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Abstract 

Quality Validation through Pattern Detection – A Semantic  

Web Perspective 

 

David Walsh 

 

Given the ongoing trend towards a globalization of software systems, open networks and 

distributed platforms, validating non-functional requirements and qualities becomes an 

essential requirement. Our research addresses this challenge from two different 

perspectives: (1) the integration of knowledge and tool resources through semantic web 

technologies as part of our SE-PAD environment in order to reduce or eliminate existing 

traditional information and analysis silos. (2) The ability to reason upon linked resources 

to infer both explicit and implicit patterns to support the validation of quality aspects. We 

illustrate the flexibility and applicability of our approach through several use cases, 

including the detection of security and design patterns, violations of secure programming 

guideline violations. 

 

 

 

 

 



 

iv 

 

Table of contents 

List of Figures ..................................................................................................................... v 
List of Tables ...................................................................................................................... v 
1. Introduction ..................................................................................................................... 1 

1.1 Contributions ............................................................................................................. 3 
1.2 Thesis Outline ........................................................................................................... 4 

2. Quality Validation through Pattern Detection – a Semantic Web Perspective ............... 5 
2.1 Motivation ................................................................................................................. 5 
2.2 Goals and Requirements ........................................................................................... 6 
2.3 Research Hypothesis ................................................................................................. 8 

3. Background ................................................................................................................... 10 

3.1 Ontologies and Semantic Web Technologies ......................................................... 10 
3.1.1 RDF .................................................................................................................. 11 

3.1.2 RDFS................................................................................................................ 12 
3.1.3 OWL-DL .......................................................................................................... 12 

3.1.4 Reasoning ......................................................................................................... 14 
3.1.5 SPARQL queries .............................................................................................. 17 

3.1.6 Putting it all together ........................................................................................ 18 
3.2 Software Patterns and Quality Inspection ............................................................... 19 

3.2.1 Software Quality Inspection ............................................................................ 20 

3.2.2 Functional Inspections ..................................................................................... 21 
3.2.3 Design Inspection............................................................................................. 22 

3.2.4 Inspection of Source Code ............................................................................... 24 
3.3 Ontologies in Software Engineering ....................................................................... 27 

3.3.1 Knowledge modeling: information silos .......................................................... 28 

3.3.2 Conceptualization ............................................................................................ 29 

4. SE-PAD as a Semantic Web based quality validation platform ................................... 32 
4.1 SE-PAD Architecture .............................................................................................. 32 
4.2 SE-PAD and the use of Ontologies ......................................................................... 33 

4.2.1 Design (t-box) .................................................................................................. 34 
4.2.2 Population and Realization (a-box) ................................................................. 38 

4.3 A Semantic Web Approach to Software Quality .................................................... 42 
4.4 Programming Guidelines ........................................................................................ 44 

4.4.1 General Programming Guidelines .................................................................... 44 
4.4.2 Secure Coding Guidelines................................................................................ 53 

4.5 Modeling Design Patterns ....................................................................................... 59 
4.5.1 Adapter Pattern ................................................................................................ 61 
4.5.2 Proxy Pattern .................................................................................................... 64 

4.5.3 Strategy Pattern ................................................................................................ 67 
4.5.4 Template Pattern .............................................................................................. 71 

4.6 Tool integration ....................................................................................................... 74 
4.7 Cross artefact analysis ............................................................................................. 77 

5. Case Studies .................................................................................................................. 80 
5.1 Security violations .................................................................................................. 80 
5.2 Design Pattern Automated Recovery ...................................................................... 82 

5.3 Integration of external static analysis tool results (PMD and FindBugs) ............... 83 



 

v 

 

5.4 Integration of SCM Ontology ................................................................................. 85 

6. Discussion ..................................................................................................................... 88 
6.1 Revisiting the hypothesis ........................................................................................ 88 
6.2 The Open World Assumption problem ................................................................... 89 

6.3 Threats to Validity .................................................................................................. 91 
6.3.1 Semantic web technologies fail in bridging the information silos (R1). ......... 91 
6.3.2 Implicit versus explicit knowledge (R2) .......................................................... 92 
6.3.3 Establishing Trustworthiness (R3) ................................................................... 92 
6.3.4 Pattern and knowledge base have to be extensible (R4) .................................. 94 

7. Conclusions and Future Work ...................................................................................... 95 
8. References ..................................................................................................................... 97 
 

List of Figures 

Figure 1-1: High level view of our approach ...................................................................... 4 
Figure 3-1: A simple semantic network ............................................................................ 11 

Figure 3-2: Semantic Web technologies working together............................................... 18 
Figure 3-3: Software abstraction scale .............................................................................. 21 

Figure 3-4: Information Silos for a generic domain of knowledge .................................. 29 
Figure 4-1: SE-PAD's architecture ................................................................................... 32 
Figure 4-2: Sample of SE-PAD's t-box ............................................................................. 38 

Figure 4-3: SE-PAD's partial resulting ontology example ............................................... 40 
Figure 4-4: SE-PAD’s support for external tool rules ...................................................... 41 

Figure 4-5: The semantic levels supported by SE-PAD ................................................... 42 
Figure 4-6: Mutable class realization ................................................................................ 56 
Figure 4-7: SCM rule violation search algorithm ............................................................. 78 

 

 List of Tables  

Table 3-1: Research goal, sub-goals, and related requirements .......................................... 6 
Table 2-1: Examples of software patterns ........................................................................ 19 

Table 2-2: Software engineering responsibilities ............................................................. 28 
Table 2-3: SOM Ontology relations, domain and range concepts .................................... 31 
Table 4-1: SE-PAD's set of extended data properties ....................................................... 35 

Table 4-2: SE-PAD's set of extended object properties .................................................... 36 
Table 4-3: Extension of SOM's Attribute concept ............................................................ 36 
Table 4-4: Extension of SOM's Method concept .............................................................. 37 
Table 4-5: Extension of SOM's Class concept .................................................................. 37 
Table 4-6: Pattern presentation template .......................................................................... 43 

Table 5-1: JabRef population summary ............................................................................ 80 
Table 5-2: SE-PAD vs. PMD ............................................................................................ 81 

Table 5-3: SE-PAD vs. DPR ............................................................................................. 82 
Table 5-4: ArgoUML population summary ...................................................................... 83 
Table 5-5: Ratio of unsafe classes in ArgoUML .............................................................. 84 
Table 5-6: Integration of SCM Ontology results .............................................................. 86 
Table 6-1: Semantic classification and identification of pattern support ......................... 89 

file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779332
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779333
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779334
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779335
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779336
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779338
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779339
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779340
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779341
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779342
file:///C:/Users/dwalsh/Dropbox/thesis/thesis%20David%20current.docx%23_Toc327779343


 

1 

 

1. Introduction 

Syntax errors are part of any programmer’s daily life: missing parenthesis, misspelled 

variable names are easily caught by compilers and immediately fixed by the programmer. 

In contrast to these syntax errors, other forms of programmer mistakes, such as violating 

coding guidelines, programming patterns, introducing vulnerabilities and lack of good 

programming practices often lead to mistakes that are not discovered by traditional IDEs.  

These problems are often part of what constitutes code quality, a Non-Functional 

Requirements (NFR). Such qualities can be divided into two main categories: (1) 

Execution qualities, such as performance and usability, which are observable at run time; 

and (2) evolution qualities, such as testability, maintainability, extensibility, and 

scalability, which are embodied in the static structure of the software system.  

Given the large, complex and global systems being developed, it becomes essential for 

organizations to validate and assess software qualities. However, a lack of requirements 

and artifact traceability often results in situations where validating qualities in post-

mortem systems becomes an inherently difficult task.  

Patterns and programming guidelines have been promoted for some time to help to detect 

problem areas and improve various quality aspects of the final software product. The 

challenge is that these already implemented problems lead to situations where people (1) 

reuse code with flaws without being aware of it or even worst (2) the same mistakes or 

bad programming practices are repeated and become recurring patterns. These issues 

become even more aggravating, in our global software economy, with its collaborative 

workspaces and diversified knowledge distribution among project stakeholders.   
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One approach to detect such common coding problems or for enforcing best practice 

coding patterns are manual code reviews [18]. However, the quality of these reviews will 

largely depend on the expertise (pattern and guidelines to be validated) of the reviewer 

and the thoroughness of the review process itself. Source code analysis can be applied to 

automatically detect many of these common coding problems. Furthermore, these 

analysis tools can capture relevant domain expertise in their analysis without requiring 

the tool operator to have the same expertise level as required during manual code 

reviews. Many analysis techniques have been developed over the years to detect different 

form of patterns in software, with many of these techniques relying on formal methods 

and sophisticated program analysis. Most existing source code analysis approaches have 

failed to address these challenges associated with the new global software economy. As a 

result, most of the existing analysis tools have remained in technology silos, focusing 

mainly on improving precision and performance rather than outreaching and integrating 

with other tools or deal with data at a global scale. 

More precisely, we will describe an approach relying on a Semantic Web based 

automated source code quality analysis tool that can perform the following tasks: 

 detect the violations of coding good practices, including security related 

guidelines 

 integrate knowledge reported by external static analysis tools to enrich its own 

knowledge base 

 recover well design patterns such as those described in well known GoF book [17] 
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 share concepts with knowledge bases of other artefacts such as Source Code 

Management tools to perform historical quality mining  

Research results presented in this thesis have been published in proceedings of two 

recognized international conferences including:  

 Proceedings of the 35th IEEE Conference on Computers, Software, and 

Applications (COMPSAC 2011) where our complete SE-PAD approach was 

presented. 

 2nd IEEE International Workshop on Software Engineering for Context Aware 

Systems and Applications (SECASA 2009) where we introduced the theoretical 

aspects of a contextual approach to security pattern detections based on Semantic 

Web technologies. 

1.1 Contributions 

The objective of our research is to provide a novel approach that takes advantage of 

Semantic Web technologies to represent software artifacts and related knowledge 

resources. The research builds the basis (1) to integrate and eliminate some existing 

technology and knowledge silos found in the software engineering community. (2) 

Taking advantage of Semantic Web technologies to support both, implicit and explicit 

pattern detection to support the use of quality guidelines. (3) Develop a prototype (SE-

PAD) as a proof of concept that takes advantage of the Semantic Web to support both 

knowledge integration and pattern detection. (4) Demonstrate through several motivating 

examples and case studies, the flexibility and applicability of our approach. Figure 1-1 
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shows a high level overview of the Semantic Web based quality validation approach 

developed as part of this research. 

 

 

 

 

 

 

 

1.2 Thesis Outline 

Section 2 presents the research hypothesis and goals are exposed. The relevant theoretical 

background on which this research is based is presented in section 3, followed by the 

description of the approach in section 4. Case studies are detailed in section 5 followed 

by a discussion which includes the Open World Assumption and threats to validity in 

section 6. Finally, section 7 concludes the thesis and discusses future work. 

 

Figure 1-1: High level overview of SE-PAD 
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2. Quality Validation through Pattern Detection – a Semantic Web 

Perspective 

2.1 Motivation 

Nowadays, driven by a globalization of economical activities [35], software is being 

more and more developed in a global and distributed fashion. Teams are geographically 

scattered across the globe: they live in different time zones, use different languages, have 

different cultural background, etc. Not only does this pose organizational, cultural and 

technical challenges but software development has to adapt to the generally increased 

complexity of such an environment to maintain an acceptable level of quality. 

At the same time, relevant knowledge is being distributed across multiple resources, 

making the assessment and maintenance of the quality of a system inherently more 

difficult. In this thesis, we address some of these challenges for the next generation of 

software engineering quality validation tools, the need to unify quality patterns with 

system engineering and models. We in particular focus on the second challenge, the 

integration of resources and knowledge related to patterns within a common Ontological 

representation. We introduce our SE-PAD tool implementation, to illustrate how 

Semantic Web technologies can support the integration of knowledge resources at 

various abstraction and semantic levels. We also show how the Semantic Web can 

provide the foundation for a knowledge base that supports the extension of new resources 

and patterns. 

A key motivation for our approach is to guide maintainers and developers to validate and 

ensure that source code meets certain qualities. Supporting global software development 
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processes with artefacts and knowledge resources distributed across organization 

boundaries and systems will require the modeling and integration of these knowledge 

resources.  

Quality software increases its stakeholders trust and is perceived by many as an indicator 

of improved evolvability and lower maintenance cost. Semantic information represents a 

basis for the validation of quality aspects in source code and other resources. We argue 

that the Semantic Web can provide the required technologies to create semantic rich 

models unifying knowledge resources and enabling semantic rich forms of source code 

analysis [39, 40, 48].   

2.2 Goals and Requirements 

The main goal of our research is to provide a novel approach that takes advantage of 

Semantic Web technologies to represent software artefacts and related knowledge 

resources in order to support the assessment of quality aspects of post-mortem systems in 

a distributed and global setting. What follows details how each requirement is linked to 

its respective sub-goal and consequently to the main goal, as summarized in table 3-1. 

Main Goal Sub-Goal Requirement 

Support the assessment of 

quality aspects of post-mortem 

systems in a global setting 

Knowledge 

dissemination 
(R1) Bridge information silos 

Knowledge modeling 
(R2) Retrieve implicit and 

explicit knowledge 

Quality validation (R3) Establish trustworthiness 

Knowledge enrichment (R4)  Model extendibility 

Table 2-1: Research goal, sub-goals, and related requirements 
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Requirement #1: Bridging information silos (R1) 

Maintenance activities are often performed across organizational boundaries with 

knowledge and expertise being distributed across these resources.  In order to avoid the 

creation of information silos in heterogeneous development environments, knowledge 

dissemination and integration among stakeholders or resources has to become an 

essential part of global software system. 

