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Abstract

Computations on the Birch and Swinnerton-Dyer conjecture for elliptic

curves over pure cubic extensions

Céline Maistret

The Birch and Swinnerton-Dyer conjecture remains an open problem. In this thesis,

we propose to give numerical evidence toward this conjecture when restricted to

elliptic curves over pure cubic extensions.

We present the general conjecture for elliptic curves over number fields and detail

each arithmetic invariants involved. Assuming the conjecture holds, for given elliptic

curves E over specific number fields K, we compute the order of the Shafarevich-Tate

group of E(K).
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Introduction

In the article Notes on elliptic curves II ([BSD65]), Birch and Swinnerton-Dyer pre-

sented their conjecture concerning the rank of the Mordell-Weil group E(Q) of an

elliptic curve E/Q. Along with prediction on the rank, they proposed a refined ver-

sion of this conjecture, predicting the form of the leading term in the Taylor expansion

of L(E/Q, s)|s=1, where L(E/Q, s) is the L-function attached to E.

Later on, John Tate presented a generalization of their conjecture to abelian varieties

over number fields in his article On the conjecture of Birch and Swinnerton-Dyer

and a geometric analog ([Bou66]). This generalization to number fields restricted to

elliptic curves is the object of our study. It can be stated as follows (see [DD05])

Conjecture 1. (Birch and Swinnerton-Dyer for a number field K)

(a) The L-function L(E/K, s) has an analytic continuation to s = 1, and

ords=1L(E/K, s) = rk(E(K)). (1)

(b) The Shafarevich-Tate group X(E/K) is finite, and the leading coefficient in the

Taylor expansion of L(E/K, s) at s = 1 is equal to

|X(E/K)|RE/KC(E/K)Ω

|E(K)tors|2
√
|∆K |

(2)
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We describe in detail this conjecture and then propose to verify (2) for specific

elliptic curves over number fields K = Q( 3
√
m) for given m.

In chapter 1, we present the basic theory of elliptic curves and introduce the nec-

essary notions for understanding their arithmetic invariants involved in the Birch and

Swinnerton-Dyer conjecture.

In chapter 2, we define the notion of an L-function attached to an elliptic curve

over a number field. In order to prepare for our computations, we focus on the specific

case of L(E/K, s) where K = Q( 3
√
m) and give a factorization of L(E/K, s) in terms

of L(E/Q, s) twisted by Artin representations.

Keeping the restriction to pure cubic number fields, chapter 3 introduces the Birch

and Swinnerton-Dyer conjecture for this particular case. Each feature of this conjec-

ture is detailed in this context and a way of computing that feature is given .

In chapter 4, we present numerical results obtained for specific elliptic curves.

We used the mathematical software SAGE and the computational algebra system

MAGMA to numerically compute invariants of elliptic curves. These results provide

numerical evidence for the conjecture.

In the conclusions, we discuss our computations and their limits.

2
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Chapter 1

Elliptic Curves

1.1 Introduction

This chapter presents the basic theory of elliptic curves.

First, we give definitions and properties. Then, we introduce the notion of group of

rational points and we define some arithmetic invariants of an elliptic curve via the

survey of the Mordell-Weil theorem’s proof.

Finally, by looking successively at elliptic curves over the complex numbers and over

non-Archimedean local fields, we introduce all invariants involved in the right hand

side of conjecture 1.b. above.

The main references for this chapter are [Sil09] and [ST92].

4



1.2 Generalities

Definition 1.2.1. Let K be a field. An elliptic curve over K, denoted E/K, is a

pair (E,O), where E is a nonsingular projective curve of genus one over K and O is

a K-rational point on E.

Every such curve can be described as a projective plane cubic curve, given by the

generalized Weierstrass normal form (see Chapter III, Proposition 3.1 in [Sil09])

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (1.1)

where a1, a2, a3, a4, a6 ∈ K.

However, it is more common to consider affine coordinates x = X
Z

, y = Y
Z

in order

to write the Weierstrass equation for E/K

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.2)

and to add the extra point at infinity O = [0, 1, 0].

Given an elliptic curve, we can define constants attached to its Weierstrass form.

These constants are called the Tate values and are defined as follows.
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Definition 1.2.2. The Tate Values are

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6,

where a1, a2, a3, a4, a6 refer to the coefficients of the Weierstrass form (1.2).

From these values, we define the discriminant and the J-invariant of the curve.

Definition 1.2.3. The discriminant and the J-invariant are

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 and j :=

c3
4

∆
, respectively.

In particular, two elliptic curves are isomorphic over K̄, where K̄ denotes the

algebraic closure of K, if and only if they both have the same j-invariant (see Chapter

III, proposition 1.4 in [Sil09]).

Our goal being mainly computational, we use the Weierstrass normal form (1.2) to

input an elliptic curve into mathematical softwares SAGE and MAGMA. Nonetheless,

working over number fields, we have Char(K) = 0, which allows us to simplify (1.2)

into

E : y2 = x3 + Ax+B, ∆ 6= 0, (1.3)

where we retrieve the discriminant of E being ∆ = −16(4A3 + 27B2) 6= 0 and its

non-vanishing ensures the non-singularity of E/K (see [Kna92], III,2).

6



1.2.1 Mordell-Weil group

If E/K is an elliptic curve given by a Weierstrass equation, we can consider

E(K̄) = {(x, y) ∈ K̄2 | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}. (1.4)

A particular property of elliptic curves is that E(K̄) ⊂ P2 can be equipped with a

group stucture, where the addition law is described geometrically via the chord and

tangent law. This makes E(K̄) into an abelian group with identity element O (see

[ST92], Chapter I).

As a consequence of the addition law involving lines between two points, for each

subfield K ⊆ F ⊆ K̄, the next proposition defines the corresponding subgroup of

F -rational points on E.

Proposition 1.2.1. Suppose that E is defined over K and consider the field F such

that K ⊆ F ⊆ K̄. Then

E(F ) = {(x, y) ∈ F 2 | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

is a subgroup of E(K̄). It is the group of F -rational points on E, called the Mordell-

Weil group over F .

In order to elaborate on the structure of E(K̄) and E(K) we introduce the notion

of isogeny.

7



Definition 1.2.4. Let (E1, O1) and (E2, O2) be elliptic curves over K.

(a) A morphism from (E1, O1) to (E2, O2) is a rational map which is regular at every

point of (E1, O1).

(b) An isogeny from (E1, O1) to (E2, O2) is a morphism

φ : E1 7→ E2 satisfying φ(O1) = O2.

As an example, we define the multiplication by m isogeny.

Definition 1.2.5. For each m ∈ Z, the multiplication by m isogeny is the map

[m] : E(K̄) 7→ E(K̄),

where [m](P ) =


P + P + ...+ P if m > 0;

[m](−P ) if m < 0;

O if m = 0.

This isogeny yields the notion of points of finite order.

Definition 1.2.6. Let E/K be an elliptic curve and m ∈ Z with m ≥ 1.

The m-torsion subgroup of E(K̄), denoted E(K̄)[m], is the set of points of E(K̄) of

order m

E(K̄)[m] = {P ∈ E(K̄) | [m](P ) = O}. (1.5)

We then define the torsion subgroup of E(K̄), denoted E(K̄)tors, to be the set of

points of finite order :

E(K̄)tors = {P ∈ E(K̄) | [m](P ) = O for some m ∈ Z}. (1.6)

8



By proposition 1.2.1., E(K) has the following subgroup

E(K)tors = {P ∈ E(K) | [m](P ) = O for some m ∈ Z}. (1.7)

The structure of E(K)tors depends on the field upon which the points are consid-

ered. When working with K = Q, Mazur’s theorem provides a characterization of

E(Q)tors (see [Maz]).

Theorem 1.2.1. (Mazur) Let E/Q be an elliptic curve. The torsion subgroup E(Q)tors

of E(Q) is isomorphic to one of the following fifteen groups :

Z/NZ with 1 ≤ N ≤ 10 or N = 12, (1.8)

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4. (1.9)

For the more general case of K being a number field, the boundedness of E(K)tors,

as [K : Q] is fixed, was proven by Merel (see [Mer]).

Theorem 1.2.2. (Merel) Let d ≥ 1 be an integer. There exists a real number B(d)

such that for all elliptic curves E defined over a number field K of degree d over Q,

every torsion point of E(K) is of order < B(d), where B(d) depends only on d.

Merel’s theorem provides an upper bound for m in (1.7). The boundedness of

E(K)tors follows from the structure of E(K̄)[m] given by the next proposition (see

Chapter III, Corollary 6.4 in [Sil09]).

Proposition 1.2.2. Let E be an elliptic curve defined over a number field K, and

let m ∈ Z with m 6= 0, we have

E(K̄)[m] = Z/mZ× Z/mZ.

9



1.3 The Mordell-Weil Theorem

We consider the structure of E(K), given by the Mordell-Weil Theorem.

Theorem 1.3.1. (Mordell-Weil) Let E/K be an elliptic curve, the Mordell-Weil

group E(K) is finitely generated, i.e.,

E(K) ' Zr ⊕ E(K)tors,

where r ≥ 0.

Definition 1.3.1. The number r of copies of Z in the Mordell-Weil group E(K) is

called the rank of E(K), denoted rk(E(K)).

In particular, the rank of E(K) is predicted in the first part of the Birch and

Swinnerton-Dyer conjecture.

The proof of the Mordell-Weil theorem consists of proving the two main theorems

listed below. Both theorems are important since their proofs yield definitions of

invariants involved in the Birch and Swinnerton-Dyer conjecture.

Theorem 1.3.2. There exists a function

h : E(K)→ R,

satisfying

(a) For all points Q ∈ E(K), there is a constant CQ depending only on Q, and an

absolute constant C depending only on E, such that

h(P +Q) ≤ 2h(P ) + CQ,

h([m]P ) ≥ m2h(P ) + C, for all P ∈ E(K).

10



(b) For all B > 0,

{P ∈ E(K) | h(P ) < B} isfinite.

Theorem 1.3.3. (The weak Mordell-Weil Theorem) For any integer n ≥ 1, the group

E(K)/nE(K) is finite.

Mordell-Weil’s theorem is then a consequence of the descent lemma.

Lemma 1.3.1. Let G be an abelian group equipped with a height function as described

in theorem 1.3.2., and assume that G/nG is finite for some n > 1 then G is finitely

generated.

