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Abstract

Dimitris Lianoudakis

Option prices can be represented by their corresponding implied volatilities. Im-

plied volatility is dependant on both the strike price and the time to maturity. This

dependance creates a mapping known as the implied volatility surface (IVS). The

volatility surface is known to practitioners as being synonymous with option prices.

These surfaces change dynamically and have distinct features that can be modeled

and broken down into a small number of factors. Using time series data of option

prices on the S&P500 index, we study the dynamics of the implied volatility surface

and deduce a factor model which best represents the surface. We explore the different

methods of smoothing the IVS and derive the local volatility function. Using stan-

dard dimension reduction techniques and more recent non-linear manifold statistics,

we aim to identify and explain these distinct features and show how the surface can

be represented by a small number of these prominent factors. A thorough analysis

is conducted using principal component analysis (PCA) and common principal com-

ponent analysis (CPC). We introduce a new form of dimension reduction technique

known as principal geodesic analysis (PGA) and give an example. We try to set up

a geometric framework for the volatility surface with the aim of applying PGA.
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Chapter 1

Implied Volatility

1.1 Introduction

The need for volatility modeling has risen dramatically over the past few years and

will likely continue to be a high profile activity in the field of quantitative finance.

Ever since Black and Scholes [5] and Merton [35] (BSM) introduced their method of

fair option pricing in the early 70s, an immense literature in the field of derivative

securities has emerged. One such important aspect of this field is volatility modeling.

More precisely, there exists a great need to quantify and understand the behavior

of volatility in security prices. In a BSM framework the volatility is assumed to be

a constant. In other words, there are no underlying assumptions made on any in-

terdependency on this variable, i.e. correlation with the underlying or dependency

on other parameters. It is precisely this assumption that make the BSM formula

“incorrect”. It is obvious that throughout an option’s lifetime, its volatility does not

remain constant, not even for a day at times. As Rebonato [38] so perfectly put it

“A smiley implied volatility is the wrong number to put in the wrong formula to

obtain the right price”. Because of its ease of calibration, the BSM model has been

kept alive by practitioners and many other tractable models have been derived from it.
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The main body of this thesis will consist of the following. In the remainder of

Chapter 1, we review the theory of option pricing starting with the famed BSM

formula. We describe the dynamics and properties of implied volatility (IV) and its

importance in understanding risk. We introduce the theory of local volatility and

explain its connection with IV and option pricing. Finally, we devote a section of

Chapter 1 to our data, explaining the many “cleaning” stages involved before moving

on to any analysis. In Chapter 2 we present different techniques used to smooth

the implied volatility surface and elaborate on the advantages and disadvantages

that each method yields. We also introduce the notion of arbitrage and explore the

possibilities of creating an arbitrage-free IVS. The most important part of this thesis

is described in Chapters 3 and 4. In Chapter 3 we describe in detail the standard

dimension reduction techniques used in the literature, namely principal component

analysis, PCA and common principal component analysis, CPC, and compare our

results to those obtained by various authors. Our goals are to find and understand

the factors that contribute most to the variance of the volatility process, to obtain

a lower dimensional parsimonious factor model which can be easily calibrated, and

used to price other derivative securities. In Chapter 4 we provide a basic geometric

framework in the second part of our dimension reduction analysis. We define the use

of a mean and variance on manifold data and contrast the similarities with PCA. We

show how the LVS can be represented as a manifold and reason why the use of PCA

is not justified anymore. We propose an algorithm for computing PGA on the LVS

and suggest future work. In Chapter 5, we end this thesis with our conclusion and

closing remarks and discuss the possibility of future research.
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1.2 Implied Volatility

What is implied volatility and why is it so important in finance? To even begin

answering this question we must first understand where the term “implied” volatil-

ity originates from. Volatility, in the general financial context, is used to quantify

the risk of a financial instrument over a specific time period. Every type of option

has a volatility associated with it. It turns out, that this volatility process plays an

important role in the life of the option. We begin by giving a brief overview of the cel-

ebrated Black, Scholes and Merton formula used to price these types of equity options.

Consider the probability space (Ω, F , P) equipped with a standard Brownian

motion process (Bt)0≤t≤T ∗ . Here P is the real world measure and all information is

contained in the filtration (F)0≤t≤T ∗ . The filtration consists of nondecreasing sub-

sigma fields (Ft)t≥0 such that Fs ⊆ Ft ⊆ F , ∀ 0 ≤ s ≤ t. The Black, Scholes and

Merton model, is based on a continuous time economy where investors can lend and

borrow cash at the risk-free interest rate. No fees are incurred for any transactions

and short selling is allowed. We assume a continuously compounded interest rate r,

and a stock St assumed to be stochastic in nature such that S = {St : t ≥ 0} on (Ω,

F). All trades occur continuously in the interval [0,T �], where T � is some positive

time in the future. Such a process is said to be adapted to a filtration (Ft)t≥0 if all

St are Ft-measurable. St is assumed to follow a geometric Brownian motion (GBM)

described by the stochastic differential equation:

dSt

St

= μdt+ σdBt (1.1)

where μ > 0 is the constant drift process and σ is assumed to be the constant volatil-

ity process. In a more general context, if both μ and σ depend on the variables

(St, t), then both processes are said to be adapted to Ft. An important property

3



of equation (1.1Implied Volatilityequation.1.2.1) is that the stock returns are log-

normally distributed. That is, the log-returns follow a normal distribution with mean

(μ− 0.5σ2)(s− t) and variance σ2(s− t) for s ≤ t.

ln(Ss)

ln(St)
= ln(Ss)− ln(St) (1.2)

The driving force behind equation (1.1Implied Volatilityequation.1.2.1) is that the

BM term is a martingale [24]. In other words, if we assume a constant μ and σ the

asset price St depends only on the current information and the past has no bearing.

Recall the definition of a continuous-time martingale:

Definition 1.1. A stochastic process Xt is called a martingale with respect to the

stochastic process Yt if, for all t < ∞:

(a) E[|Xt|] < ∞

(b) E[Xt|{Yt, t ≤ s}] = Xs, ∀ s ≤ t.

In particular, for times s ≤ t

E[Bt|Fs] = E[Bs + (Bt −Bs)|Fs]

= E[Bs|Fs] + E[(Bt −Bs)|Fs]

= Bs + E[(Bt −Bs)]

= Bs,

where the last expectation is zero since increments of BM are independent and Nor-

mally distributed with mean 0 variance t−s . This helps us understand the dynamics

of St in the following way. (b) states that the conditional expectation of an observa-

tion at time t+1, given all other observations up to time n, is equal to the observation

at time n. In other words, any new information the investor might receive on stock St

4



given that he knows the entire history of the stock up to present time n, is the same

as knowing today’s current information only. The past has no bearing on knowing

the outcome of future events. It is worth noting that the stochastic process St is not

a martingale, that is E[St|Fs] 	= Ss. Equation (1.1Implied Volatilityequation.1.2.1) is

easily solved using Itô’s formula. The solution is given by:

St = S0 exp
(μ− 1

2
σ2)t+σBt (1.3)

where σ2 measures the risk associated with buying 1 unit of the risky asset S0.

What exactly causes volatility? It is natural to assume that the volatility of

a stock is caused by new information reaching the market. This new information

causes investors to react and ultimately changes the value of the stock. This idea

however is not supported by research French and Roll [22]. Variance of stock returns

between the close of trading on one day and the close of trading on the next day

are not proportional. With new information coming in, the change in price does not

reflect the time it was received. This leads researchers to suggest that volatility to a

certain extent is caused by trading itself.

A call option gives the buyer the right, but not the obligation to purchase an

agreed quantity of a particular underlying at a certain time (the expiration date) for

a certain price (strike price). A put option gives the seller the right, but not the

obligation to sell an agreed quantity of a particular underlying at a certain time (the

expiration date) for a certain price (strike price). European style call and put options

may only be exercised at maturity, while American style options can be exercised

at any time up to the expiration date. For the payoff to be realized, the individual

must pay (receive) the option (risk) premium to (from) the counterparty. The buyer

5



is said to be long the option and the counterparty is short the option. Whereas the

seller is said to be short the option and the counterparty is long the option. If the

option is held to maturity then the counterparty must oblige and deliver the payoff

of the agreed conditions stated in the contract entered at the very beginning of the

transaction. Very few options; however, are held to maturity. Most investors can

close out their positions by entering into the opposing position to sell (buy) the same

option. A more mathematical definition of an option is given below.

Definition 1.2. A European contingent claim expiring at time T , is an FT -measurable

positive random variable h.

If h = (ST −K)+, then h defines a European call option with strike price K and

exercise date T . The payoff associated with h at time T is:

(ST −K)+ =

⎧⎪⎪⎨
⎪⎪⎩
ST −K, if ST > K

0, if ST ≤ K.

If h = (K − ST )
+, then h defines a European put option with strike price K and

exercise date T . The payoff associated with h at time T is:

(K − ST )
+ =

⎧⎪⎪⎨
⎪⎪⎩
K − ST , if ST ≤ K

0, if ST > K.

BSM devised a model for pricing these type of options at T = 0. The first

step is to set up a portfolio process H = (H0, H1) that “replicates” the option

payoff. That is we choose the pair (H0, H1) such that the value of our portfolio

VT = S0
THT 0 + S1

TH
1
T = (ST − K)+. If the portfolio is to be self-financing, that is

no money is put in or taken out after t = 0 and V0 = H0
0 + S0

0H
1
0 , then we must

have that the price of the option at time zero equal to the value of the portfolio at

6
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Figure 1.1: Plot of European call option with 30 days to maturity. S0=$150 and
r=0.01.

time zero. This last statement is derived from the no arbitrage assumption that the

investor cannot achieve a risk less profit.

Recall that our modeling framework is (Ω,Ft, P ) equipped with a BM Bt. We

have a bank account S0
t and a risky asset S1

t with dynamics given by

dS0
t = rS0

t dt, S
0
0 = 1

dS1
t = μS1

t dt+ σS1
t dBt, S0 = s0

We want to find a ”new” type of measure such that the discounted stock process,

S
1

t = e−rtS1
t is a martingale. This can be achieved by Girsanov’s Theorem. Using

the same BM and probability space defined earlier let Θs be an Ft-adapted square

integrable process. Setting Θ = μ−r
σ

denoted as the market price of risk we can define

a measure Q such that the process

Wt = Bt +

∫ t

0

Θudu = Bt + (
μ− r

σ
)t, (1.4)

7



is a (Q,Ft) BM. Substituting Wt in our asset price equation gives the following

dynamics

dS1
t = rS1

t dt+ σS1
t dWt (1.5)

and it follows that under this new risk-neutral measure, the discounted price

dS
1

t = σS
1

tdWt

is a martingale.

The value at time t of a European contingent claim hT is

Vt = EQ[e
−r(T−t)hT |Ft]. (1.6)

The solution to equation (1.6Implied Volatilityequation.1.2.6) when hT = (ST −K)+

can be found in [43], and is known as the celebrated BSM Call function

CBS(K,S(t), r, q, τ, σ) = StN(d1)−N(d2)Ke−(r−q)τ , (1.7)

where

d1 =
ln(S/K) + ((r − q) + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t.

N(·) is the cumulative distribution function of the standard Normal distribution, r is

the risk free interest rate compounded continuously, q the continuous dividend yield,

τ = T − t is the time to maturity, and σ, the stock option’s volatility (assumed

to be constant throughout its lifetime). We can reduce the dimensions of the BSM

equation by inducing a transformation of variables. The BSM implied total variance

8



w is defined as:

w(S0, K, T ) := σ2
BSM (S0, K, T )T

and the log-moneyness y defined as

y = log

(
K

Ft

)

t where Ft = S0e
(r−q)(T−t) is the forward or futures price of the stock at time t. In

terms of these two dimensionless variables and the futures price Ft, the reduced BSM

equation can be written as:

CBSM(FT , y, w) = FT{N(d1)− eyN(d2)}

= FT

{
N

(
− y√

w
+

√
w

2

)
− eyN

(
− y√

w
−

√
w

2

)}
. (1.8)

The futures moneyness metric is defined as:

κ =
K

Ft

where Ft is defined as above. A call option is in-the-money (ITM) if κ > 1, out-of-

the-money (OTM) if κ < 1 and at-the-money (ATM) if κ ≈ 1. For puts we just need

to reverse the equalities.

The only unknown parameter in equation (1.7Implied Volatilityequation.1.2.7) is

the volatility parameter, σ. BSM postulated that the price of a call option depends

only on the variables t and S and assume that all other variables are known. In

practice this is not the case as observed by ever changing market conditions, i.e. for

fixed strike price K and time to maturity τ the price of a call option changes from

day to day. Thus σ is no longer a fixed value but a varying parameter. In a perfect

world we would have that market call prices agree with call prices derived from the

9



BSM equation.

For a fixed T , call prices are monotone and convex in the K direction. This

is the hockey stick shape we see in Figure 1.1. The monotonicity and convexity

property of these plain vanilla options enables us to circumvent the nonlinearity of

their nature and numerically solve for the IV. Denote observed market call options

by CMKT
t (K, T ), then the BSM implied volatility σ(K, T ) is the parameter σ which

equates observed prices to those obtained from the BSM equation, or:

CBS(K,S(t), r, q, τ, σBS
t (K, T )) = CMKT

t (K, T ) (1.9)

for all σBS
t (K, T ) ≥ 0.

The implied volatility σ(K, T ), is a convex function of the strike price. It displays a

pronounced curvature referred to by many as the volatility smile as seen in Figure

1.2. This contradicts the BSM model assumption that σ(:, T ) should be a constant ∀
t ∈ [0, T ]. Taking note of the above, IV can then be viewed as a mapping from time,

strike, and time to maturity to the positive reals numbers. This map is known as the

Implied Volatility Surface, denoted as IVS form here on, such that:

σ̂t : (t,K, T ) �→ σ̂t(K, T ) ∀ t ≥ 0.

It can be noted that if σ is no longer a deterministic parameter, but rather a

function of time and the stock price, then St no longer follows a GBM, and the

BSM equation is no longer valid. The value of σ which equates the market prices

to those found using BSM is found by reverse engineering equation (1.9Implied

Volatilityequation.1.2.9) for the diffusion parameter σBS
t (K, T ). Exploiting the fact

that the BSM price is monotone in σ enables us to find a unique solution σ̂ > 0

such that equation (1.9Implied Volatilityequation.1.2.9) is satisfied and uniqueness is

10
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Figure 1.2: Implied Volatility from Call and Put Option prices. Lower axis has been
scaled by the moneyness metric κ = K

St
. Only OTM call and put prices have been

used. Calls are ‘o’-shaped and puts are ‘+’-shaped.

guaranteed by the monotonicity of the call price function. A simple Newton-Raphson

algorithm can be used to find the value of σ̂.

The IVS is scaled across both the strike and time axes. A moneyness (κ) and time

to maturity (τ) metric are used to reduce the overall dimension of the BSM equation.

Since these are European style options, they can only be exercised at expiry, and so

the choice of the the futures moneyness metric is convenient as it also incorporates

the risk neutral drift μ in its measure. Stock price moneyness can also be used and

is defined as:

κ =
K

St

.

