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ABSTRACT

Galois Theory for Schemes

Shan Gao

Given a connected scheme X, we consider the category of finite étale coverings of X. We will show
that this category is equivalent to the category m-Sets of finite sets on which 7 acts continuously,
where 7 is a profinite group, uniquely determined up to isomorphism. Our technique is to develop
a basic theory for Galois category and show that category of finite étale coverings of X is a Galois
category.
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Introduction

In this thesis we study the basics of finite étale morphisms. It is the first step to study étale
cohomology, which is a vast and extremely rich area of mathematics, with many applications. In
this thesis we prove the main theorem of Galois theory for schemes, which classifies the finite étale
coverings of a connected scheme X in terms of its fundamental group 7 (X).

Our main aim in this thesis is to develop and study the theory of finite étale morphisms using a
basic material in H. W. Lenstra’s notes found at:
http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf.

There are no new results here. We have written the theory as we understood it and added most
of the details which were left as exercises in Lenstra’s notes.

The thesis is organized as follows. In Chapter 1, we give a brief review of the covering spaces
and fundamental groups of topological spaces. The following chapter contains an axiomatic char-
acterization of categories that are equivalent to m-Sets for some profinite group 7. In Chapter 3,
we treat the basic properties of finite étale morphisms, which generalize the properties of projective
separable algebras. In the last chapter, we prove the main theorem of this thesis, by showing that
the category of finite étale coverings of a connected scheme is a Galois category.

I would like to thank my supervisor, Professor Adrian Iovita, for numerous helpful discussions.



Chapter 1

The topological fundamental group

1.1 The fundamental group

In this section we will give a brief review of the construction of the fundamental group of a topological
space. We shall assume that all spaces in this section are topological spaces and all maps are
continuous. We set I = [0, 1]. For the details of this section we refer to Armstrong (1983) (Chapter

5), Massey (1991) (Chapter II).

Definition 1.1.1. Two maps fy, f1 : X — Y are said to be homotopic if there exists a map
F: X xI—Y such that F(z,0) = fy(z) and F(z,1) = fi(z) for all z € X. The map F is called

a homotopy from fy to fi and we shall write fy = fi-

Definition 1.1.2. A pathin a space X isamap f: 1 — X. A loopin X isamap [ : [ — X where
f(0) = f(1), and we shall say that the loop is based at the point zq = f(0), which is referred to as

the basepoint.

Definition 1.1.3. Two paths f,g : I — X are said to be path homotopic, denoted by f (’:) g, if
P



f(0) =g(0), f(1) = g(1) and there exists a map F': I x I — X such that

F(s,0) = f(s)
for all s € I,
F(s,1) = g(s)
F(0,t) = f(0) = ¢(0)
forall t € I.

F(1,t) = f(1) = g(1)

Proposition 1.1.1. Path homotopy is an equivalence relation.

We denote [f] to be the homotopy class of a path f: I — X. If f and g are two paths in X

where f(1) = g(0) we define the product f * g to be the path given by the formula

f(2s), 0<s

IN
N[

(f*9)(s) =
g(2s —1), %

IN
IN
—_

s
We can see that this product operation respects homotopy classes, i.e. if f (%) f1, 90 % g1, and
fo(1) = g1(0) then fy * go (%) f1*g1. Let X be a topological space, choose a base point zy € X,
and consider the set of all homotopy classes [f] of loops f : I — X based at zy. This set is denoted

1 (X, z9). We have the following theorem.
Theorem 1.1.1. 7 (X, x0) is a group with respect to the product [f][g] = [f * g].

This group is called the fundamental group of X at the base point z.

1.2 Covering spaces
Definition 1.2.1. Let X be a topological space.
(1) A space over X is a topological space Y with a continuous map p:Y — X.

(2) A morphism between two spaces p; : Y; — X (i = 1,2) over X is given by a continuous map



f Y7 — Y5 such that the following diagram

Y1,

N

X

commutes.

(3) A covering space of X is a space Y over X where the projection p : Y — X satisfies the
following condition. For each point x € X there is an open neighborhood V', and a decompo-
sition of p~! (V) as a family (U;);ep of pairwise disjoint open subsets of Y, in such a way that

the restriction of p to each U; is a homeomorphism from U; to V.
(4) A morphism between two covering spaces of X is a morphism of spaces over X.

Example 1.2.1. Take a nonempty discrete topological space D and form the topological product
X x D. The projection X x D — X on the first coordiate turns X x D into a covering space over

X. It is called a trivial covering.

Proposition 1.2.1. A space Y over X is a covering if and only if each point of X has an open
neighborhood V' such that the restriction of the projection p : Y — X to p~ (V) is isomorphic (as

a space over X ) to a trivial cover.

Proof. The “if” part is obvious by the previous example and the definition of covering. The “only
if” part can be seen as follows: Given a cover p : Y — X and a decomposition p~ (V) = L})(Ui)
ic
for some finite index set D, the map f : [[(U;) = V x D defined by sending u; € U; to the pair
€D
(p(u;),7) is a homeomorphism, where D is endowed with the discrete topology. By construction

this is an isomorphism of trivial covers of V. O

Let X be a topological space and 7 (X, ) be the fundamental group of X with base point .
Next we will show that given a cover p : Y — X, there is a natural action by the group m (X, x)
on the fibre p~!(z). We need the following lemma.

4



Lemma 1.2.1. Letp: Y — X be a cover, y € Y and x = p(y).

(1) Given a path f:[0,1] — X with f(0) = z, there is a unique path f : [0,1] — Y with f(0) =y

and po f = f.

(2) Assume moreover given a second path g : [0,1] — X homotopic to f. Then the unique

g:10,1] = Y with g(0) =y and po g = g has the same endpoint as £, ie. f(l) =g(1).

Proof. For the proof of this lemma we refer to Massey (1991) (Chapter V, Section 3), Szamuely

(2009) (Chapter 2, Section 2.3). O
We can now construct the left action of (X, z) on the fibre p~!(z).

Definition 1.2.2. Let p: Y — X be a covering space of X and z € X. For any y € p~'(z) and
any [f] € m1 (X, z) represented by a loop f based at z, we define a left action of 7 (X, z) on p~*(z)

by [fly := f(1), where £ is the unique lifting given by the first part of the Lemma 1.2.1.

By the second part of the Lemma 1.2.1 we know that this definition does not depend on the
choice of f. And pf(1) = f(1) =z, i.e. [f]y € p~'(x). So this action is well defined.

A space X is called pathwise connected if any two points of X can be joined by a path. A pathwise
connected space is connected. A space is locally pathwise connected if each point has a basic family
of pathwise connected neighborhoods. A space is simply connected if it has trivial fundamental
group. A space is semilocally simply connected if every point x € X has a neighborhood U such
that the natural homomorphism (U, x) — (X, z) is trivial.

If X is connected, locally pathwise connected, and semilocally simply connected, the group

m1 (X, x) is independent of the choice of z, up to isomorphism. Denoting it by m(X) we have the

following theorem.

Theorem 1.2.1. Let X be a topological space satisfying the above conditions. Then the category of

covers of X is equivalent to the category of m (X)-sets.



All the details of the proof of the theorem above can be found in Massey (1991) (Ch V, Section
7), Szamuely (2009) (Ch2, Theorem 2.3.4).

In the Theorem 1.2.1, the fundamental group 7 (X) has no topology and the (X )-sets may not
be finite. If X is connected the next theorem gives the relationship between the category of finite

coverings of X and the category of 7(X)-Sets for some profinite group 7(X).

Theorem 1.2.2. Let X be a connected topological space. Then there exists a profinite group m(X),
uniquely determined up to isomorphism, such that the category of finite coverings of X is equivalent

to the category T(X)-sets of finite sets on which 7(X) acts continuously.

The proof of this theorem is given in Section 2.1.7. If X satisfies the conditions stated just before
Theorem 1.2.1, then the group 7(X) that we get from Theorem 1.2.2 is the profinite completion of

the fundamental group m(X).



Chapter 2

Galois Categories

2.1 Galois Categories

2.1.1 Categories and Functors

A category € consists of a collection of objects Ob(C); and for two objects A, B € Ob(C) a set

More(A, B) called the set of morphisms of A to B; and for three objects A, B,C' € Ob(C) a law of
composition

More(B, C) x More(A, B) — More(A, C)
satisfying the following axioms:

e Two sets More(A, B) and More(A’, B') are disjoint unless A = A" and B = B’, in which case

they are equal.

e For each object A of € there is a morphism id4 € More(A, A) which acts as left and right
identity for the elements of More(A, B) and More(B, A) respectively, for all objects B €

Ob(C).

e The law of composition is associative (when defined), i.e. given f € More(A, B), g €



More(B, C) and h € More(C, D) then

(hog)of=ho(gof),

for all objects A, B, C, D of C.

Example 2.1.1. The following are some examples of categories:

(1) The category Sets of finite sets with maps of sets.

(2) Given a group G the category G-Sets of sets with a left G-action, with maps of sets that are

compatible with G-action..

(3) Given a profinite group 7 the category of finite T—sets with a continuous left w-action together
with maps between sets which are compatible with the m-action. We denote this category by

mT-Sets.

(4) The category of all finite coverings of a topological space X, denoted by Cov(X), with mor-

phisms between coverings (see definition 1.2.1).

(5) The category of schemes with morphisms of schemes.

Definition 2.1.1. A morphism u : X — Y is an isomorphism of the category € if there exists a

morphism v : Y — X such that wov =idy and vowu = idy.

Let C,D be categories. A covariant (resp. contravariant) functor F of € into D is a rule which
to each object A in € associates an object F'(A) in D, and to each morphism f : A — B associates

a morphism F(f): F(A) — F(B) (resp. F(f): F(B) — F(A)) such that:

e For all A in C we have F(id4) = idp(a).

o If f: A— Band g:B — C are two morphisms of € then

F(go f) = F(g)o F(f) (resp. F(go f)=F(f)o F(g)).



For categories €, D and functors (say covariant) F,G: € — D a natural transformation, or a
morphism of functors ® : ' — G is a rule which to each object X of € associates a morphism

Oy : F(X) — G(X) such that for any morphism f : X — Y the following diagram is commutative:

Px

F(X) —G(X)
F(f)l lam
FY)—=aG(Y)

Definition 2.1.2. Let F': € — D be a functor.
(1) We say F'is faithful if for any objects X, Y of Ob(C) the map
F : More(X,Y) — Morp (F(X), F(Y))
is injective.
(2) If these maps are all bijective then F' is called fully faithful.

(3) The functor F' is called essentially surjective if for any object Y € Ob(D) there exists an

object X € Ob(€) such that F(X) is isomorphic to Y in D.

Definition 2.1.3. A functor F' : € — D is called an equivalence of categories if there exists a
functor G : D — € such that the compositions F' o G and G o F' are isomorphic to the identity

functors idyp, respectively ide. In this case we say that G is a quasi-inverse to F'.

Lemma 2.1.1. A functor is an equivalence of categories if and only if it is both fully faithful and

essentially surjective.

We refer Mac Lane (1998) (Ch IV, Section 4, Theorem 1) for the proof of this lemma.

2.1.2 Imitial,Terminal object, Monomorphism and Epimorphism

Definition 2.1.4. Let € be a category.



(1) An object S of the category C is called an initial object if for every object X of € there is

exactly one morphism S — X.

(2) An object T of the category € is called a terminal object if for every object X of € there is

exactly one morphism X — T

Note that, from the definition above, initial or terminal object is unique up to isomorphism if
exists. We denote initial and terminal objects by O¢ and 1¢ respectively. In Sets the empty set ()

is an initial object, and any singleton, i.e., a set with one element, is a terminal object.
Definition 2.1.5. Let € be a category, and let f : X — Y be a morphism of C.

(1) We say that f is a monomorphism if for every object Z and every pair of morphisms u, v :

Z — X with fou= fowv we have u = v.

(2) We say that f is an epimorphism if for every object W and every pair of morphisms wu, v :

Y = W with uo f =vo f we have u = v.

Example 2.1.2. In Sets the monomorphisms correspond to injective maps and the epimorphisms

correspond to surjective maps.

We can see that the composition of monomorphisms (resp. epimorphisms) is still a monomor-

phism (resp. epimorphism).

Definition 2.1.6. Let C be a category. A subobject of an object X of € is a monomorphism Y — X.
A morphism of two subobjects Y — X, Y’ — X of X is a morphism f:Y — Y’ in € making the

diagram

f

NS

X

Y Y’

commute.
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2.1.3 Products, Fibre products, Coproducts and Equalizers

Definition 2.1.7. Let X,Y € Ob(C), A product of X and Y is an object X x Y € Ob(C) together
with morphisms p € More(X X Y, X) and ¢ € More(X x Y,Y') such that the following universal
property holds: For any Z € Ob(€C) and morphisms « € More(Z, X) and g € More(Z,Y) there is

a unique v € More(Z, X x Y) making the diagram

Z

|
|
AN
\
y
commute.

We can similarly define a product of an arbitrary family of objects.

Definition 2.1.8. Let (A;);c; be a collection of objects of a category Ob(C). The product of the A;
is a pair (A, (p;)ier) consisting of an object A and a family of morphisms {p; : A — A;} satisfying
the following property: Given a family of morphisms {g; : B — A;}, there exists a unique morphism

v : B — A such that p; oy = g; for all i. The product of (A;) will be denoted by [],., A;.

The empty collection of objects has a product if and only if C has an terminal object. If I is

finite, I = {1,142, ...,4,}, we may write A; x A;, x --- x A;, instead of [[,.; A;.

Definition 2.1.9. Let X,Y,Z € Ob(C), f € More(X,Z) and g € More(Y,Z). A fibre product
of f and g is an object X xz Y € Ob(C) together with morphisms p; € More(X xz Y, X) and

pe € More(X Xz YY) making the diagram

Xx, Y-y

N

commute, and such that the following universal property holds: For any 7" € Ob(C) and morphisms

f

a € More(T, X) and 5 € More(7,Y) with foa = go 3 there is a unique ¢ € More(T, X Xz Y)

11



making the following diagram

commute.

Definition 2.1.10. We say the category € has fibre products if the fibre product exists for any

f € More(X, Z) and g € More(Y, Z).

The fibre product is uniquely determined up to isomorphism, if it exists. If a category € has fibre
products and terminal objects, then X x Y is just X x;, Y. In Sets the fibre product X x, Y is
the set of all pairs (z,y) in the Cartesian product of X and Y for which x and y have the same
image in Z. If the maps X — Z, Y — Z are inclusions this may be identified with the intersection

of X and Y.

Definition 2.1.11. Let (A;);e; be a collection of objects of a category Ob(C). The coproduct, or
amalgamated sum of the A; is a pair (S, (f;)ier) consisting of an object S and a family of morphisms
{fi + A; — S} satisfying the following property: Given a family of morphisms {g; : A; — C}, there
exists a unique morphism « : S — C such that vy o f; = g; for all i. The coproduct of (A4;) will be

denoted by [],.; As.

The sum is unique up to isomorphism if it exists. In the category of sets the sum of the A; is

their disjoint union.

Definition 2.1.12. We say that finite sum exists in € if any finite collection of objects has a sum

in C.

The empty collection of objects has a sum if and only if € has an initial object. If [ is finite,
I = {iy,iy,...,in}, we may write A; 11 A;, IT---IT A; instead of [[,.; A;.

12



Definition 2.1.13. A morphism u : X — Y in a category € is called an isomorphism of X with a
direct summand of Y if there exists a morphism ¢s : Z — Y such that Y, together with ¢; = u and

(2, is the sum (or coproduct) of X and Z.
In Sets, we can simply get this by letting Z =Y — u(X).

Definition 2.1.14. Suppose that X, Y are objects of a category € and u,v : X — Y are morphisms.
We say a pair (F,e) is an equalizer for the pair (u,v) if e : E — X is a C-morphism, uoe =voe
and if (F, e) satisfies the following universal property: For every morphism f : W — X in € such

that uw o f = v o f there exists a unique morphism ¢ : W — E such that f = e o ¢.

As in the case of the fibre product above, equalizers when they exist are unique up to unique

/
isomorphism. In Sets the equalizer of A B is the subset {a € A | f(a) = g(a)} of A with the
g9

inclusion. We have the following properties of equalizers.

f
Proposition 2.1.1. If (E,e) is an equalizer of X Y, then (E,e) is a subobject of X. Any two
g

f
equalizers of X Y are isomorphic subobjects of X.
g

f
Proposition 2.1.2. If (E,e) is an equalizer of X Y, then the following are equivalent:
g

(1) [=y.
(2) e is an isomorphism.
(3) e is an epimorphism.

For the proof of these two propositions, we refer to Herrlich and Strecker (1973) (Ch VI, 16.7

Proposition)

2.1.4 Quotient under group actions

Definition 2.1.15. Let Y be an object of a category € and G C Aute(Y') a finite subgroup of the
group of automorphisms of Y in €. The quotient of Y by G is an object in €, denoted by Y/G,

13



along with a morphism p: Y — Y/G satisfying p o o = p for all ¢ € G and the universal property:
If Z is an object of C and f : Y — Z satisfies f oo = f for all ¢ € G, then there is a unique

morphism ¢ : Y/G — Z such that f = gop.

Example 2.1.3. For any object Y of the category Sets of finite sets, the finite subgroup G' C

Autgets(Y) acts on Y and Y/G is the set of G-orbits of Y.

2.1.5 GGalois categories

Definition 2.1.16. Let € be a category and F' a covariant functor from € to the category Sets
of finite sets. We say that C is a Galois category with fundamental functor F' if the following six

axioms are satisfied.

(G1) There is a terminal object in €, and the fibre product of any two objects over a third one

exists in C.

(G2) Finite sums exist in €, in particular an initial object, and for any object in € the quotient by

a finite group of automorphisms exists.

(G3) Any morphism X —"=Y in € can be factored as

X = Y
N
Yy

where 14 is an epimorphism, us is a monomorphism and ¥ =Y, I Y,, Y5 € C.

(G4) The functor F' maps terminal objects to terminal objects and commutes with fibre products.

(G5) The functor F' commutes with finite sums and quotients (see Definition 2.1.15), maps epimor-

phisms to epimorphisms.

(G6) If w is a morphism in € such that F'(u) is an isomorphism, then u is an isomorphism.

It is easy to see that the category Sets with the identity functor is a Galois category.

14



2.1.6 The automorphism group of a fundamental functor

Let € be a Galois category with fundamental functor F'. An automorphism of F' is an invertible

natural transformation of functors F' — F'. Equivalently, an automorphism o of F' is a collection of
bijections oy : F(X) — F(X), one for each X € Ob(C), such that for each C-morphism y-1.z

the diagram

FOY) 2L p(z)
)

FY) YL piz)

oz

is commutative. Let Sp(x) denote the permutation group of F/(X). It is finite since F'(X) is. Then
there is a natural injection:

Aut(F) —]yee Srex)

given by o — (0x)x, where Aut(F) is the group of all automorphisms of F. It is supposed here
that C is a small category, i.e. its objects form a set. Given each Sp(x) the discrete topology and
endow [ Sp(x) with the product topology, the product above will be a profinite group.

Xee

For each C—morphism ¢ : Y — Z, we define a subset as:

Uy = {(ox) € [T Sree) | 02F(9) = Flg)ov }.

xee
I'y is closed in the product since only two coordinates have been restricted. Then
Aut(F)= () T,
gY—=Z
is a closed subproup of profinite group []yce Sr(x) hence is profinite. Since we may replace C by
an equivalent category, the foregoing is also valid if € is essentially small instead of small.
Let # = Aut(F). There is a natural action of 7 on F(X) given by: o -t = ox(t) for each

X € Ob(€), 0 € Aut(F) and t € F'(X). Then the kernel of this action

Ker(m) = {067? ’ at:tforalltEF(X)}

15



= n0{(ov) e I Sror ] ox(t) =t for all t € F(X) }

vee
= 7N H Uy,
where Uy = Speyy for Y # X and Ux = {ox € Sp(x) | ox(t) =t, Vt € F(X)}. This means that
Ker(7) is open in [ [y .o Sp(y) under the product topology hence 7 acts continuously on F'(X) and
gives F'(X) a m-set structure for VX € Ob(C).

Given a C-morphism f:Y — Z, for any o0 € w, t € F(Y), we have

F(f)(at) = F(f)(oy(t)) = (F(f)oy)(t) = (0zF(f))(t) = oz(F(f)(t))-

This shows that F'(f) is compatible with the m-action defined above. Now we may regard F' as a
functor H : € — m-Sets by H(X) = F(X)and H(f : X = Y) = (F(f) : F(X) = F(Y)), and that

F' is the composite of H and the forgetful functor 7-Sets — Sets. We have the following theorem.

Theorem 2.1.1. Let C be an essentially small Galois category with fundamental functor F'. Then

we have:
(a) The functor H : C — w-Sets defined above is an equivalence of categories;

(b) If ' is a profinite group such that the categories C and n’'-Sets are equivalent by an equivalence
that, when composed with the forgetful functor n’'-Sets — Sets, yields the functor F, then 7’

is canonically isomorphic to m = Aut(F);
(c) If F' is a second fundamental functor on C, then F' and F' are isomorphic;

(d) If 7 is a profinite group such that the categories C and 7'-Sets are equivalent, then there is

an isomorphism of profinite groups ™ = m which is canonically determined up to an inner

automorphism of m.

For the proof of this theorem, see Section 2.2. Next, we will show that the category Cov(X) (see
example 2.1.1) with X connected, is a Galois category and we will give the proof of Theorem 1.2.2.

16



2.1.7 Finite coverings

Let X be a topological space, z € X, and Cov(X) the category of finite coverings of X. Let
F, : Cov(X) — Sets be the functor sending a cover f : X — Y to the fibre f~!(x). We shall prove
that, given X connected, Cov(X) is a Galois category with fundamental functor F,. Then we can
deduce Theorem 1.2.2 from Theorem 2.2.1. We need to check the axioms (G1) — (G6) in Definition

2.1.16. First, we present several lemmas.

Lemma 2.1.2. Let X, Y, Z be topological spaces, f:Y — X, g: Z — X be finite coverings, and
h:Y — Z a continuous map with f = gh. Then for any x € X, there exists an open neighborhood
U of x in X such that f, g and h are trivial above U, 1.e., there exist finite discrete sets D and E,
homeomorphisms o : f~Y(U) - U x D and 8 : g ' (U) = U x E and a map ¢ : D — E such that

the diagram

N

1s commutative where the maps U x D — U and U x E — U are the projections on the first

coordinate.

