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Abstract 

Design and Evaluation of Façade-Integrated Solar Technologies Suitable for 

High-Latitude Applications 

Yichao Chen 

 

This thesis investigates the design and evaluation of façade-integrated solar 

technologies optimized for high latitude locations. To address the climatic and socio-

economic challenges pertaining to Northern housing, a pre-fabricated active envelope 

system is designed to generate energy from renewable sources while functioning 

effectively as a passive building enclosure. 

An experimental prototype is developed using high-performance structural insulated 

panel (SIP) wall with the capacity to accommodate several modular solar components 

including unglazed transpired collector (UTC), transpired glazing (TG), and 

photovoltaic/thermal (PV/T) systems. Ten collector configurations based on the 

experimental prototype have been evaluated at the state-of-the-art Solar Simulator and 

Environmental Chamber (SSEC) laboratory, which allows for a compressed timeline and 

repeatable results compared to outdoor experiments.   

Custom thermal network models for the different collector configurations are 

developed for steady state and annual analyses. Simulation results are compared to and 

validated by experimental data from the SSEC laboratory.  The potential of energy 

conservation and renewable generation by the proposed solar facades is estimated using 

typical meteorological year weather data of three northern Canadian cities.  

Two case studies, involving existing façade-integrated solar technologies at high 
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latitudes, are presented in the Appendix. Field inspections were conducted for a 17-year-

old photovoltaic façade in Nunavut, and six Unglazed Transpired Collector (UTC) façade 

installations in Northwest Territories. In an effort to connect with reality and to 

investigate the suitability of building integrated solar technologies, the fieldwork 

examined and discussed the current state of performance and operation issues for the 

existing solar installations at high latitudes. 
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1. Introduction 

1.1 Context and Motivation 

1.1.1 Northern Housing Challenges 

Canada’s North (Yukon, Northwest Territories, Nunavut) accounts for 0.3 percent of 

Canadian population and over one-third of the total land area. With a population of just 

over 100,000 dispersed across 3.5 million square kilometers of latitude 55°N and beyond, 

housing in the North is confronted by unique climatic and socio-economic challenges.  

Natural Resource Canada (NRCan) categorizes four climate zones (A, B, C and D) 

in Canada based on an average annual temperature indicator called heating degree-day 

(HDD), which is the annual sum of the degrees of the average daily temperature for all 

days below 18°C averaged over 30-year period. Most of the three northern territories fall 

in Zone D (>8000 HDDs) and generally have little to no cooling requirements even in the 

summer. To put the numbers into perspective, the HDD of Montreal (45°N) is calculated 

to be around 4575 °C-day under Zone B (NRCan, 2011).  

 

Figure 1.1 Three Northern Territories (left) and Climate Zones of Canada (right), Picture 
from NRCan, 2011 
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In addition to the high heating requirements, low ambient temperature in the North 

increases the building susceptibility to heat loss due to thermal bridges, under-insulated 

envelope and air leakage. Extreme harsh weather (snow storm, hail, etc) in the winter 

imposes serious structural and hygrothermal stress on buildings. Moreover, labor 

shortage and limited transportation season are major roadblocks associated with budget 

and timeline for construction in northern remote regions. 

At the same time, there is significant housing shortage in the Territories. In Nunavut, 

even with the presence of 51% (4400 units) social housing, the current housing shortfall 

is estimated at 3000 units (Statistic Canada, 2010). In fact, the native communities in 

Northern Canada have the highest birth rate and overcrowding percentage in the country. 

Though rich in natural resources such as crude oil and natural gas, Canada’s North 

relies almost completely on imported fossil fuel from southern locations. Coupled with 

difficulty in distribution and transportation, the cost of energy in the North can be 

extreme. Electricity price per kilowatts-hour (kWh) in some communities is over 10 

times higher than the Canadian average. Per capita energy cost in the North is almost 

double the national average. (National Energy Board, 2011) 

The energy use pattern in the North is also very different than southern locations. 

Natural gas, as the major fuel in Canada (excluding transportation) and the cleanest of all 

fossil fuels, accounts for only 12% of energy use in the North (National Energy Board, 

2011). The majority of houses in the North are heated by heating oil, which is shipped up 

from southern locations with inherent transportation footprint.  
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Energy from renewable sources constitutes a negligible amount (less than 0.02% for 

solar and less than 0.12% for wind) of the total energy and electricity source. For 

instance, Nunavut uses 100% diesel-generated electricity with small local grids (National 

Energy Board, 2011). As cost of central grids is prohibitive for remote communities, 

Northern energy supply has a unique decentralized pattern that is almost completely 

dependent on imported fossil fuel. 

1.1.2 Opportunities for Housing in High-Latitude  

Challenges also go hand in hand with opportunities. In response to the high heating 

loads and costly energy, northern housing design is motivated to move towards greater 

building efficiency and the harnessing of renewable energy.  

In Canada, buildings accounts for 31% of the total energy use (Natural Resource 

Canada, 2010), the amount of which is even higher in the North. As part of the essential 

infrastructure that has a typical service life span of 50 to 100 years, the building sector in 

Northern Canada entails vast potential for better energy efficiency, especially with the 

current housing shortage.  

Significant savings from energy conservation can be achieved at very low added 

cost, by using high-performance building envelope and strategically sizing the south-

facing window area as well as thermal mass to maximize passive solar gains. In 2009, 

Yukon announced the SuperGreen housing standard, following the most stringent 

building energy compliance nation-wide with prescriptive requirements of RSI-4.93 walls 

and RSI-10.56 ceilings, as well as triple glazed windows of less than 15% wall area 

(Yukon Housing Corporation, 2009). 
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Building envelope can also serve beyond its traditional role as a passive enclosure. 

Emerging development of building-integrated photovoltaic/thermal (BIPV/T) 

technologies allows designers to integrate an active energy-capturing skin as part of the 

envelope system.  

In fact, the high energy cost and dependency on imported fuel in northern 

communities offers a more competitive payback time for well-researched renewable 

technologies such as the photovoltaic (PV) and solar thermal. Compared to southern 

locations, the marginal price increase per kWh produced by solar panels is quickly offset 

by the reduction of expensive fossil fuel and associated transportation cost for remote 

locations.  

Contrary to common perception, Canada’s North has an abundant potential for solar 

energy. For south-facing photovoltaic panels with latitude tilt, the yearly PV potential for 

Iqaluit (Latitude 63.8°N, 1059 kWh/kW) and Fort Smith (Latitude 60°N, 1126 kWh/kW), 

are comparable to, or even higher than, southern locations like Montreal (Latitude 45°N, 

1185 kWh/kW) and Halifax (44.7°N, 1074 kWh/kW) (Natural Resource Canada, 2007).  

 

Figure 1.2 Photovoltaic Potential kWh/kW of Canada at Latitude tilt (left) and Vertical 
tilt (right), Picture from NRCan, 2007 
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The real challenge pertaining to solar utilization in the North is the strong seasonal 

pattern of daily global radiation and its misalignment with heating loads (e.g. long 

daylight hours in the summer and almost no sunlight in the winter when heating load is 

the highest). This seasonal mismatch between solar availability and heating loads is also 

present in southern locations, but much more pronounced near the arctic.  

The decentralized energy pattern and fossil fuel dependency in the North is 

aggravated in remote communities by the lack of grid infrastructure for energy 

distribution. With the rising prices and impending depletion of imported fossil fuels, on-

site renewable generation can offer a complementary local source of energy in summer 

and shoulder seasons at a competitive price rate. 

 

1.2 Research Scope 

1.2.1 Passive and Active Design Principles 

When subjected to harsh environmental conditions, the regulative functions of 

building envelope are amplified. Passive measures of solar utilization can be adopted at 

minimal cost, by optimizing interlinked design variables such as house insulation value, 

south-facing window area and thermal mass. This thesis will focus on the investigation of 

facade-integrated active solar components suitable for Nordic climate. 

Though wood-frame structures is currently the main form of construction in the 

Canadian North, a pre-fabricated high-performance envelope system, Structural Insulated 

Panel (SIP), offers an attractive alternative for northern housing by minimizing 

installation time and difficulty. The pre-fabricated nature of the SIP envelope is 
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extendable to the integration of solar collectors, which also obviates the need for exterior 

cladding to further reduce the installation and labor cost.  

Combining passive measures of conservation (high-performance envelope) and 

active generation (on-site solar energy), the building sector in Northern Canada can 

readily achieve considerable displacement of expensive fossil fuel and its associated 

transportation cost. At the same time, the motivations and innovations exhibited by the 

active envelope research for high latitudes may also be applicable for housing design in 

temperate climates.  

1.2.2 Scope and Limitations  

The thesis work investigates both solar electric (Photovoltaic) and solar thermal 

technologies, as well as the use of Building Integrated Photovoltaic/Thermal (BIPV/T) 

technology to co-generate valuable electricity as well as heated air. Note that building-

integrated solar system is designed to maximize efficiency and output in shoulder 

seasons, while imported fuel is still necessary for winter heating.  

Only air-based collectors are discussed as design options to avoid encountering high 

risks of winter freezing, though literature review (Chapter 2) also includes solar domestic 

hot water installations or other liquid-based solar collectors. To account for the 

maintenance difficulty and lack of technical personnel in remote locations, only off-the-

shelf low maintenance technologies are considered. The active envelope system is 

designed to be pre-fabricated and easy to assemble on site, adding feasibility to real-

world adoption.  

In addition, the thesis scope is limited by:  
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• Physical restrictions of the laboratory setting: see Section 4.1, Solar Simulator and 

Environmental Chamber (SSEC) Laboratory; 

• A manageable level of complexity pertaining to the design and evaluation of the 

façade-integrated solar collectors. 

1.3 Research Objectives 

The research work investigates the potential of energy generation and conservation 

by full-scale solar-harnessing envelope systems designed for cold climate. The combined 

efforts of experiments and simulation aim to fulfill the following quantifiable objectives: 

• To design and optimize an array of façade-integrated solar collectors that are 

potentially suitable for cold climate; 

• To experimentally evaluate and compare collectors’ performance under indoor-

simulated climatic conditions (irradiance, temperature, humidity and wind); 

• To develop custom thermal network models for the novel solar collectors and validate 

simulation results using experimental data;  

• To perform parametric studies of low cost adaptations to improve collector suitability 

and overall system compatibility to the real Nordic conditions; 

• To explore system-level optimizations regarding the usage of solar electricity and 

heated air, as well as auxiliary HVAC systems;  

• To determine annual energy saving potential for Arctic low energy houses using 

building integrated solar systems. 
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1.4 Thesis Overview 

Chapter 1, the introductory chapter, includes information on the background and 

context of this thesis project, the scope and limitations of the investigation, a summary of 

main objectives and implications of the research work.  

Chapter 2 presents a literature and technology review on relevant subjects, including 

Arctic low energy building best practices, high-performance building envelope systems, 

innovative building-integrated solar technologies, heat transfer theories for glazed and 

transpired collectors, and suitable auxiliary mechanical systems.  

Chapter 3 summarizes the design methodology and prototype construction of an 

array of building integrated solar collectors potentially suitable for high latitude 

applications. It is followed by Chapter 4, which contains detailed experimental evaluation 

of the proposed solar prototypes, using the state-of-the-art Solar Simulator and 

Environmental Chamber Laboratory facility.  

Chapter 5 discusses the development of custom thermal network models for the 

façade-integrated solar prototypes. Forced convective heat transfer coefficients induced 

by parallel wind and surface suction are investigated for transpired collectors. Steady-

state simulation results are validated using experimental data.   

The discrepancy between experimental results obtained from the Solar Simulator and 

from the Environmental Chamber is corrected numerically based on heat transfer 

principles to address the systematic differences between the two facilities. Additionally, 

annual performance of the solar prototypes is evaluated based on steady-state 

performance. Lastly, conclusions and recommendations for future work are presented in 

Chapter 6. 



 
 

9!

This thesis also includes two research reports (Appendix F and G), investigating the 

current state of performance for two solar technologies common in Canada’s North. 

Fieldwork were conducted by the author to inspect existing solar installations at high 

latitudes, including six solar transpired collectors in Northwest Territories and a façade 

photovoltaic system in Nunavut. By addressing and learning from the current operational 

issues, the case studies gave a practical perspective to the research of building integrated 

solar technologies suitable for high latitudes.   
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2 Literature Review  

Chapter 2 discusses the different studies and pilot projects regarding low energy 

building practices and integrated solar technologies in Nordic climate. Both passive 

envelope strategies and active solar integration are covered in the literature and 

technology review. 

2.1 Best Practice of Nordic Low Energy Building Design 

2.1.1 Survey of Nordic Low Energy Buildings Outside Canada 

Table 2.1 below provides a comprehensive survey of existing low-energy building 

projects in Nordic countries outside Canada, featuring vigorous passive solar design and 

state-of-the-art building integrated solar technology. 

Table 2.1 Summary of Nordic Low Energy Buildings outside Canada 

 

 

As shown in Figure 2.1 (left), Norling et al. (2006) outlined the design of a low 

energy house in Sisimiut, Greenland. With careful design and installation of a well-

insulated, air-tight building envelope, the 200m2 house consumes only half the energy 

permitted in the building code. Based on this case study, Vladykova et al. (2008) 
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performed sensitivity analysis in Bsim to model the effects of changing insulation 

thickness and window types. Optimal south-facing window area to effectively capture 

solar gains is also discussed in their studies.  

 

Figure 2.1 Left: Low energy house in Sisimiut, Greenland, 67°N, 2005 (Norling et al. 
2006); Right: IEA5 Solar House in Pietarsaari, Finland, 62°N, 1994 (IEA, 1997) 

 

Figure 2.1 (right) features the IEA5 Solar House with the integration of a 2.1kW PV 

system and a 10m2 solar collector on the south-facing roof. IEA (1997) reports that the 

solar combisystem and water tank, supply more than 50% of the DHW demand and all 

space heating demand from April to September, while in the winter a ground-source heat 

pumps supplements the energy demand. The building is airtight and constructed with 

super-insulation and high-performance windows. Floor heating, is used and a Heat 

Recovery Ventilation (HRV) unit is incorporated in the ventilation systems. 

In Denmark, researchers take facade photovoltaic (PV) integration to a new level by 

venting the space behind the PV panels (Jensen, 2001). The three-storey building (Figure 

2.2, left) in Skovlunde hosts the field-testing of 5 different PV-VENT systems. The PV 

gable (front wall) pre-heats the ventilation air and cools the PV panel. Three solar 

chimneys are powered with bands of PV panels integrated into the building facades. DC 
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fans are directed connected to PV for active ventilation and air-to-air heat exchangers of 

80% efficiency are used. However, Bosanac et al, (2003) concluded that pre-heating 

ventilation air via PV facades is of little economic benefit in this particular case, due to 

the high heat loss from the PV facades to the cold exterior.  

 

Figure 2.2 Left: PV-Vent facade in Skovlunde, Denmark, 56°N, 2001 (Jensen, 2001); 
Right: Rønnebækhave house in Næstved, Denmark, 55°N, 2005 (Andresen et al., 2008) 

 

The Rønnebækhave passive house (Figure 2.2, right) built with a German ‘Passiv 

Haus’ standard of a yearly heat consumption of 15 kWh/m2 (Andresen et al., 2008). As 

the PassiveHaus standard is normally meant for mild climate, the overall building design 

is challenging considering its Nordic location (55°N). In addition to thick insulation and 

high performance windows, the house incorporates a 5kWp PV system, a ground source 

heat pump, HRV systems, 28 m2 flat-plat solar collector for DHW use coupled with 8 

storage tanks (240L each) using 2 internal heat exchangers (Pedersen, 2008).  

Pedersen (2008) also discussed about another Danish pilot net zero energy project, 

the SOLTAG house in Copenhagen (55.5°N).  As a EU demonstration project, the 

SOLTAG house features a prefabricated active roof prototype that integrates hot air 

collectors and PV panels as a single roof unit. The hot air preheated by the active double 
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skin solar roof is supplemented by a small air-source heat pump to supply under-floor 

heating for the house. The DHW tank also functions as a buffer storage for the solar 

heated air. The passive solar design and well-insulated envelope reduced the heating 

demand to 30 kWh/m2, allowing the house to be net zero energy and CO2 neutral during 

operation. (Danish Technological Institute, 2008) 

 

2.1.2 Survey of Low Energy Building Practices in Northern Canada 

Led by the Canadian Mortgage and Housing Corporation (CMHC), several housing 

initiatives took place to promote sustainable building practices in Canada. As part of the 

Equilibrium Sustainable Housing Demonstration Initiative, the Eco-Terra house 

(Eastman, Quebec) is the first Equilibrium project aiming for the net-zero energy target. 

The design of the Eco-Terra focuses on coupling low energy demands with an active pre-

fabricated air-based BIPV/T roof component. The generated electricity supplies fans and 

appliances, while the solar heated air assists space heating, domestic water heating and 

clothes drying (Chen et al., 2010). 

Located in Edmonton (53.5°N), the Riverdale house was completed in 2008, as the 

most northern of all Equilibrium homes with the highest insulation values (Brostrom & 

Howell, 2008). After careful deliberation and cost-benefit analysis, the house used double 

stud construction with R-56 walls, R-100 ceilings and quadruple-glazed windows. As 

shown in Figure 2.3 (left), solar hot water collectors are tilted at a wintertime optimal 

angle of 90°, and supply 78.1% of the space heating requirements and 93.8% of the 

domestic hot water heating.  A 5.3 kW high efficiency PV array, mounted at an annual 

optimum tilt of 53°, enables the net-zero energy target over the course of a year (Habitat 

Studio & Workshop Ltd., 2007). 
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Figure 2.3 Left:.Riverdale NetZero House, Edmonton, 53.5°N, 2008 (Howell, 2008); 
Right: Northern Sustainable House, Inuvik, 68°N, 2011 (Photo taken by author) 

 

CMHC (2009), together with local housing corporations, were key players for the 

construction of three Northern Sustainable Houses (NSHs) in Arviat (Nunavut, 2006), 

Dawson City (Yukon, 2006), and Inuvik (NWT, 2011). Unlike Alberta where the 

Riverdale house is located, the three northern Territories are more difficult to access and 

there is a large proportion of aboriginal population. To address the unique social and 

cultural issues of northern communities, the integrated design charrette of all three NSHs 

involved stakeholders including designers, builders, municipal representatives, 

prospective residents and community elders.  

Due to restrictions of up-front funding, the NSH in Arviat and Dawson city were 

designed to be solar-ready, with a tilted façade surface allocated for solar installations. In 

2011, the most recent NSH was completed in Inuvik (Figure 2.3, right) and the 

monitoring phase will commence later in 2012. The duplex implemented double-wall 

construction with a Structural Insulated Panel floor, high efficiency appliances and heat 

recovery ventilation (HRV) systems. The NWT Housing Corporation (NWTHC, 2012) 

concluded an approximately 20% cost increase than typical construction, plus additional 

funding from CMHC for the roof mounted photovoltaic arrays and solar hot water 

collectors.  
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While double-wall construction may be suitable in northern locations accessible by 

road (e.g. part of Yukon and NWT), the labor and material intensity required by double-

wall is still prohibitive for locations accessible only by Sea Lift (e.g. most of Nunavut). 

With the shortage of skilled labor and the limited building season, it is challenging to 

construct super-insulated envelope quickly and airtight.  

As a result, a unique Structural Insulated Panel (SIP) system was developed for 

Nunavut social housing in 2009 by KOTT Group (Armstrong, 2011). Unlike the 

predecessors that are thin, urethane SIPs, the Kott SIP is composed of two 16 mm 

oriented strand board (OSB) skins sandwiching 273 mm of rigid expanded polystyrene 

(EPS), bonded by urethane glue that also acts as the vapor barrier (Figure 2.4). 

 

Figure 2.4 Structural Insulated Panel House (left) and SIP cross-section (right). Picture: 
Armstrong, 2011 

 

Each SIP panel is manufactured with wood I-joists and thermal breaks at joints and 

serves as an all-in-one system of structure, insulation and air/weather barrier and vapor 

control. As a result, the SIP building can be put together at a fraction of time compared to 

wood-frame constructions. It was demonstrated that the entire floor SIP system was 

complete in 3.5 hrs by a five-man crew. The ease in construction also comes with 

additional benefits of minimized thermal bridges and better air-tightness. A typical SIP 
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house offers an overall RSI of 7.9 m2K/watt (R-40 Floor, R-36 Walls, R-50 Roof) and a 

blower-door tested air-tightness of 0.2ACH at 50Pa.  

Table 2.2 summarizes some of the low energy buildings in Northern Canada 

mentioned before. Note that the first two projects in Fort Smith and in Iqaluit are merely 

traditional buildings added with renewable technologies (unglazed transpired collector 

and photovoltaic, respectively). These two building-integrated solar technologies are the 

most popular and widely implemented in Canada’s North. Further information can be 

found in Appendix F and G (case studies).  

Table 2.2 Summary of Solar Technologies used in Buildings in Northern Canada 

 

 

2.2 Design Principles for Low Energy Houses in Cold Climate 

2.2.1 Low Energy Building Practices in Northern Europe and Canada 

As shown in Section 2.1.1 and 2.1.2, the sustainable building practices in different 

Nordic countries have many interesting similarities, but also differ in important ways. 

The rule of thumb applies to all cold climate construction: ‘insulate, build tight and 
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ventilate right’. Under extreme climatic loads, the design and installation of a well-

insulated, air-tight building envelope is crucial for the longevity of high-latitude 

constructions (Kalema and Pylsy, 2008). 

Cornick et al. (2009) investigated four high performance wall systems in comparison 

with two baseline walls, using a parametric energy model analyzed for seven Canadian 

arctic locations. It is concluded that while the most highly insulated wall system exhibits 

best performance regarding space-heating consumption, it is not the only concern in the 

North when selecting one envelope system over another. The estimated lifetime space 

heating saving must also offset the increased material, transportation and labor costs, 

which are of significant amounts at high latitudes. Their research indicates that pre-

fabricated systems (e.g. SIP) may have more saving potentials compared to traditional 

labor-intensive wall systems of similar thermal properties.  

While passive solar design principles are widely employed in Nordic countries in 

Europe, the concept is still relatively new to constructions in Northern Canada. Though 

Canadian building codes (Canadian Commission on Building and Fire Codes, 2011) have 

stringent recommendations of insulation value and air-tightness, the building orientation, 

south-facing window area and thermal mass are not design mandates for high-latitude 

construction.  

To make the implementation of passive solar principles more difficult, transportation 

and grid infrastructure in northern Europe is much more developed than northern Canada, 

partially due to the higher population density in Europe. To save on transportation cost, 

Canada’s North uses light-frame construction that typically has no thermal mass inherent 
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to building materials. Canadian researcher Harold Strub (1996) pointed out that window 

design in Northern Canada often ignores the high heat gain through glass in springtime 

during long daylight hours. As the room is usually super-insulated and built of light 

weight materials, it has no way to store the excess heat during the day and windows 

empties out the indoor warmth at night by quick conductions.  

Recent development and on-going price drop in high-performance windows and 

lightweight thermal storage (phase-change-materials) offer solution to this dilemma. 

Darkwa et al. (2006), among other researchers, reported that addition of phase-change-

materials (PCM) tiles or drywall to the building fabric significantly increases the 

minimum room temperature at night for a passive solar house in cold climate. 

As shown in Table 2.1 and 2.2, low energy building design in Nordic climate favors 

multi-unit (duplex or more) construction. Due to the lowered surface-to-volume ratio and 

shared mechanical/sewage systems, multi-unit dwellings can achieve better energy 

efficiency at a lower added cost. For example, the Nunavut Social Housing program has 

started to make a conscious shift from single-family houses to multi-family building 

design for better energy efficiency (Statistic Canada, 2010).  

In the 2006 budget alone, the Canadian government invested up to $300million 

dollars to address the acute housing needs in Yukon, North West Territories and Nunavut 

(INAC, 2006). Given the high energy consumption in the northern building sector and 

increasing demands for new construction, the market for low energy buildings and 

building integrated renewable technologies is expected to grow and mature with 

continuing research and engineering efforts. 
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2.2.2 Suitability of Air Based or Liquid Based Solar Thermal Collectors 

For a typical Canadian home, space heating accounts for 60% of the total residential 

energy used annually, followed by hot water heating of 20% (NRCan, 2003). Thus, 

incorporating solar thermal collectors or solar hot water heating system onto building 

envelope entails tremendous energy saving potential for cold climate. 

Note that solar thermal collectors can use a heat transfer medium of either air or 

liquid. In General, air based collectors are easier to install and less maintenance intensive, 

while liquid based collectors are more efficient yet cost more to install and maintain. 

Andersen et al. (2008) conducted a comprehensive survey of building integrated solar 

thermal collectors in northern Europe. Despite the systems complexity and propensity to 

freezing, they confirmed that liquid based solar hot water or solar combisystems (space 

heating and hot water) are common among arctic low energy buildings (Table 2.1).  

At the same time, Canadian low energy buildings favor simple air-based solar 

thermal systems. One of the most widely implemented solar thermal systems in Northern 

Canada is a product named SolarWall, a low-cost unglazed transpired collector producing 

solar heated air (discussed in Section 2.3). The main reason behind the different 

preferences is that European market is more attuned to complex liquid systems that 

require expertise for installations and maintenance, while the Northern Canadian market 

still struggles with transportation difficulty and skilled labor shortage.  

While northern Europe and Canada may be of similar latitudes, the oceanic climate 

in Europe is more temperate than the continental climate in Northern Canada. To avoid 

any freezing problems and long-term durability concerns, this thesis will discuss only air-
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based solar systems suitable for Northern Canada.  

2.2.3 Suitability of Roof or Façade Integration 

It is widely accepted that an equator-facing orientation is optimal for photovoltaic 

panels (Hussein et al., 2004), and the optimum tilt angle of a photovoltaic panel should be 

equal to the site’s latitude for maximum annual output. 

Swedish researchers Rönnelid et al. (1996) concluded that for high latitude locations 

(more than 60°N), the winter solar radiation only contribute marginally to the total 

collectible energy year-round and thus, for a fixed solar collector, the ‘tilt=latitude’ 

concept is invalid as the collector should be oriented to receive maximum light during the 

summer peak (e.g. mid Sweden, latitude = 60°, optimal tilt =45°). 

Cheng et al. (2009) performed a series of calculations for 20 locations worldwide 

and states that latitude of the site can be used as the optimal angle of PV tilt without too 

much compromise in annual output. Their findings revealed a maximum difference 

(9.7%) in receivable solar energy occurs at arctic conditions and no discrepancy at the 

equator. As low-slope roof construction is common in Northern Canada to minimize 

wasted attic space, it is a reasonable compromise to use façade integrated solar collectors 

(90° tilt) than roof integration (10° to 30°). 

Moreover, reflected sunlight from the snow (albedo>0.8) in early spring and late fall 

enhances the façade system performance, partially compensating for the shorter sunny 

duration in northern locations. If conditions permit, a slightly tilted façade (e.g. 60° to 

85°) can maximize the overall insolation received by the surface, provided that snow 

shedding and drainage are considered.  
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As long as the ease in construction can justify the loss in collectible solar energy due 

to non-optimal tilting, either vertical or near-vertical integration of solar collectors are 

acceptable options for high-latitudes. The most important consideration is “integration”, 

as active solar components often becomes “added” systems and ignores the interaction 

between solar skin and the building envelope. If well designed and factory mounted, the 

solar skin can replace the exterior cladding of the building envelope without penetrating 

any air/vapor barriers, and act as an integral part of the active envelope system.  