Put-call parity states that under the BSM assumptions, IVs for both put and call

options must be equal. If this assumption is violated, then simple arbitrage exists.

Unfortunately this is often the case, and it is observed that IV for puts are higher

than IV for calls. Figure 1.2 will be useful in the following explanations. As markets
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rise, there are always investors who are willing to sell. Consequently, investors are

willing to pay a lower premium (lower IV) for OTM calls since they believe that there

is a small chance the stock will fluctuate in price. As markets fall; however, and

potential losses can occur, people are willing to pay a higher premium to own OTM

puts. These strategies and others are used by hedge funds as a sort of insurance

against such a downward movement. We also observe form Figure 1.2 that there are

more OTM put IVs than there are OTM call IVs, which translates to more OTM

put options than OTM call options. Hence, investors awareness of potential losses as

reflected by the smirk structure of the IV curve have increased and thus, are willing

to pay more to “insure” against such events.

Implied volatility data is often “contaminated” in such a way that one can find

arbitrage opportunities across strikes and maturities. Even when the initial data

is arbitrage-free, smoothing the IVS via parametric or nonparametric techniques

can generate surfaces that are not always arbitrage-free. Estimating the IVS un-

der arbitrage-free conditions is a tricky task. The form of the IVS is specific at each

point in time, it requires estimating in a high-dimensional space, while taking into

account the effect of the variables, such as the spot price, interest rate, strike price,

etc. Methods for computing an arbitrage-free IV surface will be discussed in more

detail in Chapter 2.

Most trading is done around the ATM region as can be observed by the clustering

of points in Figures 1.2 and 1.3. Our option data consists of end-of-day prices where

noise and potential outliers can be found. By using standard techniques in data anal-

ysis, we have “cleaned” the data of any potential arbitrage violations and outliers so

as to not comprise the integrity of the surface. The topic of data management will

be further examined in detail in Chapter 2.
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Below, we state some useful definitions of the standard terminology used in the

IVS literature.

• Volatility smile/skew - The dependence of IV on the strike price for a fixed

maturity

• Volatility term structure - The dependence of IV on the time to maturity

for a fixed level of moneyness, usually for ATM options.

• Implied Volatility Surface - The dependence of IV on both the strike price

and time to maturity

The IVS fluctuates between the bid-ask spread. The wider the spread, the more

pronounced the smile may be. Another important property is its degenerative behav-

ior across time to maturity. The further along one goes across the time to maturity

axis, the lower the IV at that value, and the shallower the surface. This can be viewed

as investors having a low risk appetite for options maturing far into the future than
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those closer to the present. The “pearl” like strings of the IVS seem to grow thinner

in number the further away in time you go. This characteristic is well displayed in

Figure 1.3. One of the reasons is that some contracts are not traded as much as

others, and so the longer the maturity the lower the volatility. The smile achieves its

minimum at the ATM to near ITM region; see Figures 1.2 and 1.3. The upside of

the BSM model is that IV is taken at face value. More often than not, IV is seen as

the market’s expectation of average volatility throughout the life cycle of the option.

This is to our favor because if the market believes it is in a high or low volatile state,

it will be reflected in the IVS. Traders can quote option prices in terms of IV rather

than the underlying and make a market for IV (like the VIX1 index).

The underlying St assumed to follow a log-normal distribution cannot account for

the probability of large downward movements, therefore falsifying the BSM formula.

The BSM formula is then only employed as a means of computational check amongst

traders. The IVS is very strike dependent and time to maturity dependent, thus for

the same set of options, a different IVS will be created everyday, making it difficult

for static hedging portfolios. A typical picture of the IVS is displayed in Figure 1.4

for November 11, 2009.

There is strong evidence to suggest that IVs appear to be mean-reverting in na-

ture [9], “Shocks” along the IVS are indeed highly correlated, and there is evidence

to suggest that the surface can be reduced into a small number of principal factors

(components). More of this will be discussed in the dimension reduction part of this

thesis. It is precisely these fluctuations which we focus on and try to determine how

they can be quantified in a coherent model.

1The CBOE Volatility Index (VIX) is a key measure of market expectations of near-term volatility
conveyed by S&P500 stock index option prices.
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Figure 1.4: Implied Volatility Surface of November 11, 2009. Left axis denotes mon-
eyness define as, κ and right axis denotes time to maturity defined as , τ = T − t.

1.2.1 Interpreting the Smile

For a fixed time to maturity, we get a one-dimensional representation of the IV smile

or “slice” in the τ direction. This slice often called the smile or smirk and is evident

of post 1987 crash where a typical IV slice exhibited a U-shape with its minimum at

or near the money (κ ≈ 1). Since then the risk awareness of investors has changed

dramatically and the slice is more downward sloping at and near the money (.95

≤ κ ≤ 1.05) and tends to curve upwards for OTM strikes (κ ≤ 1).

The smile tells us that there is a premium charged for OTM put options and ITM

call options above their computed BSM price with the ATM IV. In other words, the

market is “high pricing” these options as if the log-normal model of the underlying

fails to capture probabilities of large downward movements. This is what we see in

Figure 1.5. Slope bounds can be obtained for a volatility curve σ(K), by noting that

calls must be decreasing in the K direction, or else arbitrage opportunities exist.

More of this will be tackled in the arbitrage section of this thesis.
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Figure 1.5: Left Panel: Implied volatility smile for November 11, 2009. Left axis
denotes IV ticks and right axis denotes moneyness. Right Panel: Implied volatility
smile for November 11, 2009. Smile has been smoothed using a local linear polyno-
mial with localized bandwidth hκ. Left axis denotes IV ticks and right axis denotes
moneyness define as, κ = K/Ste

(r−q)τ

One can also observe the relative term structure of IVs and their associated de-

generate nature. Figure 1.6 displays the term structure for various slices of the IVS

for a ranging level of moneyness; κ = 0.75 top line, κ = 1, middle line, and κ =

1.10, bottom line. We notice that the ATM IV and OTM calls (ITM puts) exhibits

a slightly increasing slope, while OTM puts (ITM calls) display a decreasing term

structure. This indeed corresponds to the more shallow smile of the IVS for longer

term maturities.

1.3 Local Volatility

The following section will be devoted to the Dupire [14] equation and the theory of

Local Volatility (LV). Implied volatility predictions or forecasts do not depend on

historical prices or on historical volatilities. There are many reasons why a “smile”

exists; Variations in the bid-ask spread, market liquidity, stochastic volatility, just

to name a few. The IVS can then be seen as a global measure of volatility. It was
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initially understood that the risk-neutral density (RND) could only be derived from

the market prices of European options. That notion changed when Dupire, and Der-

man and Kani [12] independently showed that under the risk neutral measure, there

exists a unique diffusion process that is consistent with the distribution of option

prices. This unique state-dependent diffusion process is known as the Local Volatility

function and is denoted by σLV (S, t).

Local volatility is used by practitioners as an efficient way to price exotic options

consistently with given prices of vanilla options. The diffusion coefficient σLV (S, t)

can be derived from the classical Forward Kolmogorov or Fokker-Planck PDE. The

derivation will require us to work backwards. We are going from a time, strike and

time to maturity dependant implied volatility, σBSM(t,K, T ) to a time and spot de-

pendant volatility known as the Local Volatility Surface (LVS), σLV (St, t). The local

volatility function can be seen as the instantaneous volatility for a market level K at

some future date T*. Let us begin with a description of the model.
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We consider the usual space (Ω, F , P), a filtration Ft, and a Brownian motion

process Wt for 0 ≤ t ≤ T ∗ such that the dynamics of St can de described by the SDE

dSt

St
= μ(St, t)dt+ σ(St, t, ·)dWt.

where μ(St, t) is the instantaneous drift and σ(St, t, ·) follows some Ft-measurable

process depending on St, t and possibly some other variables.

For the risk neutral measure Q to exist we assume the absence of arbitrage and

so St is a martingale. Our state space where the set of all European plain vanilla call

options exist can be defined as

G = {Ct(K, T ) : K ≥ 0, 0 ≤ T ≤ T ∗}.

Fengler [17] shows that the local variance function σ2
K,T (St, t) is defined as the expecta-

tion of the squared instantaneous volatility under the risk-neutral measure conditional

on St = K and time t on Ft, that is

σ2
K,T (St, t) = EQ[σ

2(ST , T, ·)|ST = K,Ft]. (1.10)

The local volatility is then

σK,T (St, t) =
√

σ2
K,T (St, t). (1.11)

Indeed if the instantaneous volatility is deterministic (non-stochastic) in spot and

time only, namely, σ(St, t, ·) = σ(St, t), then the notion of instantaneous volatility
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and local volatility is one and the same, i.e

σ2
K,T (St, t) = EQ[σ

2(ST , T, ·)|ST = K,Ft]

= EQ[σ
2(ST , T )|ST = K,Ft]

= σ2(K, T ).

For a detailed summary of the above equality see Gatheral’s [23] chapter on local

volatility. The value of the local volatility function can be observed directly from the

value of S, where as implied volatility is an unobservable variable. Equations (1.10Lo-

cal Volatilityequation.1.3.10) and (1.11Local Volatilityequation.1.3.11) have an intu-

itive meaning. As Gatheral states, the local volatility surface can be thought of as

the market’s expectation of the future value of volatility when the asset price is S

at time t. Furthermore, the evolution of volatility along its path is condensed into a

single function that is deterministic in St and t. For a give market level K = St at T

= t, the instantaneous volatility defined by (1.10Local Volatilityequation.1.3.10) is

σ(St, t) = σSt,t(St, t).

We can then plug this expression for σ into equation (1.1Implied Volatilityequation.1.2.1)

and retrieve the new dynamics of St

dSt

St

= μ(St, t)dt+ σSt,t(St, t)dWt. (1.12)

Whereas (1.1Implied Volatilityequation.1.2.1) includes all possible models of volatil-

ity, such as stochastic, the diffusion parameter in (1.12Local Volatilityequation.1.3.12)

is a one-factor model limited with a deterministic volatility function. In the next sec-

tion we show how Dupire’s LV is derived from the Fokker-Planck PDE.
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1.4 PDE approach to Local Volatility

In this section we will derive the LV function from its PDE counterpart. We will

follow a similar methodology used in the literature [47] and [23]. Our main approach

relies heavily on recovering the call price from the risk-neutral density, Φ. Following

Fengler’s dual PDE approach, we assume the instantaneous volatility to be a deter-

ministic function of St and T. By considering a one-factor diffusion process there

exists a dual relation to the BSM PDE.

Under the risk-neutral measure Q, the dynamics of St are governed by:

dSt

St

= μ(St, t)dt + σ(St, t)︸ ︷︷ ︸
dependant

dWt,

where μ(·) is the drift of St defined as the risk-free rate r minus the dividend yield q.

Indeed the main difference here compared to the dynamics of equation (1.1Implied

Volatilityequation.1.2.1) is that σ(St, t) is now a dependent function in both spot

and time. Using a probabilistic approach, we can obtain the BSM call option for-

mula (1.7Implied Volatilityequation.1.2.7) by discounting the expected payoff under

the risk neutral measure Q. That is,

Ct(K, T ) = e−rτEQ[max{ST −K, 0}|St, t] (1.13)

= e−rτ
∫ ∞

0

max{ST −K, 0}Φ(K, T |St, t)dK. (1.14)

Breeden and Litzenberger [7] first proposed that differentiating the call price with

respect to the exercise price K twice yields the undiscounted probability distribution

function known as the risk-neutral density (RND).

Φ(K, T |St, t) = erτ
∂2Ct(K, T )

∂K2
(1.15)
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The state price density, or risk-neutral density function is the market’s view of the

future distribution of the call price Ct. The concept of a transition density is based

on Arrow-Debreu Securities Debreu [11], (ADS). The prices of ADS are defined by

the state-price density, which gives one dollar if the final state is in the interval

[x, x + dx] when starting from any point x and zero otherwise. The RND uniquely

ensures an equivalent martingale measure under which all discounted asset prices are

martingales. Another way of understanding the term state price density is by the

following formula:

P (ST ∈ [K1, K2]|St) =

∫ K2

K1

Φ(K, T |St, t)dK. (1.16)

Equation (1.16PDE approach to Local Volatilityequation.1.4.16) gives the probability

that the stock is in the interval [K1, K2] at time T , given the stock is already at level

St in t. At first glance we can try to estimate the derivatives of Φ by a finite-difference

scheme. However, this yields poor results since we do not have a continuum of option

prices for every strike price, and the resulting RND is distorted as seen in Figure 1.7

(a). Also since we have to estimate the derivative twice this accentuates any errors

produced from the first differentiation. For a detailed review on the various methods

of estimating the RND we refer the reader to Grith et al. [25] and Chapter 11 of

Jondeau et al. [29].

We may exploit the intrinsic relationship between implied volatility and the RND,

following the approach of Benko [4]. An estimate of Φ(K, T |St, t) can be calculated

as:

Φ̂(K, τ) = F
√
τΦ(d1)

{
1

K2β0τ
+

2d1
Kβ0

√
τ
β1 +

d1d2
β0

(β1)
2 + 2β2

}
, (1.17)

where β0 is the interpolates IVS, and β1, β2 are the respective smoothed IV derivatives.
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More on smoothing techniques can be found in Chapter 2. Two graphs of the RND

are plotted in Figure 1.7.
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Figure 1.7: Left Panel: RND estimate via numerical differentiation yielding nega-
tive probabilities. Right Panel: RND via local polynomial regression with localized
bandwidths.

The RND satisfies the BSM PDE

0 =
∂C

∂t
+ (r − q)St

∂C

∂St
+

1

2
σ2S2

t

∂2C

∂S2
t

− rC, (1.18)

with terminal condition

Φ(K, T |ST , T ) = δK(ST ) =
∂2

∂K2
(ST −K)+,

where δ(·) is the Dirac delta function. The transition density Φ(K, T |St, t) satisfies

the forward Kolmogorov or Fokker-Planck PDE:

∂Φ(K∗, T |St, t)

∂T
=

1

2

∂2

∂(K∗)2
{σ2(K∗, T )(K∗)2Φ(K∗, T |St, t)} (1.19)

− ∂

∂K∗{μ(St, t)K
∗Φ(K∗, T |St, t)},
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where St and t are assumed to be fixed. Equation (1.19PDE approach to Local

Volatilityequation.1.4.19) spans across all maturities T and strike prices K∗ with

initial condition

Φ(K∗, t|St, t) = δS(K
∗).