Requirement #2: Retrieve implicit and explicit knowledge (R2) 

From a programmer perspective, locating and extracting relevant knowledge and 

resources becomes a major challenge. In order to support programmers and maintainers 

in their current work context, new modeling techniques and representations have to be 

applied to support both explicit and implicit knowledge retrieval. In a global and 

distributed development environment, developers are often geographically separated and 

located in different time zones, making communication difficult. The ability to 

automatically retrieve implicit and explicit knowledge becomes crucial to achieve many 

software engineering tasks, such as program comprehension. 

Requirement #3: Establishing Trustworthiness (R3) 

Establishing trustworthiness in the quality of a system requires maintainers to apply 

organization and application domain specific processes and activities to document that an 

application meets or exceeds the expected quality. Validating system qualities creates 

trustworthiness, by ensuring that that various patterns (e.g. design and security patterns) 

have been respected and good programming practices and guidelines have not been 

violated. 
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Requirement #4:  Model extendibility (R4) 

Pattern and knowledge base have to be extendible in order to detect new patterns and to 

ensure the future quality of systems. There is a need to support knowledge enrichment in 

the form of modeling and integrating new patterns and guidelines as part of an existing 

and global knowledge base. 

2.3 Research Hypothesis 

We argue that it is possible to build an Ontology based prototype that can support the 

four requirements described in the previous section, and therefore address the main 

research goal of supporting the assessment of quality aspects of post-mortem systems by 

its associated research sub-goals. Consequently, the hypothesis will hold if and only if 

our SE-PAD prototype can provide support for all four requirements. 

As discussed earlier in section 2, SE-PAD extends the SOM Ontology [4, 5] with new 

concepts and relationships to form a semantically richer Ontology. Once populated with 

source code and external tools quality related information, the knowledge base can be 

queried and enriched. Users can introduce additional concepts and relationships or share 

existing concepts with other Ontologies through Ontology alignment [56].  

Capturing programming expertise and best practices is a well recognized research and 

application domain. Many forms of patterns (e.g. security, design, guidelines) and 

programming guidelines have been established describing benefits, limitations and their 

potential application contexts. The objective of our research is not to compete with 

existing specialized tools. Rather, we see SE-PAD as a complementary, knowledge 

integration approach. Furthermore, given the ongoing globalization of software 
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development processes, we do believe that a standardized representation using Semantic 

Web technologies will become an important enabling factor. It allows for information 

and knowledge while providing supporting technology infrastructures.  

A key objective of SE-PAD is to provide a flexible approach that allows queries to be 

applied either in a standalone fashion or as  embedded within an IDE (e.g. Eclipse [73]), 

to retrieve different type of source code related knowledge: good practices violations, 

design pattern implementations, code metrics, module usages, etc.  
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3. Background 

This chapter reviews background literature relevant to the research presented in this 

thesis. The topics include Semantic Web Technologies and Ontologies, software design 

and inspection, as well as code quality.    

3.1 Ontologies and Semantic Web Technologies 

This section examines features of Semantic Web technologies, going from the most 

trivial (RDF) to the more sophisticated (OWL-DL). Both their querying and reasoning 

features will also be discussed. 

The Semantic Web was originally introduced to organize knowledge available on web 

sites to make it interpretable by machines [69]. As with any information intensive 

systems and similarly to those backed by relational databases, Semantic Web 

technologies involve modeling formalization. Whereas entity-relationship models are 

often used to represent database information, the Semantic Web paradigm relies on 

Ontologies. 

More formally, Ontologies consist of graphs whose nodes are linked by named and 

directed vertices representing relationships. Nodes may symbolize concrete Individuals or 

Classes. To compare with the Set theory, Ontology Classes equate to Sets and Ontology 

Individuals equate to items belonging to zero or more of these sets.  

Nodes in Ontologies are linked by means of relationships. They may link individuals 

amongst themselves or to Classes to explicit an Individual’s types. In the latter case, a 
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pre-determined relationship exists and is systematically involved to make an Individual’s 

types explicit. 

3.1.1 RDF 

The Resource Description Framework (RDF) consists of a set of W3C specifications 

which were initially introduced by Ramanathan V. Guha [51] to implement a metadata 

data model for the Web. Technically, RDF models typically contain a number of directed 

sub-graphs. Figure 2-1 shows a simple graph linking node A to node B through the 

named edge C.   

 

 

 

Such graphs are typically represented in the form of triples, which may formally be 

denoted as:  

          

In RDF, the graph semantics has been enhanced by defining the participants in a triple. 

For instance, using the previous example, node A is called the Subject, node B the Object 

and the edge C is a Relationship. RDF models also have the particularity of identifying its 

elements with Uniform Resources Identifiers (URI), which are easily processed by a 

computer program. Subjects and Relationships must be URIs whereas Objects can be 

either a URI or a literal such as a String, an Integer, etc. For instance, the previous triple 

can be expressed as follows: 

Figure 3-1: A simple semantic network 
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τ  =<http://www.example.com/test#A, 
http://www.example.com/test#C, 

http://www.example.com/test#B> 

RDF injects larger semantics to semantic networks by predefining richer axioms to 

construct Ontologies. One of the most notables is the rdf:Property axiom which 

allows Ontology designers to create relationships bearing specific meanings.  In the 

previous example, the Relationship C could be replaced by "hasChild", the subject A by 

"Julius Caesar" and the object B by "Brutus" to model the parent relationship between 

Julius Caesar and his son Brutus.   

3.1.2 RDFS 

RDFS extends RDF by adding more predefined constructs. Classes are introduced and 

with them, further semantics including sub/super-classing, inheritance, etc.  Relationships 

are enhanced through additional restrictions, like domain/range restrictions and new 

properties, such as the Sub/Super properties. RDFS also introduces a clearer separation 

between the two main constituents of an Ontology: the t-box is composed of domain 

Concepts and Relationships whereas Instances, or a-box, refers to concrete individuals 

whose type (class) and possible relationships are defined in the t-box. To recall the set 

theory again, the set of Sets equates to the t-box, the a-box to the available items and their 

union, the Ontology, to the set theory's Universe.  

  

3.1.3 OWL-DL 

OWL-DL[13] increases Ontologies expressivity by adding a rich set of semantics to 

RDF(S). However, contrarily to the pre-existing Semantic Web architecture, which is 
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based on the Semantic Web Stack [70, 71], it does not so by building a new layer through 

the extension of RDFS. Instead, OWL combines RDFS with Description Logics (DL) 

[53] by borrowing its XML syntax and style to define rich, formal DL-based class 

restrictions, hence giving birth to the decidable language OWL-DL. Here are a few 

examples of the semantic constructs introduced in OWL-DL [13, 69]: 

1. Local scope of properties 

The rdfs:range statement defines the range of a relationship for all the classes of 

a given Ontology. For example, defining the range of the relationship eats as plants 

in RDFS means that everything eaten is a plant whereas OWL-DL allows restrictions 

to be declared for some classes only. It would then be possible to state that cows eat 

plants while other animals eat meat. 

2. Disjointness of classes 

RDFS only allows for subclass relationships amongst classes. Classes in OWL-DL 

can also be defined as disjointed from one another, as having no intersection so that 

no individuals can be part of both. For instance, the class male would be modeled as 

disjoint from the class female. 

3. Boolean combination of classes 

OWL-DL supports a combination of first order logic and set operations by allowing 

classes to be combined with other classes using union, intersection, and complement 

operators. For example, drivers could be modeled as the union of car_driver and 

bus_driver.   
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4. Cardinality restrictions 

Restrictions in OWL-DL can include the number of range items a property should or 

must bear. For instance, a class car may restrict the has_wheels property so that the 

cardinality is equal or greater than 4.  

5. Special characteristic of properties 

In OWL-DL, properties may have special features. Taking for example the various 

familial relationships, transitivity is illustrated by is_ancestor_of and inversion by 

has_parent/ is_parent_of.  

3.1.4 Reasoning 

Reasoners process OWL-DL Ontologies to explicit facts implicitly presented in the a-box 

[14] based on DL formal class restrictions or in other words, to perform automated 

inferences. More specifically, this research makes use of the following features offered 

by typical reasoners [15, 52]: 

1. Computation of reverse properties 

Assume X and Y are sets and L is a relation from X to Y. Then, the reverse 

relation of L,    , is formally defined in first order logic as: 

                          

In Ontologies relationships are represented by triples and they can be declared 

as the reverse of another one. As an example, suppose the following triple 

exists in an Ontology's knowledge base:  
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τ   A C B  

Suppose also that Z is a property that was defined as the reverse property of C. 

In that case, the reasoner can infer the following triple: 

τ'   B Z A  

2. Computation of transitive properties 

Assume X is a set and R a relation from X to X. The transitivity of R is 

formally defined in first order logic as: 

                         
 
         

Suppose an OWL knowledge base contains the following two triples:  

τ   A C B    τ'   B,C,D> 

If C was labelled as a transitive property, the reasoner can infer the following 

triple: 

τ''= <A,C,D> 

3. Computation of sub-properties 

Assume X is a set and suppose R and S are relationships over X. In first order 

logic, sub-properties can be expressed as follows:  

                                         

Suppose the following triple exists in an Ontology's knowledge base:  
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τ   A C B  

If C was labelled as a sub-property of D, the reasoner can infer the following 

triple: 

τ'   A D B  

4. Classification 

An OWL-DL reasoner calculates the subclass mapping amongst all identified 

class in an Ontology’s t-box to infer the entire class and subclasses hierarchy 

of the knowledge base. During the classification process, the reasoner can 

detect inconsistencies in the hierarchy. A class is inconsistent if it is restricted 

in such a way that it cannot have any instances. For example, a class restricted 

for humans that are male and not male at the same time will always remain 

empty, and therefore is considered inconsistent. In first order logic, an 

inconsistent set R restricted along the relationship S can be represented by the 

following expression:  

                            

5. Realization 

Once a hierarchy is computed, it becomes possible to infer all the types to 

which an Ontology’s individuals (a-box) belong. The realization process 

determines the most precise classes to which the individuals base belong by 

relying namely on the computation of sub-properties. It then becomes possible 

to determine all the classes an individual is part of through the hierarchy 
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computed in the classification process. As an example, a reasoner can 

compute the following implication, based on the formal definition of sub-

properties: 

                    

3.1.5 SPARQL queries 

SPARQL[16] is a query language for RDF, i.e. a language to query triple stores.  A query 

consists of triple patterns, conjunctions, disjunctions, and optional patterns. Here is a 

SPARQL query example. It queries a fictitious Ontology for all the cities and states in the 

whole Asia, except China. 

SELECT  

 ?city ?state  

WHERE { 

 ?x  name ?city; 

  isCityOf ?y. 

 ?y stateName ?state; 

  isInRegion "Asia".  

} 

Filter ?state != "China". 

Each SPARQL SELECT query includes an ensemble of ordered sections. A query 

begins with prefix definitions; next a SELECT section describes which variables will be 

listed in the results. The following WHERE clauses describe the graph patterns the results 

are expected to match, including the variables defined by the SELECT clause (e.g. the 

statements contained within the WHERE clause brackets in the example above). 

The next section of a SPARQL query is where solution modifiers like FILTER are 

applied.  The FILTER keyword limits a query’s results by forcing constraints on the 
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values assigned to the variables defined in the SELECT section. Constraints are 

implemented by logical expressions that result in Boolean. For example, a query 

returning a set of string values could be modified with a filter to return only the ones 

matching a specific regular expression. In the last example, the FILTER statement is 

used to remove all cities in China from the results. 

3.1.6 Putting it all together 

The Semantic Web encompasses many technologies. The following directed and named 

graph shows how we take advantage of the different Semantic Web technologies in our 

research. 

 

 

 

 

 

 

 

The most important component is the OWL-DL Ontology. It combines elements of 

RDFS (e.g. XML syntax, notions of Classes and Relationships) with Description Logics 

to create the powerful and expressive language OWL-DL. During the realization process, 

Figure 3-2: Semantic Web technologies working together 
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a reasoner is applied on instances of OWL-DL Ontologies to infer new facts based on the 

Description Logics they contain. 

Everything composing a knowledge base, including the new facts inferred by the 

reasoner, is materialized by triples as discussed in section 2.1.1. SPARQL queries are 

ultimately applied to the resulting set of triples of an Ontology, e.g. the a-box, in order to 

retrieve the inferred knowledge. 

3.2  Software Patterns and Quality Inspection 

Software patterns are reusable solutions applicable to repeatable problems in software 

engineering. Since such solutions are reputed as valuable and working once adapted to a 

specific context and properly implemented, their presence or absence directly affects the 

overall software quality. Patterns have been defined for different software abstraction 

levels such as architecture, design and implementation. Table 2-1 presents a few well 

known patterns for each abstraction level [17, 24, 31].  

Abstraction Level Pattern example 

Architecture patterns Pipe and Filters 

Peer to Peer 

Client-Server 

… 

Design patterns Strategy 

Composite 

Adaptor 

Decorator 

… 

Implementation patterns Naming conventions 

Exception processing 

Secure coding 

… 

Table 3-1: Examples of software patterns 
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Architectural patterns will not be discussed any further as they are outside the scope of 

this research. They are presented as examples only. Design patterns are best known from 

the GoF book [17] and capture reoccurring design level solutions. Implementation 

patterns are directly concerned with code constructs, most of the time language specific.  

3.2.1 Software Quality Inspection  

Quality inspection refers to “examining a product by following a prescribed, systematic 

process that is intended to determine whether or not the product is fit for its intended use” 

[18]. Inspections often occur on items of a product at their exit the production lines. 

Then, a statistically representative lot is collected and analyzed.  

 In the Software Engineering domain, the inspection principle relates to the detailed and 

organized examination of a program’s source code. Similarly to classic inspections, the 

goal of software inspection is to assess overall quality. They are defined in [54] as an  

“approach that involves a well-defined and disciplined process in which qualified 

personnel analyse a software product using a reading technique for the purpose of 

detecting defects”. 

 They are typically performed before new code goes in production in order, for example, 

to prevent side-effects in the case of a modification performed in the maintenance phase. 

