UML class diagram of the pattern and details each component

as well as their relationships with the other elements:

- the Target class has the Target Request Method in its interface and the Adapter as

a subclass

- the Adapter class has the Adapter Request as a method and has an Adaptee in its

attributes

- the Adaptee class has a Specific Request as a method and is the declared class of

one of the Adapter's attributes

62

- the Adapter Request delegates to the Adaptee Specific Request and overrides the

Target Request Method

- the Adaptee Specific Request is applied to the attribute of the adapter that has the

Adaptee as a declared class

SELECT DISTINCT

?TargetClassName

?AdapterClassName

?AdapteeClassName

?AdapterSpecificRequestName

?AdapteeSpecificRequestName

WHERE {

?Target

isInheritedBy ?Adapter;

hasMethod ?TargetRequestMethod;

shortName ?TargetClassName.

?Adapter

hasMethod ?AdapterRequest;

hasAttribute ?AdapteeAttribute;

shortName ?AdapterClassName.

?Adaptee

isDeclaredClassOf ?AdapteeAttribute;

hasMethod ?AdapteeSpecificRequest;

shortName ?AdapteeClassName.

?AdapterRequest

invokes ?AdapteeSpecificRequest;

overrides ?TargetRequestMethod;

name ?AdapterSpecificRequestName.

?AdapteeSpecificRequest

isAppliedTo ?AdapteeAttribute;

name ?AdapteeSpecificRequestName.

Filter (?Adapter != ?Adaptee).

}

63

The query results are represented by the 5-tuple (TargetClass, AdapterClass,

AdapteeClass, AdapterRequest, AdapteeSpecificRequest), each item

representing a formal participant. The ending Filter SPARQL clause prevents the query

from returning results in which a class is retrieved as both an Adapter and an Adaptee –

ensuring a significant improvement in the false positives detection rate.

Role of Semantic Reasoner

 computes the transitive properties isInheritedBy and overrides, which

means that the pattern will be detected even if the Adapter class is not the

immediate child of the target class

 computes the reverse object property isDeclaredClassOf

64

4.5.2 Proxy Pattern

Pattern Description:

The Proxy pattern's main purpose is to provide light objects (Proxies) that have the same

interface as their heavy counterparts. Proxies are responsible for instantiating heavy

objects only when strategically needed. Otherwise, the light weight proxy is used. For

instance, an image viewer could load picture objects only partially to show information

like the picture name, date taken, etc. in a Proxy object to display in a list and only load

the image itself in a real subject when it is required to be rendered.

SPARQL Query

The query is based on the UML class diagram representation of the pattern and details the

relationships within its elements:

- the Subject class has the Request method in its interface and the Proxy and

RealSubject as subclasses

65

- the Proxy and the Real Subject respectively have the Proxy Request and the Real

Subject Request in their interfaces

- the Proxy Request overrides the parent's Subject Request and invokes the Real

Subject Request, which also overrides the parent's Subject Request

The query results are represented by the 5-tuple (Subject, RealSubject, Proxy,

ProxyRequest, RealSubjectRequest) each item of the tuple representing a

formal participant and the whole set representing a pattern implementation instance. The

last SPARQL Filter clause prevents the query from returning results in which a class is

retrieved as both a RealSubject and a Proxy since their semantics are very similar,

ensuring a significant improvement in the false positives detection rate.

66

SELECT DISTINCT

?SubjectName

?RealSubjectName

?ProxyName

?ProxyRequestName

?RealSubjectRequestName

WHERE {

?Subject

isInheritedBy ?RealSubject;

isInheritedBy ?Proxy;

hasMethod ?SubjectRequest;

shortName ?SubjectName.

?Proxy

hasMethod ?ProxyRequest;

shortName ?ProxyName.

?ProxyRequest

overrides ?SubjectRequest;

name ?ProxyRequestName;

invokes ?RealSubjectRequest.

?RealSubject

hasMethod ?RealSubjectRequest;

shortName ?RealSubjectName.

?RealSubjectRequest

overrides ?SubjectRequest;

name ?RealSubjectRequestName.

Filter (?RealSubject != ?Proxy).

}

Role of Semantic Reasoner

 computes the transitive properties isInheritedBy and overrides, which

allows for the detection of the pattern even in cases then the Proxy and

RealSubject classes are not immediate children of the Subject class

67

4.5.3 Strategy Pattern

Pattern Description:

The objective of the Strategy pattern is to provide a family of algorithms through a

common interface. The algorithm being used depends on the context and is selectable at

runtime. The pattern therefore decouples a class’ behaviour from the class itself. Note

that the original GoF pattern has been extended to include the implementation of abstract

strategies in the form of both an abstract class and an interface.

SPARQL Query

The query is based on the UML class diagram representation of the pattern and details the

relationships within its elements.

- the Context holds a reference to an abstract Strategy and has one or more

methods that invoke one or more methods from the abstract Strategy's public

interface –the RDF type PotentialStrategyClass

- the abstract Strategy can either be implemented through an abstract class or an

interface that is subclassed by at least two concrete classes

68

SELECT DISTINCT

?ContextName

?StrategyInterfaceName

?StrategyAttributeName

?ConcreteStrategyClassName

WHERE {

?Context

hasAttribute ?StrategyAttribute;

hasMethod ?ContextInvocatorMethod;

name ?ContextName.

?ContextInvocatorMethod

invokes ?StrategyInterfaceMethod.

?StrategyInterfaceMethod

isAppliedTo ?StrategyAttribute.

?StrategyAttribute

hasDeclaredClass ?StrategyInterface;

name ?StrategyAttributeName.

?StrategyInterface

rdf:type ?PotentialStrategyClass;

hasMethod ?StrategyInterfaceMethod;

isInheritedBy ?ConcreteStrategyClass;

name ?StrategyInterfaceName.

?ConcreteStrategyClass

name ?ConcreteStrategyClassName;

rdf:type ?ConcreteClass.

}

The query results are represented by the 4-tuple (Context, StrategyInterface,

StrategyAttribute, ConcreteStrategy) each capturing a formal participant to

the pattern implementation. Records with the same Context, StrategyInterface

and StrategyAttribute represent the same pattern and a record will be returned for

each ConcreteStrategy.