The use of the dummy variable K∗ is needed for the integration below. The next step

is to substitute (1.15PDE approach to Local Volatilityequation.1.4.15) in the above

PDE. Using a simple chain rule from calculus, the first term becomes

∂Φ(K∗, T |St, t)

∂T
=

∂

∂T

{
erτ

∂Ct(K
∗, T )

∂K2

}

= rerτ
∂2Ct(K

∗, T )
∂(K∗)2

+ erτ
∂2

∂(K∗)2
∂Ct(K

∗, T )
∂T

. (1.20)

The second term in (1.19PDE approach to Local Volatilityequation.1.4.19) can be

expressed as:

∂

∂K∗ {μ(St, t)K
∗Φ(K∗, T |St, t)} = μ(St, t)e

rτ ∂

∂K∗

(
K∗∂Ct(K

∗, T )
∂(K∗)2

)
. (1.21)

Equation (1.19PDE approach to Local Volatilityequation.1.4.19) can now be written

as:

r
∂2Ct(K

∗, T )
∂(K∗)2

+
∂2

∂(K∗)2
∂Ct(K

∗, T )
∂T

=
1

2

{
σ2(K∗, T )(K∗)2

∂2CK∗,T

∂(K∗)2

}

− μ(St, t)
∂

∂K∗

(
K∗∂

2Ct(K
∗, T )

∂(K∗)2

)
. (1.22)

Integrating (1.22PDE approach to Local Volatilityequation.1.4.22) by parts twice

from K to infinity gives us,

rCt(K, T ) +
∂Ct(K, T )

∂T
− 1

2
K2σ2(K, T )

∂2CK,T

∂K2

+ (r − δ)K
∂Ct(K, T )

∂T
− (r − δ)Ct(K, T ) = 0. (1.23)
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Rearranging (1.23PDE approach to Local Volatilityequation.1.4.23) we obtain the

well known Dupire formula

∂Ct(K, T )

∂T
=

1

2
K2σ2(K, T )

∂2Ct(K, T )

∂K2
− (r − δ)K

∂Ct(K, T )

∂K
− δCt(K, T ), (1.24)

with initial condition C (K,0) = (S0 − K)+. When solved for σ2(K, T ) gives equa-

tion (1.24PDE approach to Local Volatilityequation.1.4.24) the Local Volatility Func-

tion.

σ2
K,T (St, t) = 2

∂Ct(K,T )
∂T

+ δCt(K, T ) + (r − δ)K ∂Ct(K,T )
∂K

K2 ∂2Ct(K,T )
∂K2

. (1.25)

Hence a one-to-one mapping σ(·, ·) ↔ C(·, ·) is given by the above equation along with

the Kolgomorov equation (1.22PDE approach to Local Volatilityequation.1.4.22).

The probabilistic approach to solving for the Dupire formula can be found in Section

3.3 of Fengler’s book [17]. One of the main advantages of the Dupire equation is that

it treats all call options as functions of strike K and maturity T which are observed

at any given moment in time. Uniqueness is guaranteed by (1.22PDE approach to

Local Volatilityequation.1.4.22) and hence can be used to calibrate a local volatility

model for call (put) prices. A model is said to be well calibrated if it can reproduce

market prices with very little error.

We have decided to exploit the unique relationship between the IVS and LVS

by expressing σLV in terms of the IVS, σ̂. Gatheral [23] and Wilmott [47] derive

their own version of σLV by using the relationship between the total implied variance

w(St, K, T ) = σ2
BS(K, T )T . For sake of clarity, we assume

• There exists a continuum of strikes K and maturities T for σ̂(K, T )

• σ̂(K, T ) is twice differentiable in K and once differentiable in T.

In terms of the moneyness metric κ, and time to maturity τ , we can express equa-
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Figure 1.8: Local Volatility Surface on November 24, 2009 obtained from modified
Dupire equation (1.25PDE approach to Local Volatilityequation.1.4.25) using σ̂ ob-
tained via local quadratic polynomial smoothing.

tion (1.25PDE approach to Local Volatilityequation.1.4.25) in terms of its BSM for-

mula and its derivatives. Apply the chain rule on both the numerator and denomina-

tor of the Dupire formula and after some manipulation and cancelation of terms we

get:

σ2
κ,τ (St, t) =

σ̂2 + 2σ̂τ ∂σ̂
∂τ

1 + 2κ
√
τd1

∂σ̂
∂κ

+ d1d2(κ)2τ(
∂σ̂
∂κ
)2 + σ̂τ(κ)2 ∂2σ̂

∂κ2

, (1.26)

where

d1 = (−lnκ/σ̂
√
τ) + 0.5σ

√
τ

d2 = d1 − σ
√
τ .

For a collection of call prices Ct(K, T ) on the state space G defined earlier, we

can create a Local Volatility Surface much in the same way as we did for the im-

plied volatility surface. Figure 1.8 displays the LVS for November 24, 2009. Due to

the discreteness of the IV data, i.e., since we only observe σIV at a finite number

of points (K, T ), fitting a local volatility surface requires a strong from of interpo-

lation. Indeed the problem of finding the LVS is “ill-posed”, meaning that a small
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change to the input (IVS) can lead to a large change in the output (LVS). There is

a vast literature Crepey [10], Kahalé [32] on generating smooth LVSs. As is the case

with the IVS there is no one method better than the other. Since our LV function

is constructed from our IVS, we have used the coefficients generated from our local

polynomial interpolation found in Chapter 2 to calculate the various derivatives of

σ̂. Other interpolation techniques include cubic spline interpolation of the call op-

tions with a Tikhonov penalization term [10], explicit and implicit finite differencing

schemes [2], among others. A popular one being the Crank-Nicolson method. See

[27] for a good understanding of approximating PDEs and their derivatives.

It is worth mentioning that local volatility can also be calculated using tree based

algorithms. Derman and Kani [12] first proposed a binomial tree method based on

forward induction. In essence this is just the undiscounted Arrow-Debreu prices for

the discrete version of the RND. The same authors take it one step further and

propose a trinomial tree in their paper [13] where the stock price can attain an extra

level and does not change for t + 1 time. Another interesting property of the local

volatility smile (fixed τ), again observed by Derman et al. [13] is that for a fixed

time to maturity, the LV smile is approximately twice as steep as the IV smile. This

behavior according to the authors is noticeable in equity markets and has been given

the name the two-times-IV-slope rule for local volatility. A picture of this is displayed

in Figure 1.9.

1.5 Data Analysis

Before moving forward with the various interpolation methods of the IVS, we present

a detailed description of our data. We have used European call and put options from

the S&P 500’s options index; the SPX. The S&P500 Index is a capitalization-weighted
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Figure 1.9: Interpolated IV slice(blue circle) Vs. LV slice(red square) at 3 month
maturity. Local volatility slope is approximately twice as steep as the IV slope.

index of 500 stocks from a broad range of industries. More information on this index

and others can be found on the Chicago Board of Options Exchange (CBOE) web-

site2. The option prices used to back out the IVs are end-of-day (or last call) prices.

Along with the option prices, the continuously compounded risk free interest rate and

dividend yield is provided by WRDS’ OptionMetrics3 database.

We initially begin by screening our data for arbitrage violations. Any IV val-

ues that violate the boundary arbitrage conditions are removed. That is, all option

prices less than or equal to the intrinsic value are removed, i.e, if Ct ≤ (St−K)+ and

Pt ≤ (K−St)
+. Similarly, we eliminate all options quoted less than 1/10th of a dollar,

those with an IV greater than 80%, and all options with a maturity less than 1 week

because of their sensitivity to small errors in the data. We try to match the maturity

of the option to that of the interest rate and use linear interpolation when interest

rates for a specific maturity are not available. We have chosen a time to maturity

(τ) grid between 0 and 365 days. From that we have selected to use options with

2http : //www.cboe.com/products/indexopts/spxspec.aspx
3OptionMetrics is a provider of historical option price data, tools and analytics.

27



maturities [1,2,3,6,9,12] months. Our moneyness grid κ, ranges from 0.85 to 1.10, for

an interval [0.85,0.90,0.95,1.00,1.05,1.10].

Let us recall that options are most liquid around the ATM region κ ≈ 1 and less

liquid the further away they deviate from that region. Only OTM options are used; κ

> 1 for calls, and κ < 1 for puts. These are exactly the type of options that contain

the most information about the implied volatility surface. As in Skiadopoulos et al.

[44], ITM call and put options are not used because they have high deltas and there-

fore their IVs are very sensitive to the problem of non-synchronous data [26]. That is,

often asset returns that are modeled as if synchronized from a timing perspective, but

in reality they were produced with small delays or lags4. This effects prices derived

from the BSM model and in turn their respective implied volatilities. Once we have

fit our IVs using a nonparametric technique described in the next chapter, we group

them in their respective ranges of moneyness and time to maturity. Thus, obtaining

36 time series of IV values per day, or six multivariate time series per implied volatil-

ity maturity denoted as Xt(κ, τ).

In our dimension reduction analysis we have decided to use daily log differences

of smoothed implied volatilities, ΔXt(κ, τ) = lnXt(κ, τ) − lnXt−1(κ, τ). The reason

behind this is that IVs often display a mean-reverting nature with the first autoregres-

sive coefficient very close to unity. Hence, the time series of implied volatility returns

are more often than not near stationary with a unitary root. Differencing once ensures

autoregressive coefficients outside the unit circle and hence guaranteeing stationarity.

After the procedures in the above paragraphs have been implemented our data is re-

duced from m observations to n observations. Table 1.1 displays summary statistics

of our data.

4http : //www.bionicturtle.com/how − to/article/non− synchronous data/
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Table 1.1: Summary Statistics of IV log differences

Maturity Group Mean Stand. Dev Min Max
1 -0.0031 0.0717 -0.4894 0.2229
2 -0.0032 0.0670 -0.4855 0.2013
3 -0.0030 0.0625 -0.4766 0.1611
6 -0.0025 0.0620 -0.4106 0.2230
9 -0.0024 0.0643 -0.3951 0.2817
12 -0.0023 0.1086 -0.5644 0.5677

Note: Summary statistics of implied volatility returns computed as log differences as de-
scribed above. The raw IVs are first fitted to a surface using a nonparametric technique
as described in Chapter 2. The values for Mean and Stand. Dev are averaged across
moneyness. Maturity group is measured in months.

We test the assumption of normality by using a standard Jarque-Bera test on IV

returns for each of our 36 time series. That is for each point (κi, τj) in our series

we run a chi-squared test statistic. The null hypothesis of normality is rejected for

p-values less than 5%. Table 1.2 displays the results of this test for a sample of our

data taken from August to December 2009. These results seem to be in line with

those obtained by Skiadopoulos et al. [44] in their analysis of the IVS on the S&P500

index. Unlike the results obtained in Fengler and Hardle [18] on the German DAX

index, the IV returns in our series almost always fail the test of normality.

The assumption of normality is further rejected by examining the Q-Q and cumu-

lative distribution plots of the data in Figures 1.10 (a) and (b) respectively. Looking

first at the Q-Q plot we see that the ends of the graph begin to break away from the

straight line restriction imposed by Gaussian data. Next the cumulative distribution

function is plotted along with that of a normal distribution. As in the previous figure

we notice the tails are thicker compared to the Normal distribution.

Implied volatility is the only unknown parameter in the BSM equation. It is the
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Table 1.2: Test for normality using Jarque-Bera test statistic

Moneyness
0.85 1.10

Maturity χ2 p-value χ2 p-value
1 2834.371 2.2e-16 613.5712 2.2e-16
2 4400.608 2.2e-16 890.6921 2.2e-16
3 5689.408 2.2e-16 1234.228 2.2e-16
6 1401.595 2.2e-16 460.6602 2.2e-16
9 635.43 2.2e-16 633.6861 2.2e-16
12 1416.304 2.2e-16 376.2169 2.2e-16

Note: Test for normality using a Jarque-Bera test statistic. The initial hypothesis is
to assume the data is normally distributed. The test fails if the p-value is less than
5%.
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Figure 1.10: Q-Q Plot(left) and cumulative distribution(right) plot of the log differ-
ences of the IV at 1 month maturity and 0.85 level of moneyness.

solution σIV , which equates observed market option prices to those derived by the

BS formula. As presented in this Chapter, IV is not constant as originally proposed.

Furthermore, the convexity of IV allows us to express it as a map known as the Implied

Volatility Surface (IVS). This representation allows us to exploit some interesting

properties. The IVS displays a smile or smirk across the moneyness direction and
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attains it maximum curvature around the ATM region. Across the time to maturity

axes the curvature tends to flatten out for contracts maturing in the distant future.

We introduced the theory of Local Volatility and its connection with the risk-neutral

density function. The local volatility (LV) function is derived under the assumption

that the diffusion parameter in our spot process is state-dependant as opposed to being

a constant. This in turn can be used to efficiently price other derivative securities such

as exotic options. The end of this chapter was devoted to describing our data and the

various statistical tests that we ran. Our data consists of time-series vectors of IV log-

returns for fixed levels of moneyness and time to maturity. As noted in the literature,

IV follows an AR(1)process with an autoregressive coefficient close to 1 (hence the

need to difference). Although the spot is assumed to be log-normally distributed, the

IV time-series are highly non-normally distributed. In the next chapter we describe in

detail the various tools and methods used to “calibrate” and construct an arbitrage-

free IVS.
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Chapter 2

Smoothing the Implied Volatility

Surface

The problem with fitting the IVS is that we only observe IVs for a discrete set of

moneyness and time to maturity. This is the string and pearl picture observed in

Figure 1.2. In addition, our grid of observations changes as a function of the level of

moneyness and time to maturity. Most of our data points seem to be concentrated

around the ATM (κ ≈ 1) region and become dispersed the further along we move

along the time to maturity axis. Thus, we need to interpolate or smooth the data

across both the moneyness and maturity dimension. There exists a vast literature on

smoothing the IVS using parametric [42], semi-parametric [16], nonparametric and

spline [48], [46] methods among others. In this thesis we have decided to use a non-

parametric weighted regression to smooth our surface.

Another problem we are faced with once more is the presence of arbitrage. One of

the main reasons why so much emphasis is put on interpolation of the IVS is because

it does not “take” any specific functional form such as polynomial or nonparamet-

ric. Interpolation techniques often fall victim to arbitrage violations. The ones to
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specifically avoid are negative vertical spreads, negative butterflies and negative cal-

endar spreads. From what the literature suggests, there are two ways of creating

an “arbitrage-free” IVS. In his paper, Kahalé [31] defends the need for the initial

data to be arbitrage-free. He interpolates call prices by piecewise convex polynomials

both in the time to maturity, τ dimension and strike, K dimension, and constructs

an arbitrage-free surface in total implied variance σ2(κ, τ)τ . This method is very

useful when deriving the local volatility function and when accurately pricing exotic

options. Fengler [15] argues that the input data need not be arbitrage-free, and in-

stead proposes a B-spline method for recovering call prices on a finite grid resulting

in an arbitrage free IVS, σ2(κ, τ). For a well organized review of the IVS and its

dynamics see Lee’s paper [34] as well as Hull et al. [28]. In the following section, we

will introduce the “natural” arbitrage bounds that arise from the construction of the

IVS.

2.1 Natural Arbitrage Bounds of the IVS

The natural arbitrage bounds of the IVS are implicitly defined in the option price

space or domain. Some basic definitions can be found below. For simplicity purposes

we have only used call options in our definitions; however, they can be easily translated

to include put options.

• Vertical Call Spread - Purchasing a number of call options and simultane-

ously selling an equal number of calls of the same class, underlying, expiration

date but different strike price.