Inspections can also be applied in the development phase to prevent defects which would 

be costly to fix post-mortem and to maintain a high level of quality during the whole life-

cycle.  
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Inspections can be divided in three types, according to the granularity factor:  

 Functional inspection (coarse grained) 

 Design inspection (medium grained) 

 Implementation inspection (fine grained) 

3.2.2 Functional Inspections 

Functional modification, the modification of an application feature or the addition of a 

new feature, is the main type of activity occurring during the maintenance phase of the 

software lifecycle [22]. Such changes are significant because application features involve 

many software modules, as illustrated in the software abstraction scale (figure 2-3).   

 

 

 

 

 

 

 

 

 
Figure 3-3: Software abstraction scale 
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Features are abstract requirements, which constitute the first step down the scale. Then, 

requirements abstract architectural components, which abstract design components which 

in turn abstract code or implementation components. Consequently, any functional 

change may potentially involve an exponential number of modifications to many 

abstraction layers of a software application. 

Functional inspections are performed prior to feature modifications, by applying impact 

analysis to determine which software components might be affected by the modification. 

The complexity of the task is such that it is hard to automate [47]. Human intervention is 

often necessary to namely create the necessary traceability links [46] amongst the 

components across the abstraction scale.  

3.2.3 Design Inspection 

At the design level, patterns have been promoted as a good way to ensure software 

quality. Bushman et al [24] have the following view of design patterns: 

“A pattern for software architecture describes a particular 

recurring design problem that arises in specific design contexts 

and presents a well-proven generic scheme for its solution. The 

solution scheme is specified by describing its constituent 

components, their responsibilities and relationships, and the ways 

in which they collaborate.” 

In other words, design patterns are object-oriented elements (classes, methods and 

attributes) organized to implement a solution to a recurring software problem. The key 
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idea is reusability: patterns are to be applied in a specific context and can be reused 

whenever an appropriate context presents itself.   

Design Patterns are classified in three categories: structural, behavioural and creational. 

Structural patterns are solutions applicable to the composition of classes or objects. 

Behavioural patterns are concerned with the way objects or classes interact, exchange 

messages and assume various responsibilities. Creational patterns describe solutions 

involving the instantiation of objects.  

Inspections of design patterns can take various shapes in terms of software quality: 

 applicability assessment: inspect whether a pattern is appropriately applied and 

fits the context  

 implementation assessment: inspect whether a pattern is properly implemented, 

according to the theoretical definition 

 impact assessment: in the case of a change performed in the maintenance phase, 

the inspection should ensure that the modification does not break a previously 

implemented pattern 

Applicability [11] can be inspected by assessing the context of a specific component. If it 

contains a design pattern, its context must be similar to the one described in the reference 

of the pattern. For example, suppose a component X handles files and folders organized 

in a tree-like structure. This context is very similar to the one used to exemplify the 

Composite pattern [17]. Consequently, the inspection should indicate that the context of 

X is suitable for the Composite design pattern. 
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Implementation assessment requires that a sound documentation of the component under 

inspection is available to the code reviewer. When it is established that the component is 

supposed to implement a design pattern, the inspection must ensure that: 

1. the implemented object oriented structure -e.g. classes, methods, parameters and 

attributes- match the theoretical pattern definition   

2. the implemented pattern constituents bear the responsibilities required by the 

theoretical definition 

3. the pattern constituents have the relationships required by the theoretical 

definition  

The impact assessment involves the same process with the difference that the inspection 

targets components to be modified, for example, in the case of a maintenance 

intervention. If one of these components is supposed to implement a design pattern, the 

inspection must verify that the modification will not break it by performing the three 

assessments previously described.  

3.2.4 Inspection of Source Code 

3.2.4.1 Static Source Code Analysis 

At the implementation level, software inspection focuses almost exclusively on non-

functional requirements pertaining to one or many qualities. Generally speaking, these 

qualities evolve around the maintainability concept, that is “…the ease with which a 

software system can be modified” [28]. More precisely and according to [27], 

maintainability is defined as: 
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 “…an integrated measure of many characteristics of software 

like readability of source code, documentation quality and 

understandability of the software”.  

In other words, the maintainability quality comprises various sub-qualities such as code 

readability and software understandability. 

Since source code is essentially composed of text which will potentially be read by 

humans, it benefits from being organized and presented in a way that eases its grasping. 

Readability refers to the physical aspect of source code: its style, its syntax, etc.  It is the 

consequence of the way language elements are organized and presented in text files, 

making code apprehension variably easy.  

Some languages have conventions with respect to readability. For instance, the Java 

language [23, 32] has a set of guidelines in that matter and tools to support the detection 

of their violation [29]. Guidelines include recommendations for lines length and spacing, 

conventions for naming object oriented elements (packages, classes, methods, attributes, 

etc.) and more.  

However, readability goes beyond the aesthetics of text appearance. The concept can be 

extended to include some elements of understandability, meaning that not only is the 

code readable but it is understandable. Software understandability is put to the test during 

the comprehension activity [12], which is when a developer reads code in order to 

understand a software module. To achieve comprehension, it is necessary to decode the 

semantics of said module. However nowadays, systems have become large and complex, 

comprising millions of lines of codes. In these conditions, the comprehension task 
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through manual source code analysis may become overwhelming for a human being. The 

activity would consequently benefit from a form of automated assistance.  

Automated source code analysis is a topic of interest for researchers as well as 

practitioners. More specifically, the latter often rely on CASE tools to perform static 

source code analysis [21]. For the Java language, FindBugs [49] and PMD [50] are 

amongst the most commonly used tools. They parse Java source or compiled code and 

report units that violate pre-defined rules.  

These reports constitute a form of quality evaluation: the more violations a tool detects, 

the lower the quality of a software module is. Moreover, in [30], the authors show that 

there is a direct correlation between the bugs reported by static analysis tools and the 

readability and understandability of a source code unit.    

3.2.4.2 Secure Coding Guidelines 

Nowadays, the quality of a system often implies how secure the software is [31, 36, 45, 

59, 67]. Indeed, software is present in critical systems in domains such as finance, 

military, health, transportation, etc., making the assessment of security features more 

relevant than ever. Security covers a broad range of topics, including hardware, network 

and software related issues, depending on the threat at stake. For instance, Denial of 

Service (DoS) [33] vulnerabilities might be handled by a proper network configuration 

whereas malware or virus vulnerabilities require software solutions. 

Security is also important to consider in the daily life of a developer. Some programming 

languages are more vulnerable to be exploited by an attacker, such as C and C++ that are 

subject to buffer overflow attacks [34] by taking advantage of the memory manipulation 
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features of the languages. In Java, memory is automatically managed, making buffer 

overflow attacks harder. However, it does not mean the language is immune to malicious 

intentions: developers are strongly encouraged to follow the Java Secure Coding 

Guidelines [31], to reduce the risk of introducing vulnerabilities in their Java programs. 

Similarly to the previous description of static source code analysis, one of the goals of 

this research is to perform an automated detection of security flaws caused by violations 

of Java Secure Coding Guidelines. In particular we are interested in the following 

specific guideline [72]:  

 Design APIs to avoid security concerns: it is preferable to pre-emptively design 

for security than to reactively apply corrections once vulnerabilities are 

discovered.      

In other words, the guideline states that it is desirable to prevent security issues than to 

correct them post-mortem. If flaws or bad practices are detected at design time, the 

overall security of a system should improve.     

3.3 Ontologies in Software Engineering 

Ontologies and Semantic Web technologies have generated a significant amount of 

interest as a mean to model various aspects of software engineering [1, 2, 3], a knowledge 

intensive domain [7]. Recent research has explored its application on activities of the 

development process: from requirements engineering to system verification and 

validation [8]. Our research focuses on the implementation activity or more precisely, the 

source code artefact. 
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3.3.1 Knowledge modeling: information silos 

Nowadays, organizations like businesses and governments have adopted a decentralized 

structure. One aspect of this decentralization is the assignment of responsibilities to sub-

groups, teams and departments contributing to the organization reaching its goals.  This 

principle can be applied to software engineering. Table 2-2 shows an example of non-

overlapping responsibilities related to a typical software development project:  

SE Activity Responsibilities 

Requirements Analysis Stakeholders identification 

Users interview 

Requirements elicitation 

Use cases 

… 

Design High level architecture 

Modules modeling 

Responsibility assignation 

… 

Implementation Interpretation of design documents 

Coding 

Unit testing 

… 

Testing Test cases creation 

Quality assurance assessment 

… 

Table 3-2: Software engineering responsibilities 

This decentralization ultimately leads to instances of the “silo syndrome” [6, 9]. 

Concretely, silos can be thought of as large cylindrical containers. The fact that their 

content is isolated from the outside world leads to the “information silo” metaphor. It 

describes the knowledge circulation in a decentralized organization. More formally, 

information silos are a structural scheme in which knowledge and activities related to an 

organization's 2..n sub-domains occur mostly exclusively amongst their direct 

stakeholders, although a sub-domain would benefit from the knowledge generated by one 
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or many of the other 1..n-1 sub-domains to improve the general state of the organization 

they compose.  Figure 2-5 illustrates this definition of information silos. 

 

 

 

 

 

 

Knowledge related to software engineering shares the characteristics of the knowledge 

system resultant of a decentralized organization [10] where communication across sub-

domains is often not actively promoted. Indeed, software development involves a 

significant amount of supporting tools and resources covering all steps of any given 

process.  Knowledge relevant to a particular activity is typically dispersed over a range of 

artefacts in different representational formats and at different abstraction levels. In other 

words, the software engineering domain spans a wide set of sub-domains.  

3.3.2 Conceptualization 

Ontologies as a modeling technique have been promoted to conceptualize software 

engineering artefacts, processes, metrics, terminology, development environment, and 

more. For example, in [55], the authors designed an Ontology for the software 

maintenance process, including concepts such as developers’ skills, development process, 

Figure 3-4: Information Silos for a generic domain of knowledge 
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their steps and tasks. They performed a post-mortem analysis to gather facts from the 

stakeholders and improve knowledge on the system to be maintained. This is a 

knowledge base that maintainers can use, for example, to increase their comprehension of 

the code. 

Developing a structured Ontology for the object-oriented source code artefact implies the 

analysis of concepts and relationships in this specific area of discourse. In other words, 

from a software practitioner’s point of view, the Ontological model must include 

concepts and relationships that match those found in the object oriented world.  

Our research is based on previous work that has addressed different aspects of such 

modeling: the SOM Ontology from the Dynamic and Distributed Information Systems 

Group at the University of Zurich [4, 5]. This Ontology includes the necessary object-

oriented concepts such as Class, Method, Attribute, etc. These concepts are linked 

amongst themselves by relationships like hasAttribute, hasMethod and 

hasFormalParameter. Table 2-3 shows a few relevant roles and for each, the 

concepts part of their ranges and the concepts part of their domains.  
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Range Concept Relation Domain Concept 

Class hasMethod Method 

Class hasAttibute Attribute 

Method hasFormalParameter FormalParameter 

FormalParameter hasDeclaredClass Class 

Attribute hasDeclaredClass Class 

Method hasDeclaredReturnClass Class 

Method hasLocalVariable LocalVariable 

LocalVariable hasDeclaredClass Class 

Table 3-3: SOM Ontology relations, domain and range concepts 

 

It has to be noted that these general semantics roughly represent a Class defined in UML 

2.0 [60] notation although some details are missing, such as access control and visibility 

information. In other words, it is possible to "translate" the definition of an object-

oriented Class in a graph interpretable by Semantic Web technologies enabled tools.  

This research incorporates the SOM Ontology and extends it with richer object-oriented 

concepts and relationships in order to (1) obtain a sounder representation of code 

constructs and by using more expressive description logics, to (2) optimize the usage of 

the Ontology to support the use of DL-Reasoners such as Racer [43] or Pellet [52]. These 

reasoners support the classification of constructs and compute transitive, reflexive and 

reverse relationships and to (3) fill the semantic gap of the SOM Ontology.  
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4. SE-PAD as a Semantic Web based quality validation platform 

In this chapter, we present SE-PAD, a semantic web based tool implantation which 

supports a pattern based approach to the analysis and assessment of different code 

qualities. In section 4.1, we introduce the overall architecture of SE-PAD and its main 

components. Section 4.2 presents how Ontologies are an integral part of SE-PAD.  

The remaining sections focus on the different quality aspects and how they are supported 

within our SE-PAD approach. 

4.1 SE-PAD Architecture 

This section provides a general overview of the SE-PAD architecture and its major 

components (Figure 4-1). 

 

 Figure 4-1: SE-PAD's architecture 

Java Parser [41] is an open source library that parses Java source code to extract the 

corresponding Abstract Syntax Tree (AST). It supports the Visitor pattern to browse the 

results, is fairly easy to use and has excellent performances –thousands of classes are 

parsed in seconds.   
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SE-PAD uses the results of Java Parser’s API to extract facts about Java programs. It 

converts AST information into Ontology triples through the Jena OWL API [42]. Jena is 

an open-source framework providing libraries for the creation of Semantic Web 

applications. Its main role is to help SE-PAD manipulate Ontology triples 

programmatically. 

Racer [43] is an OWL-DL reasoner which performs the realization operation described in 

section 3.1.4. It has been selected because it is reputed to provide timely support for 

cardinality restrictions higher than one. It is applied on SE-PAD's Ontology to realize 

OWL individuals who belong to concepts restricted in this fashion.    

Sesame [57] is a RDF triple store. It provides features, among others, for semantic 

knowledge storage and querying. The OWLIM reasoner plug-in [44] was integrated to 

the triple store to perform the remainder of the reasoning. It complements RACER 

because of it is limited to cardinality restrictions of 0 (zero) or 1 (one). It also allows 

results inferred statements to be included in the queries results.   