Proof. By Proposition 1.2.1, we can find neighborhoods V' and V" of x in X, finite discrete sets

D, E and homeomorphisms « : f~1 (V') = V' x D, B: g~ }(V") — V" x E, such that the diagrams

fHV) V"% D g V) V"X E

S RN

V/ V//
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commute. First we let V' =V'NV"”. Then we have the following commutative diagram

FYv) i g (V)

f V xD V xFE 9

We can get a continuous map Sha~!:V x D — V x E. It respects the projections to V' so the pair

v

(v,d) € V x D will be sent to (v, ¢,(d)) € V x E for some ¢,(d) € E. For any fixed v this will define

a map ¢, : D — E by sending d to ¢,(d). Let ¢ = ¢,. The two maps V x D——~D—Y-F and

Bha~

Vx D2y < B E combine into a continuous map V x D — E x E: (v,d) — (¢(d), ¢u(d)).
The image of {x} x D under this map will be contained in the diagonal of F' x F, which is open.
Then there exists an neighborhood of {2} x D in V' x D whose image is also in the diagonal. Since

D is finite, we can take this neighborhood to be the form U x D, with U a neighborhood of z in

X. Replacing V' by U we can prove Lemma 2.1.2. O

Remark 2.1.1. From this lemma, we can get that under the assumptions of Lemma 2.1.2, h: Y — Z

. . . . idy x¢ . ..
is also a finite covering since U x D——=U x E is a trivial cover.

The following lemma is called the gluing lemma. The proof can be found in Armstrong (1983),

Chapter 4, Section 4.2.

Lemma 2.1.3. Suppose X = AU B where A, B C X are closed. If f : X — Y is continuous when

restricted to A and to B, then f is continuous on X.

Lemma 2.1.4. Let X be a topological space and f:Y — X a finite covering. Then f is both open

and closed.

Proof. This property can be checked locally on X so we can assume that f : Y — X is a finite
trivial cover, i.e., Y =2 X x D for some finite discrete set D. For any open U C Y and Vx € f(U),
we can write U = Uy T Uy 11 -+ - 11 U,, where n = |D|, the cardinality of the set D and U; is open
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in X fori =1,2,...,n. Then V = [ U; is a neighborhood of z in X and V' C f(U). This implies

i=1
that f is open. Similarly we can show that f is closed. O
Lemma 2.1.5. Let X be a topological space. If g:Y — Z, h: W — Z are morphisms in C, then

the fibre product Y x 7 W, which is defined by
Y x;, W = {(y,w) ceY xW | g(y) = h(w) in Z},
1s a finite covering of X with the obvious map.

Proof. Let x € X. We can find a neighborhood U of x in X such that the covering Y — X, Z7 — X
and the map ¢ : Y — Z are trivial in the sense of Lemma 2.1.2. By shrinking U to a neighborhood
small enough, we can assume the cover W — X and the map h : W — Z are trivial on U, too. We

have the following commutative diagram:

UxD

idgr X (;5/

Ux DY« B

\ U
Then the fibre product Y xz W is just U x (D xg D') locally, where D x g D’ is the fibre product

of p: D — E and ¢’ : D' — F in the category Sets. It is obvious that U x (D xg D') — U is a

trivial cover. Then by Proposition 1.2.1 Y xz W is an object in Cov(X). O

Lemma 2.1.6. Let X be a topological space and h :' Y — Z is a morphism in Cov(X). Then
h is injective if and only if it is a monomorphism and that h is surjective if and only if it is an

epimorphism.
Proof. From Lemma 2.1.4 we can see that h(Y') is open and closed in Z.

e (injection <= monomorphism)
“=" Suppose h is injective. If for any W in Cov(X) and morphisms @1, ¢ : W — Y such
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that hepy = hpse, then for each w € W, we have hyy(w) = hps(w). Since h is injective, we
have p1(w) = ¢a(w) hence ¢ = g and h is a monomorphism.

“«<” Suppose h is a monomorphism in Cov(X). Consider the following commutative diagram:

Y x, ¥V -2y
pll lh
y " .7

Then p; = py since h is a monomorphism. If h(y;) = h(ys) for some y;, yo in Y, then
(y1,92) € Y xz Y. So we have y1 = pi(y1,92) = p2(y1,%2) = yo which implies that h is

injective.

e (surjection <= epimorphism)
“=" First, we assume h is surjective. Suppose now we have two compositions

Y-z 7w

g
with « o h = o h. For any z € Z, there exists a y € Y, such that h(y) = z. Then
a(z) = ah(y) = Bh(y) = B(2), i.e., « = B which implies that h is an epimorphism.
“<” Suppose h is an epimorphism now. Let Zy={z€ Z : |h7!(2)| =0} and Z; = Z — Z,
be subsets of Z, where |h~!(z)| denotes the cardinality of the set h~*(z). Then Z; = h(Y) is

an open and closed subspace in Z. We have two compositions:
Y- ez =z, 002, " Z U Z, 117,

Since h is an epimorphism, the two natural maps Z = Z, I Z; Zol Zy I Z7 must be

equal. This implies Zy = () hence h is a surjection.
O

Next we will check the axioms (G1) — (G6) (see Definition 2.1.16) to show that Cov(X) with

functor F, defined in the beginning of this section is a Galois category if X is connected.
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(G1) e The trivial cover idy : X — X is clearly a terminal object of Cov(X).

e By lemma 2.1.5 the fibre product of any two objects over a third one exists in Cov(X).

(G2) e The finite sum of f; : X; = X, i€ I,is f: [[..; X; — X, the disjoint union with the

el
usual topology and f‘X = fi. By the gluing lemma (see Lemma 2.1.3), [[,.; X; is a

finite cover of X.
e The initial object is the empty cover f : () — X.

e The quotient of p : Y — X by a finite subgroup G of the automorphisms of this covering
is the set of orbits of Y under G, given the quotient topology. The quotient space is a

finite cover of X in an obvious way.

(G3) Let h:Y — Z be a morphism in Cov(X). We can get a factorization of h as:

Y h 7 =72,112,
k /
Z

where 71, Zj as in Lemma 2.1.6 with h; epimorphism and hs; monomorphism.
(G4) @ F(loovy)) = Fu(idy : X — X) = idy () = {2} = Lsess-
e Suppose we have the following commutative diagram:

Y x, W2y

Then

E(Y xz W) = (fgp1) H(z) = (fip1) ()
= {(y,w) | h(w) = g(y), fip1(y, w) = fopa(y, w) = x}

= {(y,w) | h(w) = g(y), fi(y) = fo(w) = x}
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= {fi'@®)} X100 {fs ()}

(G5) e First we show F, commutes with finite sums:

F(f X IIXoII---1IX, = X)=f"(z)
= {veXy| f(r) =2} -U{zx, € X, | f(z,) =z}
= {ryeXy| filzy) =2} - -U{zx, € X, | fulz,) =2}
= {fi'(@}1 - I{f, ()}

— F(X) I IE(X,).

e Since epimorphisms in both Cov(X) and Sets are surjections, it is obvious that F, sends

epimorphisms to epimorphisms.

e We now show that F, commutes with quotients.

Fulpe:Y/G = X) = pg'(x) ={Gy | pa(Gy) = x}
= {Gy | ply) =z}
= {yeY|ply) =2}/G

(G6) Finally, assume X is connected. Let Y—"=Z is a morphism in Cov(X). Then F,(h) is
just the restriction of h to the fibre of x in Y. This map is bijective if and only if the map
¢ from Lemma 2.1.2 is bijective. Let X; = {x € X | F.(h) is bijective } and Xy = {z €
X | F.(h) is not bijective }. From Lemma 2.1.2 both X; and X, are open in X. Since X is
connected and F,(h) is an isomorphism, X; # (). Hence X; = X and h is a bijective. By

Lemma 2.1.4 h is open, thus is an isomorphism in Cov(X).

Now, we have proved that Cov(X) is a Galois category if X is connected. Since every finite
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covering Y — X is equivalent to one in which the underlying set is a subset of X x Z, Cov(X) is

essentially small. Then we can deduce Theorem 1.2.2 from Theorem 2.2.1.

2.2 Proof of Theorem2.2.1

The goal of this section is to prove the following theorem in details:

Theorem 2.2.1. Let C be an essentially small Galois category with fundamental functor F'. Then

we have:

(a) The functor H : C — w-Sets defined above is an equivalence of categories;

(b) If ' is a profinite group such that the categories C and n’'-Sets are equivalent by an equivalence
that, when composed with the forgetful functor n’'-Sets — Sets, yields the functor F, then 7’

is canonically isomorphic to m = Aut(F);

(c) If F' is a second fundamental functor on C, then F' and F' are isomorphic;

(d) If 7 is a profinite group such that the categories C and 7’'-Sets are equivalent, then there is

an isomorphism of profinite groups @ = 7w which is canonically determined up to an inner

automorphism of m.

We will see that each axiom of (G1)—(G6) plays an important role in the proof. First we see some
equivalent descriptions of some axioms and some properties of Galois category and fundamental

functor. We will give the proof of the theorem as follows:

1. First we show that a Galois category is artinian (Def.2.2.1, Lemma 2.2.4).

2. We claim that the fundamental functor of a Galois category is strictly pro-representable

(Def.2.2.2, Lemma 2.2.9).
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3. We introduce the definition and some properties of connected objects (Def.2.2.3, Lemma

2.2.10).
4. We discuss Galois objects and their properties (Def.2.2.4, Lemma 2.2.11).

5. Finally we construct a profinite group m as required.

2.2.1 Properties of Galois category and Fundamental functor

Lemma 2.2.1. Let C be a category. Then C satisfies (G1) if and only if it has equalizers and finite

products.

Proof. “=" Suppose that C satisfies (G1). It is easy to see that finite product exist since fibre
product and terminal object exist. Now let Y Z be morphisms in €, we have the following

commutative diagram:

Ph

(Y Xz Y) Xyxy Y Y
P} (idy, idy)
Y x, Y (b1, p2) Y xY

\Z/

For any W € Ob(C) and any morphism WLy with uf = vf, there exists a unique o : W —
Y Xz Y such that pyja = poa = f. This implies that (p1, p2)a = (f, f) = (idy, idy)f. So there

exists a unique morphism ¢ : W — (Y Xz Y) Xy«y Y such that the diagram

(Y xzY) Xyny Y 22V~ Z

'A

Ny
| f
W

commutes. This shows that (Y xzY) Xy«y Y is an equalizer for YV Z.

“<” Now assume that C has equalizers and finite products. Taking the finite product over an
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empty set gives the terminal object. Next we suppose X o Z and Y27 are morphisms in C.

Let p, ¢ be the canonical projections X x Y—+X, X x Y—2-V . Let (E, e) be the equalizer of

fp

X xY 7. For any object W and morphism o : W — X x Y with fpa = gqa, there exists a
94

unique morphism ¢ : W — E such that a = e¢.

Hence E' is the fibre product X x; Y. O

Remark 2.2.1. Let C be a category satisfying (G1) and F' a covariant functor from € to Sets. From
this lemma we can conclude that € satisfies (G4) if and only if F' commutes with equalizers and

with finite products.

Corollary 2.2.1. Let C be a Galois category with fundamental functor F', then finite products and

equalizers exist in C and F' commutes with finite products and equalizers.

Lemma 2.2.2. Let C be a category and F : C — Sets be a functor satisfying (G1), (G4) and (G6).

Let further f:Y — X be a morphism in C. Then

(a) f is a monomorphism if and only if the first projection py : Y Xx Y — Y is an isomorphism.

(b) f is a monomorphism if and only if F(f) is injective.

Proof. (a) “=" Suppose f is a monomorphism first. We have the following two commutative

diagrams:
P1 F(p1)
Y xxY ——Y FY xxY)—=F(Y)
pzl if F(p2)l F(f)
Y 7 X F(Y) 0 X
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Since f is a monomorphism we have p; = py, hence F(p;) = F(p2). By (G4),

F(Y xxY) = F(Y) xpx) F(Y)
= {@@y) [ F()(=) = F(N)}

For any (z,y) € F(Y xxY), we have x = F(p;)(z,y) = F(ps)(x,y) = y. Since F(Y)“—2=F(Y x
we conclude that F(p;) is bijective. By (G6) p; is an isomorphism.
“«<"” Now suppose p; is an isomorphism. We can easily see that ps is also an isomorphism by

(G4) and (G6). From the following commutative diagram

h
we can get A = p; ' = p, ', Suppose we have morphisms Z Y with fh = fg. Then there
g9

exists a unique ¢ : Z — Y Xx Y such that the following diagram

is commutative. Then g = pa¢p = po(Ah) = (p2A)h = h, ie. f is a monomorphism.

(b) We can immediately get (b) from (a).

O

Lemma 2.2.3. Let C be a category, yLox Ly morphisms in €, and suppose that the fibre

product Y X x Y exists. If v—LoX isa monomorphism, then sois Y xx Y'—2=Y".
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g
Proof. For any object Z in € and morphisms Z Y xx Y’ with poh = pag then f'poh = f'pag.
h

Since f'ps = fp1 we have fpih = fpig hence pth = pig. Thus we can obtain the following

commutative diagram

J 19=p1h
\
h\V wy Y Py
p2g=p2h
\LPQ J{f
Y’ X

!

The universal property of the fibre product implies ¢ = h hence ps is a monomorphism. Actually

the composition ¥V x y V'—2-Y" X is also a monomorphism. O
Definition 2.2.1. A category € is artinian if any decreasing sequence

X, DXy Xy <~

Jt J2 Js

of monomorphisms in € is stationary, i.e., there exists a positive integer ngy such that the j, are

isomorphisms for all n > ny.
Lemma 2.2.4. A Galois category is artinian.

This lemma follows from (G6) and Lemma 2.2.2. Note that each F(X;) is finite.
Let A be an object of € and a € F(A). For each object X there is a map More(4, X) — F(X)

induced by a sending f € More(A, X) to F(f)(a).

Definition 2.2.2. Let C be a category and F' a set-valued covariant functor on €. We say that F'is
pro-representable if 3 a directed set I, a projective system (A;, ¢;;)ier of objects in € and elements
a; € F(A;) such that

(i) a; = F(pi;)(a;) for j > i.

(ii) For any X € Ob(C€), the natural map

hﬂMor@(Ai, X)—F(X)

el
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induced by a; is bijective.
In addition, if the ¢;; are epimorphisms of €, we say that F'is strictly pro-representable.

Let C be a essentially small Galois category with a fundamental functor F. Without loss of
generality we assume C is small. Now we consider the set J of pairs (X, a) with X an object of C

and a € F(X). We define a relation on J as follows:
(X,a) > (X',d') <= 3f € More(X, X’) such that o' = F(f)(a)

which is also denoted by (X, a) > (X', a') when f is given. This relation is reflexive and transitive

f
since (X, a) .dZ (X,a) and (X, a) ? (Y,b0), (Y,b) % (Z,c) = (X,a) Zf (Z,c). Actually it may not
1ax g

be antisymmetric so it is not a partial order on J. But we will see later that it is a partial order
on a subset of J. We say that a pair (X, a) is minimal in J if for any (Y,b) > (X,a) with j a
j

monomorphism in €, then j is necessarily an isomorphism. Let I denote the subset of J consisting

of all minimal pairs of J. Next lemma tells us minimal pairs exist in J.
Lemma 2.2.5. For any (Y,b) € J, there exists a pair (X,a) € I such that (X,a) > (Y,b).
This lemma follows from the fact that C is artinian (Lemma 2.2.4).

Lemma 2.2.6. If (X,a) € I and (Y,b) € J then a u € More(X,Y) such that (X,a) > (Y,b) is

uniquely determined.

Proof. Suppose we have uy, us € More(X,Y) such that (X,a) > (Y,b) and (X,a) > (Y,b). Then
ul u2
by (G1) and Lemma 2.2.1 the equalizer of (E,e) of X Y exists.

u2

u1 e F(ul)
EC~X" 7"y and  F(E) % R(X) " T F(Y)
U2 F(u2)

By Remark 2.2.1, (F(E), F'(e)) is the equalizer of (F(uy), F'(ug)). Since F(uy)(a) = F(ug)(a) =b
we have a € F(F), i.e., (E,a) > (X,a) with e a monomorphism. Hence e is an isomorphism, i.e.,
U = Us. ]
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Thanks to this lemma, we can show that the relation > is antisymmetric on the set of isomorphism

classes of elements in I hence is a partial order on I.
Lemma 2.2.7. (I,>) is a directed partially ordered set.

Proof. 1Tt is enough to show that the relation > is antisymmetric on I and [ is directed.
e Antisymmetry.
Suppose we have both (X, a) ? (Y,b) and (Y,b) > (X, a) in I, then Lemma 2.2.6 implies ¢gf = idx
9
and fg = idy, so that (X, a) and (Y,b) are the same up to isomorphism.
e [ is directed.

In fact, if (X, a), (X',d') € I. By (G4) and Remark 2.2.1 we get the following diagrams:

o X' P X and F(X x X') = F(X) x F(X") 2%L p(x7)
P F(p)l
X F(X)

where p and p’ are the natural projections. Since (a,d’) € F(X x X') with F(p)(a,a’) = a and
F(p')(a,d’) = a we have (X x X' (a,d')) > (X,a) and (X x X', (a,d')) > (X',d'). In fact,
p /

p
(X x X', (a,a’)) may not be in I. Thanks to Lemma 2.2.5, there exists an (Y,b) € I such that

(Y,b) > (X x X', (a,a’)) hence (Y,b) > (X,a) and (Y,b) > (X', d’). I is directed. O

Lemma 2.2.8. If (X,a) € I, (Y,b) € J and u € More(Y, X) with (Y,b) > (X,a), then u is an

epimorphism.

Proof. In fact, by (G3) we have a factorization of u

Y E XiIXy=X
X,

with u; an epimorphism and us an monomorphism. Then a = F(u)(b) = F(uquy)(b) = F(u2)F (uq)(b)

implies @ € X;. This means that (Xi,a) > (X, a) hence X; = X = w is an epimorphism. O

u2
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Lemma 2.2.9. The fundamental functor F of a Galois category C is strictly pro-representable.

Proof. Denote I as in Lemma 2.2.5. An element ¢ € I is a minimal pair (A;,a;) in J. If (4;,a;) >
(A;,a;) we denote the unique morphism by ¢;; such that (A4;,a;) > (A;,a;). We write i > j

instead of (A4;,a;) > (A;,a;) for convenience. Then (A;, p;j)icr is a projective system. If i > j in
©ij Pij

I then the diagram of induced maps

More(A4;, X)

More(A;, X)
is commutative for any X, so there is a map @Mor@(Ai, X)——=F(X). By Lemma 2.2.5 this is
el

onto; it is injective since More(A;, X) — F(X): v F(u)(a;) is injective for each ¢ by Lemma 2.2.6.

From Lemma 2.2.8 the ¢;; are epimorphisms. It thus follows that [ is strictly pro-representable. [

Next, we will discuss what conditions should an object A satisfies such that the pair (A, a) with

some a € F(A) isin I.

Definition 2.2.3. Let € be a category with initial object. An object X is called connected if it has
precisely two distinct subobjects, namely 0¢ — X, and idx : X — X. Equivalently, an object X is

connected in € < X # X; I X, in € with X, X5 # Oe.
Let € be a Galois category with fundamental functor F. Using the notations above, we have:
Lemma 2.2.10. (1) (X,a) € I < X is connected in C.

(2) If X is connected in C, then any u € More(X, X) is an automorphism.

(3) For any object X, Aut(X) acts on F(X) by u-a = F(u)(a), V u € Aut(X), Va € F(X).
If X is connected, then for any a € F(X) the map 6, : Aut(X) — F(X) defined by u —
F(u)(a) = u-a is injective.
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Proof. (1) “=” Let (X,a) € I. Suppose X # X; 11 X, in € with X;, X5 # O¢ and that (X, a) € J.
Then by (G5) a € F(X) = F(X;) I F(X3y), say, a € F(X;). Let X2 >X be the morphism such
that (X1,a) > (X, a) with a monomorphism j which is not an isomorphism, which is a contradiction
j
with (X,a) € I .
“«<" Now let X be connected and (X, a) € J. Suppose we have (Y,b) > (X, a) with j a monomor-
j

phism. By (G3) we have a factorization:

Y J X I X, = X

x J2
X

with j; an epimorphism and j; a monomorphism. As j is a monomorphism, so is j; thus j; is an

isomorphism. Then 7 is an isomorphism since X is connected.

(2) As X is connected, by similar argument in the proof of “<” part in (1) we have u is an
epimorphism. By (G5), F(u) : F(X) — F(X) is onto thus is bijective. Then by (G6) u € Aut(X).
(3) Let uj,us € Aut(X) such that F(uy)(a) = 0,(uy) = 0.(uz) = F(us)(a), ie., a € E', where
E’ is the equalizer of (uj,us). By Remark 2.2.1 E' = F(F) where E is the equalizer of (uq,us).
Then (E,a) > (X,a) with a monomorphism e. By (1), (X,a) € I thus e is an isomorphism, i.e.,

e

U1 = Ug. O

Let X be a connected object. Then | Aut(X)| < |More(X, X)| < |F(X)|, where the second

inequality follows from Lemma 2.2.6. So Aut(X) is finite.

Definition 2.2.4. A connected object X is Galois if for any a € F'(X), the map 6, : Aut(X) —

F(X) defined by u+— F(u)(a) = u - a is bijective.

Note that X is a Galois object < the action of Aut(X) on F(X) is transitive
< the quotient X/ Aut(X) is 1e¢ < F(X)/ Aut(X) is a singleton.

The action is also free by Lemma 2.2.10.
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Lemma 2.2.11. Put A = {(X,a) € I | Ais Galois }. Then A is cofinal in I. In other words,
for any (Y,b) € I, there is a Galois object X in C, a € F(X) and a u € More(X,Y) such that

(X,a) > (Y, b).
Proof. Let {(Ai, ij) }ier be a projective system as in Lemma 2.2.9 such that

lig More(A;, X)—~~F(X).

il
Let F(Y) = {b1,bo,...,b,}. By Lemma 2.2.5, for each 1 < j < r, 3 (A4;;,a;;) € I such that
(Ai;,a;,) > (Y,b;). Taking N large enough we obtain a pair (Ay,ay) € I such that (Ay,ayn) >
(Y,b;) for all 1 < j <r. This implies {u-any = F(u)(ay) | v € More(An,Y)} = F(Y). Then there

exists  : Ay - Y" =Y x --- x Y such that
A=Y =Y x - xY—22Y  and

(An,an) > (Y7, (by,...,b,)) 2 (Y, b))

« D;

where p; is the j™ projection Y — Y. Then the elements (p;a) - ay are precisely by, ..., b,. By
(G3) we obtain a factorization:

AN

(0% Yr
h\\uﬁj
X

with aq an epimorphism and § a monomorphism. We claim that X is Galois.