69

Ontology Extension

OWL-DL involved:

ExtensibleClass ≡ Class and isFinal value false

AbstractClass ≡ ExtensibleClass and isAbstract value true

TwoSubclassMinAbstractClass ≡ AbstractClass and hasSubclass

min 2 ConcreteClass

Interface ≡ Class and isInterface value true

TwoImplementorsMinInterface ≡ Interface and isImplementedBy

min 2 ConcreteClass

The first two concepts define ExtensibleClasses and AbstractClasses using

the data properties previously presented. The TwoSubclassMinAbstractClass

concept and the TwoImplementorsMinInterface concept respectively define all

abstract classes which have at least 2 concrete subclasses and all interfaces implemented

by at least two concrete classes. This is meant to model the fact that to implement an

instance of the Strategy pattern, there must at least be a choice of two strategies available

at runtime. Finally, the PotentialStrategyClass concept is a value partition of

TwoImplementorsMinInterface and TwoSubclassMinAbstractClass,

70

meaning that any individual belonging to the partitioned values automatically belongs to

the parent concept PotentialStrategyClass.

Role of Semantic Reasoner

 realizes individuals that belong to concepts ExtensibleClass,

AbstractClass, TwoSubclassMinAbstractClass, Interface,

TwoImplementorsMinInterface and PotentialStrategyClass

 computes the transitive object relationships isSubclassOf and

isImplementedBy, part of the restrictions on concepts

TwoSubclassMinAbstractClass and

TwoImplementorsMinInterface

Consequently, SE-PAD will detect occurrences of the pattern even if the participating

concrete strategy classes do not directly inherit from or implement the Abstract

Strategy, but are at a lower level of the Strategy subclass hierarchy. This pattern

involves 2 DL concepts (TwoSubclassMinAbstractClass and

TwoImplementorsMinInterface) defined with minimum cardinality

restrictions of 2. Since the default reasoner OWLIM [44] does not support cardinality

restrictions higher than 1, Racer [43] which supports this type of cardinality

restrictions was utilized.

71

4.5.4 Template Pattern

Pattern Description

The Template Method pattern's objective is to define the outline of an algorithm in a

template operation where some tasks are delegated to subclasses. Template Method

allows classes at a lower hierarchical level to implement an algorithm's operations

without altering the main algorithm's organization. It implements the famous Hollywood

Design Principle: “don't call us we'll call you”, referring to the fact that subclasses do not

need to know the main algorithm, only which of its operations they must implement to be

invoked by the template method.

SPARQL Query

The query is based on the UML class diagram of the pattern and details the relationships

within its elements.

- the AbstractClass must bear the abstract keyword modifier and have at least one

abstract operation invoked by the TemplateMethod

72

- the ConcreteClasses must extend the AbstractClass and override each of its

primitive operations with concrete methods

- in order to comply with the theoretical model, results are restricted to

TemplateMethods implemented as final and protected

SELECT DISTINCT

?AbstractClass

?TemplateMethod

?TemplatePrimitiveOperation

?ConcreteClass

?ConcretePrimitiveOperation

WHERE {

?AbstractClass

hasMethod ?TemplateMethod;

rdf:type AbstractClass.

?TemplateMethod

invokes ?TemplatePrimitiveOperation;

rdf:type FinalMethod;

rdf:type ProtectedMethod.

?TemplatePrimitiveOperation

isMethodOf ?AbstractClass;

rdf:type AbstractMethod.

?ConcreteClass

isSubclassOf ?AbstractClass;

hasMethod ?ConcretePrimitiveOperation.

?ConcretePrimitiveOperation

rdf:type ConcreteMethod;

overrides ?TemplatePrimitiveOperation.

}

Order by ?AbstractClass

The query result is the 5-tuple (AbstractClass, TemplateMethod,

TemplatePrimitiveOperation, ConcreteClass,

73

ConcretePrimitiveOperation) each item representing a formal participant.

Records with the same AbstractClass are considered part of the same pattern

implementation, so each implementation might have many records depending on the

number of concrete classes, primitive operations, etc.

OWL-DL involved

AbstractClass ≡ ExtensibleClass and isAbstract value true

ExtensibleClass ≡ Class and isFinal value false

FinalMethod ≡ Method and isFinal value true

AbstractMethod ≡ Method and isAbstract value true

AbstractClass subsumes ExtensibleClass because abstract classes cannot be

marked as final in Java, hence the added restriction along the isFinal data property.

The other concepts define Java final, abstract and concrete methods using the data

properties previously described.

Role of Semantic Reasoner

 realizes individuals belonging to concepts AbstractClass,

ExtensibleClass, FinalMethod, AbstractMethod and

FinalMethod

 computes the transitive object relationship isSubclassOf

Consequently, SE-PAD will detect occurrences of the pattern even if the participating

concrete classes do not directly inherit from or the Abstract class but are at a lower

level of the abstract subclass hierarchy.

74

4.6 Tool integration

As stated in the introduction and motivation section of the thesis, the objective of this

research is neither to re-invent nor compete with existing pattern detection tools. Instead,

we intend to highlight the flexibility of Semantic Web technologies to support different

forms of pattern detection and knowledge integration. As shown in the previous sections,

our SE-PAD approach can support many of the pattern detection approaches found in

tools like PMD [49] or FindBugs [50].

FindBugs is a static source code analysis tool which identifies a set of pre-defined bugs in

Java code. A subset of bugs identified by the tool relates to security issues such as

malicious code vulnerabilities. More specifically, some of reported bugs correspond to

code blocks as part of a class that either expose the internal state of the class or stores

references to external mutable objects in the attributes of that class. Both situations make

instances of such classes subject to security threats if accessed by untrusted code. As part

of our approach we do support the import security reports from external tools (e.g.

FindBugs) and make them an integrated part of our source code model. SE-PAD

populates the violates relationship as previously described and when the reasoner is

applied, the security relevant concepts are realized. Ultimately, all the Java classes

deemed unsafe according to the results of at least one of the static analysis tools are

identified.

75

SPARQL Query

SELECT DISTINCT ?ClassName

WHERE {?Class rdf:type UnsafeClass.}

The query returns all the classes reporting safety issues in static analysis tools.