4.2 SE-PAD and the use of Ontologies  

As discussed earlier, the Semantic Web and more specifically Ontologies have been 

widely accepted as a knowledge modeling platform [39, 40, 48]. Ontologies provide 

direct support for addressing the research requirements stated previously. This section 

describes the design (t-box) and the population mechanism (a-box) of SE-PAD's 

Ontology.  
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4.2.1 Design (t-box) 

The SE-PAD Ontology is an extension of the SOM Ontology [4, 5]. It takes advantage of 

the extensibility feature [58] of Semantic Web technologies by adding new OWL data 

properties, object properties, and concepts in order to achieve a richer set of formal 

semantics representing the various object-oriented code constructs specific to the Java 

language. This section describes SE-PAD's t-box, the predefined concepts and data/object 

relationships. 

SE-PAD's extended data properties are shown in table 4-1, which also includes their 

domain, range
1
 and a brief description of their representation in SE-PAD.  Here are a few 

notes on these properties: 

 Most properties are based on Java keywords, access or visibility modifiers.  

 All properties are functional, e.g. each element of the range must be assigned one 

and only one value from the domain to create an RDF triple. 

 Qualified names are built according to the Java namespace principle, extended to 

Class attributes and methods, as well as method parameters and local variables. 

Data Property Domain  Range  Representation in SE-PAD 

hasRank Parameters Integer The rank of a parameter in a method's 

signature 
isAbstract Classes 

Methods 

Boolean Whether the element bears the abstract 

Java keyword or not 

isConstructor Methods Boolean Whether the method is a constructor or not 

isDefault Classes 

Methods 

Attributes 

Boolean Whether the element has the default 

access modifier or not 

                                                 
1
 The domain and ranges mentioned here are not formally parts of SE-PAD's ontology as it is considered a 

bad design practice. They are listed here to illustrate with which concepts a relationship's Subject and 

Object are populated. 
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isInterface Classes Boolean Whether the class is an Interface or not 

isPrivate Classes 

Methods 

Attributes 

Boolean Whether the element has the private 

access modifier or not 

isFinal Classes 

Methods 

Attributes 

Boolean Whether the element bears the abstract 

Java keyword or not 

isProtected Classes 

Methods 

Attributes 

Boolean Whether the element has the protected 

access modifier or not 

isPublic Classes 

Methods 

Attributes 

Boolean Whether the element has the public 

access modifier or not 

isStatic Methods 

Attributes 

Boolean Whether the element bears the static Java 

keyword or not 

Name All  String The element's short name 

hasVersion Classes Integer The source code management system 

generated revision number 

qualifiedName All  String The element's qualified name 

Table 4-1: SE-PAD's set of extended data properties 

SE-PAD's extended object properties are shown in table 4-2, which also includes their 

domain, range and a brief usage description. These properties all have their respective 

reverse properties which were omitted in this table for the sake of simplicity.  

 

Object Property Domain  Range  Representation in SE-PAD 

invokes Method Method A method invokes another 

method of any scope: the same 

class, an attribute, a parameter or 

a local variable 

overrides Method Method A method overrides another, e.g. 

in a subclass or in an interface 

implementation. Transitive. 
isSubClassOf Class Class A class subclasses another. 

Transitive. 
implements Class Interface A class implements an interface. 

Transitive. 
isSubInterfaceOf Interface Interface An interface subclasses another 

interface. Transitive. 
violates Method Rule violation A method is reported by a static 

source code analysis tool to 

violate a coding rule 

assignsValueTo Method Attribute A method assigns a value to a 
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class attribute 

isAppliedTo Method Local variable, 

FormalParameter, 

Attribute 

The scope of a method 

invocation in a method 

implementation 

Table 4-2: SE-PAD's set of extended object properties 

SE-PAD's extended concepts are based on the following SOM's Ontology [4, 5] concepts: 

Class, Method and Attribute. They form the foundation of a BNF-Grammar style 

concept definition which will be used to form DL classes representing richer object 

oriented semantics. Tables 4-3, 4-4 and 4-5 respectively detail the how SE-PAD extends 

SOM Attribute, Method and Class concepts. The related DL is expressed in 

Manchester-OWL [38] syntax and forms restrictions from which the set of individuals 

belonging to the concept will be inferred by the reasoner during the realization process. 

Attribute Concept Description Logics 

Restriction 

Representation within SE-

PAD 

InstanceAttribute Attribute and 

isStatic value false 

Attributes part of a class' 

state, as opposed to static 

attributes 

PackageAttribute Attribute and 

isDefault value true 

Attribute bearing the default 

access modifier 

PrivateAttribute Attribute and 

isPrivate value true 

Attribute bearing the 

private access modifier 

ProtectedAttribute Attribute and 

isProtected value 

true 

Attribute bearing the 

protected access modifier 

PublicAttribute Attribute and 

isPublic value true 

Attribute bearing the 

public access modifier 

StaticAttribute Attribute and 

isStatic value true 

Attributes bearing the 

static Java keyword  

Table 4-3: Extension of SOM's Attribute concept 

Method Concept Description Logics 

Restriction 

Representation within SE-

PAD 
AbstractMethod Method and 

isAbstract value 

true 

Methods bearing the 

abstract Java keyword 

ConcreteMethod Method and 

isAbstract value 

false 

Methods not bearing the 

abstract Java keyword 

ConstructorMethod Method and 

isConstructor value 

Class constructors 
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true 

PackageMethod Method and 

isDefault value 

true 

Methods bearing the default 

access modifier 

FinalMethod Method and isFinal 

value true 

Methods bearing the final 

Java keyword 

InstanceMethod Method and isStatic 

value false 

Methods not bearing the 

static Java keyword 

NonFinalMethod Method and isFinal 

value false 

Methods not bearing the final 

Java keyword 

NonPrivateMethod Method and 

isPrivate value 

false 

Methods not bearing the 

private access modifier 

PrivateMethod Method and 

isPrivate value 

true 

Methods bearing the private 

access modifier 

ProtectedMethod Method and 

isProtected value 

false 

Methods bearing the 

protected access modifier 

PublicMethod Method and isPublic 

value true 

Methods bearing the public 

access modifier 

StaticMethod Method and isStatic 

value true 

Methods not bearing the 

static Java keyword 

Table 4-4: Extension of SOM's Method concept 

Class Concept Description Logics Restriction Representation within SE-

PAD 

ConcreteClass Class and isAbstract 

value false 

Classes not bearing the 

abstract Java keyword 

ExtensibleClass Class and isFinal value 

false 

Classes not bearing the final 

Java keyword 
AbstractClass ExtensibleClass and 

isAbstract value true 

Classes bearing the 

abstract Java keyword 

FinalClass Class and isFinal value 

true 

Classes bearing the final 

Java keyword 

PackageClass Class and isDefault 

value true 

Classes bearing the default 

access modifier 

ProtectedClass Class and isProtected 

value true 

Classes bearing the 

protected access modifier 

PublicClass Class and isFinal value 

true 

Classes bearing the public 

access modifier 

Table 4-5: Extension of SOM's Class concept 

Figure 4-2 shows a sample of SE-PAD's resulting t-box: 
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4.2.2 Population and Realization (a-box) 

An Ontology's a-box refers to its OWL individuals. Recall that in the mathematical set 

theory, individuals amount to items part of one or more sets. Populating an Ontology 

means explicitly assigning OWL individuals to Classes through the rdf:type 

relationship. SE-PAD completes its Ontology population in multiple steps: 

1- AST Population phase 1  

2- AST Population phase 2 

3- External Static Analysis tool population 

4- Realization 

Figure 4-2: Sample of SE-PAD's t-box  
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In the first population phase, SE-PAD populates the concepts and relationships along 

with the data properties introduced earlier. After completion, the Ontology's content is 

equivalent to a Java application's set of classes typically described in a UML class 

diagram. Figure 4-2 shows an example of SE-PAD's resulting Ontology after the class 

FooBar of package foo has been parsed. 

The rdf:type relationship as well as part of an individual's URI were omitted for the 

sake of readability.  For instance, according to figure 4-2, the class attribute attr1 

would be the subject of the following triple, added to SE-PAD's Ontology: 

<a_foo.FooBar.attri1, rdf:type, Attribute> 

Individuals URI naming convention is as follows:  

 the prefix is built by concatenating: 

o the Ontology prefix ending with a pound sign (e.g. 

"http://aseg.sepad.org/argoUML#" ) 

o the acronym of the individual's RDF type (e.g. "a" for Attributes, 

"fp" for FormalParameters, "c" for Classes, etc.)  

o the underscore character ("_")  

 the suffix is built with the element's Java qualified and unique name 
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During the second population phase, SE- PAD re-parses the AST but this time it focuses 

on method implementations, in order to extract the relationships shown in table 4-2. For 

instance, to populate the INVOKES relationship which models method calls within a 

method implementation, SE-PAD queries its populated Ontology from the first 

population phase and determines the individuals representing the caller and the called 

method. Once identified, SE-PAD completes the triple with the INVOKES relationship.  

SE-PAD currently supports the integration of results from two major static Java source 

code analysis tools: PMD [49] and FindBugs [50]. In order to limit the scope of the 

Figure 4-3: SE-PAD's partial resulting Ontology example 
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thesis, we focused on the detection of security concerns that can be detected by these 

tools. Security concern results obtained from both of these tools were then analyzed, 

categorized and added explicitly to SE-PAD's a-box as individuals belonging to the class 

hierarchies shown in figure 4-3. For a detailed description of the security concerns and 

the rules used to detect them, we refer the reader to the respective tool documentation 

[49, 50].  

 

 

 

 

SE-PAD identifies the OWL individual representing the Java Method M violating a rule 

and creates a new triple with M as a subject, violates as a property and the pre-

populated violated rule individual as an object.   

As part of the population process, new a-box elements' rdf:type are inferred based on 

the t-box’s description logics and the use of OWL reasoners (in our case Racer and 

OWLIM [44]). More specifically, after the population phase, the Ontology is uploaded to 

an OWLIM enabled Sesame triple store –OWLIM is a semantic reasoner implementation 

that is bundled as a Sesame plug-in. OWLIM realizes SE-PAD's Ontology upon reception 

and by doing so, populates the richer concepts presented in tables 4-3, 4-4 and 4-5.  

Figure 4-4: SE-PAD’s support for external tool rules 
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4.3 A Semantic Web Approach to Software Quality 

Figure 4-4 provides a high-level view of the semantic support provided by SE-PAD for 

our pattern-based quality validation approach. As shown, our approach focuses on the 

integration of knowledge and resources, which are essential aspects to eliminate current 

 

 

 

 

 

 

 

 

information and analysis tool silos and to support a more global quality validation 

perspective. 

The next sections detail our SE-PAD approach combining semantic analysis and 

Semantic Web technologies. For the programming and patterns levels, table 4-6 

introduces our pattern presentation template. It will be reused for the programming and 

pattern semantic modeling levels. 

 

Figure 4-5: The semantic levels supported by SE-PAD 
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Ontology Extension A visual representation of the Ontology concepts involved. Shows 

concepts and concept inheritance through the Is-A relationship as well 

as the rdf:type relationship. The following visual notation is used: 

 SOM concepts 

 SE-PAD concepts 

 Concepts extending SE-

PAD's Ontology to support 

the current pattern 

The section will be omitted if the pattern does not require an extension to 

SE-PAD's Ontology. 

OWL-DL involved Description logics (DL) used as class restrictions in Manchester-OWL 

syntax [38]. The concepts are often defined in a recursive BNF grammar 

style.  

SPARQL Query The SPARQL query retrieving relevant knowledge from SE-PAD's 

extended knowledge base. For improved readability, the required URI 

prefixes (SPARQL PREFIX keyword) will be omitted in the queries, 

except for the rdf:type prefix given its important semantic value. 

Role of Semantic 

Reasoner 

The concepts realized and the relationships computed by the semantic 

reasoner in the pattern detection process. 

Requirements 

covered 

Lists and explains which requirements are covered by the current pattern 

detection and by extension, which research sub-goals are consequently 

reached. 

Table 4-6: Pattern presentation template 
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4.4 Programming Guidelines 

There exist a significant number of code review and analysis tools that support the 

detection of good coding practices and guidelines at the source code level [45, 49, 50, 

62]. These approaches range from string matching (codifiers) to semantic analysis tools 

that allow the modeling of these guidelines as queries and rules to be executed over a 

source code model [49, 63]. Most of these semantic query or rule based approaches use 

an AST for extracting facts and then store these facts in their tool proprietary models. 

These models are typically static (XML or relational), restricting the model typically to 

the information available at design time of the tool. 

SE-PAD takes advantage of its semantic rich representation of source code to support the 

detection of basic violations of coding standards and guidelines, similar to ones supported 

by existing tools [e.g., 49, 50]. We exemplify this guidelines support by automating the 

detection of four violations, already supported by either Findbugs or PMD [49, 50]. 

4.4.1 General Programming Guidelines 

This section describes how SE-PAD is able to support the detection of Java coding 

guidelines violations. The violations are also detected by Findbugs and were selected to 

show that SE-PAD offers comparable static analysis features. It should also be pointed 

out that SE-PAD has the advantage of running on text files whereas Findbugs needs 

compiled Java bytecode, which means an increased flexibility for SE-PAD. Indeed, 

Findbugs requires either the context of an IDE or significant human intervention to run, 

whereas SE-PAD is applicable to any Java project as long as its source code is accessible 

in a file system. 
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Users can run the SPARQL query on a project's SE-PAD generated Ontology to assess 

the state of the application with respect to the bad practice or guideline currently 

discussed, helping developers perform the required modifications in order to redesign the 

code. 

4.4.1.1 Guideline: Do not write to static fields from instance methods  

Pattern Description:  

 

Since fooBar is static, only one instance exists in the Java Virtual Machine (JVM) 

whereas Foo might be instantiated many times. Consequently, bar() or any other of 

Foo’s methods has the opportunity to write different values to fooBar which can 

become hazardous to manage in terms of concurrency, amongst other things. FindBug's 

id for this pattern is: ST_WRITE_TO_STATIC_FROM_INSTANCE_METHOD. 