(%) X is connected.

Suppose X = X7 IT Xy, X, X5 # 0¢. Then a = F(ay)(ay) € F(X) = F(X;) I F(X5), say,
a € F(X1). By Lemma 2.2.5 there is (Ayr, apr) € I such that (Ay,an) > (An,an), (A, an) >

Pij o

(X1,a) > (X, a) with morphisms in the following diagram.
/3/

An o X=X, 11X,



Since F'(oy o @i;)(an) = F(ar)F(pij)(an) = F(ar)(an) = a, we have (Apr, an) X OZW (X,a). Then
by Lemma 2.2.6, we have ' oo/ = a; 0 ;;, i.e., the diagram above commutes. This, together with
Lemma 2.2.8 imply 3’ o o’ is an epimorphism, which is impossible. Then X is connected and by
Lemma 2.2.10 the map Aut(X) — F(X) is injective.

(%) Let @ = F(aq)(ayn). We will prove that the map 6, : Aut(X) — F(X): u — u-a is surjective.

Let ' € F(X). By taking N large enough we may assume that (Ay, ay) > (X, a) and (An,ayn) >

aq 04/1

(X,d’). Then (p;f) - a = (pja) - an, 1 < j < r give us all the distinct elements of F(Y). Hence
the morphisms p;3 are all distinct. By Lemma 2.2.8 o) is an epimorphism thus pjﬁo/l are distinct
morphisms. Then (p;f3) - @ are precisely all elements of F(Y).

Now we have (p;3) -a = (p;a) - ax = b;. Let by;y = (p;3) - a’. We obtain a permutation p’ of set

{1,2,...,r} which will induce an automorphism p on Y such that the following diagram

X(—B> Yr

X2 yr
commutes. This gives us two expression of a : Ay — Y as the composite of an epimorphism
and a monomorphism. Since such factorization is unique up to isomorphism, we then obtain an
isomorphism v € Aut(X) such that of = vay. It follows 6, is a surjection and X is Galois with
(X,a) ZB (Y, b;) for any b; € F(Y). O
Pj

2.2.2 Proof of the Theorem

Let C be a small Galois category with fundamental functor /. We may assume now that F' is
strictly pro-represented by a projective system (A;, ¢;;)ien With each A; Galois object of C.

Let m; = Aut(A;) and 6; be the bijection m; — F(A;), u — u - a; where a; € A; and (4;,a;) € A.
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For j > i we define 1;; : m; — m; as the composite map

Then for any u € 7; we have

bij(u) - ai = 0:(¢i5(u)) = F(pij)05(u) = Flpij)(u-a;) = Fleig) F(u)(a;) = (piu) - a;.

This implies (4;,a;) > (A4;,b) and (A4;,a;) > (A;,b;), where b; = ¢;;(u) - a; = (@iju) - aj. By

ij (W)pij Piju
lemma 2.2.6, 1;;(u)p;; = piju, i.e., the following diagram commutes.
Pij (u)

- >

7 1

A; A;
ok
Aj—— A

J J

It follows that 1;; are group homomorphisms. Since each ;; is epimorphism and 0;, 8; are bijective,
by (G5) each v;; is surjective. Now we obtain a projective system of finite groups (m;,1;;)iea. Let
WIL = {(u;) ZGAEHWZ s ij(uy) = u; for all j > i},

ieA eA
Then 7 is a profinite group by giving me the product topology and 7 the relative topology.
ic

For any object X of €, the group m; acts on More(A;, X) to the left by (o, f) — fo~'. For
any o € m;, f € More(A;, X) and for j > ¢, let o be an element in 7; with ¢;;(c) = 0. We have
o (feij) = fei;o ' and (fo ) opy = fo(viy(07 ) i) = fpijo~ " This implies the group action
we defined above is compatible with the map ; ﬁmrz and More(A;, X )iMor@(Aj, X), where
;; is the map induced by ¢;; sending f € More(A4;, X) to foy;; € More(A;, X). Thus the actions of
m; on More(A;, X) induce a continuous 7-action on the set ligMor@(Al-, X)—=F(X). Since F(X)

iek

is finite, the action of 7 on F'(X) is determined by the action of some m; on FI(X). If f: X — Y is
a morphism in € then the induced map lim More (A, X) — limy More(A;,Y') is a morphism of 7-sets

€A 1€EA

since the action comes from 7; for some sufficiently large i. We have the following commutative
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diagram.

T

hﬂieA MOI"@(AZ‘, X) <~ MOI"@(AZ', X) —_— F(X)

| e

lim, More(A;,Y) <—— More(A;,Y) —— F(Y)
Thus F(f) is a morphism of 7-sets.
Let us recall basic facts about the pro-category Pro €. Informally speaking, an object of ProC
(called a pro-object of €) is a projective system P= (P;)ier in C. If P, P = (Pj)jer are pro-objects
of G, we define

Morpyoe(P, P') = l'gnthore(Pi, P]’)

jeJ el

An object of € will be considered as an object of Pro € in a natural way. In this notation, a pro-
representable functor on € can be seen as a functor “represented” by a pro-object of C. Let C be a

small Galois category with fundamental functor F'. For any object X in € we have:

F(X)éhg More(4;, X) ~ Morp,oe(A, X)
(ISN

where A is the pro-object (4;)sea of €. Hence each element of F(X) can be seen as a Pro @-morphism
A — X. Since A; is a Galois object in G, we have Morpm@(;f, Ay) 2 F(A;) & More(A;, A;) =

Aut(A;) = m; and then

77':]‘&17‘(‘1- = @MOI‘@(AZ-,AZ‘)

1EA 1EA

= @MorPro@(Za Aj)

€A

— Morproe(A, A) = Aut(A).
Next we will give a description of connected objects in m-Sets.
Lemma 2.2.12. An object E of m-Sets is connected if and only if the action of m on E is transitive.

This lemma follows from the Definition 2.2.3 immediately.
If we write H (X)) for the set F'(X) equipped with the m-action and H(f) = F(f) for a morphism
fin €. Then H is a functor € — 7-Sets that composed with the forgetful functor 7-Sets — Sets
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yields F' (we shall see later that this H is the same as we defined in section 2.1.6). Then we obtain

an equivalence of categories.
Lemma 2.2.13. The functor H : € — w-Sets is an equivalence of categories.

Proof. Claim 1 : H is essentially surjective.
Let E be any m-set. By (G2) and (G5) we may assume that F is connected in the category
m-Sets, i.e., m acts transitively on E. Fix an element ¢ € E, the map # — FE defined by o — 0 - ¢

is a surjection. As FE is finite, this map will factor through m; for some 7 € A,

N

where f; : m — m; is the natural projection and the map m; — E is defined by the group action

E

™

on e. Obviously this holds for each j > 7. Let H; C m; be the isotropy group of e in m;, i.e.,
H;, ={o €m :0-e=e}. There is a natural action of 7 on 7;/H; induced by left multiplication.
We define a map I' : m;/H; — E by cH; — o -e. Obviously I' is a bijective. For any 7 € m we
have I'(7 - o H;) = I'(fi(7)oH;) = (fi(r)o) -e = fi(1) - (6-e) =7-(0c-€) =7 -T'(0H;). SoT is an
isomorphism in 7-Sets.

We then let /E\Z := A;/H; be the quotient described in section 2.1.4. By (G2), /E\Z is an object
in € and by (Gb), F(/E\Z) = F(A)/H; = m/H; = E as m-sets. If j > i and H; C 7, is the
isotropy group of e in 7;, the group homomorphism ;; : m; — m; induces a map w;/H; — m;/H,

by 0 H; — ;;(0)H,;. Since the following diagram
(

N

commutes, i.e., 1;;(H;) C H; then the map ;/H; — m;/H, is well defined. Notice that we have the

T
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following two diagram.

<

ij (o)

Aj 7 Az Az —— Az
Pj l lpi ®ij T T%’j
A;/H; Ai/H, Aj—= 4

with the second one commutative. For any o € H; thus pjo = p; and ;;(0) € H;. We have
(pipiz)o = pi(pijo) = pivij(0) iz = pipij-

Then there exists a unique morphism p;; : A;/H; — A;/H; such that p;p;; = p;;p;. Looking at the

images of E; = A;/H; and E := A;/H; under F we have a commutative diagram.

F(A,/H) ") pa B
b

Thus F(p;;) is an isomorphism of 7-sets. By (G6), E\] ~ F;. This means that the object E;
such that F' (/E\Z) = F is independent of the choice of i hence we denote it by E and denote the
isomorphism F (E)L>E by v&.

Now consider the map H : More(X,Y) — Mor .gets(F(X), F(Y)) by f— F(f).

Claim 2 : H is injective.

!
Let f,g € More(X,Y) with F(f) = F(g). Let (E,e) be the equalizer of X Y. By (G4)

g
F(f)

and Remark 2.2.1, (F(E), F(e)) is the equalizer of F(X)___F(Y). Since F(f) = F(g) F(e) is an
F(g
isomorphism thus e is an isomorphism by (G6). This impli(es) f=g.

Claim 3 : H is surjective.

As in Claim 1 we can assume X is connected. Fix an element a € F(X). By Lemma 2.2.11
there exists (Ay,ay) € A and f € More(Ayn, X) such that (Ay,ay) ? (X,a). Actually, take N
large enough we may also assume that the map More(Ayn, X) — F(X), g — F(g)(a) is bijective.
By (G3) and the connectedness of X the map F(f) : F(Ax) — F(X) is surjective. Take any
f" € More(An, X) then there exists an a/y € F(Ay) such that F(f)(aly) = F(f')(an). As Ay is a
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Galois object of €, my acts transitively on F'(Ay). Thus we can find a o € 7y such that o-an = dly,
i.e., F(o)(ay) = a)y. Then F(f)(F(o)(an)) = F(fo)(an) = F(f")(an). By Lemma 2.2.6, fo = f’,
ie., f = o- f'. This means the action of my on More(Ay, X) is transitive. Hence we obtain an
isomorphism of 7-sets F'(X) = ny/G where G is the isotropy group of f in 7. Since FI(X) is

finite, the map m — F(X), 0 — o - a can be factored through some 7.

F(X)

Im /

M

By taking M large enough (namely M > N) we may assume that 7y, acts transitively on More(Ays, X)—
Since fy is surjective, 7 acts on F'(X) transitively thus F'(X) is connected in m-Sets.

For any o : F(X) = F(Y), let b = a(a). The ProG-morphism b : A — Y can be factored
through some A; as follows

A b Y
P
A,

for some b, € F(Y). Take i large enough such that More(A;,Y)—=F(Y") and (A;, a;) > (Y, by) for

I

allb, € F(Y). Recall that Vo € m;, 0+ fr = froo tand o-b, = F(froo™ ) (a;) = F(fe)F (o) (a;).

Let H;, H], H! be the isotropy group of a, a; and b; in 7;, respectively. Then we have H; C H! C H]'.
The map b, : A; — Y can be factored through A;/H; = f()?) for ¢ sufficiently large and the

following diagram

ALt oy

| A

ﬁ

is commutative. Similarly, by taking i large enough, we have v : A;/H; = F/(?) — X such that the

diagram

pe
AN
2 <
~—



commutes. Then F'(v) o fy;(lX) = idx, which implies F'(v) is an isomorphism. Thus v is an isomor-

phism by (G6). So we have a composite
-1 —
XL F(X) Ay,
We complete the proof of this lemma. O

Next lemma gives a concrete description of the automorphism group of the forgetful functor from

m-Sets to Sets.

Lemma 2.2.14. Let 7 be a profinite group and F the forgetful functor from w-Sets to Sets. Then

Aut(F) = 7.

Proof. As 7 is a profinite group, m = 1&1 7 /7', where ' ranging over the open normal subgroups
/> open

of m. w/7" is automatically a m-set whefe the action is induced by left multiplication. For any

o € Aut(F), o is determined by the bijections ox : F(X) — F(X). For any X € Ob(C), fix an

element x € F(X). Let 2’ = ox(z) and 7, be the isotropy group of x in 7. Since 7 acts on X

continuously, 7, is an open normal subgroup of 7. Similarly we may assume that X is connected,

i.e., m acts transitively on X. Then 7/m, — X by @+ a - x is an isomorphism as m-sets. We have

the following commutative diagram.

F(m/me) — F(X)

F(r/my) —— F(X)
where 7 : /7, — m/my given by am, — am, is an isomorphism. In fact, for any a € 7w, x € X
we have a -z = x & a -2’ = 2’ with 2’ = ox(x). Then 7, = 7, thus each 7 gives rise to a map
Onjmy + F(m)7y) — F(m/7m;). So ox is determined by such o,/ with 7' ranging over the open
normal subgroups of .
Next we will prove that the map ® : /7" — Aut,_sets(7/7’) defined by an’ + (f, : br' — ba'7’)
is a group isomorphism.
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e & is well defined.

For a, @’ € m with ar’ = a'7’, thus aa’~' € 7', we have
fa(br") = ba 7" = ba tad " 7 = b rn = fu(br).

Moreover, f,(a’-br') = f.(d'bn’) = d'ba™'n’ = a' - f,(bn’). Then it is easy to see that

fo € Autgets(m/7).
e (learly @ is injective and a group homomorphism.

e d is surjective.
Vo € Autrgets(7/7'), Va € 7, fix some bn’ € 7/’ for some b € 7, let o(br’) = b'n’ for some

V € m and set a = V'"'h. We have f,(br’) = bb~'0'7’ = V'n’. For any dn’ € w/7’,
o(dr’) = o(db~ b)) = (db™1) - (W'7') = da 7' = f,(dn).
Then o = f,.

Similarly we have any set-theoretic map 7/7" — 7/7’ commuting with all 7-Sets-automorphisms

~

of w/7" is given by left multiplication by some bn’ € 7/7’. Then Aut(F) Jim Aut(r/7") =

7/>7 open

Jm 7/’ = m. Hence the functor H : m-Sets — Aut(F')-Sets defined in section 2.1.6 is the

7/>7 open

identity functor. O

Now we prove the main theorem in this chapter, Theorem 2.2.1.

Proof of Theorem 2.2.1. We first prove (b). Let m be any profinite group and H : € — m-Sets be
an equivalence such that composed with the forgetful functor F; : m-Sets — Sets it yields F. As
H is a equivalence we have Aut(F') = Aut(F}). By Lemma 2.2.14, 7 = Aut(F;) = Aut(F'). This
shows (b) and (a) follows from (b) immediately.

Now suppose (4, a), (A,da’) € A, Aut(A) acts on F(A) transitively. Then there exists a u €
Aut(A) such that u(a) = o’ thus (A,a) = (A,d’) in A. This means all pairs (A, a) inA with the
same A are isomorphic, we may replace A by a subset A; containing exactly one pair (A, a) for
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each Galois object A. Now we prove (c). Let F” be a second fundamental functor on €. F', F" are

pro-represented by pro-objects Z, é, respectively. Then we have

F = Morproe(A, —) = lim More(A;, —) andF’ = Morp,oe(B, —) = lim More(B;, —)

ien jEA2
where Ay, Ay are subsets of A containing exactly one pair (A, a) for each Galois object A. It suffices
to prove that A 2 B in Pro C. We denote the canonical morphism A; — A; (resp. B; — B;) by pij
(resp. ¢;;) for j >4, and the map A= A (resp. B — B;) by p; (resp. ¢;). Let a; € F(A;) (resp.
b; € F(B,)) be the element such that (A4;,a;) inAy (resp. (Bj,b;) inAy). For any j € Ay consider
the Pro C-morphism b, : A= B;. Since by = q; o b; they induce a Pro C-morphism b : A = B such

that the following diagram commutes.

For any b; : A Bj, there exists i; € Ay such that (A;;,a;,;) > (B;,b;) and the following diagram

b

A—L-B
N
Ay, —B;
is commutative. Similarly, we can get a commutative diagram in other direction B — A. Then

A2 B in Pro@. This implies F = F’ and proves (c). (d) follows from (b) and (c).

This completes the proof the Theorem 2.2.1.
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Chapter 3

Finite étale coverings

This chapter contains some basic properties for finite étale coverings. In the first two sections,
we introduce the affine information needed for finite étale morphisms. Throughout the first two

sections, let A be a ring (commutative with identity).

3.1 Projective modules and projective algebras

Definition 3.1.1. Let 0 — My — M; — M, — 0 be a short exact sequence of modules over a ring
A. The sequence is said to split if there is an isomorphism M; = My @ M, of A-modules for which

the diagram

0 M, M, M, 0

Ju |~ Ju
OHMOHM()@MQH'MQHO

(with the obvious maps in the bottom row) is commutative.

Proposition 3.1.1. Let 0 — M, EN M,y ER My — 0 be a short exact sequence of modules over a

ring A. The following three statements are equivalent:
(i) the sequence 0 — My — My — My — 0 splits;

(i1) there is an A-linear map h : My — My such that h o f = idyy,;
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(111) there is an A-linear map h' : My — My such that f' o h' = idyy,.

Proof. (i) = (i1): Suppose the sequence splits. By definition there is an isomorphism ¢ : M; —

My & My of A-modules such that the following diagram

My——

.

My -2~ My ® M, 2~ M,

commutes, where g; is the natural inclusion and p; is the projection with p; o gy = idy,. Let h be
the composite
M1$'MO EB MggMo.
Then ho f = (p1o)f = prgridy, = idyy, as required.
(77) = (i1i): Suppose we have an A-linear map h : My — My with hf = idyy,,

f/

For any x € Ms, since f’ is surjective, there exists a y € M, such that f'(y) = z. Then we define

a map

h/IM2—>M1, .fL'Hy—th(y)

e i/ is well defined. Suppose we have y,y’ € M; with f'(y) = f'(v/) = z. Thus y — ¢/ €
Ker(f") = Im(f), i.e., there is a z € M such that f(z) = y—vy'. Then z = ho f(z) = h(y—v')
and y —y' = f(z) = f(h(y —y')). This implies #'(y) =y — fh(y) =y — fh(y') = W' (), ie,

h' is well defined.

e 7 is A-linear since f,h are A-linear.

e Vx € My, we have

froh(x)=f'ly—fhy) = f'y)— (f'Hy)=fy) ==

since f'f =0, ie., ffoh' =idy,.
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(17i) = (i): Suppose we have an A-linear map h’ : My — M; with f'h' = idyy,,

M- n,——0.

NS

For any x € M, consider the difference x — A’ f'(x) in M;. We have

0— M,

f'@ = hf(x)) = f'(z) = (fB)(f'(z) = f(z) = f(z) =0,
ie, z — M f'(x) € Ker(f') = Im(f). Since f is injective, there exists a unique ¥ € M, such that
f(@) =z — K f'(x). We define a map
W My — My & My, x> (7, f'(x)).
e [t is easy to see that ¢ is a homomorphism of A-modules.
e ¢ is injective. Suppose we have T = 0 and f'(x) = 0 for some « € M;. Then = — h'f'(x) =

f(@)=0,ie,x="hnf(x)=Hr(0)=0.

e 1 is surjective. For any (y,z) € My @ My with y € My and z € Ms, let x = f(y) + h/(2).

Then we have
f'(x)=[ffly)+ fH(z)=0+2z=2z andf(y) =z — W'(z) =2 — W(f ().

Remember that T is the unique element in M, with f(yx) = x — A’ f'(x), which implies 7 = y.

Thus ¢(x) = (y, 2).

e For any y € My, since f'f = 0 then f(y) = f(y) — W(f'f)y) = fy) — (W f)(f(y)), which

—_

implies f(y) = y. We have the following commutative diagrams.

MOL-Ml by

| T R

Mo ——= My & M,

and
MlL'MQ by l'}%f/(x)
‘P\LN lid [ I
Moy ® My — M, @, f'(z)) — ['()
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These prove that the sequence 0 — My — M, — M, — 0 splits. O

Lemma 3.1.1. Let M be an A-module, (P;);cr be a collection of A-modules and P = & P;. Then

el
(1) Homyu (P, M) = [] Homa(P;, M); (2) P ®4 M =2 @(P, @4 M).
icl icl
Proof. Let ¢; be the natural map P; — P, p; — (p;)ier where p; = p; if i = j and p; = 0 if
i # j. Obviously, ¢; € Homu(F;, P). We first prove (1). For any f € Homyu(P, M), we have

fow; € Homy(P;, M). We then define a map
¢ Homyu (P, M) — HHOIHA(PZ»M% [ (fogiier
el

e [t is easy to see that ¢ is a homomorphism of A-modules.

e ¢ is injective. Suppose we have an f € Homy (P, M) such that fop; =0 for any i € I. Take

any = (pi)ier € P = @ P;, thus p; is zero for all but finitely many i. Suppose p;,, pi,, - - -, Di,,
il

are all the nonzero components. Then x = ¢;, (p;,) + i, (pi,) + -+ + @i, (pi,,). This implies

f(x) = foi,(pi) + foi,(pi,) + -+ fei, (pi,) = 0. Since z is arbitrary, f = 0.

e ¢ is surjective. For any (f;)icr € [[ Homa(P;, M), we define
icl

f:P— M, x=(pics— ij(pj),

jed
where J is a finite subset of I such that x = Z;]% (pj). It is easy to show that f € Homu (P, M)
je
and ¥ (f) = (fi)ier-
So 1 is an isomorphism, which proves (1).
For (2), we define f; : P, x M — P ®4 M by (p;,m) — @i(p;) ® m. f; is A-bilinear for

each ¢ € I. By the universal property of the tensor product, there exists a unique A-linear map

gi Py ®a M — P ®4 M such that the following diagram

PixM——P,®s M

gi -
fiJ/ Phe
-
A

P®a M
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commutes. These maps will induce a map

9 PP@aM) — Py,

el

(i @ Mi)ier +— Zgi(Pi ®m;) = Z(%’(Pi) ® m;).

iel iel
This map is well defined since the sum on the right hand side is taken over only finitely many

nonzero elements.