 

2.3 Transpired Solar Collector Technology in Northern Canada 

2.3.1 Unglazed Transpired Collector  

As one of the most widely implemented solar technologies in Canada’s North, the 

Unglazed Transpired Collector (UTC) is essentially a perforated dark sheet with pores of 

0.5%-2% opening area and an air cavity/plenum behind the cladding. A Canadian 

company (Conserval Engineering, 2010a), has developed a product called SolarWall® 

using corrugated dark metal cladding with distributed perforation (Figure 2.5).  

 

Figure 2.5 Left: Dark UTC façade, product name SolarWall, Rankin Inlet, Nunavut, 
67°N; Right: Schematics of how SolarWall works; Pictures: Conserval Engineering, 2009 
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UTC (SolarWall) is a low-cost and highly efficient solar thermal system that is well 

suited for façade integration to pre-heat ventilation air in residential and commercial 

buildings. At night, the air plenum also recaptures heat loss from the building envelope 

and contributes to the overall energy savings. 

The research on perforated plates for solar collectors started mainly with Kutscher et 

al. (1993), with the development of the basic heat loss theory for flat plate UTCs. 

Compared to conventional glazed solar thermal collectors, UTC has distributed air inlets 

across the dark absorber surface, which effectively lowered the surface losses (Kutscher 

et al., 1993). As there is no need for glazing or covers, the optical losses and collector 

cost are also reduced. Those distinct advantages of UTC work particularly well in 

northern cold climate. Many of such UTC facades (SolarWall) have already been 

implemented in the far North at latitudes as high as 68°N (Inuvik) to pre-heat building 

ventilation air.  

One of the most important indicators for UTC performance is the collector 

exchanger e`ectiveness, %HX, which characterizes how “effective” a system is at 

converting the captured heat from its absorber to useful energy. In order to find a 

numerical expression for %HX, Kutscher (1994) performed experiments on several plates 

of different thicknesses, hole diameters and pitches on a triangular layout, by subjecting 

the plate to a parallel wind.  

Van Decker et al. (2001) furthered Kutscher’s work to flat plate UTC with circular 

holes laid out in square pitch, also taking into account back loss and surface loss. The 

UTC effectiveness is expressed in three parts: the heat transfer occurring at the front face 
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%f , in the sides of the holes %h, and at the back of the plate %b. Further details on how to 

calculate UTC effectiveness are discussed in Section 5.1.3 and results are presented in 

Section 5.3.4. 

%HX = 1 - (1 - %f )(1 - %h )(1 - %b )                                        (2.7)  

Researchers from University of Waterloo, Summers (1995) and Delisle (2008) 

developed TRNSYS models to predict the performance of UTC collectors, by solving a 

set of energy balance equations. The auxiliary fan power is also optimized to minimize 

the amount of auxiliary energy needed. Summers’ model uses Kutscher’s relation 

(Kutscher, 1994) to calculate the Nusselt number, but does not account for any wind 

effects or for the corrugated shape of the absorber plate. As a result, Summers’ model 

over-predicts the temperature rise at low suction rate and under-predicts the recaptured 

wall heat losses.  

Other correlations of convective heat transfer coefficients for transpired collectors 

point to strong dependency on wind speed and suction velocity (Carpenter et al., 1999; 

Kutscher et al., 1991;) Detailed calculations on convective heat losses will be further 

discussed in Section 5.1.2 and 5.3.2.  

2.3.2 Potential Improvements for Unglazed Transpired Collectors 

Commercially available UTC systems commonly use corrugated dark metal sheets 

perforated with distributed pores (e.g. SolarWall). Unglazed transpired systems are 

particularly prone to convective wind loss, often aggravated by the corrugated profile. 

Gawlik & Kutscher (2002) studied numerically and experimentally the wind losses from 

UTCs with sinusoidal corrugations. Interestingly, they discovered that depending on 
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combinations of surface wind speed, suction velocity, and plate geometry, the flow on the 

UTC plate could be either attached or separated. In the case of attached flow, the wind 

heat losses were similar to flat plate UTCs, while convective wind losses from corrugated 

plates could be as high as 17 times greater than for flat plates.  

Fleck et al. (2002) investigated UTC performance under different wind directions, 

speeds and fluctuation intensities based on outdoor experiments.  Contrary to the parallel 

laminar boundary layer assumption used by Kutscher et al. (1993), Fleck et al. (2002) 

observed that turbulence occurs near the UTC surface and greater turbulence reduce the 

collector efficiency. Surprisingly, the collector’s peak efficiency does not occur at zero 

wind speed, but at 1 to 2 m/s wind.  

As the UTC absorber is exposed to the exterior environment, in addition to the 

surface convective loss attributed to surface wind and local suction, the surface radiant 

loss to outside can be significant as well. For sunny cold days at low heat removal rate, 

UTC surface (the absorber) is inevitably heated by solar radiation and its temperature can 

rise by over 40 °C greater than ambient temperature (Conserval Engineering, 2010a). 

Therefore, an improved UTC system is proposed with transpired glazing (TG) as the 

exterior layer. A Quebec company, Enerconcept (2010) developed a novel transpired 

collector, Lubi-Wall, using high-transmittance weather-resistant polycarbonate sheets 

perforated with distributed air inlets. The transpired glazing is placed in front of existing 

walls and creates an second air plenum, while the wall exterior is painted dark as the 

absorber.  
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As the exterior layer (flat transpired glazing) remains cold during the sun-lit hours, 

the surface radiant loss and convective loss are both minimized for system compared to 

conventional UTC system. For northern applications when wind is strong (greater than 

4m/s) year round, a flat exterior surface with lower surface temperature would be 

preferable in cold, windy regions. 

Leon & Kumar (2007) conducted parametric studies on UTC collectors of varying 

porosity, airflow rates, solar radiation, and solar absorptivity/thermal emissivity. 

Kutscher’s relation was used to calculate the absorber plate effectiveness. They 

concluded that solar absorptivity, hole pitch and air flow rate had the strongest effect on 

the collector heat exchange effectiveness and efficiency. Their results can be referenced 

when optimizing pitch and hole size for transpired collector/glazing design.  

In fact, many SolarWall installations in Northern Canada have reported frost 

problems in winter and general under-performance compared to southern installations. 

The author, in collaboration with the Arctic Energy Alliance and Aurora Research 

Institute, conducted a field inspection and monitoring project in May 2012 to survey all 

the SolarWall installations in Northwest Territories.  

Out of the six SolarWall systems inspected, only two are currently in operation. 

Only one system (Fort Smith) was monitored from 2000 to 2002 (Enermodal 

Engineering, 2001, 2002 and 2005). The rest of the installations have no monitoring 

mandates, making it difficult to evaluate the technical feasibility and energy output of 

such solar systems. Moreover, many of the SolarWall installations in NWT are oriented 

off south to different extents, contributing to significant annual loss and prolonged 
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payback time. There has also been cases of vegetation growth in front of the collectors, 

obstructing the collectible solar gain.  

In terms of economical feasibility, it is extremely complex to evaluate real energy 

cost in Canada’s North, as infrastructure costs for fossil fuel (e.g. tanks and pipeline) are 

not included in the actual energy price (Enermodal Engineering, 1997b). With additional 

government subsidy injected to keep the energy price affordable, calculation of payback 

time for solar installations is conducted on unlevel playing fields when compared with 

traditional fossil fuel prices in the Territories. 

Based on findings from this applied research survey, it is recommended that 

incentive programs for SolarWall and other renewable systems should make ongoing 

monitoring mandatory for all new installations, to avoid the ‘build and forget’ mentality. 

Details of this field survey report can be found in Appendix G.  

 

2.4 Building Integrated Photovoltaic Technology for Cold Climate 

2.4.1 Flat Plate Photovoltaic Panels 

Photovoltaic (PV) technology offers a reliable, on-site, complementary source of 

energy in summer and shoulder seasons at a competitive price rate for the North. In 1995, 

a 3.2kWp PV system was installed over 25m2 of façade in Iqaluit at 63.8°N. The system 

has been delivering an average of 2016±200kWh of electricity annually (Poissant et al., 

2004), which represents roughly 20% of electricity consumption by a Canadian average 

household. Since then, flat plate PV module prices have dropped from CAD$11.09/watt 

in 1999 to $3.31/watt in 2009 (Ayoub et al., 2009). At 80cents/watt in 2012, PV module 
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price is still dropping, while fossil fuel prices have risen dramatically since 1999 and will 

continue to climb in the next decade.  

Diesel price (excluding transportation) has increased from 54 cents/Liter in 1999 to 

$1.29/Liter in 2012 (NRCan, 2012). The life-cycle generation cost of diesel-generated 

electricity in remote communities can reach $1.30/kWh (Canadian Electricity 

Association, 2006). Coupled with increasing efforts to minimize emissions, the current 

fossil fuel dependency in northern communities can be diluted in an economically 

feasible manner using rigorous solar technologies. 

Compared to other renewable technologies such as wind turbines, flat plate solar 

panels are more suitable for building integration and typically have no moving parts. 

Using façade-integrated PV also obviates the need for exterior cladding and can be pre-

fabricated with envelope panels to further reduce the installation and labor cost.  

Once installed, photovoltaic modules are practically maintenance-free, as 

demonstrated by the Iqaluit PV façade project mentioned previously. The entire 

photovoltaic array (including the inverter) is in working order as inspected in April 2012, 

after 17 years of reliable performance and outlasting two monitoring systems.  

Though some of the instruments are still capable of reading measurements, the most 

recent monitoring systems stopped feeding data since 2006. Calibration of the 

pyranometer is much needed and future monitoring projects should take into 

consideration the long-term pyranometer drift in high latitude locations (Thevenard 2005; 

Thevenard 2006). 



 
 

28!

Two types of single crystalline silicon PV panels were present in the PV array, 

Siemens M55 and Solec S53 modules (Poissant et al., 2004). The current output on a 

snowy day of the Siemens array is at 9.3% overall, 30% less than its original rated 

efficiency. However, the Solec array is producing only at 6.2% overall, 50% less than its 

original rated efficiency. (Appendix F) 

Moreover, among the nine experimental modules tested by the author, all of the 

Siemens experimental modules are functional while two out of four Solec modules output 

no voltage. This finding indicates that some of the Solec panels in the array have also 

reached their end-of-life, contributing to the significant efficiency drop in the Solec array. 

In summary, though the initial rated output of the two PV types are very similar, in a long 

run, Siemens panels are performing more reliably than Solec modules.  

The fact that the full-scale photovoltaic façade is feeding AC electricity to the school 

since 1995 is encouraging. Photovoltaic has been proven to be a reliable technology even 

under the harsh weather of the far North. Details of the field report can be found in 

Appendix F. 

2.4.2 Concentrator-type Photovoltaic for Northern Applications 

One of the innovations that promote solar market deployment is partially replacing 

the PV cells with inexpensive reflector materials, in order to increase the electric power 

generation per unit area. In northern Ireland, Mallick et al. (2004) designed and evaluated 

a novel non-imaging asymmetric compound parabolic photovoltaic concentrator 

(ACPPVC) at University of Ulster (55°N). Experiments showed that a power increase of 
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62% is achieved by adding the ACPPVC under 400W/m2 irradiance comparing to a non-

concentrating PV panel.  

Similarly, an innovative concentrator system using bi-facial cell is developed by 

Swedish researchers to maximize winter output. The “Maximum Reflector Collector” 

(MaReCo) was evaluated experimentally for high latitude BIPV applications (Adsten, 

2002; Norton et al., 2009;). 

Concentrator PV systems are traditionally not building-integration friendly (Hansen 

et al., 2007), but other Swedish researchers Brogren et al. (2003) proposed an interesting 

concept of concentrating photovoltaic wall element, optimized for maximum collection at 

latitude 60°N from 15th March to 1st October. The ready-to-use façade system consists 

of the CIS thin-film PV modules, aluminum reflector and back insulation. The electricity 

production of this system is estimated to be twice as much as a non-concentrating system 

on an annual basis.  

However, for all parabolic concentrating PV systems, non-uniform illumination on 

the solar cells will occur due to light concentration, and the system performance is 

determined by the lowest current output (least illuminated cell). The problem may be 

solved by custom design of the solar cell wiring connections according to the non-

uniform illumination, which also lead to unwanted extra costs.  

Aside from parabolic concentrators, lens concentrators, while effective for 

concentrating direct sunlight, are not suitable for high latitude applications due to the 

high content of diffused light. For the scope of this thesis, concentrator photovoltaic, 

though may be a valid alternative, will not be included in the design options in Chapter 3.  
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2.4.3 Suitability of Photovoltaic Technology in the High North  

Compared to low latitude locations, Nordic solar conditions are characterized by low 

solar irradiance, high incidence angle (nearly horizontal), large portion of diffused 

radiation due to snow/ground reflection, and altered spectral distribution due to large air 

mass (Stamenic et al., 2004). The change in spectral characteristics, incidence angle and 

reduction in intensity can lead to a PV efficiency drop of up to 30% from solar irradiance 

of 1000 to 200W/m2 (Eikelboom and Jansen, 2000). 

TamizhMani et al. (1998) have shown a 57% drop of module efficiency, only 15% 

of which is due to the change in incidence angle and spectral alternation, while the rest 

attributable to non-ideal PV cell behavior at low irradiance. Their experimental and 

simulation findings stated that seasonal efficiency of PV for northern locations (Iqaluit) is 

generally: Spring> Fall> Winter> Summer.  

The Standard Testing Conditions (STC) of photovoltaic cells is conducted under 

1000W/m2 and 25°C, while in northern locations like Iqaluit (64° N), 30% of total yearly 

radiation is below 200 W/m2 and average temperature is below freezing for eight months 

of the year (Poissant et al., 2004). Furthermore, Nagano et al. (2003) reported degraded 

electrical efficiency by 9% in the winter due to condensation on the PV glass cover.  

Field test of four types of common PV cells have confirmed the efficiency decline 

due to low irradiance (Poissant, 2009). His experimental results show that all four PV 

types perform similarly at low light conditions with high diffused content, though 

crystalline PV (c-PV) is preferred in northern locations due to its higher efficiency per 

area transported. In summary, PV performance based on commercial STC results needs 
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to be re-evaluated for high latitude applications. Mindful selection of the appropriate type 

and configuration of BIPV technology is particularly important to high latitude solar 

electric installations.  

 

2.5 Building Integrated Photovoltaic/Thermal (BIPV/T) for Cold Climate 

As most flat-plate crystalline photovoltaic panels yield 10% to 20% of electric 

efficiency, the rest of absorbed solar energy is turned into waste heat. The heat trapped 

behind the PV module also leads to increased module temperature that is detrimental for 

electric efficiency. A building integrated photovoltaic/thermal (BIPV/T) systems co-

generates valuable electricity and thermal energy using the same building surface area.  

Pre-engineered building components with in-factory integration of hybrid solar systems 

(PV/T) serve as a competitive option for further market penetration (Affolter et al., 2005).  

While the Danish PV-VENT systems in Lundebjerg (Jensen, 2001) reports poor 

thermal efficiency, it adopted a simple configuration of PV+cavity+insulation. 

Researchers have investigated many other system configurations of PV/T in an attempt to 

economically improve the PV/T system’s thermal efficiency without jeopardizing its 

electric output.  

Hegazy (2000) explored different PV/T (air) configurations as shown in Figure 2.6. 

He found Model 1 (single pass) has the lowest overall performance and Model 3 (double-

pass) has the best performance at high mass flow rate (>0.02 kg/s/m2). For low ambient 

temperature and low solar radiation (e.g. northern conditions), it is concluded 
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disadvantageous to use high flow due to the increased fan power and more heat loss. 

Model 3 stands out as a suitable option due to its least consumption in fan power.  

 

Figure 2.6 Schematic drawings of four different PV/Tair Models (Hegazy, 2000) 

 

Tonui and Tripanagnostopoulos (2007) investigated cheap modifications to improve 

the thermal efficiency of PV/T (air) by adding fins, or by inserting a metallic sheet in the 

middle of the air cavity. Both adaptations enhance the useful heat convection and 

collector’s efficiency, and may therefore be suitable for cold climates. 

The combined cost of BIPV/T system is generally cheaper than same-size PV and 

thermal collectors installed separately (Chow, 2010). However, the International Energy 

Agency (IEA PV/T roadmap, 2002) did an extensive survey of the current-state 

development of BIPV/T and concluded that today’s domestic PV/T systems is still far 
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from economic for Northwestern European countries, except for a few experimental pilot 

projects with BIPV/T (e.g. SOLTAG house).  

Mei et al. (2003) created a dynamic TRNSYS thermal model for a ventilated PV 

façade/solar air collector for three European locations. The results suggest that the higher 

the latitude, the less heating energy can be saved by pre-heating ventilation air using the 

cavity behind PV façade: 2% heating saving for Loughborough (53°N), while 12% 

heating saving for Barcelona (41°N).  

In Canada, research on a different type of BIPV/T air collectors started in the late 

1990’s with Hollick (1998). While simply ventilating behind the PV may not be 

effective, Hollick combined unglazed transpired collector (UTC) and photovoltaic by 

partially covering the part of the corrugations of a SolarWall with crystalline silicon PV 

cells. Experimental results show that even though thermal efficiency of UTC decreased 

due to the addition of PV cells, the total combined efficiency (electrical + thermal) was 

greater than stand-alone UTC. 

In 2009, a state-of-the-art commercial-scale solar facade with UTC and the PV/T 

technology has been implemented in Montreal (45°N) based on an outdoor prototype 

studied by Athienitis et al. (2011). Custom-sized dark-framed PV panels are integrated 

onto the corrugated transpired SolarWall cladding (Figure 2.7), covering 70% of the total 

288 m2 façade of the John Molson School of Business (JMSB) building. 

In addition to the electricity generation, heat is actively drawn from the back of the 

PV modules and the exposed UTC pores (Figure 2.7, left), contributing to heating the 

ventilation air while cooling the PV panels. In many regions of Northern Canada where 
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space heating is needed almost all year round, co-generation adds more incentives to 

adopting active envelope systems.  

 

Figure 2.7 A BIPV/T demonstration project using UTC and PV/T solar facade in 
Montreal, Canada (Athienitis et al., 2011) 

 

While BIPV/T systems conserve material and maximize overall output, the system 

thermal efficiency is lower than UTC system alone, due to the high emissivity of PV 

laminate and high surface temperature (Santbergen et al., 2010). Therefore, the inevitable 

trade-off between electric and thermal output for BIPV/T systems should be designed for 

according to energy needs and local climate.  

 

2.6 Auxiliary Systems 

As shown in Table 2.1 and 2.2 before, the application of heat recovery ventilation 

(HRV) systems is ubiquitous in most Nordic regions. HRV is a heat exchanger that 

recovers the heat from the exhaust air to preheat the fresh incoming air (McQuiston, 

2005). At very low added cost, it is one of the most cost effective energy saving retrofit 

measures for cold climate.  
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Indoor air quality due to overcrowding and smoking is a known issue among the 

native communities in Northern Canada. CMHC (2010) published a survey showing 

improvement in air quality and better child respiratory health as a result of the installation 

and operation of HRV and increased ventilation rates.  

However, there have been many reported cases when occupants open windows or 

doors to ventilate the building, instead of turning on the HRV. The author had personal 

experience in Nunavut and Northwest Territories that building residents use windows or 

fire exits as a form of ventilation, disregarding the warning that it will unbalance the 

HRV systems.  

A façade UTC (SolarWall) system coupled with a HRV system was installed at the 

Fort Smith Recreation Centre (60°N) in NWT. Two-year of monitoring data showed that 

the combined system contribute to 78% of total energy required for ventilation air heating 

(Conserval Engineering, 2010b, 2010c). Enermodal Engineering (2005) reported that 

colder climates result in better performance of the combined system and thus, a shorter 

simple payback period than temperate climates, due to the greater temperature difference 

in HRV, longer heating season and higher solar radiation on vertical collector in Nordic 

locations. 

It is also worth noting that even though the combined system perform better than 

SolarWall or HRV by itself, the energy saving is less than the sum of the two individual 

systems (Enermodal Engineering, 2005). This is because the SolarWall increases the 

fresh air temperature before it reaches the HRV, and HRV is consequently functioning at 

a lower efficiency as HRV efficiency is proportional to temperature differential between 
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incoming and exhaust air. Therefore, the addition of SolarWall is truly beneficial only 

when it offsets the HRV defrost coil load.  

Extending the solar system design with HRV and/or heat pumps may also be cost-

effective as the whole system performance is optimized. When BIPV/T systems are used, 

the low-temperature heat extracted from the PV module can be used to pre-heat 

ventilation air, or to drive a heat pump for domestic water heating or space heating. 

Depending on the existing auxiliary system and the desired end usage of solar 

electric/thermal energy, other equipment such as heat exchangers and storage tanks may 

be needed and will add to the system cost.  

Zondag (2008) also pointed out that a large amount of storage is required for 

northern climate to obtain a significant solar fraction for space heating, while direct solar 

heating can fulfill most of the heating loads in southern regions. Seasonal storage is 

generally difficult for the North as geothermal storage risks disturbing the permanent 

frost. By the same token, ground-source heat pump is not suitable for construction on 

permanent frost either, as it also de-stabilizes the permanent frost and consequently the 

foundation (Strub, 1996). 

On the other hand, short-term storage is achievable even for remote Nordic 

locations. Though challenged by the light-weight construction materials present in 

northern housing, short-term thermal storage can be attained by phase-change-material 

drywall, adding mass to envelope, or utilizing the domestic hot water tank.  
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3 Design Methodology of Façade-Integrated Solar Prototypes  

3.1 Design Considerations 

3.1.1 Prototype Design Guidelines 

To keep the experimental investigation focused within the thesis scope, a set of 

guidelines are developed for the design of the solar prototype: 

• Use SIP wall as substrate for solar integration; Whole assembly is pre-fabricated; 

• Design the experimental prototype to accommodate several solar configurations; 

• Investigate only air-based collectors, explore both Photovoltaic and Solar Thermal 

technologies, incorporate electric/thermal cogeneration (BIPV/T); 

• Apply and extend the concept of distributed inlets in Unglazed Transpired 

Collectors (UTC) to reduce surface radiant and convective heat loss;  

• Conduct parametric studies and optimize collector’s efficiency (electric and 

thermal) prior to constructing experimental set-up; 

• Repeat experiments under controlled climatic loads in the laboratory; Compare 

indoor experimental results with outdoor monitoring data from similar full-scale 

projects as well as published data from the Manufacturers.  

3.1.2 Configuration Design and Features 

It is important to note that all the components of the experimental prototype are off-

the-shelf products that are commercially available and easily attainable. For northern 

applications, pre-fabricated air-based solar envelope systems are selected for simplicity, 

cost effectiveness and low maintenance requirements.  
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The designs of the collector configurations started with a simple UTC (product name 

SolarWall) layer. Additional layers of transpired glazing, glazing, and photovoltaic 

panels are added and mismatched to configure the best-suited collector for applications in 

Northern Canada.   

 

Figure 3.1 Design of façade collector configurations  

 

Traditional UTC (Figure 3.1b), though widely implemented in Canada’s North and 

performing favorably compared to glazed collectors (Figure 3.1a), has a few fatal 

drawbacks in cold, windy climate. Firstly, the corrugated profile and perforated nature of 

UTC contributes to surface turbulence and significant wind-induced convective loss. 

Secondly, since the absorber of such UTC systems is the exterior metal cladding, it gets 

heated by the sun and results in high surface temperature and high radiant loss during 

sun-lit hours.  

Therefore, the effect of extending the concept of distributed air inlets to transpired 

glazing is investigated (Figure 3.1c, 3.1d). High-transmittance weather-resistant 

polycarbonate sheets are perforated to 1% porosity as flat transpired glazing, and can be 

used to create a second air plenum in front of the transpired absorber (Figure 3.1d). The 

corrugated profile of the UTC absorber in Figure 3.1d creates in-plenum turbulent flows 

and actually increases the useful heat transfer. 
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The effect of partially covering the UTC with glazing is also explored (Figure 3.1e). 

Note that the glazing in this set up is interchangeable with photovoltaic panels to test the 

PV/T thermal performance. The sealed front surface of PV or glazing and the two-

plenum design could minimize convective loss by harboring the heated air away from the 

direct wind penetration.  

3.1.3 System-Level Design and Optimization 

As a building integrated system, the solar collector should be sized according to the 

building energy demand and existing auxiliary systems. On one hand, the PV-generated 

electricity is a valuable high-grade energy that can be used for all households’ electric 

needs. On the other hand, the solar heated air is useful only within a certain temperature 

range, depending on the end use. Note that system-level optimization of solar electricity 

and solar heated air will be left for future work. Only qualitative discussion is covered by 

the scope of this thesis.  

 

Figure 3.2 Utilization of solar pre-heated air, System-Level Schematics; Route 1: Solar 
heated air > 25°C; Route 2: Solar heated air <0°C; Route 3: 0°C <Solar heated air<25°C; 

Volume flow rates (cfm) shown are hypothetical values that follows mass balance. 
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Figure 3.2 illustrates the possible usage options for solar heated air at high latitude 

locations. Route 1 occurs during the warm months (e.g. July) when the received solar 

radiation is excessive and solar heated air is greater than 25°C (rare for high latitudes). In 

this case, outdoor fresh air directly feeds to the Air Handling Unit (AHU) and solar 

heated air is ducted into the unoccupied crawl space for storage.  

Route 2 depicts the other extreme when solar heated air is lower than 0°C (cold or 

gloomy days). As Heat Recovery Ventilation (HRV) units is commonly installed in 

buildings in Northern Canada (CMHC, 2010), a defrost coil is necessary to heat the 

incoming air to above-freezing before pumping it into the HRV. Solar pre-heated air can 

therefore be supplied (replacing outdoor air) to offset the defrost coil load before 

reaching the HRV core. 

Route 3 illustrates the intermediate case when solar heated air lies between 0 and 

25°C (which means outdoor air is still below 0°C). Note that HRV relies on the 

temperature difference between cold outdoor air and warm return air to perform most 

efficiently. Therefore, in this case, the solar heated air can be directly ducted to the AHU 

to offset overall space heating load. 

For BIPV/T co-generation systems, the photovoltaic electricity could be used to 

drive a DC fan for ducting solar heated air. For all transpired collectors with surface 

perforations, drainage will be provided at the bottom of the collector in real-world 

outdoor applications. The active envelope should also include a pre-engineered wall 

penetration behind the collector to pass through a 4” or 6” duct with an operable, 

insulated damper that opens only on demand.  
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3.2 Components and Configurations 

3.2.1 Experimental Assembly and Components 

In an effort to experimentally evaluate a range of building integrated solar collectors 

in an efficient manner, a BIPV/T prototype is designed and constructed to accommodate 

a dozen of testing configurations. Each layer of the test assembly can be taken apart and 

reassembled easily, allowing changes in configuration as the experiments move forward.  

 

Figure 3.3 BIPV/T-SIP Prototype Experimental Assembly 

 

The components of the whole test assembly illustrated in Figure 3.3 are listed as follows: 

1. Transpired Glazing and/or Glazing (90% transmittance) 

2. Photovoltaic Panels (60W) with dark frame and backing 

3. Corrugated Transpired Absorber (can be rotated 90°) 

4. Dark metal Absorber  

5. Structural Insulated Panel Wall (Substrate) 
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The prototype is designed to be square (1.5m x 1.5m) and the corrugated absorber 

(number 3) can be rotated 90° to create scenarios of flow-against-corrugation and flow-

along-corrugation. UTC used in the experimental set up is an off-the-shelf product, 

SolarWall, manufactured by Conserval Engineering. The corrugation profile (to scale) is 

illustrated in Figure 3.4 and the exact dimensions can be found in Appendix A.  