Ontology Extension: 

 

 

 

OWL-DL involved: 
 

StaticAttribute ≡ Attribute and isStatic value true 

 

InstanceMethod ≡ Method and isStatic value false 

 

WritesToStaticFieldMethod ≡ InstanceMethod and 

assignsValueTo some StaticAttribute 
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The first 2 concepts are basic SE-PAD concepts whereas the third one, added by SE-

PAD’s client to its t-box, categorizes the faulty methods with the following restriction: 

they must not be static and they must assign a value to a static attribute. 

 

SPARQL Query: 

 
SELECT ?WritesToStaticFieldMethod ?Class WHERE  

{ 

?WritesToStaticFieldMethod 

rdf:type WritesToStaticFieldMethod; 

som:isMethodOf ?Class. 

} 

This query returns the list of instance methods assigning values to static attributes and the 

classes to which they belong. 

Role of Semantic Reasoner 

Computes the reverse relationship isMethodOf part of the SPARL query and realizes 

the individuals belonging to concepts StaticAttribute, InstanceMethod and 

WritesToStaticFieldMethod. 

Requirements covered 

Establish 

trustworthiness 

This pattern is a bad practice. The fewer instances are reported, higher 

is the quality of the software analyzed. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query determines the 

existence of the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 

Model extendibility The concept WritesToStaticFieldMethod was created and 

added to SE-Pad's Ontology to support the detection of this pattern. 
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4.4.1.2 Guideline: Final classes should not have protected attributes 

Pattern Description  

A Java class C is marked as final (e.g. it cannot be sub-classed) and has a 

protected attribute A. This is inconsistent because the protected access modifier 

makes A accessible throughout C’s subclass hierarchy. Since A belongs to C which 

cannot have a hierarchy, marking the attribute as protected is pointless. FindBug's id for 

this pattern is: CI_CONFUSED_INHERITANCE. 

 

 

 

Ontology Extension 

 

 

 

 

OWL-DL involved 

ProtectedAttribute ≡ Attribute and isProtected value true 

 

FinalClass ≡ Class and isFinal value true 

 

ConfusedInheritanceClass ≡ FinalClass and hasAttribute some 

ProtectedAttribute 

 

The first two concepts are basic SE-PAD concepts whereas the third one categorizes the 

faulty classes based on following restriction: the resulting classes must be final and 

they must have at least one protected attribute. 
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SPARQL Query 

SELECT ?ConfusedInheritanceClass WHERE { 

?ConfusedInheritanceClass 

rdf:type ConfusedInheritanceClass;  

} 

 

The query returns the list of classes matching the captured sub-classing hierarchy 

violation. 

 

Role of Semantic Reasoner: For this guideline, the reasoner realizes the individuals 

belonging to concepts ProtectedAttribute, FinalClass and 

ConfusedInheritanceClass. 

 

Requirements covered: 

Establish 

trustworthiness 

This pattern is a bad practice. The fewer instances are reported, higher 

is the quality of the software analyzed. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query determines the 

existence of the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 

Model extendibility The concept ConfusedInheritanceClass was created and 

added to SE-Pad's Ontology to support the detection of this pattern. 
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4.4.1.3 Guideline: Servlet classes should not have mutable attributes  

Pattern Description 

 

 

A class is a subclass of Java's Servlet (javax.servlet.http.HttpServlet) and 

also has mutable instance variables. This creates race conditions because web containers 

treat Servlets as singletons -e.g. 1 instance of each servlet class at most at runtime [64]. 

FindBug's id for this pattern is: MSF_MUTABLE_SERVLET_FIELD. 

Ontology Extension 

 

 

 

 

 

 

 

javax.servlet.http.HttpServlet is an OWL individual assigned at design 

time to the ServletClass concept. 

OWL-DL usage 

The description logics related to the MutableClass concept will be described in detail 

later in this thesis. The other concepts involved in this detection are as follows:  

ServletClass ≡ Class and isSubclassOf value 

javax.servlet.http.HttpServlet 
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ServletWithMutableAttributesClass ≡ ServletClass and 

hasAttribute (hasDeclaredClass some MutableClass) 

 

SPARQL Query: 

SELECT ?ServletWithMutableAttributesClass WHERE { 

?ServletWithMutableAttributesClass 

rdf:type ServletWithMutableAttributesClass; 

} 

The query returns the list of Servlet classes having mutable attributes, and therefore 

violating the “Servlet classes should not have mutable attributes” guideline. 

Role of Semantic Reasoner 

 

 realizes individuals belonging to concepts MutableClass and 

FinalClass 

 computes the isSubClassOf transitive relationship in order to support the 

detection of classes located at any level of  

javax.servlet.http.HttpServlet's subclass hierarchy 

Requirements covered 

Establish 

trustworthiness 

This pattern is a bad practice. The fewer instances are reported, higher is 

the quality of the software analyzed. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query determines the 

existence of the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 

Model extendibility The concepts ServletClass, 

ServletWithMutableAttributesClass, 

StatefullClass and MutableClass were created and added 

to SE-PAD's Ontology to support the detection of this pattern. 



 

51 

 

4.4.1.4 Guideline: Respect Naming Conventions 

Pattern Description  

Java follows a mixed case naming convention for methods and attributes whereas 

CamelCase[65] is recommended for classes. FindBugs rules detect method and attribute 

names with uppercase first letters and class names with lowercase first letters. SE-PAD 

provides the same type of detection through SPARQL queries. The specific rules covered 

are, by their Findbugs denomination: NM_CLASS_NAMING_CONVENTION, 

NM_FIELD_NAMING_CONVENTION and 

NM_METHOD_NAMING_CONVENTION. 

 

SPARQL Queries 

All queries use SPARQL's regex function to filter improperly named Java elements. 

This query returns the list of classes whose names have a lowercase first letter: 

SELECT DISTINCT ?ClassName WHERE 

{ 

?Class  

name ?ClassName; 

rdf:type ?Class. 

Filter (regex(?ClassName,"^[a-z]")) 

} 

 

This query returns the list of methods whose names have an uppercase first letter and the 

class to which they belong. 

SELECT DISTINCT ?MethodName ?Class WHERE 

{ 

?Method  

name ?MethodName; 

isMethodOf ?Class; 

rdf:type Method. 

Filter (regex(?MethodName,"^[A-Z]")) 

} 
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This query returns the list of attributes whose names have an uppercase first letter and the 

class to which they belong. 

 SELECT DISTINCT ?AttributeName ?Class WHERE 

{ 

?Attribute  

name ?AttributeName; 

isAttributeOf ?Class; 

rdf:type Attribute. 

Filter (regex(?AttributeName,"^[A-Z]")) 

} 

 

Role of Semantic Reasoner 

 

Computes the isAttributeOf and isMethodOf reverse properties used in the 

queries retrieving attributes and methods. 

Requirements covered 

Establish 

trustworthiness 

These patterns are bad practices. The fewer instances are reported, 

higher is the quality of the software analyzed. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query determines the 

existence of the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 
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4.4.2 Secure Coding Guidelines 

Nowadays, security as a non-functional requirement is an increasingly important concern 

for various stakeholders within a software development process, especially given (1) the 

level of code reuse through third party libraries, frameworks, etc. and (2) that systems 

increasingly communicate across distributed networks or have communication ports 

opened on the Internet. This section illustrates how SE-PAD supports security related 

tasks by identifying violations based on Java's secure coding guidelines [31]. In what 

follows, we demonstrate the automated detection of two of such coding violating 

guidelines.        

4.4.2.1 Coding Violation: Prefer immutable classes 

Pattern Description  

 

 

An immutable class is a class whose state does not change after it is instantiated, as 

opposed to mutable classes. The volatile nature of mutable classes makes them a 

hazardous design choice. They force developers to take extra precautions, especially 

when objects of mutable classes are part of other classes’ state, making immutable classes 

preferable. Consequently, mutable classes can be seen as implementing a coding 

violation whose detection is desirable.  
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Ontology Extension 

 

 

 

 

 

 

 

 

OWL-DL involved 

PublicMethod ≡ Method and isPublic value true 

 

PublicInstanceMethod ≡ PublicMethod and isStatic value 

false 

SetterMethod ≡ PublicInstanceMethod and assignsValueTo some 

Attribute 

 

StateFullClass ≡ Class and hasAttribute some 

InstanceAttribute 

 

MutableClass ≡ Class and hasMethod some SetterMethod 

 

The first concept defines public methods with the isPublic data property. The second 

concept subsumes PublicMethod and adds the restriction of not being static to 

categorize PublicInstanceMethods, which require an object instance as an 

invocation scope contrarily to static class methods. SetterMethod specializes 

methods further by classifying those who assign a value to a class attribute, thus modifies 

its state. The value assigned can be of any origin: parameter, computation, local variable, 

result of a method call, etc. Next, StatefullClass defines classes who have 
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instance attributes, or a state. Finally, MutableClasses are StatefullClasses 

who also have SetterMethods, meaning that their state may change after their 

creation as the pattern prescribes. 

SPARQL Query 

SELECT ?MutableClass WHERE{ 

?MutableClass rdf:type MutableClass.} 

 

The query returns the list of mutable classes ordered by their fully qualified names. 

Role of Semantic Reasoner 

 

 realizes individuals belonging to concepts PublicMethod, 

PublicInstanceMethod, SetterMethod, StateFullClass and 

MutableClass 

Figure 4-5 is a visual representation of the reasoner’s work in the case of 

MutableClass realization. The full arrows represent the explicit type assignment 

performed by SE-PAD whereas the dotted arrows represent the type assignment 

performed by the reasoner. In that case, m_foo is a method part of class c_Bar and 

assigns a value to one of the class variables. 

 

 

 

 

 

 



 

56 

 

 

 

 

 

 

 

 

Requirements covered 

Establish 

trustworthiness 

Identifying mutable classes can be part of a major software security 

improvement to enforce secure coding guidelines. Once mutable classes 

are identified, the inspection of their usage will reveal the need to 

perform one or many of the following tasks to improve the security of 

these mutable classes: (1) Make sure mutable classes have a clone (deep 

copy) operation. (2) If a class has an internal mutable object used as a 

method output, make sure the method clones (deep copies) the object 

before returning it. (3) In cases then a class has an internal mutable 

object, make sure a method assigning one of its parameters to it first 

performs a clone (deep copy) operation. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query is used to 

detect the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 

Model extendibility The concepts SetterMethod, PublicInterfaceMethod, 

StatefullClass and MutableClass were created and added to 

SE-Pad's Ontology to support the detection of this pattern. 

 

Figure 4-6: Mutable class realization 
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4.4.2.2 Prevent constructors from calling overridable methods  

Pattern Description  

 

 

A class has a constructor method that delegates control to an overridable method. It gives 

eventual subclasses access to a reference to the object being constructed by overriding the 

overridable method. Attackers could exploit this vulnerability to alter the behaviour of 

the object being constructed and therefore occurrences of this pattern should be detected. 

 

Ontology Extension 

 

 

OWL-DL involved 

OverridableMethod ≡ isFinal value false and isPrivate value 

false and isConstructor value false and isStatic value 

false 

 

The central concept is OverridableMethod. In Java, a method is overridable if it 

bears none of the following modifiers: Private, Final, and Static. 

SPARQL Query 
 

SELECT DISTINCT ?MethodName WHERE { 

?Method rdf:type ConstructorMethod; 

qualifiedName ?MethodName; 

invokes ?OverridableMethod; 

isMethodOf ?Class. 

?OverridableMethod rdf:type OverridableMethod; 

 isMethodOf ?Class. 

?Class isFinal ?isFinal. 

FILTER (?isFinal=false) 

} 
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The query returns the list of classes with constructors calling overridable methods. An 

additional constraint is included that selected methods cannot be part of a Final Java 

class. 

Role of Semantic Reasoner 

 

Realizes individuals belonging to concept OverridableMethod and computes the 

transitive relationship Invokes, part of the SPARQL query, which puts a method in 

relationship with a method call within its implementation. Consequently, if a constructor 

delegates to a non-overridable method delegating to an overridable one, SE-PAD will 

detect the violation, no matter how far the overridable method call is located in the graph. 

In other words, if a private method delegates to another private method, which 

also delegates to a private method and so on, SE-PAD will detect any call to an 

overridable method within such a chain. 

Requirements covered 

Establish 

trustworthiness 

These patterns are bad practices. The fewer instances are reported, 

higher is the quality of the software analyzed. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query is used to 

detect the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 

Model extendibility The concepts CallsOverridableMethodConstructor , 

OverridableMethod, NonFinalMethod, 

NonPrivateMethod and ConstructorMethod were created 

and added to SE-Pad's Ontology to support the detection of this pattern. 
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4.5 Modeling Design Patterns 

Patterns [17, 20] represent existing solutions in a structured way and allow knowledge 

from these existing solutions to be reused. Patterns can speed up the development process 

by providing tested, proven development paradigms that might often not become visible 

until later in the implementation or the evolution of a system. Furthermore, they also 

prevent subtle issues that may cause major problems later on, and they can improve code 

readability and comprehensibility for programmers familiar with the patterns. Design 

patterns, the most widely known type of patterns, provide a formal way to document a 

solution to a design problem. Within our SE-PAD environment, we have formalized a 

small subset of these GoF [17] patterns - four of the most common patterns. Detected 

design pattern can convey important design and implementation decision associated with 

the use of a pattern. This information can provide maintainers with additional insights in 

software comprehension.  