1.3.1 The Weak Mordell-Weil Theorem

Before studying the existence of the height function presented in theorem 1.3.2., we

present a survey of the Weak Mordell-Weil theorem’s proof. The survey of this proof

matters for our study as it leads to the definition of the Shafarevich-Tate group, whose

order appears in conjecture 1.b.

The details for the entire proof can be found in Chapter VIII.1. of [Sil09].

Considering the multiplication by n isogeny defined above, applied to E(K̄)

equipped with the discrete topology, we have the following exact sequence of modules

equipped with their natural continuous action of the profinite group G := Gal(K̄/K)

(see [Dar04])

0 // E(K̄)[n] // E(K̄)
n // E(K̄) // 0 . (1.10)

Galois cohomology of (1.10) yields the long exact cohomology sequence

11



0 // E(K)[n] // E(K) n // E(K)

rrffffffffffffffffffffffffffffff

H1(G,E(K̄)[n]) // H1(G,E(K̄))
n // H1(G,E(K̄)),

(1.11)

where H1(G,E(K̄)) is the first cohomology group of the G-Module E(K̄) defined

by

H1(G,E(K̄)) =
Z1
cont(G,E(K̄))

B1(G,E(K̄))
, (1.12)

Z1
cont(G,E(K̄)) is the group of continuous 1-cocycles from G to E(K̄),

B1(G,E(K̄)) is the group of 1-coboundaries from G to E(K̄).

From (1.11) we obtain the following short exact sequence

0→ E(K)/nE(K)→ H1(G,E(K̄)[n])→ H1(G,E(K̄))[n]→ 0, (1.13)

where H1(G,E(K̄))[n] = {c ∈ H1(G,E(K̄)) | nc = 0}.

In order to conclude that E(K)/nE(K) is finite, we would need to specify an

embedding into a finite group. In the case of number fields, the sequence (1.13) does

not provide a solution as H1(G,E(K̄)[n]) is never finite (see [Dar04]).

We then approach this sequence from a local point of view.

12



For any place v of K, the embedding of K into the completion Kv, extended to

an embedding of K̄ into K̄v, induces an inclusion Gv := Gal(K̄v/Kv) ⊂ G, leading to

the following commutative diagram

0 // E(K)/nE(K) δ //

resv

��

H1(G,E(K̄)[n]) //

resv
��

γv

))SSSSSSSSSSSSSSS
H1(G,E(K̄))[n]

resv
��

// 0

0 // E(Kv)/nE(Kv)
δ // H1(Gv, E(K̄)[n]) // H1(Gv, E(K̄))[n] // 0

where resv denotes the restriction homomorphism relative to the inclusion Gv ⊂ G.

This diagram yields the definition of two groups, the second of which is the

Shafarevich-Tate group.

Definition 1.3.2. The n-Selmer group of E over K , denoted Seln(E/K), is the set

of classes c ∈ H1(G,E(K̄)[n]) such that γv(c) = 0 for all places v of K.

Definition 1.3.3. The Shafarevich-Tate group of E/K, denoted X(E/K), is the set

of classes c ∈ H1(G,E(K̄)) such that resv(c) = 0, for all places v of K.

In particular, the n-Selmer group of E over K has been proved to be finite.

Proposition 1.3.1. Seln(E/K) is finite (see Chapter X.4, Theorem 4.2(b) in [Sil09]).

We conclude that E(K)/nE(K) is finite by applying the following lemma to (1.13)

(see lemma 2.2 in [Mil06]).

Lemma 1.3.2. For any pairs of maps of modules

A
α // B

β // C (1.14)

there is an exact kernel-cokernel sequence

0 // ker(α) // ker(β ◦ α) α // ker(β) // coker(β)

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

coker(α) // // coker(β ◦ α) α // coker(β) // 0

13



From (1.13) we obtain the exact sequence

0 // E(K)/nE(K) δ // Seln(E/K) // X(E/K)[n] // 0 , (1.15)

which implies that E(K)/nE(K) is finite.

By looking at the exact sequence (1.15), one is led to ask the question of finiteness

of X(E/K). This group has been conjectured to be finite by Shafarevich and Tate.

Moreover, Cassels showed that if X(E/K) is finite then it is of square order (see p.

420 in [Bou66]).

In particular, we assume that X(E/K) is finite as we compute and provide some

numerical results in chapter 4 on its order.
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1.4 Height function

The notion of height, to be defined later on, plays a role in the proof of the Mordell-

Weil theorem via theorem 1.3.2.

In addition, it provides an invariant attached to E/K : the elliptic regulator, denoted

by RE/K .

Definition 1.4.1. The set of standard absolute values on a number field K, denoted

MK, is the set of absolute values on K whose restriction to Q is one of the absolute

values in MQ, where MQ consists of

(a) One archimedean absolute value

|x|∞ = max{x,−x}, (1.16)

(b) For each prime p ∈ Z, one non-archimedean absolute value

|pna
b
|p = p−n, where a, b ∈ Z and p - ab. (1.17)

Definition 1.4.2. Let v ∈MK. We define the local degree at v, denoted nv to be

nv = [Kv : Qv], (1.18)

where Kv and Qv represent the completions of K and Q with respect to v.

We consider the notion of height of a point P ∈ P2(K). We use the following

product formula to justify that the height function to be defined later on, does not

depend on the choice of homogeneous coordinates (see Chapter VIII, prop 5.4 in

[Sil09]).
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Proposition 1.4.1. Let x ∈ K∗. Then

∏
v∈MK

|x|nv
v = 1 (1.19)

We note that homogeneous coordinates for a point P ∈ P2(K) have the form [λX :

λY : λZ] for any λ ∈ K∗. By the product formula, the following definition does not

depend on the choice of homogeneous coordinates for P .

We define the height of P ∈ P2(K) relative to K, denoted by HK(P ).

Definition 1.4.3. Let P ∈ P2(K) be such that P = [X : Y : Z] with (X, Y, Z) ∈ O3
K.

HK(P ) =
∏
v∈MK

max{|X|v, |Y |v, |Z|v}nv (1.20)

We then restrict this definition to points P ∈ E(K) by letting

HK(P ) =


1 if P = O = [0 : 1 : 0];

HK([X : 1 : Z]) otherwise.

(1.21)

Remark 1.4.1. By definition, we have HK(P ) ≥ 1 for all P ∈ E(K).

From definition 1.4.3. we derive the following:

Definition 1.4.4. The logarithmic height on E(K) is the function

hK : E(K)→ R such that hK(P ) = logHK(P ). (1.22)
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We extend definition 1.4.3. to any P ∈ K̄ by defining the absolute height of P ,

denoted H(P ) and its corresponding absolute logarithmic height, denoted h(P ).

Definition 1.4.5. Choose a number field F such that P ∈ P2(F ). The absolute height

of P is defined as follows

H(P ) = HF (P )1/[F :Q]

Definition 1.4.6. The absolute logarithmic height on E(K̄) is the function

h : E(K̄)→ R such that h(P ) = logH(P ). (1.23)

Remark 1.4.2. By remark 1.4.1., we have h(P ) ≥ 0 for all P ∈ E(K̄).

1.4.1 Properties of the height function

We justify the existence of a height function on E(K) satisfying conditions of theorem

1.3.2. by deriving some properties of the absolute logarithmic height.

Since the set {P ∈ P2(K) | H(P ) < C} is finite, by definition of the absolute

logarithmic height, we have the following lemma.

Lemma 1.4.1. For any constant C, the set of P ∈ E(K) such that h(P ) < C is

finite.

Working through the algebra of the addition law for two points P and Q on E(K̄),

one can prove the following theorem (see Chapter VIII.6, Theorem 6.2 in [Sil09]).

Theorem 1.4.1. Let E/K be an elliptic curve. For all P,Q ∈ E(K̄) we have

h(P +Q) + h(P −Q) = 2h(P ) + 2h(Q) +O(1), (1.24)

where O(1) refers to the “big O“ notation and depends only on E.
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By remark 1.4.2. we have h(P −Q) ≥ 0, which yields the following:

Corollary 1.4.1. Let E/K be an elliptic curve,

h(P +Q) ≤ 2h(P ) +O(1) for all P ∈ E(K̄), (1.25)

where O(1) depends on E and Q.

Finally, we complete the set of conditions needed in theorem 1.3.2. by proving

the following corollary.

Corollary 1.4.2. Let E/K be an elliptic curve, m ∈ Z,

h([m]P ) = m2h(P ) +O(1) for all P ∈ E(K̄) (1.26)

Proof : By induction on m.

Clearly, for m = 0, 1 the result holds.

Assume that it holds for m− 1 and m.

From theorem 1.4.1. with [m]P and P instead of P and Q respectively, we have

h([m+ 1]P ) = −h([m− 1]P ) + 2h([m]P ) + 2h(P ) +O(1)

= (−(m− 1)2 + 2m2 + 2)h(P ) +O(1)

= (m+ 1)2h(P ) +O(1).

�
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1.4.2 Canonical height

We further extend the notion of height for a point on an elliptic curve by defining the

canonical height of this point.

First we remark that if it exists, the canonical height is unique by the following

proposition.

Proposition 1.4.2. There exists at most one function ĥ : E(K̄)→ R satisfying

(a) ĥ(P )− h(P ) is bounded on E(K̄),

(b) ĥ(2P ) = 4ĥ(P ).

Proof : If ĥ satisfies (a) with bound B, then

|ĥ([2n]P )− h([2n]P )| ≤ B (1.27)

If it also satisfies (b) then

|ĥ(P )− h([2n]P )

4n
| ≤ B

4n
(1.28)

therefore h([2n]P )/4n converges to ĥ(P ).

�

The sequence h([2n]P )/4n is Cauchy in R. Indeed, since by corollary 1.4.2, we can

find a constant A such that |h(2P ) − 4h(P )| ≤ A for all P ∈ E(K̄), one can show

that for N ≥ M ≥ 0 we have |h(2NP )
4N

− h(2MP )
4M
| ≤ A

3.4M
(see Lemma 4.6 in [Mil06]).

Therefore the following definition is consistent.
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Definition 1.4.7. Let E/K be an elliptic curve. The canonical height or Néron-Tate

height, denoted by ĥ, is the function

ĥ : E(K̄)→ R,

such that

ĥ(P ) = lim
N→∞

1

4N
h([2N ]P ).