 OWL-DL involved

In terms of OWL individuals and relationships, an unsafe class is a class that violates

specific security related PMD or FindBugs rules through one of its methods. The main

DL definitions involved are as follows, in Manchester-OWL syntax:

UnsafeClass ≡ ConcreteClass and

InternalStateVulnerableClass or PrivacyVulnerableClass

InternalStateVulnerableClass ≡ Class and hasMethod some (

(violates some MaliciousCodeRule) or

(violates some SecurityCodeGuideLineRule)or

(violates value ConstructorCallsOverridableMethod))

PrivacyVulnerableClass ≡ Class and hasMethod some

(violates some UserPrivacyRule)

Role of Semantic Reasoner

For this pattern, the reasoner plays a crucial role by automatically classifying the

individuals belonging to the UnsafeClasses concept, whose complex definition

include the integration of PMD (e.g. ConstructorCallsOverridableMethod,

SecurityCodeGuideLine) and FindBugs results (e.g.

PrivacyVulnerability, MaliciousCodeVulnerability).

76

Requirements covered

Establish

trustworthiness

Unsafe classes reported by static source code analysis tools represent

significant risks exploitable by malicious developers. The more are

reported, the less safe is the software analyzed.

Retrieve implicit and

explicit knowledge

The implicit knowledge retrieved by the SPARQL query is used to

detect the pattern in the code and the explicit knowledge is the

identification of the software modules implementing it.

Model extendibility All the concepts involved in this detection are added to SE-PAD’s

Ontology by software clients.

Bridge information

silos

By integrating other source code analysis tools results to SE-PAD’s

Ontology and inferring knowledge on the source code analyzed by these

tools based on them, SE-PAD helps bridging the source code artefact

with rule violation results.

77

4.7 Cross artefact analysis

SE-PAD's Ontology can be combined with knowledge resources from other software

related artefacts. In our cross artefact analysis, we combine the results of static source

code analysis tools with knowledge from different software artefact Ontologies, namely a

source code management system (SCM). The goal is to identify the developer who first

committed code in a SCM that generates a violation report. Ultimately, the analysis

could serve as a developer profiler tool, based on the quality of the code they commit.

However, such a tool is outside the scope of this research.

SE-PAD's supports this detection by identifying the first revision (or version) in which a

given method M is reported as being a violation (based on the results obtained from a

static source code analysis tool). SE-PAD then retrieves code from the SCM and

populates its Version concept inherited from SOM's Ontology, which assigns a revision

id to each Java class parsed. The client is then able to query SE-PAD to determine if a

violation is found. In the case of a positive outcome, since the Version concept is also

present in the Version Ontology Model (VOM), SE-PAD's clients can query the VOM

and share version related knowledge. The following algorithm uses a binary search

inspired approach to browse the SCM since they typically contain a large number of

revisions.

78

The following reuses sections of the pattern presentation template to describe in detailed

SE-PAD’s support for cross artefact analysis.

SPARQL Query

There are two queries involved in this detection. Both queries are part of the client

software module performing the SCM rule violation search. The first one is:

SELECT ?RevisionId WHERE

{

{0} violates {1}.

?Class hasMethod {2};

 hasRevision ?Revision.

?Revision revisionId ?RevisionId.

}

It is applied on the SE-PAD’s Ontology and retrieves the revision id of a class in which a

method violates a rule. The token {0} and {2} represent the method M originally

reporting a violation of the rule represented by {1}. If the query returns a result, it means

that M reports a violation for the current revision.

Figure 4-7: SCM rule violation search algorithm

79

The second query retrieves the author of the revision where the rule violation was first

reported from the VOM:

SELECT ?Author WHERE

{

?Revision rdf:type Revision;

 hasCommitAuthor ?Author;

id ?id.

}

FILTER (str(?id) = {0}}

Ontology Extension

This Ontology extension includes concept sharing with the Version Ontology Model

(VOM) [5]. The shared concept we use for aligning our SE-Pad Ontology with the VOM

Ontology is Version and the sharing is materialized in the SPARQL queries shown

above through the Revision id.

Requirements covered

Retrieve implicit and

explicit knowledge

The identification of developers committing rule violations is a form of

historical data mining. SE-PAD can then constitute, for instance, the

basis of a developer profiling tool which can eventually help in

assigning developers to relevant formations.

Model extendibility As previously described, SE-PAD’s Ontology is extended by sharing a

concept with the VOM.

Bridge information

silos

By combining results of static source code analysis results with the

VOM, SE-PAD helps bridge the silos related to 3 artefacts: source

code, versioning system and static analysis tools results.

80

5. Case Studies

This chapter describes the evaluations we performed using SE-PAD in different

application contexts. Unless specified otherwise, all case studies were performed on

JabRef
2
 (Version 2.6) a small-sized open source project offering bibliography reference

management features. Ohloh
3
 reports for this version of JabRef 136 992 lines of code, 29

091 lines of comments and 42 894 blank lines. After being parsed by SE-PAD, the

resulting Ontology contains 285 385 triples which are stored in the Sesame triple store.

Table 5-1 shows a summary of the population:

Number of Java classes 859

Number of method invocations 27668

Number of class method overrides 504

Number of interface method overrides 303

Number of class attribute assignations 1292

Table 5-1: JabRef population summary

For the case studies, we used PMD Version 4.2.5 and FindBugs Version 2.0. All

experiments were conducted on a PC, with an Intel I7 processor, 6 GB of RAM and

running Windows 7 64 bits.

5.1 Security violations

The first case study evaluates the results generated by PMD and SE-PAD during the

detection of violations of a secure coding guideline.

Experimental setting: For the evaluation JabRef was analyzed to detect the following

secure coding violation: “a class constructor should not invoke a method that can be

2
 http://jabref.sourceforge.net/

3
 http://www.ohloh.net/p/jabref/analyses/latest

http://jabref.sourceforge.net/
http://www.ohloh.net/p/jabref/analyses/latest

81

overridden” [31, 72]. For the experiment SE-PAD used the following query introduced in

section 4.4.2.2:

SELECT DISTINCT ?MethodName WHERE {

?Method rdf:type ConstructorMethod;

qualifiedName ?MethodName;

invokes ?OverridableMethod;

isMethodOf ?Class.

?OverridableMethod rdf:type OverridableMethod;

 isMethodOf ?Class.

?Class isFinal ?isFinal.

FILTER (?isFinal=false)

}

Evaluation results: SE-PAD reports 60 violations whereas PMD reports 66. A manual

evaluation of the results obtained from both tools was performed to determine their

precision and recall. Table 5-2 summarizes the results from our analysis. A security

violation baseline in JabRef was established by summing up the true positives reported

by both tools (not counting duplicate instances). As a result, a baseline of 80 true

positives for the “a class constructor should not invoke a method that can be overridden”

violation by JabRef could be established. This baseline value was used for the later recall

calculation of both tools.