SE-PAD's support for the automated recovery of design patterns meets the following 

research requirements: 

Establish trustworthiness: A critical aspect of software maintenance is the risk for the 

code modification to cause undesirable side effects by introducing new defects. Suppose 

a maintenance developer has to rewrite code that is part of a design pattern to perform a 

code fix and the related documentation is either outdated and does not mention the 

pattern implemented. If the maintainer is otherwise unaware that a pattern is present in 

the area of the code to be modified, there is a significant risk that the modification breaks 

the pattern implementation. In other words, there is a need for impact analysis [47] to 
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prevent this from happening. Concretely, an IDE plug-in could detect the file a 

maintainer has started to edit and query SE-PAD's Ontology to see if a pattern is involved 

in the area. If so, the user receives a warning detailing the pattern implementation. Then, 

when the code is committed, the plug-in would rerun the query to validate that no 

patterns were broken by the developer's intervention. 

Retrieve implicit and explicit knowledge: Sometimes, developers might implement a GoF 

pattern without being aware of it, as shown in our preliminary case studies analysis: the 

template pattern was for instance found without being documented as such. By 

recovering instances of these patterns in code, SE-PAD can play a significant role in an 

effort to update typical software engineering documentation such as code comments, 

design diagrams, wiki pages, etc. 

Model extendibility: The design patterns automated recovery is rather SPARQL querying 

intensive, making heavy use of SE-PAD's basic Ontology. However, the Strategy design 

pattern recovery required the addition of new concepts.  

Bridge Information Silos: The source code and design model artifacts can be considered 

as information silos. The best proof of this is how often they become out of sync: 

developers change code but do not update the design documents, making the latter more 

and more obsolete and useless. Given its reverse engineering nature, automated design 

pattern recovery helps bridging the source code silo and the software design silo by 

keeping the knowledge contained both artefacts synchronized. Also reverse engineering 

and abstracting design patterns from low-level source code representations allows for the 

recovery of some design related domain knowledge. 
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4.5.1 Adapter Pattern 

Pattern Description  

 

 

 

 

 

The Adapter pattern's main purpose is to encapsulate the behaviour of a component (the 

Adaptee) for usage in new contexts. Note that the Client class was purposely left out as it 

is the pattern's consumer rather than part of the pattern itself. 

SPARQL Query 
 

The query is based on the UML class diagram of the pattern and details each component 

as well as their relationships with the other elements: 

- the Target class has the Target Request Method in its interface and the Adapter as 

a subclass 

- the Adapter class has the Adapter Request  as a method and has an Adaptee in its 

attributes  

- the Adaptee class has a Specific Request as a method and is the declared class of 

one of the Adapter's attributes 
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- the Adapter Request delegates to the Adaptee Specific Request and overrides the 

Target Request Method  

- the Adaptee Specific Request is applied to the attribute of the adapter that has the 

Adaptee as a declared class 

SELECT DISTINCT 

 

?TargetClassName  

?AdapterClassName 

?AdapteeClassName 

?AdapterSpecificRequestName 

?AdapteeSpecificRequestName 

 

 

WHERE { 

?Target  

isInheritedBy ?Adapter; 

hasMethod ?TargetRequestMethod; 

shortName ?TargetClassName. 

 

?Adapter 

hasMethod ?AdapterRequest; 

hasAttribute ?AdapteeAttribute; 

shortName ?AdapterClassName. 

 

?Adaptee 

isDeclaredClassOf ?AdapteeAttribute; 

hasMethod ?AdapteeSpecificRequest; 

shortName ?AdapteeClassName. 

 

?AdapterRequest 

invokes ?AdapteeSpecificRequest; 

overrides ?TargetRequestMethod; 

name ?AdapterSpecificRequestName. 

 

?AdapteeSpecificRequest  

isAppliedTo ?AdapteeAttribute; 

name ?AdapteeSpecificRequestName. 

 

Filter (?Adapter != ?Adaptee). 

} 
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The query results are represented by the 5-tuple (TargetClass, AdapterClass, 

AdapteeClass, AdapterRequest, AdapteeSpecificRequest), each item 

representing a formal participant. The ending Filter SPARQL clause prevents the query 

from returning results in which a class is retrieved as both an Adapter and an Adaptee –

ensuring a significant improvement in the false positives detection rate.  

 

Role of Semantic Reasoner 

 computes the transitive properties isInheritedBy and overrides, which 

means that the pattern will be detected even if the Adapter class is not the 

immediate child of the target class 

 computes the reverse object property isDeclaredClassOf 
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4.5.2 Proxy Pattern 

Pattern Description:  

 

 

 

 

 

The Proxy pattern's main purpose is to provide light objects (Proxies) that have the same 

interface as their heavy counterparts. Proxies are responsible for instantiating heavy 

objects only when strategically needed. Otherwise, the light weight proxy is used. For 

instance, an image viewer could load picture objects only partially to show information 

like the picture name, date taken, etc. in a Proxy object to display in a list and only load 

the image itself in a real subject when it is required to be rendered. 

 

SPARQL Query 
 

The query is based on the UML class diagram representation of the pattern and details the 

relationships within its elements: 

- the Subject class has the Request method in its interface and the Proxy and 

RealSubject as subclasses 
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- the Proxy and the Real Subject respectively  have the Proxy Request and the Real 

Subject Request in their interfaces 

- the Proxy Request overrides the parent's Subject Request and invokes the Real 

Subject Request, which also overrides the parent's Subject Request 

The query results are represented by the 5-tuple (Subject, RealSubject, Proxy, 

ProxyRequest, RealSubjectRequest) each item of the tuple representing a 

formal participant and the whole set representing a pattern implementation instance. The 

last SPARQL Filter clause prevents the query from returning results in which a class is 

retrieved as both a RealSubject and a Proxy since their semantics are very similar, 

ensuring a significant improvement in the false positives detection rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

66 

 

SELECT DISTINCT 

 

?SubjectName  

?RealSubjectName 

?ProxyName 

?ProxyRequestName 

?RealSubjectRequestName 

 

WHERE { 

?Subject  

isInheritedBy ?RealSubject; 

isInheritedBy ?Proxy; 

hasMethod ?SubjectRequest; 

shortName ?SubjectName. 

?Proxy 

hasMethod ?ProxyRequest; 

shortName ?ProxyName. 

 

?ProxyRequest  

overrides ?SubjectRequest; 

name ?ProxyRequestName; 

invokes ?RealSubjectRequest. 

 

?RealSubject  

hasMethod ?RealSubjectRequest; 

shortName ?RealSubjectName. 

 

?RealSubjectRequest  

overrides ?SubjectRequest; 

name ?RealSubjectRequestName. 

Filter (?RealSubject != ?Proxy). 

} 

 

Role of Semantic Reasoner 

 computes the transitive properties isInheritedBy and overrides, which 

allows for the detection of the pattern even in cases then the Proxy and 

RealSubject classes are not immediate children of the Subject class 
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4.5.3 Strategy Pattern 

Pattern Description:  

 

 

 

 

The objective of the Strategy pattern is to provide a family of algorithms through a 

common interface. The algorithm being used depends on the context and is selectable at 

runtime. The pattern therefore decouples a class’ behaviour from the class itself. Note 

that the original GoF pattern has been extended to include the implementation of abstract 

strategies in the form of both an abstract class and an interface.  

SPARQL Query 
 

The query is based on the UML class diagram representation of the pattern and details the 

relationships within its elements. 

- the Context holds a reference to an abstract Strategy and has one or more 

methods that invoke one or more methods from the abstract Strategy's public 

interface –the RDF type PotentialStrategyClass 

- the abstract Strategy can either be implemented through an abstract class or an 

interface that is subclassed by at least two concrete classes 
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SELECT DISTINCT 

 

?ContextName 

?StrategyInterfaceName 

?StrategyAttributeName 

?ConcreteStrategyClassName 

 

WHERE { 

 

?Context                    

hasAttribute ?StrategyAttribute; 

hasMethod ?ContextInvocatorMethod; 

name ?ContextName. 

 

?ContextInvocatorMethod 

invokes ?StrategyInterfaceMethod. 

 

?StrategyInterfaceMethod 

isAppliedTo ?StrategyAttribute. 

 

?StrategyAttribute 

hasDeclaredClass ?StrategyInterface; 

name ?StrategyAttributeName. 

 

?StrategyInterface 

rdf:type ?PotentialStrategyClass; 

hasMethod ?StrategyInterfaceMethod; 

isInheritedBy ?ConcreteStrategyClass; 

name ?StrategyInterfaceName. 

 

?ConcreteStrategyClass  

name ?ConcreteStrategyClassName; 

rdf:type ?ConcreteClass. 

} 

 

The query results are represented by the 4-tuple (Context, StrategyInterface, 

StrategyAttribute, ConcreteStrategy) each capturing a formal participant to 

the pattern implementation. Records with the same Context, StrategyInterface 

and StrategyAttribute represent the same pattern and a record will be returned for 

each ConcreteStrategy. 
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Ontology Extension 

 

 

 

 

 

 

 

OWL-DL involved: 

ExtensibleClass ≡ Class and isFinal value false 

 

AbstractClass ≡ ExtensibleClass and isAbstract value true 

 

TwoSubclassMinAbstractClass ≡ AbstractClass and hasSubclass 

min 2 ConcreteClass 

 

Interface ≡ Class and isInterface value true 

 

TwoImplementorsMinInterface ≡ Interface and isImplementedBy 

min 2 ConcreteClass 

 

The first two concepts define ExtensibleClasses and AbstractClasses using 

the data properties previously presented. The TwoSubclassMinAbstractClass 

concept and the TwoImplementorsMinInterface concept respectively define all 

abstract classes which have at least 2 concrete subclasses and all interfaces implemented 

by at least two concrete classes. This is meant to model the fact that to implement an 

instance of the Strategy pattern, there must at least be a choice of two strategies available 

at runtime. Finally, the PotentialStrategyClass concept is a value partition of 

TwoImplementorsMinInterface and TwoSubclassMinAbstractClass, 
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meaning that any individual belonging to the partitioned values automatically belongs to 

the parent concept PotentialStrategyClass.  

 

Role of Semantic Reasoner 

 realizes individuals that belong to concepts ExtensibleClass, 

AbstractClass, TwoSubclassMinAbstractClass, Interface, 

TwoImplementorsMinInterface and PotentialStrategyClass  

 computes the transitive object relationships isSubclassOf and 

isImplementedBy, part of the restrictions on concepts 

TwoSubclassMinAbstractClass and 

TwoImplementorsMinInterface  

Consequently, SE-PAD will detect occurrences of the pattern even if the participating 

concrete strategy classes do not directly inherit from or implement the Abstract 

Strategy, but are at a lower level of the Strategy subclass hierarchy. This pattern 

involves 2 DL concepts (TwoSubclassMinAbstractClass and 

TwoImplementorsMinInterface) defined with minimum cardinality 

restrictions of 2. Since the default reasoner OWLIM  [44] does not support cardinality 

restrictions higher than 1, Racer [43] which supports this type of cardinality 

restrictions was utilized.  
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4.5.4 Template Pattern 

Pattern Description 

 

 

 

 

 

The Template Method pattern's objective is to define the outline of an algorithm in a 

template operation where some tasks are delegated to subclasses. Template Method 

allows classes at a lower hierarchical level to implement an algorithm's operations 

without altering the main algorithm's organization. It implements the famous Hollywood 

Design Principle: “don't call us we'll call you”, referring to the fact that subclasses do not 

need to know the main algorithm, only which of its operations they must implement to be 

invoked by the template method.  

SPARQL Query 
 

The query is based on the UML class diagram of the pattern and details the relationships 

within its elements. 

- the AbstractClass must bear the abstract keyword modifier and have at least one 

abstract operation invoked by the TemplateMethod  
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- the ConcreteClasses must extend the AbstractClass and override each of its 

primitive operations with concrete methods 

- in order to comply with the theoretical model, results are restricted to 

TemplateMethods implemented as final and protected 

SELECT DISTINCT 

 

?AbstractClass  

?TemplateMethod 

?TemplatePrimitiveOperation 

?ConcreteClass 

?ConcretePrimitiveOperation   

 

WHERE { 

 

?AbstractClass 

hasMethod ?TemplateMethod; 

rdf:type AbstractClass. 

 

?TemplateMethod                  

invokes ?TemplatePrimitiveOperation; 

rdf:type FinalMethod; 

rdf:type ProtectedMethod. 

 

?TemplatePrimitiveOperation      

isMethodOf ?AbstractClass; 

rdf:type AbstractMethod. 

 

?ConcreteClass                   

isSubclassOf ?AbstractClass;                                

hasMethod ?ConcretePrimitiveOperation. 

 

?ConcretePrimitiveOperation      

rdf:type ConcreteMethod;                                

overrides ?TemplatePrimitiveOperation. 

} 

 

Order by ?AbstractClass 

 

The query result is the 5-tuple (AbstractClass, TemplateMethod, 

TemplatePrimitiveOperation, ConcreteClass, 
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ConcretePrimitiveOperation) each item representing a formal participant. 

Records with the same AbstractClass are considered part of the same pattern 

implementation, so each implementation might have many records depending on the 

number of concrete classes, primitive operations, etc.  

OWL-DL involved  

AbstractClass ≡ ExtensibleClass and isAbstract value true 

 

ExtensibleClass ≡ Class and isFinal value false 

 

FinalMethod ≡ Method and isFinal value true 

 

AbstractMethod ≡ Method and isAbstract value true 

 

AbstractClass subsumes ExtensibleClass because abstract classes cannot be 

marked as final in Java, hence the added restriction along the isFinal data property. 

The other concepts define Java final, abstract and concrete methods using the data 

properties previously described.   

Role of Semantic Reasoner 

 realizes individuals belonging to concepts AbstractClass, 

ExtensibleClass, FinalMethod, AbstractMethod and 

FinalMethod  

 computes the transitive object relationship isSubclassOf  

Consequently, SE-PAD will detect occurrences of the pattern even if the participating 

concrete classes do not directly inherit from or the Abstract class but are at a lower 

level of the abstract subclass hierarchy. 
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4.6 Tool integration 

As stated in the introduction and motivation section of the thesis, the objective of this 

research is neither to re-invent nor compete with existing pattern detection tools. Instead, 

we intend to highlight the flexibility of Semantic Web technologies to support different 

forms of pattern detection and knowledge integration. As shown in the previous sections, 

our SE-PAD approach can support many of the pattern detection approaches found in 

tools like PMD [49] or FindBugs [50]. 