 

Figure 3.4 Schematic of the Experimental Assembly (SIP not shown) 

 

The transpired glazing (leftmost in Figure 3.3) layer is designed to be level with the 

top surface of the photovoltaic panel. The pitch (14mm) and pore size (1.6mm) of the 

transpired glazing is carefully chosen to maximize the system efficiency while being 

practical. As a rule of thumb, transpired collectors perform better when the pore is small 

and well distributed (Leon & Kumar, 2006). The 1.6mm pore size used for the transpired 
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glazing is the smallest of the laser drill bit size available for custom perforation and 

14mm pitch is selected to attain an overall of 1% porosity. If similar prototype were to be 

mass-produced in a commercial scale, the polycarbonate sheet can be thermo-formed for 

any pore-pitch configuration at very low added cost.  

For the design of air-based BIPV/T systems, the height of the PV panel significantly 

affects the thermal efficiency of the whole system, as the thermal performance of PV 

worsens with increasing module height. The width of the PV is restricted only by the size 

of testing facility in the laboratory. The PV modules used in the experimental assembly 

are custom sized (0.36m high by 1.47m wide, Day4Energy) with dark frame to maximize 

system thermal performance. The same PV modules are also used for the JMSB building 

BIPV/T facade at Concordia University (Athienitis et al., 2011). 

3.2.2 Possible Configurations and Testing Capacity 

 

Figure 3.5. Test Configurations: A1. Collector with Transpired Glazing (TG) and flat 
absorber; A2. TG and finned absorber; B1. UTC with corrugation along flow (UTC-v); 
B2. UTC-v + TG; B3. UTC-v with top glazing; B4. UTC with corrugation against flow 

(UTC-h); B5. UTC-h + TG; B6. UTC-h with top glazing; C1.UTC-h  + PV/T (PV 
coverage 50%); C2. UTC-h +PV/T+TG; 
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A total of ten configurations have been tested using the same basic BIPV/T-SIP 

prototype, illustrated in Figure 3.5. UTC surface is covered with transpired glazing, 

glazing, and/or photovoltaic panels. Performance of different collector types were 

quantified and compared in controlled, repeatable laboratory conditions. Details of each 

testing configuration are summarized in Table 4.1 to 4.3 in Section 4.2. 

The SIP system serves as a compact envelope of structure, insulation, and air/vapor 

barriers. Thermal storage can be provided by adding an inner layer of phase-change-

material (PCM) drywall or floor tiles. The whole active envelope system is intended to be 

pre-fabricated before shipped to site. As shown in Figure 3.6, the BIPV-SIP facade is also 

mounted on a test room as an integrated system for the testing in the Environmental 

Chamber (Section 4.4). 

 
Figure 3.6 Left: BIPV/T prototype integrated with SIP façade; Right: BIPV/T-SIP facade 

mounted on a Test Room 

 

3.3 Instrumentation 

Van Decker et al. (2001) stated that only about one-third of or less of the plane is 

found to be asymptotic, in other words, edge effects will be predominant at the one-third 
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sides of the collector.  Therefore, the majority of thermocouples in all layers are placed 

slightly offset to the right on the collector plane, before the 1/3 edge zone. 

Thermocouples are also present in the middle of the collector plane, as well as within the 

edge zone to confirm and establish the central zone, whose results are more consistent 

and representative of the collector performance.  Figure 3.7 depicts the dimensioned 

location of thermocouples for the transpired glazing (TG) and glazing (G). 

 

Figure 3.7 Thermocouple locations for the layer of Transpired Glazing (TG) 

 

The placement of thermocouples on the corrugated UTC (SolarWall) is a little more 

complex than other layers in this assembly, as the plate is allowed to rotate 90° in some 
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experiments. Figure 3.8 illustrates the relative locations and names of all the 

thermocouples present in the layer of SolarWall, with the current orientation being flow-

against-corrugation (SW-h). The plate can be rotated counterclockwise by 90° to form the 

flow-along-corrugation configuration (SW-v).  

 

Figure 3.8 Thermocouple Names for the layer of SolarWall (UTC) 

 

A naming system is developed to keep track of all the thermocouples present for the 

experiments (Figure 3.8). In short, a uniform format of “X_Y_Z#” is adopted. X indicates 

the component of the assembly (E: exterior air; TG: transpired glazing; G: glazing; SW: 

solarwall; B: back; OT: outlet top; OL: outlet low). Y indicates the four slots that the 

collector is divided into (i.e. from top to bottom: panel a, b, c, d). Z is the location of the 

thermocouples on the collector (e.g. F: front; B: back; C: center; L: left; R: right; B: 
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boundary). For example, as shown in Figure 3.8, two sensors are shared between the two 

corrugation orientations (SW-h_C2=SW-v_C2; SW-h_R5=SW-v_R3). 

To better establish a comprehensive thermal profile of the entire system, the 

thermocouples on different layers of the assembly are aligned on the (x, y) coordinate, 

super-imposing by layers. The reason why the majority of thermocouples are placed 

slightly offset to the right, instead of at the center of plane, is to avoid the junction box 

protruding from the back (center) of the photovoltaic panels.  

The thermocouples installed on the back plate (layer 5 in Figure 3.3) and PV 

modules (layer 2 in Figure 3.3) are plotted in Appendix A. There are also 4 

thermocouples (E_L1/L2/R1/R2) measuring the exterior temperature immediately near 

the collector, located at 1.5” above the top transpired glazing layer.  At the duct outlet 

where the solar heated air is drawn, there are two in-duct thermocouples 5” apart from 

each other and one RTD sensor fixed in the middle of the duct cross-section, to ensure 

accurate temperature measurement at the collector outlet.  

A total of 65 thermocouples and 2 RTDs were used, the signals of which are wired 

to 4 data acquisition modules by National Instrument and sent to a laptop via LAN 

connection (Appendix A).  

In addition, an I-V tracer was used to evaluate the instantaneous electric 

performance of the PV panel. During the BIPV/T experiments, rheostats are used to 

continuously consume the electric output by the PV panel, so that the system’s thermal 

performance is realistic.  
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4 Experimental Evaluation 

4.1 Solar Simulator / Environmental Chamber (SSEC) Laboratory  

4.1.1 Introduction to the Laboratory Facility 

The Concordia Solar Simulator and Environmental Chamber (SSEC) Laboratory is a 

state-of-the-art indoor research facility, designed to simulate natural sunlight and other 

climatic conditions (wind, temperature, humidity, etc.) in order to test various active 

systems such as PV or PV/T modules, solar air/water collectors, building-integrated solar 

systems as well as building envelope systems. There are two parts to this test facility: the 

Solar Simulator (Section 4.1.2) and the Environmental Chamber (Section 4.1.3).  

4.1.2 Solar Simulator 

 The central component of the Solar Simulator facility is the Main Lamp Field 

consisting of eight special metal halide (MHG) lamps, producing a dense multiline 

spectrum of rare earth metals comparable to a continuous solar spectrum (PSE AG, 

2011). Combined with special glass filters, the MHG lamp field provides a spectral 

distribution very close to natural sunlight (Figure 4.1) in accordance with the 

specifications of EN12975:2006 (European Committee of Standardization, 2006) and 

ISO9806-1:1994 (ISO, 1994). 

In order to eliminate long wave infrared irradiation emitted by the hot lamps, an 

artificial sky is positioned in front of the main lamp field. The artificial sky consists of 

two panes of low iron glass with antireflective coating, creating a cavity in between 

which cold air at 10°C is circulated in a closed loop and cooled by a heat exchanger. 
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Figure 4.2 shows the Solar Simulator Main Lamp Field and Test Platform at 0° (left) and 

45° (right) tilt angles. 

 

Figure 4.1 Spectral Intensity Distribution of MHG lamps compared to Natural Sun Light, 
(PSE AG, 2011) 

             

Figure 4.2 Solar Simulator in Operation: Main Lamp Field and Test Platform at 0° (left) 
and 45° (right) tilt angles 

 

Note that the natural sky has an irradiation temperature slightly below the ambient 

air temperature. The installation of artificial sky is necessary to simulate the radiant loss 

from the hot collector surface to the cold glass panes (collector to sky), without which the 
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radiant loss would be reversed (lamps to collector) as the MHG lamps can reach 

temperatures of over 100°C during operation (Athienitis et al., 2012). 

Directly below the main lamp field, the Collector Test Platform is mounted on a 

track to host any experimental setup (solar collectors or building envelope). Using a 

touch-screen control, the 1-axis rotation test platform and the main lamp field can both be 

tilted at any angle between horizontal (0o) and vertical (90o) position within accuracy of 

1o (Figure 4.2). The geometric arrangements of lamps can be adjusted to maintain a 

constant solar radiation level and uniformity within 5% or less, depending on the 

collector area.  

A Ventilation Unit (blower) is mounted at the bottom of the test platform, which 

blows grazing airflow parallel to the collector surface to simulate parallel wind conditions 

(up to 4m/s). This parallel flow is assumed to be driven by the ventilation unit only, 

independent of the suction velocity perpendicular to the surface of transpired collectors.  

The parallel airflow velocity and the height of the ventilation unit can be adjusted via 

the control touch screen. However, the wind profile is not uniform across the collector 

length, as the wind speed dissipates with increasing collector height. The percentage 

difference between peak wind speeds (maximum at collector bottom, minimum at top) 

compared to the average wind speed across the collector length can be as high as 25%. 

An automated X-Y Scanner is installed on the test platform above and parallel to the 

collectors. By taking irradiance and wind measurements at discrete point on a X-Y grid, 

the scanner is able to accurately determine the distribution and uniformity of solar 
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radiation on the collector surface. Once the desired uniformity is achieved, the entire 

collector test platform is moved up to the plane where the scanning had been carried out.   

A built-in Fluid Circuit for Solar Water Collectors is integrated at the bottom of 

the test platform to circulate heating or cooling fluid using a closed-loop water pump.  

A custom Solar Air Collector Stand is available on a mobile platform (Figure 4.3), 

with its components numbered and explained. With an adjustable inlet and outlet orifices, 

both open and closed-loop air systems can be tested under controlled conditions 

(measured inlet/outlet temperatures, mass flow rates and pressure differentials). Capable 

of controlling and monitoring the air circulation in and out of the collector, the solar air 

collector stand is normally used in conjunction with the solar simulator and the collector 

platform (where solar air collector is mounted). With appropriate duct extensions, the 

Solar Air Collector Test Stand can also used for experiments of solar air collectors in the 

Environmental Chamber (Section 4.2.2). 

  

Figure 4.3 Custom Solar Air Collector Test Stand 

 

4.1.3 Environmental Chamber 

The Environmental Chamber is a research facility for testing different building 

envelope technologies under controlled exterior/interior microclimates.  Two HVAC 
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units (central and mobile) are employed to precisely condition the chamber space. The 

setup allows for testing of a full-scale, two-storey wall, with one side (hot side) 

conditioned between 4°C and 50°C by the mobile HVAC, and the other side (cold side) 

between -40°C and 50°C using the central HVAC unit. 

Temperature, humidity and atmospheric pressure are controlled and monitored 

automatically at several measuring points inside the Environmental Chamber. A range of 

20% to 90% relative humidity and a differential pressure of ±300 Pa can be controlled 

and sustained inside the chamber.  

The front façade of the Chamber is hollowed out and the apertures are covered with 

10 windows of 2.2 m x 2.2 m each (Figure 4.4, left). A Mobile Lamp Field of six MHG 

lamps (Figure 4.4, left) can be positioned in front of the glazed façade to illuminate the 

test surface inside the Environmental Chamber.  

       

Figure 4.4 Left: Mobile Lamp Fields and Environmental Chamber (main façade with 
glazed apertures); Right: Portal Test Hut inside the Environmental Chamber 
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The individual lamps of the mobile lamp field can be manually moved on 3-axis. 

Lamp intensity can be automatically dimmed down to 60% (600W/m2) with relatively 

low effects on spectral distribution. For small-scale testing (e.g. this thesis project), a 

portable cooling chamber (Figure 4.4, right) can be used to host the building-integrated 

solar collector.  

For the purpose of this thesis, the portable cooling chamber is referred to as Test 

Hut (Figure 4.4 Right) so not to confuse the readers, as the test hut at room temperature 

(20°C) is in fact in heating mode as temperature in the Environmental Chamber is low. A 

low iron, antireflective-coated glazing is in place on the main façade of the test hut as the 

default mode (Figure 4.4, right). The rest of the test hut envelope is made of 120 mm of 

polyurethane insulation to minimize heat loss.  

A Portable X-Y Scanner, similar to the X-Y Scanner on the solar simulator test 

platform, is used to measure the solar intensity distribution and uniformity on the test 

surface by taking discrete measuring points. Despite the difficulty due to framing of the 

glazed apertures of the Chamber,  ±10% uniformity and a maximum of 1200W/m2 

irradiance can be achieved on the test hut facade inside the chamber. 

 

4.2 Test Sequence under the Solar Simulator  

Ten configurations of building integrated solar collectors were tested at the SSEC 

laboratory in late 2011. Compared to outdoor tests that would normally take a calendar 

year to fully characterize a collector’s performance, indoor testing facilities with 

controllable and repeatable environmental conditions significantly compressed the 

experimental timeline. Figure 4.5 illustrates the experimental set up using the Solar 

Simulator and the Solar Air Collector Stand. 
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Grazing wind (parallel surface flow) up to 3.5m/s average is created by the blower at 

the bottom of the collector test stand (Figure 4.5). The exterior temperature (laboratory 

temperature) is monitored at the base of the fan (one sensor on each side of fan), inside 

the lab space, and near the collector surface (4 thermocouples measuring air temperature 

at 1.5” above the collector surface). Note that there are significant differences (up to 4°C) 

between temperature measurements inside the lab space, at base of fan, and near collector 

surface. Implications of this observation are discussed in Section 4.3.1. 

 

Figure 4.5 Experiments in Progress under the Solar Simulator 

 

There are two thermocouples mounted inside the duct outlet (elbow section) and a 

resistance temperature detector (RTD) probe inserted right after the thermocouples in the 

straight duct section, to measure the air temperature exiting the collector. As collector 

inlet and outlet temperatures are two very important parameters in calculating the 

collector efficiency, redundancy in instrumentations is beneficial. 

The amount of air passing through the collector is measured at the Air Collector 

Stand (Figure 4.5) using a laminar flow element (LFE) accurately monitoring and 
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controlling the mass flow rate of air removing heat from the collector absorber. The solar 

heated air is then dumped into the conditioned lab space, completing the open loop.   

Due to height restriction by the X-Y scanner, the SIP envelope was too thick to fit 

under the scanner tracks. Therefore, a 2” expanded polystyrene insulation is added at the 

back of the collector prototype and back loss is corrected by simulation (Section 5.4.3). 

The SIP envelope is integrated with solar collectors during the Environmental Chamber 

experiments. Table 4.1, 4.2 and 4.3 below summarize all ten collector configurations 

based on the same basic prototype, arranged in the order of experimental evaluations. 

Table 4.1 Test Stage A (Transpired Glazing/Glazing) 

A1. TG (Transpired Glazing with absorber 
at the back) 

A2. TG + fins (Transpired Glazing + fins at 
the back absorber) 

   

Table 4.2 Test Stage B (SolarWall, Transpired Glazing/Glazing) 

B1. SW flow ALONG corrugation:  

SW-v (SolarWall Vertical) 
B2. SW-v + TG  

(SolarWall Vertical + Transpired Glazing) 
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B3. SW-v + G: Two-stage Transpired 

Collector (SolarWall Vertical + Glazing) 
B4. SW flow AGAINST corrugation:SW-h 

(SolarWall Horizontal) 

   

B5. SW-h + TG (SolarWall Horizontal + 
Transpired Glazing) 

B6. SW-h + G: Two-stage Transpired 

Collector (SolarWall Horizontal + Glazing) 

   

 

Table 4.3 Test Stage C (SolarWall, Transpired Glazing/Glazing, PV Panels) 

C1. SW-h +PV: JMSB setup 

(Solarwall Horizontal + PV panels) 

C2. SW-h + PV + TG   

(Solarwall Horizontal+PV+Transpired Glazing) 

  

 

Each collector underwent four sets of tests (HG-HW, HG-LW, LG-HW, and LG-

LW), with abbreviations explained in Table 4.4. Each test set involves five mass flow 

rates to be maintained at steady state. The airflow parallel to the collector surface is 
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created by the ventilation unit as described in Section 4.1.2. This is considered as parallel 

wind, distinct from the suction velocity (perpendicular to surface) occurring at the 

distributed air inlets of a transpired collector. 

Table 4.4 Steady-State Testing Conditions (Solar Simulator Testing) 

Solar Irradiance (±5% 
uniformity) 

Air velocity parallel to collector 
surface (parallel wind) 

Mass Flow Rate  

High Gain (HG): 1148 W/m2 High Wind (HW): 3.5m/s 

Low Gain (LG): 838 W/m2 Low Wind (LW): 1m/s 

150, 125, 100, 75, 50 
kg/hr/m2 

 

In addition to a total of 240 hours of valid steady-state evaluations in the laboratory, 

there were many test sets repeating the same environmental conditions in order to 

confirm repeatability of the experimental results.  

The Solar Radiation on the collector surface is scanned at discrete points with 

150mm increments in both x and y directions. By dimming the Solar Simulator lamps 

from 100% to 75%, two irradiance levels averaging 1148 and 838 W/m2 are employed 

for testing, known as High Gain (HG) and Low Gain (LG).  

The irradiance distribution is shown in the contour plots in Figure 4.6 for LG 

condition. Across the target collector plane (1.5m by1.5m), the irradiance is optimized to 

reach a 5% standard deviation in distribution, shown in Figure 4.7. 
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Figure 4.6 Irradiance Distribution on the Collector Surface (Solar Simulator), average 
838 W/m2 

 

     

Figure 4.7 Standard deviation of solar distribution at Collector Surface (Solar Simulator), 
5% maximum 
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4.3 Results and Discussion – Solar Simulator Experiments 

4.3.1 Benchmarking Commercially-Available Collectors’ Performance (A1 and B1) 

Collector B1 (SW) in Table 4.2 employs a commercially available UTC known as 

SolarWall, manufactured by Conserval Engineering. Collector A1 (TG) in Table 4.1 is 

similar in design to a commercial product (LubiWall) manufactured by Enerconcept. 

Compared to the LubiWall, collector A1 adopts polycarbonate sheet of higher 

transmittance with custom perforation using laser punching. To benchmark the 

experimental work done with the Solar Simulator, Figure 4.8 and 4.9 compares the 

manufacturers’ published data with experimental results obtained at the laboratory for the 

two types of collectors (A1 and B1).   

Steady-state efficiency, adopted as the common performance gauge to compare 

collectors, is calculated by: 

                               (4.1) 

where Tplm (°C) is the temperature at collector plenum outlet; Tamb (°C) is the 

temperature at collector inlet, using either ambient lab temperature or measured 

temperature near the collector surface; MFR is the mass flow rate (kg/s/m2) for heat 

removal; cp is the specific heat capacity of air (J/kg/K); Acol is the collector area; G is the 

incident solar gain (W) on the façade. 

Although the efficiency data are following the exponential increase with increasing 

mass flow rate and generally in agreement with manufacturer’s claims, there is a 

noticeable discrepancy as shown in Figure 4.8 and 4.9.  

!th =
Qu

G
=
MFR " cp " (Tplm # Tamb ) " Acol

(I " Acol )
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Figure 4.8 Collector B1 (SWv) Performance: SolarWall manufacturer’s data (wind 
condition unknown) compared to Experimental data (at 0.8m/s average parallel wind) 

 

Figure 4.9 Collector A1 (TG) Performance: LubiWall Manufacturer’s data (wind 
condition unknown) compared to Experimental data (at 0.9 m/s average parallel wind) 

 

All the results are obtained under irradiance ranging from 900 to 1100 W/m2, and 

ambient temperature from 20 to 25°C. However, neither manufactures published the wind 

or surface flow conditions under which their performance tests took place. For transpired 
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collectors that are particularly prone to surface convective loss, efficiency varies 

significantly depending on the surface wind conditions. 

While Manufacturers’ data may provide a good reference for research work, this 

thesis will compare all the proposed collectors using experimental data under specified 

environmental conditions. Moreover, using inlet temperature at collector surface and in 

the lab space also leads to different efficiency results, as shown by the red (square) and 

green (square) dots in Figure 4.8 and 4.9. For consistency in results presentation from 

here on, all efficiency calculations will use inlet temperature near collector surface, 

averaged from 4 thermocouples located 1.5” above the collector exterior.  

As each collector is tested under two solar irradiance in combination with two 

parallel wind speeds, effects of convective loss and efficiency at different solar radiation 

can be evaluated. For example, for ideal solar thermal collectors that maintain its solar 

fractions at all radiation levels, equation 4.2 shows that collector temperature rise (outlet 

and inlet temperature difference, #T) should be linearly proportional to irradiance 

(W/m2), at the same mass flow rate. 

                                             (4.2) 

Figure 4.10 plots collector temperature rise (#T) against the two irradiance levels 

under which Collector B1 (SW-v) was tested (with 3.5m/s average parallel surface flow). 

The linear agreement for all mass flow rates (50, 75, 100, 125, 150 kg/hr/m2) confirmed 

the validity of test results. Using this linear approximation, collector temperature rise can 

be interpolated for all irradiance between 0 to 1148 W/m2.  For low parallel surface flow 

conditions and other collectors tested, similar plots can be found in Appendix B. 

MFR
1
! "T

1
/ I

1
= MFR

2
! "T

2
/ I

2



 
 

62!

 

Figure 4.10 Collector B1 (SWv) temperature rise at different irradiance with five mass 
flow rates, tested at 3.5m/s parallel surface flow 

 

4.3.2 Effects of Fins, Transpired Glazing, and Transpired Absorber (A1, A2 and B1)  

Three transpired collectors (A1, A2 and B1) are compared in this Section, all of 

which benefit from the distributed air inlets at the surface. However, the exterior surface 

of B1 (SW-v) collector is also the absorber, while A1 and A2 hides the absorber behind 

the transpired glazing exterior.  

A1 (TG no Fins) and A2 (TG with Fins) are identical, except that A2 has five 8 cm 

high dark fins mounted on the back absorber to increase the useful heat transfer. Figure 

4.11 shows the systems’ performance at 1148W/m2 with different surface airflows 

(parallel wind). Results under 838W/m2 irradiance is very similar and can be found in the 

tables of Appendix B.   

At both parallel wind conditions (Figure 4.11), A2 (TG with Fins) is able to increase 

efficiency by up to 13% compared to A1 (TG without Fins), especially at high mass flow 

rates when the fins in the plenum creates turbulent flow and further increasing useful heat 

transfer at the absorber.  
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Figure 4.11 Collector A1 (TG no Fins), A2 (TG with Fins) and B1 (SW-v): Efficiency at 
high (top) and low (bottom) surface parallel flows, steady state at five mass flow rates; 

 

TG with fins (A2) performs better than traditional collector with transpired absorbers 

(B1, SWv) at both surface flow (parallel wind) conditions. Moreover, both collectors 

with transpired glazing (TG) exhibit better resilience against convective loss due to 

increase in parallel surface flow. As shown by the orange and red lines in Figure 4.12, the 

wind loss only affects TG collector (A1) marginally at low flow rates. On the contrary, 

the SWv collector (with exterior transpired absorber) drops over 15% in efficiency under 

high wind condition (green and blue lines in Figure 4.12). 
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Figure 4.12 Collector A1 (TG no Fins) and B1 (SW-v): Efficiency at high and low 
surface parallel flows (HW and LW), steady state at five mass flow rates; 

 

4.3.3 Effects of Corrugation Orientation in Transpired Absorber (B1 and B4) 

As a common practice, most commercial SolarWall installations orient the 

corrugation vertically (B1, SW-v) to promote natural ventilation, while occasionally there 

are some installations with corrugation oriented horizontally (B2, SW-h), usually due to 

architectural considerations.  

 

Figure 4.13 Collector B1 (SW-v) and B4 (SW-h): Efficiency at high and low surface 
parallel flows (High Wind/HW and Low Wind/LW), steady state at five mass flow rates; 
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Figure 4.13 plots the efficiency of SWv and SWh at high and low surface wind 

conditions under irradiance of 1148 W/m2, confirming that there are only minimal 

differences between the two collectors. 

It is interesting to note that SWv performs slightly better at high wind while SWh 

performs better at low wind (Figure 4.13). However, the uncertainty of efficiency lies 

beyond the difference between the collectors. Therefore, no definitive conclusions can be 

drawn from the experimental results here.  

To fully study the effect of corrugation orientations in transpired collectors, a large-

scale experimental set up (more than 1.5m by 1.5m) and more accurate instrumentation 

are required to amplify the efficiency differences while minimizing experimental 

uncertainty. Details of uncertainty propagation and error analyses can be found in Section 

5.3.1 and Appendix C. 

4.3.4 Effects of Adding Glazing on Transpired Absorber (B1, B3, B4, and B6) 

This section investigates the effect of adding glazing to the top one-quarter area of 

the transpired absorbers. Both corrugation orientations (SW-h and SW-v) are evaluated, 

however, only results comparing B3 (SW-h) and B4 (SW-h +Glazing) at 1148 W/m2 are 

presented in Figure 4.14, as the results under low solar gain condition and for SW-v 

collectors are very similar and can be found in Appendix B.  
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Figure 4.14 Collector B4 (SWh) and B6 (SWh+G): Efficiency at high and low surface 
parallel flows (High Wind/HW and Low Wind/LW), steady state at five mass flow rates 

 

It can be concluded from Figure 4.14 that the performance of a partially glazed 

collector (SWh+G) is similar to SolarWall (SWh) at low parallel surface flow (LW, 

0.9m/s), while the addition of glazing increases the collector performance by up to 8% at 

high surface flow (HW, 3.5m/s). This finding validated the assumption that partially 

covering the distributed air inlets of transpired absorber will enhance SolarWall’s 

resilience to convective wind loss, especially at low heat removal rates (mass flow rates).  

In addition, the glazing also creates a double plenum at the top of the collector, 

which doubles the absorber area and increases useful heat transfer. As shown in Figure 

4.15, the exterior temperature of the glazing is also lower than the transpired absorber 

(SolarWall), contributing to less surface radiant loss. 

Emissivity of SolarWall, glazing, transpired glazing, and wood frame surfaces are 

experimentally tested using a hand-held emissivity meter. As all materials exhibit 
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emissivity between 0.8-0.9, no emissivity correction is needed to adjust the thermal 

imaging pictures in Figure 4.15 (normalized temperature range from 15 to 70 °C). 

 

Figure 4.15 Infrared evaluation of SWv (B1), SWh (B4), SWv+G (B3), SWh+G (B6) and 
SWh+TG (B5) at 1148 W/m2 and 1m/s parallel wind, with mass flow rate of 50 kg/hr/m2  

  

4.3.5 Effects of Adding Transpired Glazing to Transpired Absorber (B1, B2, B4, B5) 

As shown in Figure 4.15, collectors covered with transpired glazing (e.g. B5) have 

very low surface temperature compared to collectors with exposed absorber (B1 and B4, 

SWv and SWh). The reduced surface radiant loss contributes partly to the efficiency 

increase of SW+TG illustrated in Figure 4.16. 

 

Figure 4.16 Collector B4 (SWh) and B5 (SWh+TG): Efficiency at High and Low surface 
flows (parallel wind) 
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Figure 4.16 shows the performance of B4 (SWh) and B5 (SWh+TG) at 1148 W/m2, 

while results from B1 (SWv) and B2 (SWv+TG) follow the same trend. At both high and 

low wind (HW and LW) conditions, SWh+TG collector (Blue and Green lines) performs 

adequately with only slight drop in efficiency at low mass flow rates. While SWh 

exhibits over 18% efficiency drop under high parallel surface flow (3.5m/s) than under 

low flow (0.9 m/s), shown by the grey and purple lines in Figure 4.16.  