• Calendar Spread - Purchasing a number of call options and simultaneously

selling an equal number of calls (usually ATM) of the same class, underlying,

strike price but different expiration dates.
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• Butterfly Spread - The butterfly spread is a risk neutral strategy. It involves

buying a low strike ITM call, shorting two ATM calls and buying a high strike

OTM call.

By definition, the call price C(K, T ) must be a monotonically decreasing, convex

function in the K direction, and non-decreasing in the time to maturity direction:

−e−rT ≤ ∂C

∂K
≤ 0 and

∂2C

∂K2
≥ 0. (2.1)

The second inequality in (2.1Natural Arbitrage Bounds of the IVSequation.2.1.1) is

the risk-neutral density function which was introduced in the local volatility section

of Chapter 1. Moreover, for t = 0, C(K, T ) is bounded below by max{S0− e−rTK, 0}
and above by ST , i.e.

max{S0 − e−rTK, 0} ≤ C(K, T ) ≤ ST . (2.2)

Let K1 and K2 be the strikes for two indexical call options. If K1 ≤ K2, in order

to avoid negative call spreads we must have:

C(K1, T ) ≥ C(K2, T ) for T fixed. (2.3)

Let T1 and T2 be the time to maturity for two identical call options. If T1 ≥ T2,

in order to avoid negative calendar spreads we must have:

C(K, T1) ≤ C(K, T2) for K fixed. (2.4)

In the following section we will present two methods to test for the presence of

arbitrage; one using the RND, and the other using simple option-based strategies.
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2.1.1 RND-based Tests

Arbitrage tests based on the RND involve checking whether the RND is a true density

function. By definition of the density function, we require that Φ integrate to one and

take on only positive values. Moreover, it should be able to reproduce the market

call prices with very little error. The call prices obtained by integrating the RND

should all be free of arbitrage, that is, the produced call prices should be decreasing

monotonically in the strike direction. For the examples below, we have used option

settlement data taken from the S&P500 on December 14, 2009 at 5 days to expiry. We

have chosen such a short time to maturity for the specific purpose of finding arbitrage

violations in call prices. Options with a very short time to maturity are more prone to

errors. In our analysis, we have only used OTM call prices which guarantees us that

calls with extremely high volatilities will be removed from our sample. Our approach

is as follows:

• Obtain IVs from European call options

• Smooth the IV curve using a nonparametric technique

• Obtain fitted call prices using the smoothed IVs

Figures 2.1 (a) and (b) display the smoothed IVs and the call prices obtained

using the sample IVs respectively. We must now check if the RND satisfies the above

conditions. The area under the curve should integrate to 1 and should successfully

recover the market prices. Next, we verify the monotonicity condition for each Ki.

∂C

∂K

∣∣∣∣
K=Ki

= −e−rτ
∫ ∞

K1

Φ(s)ds < 0. (2.5)
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Figure 2.1: Left Panel: Smooth implied volatility smile for December 14, 2009 on
the S&P500 with S0 = $1114.11. Left axis denotes IV ticks and bottom axis denotes
strike. Right Panel: Fitted market call prices using smoothed IVS. Smile has been
smoothed using a local cubic polynomial with a Quartic Kernel function and localized
bandwidth hκ.

We also verify the convexity argument. For any two consecutive strikes, we must have

the first derivative increase in strike:

∂C

∂K

∣∣∣∣
K=K2

− ∂C

∂K

∣∣∣∣
K=K1

= e−rτ
∫ K2

K1

Φ(s)ds > 0. (2.6)

The results are summarized in the first four rows of Table 2.1. The RND integrates

close to unity and reproduces the call prices fairly accurately. However, it does take

on very small negative values close to zero. A plot of the RND for this data set is

displayed in Figure 2.2.

2.1.2 Tests based on Option Strategies

Another way of testing for the presence of arbitrage is by using option-based strategies.

We give a brief overview of the two strategies mentioned above, namely, vertical call

bull spreads and butterfly spreads. We use a spacing of dK = Ki − Ki−1 for both

tests. It is easy to show that at expiry the bull spread has a value in [0,1], that is,
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V Si =
Ci−1 − Ci

dK
∈ [0, e−rτ ] ≈ [0, 1] for τ ≈ 0. (2.7)

Similarly, a butterfly spread can be evaluated as

BSi =
Ci−1 − 2Ci + Ci+1

dK2
≥ 0. (2.8)

The results of these two tests appear in the bottom two rows of table 2.1. Taking

into account the very short time to maturity, we clearly see that both tests fail the

no-arbitrage conditions. 8% of the data produces calls with negative spreads and a

whopping 21% fail the non-negativity of butterfly spreads. Although this might be

seen as an extreme case, “fitting” an arbitrage free implied volatility curve that passes

all of the above tests is not a simple task, albeit fitting an arbitrage-free surface is

even more cumbersome. The problem is two fold. In one extreme, it can be seen that

our initial data may contain errors, or that our smoothing technique caused the data

to yield arbitrage induced values. For a detailed description on testing for arbitrage

via the IV function see the paper [39].
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Table 2.1: Summary of RND-based tests for Arbitrage

Statistic Nonparametric Smoothing
Area under the curve(RND) 0.99

Call pricing errors(%) 22.22
Monotonicity errors(%) 12.34
Convexity errors(%) 9.12
Vertical Call Spread 8.45
Butterfly Spread 21.42

In his dissertation, Benko [4] uses a weighted least squares optimization to solve

for an arbitrage-free IVS by combining the inherent relationship between the RND,

the IV function, and its derivatives using equation (1.17PDE approach to Local

Volatilityequation.1.4.17). This direct approach yields an IVS that respects the con-

vexity argument, but fails to protect against call/put spreads and the general price

bounds. For the sake of our analysis, we have decided to employ a non-constraint

weighted least squares minimization to solve for the unknown volatility function σ̂.

2.2 Nonparametric Methods

Let us consider the linear relationship between Y , the response variable and X, the

predictor variable. The classical regression function take the form:

yi = m(xi) + εi, i = 1, . . . , n, (2.9)

m(x) = E(Y |X = x). (2.10)

In our context, these variables represent a form of moneyness measurement and time

to maturity. We aim at estimating equation (2.9Nonparametric Methodsequation.2.2.9)

in a nonparametric style. More precisely, our efforts are geared towards the proper

estimation of m(x) for a given data set (xi, yi)
n
i=1. Our use of the nonparametric
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techniques lies in the assumption that the data around a local neighborhood of x

contains some information of m at the point x. Hence, we seek an estimate m̂(x), by

locally averaging the data around these points, such that:

m̂(x) =
1

n

n∑
i=1

wi,n(x)yi (2.11)

where wi,n(x)
n
i=1 denotes a sequence of weights. For ε >0 and x ∈ X, more weight is

given to values in the neighborhood of (x − ε, x + ε) as opposed to the ones further

apart. The choice of the weighting scheme depends on the individual and the problem

at hand.

A kernel function will be used for our weights in equation (2.11Nonparametric

Methodsequation.2.2.11). Kernel functions are positive, continuous, bounded, and

symmetric which integrate to 1:

∫
K(u) du = 1.

One can observe the obvious similarity to a marginal probability distribution function.

We have decided to use the Gaussian kernel as our choice for wi,n, which is given by:

K(u) = Φ(u) = 1√
2π
e−u

2/2.

The choice of the kernel function does not have a significant influence on the

overall smoothing of the data. Our choice of kernel coincides with those chosen in the

literature [9]. Given the multidimensional nature of our problem, we must interpolate

both in the moneyness dimension and in the time to maturity dimension. Hence we

obtain a two dimensional representation of the NW estimator via the product of

kernel functions. Without loss of generality, assume that K1(u) and K2(u) are two

independent Gaussian kernels, such that

K(u1, u2) =
∏2

i=1K(i)(ui).
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The success of the kernel depends heavily on the choice of bandwidth, h. For h >0,

the weighted kernel function is given by:

Kh(u) =
1
h
K(u

h
)

as well as satisfying the usual requirement:

∫
Kh(u) du = 1.

2.2.1 The Nadaraya-Watson Estimator

Consider once more the general regression function

Y = m(X) + ε,

where ε follows a white noise process, ε ∼ WN(0, σ2
ε ) s.t

E(ε|x) = 0 and E(ε2|x) = σ2(x).

Taking conditional expectations on both sides yields:

E(Y |X = x) = E(m(X) + ε|X = x) = m(x) + 0.

This in turn can be expressed in terms of the marginal pdf

m(x) = E(Y |X = x) =
∫
yf(x,y) dx

fx(x)
.

Let (xi, yi)
n
i=1 be our data set and replacing the integrals with sums, the NW

estimator of m(x) becomes:

m̂(x) = n−1

n∑
i=1

Kh(x− xi)yi

1
n

∑n
i=1Kh(x− xi)

. (2.12)

Rearranging equation (2.12The Nadaraya-Watson Estimatorequation.2.2.12) as
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m̂(x) =
1

n

n∑
i=1

Kh(x− xi)

n−1
∑n

j=1Kh(x− xj)
yi =

1

n

n∑
i=1

wi,n(x)yi,

reveals to us that (2.12The Nadaraya-Watson Estimatorequation.2.2.12) is nothing

more than a local weighted average of the response variable y, with the kernel function

acting as weights, such that

wi,n(x) =
Kh(x− xi)

n−1
∑n

j=1Kh(x− xj)
.

Where the denominator is the normalizing constant which sums the weights equal to

n. The conditional expectation and variance are given below:

E[m̂(x)] = E

[ n∑
i=1

Kh(x− xi)yi

n∑
i=1

Kh(x− xi)

]

= E

[ n∑
i=1

(m(xi) + εi)Kh(x− xi)

n∑
i=1

Kh(x− xi)

]

=

n∑
i=1

m(xi)Kh(x− xi)

n∑
i=1

Kh(x− xi)
.
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Similarly the conditional variance is

V[m̂(x)] = E[m̂2(x)]− [E[m̂(x)]]2

= E

[ n∑
i=1

y2iK
2
h(x− xi) + 2

n∑
i=1

yiyjKh(x− xi)Kh(x− xj)

[
n∑

i=1

Kh(x− xi)]2

]
− [E[m̂(x)]]2

= E

[ n∑
i=1

K2
h(x− xi)(m(xi)

2 + σ2)

[
n∑

i=1

Kh(x− xi)]2

]
−

n∑
i=1

m(xi)
2K2

h(x− xi)

[
n∑

i=1

Kh(x− xi)]2

=

σ2
n∑

i=1

K2
h(x− xi)

[
n∑

i=1

Kh(x− xi)]2
,

where we have used the fact that E[εi|Xi] = 0 and E[Kh(x− xi)εi] = 0.

The smoothing parameter h is the driving force behind nonparametric smoothing.

Below are some examples of what happens to the estimator when h takes on different

values. Note that in the limit as h → 0 we get

m̂(xi) → Kh(0)yi
Kh(0)

= yi. (2.13)

Equation (2.13The Nadaraya-Watson Estimatorequation.2.2.13) reveals that at worst,

under smoothing just results in obtaining the response variable again. The other

extreme, as h → ∞.

m̂(xi) →
∑n

i=1Kh(0)yi∑n
i=1Kh(0)

=
1

n

n∑
i=1

yi = ȳ.

reveals that the bigger the parameter h is, the closer one gets to the sample mean by

over smoothing.
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2.2.2 Optimal Smoothing Parameter

As it is often the case when searching for an optimal value of a given parameter, we

are faced with the choice between bias and variance. We define the smoothing window

as [x0 − h(x0), x0 + h(x0)] for the estimate of m̂(x), where the kernels are used as

weights. The trade off between bias and variance can be expressed mathematically by

searching for the value x that minimizes the mean square error (MSE). More precisely,

for a random variable x, μ = E[x], and β = E[x]− μ the MSE is defined as:

MSE{m̂(x)} = E[(m̂(x)−m(x))2] = E[(m̂(x− μ)2] = β2 + σ2, (2.14)

where the bias is given by m̂(x) = E[m̂(x)]−m(x). The Nadaraya-Watson estimator is

biased in the sense that E[m̂(x)] 	= E[m(x)]. Minimizing the distance of (2.14Optimal

Smoothing Parameterequation.2.2.14) in the L2 sense can be achieved by penalty

functions like Cross-Validation, General Cross-Validation, AIC and other forms of

minimization techniques. In our case the choice of penalty function is motivated by

the average squared error (ASE):

ASE(h)= 1
n

∑n
i=1{m̂(xi)−m(xi)}2w̃(xi).

The ASE can be seen as a global measure to finding the optimal h by reducing

the dimensionality of the equation. The ASE leads us to employ a ”Leave-One-Out”

Cross-Validation method described as:

CV(h) = 1
n

∑n
i=1[yi − m̂−j(xi)

2]w̃(xi),

where m̂−j is the leave-one-out estimator. Essentially this follows a re-substitution

procedure where the j th observation is left out. For a detailed review on the many

ways of bandwidth selection we refer the reader to the work by Bowmman and Azzalini

[6], as well as [41] and [8].
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2.2.3 Local Polynomial Smoothing

We have decided to smooth the IVS using a local polynomial regression. The idea

behind local polynomial smoothing is to try to fit a polynomial of order n to the

regression equation. For this reason, the one dimensional Nadaraya-Watson estimator

can be seen in the least squares sense defined by the minimizer

m̂(x) = argmin
m∈R

n∑
i=1

(yi −m)2Kh(x− xi). (2.15)

Equation (2.15Local Polynomial Smoothingequation.2.2.15) defines a local linear poly-

nomial regression. Solving (2.15Local Polynomial Smoothingequation.2.2.15) for the

Normal equations yields (2.12The Nadaraya-Watson Estimatorequation.2.2.12) form.

Assuming that m(x) is a continuous function up to order p, we can expand it via a

Taylor approximation:

m(ζ) ≈ m(x) +m′(x)(x− ζ) + .... +
1

p
m(p)(x)(x− ζ)p

for ζ in the local neighborhood of x. Writing m(x) as β0 + β1x and replacing it

in (2.15Local Polynomial Smoothingequation.2.2.15) yields

argmin
m∈Rp+1

n∑
i=1

{yi − β0 − β1(x− xi)}2Kh(x− xi). (2.16)

Again, using the kernel as weights, the local polynomial estimator of degree p of

m̂(x) with coefficients β0, β1, . . . , βp can be formulated by solving for the parameter

β0 that minimizes the following weighted sum of squares equation.

m̂(x) = argmin
m∈Rp+1

n∑
i=1

{yi − β0 − β1(x− xi)− ...− βp(x− xi)
p}2Kh(x− xi), (2.17)

where β = (β0, ..., βp)
T is a vector of minimizing constants and y = (y1, ..., yn)

T is a
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vector of response variables. Equation (2.17Local Polynomial Smoothingequation.2.2.17)

can easily be solved by using matrix notation for matrices X and W defined as:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 (x− x1) (x− x1)
2 . . . (x− x1)

p

1 (x− x2) (x− x2)
2 . . . (x− x2)

p

...
...

...
. . .

...

1 (x− xn) (x− xn)
2 . . . (x− xn)

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Kh(x− x1) 0 . . . 0

0 Kh(x− x2) . . . 0

...
...