FindBugs is a static source code analysis tool which identifies a set of pre-defined bugs in 

Java code. A subset of bugs identified by the tool relates to security issues such as 

malicious code vulnerabilities. More specifically, some of reported bugs correspond to 

code blocks as part of a class that either expose the internal state of the class or stores 

references to external mutable objects in the attributes of that class. Both situations make 

instances of such classes subject to security threats if accessed by untrusted code. As part 

of our approach we do support the import security reports from external tools (e.g. 

FindBugs) and make them an integrated part of our source code model. SE-PAD 

populates the violates relationship as previously described and when the reasoner is 

applied, the security relevant concepts are realized. Ultimately, all the Java classes 

deemed unsafe according to the results of at least one of the static analysis tools are 

identified. 
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SPARQL Query 

SELECT DISTINCT ?ClassName  

 

WHERE {?Class rdf:type UnsafeClass.} 

 

The query returns all the classes reporting safety issues in static analysis tools. 

 OWL-DL involved 

In terms of OWL individuals and relationships, an unsafe class is a class that violates 

specific security related PMD or FindBugs rules through one of its methods. The main 

DL definitions involved are as follows, in Manchester-OWL syntax: 

UnsafeClass ≡ ConcreteClass and 

InternalStateVulnerableClass or PrivacyVulnerableClass 

 

 

InternalStateVulnerableClass ≡  Class and hasMethod some ( 

(violates some MaliciousCodeRule) or  

(violates some SecurityCodeGuideLineRule)or  

(violates value ConstructorCallsOverridableMethod)) 

 

PrivacyVulnerableClass ≡ Class and hasMethod some  

(violates some UserPrivacyRule)  

 

Role of Semantic Reasoner 

For this pattern, the reasoner plays a crucial role by automatically classifying the 

individuals belonging to the UnsafeClasses concept, whose complex definition 

include the integration of PMD (e.g. ConstructorCallsOverridableMethod, 

SecurityCodeGuideLine) and FindBugs results (e.g. 

PrivacyVulnerability, MaliciousCodeVulnerability).  
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Requirements covered 

Establish 

trustworthiness 

Unsafe classes reported by static source code analysis tools represent 

significant risks exploitable by malicious developers. The more are 

reported, the less safe is the software analyzed. 

Retrieve implicit and 

explicit knowledge 

The implicit knowledge retrieved by the SPARQL query is used to 

detect the pattern in the code and the explicit knowledge is the 

identification of the software modules implementing it. 

Model extendibility All the concepts involved in this detection are added to SE-PAD’s 

Ontology by software clients. 

Bridge information 

silos 

By integrating other source code analysis tools results to SE-PAD’s 

Ontology and inferring knowledge on the source code analyzed by these 

tools based on them, SE-PAD helps bridging the source code artefact 

with rule violation results. 
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4.7 Cross artefact analysis 

SE-PAD's Ontology can be combined with knowledge resources from other software 

related artefacts. In our cross artefact analysis, we combine the results of static source 

code analysis tools with knowledge from different software artefact Ontologies, namely a 

source code management system (SCM). The goal is to identify the developer who first 

committed code in a SCM that generates a violation report.  Ultimately, the analysis 

could serve as a developer profiler tool, based on the quality of the code they commit. 

However, such a tool is outside the scope of this research. 

SE-PAD's supports this detection by identifying the first revision (or version) in which a 

given method M is reported as being a violation (based on the results obtained from a 

static source code analysis tool). SE-PAD then retrieves code from the SCM and 

populates its Version concept inherited from SOM's Ontology, which assigns a revision 

id to each Java class parsed. The client is then able to query SE-PAD to determine if a 

violation is found. In the case of a positive outcome, since the Version concept is also 

present in the Version Ontology Model (VOM), SE-PAD's clients can query the VOM 

and share version related knowledge. The following algorithm uses a binary search 

inspired approach to browse the SCM since they typically contain a large number of 

revisions. 
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The following reuses sections of the pattern presentation template to describe in detailed 

SE-PAD’s support for cross artefact analysis. 

SPARQL Query 

There are two queries involved in this detection. Both queries are part of the client 

software module performing the SCM rule violation search. The first one is: 

SELECT ?RevisionId WHERE 

{ 

{0} violates {1}.  

?Class hasMethod {2};  

  hasRevision ?Revision.  

?Revision revisionId ?RevisionId. 

} 

 

It is applied on the SE-PAD’s Ontology and retrieves the revision id of a class in which a 

method violates a rule. The token {0} and {2} represent the method M originally 

reporting a violation of the rule represented by {1}. If the query returns a result, it means 

that M reports a violation for the current revision.   

Figure 4-7: SCM rule violation search algorithm 
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The second query retrieves the author of the revision where the rule violation was first 

reported from the VOM: 

SELECT ?Author WHERE 

{ 

?Revision rdf:type Revision;  

    hasCommitAuthor ?Author;  

id ?id.  

} 

FILTER (str(?id) = {0}} 

 

Ontology Extension 

This Ontology extension includes concept sharing with the Version Ontology Model 

(VOM) [5]. The shared concept we use for aligning our SE-Pad Ontology with the VOM 

Ontology is Version and the sharing is materialized in the SPARQL queries shown 

above through the Revision id. 

 

Requirements covered 

Retrieve implicit and 

explicit knowledge 

The identification of developers committing rule violations is a form of 

historical data mining. SE-PAD can then constitute, for instance, the 

basis of a developer profiling tool which can eventually help in 

assigning developers to relevant formations. 

Model extendibility As previously described, SE-PAD’s Ontology is extended by sharing a 

concept with the VOM. 

Bridge information 

silos 

By combining results of static source code analysis results with the 

VOM, SE-PAD helps bridge the silos related to 3 artefacts: source 

code, versioning system and static analysis tools results. 
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5. Case Studies 

This chapter describes the evaluations we performed using SE-PAD in different 

application contexts. Unless specified otherwise, all case studies were performed on 

JabRef
2
 (Version 2.6) a small-sized open source project offering bibliography reference 

management features. Ohloh
3
 reports for this version of JabRef 136 992 lines of code, 29 

091 lines of comments and 42 894 blank lines. After being parsed by SE-PAD, the 

resulting Ontology contains 285 385 triples which are stored in the Sesame triple store. 

Table 5-1 shows a summary of the population:  

Number of Java classes 859 

Number of method invocations 27668 

Number of class method overrides 504 

Number of interface method overrides 303 

Number of class attribute assignations 1292 

Table 5-1: JabRef population summary 

For the case studies, we used PMD Version 4.2.5 and FindBugs Version 2.0. All 

experiments were conducted on a PC, with an Intel I7 processor, 6 GB of RAM and 

running Windows 7 64 bits. 

5.1 Security violations 

The first case study evaluates the results generated by PMD and SE-PAD during the 

detection of violations of a secure coding guideline. 

Experimental setting: For the evaluation JabRef was analyzed to detect the following 

secure coding violation: “a class constructor should not invoke a method that can be 

                                                 
2
 http://jabref.sourceforge.net/ 

3
 http://www.ohloh.net/p/jabref/analyses/latest 

http://jabref.sourceforge.net/
http://www.ohloh.net/p/jabref/analyses/latest
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overridden” [31, 72]. For the experiment SE-PAD used the following query introduced in 

section 4.4.2.2:  

SELECT DISTINCT ?MethodName WHERE { 

?Method rdf:type ConstructorMethod; 

qualifiedName ?MethodName; 

invokes ?OverridableMethod; 

isMethodOf ?Class. 

?OverridableMethod rdf:type OverridableMethod; 

 isMethodOf ?Class. 

?Class isFinal ?isFinal. 

FILTER (?isFinal=false) 

} 

 

Evaluation results: SE-PAD reports 60 violations whereas PMD reports 66. A manual 

evaluation of the results obtained from both tools was performed to determine their 

precision and recall.  Table 5-2 summarizes the results from our analysis. A security 

violation baseline in JabRef was established by summing up the true positives reported 

by both tools (not counting duplicate instances). As a result, a baseline of 80 true 

positives for the “a class constructor should not invoke a method that can be overridden” 

violation by JabRef could be established. This baseline value was used for the later recall 

calculation of both tools. 

 Detected True 

positives 

Recall  False 

positives 

Precision F1 

score 

PMD 66 65 0.83 1 0.99 0.91 

SE-PAD 60 59 0.74 1 0.98 0.81 

Table 5-2: SE-PAD vs. PMD 

Evaluation discussion: Table 5-2 shows that the recall and precision of SE-PAD was 

lower (recall by 9%) and precision by 1%. As previously discussed, we do not claim to 

perform as well as specialized tools do but that our approach is flexible enough to obtain 

significantly close results. Given the circumstances, we feel the results are comparable, 
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with the F1 score falling in the 10% difference range. Further analysis of the results 

showed that the lower recall is due to a problem while populating methods involving the 

Default and Protected modifiers. Both types of modifiers were in some cases not 

correctly categorized as modifies are part of our Ontology population. 

5.2 Design Pattern Automated Recovery 

We also used JabRef to evaluate SE-PAD’s applicability in detecting design patterns in 

the source code.  

Experimental setting: The challenge was to find a tool to support the same subset of 

patterns. DPR
4
 a reverse engineering tool able to perform the recovery of the Adapter 

design patterns fit our needs.  

Evaluation results: Both tools reported together 122 different instances of the Adapter 

pattern in JabRef. This total was used as a baseline to compute recall. DPR detected 91 

occurrences versus 70 for SE-PAD. Here are the statistics:   

 Detected True 

positives 

Recall  False 

positives 

Precision F1 

score 

SE-PAD 70 70 0.57 0 1 0.73 

DPR 245 91 0.74 154 0.37 0.49 

Table 5-3: SE-PAD vs. DPR 

Evaluation discussion: Further analysis of the results showed that the differences in the 

recall results are mainly due to our more conservative interpretation of what constitutes 

an actual adapter pattern implementation. SE-PAD’s query did not report any false 

positives which compares favourably to the 154 false positives report by the DPR tool. 

                                                 
4
 http://www.sesa.dmi.unisa.it/dpr/ 

http://www.sesa.dmi.unisa.it/dpr/
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Ultimately, according to the F1 score, SE-PAD outperformed DPR due to its lower 

number of false positive. The quality of our results highlights one important aspect of our 

approach, especially with respect to the false positive rate. When patterns are 

semantically modeled in a way mimicking the theoretical implementation in UML, 

finding corresponding code constructs not implementing the expected pattern is very 

hard.     

5.3 Integration of external static analysis tool results (PMD and FindBugs) 

In this case study, we apply the tool integration’s query (see section 4.6) to initiate a 

statistical analysis based on the detection of UnsafeClasses as determined by the 

results of PMD and FindBugs.  

Experimental setting: We used revision 19000 of ArgoUML
5
, a mid-size open source 

project providing a UML integrated development environment. For this revision, Oholoh
6
 

reported 910 411 lines of code, 233 787 line of comments and 123 089 blank lines. After 

the code was parsed and SE-PAD’s Ontology was populated, the resulting Ontology was 

uploaded to our Sesame repository which reported 1 996 526 triples. Here is a summary 

of the population: 

Number of Java classes 2625 

Number of method invocations 67098 

Number of class method overrides 6862 

Number of interface method overrides 725 

Number of class attribute assignations 1748 

Table 5-4: ArgoUML population summary 

                                                 
5
 http://argouml.tigris.org/ 

6
 http://www.ohloh.net/p/argouml 

http://argouml.tigris.org/
http://www.ohloh.net/p/argouml
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The objective is to determine the percentage of unsafe classes in each Java package of 

ArgoUML. The implementation of the solution includes three SPARQL queries 

surrounded by code which performs the calculations and generates a comma separated 

value file as an output. The algorithm uses the following query to retrieve all the 

packages: 

SELECT DISTINCT ?Packages WHERE  

{?Packages rdf:type Package.} 

 

Then, for each package, the query of section 4.6 was applied to retrieve and count unsafe 

classes. The following query was applied to retrieve and count the total number of 

classes, in which the wildcard * is replaced in code by the current package’s URI:  

SELECT DISTINCT ?Classes  

WHERE {<*> hasClass ?Classes.} 

 

 

Evaluation results: For revision 19000 of ArgoUML, the packages showing the highest 

rate of unsafe classes are: 

Package Number of  

unsafe 

classes 

Number 

of classes 

Ratio of 

unsafe 

classes 

jdepend.textui 1 1 100% 
org.argouml.language.ui 1 1 100% 

org.argouml.notation.ui 1 3 33% 
org.argouml.uml.diagram.deployment.ui 6 19 31.58% 

org.argouml.uml.diagram.use_case.ui 5 17 29.41% 
jdepend.framework 4 16 25% 

org.argouml.uml.ui.model_management 3 14 21.43% 

org.argouml.uml.diagram.ui 28 131 21.37% 
org.argouml.activity2.diagram 4 20 20% 

org.argouml.uml.util.namespace 1 5 20% 

Table 5-5: Ratio of unsafe classes in ArgoUML 
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Evaluation discussion: Based on this sample, user interface (UI) related packages seem 

to be especially unsafe. The UI layer of a project is often developed by programmers 

specialized in visual designs and focus on usability and aesthetic of GUIs rather than on 

secure implementations. From a managerial standpoint, the results we obtained for 

ArgoUML can trigger the need to have these programmers implementing the GUI follow 

stricter quality assurance procedures or be provided with additional training related to 

secure programming guidelines. As expected, we were able to combine external tools 

results to SE-PAD’s original Ontology. We created new concepts based on the supported 

violations to significantly enrich our knowledge base by providing valuable insight into 

the quality of a software project.  