At 0.9m/s surface flow, the efficiency of SWh+TG is 13% to 18% higher than SWh 

system. As SWh+TG system is less affected by surface wind loss, its efficiency is 23% to 

28% higher than that of the conventional SWh system at high parallel wind (3.5m/s). 

The SW+TG collector derives its resilience to convective wind loss from the 

addition of transpired glazing. Figure 4.17 indicates that both SWh+TG (B5) and TG 

(A1) collectors perform well under high and low parallel wind conditions, suggesting 

excellent resilience of the transpired glazing itself to convective losses, as opposed to the 

transpired absorber (SolarWall).  

 

Figure 4.17 Collector B5 (SWh+TG) & A1 (TG no Fins): Efficiency at High&Low Wind 
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The results shown in Figure 4.15 and 4.16 revealed the two important characteristics 

of transpired glazing:  

1. TG lowers surface temperature and radiant loss to the cold exterior;  

2. TG ameliorates transpired absorber’s susceptibility to convective wind loss. 

These are particularly relevant findings with regard to collectors’ suitability for cold, 

windy northern climate. The transpired (perforated) nature of the absorber is also 

advantageous by allowing simultaneous heat transfer at multiple inlets, especially when 

hidden behind an exterior layer of transpired glazing (B2 and B5).  

4.3.6 Effects of Adding PV and Transpired Glazing to Transpired Absorber (C1,C2) 

In addition to solar thermal collectors, the possibility of integrating solar electric 

components (photovoltaic panels) onto UTC systems is also evaluated. Delisle  (2008) 

and researchers in Waterloo University have endeavored on the possibility of adding 

small PV cells onto SolarWall substrate. For this thesis project, two custom size (1.47m 

wide by 0.36m high) photovoltaic panels with dark metal frame are mounted on the 

SolarWall cladding covering approximately 50% of the collector area.  

The two PV modules are wired in series with a resistance of 2.5 Ohm, to use up the 

generated electricity at maximum power point (MPP) and eliminate interference with the 

collector thermal output during the experiments.  

As summarized in Table 4.5, MPP is obtained at Ipeak and Vpeak. Specifications 

from the manufacturer’s (Day4Energy) data are confirmed by I-V tracer results at high 

and low solar gain (I-V curves see Appendix B).  
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Table 4.5 Photovoltaic Module Electric Characterizations 

 Power 
(W) 

Isc 
(Amp) 

Voc 
(Volt) 

Ipeak 
(Amp) 

Vpeak 

(Volt) 

Irradiance 
(W/m2) 

Temp PV 
(°C) 

Module 
Specification 
(Day4Energy) 

62.4 7.08 11.4 7.08 8.81 1000 (STC) 25 (STC) 

2 Panels in 
series (HG) 

123.5 9.01 20.11 8.45 14.61 1148 (HG) 54.19 

2 Panels in 
series (LG) 

89.8 6.05 20.43 5.74 15.64 838 (LG) 42.92 

 

The electric efficiency of photovoltaic modules can be calculated in either one of the 

two ways, as described in equation 4.3 and 4.4.  

                                   (4.3) 

where "PV (=0.0046) is PV module temperature coefficient, TSTC (=25°C) is PV cell 

temperature at Standard Test Conditions, (PV@STC is the PV electric efficiency at STC.  

                        (4.4) 

For example, for 2 modules at High Gain (1148W/m2), the spontaneous efficiency of 

the array (module temperature at 54.19°C) can be calculated by equation 4.3: 

12.1%*[1-0.0046*(54.19-25)]=10.47% 

Alternatively, efficiency using equation 4.4 is: 

(123.5W/2)/(1148W/m2*1.47m*0.35m)*100%=10.45% 

The values of PV spontaneous efficiency are very similar using both methods, 

confirming experimental validity using the I-V tracer and using temperature adjustment.  

!
PV

= !
PV@STC

"[1# $
PV
(T

PV
# T

STC
)]

!PV = ElectricOutputPV / (Irradiance "ModuleArea)
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Collector C1 (SWh+PV) draws air from the exposed portion of SolarWall cladding, 

and then behind the PV modules, eventually feeding to the plenum and outlet duct. The 

movement of heated air is indicated in Figure 4.18.  

Collector C2 (SWh+PV+TG) covers the exposed SolarWall with transpired glazing 

(50% coverage), while the PV modules are still directly exposed to the exterior 

environment. The infrared pictures in Figure 4.18 present much reduced exterior 

temperature where the SolarWall is covered by transpired glazing (C2), resulting in 

lowered radiant loss to the cold ambience. 

 

Figure 4.18 Infrared evaluation of C1 (SWh+PV) and C2 (SWh+PV+TG) at 1148 W/m2 
and 0.9m/s surface parallel flow, with mass flow rate of 50 kg/hr/m2 

 

Moreover, the surface temperature of PV modules becomes more uniformly 

distributed with the addition of 50% TG. As shown in Figure 4.18, the bottom of PV 

modules in collector C1 are cooled by incoming cold air from outdoor, while the addition 

of transpired glazing in collector C2 effectively reduces the temperature stratification in 

the PV modules. As temperature differential between PV cells creates electric mismatch 

and is detrimental to PV’s electric production, the transpired glazing in C2 improves the 

collector’s electric performance. Additionally, the transpired glazing in C2 lowers the 
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surface radiant and convective losses, contributing to the improved thermal output of C2 

compared to C1.  

The PV modules and mounting techniques used in Collector C1 and C2 are identical 

to the 288m2 SolarWall+PV/T façade of the JMSB building at Concordia University, 

shown in Figure 2.7. Therefore, the outdoor monitoring data from the JMSB project (with 

PV coverage of approximately 70%) is used to benchmark the prototype performance 

under controlled lab conditions.  

To address the difference in PV coverage, a measure accounting for both thermal 

and electric output of collectors is proposed by Athienitis et al. (2011) for similar 

evaluations. The Thermal Equivalent Efficiency (!EQ) as calculated in equation 4.5: 

                                         (4.5) 

where (TH is the steady-state thermal efficiency of the collector derived from heated 

air alone; APV/Acol is the percentage area covered by PV; COP describes the coefficient of 

performance of a heat pump that converts one unit of PV-generated electricity to four 

units of thermal energy (Athienitis et al., 2011). The assumption of COP equals to four is 

a reasonable estimate for commercially available air source heat pumps at source 

temperatures above 0 °C (ASHRAE, 2009). 

Figure 4.19 shows the experimental thermal efficiency for C1 (SWh+50%PV) and 

C2 (SWh+50%PV+50%TG) at 1148W/m2, as well as the spring thermal efficiency of the 

JMSB façade (SWh+70%PV). Figure 4.20 presents the thermal equivalent efficiency 

(!EQ) calculated from equation 4.3 for the three collectors. Note that the black dash line 

!EQ = !TH + (APV / ACol ) "COP "!PV
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indicating thermal efficiency of JMSB (SWh+70%PV) is very similar to the efficiency 

curve of collector C1 (SWh+50%) at low wind in Figure 4.19, while in Figure 4.20, the 

black dash line is bounded by efficiency curves of C1 and C2 under low surface wind. 

 

Figure 4.19 Collector C1 (SWh+PV) and C2 (SWh+PV+TG) Thermal Efficiency; 
Outdoor Data for SWh+70%PV spring efficiency (Athienitis et al., 2011); 

 

 

Figure 4.20 Thermal Equivalent Efficiency: Collector C1 (SWh+PV) and C2 
(SWh+PV+TG); Outdoor Data for SWh+70%PV (Athienitis et al., 2011); 
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Figure 4.20 indicates that the thermal equivalent efficiency of C1 (SWh+50%PV) is 

lower than JMSB (SWh+70%PV), since less collector area is covered by PV modules. 

However, by covering the exposed SolarWall cladding with transpired glazing, collector 

C2 with only 50% PV coverage, scores a thermal equivalent efficiency higher than the 

JMSB setup with 70% PV (Figure 4.20). This finding proves that adding more PV 

doesn’t necessarily mean generating more energy, as thermal efficiency of transpired 

collectors is actually lowered by PV coverage.  

Figure 4.19 also shows that C2 (SWh+50%PV+TG) exhibited low susceptibility to 

wind-induced surface convective loss, especially at high mass flow rates. With 50% 

transpired glazing coverage, C2 performs 16%-20% higher in efficiency than C1 (without 

TG) at high surface flow (high wind), and 10%-14% higher at low wind. Therefore, it is 

concluded that even partial addition of transpired glazing is beneficial in reducing 

collector surface (radiant and wind) losses.  

4.3.7 Detailed Temperature Profiles (B1 and B2) 

For each collector configuration mentioned before, temperatures are measured at 

many discrete points on each component layers (Instrumentation diagrams see Figure 3.7 

and 3.8). By averaging temperature measurements at each layer (e.g. transpired glazing, 

SolarWall, backplate, etc.), we can plot the average temperature rise for each component 

of the collector. Detailed temperature measurements along the height of the collector can 

be found in Appendix B. Temperature rise values are calculated based on exterior 

temperature near the collector surface. The uncertainty analysis of temperature rise is 

shown in Appendix C and the error bars are shown in Figure 4.21 and 4.22.  



 
 

75!

Take collector B1 (SWv) and B2 (SWv+TG) for example: Temperature rise of Tmid 

(middle layer) of SWv+TG and both Tsurf (surface layer) of SWv and SWv +TG systems 

are plotted at different mass flow rates in Figure 4.21 and 4.22.  

 

Figure 4.21 Temperature Rise at each layer: Collector B1 (SWv) and B2 (SWv+TG), 
0.9m/s parallel surface airflow created by fan 

 

 

Figure 4.22 Temperature Rise at each layer: Collector B1 (SWv) and B2 (SWv+TG), 
3.5m/s parallel surface airflow created by fan 
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Note that #Tmid is the absorber (SolarWall) temperature rise for SWv+TG system, 

and #Tsurf for SWv+TG is the temperature rise at transpired glazing. For SWv system, 

#Tsurf means the temperature rise at surface (SolarWall), which is also the absorber. 

Under both wind conditions, the absorber temperature of SWv +TG (#Tmid) is 

higher than the absorber temperature of SWv system (#Tsurf). Comparing absorber 

temperatures of the two collectors, #Tmid remains almost invariant at high or low wind, 

while #Tsurf of SWv is significantly lowered by high wind conditions.  

As absorber temperature is directly linked to collector outlet temperature and useful 

heat delivered, Figure 4.21 and 4.22 explained the higher efficiency of SWv+TG system 

due to the reduction of surface convective wind loss. Moreover, the surface temperature 

of SWv+TG system is effectively lower than #Tsurf of SWv system, resulting in less 

surface radiant loss less compared to conventional SolarWall (SWv) systems.  

More details on temperature at nodes (layers) for each collector can be found in 

Section 5.3.3, in combination with simulation results from custom thermal network 

models built in MATLAB.  Appendix B summarizes the efficiency and temperature rise 

of the ten collectors in Table B.2 to B.11. The efficiency curves of all ten collectors are 

shown from Figure B.8 to B.11.  

 

4.4 Testing Sequence for the Environmental Chamber 

As shown in Figure 4.23, four best-performing configurations (B4, B5, C1 and C2 as 

referred to in Table 4.2 and 4.3) are tested in the Environmental Chamber. Compared to 

the experiments under the Solar Simulator, the Environmental Chamber is capable of 



 
 

77!

maintaining an ambient temperature of -20°C with incoming solar irradiance of 824W/m2 

on the test plane, validating collectors’ performance in cold environment. The 

experimental climatic conditions are summarized in Table 4.6. 

 

Figure 4.23 Collectors tested in the Environmental Chamber: B4: SolarWall (SWh); B5: 
SolarWall covered with transpired glazing (SWh+TG); C1: SWh+PV; C2: SWh+PV+TG 

 

Table 4.6 Steady-State Testing Conditions (Environmental Chamber Testing) 

Solar Irradiance 
(±10% uniformity) 

Exterior (Chamber) 
temperature/RH 

Interior (Test 
Hut) temperature 

Mass Flow Rate  

824 W/m2 -20°C /45% 20°C 150, 125, 100, 75, 50 
kg/hr/m2 

 

The schematic of the test set up is presented in Figure 4.24, showing half of the 

active façade of BIPV/T-SIP, which replaces the entire glazed façade of the Test Hut 

(Figure 4.4, right).  

The Test Hut is maintain at room temperature (20°C) and exposed to solar radiation 

(824 W/m2) and -20°C exterior temperature. The solar heated air from the collector outlet 

is ducted through the Test Hut without mixing with the air inside the Test Hut. An 

auxiliary heater with built-in control system is responsible for maintaining the interior of 

Test Hut at room temperature. 
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Figure 4.24 Schematic Drawing of experimental set up in the Environmental Chamber 

 

The insulated duct transports the solar heated air outside the Environmental 

Chamber through a pre-engineered connection (Figure 4.25). Construction details of the 

experimental assembly in Environmental Chamber can be found in Appendix A. 

 

Figure 4.25 Photo of experimental set up in the Environmental Chamber, showing Mobile 
Lamp Field, Test Hut with active façade, and Duct exiting the Chamber; 
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The duct from the collector outlet runs all the way out from the Environmental 

Chamber and ends up at the Air Collector Stand (Figure 4.3) where the fan is located. 

The solar heated air is sucked out by the fan and dumped into the lab space. Though the 

Chamber is slightly depressurized due to removal of air by the Air Collector Stand, there 

are two pressurizing/depressurizing fans built into the Chamber to stabilize the internal 

pressure of conditioned space.  

As this is the first experiment carried out in the environmental chamber, some 

limitations, which may be improved for future experiments, were encountered. Firstly, no 

wind is blown on the surface of the collector to evaluate wind-induced convective losses 

at cold temperature. Secondly, the tests were conducted at 45% relative humidity (RH), 

while ideally, 55% to 75% RH is representative of winter conditions in Northern Canada 

(e.g. Iqaluit, Yellowknife, etc.).  

Unique in set up with the incoming solar radiation, the Environmental Chamber 

receives 27.6kW of thermal energy from the lamps, which imposes additional loads on 

the cooling coil of the Chamber. To effectively lower the Chamber temperature with 

incoming solar radiation, relative humidity inside Chamber is maintained at 45% to 

relieve the cooling coil from defrost cycles and to exercise its capacity.  

In addition, the incoming solar radiation heats up the glazed façade of the Chamber 

and leads to radiant gain on the collector surface. This error is experimentally corrected at 

the Solar Simulator with the use of the Artificial Sky, which is cooled to 10°C to simulate 

the cold sky.  Numerical correction is needed to offset the radiant gain for the Chamber 

test, details are discussed in Section 5.4.  
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Figure 4.26 shows the Mobile Lamp Field in action (left) and explains the 

components of the Test Hut (right). A portable X-Y scanner is mounted in front of the 

collector to scan for solar uniformity. Once the optimal location is determined, the 

scanner is removed and the Test Hut is moved forward into the scan plane where the 

desired irradiance uniformity is achieved. 

 

Figure 4.26 Photos of experiments in progress in the Environmental Chamber; Left: 
Lamps in action; Right: details of Test Hut assembly; 

 

Due to the framing effects and the diffused light bouncing off multiple surfaces 

before reaching the scan plane, irradiance uniformity is able to reach ±10%, as compared 

to ±5% uniformity with Solar Simulator main lamp field (Figure 4.7).  

Figure 4.27 and 4.28 illustrate the solar distribution obtained from the portable X-Y 

scanner on the test plane. Note that there are some hot and cold spots on the irradiance 

distribution. For future experiments, better uniformity inside the Chamber may be 

obtained by strategic placement of insect screens to diffuse the incoming light.     
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Figure 4.27 Irradiance Distribution at Collector surface (inside Chamber), average 824 
W/m2 

          

Figure 4.28 Standard deviation of solar distribution at Collector Surface (inside 
Chamber), 10% maximum 
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4.5 Results and Discussion – Environmental Chamber Experiments 

4.5.1 Discrepancy in Results between Solar Simulator and Environmental Chamber  

This two-part laboratory facility offers different strengths and capacities: the Solar 

Simulator is optimized for quick, accurate characterization of solar collectors or building 

components at room temperature, while the Environmental Chamber allows for 

evaluation under near in-situ conditions (with cold temperature and solar radiation) at the 

expense of incurring some systematic limitations. Table 4.7 summarizes the hardware 

limitations that cause the same collector to perform differently under the Solar Simulator 

and inside the Environmental Chamber. 

Table 4.7 Summary of reasons contributing to different efficiency results between tests 
under Solar Simulator and test in the Environmental Chamber 

Cause of discrepancy in 

collector performance 

Tests under Solar 

Simulator 

Tests in the Environmental 

Chamber 

Different air leakage in 
duct run 

Short duct run (15’) from 
collector outlet to fan 

Long duct run (45’) from 
collector outlet to fan 

Different back insulation 2” EPS behind collector Full SIP (1’) behind collector 

Radiation gain at 
collector surface 

Corrected by the artificial 
sky 

Uncorrected as Chamber’s glazed 
façade is heated by lamps 

Different surface wind 
condition 

Tested at 3.5m/s (high) 
or 0.9m/s (low) wind 

Tested with no wind  

 

The last three error sources mentioned in Table 4.7 are mathematically corrected via 

numerical simulation (elaborated in Section 5.4). This Section only investigates the error 

due to air leakage in ducts, using experimental corrections.  
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4.5.2 Effects of Air Leakage in Environmental Chamber 

At the end of all Chamber experiments, the duct is disconnected at the collector 

outlet and at the fan from the Air Collector Stand. One end is sealed off and the other end 

is connected to a calibrated fan, while the rest of the duct run and its connectors remain 

undisturbed. A series of duct leakage test was performed at different levels of 

pressurization at room temperature. The calibrated fan measures automatically the 

pressure loss at the fan. In-duct pressure differentials due to fan pressurization are 

measured by a pressure sensor at the sealed end of the duct run.   

Five mass flow rates, each corresponding to a certain internal pressure build-up, are 

evaluated in the leakage test. Results are shown in blue dots in Figure 4.29. Percentage 

losses in duct at different mass flow rates are relatively uniform, ranging from 10.5% to 

11.1% in leakage tests. 

 

Figure 4.29 Duct Air Leakage Test results and extrapolated flow loss for Experimental 
Mass flow Rates 
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The red dots in Figure 4.29 are extrapolated linearly from the leakage test data (blue 

dots) for the five actual mass flow rates (50-150kg/hr/m2) used in the experiments. The 

leakage test determined that the average percentage in-duct mass flow loss is 10.8% for 

all mass flows, taking into consideration all connections along the 30’ duct run from 

collector outlet to Air Collector Stand. Note that only the 30’ that is addition to the 15’ 

duct run used in Solar Simulator tests was evaluated, in order to find out the 

ADDITIONAL air leakage rate caused by a longer duct run and more connections during 

the Chamber tests. Details of the duct leakage test results and calculations can be found in 

Appendix B.  

The 10.8% of leakage rate is a significant contributor to the overestimation of 

collector performance measured inside the Environmental Chamber. When the fan at the 

Air Collector Stand thinks it is drawing 150kg/hr/m2 of air from the collector, there is 

only in fact 133.8 kg/hr/m2 of air at the collector intake, the rest of air is lost in the 

numerous duct connections. As the efficiency values are directly proportional to the mass 

flow rate used in calculation (equation 4.1), the over-estimation of mass flow also leads 

to significant over-estimation of collector efficiency.  

Figure 4.30 and 4.31 illustrate the corrected efficiency (red curve) as compared to 

the measured results (green curve) with duct leakage of 10.8%. The correction for duct 

leakage is particularly effective at high mass flow rates. Though the corrected efficiency 

curve (red curve) is still higher than the efficiency curves obtained from the Solar 

Simulator (blue curve), the duct leakage test eliminated the most significant source of 

error using reliable experimental data for correction.   
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Figure 4.30 Duct Air Leakage Correction for Collector B4 (SWh) 

 

 

Figure 4.31 Duct Air Leakage Correction for Collector B5 (SWh+TG) 

 

Collector B5 (SWh+TG) shows good agreement of 4% to 5% between the corrected 

efficiency (red curve) and the efficiency calculated from the Solar Simulator experiments 

(blue curve), while B4 (SWh) exhibits more discrepancy of 6% to 10%. It is because the 

SWh is more prone to the other sources of overestimation such as radiant gain and wind 
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effects as mentioned in Table 4.7. As presented in Figure 4.32 and 4.33, performance 

curves from Collector C1 and C2 show similar trends.   

 

Figure 4.32 Duct Air Leakage Correction for Collector C1 (SWh+PV) 

 

Figure 4.33 Duct Air Leakage Correction for Collector C2 (SWh+PV+TG) 

 

After the leakage correction, collector with partial coverage of transpired glazing 

(C2: SWh+PV+TG) exhibits only 4% to 6% discrepancy between efficiency from 
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Chamber tests (red curve) and from Solar Simulator tests (blue curve, Figure 4.33). 

Comparatively, collector C1 (SWh+PV) shows 8% to 10% difference in efficiency 

(Figure 4.32), as transpired absorber is more susceptible to other uncorrected errors such 

as radian gain and convective wind loss.  

Moreover, all the results from Solar Simulator tests (blue curves) need to be 

corrected to account for higher back loss, resulting from the 2” back insulation as 

compared to the 1’ insulation (SIP) during Chamber tests. Further elaboration of results 

correction using numerical methods will be presented in Section 5.4.  

In conclusion, the general trend of efficiency curves obtained from experiments in 

the Environmental Chamber is in good agreement with results from the Solar Simulator. 

The differences in collectors’ performance under the Solar Simulator and in the 

Environmental Chamber are explained qualitatively by theories of heat transfer, and 

quantitative corrections will be applied accordingly (Section 5.4).  

As the first researcher to conduct experiments using both facilities, the author laid 

groundwork for future research involving result comparison of the Solar Simulator and 

the Environmental Chamber. At the same time, experimental results from the 

Environmental Chamber provided a valuable reference for predicting collectors’ 

behaviors in cold climatic conditions pertaining to high latitudes. 
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5 Simulation and Model Validation 

In order to predict the performance of various façade-integrated solar collectors, 

custom models derived from energy balance and heat transfer principles are developed in 

MATLAB/Simulink platform. Simulation results of collectors’ performance are 

compared with experimental data obtained from the Solar Simulator and Environmental 

Chamber laboratory. This section describes four thermal network models for Collector 

B1/B4 (SW), B3/B5 (SW+TG), C1 (SWh+PV) and C2 (SWh+PV+TG).  

5.1 Steady State Models of Two Transpired Collectors 

5.1.1 Model Assumptions 

Some assumptions are made to effectively manage the model complexities and 

computation time: 

1. The temperature of each plate (e.g. SolarWall, Transpired Glazing, Back plate, 

etc.) is assumed to be uniform. This assumption is common in many simulation 

algorithms including in SWift99, RETScreen and in Summers’ model. Though 

experimental data found a temperature gradient of up to 9°C across the plate, an 

averaged value of all sensors located in the central zone of each plate is used as 

the plate temperature.  

2. Instrumentation of the absorber (SolarWall) and transpired glazing are positioned 

at the back of the plate. The temperatures at front surface of the plate are assumed 

to be equal, or similar to the temperature at the back of plate. This is particularly 

true for the absorber, as the metal plate is highly conductive.  
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3. The suction rate at the surface is considered to be uniform. Porosity of SolarWall 

uses 0.25%, assuming circular holes on a square pitch.  

4. The collector test stand and the SIP wall, on which the collector is mounted, are 

assumed to be isothermal.  

5. Calculation for air properties uses the temperature measured inside the plenum 

(averaged from 6 thermocouples).  

6. Corrugation orientation is assumed to have little effect on collector performance, 

as indicated by experimental data in Section 4.3.3 (2% difference in efficiency 

between SWv and SWh) for collector size of 1.5m by 1.5m.  

 

5.1.2 Heat Transfer Theory 

Heat transfer in conventional Unglazed Transpired Collector (Collector B1: SWv) 

has been modelled by Dymond & Kutscher (1997) assuming uniform suction rate at the 

surface. Figure 5.1 presents the heat transfer exchanges occurring in the SWv system, 

with transpired absorber on the exterior.   

The energy balance of SWv collector can be described by: 

                                               (5.1) 

where Qs is the absorbed solar radiation (W), QRO is the radiant loss to the outside 

(W), Qwind is the convective heat loss due to wind (W), Qu is the useful heat transferred 

into the building (W), and Qb is the heat loss at the back of the collector (W); all 

temperatures (K) at nodes are labeled accordingly. 
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Figure 5.1 Energy Balance and Thermal Network models of conventional Unglazed 
Transpired Collector (Collector B4: SWh); Plenum exaggerated. 

 

Similarly, for an improved transpired collector with transpired glazing cover 

(SWv+TG), system energy balance shown in Figure 5.2 can be written as:  

                              (5.2) 

 

Figure 5.2 Energy Balance and Thermal Network models of improved UTC with 
Transpired Glazing (Collector B2: SWv+TG) Plenum exaggerated. 
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QS1 and QS2 are the absorbed solar gain (W) by collector surface (transpired glazing) 

and by the transpired absorber, respectively, shown in equation 5.3. 

                                          (5.3) 

where !1 and +1 is the absorptance and transmittance of the transpired glazing, 

respectively; !2 is the absorptance of SolarWall (transpired absorber); Note that QS1 is 

much less in quantity compared to QS2, as the transpired glazing transmits more than 90% 

of solar radiation to the absorber. Kirchoff's law dictates that the relation between the 

absorptance, !, transmittance, +, and reflectance, *, of a surface is given by: 

                                                            (5.4) 

The surface radiant and convective losses to outside are described by for both 

thermal models (Figure 5.1 and 5.2): 

                                (5.5) 

where Acol is the collector area; hRO is the radiant heat transfer coefficient to outside 

(W/m2/K), which can be calculated by describing radiant heat transfer between the hot 

collector surface and the cooler surroundings:  

                                     (5.6) 

where & is the Stephan-Bolzmann constant (W/m2/K4); Tsurf and Tamb are 

temperatures (K) at collector surface and of the ambient lab air, respectively; e is the 

emissivity of collector surface. 

1 = ! + " + #

hRO =
e !" ! (Tsurf

4
# Tamb

4
)

(Tsurf # Tamb )
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The convective heat transfer coefficient due to wind (hwind) is affected by surface 

conditions (corrugation and perforation), suction velocity, wind direction and speed, etc. 

Without going into details about turbulent flows near the corrugation and pores, several 

correlations (equation 5.7 to 5.11) are investigated.  

The common empirical forms for hwind (grazing wind on facades) follow linear or 

exponential increase with increasing wind speed (Palyvos 2008):  

                                      (5.7) 

                                              (5.8) 

                                                            (5.9) 

where a, b, c, A, B are constants depending on wind conditions, L is the collector 

characteristic length (m). In addition, lab scale flat-plate transpired collector by the Solar 

Thermal Research Laboratory at University of Waterloo (STRL) shows correlation of 

convective loss in relation to surface wind speed (Vwind) and suction velocity (VS): 

                                           (5.10) 

Experiments from the Solar Simulator (Section 4.2) at two different surface wind 

speeds also suggest that surface wind loss corresponds strongly with wind speed and 

suction velocity following the same logic: 

                                        (5.11) 
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where A, B, C are constants that need to be fitted using the node temperatures and 

known heat balances. Note that equation 5.10 is still a good approximation for convective 

wind losses of flat-plate transpired collectors (e.g. SWv+TG). However, the general form 

of equation 5.11 takes care of surface convective loss and possible losses from the 

collector sides and due to air leakage from plenum connections. Details of acceptable 

expressions for convective heat transfer coefficients (hconv) are discussed in Section 5.3.2.  