Remark 1.4.3. We defined ĥ(P ) as a limit involving h(P ). In the same way, we

can define the canonical height associated to hK(P ), denoted by ĥK(P ), by letting

ĥK(P ) = lim
N→∞

1

4N
hK([2N ]P )

We note that by definition 1.4.5. we have h(P ) = 1
[K:Q]

hK(P ) hence

ĥ(P ) =
1

[K : Q]
ĥK(P ). (1.29)

The next theorem follows from the properties of the height function listed above

and leads to the definition of the elliptic regulator.

Theorem 1.4.2. (Néron-Tate) Let E/K be an elliptic curve, and let ĥ be the canon-

ical height on E(K̄)

(a) For all P,Q ∈ E(K̄)

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q). (1.30)

(b) For all P ∈ E(K̄) and all m ∈ Z

ĥ([m]P ) = m2ĥ(P ). (1.31)
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(c) The canonical height ĥ is a quadratic form on E(K̄) and the pairing

<,>: E(K̄)× E(K̄)→ R

< P,Q >=
1

2
(ĥ(P +Q)− ĥ(P )− ĥ(Q)), (1.32)

is bilinear.

(d) Let P ∈ E(K̄), ĥ(P ) = 0 ⇐⇒ P is a torsion point.

We can therefore define a pairing associated to the canonical height.

Definition 1.4.8. The canonical height pairing or Néron-Tate pairing on E/K is the

bilinear form

<,>: E(K̄)× E(K̄)→ R

such that

< P,Q >=
1

2
(ĥ(P +Q)− ĥ(P )− ĥ(Q)). (1.33)

Remark 1.4.4. In reference to remark 1.4.3, we denote by <,>K the canonical height

pairing associated to ĥK.

Finally, we define the elliptic regulator of E/K.

Definition 1.4.9. The elliptic regulator of E/K, denoted RE/K, is defined as follows

RE/K = det(< Pi, Pj >)1≤i≤r , 1≤j≤r, (1.34)

where P1, P2, ..., Pr ∈ E(K) generates E(K)/E(K)tors.
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Remark 1.4.5. Conventions and computability of the regulator.

(a) When r = 0, by convention we let RE/K = 1.

(b) It is possible to define RE/K using the canonical height pairing associated to ĥK.

By remark 1.4.3, both regulators differ by a power of [K : Q]. This choice in

the definition of RE/K is important in regard to the Birch and Swinnerton-Dyer

conjecture. We will discuss it in chapter 3, section 3.3.1.

(c) There exist algorithms to compute the canonical height of a point on an elliptic

curve (see for example [EW00], [Sil97]). In particular, SAGE and MAGMA

provide height functions. The limitation in the computability of RE/K, given an

elliptic curve E/K, arises from finding generators of E(K)/E(K)tors. For most

cases, methods to find generators are unknown. We address this issue in Chapter

3, section 3.3.1.

1.5 Elliptic curves over C

The aim of this section is to define the notion of periods associated to an elliptic

curve. We start by defining doubly periodic functions and we introduce the periods

of an elliptic curve by exploring its isomorphism with a torus.

Definition 1.5.1. Let ω1, ω2 be complex numbers that are linearly independant over

R. Then

L = Zω1 + Zω2 = {n1ω1 + n2ω2 | n1, n2 ∈ Z}

is called a lattice and

F = {a1ω1 + a2ω2 | 0 ≤ ai < 1, i = 1, 2}

is a fundamental parallelogram for L.
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Definition 1.5.2. A doubly periodic function is a meromorphic function

f : C→ C ∪∞

such that

f(z + ω) = f(z),

for all z ∈ C and all ω ∈ L.

In particular, if L = Zω1 + Zω2, then

f(z + ωi) = f(z) i = 1, 2.

The numbers ωi ∈ L are called the periods of f .

In addition to being an example of a doubly periodic function, the Weierstrass

℘-function defined below yields an isomorphism between an elliptic curve over C and

a lattice.

Definition 1.5.3. Given a lattice L, we define the Weierstrass ℘-function as

℘(z) = ℘(z;L) =
1

z2
+
∑
ω∈L
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

The definition of the Weierstrass ℘-function is justified by the next theorem. More-

over, we see that every such doubly periodic function is a rational function of ℘ and

℘′ (see section 9.2 in [Was03]).

Theorem 1.5.1. (a) The sum defining ℘(z) converges absolutely and uniformly on

compact sets not containing elements of L.

(b) ℘(z) is meromorphic on C and has a double pole at each ω ∈ L.

(c) ℘(−z) = ℘(z) for all z ∈ C.
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(d) ℘(z + ω) = ℘(z) for all ω ∈ L.

(e) The set of doubly periodic rational functions for L is C(℘, ℘′).

We can give a specific expression for ℘′ by introducing the Eisenstein series.

Definition 1.5.4. For integers k ≥ 3, we define the Eisenstein series by

Gk = Gk(L) =
∑
ω∈L
ω 6=0

ω−k

The sum is indeed convergent. Moreover, we note that Gk = 0 if k is odd (see lemma

9.4 in [Was03]).

Theorem 1.5.2. (a) Let ℘(z) be the Weierstrass ℘-function for a lattice L. Then

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6 (1.35)

(b) ∆ = (60G4)3 − 27(140G6)2 6= 0

In particular, theorem 1.5.2. implies that (1.35) defines an elliptic curve.

An element z ∈ C is thus mapped to the point with complex coordinate (℘(z), ℘′(z)).

By L-periodicity of ℘(z) and ℘′(z), we have a function from C/L to E(C). This

function is an isomorphism of groups as the next theorem shows (see theorem 9.10 in

[Was03]).
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Theorem 1.5.3. Let L be a lattice and let E be the elliptic curve y2 = 4x3−60G4x−

140G6. The map

φ :C/L→ E(C)

z 7→ (℘(z), ℘′(z))

0 7→ ∞

is an isomorphism of groups.

Therefore, by this isomorphism, to each elliptic curve over C corresponds a lattice

L = Zω1 + Zω2.

From this correspondence, we define the periods of an elliptic curve isomorphic to

C/L to be the periods of the Weierstrass ℘-function for the lattice L.

Remark 1.5.1. Since we are considering elliptic curves defined over Q, we can apply

the following result for our further computations (see p. 274 in [Was03]).

Proposition 1.5.1. Given an elliptic curve defined over R, the lattice L associated

to E is given by

(a) L = Zω1 + Zω2 with ω1 ∈ R and ω2 ∈ iR

or

(b) L = Zω1 + Zω2 with ω1 ∈ R and <(ω2) = 1
2
(ω1)

Therefore we can fix notations by letting ω+ = ω1 and ω− = =(ω2).

We note that this proposition holds for elliptic curves E isomorphic to an elliptic

curve defined over R.
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1.6 Elliptic curves over non-Archimedean Local fields

The present section gives an overview of local properties of elliptic curves and intro-

duces local invariants.

Let K be a local field with respect to the discrete additive valuation ord correspond-

ing to the prime ideal p. If M = {x ∈ K | ord(x) > 0} is the maximal ideal in OK ,

we let πOK = M and we consider the normalized valuation ord by setting ord(π) = 1.

1.6.1 Reduction modulo p

Let E/K be an elliptic curve given by a Weierstrass equation such that ord(ai) ≥ 0

for i = 1, 2, 3, 4, 6.

For computational purposes, it is important to consider a minimal model for our

elliptic curve. The notion of minimality is defined as follows:

Definition 1.6.1. The equation of E/K is called minimal if ord(∆) is minimal

among all curves in the same isomorphism class.

Minimality of a Weierstrass equation can be verified by applying the following

theorem (see Chapter 4, Theorem 4.2. in [SZ03]).

Theorem 1.6.1. (a) For every elliptic curve E/K over a local field K, there exists

a minimal Weierstrass equation.

(b) Let E/K be an elliptic curve given by a Weierstrass equation with integral coef-

ficients. If ord(∆) < 12, then the equation is minimal.

Remark 1.6.1. For elliptic curves over Q, there is an equation which is minimal at

all primes dividing its discriminant, as Z is a Principal Ideal Domain. This is called

a globally minimal Weierstrass equation of E/Q.
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By considering a minimal equation, one can observe the local behavior of E/K

by reducing it modulo p.

Definition 1.6.2. Let E be an elliptic curve over a local field K with minimal equa-

tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The reduced curve Ẽ is the curve

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6, (1.36)

where ãi ∈ Fp = OK/p for i = 1, 2, 3, 4, 6.

Then at p, E/K is said to have:

(a) good reduction if Ẽ is an elliptic curve.

(b) bad reduction otherwise. This case can be further reduced as:

i. split multiplicative reduction if Ẽ has a node and the slopes of its tangents

lie in Fp.

ii. non-split multiplicative reduction if Ẽ has a node but the slopes of its tan-

gents lie in Fp2 \ Fp.

iii. additive reduction if Ẽ has a cusp.

The following proposition allows the characterization of E/K based on its minimal

Weierstrass equation (see Chapter 4, Prop 4.4 in [SZ03]).
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Proposition 1.6.1. Let E/K be an elliptic curve over a local field K with minimal

Weierstrass equation.

(a) The curve has good reduction ⇐⇒ ord(∆) = 0.

(b) The curve has multiplicative reduction⇐⇒ ord(∆) > 0 and ord(c4) = 0.

The reduction is split multiplicative when

i. at char(Fp) 6= 2, 3 : −c4c6 is a square in Fp.

ii. at char(Fp) = 3 : b2 is a square in Fp.

iii. at char(Fp) = 2 : x2 + a1x+ (a3a
−1
1 + a2) has a root in Fp.

otherwise the reduction is non-split multiplicative.

(c) The curve has additive reduction if and only if ord(∆) > 0 and ord(c4) > 0.

1.6.2 Tamagawa Numbers

We are now interested by the behavior of each point P ∈ E(K) when reducing E/K

at a prime p of OK .

Definition 1.6.3. Let E/K be an elliptic curve given by a minimal Weierstrass

equation over the local field K. For n ∈ Z we define

En(K) = {P = (x, y) ∈ E(K) | ord(x) ≤ −2n} ∪ {O}. (1.37)

When fixing an upper bound µ for −2n as defined below, the next proposition

proves that En(K) is a group using addition formulas on x-coordinates of points

P,Q ∈ E(K) (see Chapter 4, Prop 4.9 in [SZ03]).
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Definition 1.6.4. The upper bound µ is defined to be the quantity

µ := min{ord(b2),
1

2
ord(b4),

1

3
ord(b6),

1

4
ord(b8)}. (1.38)

Proposition 1.6.2. (Lutz’ lemma)

Let n ∈ Z with −2n < µ. For P = (xP , yP ) and Q = (xQ, yQ) we have

(a) if P ∈ En(K) then 2P ∈ En(K).