We also have an A-bilinear map »' : P x M — @(P, ®4 M), ((pi)ier,m) — (pi ® m)ier. It
iel
induces an A-linear map h: P ®4 M — @ (P, ®4 M) such that the following diagram
iel

PxM

P&y M

~
, ho-
h ~
-
-
A

PP @4 M)

el

is commutative. Then it is easy to check that goh = idpg,ar and ho g = idgy(p,e 1), Which shows
el

2). 0

Remark 3.1.1. Let (P;);es be a collection of A-modules and P = @ P;. By the above lemma, we can
icl

easily show that the functor Homy (P, —) (resp. — ®4 P) is exact if and only if each Hom, (P, —)

(resp. — ®4 P;) is exact.
Proposition 3.1.2. For any A-module P the following four assertions are equivalent:

(i) The functor Hom (P, —) is ezxact, i.e., if

is a short exact sequence of A-modules, then
0—Hom (P, My)—2>Hom (P, M;)—~Homm (P, My)—0

is also a short exact sequence, where @', ' are natural homomorphisms induced by ¢ and 1,

respectively.
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(i1) For every surjective A-homomorphism f : M — N and every A-homomorphism g : P — N

there exists an A-homomorphism h : P — M such that g = fh:

h//l
, g
i
M —- N ——0.

(i1i) Every exact sequence 0 — L — M — P — 0 splits.
(iv) P is a direct summand of a free A-module.

Proof. (i) = (i) is trivial.

(17) = (iii): Let N = P and g = idp in (i¢), then (i7) follows immediately using Proposition
3.1.1.

(77i) = (iv): Remember that every A-module P is a quotient of a free A-module and apply (7).

(tv) = (i): Suppose P is a direct summand of a free A-module. By Remark 3.1.1, it suffices
to show that Homu(A, —) is exact. This is obvious since Homy (A, M) = M for every A-module

M. O

Definition 3.1.2. An A-module P is called projective if it satisfies any of the equivalent conditions

of Proposition 3.1.2.

Corollary 3.1.1. Free modules are projective. A finitely generated module is projective if and only

if it is a direct summand of a finitely generated free module.

Proof. The first assertion is obvious. The second statement follows from Proposition 3.1.2 (¢ii). O

Remark 3.1.2. Recall that an A-module P is called flat if the functor —®4 P is exact. Free modules

are flat hence projective modules are flat by Remark 3.1.1.
Example 3.1.1. (1) If A = K is a field, then every A-module is free and hence projective.

(2) If A is a principal ideal domain, a projective A-module is free.
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(3) Suppose A = A; x A, for rings A; and As. Then each A; is a projective A-module. If the A;
are nonzero they are not free. Let P be any A-module. There is an isomorphism P = P, X Ps,
where P, = ¢;P; is an A; module with e; = (1,0) and e; = (0,1). Moreover, P is projective

over A if and only if each P; is projective over A;.
Lemma 3.1.2. Let M, N and P be A-modules and P is flat. For any f € Homa(M, N), we have:
(1) Ker(f @ idp) = Ker(f) ®4 P and
(2) Coker(f ® idp) = Coker(f) ®a P hence Im(f ® idp) = Im(f) ®4 P.

Proof. (1) We have an exact sequence 0 — Ker(f) — M — N. Since P is flat, the sequence
0 — Ker(f) @4 P - M ®4 P — N ®4 P is also exact. For any = € Ker(f) and any p € P,
(f®idp)(zr ®p) = f(z) @ p = 0. This implies Ker(f) ®4 P C Ker(f ®idp). We have the following

commutative diagram

0—=0—=Ker(f)@s P—>Ma, PPN, P

| o e
feidp

0—=0——Ker(f®idp) —> M@, PPN, P
with each row exact. By five lemma, Ker(f) ®4 P = Ker(f ® idp).
(2) We start with another exact sequence M — N — Coker(f) — 0. Since P is flat, the
sequence M @4 P — N ®4 P — Coker(f) ®4 P — 0 is also exact. There is a natural A-
bilinear map Coker(f) x P — Coker(f ® idp) with (Z,p) — = & p. This induces an A-linear map

¢ : Coker(f) ®4 P — Coker(f ® idp) and we obtain the following commutative diagram

M®, P2 N @, P— Coker(f) @4 P——=0—=0

o X
feidp

M®, PEEEN g, P—— Coker(f ®idp) —=0——=0

12

with each row exact. By five lemma, Coker(f ® idp) = Coker(f) ®4 P and thus Im(f ® idp)

Im(f)®4 P. U
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Proposition 3.1.3. Let A be a local ring with mazimal ideal m and P a finitely generated A-module.

Then P is projective if and only if it is free.

Proof. The “if” part is obvious. For the “only if” part, since P is a finitely generated A-module,
P ®4 A/m is a finite dimensional vector space. Take zy,x,...,2, € P such that {z; ® 1,25 ®
l,...,z, ® 1} is a basis of P ®4 A/m. Let f : A® — P be the map sending the i-th basis
to x;. Then f ®idg/m : A" ®4 A/m — P ®4 A/m is an isomorphism since it is a linear map
between two vector spaces sending basis to basis. Then M = Coker(f) is finitely generated and
M/mM = M ®4 A/m = Coker(f) ®4 A/m = Coker(f ® ida/m) = 0, i.e., M = mM. Nakayama’s

lemma implies M = 0, so f is surjective. Now we get a short exact sequence of A-modules:

0——=Ker(f) A" P 0.

P is projective = A" = P @ Ker(f) = Ker(f) is finitely generated. Since Ker(f)/mKer(f) =

Ker(f) ®4 A/m = Ker(f ® ida/m) = 0. By Nakayama’s lemma Ker(f) = 0, i.e. f is injective thus

O

an isomorphism. So P is free.

Next, we will see some local characterization of projective modules. Recall that for any f € A,
Ay = S'A where S = {f":n >0} and My = S7'M = M ®4 Ay for an A-module M. We say
that M is finitely presented if there is an exact sequence A™ — A" — M — 0 of A-modules with

m,n < Q.

Lemma 3.1.3. Let M, N be A-modules, with M finitely presented and let S C A be a multiplica-

tively closed subset. Then S~ Homu (M, N) = Homg-14(S™*M,S™'N) as S~'A-modules.

Proof. The natural map ¢ : S~ Homa(M, N) — Homg-14(S™'M,S™'N) is given by { = (f

»[3

N f(m)) for any f € Homa(M,N), m € M and s,t € S. f; is S~!A-linear because

st

amy  my, amaty +btimy . f(amaty + btymy)
ft(b t * t2) = M bt its )= tht s
af(maty) + f(blimg) _ ataf(mi) | btif(ms)
tbtits bttty tbtits
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_ apmuy e
= bft( 7 )+ fi( s ),
for any a € A, my,mqy € M and b,t;,to € S. It is easy to see that ¢ is well-defined. We claim that

@ is an isomorphism. This is clear if M = A since the following diagram is commutative,

STIN —=— S~'Homu(A, N) by Y (1'??”)
5 |
571N$—H0m57114(57114, SilN) %}%— (% — %)

where (1 +— y) denotes the map in Homy4 (A, N) uniquely determined by sending the identity of A

to y. Similarly, taking direct sums we get a commutative diagram

S~1 Hom (A", N) —~~ @ 5~ Hom(A, N)

% T

HomS_1A(S_1A”, S_IN) — @ HOHls—lA(S_lA, S_lN)
1=1

by
v, <(1Hf(el)) (1Hf(en))>
t t ? Y t
(firgm ) (1 L) e
where e; = (0,...,1,...,0) has a 1 in the i-th component and zeros elsewhere with e;’s forming a

free A-basis for A”. Hence ¢ is also an isomorphism if M = A" for some n < oo. For general M,

since M is finitely presented, we have

h . .
A™ B A" 2 M — 0 is exact with m,n < oo,

= 0— Homa(M,N) — Homu(A", N) — Homy(A™, N) is exact
(Homy(—, N) is left exact),
= 0— S 'Homyu(M,N) — S~ Homu (A", N) — S~  Hom,(A™, N) is exact
(S~ is flat).
Similarly, we have an exact sequence

0— HOHls—lA(SilM, SilN) — HOms—lA(SilAn, SilN) — HOms—lA(SilAm, SilN)
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and the following diagram

S~'Homa (M, N) S~!Hom (A", N) S~1Hom4(A™, N)

wi ] ]
0—— HOI’HSflA(SilM’ SilN) —_— HOHlelA(SilAn, SilN) —_— Homs—lA(SilAm, SilN)

with both rows exact. The first square is commutative by

and the second square is commutative in similar way. Hence S~ Hom4 (M, N) = Homg-1,(S~'M, S7!N

by five lemma. O
Lemma 3.1.4. Let (fi)ier be a collection of elements of A with ), ; Afi = A and M an A-module.

(a) If My, =0 for alli € I then M = 0.

(b) If My, is a finitely generated Ay,-module for each i € I then M is finitely generated.

Proof. (a) Let m be any maximal ideal of A. Since ), Af; = A, the set {f; : i € I} is not
contained in m. There exists an ig € I such that f;; € A—m. My =0= My=0= M=0.
(b) Suppose we have > " a;f; = 1 for some ay,...,a, € A. By assumption, we may take a

finite subset of My, as generators over Ay. Moreover, we may take the generators of the form

kb
’zﬁ,’}:ﬁ,,rz]’f for each 1 <4 < n. Then for any m € M, we can write T as T = % i
My, with b;; € A. Then there is an N” such that f¥ m = Z?Zl b jmij.
(fisforo o fu) = (1) = (NN N = (1), ie., there exist df,...,a/, € A such that

S alfN" = 1. Hence we have

n n k n k

m=m-) afl" =) a} Yymy=3 Y cum

i=1 =1 j=1 i=1 j=1

with ¢;; € A. So M is a finitely generated over A. O
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Theorem 3.1.1. Let P be an A-module. The following are equivalent:

(i) P is a finitely generated projective A-module.

(i1) P is finitely presented and P, is a free Ay-module for any prime ideal p of A.
(i1i) P is finitely presented and Py, is a free An-module for any mazimal ideal m of A.

(iv) There is a collection (f;)icr of elements of A with ) .., Af; = A such that Py, is a free Ay, -

module of finite rank for each i € I.

Proof. (i) = (ii): Let @ be such that P @ @ = A" for some n < co. Then @ is finitely generated
thus P is finitely presented. Let p be a prime ideal of A and we have A} = (P ® Q), = F, © Qy,
which implies P, is finitely generated projective over Ap,. By Proposition 3.1.3 F is free.

(17) = (i7i) because a maximal ideal is prime.

(17i) = (iv): Let m be a maximal ideal of A and suppose we have

where g, h are isomorphisms inverse to each other. By Lemma 3.1.3, Homy,, (A7, Py) = ( Homy (A", P))

and Homa,, (P, A,) = <HOmA(P, A”)) , 80 g = g;/, h = for some ¢ € Homu(A", P), I' €

m

Hom, (P, A™) and certain s,t € A —m. Then we have

id 'n’ idgn ng'
lP:ide:g and 1d 4 =idan = ‘;]
s

Then Ju,v € A —m such that ¢’h'u = (stu)idp and h'g'v = (stv)idan. Let fi, = stuv, ¢" = (m}:)g/

and ' = (51}:3”. Then ¢” € Homa, (A%}, Py,) and h" € Homy, (Py,, A} ). Moreover g"h" =

AN

ghn _ . nm . __ h'g _ - . "o : : . .
o =1idp, and h"¢" = =F =1id Ap s le, g , b are isomorphisms inverse to each other. So Py, is

a free Ay -module of finite rank. Let m range over all the maximal ideals of A we then obtain a

collection of f’s that is not contained in any maximal ideal thus generates A.
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iw) = (1): If we write the identity of A as a linear combination of finite f; we may assume tha
) ). If ite the identity of A li binati f finite f y that
I'is finite. For any ¢ € I, we may choose an isomorphism g; : A" — Py, such that the image of the
j-th standard basis (0, ..., %, ..., 0) is of the form 2Z for 1 < j < n;. Let g/ : A" — P be the map

1

defined by (0,...,1,...,0) = p;;. Then the following diagram

i o A
Ar A,

1

P—=P
commutes. These g/’s induce a map g : AXier™ — P with <Coker(g))f. = 0. By Lemma 3.1.4 g is
surjective. Consider the map g ®ida, : Afziia " — Py, Then Ker(g ® ida )= A%ﬁ“ " is finitely
generated. Hence Ker(g);, = Ker(g ®idy, ) is finitely generated and so is Ker(g) by Lemma 3.1.4.

This implies P is finitely presented. Apply Lemma 3.1.3 to any surjective map ¢’ : M — N of

A-modules, we have the following commutative diagram

(HomA(P, M)) L(HomA(P, N)) — Coker(p ®ida, ) —=0

i fi

%l %l

Homy, (P, My,) —= Homy, (P, Ny,)
with the first row exact, where ¢ : Hom4 (P, M) — Homy4 (P, N) is the natural map induced by ¢'.
Moreover, ¢' : M — N is surjective implies the map M, — Ny, induced by ¢’ is also surjective.
Then the map in the second row is surjective since Py, are free thus projective over Ay. By five
lemma, Coker(p ® ids, ) = <Coker(<p)>fi = 0 thus ¢ is surjective. By Proposition 3.1.2 P is

projective.

This completes the proof of the theorem. O

Now let P be a finitely generated projective A-module. By Theorem 3.1.1 (i), the A,-module
P, is free for each p € Spec(A4) and we denote the rank of F, over A, by rku,(F;). Then we define

the rank function

rank(P) = rank(P) : SpecA — Z by p = 1ky,(F,).
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We consider the rank function as a function between topological spaces where Z is equipped with
the discrete topology. Then this function is locally constant thus continuous. Moreover, if Spec A
is connected, i.e., A does not contain any nontrivial idempotents, then the function rank(P) is

constant and may be identified with a nonnegative integer.

Definition 3.1.3. Let P be a finitely generated projective A-module. We say that P is faithfully

projective if rank(P)(p) > 1 for all p € Spec(A).

Proposition 3.1.4. Let P be a finitely generated projective A-module. The following four state-

ments are equivalent:

(i) P is faithfully projective.

(i) The map A — Endy(P) giving the A-module structure is injective.

(111) P is faithful, i.e., an A-module M is zero if and only if M ®4 P = 0.

(iv) P is faithfully flat, i.e., a sequence My — My — My of A-modules is exact if and only if the

induced sequence My @4 P — My @4 P — My ®4 P is exact.

Proof. First we prove an equivalent condition of (i7). The map ¢ : A — Endy(P) defined by
a— (fa : p— a-p)is Zlinear and gives Endyz(P) the A-module structure. Then we have
Ker(¢) = Ann(P). So condition (z7) holds if and only if Ann(P) = 0. Now we start the proof of
the proposition.

(1) = (i1): Take any a € Ann(P), it suffices to show that a = 0. First we claim that a € R(A),
which is the Jacobson radical of A. If not, then there is a maximal ideal m of A such that a € A—m.
Then P, = 0 since a € Ann(P), a contradiction with P faithfully projective. Hence a € R(A). For
any maximal ideal m of A, since P, is free over A, of rank > 1, there exists z € Pandt € A —m
such that £ # 0. But ¢ - = 0, this implies { = 0 in Ay,. Then there exists an s € A — m such
that as = 0. Letting m range over all maximal ideals of A, we obtain a collection of s’s that is
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not contained in any maximal ideal and thus generates A. There exists r,79,...,7, € A such that
> v ris; = 1 where s; is obtained as above with as; = 0. Then a = """ r;s;,a = 0.

(1) = (di27): The “only if” part is obvious. For the “if” part, suppose M ®4 P = 0. For any
maximal ideal m of A, since P is finitely generated projective, P, is a free Ay-module of finite
rank. Suppose P, = Al. Since P is finitely generated, by (ii), we have P, # 0, thus n > 1. But
0=(M®4P)n = My ®a, Pn= M, therefore M, = 0. Thus M = 0.

(17i) = (iv): The “only if” part is clear since a projective module is flat. Conversely, suppose
My i> M, 2 M,yisa sequence of A-modules and the induced sequence My® 4 P f®—id>P My@4 P 9&id
Msy®4 P is exact. Then 0 = (g®idp)o(f®idp) = (9f®idp). By (iii), gf =0, i.e., Im(f) C Ker(g).
Let M = Ker(g)/Im(f), by Lemma 3.1.2, M ®4 P = Ker(g ®idp)/Im(f ®idp) = 0. Then M =0,
ie., My i) M, EN M, is exact.

(iv) = (i): We need to show that rank(P)(p) > 1 for any prime ideal p of A, i.e., P, # 0. Suppose
not, i.e., there is a p € Spec A such that B, = 0. Then the sequence 0 = B, = P ®4 A, — 0 is

exact. By (i), 0 = B, — 0 is exact, i.e., A, = 0. Hence 0 € A —p, a contradiction.

This completes the proof. O

Let P be a finitely generated projective A-module and P¥ = Hom (P, A) denote the dual module

of P. For each A-module M there is a natural bilinear map:

¢ : PV x M — Homu (P, M) with (f,m)~ (p+— f(p)-m).
This induces a homomorphism:

¢: PV @4 M — Homy (P, M) with f@mw— (p+— f(p)-m).
We have the following property:

Proposition 3.1.5. The map ¢ : P¥ @4 M — Homu (P, M) with f®m— (p+— f(p)-m) is an

1somorphism.
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Proof. The proof of this proposition is similar to the proof of Proposition 3.1.3. Since we have the

following commutative diagram,

AY TAMLHOIHA(A,M) by f@mir——s(aw f(a) -m)
A®@a M ~ f(l)@m
Y P [0 ——

¢ is an isomorphism if P = A. Taking direct sums we have that ¢ is an isomorphism if P = A" for
some n < o0o. For general P, the same conclusion is obtained by passing to direct summands and

applying five lemma. O

Proposition 3.1.6. Let P and P’ be finitely generated projective A-modules. Then the A-modules
P®P', Poa P, Homyu (P, P") and PV are finitely generated projective and the rank of these modules

are given by

rank(P @ P') = rank(P) + rank(P’),
rank(P ®4 P') = rank(P) x rank(P’),
rank(Homy (P, P')) = rank(P) x rank(P’),

rank(P") = rank(P),

as functions on Spec A.

Proof. Let @ and Q' be A-modules such that P & @ and P’ & () are free A-modules of finite rank.

Then

(PeQ)e(PaQ)=(Per) s,
(PRQ)®as(PeQ)=(P®aP)®Q,,
Homyu (P& Q, P' & Q') = Homyu (P, P') & Q3 and

(PeQ) =P Q"
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verify the claim P & P', P ®4 P, Homa(P, P') and PY are finitely generated projective over A,

respectively. Moreover, for any p € Spec A, we have

~ ~ prank(P)(p) rank(P')(p) ~ grank(P)(p)+rank(P’)(p)
(P@P/)pzpp@Pp/:Apa @Apa :Apa i )
(P®4 Py =P ® A pp/ ~ A;ank(P)(p) ®a, A;ank(P’)(p) ~ A;ank(P)(p)-rank(P’)(p)’
(Homa (P, P')), = Hom 4, (P, pp’) o HomAp(A;;amk(P)(p)7 A;ank(P/)(p))

o ATnK(PIO)Tnk(P)0) g

(Pv)p = I—IOIHAp (Pp’ Ap) o~ HOHIAP (A,rjank(P)(P)’ Ap) ~ A;ank(P)(P).
These verify the assertions of ranks. 0

Proposition 3.1.7. Let B be an A-algebra and P a projective A-module. Then P ®4 B is a

projective B-module. Moreover, if P s finitely generated, the following diagram commutes.

Spec B—— Spec A
rankB(P®AB)\L \LrankA(P)
17—

Proof. Let @ be such that P @ Q@ is a free A-modules. Then (P®4 B)® (Q®4B) = (P& Q)®4 B
is a free B-module. This verifies the first assertion. Now suppose P is finitely generated projective

and A - B makes B an A-algebra. Then for any p € Spec B, we have

B;ank(P@AB)(p) " (P ®a B)p =P XA B]J

= P ®aApi) @, By = Porp) @a,

B
—1(p) 1y TP

~  grank(P)(¢~(p))
- Asfl(P) ®a

)

B, = B;ank(P)(sfl(P))

e~ 1(p)

i.e., rank(P ®4 B)(p) = rank(P)(¢*(p)). This completes the proof. O

Definition 3.1.4. Let B be an A-algebra. B is said to be finite projective if B is finitely generated
projective as an A-module. For such an algebra we write [B : A] in stead of rank4(B), which is a
continuous function Spec A — Z.
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Proposition 3.1.8. Let f : A — B be a ring homomorphism making B be a finite projective

A-algebra. Then we have:
(a) f is injective < [B: Al > 1.
(b) The following three assertions are equivalent:

(i) f is surjective;
(ii) [B: Al < 1;

(iii) the map B ®4 B — B, x @ y — xy is an isomorphism.
(c) [ is an isomorphism < [B: Al = 1.

Proof. (a): “ =" Suppose there is a p € Spec A with [B : A|(p) =0, i.e., B, = 0. Since A, # 0,
the map f, : A, — B, is not injective, which implies f is not injective.

“ <" Now suppose [B: A] > 1. Then Ker(f,) € Ann(B,) = 0 since B, is a free A,-module with
rank > 1. Hence Ker(f), = Ker(f,) = 0 for all p. So Ker(f) =0 thus f is injective.

(b): We will show that (i7) = (i) = (iii) = (i7).

(17) = (i) We may assume that A is local with maximal ideal m. By Proposition 3.1.3, [B : A] is
constant. If [B: A =0, = B =0 = f is surjective. If [B : A] = 1, then B is free of rank 1. Let b
is a basis of B over A, Vo € B, there is an a, € A such that = a, -b. Then for any o € End4(B),
we have

a(r) = ala, - b) = A Uap)b = o) - T.

Thus o = a,) - idp. This means End4(B) is a free A-algebra of rank 1 with basis idg. Then the
map g : B — Endy(B) defined by b — (my, : & +— bx) is A-linear and injective since my(1) = b.
Next we consider the composite

AL B %5 Endu(B)

with 14 +— 1p — idg. This implies g o f is an isomorphism. Since g is injective, f is surjective.
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(1) = (¢i7) Suppose f is surjective and let I denote the kernel of f thus B = A/I. Then we have

a composite with natural isomorphisms

B®sB =+ B A/l =+ B/IB = B/f(I)B = B with

r®y+— x®a (where f(a) =y)—a-z = f(a)r = xy.