As part of the SE-PAD implementation a Quartz job [61] has been created to allow SE-

PAD to be automatically invoked in regular time intervals. Using this script, SE-PAD can 

be used to monitor the progress of software securing efforts over time or mine past 

revisions to determine trends in safety development.  

5.4 Integration of SCM Ontology 

In this case study, we combine SE-PAD's Ontology with SOM's Version Model Ontology 

[4, 5]. As described in section 4.7, the goal is to identify developers who commit code 

that contains code violation detected by static source code analysis tools.  

Experimental setting: For revision 19000 of ArgoUML, PMD reports that five methods 

violate the rule stating that a constructor should not call a method that can be overridden. 

They are all class constructors and are listed below with their fully qualified Java names:  

- org.argouml.util.ItemUID.ItemUID 
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- org.argouml.kernel.ProfileConfiguration.ProfileConfigurat

ion.org.argouml.kernel.Project 

- org.argouml.kernel.ProfileConfiguration.ProfileConfigurat

ion.org.argouml.kernel.Project.java.util.Collection 

- org.argouml.uml.diagram.DiagramSettings.DiagramSettings.o

rg.argouml.uml.diagram.DiagramSettings 

- org.argouml.uml.diagram.ui.FigStereotypesGroup.FigStereot

ypesGroup.java.lang.Object.java.awt.Rectangle.org.argouml

.uml.diagram.DiagramSettings 

The algorithm presented in section 4.7 detects the revision of the code in which a 

committer potentially introduced a bug. 

Evaluation results: The program searched ArgoUML’s source code management (SCM) 

repository for the revision id where these violations were introduced. The results of this 

search are shown below: 

Method Revision 

Id 

Author 

argouml.util.ItemUID.ItemUID 14536 tfmorris 

org.argouml.kernel.ProfileConfiguration.Profile

Configuration.org.argouml.kernel.Project 
13846 euluis 

org.argouml.kernel.ProfileConfiguration.Profile

Configuration.org.argouml.kernel.Project.java.u

til.Collection   

13963 tfmorris 

org.argouml.uml.diagram.DiagramSettings.Diagram

Settings.org.argouml.uml.diagram.DiagramSetting

s 

16431 tfmorris 

org.argouml.uml.diagram.ui.FigStereotypesGroup.

FigStereotypesGroup.java.lang.Object 

java.awt.Rectangle.org.argouml.uml.diagram.Diag

ramSettings 

16252 tfmorris 

Table 5-6: Integration of SCM Ontology results 

 

Evaluation discussion: In this case study, we illustrate the advantage of the Ontological 

representation by supporting the integration of results obtained from external source code 

analysis tools with knowledge already represented in our knowledge base (Version 

Control Ontology). The resulting knowledge base can provide different stakeholders such 
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as managers with additional insights regarding organizational development processes and 

practices. For example, the query results can be used to identify developers that show a 

reoccurring pattern towards producing unsafe code. Management might also use this 

information for various purposes (e.g. training, additional secure programming 

guidelines) and specifically targeted quality improvements.  
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6. Discussion 

6.1 Revisiting the hypothesis 

The objective of the research presented in this thesis was to provide a novel approach that 

takes advantage of Semantic Web technologies to represent software artefacts and related 

knowledge resources in order to support the assessment of quality aspects of post-mortem 

systems in a distributed and global setting. In section 4 and 5 we have introduced a 

variety of quality patterns to address the different requirements associated with our 

research hypothesis and its sub-goals. The following is a review of these initial 

requirements:  

R1. Bridge information silos 

R2. Retrieve implicit and explicit knowledge 

R3. Establish trustworthiness 

R4. Model extendibility 

Table 6-1 summarizes these requirements and how they are addressed in the thesis. As 

shown, each requirement was addressed through a concrete example of how SE-PAD can 

support it and therefore also the research hypothesis that Semantic Web technologies can 

not only represent software artefacts and related knowledge resources but also support the 

assessment of quality aspects of post-mortem systems.  
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Supported Pattern Detections R1 R2 R3 R4 

Programming 

Guidelines 

[section 4.4] 

General 

Programming 

Guidelines 

Do not write to static fields from 

instance methods 
 √ √ √ 

Final classes should not have 

protected attributes 
 √ √ √ 

Servlet classes should not have 

mutable attributes 
 √ √ √ 

Respect Naming Conventions  √ √  

Secure Coding 

Guidelines 

Prefer immutable classes  √ √ √ 

Prevent constructors from calling 

overridable methods 
 √ √ √ 

Modeling 

Design Patterns 

[section 4.5] 

Adapter √ √ √ √ 

Proxy √ √ √ √ 

Strategy √ √ √ √ 

Template √ √ √ √ 

Tool Integration [section 4.6] √ √ √ √ 

Cross-Artefact Analysis [section 4.7] √ √  √ 

Table 6-1: Semantic classification and identification of pattern support 

6.2 The Open World Assumption problem 

As part of our future work, we plan to enrich our existing Ontological model with 

additional artefacts and security concerns and further evaluate the applicability of our SE-

PAD tool in detecting additional types of patterns. The goal is to deal with one important 

feature of OWL-DL Ontologies: the Open World Assumption (OWA). The main effect of 

the OWA occurs in the reasoning phase. When a reasoner is not explicitly told a fact X is 

true, it will not consider it as false like it is the case for relational database. Based on the 

OWA the truth-value of X will be considered unknown (neither true nor false). Given is 

the following example (fact): 

Paul lives in Montreal 

If this fact is modeled in a relational database (closed world) and the query "Does Paul 

live in Toronto?" executed, the result would be false. This is due to the closed world, 

where it is assumed that no other knowledge exists than the one at hand. If the same 
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example (fact) was modeled in an Ontology, a reasoner would entail "Unknown" as a 

truth-value to an equivalent query. Since an Ontology's world is open, a reasoner could 

not assume that a fact X is either false or true unless explicitly stated as such because 

other knowledge might exist in the open world which will influence its truth-value. The 

OWA has many benefits during the pattern detection, like the ability to deal with 

incomplete or incremental populated knowledge, while still supporting pattern detection.  

However, an open world assumption does not always reflect software source code’s 

reality. In many cases, source code can be treated as a closed finite set of known or 

knowable elements. For example in Object-Oriented programming one typically deals 

with a finite set of knowable classes, methods, interfaces, method calls, variables, 

external libraries, frameworks, containers, patterns, etc.  

The OWA has other important implications with respect to source code and its closed 

nature. More specifically, source code relevant reasoning is impaired. For example, 

reasoners cannot assert truth-values of class restrictions involving smallerThan 

cardinality comparisons (<), allValuesFrom axioms ( ), disjunction axioms (OR) or 

complement axioms (NOT).  

Not being able to reason on these axioms means that some interesting patterns cannot be 

detected by SE-PAD. For instance, the unsupported ImmutableClass pattern implies 

that no method other than the constructor of a class is allowed to change its state by 

assigning values to its attribute. So, to be able to infer a class X as part of the 

ImmutableClass concept, a reasoner would require X to be closed in terms of the 

number of methods it contains otherwise, it will entail “Unknown” when asked to decide 
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on X’s belonging to ImmutableClass since, as explained earlier, it assumes other 

knowledge pertaining to X might exist. Consequently, for the detection of some patterns 

such as micro-patterns [25] which are otherwise non-detectable using the OWA, it will be 

desirable to close SE-PAD’s world. 

6.3 Threats to Validity 

In what follows, we identify, analyze and discuss different threats that could affect the 

validity of our approach and the requirements we introduced in Section 2. Each 

subsection details a threat and shows the threatened requirement.  

6.3.1 Semantic web technologies fail in bridging the information silos (R1). 

Providing tool support for a domain like software engineering is inherently different due 

to the variations in users’ contexts, the abstraction levels and the semantics of knowledge 

that needs to be modeled [66]. Consequently, knowledge representation becomes an 

essential part of the modeling challenge [67]. Formal semantics provide a means of 

representing and ensuring some consistency in modeling knowledge. However, they still 

do not guarantee that either sufficient or the right information is captured. We do not 

claim that our approach is able to capture all domain specific knowledge. Instead, we 

argue that by using an Ontological model for the knowledge representation in our SE-

PAD environment, we can support the modeling of incomplete and often inconsistent 

knowledge found in software artifacts – see “Classification” in section 2.1.4. Previous 

work [48, 68] has also shown that Ontologies can be applied to create a uniform 

representation for different types of artifacts and link them successfully. 
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In spite of these modeling techniques, there will always remain a gap between the actual 

and modeled knowledge. However, we believe that our approach provides an important 

step towards modeling and retrieval of knowledge relevant to guide further analysis and 

comprehension of software systems. 

6.3.2 Implicit versus explicit knowledge (R2) 

Information or artifacts might often not be available or consistent. An Ontological 

representation can provide us with the flexibility to support an open world assumption. 

Furthermore, the use of semantic reasoners enables the exploration of both explicit and 

implicit knowledge. We have shown as part of our SE-PAD environment how reasoners 

can be applied during pattern detection to resolve transitive closure in inheritance 

hierarchies or can be applied to classify program parts based on their violations of 

security guidelines. Remaining threats to validity are that the design of the Ontological 

model has to be such that it supports the capabilities of the semantic reasoner being used. 

However, this challenge is not unique to Semantic Web technologies and has also to be 

taken into consideration by other knowledge modeling approaches. 

6.3.3 Establishing Trustworthiness (R3) 

In order to establish trustworthiness, one has to analyze two different issues:  

1. Is the implemented approach able to capture the required patterns and guidelines 

required to validate trustworthiness of the system being analyzed? 

2. Are the results obtained by the tool itself trustworthy?  
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For the first challenge, the issue of being able to capture the right patterns has been 

addressed by our semantic modeling approach by allowing: 

1- the creation and addition of new knowledge to our model, by formalizing new 

patterns or guidelines as queries and populate the model with the result of these 

queries  

2- the provision of a set of predefined queries to detect design and security patterns, 

as well as supporting the validation of secure programming guidelines. The 

provided queries are similar to the ones supported by other specialized tools [49, 

63]  

3- the integration of knowledge from often specialized third party tools and 

integrating this knowledge directly as part of our knowledge base 

For the second challenge, the analysis of the trustworthiness of the SE-PAD results, we 

conducted some experiments comparing our SE-PAD pattern detection results to results 

obtained from other tools. The case study performed in section 5.2 is an example of such 

evaluation and validation, however, it has to be pointed out that the general quality and 

trustworthiness of detection approaches depends on the ability to formalize and express 

these patterns and based on the objective of the algorithm, to maximize either recall or 

precision. Furthermore, depending on the type of pattern, pattern detection not only in 

SE-PAD but in general becomes an inherently complex problem with threats regarding 

the trustworthiness of the results remaining. 
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6.3.4 Patterns and knowledge base have to be extensible (R4) 

Given the existence of many, often highly specialized analysis (both static and dynamic) 

tools to detect patterns and validation of guidelines, we see our approach as 

complementary to them. Our goal was not to replace these tools. Instead, we focused on 

the integration of knowledge resources from existing tools (e.g. PMD) to enrich our 

Ontological KB. Given our common unified and semantically representation for various 

artifacts, we can support tracing of concerns and pattern across various abstraction levels 

which was also a concern. Through our Ontological representation, users can enrich the 

existing knowledge base with new concepts as they become available (e.g. new security 

patterns, rules). Furthermore, knowledge derived from other tools or artifacts can be 

integrated in the form of new concepts or automatically linked through the use of upper 

Ontologies, shared concepts or semantic links across Ontologies. In our research we were 

able to demonstrate that our source code Ontology can be extended with new concepts 

(see figures in section 4) that were derived from FindBugs and PMD. Semantic 

technologies allow our SE-PAD to be extended by integrating new knowledge and enrich 

existing knowledge. It has to be noted that both Ontology modeling and consistency 

management of the model are not trivial tasks. Lack of design expertise can limit the 

knowledge exploration and the use of semantic reasoners for inferring implicit 

knowledge. 
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7. Conclusions and Future Work 

With relevant knowledge being distributed across multiple resources, the assessment and 

maintenance of the quality of these systems becomes inherently difficult. In this research, 

we address some of the challenges for the next generation of software engineering quality 

validation tools, the need to provide an extensible and unified knowledge representation.  

Our motivation was to integrate resources and knowledge related to quality patterns 

within a common Ontological representation to support post-delivery quality analysis of 

these systems. As part of the thesis research SE-PAD was developed, which supports the 

fact extraction from different artifacts, as well as the integration of Semantic Web 

technologies. The use of Semantic Web not only provides the enabling technology for the 

integration of knowledge resources at various abstraction and semantic levels, it also 

provides the foundation for an evolving knowledge base that supports the extension of 

new resources and patterns. We also showed through several case studies how SE-PAD 

can support the detection of various quality patterns and the knowledge integration from 

external tools. 

More precisely, in this research, we introduced SE-PAD, a Semantic Web based 

automated source code quality analysis tool that supports several analysis tasks: 

 the ability to detection violations of good coding practices, including security 

related guidelines 

 the ability to integrate knowledge created by external (third party) static analysis 

tools to eliminate information silos by enriching our knowledge base 
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 the support for recovery of design patterns such as some of the GoF patterns [17] 

 the ability to share knowledge across repositories boundaries to support different 

types of data and knowledge mining 

As a result we are able to  

 eliminate information silos by supporting result sharing among tools and 

integrating knowledge across different knowledge bases 

 retrieve both,  implicit and explicit knowledge  

 enhance the trustworthiness of software systems, by detecting coding and best 

practice violations 

 support additional knowledge exploration through user defined queries and by 

enriching our existing knowledge base 

 illustrate how our approach supports the detection of semantic rich patterns, while 

achieving at the same time reasonable precision 

As part of our future work, we plan to enrich our existing Ontological model with 

additional artifacts and security concerns and further evaluate the applicability of our SE-

PAD tool in detecting additional types of patterns. 
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