The back plate of the collector is heated by the solar radiation and may potentially 

lose heat to the ambience. In the Solar Simulator experiments, the back of the collector is 

exposed to room temperature (20°C), insulated to RSI-1.32 equivalent (5/8” OSB and  2” 

EPS). Therefore, the back loss can be expressed as: 

                                           (5.12) 

hb is the combined heat transfer coefficient of wall insulation and interior air film 

(W/m2/K), For the experiments in the Environmental Chamber, a SIP wall backing of 

RSI-7.9 is used, and Qb is significantly reduced. Details on the correction can be found in 

Section 5.4.3. In real applications in cold climate, the collector is integrated into a 

conditioned space maintained a temperature higher than exterior temperature. The back 

loss could become back gains when there is no incident solar radiation on the collector 

(e.g. at night). Qb will be expressed in negative value and it is known as the heat recapture 

at night, beneficial for overall building energy efficiency. 

Lastly, the useful heat captured in the form of heated air is calculated by: 

                                     (5.13) 
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where MFR is the mass flow rate (kg/s/m2), cp is the specific heat capacity of air 

(J/kg/K), and (Tplm – Tamb) is the temperature rise of heated air in the plenum. The 

collection of heat balances can be calculated simultaneously from equation 5.1, 5.2, 5.3, 

5.5, 5.12, and 5.13. Details of heat transfer coefficients and node temperatures are 

discussed in Section 5.1.3 below.  

5.1.3 Thermal Network Models 

Surface temperatures are evaluated through an energy balance of the thermal 

networks shown in Figure 5.1 and 5.2 for conventional Unglazed Transpired Collector 

(SW) and improved Transpired Collector (SW+TG), described by equation 5.14 and 

5.15, respectively.  

  (5.14) 

                 (5.15) 

where %HX is the effectiveness of Unglazed Transpired Collector (UTC), Tma is an 

equivalent temperature that gives the mean air temperature at mid-plenum (K), Tb is the 

temperature (K) at the back plate of collectors. Tma and Tb can both be calculated from 

the thermal network model illustrated in Figure 5.1. For the normal UTC, hC1 and hC2 are 

the convective heat transfer coefficients of the two interior surfaces in the air plenum 

(W/m2/K).  

For the improved UTC, Tmid is the temperature at the middle layer (equation 5.16), 

which is the transpired absorber (SolarWall): 
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    (5.16) 

The convective heat transfer from the absorber to the plenum, hC1 and hC2 are 

calculated with average Nusselt number in the plenum obtained with the following 

relations from Incropera & DeWitt (2002). Equation 5.17 is used for laminar flow, while 

equation 5.18 is used for mixed boundary layer conditions.  

                                               (5.17) 

                                (5.18) 

where Pr is the Prandtl number, ReL is the Reynolds number of the air in the plenum, 

calculated at average velocity in the plenum, Vplm: 

                                                 (5.19) 

where Vmax is the maximum velocity in the plenum, and Across-plm is the cross-section 

area of the plenum. Lastly, Tplm is the average of temperature at plenum top, i.e. outlet 

temperature. According to Dymond&Kutscher’s model, Tplm for a UTC system is 

calculated using: 

                                   (5.20) 

where %HX is the effectiveness of transpired collectors. For the SolarWall (SW) 

collector, %HX can be calculated based on the work of Van Decker et al. (2001): 
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                                   (5.21) 

The expression of effectiveness in equation 5.21 is split into three parts: heat transfer 

occurring at front surface %f, in the sides of holes %h, and at the back of plate %b.  

                                    (5.22) 

                                                     (5.23) 

                                       (5.24) 

                                 (5.25) 

where Vwind is surface wind speed (m/s), P is distance between pores, i.e. pitch (m), 

D is diameter of pores (m), , is kinematic viscosity of air (m2/s), ' is porosity of the 

transpired collector. 

The improved transpired collector, SW+TG, behaves in a way similar to the normal 

SW system in terms of heat transfer from absorber to the plenum air. Tplm of SW+TG can 

be obtained by simply replacing Tsurf in equation 5.20 with Tmid, as the real absorber in 

the SW+TG is in fact the middle cladding, whereas the absorber in the SW collector is 

the front surface.  

Although the generic form of %HX (equation 5.21) holds true, directly using equation 

5.22 to 5.25 to calculate effectiveness for SW+TG system (Figure 5.2) gives dissimilar 
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results. Therefore, calibrated effectiveness from experimental data is used in simulations 

for the SW+TG system. By definition, effectiveness of any UTC can be obtained from 

equation 5.26: 

                                                  (5.26) 

Finally, the thermal efficiency of both UTC and UTC+TG systems can be obtained: 

                        (5.27) 

where I is the incident solar irradiance (W/m2) on the façade, G is the total solar gain 

(W) on the collector area.  

 

5.2 Steady State Thermal Network Model for PV/T 

The actual heat transfer of PV modules mounted on transpired cladding is extremely 

complex. At sections where the UTC is covered by PV modules, the air is drawn from the 

bottom of the PV modules and sucked into the cladding perforations behind the PV. 

Collector C2 (SWh+PV+TG) adds to the complexity of the problem by covering the 

exposed UTC (SolarWall) cladding with transpired glazing.  

Figure 5.3 shows a couple of thermal network models by Athienitis et al. (2011), 

describing the PV/T+UTC system as demonstrated on the JMSB building façade (Figure 

2.7). Note that b) is a simplified version of a) in Figure 5.3, with less nodes and combine 

heat transfer coefficients.  
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Figure 5.3. Original (a) and Simplified (b) Thermal Network Models for PV mounted on 
UTC cladding, Athienitis et al. (2011) 

 

To further simplify the problem, the model in Figure 5.4 is proposed for the scope of 

this thesis project, replacing the node on the surface of the transpired cladding by a 

fictitious node at mid plenum, where the heated air is assumed to be removed.  

 

Figure 5.4 Simplified Thermal Network Model for a PV/T system 

 

The basic PV/T model illustrated in Figure 5.4 shows one dark-frame PV panel 

(1.465m by 0.36m) mounted over a flat wall surface. Qs describes the effective portion of 

the incident solar radiation converted to heat: 

                                            (5.28) 



 
 

99!

where !PV is the overall absorptance of the PV panel (frame and backing included), 

and (PV is the electric efficiency of the PV panel (temperature dependent, equation 4.3).  

Equations containing Tpv, Tma and Tb can be listed via the thermal network model. 

Ttop is the temperature at the plenum top, e.g. outlet temperature; Tair is simply the 

average of Ttop and Tamb (K).  

                                        (5.29) 

                               (5.30) 

The radiative and convective heat transfer coefficients from surface to outside are 

combined as a film coefficient hO. In reality, the sky temperature and ground temperature 

are different, particularly due to the cold sky in the high north. The simplification of hO, 

while valid for laboratory conditions, may not be representative for realistic 

environmental conditions at high latitudes. Similarly, hb is the combined coefficient of 

wall insulation and interior air film. Plenum convective heat transfer coefficients hC1 and 

hC2 are calculated from Reynolds number and Nusselt numbers, using equations from a 

PV/T model developed by Liao et al. (2007): 

                                                      (5.31) 

         (5.32) 

    (5.33) 
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where 'air, µ, k is the temperature dependent properties of air, i.e. density (kg/m3), 

dynamic viscosity (kg/m/s), and conductivity (W/m/K), respectively. H is the height of 

the PV module (0.36m), and y is the distance from the bottom of the PV module (from 0 

to 0.36m); Vplm is velocity in the plenum directly related to mass flow rate.  

hC1 (on the PV side) and hC2 (on the backing side) vary across the module height as 

Nusselts number decreases with increasing heights. Therefore, as the height of PV 

module increases, the thermal efficiency of PV/T decreases. Averaged values of height-

dependent hC1 and hC2 (equation 5.34) are used in simulations.  

                                             (5.34) 

The useful heat collected (Qu) is calculated as: 

                                  (5.35) 

                        (5.36) 

where FR is the heat removal rate assuming an exponential increase of heat removal 

as MFR increases, Utot is overall loss from the collector to outside and to the back, i.e. hO 

and hb (W/m2/K). The finite difference method is used to evaluate a system of equations 

(5.28, 5.29, 5.30, 5.34, 5.35, 5.36) until steady state values converge and solve for 

variables including Qu and all node temperatures. Similar calculation techniques are also 

used for a BIPV/T roof model in Chen et al. (2010). 
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The thermal efficiency of a simple PV/T system is defined as the fraction of Qu over 

incident solar gain (G). However, as the system produces electricity at the same time, a 

combined thermal equivalent efficiency for PV/T, (EQ, is adopted as previously 

mentioned in Section 4.3 (equation 4.5). 

For collector C2 (SWh+PV+TG), the same model in Figure 5.4 is used for the 

section covered by PV modules, while it is assumed that the section covered with 

transpired glazing behaves in the same way as collector SWh+TG (Section 5.1). 

Therefore, the overall efficiency of C2 is modeled as an area-averaged sum of two 

thermal efficiency results: 

            (5.37) 

 

5.3 Steady-State Simulation Results compared with Experimental Data  

5.3.1 Uncertainty Analyses of Experimental Results 

Before comparing the simulation results with experimental data, it is essential the 

errors of experimental quantities are analyzed. The uncertainty of a measured quantity x, 

µ,, can be expressed by the combination of bias error, ebias, and precision error, eprecision, 

as shown in equation 5.38. 

                                    (5.38) 

To calculate precision errors related to repeatability, two or more tests under the 

same climatic conditions are needed. As systematic repetition is not the main objective of 
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the experimental evaluation, this thesis considers only bias error related to accuracy and 

calibration error of the instruments. 

Simple measured quantities such as solar irradiance, temperatures, pressures, panel 

size, have inherent bias errors from the measurement instruments. For each calculated 

quantity f, as a linear function of n independent normally distributed variables x1, x2… xn, 

the error of f, $f, is expressed by:  

                   (5.39) 

where                                                                                       (5.40) 

Detailed calculations of the uncertainty for all relevant variables are elaborated in 

Appendix C. Some of the calculated variables such as temperature rise (Trise), mass flow 

rate (MFR), useful heat captured (Qu), convective heat transfer coefficient due to wind 

(hw), and efficiency ((), summarized in Table 5.1.  

Table 5.1 Summary of sample uncertainty values for calculated variables 

Variable Sample Value measured (X) Error ($x)  Uncertainty ($x/X) 

Trise 15°C ±1.225°C ±0.0816 

MFR 150 kg/hr/m2 ±5.27 kg/hr/m2 ±0.035 

Qu 475 W/m2 ±36.8 W/m2 ±0.0775 

hw 15 W/K/m2 ±1.81 W/k/m2 ±0.121 

( 45.9% ±3.67% ±0.080 
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5.3.2 Convective Heat Transfer Coefficients  

For transpired collectors, most of the heat loss occurs at the front surface due to 

convective loss, especially in the presence of wind (parallel to surface) and suction 

(perpendicular to surface). Many research attempts have traditionally employed Nusselt 

number correlations developed for fully developed flow in smooth pipes and channels. 

However, these correlations usually do not resemble the actual conditions found in an 

open-loop perforated surface. Aggravated by non-uniform cross-sections, irregular 

perforation, non-uniform heat fluxes, non-develop flow and mixed boundary conditions, 

convective heat transfer between the heated air and transpired collector surface is an 

extremely complex phenomenon. 

General correlations of wind-induced convective heat transfer coefficient were listed 

in equation 5.7 to 5.11, 5.43 and 5.44, however, there is no perfect correlation that fit for 

all collectors at all wind conditions.   

Given the corrugated profile and non-standard perforation of the SolarWall 

transpired absorber, the analysis of exact surface convective loss would require 

Computational Fluid Dynamics (CFD) if studied sorely based on heat transfer principles. 

This section will focus on developing appropriate expressions for convective heat transfer 

coefficients (hconv) from the experimental results (Section 4.1) under two parallel surface 

flow conditions (3.5m/s and 0.9m/s average).  

Note that the hconv in this thesis is a combination of convective loss from the surface 

and possible loss from the collector sides (insulated to RSI-1.4m2K/W). It is calculated 
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based on the energy balance equations of collectors SWv (equation 5.2), and SWv+TG 

(equation 5.2): 

                              (5.41) 

                     (5.42) 

 where equation 5.41 is for collector SWv and Tsurf is the SolarWall temperature, 

while equation 5.42 is for collector SWv+TG and Tsurf is the Transpired Glazing 

temperature. In both cases, Troom is the lab space temperature as the back of the collector 

is exposed to lab condition during the Solar Simulator experiments.  

Kutscher et al. (1991) showed that the surface convective loss coefficient from the 

collector to ambient is strongly linked to wind speed (Vwind) and surface suction speed 

(Vs). Assuming uniform suction for flat plate transpired absorber, hconv is written as: 

                                            (5.43) 

Similarly, Carpenter et al. (1999) used a correlation of the same logic in Swift99 to 

describe surface heat transfer of transpired plates: 

                                                               (5.44) 

To investigate this linear relationship described by equation 5.43 and 5.44, hconv 

determined experimentally by equation 5.41 and 5.42 is plotted against the ratio of 

Vwind/VS, discussed in Appendix D.  The linear relationship is acceptable within the error 
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range for SWv at both surface parallel flow (wind) conditions; however, the relationship 

barely holds true for SWv+TG collector, especially at low wind conditions. Additionally, 

the slope and intercept of the linear approximation is dissimilar between low and high 

wind conditions, resulting in difficulty to fit a universal approximation that works for all 

MFR and at all wind speeds between 0.9m/s to 3.5m/s. Therefore, a linear approximation 

of hconv using the general form of equation 5.11 were employed in all simulation 

(applicable for parallel wind speeds between 0.9m/s to 3.5m/s):  

                  (SWv)                  (5.45) 

            (SWv+TG)              (5.46) 

The constants in equation 5.45 and 5.46 are fitted from experimental hconv values 

calculated from equation 5.41 and 5.42, respectively. Figure 5.5 (SWv) and 5.6 

(SWv+TG) plotted hconv against VS, showing that the approximation of hconv is within the 

error range of the experimental data. 

 

Figure 5.5 Collector SWv: Modelled (equation5.45) and Experimental results for 
convective heat transfer coefficient (hconv) 
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Figure 5.6 Collector SWv+TG: Modelled (equation5.46) and Experimental results for 
convective heat transfer coefficient (hconv) 

 

5.3.3 Temperature Profiles 

Using 1-D thermal network models shown in Figure 5.1 and 5.2, steady-state 

temperatures on each node (collector layer) are evaluated using MATLAB/Simulink 

platform.  Figure 5.7 plots the temperature rise (compared to ambient temperature 

measured near collector surface) at each layer of the two collectors: SWv and SWv+TG. 

Tmid of SWv+TG collector, as well as Tsurf of SWv collector indicates absorber 

temperature rise. The Tsurf of SWv+TG is the temperature of transpired glazing, which 

remains low under both high and low wind conditions, while Tsurf of SWv is significantly 

lowered by high wind conditions. As absorber temperature is directly linked to plenum 

outlet temperature and useful heat delivered, SWv+TG performs better under both 

parallel wind conditions, as Tmid remains almost invariant at different surface wind 

speeds.  
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Figure 5.7 Surface and Absorber temperature rise of SWv and SWv+TG (838 W/m2); 

Above: Low Wind (0.9m/s); Below: High Wind (3.5m/s);  

 

Figure 5.7 explains the higher efficiency of SWv+TG system due to the reduction of 

surface wind loss. Moreover, the surface temperature of SW+TG system is noticeably 

lower than Tsurf of SWv system, resulting in less surface radiant loss less.  

The modeled temperatures are generally in good agreement with the experimental 

data, with the exception of Tsurf of SWv+TG collector. Aside from the difference in This 
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is most likely due to the heat gain from incoming solar radiation and the temperature 

difference at the front and back of the transpired glazing, as thermocouples are only 

mounted on the interior side of the transpired glazing.  

The thermal network model considers the glazing as a single node (no front and back 

difference) and ignores the local heat transfer occurring at the perforation. Additionally, 

the absorptance of the transpired glazing is set to be 0.03 in simulations, which may be 

too low considering the entire spectrum of the solar radiation.  

5.3.4 Collector Effectiveness and Efficiency 

In order to improve the efficiency of a solar collector with a fixed absorptance, one 

needs to first eliminate or reduce the surface and back heat losses. For example, 

introducing distributed air inlets (transpired collector) reduces the surface loss; lowering 

the emissivity of hot surfaces is also effective at reducing long wave losses. Once all the 

possible paths of energy losses are minimized, another important consideration, known as 

the effectiveness of a heat exchanger, %HX, becomes a critical factor.  

%HX describes how “effective” a system is at converting the captured heat from its 

absorber into useful energy. In other words, it characterizes the amount useful heat 

recoverable from the absorber temperature. In the SW model described in Section 5.1, 

empirical approximation of collector effectiveness from Van Decker et al. (2001) 

(equations 5.21 to 5.25) was employed. Collector SW+TG, is a highly innovative system 

and the effectiveness of which is directly calculated using equation 5.26, due to the lack 

of information on empirical correlations.  
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Figure 5.8 plots the effectiveness of SW system from experimental results and 

empirical approximation, indicating a higher discrepancy at high mass flow rates.  

  

Figure 5.8 Effectiveness of Transpired Collector (SWv) at Low Gain (838 W/m2) and 
Low Wind (0.9m/s) 

 

Steady-state simulation and experimental results comparing efficiency of SWv and 

SWv+TG are summarized in Figures 5.9 and 5.10 (uniform scale of 0.05 to 0.85 in 

efficiency on Y-axis).  

Note that modeled efficiency of SWv+TG shows better agreement with experimental 

results, within 4% (absolute difference) at low surface parallel wind and within 2% at 

high wind. For SWv collector, the effectiveness calculated based on empirical 

approximation leads to a maximum difference from experimental results of 5.8% at high 

surface parallel wind and 4.5% at low wind. 
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Figure 5.9 Collector SWv+TG: Steady-state efficiency at different flow rates  

 

 

Figure 5.10 Collector SWv: Steady-state efficiency at different flow rates. 

 

Figure 5.11 compares the experimental data of SWh+PV with simulation results 

from the simple PV/T model discussed in Section 5.1.2. Since the simple PV/T model 
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does not consider the corrugated/perforated SolarWall backing on which the PV modules 

are mounted, the simulation results shown reasonable agreement, with an absolute 

difference of up to 7% at high mass flow rates.  

 

Figure 5.11 Collector SWh+PV/T and PV/T model: Steady-state efficiency. 

 

To approximate the efficiency of SWh+PV+TG (PV coverage 50%, TG coverage 

50%), the area-weighed sum combining experimental data of SWh+TG and simulation 

results of PV/T model is used according to equation 5.37. Interestingly, between 

experimental data of SWh+PV/T+TG and area-weighed sum of SWh+TG and PV/T 

systems, the absolute difference compared experimental data is around 3% (Figure 5.12).  

Like all collectors with transpired glazing, collector C2 (SWh+PV+TG) shows good 

reliance against high surface parallel wind (3.5m/s), especially at high mass flow rates 

(Figure 5.12). Logarithmic curves of efficiency against mass flow rates are fitted to 

experimental data (within error ranges) of all collectors for visual guidance. 
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Figure 5.12 Collector SWh+PV+TG compared to PV/T model + SW+TG model: Steady-
state efficiency. 

 

5.4 Applying Numerical Corrections to compare Experimental Results from 

Solar Simulator and from Environmental Chamber 

5.4.1 Introduction 

Steady-state simulation performed in Section 5.3 matches the ambient conditions of 

the Solar Simulator experiments. At the same time, experimental results from the 

Environmental Chamber are 10-15% higher in efficiency compared to the same collector 

tested under the Solar Simulator. Simulation corrections are required to account for the 

systematic differences between the Simulator and Chamber tests.  

Four main sources of errors are responsible for the discrepancy between the two sets 

of experiments, summarized in Table 4.7 and their effects listed in Table 5.2.  
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Table 5.2 Summary: Sources that explain differences between Solar Simulator and 
Environmental Chamber results 

 Source of Discrepancy Effect 

1. Longer ducts, more connections, higher 

duct leakage during the Chamber tests 

Overestimate efficiency in Chamber 

 

2. Lack of artificial sky in the Chamber Overestimate efficiency in Chamber 

3. Higher back loss during Solar Simulator 

tests (no SIP backing) 

Underestimates efficiency in Solar 

Simulator 

4. No surface wind during Chamber tests 

(0.9m/s wind under Solar Simulator) 

Overestimate efficiency in Chamber 

 

Note that duct leakage has already been addressed in Section 4.5.2 by a leakage test. 

Other sources of errors from Table 5.2 are illustrated in Figure 5.13 and discussed in 

Section 5.4.2 to 5.4.4 below.  

 

Figure 5.13 Heat Transfer Diagram comparing Experiments under Solar Simulator (left) 
and Environmental Chamber (right) 

 

5.4.2 Surface Radiant Gain Correction for the Environmental Chamber Results 

In outdoor tests, there is significant amount of radiant loss from the collector surface 

to the cold sky, even during sunny days. The Solar Simulator facility incorporates a 

component known as the artificial sky to eliminate the infrared radiation from the lamps 
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and simulate the cold sky (Section 4.1.2). As shown in Figure 5.13, the Environmental 

Chamber does not correct this radiant gain, as the glazed façade gets heated with 

incoming solar radiation from the Mobile Lamp Field.  

Temperature sensors on the glazed façade surface indicate the façade surface 

temperature rises to 9.1°C (glazing average) and -8.6°C (opaque spandrel) during a 

typical experiment (824 W/m2, -19.2°C in Chamber). As the cooling unit is mounted at 

the back of the big Chamber, the -19.2°C given by the temperature sensor near the back 

of the Chamber is not representative of ambient air temperature near the collector. 

Sensors placed between the collector and Chamber façade shown that ambient air 

remains between -13.4°C and -14.3°C near the testing plane (Figure 5.14).   

 

Figure 5.14 Measured Temperatures during Environmental Chamber experiments 

 

The artificial sky of the Solar Simulator maintains a surface temperature of 10°C, as 

compared to the ambient lab temperature of 20°C. The radiant loss in the Chamber 

experiments are corrected for conditions that the façade surface should be at sky 

temperature, Tsky, calculated by the correlation from Duffie & Beckman (2006): 
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          (5.47) 

where Tdp is the dew point temperature of ambient air; Tsky is calculated to be -12.6 

°C for ambient air of -14.3°C and 45%RH. The amount of correction is calculated from 

the difference in radiant loss using equation 5.48. The temperature of Chamber façade 

Tfacade is -3°C (average of glazing and spandrel) before the correction, which adopts 

equation 5.48 and 5.49 and the corrected façade temperature of -12.6°C (Tsky). Tsurf is the 

exterior surface temperature of the collector.  

                                       (5.48) 

                  (5.49) 

where e is the emissivity of the Chamber façade and the collector surface; Ffacade-

surface is the view factor from the Chamber façade to the collector surface, calculated for 

two finite parallel plates (Appendix D). The radiant heat loss from the collector surface to 

the Chamber floor or ceiling is ignored. Note that the Solar Simulator experiments also 

involve possible radiant loss to the lab floor and ceiling.  

Results of the radiant gain corrections are presented in Figure 5.15 for collector B4 

(SWh) and B5 (SWh+TG). Similar results for collector C1 (SWh+PV) and C2 

(SWh+PV+TG) are shown in Appendix D. The corrected efficiency from the Chamber 

tests is noticeably lower than before. Note that the duct leakage is already accounted for 

in Section 4.5.2 before commencing this correction in Figure 5.15.  
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 Figure 5.15 Collector SWh and SWh+TG: Efficiency in Chamber corrected for radiant 
gain to account for heated Chamber façade surface.  

 

5.4.3 Back Loss Correction for the Solar Simulator Results 

Due to scanner height restrictions, the collector backing during the Solar Simulator 

experiments is a 2” EPS insulation. Both front and back of collectors are exposed to the 

lab temperature at 20°C. The Chamber experiments incorporated the full 1’ SIP backing 

and there is large thermal gradient across the active envelope (front surface at -20°C and 

back of SIP at 20°C). As the testing conditions in the Chamber are more representative to 

real-world conditions, the back loss during the Solar Simulator tests are corrected 

numerically.   

The difference in equation 5.50 and 5.51 is added to the useful heat calculated for 

Solar Simulator results, assuming that all unnecessary back losses would have turned into 

useful heat. RSIP is rated at 7.9 Km2/W and R2”EPS at 1.32 Km2/W, and heat transfer 

coefficient of interior air film, hi, is assumed to be 8.3W/m2/K. 
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                               (5.50) 

                                (5.51) 

As the back plate temperature of collector (Tb, before insulation) for the Chamber 

experiments are typically between 5°C to 15°C, there is very little thermal gradient 

between collector backing and the test hut (at 20°C). With the high thermal resistance of 

SIP, virtually no back loss is present during the Chamber tests. Results shown that 

accounting for back loss increases the Solar Simulator results by 1 to 2 % in efficiency, 

which contributes marginally to the discrepancy between Chamber and Simulator results.  

5.4.4 Wind Loss Correction for the Environmental Chamber Results 

The efficiency from the Environmental Chamber tests were obtained without any 

artificial parallel wind generated over the collector surface. Though there are slight air 

movements on the collector surface due to natural convection and general air circulation 

in the Chamber, the experiments were considered to be under zero wind condition. This 

Section will address the wind loss during the Solar Simulator experiments (at 0.9m/s 

surface parallel wind average), by adjusting the convective heat transfer coefficient to 

include zero wind condition.  

As discussed before, convective heat transfer coefficient for transpired collectors 

depends on both wind speed parallel to collector surface (Vwind) and suction velocity 

perpendicular to surface (VS). Kutscher et al. (1991) concluded that natural convective 

heat losses to the ambient were negligible compared to forced convective heat loss 
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induced by suction and wind at the transpired surface. The general expression used in 

Section 5.3.2 is very representative of this relationship: 

                                        (5.11) 

However, explicit expressions of hconv in equations 5.45 and 5.46 were only 

validated for experimental data of wind speeds between 0.9m/s and 3.5m/s. In fact, one 

can predict that at very high surface wind speeds, the convective heat losses will be 

dominated by wind-induced effects (Vwind), and constant B will increase in value to place 

more importance on surface wind speed.  

By the same token, at very low surface wind flow (<0.9m/s), convective heat losses 

are dominated by suction velocity (VS) at the surface (linked to mass flow rate), and 

constant B will decrease in value compared to numbers given in equation 5.45 and 5.46. 

With no further information on how collectors will behave at quasi-zero wind condition, 

the same general equation is still adopted for wind speed between 0 to 0.9m/s. B is 

considered to be less than 3.368 (B=3.368 in equation 5.46) and is constant for all four 

collectors (SWh, SWh+TG, SWh+PV, SWh+PV+TG) at low surface wind (<0.9m/s). As 

the first and third terms for hconv cancel out at the same MFR, the difference of convective 

heat transfer losses from 0.9m/s wind to zero-wind is therefore calculated by: 

        , 0< B <3.368                       (5.52) 

                            (5.53) 
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 For glazed or covered surfaces (no surface perforation), forced convective heat 

transfer coefficient is only dependent upon wind speeds (no suction present). Several 

correlations for non-transpired surfaces are presented in equation 5.54 to 5.56, researched 

by Test et al. (1981), Sharples & Charlesworth (1998), Duffie & Beckman (2006), 

expressing hconv as a function of surface wind speed (m/s) only. Those relations provide 

insights to reasonable estimates for constant B in equation 5.53. 