 Detected True

positives

Recall False

positives

Precision F1

score

PMD 66 65 0.83 1 0.99 0.91

SE-PAD 60 59 0.74 1 0.98 0.81

Table 5-2: SE-PAD vs. PMD

Evaluation discussion: Table 5-2 shows that the recall and precision of SE-PAD was

lower (recall by 9%) and precision by 1%. As previously discussed, we do not claim to

perform as well as specialized tools do but that our approach is flexible enough to obtain

significantly close results. Given the circumstances, we feel the results are comparable,

82

with the F1 score falling in the 10% difference range. Further analysis of the results

showed that the lower recall is due to a problem while populating methods involving the

Default and Protected modifiers. Both types of modifiers were in some cases not

correctly categorized as modifies are part of our Ontology population.

5.2 Design Pattern Automated Recovery

We also used JabRef to evaluate SE-PAD’s applicability in detecting design patterns in

the source code.

Experimental setting: The challenge was to find a tool to support the same subset of

patterns. DPR
4
 a reverse engineering tool able to perform the recovery of the Adapter

design patterns fit our needs.

Evaluation results: Both tools reported together 122 different instances of the Adapter

pattern in JabRef. This total was used as a baseline to compute recall. DPR detected 91

occurrences versus 70 for SE-PAD. Here are the statistics:

 Detected True

positives

Recall False

positives

Precision F1

score

SE-PAD 70 70 0.57 0 1 0.73

DPR 245 91 0.74 154 0.37 0.49

Table 5-3: SE-PAD vs. DPR

Evaluation discussion: Further analysis of the results showed that the differences in the

recall results are mainly due to our more conservative interpretation of what constitutes

an actual adapter pattern implementation. SE-PAD’s query did not report any false

positives which compares favourably to the 154 false positives report by the DPR tool.

4
 http://www.sesa.dmi.unisa.it/dpr/

http://www.sesa.dmi.unisa.it/dpr/

83

Ultimately, according to the F1 score, SE-PAD outperformed DPR due to its lower

number of false positive. The quality of our results highlights one important aspect of our

approach, especially with respect to the false positive rate. When patterns are

semantically modeled in a way mimicking the theoretical implementation in UML,

finding corresponding code constructs not implementing the expected pattern is very

hard.

5.3 Integration of external static analysis tool results (PMD and FindBugs)

In this case study, we apply the tool integration’s query (see section 4.6) to initiate a

statistical analysis based on the detection of UnsafeClasses as determined by the

results of PMD and FindBugs.

Experimental setting: We used revision 19000 of ArgoUML
5
, a mid-size open source

project providing a UML integrated development environment. For this revision, Oholoh
6

reported 910 411 lines of code, 233 787 line of comments and 123 089 blank lines. After

the code was parsed and SE-PAD’s Ontology was populated, the resulting Ontology was

uploaded to our Sesame repository which reported 1 996 526 triples. Here is a summary

of the population:

Number of Java classes 2625

Number of method invocations 67098

Number of class method overrides 6862

Number of interface method overrides 725

Number of class attribute assignations 1748

Table 5-4: ArgoUML population summary

5
 http://argouml.tigris.org/

6
 http://www.ohloh.net/p/argouml

http://argouml.tigris.org/
http://www.ohloh.net/p/argouml

84

The objective is to determine the percentage of unsafe classes in each Java package of

ArgoUML. The implementation of the solution includes three SPARQL queries

surrounded by code which performs the calculations and generates a comma separated

value file as an output. The algorithm uses the following query to retrieve all the

packages:

SELECT DISTINCT ?Packages WHERE

{?Packages rdf:type Package.}

Then, for each package, the query of section 4.6 was applied to retrieve and count unsafe

classes. The following query was applied to retrieve and count the total number of

classes, in which the wildcard * is replaced in code by the current package’s URI:

SELECT DISTINCT ?Classes

WHERE {<*> hasClass ?Classes.}

Evaluation results: For revision 19000 of ArgoUML, the packages showing the highest

rate of unsafe classes are:

Package Number of

unsafe

classes

Number

of classes

Ratio of

unsafe

classes

jdepend.textui 1 1 100%
org.argouml.language.ui 1 1 100%

org.argouml.notation.ui 1 3 33%
org.argouml.uml.diagram.deployment.ui 6 19 31.58%

org.argouml.uml.diagram.use_case.ui 5 17 29.41%
jdepend.framework 4 16 25%

org.argouml.uml.ui.model_management 3 14 21.43%

org.argouml.uml.diagram.ui 28 131 21.37%
org.argouml.activity2.diagram 4 20 20%

org.argouml.uml.util.namespace 1 5 20%

Table 5-5: Ratio of unsafe classes in ArgoUML

85

Evaluation discussion: Based on this sample, user interface (UI) related packages seem

to be especially unsafe. The UI layer of a project is often developed by programmers

specialized in visual designs and focus on usability and aesthetic of GUIs rather than on

secure implementations. From a managerial standpoint, the results we obtained for

ArgoUML can trigger the need to have these programmers implementing the GUI follow

stricter quality assurance procedures or be provided with additional training related to

secure programming guidelines. As expected, we were able to combine external tools

results to SE-PAD’s original Ontology. We created new concepts based on the supported

violations to significantly enrich our knowledge base by providing valuable insight into

the quality of a software project.

As part of the SE-PAD implementation a Quartz job [61] has been created to allow SE-

PAD to be automatically invoked in regular time intervals. Using this script, SE-PAD can

be used to monitor the progress of software securing efforts over time or mine past

revisions to determine trends in safety development.

5.4 Integration of SCM Ontology

In this case study, we combine SE-PAD's Ontology with SOM's Version Model Ontology

[4, 5]. As described in section 4.7, the goal is to identify developers who commit code

that contains code violation detected by static source code analysis tools.

Experimental setting: For revision 19000 of ArgoUML, PMD reports that five methods

violate the rule stating that a constructor should not call a method that can be overridden.