(b) if P,Q ∈ En(K) then ord(xP±Q) ≤ max{ord(xP ), ord(xQ)}.

By considering the group of non-singular points on the reduced curve mod p, we

introduce the Tamagawa number at p.

Proposition 1.6.3. (see Chapter 4, Prop 4.10 in [SZ03])

Let E/K be an elliptic curve over the local field K.

(a) We have the following inclusion of subgroups

E(K) ⊇ E0(K) ⊇ E1(K) ⊇ ... ⊇ En−1(K) ⊇ En(K) ⊇ ... ⊇ {O}. (1.39)

(b) There is an exact sequence of abelian groups

0→ E1(K)→ E0(K)→ Ẽns(Fp)→ 0, (1.40)

where Ẽns(Fp) denotes the group of non-singular points on the curve reduced mod

p.

In particular, for n = 0, 1, this gives an alternative definition to En(K) (see p.

188 in [Sil09]).

E0(K) = {P ∈ E(K) | P̃ ∈ Ẽns(Fp)}. (1.41)

E1(K) = {P ∈ E(K) | P̃ = Õ}. (1.42)
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Definition 1.6.5. The Tamagawa number at p is defined to be

cp := [E(K) : E0(K)]. (1.43)

One can compute it using the following theorem (Tate algorithm).

Theorem 1.6.2. Let E/K be an elliptic curve over the local field K.

cp =


1 if E has good reduction at p;

− ord(j) if E has multiplicative reduction at p;

≤ 4 if E has additive reduction at p.

(1.44)

Remark 1.6.2. If E has additive reduction at p, we refer to Table 15.1 p. 448

in [Sil09], which lists the nature of E(K)/E0(K) with respect to ordp(j) and hence

provide cp.
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Chapter 2

L-functions of elliptic curves

2.1 Introduction

This second chapter introduces the notion of L-function of elliptic curves.

We first define this notion for elliptic curves over Q. Later, we extend the definition

to elliptic curves over number fields.

Concentrating on the general case of number fields, we note that such L-functions

can be expressed as a product of L-functions over Q twisted by Artin representations.

In order to produce such a factorization for our computations, we explore the specific

case of K = Q( 3
√
m) by looking at its Galois closure M = Q( 3

√
m,
√
−3) and work

with the representations of Gal(M/Q) acting on the roots of x3 −m.
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2.2 Definitions

Definition 2.2.1. Let E be an elliptic curve over Q given by a globally minimal

Weierstrass equation and consider its associated discriminant ∆. Let p ∈ Z be prime.

When E has good reduction at p, define ap = p+ 1−Np, where Np is the number of

points of E over Fp.

If E has bad reduction at p, define

ε(p) =


1 if E has split multiplicative reduction at p;

− 1 if E has non split multiplicative reduction at p;

0 if E has additive reductive at p.

By Hasse’s theorem we have that ap ≤ 2
√
p (see Chapter V, Theorem 1.1 in [Sil09]).

This upper-bound allows the definition of the L-function of E/Q for <(s) > 3/2

L(E, s) =
∏
p|∆

1

1− ε(p)p−s
∏
p-∆

1

1− app−s + p1−2s
(2.1)

For elliptic curves over Q, it has been proved (Taylor, Wiles) that L(E/Q, s) has

an analytic continuation to the complex plane with a functional equation.

We use the following definition and theorem to provide a reformulation of (2.1) where

we factor 1 − app−s + p1−2s. For an elliptic curve over Q, we use this reformulation

to construct its L-function over a number field K as shown in (2.9) below.
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Definition 2.2.2. Let p ∈ Z be a prime. Consider E/Fp, an elliptic curve over the

finite field of p elements Fp.

The p-Frobenius endormorphism φp : E → E is given by

φp(x, y) = (xp, yp)

and

φp(O) = O

Theorem 2.2.1. (see Chapter 3, Theorem 3.2. in [SZ03])

Let E/Fp be an elliptic curve and φp the p-Frobenius endomorphism.

(a) Let P ∈ E(F̄p). Then P ∈ E(Fp) ⇐⇒ φp(P ) = P .

(b) For all P ∈ E(F̄p), φp satisfies the following equation

φ2
p(P )− apφp(P ) + pP = O, (2.2)

where ap is called the trace of the p-Frobenius endomorphism, and

ap = 1 + p−Np, (2.3)

with Np = #E(Fp).

Moreover, let n ∈ N and let αp, βp ∈ C be the roots of T 2− apT + p, we have (see

Chapter V, Theorem 2.3.1. in [Sil09])

#E(Fpn) = pn + 1− (αnp + βnp ) and pn = αnpβ
n
p . (2.4)
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Remark 2.2.1. We can also re-write (2.1) as

L(E, s) =
∏
p|∆

1

1− ε(p)p−s
∏
p-∆

1

(1− αp

ps
)(1− βp

ps
)

(2.5)

We now extend the definition of L-functions to elliptic curves over number fields.

Definition 2.2.3. Let E/Q be an elliptic curve.

Consider a number field K, and let p be a prime in OK above p with norm N(p) = pf ,

where f = [Fp : Fp].

Let Np be the number of points of E(Fp).

For <(s) > 3/2, the L-function of E/K is defined as

L(E/K, s) =
∏

p⊂OK

Lp(E, s)
−1, (2.6)

where

Lp(E, s) =


1− apN(p)−s +N(p)1−2s if E has good reduction at p;

1− εpN(p)−s otherwise.

(2.7)

and

ap = N(p) + 1−Np = pf + 1−#E(Fpf ).

ε(p) =


1 if E has split multiplicative reduction at p;

− 1 if E has non split multiplicative reduction at p;

0 if E has additive reductive at p.

Recall that from (2.4) we have the following expression of ap in terms of αp and

βp as in (2.5)

ap = αfp + βfp . (2.8)
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Therefore (2.7) becomes

Lp(E, s) =


(
1−

αfp
pfs
)(

1−
βfp
pfs
)
if E has good reduction at p;(

1− εp
pfs
)
otherwise.

(2.9)

which provide a construction of L(E/K, s) from L(E/Q, s).

The L-function of E/K has been conjectured to have an analytic continuation to

the entire complex plane and to satisfy a functional equation (see Conjecture 16.1 in

[Sil09]).

2.3 Dedekind Zeta-functions, Artin L-functions and

representations

In our computations using the Birch and Swinnerton-Dyer conjecture, we are inter-

ested in expressing L(E/K, s) as a product of twisted L-functions of E/Q.

In this section, we recall some theory on Dedekind Zeta-functions of number fields,

Artin L-functions and representations in order to provide such factorization.

First we define the Dedekind zeta-function of a number field K.

Let K be a number field and a an integral ideal with prime decomposition

a =
∏
p

pvp , vp ≥ 0, vp = 0 for almost all p. (2.10)

Let N(a) = NK/Q(a).
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Definition 2.3.1. The Dedekind zeta-function ζK(s) is defined as

ζK(s) =
∑
a6=0

1

N(a)s
=
∏
p

(
1− 1

N(p)s
)−1

, (2.11)

where s ∈ C,<(s) > 1.

In a more general sense, we introduce the notion of L-function of normal exten-

sions of Q associated to a representation of their Galois group. Such L-functions are

called Artin L-functions.

Suppose that M is a finite, normal extension of Q of degree n.

Let G be its Galois group, i.e. G = Gal(M/Q), and let {ρM} : G → GLd(C) be a

representation of G.

Let α ∈ G, we define the character χ(α) of degree d attached to ρM to be the trace

of ρM(α). In particular, χ(α) depends only on the conjugacy class of α.

Let p be a prime in OM lying above p ∈ Z. Let Frobp/p ∈ G denote the Frobenius

automorphism of M/Q relative to p and denote by Ip the inertia group at p.

Definition 2.3.2. Let ρM : G → GL(V ), where V is a complex vector space of

dimension d, be a representation of G with associated character χ. We define the

Artin L-function of M/Q relative to χ to be

L(s, χ) = L(s, χ,M/Q) =
∏
p∈Z

det
(
I − ρM(Frobp/p)|V Ipp

−s)−1
(2.12)

Hence each local factor of L(s, χ) is defined by the characteristic polynomial of

ρM(Frobp/p) evaluated at p−s, where ρM is restricted to the subspace of V on which

ρM(Ip) acts as the identity, denoted V Ip .
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As it will be used later for the factorization of L(E/K, s), we introduce the notion of

Artin L-function twisted by a representation:

Proposition 2.3.1. Let ρ1, ρ2 be two representations of G as above with respective

characters χ1,χ2. Then ρ1 ⊗ ρ2 is another representation of G with character ψ say.

Let α ∈ G, we have (see Chapter 4, Theorem 4.1 in [Isa76]):

ψ(α) = χ1(α)χ2(α)

Definition 2.3.3. The Rankin L-function or Rankin convolution L-function attached

to two representations ρ1, ρ2 with respective characters χ1, χ2 is L(s, ρ1 ⊗ ρ2). By

proposition 2.3.1. above we have : L(s, ρ1 ⊗ ρ2) = L(s, χ1χ2).

The literature sometimes refers to this convolution as a twist of L(s, χ1) by the char-

acter χ2.

2.3.1 Properties of Artin L-functions and representations

We present some properties of Artin L-functions and representations to be used later

on.

Definition 2.3.4. (a) Let {ρM(α)}α∈G and {ρ′M(α)}α∈G be two representations.

If there exists a non-singular matrix P such that

PρM(α)P−1 = ρ′M(α) ∀α ∈ G,

then these representations are equivalent
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.

(b) If {ρM(α)}α∈G is equivalent to {ρ′M(α)}α∈G such that

{ρ′M(α)}α∈G =

ρ1
M(α) 0

0 ρ2
M(α)

∀α ∈ G,
where {ρ1

M(α)}α∈G and {ρ2
M(α)}α∈G are representations of G, then {ρM(α)}α∈G

is reducible.

If χ is the character of an irreducible representation, it is said to be simple.

Proposition 2.3.2. (see Chapter 8.3 in [CF10]).