                                          (5.54) 

                                         (5.55) 

                                              (5.56) 

The correction in convective heat losses from 0.9m/s to zero wind conditions are 

calculated and illustrated in Figure 5.16 (Collector SWh). Knowing that constant B is less 

than 3.368 and greater than 1.5 (equation 5.55), Figure 5.16 shows B-value equals to 1.5 

and 3.5 and its effect on convective wind loss corrections.  

 

 Figure 5.16 Collector SWh: Efficiency in Solar Simulator corrected from 0.9 m/s parallel 
wind to zero-wind condition 



 
 

120!

Correction for convective wind losses have very little effects on collectors with 

transpired glazing (SWh+TG, or SW+PV+TG), regardless of what B-value is used. As 

transpired glazing has low surface temperature, the convective loss is not sensitive to 

wind speeds due to the low thermal gradient to the ambience.  

Note that the surface flow parallel to collector surface is never truly zero, due to 

surface natural convection and air mixing inside the Chamber.  During the Chamber 

experiments, measurements of air velocity were taken at discrete points along the 

collector height. Surface airflows parallel to collector surface are found to be between 

0.24m/s and 0.89m/s inside the Chamber, even without any ventilation unit.  

Therefore, the results presented in Section 5.4.4 are calculated using a parallel 

surface flow of 0.56m/s for the Chamber experiments, as opposed to 0.9m/s for Solar 

Simulator experiments (B=2.5). In general, the difference of convective losses between 

the two facilities is very minimal.  

5.4.5 Corrected Efficiency Results  

Figure 5.17 to 5.20 summarize the comparisons of results from Solar Simulator and 

Environmental Chamber, before and after the corrections made to account for errors 

shown in Table 5.2. Note that for collectors that are not sensitive to wind-induced 

convective losses, the efficiency curves actually match better without any wind 

corrections.  
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Figure 5.17 Collector B4 (SWh): Efficiency in Solar Simulator and in Environmental 
Chamber, before and after corrections  

 

 

Figure 5.18 Collector B5 (SWh+TG): Efficiency in Solar Simulator and in 
Environmental Chamber, before and after corrections 
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Figure 5.19 Collector C1 (SWh+PV): Efficiency in Solar Simulator and in Environmental 
Chamber, before and after corrections  

 

 

Figure 5.20 Collector C2 (SWh+PV+TG): Efficiency in Solar Simulator and in 
Environmental Chamber, before and after corrections  

 

Efficiency results before any numerical corrections are displayed in green and purple 

curves (Figure 5.17 to 5.20), while corrected efficiency curves are shown in red and blue. 
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The general trends of efficiency obtained from both facilities were in good agreement 

even without any numerical corrections. After accounting for the systematic differences 

between the Solar Simulator and Environmental Chamber, the efficiency curves moved 

closer to one another, validating the experimental repeatability of the laboratory facility.  

 

5.5 Annual Analyses 

5.5.1 Model Description 

For annual analyses of transpired collectors, there is no real transient model 

developed in commercial software or by any research work. Available models usually 

assume that steady state has been reached at every time step. Research by Gogakis (2005) 

indicated that it is a valid assumption, as the response time of UTC to change in solar 

radiation is found to be approximately 1 minute. Though in reality, collectors’ response 

time to changes in surface wind profile can take longer, especially for corrugated 

collectors when turbulence can be unpredictable with different wind speed and directions.  

Using the steady state models discussed in Chapter 5, annual analyses are performed 

in MATLAB/Simulink platform using hourly weather files from three northern Canadian 

cities. Steady state calculations are conducted at every time step (1 hour) and using 

convective heat transfer coefficients (equation 5.45 and 5.46) validated for wind speed 

0.9m/s to 3.5m/s.  

Several factors could temper with the simulation results. Firstly, reliable weather 

data of northern Canadian cities are very difficult to obtain, especially the solar radiation 

files.  In this simulation, Typical Meteorological Year (TMY) weather files from the 
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TRNSYS database are used (University of Wisconsin Madison, 2012), averaged from 

Canadian government data. Interpolation and extrapolation techniques are used to replace 

the out-of-range data and there are still short periods of missing data present in the TMY 

file. For Nordic weather stations that run into more mal-functioning incidents than 

southern locations, the deviation in the TMY weather files from reality is inevitable.   

Table 5.3 below presents the weather output for the three northern cities used in the 

model, Iqaluit (Nunavut), Whitehorse (Yukon), and Fort Smith (Northwest Territories). 

The annual sum of solar radiation (south-facing facade) from RETScreen output at a 

lower resolution (monthly) is compared with TMY hourly data in Table 5.3, and the 

deviations of annual insolation between RETScreen and TMY files range from 3 to 14%. 

Table 5.3 Summary of Weather Data for Iqaluit, Whitehorse and Fort Smith  

 Iqaluit Whitehorse Fort Smith 

Location (Latitude) NU (63.8°N) YT (60.7°N) NWT (60°N) 

Annual average temperature 

(Coldest Monthly temperature) 

(Warmest Monthly temperature) 

-9.4°C  

(-26.8°C Feb) 

(7.7°C July) 

-0.9°C  

(-18.7°C Jan) 

(14°C July) 

-2.9°C  

(-25.4°C Jan) 

(16.3°C July) 

Annual average wind speed 4.4m/s 3.8m/s 3.2m/s 

Total Heating-Degree days (HDD) 10,017°C-day 6,915°C-day 7,916°C-day 

Total Cooling-Degree days (CDD) 0 °C-day 243 °C-day 448 °C-day 

Annual Insolation on Façade (TMY, 
summed from hourly data) 

4.45 GJ/m2 4.13 GJ/m2 4.77 GJ/m2 

Annual Insolation on Façade 
(RETScreen, summed from month data) 

4.58 GJ/m2 3.82 GJ/m2 4.15 GJ/m2 
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Secondly, the expressions for convective heat transfer coefficients are only validated 

by experimental results of surface parallel wind speeds ranging from 0.9m/s to 3.5m/s. At 

higher or lower wind speeds or with different incoming wind directions, the expressions 

may no longer apply, and surface convective loss could be over or under-estimated. As 

shown in Table 5.3, the average wind speeds experienced by Nordic cities are slight 

above the validated range, and a more suitable expression for convective heat transfer 

coefficients at high wind speed (>3.5m/s) is needed for better model accuracy.  

5.5.2 Annual Potential for Three Northern Cities 

Annual analyses using the hourly weather files of three Nordic cities (Iqaluit, 

Whitehorse, and Fort Smith) are performed for collectors B4 (SWh), B5 (SWh+TG), C1 

(SWh+PV) and C2 (SWh+PV/T+TG). For example, for the city of Whitehorse (Yukon), 

the annual potential of solar captured heat at every time step is illustrated in Figure 5.21.  

 

Figure 5.21 Useful power (W/m2) collected by SW+TG (green), and SW+PV (red), and 
total irradiance on Facade (black). MFR=150kg/hr/m2; Whitehorse; 
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As shown in Figure 5.21, the black dotted lines indicate solar irradiance on a south-

facing façade (W/m2). The green and red lines show the instantaneous thermal output at 

every time step by the collectors with highest and lowest thermal efficiency, SW+TG and 

SW+PV, respectively. Similar annual results for Iqaluit and Fort Smith are shown in 

Appendix E.  

The generated thermal power is integrated at every time step and annual results are 

summarized in Table 5.4. All solar thermal results are normalized by area, while solar 

electric output is normalized by kW, as photovoltaic modules could be of different 

efficiency.  

Table 5.4 Annual Simulation results for three Northern locations 

 Iqaluit Whitehorse Fort Smith 

Location (Latitude) NU (63.8°N) YT (60.7°N) NWT (60°N) 

Annual Insolation on Façade (TMY, 
summed from hourly data) 

4.45 GJ/m2 4.13 GJ/m2 4.77 GJ/m2 

@150kg/hr/m2 1.9 GJ/m2 1.86 GJ/m2 2.2 GJ/m2 Heat Collected by 
SW (SolarWall) 

@50kg/hr/m2 1.07 GJ/m2 1.08 GJ/m2 1.3 GJ/m2 

@150kg/hr/m2 3.15 GJ/m2 2.92 GJ/m2 3.38 GJ/m2 Heat Collected by 
SW+TG 

@50kg/hr/m2 2.46 GJ/m2 2.27 GJ/m2 2.63 GJ/m2 

@150kg/hr/m2 1.17 GJ/m2 1.09 GJ/m2 1.26 GJ/m2 Heat Collected by 
SW+PV (50%) 

@50kg/hr/m2 0.445 GJ/m2 0.410 GJ/m2 0.463 GJ/m2 

@150kg/hr/m2 1.95 GJ/m2 1.86 GJ/m2 2.16 GJ/m2 Heat Collected by 
SW+ PV (50%) +TG 

@50kg/hr/m2 0.931 GJ/m2 1.01 GJ/m2 1.22 GJ/m2 

Annual PV potential (solar electricity) 955 kWh/kW 773 kWh/kW 940kWh/kW 
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Note that the thermal output in Table 5.4 is likely to be over-estimated 

systematically, as the convective heat transfer coefficients used in models tend to 

underestimate wind-induced convective losses at surface wind speed greater than 3.5 m/s, 

which is a common condition for the three Nordic cities. 

For the theoretical yield of annual solar potentials shown in Table 5.4, only a portion 

of the captured thermal energy can be used in reality. The useful fraction of collected 

thermal energy depends on the desired end use of the solar heated air. As discussed in 

Section 3.1.3, collector outlet temperature of less than 0°C (still higher than ambient 

temperature) can be fed into an HRV inlet to save on defrost load, as most HRV are 

equipped with a defrost coil to heat below-zero incoming air with electricity.  

For collector outlet temperature from 0°C to 25°C, the heated air can be used for 

space heating either directly or via a heat pump. If solar heated air is greater than 30°C, it 

is necessary to pass the air to the unoccupied crawlspace for short-term storage, or 

through a heat exchanger for domestic hot water heating. Note that the more end users a 

solar collector is supplying, the more likely that all the heat generated will be used and 

the higher the system cost will be.  

In addition, though electricity is valuable and demand is generally high, more 

photovoltaic panels doesn’t necessarily mean a better solar-capturing system overall. As 

the coverage of PV reduces the thermal efficiency of the collector, compromises between 

electric and thermal energy is essential. Too much electric generation would call for 

inverters and battery of higher capacity, consequently drive up system cost.  
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Therefore, while keeping the cost concerns in mind, there are smart designs and 

control strategies that can be adopted for low energy houses at high latitudes. At the early 

design stage, the auxiliary HVAC systems should be determined together with the Solar 

Component selection. For residential applications, once the desired end uses are decided, 

the type and size of the solar skin should be selected accordingly to optimize the output 

within useful outlet temperature range.  

Lastly, the collector outlet temperature can be controlled with heat removal rate 

(mass flow rate, MFR) determined by the fan. Figure 5.22 and 5.23 (Whitehorse) plot the 

outlet temperature of SWh+TG (green), SWh+PV (red) and outdoor temperature (black) 

for MFR of 150 and 50 kg/hr/m2, respectively.  

 Figure 5.22 Collector Outlet temperatures of SW+TG (green), and SW+PV (red), and 
outdoor temperature (black). MFR=150kg/hr/m2; Whitehorse; 
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Figure 5.23 Collector Outlet temperatures of SW+TG (green), and SW+PV (red), and 
outdoor temperature (black). MFR=50kg/hr/m2; Whitehorse; 

 

At high MFR, collector performs more efficiently at the expense of higher fan 

power. At low MFR, collector performance decreases while outlet temperature increases. 

Figure 5.22 and 5.23 (scale -60°C to 50°C) shown close to 20°C peak difference in outlet 

temperature from MFR changes only.  

The wide range of possible outlet temperatures offers crucial flexibility in solar 

collector selection.  Though collector efficiency generally increases with ascending MFR 

(Table 5.4), the actual outlet temperature is sometimes more important in maximizing the 

solar fraction, as captured thermal energy with outlet temperature too low or too high 

does not actually contribute to the overall energy generation. In addition, high MFR also 

consumes more fan power, resulting in less net production when irradiance is low (low-

sun conditions). Therefore, algorithms for optimizing collector outlet temperature 

depending on end-uses and fan power consumption are needed for future work.  
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6 Conclusions and Recommendations 

6.1 Conclusions 

This thesis presents the design and evaluation of building-integrated solar 

technologies suitable for high-latitude applications. An array of active envelope 

prototypes has been designed and studied for Nordic climate, by incorporating suitable 

solar collectors onto a structural insulated panel (SIP) wall.  

Ten façade-integrated solar collector configurations were experimentally evaluated 

using the state-of-the-art Solar Simulator and Environmental (SSEC) laboratory. The 

flexible design of the envelope prototype allows for detailed experimental 

characterization of different solar-harnessing systems within a compressed timeframe, 

compared to conventional outdoor tests.  

Controlled climatic conditions inside the laboratory led to highly consistent and 

repeatable experimental results. It is the first research project to utilize the full potential 

of the SSEC facility, taking into account the systematic differences between results 

obtained from the Solar Simulator and from the Environmental Chamber.  

Methods and algorithms used to model the integrated solar technologies are also 

presented. Steady-state simulation results are compared with experimental data to 

validate and calibrate the custom thermal models. For transpired collectors, it is 

concluded that surface convective losses is a complex yet vital factor in determining the 

systems’ performance. Convective heat transfer coefficients are experimentally evaluated 

and numerical approximations have been developed for the transpired solar collectors 

pertaining to this thesis.  
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 The suitability of different active envelope systems for high-latitude applications is 

studied. Figure 3.5 and Table 4.1 to 4.3 illustrated all the solar configurations tested, 

including: A1. Collector with Transpired Glazing (TG) and flat absorber; A2. TG and 

finned absorber; B1. Unglazed Transpired Collector (UTC) with corrugation along flow 

(UTC-v); B2. UTC-v+ Transpired Glazing (TG); B3. UTC-v with top glazing; B4. UTC 

with corrugation against flow (UTC-h); B5. UTC-h+TG; B6. UTC-h with top glazing; 

C1.UTC-h+PV/T (PV coverage 50%); C2. UTC-h+PV/T+TG. 

Off-the-shelf technologies such as transpired collectors and photovoltaic panels are 

combined and utilized in innovative manners. The effects of glazing, transpired glazing, 

transpired absorber, finned absorber, and PV coverage are studied. Experimental and 

simulation findings revealed that performance of conventional unglazed transpired 

collector (UTC) as well as photovoltaic/thermal (PV/T) collector can be effectively 

improved simply by adding an exterior layer of transpired glazing (collector B2, B5, C2). 

Simulation and experimental results confirmed collector efficiency rise of up to 28% (in 

absolute difference) due to the simple addition of transpired glazing. The improved 

design successfully minimized surface radiant loss and lowered collector’s susceptibility 

to wind loss, which are particularly beneficial features for northern applications. 

Finned absorber with transpired glazing (A2) increases the performance by up to 

13% compared to collector with flat absorber (A1). Collector with coverage of 50% PV 

(C1) over the total collector area is compared with the output of similar full-scale 

collector with PV coverage of 70%. The concept of thermal equivalent efficiency is 

adopted to combine the electric and thermal performance of PV/T systems. As higher PV 
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coverage reduces the thermal efficiency of the system, design compromise between 

electric and thermal output is necessary.  

Furthermore, the current state of solar installations in Northern Canada is presented 

in case studies (Appendix F and G) involving two common building-integrated solar 

technologies (unglazed transpired collector and photovoltaic system). The author 

conducted on-site fieldwork in Northwest Territories and Nunavut to investigate 

operation issues for existing building-integrated solar installations. The hands-on 

experience revealed that, in order to further the renewable penetrations in the North, the 

human factors and social aspects are just as important as technical expertise.  

By combining passive measures of conservation (building science) and active 

generation of on-site solar electric/thermal energy, the building sector in Northern 

Canada can readily achieve considerable displacement of expensive fossil fuel and its 

associated transportation cost. In the meantime, design innovations on compact envelope, 

BIPV/T facade and pre-fabricated assembly may also be appropriate for general 

applications in temperate climates. 

 

6.2 Recommendations for Solar Integration on SIP Envelope 

This thesis project established extensive expertise regarding integrated solar 

technologies suitable for cold climates. Several important considerations and 

recommendations are summarized for future Solar+SIP applications at high latitudes: 

1. For active envelope design, pre-fabricated systems are extremely beneficial in 

eliminating installation errors and saving on-site labor cost in Northern Canada. The 

SIP system, as a passive enclosure, satisfies all the necessary envelope functions 
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(air/vapor barrier, insulation, structure, etc.). The solar collector can be designed to 

replace exterior cladding without puncturing the air/weather barrier and can be 

installed prior to arrival on site. For transpired collectors, appropriate drainage is 

necessary to account for snow penetration.  

2. For Nordic locations where heating loads are high and energy is expensive, there are 

vast potentials for well-researched renewable technologies. However, as technical 

support is scarce and ongoing maintenance is expensive, low-tech and maintenance-

free systems are preferred. For example, flat plate PV modules, air-based solar 

thermal systems offer the necessary simplicity and are more suitable for Northern 

Canada, compared to other renewable technologies such as wind turbines and liquid-

based thermal collectors.  

3. The duct intake where the solar heated air penetrates the envelope constitutes as a 

weak point. Special attention should be given to the installation and open-close 

control of the insulated damper at air intake. Quality control can be conducted in 

factory for pre-fabricated systems. If this duct opening is able to bypass the solar 

collector when needed, the air intake for solar heated air can be doubled as the fresh 

air intake for building ventilation needs.  

4. While it is important to optimize the performance of the solar component itself, 

system-level optimizations could offer even more immediate benefits. The type, size 

and flow rate of the façade-integrated solar collectors should be determined in 

accordance with the energy demands (electric and thermal). The term “integration” 

not only refers to the physical addition of solar collector onto the envelope system, it 

also involves integration of collector energy output into the building HVAC system.  



 
 

134!

5. To truly achieve low energy buildings in Northern Canada, the social aspect and 

human factors of local communities cannot be under-stated. The designer should be 

conscious about considerations such as vandalism, occupants turning off HRV or 

opening windows during winter, as well as the common mentality of “build-and-

forget”. Possible measures include providing adequate diffusers and better indoor air 

circulation, enabling control on furnace and room thermostats, continuing education 

efforts and maintenance support, etc.  

 

6.3 Future Work 

Further research work in the following aspects are recommended:  

1. Future building codes or design guidelines should include passive solar house 

principles for Nordic locations. Inter-linked variables such as the south-facing 

window-to-floor ratio, insulation level, and thermal storage need to be considered 

simultaneously to optimize for an objective function such as building energy 

efficiency. Designers could also input cost functions to compare or decide between 

passive building design measures and active solar collector integration.  

2. Development of pre-fabricated active facades with seamless collector integration onto 

building envelope. As opposed to the common practice of ‘building-added’ solar 

systems, a true integrated active envelope system replaces the exterior cladding with 

solar skin, while taking barrier penetration, damper design and drainage into 

consideration.  

3. The second level of solar integration in buildings calls for efficient building 

mechanical systems in optimal combination with efficient collector design. 
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Depending on the end uses for the photovoltaic electricity and solar heated air, the 

design of building HVAC systems should be selected and sized accordingly. Future 

arctic low energy buildings can design building integrated solar collectors in 

conjunction with building HVAC systems in the early design stage. 

4. For solar thermal collectors, control algorithms can used to optimize fan speed and 

collector heat removal rates. The goal would be produce solar heated air with outlet 

temperature bounded by the useful range, to maximize the amount of useful thermal 

energy without wasting energy input on fan power. 

5. Short-term thermal storage within the envelope or building space is necessary in order 

to achieve more ambitious energy targets at Nordic locations. Seasonal thermal 

storage could also be considered, bearing in mind the challenges of long winters and 

permafrost stability.  

6. Transpired collectors are particularly prone to surface convective losses, due the 

combined effect of parallel surface wind and the suction flow perpendicular to 

surface. Much research work is needed to fully explain and quantify the surface 

convective heat loss for transpired collectors.  

7. For the design of co-generation systems (i.e. PV/T), the optimal coverage of PV can 

be analyzed based on technical and economical considerations. As solar electricity 

and useful heat production are competitive objectives, life-cycle cost-benefit analyses 

will determine the optimal PV coverage, considering maintenance costs and savings 

in building energy demands. In addition, the optimal combination of PV and thermal 

will vary depending on future price uncertainties. For example, PV price has dropped 

dramatically in the last decade due to incentive programs and technology maturity, 
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and module efficiency has improved. In combination with other economic factors 

such as future fossil fuel price and renewable subsidy, the optimal PV/T design 

requires more in-depth research work. The relative importance of electric and thermal 

outputs also needs to be gauged on a case-by-case basis for such optimization. 
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Appendix A. Experimental Set Up 

Table A.1 List of Materials needed for prototype construction 

Item Description Qty Company Note 

Custom size PV 
panel 

Dark frame, custom 
size  2 Day4Energy 

Left from JMSB 
setup 

NON-Perforated 
Polycarbonate 
Sheets  

Transparent sheets 
ordered from 
MasterCarr 4 MasterCarr Purchased 

Perforated 
Polycarbonate 
Sheets  

Transparent sheets 
perforated by Laser 4 CBR Laser Inc Purchased 

Perforated 
Corrugated Dark 
Metal Cladding 

SolarWall cladding 
5’ by 5’ 1 

Conserval 
Engineering 

Left from JMSB 
setup 

Dark Metal 
Absorber 

TiNOX Steel, high 
absorbance and low 
emissvity, 5’ by 5’ 1 Almeco!

Left from Luis’ 
experiment 

Structural 
Insulated Panel 

One full-size (4’ by 
8’), two half size (2’ 
by 8’) 3 KOTT! In kind support 

 

 

Figure A.1 Custom sized PV panel dimensions 
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Figure A.2 Components of the Experimental Assembly (CAD drawing, to scale) 
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Figure A.3 Instrumentation Diagram of SolarWall Layer; Able to accommodate two 
orientations for testing;  

 

In Figure A.3, the SolarWall plate can be rotated counterclockwise by 90° to form the 

flow-along-corrugation configuration (SW-v). Two sensors are shared between the two 

configurations (SW-h_C2=SW-v_C2; SW-h_R5=SW-v_R3). The current orientation in 

Figure A.3 is flow-against-corrugation (SW-h). 



 
 

149!

 

Figure A.4 Instrumentation Diagram of Transpired Glazing/Glazing Layer 

 

 

Figure A.5 Instrumentation Diagram of Back Plate Layer 
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Figure A.6 Instrumentation Diagram of PV modules Layer 

 

  

 

Figure A.7 SolarWall Corrugation Dimensions (Conserval Engineering, 2010) 
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Table A.2 Thermocouple Master List 
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Table A.2 (Continued) Thermocouple Master List 

 

 

 

  

Figure A.8 LabVIEW DAQ Interface (above) and Block Diagram (below);  
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Figure A.9 Construction Photo: Collector base with instrumentation;  

 

 

Figure A.10 Construction Photo: Transpired Glazing top with instrumentation;  

 

  

Figure A.11 Construction Photo: Instrumentation seen from duct outlet  
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Figure A.12 Construction Photo: Assembled collector A1 mounted on collector test stand  

 

  

Figure A.13 Construction Photo: Collector A1 at vertical tilt with duct outlet connected 
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Figure A.14 Schematics of BIPV/T-SIP integration for the Environmental Chamber tests 
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Figure A.15 Construction photo: SIP shipment in three pieces (left) and Test Hut with 
hollow façade (right)  

 

 

Figure A.16 Construction photo: Sensor feeding into the test hut before insulation and 
sealing (left); Duct installation from outside (top right) and inside (bottom right) Test Hut 
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Figure A.17 Construction photo: Complete Integration of Collector onto SIP without 
scanner (left), with scanner (right) 

 

  

Figure A.18 National Instrumentation, Data Acquisition modules and chassis 
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Appendix B. Experimental Results 

 

Table B.1 Scan results of wind speed across collector height 

Wind speed at 25% fan 
power (m/s), 

Wind speed at 100% fan 
power (m/s) 

AVERAGE;1.02 AVERAGE;3.44 

MINIMUM;0.69 MINIMUM;2.55 

Distance (mm) from 
middle of the collector, 
2 readings on each 
height 

MAXIMUM;1.49 MAXIMUM;4.80 

-872.4779052734375; 1.486103 ; 1.348728 ;  4.795315 ; 4.608440 ;  

-722.4779052734375; 1.131785 ; 1.090449 ;  4.163286 ; 3.745512 ;  

-572.4779052734375; 1.209237 ; 1.102416 ;  3.944597 ; 3.496511 ; 

-422.4779052734375; 1.151100 ; 0.969389 ;  3.725790 ; 3.357467 ;  

-272.4779052734375; 1.169085 ; 1.055867 ;  3.651813 ; 3.306551 ;  

-122.4779052734375; 0.991761 ; 0.994012 ;  3.490931 ; 3.083949 ;  

27.5220947265625; 1.078239 ; 0.875709 ;  3.556386 ; 3.131274 ;  

177.5220947265625; 1.010910 ; 0.877233 ;  3.310549 ; 2.927415 ;  

327.5220947265625; 0.932954 ; 0.883445 ;  3.150075 ; 3.065596 ;  

477.5220947265625; 0.897042 ; 0.767752 ;  2.983349 ; 2.821360 ;  

627.5220947265625; 0.808148 ; 0.690165 ;  2.850808 ; 2.554035 ;  
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Figure B.1 Irradiance Distribution at Collector surface (Solar Simulator), average 1148 
W/m2 

 

 

Figure B.2 Standard deviation of solar distribution at Collector Surface (Solar Simulator), 
5 % maximum 
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Figure B.3 Transmittance results for UV-resistant high-performance polycarbonate sheet, 
tested by the Agilent Spectrophotometer; Average transmittance of 0.89 at visible and 

near infrared range 

 

 

 

Figure B.4 I-V tracer results for two 60W PV modules at 838 W/m2, details in Table 4.5 
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Figure B.5 I-V tracer results for two 60W PV modules at 1148 W/m2, details in Table 4.5 

 

 

Figure B.6 Collector (B1: SWv) outlet temperature rise at 3.5m/s wind and under 
different solar irradiance and different mass flow rates; Linear relationship of collector 

outlet temperature rise with increasing Irradiance 
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Figure B.7 Temperature readings across collector height (B2: SWv+TG) at 1148 W/m2, 
1m/s wind, and constant mass flow rate of 50kg/hr/m2. Error bars of ±0.5°C; Exponential 

fit (dash lines) appropriate for temperature readings with increasing collector height 
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Experimental Results from Solar Simulator 

 

Table B.2 Collector A1 (TG) Performance under Solar Simulator 

A1-100W-HG A1-25W-HG 

  Flow Rate 
(kg/hr/m2) 

TG 
Efficiency 
@1148 HW 

#T @1000 
(degC) 

Flow Rate 
(kg/hr/m2) 

TG 
Efficiency 
@1148 HW 

#T @1000 
(degC) 

150.000 0.533 13.100 150 0.527549788 12.97615 

125.000 0.512 15.100 125 0.524100569 15.46957143 

100.000 0.482 17.800 100 0.502537267 18.541375 

75.000 0.451 22.200 75 0.486126062 23.9145 

50.000 0.348 25.700 50 0.417929193 30.83943182 

 

A1-100W-LG A1-25W-LG 

 Flow Rate 
(kg/hr/m2) 

TG Efficiency 
@838 HW 

#T 
@838(degC) 

Flow Rate 
(kg/hr/m2) 

TG 
Efficiency 
@838 LW 

#T @838 
(degC) 

150.000 0.515 10.300 150 0.504698687 10.1 

125.000 0.491 11.800 125 0.49553749 11.9 

100.000 0.456 13.700 100 0.479713604 14.4 

75.000 0.422 16.900 75 0.464722554 18.6 

50.000 0.331 19.900 50 0.401427009 24.1 
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Table B.3 Collector A2 (TG with fins) Performance under Solar Simulator 