They are all class constructors and are listed below with their fully qualified Java names:

- org.argouml.util.ItemUID.ItemUID

86

- org.argouml.kernel.ProfileConfiguration.ProfileConfigurat

ion.org.argouml.kernel.Project

- org.argouml.kernel.ProfileConfiguration.ProfileConfigurat

ion.org.argouml.kernel.Project.java.util.Collection

- org.argouml.uml.diagram.DiagramSettings.DiagramSettings.o

rg.argouml.uml.diagram.DiagramSettings

- org.argouml.uml.diagram.ui.FigStereotypesGroup.FigStereot

ypesGroup.java.lang.Object.java.awt.Rectangle.org.argouml

.uml.diagram.DiagramSettings

The algorithm presented in section 4.7 detects the revision of the code in which a

committer potentially introduced a bug.

Evaluation results: The program searched ArgoUML’s source code management (SCM)

repository for the revision id where these violations were introduced. The results of this

search are shown below:

Method Revision

Id

Author

argouml.util.ItemUID.ItemUID 14536 tfmorris

org.argouml.kernel.ProfileConfiguration.Profile

Configuration.org.argouml.kernel.Project
13846 euluis

org.argouml.kernel.ProfileConfiguration.Profile

Configuration.org.argouml.kernel.Project.java.u

til.Collection

13963 tfmorris

org.argouml.uml.diagram.DiagramSettings.Diagram

Settings.org.argouml.uml.diagram.DiagramSetting

s

16431 tfmorris

org.argouml.uml.diagram.ui.FigStereotypesGroup.

FigStereotypesGroup.java.lang.Object

java.awt.Rectangle.org.argouml.uml.diagram.Diag

ramSettings

16252 tfmorris

Table 5-6: Integration of SCM Ontology results

Evaluation discussion: In this case study, we illustrate the advantage of the Ontological

representation by supporting the integration of results obtained from external source code

analysis tools with knowledge already represented in our knowledge base (Version

Control Ontology). The resulting knowledge base can provide different stakeholders such

87

as managers with additional insights regarding organizational development processes and

practices. For example, the query results can be used to identify developers that show a

reoccurring pattern towards producing unsafe code. Management might also use this

information for various purposes (e.g. training, additional secure programming

guidelines) and specifically targeted quality improvements.

88

6. Discussion

6.1 Revisiting the hypothesis

The objective of the research presented in this thesis was to provide a novel approach that

takes advantage of Semantic Web technologies to represent software artefacts and related

knowledge resources in order to support the assessment of quality aspects of post-mortem

systems in a distributed and global setting. In section 4 and 5 we have introduced a

variety of quality patterns to address the different requirements associated with our

research hypothesis and its sub-goals. The following is a review of these initial

requirements:

R1. Bridge information silos

R2. Retrieve implicit and explicit knowledge

R3. Establish trustworthiness

R4. Model extendibility

Table 6-1 summarizes these requirements and how they are addressed in the thesis. As

shown, each requirement was addressed through a concrete example of how SE-PAD can

support it and therefore also the research hypothesis that Semantic Web technologies can

not only represent software artefacts and related knowledge resources but also support the

assessment of quality aspects of post-mortem systems.

89

Supported Pattern Detections R1 R2 R3 R4

Programming

Guidelines

[section 4.4]

General

Programming

Guidelines

Do not write to static fields from

instance methods
 √ √ √

Final classes should not have

protected attributes
 √ √ √

Servlet classes should not have

mutable attributes
 √ √ √

Respect Naming Conventions √ √

Secure Coding

Guidelines

Prefer immutable classes √ √ √

Prevent constructors from calling

overridable methods
 √ √ √

Modeling

Design Patterns

[section 4.5]

Adapter √ √ √ √

Proxy √ √ √ √

Strategy √ √ √ √

Template √ √ √ √

Tool Integration [section 4.6] √ √ √ √

Cross-Artefact Analysis [section 4.7] √ √ √

Table 6-1: Semantic classification and identification of pattern support

6.2 The Open World Assumption problem

As part of our future work, we plan to enrich our existing Ontological model with

additional artefacts and security concerns and further evaluate the applicability of our SE-

PAD tool in detecting additional types of patterns. The goal is to deal with one important

feature of OWL-DL Ontologies: the Open World Assumption (OWA). The main effect of

the OWA occurs in the reasoning phase. When a reasoner is not explicitly told a fact X is

true, it will not consider it as false like it is the case for relational database. Based on the

OWA the truth-value of X will be considered unknown (neither true nor false). Given is

the following example (fact):

Paul lives in Montreal

If this fact is modeled in a relational database (closed world) and the query "Does Paul

live in Toronto?" executed, the result would be false. This is due to the closed world,

where it is assumed that no other knowledge exists than the one at hand. If the same

90

example (fact) was modeled in an Ontology, a reasoner would entail "Unknown" as a

truth-value to an equivalent query. Since an Ontology's world is open, a reasoner could

not assume that a fact X is either false or true unless explicitly stated as such because

other knowledge might exist in the open world which will influence its truth-value. The

OWA has many benefits during the pattern detection, like the ability to deal with

incomplete or incremental populated knowledge, while still supporting pattern detection.

However, an open world assumption does not always reflect software source code’s

reality. In many cases, source code can be treated as a closed finite set of known or

knowable elements. For example in Object-Oriented programming one typically deals

with a finite set of knowable classes, methods, interfaces, method calls, variables,

external libraries, frameworks, containers, patterns, etc.

The OWA has other important implications with respect to source code and its closed

nature. More specifically, source code relevant reasoning is impaired. For example,

reasoners cannot assert truth-values of class restrictions involving smallerThan

cardinality comparisons (<), allValuesFrom axioms (), disjunction axioms (OR) or

complement axioms (NOT).

Not being able to reason on these axioms means that some interesting patterns cannot be

detected by SE-PAD. For instance, the unsupported ImmutableClass pattern implies

that no method other than the constructor of a class is allowed to change its state by

assigning values to its attribute. So, to be able to infer a class X as part of the

ImmutableClass concept, a reasoner would require X to be closed in terms of the

number of methods it contains otherwise, it will entail “Unknown” when asked to decide

91

on X’s belonging to ImmutableClass since, as explained earlier, it assumes other

knowledge pertaining to X might exist. Consequently, for the detection of some patterns

such as micro-patterns [25] which are otherwise non-detectable using the OWA, it will be

desirable to close SE-PAD’s world.