This means the map B ®4 B — B, x ® y — xy is an isomorphism.
(iii) = (ii) Now suppose B ® 4 B = B. By Proposition 3.1.6, [B: A = [B®a B: A] = [B : A*.
So [B: A] > 1.

(c) follows immediately from (a) and (b). O

Definition 3.1.5. An A-algebra B is called faithfully projective if it is finite projective with [B :

Al > 1, i.e., if it is faithfully projective as an A-module.

By Proposition 3.1.4 we see that B is faithfully projective if and only if it is faithfully flat. Next

we give some equivalent statements for faithfully flat algebras.

Proposition 3.1.9. Let B be a flat A-algebra. Then the following conditions are equivalent:

(i) a* = a for all ideals a of A.

(i1) Spec B — Spec A is surjective.

(iii) For every mazimal ideal m of A we have m® # (1).

(i) If M is any non-zero A-module, then Mg = M ®4 B # 0.

(v) For every A-module M, the map M — Mp by v +— x ® 1 is injective.

For the proof of this proposition, we refer to Atiyah and MacDonald (1994) Ch3, Ex. 16.

Proposition 3.1.10. Let B be a faithfully flat A-algebra, and P an A-module. Then P is a finitely

generated projective A-module if and only if P ® 4 B is a finitely generated projective B-module.
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Proof. By Proposition 3.1.7 the “only if” part is always true for any A-algebra B. Conversely, we
assume that P ® 4 B is a finitely generated projective B-module. Then we can choose a finite set
of generators of the form p; ® 1,p, ® 1,...p, ® 1 with p; € P for all 7. Let e, es,...,e, be the

standard basis of A" and define a map
p: A" — P, e;— P,.

Then p®idp : A”®x B — P®4 B is surjective. Since B is faithfully projective, ¢ is also surjective
by Proposition 3.1.4. Thus P is finitely generated. Let Q = Ker(y). Using B faithfully projective

again, the exact sequence
0—Q®a1B—A"®4,B—P®,B—0

splits. Hence B" =2 A" @4 B = (P ®4 B) @ (Q ®4 B), which implies ) ® 4 B is finitely generated
projective. Applying the same proof we give for P to Q ® 4 B we obtain that () is finitely generated.
This shows that P is finitely presented.

Now we take an arbitrary A-module M. First we claim that the natural map
Y Homa(P,M)®4 B — Homp(P®4 B,M ®4 B), f®1l— f®idg

is an isomorphism of B-modules. If P = A™ for some m < oo, this claim is true by the following

commutative diagram,

Homu(A™, M) ®4 B —" > Homp(A™ ©4 B, M ©4 B)

(Homa(A,M))" ®4 B Hompg(B™, M ®4 B)
M™®, B (Homp(B,M ®4 B))"™
(M ®4B)™ (M @4 B)™ by
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(e = x;) ® 1p1 (e; @ 1p — ;@ 1p)

((1A|—>x1),...,(1An—>xm))®1B (e;|—>xi®13)
((L‘l,....’IJm)®1B ((13H.’IJ1®1B),...,(1BI—)(L‘m®1B))
(IEl@lB,..i,fEm@lB) ($1®1B,.i,$m®13)

where all the isomorphisms are natural and e;’s, €;’s are standard basis for A™, B™ respectively.
For general P, we choose an exact sequence A™ — A™ — P — 0. Then we have a commutative

diagram

0

HOIHA(P,M) ®a B HOIHA(A",M) ®q B HomA(Am,M) ®a B

) | |

0—>HomB(P ®a B, M ®4 B) H—HOHIB(A” XA B, M ®xy B) —>HomB(Am XA B, M ®xy B)

Both rows are exact by left exactness of Homy(—, M) and flatness of B. Then by what we just
proved for free modules and five lemma, v is an isomorphism.

Now let M — N — 0 be an exact sequence of A-modules. We have

M ®sB— N®s B — 0 (B is flat).

= Hompg(P ®4 B,M ®4 B) — Homp(P ®4 B, N ®4 B) — 0 is exact
(P ®4 B is projective).

= Homu(P,M)®4 B — Homyu(P,N)®4 B — 0 is exact.

= Homa(P, M) — Homa (P, N) — 0 is exact (B is faithfully projective).

= P is finitely generated projective over A.

This completes the proof. O

Let P be a finitely generated projective A-module and P¥ = Hom (P, A) denote the dual module

of P. Using Proposition 3.1.5, let M = P, we get an isomorphism

¢: PV 04 P — Homu(P, P)=Ends(P) with f®@q— (p— f(p)-q).
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We define the trace map tr = trp/4 : Ends(P) — A to be the composite
End;(P) = Homa(P, P) ©5 PV @4 P — A,
where the second map is given by f @ p — f(p).

Proposition 3.1.11. Let P be a free A-module with basis wy,ws, . .., w,, and define wi € P by
wi(w;) = 1ifi=j and wi(w;) =0 ifi # j. Let f € Enda(P), f(w;) = > 7, ajjw; with a;; € A.
Then we have

*

(a) PV is a free A-module with basis wi,ws;, ... w.

(b) ¢7H(f) = 22 aijwi @ w;.

(¢) trppa(f) = X2 aii-
i=1
Proof. (a): Clearly P is a free A-module of rank n. It suffices to show that the w}’s generate P".

Take an arbitrary g € PY. For any x € P, there exists ay,...,a, € A such that x = > " | a;w;.

Then

n n

Zg(wz‘)wf(ff) = Zg(wz‘)wf(z ajw;) =Y g(w) > azw;(w;)

i=1 j=1

= Zg(wz-)az- = Q(Z a;w;) = g(z)

This implies g = Y g(w;)w;.
i=1

(b): Since ¢ is an isomorphism, it is enough to show that ¢(3_,; ; a;;w; ® w;) = f. We shall check

this on the generators. For any 1 < k < n, we have
o> aiw; @ wy)(we) =D agwi(wy) - wy) =Y agjw; = f(w).
i ij j=1

(¢): The image of f under the trace map is:

trpa(f) : End,(P) —2

PVY®4 P A

n
fr———=2ajw} @ wjr——=73_ aj;wi(w;) = > ;.
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This completes the proof. O

Remark 3.1.3. In the special case P = A, for any f € End4(A), we have tra a(f) = f(1) by part
(¢) of the above proposition.
We have the following properties for the trace map.

Proposition 3.1.12. Let B be an A-algebra and P a finitely generated projective A-module. Then

the following diagram of natural maps

End(P) 2% Endp(P ®4 B)
trp/A\L \LtrP®AB/B
A B

15 commutative.

Proof. Let pi,po,...,p, be the generators of P as an A-module, then p; ® 1,po® 1,...,p, ® 1
generate P ®4 B as a B-module. For any f € PV, f induces a B-linear map f: P®s B — B with

f(p®b) = f(p)-b. Recall that the map ¢ : PY®4 P — End4(P) is defined by f®&p’ — (p— f(p)-p').

Then for any x € P and b € B, we have

ofepe) el = Jaob)-pel)=f@h pel)
= flz) p@b=0(f @p)(z) Db
= o(f@p)(@) 2 ids(b) = (6(f ©p) @ ids ) (w & b).

Hence the following diagram

trp/a

— T

EHdA(P) Pv ®AP A
- |

—1
Endp(P ®4 B) >~ (P ®4 B)" @5 (P ®4 B)—= B

\//’

trpg ,B/B
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is commutative by

Q‘gZﬁM\Z i)

el i€l

|

Zfi(pi) -1

icl

gRidg—= S i@ (p; @ 1) —= Y filp; @ 1),

el el

where [ is a finite index set. This completes the proof. O

Proposition 3.1.13. Let 0 - By — P — P, — 0 be an exact sequence of A-modules in which
Py and P, are finitely generated projective, and g : P, — Py an A-linear map with g[Fy] C P.
Denote by h the induced map P, — P,. Then Py is finitely generated projective and trp j4(g) =
trpya(glr) + treya(h).

Proof. Let ) be such that P, ® @ is a free A-module of finite rank. The assumption that P, is

projective implies P, & Py @ P,. Then P, Q = Py ® P, & Q = Py & ()1 proves the first claim.

Since P, = Py & P,, we have the following diagram:

EndA(Pl) s EndA(PQ) D HOIIIA(PQ, Pg) D HOIIIA(PQ, P()) D EndA(Pg)

¢1l~ ~l¢;1 ~l¢;1 ~l¢51 ~l¢;1

PY @a P —— (P) ®4 Py ® (Py ®4P2)® (P ®4FPy) ®(Py ®a4 Ps)

| !

A A

)

where ¢y, ¢, ¢3, ¢4 are isomorphisms given in Proposition 3.1.5 and the second arrow in the right
column is the sum of the two maps Py ®4 Py — A and Py ®4 P, — A. Then the composite of the

maps in the second column is just trp /4 +trp, 4. The above diagram is commutative by

g <7Tog<P0, T29%o, Tog¥2, 7T29<P2>

|

f ng% (f@o ® mo(m), fo ® ma(m), fa @ mo(m), fip2 @ 7T2(m)>

|

f(m) f (womo(m) + @ama(m)),
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where ¢; is the natural inclusion P; — P; and 7; is the natural projection P, — P; for j = 0,2.

Actually, the image of g € End4(P;) under ¢! is of the form Y f; ® m; with I finite. Since all the
il

arrows in the diagram are A-linear, we may assume that it is of the from f ® m. Then we have

tl"PI/A(!J) = tl"Po/A(7T09900) =+ ter/A(7T29902)'

Indeed, g|p, = mogpo since g[Py] C Py. Moreover, the induced map h : Py, — Py is just magps.

Thus trp,/a(g) = trp,/a(9|p,) + trp, a(h). O

Proposition 3.1.14. Let P and Q) be two finitely generated projective A-modules and f: P — Q,

g:Q — P two A-linear maps. Then

trp/a(g o f) = trgua(f o g).
Proof. By Proposition 3.1.5 we have
PY ®y Q%HomA(P, Q) and QY R4 P%HomA(Q, P).

Let o7'(f) = Y. fj®q; and ¢ '(g) = >_ 9; ® p;, where I, J are finite set and f; € PY, g; € Q",

= i€l

¢; € Q, p; € P. Then for any p € P, we have

¢<ij ®gz~(qj)pz~)(p) = ij( - 9i(q;)p Z filp Zgi(qj)p
= >_fip9lg) =g ij p)g;) =g f(p),
ie., o Ygo f)= ij ® ¢i(q;)p;. Similarly we can show that ¢~'(f o g) = Zgz ® fi(pi)g;. So by
i.j i.j

the definition of the trace map, we have

trQ/A ng Zgz f] pz QJ Zgz q; f] pz Zf] 9i %)pz) —trQ/A(gof>

i,J

This verifies the statement. O

Proposition 3.1.15. Let By, Bs, ..., B, be algebras over A. Then [[ B; is finite projective over A
i=1

if and only if each B; is finite projective over A.
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Proof. This follows from Lemma 3.1.1 immediately. O

Proposition 3.1.16. Let B be a finite projective A-algebra and P a finitely generated projective

B-module. Then P 1is a finitely generated projective A-module.

Proof. Clearly, P is finitely generated as an A-module. Let M be an A-module such that B&® M =

A" and @ be a B-module such that P @ @ = B™ for some m,n < co. Then A™ = P(Bd M)™ =
i=1

O

P & @' verifies the assertion.

3.2 Separable algebras

Let B be a finite projective A-algebra. For any b € B, let m; : B — B be map defined by the

multiplication by b, i.e., my(z) = bz for any x € B. Then we define the trace map
Trpa: B— A, by b tr(my).
This map is A-linear and induces another A-linear map
¥ : B — Homa(B,A) by ¢(b)(b') = Trpa(bt’) for b0’ € B.

Proposition 3.2.1. Let B be a finite projective A-algebra and C' a finite projective B-algebra. Then

C' is a finite projective A-algebra and Tro/q = Trgja o Tre/p.

Proof. The first claim follows immediately from Proposition 3.1.16. For the second assertion, first,

we claim that the natural homomorphism
¢ : Homa(C,A) ®4 B — Homa(C,B), f®b+—— (fy:c— f(c)-b)

is an isomorphism. This is true if C' = B" for some n < 0o, since both sides may be identified with

(End A(B))" and the map ® coincides with the identity map on (End A(B))n. In the general case
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we choose an exact sequence B™ — B" — C' — 0. Then we have a commutative diagram

0

Hom,(C, B) Hom,(B", B) Hom (B™, B)

- - -

0 ——Homu(C, A) ®4 B—— Homu(B", A) ®4 B—— Hom,(B™, A) ®4 B

with both rows exact. So ® is an isomorphism.

Consider the following diagram

C c
Endp(C) Endy(C)
¢—1 d)_l

}thB(Cﬂfﬂ<®£;Cf———>fﬂnnA(Cﬂfﬂ<®£;C7———>fﬂnnA(Cn/D<8A_B<8B(j4444>IﬂnnA(Cn/Q<8A(j

trB/A

B Endu(B) A,

whose map is given by

4 4
my, | my

|

Zgj®bj>®0%>zgj®bjc

jed jed

|

> g9;(bjc)
jedJ

i
fle)——=my( trp/a(my )

f@c%f@c%(

with I, J finite index sets and CD( Y9, ® bj> = f. The first arrow in the right column is verified
jed

by

o(Dgi@bie)d) = Y gild)be) (vdeC)

= (Zgj(d)bj)c = (I)<Zgj ® bj)(d)c
= f(d)e=o(f @ c)(d) = my(d).
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The proof of Trgy a4 = Trp/a 0 Treyp is equivalent to showing that the above diagram is commutative.

So it suffices to show that trg/a(my)) = Y gj(bjc). Let pi; be the map A — B, a +— a-b; and p,
jed

Y9 ® bj> = f, then for any z € B, since f is B-linear, we
jed

be B — C, b+ b-c. Notice that <I><

have

mye(2) = f(c)z:f(z~c):<I><Zgj®bj>(z~c)

jed

= ijgj(ZC) = Z(Mj ©g;o ,UC>(C)7

jed jeJ

i.e., Mgy = D 1 © gj © fte. Then by the linearity and Proposition 3.1.14, we conclude that
j€J

trp/a(myse) = trp/a <Z 15 © g; © Mc) = trp/a (50 (950 1)

jed jeJ
= > traga ((gj o pe) o ) =Y (g5 0 e © 1) (1)
jed jeJ
= > gileby) =D gi(bie).
jed jeJ
So Tre/a = Trpja o Treyp. This completes the proof. O

Definition 3.2.1. A finite projective A-algebra B is said to be separable if the map ¢ : B —
Homy (B, A) defined at the beginning of this section is an isomorphism. In what follows, we will

call projective separable algebras as separable algebras for convenience.
Next we will give an example of separable algebra.

Example 3.2.1. Let B = A™ with n < oo, where multiplication is defined componentwise. B is

an A-algebra via the homomorphism given by
A— B, aw— (a,a,...,a).

Then B is a finite projective A-algebra. Let eq,...,e, be the standard A-basis for B. For any
x = (x1,x9,...,x,) € B, the map m, : B — B defined by y + zy sends e; to z; - ¢;. Hence

Trp/a(z) = tr(mg) = > x; by Proposition 3.1.11.
i=1
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Recall that the map ¢ : B — Homyu(B, A) is given by « — (e; — Trpsa(we;) = x;). Define
a:Homy(B,A) — B by f+— (f(e1),..., f(en)). Clearly « is A-linear with
(O{ © w)(x) = a(ei = xl) = (xla s 7xn) =z and

(Woa)(f) =¢(fler), ., flen)) = (e = Trpal(f(er), ..., flen))es) = fler)) = [

Hence v is an isomorphism and B = A" is separable.

Proposition 3.2.2. Let By, By, ..., B, be algebras over A. Then [ B; is separable over A if and
i=1

only if each B; is separable over A.

Proof. Let B =[]\, B;. By Proposition 3.1.15, B is finite projective if and only if B; is finite
projective. It suffices to show that ¢ : B — Hom4(B, A) is an isomorphism if and only if ¢, : B; —
Homy(B;, A) is an isomorphism for each i. Let ¢; denote the natural map B; — B and m; the

projection B — B;. As in the proof of Proposition 3.1.13 we can show a similar assertion that for

any b= (by,bs,...,b,) € B

Trp/a(b) = trpja(my) = ZtrBi/A(Wimbgoi) = ZtrBi/A(mbi) =Trp,/a(b;).
i=1 i=1

Then the following diagram

B i B;

wl e

Homu (B, A) —— ﬁ Hom (B;, A) —> Hom 4 (B;, A)

=1

is commutative, where the arrows are given by

b= (bl)?zl } b;

[ n |

(z = (2;)i~y = Trpa(bz)) — (xz > TrB/A([bl-xl-])>i:1 —— (z; = Trp, ja(biz;)),

where [z;] denote the element (0, ..., z;,...,0) in B having z; in the i-th spot and zeros elsewhere.
Hence Trpa([biz;]) = Trp,ja(bix;). Then 1) is an isomorphism if and only if ¢; is an isomorphism
for each 7, which completes the proof. O
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Proposition 3.2.3. Let B be a separable A-algebra and C a separable B-algebra. Then C' is a

separable A-algebra.

Proof. First, we claim that Homp (C, Homy (B, A)) = Homu(C ®p B, A). On the left hand side,
we consider Hom 4 (B, A) as a B-module by (6’ - h)(b) = h(b'b) with h € Homa(B, A) and b,V € B.
Then for any f € Homu(C ®p B, A), define f : C' — Homu (B, A) by ¢ (fe: b flc®b)).
It is easy to check that fis B-linear. Moreover, for any g € Homp (C, Homy (B, A)), there is an
A-bilinear map C' x B — A associates to g by sending (¢, b) to (g(c))(b). This induces an A-linear
map g : C ®p B — A sending ¢ ® b to (g(c))(b). Consider the map Homp (C,Homa (B, A)) —
Homy (C' ®@p B, A) by g — g and the map Hom4(C' @5 B, A) — Homp (C,Homyu(B, A)) by f f.
Then these two maps are inverse to each other, hence are isomorphisms.

We have the following commutative diagram

C J Homp(C, B) — Homg (C, Homy(B, A))

wi ’ |-

Hom, (C, A) — Homy(C' ®p B, A) by
I (x = Tre/p(cx)) ——— (x — (b TrB/A(TrC/B(cx))b)>
(x = Troa(cx)) == (x — TrB/A(TrC/B(cx))) - <x ® b — TrB/A(TrC/B(cx))b>,
where the “ =" follows from Proposition 3.2.1. So 14 : C — Hom,(C, A) is an isomorphism thus
C is a separable A-algebra. O

Proposition 3.2.4. Let C be any A-algebra. If B is a separable A-algebra then B @4 C' is a

separable C-algebra. The converse is also true if C is faithfully flat.

Proof. By Proposition 3.1.7, B ®4 C' is finite projective over C. It suffices to show B ®4 C' =
Home (B ®4 C,C). First we claim that the natural map Homa(B, A) ® 4 C' — Home(B®4 C, C),
f®cw— (b’ ®d — f(b)ed ) is an isomorphism of C-modules. This is clear if B = A" for some
n < oo since both sides are isomorphic to C™ and the the natural map Homa(B, A) ®4 C —
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Home (B ®4 C, C') coincides with the identity map on C™. In general we localize at any p € Spec C

then the following diagram

(Homc(B<g>A(J,(J))p ~ - Home, (B ®4 C)y, Cp) —=— Homg, (C, Cy) —== Ci1

|

Homy (B, A) ®4 Cy —— Homu(B, A) @4 Ape @a,. Cy

commutes, where p¢ is the contraction of p in A. This proves the claim.
Since B is separable over A, B = Homa(B, A) under ¢. Then B ®4 C = Homu(B,A) @4 C

under ¥ ® idg. The following diagram

B ®A C%HOmc(B ®A C, C)

A
B @ 0 Homa(B, A) @4 C

is commutative, where the arrows are given by

b® cr—— <b’ ® ' = Trpg,c/c(bb @ cc’) = Trpg ,c/c(bb ® 1)cc’>

Prop 3.1.12

(b' ® TrB/A(bb’)cc’>

I

b® ci (V= Trpa(bt)) @ c.

This proves the first assertion.
Now suppose C'is a faithfully flat A-algebra and B ® 4 C' is projective separable over C'. From

Proposition 3.1.10, we see that B is finite projective over A. Moreover, the following diagram

B®AC = HomC(B@)AC,C)

lw@)idc l'\f

Homy (B, A) ®4 C ——Homu(B ®4 C, A®4 C)

commutes, where the isomorphism in the bottom row is the same as in the proof of Proposition
3.1.10 since C' is faithfully flat and B is finite projective. So ¥ ®id¢ : B&4 C — Homa(B, A)®4C
is an isomorphism. By the faithfully flatness of C, ¥ : B — Homu(B, A) is an isomorphism hence

B is separable over A. This completes the proof. O
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Lemma 3.2.1. Let B be a separable A-algebra and f : B — A an A-algebra homomorphism. Then
there is an A-algebra C' and an A-algebra isomorphism g : B = A x C such that f = po g, where

p is the projection A x C' — A.

Proof. Clearly, f € Homu (B, A). Since B is separable, 1 : B — Homu(B, A) is an isomorphism.
Let e € B be such that ¢(e) = f, i.e., Trgja(ex) = f(x) for all x € B. Since f is an A-algebra

homomorphism, Trg/a(e) = f(1) = 1. Furthermore, for all z,y € B,

Trpjalexy) = f(zy) = f(2)f(y) = f(z) Trpjaley) = Trp/a(f(x)ey),

i.e., ¥(ex) = Y(f(z)e) for all z € B. Since 1) is an isomorphism thus injective, we have ex = f(x)e

. This implies e Ker(f) = 0. Then the diagram:

0 — Ker(f) B-1-4 0

\LO Lme My (e)

0 — Ker(f) B! 0

commutes with both rows exact, where the first vertical arrow is just m, = 0 since e Ker(f) =

’Ker(f)
0. Then

1 ="Trpja(e) = trien(s)/a(0) + traza(f(e)) =04 fle) = fle).
Note that we have ex = f(x)e for all z € B. Letting z = 1 we get € = f(e)e = ¢, i.e., e is an
idempotent of B. 1 —e € Ker(f) since f(1 —e) = f(1) — f(e) = 0. Then the map A — Ker(f),
a — a(l — e) makes Ker(f) be an A-algebra. Acturally 1 — e is the identity of Ker(f) since
(I1—ey=y—ey=y— flyle=y— 0=y for all y € Ker(f). Then the projectivity of A implies
B = A x Ker(f), where the isomorphism g : B — A x Ker(f) is given by = — (f(z),z — ef(x)).