Recall that M is a finite, normal extension of Q of degree n.

(a) The character associated to the trivial representation

I : G→ C∗ s.t. g 7→ 1 for all g ∈ G, (2.13)

is called principal and the following holds

∑
α∈G

χ(α) =


n if χ is principal;

0 otherwise.

(2.14)

(b) The number g of simple characters is equal to the number of conjugacy classes in

G and if χ1, χ2, ..., χg are the simple characters of G then

g∑
i=1

χi(α)χi(α
′) =


n/lα if α′ ∈< α >;

0 otherwise.

(2.15)

where lα is the number of elements in the conjugacy class < α > of α.
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In particular, if we take α′ = α = 1 we have

g∑
i=1

d2
i = n (2.16)

where di is the degree of χi.

When M/Q has intermediate fields, their Artin L-functions have the following

properties.

Proposition 2.3.3. (see Chapter 8.3 in [CF10]).

(a) Let Q ⊂ K ⊂M be a tower of finite extensions. Let H = Gal(M/K) and suppose

that G =
∑

iHαi is a partition of G into cosets of H.

To each character χ of H corresponds an induced character χ∗ of G, given by

χ∗(α) =
∑
i

αiαα
−1
i ∈H

χ(αiαα
−1
i ), α ∈ G (2.17)

and

L(s, χ∗,M/Q) = L(s, χ,M/K). (2.18)

(b) Suppose that Q ⊂ F ⊂ M is a tower of finite extensions such that F is normal

over Q. Let H = Gal(M/F ), then G/H = Gal(F/Q).

If χ is a character of G/H, it can also be consider as a character of G and

L(s, χ,M/Q) = L(s, χ, F/Q) (2.19)

(c) Suppose that χ = χ1 + χ2 is not simple. Then L(s, χ) = L(s, χ1)L(s, χ2).
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We summarize these properties by the following example for M/Q, a finite, nor-

mal extension of Q of degree n.

Consider a general character χ and its associated Artin L-function, L(s, χ,M/Q). By

proposition 2.3.2.c. above, if we let

χ =

g∑
i=1

miχi with mi ∈ Z, (2.20)

where χi are simple characters, it suffices to work with L(s, χi,M/Q) and form a

product.

Moreover, by propositions 2.3.2.a. and 2.3.2.b., one can express L(s, χ,M/Q) as a

product of Artin L-function corresponding to subfields of M fixed by subgoups of G.

More precisely, if we let H be any subgroup of G and ψj,1≤j≤g be its simple characters,

we can consider ψ∗j , their induced characters of G as defined in (2.17).

Keeping notations used in (2.20), there exist ri ∈ Z such that (see Chapter VIII,3,V(ii)

in [CF10])

ψ∗j (α) =

g∑
i=1

riχi(α) ∀α ∈ G (2.21)

and if F ⊆M is the subfield of M fixed by H, by proposition 2.3.2.a. we have

L(s, ψ∗j ,M/Q) = L(s, ψj,M/F ). (2.22)
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2.3.2 Factorization of L(E/K, s)

We wish to provide a factorization for L(E/K, s) as a product of twisted L-functions

of E/Q as above. This can be achieved using Artin’s formalism as presented on p. 3

in [Dok05] as follows:

Suppose that K/Q is a finite Galois extension. Then the Dedekind zeta-function

of K can be factored as the following product

ζK(s) =
∏
σ

L(σ, s)dim(σ) (2.23)

where L(σ, s) are Artin L-functions and the product ranges over irreducible represen-

tations of Gal(K/Q).

Similarly, if E/Q is an elliptic curve, one has the product formula for L-functions

L(E/K, s) =
∏
σ

L(E, σ, s)dim(σ) (2.24)

where the product ranges over irreducible representations of Gal(K/Q) and L(E, σ, s)

is the L-function of E twisted by the Artin representation σ.

In particular, for our specific case ofK = Q( 3
√
m) with galois closureM = Q( 3

√
m,
√
−3)

we have (see p. 308 in [Dok05])

L(E/K, s) = L(E, σ, s), (2.25)

where σ is the representation obtained by inducing the trivial representation of

Gal(Q̄/Q( 3
√
m)) to Gal(Q̄/Q). This is a permutation representation of degree 3

which factors through Gal(M/Q). It coincides with the representation of Gal(M/Q)

acting on the roots of x3 −m.
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2.3.3 Non-abelian cubic extensions

Let K = Q( 3
√
m) with Galois closure M = Q( 3

√
m,
√
−3).

In order to provide a factorization of L(E/K, s), this section will study the represen-

tation of Gal(M/Q) acting on the roots of x3 −m.

We conclude by looking at the intermediate fields of M/Q and use the properties of

Artin L-functions developed above.

Consider our setup :

M = Q( 3
√
m,
√
−3)

K = Q( 3
√
m)

55kkkkkkkkkkkkkk

F = Q(
√
−3)

ccGGGGGGGGGGGGGGGGGGGGGG

Q

ccGGGGGGGGGGGGGGGGGGGGGGG

55kkkkkkkkkkkkkkkkk

We let ρ = −1+
√
−3

2
be the primitive third root of unity and denote α1 = ρ 3

√
m,

α2 = ρ2 3
√
m and α3 = 3

√
m the roots of x3 − m. Gal(M/Q) is then isomorphic to

the permutation group S3 with complex conjugation corresponding to the permu-

tation (1,2) which permutes α1 and α2 and fixes α3 and with multiplication by ρ

corresponding to (1,2,3) sending α1 to α2, α2 to α3 and α3 to α1.
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Using this isomorphism, we express Gal(M/Q) as follows

Gal(M/Q) ' S3 = {e, (1, 2, 3), (3, 2, 1), (1, 2), (2, 3), (3, 1)},

where e is the identity element of the group.

S3 has 3 conjugacy classes : < e >,< (1, 2, 3, ) >= {(1, 2, 3), (3, 2, 1)},

< (1, 2) >= {(1, 2), (2, 3), (3, 1)}.

By proposition 2.3.1.b., we have 3 simple characters

(a) χ0 of degree d0

(b) χ1 of degree d1

(c) χ2 of degree d2

By (2.16) we have d2
0 + d2

1 + d2
2 = 6. Moreover d0 = 1 as χ0 is the trivial character

and d1 = 1 as χ1(m) =
(−3
m

)
is a Dirichlet character. Therefore we must have d2 = 2.

We have the following character’s table:

Table 2.1: Character’s table for Gal(M/Q)

χ0 χ1 χ2

< e > 1 1 2

< (1, 2, 3) > 1 1 -1

< (1, 2) > 1 -1 0

As K is fixed by H1, we consider its induced characters on G. It has 2 conjugacy

classes, hence 2 simple characters ψ3, ψ4, where ψ3 is the trivial character. Using

(2.17) we produce the following induced characters of G:
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Table 2.2: Induced character’s table for Gal(M/Q)

ψ∗3 ψ∗4

< e > 3 3

< (1, 2, 3) > 0 0

< (1, 2) > 1 -1

From table 2.1. we conclude that ψ∗3 = χ0 + χ2.

Moreover by (2.18) we have

ζK(s) = L(s, ψ3,M/K) = L(s, ψ∗3,M/Q) (2.26)

Hence by proposition 2.3.2.c. we obtain

ζK(s) = L(s, ψ∗3,M/Q) = L(s, χ0,M/Q)L(s, χ2,M/Q) (2.27)

From which we conclude on the factorization of L(E/K, s)

L(E/K, s) = L(E/Q, s)L(E/Q, χ2, s), (2.28)

We use this factorization of L(E/K, s) for the computations shown in chapter 4.
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Chapter 3

The Birch and Swinnerton-Dyer

Conjecture

3.1 Introduction

First, we state the Birch and Swinnerton-Dyer conjecture for elliptic curves in its

general version and deduce its consequences for elliptic curves E/Q and E/K where

K is a pure cubic extension.

Then, we develop the necessary theory to numerically compute features involved in

the conjecture and present the quotient that will be computed in chapter 4.
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3.2 Presentation of the conjecture

Let K be a number field and let E/K be an elliptic curve.

So far we have presented invariants relative to E/K and E/C in addition to the

L-functions associated to E/K. The following conjecture supports the idea that

L(E/K, s) encodes information on E/K in a most precise way.

Conjecture 2. (Birch and Swinnerton-Dyer)

(a) The L-function L(E/K, s) has an analytic continuation to s = 1, and

ords=1L(E/K, s) = rank of E(K). (3.1)

(b) The leading coefficient in the Taylor expansion of L(E/K, s) at s = 1 is equal to

|X(E/K)|RE/KC(E/K)Ω

|E(K)tors|2
√
|∆K |

, (3.2)

where

• X(E/K) is the Shafarevich-Tate group of E/K.

• RE/K is the regulator of E/K.

• C(E/K) =
∏

p⊂OK
cp is the product of Tamagawa Numbers.

• Ω represents a product involving periods of E, ω+, ω−

• E(K)tors is the subgroup of torsion points of E(K).

• ∆K is the discriminant of the field K.
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Remark 3.2.1. From section 2.3.3., we were able to conclude that L(E/K, s) =

L(E/Q, s)L(E/Q, χ2, s). Therefore, as developed precisely in 3.3.4. below, the leading

term of L(E/K, s) in the Taylor expansion at s = 1, has the leading term of L(E/Q, s)

at s = 1 as a factor.

Conjecture 2.a. has been proved in the case where K = Q and the rank of E(Q) = 0, 1

(more details on the status of the conjecture can be found p. 452 in [Sil09]). In the

case where rk(E(Q)) 6= 0, 1, the conjecture is as follows

Conjecture 3. (Birch and Swinnerton-Dyer)

(a) The L-function L(E/Q, s) has a zero at s = 1 of order equal to the rank of E(Q).

(b) The leading coefficient in the Taylor expansion of L(E/K, s) at s = 1 is equal to

|X(E/Q)|RE/QC(E/Q)ω

|E(Q)tors|2
, (3.3)

where ω = ω+ if ∆E > 0 and ω = 2ω+ otherwise (see p 30 in [Cre97]).

3.3 Computations over pure cubic extensions of Q

We are interested to analyse numerically Conjecture 2.b. in the context of K =

Q( 3
√
m).