6.3 Threats to Validity

In what follows, we identify, analyze and discuss different threats that could affect the

validity of our approach and the requirements we introduced in Section 2. Each

subsection details a threat and shows the threatened requirement.

6.3.1 Semantic web technologies fail in bridging the information silos (R1).

Providing tool support for a domain like software engineering is inherently different due

to the variations in users’ contexts, the abstraction levels and the semantics of knowledge

that needs to be modeled [66]. Consequently, knowledge representation becomes an

essential part of the modeling challenge [67]. Formal semantics provide a means of

representing and ensuring some consistency in modeling knowledge. However, they still

do not guarantee that either sufficient or the right information is captured. We do not

claim that our approach is able to capture all domain specific knowledge. Instead, we

argue that by using an Ontological model for the knowledge representation in our SE-

PAD environment, we can support the modeling of incomplete and often inconsistent

knowledge found in software artifacts – see “Classification” in section 2.1.4. Previous

work [48, 68] has also shown that Ontologies can be applied to create a uniform

representation for different types of artifacts and link them successfully.

92

In spite of these modeling techniques, there will always remain a gap between the actual

and modeled knowledge. However, we believe that our approach provides an important

step towards modeling and retrieval of knowledge relevant to guide further analysis and

comprehension of software systems.

6.3.2 Implicit versus explicit knowledge (R2)

Information or artifacts might often not be available or consistent. An Ontological

representation can provide us with the flexibility to support an open world assumption.

Furthermore, the use of semantic reasoners enables the exploration of both explicit and

implicit knowledge. We have shown as part of our SE-PAD environment how reasoners

can be applied during pattern detection to resolve transitive closure in inheritance

hierarchies or can be applied to classify program parts based on their violations of

security guidelines. Remaining threats to validity are that the design of the Ontological

model has to be such that it supports the capabilities of the semantic reasoner being used.

However, this challenge is not unique to Semantic Web technologies and has also to be

taken into consideration by other knowledge modeling approaches.

6.3.3 Establishing Trustworthiness (R3)

In order to establish trustworthiness, one has to analyze two different issues:

1. Is the implemented approach able to capture the required patterns and guidelines

required to validate trustworthiness of the system being analyzed?

2. Are the results obtained by the tool itself trustworthy?

93

For the first challenge, the issue of being able to capture the right patterns has been

addressed by our semantic modeling approach by allowing:

1- the creation and addition of new knowledge to our model, by formalizing new

patterns or guidelines as queries and populate the model with the result of these

queries

2- the provision of a set of predefined queries to detect design and security patterns,

as well as supporting the validation of secure programming guidelines. The

provided queries are similar to the ones supported by other specialized tools [49,

63]

3- the integration of knowledge from often specialized third party tools and

integrating this knowledge directly as part of our knowledge base

For the second challenge, the analysis of the trustworthiness of the SE-PAD results, we

conducted some experiments comparing our SE-PAD pattern detection results to results

obtained from other tools. The case study performed in section 5.2 is an example of such

evaluation and validation, however, it has to be pointed out that the general quality and

trustworthiness of detection approaches depends on the ability to formalize and express

these patterns and based on the objective of the algorithm, to maximize either recall or

precision. Furthermore, depending on the type of pattern, pattern detection not only in

SE-PAD but in general becomes an inherently complex problem with threats regarding

the trustworthiness of the results remaining.

94

6.3.4 Patterns and knowledge base have to be extensible (R4)

Given the existence of many, often highly specialized analysis (both static and dynamic)

tools to detect patterns and validation of guidelines, we see our approach as

complementary to them. Our goal was not to replace these tools. Instead, we focused on

the integration of knowledge resources from existing tools (e.g. PMD) to enrich our

Ontological KB. Given our common unified and semantically representation for various

artifacts, we can support tracing of concerns and pattern across various abstraction levels

which was also a concern. Through our Ontological representation, users can enrich the

existing knowledge base with new concepts as they become available (e.g. new security

patterns, rules). Furthermore, knowledge derived from other tools or artifacts can be

integrated in the form of new concepts or automatically linked through the use of upper

Ontologies, shared concepts or semantic links across Ontologies. In our research we were

able to demonstrate that our source code Ontology can be extended with new concepts

(see figures in section 4) that were derived from FindBugs and PMD. Semantic

technologies allow our SE-PAD to be extended by integrating new knowledge and enrich

existing knowledge. It has to be noted that both Ontology modeling and consistency

management of the model are not trivial tasks. Lack of design expertise can limit the

knowledge exploration and the use of semantic reasoners for inferring implicit

knowledge.

95

7. Conclusions and Future Work

With relevant knowledge being distributed across multiple resources, the assessment and

maintenance of the quality of these systems becomes inherently difficult. In this research,

we address some of the challenges for the next generation of software engineering quality

validation tools, the need to provide an extensible and unified knowledge representation.

Our motivation was to integrate resources and knowledge related to quality patterns

within a common Ontological representation to support post-delivery quality analysis of

these systems. As part of the thesis research SE-PAD was developed, which supports the

fact extraction from different artifacts, as well as the integration of Semantic Web

technologies. The use of Semantic Web not only provides the enabling technology for the

integration of knowledge resources at various abstraction and semantic levels, it also

provides the foundation for an evolving knowledge base that supports the extension of

new resources and patterns. We also showed through several case studies how SE-PAD

can support the detection of various quality patterns and the knowledge integration from

external tools.

More precisely, in this research, we introduced SE-PAD, a Semantic Web based

automated source code quality analysis tool that supports several analysis tasks:

 the ability to detection violations of good coding practices, including security

related guidelines

 the ability to integrate knowledge created by external (third party) static analysis

tools to eliminate information silos by enriching our knowledge base

96

 the support for recovery of design patterns such as some of the GoF patterns [17]

 the ability to share knowledge across repositories boundaries to support different

types of data and knowledge mining

As a result we are able to

 eliminate information silos by supporting result sharing among tools and

integrating knowledge across different knowledge bases

 retrieve both, implicit and explicit knowledge

 enhance the trustworthiness of software systems, by detecting coding and best

practice violations

 support additional knowledge exploration through user defined queries and by

enriching our existing knowledge base

 illustrate how our approach supports the detection of semantic rich patterns, while

achieving at the same time reasonable precision

As part of our future work, we plan to enrich our existing Ontological model with

additional artifacts and security concerns and further evaluate the applicability of our SE-

PAD tool in detecting additional types of patterns.