. . .
...

0 0 . . . Kh(x− xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Giving rise to the well-known least squares solution

β̂(x) = (XTW)−1XTWy (2.18)

where β̂0 gives the estimator m̂(x).

The choice of order p varies from problem to problem. We have chosen to use

p = 2 give by equation; however, odd degree polynomials tend to do better than even

degree ones since they better capture the peaks and valleys of the given function.

The Nadaraya-Watson estimator is a special case of equation (2.17Local Polynomial

Smoothingequation.2.2.17) with p = 0. Another popular choice is the local linear

polynomial of degree 1. Figure 2.3 displays call prices on November 24th 2009 which

have been fitted using a local linear estimator. More on local polynomial smoothing

can be found in Härdle’s book [17].
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Figure 2.3: Smoothed Call Prices of November 24, 2009. Bottom axis denotes Strike
price, K

It is interesting to note that as h −→ ∞ equation (2.16Local Polynomial Smoothingequation.2.2.1

collapses to the well known ordinary least squares regression. For a detailed proof of

the conditional expectation and variance of the local linear estimator see the paper by

Rupert and Wand [40]. After testing with various degrees we found that p = 2 best

fits the data while capturing the most important properties. The two-dimensional

local quadratic estimator of m(x), is the value of the local regression curve

β0 − β1(x1 − x1i)− β2(x2 − x2i)− β3(x− x1i)
2 − β4(x− x1i)(x2 − x2i) (2.19)

at x0. Letting x1 = κ and x2 = τ an estimate m̂(x), can be obtained by the weighted

sum of squares:

argmin
m∈Rp+1

n∑
i=1

{yi−β0−β1(κ−κi)−β2(τ−τi)−β3(κ−κi)
2−β4(κ−κi)(τ−τi)}2Kh1h2

(κ−κi, τ−τi),

(2.20)

where yi represent the observed implied volatilities. The solution to (2.20Local Poly-

nomial Smoothingequation.2.2.20) is given by

m̂(x) = β̂0(x). (2.21)
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Figure 2.4: IVS for November 11, 2009 generated by Nadaraya-Watson estimate with
a Gaussian Kernel. Left axis denotes moneyness, and right axis denoted time to
maturity measured in years.

We have chosen to use a local weighted regression as opposed to the general NW

estimator for a variety of reasons. Firstly, there is the problem of bias. More precisely

we obtain better results when minimizing the MSE via local polynomial smoothing.

For large κ and τ intervals, the IVS can be reasonably well fitted by piecewise poly-

nomials. Secondly, as we move towards the wings of the IVS the points become more

and more scattered as seen in Figure 1.2. In the case of NW smoothing we typically

observe problems due to the one-sided neighborhoods at the boundaries (wings) as

seen in Figure 2.4. The reason is that more or less the same points are used to esti-

mate the curve near the boundary. Local polynomial regression; however, overcomes

this by fitting a higher degree polynomial. If global bandwidths are to be used for

both κ and τ , local polynomial regression outperforms the NW estimator even if

the surface has been over smoothed. While choosing a bandwidth in the moneyness

direction is often easily done, finding a bandwidth in the time to maturity is more

cumbersome due to the lack of points, i.e, lack of long-term contracts. Fengler and

Hardle [18] use a NW kernel estimate for smoothing the IVS surface by employing

different bandwidths for T ; h1T is used for short term maturities and h2T is used
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for long term maturities. We have avoided this “splitting” of bandwidths via local

quadratic polynomial smoothing. Polynomial smoothing is also less influenced by

outliers in the data and therefore does not produce a “hump” in the graph as the NW

estimator would.

Another useful property of polynomial regression is that we can explicitly de-

fine the derivatives of m̂(x). The derivatives of equation (2.20Local Polynomial

Smoothingequation.2.2.20) are given by:

m̂(x) = β̂0, m̂′(x) = β̂1, m̂′′(x) = 2β̂2, . . . , m̂p(x) = p!β̂p. (2.22)

Using the above relations we can obtain the derivatives of σ̂.

β1 =
∂σ̂

∂κ
(κ, τ), β2 =

∂σ̂

∂τ
(κ, τ), β3 =

1

2

∂2σ̂

∂κ2
(κ, τ), β4 =

∂σ̂

∂κ∂τ
(κ, τ), β5 =

1

2

∂2σ̂

∂τ2
(κ, τ)

(2.23)

These were used to calculate the LVS of the Dupire [14] equation in Chapter 1.

Specifically β1 = ∂σ̂
∂κ
(κ, τ), β2 = ∂σ̂

∂τ
(κ, τ), and β3 = 1

2
∂2σ̂
∂κ2 are needed to formulate

equation (1.26PDE approach to Local Volatilityequation.1.4.26). Figure 2.5 displays

the derivatives of σ̂.

Backing out the implied volatility is only half the battle. Since options on the

same underlying are not offered for a continuum of strike prices and time to maturity,

a strong form of interpolation is then required to produce the IVS. As we saw in the

beginning of this chapter, arbitrage violations are difficult to avoid even when the

initial data (option prices) has been thoroughly screened. Furthermore, we saw that

there are multiple ways to test for the presence of such violations via the RND and

through the pricing bounds implied by the option prices. Once we have obtained the

IVs by solving the inverse problem using the BSM equation, we subject them to the
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Figure 2.5: From left to right, the plots display derivatives of the IVS for SPX
European options on 23/11/2009, first order moneyness derivative, first order time
to maturity derivative, second order moneyness derivative using global bandwidths
across moneyness and time to maturity

arbitrage tests described above before proceeding to forming the surface. There is no

one perfect method, and almost all fail to produce a perfectly arbitrage-free surface.

We then use a weighted local polynomial smoother which minimizes the most impor-

tant types of arbitrage such as vertical and butterfly spreads and produce an overall

smooth surface with minimal violations. As with any interpolation technique the

bandwidth parameter is the key component to a successful smoothed surface. If over

estimated it returns the sample mean, if under estimated than we obtain the response

variable. An advantage of polynomial smoothing is that we can explicitly define the

derivatives of our estimator. This proves to be extremely useful when defining the

LV function.

Given the dimensionality of our data, a natural question to ask is whether all the

variables play an equal role in describing the dynamics of the IVS. That is, can we

breakdown the data is such a way as to retain the variables that have the highest
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contribution to the surface? In the following chapter we will explore this question

and present a series of results and interpretations.
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Chapter 3

Dimension Reduction

One of the main problems in high-dimensional datasets is that, in most cases, not all

variables are considered to be “important” for understanding the problem at hand.

Dimension reduction methods aim at reducing the total number of variables of the

given problem by extracting the variables that have the highest contribution to the

variance of the data. We begin by giving a brief introduction to Principal Component

Analysis, (PCA). PCA provides us with tools to reduce a high dimensional data set

to a lower dimensional one while preserving the variables that describe the most of

the variance. Thus revealing the hidden simplified structures. We will be applying

PCA on slices of IV returns for fixed τ as in [44], and [9]. PCA takes its roots from

simple linear algebra. Below is a short proof of PCA.

Let X = (X1, . . . , Xp)
′ be a random vector that has covariance matrix V with

decreasing eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. For simplicity, assume that the data

vector X is centered such that E[X ] = 0. Let a ∈ R be a vector of constraints. We

are interested in finding combinations of aiXj such that the variances for each one is
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as large as possible. Consider the linear combinations

Y1 = a′1X = a11X1 + a12X2 + . . . a1pXp

Y2 = a′2X = a21X1 + a22X2 + . . . a2pXp

... =
...

Yp = a′pX = ap1X1 + ap2X2 + . . . appXp.

These linear combinations Y1, Y2, . . . , Yp form the principal components of X. Each

of these Yi are uncorrelated with one another and have maximum variance. The

first principal component (PC) Y1, is the linear combination with maximum variance

Var(Y1) = a′1V a1. Since the variance can be increased indefinitely by increasing a,

we restrict our vectors to having unit length. The idea is as follows:

1stPC = Linear combination a′1X that maximizes V ar(Y1) = a′1V a2 such that a′1a1 = 1

2ndPC = Linear combination a′2X that maximizes V ar(Y2) = a′2V a2 such that a′2a2 = 1

and Cov(a′1X, a′2X) = 0.

Continuing this way for the ith step we get,

ithPC = Linear combination a′iX that maximizes V ar(Yi) = a′iV ai such that a′iai = 1

and Cov(a′iX, a′jX) = 0 for j < i.

The following theorem summarizes the above with a detailed proof.

Theorem 3.1. Consider the data set X = (X1, ..., Xp)
′. Define V the covariance

matrix of X with eigenvalue-eigenvector pairs (λ1, β1), . . . , (λp, βp) with the eigenval-

ues arranged in decreasing order. Then the ith principal component is given by the
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projection

Yi = β ′iX, i = 1, 2, . . . , p,

such that,

V ar(Yi) = β ′iV βi = λi,

Cov(Yi, Yj) = β ′iV βj = 0, i 	= j.

Proof. Proof 1 Using Lagrange multipliers

Let V be a covariance matrix of random variables X = (X1, ..., Xp)’ such that V

is symmetric and positive-semidefinite and assume for simplicity that E[X] = 0. Our

problem is as follows; We are interested in finding a linear combination Y = α′X for

α ∈ R such that the variance of Y is maximized, i.e. Var(α′X) = α′V α over α, with

‖α‖ = 1 our normalizing constraint.

Let V be a p × p matrix and λ ∈ C an eigenvalue of V . If there exists a vector

constraint αp×1 	= 0 such that

V α = λα, (3.1)

then α is called an eigenvector of V corresponding to the eigenvalue λ. Equa-

tion (3.1Dimension Reductionequation.3.0.1) can be rewritten in terms of it’s char-

acteristic equation as

(V − λI)α = 0,

such that λ is a solution to det(V − λI) = 0. Below are some useful properties of the

covariance matrix V .

• If V is symmetric then all eigenvalues λ ∈ R such that λ1 ≥ λ2... ≥ .λp.
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• Trace(V ) = λ1 + . . .+ λp.

• det(V ) = λ1 × . . .× λp.

• (α′)V α = (α′)λα by equation (3.1Dimension Reductionequation.3.0.1) implies

λ = (α′)V α
‖α‖2 .

Now let g(x, y) = 1− α′α be our constraint and consider the Lagrange multiplier

λ such that

∂(α′V α + λ(1− α′α))
∂αi

= 0 ∀ i = 1, . . . , p.

Solving the above equation yields that λ is an eigenvalue of V and α its corresponding

eigenvector such that λ = α′V α.

Let λ1 = max(α′V α), i.e, we set λ1 as having the maximum possible variance in

our linear combination with α1 as eigenvector and ‖α1‖ = 1 our usual constraint.

Now consider the linear combination of α′X that maximizes α′V α with ‖α‖ = 1 and

α′1α = 0. We introduce the second lagrange multiplier η such that

∂(α′V α + λ(I − α′α) + ηα′1α)
∂αi

= 0 ∀ i = 1, . . . , p.

Therefore, solving the above equation implies that λ is an eigenvalue of V with unit

eigenvector α2 with α2 ⊥ α1. Continuing the above procedure up to αp−1, then by

induction we obtain a sequence of eigenvalues λ1 ≥ ... ≥ λp with optimal characteri-

zation:

λk+1 = max
α′αj=0,‖α‖=1

α′V α

where, α′iX is called the ith principal component of X.

We now give an alternative proof to PCA via singular value decomposition.
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Proposition 3.1. Consider the data set X = (X1, ..., Xp)
′

and assume for simplicity

that the data is centered, i.e., E[X] = 0. Define V = E[XX′] the covariance ma-

trix of X with eigenvalue-eigenvector pairs (λ1, β1), . . . , (λp, βp) with the eigenvalues

arranged in decreasing order. Then the ith principal component is given by

Yi = β ′iX, i = 1, 2, . . . , p,

such that,

V ar(Yi) = β ′iV βi = λi,

Cov(Yi, Yj) = β ′iV βj = 0, i 	= j.

Proof. Let V be the covariance matrix of of a random vector X = (X1, ..., Xp)
′

and

assume for simplicity that E[X] = 0. Denote the covariance matrix of X by V =

E[XX ′]. We are interested in finding a linear combination

Y = α
′

X, α ∈ Rp, (3.2)

such that the variance of Y is as large as possible. The problem is not well defined

since one can augment the variance of Y by increasing the value of α. The usual

approach to this problem is to consider a normalizing constraint on α such that

α
′

α = 1. (3.3)

Since V is symmetric and positive definite and X
′

X is of full rank p we can

decompose V by the singular value decomposition theorem. V can then be written

as

V =

p∑
j=1

λjβjβ
′

j = βΛβ
′

, (in matrix notation) (3.4)
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where Λ = diag(λ1, ..., λp) is a p × p matrix of eigenvalues and β = (β1, ...βp) is an

orthogonal p × p matrix where each column is an eigenvector corresponding to an

eigenvalue in Λ. Λ can be represented as

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 . . . 0

0 λ2 . . . 0

...
...

. . .
...

0 0 . . . λp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, by equation (3.4Dimension Reductionequation.3.0.4) V can be expressed in

terms of its eigenvalues and eigenvectors. This leads us to being able to find the

principal components without needing to calculate the covariance matrix.

Once more, since V is symmetric we can arrange the eigenvalues in decreasing

order, λ1 ≥ λ2 ... ≥ λp. The eigenvectors of V form a basis of Rp, and so we can

express the vector α as

α = a1β1 + . . .+ apβp, (3.5)

for some a = (a1, . . . , ap)
′ ∈ Rp. Constraint (3.3Dimension Reductionequation.3.0.3)

is satisfied since α is a linear combination of β and αα
′

= 1 holds. From the or-

thogonality of β it follows that β
′

V β = Λ, and the variance of α
′

X can be written
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as

V ar(α
′

X) = α
′

Cov(X)α (Matrix property)

= α
′

V α

= a
′

(βV βa) by (3.4DimensionReductionequation.3.0.4)

= a
′

Λa

=

p∑
j=1

λja
2
j

≤ λ1

p∑
j=1

a2j

= λ1 (since a
′

a = 1).

The above implies that the variance of any linear combination of X cannot exceed

its largest characteristic root λ1. Setting α = β1,

V ar(β1X) = β
′

1V β1 = λ1.

Thus, we can define the first principal component as

Y1 = β
′

1X.

The next step is to add a second constraint forcing α to be uncorrelated with Y1.

That is, we wish to maximize V ar(α
′

X) = α
′

V α with ‖α‖=1 such that

α
′

1α = 0.

More precisely,

Cov(Y1, α) = Cov(β
′

1X, α) = α
′

V β1 = 0.

By induction, the above is continued at the kth step such that we wish to maximize
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V ar(α
′

X) = α
′

V α for α ∈ R with ‖α‖=1 and α′X is uncorrelated with all k − 1

previous linear combinations of X. Thus, the principal components of X are defined

as

Y = β
′

X. (3.6)

PCA can therefore be viewed as a mapping from Rp to R given by the projections

β
′

iX whose importance is measured by the size of the marginal variance λi=Var(β
′

iX)

alongside these same projections.