The next sections will detail the computations of several features needed to proceed

with our computations.
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3.3.1 Computing the Regulator RE/K

Let us recall that by definition, for a given elliptic curve E/K, we have

RE/K = det(< Pi, Pj >)1≤i≤r , 1≤j≤r,

where P1, P2, ..., Pr ∈ E(K) generates E(K)/E(K)tors.

Case 1 : E(K) is of rank 1, generated by a point P , we have

RE/K = det(< P,P >)

= det(
1

2
(ĥ(P + P )− ĥ(P )− ĥ(P ))

= det(
1

2
(ĥ(2P )− 2ĥ(P ))

= det(
1

2
(4ĥ(P )− 2ĥ(P ))

= det(ĥ(P ))

= ĥ(P )

Case 2 : E(K) is of rank 2, generated by points P and Q, we have

RE/K = det

< P,P > < P,Q >

< Q,P > < Q,Q >

 ,

where < P,Q >= 1
2
(ĥ(P +Q)− ĥ(P )− ĥ(Q)).

Therefore, the regulator can be computed given the canonical height of the gen-

erators of E(K). It is computable using tools such as SAGE or MAGMA provided

that these generators are given.
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In order for this to happen, we followed the work of Kisilevsky (see p13 in [Kis12]).

Indeed, for specific elliptic curves E/Q, this paper provides a way of producing a pair

consisting on a pure cubic extension K and a point on E(K). This process is de-

scribed below.

Let E/Q be an elliptic curve. If E has a 3-torsion point rational over Q, then E

can be given by the following Weierstrass equation

E : y2 + 3uxy + ty = x3 (3.4)

with u, t ∈ Q.

Moreover, for each r ∈ Q, E(Kr) admits a point P of infinite order over Kr = Q( 3
√
m)

where m and P = (x, y) are parametrized by r in the following way

m =
2(r + 1)(r − 1)2

tr − t+ 2u3
(3.5)

x = −2(r − 1− um1/3)

m2/3
(3.6)

y =
4u3 − t(r − 1)2

r2 − 1
− 3ux (3.7)

Given an elliptic curve E/Q satisfying the conditions above, we use the height

function of MAGMA to compute RE/Kr for each given r, u and t.

Remark 3.3.1. MAGMA’s height function computes the canonical height ĥ(P ) of a

point P .

As mentioned p. 106 in [Kna92] and p. 419 in [Bou66], the regulator involved in

the Birch and Swinnerton-Dyer conjecture is computed from of the height relative to

the field over which the Mordell-Weil group is considered.
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Recall that by (1.29) we have

h(P ) =
1

[K : Q]
hK(P )

Therefore we need to consider the following inner product to compute the regulator.

< P,Q >K =
1

2
(ĥK(P +Q)− ĥK(P )− ĥK(Q))

=
1

2
([K : Q]ĥ(P +Q)− [K : Q]ĥ(P )− [K : Q]ĥ(Q)).

3.3.2 Computing the Tamagawa product C(E/K)

For a given elliptic curve E/Q, we wish to compute

C(E/K) =
∏

p⊂OK

cp (3.8)

for K = Q( 3
√
m).

We first note that for p in OK where E has good reduction, by definition, cp = 1.

Moreover, by proposition 1.6.1.a., we know that such primes are those p in OK above

p ∈ Q not dividing the discriminant ∆ of E.

Hence we can reduce the above product to the following :

C(E/K) =
∏
p|∆

cp (3.9)
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For each p ∈ Q dividing ∆ we consider its splitting in K using the following

theorem (see Theorem 6.4.3 in [Coh93]).

Theorem 3.3.1. Let K = Q( 3
√
m) be a pure cubic field, where m is cube free and

not equal to ±1.

Write m = ab2 with a, b square free and coprime. Let θ be the cube root of m belonging

to K. Then

(a) if a2 6≡ b2(mod 9) then

(1, θ,
θ2

b
) (3.10)

is an integral basis of K and the discriminant of K, ∆K = −27a2b2.

(b) if a2 ≡ b2(mod 9) then

(1, θ,
θ2 + ab2θ + b2

3b
) (3.11)

is an integral basis of K and the discriminant of K, ∆K = −3a2b2.

In the case of p not dividing the index [ZK : Z[θ]] = b or 3b, which will always

be our case, the decomposition of pZK follows that of X3 − m modulo p, which is

detailed in the next proposition.
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Proposition 3.3.1. Let p be a prime not dividing m. The decomposition of X3 −m

modulo p is as follows

(a) if p ≡ 2(mod 3), then X3 −m ≡ (X − u)(X2 − vX + w)(mod p).

(b) if p ≡ 1(mod 3) and m(p−1)/3 ≡ 1(mod p) then X3−m ≡ (X − u1)(X − u2)(X −

u3)(mod p).

(c) if p ≡ 1(mod 3) and m(p−1)/3 6≡ 1(mod p) then X3 −m is irreducible (mod p).

(d) if p = 3, then X3 −m ≡ (X − a)3(mod p).

Finally, letting pZK = pe11 pe22 pe33 , with ei = 0, 1, 2 or 3 for i = 1, 2, 3, we have the

product of Tamagawa numbers:

C(E/K) =
∏
p|∆

ce1p1c
e2
p2
ce3p3 , (3.12)

where each cpi , i = 1, 2, 3 is given by Theorem 1.6.2. and Remark 1.6.2.

3.3.3 Computing the product of periods Ω

For elliptic curves over Q, the Birch and Swinnerton-Dyer conjecture is stated ex-

plicitely, fixing the periods (ω as denoted earlier) involved in the leading term of the

Taylor expansion of L(E/Q, s) at s = 1 (see p. 452 in [Sil09]) .

The case of number fields is more involved as the conjecture is derived from a general

conjecture for abelian varieties made by Tate (see p. 6 in [Bou66]). We will follow

the work of Dokchitser and Dokchitser in [DD05] who interpret precisely the general

conjecture for elliptic curves.
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For an elliptic curve E/Q and the Artin representation χ2 presented in section

2.3.3, the following quotient is rational (see Introduction in [DD05]).

L(E,χ2, 1)

ω
d+(χ2)
+ 2ω

d−(χ2)
−

, (3.13)

where d±(χ2) denote the dimensions of the ±1 eigenspaces of complex conjugation

on χ2.

In this case, χ2 being of degree 2 and complex conjugation being represented as1 0

0 −1

, we have d+ = 1 and d− = 1.

Combining with ω involved in (3.3) in the factorization of L(E/K, s) in (2.28) we

have the following expression for Ω

Ω = ω(ω+2ω−), (3.14)

where ω+, ω− for specific elliptic curves can be found in Cremona’s tables in [Cre97]

or computed by means of MAGMA or SAGE functions for elliptic curves.

3.3.4 Computing the leading term of L(E/K, s) at s = 1

We first recall the result obtained in section 2.3.3. :

L(E/K, s) = L(E/Q, s)L(E/Q, χ2, s), (3.15)

where χ2 is a character of degree 2 associated to an Artin representation of Gal(M/Q).

In our specific case of K = Q( 3
√
m), the anaytic continuation of L(E/K, s) has been

proved in [Dok05] (Theorem 14). In our case, r = 3, n = 1.
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Theorem 3.3.2. Let E be an elliptic curve over Q. Let ρ be an Artin representation

over Q which factors through Gal(Q( rn
√
m,µrn)/Q) for some n ≥ 0. Then L(E, ρ, s)

has analytic continuation to the complex plane.

We can therefore express L(E/K, s) as a power series around 1:

L(E/K, s) =
∞∑
n=0

1

n!
L(n)(E/K, s)|s=1(s− 1)n (3.16)

Assuming Conjecture 2.a. holds, we must have L(E/K, 1) = 0 since we assume

the rank of E(K) to be at least one. Hence we can expand (3.16) as follows

L(E/K, s) = L(E/K, 1) + L′(E/K, 1)(s− 1) +
1

2
L′′(E/K, 1)(s− 1)2 +O((s− 1)3)

= L′(E/K, 1)(s− 1) +
1

2
L′′(E/K, 1)(s− 1)2 +O((s− 1)3),

where L′(E/K, 1) and L′′(E/K, 1) refer to L′(E/K, s) and L′′(E/K, s) evaluated at

s = 1.

Moreover, from the factorization of L(E/K, s) we have

L(E/K, s) = L(E/Q, s)L(E/Q, χ2, s)

=
[
L(E/Q, 1) + L′(E/Q, 1)(s− 1) +O((s− 1)2)

][
L(E/Q, χ2, 1)+

L′(E/Q, χ2, 1)(s− 1) +O((s− 1)2)
]

= L(E/Q, 1)L(E/Q, χ2, 1) + L(E/Q, 1)L′(E/Q, χ2, 1)(s− 1)+

L′(E/Q, 1)L(E/Q, χ2, 1)(s− 1) +O((s− 1)2).

We need to consider two cases in order to conclude.
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Case 1: rk(E(Q)) = 0.

L(E/K, 1) = 0 and L(E/Q, 1) 6= 0, we must have L(E/Q, χ2, 1) = 0.

The above reduces then to

L(E/K, s) = L(E/Q, 1)L′(E/Q, χ2, 1)(s− 1) +O((s− 1)2). (3.17)

Therefore the leading term of L(E/K, s) is L′(E/K, 1) = L(E/Q, 1)L′(E/Q, χ2, 1).

And assuming conjecture 3.b. holds we have

L(E/Q, 1) =
|X(E/Q)|RE/QC(E/Q)ω

|E(Q)tors|2
(3.18)

Case 2: rk(E(Q)) = 1 and rk(E(K)) = 2.

L(E/K, 1) = L′(E/K, 1) = 0 and L(E/Q, 1) = 0. We have

L(E/K, s) = L′(E/Q, 1)(s− 1)L′(E/Q, χ2, 1)(s− 1) +O((s− 1)3). (3.19)

Therefore the leading term of L(E/K, s) is 1
2
L′′(E/K, 1) = L′(E/Q, 1)L′(E/Q, χ2, 1).

And assuming conjecture 3.b. holds we have

L′(E/Q, 1) =
|X(E/Q)|RE/QC(E/Q)ω

|E(Q)tors|2
(3.20)
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Chapter 4

Numerical Results

4.1 Introduction

This chapter introduces numerical results for specific elliptic curves. Computations

have been achieved using MAGMA, SAGE and Maple based on the work done in

different contexts by Cremona, Dokchitser T, Dokchitser V and Stein, presented in

[Cre97], [DD05] and [Ste91].