97

8. References

1. K. Bontcheva and M. Sabou. “Learning Ontologies from Software Artifacts:

Exploring and Combining Multiple Sources”. In Proc. of the 2nd International

Workshop on Semantic Web Enabled Software Engineering, Athens, GA, U.S.A.,

2006.

2. H.-J. Happel and S. Seedorf. “Applications of Ontologies in Software Engineering”.

In Proc. of International Workshop on Semantic Web Enabled Software Engineering,

2006.

3. Y. Zhao, J. Dong, and T. Peng. “Ontology classification for Semantic Web based

software engineering”. IEEE Transactions on Services Computing, 2(4), pp. 303-317,

2009.

4. J. Tappolet, C. Kiefer and A. Bernstein. “Semantic Web enabled software analysis”.

Journal of Web Semantics: Science, Services and Agents on the World Wide Web,

pp. 225-240, 8 July 2010.

5. Dynamic and Distributed Information Systems Group website

(http://www.ifi.uzh.ch/ddis/)

6. J. A.Vayghan, S. M. Garfinkle, et al. “The internal information transformation of

IBM”. IBM Systems Journal, 46(4), pp. 669-683, 2007.

7. K.C. Desouza. “Barriers to effective use of knowledge management systems in

software engineering”. Communications of the ACM, 46 (1), pp. 99-101, 2002.

8. D. Gaševic, N. Kaviani and M. Milanovic. “Ontologies and Software Engineering”.

Handbook on Ontologies, pp. 593-615, 2009.

9. M. Côté. “A matter of trust and respect”. CA Magazine [serial online]. March 2002.

Available at: http://www.camagazine.com/archives/print-

edition/2002/march/columns/camagazine23400.aspx. Accessed April 13, 2012.

10. H.R. Nemati, D.M. Steiger, L.S. Iyer and R.T. Herschel. “Knowledge warehouse: an

architectural integration of knowledge management, decision support, artificial

intelligence and data warehousing”. Decision Support Systems, 33, pp. 143-161,

2002.

11. C. Larman. “Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design”. Prentice Hall, pp. 435-472, 2005.

12. M.-A. D. Storey. “Theories, methods and tools in program comprehension: Past,

present and future”. In Proc. of the 13th International Workshop on Program

Comprehension (IWPC 2005), St. Louis, MO, USA, pp. 181-191, 2005.

http://www.ifi.uzh.ch/ddis/
http://www.camagazine.com/archives/print-edition/2002/march/columns/camagazine23400.aspx
http://www.camagazine.com/archives/print-edition/2002/march/columns/camagazine23400.aspx

98

13. G. Antoniou and F. van Harmelen. “Web Ontology Language: OWL”. Handbook on

Ontologies. Springer, pp. 67-92, 2004.

14. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider. “The

Description Logic Handbook: Theory, Implementation and Applications”. Cambridge

University Press, chapter 3, 2003.

15. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz. “Pellet: A practical OWL-

DL reasoner”. Journal of Web Semamtics, 5(2), pp. 51-53, 2007.

16. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.

W3CCandidate Rec. 6 April 2006. (http://www.w3.org/TR/rdf-sparql-query/)

17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns: Elements of

Reusable Object-Oriented Software”. Addison Wesley, Reading, MA, USA, 1995.

18. D. Parnas and M. Lawford. “The role of inspection in software quality assurance”.

IEEE Transaction on Software Engineering, 29(8), pp. 674-676, August 2003.

19. E. van Emden and L. Moonen, “Java quality assurance by detecting code smells”. In

Proc. of IEEE Computer Society Working Conference on Reverse Engineering, pp.

97-108, 2002.

20. W. Crawford and J. Kaplan. “J2EE Design Patterns”. O’Reilly and Associates,

chapter 12, 2003.

21. P. Anderson, T. W. Reps, T. Teitelbaum and M. Zarins. “Tool support for fine-

grained software inspection”. In Proc. of IEEE Software, 20(4), pp. 42-50, 2003.

22. A.M. Vans, A. von Mayrhauser and G. Somlo. “Program Understanding Behavior

during Corrective Maintenance of Large-Scale Software”. Int’l Journal of Human-

Computer Studies, 51(1), pp. 31-70, July 1999.

23. D. Flanagan. “Java in a Nutshell”. O’Reilly & Associates, Inc., 1st edition, Feb. 1996.

24. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. “Pattern-oriented

Software Architecture - A System of Patterns”. J. Wiley and Sons Ltd., 1996.

25. J. Y. Gil and I. Maman. “Micro patterns in Java code”. In Proc. of the 20th annual

ACM SIGPLAN conference on Object oriented programming systems languages and

applications, New York, NY, USA, pp. 97-116, 2005.

26. K. Beck and M. Fowler. “Bad smells in code”. In M. Fowler, editor, Refactoring:

Improving the Design of Existing Code, Addison Wesley, pp. 75-88, 1999.

27. K. K. Aggarwal, Y. Singh, and J. K. Chhabra, “An Integrated Measure of Software

Maintainability,” In Proc. of IEEE Annual Reliability and Maintainability

Symposium, Seatle Westin,U.S.A, pp.235-241, 2002.

99

28. IEEE Std. 610.12-1990. Standard Glossary of Software Engineering Terminology,

IEEE Computer Society Press, Los Alamitos, CA, 1993.

29. Code Conventions for the Java Programming Language

(http://www.oracle.com/technetwork/java/codeconvtoc-136057.html)

30. R. P. L. Buse and Westley Weimer. “A metric for software readability”. In Proc. of

International Symposium on Software Testing and Analysis, pp. 121-130, 2008.

31. Secure Coding Guidelines for the Java Programming Language, Version 3.0

(http://www.oracle.com/technetwork/java/seccodeguide-139067.html)

32. Checkstyle Homepage (http://checkstyle.sourceforge.net)

33. G. Carl, G. Kesidis, R. Brooks, and S. Rai. “Denial-of-Service attack detection

techniques”. In Proc. of IEEE Internet Computing, 10(1), pp. 82-89, 2006.

34. C. Cowan, P. Wagle, C. Pu, S. Beattie and J.Walpole. “Buffer Overflows: Attacks

and Defenses for the Vulnerability of the Decade”. In Proc. of DARPA Information

Survivability Conference and Expo, 1(2), pp. 119-129, 2000.