Using the identity ez = f(z)e and the fact that f is an A-algebra homomorphism, we have

g(zy) = (f(xy),xy—ef(:vy)>
— (f(g;y), ay —ef(y)f(z) — ef(x)f(y) + le(x)f(y))
= (F@ )2y — eyl () — exf(y) + f(2) [ ()
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= (f@IW). (el @)y — (@ — ef@)ef )
_ (f(x)f(y), (z —ef(2)(y - ef(y))>
= (f@),z—ef(@)(f(y),y — ef())

= g(x)g(y),

for all x,y € B. So g is also an isomorphism of A-algebras. Furthermore, for any € B, po g(x) =
p(f(x),z —ef(x)) = f(z), e, pog=f. O

Remark 3.2.1. If B is a separable A-algebra, from Proposition 3.2.4 we see that B® 4 B is a separable
B-algebra via the second factor. Moreover, the map f: B®4 B — B, b® b +— bl is a B-algebra
homomorphism. If we apply Lemma 3.2.1 to f, there is a B-algebra C' and a B-algebra isomorphism

g: B®s B> B x C making the following diagram

Bo,B—2~BxC

B

commute, where p is the first projection.

3.3 Finite étale coverings

Definition 3.3.1. Let f : Y — X be a morphism of schemes. We call f affine if there is an open

affine cover {U;} of X such that f~(U;) is affine for each 1.

Proposition 3.3.1. A morphism f :' Y — X of schemes is affine if and only if for every open

affine U C X, f~Y(U) is affine.

Proof. The “if” part is clear by the definition. To prove the “only if” part, let U = Spec A be an
open affine subset of X. As in the proof of Hartshorne (1977), Ch II, Proposiiton 3.2, there is an
open affine cover of U, U = |J,.; U; with U; = Spec Ay, for some f; € A such that f~'(U;) is affine
for each 7. This implies the morphism f’f_l(U) : [7YU) — U is affine.
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So we have reduced to proving the following statement: Let X = Spec A be an affine scheme and
a morphism f : Y — X is affine. Then Y is affine. By the above argument, we can cover X by open
affine subsets {U; = D(f;) = Spec Ay, }ier with f; € A such that f~(U;) is affine. Furthermore,
we can assume that I is finite, say X = (J_, D(f;). Taking global sections, f induces a morphism
¢: A= TD(Y,0y) £ B. Let g; = ¢(fi) then g1, 9o, ..., g, generate B since A = Y7 | Afi. Write
f~YD(fi)) = Spec B;. Recall that Y, = {y € Y : g, ¢ m, C O,} for any g € I'(Y,0Oy) (see

Hartshorne (1977), Ch II, Ex. 2.16). Then Y,, N f~(D(f;)) =D < ) Let ¢; be the ring

gi’f—l(D(fj))

homomorphism Ay, = B; induced by f } - . Then the following diagram

H(D(£2))

A—%.B

|

Pi
Ap —=Bj
commutes, where the second vertical arrow is just the restriction of the global sections. Hence

(&) = SO(fz')}f,l(D(fj)). Then we have

Yy, N f7HD(f;) = D (gi’f—l(D(fj))>
= {peSpecB;: gl E 0
= {p eSpecB;: (f)| o1 ps ) E )
— {p € SpecB,: %(%) ¢ p}
= {peSpecB;: f; & f(p)}

= [7HD) N fHD)),

thus

v, = v =y, (Urow)

= U ans o) = U (1 mu) s oo))

J=1

= oD N (U o)) = £ o) ny = 7).

Jj=1
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So Y, = f~HD(fi)) = Spec B is affine. By Hartshorne (1977), Ch II, Ex. 2.17(b), Y is affine. This

completes the proof. O

Proposition 3.3.2. Let Y 2% Z X be morphisms of schemes such that f and the composed

morphism f o g are affine. Then g is affine.

Proof. Let {U;}ic; be an open affine cover of X. Since f is affine, ffl(Ui)Z.eI is an open affine cover
of Z and {gfl(ffl(Ui)) = (fg)*l(Ui)}iel is an open affine cover of Y by assumption that fg is

affine. Hence Y 2% Z is an affine morphism. O

Recall that a morphism f : Y — X of schemes is finite if there exists a covering of X by open
affine subsets U; = Spec A;, such that for each i, f~1(U;) is affine, equal to Spec B;, where B; is
an A;-algebra which is finitely generated as an A;-module (see Hartshorne (1977) Ch II, section 3).

Then finite morphisms are affine.

Definition 3.3.2. Let f : Y — X be a morphism of schemes. We call f is finite and locally
free if there exists a covering of X by open affine subsets U; = Spec A4;, such that for each 1,
f~HU;) = Spec B; is affine, where B; is a A;-algebra which is finitely generated and free as an

A;-module.

From the above definition we can see that a finite and locally free morphism is affine. Similarly,

we have the following:

Proposition 3.3.3. Let f : Y — X be a morphism of schemes. Then f is finite and locally free
if and only if for each open affine subset U = Spec A of X, the open subscheme f~1(U) is affine,

equal to Spec B, where B is a finite projective A-algebra.

Proof. Then “if” part is clear from Theorem 3.1.1 (iv). For the “only if” part, assume f is finite
and locally free, and let U = Spec A be an open affine subset of X. Then f~!(U) is affine since

f is affine. Let f~'(U) = Spec B for some A-algebra B. Then there exists a covering of U by
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open affine subsets {U; = Spec Ay, },_; such that f~'(U;) = Spec By, is affine for each i, where By,
is a Ay-algebra which is finitely generated and free as an Ay-module (see the proof of Hartshorne
(1977), Ch II, Proposiiton 3.2). Then by Theorem 3.1.1 (iv), B is a finite projective A-algebra.

This completes the proof. O

Let f:Y — X be a finite and locally free morphism of schemes. Let U = Spec A be an open
affine subset of X. Then we have f~'(U) = Spec B with B is finite projective over A. There is a
continuous rank function [B : A] : U = Spec A — Z, see Definition 3.1.4. Clearly, these functions
defined on different U’s agree on their intersections, so we can glue them to obtain a continuous
function [Y : X| : X — Z, where [Y : X]|y = [B : A]. This function is called degree of Y over
X, or of f, and denoted by [Y : X]| or deg(f). Similar as in Section 3.1, we consider [Y : X] as a
function between topological spaces. For each integer n the set {z € sp(X) : [V : X]|(z) = n} is
open and closed in X, where sp(X) denotes the underlying topological space of X. Moreover, if X

is connected, [Y : X] is constant.

Definition 3.3.3. A morphism Y — X of schemes is called surjective if the map of the underlying

topological spaces is surjective.

Proposition 3.3.4. Let f : Y — X be a finite and locally free morphism of schemes. Then we

have:

(a) Y =0« [Y:X]=0.

(b) f is an isomorphism <= [Y : X| = 1.

(¢) The following three assertions are equivalent:

(i) f is surjective;

(i) [Y : X] > 1;
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(iii) for every open affine subset U = Spec A of X, we have f~'(U) = Spec B, where B is a

faithfully projective A-algebra.

Proof. We may assume that X = Spec A is affine. Then Y = Spec B for some finite projective
A-algebra B. Now (a) is trivial since Y = () & B =0 <« [B: A] = 0. For (b), Spec B — Spec A
is an isomorphism < the induced map A — B is an isomorphism < [B : A] = 1 by Proposition
3.1.8. For (c), we know that Spec B — Spec A is surjective < B is a faithfully flat A-algebra (Prop.

3.1.9) & B is faithfully projective (Prop. 3.1.4) < [B : A] > 1. This completes the proof. O

Definition 3.3.4. Let f: Y — X be a morphism of schemes. f is called finite étale if there exists
a covering of X by open affine subsets U; = Spec A;, such that for each i, f~'(U;) = Spec B; is
affine, where B; is a free separable A;-algebra. In this case we also say that f: Y — X is a finite

étale covering of X.

We can easily see that a finite étale morphism is finite and locally free. Furthermore, we have an

equivalent definition:

Proposition 3.3.5. A morphism f : Y — X is finite étale if and only if for each open affine
subset U = Spec A of X, the open subscheme f~(U) of Y is affine, equal to Spec B, where B is a

projective separable A-algebra.

The proof of this proposition is similar to the proof of Proposition 3.3.3. Just notice that the
map ¢ : B — Homy(B, A) defined in Section 3.2 is an isomorphism if and only if the induced map

B, — Homy, (By, A,) is an isomorphism for each p € Spec A and the fact that B, = (By), for all

peD(f)={p€SpecA: f¢p}, where f € A.

3.4 Properties of finite étale morphisms

Proposition 3.4.1. Let f; : Y; — X be morphisms of schemes, for1 <i<n, and f:Y =Y IIY,11
--11Y,, — X the induced morphism. Then f is finite and locally free (resp. finite étale) if and only
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if each f; is finite and locally free (resp. finite étale). Moreover, we have [Y : X] =>"" | [Vi: X| if

fi is finite and locally free.

Proof. Case (1): f is finite and locally free. Let U = Spec A be an open affine subset of X. Then
fHU) = YOO f YUY - -1 f75(U). f s finite and locally free if and only if f~'(U) = Spec B
with B a finite projective A-algebra, i.e., B = ﬁ B; is finite projective over A, where f;1(U) =
Spec B;. By Proposition 3.1.15, this is true if and only if B; is finite projective over A, i.e., f; is
finite and locally free.

Case (2): f is finite étale. This follows from Proposition 3.2.2 in a similar way.

Now suppose f : Y — X is finite and locally free (note that a finite étale morphism is always
finite and locally free). For any p € X, there exists an affine neighborhood of p, say U = Spec A
such that f~(U) = Spec B, where B = ﬁ B; and f;'(U) = Spec B; with B; finite projective over
A. Then we have

n n

YV : X](p) =[B:Al(p) = [Bi: Al(p) = > _[Vi: X](p).

This implies [Y : X]=>""[Y; : X]. O
Proposition 3.4.2. Let (X;);er be a collection of schemes, and f; : Y; — X; be a finite and locally
free (resp. finite étale) morphism, for each i € I. Then the induced morphism f : [[,.;Y; —
[Lic; Xi is finite and locally free (resp. finite étale), and each finite and locally free (resp. finite

¢tale) morphism [1,.,Yi — [1,c; Xi is obtained in this way. Moreover, [[],c;Y: : [1;c; Xi] =

icl
! sp(X;)

Y, : Xj], for each j € I.

Proof. Let {U;; = Spec A;;};es, be an open affine covering of X; for each i. Since f; is finite and
locally free (resp. finite étale), f;'(Ui;) = Spec By; is affine and B;; is an A;;-algebra that is finitely
generated and free as an A;;-module (resp. B;; is a free separable A;;-algebra). Note that {U;;};;
is an open affine cover of [],.; X; and f~'(U;;) = £ H(Us;), by definition, f is finite and locally free
(resp. finite étale).
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Now suppose f : Y — [[,.; X; is a finite and locally free (resp. finite étale) morphism. Let

el

Y; = f71(X;), then Y =[], Y;. For any open affine subset U; = Spec A; of X;, U; is also an open

iel
affine subset of Hiel X;. Then f~1(U;) = Spec B; is an open affine subset in Y, where B; is a finite
projective (resp. separable) A;-algebra. Furthermore, f~*(U;) = f~1(U;) NY; is an open subset of
Y;. This implies the map f; := fly, : ¥; — X is finite and locally free (resp. finite étale) by Prop.
3.3.3 (resp. Prop. 3.3.5), and f is just the map induced by f;’s.

For any p € X, there exists an affine subset U; = Spec A; such that p € U;, f~1(U;) = Spec B; C
Y; and B; is a finite projective A;-algebra. Then we have

TTve T ) = (85 = Ajl(e) = Y5 X,](p):

iel iel

This implies [[[,.;Yi : [1;c; Xi] =[Y; : X;], for each j € I. O

sp(X;)

Proposition 3.4.3. Let f :' Y — X be a finite and locally free (resp. finite étale) morphism of

schemes, and let W — X be any morphism of schemes. Then

(a) Y xx W — W is finite and locally free (resp. finite étale).

(b) The following diagram is commutative.

sp(W) —sp(X)
[YXXW:W]\L l[Y:X}
17 —————7

(c) If f is surjective, then' Y xx W — W is surjective.

Proof. (a): Suppose we have the following commutative diagram,

Y xx W2y

pQJ/ J/f

where py, ps are the natural projections. Let {U; = Spec A; };e; be an open affine covering of X and

let W; = g 1(U;), Y; = f~Y(U;). Since f is finite and locally free (resp. finite étale), Y; is affine,
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equal to Spec B;, where B; is a finite projective (resp. separable) A;-algebra. Cover W; by open

affine subsets {W;; = Spec Cj;} e, then {W;;};; is an open affine covering of W. Furthermore,
Py (W) 2Y xx Wy 2Y; xy, Wi; = Spec B; Xspec a4, Spec Cy; = Spec(B; @4, Cyj).

(For the first two isomorphisms, see Hartshorne (1977) ChII, proof of Theorem 3.3). By Prop.
3.1.7 (vesp. Prop. 3.2.4), B; ®4, C;; is finite projective (resp. separable) over C;;, which implies
pe Y xx W — W is finite and locally free (resp. finite étale).

(b) follows from Prop. 3.1.7.

(¢): Suppose f:Y — X is surjective. By Prop. 3.3.4 (¢), [Y : X] > 1. Then [Y xx W : W] >1

by (b) thus Y xx W — W is also surjective. O

Proposition 3.4.4. Suppose g : Z — Y and f : Y — X are finite and locally free (resp. finite

étale) morphisms of schemes, then f o g is finite and locally free (resp. finite étale).

Proof. The case f is finite and locally free follows from Prop. 3.3.3 and Prop. 3.2.1. Similarly,

Prop. 3.3.5 and Prop. 3.2.3 imply the case f is finite étale. O

Remark 3.4.1. In the next chapter, we will see a different proof of the case f is finite étale by a

base change of a surjective, finite and locally free morphism.

Proposition 3.4.5. Let g: Z — X and f : Y — X be finite and locally free (resp. finite étale)

morphisms of schemes. Then

(a) Y xx Z — X is finite and locally free (resp. finite étale).
b)Y xxZ:X|=[Y:X][Z:X].

(c) If f and g are surjective, then Y Xx Z — X is surjective.

Proof. (a) follows from Prop. 3.4.3 and 3.4.4 immediately.
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(b) is obvious since [B®4 B’ : A| = [B : A] - [B’ : A] for finite projective A-algebras B and B’ by
Prop. 3.1.6.

(¢) is clear by Prop. 3.4.3 (¢) and the fact that the composite of surjective maps is surjective. [

Proposition 3.4.6. A morphism f Y — X 1is surjective, finite and locally free if and only if for
each open affine subset U = Spec A of X, the open subscheme [~Y(U) is affine, equal to Spec B,

where B is a faithfully projective A-algebra.
Proof. The “if” part is obvious and the “only if” part follows from Prop. 3.3.4 (¢) immediately. O

Proposition 3.4.7. Let f : Y — X be an affine morphism of schemes, and g : W — X a morphism
which 1s surjective, finite and locally free. Then f s finite étale if and only if Y xx W — W s

finite étale.

Proof. The “only if” part follows from Prop. 3.4.3 (a). To prove the “if” part, let U = Spec A
be an open affine subset of X. Then f~!(U) is affine since f is affine. Suppose f~1(U) = Spec B
for some A-algebra B. By Prop. 3.4.6, there is a faithfully projective A-algebra C' such that
g H(U) = SpecC. Moreover, we have p, (¢~ (U)) = f~HU) xy g (U) = Spec(B @4 C) (see
Hartshorne (1977) ChlI, proof of Theorem 3.3), where p, is the natural projection Y xx W — W.
Then p, is finite étale implies B ®4 C' is projective separable over C'. From Prop. 3.2.4, B is a

separable A-algebra thus f is finite étale. O

A morphism from a finite étale covering f : Y — X to a finite étale covering g : 7 — X is a

morphism of schemes h : Y — Z for which the following diagram

NZS

commutes. Then for a given scheme X, all finite étale coverings ¥ — X of X with morphism

Y

between them form a category and we denote this category by FEt(X). In the next chapter, we
will show that FEt(X) is a Galois category if X is connected and prove our main theorem:

81



Theorem 3.4.1. Let X be a connected scheme. Then there exists a profinite group m, uniquely
determined up to isomorphism, such that the category FEt(X) of finite étale coverings of X is

equivalent to the category w-sets of finite sets on which  acts continuously.

To end this chapter, we give an explicit description of separable algebras over algebraically
closed fields, which will play an important role in the construction of the fundamental functor

F : FEt(X) — Sets in the next chapter. We introduce a lemma first.

t
Lemma 3.4.1. Let B be a finite dimensional algebra over a field K. Then B = ] B; for some
i=1

t € Z>o, where B; is a local K-algebra with a nilpotent maximal ideal.
Proof. We break the proof of this proposition to two cases. First we consider a simple case that
B is an integral domain. Then for any b € B — {0}, the multiplication map my;, : B — B is an
injective K-algebra homomorphism, thus is an isomorphism since the dimension over K is finite.
This implies that b € B*, the set of units in B. Hence B is a field, also is a finite extension of K.
Now let B be a finite K-algebra. For any p € Spec B, applying the above argument to B/p we
deduce that every prime ideal p of B is maximal. Let my,my, ..., my be distinct maximal ideals
of B. By the Chinese remainder theorem the natural map B — [[;_,(B/m;) is surjective (since
distinct maximal ideals are pairwise relatively prime). So s < 7, dimg(B/m;) < dimg(B) = n.
This means that B has only finitely many maximal ideals, say my, mo, ..., m;. Then we identify the

kernel of the natural map 6 : B — [['_,(B/m;) by

Ker(0) = ﬁmi = hmi =N(B),

where DM(B) is the nilradical v/0 of B. Note that B is obviously Noetherian, hence 91(B) is finitely
generated. Then there exists an positive integer N such that 9(B)Y = [['_, m}¥ = 0. The m;’s are
pairwise relatively prime, so the same is true for the m¥’s. Then the Chinese remainder theorem
gives an isomorphism B = [[._,(B/mY). Let B, = B/mY, thus B; is a local K-algebra with m;/m}’

its only maximal ideal, which is clearly nilpotent. This proves our assertion. O
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Theorem 3.4.2. Let Q) be an algebraically closed field and B be a finite Q-algebra. Then B is

separable over ) if and only if B = Q" as Q-algebras, for some n > 0.

Proof. Applying the previous lemma to B we have B =2 f[lBi for certain local 2-algebras B; with
nilpotent maximal ideal m;. By Prop. 3.2.2, each B, is a separable (2-algebra. This means that the
map v¢; : B; — Homgq(B;,Q2), b — (3: — TrB/A(bx)> is an isomorphism for each i. Fix an ¢ and
take any b € m;. Then for any x € B;, bx is a nilpotent of B; and the corresponding multiplication
map my, is thus a nilpotent (2-linear map. From linear algebra and Example 3.2.1 we know that
Tr(bx) = 0 for any = € B, i.e., ¥(b) = 0. b = 0 since # is an isomorphism. This implies m; = 0 thus

B; is a finite field extension over an algebraically closed field €2, therefore B; = K. This completes

the proof. 0
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Chapter 4

The category FEt(X)

4.1 Totally split morphisms

Definition 4.1.1. A morphism f : Y — X of schemes is said to be totally splitif X = [] X,,, such
n>0

that for each n, the scheme f~1(X,,) = X, 1 X,, 1T ---II X,, (n-copies), and the following diagram

X)) —= X, 011X,

|

Xpy—7—"—X,

commutes with the natural morphism X, IT---II X,, — X,,.

Remark 4.1.1. If f: Y — X is totally split, then f is finite étale since A" is a separable A-algebra
by Example 3.2.1. If X is connected, then a totally split morphism f : Y — X gives an isomorphism
Y2 XIOXI---II X (n copies of X), for some n > 0. Totally split morphisms play a role similar

to trivial coverings in the topological case.

Proposition 4.1.1. Let f : Y — X be a totally split morphism of schemes and g : W — X any

morphism. Then the second projection ps : Y xx W — W s totally split.

Proof. First, we assume that [Y : X| = n is a constant, ie., Y = X II---II X (n copies) and
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f Y — X coincides with the natural morphism X IT---I1 X — X. Then

I

Y xx W (X IIX)xx W

> (X xxyW)I---II (X xx W) (n copies)

I

WI---IIW (n copies),

and the second projection ps : Y X xW — W coincides with the natural morphism WII- - -IIW — W,
so is totally split.

In general, suppose X = [[ X, such that for each n, the scheme f~1(X,) = X, 11X, 1I---11X,

n>0
(n-copies). Then W = [ W,,, where W,, = g~ *(X,,). Moreover, we have
n>0
py (W) = Y xx W, = fH(X,) xx, W,
=~ W,I..-IIW, (n copies)
by the previous case. So ps : Y xx W — W is totally split. O

Theorem 4.1.1. Let f: Y — X be a morphism of schemes. Then f is finite étale if and only if f
1s affine and' Y xx W — W is totally split for some W — X which is surjective, finite and locally

free.

Proof. The “if” part follows from Proposition 3.4.7 and the fact that totally split morphisms are
finite étale (see Remark 4.1.1). For the other direction, let f : Y — X be finite étale. First
we prove the case that [Y : X] = n is constant by induction on n. When n = 0, Y = () and
W = X 9% X satisfies the condition. For n > 1, note that f is surjective by Prop. 3.3.4. We
make a base change by f and consider the morphism p : ¥ Xxx Y — Y, which is also finite étale
and [Y xx Y : Y] =[Y : X] =n by Prop. 3.4.3. Let A: Y — Y xx Y be the diagonal morphism
such that po A = idy.

Next, we claim that A is an open and closed immersion. First we assume X = Spec A for some

ring A. Then Y = Spec B, where B is a projective separable A-algebra since f is finite étale. In this
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case, Y X xY = Spec(B®4 B) and A corresponds to the multiplication m : BB — B, bb' +— bb'.
By Remark 3.2.1, there exists a B-algebra C' and a B-algebra isomorphism B ®4 B — B x C' such

that the following diagram

B®sB—=BxC(C

B=—=2~B

commutes, where 7 is the natural projection. This diagram corresponds to a commutative diagram

of morphisms of schemes:

Y xx Y ==Y Il SpecC

s I

Y ——+Y,

where j is the inclusion morphism. So A is an open and closed immersion when X is affine. In
general, we cover X by open affine subsets, our claim follows from the fact that f is affine. This
proves the claim.