Some interesting properties of PCA follow:

• Cov(Y ) = β
′

V β = Λ, PCs are pairwise uncorrelated

• λi = V ar(α
′

iX), where the elements of αi are called factor loadings.

• σ2
total = Trace(V ) =

∑p
i=1 V ar(Xi) = λ1 + ... + λp.

Our ultimate goal is to determine if indeed the first few principal components can

account for most of the overall variance σ2
total. Whether

k∑
i=1

λi/Trace(V ) ≈ 1 for small k. (3.7)

Thus, the eigenvalues that have the highest contribution to the overall variance are

retained. In essence, PCA transforms the data so that it can be expressed in terms of

the patterns between them. Geometrically, these linear combinations represent the set

of a new coordinate system obtained by rotating the original data with Y1, Y2, . . . , Yp

as the coordinate axes. This new axis represents the directions with maximum vari-

ability therefore providing a smaller and more parsimonious description of the data.

Although PCA does not require the data to follow a Gaussian distribution, infer-

ences can be made from the sample components when the population data is Normally
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Table 3.1: PCA of IVS for 2 maturity groups

Maturity Group 2 Month 3 Month

Sample Covariance S1 =

(
0.3785 0.4031
0.4031 0.7256

)
S2 =

(
0.2592 0.2573
0.2573 0.6533

)
Sample mean x1 = (0.3908 ,0.5644)′ x1 = (0.2582 , 0.4553)′
Matrix of Eigenvectors Γ̂1 =

(
0.5498 −0.8353
0.8353 0.5498

)
Γ̂2 =

(
0.4427 −0.8967
0.8967 0.4427

)
Eigenvalues λ̂1 = (0.9909 , 0.1131)′ λ̂1 = (0.7803 , 0.1322)′

distributed. Another important assumption that PCA makes is linearity. The data is

assumed to lie in a vector space, and PCA projects this data onto a lower dimensional

linear subspace. This assumption may not hold for data sets lying on complex curved

surfaces and therefore, the use of PCA may no longer be justified. More information

on non-linear dimension reduction techniques will be presented in Chapter 4.

3.1 A PCA study of the IVS

For our study of the IVS, we apply PCA to our multivariate data set σ(κi, τi). Once

the data has been cleaned to remove outliers and arbitrage opportunities (see Chapter

2 on data analysis), we are then left with the smoothed IVs for each day t, denoted

by Xt. We apply principal component analysis to the daily log differences of Xt

ΔXt(κ, τ) = lnXt(κ, τ)− lnXt−1(κ, τ), (3.8)

for a fixed time to maturity.

To get a better understanding of our analysis, Figure 3.1 displays the three most

prominent eigenvectors for our entire range of moneyness, κ = [0.85, 0.90, 0.95, 1.00,

1.05, 1.10]. There is no definitive answer to how many components we should retain.
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Figure 3.1: First, second, and third eigenvectors obtained from PCA for 1
month(solid), 2 month(dashed), and 3 month(dotted) maturity groups. Index of
moneyness corresponds to the level of moneyness κ ∈ [0.85, 0.90, 0.95, 1.00, 1.05,
1.10]

Things to consider include the relative sizes of the eigenvalues, the amount of total

variance explained, and other factors. We have followed the works of [9], [44], and

[18]. A common technique in dimension reduction methods for identifying the num-

ber of PCs to keep is by graphing a scree plot. A scree plot is a plot of λi against

i, the index number. To determine the number of components to retain we look for

the bend in the graph. The “elbow” in the graph of Figure 3.2 (a) represents the

magnitude (eigenvalue) that each component bears on the data. Looking at the scree

plot we see that the 1st eigenvector is the most dominant, explaining 83% of the total

variance as can be seen in Figure 3.2 (b).

Table 3.1 below displays our results from PCA applied to IVs with maturity 2

months and 3 months respectively. These results are found to be in accordance with

the literature on this topic. The first eigenvector in Figure 3.1 has an almost flat slope

and can be interpreted as the “shift” or “level” factor. The second component dis-

plays an almost Z-shape form and is called the “slope shock”. The third eigenvector

exhibits a twist or convexity change formation giving a heavier weight to at-the-

money IVs. As can be seen in Figure 3.2 (a), the eigenvalues decrease in size and
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similarly the variance explained (b) by each component decreases as well. The first

three eigenvalues in the 1st maturity group explain 98.31% of the IVS variation. The

percentage of variance explained is calculated by
∑k

j=1 λij/
∑p

j=1 λij, where the jth

component refers to the maturity and the ith component refers to the level of money-

ness. The same structure holds for the first three eigenvalues in all 6 maturity groups.
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Figure 3.2: Left Panel: Scree Plot for IV differences with 30 days to maturity. The
eigenvalues correspond to the variance attributed by each component and the In-
dex 1-6 corresponds to the level of moneyness, κ ∈ [0.85, 0.90, 0.95, 1.00, 1.05,
1.10] Right Panel: Variance explained of the kth component in group i defined as∑k

j=1 λij/
∑p

j=1 λij.

We recall that the time series of IVs often display a mean-reverting property when

modeled under an AR(p) distribution with leading coefficient very close to one. Dif-

ferencing our data corrects this issue and assures accuracy in our results. Several

authors, for example [9, 44, 17], take it a step further and explore the relationships

between the PCs and the underlying index. More precisely, they analyze the corre-

lation between the first k most prominent PCs and the underlying asset. Figure 3.3

displays x1(t), the first principle component of the IVS for 40 days to maturity. It is

observed to have a mean-reversion time of approximately one month. We have also
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plotted the graph of the end of day log prices for the SPX index from January 1st, 2009

to December 31st, 2009. Even without any test statistics, the negative correlation is

extremely evident. The authors use the evidence obtained from the autocorrelation

function (ACF) and partial autocorrelation function (PACF) shown in Figure 3.4

and consider modeling x1(t) under an AR(1) process. Our analysis has shown that

x1(t) ∼AR(1) process with leading coefficient 0.8655. This near unity root confirms

our need to difference the implied volatility returns.
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(a) Projection of first principal component
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Figure 3.3: Left Panel: Projection of first PC on the IVS data with 40 days to
maturity. Right Panel: Log returns of the S&P500 index.

As already observed, the implied volatility projected on the 1st PC moves in

the opposite direction of the underlying. We compute the correlation coefficients

between the differences of the 1st PC, x1(t)− x1(t− 1) and the log difference of the

underlying, lnS(t) − lnS(t − 1) and find a correlation of -0.8121. These results are

consistent with the leverage effect of the 1st eigenvector. The second PC; however,

is positively correlated with the index. The second eigenvector in Figure 3.1 displays

the slope effect which accounts for the general term structure observed in the IVS.

In contrast to the first PC, the second PC displays a weaker correlation with the
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Figure 3.4: ACF (left) and PACF (right) of first principal component for 30 days to
maturity. Blue horizontal lines indicate 95% confidence intervals.

underlying approximately equal to zero. Figure 3.5 displays the ACF and PACF

of Δx2(t). There is presence of a mean-reverting process but with more jumps and

spikes compared to the first PC. Running a model selection process reveals that x2(t)

can be modeled by an ARMA(1,1) process. Finally, the 3rd PC has a “V-shaped”

structure and can be interpreted as an ATM change in the convexity of the surface

followed by a downward sloping term structure. Similar analysis reveals that x3(t)

can also be modeled as an AR(1) process. These results are summarized in Table 3.2.

Table 3.2: Summary statistics of times series of principal components of S&P500
index options.

PC Var. Expl(%) Skewness Kurtosis Mean Reversion(days) Corr. with Index
1 83 0.57 4.86 28 -0.8121
2 12 -0.10 4.10 15 0.0170
3 3 -0.63 3.43 24 -0.080
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Figure 3.5: ACF (left) and PACF (right) of the differenced second principal compo-
nent for 30 days to maturity. Blue horizontal lines indicate 95% confidence intervals.
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Figure 3.6: ACF (left) and PACF (right) of the differenced third principal component
for 30 days to maturity. Blue horizontal lines indicate 95% confidence intervals.
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3.2 Common Principal Components

There are a number of similarities arising from the covariance structure of IV returns.

First, is that IV differences for short term maturities are more volatile and more dis-

persed along the grid than IVs for long term maturities. These similarities can be

modeled in such a way where the eigenvectors are restricted to be common while the

eigenvalues (variances) are allowed to change. Common principal component analy-

sis (CPC) aims to capture this inherent similarity while holding no restriction on the

variance. The following methodology follows Fengler and Hardle [18], and Flury [20],

who introduced CPC and applied it to skull dimensions of Voles [21].

Consider the model associated with two covariance matrices Ψ1 and Ψ2 for two

separate maturity groups indexed by 1 and 2:

Ψ1 = ΓΛ1Γ
T and Ψ2 = ΓΛ2Γ

T

where Γ is the matrix of eigenvectors and Λi = diag(λi1, λi2) the matrices of eigen-

values for maturity groups 1 and 2. The inspiration behind common modeling comes

from the idea that the space spanned by the eigenvectors is identical across several

maturity groups, whereas the variance of the individual components may vary. The

covariance matrices satisfy the following commutative property

Ψ1Ψ2 = Ψ2Ψ1. (3.9)

Naturally the question arises whether the principal components differ only due to

sample variability. PCA only allows us to view slices of the IVS, say ATM IVs, there-

fore, only looking at one slice in time. However, CPC allows us to analyze several

slices simultaneously for different maturity groups. This in turn, yields a joint eigen-

structure across groups. Furthermore this technique reduces the dimensionality of

the original problem by breaking down the data into a small number of factors that
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are common across groups. This provides us with insight into the co-dependance

between different maturities for a fixed level of moneyness.

The CPC analysis can be interpreted as follows. Consider covariance matrices

Ψ1, . . . ,Ψk, then the CPC hypothesis is formulated as:

HCPC : Ψi = ΓΛiΓ
T i = 1, . . . , k (3.10)

Let X = (Xi1, . . . , Xip) ∈ Rp , i = 1, . . . , k, denote our smoothed log differenced

IVs for k maturity groups and p grid (moneyness) points in the IVS. Ψi is our positive

definite p×p population covariance matrix, Γ = (γ1, . . . , γp) an orthogonal p×pmatrix

of eigenvectors, and Λi = diag(λi1, . . . λip) the matrix of eigenvalues. Denote by S, the

sample covariance matrix of X. Since X is assumed to follow a normal distribution

such that

X ∼ Np (μ,Ψ),

then the distribution of S follows a Wishart distribution with n degrees of freedom

and parameter matrix Ψ/n or

S ∼ Wp(n,Ψi/n).

A more detailed explanation on CPC and Wishart processes can be found in the book

by Flury [20].

The number of parameters to be estimated for the CPC model are p(p − 1)/2

for Γ plus kp for the eigenvalues Λi. The maximum likelihood estimates of Ψi are

denoted by Ψ̂i = Γ̂Λ̂iΓ̂
T . The sample principal components are computed via the

usual projection Yi = Γ̂TXi.
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3.2.1 A CPC approach to the dynamics of the IVS

As in the case of PCA, we are reminded that we are working with a limited range of

data. We observe IVs for a limited number of strike prices and an even thinner num-

ber of maturities. Hence, we need to interpolate across both the moneyness and time

to maturity axes. Once a surface has been “fitted” to the data using interpolation

techniques from Chapter 2, we obtain a time series of smoothed IVs for a range of

moneyness κi, i = 1, . . . , 6 and time to maturity τj , j = 1, . . . , 6. We than take the log

differences of the smoothed IVs, ΔXt(κ, τ) and group them into different maturity

buckets. We obtain 6 maturities and 6 levels of moneyness for a total of 36 times

series data.

The main advantage of CPC compared to ordinary PCA lies in the fact that it

gives us a way to condense high-dimensional data into a small number of factor load-

ings that are common across different groups (maturities). In other words, we can

examine the structure of the IVS for various levels of moneyness and different matu-

rities. This in turn yields a smaller number of parameters to estimate compared to

PCA. A motivation for CPC can be seen by re-examining the eigenvectors of Figure

3.1. There is little deviation of the overall shape for all three maturity groups, sug-

gesting a joint structure. Figure 3.7 displays the three eigenvectors associated with

the three largest eigenvalues under our CPC model for the 1 month and 3 month ma-

turities. As is expected, all three eigenvectors retain the same structure as in the case

for PCA. Table 3.3 displays the sample covariances S and estimated covariances Ψ

obtained from CPC analysis for 1 month and 3 month maturity groups. Note that the

commutative property of equation (3.9Common Principal Componentsequation.3.2.9)

is satisfied up to a small numerical round off error. We have also plotted the scree

plot for groups of 40, 60, and 90 days to maturity of the CPC model in Figure 3.8.
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Table 3.3: CPC of IVS for 2 maturity groups

Maturity Group 2 Month 3 Month

Estimated Covariance Ψ̂1 =

(
0.3435 0.3842
0.3842 0.7605

)
Ψ̂2 =

(
0.3036 0.2813
0.2813 0.6089

)
Matrix of Eigenvectors Γ̂CPC =

( −0.8594 0.5114
0.5114 0.8594

)
Eigenvalues λ̂1 = (0.1149 , 0.9891)

′

λ̂2 = (0.1361 , 0.7763)
′

CPC analysis of first two maturity groups for a level of moneyness of 0.90 and 1.10. Sample
covariance matrices are computed in table 1
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Figure 3.7: First, second, and third eigenvectors obtained from CPC for 1 month and
3 month maturity groups. Index of moneyness corresponds to the level of moneyness
κ ∈ [0.85, 0.90, 0.95, 1.00, 1.05, 1.10]

Fengler and Hardle [18] expand the use of dimension reduction techniques by

investigating other by-products of CPC. One such variant is the proportional model.

The idea behind this model is that both covariance matrices are proportional up to a

constant ρ such that all characteristic roots of Ψ1Ψ
−1
2 are the same and equal to ρ−1.

The hypotheses is presented as:

HPROP : Ψi = ρiΨ1 i = 2, . . . , k (3.11)

where ρi > 0 are the unknown constraints. Following the usual notation as above, we

can express Ψi as Ψi = βΛiβ
′

with Λi = diag(λi1, . . . , λip). This can be viewed as
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the original CPC model with the following additional constraints

λij = ρiλ1j , i = 2, . . . , k, j = 1, . . . , p. (3.12)

The number of parameters is [p(p+1)/2]+(k−1). In relation to the IVS, this implies

that variances of the common components between different groups are proportional

to one another up to some positive constant say η ≥ 0.

Regardless of the CPC model selected, common modeling is the right approach.