A2-100W-HG A2-25W-HG N/A 

Flow Rate 
(kg/hr/m2) 

TG 
@1000 
WITH 

fins 
#T @1000 

(degC) 
Flow Rate 
(kg/hr/m2) 

TG @1000 
WITH fins 

#T @1000 
(degC) 

150.000 0.631 17.300 150 N/A N/A 

125.000 0.602 19.800 125 N/A N/A 

100.000 0.550 22.600 100 N/A N/A 

75.000 0.471 25.800 75 N/A N/A 

50.000 0.400 32.900 50 N/A N/A 

 

A2-100W-LG A2-25W-LG 

Flow Rate 
(kg/hr/m2) 

TG with 
Fins 
@HW 

#T @838 
(degC) 

Flow Rate 
(kg/hr/m2) 

TG with 
Fins @LW 

#T @838 
(degC) 

150.000 0.645 12.900 150 0.645 12.9 

125.000 0.591 14.200 125 0.620 14.9 

100.000 0.550 16.500 100 0.573 17.2 

75.000 0.472 18.900 75 0.517 20.7 

50.000 0.395 23.700 50 0.456 27.4 
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Table B.4 Collector B1 (SWv) Performance under Solar Simulator 

B1-100W-HG B1-25W-HG 

Flow Rate 
(kg/hr/m2) 

Efficiency of 
SWv 
HW@1148 

#T @1148 
(degC) 

Flow Rate 
(kg/hr/m2) 

Efficiency 
of SWv 
LW@1148 

#T @1000 
(degC) 

150.000 0.459 12.581 150.000 0.588 16.133 

125.000 0.418 13.753 125.000 0.561 18.449 

100.000 0.370 15.228 100.000 0.502 20.636 

75.000 0.307 16.832 75.000 0.447 24.513 

50.000 0.227 18.672 50.000 0.350 28.780 

 

B1-100W-LG B1-25W-LG 

Flow Rate 
(kg/hr/m2) 

Efficiency 
of SWv 
HW@838 

#T @840 
(degC) 

Flow Rate 
(kg/hr/m2) 

Efficiency 
of SWv 
LW@838 

#T @838 
(degC) 

150.000 0.429 8.579 150.000 0.591 11.835 

125.000 0.396 9.510 125.000 0.564 13.551 

100.000 0.354 10.624 100.000 0.504 15.123 

75.000 0.299 11.980 75.000 0.450 18.017 

50.000 0.223 13.394 50.000 0.351 21.092 
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Table B.5 Collector B2 (SWv+TG) Performance under Solar Simulator 

B2-100W-HG B2-25W-HG 

Flow Rate 
(kg/hr/m2) 

Efficiency of 
SWv+TG 
HW@1148 

Efficiency 
of 
SWv+TG 
HW@838 

Flow Rate 
(kg/hr/m2) 

Efficiency 
of 
SWv+TG 
LW@1148 

#T 
@1000 
(degC) 

150.000 0.693 18.995 150.000 0.732 20.071 

125.000 0.659 21.683 125.000 0.695 22.850 

100.000 0.622 25.567 100.000 0.642 26.401 

75.000 0.570 31.241 75.000 0.600 32.924 

50.000 0.485 39.927 50.000 0.529 43.545 

 

B2-100W-LG B2-25W-LG 

Flow Rate 
(kg/hr/m2) 

Efficiency 
of 
SWv+TG 
HW@838 

#T @840 
(degC) 

Flow Rate 
(kg/hr/m2) 

Efficiency 
of 
SWv+TG 
LW@838 

#T @840 
(degC) 

150.000 0.692 13.848 150.000 0.712 14.250 

125.000 0.655 15.733 125.000 0.676 16.242 

100.000 0.607 18.233 100.000 0.627 18.810 

75.000 0.561 22.443 75.000 0.587 23.487 

50.000 0.471 28.287 50.000 0.504 30.280 
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Table B.6 Collector B3 (SWv+G) Performance under Solar Simulator 

B3-100W-HG B3-25W-HG 

Flow Rate 
(kg/hr/m2) 

SWv+G 
@HW 

#T @1148 
HW (degC) 

Flow Rate 
(kg/hr/m2) 

SWv+G 
@LW 

#T @1148 
LW 
(degC) 

150.000 0.485 13.300 150 0.576 15.800 

125.000 0.444 14.600 125 0.547 18.000 

100.000 0.392 16.100 100 0.503 20.700 

75.000 0.321 17.600 75 0.441 24.200 

50.000 0.242 19.900 50 0.354 29.100 

 

B3-100W-LG B3-25W-LG 

Flow Rate 
(kg/hr/m2) 

SWv+G 
HW@840 

#T @840 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWv+G 
LW@840 

#T @840 
(degC) 

150.000 0.455 9.100 150 0.580 11.6 

125.000 0.421 10.100 125 0.541 13 

100.000 0.370 11.100 100 0.480 14.4 

75.000 0.307 12.300 75 0.447 17.9 

50.000 0.232 13.900 50 0.360 21.6 
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Table B.7 Collector B4 (SWh) Performance under Solar Simulator 

B4-100W-HG B4-25W-HG 

Flow Rate 
(kg/hr/m2) 

SWh 
HW@1148 

#T @1148 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh 
LW@1148 

#T @1148 
(degC) 

150.000 0.451 12.356 150.000 0.629 17.248 

125.000 0.394 12.954 125.000 0.580 19.090 

100.000 0.342 14.058 100.000 0.514 21.142 

75.000 0.283 15.506 75.000 0.452 24.792 

50.000 0.215 17.657 50.000 0.362 29.785 

 

B4-100W-LG B4-25W-LG 

Flow Rate 
(kg/hr/m2) 

SWh 
HW@838 

#T @838 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh 
LW@838 

#T @838 
(degC) 

150.000 0.428 8.572 150.000 0.615 12.299 

125.000 0.382 9.176 125.000 0.571 13.724 

100.000 0.342 10.276 100.000 0.524 15.722 

75.000 0.281 11.262 75.000 0.448 17.949 

50.000 0.209 12.526 50.000 0.364 21.834 
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Table B.8 Collector B5 (SWh+TG) Performance under Solar Simulator 

B5-100W-HG B5-25W-HG 

Flow Rate 
(kg/hr/m2) 

SWh+TG 
HW@1000 

#T @1000 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh+TG 
LW@1000 

#T 
@1000 
(degC) 

150.000 0.694 19.021 150.000 0.671 18.401 

125.000 0.672 22.094 125.000 0.649 21.335 

100.000 0.631 25.963 100.000 0.620 25.486 

75.000 0.563 30.845 75.000 0.587 32.207 

50.000 0.469 38.609 50.000 0.509 41.890 

 

B5-100W-LG B5-25W-LG 

Flow Rate 
(kg/hr/m2) 

SWh 
HW@840 

#T @840 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh 
LW@840 

#T @840 
(degC) 

150.000 0.695 13.900 150.000 0.658 13.160 

125.000 0.670 16.100 125.000 0.652 15.659 

100.000 0.626 18.800 100.000 0.623 18.695 

75.000 0.552 22.100 75.000 0.570 22.794 

50.000 0.470 28.200 50.000 0.512 30.745 
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Table B.9 Collector B6 (SWh+G) Performance under Solar Simulator 

 

B6-100W-LG B6-25W-LG 

Flow Rate 
(kg/hr/m2) 

SWh+G 
HW@838 

#T @838 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh+G 
LW@838 

#T @838 
(degC) 

150.000 0.465 9.300 150 0.585 11.7 

125.000 0.433 10.400 125 0.554 13.3 

100.000 0.380 11.400 100 0.526 15.8 

75.000 0.330 13.200 75 0.460 18.4 

50.000 0.258 15.500 50 0.385 23.1 

 

 

 

 

 

 

 

 

B6-100W-HG B6-25W-HG 

Flow Rate 
(kg/hr/m2) 

SWh+G 
@HW 

#T @1148 
(degC) 

Flow Rate 
(kg/hr/m2) SWh+G @LW 

#T 
@1148 
(degC) 

150.000 0.487 13.200 150 0.594 16.500 

125.000 0.443 14.800 125 0.566 18.900 

100.000 0.399 16.600 100 0.528 22.200 

75.000 0.348 19.200 75 0.475 26.700 

50.000 0.267 21.900 50 0.389 31.900 
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Table B.10 Collector C1 (SWh+PV) Performance under Solar Simulator 

C1-100W-HG C1-25W-HG 

Flow Rate 
(kg/hr/m2) 

SWh+PV 
HW@1148 

#T 
@1148 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh+PV 
LW@1148 

#T @1148 
(degC) 

150.000 0.263 7.220 150.000 0.371 10.174 

125.000 0.223 7.340 125.000 0.356 11.725 

100.000 0.190 7.814 100.000 0.331 13.601 

75.000 0.153 8.407 75.000 0.277 15.200 

50.000 0.105 8.656 50.000 0.214 17.618 

 

C1-100W-LG C1-25W-LG 

Flow Rate 
(kg/hr/m2) 

SWh+PV 
HW@838 

#T @838 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh+PV 
LW@838 

#T @838 
(degC) 

150.000 0.256 5.114 150.000 0.380 7.603 

125.000 0.220 5.283 125.000 0.355 8.521 

100.000 0.186 5.578 100.000 0.328 9.849 

75.000 0.150 6.017 75.000 0.282 11.278 

50.000 0.099 5.950 50.000 0.211 12.659 
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Table B.11 Collector C2 (SWh+PV+TG) Performance under Solar Simulator 

C2-100W-HG C2-25W-HG 

Flow Rate 
(kg/hr/m2) 

SWh+PV+TG 
HW@1148 

#T @1148 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh+PV+TG 
LW@1148 

#T 
@1148 
(degC) 

150.000 0.463 12.681 150.000 0.486 13.332 

125.000 0.426 14.016 125.000 0.454 14.946 

100.000 0.385 15.840 100.000 0.429 17.648 

75.000 0.331 18.161 75.000 0.416 22.782 

50.000 0.269 22.140 50.000 0.354 29.082 

 

C2-100W-LG C2-25W-LG 

Flow Rate 
(kg/hr/m2) 

SWh+PV+TG 
HW@838 

#T @838 
(degC) 

Flow Rate 
(kg/hr/m2) 

SWh+PV+TG 
LW@838 

#T @838 
(degC) 

150.000 0.439 8.786 150.000 0.449 8.988 

125.000 0.412 9.895 125.000 0.441 10.592 

100.000 0.372 11.165 100.000 0.423 12.703 

75.000 0.325 13.011 75.000 0.394 15.760 

50.000 0.250 15.014 50.000 0.328 19.711 
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Figure B.8 All Collectors Performance at 1148W/m2 irradiance, 3.5m/s air velocity 
parallel to collector surface 

 

 
Figure B.9 All Collectors Performance at 1148W/m2 irradiance, 0.9m/s air velocity 

parallel to collector surface 
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Figure B.10 All Collectors Performance at 838W/m2 irradiance, 3.5m/s air velocity 
parallel to collector surface 

 

 

Figure B.11 All Collectors Performance at 838W/m2 irradiance, 0.9m/s air velocity 
parallel to collector surface 
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Collector Performance: Experimental Results from Environmental Chamber 

 

Table B.12 Collector B4 (SWh) and B5 (SWh+TG) Performance at Environmental 
Chamber, no wind, irradiance 824 W/m2 (Raw data, uncorrected) 

B4: SWh B5: SWh+TG 

Flow Rate 
(kg/hr/m2) 

Efficiency 
SWh, No 
wind at 824 

#T @824 
no wind 
(degC) 

Flow Rate 
(kg/hr/m2) 

Efficiency 
SWh+TG, 
No wind at 
824 

#T @824 no 
wind (degC) 

50.000 0.492 29.034 50.000 0.616 36.369 

75.000 0.613 24.113 75.000 0.738 29.030 

100.000 0.662 19.534 100.000 0.750 22.523 

125.000 0.673 15.896 125.000 0.787 18.580 

150.000 0.778 15.309 150.000 0.772 15.198 

 

 

Table B.13 Collector C1 (SWh+PV) and C2 (SWh+PV+TG) Performance at 
Environmental Chamber, no wind, irradiance 824 W/m2 (Raw data, uncorrected) 

C1: SWh+PV C2: SWh+PV+TG 

Flow Rate 
(kg/hr/m2) 

Efficiency 
SWh+PV, No 
wind at 824 

#T @824 
no wind 
(degC) 

Flow Rate 
(kg/hr/m2) 

Efficiency 
SWh+PV+TG, 
No wind at 824 

#T @824 
no wind 
(degC) 

50.000 0.350 20.645 50.000 0.450 26.539 

75.000 0.434 17.090 75.000 0.513 20.199 

100.000 0.498 14.706 100.000 0.555 16.396 

125.000 0.497 11.738 125.000 0.575 13.575 

150.000 0.499 9.820 25.000 0.297 35.116 
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Table B.14 Duct leakage Testing Data using a calibrated fan 

Duct 
internal 
pressure 
(Pa) 

Mass flow 
rate by the 
calibrated fan 
(kg/hr) 

Read 
Pressure 
loss at fan 
(in H2O) 

Corresponding 
flow loss from 
Chart (cfm) 

Mass flow 
loss from 
leakage 
test (kg/hr) 

Percentage 
of Mass 
flow loss 
(%) 

40.35 55.3 0.2 2.9 5.94 10.7 

18.93 42.2 0.15 2.2 4.5 10.7 

72.24 64.5 0.24 3.3 7.15 11.1 

91.42 77.8 0.28 4 8.19 10.5 

2.5 34 0.12 1.8 3.7 10.9 

 

 

Table B.14 (continued) Duct leakage Testing Data using a calibrated fan 

Actual Mass 
Flow Rates used 
in experiments 
(kg/hr/m2) 

 Mass Flow 
Loss 
Extrapolated 
(linear) 

Extrapolated 
Percentage of 
Mass Flow 
Loss (linear) 

Extrapolated 
Mass Flow 
Loss 
(exponential) 

Extrapolated 
Percentage of 
Mass Flow Loss 
(exponential) 

50 5.4285 10.9 5.705175135 11.4 

75 8.111 10.8 8.002297158 10.7 

100 10.7935 10.8 9.632131172 9.6 

125 13.476 10.8 10.89632865 8.7 

150 16.1585 10.8 11.9292532 8.0 
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Figure B.12 Duct Air Leakage Correction Results for Collector B4 (SWh) and B5 
(SWh+TG) 

 

 

Figure B.13 Duct Air Leakage Correction Results for Collector C1 (SWh+PV) and C2 
(SWh+PV+TG) 
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Appendix C. Uncertainty Analysis 

 

Table C.1 Example values of the measured variables used in this uncertainty analysis 

Measured Value Measured Value Variable Measured Value 

Tamb  20°C Toutlet  35°C 

Length and Width  1465mm MFR 150 kg/hr/m2 

'air air density 1.14 kg/m3 QU Useful Heat  600W 

 

Below are examples of uncertainty analysis for all calculated variables. 

C.1 Uncertainty of collector outlet temperature rise: #T=(Toutlet –Tamb) 

Firstly, since collector outlet temperature is the average of two thermocouples at the 

duct outlet of ±0.5°C: 

   

The ambient temperature is taken as the average value of four thermocouples 

mounted above the collector surface: 

 

Therefore, the uncertainty of collector outlet temperature rise is given by: 

 

 

!T
outlet

= ± 0.5
2
+0.5

2
= 0.707

!T
amb

= ± 0.5
2
+0.5+0.5

2
+0.5

2
= 1

!"T
"T

= ±
!T

outlet

T
outlet

#
$%

&
'(

2

+
!T

amb

T
amb

#
$%

&
'(

2

= ±
0.707

35

#
$%

&
'(
2

+
1

20

#
$%

&
'(
2

= ±0.01865

!"T = 0.01865 #15(°C) = 1.224°C
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C.2 Uncertainty of Irradiance: I 

From calibration certificate of CMP 21 manufactured by Kipps and Zonen, 

uncertainty is given by the World Radiation Center in Davos as ±0.11/8.75=1.26% from 

temperature -50°C to 20°C 

C.3 Uncertainty of Collector Area: A=L*W 

 

 

C.4 Uncertainty of Mass Flow Rate: MFR 

The overall mass flow rate measured in the air duct is calculated by ISO5167 

standard using the general equation for mass flow rate: 

 

where " is th diameter ratio and C is the discharge coefficient as a function of "; 

without getting into details about " and d (which are geometric values  with very small 

uncertainty), the terms inside the square root will dominate the uncertainty of QM.  

 

Therefore, the uncertainty of MFR can be calculated by: 

 

!A
A

= ±
!L
L

"
#$

%
&'
2

+
!W
W

"
#$

%
&'
2

= ±
1

1465

"
#$

%
&'
2

+
1

1465

"
#$

%
&'
2

= ±0.00965

!A = 0.00965 " (1465 #1465)(mm
2
) = 2071mm

2

QM = MFR ! A =
C

1" # 2

!
$

4
!d ! 2 ! %P ! &air

!Q
M

Q
M

= ±
1

2

!"P
"P

#
$%

&
'(
2

+
!)

air

)
air

#
$%

&
'(

2

= ± 0.07( )
2

+ 0.006( )
2

= ±0.03513
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C.5 Uncertainty of useful heat captured: Qu 

The useful heat captured by the solar heated air is calculated as:  

 

Since cp is constant, the uncertainty of QU is calculated by: 

 

 

C.6 Uncertainty of efficiency: !=QU/(I*A) 
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= ±
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"
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%
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2
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"
#$

%
&'
2
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2
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2

= ±0.03514

!MFR = 0.03514 " (150)(kg / hr / m
2
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2
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Appendix D. Steady-State Simulation and Results 

D.1 Sample MathCAD output for Simple PV/T model at steady-state

 

 Steady-State PVT model

Given constants: degC 1!"
L 0.05m!" w 1.46m!" h 0.36m!" v 0.1051

m

s
!"

hour 3600s!"

Vw 0.86
m

s
!" ... Wind speed

Temperature corrected air properties (based on 20degC):

Tair 34.8degC!" .. Assumed temperature in the air cavity

ρ 1.2
kg

m
3

293.15

Tair 273.15#
$!" .. Density of air

cp 1000
J

kg K$
!" .. Specific heat of air (assume constant)

μ 15.11 10
6%

$
m
2

s
$ ρ$&

'
(

)
*
+

293.15 120#( )

Tair 273.15# 120#( )
$

293.15

Tair 273.15#
&'
(

)*
+

1.5

$!" .. Dynamic viscosity of air

.. Thermal conductivity of air (assume linearly

varying between 0degc to 20degC)
k 0.0243 0.0257 0.0243%( )

Tair( )

20degC
$#,-

.
/0
1
watt

m K$
!"

Re
ρ v$ 2$ L

μ 775.727"!" .. Reynolds number

y 0 0.0523 ..0.3523!" .. Distance from inlet

H y( )
y m$

L
!" .. Dimensionless channel height

Find convective heat transfer coefficient hc (Liao and Athienitis, 200?):

On the PV side (hc1), Nusselt number is:

Nu1 y( ) 0.011 Re$ 62.856#( ) e
0.475% H y( )$

$ 2.766 10
3%

$ Re$# 5.58#!"

hc1 y( )
Nu1 y( ) k$

L
!"

On the insulation side (hc2), Nusselt number is:

Nu2 y( ) 0.109 Re$ 124.344%( ) e
1.635% 10

5%
$ Re$ 0.593%4 5 H y( )$

$ 4.098 10
3%

$ Re$# 3.896#!"

hc2 y( )
Nu2 y( ) k$

L
!"

At half of the plate height:

hc1 0.3( ) 6.339
watt

m
2
K

$" hc2 0.3( ) 3.221
watt

m
2
K

$"
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Average hc on both sides of the plate:

hc1avg
hc1 0( ) hc1 0.05( )! hc1 0.1( )! hc1 0.15( )! hc1 0.2( )! hc1 0.25( )! hc1 0.3( )! hc1 0.35( )!

8
"#"

hc2avg
hc2 0( ) hc2 0.05( )! hc2 0.1( )! hc2 0.15( )! hc2 0.2( )! hc2 0.25( )! hc2 0.3( )! hc2 0.35( )!

8
"#"

Properties of the PV:

εpv 0.9#" εpv_b 0.8#" .. Emissitivity of PV (front and back)

αpv 0.925#" .. Absorptance of PV

Assume PV thermal resistance negligible: no Rpv

PVT

To 22.141K 273.15K!#" Tr 293.15K#" Unit area: A 1m
2

#"

hw 14.5 Vw$
s

m
$ 6.603!%

&
'

(
)
*

watt

m
2
K

#" .. Experimental Wind loss

ho 5.771
watt

m
2
K$

hw!#" .. Outdoor film coefficient Uo ho A$#"

Initial Conditions:

σ 5.67 10
8+

$
watt

m
2
K
4

$

#" .. Stephan Boltzman constant

Spv 838
watt

m
2

#"

εwall 0.9#" .. emissivity of the wall

Tpv
0

Tb
0

Tma
0

Qu
0

hr
0

F
0

FR
0

ηpv
0

Tout
0

Tair
0

%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
'

(
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
*

290K

290K

290K

100watt

1
watt

m
2
K

0.2

0.2

0.15

290K

290K

%&
&
&
&
&
&
&
&
&
&
&
&
&
&
'

()
)
)
)
)
)
)
)
)
)
)
)
)
)
*

#"
Uins

A

1.32

watt

m
2
K$

0.12
watt

K
!#"

.. Insulation RSI1.32

Time step: p 0. 1,- 100..#"

Assume air mass flow rate here:

Mair v
L

h

%
&
'
(
)
*

$ ρ$ 60.029
kg

hour m
2

$

$"#"
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Assume intlet temp is same with outdoor air temp:

Tin To!"

Ua y( ) A hc1 y( )#!" Ub y( ) A hc2 y( )#!"

uL ho
Uins

A
$ 25.722

watt

m
2
K

#"!"

Ua 0.06( ) 25.719
m
2
kg#

K s
3

#

"

Enegy balance at each node:

Tpv
p 1$

Tb
p 1$

Tma
p 1$

Qu
p 1$

hr
p 1$

F
p 1$

FR
p 1$

Tout
p 1$

Tair
p 1$

%
&
&
&
&
&
&
&
&
&
&
&
&
&
&
'

(
)
)
)
)
)
)
)
)
)
)
)
)
)
)
*

αpv Spv# A# ηpv αpv# Spv# A#+ ho A# To#$ hr
p
A# Tb

p
#$ hc1avg A# Tma

p
#$

ho A# hr
p
A#$ hc1avg A#$

Uins Tr( )# hc2avg A# Tma
p, -#$ hr

p
A# Tpv

p, -#$

Uins hc2avg A#$ hr
p
A#$

hc1avg A# Tpv
p, -# hc2avg A# Tb

p, -#$ Qu
p

+

hc1avg A# hc2avg A#$

FR
p
A αpv Spv# uL Tair

p
To+, -+./ 01#

4 σ#
Tpv

p
Tb
p

$

2

%
&
'

(
)
*

3.2
2
/

03
3
1

#

1

εpv_b
1

εwall$ 1+%&
'

()
*

1

1
uL

hc1avg
1

1

hc2avg

1

hr
p

$

$

$

Mair A#
cp

A uL#
# 1 e

A+ uL# Fp#

Mair A# cp#
+

%
&
'

(
)
*

Tpv
p

Tair
p

+, -hc1avg Tb
p

Tair
p

+, -hc2avg$

Mair cp#
Tin$

Tin Tout
p

$

2

.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
/

0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
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3
3
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3
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3
3
3
3
1

!"
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Figure D.1 Results of finite element analysis after all results converge 
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D.2 MATLAB/Simulink interface for SW and SW+TG models: 

The thermal network models of SW and SW+TG discussed in Section 5.1 are 

configured in the MATLAB/Simulink platform. Figure D.2 shows the primary interface 

of steady state simulations matching the conditions of the Solar simulator experiments.  

Note that each blue block is an independent model at one specific flow rate and under a 

set of environmental conditions.  

HGHW                          HGLW                      LGHW                       LGLW 

 

Figure D.2 Level-1 Block diagram of SW or SW+TG models: climatic loads matching 4 
sets of experimental tests (HGHW, HGLW, LGHW, LGLW) at five mass flow rates; e.g. 

Each blue block contains one flow rate at one set of environmental conditions. 

 

 

Figure D.3 Close up section of one SW or SW+TG model, showing input and output 
variables for one flow rate and one set of environmental conditions. 
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Discrete inputs include steady state environmental conditions such as ambient 

temperature, irradiance and wind speed; Output variables include convective wind loss 

coefficient, collector effectiveness, surface temperature, outlet temperature, collector 

efficiency, and useful heat captured (Figure D.3). 

Figure D.4 shows the logic inside each blue block, three modular components are 

calculated simultaneously and some outputs are looped back into the following time step. 

 

 

Figure D.4 Thermal network Model detail (inside each blue block): Complete View 
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Figure D.5, D.6 and D.7 expand the details inside the three blocks illustrated in 

Figure D.4. The “Air Properties” Block outputs all the necessary air properties (Figure 

D.5). The D.6 “UTC Properties” block computes important variables such as collector 

effectiveness and convective wind loss coefficient, leading up to main calculation block 

of “UTC cal” in Figure D.7. 

 
Figure D.5 Details of the “Air Properties” Block for appropriate air properties 

 

 

Figure D.6 Details of the “UTC Properties” block: preparation block for performance 
calculation of a transpired collector (SW or SW+TG);    
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Figure D.7 Detail of the “UTC_cal” block: computation of collector performance   

 

D.3 Test Results from Environmental Chamber compared to Solar Simulator: 

Convective Wind Loss Correction 

Alternative to the approximation of convective wind loss coefficient (hconv) discussed 

in Section 5.3.2, another method of numerical approximation is presented here using 

equation from Carpenter et al. (1999): 

                                   (5.44, Section 5.3.2) 

 Figure D.8 and D.9 presents the experimental value of hconv plotted against the ratio 

of Vwind/Vs.  The linear relationship is acceptable within the error range for SWv at both 

wind conditions (Figure D.8). However, the relationship barely holds true for SWv+TG 
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collector, especially at low wind conditions (Figure D.9). Additionally, the slope and 

intercept of the linear approximation is dissimilar between low and high wind conditions, 

resulting in difficulty to fit a universal approximation that works for all MFR and at all 

wind speeds between 0.9m/s to 3.5m/s. In conclusion, the approximation method 

presented in equation 5.11 (Section 5.4.4) is used for final simulation.  

 

Figure D.8 Convective heat loss coefficients in relation with Vwind/Vs ratio, for Collector 
B4 (SWv) 

 

 

Figure D.9 Convective heat loss coefficients in relation with Vwind/Vs ratio, for collector 
B5 (SW+TG) 
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D.4 Test Results from Environmental Chamber compared to Solar Simulator: 

Radiant Gain Correction 

Table D.1 View Factor for two parallel finite surfaces 

 

 

 

Figure D.10 View Factor for two parallel finite surfaces 

 

For geometry of the collector surface and the chamber façade, a=b=1.5m, c=0.77m. 

Calculated from Table D.1 and Figure D.10, the view factor from Chamber façade to 

collector surface (Ffacade-surface) equals to 0.5. 