We detail computations concerning curves that satisfy conditions presented in sec-

tion 3.2.1., E37B3, E19A3 and E189B1 as denoted in Cremona’s table ([Cre97]).

By varying our parameter r we produce several pure cubic extensions associated to

each curves and present numerical results in the sections to follow.
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4.2 Computations with curves admitting no point

of infinite order over Q

From section 3.3.1., we recall that for elliptic curves given by Weierstrass equations

as in (3.4), we get a pair (Kr, P ) consisting of a pure cubic extension Kr and a point

P in E(Kr).

In this section, we consider elliptic curves admitting no Q-rational point. We therefore

work in case 1 as in (3.17) and have the following leading term for the Taylor expansion

of L(E/K, s) at s = 1.

L′(E/Kr, 1) =
|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

⇐⇒ L(E/Q, 1)L′(E/Q, χ2, 1) =
|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

Now, taking into consideration Conjecture 3.b., we further have

L(E/Q, 1)L′(E/Q, χ2, 1) =
|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

(4.1)

⇐⇒ L′(E/Q, χ2, 1) =
|X(E/Kr)|RE/KrC(E/Kr)Ω

L(E/Q, 1)|E(Kr)tors|2
√
|∆Kr |

(4.2)

⇐⇒ L′(E/Q, χ2, 1) =
|E(Q)tors|2

|X(E/Q)|RE/QC(E/Q)ω

|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

(4.3)

From which we get the following quotient

|X(E/Kr)|
|X(E/Q)|

=
L′(E/Q, χ2, 1)RE/QC(E/Q)|E(Kr)tors|2ω

√
|∆Kr |

|E(Q)tors|2RE/KrC(E/Kr)Ω
(4.4)

We will use this last equality to approximate numerically the order of the Shafarevich-

Tate group of E(Kr).
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Remark 4.2.1. We could have chosen to compute |X(E/K)| using L′(E/Kr, 1)

directly from

L′(E/Kr, 1) =
|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

(4.5)

The numerical results are indeed equal.

4.2.1 E37B3

In their article [FKK12], Fearnley, Kisilevsky and Kuwata studied the curve E37B3

which has the following Weierstrass equation

E37 : y2 + y = x3 + x2 − 3x+ 1. (4.6)

In particular, they present it in a suitable model for our computations by substituing

(x, y) by (x+ 1, y + 2x)

E37 : y2 + 4xy + y = x3, (4.7)

which in view of equation (3.4) corresponds to the case u = 3
4

and t = 1.

By (3.5) we obtain the following parametrization for

m =
2(r + 1)(r − 1)2

r − 1 + 2(3
4
)3

. (4.8)

The next sections present tables of numerical results for E37B3 over different number

fields Kr.
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4.2.2 Invariants of E37B3 over Q

Table 4.1. presents invariants of E37B3 and features related to E37(Q).

These results were computed with MAGMA’s functions for elliptic curves and com-

pared with Cremona’s table of elliptic curves.

Table 4.1: Invariants of E37B3

∆E37 37

j-invariant 21553

37

ω+ 3.26556477871268752051292493462

ω− 1.76761067023378947588132314450

ω 2ω+

c4 255

c6 −23251
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Table 4.2. summarizes invariants related to E37(Q) needed to compute (4.4).

For each prime with bad reduction, we present the information needed to compute

the Tamagawa product C(E37/Q) as indicated in section 3.3.2.

Table 4.2: E37(Q) invariants

L(E37/Q, 1) 0.72568106193615278234

rank(E37(Q)) 0

RE37/Q 1

|E37(Q)tors| 3

|X(E37/Q)| 1

Primes with bad reduction 37

ord37(c4) 0

ord37(∆E37) 1

−c4c6 mod 37 9

reduction type at 37 split multiplicative

c37 −ord37(j) = 1

C(E37/Q) 1
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4.2.3 Invariants of E37B3 over Kr = Q( 3
√
m)

Based on section 3.3.1., we will consider the set of cubic extensions Kr = Q( 3
√
m),

where m is given by (3.5) for each given r.

Indexed by our choices of r, Table 4.3 lists the corresponding m and its associated

number field Kr based on the following remark

Q( 3

√
a

b
) ' Q(

3
√
d) ⇐⇒ db

a
is a cube in Q. (4.9)

Each d is then decomposed as product ab2 and following theorem 3.3.1., we compute

the discriminant of each Kr.

Table 4.3: Number Fields Kr = Q( 3
√
m) associated to E37B3

r m Q( 3
√
d) d = ab2 a2 mod 9 b2 mod 9 Discriminant (Kr)

-3 −432
5

Q( 3
√

50) 2 ∗ 52 4 7 −27 ∗ 4 ∗ 25

-13 63504
125

Q( 3
√

294) 2 ∗ 3 ∗ 72 0 4 −27 ∗ 22 ∗ 32 ∗ 72

-11 19440
49

Q( 3
√

630) 7 ∗ 2 ∗ 5 ∗ 32 7 0 −27 ∗ 22 ∗ 72 ∗ 52 ∗ 32

-7 2592
11

Q( 3
√

1452) 3 ∗ 22 ∗ 112 3 7 −27 ∗ 112 ∗ 22 ∗ 32

-5 3888
17

Q( 3
√

5202) 2 ∗ 32 ∗ 172 4 0 −27 ∗ 22 ∗ 32 ∗ 172

17 15552
35

Q( 3
√

11025) 7 ∗ 2 ∗ 52 ∗ 32 1 0 −27 ∗ 72 ∗ 52 ∗ 32

3 432
91

Q( 3
√

16562) 2 ∗ 72 ∗ 132 4 1 −27 ∗ 22 ∗ 72 ∗ 132
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Table 4.4 below presents the splitting of 37 in each cubic extension produced by

our choices of r.

Using (3.12) we compute C(E37/Kr).

Table 4.4: Tamagawa Product C(E37/Kr)

Q( 3
√
m) 37 mod 3 m

37−1
3 mod 37 37ZKr cp C(E37/Kr)

Q( 3
√

50) 1 10 p 1 1

Q( 3
√

294) 1 26 p 1 1

Q( 3
√

630) 1 1 p1p2p3 1 13

Q( 3
√

1452) 1 26 p 1 1

Q( 3
√

5202) 1 26 p 1 1

Q( 3
√

11025) 1 1 p1p2p3 1 13

Q( 3
√

16652) 1 1 p1p2p3 1 13
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Table 4.5. presents the leading term of the Taylor expansion of L(E/Kr, s) at

s = 1 and the regulator of E37B3 over each Kr.

The computations were achieved with MAGMA’s function for L-series and elliptic

curves.

Table 4.5: Leading term of L(E37/Kr, s) at s = 1 and Regulator

Q( 3
√
m) L′(E37/Kr, 1) RE37/Kr

Q( 3
√

50) 10.7111636249804242300551189504 7.381681854

Q( 3
√

294) 4.92342077604611739590605690480 14.25065788

Q( 3
√

630) 30.3446657056117337283347317607 12.19881994

Q( 3
√

1452) 17.7872097259217668109227749572 8.989342374

Q( 3
√

5202) 1.47309600366924947757192939523 10.35499498

Q( 3
√

11025) 1.61087090801442968550821937651 11.65651447

Q( 3
√

16652) 7.60080778696955040403081313532 10.59271526
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Table 4.6 recalls the composition of Ω based on section 3.3.3. and provides the

order of E37(K)tors computed with MAGMA.

Using information provided in the precedent tables, it presents the analytic order of

X(E37/Kr) from the quotient

|X(E37/Kr)|
|X(E37/Q)|

=
L′(E37/Q, χ2, 1)RE37/QC(E37/Q)ω|E37(Kr)tors|2

√
|∆Kr |

|E37(Q)|2RE37/KrC(E37/Kr)Ω
(4.10)

Table 4.6: Order of the Shafarevich-Tate group of E37(Kr)

Q( 3
√
m) Ω |E37(K)tors| analytic |X(E37/Kr)|

|X(E37/Q)|

Q( 3
√

50) 4ω2
+ω− 3 8.99999999531197606544571

Q( 3
√

294) 4ω2
+ω− 3 9.00000000397223010329010

Q( 3
√

630) 4ω2
+ω− 3 324.000000143000283718443

Q( 3
√

1452) 4ω2
+ω− 3 81.0000000617308330431440

Q( 3
√

5202) 4ω2
+ω− 3 9.00000000397223010329010

Q( 3
√

11025) 4ω2
+ω− 3 9.00000000050812848815234

Q( 3
√

16652) 4ω2
+ω− 3 81.0000000270898168917665
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4.2.4 E19A3

We consider the elliptic curve E19A3 as denoted in Cremona’s table ([Cre97]) given

by the following equation

E19 := y2 + y = x3 + x2 + x. (4.11)

By substituting (x, y) by (x, x+y) we obtain a suitable model for our computations

E19 := y2 + 2xy + y = x3. (4.12)

From equation (3.4) we are in the case u = 2
3

and t = 1. This leads to the following

parametrization of m

m =
2(r + 1)(r − 1)2

r − 1 + 2(2
3
)3

. (4.13)

Next sections present tables of numerical results for E19A3 over different number

fields Kr.
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4.2.5 Invariants of E19A3 over Q

Table 4.7 presents invariants of E19A3 and features related to E19(Q).

These results were computed with MAGMA’s functions for elliptic curves and com-

pared with Cremona’s table of elliptic curves.

Table 4.7: Invariants of E19A3

∆E19 −19

j-invariant −215

19

ω+ 4.07927920046493243220955268358

ω− 2.06354619585862023233791565816

ω ω+

c4 −25

c6 8
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Table 4.8 summarizes invariants related to E19(Q) needed to compute (4.4).

For each prime with bad reduction, we present the information needed to compute

the Tamagawa product C(E19/Q) as indicated in section 3.3.2.

Table 4.8: E19(Q) invariants

L(E19/Q, 1) 0.45325324449610360358

rank(E19(Q)) 0

RE19/Q 1

|E19(Q)tors| 3

Primes with bad reduction 19

ord19(c4) 0

ord19(∆E19) 1

−c4c6 mod 19 9

reduction type at 19 split multiplicative

c19 −ord19(j) = 1

C(E19/Q) 1

|X(E19/Q)| 1
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Based on section 3.3.1., we will consider the set of cubic extensions Kr = Q( 3
√
m),

where m is given by (3.5) for each given r.