Then we obtain the following commutative diagram

Y xxY-—"=YIIY'

| |

Y ———==Y

by gluing together all of the local decompositions. Prop. 3.4.1 tells us that Y/ — Y is finite étale
and [Y': Y] =n—1. Applying the inductive hypothesis, there is a surjective, finite and locally free

morphism W — Y such that Y’ xy W — W is totally split. Since

Y xy W 2 Vxx (Y xy W) (Y xxY)xy W

I

(YY) xy W= (Y xy W)IL (Y xy W)

I

WIL(Y' xy W).

Then Y xx W — W is totally split since W — W and Y’ xy W — W are totally split. Moreover,
by Prop. 3.4.3 and 3.4.4, the composite W — Y — X is surjective, finite and locally free since each

of the morphisms is. This means the theorem holds for the case [Y : X] = n is constant.
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In the general case, write X = [[ X,,, where sp(X,,) = {x € sp(X) : [V : X](z) = n}. Then for
n=0
each n, the restriction f : Y, = f~1(X,) — X, is finite étale of constant degree n. By the above

argument, there exists a surjective, finite and locally free morphism W,, — X, for each n, such that

Y, xx, W, — W, is totally split. Then W = [[ W,, — [] X,, = X is finite and locally free and
n=0 n=0

Y xx W= [ (Y xx W,) = ][ (Y, xx, W,) = W by Prop. 3.4.2. This proves the theorem. O

n=0 n=0
As said in Remark 3.4.1, we will give another proof of the property that the composite of finite

étale morphisms is finite étale.

Proposition 4.1.2. Let g: Z — Y and f : Y — X be finite étale morphisms of schemes. Then

the composed morphism foqg:Z — X is finite étale.

Proof. First assume that Y — X is totally split and [Y : X| = n is constant, i.e., Y = X IT--- 1T X
(n copies). Then Z = Z; 11 Z, 11 - - - 11 Z,, and the composite morphism 79y L. X induced by
finite étale morphisms ZiﬂX 29X X is finite étale,

The case Y — X is totally split of non-constant degree is immediately reduced to the preceding
case.

In general, as in Theorem 4.1.1, choose a surjective, finite and locally free morphism W — X
such that Y xx W — W is totally split. Since Z — Y is finite étale, by Prop. 3.4.3 Z xx W =

Z xy (Y xx W) =Y xx W is finite étale. So the composition Z xx W — Y xx W — W is finite

étale. Then Z — X is finite étale by Prop. 3.4.7. U

Let X be a scheme and E a finite set of cardinality n, we write X x E for the disjoint union of n
copies of X, one for each element of E, i.e., if E = {ey,€s,...,¢e,}, then X xE := X, 1IX,,1I-- 11X,

with each X., = X for v =1,2,...,n. We have the following property:

Lemma 4.1.1. Given a ring A and a finite set E = {e1, s, ..., e,}, we define AP to be the ring of

functions E — A, with pointwise addition and multiplication.
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(a) Let X be a scheme. Then X x E = X Xgspeez (Spec ZF).

(b) Let X, Y be schemes. Then there is a natural bijection between the set Mor(X x E,Y') and the

set of maps E'— Mor(X,Y).
(c) (Spec A) x E = Spec AF.

(d) Suppose A has no non-trivial idempotents and D = {dy,ds, ... ,d,} is a finite set. Then any

A-algebra homomorphism AF — AP is induced by a map D — E.
Proof. Suppose |E| =n, E = {ej,ea,...,e,}.

(a) The property of a morphism of schemes to be an isomorphism is a local property. We may
assume X = Spec R for some ring R. Then it suffices to prove that Spec A x ' = Spec A Xgpecz

(SpecZF),ie., Ax Ax - x AX A®yZE. Define

01 AR ZEF - Ax - x A, a®f— (fle)-a) and

=17

<p2:A><~-~><A—>A®ZZE, (al,...,an)HZai®gia
=1

where g;(e;) = 1ifi = j and g;(e;) = 0 otherwise. ¢y and ¢, are ring homomorphisms satisfying

01 0@y =1dax..xa and @y 0 1 =id4g,ze. This shows (a).
(b) The following two maps satisfy the requirements:

¢:Mor(X x E)Y) — {maps E — Mor(X,Y)},

f = (62‘ = f|Xi:X)a

Y {maps E — Mor(X,Y)} — Mor(X x E|Y),

(ei=rg9:) — g,

where g|x,=x = g:.

88



(c) This is equivalent to show that A x --- x A= AP as rings. We define two maps as follows:

SO:AE—>AX"'XA7 fH(f(ez)aaf(en))a and

ViAX - x A= AE (ay, .. an) = (6 ag)

Now, ¢ and 1 are ring homomorphisms inverse to each other. This prove (c).

(d) Suppose |D| = m, D = {dy,ds,...,d,}. Define functions f; : £ — A for i = 1,2,...,n as

follows: fi(e;) = 1if i = j, fi(e;) = 0 otherwise. Obviously, such functions are idempotents

of A®. Moreover, these f;’s are generators of A¥ as an A-module which satisfy the following

equalities: Y fi = 1 and fif; = 0if i # j, for 4,5 = 1,2,...,n. Let ¢ : A¥ — AP be
i=1

any homomorphism of A-algebras. Then for any fixed k, where 1 < k < m, ¢(f;)(dx) is an

idempotent of A for each 1 <i <, i.e., p(f;)(dy) is either 14 or 0.

For a fixed k, 1 < k < m, since é@(fz’)(dk) = (é fi) (dr) = ¢ (Lar) (di) = Lap(di) =

1, at least one of the ¢(fi;)(dk)’s are 14 when i runs from 1 to n. On the other hand,

o(fi)(di)e(fi)(di) = e(fifj)(dy) = 0, for i # j, 4,5 = 1,2,...,n, which means at most one

of the ¢(fi)(dg)’s is 14. So there is exactly one i, 1 < i < n, such that ¢(f;)(dy) = 14 and

©(f;)(dr) = 0 when j # i for fixed 1 < k < m. Then we can define a map © : D — E sending

dr (1 <k < m) toe;, such that ¢(f;,)(dr) = 14 and @(f;)(dx) = 0 when j # i, 1 < j < n.

By the above argument, © is well-defined. Moreover, we have ¢(f;)(dx) = (f; 0 ©)(dk), i.e.,

¥

is induced by ©. Indeed, we can conclude that there is a bijection between the set {D — E'}

of maps from D to E and the set Homy (A, AP) of A-algebra homomorphisms.

We have completed the proof of this lemma.

O

Let A be aring, D and F finite sets with amap ¢ : D — E. Then ¢ induces a map ¢* : A¥ — AP,

defined by f — f o ¢. Furthermore, the map ¢* also induces a map ¢, : X x D — X x E, where

X = Spec A. In general, if X is any scheme, we can write X = (J,;
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for each i. The maps (¢); : U; x D — U; x E induced by ¢ : D — E coincide on the intersections,
hence we can glue them to a morphism ¢, : X x D — X x E. This morphism ¢, is finite étale by
Prop. 3.4.1, 3.4.2 and the fact that the identity morphism X — X is finite étale.

To prove an important property of finite étale morphism, we prove the following lemma first.

Lemma 4.1.2. Let f:Y — X, g: Z — X and h : Y — Z be morphisms of schemes such that
f=goh. If f and g are totally split, then f, g and h are locally trivial. That s, for any x € X,
there exist an open affine neighborhood U of x in X, two finite sets D, E with a map ¢ : D — E

and two isomorphisms a: f~Y(U) — U x D, B: g7 (U) — U x E such that the following diagram

FHU) i g1 (U)
/ UxD—"* i« E g
U i U

commutes, where U x D — U, U x E — U are the first projections, and U x D — U x E is the

morphism induced by ¢.

Proof. For any x € X, we can find an open affine neighborhood V' of x such that the totally split
morphisms f and g are of constant degree when they are restricted to V. Then we have f~1(V) = VP
and g~ 1(V) = V¥ for two finite sets D and F, where |D| = [Y : X](x) and |E| = [Z : X]|(z).
Writing V' = Spec A for some ring A, we have V x D = Spec(A”) and V x E = Spec(AF). Then
h:f~YV)— g (V) induces amap V x D — V x E, which corresponds to a ring homomorphism 1 :
AP — AP Localizing at z, we get a homomorphism ), : (AE)p = (Ap)E — (Ap)D = (AD)p, where
p is the prime ideal of A corresponding to z. As A, is local, it has no non-trivial idempotents, so

the local map v, is induced by a map ¢ : D — E by Lemma 4.1.1 (d). Consider the homomorphism
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¢* : A¥ — AP induced by ¢, we have the following commutative diagram:

Hom 4 (AE, AD)

|

(Homu (A7, AD))p <—— Homy, (AF,AD),

{D — E}

where the right vertical arrow is a bijection by Lemma 4.1.1 (d) and the bottom horizontal arrow
is an isomorphism since A is finitely presented. This implies that 1, = ¢*, where ¢* is obtained
by localizing ¢* at p. Then there exists an element a € A — p such that aip = a¢p*. The open

neighborhood U = D(a) of z in V' = Spec A satisfies the requirements, which proves the lemma. [

Remark 4.1.2. We may generate the above lemma in the following sense: With notations as above
and let o1,09,...,0, : Y — Z be morphisms such that f = g o g; for each 7. Then for any x € X,
there exist an open affine neighborhood U C X of z, maps of finite sets ¢, ¢o, ..., ¢, : D — E and

two isomorphisms « : f~1(U) - U x D, 8 : g Y(U) — U x E such that the following diagram

SHU) “ 9 H(U)
X idy s /
f UxD ' >Ux FE g
U a U

commutes for all 7.

Proposition 4.1.3. Let f : Y — X and g : Z — X be finite étale morphisms of schemes, and

h:Y — Z a morphism with f = goh. Then h is finite étale.

Proof. By Prop. 3.4.7, it suffices to show that there is a surjective, finite and locally free morphism
W — Z such that Y x; W — W is finite étale. First we assume that f and g are totally split,
then by the previous lemma h is finite étale since the morphism U x D — U x E induced by a map
D — F is finite étale, as we discussed before Lemma 4.1.2.

In the general case, using Prop. 4.1.1, we choose surjective, finite and locally free morphisms
Wy — X, Wy — X such that Y xx W, — W; and Z xx Wy — W, are totally split. Let
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W' = Wy xx Wa, then W' — X is surjective, finite and locally free by Prop. 3.4.3, 3.4.5, and
Y xx W = W' Z xx W' — W' are totally split. Hence by the case we already dealt with,
Y xx W' — Z xx W’ is finite étale. Letting W = Z x x W’, we have the following commutative
diagram:

Y Xy W —==Y Xz (Zxx W)=Y xz; W

hXidwl\L lhxidZXXW/

YXXW,?ZXZ(ZXXW/)IZXZI/V%W

Then we deduce that h : Y — Z is finite étale, as Z x x W — Z is surjective, finite and locally free.

This shows the proposition. O

4.2 FEt(X)

Given a connected scheme X, in order to prove Theorem 3.4.1, it suffices to show that the category
FEt(X) is a Galois category. First, we will check axioms (G1) to (G3) for the category FEt(X).

Then we will construct a functor FEt(X) — Sets and check axioms (G4) to (G6).

4.2.1 (G1)

Proposition 4.2.1. Let X be a scheme. Then the terminal object and fiber products exist in
FEt(X).
idy

Proof. e The morphism idy : X — X is clearly finite étale. So {X —X } is the terminal

object in FEt(X).

e Suppose Y, Z and W are objects in FEt(X) with morphisms f:Y — Wand g: Z — W.
Then f and g are finite étale by Prop. 4.1.3. So Y xy Z — W is finite étale by Prop. 3.4.5,
(a). It follows from Prop. 4.1.2 that the composed morphism Y Xy Z — X is finite étale,
ie, Y Xy Z is an object in FEt(X). This shows that the fiber product of any two objects
over a third one exists in FEt(X).
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Thus FEt(X) satisfies (G1). O

4.2.2 (G2)

At the beginning of this section we will list some basic definitions and propositions for sheaves of

modules. More details can be found in Hartshorne (1977), Ch II, Section 5 Sheaves of Modules.

Definition 4.2.1. Let A be a ring and let M be an A-module. We define the sheaf associated to
M on Spec A, denoted by M , as follows. For each prime ideal p C A, let M, be the localization
of M at p. For any open set U C Spec A we define the group M(U) to be the set of functions

s: U — [1,c M, such that for each p € U, s(p) € M,, and such that s is locally a fraction % with

pel f

m € M and f € A. To be precise, we require that for each p € U, there is a neighborhood V of p

in U, and there are elements m € M and f € A, such that for each q € V| f ¢ q, and s(q) = % in

M,. We make M into a sheaf by using the obvious restriction maps.

Proposition 4.2.2. Let A be a ring, let M be an A-module, and let M be the sheaf on X = Spec A

associated to M. Then:

(a) M is an Ox-module;

(b) for each p € X, the stalk <]T/[/)p of the sheafﬂ at p is isomorphic to the localized module M,;
(c) for any f € A, the Ap-module ]T/[/(D(f)) is isomorphic to the localized module My;

(d) in particular, ]T/[/(X) =M.

Definition 4.2.2. Let (X, Ox) be a scheme. A sheaf of Ox-modules .Z is quasi-coherent if X can
be covered by open affine subsets U; = Spec A;, such that for each ¢ there is an A;-module M;
with 7| = ]\AfZ We say that # is coherent if furthermore each M; can be taken to be a finitely

generated A;-module.
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Proposition 4.2.3. Let X be a scheme. Then an Ox-module .F is quasi-coherent if and only if

—~

for every open affine subset U = Spec A of X, there is an A-module M such that ﬁ’}U =M.

Proposition 4.2.4. Let X be a scheme. The kernel, cokernel, and image of any morphism of quasi-

coherent sheaves are quasi-coherent. Any extension of quasi-coherent sheaves is quasi-coherent.

Let (X, Ox) be a scheme. We call a sheaf of Ox-algebras .# to be quasi-coherent if it is at the

same time a quasi-coherent sheaf of O x-modules.

Lemma 4.2.1. Let X be a scheme and let &/ be a quasi-coherent sheaf of Ox-algebras. Then there
exist a unique scheme Y, and a morphism f :'Y — X, such that for every open affine V C X,
S7YV) = Spec (' (V)) (which implies that f is an affine morphism), and for every inclusion
U < V of open affines of Y, the morphism f~YU) < f~YV) corresponds to the restriction

homomorphism </ (V) — &/ (U). The scheme Y is called Spec(</). Moreover, we have o/ = f,Oy.

Proof. Let {U;}icr be an open affine cover of X with U; = Spec A;. Let Y; = Spec (&7 (U;)). Since
</ is a sheaf of Ox-algebras, there is a ring homomorphism A; = Ox(U;) — 7 (U;), which induces
a morphism of schemes f; : Y; — U;. We shall show that these f; : Y; — U;’s can be glued together,
along the intersections. Let U;; := U; N U; and Yj; = f‘l(Uij), then Yj; is a subscheme of Y;. Let

e~

v, = o/ (U;), we

W = Spec R be any open affine subset of U;;. By the quasi-coherence of <7, &/
have
171 (W) = Spec (7, (W) = Spec (o (W) = Spec (o7, (W) = £ (W).

Covering U;; by such open affine W’s, we get an isomorphism ¢;; : Y;; = Yj;. It is easy to check
that these isomorphisms satisfy the Glueing Lemma (see Hartshorne (1977), Ch II, Exercise 2.12)
and f;’s coincide in the intersections. Then there is a scheme Y, and a morphism f :Y — X such
that f is affine. Our assertion follows from the construction of Y.

If there is a scheme Y’ and [’ : Y’ — X with the same properties of Y, then we can define a

morphism Y — Y’ by gluing together isomorphisms on open affines Spec (27 (U)) where U is an
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open affine subset of X . Then this morphism will be an isomorphism, so we see that Y is unique.
Next, we will show that &7 = f,Oy. Let (U;);c; be an open affine covering of X and U any open

set of X. Then we get
LOy(UNT;) =20y (f7HUNT;)) = Oy (Spec( (UN;))) = o (UNT).
So f.0y(U) = &/ (U) for any open subset U of X. O

Lemma 4.2.2. Let f :' Y — X be an affine morphism of schemes. Then o = f.Oy is a quasi-

coherent sheaf of Ox-algebras, and Y = Spec().

Proof. First, we note that the corresponding morphism of sheaves f* : Ox — f.0y makes f.Oy
to be an Ox-algebra. By Prop.4.2.3, being quasi-coherent is local on X, we may assume that
X = Spec A is affine and then Y = f~!(X) is also affine, say Y = Spec B. So f : Y — X is induced
by a ring homomorphism A — B, which we still denote by f. For each a € A, D(a) = Spec(A4,) is

an open affine subset of X, and

(f:0y) (D(a)) = Oy (f7(D(a)) = Oy (D(f(a)) = Bya) = Ba.

Hence f,Oy = B is quasi-coherent sheaf of O x-algebras.

Y = Spec(«) is obtained by the uniqueness of Spec(.«). O

For a scheme X, let Aff(X) denote the category of all affine morphisms Y — X, a morphism
from an affine morphism f : Y — X to another affine morphism ¢ : Z7 — X is a morphism
of schemes h : Y — Z for which f = g o h. For any morphism h : Y — Z in Aff(X), this
corresponds to a morphism of sheaves h* : Oz — h,Oy, which will induce another morphism of
sheaves .07 — g« (hOy) = f.Oy. Let QCoh(Ox) denote the category whose objects are quasi-

coherent sheaves of O x-algebras on X. Then we define a contravariant functor
r: Aff(X) — QCoh(0Ox)
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Lemma 4.2.3. T is an anti-equivalence of categories from Aff(X) to QCoh(Ox).

Proof. This follows from lemma 4.2.1 and 4.2.2. O

Thanks to the above lemma, we can now construct the quotients under finite groups of automor-
phisms in Aff(X) via replacing it by the anti-equivalent category QCoh(Ox). Let X be a scheme
and f:Y — X an affine morphism. Let G be a finite subgroup of the group of automorphisms of
Y — X in Aff(X). By the anti-equivalence we just proved in the previous lemma, Y corresponds to
a quasi-coherent sheaf of O x-algebras, say <7, and G corresponds to a finite subgroup of Autg, (&),
which acts on & and fixes Ox and which we still denote by G.

For each open subset U C X, we define:
AU = (A (V)" ={ae A (U)|oa=a,voeG}.

Note that the map Ox(U) — & (U) factors through &7 (U) since G fixes Ox, which makes &7 (U)
to be an O (U)-algebra. Since ¢ is a morphism of sheaves, o commutes with pyy : &7 (V) — o/ (U)
for any open sets U C V C X. Then for any a € «%(U), opyy(a) = pyyo(a) = pyyla) =

pvu(a) € Z%(U). So we have the following commutative diagram:
o (V) = o (U)

AV~ ().

VU

This makes .27 into a presheaf and it is easy to verify that &7 is actually a sheaf. We still need to
show that it is quasi-coherent. Let U C X be any open subset. The map ¢y : & (U) - @ &/ (U)
oeG

sending a to (ca — a), . is Ox(U)-linear, and Ker(py) = &/%(U). It is easy to see that these ¢y’s

give a morphism of sheaves of Ox-algebras, ¢ : @ — @ /. Then &% = Ker(y) is quasi-coherent
oeG
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since both &/ and EBG o/ are quasi-coherent (Prop.4.2.4). Moreover, any morphism 6 : 4 — <
oe

of quasi-coherent sheaf of O x-algebras satisfying o o § = 6 for all ¢ € G factors uniquely via the

inclusion morphism /¢ — &/. Again by the anti-equivalence of categories, &7¢ corresponds to an

affine morphism over X, denoted by ¢ : Y/G — X satisfying the universal property for the quotient

of Y — X under G.

For a scheme X, let f : Y — X be an affine morphism and G a finite subgroup of the group of
automorphisms of Y — X in Aff(X). The previous argument shows that the quotient g : Y/G — X
exists in Aff(X). From the above construction it can be easily seen that for any open set U C X
we have g~'(U) = f1(U)/G; and if U = Spec A is open affine, f~*(U) = Spec B, then g~ *(U) =

Spec(BY).

Proposition 4.2.5. Let f : Y — X be an affine morphism, G a finite group of automorphisms
of Y = X in Aff(X), and g : W — X a finite locally free morphism. Then (Y xx W)/G =

(Y/G) xx W in Affyy.

Proof. First we note that the base change Y xx W — W is also an affine morphism. For each

o €, foo=f, and we have the following commutative diagram:

Y xx W P Y

where the morphism Y x x W — Y x x W is obtained by the universal property of the fiber product
since gopy = fop; = (foo)op, = fo(oop), we still denote this morphism by o. Doing the
same argument to o' yields that o is an automorphism of Y xx W — W in Aff(W). Moreover
the action of G gives a canonical action of G on'Y xx W — W, so the quotient (Y xx W)/G — W
is well-defined. Let us denote by p the morphism Y — Y/G in Aff(X) such that poo = p for all
o € G. Then the morphism h : Y xx W — (Y/G) xx W induced by p satisfies h o o = g for all
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o € (G. By the universal property of the quotient, there exists a unique morphism
o: (Y xx W)/G — (Y/G) xx W.

We claim that ¢ is an isomorphism, which can be checked locally on the base. We may assume
that X = Spec A is affine, then Y = Spec B for some A-algebra B and W = Spec C for some finite
projective A-algebra C' since f is affine and g is finite and locally free. Furthermore, the following

schemes are all affine:

Y/G = Spec (BG) ,
Y xxW = Spec(B®,yC),
(Y xx W)/G = Spec((B®aC)%),

(Y/G) xx W = Spec (B ®40).

Now it suffices to show that the natural ring inclusion B¢ @4 C — (B ®4 C)% is actually an

isomorphism. Consider the following exact sequence of A-modules:

0— B — B— P58,

ocelG

in which the last map is given by b +— (0(b) — b), ., for each b € B. Then by the flatness of C' (see

remark 3.1.2), it gives rise to an exact sequence:

O—)BG®AC—>B®AC—>®(B®A0),

ocelG

where the last map sends b ® ¢ € B ®4 C to ((o(b) —b) ®¢), ., with kernel (B @4 C)¢. So

BY®,C = (B®,C)Y as required. O

Proposition 4.2.6. Let f : Y — X be a finite étale morphism and G a finite group of Autx(Y)

in FEt(X). Then the quotient Y/G exists in FE{X).