To supplement the radiant gain results for collectors B4 and B5 in Section 5.4.2, 

radiant gain correction for the performance of C1 and C2 are shown in Figure D.11. 
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Figure D.11 Collector SWh+PV and SWh+PV+TG: Efficiency in Chamber corrected for 
radiant gain to account for heated Chamber façade surface due to lack of artificial sky. 
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Appendix E. Annual Results 

 

 

Figure E.1 Collector Outlet temperatures of SW+TG (green), and SW+PV (red), and 
outdoor temperature (black). MFR=50kg/hr/m2; Fort Smith; 

 

 

Figure E.2 Collector Outlet temperatures of SW+TG (green), and SW+PV (red), and 
outdoor temperature (black). MFR=150kg/hr/m2; Fort Smith; 
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Figure E.3 Useful power (W/m2) collected by SW+TG (green), and SW+PV (red), and 
total irradiance on Facade (black). MFR=150kg/hr/m2; Fort Smith; 

 

 

 

Figure E.4 Useful power (W/m2) collected by SW+TG (green), and SW+PV (red), and 
total irradiance on Facade (black). MFR=50kg/hr/m2; Iqaluit; 
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Figure E.5 Useful power (W/m2) collected by SW+TG (green), and SW+PV (red), and 
total irradiance on Facade (black). MFR=150kg/hr/m2; Iqaluit; 

  

 

Figure E.6 Useful power (W/m2) collected by SW+TG (green), and SW+PV (red), and 
total irradiance on Facade (black). MFR=150kg/hr/m2; Iqaluit; 
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Appendix F. Field Evaluation of PV Façade at Nunavut Arctic 

College, Iqaluit 

F.1 Project Description 

In 1995, a 3.2kWp grid-connected photovoltaic (PV) system was installed on the 

facade Nunavut Arctic College, Nunatta Campus in Iqaluit (Figure F.1). Since then, the 

façade integrated PV system has been delivering electricity to the grid with no 

interruption, confirmed by monitoring data until 2005. However, the monitoring systems 

stopped functioning in 2006. While it is entirely possible that PV is still producing 

electricity and feeding into the grid, there was no way of knowing for sure.  

 

Figure F.1 Façade PV system, Iqaluit. Left: Picture 1995 (Sunny day); Right: Picture 
2012 (Snowy day); 

 

Therefore, the proposed fieldwork took place in Iqaluit, from April 22nd to 25th 2012, 

to determine quantitatively whether the PV is currently in working order. An I-V tracer 

was brought up to quantify the PV characteristics, and the Eppley pyranometer from the 

original data acquisition systems is used to measure the local solar radiation level. The 

data gathered from the fieldwork are documented in this report.  

F.2 Testing Protocol 
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F.2.1 Technical Information of PV systems 

The PV façade installation was initiated and supported by Natural Resource Canada 

(NRCan) in 1995. Oriented at 30° West of South, there are sixty PV panels mounted 

vertically totaling 25.62 m2 of module area. The array is composed of 5 parallel groups of 

12 modules in series, three groups of which are 36 single crystalline silicon Siemens M55 

modules and the remaining two groups are 24 single crystalline Solec S-53 modules 

(Poissant et al., 2004). The details of manufacturer’s specifications for the two types of 

modules are listed in Table F.1 below.  

Table F.1 Specifications of the two types of PV modules used in the original installation 

Model Name Area 
(m2) 

Rated 
Power 

Rated 
Efficiency 

Voc Isc Vmpp Impp 

Siemens M55 0.4254 55 watt 12.9% 21.7 V 3.45 A 17.4 V 3.15 A 

Solec S53 0.4294 53 watt 12.3% 20.3 V 3.4 A 17.1 V 3.1 A 

The array output is rated at 220VDC at 25°C, and connected to a Prosine 5000 GT 

3kW inverter, which produces 208VAC and directly feeds for building electricity usage. 

The PV-generated electricity is used as it is produced, all the while displacing the diesel 

power generation. 

F.2.2 Testing Procedures 

Though the monitoring system is no longer sending data to the computer, the Eppley 

pyranometer from the original data acquisition system is still functioning to this date. The 

output voltage is manually read by a multi-meter, quantifying the value of solar 

irradiance on the PV façade (Figure F.2).  Unlike the Li-Cor pyranometer, which has 
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drifted significantly since the time of installation in 1996 due to increased spectral effects 

in high latitude, the measurements from the Eppley pyranometer remained comparatively 

reliable over time.  

 

Figure F.2 Eppley pyranometer used for measuring solar irradiance 

 

A DS-100C I-V Curve Tracer is used to determine if the PV system is still in 

operation and to evaluate the characteristic performance of the PV array. Testing was 

done on two dates, a sunny day on April 23rd and a snowy day on April 25th. In addition 

to the PV array itself (60 modules), there are also 9 experimental PV panels available for 

testing, installed at roughly the same time but unwired to the array.  

F.2.3 Limitations 

The nature of the I-V tracer allows only for momentary results of the PV 

performance. A new monitoring system will be needed to obtain continuous data and 

yearly kWh output. During the field tests, the reading from Eppley is manually taken 

from the multi-meter, therefore a few minutes lagging from the actual I-V curves. The 

error may be minimal on a sunny day when the solar radiation is relatively constant, 
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however, on a snowy day, the irradiance on the surface could change from second to 

second due to snow obstruction, causing significant errors.  

In addition, the systematic drift of the Eppley pyranometer is not corrected due to the 

lack of the calibration devise in the field. Since the testing were conducted in April 2012, 

the spectral effect that causes the pyranometer drift is minimal compared to winter 

months (Thevenard 2005; Thevenard 2006).  

Lastly, no tests were done regarding the current efficiency of the Prosine 3kW 

inverter. Though the inverter is operational (with hot air rejected from the back of the 

inverter) at the time of inspection, its efficiency drop since 1995 is unknown.  

F.3 Results and Discussion 

F.3.1 Results of Solar Radiation data from the Existing Eppley Pyranometer 

 The Eppley Precision Spectral Pyranometer (PSP) outputs a low level voltage 

ranging from 0 to ~25 mV, which is amplified to a 0-5 Volts range. The calibration sheet 

for the PSP lists the following: Sensor calibration = 8.61 .V W-1 m2. 

Since .V W-1m2= mV kW-1m2, the estimate for the output voltage of 2.66Volts is:  

Irradiance = 2.66V/5V * 25mV/(8.61 mV kW-1 m2)/*1000 = 1544.7 W/m2. 

Sample readings of the pyranometer are listed and interpreted in Table F.2 below. 

Table F.2 Eppley PSP Readings 
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F.3.2 Results from Nine Experimental PV Modules 

Five Siemens modules and four Solec modules, a total of nine experimental PV 

modules were tested individually, as shown in Figure F.3. The monitor room in the Arctic 

College is designed to provide easy access to the unwired experimental PV modules for 

education purpose.  

 

 Figure F.3 Experimental PV Module Testing  
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For each experimental module, two characteristic I-V curves were swept and the 

results were in good agreement with each other. The results from the nine experimental 

modules are representative of the Siemens and Solec PV quality, as the nine modules and 

the PV array were installed at the same time and exposed to the same weather conditions.  

All the Siemens panels are currently functioning, while two out of four Solec panels 

are not in working order (no voltage readings) and probably reached its end-of-life. It is a 

good indicator of how many PV panels of each module type that may be currently non-

functional in the solar array. Measured output of the functioning experimental PV 

modules shown significant efficiency drop from the original rated power. The results of 

the nine experimental modules are summarized in Table F.3, allowing relevant insights 

into the current array performance. 

Table F.3 Experimental PV modules Testing Results 

 

 
Though the results may have been tempered with systematic errors due to 

pyranometer drift as well as the time lag between irradiance reading and I-V curve 

sweeping, the data are consistent with each other on the same day. Figure F.4 below 
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illustrates the different I-V curves of the same experimental modules (A1 Siemens and 

A4 Solec) on a sunny and a snowy day.  

 

Figure F.4 I-V curves of sample experimental modules under Sunny and Snowy weather 

 

As can be seen on Figure F.4, the falling snow sometimes causes zigzags on the 

curve (A1 Siemens Snowy day). Interestingly, the fill factor, as well as PV efficiency on 

a snowy day is better on the snowy day than it is on the sunny day, for both Siemes and 

Solec modules.  

F.3.3 Results from the Total PV Array 

The open-circuit voltage of the whole array is measured on both the sunny and snowy 

days. The rated open-circuit voltage of the array is 220VDC at 25°C, using the 
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manufacturer’s Voc temperature coefficient of -0.34%/°C, the open-circuit voltage values 

were calculated and compared to measured values, listed in Table F.4. 

 
Table F.4 Open-circuit Voltage of PV Array on April 23rd (sunny) and 25th(snowy), 2012 

 Temperature 
daily mean 

Temperature 
daytime 

Measured 
Array Voc  

Calculated Voc from rated Voc at 
25°C 

Sunny day -12.6°C -10°C 250Vdc 246.2Vdc 

Snowy day -10.7°C -6.6°C 231Vdc 243.6Vdc 

 

The solar array is composed of three parallel groups of Siemens modules (L1, 36 

modules total) and two parallel group of Solec modules (L2, 24 modules total). The I-V 

curve tracing was done only for snowy day, details of the wiring and connections are 

shown in Figure F.5. 

 

Figure F.5 Solar Array Testing: DC wiring in mechanical room for Siemens (L1) and 
Solec (L2) array 
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 The results of the PV array performance are summarized in Table F.5 below. Three 

separate tests (I-V curve and Eppley measurements) were conducted for each array (L1 

and L2) on April 25th (snowy) from 10:30 to 11:30am.  

 
Table F.5 Results of Solar Array Performance (snowy day) 

 

 
The efficiency reduction of Solec modules has dropped by 50% since 1995 

installation, while the efficiency drop of Siemens modules is only around 30%. 

Considering the findings from the 9 experimental panels, half of Solec experimental 

panels stopped functioning while all of the Siemens panels are still in operation. The 

significant efficiency reduction of Solec array can be attributed to the performance drop 

of each individual Solec panel, as well as due to the dead modules that adversely affect 

the entire string.  

Figure F.6 illustrates the characteristic performance of the two PV types (L1 and L2), 

at an irradiance of 257 watt/m2. Siemens (L1) offers a much better fill factor and 

efficiency, compared to Solec (L2) modules. It is strongly suspected that some of the 

Solec modules in the strings are no longer functional, bringing down the efficiency of the 

entire L2 array. 
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Figure F.6 I-V curves of the Solar Array (L1 Siemens, L2 Solec), snowy day 

  

F.4 Conclusions 

This fieldwork provided the most recent updates of the Nunavut Arctic College PV 

façade project in April 2012. The entire photovoltaic array is in working order to this 

date, at 8% overall electric efficiency. The Prosine 5000 GT 3-kW inverter is also fully 

functional, feeding AC electricity to the school for the past 17 years.  

The monitoring systems stopped feeding data since 2006, though some of the 

instruments are still capable of reading measurements, such as the Eppley pyranometer. 

Calibration of the pyranometer is much needed and future monitoring projects should 

take into consideration the long-term pyranometer drift in high latitude locations.  

Two types of single crystalline silicon PV panels were evaluated, Siemens M55 and 

Solec S53. The current output (on a snowy day) of the Siemens array is at 9.3% overall, 

28% less than its original rated efficiency. However, the Solec array is producing only at 

6.2% overall, 50% less than its original rated efficiency.  
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Moreover, among the nine experimental modules tested, all of the Siemens 

experimental modules are functional while two out of four Solec modules output no 

voltage. This finding indicates that some of the Solec panels in the array have also 

reached their end-of-life, contributing to the significant Solec array efficiency drop. In 

summary, though the initial rated output of the two PV types are very similar, in a long 

run, Siemens panels are performing more reliably than Solec modules.  

It is also important to recognize limitations of the field tests conducted. Only 

momentary results of PV performance are evaluated using I-V curve tracing, and the 

efficiency of PV modules may be systematically overestimated due to pyranometer drift.  

The fact that the Nunavut Arctic College photovoltaic façade is outputting AC 

electricity to this date is encouraging. Photovoltaic has been proven to be a reliable 

technology for the far North at its current life span of 17 years (1995-2012). Since its 

operation in 1995, the PV façade and the inverter have outlasted two installations of 

monitoring systems, even under the harsh weather of Iqaluit.  

It is extremely rare to find such existing full-scale photovoltaic installations of 

similar service life span that are still functioning, especially for high latitude locations. 

Depending on the availability of funding and technical support, it may be worthwhile to 

install new monitoring systems to provide annual data on PV performance. Calibration of 

the existing Eppley pyranometer should be performed, and may be expanded to a 

research project studying the long-term spectral effects on pyranometer drifts. The 

current inverter efficiency could be monitored as well, to quantify efficiency drop and to 

address the aging effects of solar inverters.  
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Appendix G. Field Survey of Façade Integrated Unglazed 

Transpired Collectors in the Northwest Territories 

G.1 Project Description 

This research project took place between May 7th and May 26th, 2012, at locations in 

the Northwest Territories (NWT) where full-scale façade integrated solar transpired 

collectors were installed. The fieldwork is collaborated between Arctic Energy Alliance 

and Concordia University, with financial support from the Concordia Graduate Student 

Mobility Award to the author.  

The existing solar transpired collector (UTC) installations in NWT go by the product 

name of “SolarWall”, commonly a dark metal cladding on the exterior wall perforated 

with small and distributed holes. It is a well-researched and widely implemented façade-

integrated solar thermal technology in Canada’s North.  

From past experience, the existing installations of SolarWall do not function very 

well under the harsh Northern climate. This research project is initiated in an effort to 

evaluate the current performance of SolarWall and to investigate the underlying causes of 

common operational problems.  

In addition to field inspections and on-site visits, the project also implemented or 

proposed monitoring systems for selected SolarWall installations. A scientific protocol is 

established regarding parameters of interest, while keeping cost-effectiveness of the 

monitoring systems in mind. There are also long-term plans for logging and servicing the 
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monitoring data (1-year minimum) to facilitate future assessment and improvements of 

the solar transpired installations in Northern Canada. 

G.2 Inventory of SolarWall installations in NWT 

G.2.1 Overview 

There are a total of six known SolarWall (unglazed transpired collector) installations 

in the NWT, shown in Table G.1 and G.2. Due to time and budget constraints, the author 

was able to travel to Yellowknife and Inuvik for on-site inspection for five out of six 

SolarWall projects (except for the Fort Smith installation). 

Table G.1 Inventory of SolarWall projects in NWT 

 

The diversity exhibited by the SolarWall projects in NWT is helpful for comparing 

system performance and operational issues. As shown in Table G.1, SolarWall sizes 
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range from 26 m2 to 200 m2 and their installation times vary from 1998 to 2011.  Four out 

of six systems were implemented at or near the time of building construction (Original 

systems), while the other two systems were add-ons after the buildings were completed 

and occupied (Retrofit systems).  

Some of the operational or design problems may be local to a certain installation, 

while others are shared between several installations, as summarized in Table G.2. Note 

that the site inspection was conducted in the spring/summer time (May 2012), and winter 

issues such as icing and reduced efficiency cannot be confirmed by this project alone.  

Table G.2 Summary of operational details for SolarWall installations in NWT 

 

The site visits concluded that two out of six SolarWall installations are currently 

functioning, while two systems are definitely not operational, and the state of the 

remaining two systems is unknown. Only one system (Fort Smith) was monitored from 
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2000 to 2002 by Enermodal Engineering as part of the follow-up mandates. The rest of 

the systems have no monitoring equipment to keep track of the energy saving or to detect 

potential operational problems. Section G.3 will go into details about implementing new 

monitoring systems for some of the existing SolarWall installations.   

G.2.2 Individual Systems 

The individual systems listed in Table G.1 and G.2 are shown in Figure G.1 to G.4, 

except for the projects at Weledeh Catholic School (Yellowknife) and at Aurora Research 

Institute (Inuvik), which will be discussed in detail in Section G.3 as candidates for 

adding new monitoring equipment. All the pictures in Figure G.1 to G.8 are taken by the 

author, with the exception of Figure G.3 (Conserval Engineering, 2010c). 

Figure G.1 shows the SolarWall at the Yellowknife GeoScience building from afar 

(left) and close-up (right). It is clear that vegetation in front of the solar collector has 

grown out of the control since the installation in 2003. As the building is located at the 

bottom of a small hill, the low altitude further aggravated the vegetation shading on the 

SolarWall surface, showing lack of considerations from the design phase.  

 Furthermore, the building occupants and owner are separate parties that only 

communicate with each other when there is a maintenance work order. Despite our best 

efforts and repeated site visits, the building owner was not able to provide with technical 

information concerning the current state of the SolarWall operation. The occupants 

expressed interests in learning more about the active solar system in their own building. 

However, little information was available due to staff turnover and the segregation 

between occupants and owner. Though the status of operation is shown as ‘unknown’ in 
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Table G.1, we concluded that it is most likely that this SolarWall installation is not 

functioning at the moment.  

Figure G.1 SolarWall at the GeoScience Building, Yellowknife, 62.4ºN 

 

The next system in Yellowknife is also the only residential installation in this survey. 

The SolarWall system occupied the entire west façade of a private house in Yellowknife, 

while solar hot water collectors and photovoltaic panels are mounted on its east roof 

(Figure G.2, left). The SolarWall is designed to pre-heat air for the HRV system in the 

basement (Figure G.2, right) or to directly offset space heating load.  

According to the owner, the SolarWall hasn’t worked at all since its installation in 

2009. Though all the mechanical components are in working order, there is an electric 

wiring issue with the fan that draws the pre-heated air. Since it is a residential project, no 

commercial building control company was involved and the work quality relied upon the 

skills of private contractors. The cost of hiring a qualified electrician to fix the fan wiring 

is prohibitive at the moment.  

 
Figure G.2 SolarWall façade on a private house, Yellowknife, 62.4ºN 
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The investigation of the Fort Smith project (Figure G.3) is solely based upon 

literature, as no site visits were conducted. Monitoring reports by Enermodal Engineering 

(2001, 2002 and 2005) shown that the combination of SolarWall and HRV contribute to 

78% of total energy needed for ventilation air heating, 60% of which attributes to HRV 

alone while SolarWall is responsible for only the remaining 18%.  

At a considerable added cost, this particular solar installation is not very effective in 

improving the building energy efficiency for several reasons. Firstly, the wall is oriented 

significantly off south at an azimuth of 55º West, a permanent handicap from design.  

During operation, the controls of drawing solar heated air is often in ‘Manuel Operation’, 

while the system would perform more effectively if thermostatically controlled.  In fact, 

in email communication records (McCluskey, 2001), expert from Arctic Energy Alliance 

has mentioned that “We won’t be marketing many Walls (SolarWall) north of 60 degrees 

based on the returns of the Ft. Smith Wall”. 

Figure G.3 SolarWall at Fort Smith Recreation Center, Fort Smith 60ºN, Picture from 
Conserval Engineering (2010c) 

 

Figure G.4 shows another SolarWall installation at the former Young Offenders 

Correctional Facility in Inuvik. Though there are no reported issues on the SolarWall 

itself, the system is not in operation as the building is currently unoccupied and unlikely 

to become habitable due to serious structural and foundation failure.  
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Figure G.4 Left: SolarWall at Female Young Offenders Correctional Facility, Inuvik 
68ºN; Right: Honeywell Building Control System Interface showing SolarWall controls 

 

As shown in Figure G.5, there are countless growing cracks on the drywall, 

window/door frames, and floors across this large institutional building. Quick inspection 

of the building perimeter and architectural drawings revealed that its design is seriously 

flawed.  The building is constructed on a pad foundation, which relies completely on the 

flatness of the ground and the rigidness of the permanent frost. Six large thermo siphons 

(Figure G.4, left) are constructed to prevent the permanent frost from melting. However, 

the mechanical engineers designed in-floor radiant heating on the ground floor, with only 

4” of insulation beneath the concrete floor slab.  The permanent frost is essentially heated 

continuously throughout the winters, tearing apart the building as it slowly sinks into the 

melting ground since its completion in 2005. 

 

Figure G.5 Interior Structural Failures at Female Young Offenders Correctional Facility 
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G.3 Monitoring Projects 

G.3.1 Selection of Candidates for Future Monitoring 

There is a general lack of effort in monitoring solar installations after construction.  

The only monitored SolarWall system in NWT, the Fort Smith system, produced data 

from 2000 to 2002 with no updates since then. This research project concluded that 

continuous monitoring plans are essential to truly quantify the suitability and durability of 

solar installations in the North. Two NWT SolarWall installations, at the Weledeh 

Catholic School in Yellowknife and at the Aurora Research Institute (ARI) in Inuvik, 

were selected as monitoring candidates for the following reasons:  

• Both systems are currently functional with no known operational issues; 

• Owners and facility managers of the buildings are very enthusiastic and cooperative 

about the monitoring project; 

• They are the oldest and the newest SolarWall in NWT (Weledeh system is completed 

in 1998 while the ARI system in 2011); 

• They are the largest and the smallest SolarWall collectors in NWT (Weledeh system 

is 200 m2 while ARI system is 26 m2);  

• They are located in two different cities and each building employs a different 

control company (Weledeh system uses Honeywell while ARI system uses Siemens 

control); 

To obtain the energy output and solar fraction of the SolarWall systems, it is 

necessary to obtain monitoring values for parameters of interest, such as air mass flow 

rate, exterior temperature, air temperature and relative humidity at collector outlet, etc. 
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Fortunately, some of those sensors are already implemented by the building control 

company (Honeywell or Siemens), to execute the thermostatic control algorithms. 

Though past data were stored in temporary memory and cannot be recovered, the existing 

infrastructure is able to log future sensor data simply by asking the software to trend and 

store sensor values. 

By using existing sensors, the cost of implementing new monitoring systems can be 

reduced. With reasonable redundancy in sensor selections, the project proposals (Section 

G.3.2 and G.3.3) aim to build solar monitoring capacity in NWT in an efficient and cost-

effective manner.   

G.3.2 Monitoring Project 1: Weledeh Catholic School, Yellowknife 

The monitoring project for the SolarWall installation at the Weledeh Catholic School 

took place during the site visits in May 2012 (Figure G.6). The project was made possible 

with the help of the building facility manager and maintenance staff at the Weledeh 

school.  

Figure G.6 Left: SolarWall at Weledeh Catholic School, Yellowknife 62.4ºN; Right: 
Honeywell Building Control System Interface showing SolarWall controls 
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Data from some of the existing sensors, such as the exterior temperature, SolarWall 

outlet temperature, damper and fan status, are logged since June 2012 with the help of 

Honeywell technicians. 

The new sensors and data acquisition system were purchased or donated by the 

Arctic Energy Alliance and the NSERC Smart Net-zero Energy Buildings Strategic 

Research Network. New sensors for temperature (exterior and in-duct), relative humidity, 

solar radiation have been installed by the author (Figure G.7). The data points are logged 

every 15 minutes by an Agilent system and fed into a local laptop for storage. All the 

parameters necessary to calculate the total amount of solar thermal energy captured by 

this façade solar installation are currently monitored.  

Figure G.7 Locations of New Sensors implemented for the Weledeh SolarWall system 

 

There are still a few tasks left as part of the monitoring efforts. The data logged from 

the Honeywell interface need to be transferred to a secure server that can be accessed 

remotely via Internet. The local laptop storing data from new sensors also needs to 

connect to the Internet to allow for Remote Desktop connection. The Agilent system is 

currently set to work until August 17th and its scan rate needs to be reset before then to 

accommodate long-term monitoring. Finally, the Arctic Energy Alliance is responsible 

for servicing and analyzing the monitoring data throughout the year. The ultimate goal is 
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to monitor and evaluate the performance of this 14-year old SolarWall system in 

Yellowknife.  

G.3.3 Monitoring Project 2: Aurora Research Institute, Inuvik 

The Aurora Research Institute (ARI) has recently completed three renewable 

installations including a wind turbine, a photovoltaic system (solar electric), and a 

SolarWall façade (solar thermal). For education and demonstration purposes, the ARI 

plans to monitor all three renewable systems and enable real-time online display of the 

renewable energy generation. The objective of this project is to monitor one of the 

renewable systems, the SolarWall façade located on the penthouse at the back of the ARI 

building (Figure G.8, left).  

 

Figure G.8 Aurora Research Institute, Inuvik 68ºN; Left: Back of building with 
SolarWall on the Penthouse; Right: Front of building; 

 

Unlike the Weledeh monitoring project that is close to completion, the monitoring 

project for the ARI SolarWall is still at the proposal stage. Contacts were made during 

site visits in Inuvik, and the ARI is very supportive of the initiative. It would be 

extremely interesting to compare the SolarWall performance at ARI (installed in 2011) 
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with the SolarWall at Weledeh (installed in 1998) to determine the durability such solar 

thermal systems at high latitudes.  

The ARI building uses Siemens building control system, the algorithm of which also 

includes the control of SolarWall operation for fresh air pre-heating. Data from existing 

sensors, including exterior temperature, SolarWall outlet temperature/humidity, damper 

and fan status, can be logged using the Siemens interface.  

Several new sensors are needed to fully monitor the SolarWall energy output as well 

as the system’s efficiency. Inside the mechanical room, one Relative Humidity sensor and 

two air velocity probes will be positioned at the SolarWall air intake duct to measure the 

incoming mass flow rate (Figure G.9). At the exterior, a pyranometer and a temperature 

sensor will be mounted to measure solar radiation and outdoor temperature.  

 

Figure G.9 Sensors Installation, at SolarWall air intake inside the mechanical room 
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All the new sensors can be configured to generate analog output of 0-5mV or 4-

20mA, which will be wired to feed into the Siemens data acquisition and displayed by the 

Siemens Insight interface on the local desktop. Internet connection is needed on this 

desktop to upload offline data to online servers for safekeeping and real-time display.  

This monitoring project incurs two-part costs, including: 

1. Hardware cost of new sensors and accessories, plus shipping and taxes;  

2. Labor and work order cost from Public Works and Siemens to install, wire and 

program the new sensors, as well as to set up desktop internet connection, retrieve 

data points and to maintain the server. 

G.4 Conclusions 

The SolarWall collector developed by Conserval Engineering is a proven solar 

thermal system that has worked well in populated areas. Natural Resources Canada has 

commissioned multiple reports to study the technical and economic feasibility of 

SolarWall system in northern remote communities, including monitoring reports on the 

Fort Smith installation (Enermodal Engineering, 2001, 2002 and 2005). 

Based on findings from this applied research project, the SolarWall installations in 

Canada’s North are experiencing some design and operation challenges. Firstly, most 

SolarWall installations in NWT are oriented off south to different extents, due to site 

restriction or lack of design efforts. The non-optimal orientation contributes to significant 

annual loss and prolonged payback time. For Northern applications where energy is 

expensive, it is vital that solar installations are oriented as south facing as possible.  
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Secondly, there is ongoing segregation and communication disconnect between the 

building owner and occupants in commercial buildings, leading to gaps in knowledge 

transfer of building systems, especially for innovative systems like the SolarWall.  

Despite the local financial incentives, little technical support is present for residential 

solar projects. The work quality relies completely on the competence of individual 

contractors who are called in to do the installation. The arising issues with renewable 

energy systems in the North are often more human than it is technical, 

Energy cost evaluation is extremely complex in Canada’s North, as infrastructure 

costs for fossil fuel (e.g. tanks and pipeline) are not included in the actual energy price 

(Enermodal Engineering, 1997b). With additional government subsidy injected to the 

energy sector, calculation of payback time for solar installations is conducted on unlevel 

playing fields when compared with traditional fossil fuel prices. 

Therefore, financial incentives and technical support for adopting renewable energy 

are necessary in the North. To avoid the mentality of ‘build and forget’, the incentive 

programs for SolarWall and other renewable systems should make ongoing monitoring 

mandatory for all new installations. The monitoring data obtained from this research 

project will offer insights to the suitability and durability of solar transpired collectors in 

the North. Only by quantifying the performance and learning from the past mistakes, can 

we improve the current state of building-integrated solar systems at high latitude 

locations.  