Indexed by our choices of r, Table 4.9 lists the corresponding m and its associated

number field Kr. Each corresponding d is then decomposed as product ab2 and

following theorem 3.3.1., we compute the discriminant of each Kr.

Table 4.9: Number Fields Kr = Q( 3
√
m) associated to E19A3

r m Q( 3
√
d) d = ab2 a2 mod 9 b2 mod 9 Discriminant (Kr)

-7 2592
25

Q( 3
√

60) 3 ∗ 5 ∗ 22 0 4 −27 ∗ 22 ∗ 32 ∗ 52

17 3888
7

Q( 3
√

882) 2 ∗ 32 ∗ 72 4 0 −27 ∗ 22 ∗ 32 ∗ 72

3 432
35

Q( 3
√

2450) 2 ∗ 5 ∗ 72 4 1 −27 ∗ 22 ∗ 52 ∗ 72

18 15606
25

Q( 3
√

2890) 2 ∗ 5 ∗ 172 1 1 −3 ∗ 22 ∗ 52 ∗ 172

71



4.2.6 Invariants of E19A3 over Kr = Q( 3
√
m)

Table 4.10 below presents the splitting of 19 in each cubic extension produced by our

choices of r.

Using (3.12) we compute C(E19/Kr).

Table 4.10: Tamagawa Product C(E19/Kr)

Q( 3
√
m) 19 mod 3 m

19−1
3 mod 19 19ZKr cp C(E19/Kr)

Q( 3
√

60) 1 7 p 1 1

Q( 3
√

882) 1 1 p1p2p3 1 13

Q( 3
√

2450) 1 1 p1p2p3 1 13

Q( 3
√

2890) 1 7 p 1 1
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Table 4.11. presents the leading term of the Taylor expansion of L(E/Kr, s) at

s = 1 and the regulator of E19A3 over each Kr.

The computations were achieved with MAGMA’s function for L-series and elliptic

curves.

Table 4.11: Leading term of L(E19/Kr, s) at s = 1 and Regulator

Q( 3
√
m) L′(E19/Kr, 1) RE19/Kr

Q( 3
√

60) 4.15161094837592845208727359129 9.423423993

Q( 3
√

882) 3.53239805873542932361818753898 11.22508805

Q( 3
√

2450) 14.9673917731171680403141269975 8.807902242

Q( 3
√

2890) 2.91277925759510036646920244211 12.48837895
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Table 4.12 recalls the composition of Ω based on section 3.3.3. and provides the

order of E19(K)tors computed with MAGMA.

Using information provided in the precedent tables, it presents the analytic order of

X(E19/Kr) from the quotient

|X(E19/Kr)|
|X(E19/Q)|

=
L′(E19/Q, χ2, 1)RE19/QC(E19/Q)ω|E19(Kr)tors|2

√
|∆Kr |

|E19(Q)|2RE19/KrC(E19/Kr)Ω
(4.14)

Table 4.12: Order of the Shafarevich-Tate group of E19(Kr)

Q( 3
√
m) Ω |E19(K)tors| C(E19/Kr) analytic |X(E19/Kr)|

|X(E19/Q)|

Q( 3
√

60) 2ω2
+ω− 3 1 8.99999999877607768058346

Q( 3
√

882) 2ω2
+ω− 3 13 9.00000000050812848815234

Q( 3
√

2450) 2ω2
+ω− 3 13 80.9999999924488007403889

Q( 3
√

2890) 2ω2
+ω− 3 1 8.99999999531197606544571
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4.3 Computations with a curve of rank 1 over Q

and rank 2 over K

In this section, we consider an elliptic curve admitting a Q-rational point. We there-

fore work in case 2 as in (3.17) and have

L′′(E/Kr, 1) =
2|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

⇐⇒ L′(E/Q, 1)L′(E/Q, χ2, 1) =
2|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

Now, taking into consideration Conjecture 3.b., we further have

L′(E/Q, 1)L′(E/Q, χ2, 1) =
2|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

(4.15)

⇐⇒ L′(E/Q, χ2, 1) =
2|X(E/Kr)|RE/KrC(E/Kr)Ω

L′(E/Q, 1)|E(Kr)tors|2
√
|∆Kr |

(4.16)

⇐⇒ L′(E/Q, χ2, 1) =
2|E(Q)tors|2

|X(E/Q)|RE/QC(E/Q)ω

|X(E/Kr)|RE/KrC(E/Kr)Ω

|E(Kr)tors|2
√
|∆Kr |

(4.17)

From which we can express the following quotient

|X(E/Kr)|
|X(E/Q)|

=
L′(E/Q, χ2, 1)RE/QC(E/Q)|E(Kr)tors|2ω

√
|∆Kr |

2|E(Q)tors|2RE/KrC(E/Kr)Ω
(4.18)

We will use this last equality to approximate numerically the order of the Shafarevich-

Tate group of E(Kr).
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4.3.1 E189B1

We consider the elliptic curve E189B1 as denoted in Cremona’s table ([Cre97]) which

has the following Weierstrass equation

E189 : y2 + 6xy + y = x3 (4.19)

In view of equation (3.4), it corresponds to the case u = 2 and t = 1.

By (3.5) we obtain the following parametrization for m

m =
2(r + 1)(r − 1)2

r − 1 + 2(2)3
(4.20)

Next sections present tables of numerical results for E189B1 over different number

fields Kr.
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4.3.2 Invariants of E189B1 over Q

Table 4.13 presents invariants of E189A1 and features related to E189(Q).

These results were computed with MAGMA’s functions for elliptic curves and com-

pared with Cremona’s table of elliptic curves.

Table 4.13: Invariants of E189B1

∆E189 337

j-invariant 22133

7

ω+ 2.73022881868993498378069300414

ω− 1.07849955489854150637285550286

ω 2ω+

c4 2732

c6 −2333181
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Table 4.14 summarizes invariants related to E189(Q) needed to compute (4.4).

For each prime with bad reduction, we present the information needed to compute

the Tamagawa product C(E189/Q) as indicated in section 3.3.2.

Table 4.14: E189(Q) invariants

L′(E189/Q, 1) 1.13046249833075510395213903196

rank(E189(Q)) 1

RE189/Q 1.86324355221236297777936214506

|E189(Q)tors| 3

Primes with bad reduction 3,7

ord3(∆E189), ord7(∆E189) 3, 1

ord3(c4), ord7(c4) 2,0

reduction type at 3, 7 additive, split multiplicative

c3, c7 1, −ord7(j) = 1

C(E189/Q) 1

|X(E189/Q)| 1
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Based on section 3.3.1., we will consider the set of cubic extensions Kr = Q( 3
√
m),

where m is given by (3.5) for each given r.

Indexed by our choices of r, Table 4.15 lists the corresponding m and its associated

number field Kr. Each corresponding d is then decomposed as product ab2 and

following theorem 3.3.1., we compute the discriminant of each Kr.

Table 4.15: Number Fields Kr = Q( 3
√
m) associated to E189B1

r m Q( 3
√
d) d = ab2 a2 mod 9 b2 mod 9 Discriminant (Kr)

3 16
9

Q( 3
√

48) 3 ∗ 42 0 4 −27 ∗ 32 ∗ 42

-3 16
3

Q( 3
√

144) 32 ∗ 42 1 0 −27 ∗ 32 ∗ 42

4.3.3 Invariants of E189B1 over Kr = Q( 3
√
m)

Table 4.16 below presents the splitting of 3 and 7 in each cubic extension produced

by our choices of r.

Using (3.12) we compute C(E189/Kr).

Table 4.16: Tamagawa Product C(E189/Kr)

Q( 3
√
m) p = 3 3ZKr 7 mod 3 m

7−1
3 mod 7 7ZKr C(E189/Kr)

Q( 3
√

48) 3 p3
1 1 1 p2p3p4 16

Q( 3
√

144) 3 p3
1 1 2 p2 14
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Table 4.17. presents the leading term of the Taylor expansion of L(E/Kr, s) at

s = 1 and the regulator of E189B1 over each Kr.

The computations were achieved with MAGMA’s function for L-series and elliptic

curves.

Table 4.17: Leading term of L(E189/Kr, s) at s = 1 and Regulator

Q( 3
√
m) L′′(E189/Kr, 1) RE189/Kr

Q( 3
√

48) 15.0042447118376205829038173028 21.82028785

Q( 3
√

144) 22.3114148465198519504139984029 32.44691778

Table 4.18 recalls the composition of Ω based on section 3.3.3. and provides the

order of E189(K)tors computed with MAGMA.

Using information provided in the precedent tables, it presents the analytic order of

X(E189/Kr) from the quotient

|X(E189/Kr)|
|X(E189/Q)|

=
L′(E189/Q, χ2, 1)RE189/QC(E189/Q)|E189(Kr)tors|2ω

√
|∆Kr |

2|E189(Q)tors|2RE189/KrC(E189/Kr)Ω

(4.21)

Table 4.18: Order of the Shafarevich-Tate group of E189(Kr)

Q( 3
√
m) Ω |E189(K)tors| C(E189/Kr) analytic |X(E189/Kr)|

|X(E189/Q)|

Q( 3
√

48) 4ω2
+ω− 3 16 1.00000000053758394523050

Q( 3
√

144) 4ω2
+ω− 3 14 1.00000000071078902598739
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Conclusion

We note that all Shafarevich-Tate group’s orders computed were found to be inte-

gers, within the accuracy of our computations and, moreover, squares. This provides

evidence for conjecture 2 for pure cubic extensions.

In reference to Cremona’s tables of elliptic curves, we could consider building a larger

table including the elliptic curves over pure cubic extensions compatible with our

computations above. We remark that the obstruction to providing more examples is

due to the time-consuming computations of the leading term in the Taylor expansion

of L(E/K, s). For fixed elliptic curves, the speed of this computation is related to

the discriminant of the field K. In our cases of pure cubic extensions parametrized

by r ∈ Q, there are not many choices of r such that m and hence ∆K remain small.

Depending on the curve and field over which the computations have been done, re-

sults were obtained in a time range from 3 days to a month.

Finally, by the non-exhaustive character of any table of elliptic curves and taking

into consideration that computations are also restricted by the difficulty of finding

generators for the Mordell-Weil groups, we conclude that more theoretical work is

needed to provide more arguments toward the Birch and Swinnerton-Dyer conjecture

for elliptic curves over number fields.

81



Bibliography
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