Proof. Thanks to the previous proposition, we have seen that g : Y/G — X exists in Aff(X). So it
suffices to show that ¢ : Y/G — X is finite étale if f:Y — X is.
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First we prove that the quotient exists in Aff(X) if Y = X x D for some finite set D, the action
of G being induced by an action of G on D. Then for any morphism h : X x D — Z in Aff(X)
such that h oo = h for all o € GG, there exists a unique morphism X x (D/G) — Z such that the

following diagram

XX (D/G)=—X x D

|
* |
Y
Z X
commutes, i.e., X x (D/G) satisfies the universal property of the quotient of X x D by G, thus

Y/G = (X xD)/G=X x (D/G), then Y/G — X is finite étale.

Let us next assume that f : Y — X is totally split. For each x € X, applying remark 4.1.2 when
Y =27, f =gand {01,09,...,0,} = G, a finite group of automorphisms of ¥ — X in FEt(X),
there exists an open affine neighborhood U C X of z such that both f: f~1(U) — U and the action
of G are trivial above U, that is, there exists a finite G-set D such that f~'(U) =2 U x D and the
action of G on U x D is induced by an action of G on D. Then by the case just dealt with, we have
(UxD)/G=Ux (D/G),soU x (D/G) = f~U)/G = g~*(U), which implies that g~*(U) — U
is finite étale. Since we can cover X by such U’s, the morphism ¢ : Y/G — X is finite étale in this
case.

In the general case we choose a surjective, finite and locally free morphism W — X for which
Y xx W — W is totally split. Then (Y xx W) /G — W is finite étale by the result just proved,
and (Y xx W) /G = (Y/G) xx W by Prop. 4.2.5. From proposition 3.4.7 it now follows that

Y/G — X is finite étale. This proves our assertion. 0
Proposition 4.2.7. The category FEt(X) satisfies (G2).

Proof. e It follows from Prop. 3.4.1 that finite sums exist in FEt(X). In particular, ) — X is

the initial object.
e Quotients under finite subgroups of automorphisms exist by proposition 4.2.6.
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This proves our assertion. O

4.2.3 (G3)

Proposition 4.2.8. Let f : Y — X, g: Z — X be finite étale and h 'Y — Z a morphism with

f=goh. Then h is an epimorphism in FEt(X) if and only if h is surjective.

Proof. “Only if”: Suppose now h is an epimorphism in FEt(X). By Prop. 413, h : Y — Z
is finite étale hence it is finite and locally free. So Zy = {z € Z : [Y : Z](z) = 0} is an open and
closed subscheme of Z. Then the complement Z; = Z — Z, is also open and closed in Z and
Z = Zy 11 Z;. Proposition 3.3.4 implies that h='(Z;) = (). Thus, h factors through a finite étale
morphism hy : Y — Z;, which is surjective since [Y : Z1] = [V : Z] ’” > 1. Next, we will show that
Zy = 0.

Let 7' = Zy 11 Zy 11 Z;. Since Z — X is finite étale, the restrictions Z; — X (i = 0,1)
are both finite étale thus Z’ — X is finite étale. It suffices to show that the two morphisms «,
B Z — Z' which maps Z, to the first and second copy of Z, in Z’ are equal. We check this
property locally. Assume X = Spec A is affine, hence Y, Z,, Z; are all affine. We may assume
Y = Spec B, Z; = SpecC; (i = 0,1), hence Z = Spec(Cy x Cy) and Z' = Spec(Cy x Cy x C1).
Then the morphism h : Y — Z corresponds to a ring homomorphism A* : Cy x Cy — B. This map

factors through Cf:

h? : Cl — B,
since h factors through h;, and A} is just the ring homomorphism induced by h;. So we have
h* = h} o p, where p is the projection Cy x C; — (. Define
a* : Cyx Cyx Cy — Cyx Cy by (a,b,¢) — (a,c) and
p*:Cox Cy x Cp — Cy x Cy by (a,b,c) — (b,c).

Let a, 8 be the morphisms of schemes Z — Z’ induced by a*, *, respectively. Since h* o a* =
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hiopoa* = hjopo[3* = h*o[* we have aoh = foh. Thus a = ( as h is an epimorphism. Then
a* = %, which implies that Cy = 0 and thus Z, = (). So Z = Z; and h is surjective.
“If”: Now suppose h is surjective and let Z—_ — W be finite étale morphisms over X such that
T
poh =gqoh. We need to prove p = ¢. This is a local property so we may assume X is affine, say
X =SpecA. Then Y, Z, W are all affine, say Y = Spec B, Z = Spec C and W = Spec D, then we

*

o
have the following corresponding ring homomorphisms D C—""» B such that h* o p* = h*oq".
e

h is surjective = [Y:Z]=[B:(C]>1

= h*:C — B is injective (Prop. 3.1.8).

So h is an epimorphism. This completes the proof. O

Proposition 4.2.9. Let f :Y — X, g : Z — X be finite étale and h : Y — Z a morphism with
f = gh. Then h is a monomorphism in FEt(X) if and only if h is both an open immersion and a

closed immersion.

Proof. The “if” part is easy. Since an open (or closed) immersion can factor through an isomorphism
with an open (or closed) subscheme, it is obviously a monomorphism.
For the “only if” part, we assume h is a monomorphism in FEt(X). Considering the fibre product

Y Xz Y via the morphism h, we have the following commutative diagram:

YXZY

S

X.
We note that Y xzY — Z and Y xz Y — X are finite étale since Y — Z and Z — X are both

A

finite étale. So Y xz Y — Z is a morphism in FEt(X). Let p; and py be the two projections

Y xzY — Y, then we have h o p; = h o p by the commutativity of the following square:

Y x, V-2~V
.
y " .z




As h is an monomorphism, then p; = py. We claim that p; is an isomorphism. In fact this is a
local property so we may assume that X is affine thus Y and Z are both affine, say X = Spec A,
Y = Spec B and Z = SpecC' thus Y Xz Y = Spec(B ®@¢ B). Corresponding to the above square

for the fibre product, we have the following commutative square of rings:

B&eB<"—B
pTT Th*
B C,

h*

where h* : C' — B is the ring homomorphism corresponding to h and pj, pj are the ring homo-
morphisms B — B ®¢ B corresponding to py, ps, which are given by x — r® 1 and z — 1 ® x,
respectively. Note the fact that pj = p} since p; = py, ie.,, r® 1 =1® x for any x € B. So for any

x,y € B, we have

pilry) =2y@l=e)(yol)=(rx)(1y) =rxy.

This implies that pj is surjective. Now let m denote the multiplicative homomorphism B®qc B — B
by x ® y — xy. Then m o pj = idp, which means that pj is injective. Then pj is an isomorphism
hence m is an isomorphism. Proposition 3.1.8 shows that [B : C'] < 1. Extending this globally, we
have [Y : Z] < 1.

Let Z;={2€Z:[Y:Z](z) =i} for i =0,1. Then Z = Z, 11 Z;. By Prop. 3.3.4, h"'(Zy) =0
and thus h factors through an isomorphism h; : Y — Z;. So h is both an open and closed immersion.

This completes the proof. O
By Proposition 3.3.4, 4.2.8 and 4.2.9 we can easily conclude the following;:

Corollary 4.2.1. Let f : Y — X, g : Z — X be finite étale and h : 'Y — Z a morphism with

f=gh. Then
(a) h is an epimorphism in FEX) if and only if [Y : Z] > 1.

(b) h is a monomorphism in FEtX) if and only if [Y : Z] < 1.
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(¢) h is an isomorphism if and only if it is both an epimorphism and a monomorphism in FEt(X).

Thanks to these propositions, we can check the axiom (G3) now.

Proposition 4.2.10. Let X be a scheme. Then FEt(X) satisfies (G3).

Proof. Suppose h : Y — Z is a morphism in FEt(X), i.e., we have the following commutative

diagram

where each morphism is finite étale. We will show that h = hy o hy factors as an epimorphism hy
and a monomorphism hs.

Let Zp = {z€ Z:[Y :Z](2) =0}, Zy = Z — Zy. Then both Z, and Z; are open and closed
subschemes of Z. By Prop. 3.4.1, Z; and Z; are objects in FEt(X) with Z = Z, I Z;. We have

seen that h™1(Zy) = 0, so h factors:

Y h L z=7,112
k /
7.

Here, for hs, since it is both an open immersion and a closed immersion thus is a monomorphism
in FEt(X) (Prop. 4.2.9). For hy, it is an epimorphism in FEt(X) since it has degree at least one

(Prop. 4.2.1). This shows that the category FEt(X) satisfies axiom (G3). O

4.2.4 (G4)

Definition 4.2.3. A geometric point of a scheme X is a morphism z : Spec {2 — X, where € is an

algebraically closed field.

The following property shows that geometric points exist if X is non-empty, in particular if X is

connected.
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Proposition 4.2.11. Let X be a scheme. Then giving a geometric point of X is equivalent to
giving a point y € X together with a field homomorphism k(y) — Q from the residue field at y to

an algebraically closed field €.
Proof. Let 0 denote the only point of Spec (2.

¢ Firstly, Suppose given a geometric point of X, i.e., a morphism of schemes
v =(f, %) : {0} = SpecQ — X,

where f: {0} — X is the continuous map of the underlying topological spaces, f*: Ox —
J+Ospec o is the morphism of sheaves of rings with €2 an algebraically closed field. Let y = f(0),

then y is a point of X. Considering the stalk Oy ,, we get a local morphism
fg : OX,y — oSpecQ,O = Q.

—1
Thus <f§) (0) = mx,, where my , is the only maximal ideal of the local ring Ox,. So fg
will induce a field homomorphism k(y) = Ox,, / my, — ) from the residue field at y to an

algebraically closed field €.

o Conversely, giving a point y € X together with a field homomorphism k(y) — €2 from the
residue field at y to an algebraically closed field €2, we define a map between topological spaces
f :Spec) — X by f(0) = y. It is easy to see that f is continuous. Now for any open set

U C X, we define a homomorphism of rings f*(U) : Ox(U) — f.Ospeca(U) as follows:

o if y & U, then f,O0spec(U) = Ospeca(?) = 0 (the zero ring), we define f#(U) as the zero

map;

e if y € U, then f,05p0c0(U) = Ogpeca(Spec ) = Q, we define f*(U) to be the composition

O

X
OX(U) o oX,y B oX,y/mX,y - k(y)HS_L

where pX is the canonical projection Ox(U) — Ox, = lim Ox(V), 7 is the
yeV CX open

natural projection to the quotient ring and the last map is the given field homomorphism.
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It is easy to check that f* : Oy — f+Ogpec 1s a morphism of sheaves and fg : Oxy —
[+Ospec a0 = Q is local. So z = (f, f*) is a morphism of schemes SpecQ — X, hence is a

geometric point of X.

We complete the proof. O

Remark 4.2.1. If a scheme X is non-empty (in particular, X is connected), we may take a point
x € X and let Q be the algebraic closure of k(z), the residue field at . Then x together with the

field inclusion k(z) < Q gives a geometric point of X.

Now let X be a scheme and fix x : Spec {2 — X a geometric point of X over an algebraically closed
field Q. If Y — X is finite étale then so is Y x x Spec ) — Spec(). Thus Y xx Spec {2 = Spec K
is affine, and K is a projective separable (2-algebra. Since 2 is algebraically closed, Theorem 3.4.2
implies that K = Q" for some positive integer n. Then Y X y Spec () = Spec () x D for some finite
set D with |D| = n. Here, D is unique up to isomorphism.

Moreover, if h : Y — Z is a morphism in FEt(X), then there exist finite set D and E such
that Y X x Spec() = Spec() x D = Spec (QD) and Z X x Spec{) = Spec() x E = Spec (QE), see
lemma 4.1.1. Then h X idgpecq : Y X x Spec{) = Z X x Spec {2 will induce a morphism Spec (QD) —

Spec (QE) Again by Lemma 4.1.1, it corresponds to a map F,(h) : D — E. Now we define
F,: FEt(X) — Sets
Y —-X) — D
(h:Y = 2Z) — (Fy(h): D —E),
where Y X y Spec () = Spec 2 x D and Z X x Spec {2 = Spec () x E. Then it is easy to check that F}

is a (covariant) functor. We want to check that axiom (G4) holds for F,, and we introduce a lemma

first.

Lemma 4.2.4. Let A be a ring and D, E,E' be finite sets. Then AP @0 AP = AP*pE' 4
A-algebras.
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Proof. 1t is easy to check that the following A-algebra homomorphisms are inverse to each other.

0: AP @0 AF —

(f.g) —
P AP
a —
where
/ 1’
fS(S) =
0,
for s,s" € E and
1,
9(t') =
0,

for t,t' € E'.

AEXDE,

((e,€') = f(e)g(e')) and

A @ 0 AF

Z a(sat)fs®gta

(S,t)EEXDE/

s'=s,

otherwise.

=t

otherwise.

O

Proposition 4.2.12. Let X be a scheme. Then the functor F, sends the terminal object in FEt(X)

to the terminal object in Sets and commutes with fiber products.

Proof. e Since F,(lpre(x)) = Fo(X — X) = {1}, a singleton, clearly the terminal object in

Sets.

e Suppose Y, Z and W are objects in FEt(X) with morphisms f : Y — Wandg: Z — W. And

assume W x xSpec {2 = Spec 2x D, Y X xSpec ) = Spec QO x E and Z X xSpec {2 = Spec Qx E'.

Then we have

(Y xw Z) xx SpecQ = (Y xx SpecQ)) xw Z

2 (Y xx Spec) Xuwxyspec) (W X x SpecQ) xyw Z

Y
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= (Y Xx Spec Q) X (W x xSpec Q) (Z Xx Spec Q)

2 (SpecQ X E) X(specaxn) (SpecQ x E')

12

Spec <QE Rqp QE/) = Spec (QEXDE’>

12

SpecQ x (E xp E').

We conclude that (FEt(X), F,) satisfies (G4). O

425 (G5)

Proposition 4.2.13. Let f : Y — X be a finite étale morphism, G a finite group of Autx(Y) in

FEt(X) and g : Z — X any morphism of schemes. Then (Y xx Z)/G = (Y/G) xx Z in FEt(Z).
Proof. As in the proof of proposition 4.2.5, the universal property of the quotient yields a morphism:
¢ (Y xx 2))G— (Y/G) xx Z.

We claim that this is an isomorphism. We proceed this in three steps.
First we assume that Y = X x D for some finite G-set D, then the action of G on Y is induced

by an action of G on D. By lemma 4.1.1(a) we have

I

Y xxZ = (X xD)xxZ= (X Xspeez (SpecZP)) xx Z

>~ (X xx Z) Xspeez (SpecZP) =2 Z x D.
Moreover GG acts on this fiber product via D in this expression. So
Y xx 2))G=(ZxD)/G=Zx(D/G)= (X x(D/G))xx Z=(Y/G) xx Z,

i.e., ¢ is an isomorphism.

Next we consider the case that f: Y — X is totally split. As we did in the proof of Prop. 4.2.6,
we can cover X by open affine sets U above which both f:Y — X and the action of G are trivial,
that is, we can identify f~(U) with U x D for some finite set D such that the action of G on
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f~YU) =2 U x D is induced by an action of G on D. Then by the case we just proved, ¢ is locally
an isomorphism, thus it is an isomorphism.

Finally we deal with the general case. By Theorem 4.1.1 we may choose a surjective, finite and
locally free morphism W — X such that Yy, — W is totally split; here we write —y, for — xx W.

Then the base change
Yo xXw Zw EYw Xuw W Xx ZZ22Ywy xXx Z —W xXx 2= Zyw
is also totally split. Then the above result implies that
Yw xw Zw) /G = (Yw /G) xw Zw.

. Since W — X is surjective, finite and locally free, sois Zyy =W, =W xx Z - X xx Z = Z.

By proposition 4.2.5, we have
Yz xz W2) |G =2 (Yz/G) xz Wy.
Note that we still have
(YzxzWz) |G = (Y xx ZxxW)/G=(Y xx W xw Zxx W) /G
> (Y xw Zw) /G = (Yw/G) xw Zw

= ((Y Xxw)/G) XWzW%J(Y/G) XXwXWZXXW

= (Y/G) ><XZ Xxwg (Y/G) ><XZ Xz Wz,
thus we have an isomorphism:
(Yz/G) Xz WZ = (Y/G) X x A Xz Wz,

where the isomorphism above is just the base change to Wy of the map ¢ : (Y xx Z)/G —
(Y/G) xx Z. Then by Prop. 3.4.6 and 3.1.4, ¢ is also an isomorphism, which completes the

proof. O
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Proposition 4.2.14. Let X be a scheme and x a geometric point of X. Then the functor F,
commutes with finite sums, transforms epimorphisms to epimorphisms, and commutes with passage

to the quotient by a finite group of automorphisms.

Proof. o Let YV; - X (i = 1,2,...,n) be finite étale morphisms and suppose Y; X x SpecQ =

Spec 2 x E;. Then we have
(HK) X x Spec§) = ]_[(YZ X x Spec ) = H Spec ) X E;)
i=1 i=1 i=1
Spec 2 x (H EZ> .
i=1

Hence F, ((ﬁ AR X) _1E = [[E(Y;, - X).

i=1 =1 =1

I

e Now let h : Y — Z be an epimorphism in FEt(X), i.e., h is surjective. Then by Prop.

3.4.3(c), the base change
Y Xx SpecQ =Y Xz (Z xx Spec)) — Z X x Spec )

is also surjective. This is equivalent to the assertion that the map Q) =Y x y SpecQ —
7 xx SpecQ = QF+(%) induced by F,(h) : Fo(Y) — F.(Z) is surjective. So Fj(h) must be a

surjection.

e Let Y — X be a finite étale morphism, G a finite group of Autx(Y') in FEt(X). Using Prop.

4.2.13, we can obtain that
(Y xx SpecQ) /G = (Y/G) x x Spec Q = SpecQ x F,(Y/G).
Moreover, we have

(Y xx SpecQ) /G = (SpecQ x F,(Y)) /G = (9" /G

12

Spec ((QFZ(Y)) ) = Spec (QFI /G) >~ SpecQ x (F,(Y)/G) .

Then we can conclude that SpecQ x F,(Y/G) = SpecQ x (F,(Y)/G) thus F,(Y/G) =
F.(Y)/G.
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This proposition is equivalent to the assertion that the category FEt(X) with the functor F

satisfying (G5). O

4.2.6 (G6)

Lemma 4.2.5. Let f:Y — X, g: Z — X be finite étale morphisms with [Y : X] = [Z : X], and

suppose that h - Y — Z is a surjective morphism with f = gh. Then h is an isomorphism.

Proof. First, we assume f and g are totally split. By Proposition 4.1.2, for any € X, there exists

an open affine neighborhood U of z in X such that the following diagram

f=H () : g~ (U)
\ /
i UxD—"2 .1 xD g
U / o \ U
commutes since [Y : X] = [Z : X]. Note that ¢ is indeed surjective since h is surjective. The

finiteness of D implies ¢ is bijective, thus h}ffl(U) : f7YU) — ¢ Y(U) is an isomorphism, so is h.
In the general case we choose surjective, finite and locally free morphisms W7 — X, Wy — X
such that Y xx Wy, — W; and Z x x Wy — Wy are totally split. Then W = W, xx Wy — X is also
surjective, finite and locally free, and Y x x W — W, Z x x W — W are totally split. Furthermore,
by Prop. 3.4.3 (b), we have [Y xx W : W] =Y : X] =[Z : X]| = [Z xx W : W]. Applying
the conclusion we got above, h X idy : Y xx W — Z xx W is an isomorphism. Since being an
isomorphism is a local property, we may assume now that X = Spec A affine for some ring A. Then
W = Spec B is affine with B a faithfully projective A-algebra since W — X is surjective, finite and

locally free. This implies h is an isomorphism (Prop. 3.1.4). U

Proposition 4.2.15. Let X be a connected scheme and x a geometric point of X. Then (FEt(X), F},)

satisfies (G6).
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Proof. Suppose we have a morphism h : Y — Z in FEt(X) such that F,(h) : F,(Y) — F.(Z) is an
isomorphism. This implies that [Y : X| = |F,(Y)| = |F.(Z)| = [Z : X]. Factor h as in the proof of

Prop. 4.2.10 into:

Yy h L z=7,112
Zh

with hy surjective and Zy = {z € Z : [Y : Z|(2) = 0}. By Prop. 4.2.14, F,.(Z) = F,(Zy) U F,.(Z)
and F,(hy) : F,.(Y) — F,(Z;) is surjective. Then we have:

Fy(h)

Fm %7

Fz(Zl)a

where F,(h) is an isomorphism and F,(hy) is surjective. So F,.(Z;) = F,.(Z) thus F.(Zy) =0, i.e.,
[Zo : X] = [Zy xx Spec ) : Spec Q] = |F,(Zy)| = 0. This implies that Z, = () hence Z = 73, i.e., h

is surjective. Then by lemma 4.2.5, h is an isomorphism. So (G6) was satisfied. O
Now we may conclude that:

Theorem 4.2.1. Let X be a connected scheme, x a geometric point of X, and F, : FEt(X) — Sets

as defined in Section 4.2.4. Then (FEtX), F,) is a Galois category.

4.3 Fundamental group

Let us write down the main theorem for this thesis:

Theorem 4.3.1. Let X be a connected scheme. Then there exists a profinite group m, uniquely
determined up to isomorphism, such that the category FEHX) of finite étale coverings of X is

equivalent to the category m-Sets of finite sets on which m acts continuously.

Proof. Since X is connected, the degree [Y : X] is constant for each object (Y — X) in FEt(X).
Then it is straightforward to verify that FEt(X) is an essentially small category. Theorem 2.2.1(a)
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and 4.2.1 imply that the category FEt(X) is equivalent to the category m-Sets for some profinite
group 7, if X is connected. Again by theorem 2.2.1(d), 7 is uniquely determined up to isomorphism.

O

Let X be a connected scheme, x a geometric point of X, and F, : FEt(X) — Sets as defined in

4.2.4. We write m(X, z) = Aut(F,), called the fundamental group of X in x, see section 2.1.6.
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