35. D. Damian and D. Moitra. “Guest Editors' Introduction: Global Software

Development: How far Have We Come?”. In Proc. of IEEE Software, 23(5), pp.17-

19, 2006.

36. B. Blakley, C. Heath and Members of the Open Group Security Forum. “Security

design patterns”. 2004.

37. F. Lee Brown, J. Di Vietri, G. Diaz de Villegas and E. Fernandez. “The authenticator

pattern”. In Proc. of the Sixth Conference on Pattern Languages of Programming,

1999.

38. M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens and H.H. Wang.

“The Manchester OWL Syntax”. In Proc. of the OWL Experiences and Directions

Workshop at the ISWC’06, 2006.

39. M. Uschold and M. Grüninger. “Ontologies: Principles, Methods and

Applications”. Knowledge Engineering Review, 11(2), pp. 93-135, 1996.

40. Y. Zhang, R. Witte, J. Rilling, and V. Haarslev. “An Ontological Approach for the

Semantic Recovery of Traceability Links between Software Artifacts”. IET Software,

Special issue on Language Engineering, 2(3), pp. 185-203, 2008.

41. Java Parser project (http://code.google.com/p/javaparser/)

42. Jena Semantic Web Framework (http://jena.sourceforge.net/index.html)

43. Racer Systems (http://www.racer-systems.com/index.phtml)

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://checkstyle.sourceforge.net/
http://code.google.com/p/javaparser/
http://jena.sourceforge.net/index.html
http://www.racer-systems.com/index.phtml

100

44. OWLIM Semantic Repository (http://www.ontotext.com/owlim/)

45. V. B. Livshits and M. S. Lam. “Finding security vulnerabilities in Java applications

with static analysis”. In Proc. of USENIX Security Symposium, pp.271-286, 2005.

46. M. Bashir and M. Qadir. “Traceability Techniques: A Critical Study”. In Proc. of

IEEE Multitopic Conference, pp. 265-268, 2006.

47. S. Bohner and R.S. Arnold. “Software Change Impact Analysis”. IEEE Computer

Society Press, 1996.

48. R. Witte, Y. Zhang and J. Rilling. “Empowering Software Maintainers with Semantic

Web Technologies”. In Proc. of the 4th European Semantic Web Conference, pp. 37-

52, 2007.

49. PMD (http://pmd.sourceforge.net/)

50. FindBugs (http://findbugs.sourceforge.net/)

51. D, Brickley and R.V. Guha. “Resource Description Framework (RDF) Schema

Specification”, World Wide Web Consortium, 1999.

52. Pellet (http://clarkparsia.com/pellet/features/)

53. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. “The

Description Logic Handbook”. Cambridge University Press, In print. 2002.

54. O. Laitenberger. “A Survey of Software Inspection Technologies”. In Handbook on

Software Engineering and Knowledge Engineering, World Scientific Publishing,

volume 2, pp. 517-555, 2002.

55. C. Calero, F. Ruiz and M. Piattini. “Ontologies for Software Engineering and

Software Technology”. Springer, Berlin, Heidelberg, 2006.

56. J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O. Svab, V. Svatek,

W. van Hage, and M. Yatskevich. “Results of the Ontology alignment evaluation

initiative 2007”. In Proc. of the workshop on Ontology Matching at ISWC/ASWC,

pp. 96-132, 2007.

57. Sesame (http://www.openrdf.org/)

58. W. Liu, A. Weichselbraun, A. Scharl and E. Chang. “Semi-Automatic Ontology

Extension Using Spreading Activation”. Journal of Universal Knowledge

Management, no. 1, pp. 50-58, 2005.

59. G. McGraw. “Software Security”. In Proc of IEEE Security & Privacy, vol. 2, pp. 80-

83, March-April 2004.

http://www.ontotext.com/owlim/
http://clarkparsia.com/pellet/features/
http://www.openrdf.org/

101

60. G. Booch, J. Rumbaugh and I. Jacobson, “The Unified Modeling Language User

Guide”. Addison Wesley, Reading MA, 1999.

61. Quartz (http://quartz-scheduler.org/)

62. N. Nagappan and T. Ball. “Static Analysis Tools as Early Indicators of Pre-Release

Defect Density”. In Proc. Int’l Conf. Software Engineering, pp. 580-586, 2005.

63. W3C XQuery recommendation of December 14th 2010

(http://www.w3.org/TR/xquery/)

64. The Servlet Life Cycle (http://docstore.mik.ua/orelly/java-ent/servlet/ch03_01.htm)

65. D. Binkley, M. Davis, D. Lawrie, and C. Morrell. "To CamelCase or Under_score".

In Proc. of 17th IEEE International Conference on Program Comprehension (ICPC),

Vancouver, Canada, pp. 158-167, 2009.

66. M.-A. D. Storey, K. Wong and H. A. Müller. “How do program understanding tools

affect how programmers understand programs?”. Science of Computer Programming,

36(2-3), pp. 183-207, March 2000.

67. C. Lai. “Java Insecurity: Accounting for Subtleties That Can Compromise Code”. In

Proc. of IEEE Software, 25(1), pp. 13-19, 2008.

68. Y. Zhang, R. Witte, J. Rilling, and V. Haarslev. “An Ontological Approach for the

Semantic Recovery of Traceability Links between Software Artifacts”. IET Software,

Special issue on Language Engineering, 2(3), pp. 185-203, June 2008.

69. D.L. McGuinness and F. van Harmelen. “OWL Web Ontology Language Overview,”

World Wide Web Consortium (W3C) recommendation, 2004.

70. A. Gerber, A. van der Merwe and A. Barnard. “Towards a Semantic Web Layered

Architecture”. In Proc. of IASTED International Conference on Software

Engineering, Innsbruck, Austria, pp. 353-362, 2007.

71. Semantic Web Stack (http://en.wikipedia.org/wiki/Semantic_Web_Stack)

72. G. McGraw. “Software Security: Building Security In”. Addison Wesley

Professional, pp 163-165, 2006.

73. J. D'Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarthy. “Java

Developer's Guide to Eclipse”. Addison-Wesley Professional, 2004.

http://quartz-scheduler.org/
http://www.w3.org/TR/xquery/
http://docstore.mik.ua/orelly/java-ent/servlet/ch03_01.htm
http://en.wikipedia.org/wiki/Semantic_Web_Stack