Thus, we can split the the CPC analysis in two; one for short term maturities (1-5

months) and one for long term maturities (6-12 months). It is natural to ask whether

we obtain the same eigenstructure when the surface has been smoothed using different

bandwidths. The eigenstructure is preserved if local bandwidths are used. We use

one pair of bandwidth (hMs, hTs) for the short term maturities and (hMl, hT l) for the

long term maturities.
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Figure 3.8: Left Panel: Scree Plot for IV differences with 40(black), 60(blue) and
90(red) days to maturity obtained via CPC. The eigenvalues correspond to the vari-
ance attributed by each component and the Index 1-6 corresponds to the level of
moneyness, κ ∈ [0.85, 0.90, 0.95, 1.00, 1.05, 1.10] Right Panel: Variance explained of
the kth component in group i defined as

∑k
j=1 λij/

∑p
j=1 λij.
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3.2.2 A reduced model

The main goal of dimension reduction methods such as PCA or CPC is to find a

sequence of nested linear subspaces that best represents the variability of the data.

In the same manner, we want to “choose” a volatility model reflective of the above

property. Derman et al. [13] proposed a model of the IV smile for a fixed maturity

and varying degree of moneyness known as the “sticky” model. For a fixed maturity

τj and a range of moneyness {κ1, . . . , κn} there exists a linear relationship between

the log differenced IVs and a small number of common factors. These ”common”

factors can be taken to be the principal components obtained from the dimension

reduction of the IVS. The three factors are the shift, slope and twist component.

For fixed maturity τj and range of moneyness {κ1, . . . , κn} let Xt(κi, τj) denote

the log differenced IVs as described in Chapter 2. The smile dynamics for a fixed

maturity τj can be modeled as

Xt(τj) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Xt(κ1, τj)

Xt(κ2, τj)

...

Xt(κn, τj)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

n∑
i=1

fi(τj)yti(τj) + εt(τj), (3.13)

where yt and εt are unobservable and assume to be i.i.d such that

E[yt(τj)] = 0, E[εt(τj)] = 0, Cov[yt(τi), εt(τj)] = 0.

Derman’s “Sticky” model implies that the log differenced IVs can be modeled in such

a way where they are only governed by a few driving factors. The model also displays

a linear relationship between these movements. In our CPC framework, we can iden-

tify the variables fi(τj) = γj as the common eigenvectors of Γ̂ of the covariance matrix
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Ψ̂. The variance is naturally given by Var[yj(τi)] = λij. Hence, the entire surface dy-

namics can be described with three shock factors alone. If we were to use all the PCs

in our decomposition of our factor model (3.13A reduced modelequation.3.2.13) then

we would recover the original volatility surface.

We want to recover the unobserved signals or shocks, yi from the data. We can gen-

erate these shocks by simulating from a multivariate Normal distribution. For a fixed

τ , we set the variance equal to diag(λ11, λ21, λ31) for n=3 shocks and choose say j = 1

for the first maturity group. Using equation (3.13A reduced modelequation.3.2.13),

our surface can be represented by these 3 principle components

ΔX(τ1) = f1(τ1)y1(τ1) + f2(τ1)y2(τ1) + f3(τ1)y3(τ1). (3.14)

Alexander [1] presents an interesting approach by applying PCA on fixed strike

volatility deviations applied on a quadratic parametrization of the IVS as opposed

to simple log-returns. Cont and da Foncesca [9] use an extension of (3.13A reduced

modelequation.3.2.13) in their functional representation of the IVS.

Xt(κi, τj) = X0(κi, τj) +
d∑

j=1

xjfj(κ, τ), (3.15)

where the PC’s xj(t) are modeled as an AR(1) processes with interdependent white

noise Wj, and X0(κi, τj) is a constant surface. Another form of dimension reduction

technique known as independent component analysis (ICA) is performed in the paper

by Ané and Labidi [3] on actual surface data for a fixed level of moneyness and time

to maturity rather than the log returns.
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3.3 Review of dimension reduction methods

Dimension reduction techniques aim at reducing the dimension of the data while re-

taining the most important variables. In other words, it compresses the data into a

smaller set by using the variables that have the highest contribution to the variance.

Principal component analysis is one such method. It uses an eigenvalue-eigenvector

decomposition and projects the data onto a lower dimensional linear subspace thus,

revealing hidden structures within the data. These projections are called principal

components (PCs). Our data consists of a daily times series of smoothed IVs. We

apply PCA to the log-difference IVs, ΔXt(κ, τ) = lnXt(κ, τ)−lnXt−1(κ, τ), for a fixed

time to maturity. We have kept 3 PCs as is common in the IV literature. These 3 PCs

account for over 98% of the total variance in almost all maturity classes. Common

principal component analysis (CPC) is similar to PCA but with one important differ-

ence, CPC finds a common eigenstructure across several maturity groups. CPC gives

us the ability to analyze the covariance matrix of multiple maturity groups and find

a common eigenvector while keeping the variance independent for all groups. Similar

results are obtained using both reduction methods. The PCs can be interpreted as

the slope, shift, and twist factors. The IVS can be entirely described by these 3 com-

ponents given by the above mentioned factor model. These models alow traders or

portfolio managers to hedge volatility risk, namely Vega-hedging. PCA and CPC rely

heavily on the notion that the data is vector based, i.e., Euclidean. This assumption

is often overlooked and in some cases may not even be true. We shall see in the next

chapter that a certain class of volatility models inherit a Riemannian geometry where

the data no longer lie in a vector space. A new form of dimension reduction is then

required.
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Chapter 4

Geometry of the Implied Volatility

Surface

In this chapter we present a different approach to modeling the implied volatility sur-

face. There is indeed a connection between Riemannian geometry and mathematical

finance. We explore the concept of defining a mean on a manifold, and introduce a

new form of dimension reduction known as principal geodesic analysis (PGA). We

give an example by applying PGA to the sphere in R3. Most of the definitions and

terminology used in differential and Riemannian geometry can be found in the Ap-

pendix. Our previous approach relied on estimating the variance in a Euclidean space

when the problem is clearly non-Euclidean. We propose applying PGA on our data

set; that is on actual manifold data. The main difference from traditional dimen-

sion reduction techniques, relies in the use of the inherent non-linear structure of the

problem, and the use of an intrinsic mean.

4.1 Principal Geodesic Analysis

Like PCA, Principal Geodesic Analysis (PGA), introduced by Fletcher [19] is a dimen-

sion reduction method. While PCA is restricted to working in a Euclidean (linear)
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Figure 4.1: Geodesic curve between two points on the sphere. This is the unique
minimizing geodesic such that it is the shortest distance between these two points.

vector space, PGA uses the inherent non-linear structure of the data to project onto

a lower dimensional Riemannian manifold. Riemannian manifolds are used to en-

force consistency in data and define more accurate metrics to work with. Definitions

and terminology used in differential and Riemannian geometry can be found in the

Appendix. The interest in manifold modeling arises from the non-linearity of the

problem. Benefits include dimension reduction, accuracy in measurements, and con-

sistency in model representation. The key ingredient in PGA is the use of geodesics.

As stated in Definition 4.6 of the Appendix, geodesics can be thought of as the mani-

fold generalization of a straight line, i.e., as the shortest distance between two points

in the manifold.

For an illustrative example consider points p and q on the the 2-sphere manifold in

R3 represented in Figure 4.1. The shortest distance between these two points is given

by the geodesic in blue. This is the length-minimizing geodesic. In other words, it is

the shortest path to travel while still remaining on the manifold. Recall, a manifold
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is called Riemannian if it is endowed with a Riemannian metric g. Notions such as

mean, variance, and distance can be defined on a manifold the same way they are

defined in Euclidean space. The only drawback is that unlike their Euclidean coun-

terpart, manifold statistics often do not admit a closed-from solution, and regularly

require numerical methods to be implemented.

As in PCA, we seek to project the data onto a lower dimensional space. In PGA

we project the manifold data onto the tangent space TpM about the mean point of

the manifold. PGA centers its operations about the mean point μ ∈ M . We define

two distinct notions of distance. The first being the classical Euclidean (extrinsic)

distance and the second the Riemannian (intrinsic) distance. Given a set of points

x1, x2, . . . , xn ∈ Rd, the arithmetic mean or average, x = 1
n

∑n
i=1 xi is defined as the

point that minimizes the sum-of-squared Euclidean distances to the given points. In

other words:

argmin
x∈Rd

= min
x∈Rd

n∑
i=1

‖x− xi‖2.

The norm refers to the Euclidean distance between points x and xi which is the

length of the line segment connecting them. In a sense, this can be thought of as a

linear mean. The notion of distance on a manifold has a different meaning. Given

that the manifold M may not necessarily form a vector space, this notion of mean is

then rendered useless.

Since we are working on a manifold M, one way to define distance between points

is to embed it in a Euclidean space. An embedding is a diffeomorphism of M onto

its image such that the image of the embedding must be a submanifold N of M. The

Nash embedding theorem states that every Riemannian manifold can be embedded

into some Euclidean space while still preserving distance. Let Φ : M → Rd be such an

embedding then we can define the notion of extrinsic mean of a collection of points
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x1, x2, . . . , xn ∈ M by

μφ = argmin
x∈M

n∑
i=1

‖φ(x)− φ(xi)‖2.

Once again though, we are linearizing the mean in the Euclidean sense. The data

points are treated as if obtained from a vector space and the shortest distance projec-

tion is used to find the mean on the manifold. Since we want to retain the inherent

structure of the manifold a natural candidate is the intrinsic mean. Assuming the

same set of points as above, the intrinsic mean (IM), is the minimizer in M of the

sum-of-squared Riemannian distance to each point

μ = argmin
q∈M

n∑
i=1

dR(xi, q)
2 (4.1)

where dR(xi, q) denotes the Riemannian distance between the ith data point and the

mean candidate q. This is the type of mean that we will be working with.

The geodesics of the sphere are given by the great circles passing through both

poles. The sphere is a particularly good example to work with since the geodesics are

defined explicitly. They are found by solving the Euler-Lagrange equations. Figure

4.2 displays one such geodesic passing through both poles at a particular point in

time. Using the inherent geometrical properties of the sphere, we will show in the

next section how the above minimization problem can be solved explicitly by utilizing

the Exp and Log maps defined in the Appendix.

4.1.1 Intrinsic Mean on S2

In this example we try to visualize the intrinsic mean for a set of points on the 2-

sphere S2 in R3. We consider the geodesics at the base point p = (0, 0, 1), the north

pole. Visually this translates to the meridians, or the great circles of the sphere.

The sphere can be represented by the symmetric quotient space M � SO(3)/SO(2).
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Figure 4.2: Geodesics on the sphere are given by the great circles (meridians) passing
through both poles.

The geodesics of M are realized by the group action acting on the one-parameter

subgroup, SO(3). Consider a tangent vector t = (t1, t2, 0) in TpM in the xy plane,

and recall, the exponential map at point p maps straight lines through (0,0) of TpM

to geodesics in M passing through p. Vectors in the tangent space are mapped back

to M using this exponential map. The Riemannian exponential map of SO(3) given

by Rodriguez’s formula is

Expp(t) =

(
t1 · sin‖t‖‖t‖ , t2 · sin‖t‖‖t‖ , cos‖t‖

)
, (4.2)

where ‖t‖ =
√

t21 + t22. In a similar fashion we can move from the manifold space to

the tangent space with the Log map. For a point x = (x1, x2, x3) ∈ S2, the log map

is given by

Logp(x) =

(
x1 · θ

sinθ
, x2 · θ

sinθ

)
, (4.3)

where, θ=arccos(x3) is the spherical distance from the base point p to the given point

x. An illustration of this example is displayed in Figure 4.3 where we have generated
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random points on a geodesic between points p and q and have calculated the IM

(yellow) using equation (4.1Principal Geodesic Analysisequation.4.1.1).

Similar to Fletcher we have an algorithm for implementing PGA summarized in

Algorithm 1.

Data: Points x1, . . . , xn in M .
Result: Approximating PGA
Calculate intrinsic mean;
while Δq > ε do

Set q = x1;

Δq = 1
N

∑N
i=1 Logqjxi;

qj → qj+1=Expqj (Δq);

end
Initialize PGA;
z=Logq(xi);

S = 1
N

∑N
i=1 ziz

′
i;

Extract principal directions and variances;
(β, λ);

Algorithm 1: PGA Algorithm

PCA is dependant on the vector space structure of the data and hence, cannot be

used on manifold valued data. Utilizing the inherent geometry of manifolds leads us

to generalize the notion of linear subspaces found in PCA to geodesic submanifolds

used in PGA. The geodesic curve is the Riemannian analog of the first principal di-

rection in PCA. We require the submanifolds to be geodesic for the following reasons.

If N is a submanifold of M , then, geodesics of N are not necessarily geodesics of M .

A submanifold N of M is said to be geodesic at x ∈ N if all geodesics of N passing

through x are also geodesics of M . Submanifolds geodesic at x preserve distances to

x. This is a vital property of PGA, since variance is defined as the average squared

distance to the mean, μ. The goal of PGA is to find a sequence of (nested) geodesic

submanifolds centered at the mean. These are the images S =ExpμV of linear sub-

spaces V of TμM . Thus, submanifolds geodesic at the mean can be viewed as the

78



Figure 4.3: Intrinsic mean (yellow) of a set of random points generated on a geodesic.
IM is calculated by solving the minimization problem of equation (4.1Principal
Geodesic Analysisequation.4.1.1).

generalization of linear subspaces in PCA.

PGA requires us to project the data onto a lower dimensional geodesic submanifold

N of M . The point on N nearest to x in Riemannian distance is defined by the

projection map πN : M → N .

πN(x) = argmin
y∈N

dR(x, y)
2, (4.4)

where dR(x, y)
2 denotes the usual Riemannian squared distance. Depending on the

manifold, πN (x) might be difficult to compute. Therefore, we can approximate it by

linearizing the manifold, i.e., the data is projected onto the tangent space TμM using

the log map and regular PCA is performed. In an equivalent way, PGA extends PCA

by finding geodesic subspaces in which the variance is maximized. More on comput-

ing the projection operator can be found in [19], and [45] where PGA is applied to
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medical imaging data.

We give an example by applying PGA on a set of points on the 2-sphere. We

uniformly generate some points on a geodesic and then add some noise to perturb

them. The intuition is as follows. Since we know the original points were generated

on a geodesic, we would expect that the principal geodesic with the heaviest weight in

variance to follow the same path as our original geodesic. Figure 4.4 (a) displays two

sets of data sampled on the original geodesic. Green points are generated uniformly

on the geodesic and black points have noise added to them. Figure 4.4 (b) shows the

eigenvectors projected onto the tangent plane about the IM and (c) using the expo-

nential map to project them back onto the manifold and solve for the new geodesics.

As suggested earlier, our main principal geodesic is in line with the original one thus,

accounting for the majority of the variation in the data. The results are recorded in

Table 4.1

Table 4.1: Summary of PGA.

PC Var. Expl(%)
1 78.34
2 21.66

PGA gives us the ability to perform dimension reduction analysis on manifold

data. Analogous to PCA, we find a sequence of nested geodesic submanifolds which

best represents the data. The IVS is a 2-dimensional surface in R3. It is a differen-

tiable manifold evolving continuously in time. Points on the IVS can then be classified

as manifold data. The natural response that arises is what type of manifold can the

IVS be classified with, and even more important, how can we apply PGA. In the next

section we give the steps required to build a geometric framework of the LVS.
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Figure 4.4: From the top going counterclockwise, Original geodesic with uniformly
generated points (green), point with added noise (black), and IM (yellow) of the noisy
points. Projection of eigenvectors onto the tangent plane about the IM. Using the
exponential map to project back onto the sphere and calculate the principal geodesics
(black lines).

4.2 Manifold representation of the volatility sur-

face

Quantifying the smile or skew in a coherent model is of great importance, especially

for hedging purposes. The development of local volatility models (LVM) has given us

the ability to perform such a task. LVMs are self-consistent, arbitrage-free, and can

be calibrated to match observed market prices (see Chapter 1). The LVS can be seen

as a random surface evolving in low-dimensional manifold of surfaces. This manifold

has a given topology from which we can extract various properties. What makes this

81



a unique type of manifold can be seen by the following example. Take a point x on

the sphere S2(r) ∈ R3. Now everyday produce the same sphere with the same point

but with a different radius each time. The only dependance on the point x is due to

the change in radius. Essentially, a sphere is a sphere. As long as we know the radius

then there is no problem relocating the point x day after day. Unlike the LVS or even

the IVS, for every new daily set of option prices, we get a new surface. The dynamics

of this surface depend on a variety of factors such as; no-arbitrage conditions, the

regression coefficients just to name a few. Thus, a point z on the LVS today, may not

so easily be located on the surface generated given tomorrow’s data.

One way around this problem is to try and identify the space in which the LVS

lives in. This 2-dimensional manifold lives in the space of all possible 2-dimensional

manifolds with some “special” characteristics. Recall when we originally smoothed

the surface we were restricting ourselves to a finite grid both in the moneyness and

time to maturity direction. Intuitively we can think of the LVS as a manifold evolving

infinitely through moneyness and maturity. Using a parametric representation of the

IVS we can rewrite σ̂ as

σ̂(κ, τ) = α0 + α1κ + α2κ
2 + α3τ + α4τ

2 + α5κτ, (4.5)

where the coefficients αi are easily solved by two-dimensional least-squares.

It is worth noting that the LVS generated by this interpolation is not arbitrage free

and may not even respect the slope bounds. We are forcing this polynomial approach

which guarantees us that σ̂ is C1,2 in both K and τ . More complex optimization cri-

teria is required to produce a surface free of the types of arbitrage mentioned earlier

in Chapter 2. Our choice of order 2 polynomial is motivated by similar reasoning as
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in Chapter 2. Not much is gained by expressing it in higher order although, the full

representation would be an infinite dimensional polynomial.

We hope to apply PGA on the on the IVS or better yet the LVS because of its

PDE description and no arbitrage conditions. For a given range of moneyness and

time to maturity, define Σ as our data set

Σ = {σ1(κ, τ), σ2(κ, τ), . . . , σn(κ, τ)}, (4.6)

where the subscript denotes the local volatility surface generated on day i. Following

the works of Fletcher et al. [19], we then would need to define the space in which

Σ lives in. If we parameterize the LVS using equation (4.5Manifold representation

of the volatility surfaceequation.4.2.5), then rather naively we can define Pn, as the

space of all second order two-dimensional polynomials with rational coefficients with

dynamics σ(κ, τ)

Pn = {σ(κ, τ) : κ > 0, τ > 0, αi > 0, α ∈ Q}. (4.7)

Once we have found the space that best represents the geometry of the LVS then

we now have a foundation on which PGA can be implemented. This manifold induces

a metric g∗ which would enable us to calculate distances between points on σ(κ, τ).

Then by definition (A.6defis.A.6), this surface constitutes a Riemannian manifold

defined by Σ∗. Using a parametric representation of the surface like the one given

by (4.5Manifold representation of the volatility surfaceequation.4.2.5) the metric g∗

can be calculated by

g∗ =

⎛
⎜⎝ 1 + σ̂κ(κ, τ)

2 σ̂κ(κ, τ)σ̂τ (κ, τ)

σ̂τ (κ, τ)σ̂κ(κ, τ) 1 + σ̂τ (κ, τ)
2

⎞
⎟⎠
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Once we have the metric, we can then define a distance and find the geodesics by

solving the Euler-Lagrange equations. The geodesics will enable us to find the Exp

map which brings us from the tangent plane to the surface and back via the Log map.

We are then able to define the intrinsic mean and apply PGA to data taking values

on the LVS.

Unlike PCA and CPC, we do not want to restrict our analysis to slices alone.

Ultimately we would like to work with a time series of surfaces as the data as opposed

to slices or surface points. Algorithm 1 would have to be modified in such a way where

each observation xi would correspond to a surface σi(κ, τ). Hence, the IM would give

us the average volatility surface, σ(κ, τ). Applying PGA to this data would gives the

principal geodesic submanifolds. These would be the k most prominent submanifolds

that best describe the variance of the LVS over time. However, this program is beyond

the scope of this thesis.
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Chapter 5

Conclusion and Future Research

The implied volatility surface is a very strike and time to maturity dependant struc-

ture. Quoting an IVS on a particular day is synonymous with specifying prices for all

call and put options on that date. We have provided an in-depth statistical analysis of

the various properties defining the surface. We find that the IVS attains its minimum

near the ATM level and its term structure decreases as time to maturity increases.

We also introduced the theory of local volatility and showed how the LVS can be

expressed in terms of the IVS. We described the various types of arbitrage violations

encountered when manipulating the IV data. Producing an IVS free of arbitrage is in

general not possible as suggested by the literature. We presented various interpolation

methods for smoothing the surface, and ultimately chose to use a local polynomial

smoother for its effectiveness in capturing the overall dynamics of the surface. Using

end-of-day European option prices obtained from the S&P500 Index we reverse en-

gineered the BSM formula to solve for the IVs. Once a surface was fitted to the raw

IVs we moved onto describing the components which best describe the variance of the

IVS through the use of dimension reduction techniques. We applied PCA and CPC

to slices of the IVS for a fixed time to maturity. As is observed in the literature, we

found that the IVS can best be described using 3 principal components. The level,
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slope and twist components. With these 3 PCs we can build a lower dimensional

factor model of the surface.

Dimension reduction techniques such as PCA and CPC rely on the assumption

that the data is linear. That is, it assumes that the data is sampled from a vector

space. The IVS is a 2-dimensional surface in R3. It is a continuously differentiable

manifold evolving continuously in time. This motivates us to use PGA because of

it’s non linear dimension reduction technique. PGA uses the inherent properties of

the manifold such as the mean and variance, to produce a lower dimensional factor

model. What distinguishes PGA from other tractional reduction methods is its abil-

ity to manipulate manifold data. We gave an example by applying PGA to a set of

points on the 2-sphere.

Although we couldn’t apply PGA to the volatility surface since we could not

attribute a geometrical representation, we never the less outline a procedure for future

research. Following in the steps of Fletcher et al. [19] we strive to study the geometric

properties of the LVS as outlined in the end of Chapter 4. We aim at applying PGA

on actual surface data as opposed to slices as was done in Chapter 3. This will enable

us to capture the entire dynamics of the surface simultaneously across all moneyness

and time to maturity. Therefore, producing a geodesic submanifold factor model

which best describes the surface.
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Appendix A

Differential Geometry

We briefly introduce some notions of differential geometry mostly present in Chapter

4. Our attention will mainly be focused on Riemannian manifolds and the statistics on

such surfaces. For a good introductory read on differential geometry we recommend

the book by O’Neil [36]. For a more sophisticated read of Riemannian Geometry and

its applications we defer the reader to [33], [30], and [37]. In the simplest terms, we

begin our adventure with the notion of a surface. Always keeping in the back of our

minds the link between the IVS. A surface defined in its simplest terms is a set M, a

collection of any objects. An abstract patch in M is a 1-1 function x : D →M from

an open set D of R2 into the set M.

Definition A.1. A surface can be described as a set M equipped with a collection

P of abstract patches in M.

The following definition is taken from [36].

Definition A.2. An n-dimensional differentiable manifold M is a set furnished with

a collection P of abstract patches (one-to-one functions x : D → M,D an open set

in Rn) satisfying

1. The covering property: The images of the patches cover M .
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2. For any patches x, y in P , y−1x and x−1y are Euclidean differentiable.

3. For any two points p 	= q in M there are disjoint patches x and y with p in

x(D) and q in y(E).

Lemma A.1. A surface M is said to be compact if and only if it can be covered by

the images of a finite number of 2-segments (differentiable maps) in M .

Definition A.3. Let p and q be points of M ⊂ R3 and consider all curves α in M

connecting points p to q. The intrinsic distance dI(p, q) in M is the greatest lower

bound of the lengths L(α) of these curve segments.

L(α) = inf
α∈M

{dI1(p, q), dI2(p, q), . . .}.

Definition A.4. An isometry F : M → M of surfaces in R3 is a 1-1 mapping of M

onto M that preserves dot products of tangent vectors.

An important consequence of the above definition is that isometries preserve dis-

tances. If F : M → M is an isometry of surfaces in R3 then

dI(p, q) = dI(F (p), F (q)) ∀ p, q ∈ M.

Let us now quickly pass over these definition to Riemannian geometry.

Definition A.5. A Geometric Surface is an abstract surface M furnished with an

inner product <,> on each of it’s tangent planes.

This definition resembles that of a regular Euclidean surface given by defini-

tion (A.1defis.A.1). The addition here is the geometric structure provided by the

collection of all these inner products can be described as a metric tensor, g on M .
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We can think of this as a smooth grouping of inner products on the manifold M .

Definition A.6. A Riemannian Metric on a smooth manifold is a 2-tensor field g

that is symmetric g(X, Y ) = g(Y,X) and positive definite, g(X, Y ) > 0 for X 	= 0. A

Metric Tensor is a function on all ordered pairs of tangent vectors v, w at the points

p of M on each tangent space TpM which changes “differentially” with the point p .

In short it is a method to define distance on a manifold. It is usually written as

gp < v,w >=< v,w >p

The above definitions can be combined in the following way

A Surface +Metric Tensor = Geometric Surface

A Manifold +Metric Tensor = Riemannian Manifold

Definition A.7. A curve γ in Mn ⊂ Rn+1 is a called a geodesic of Mn if its acceler-

ation γ′′ is always orthogonal to Mn. Furthermore γ has constant speed,

(‖γ′‖2)′ = 2γ′ · γ′′ = 0.

Geodesics can be thought of as the manifold generalization of a straight line.

Geodesics play a fundamental role in the study of Riemannian geometry much in the

same way straight lines are so crucial in Euclidean geometry. The smallest geodesic

connecting two points in M is called a minimizing geodesic as displayed in Figure

4.1 of Chapter 4. Hence, the notion of distance can now be formulated. For points

p, q ∈ M , we define the space

Γp,q = {γ : [0, 1] → M : γ is piecewise C∞ and γ(0) = p, γ(1) = q}.
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Now the Riemannian distance dR(p, q) between points p and q in M is defined as:

dR(p, q) = inf
γ∈Γp,q

{L(γ)}

where L(γ) is the usual formula for arclength. Two properties need to be presented

here. One being the notion of completeness, and the other defining what is meant by

a minimizing geodesic.

Definition A.8. A Riemannian manifold where all geodesics γ exist for all time is

called geodesically complete.

Another way of rephrasing Definition A.8 is by saying that a manifold M is com-

plete if all geodesics extend indefinitely. The next theorem links these two properties

together. for all compact and non-compact manifolds.

Theorem A.1. (Hopf-Rinow) If M is a complete manifold, then any two points p

and q in M can be joined by a geodesic of length dR(p, q). Defining dR(p, q) as in

definition (A.7defis.A.7), p and q can be joined by a minimizing geodesic.

For Rn, a straight line can extend to eternity and for any two points, the Hopf-

Rinow Theorem guarantees the existence of a minimizing geodesic, namely the unique

straight line segment PQ. For M = S2, the minimizing geodesic is the shortest arc of

the great circle connecting the two points. Uniqueness for the sphere however, does

not hold if p and q are located at opposite poles.

We also have another tool which helps us to define minimizing geodesics on M .

Given points p and q in M , let v belong to the tangent plane TpM , the Exponential

Map denoted Expp(v) is a map which constructs geodesics.
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Theorem A.2. LetM be the usual Riemannian manifold, with p ∈ M , and v ∈ TpM .

Then for some small ε > 0, there is only one geodesic, γ such that:

γ : [0, ε] → M

with initial conditions γ(0) = p, γ′0) = v.

This theorem implies the uniqueness and existence of geodesics. We can now state

a proper definition for the exponential map.

Definition A.9. For p ∈ M , define the space Vp as

Vp := {v ∈ TpM : γv is defined on [0,1]}
The exponential map is defined by

Expp : Vp → M

v �→ γv(1).

The exponential map gives us a link between the tangent map and the manifold.

Theorem A.3. The Exponential map Expp maps a neighborhood of 0 ∈ TpM dif-

feomorphically onto a neighborhood of p ∈ M .

There exists some diffeomorphism say Φ, which brings us from the tangent plane

TpM to the manifold M and vice versa. The inverse exponential map, is given by

the Log map. By the above theorem there exists a neighborhood U of p which is

mapped by Logp diffeomorphically onto a neighborhood 0 ∈ TpM . Hence we have

Logp : Expp(U) → TpM . We now have a way of going back and forth from one space

to the other. This property will be the key factor in finding the IM on a manifold.

Next, we introduce some notions on Lie groups and the role they play in this thesis.
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Definition A.10. A Lie group G is a differentiable manifold endowed with a group

structure such that,

(x, y) �→ xy : G×G → G

x �→ x−1 : G → G,

are group operations compatible with the differentiable structure.

Lie groups can be used to describe transformations of smooth manifolds. Lie al-

gebras are constructed by linearizing Lie groups.

A Riemannian symmetric space is a connected manifold M such that at each point

x ∈ M the mapping that reverses geodesics at that point is an isometry (distance

preserving). The Euclidean space Rn is a symmetric space, so are spheres, Sn, and

hyperbolic spaces, Hn. Ultimately symmetric spaces offer us a way for computing

geodesics while using the Lie group actions inherent on those manifolds.

Definition A.11. A Riemannian manifold M is called symmetric if for every x ∈ M

there exists an isometry ϕ : M → M such that

ϕx(x) = x

Dϕx(x) = −Id.

A subgroup H ⊂ G which permutes with all operations in G is called an invariant

subgroup of G. Isomorphic groups are almost identical at the algebraic level. Thus,

when an isomorphism φ exists, between a group and a matrix group, it is often more

convenient to study the matrix representation of the group since matrix properties are

so familiar. For H ⊂ G, we can write every group element in G a a product of an ele-

ment h in its subgroup H with a group element in a “quotient” or coset denoted G/H .
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The space of all such cosets is a smooth manifold. Furthermore, let M be a sym-

metric space and define an arbitrary base point p ∈ M . M can be written as a

homogeneous space M = G/H , where G is a connected group of isometries, and the

isotropy subgroup H is compact. It is interesting to note that M need not be compact

yet can still be represented by a compact group. Geodesics on M can be computed

through the group action. They are the image of the action of a one-parameter sub-

group of G acting on the base point p.
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