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ABSTRACT

Galois Theory for Schemes

Shan Gao

Given a connected scheme X, we consider the category of finite étale coverings of X. We will show

that this category is equivalent to the category π-Sets of finite sets on which π acts continuously,

where π is a profinite group, uniquely determined up to isomorphism. Our technique is to develop

a basic theory for Galois category and show that category of finite étale coverings of X is a Galois

category.

Keywords: Galois category; Fundamental group; Separable algebra; Finite Étale morphism

iii



Contents

1 The topological fundamental group 2

1.1 The fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Galois Categories 7

2.1 Galois Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Categories and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Initial,Terminal object, Monomorphism and Epimorphism . . . . . . . . . . 9

2.1.3 Products, Fibre products, Coproducts and Equalizers . . . . . . . . . . . . . 11

2.1.4 Quotient under group actions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Galois categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 The automorphism group of a fundamental functor . . . . . . . . . . . . . . 15

2.1.7 Finite coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Proof of Theorem2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Properties of Galois category and Fundamental functor . . . . . . . . . . . . 24

2.2.2 Proof of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Finite étale coverings 42

3.1 Projective modules and projective algebras . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Separable algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iv



3.3 Finite étale coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Properties of finite étale morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 The category FEt(X) 84

4.1 Totally split morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 FEt(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 (G1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 (G2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 (G3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.4 (G4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.5 (G5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.6 (G6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

v



Introduction

In this thesis we study the basics of finite étale morphisms. It is the first step to study étale

cohomology, which is a vast and extremely rich area of mathematics, with many applications. In

this thesis we prove the main theorem of Galois theory for schemes, which classifies the finite étale

coverings of a connected scheme X in terms of its fundamental group π(X).

Our main aim in this thesis is to develop and study the theory of finite étale morphisms using a

basic material in H. W. Lenstra’s notes found at:

http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf.

There are no new results here. We have written the theory as we understood it and added most

of the details which were left as exercises in Lenstra’s notes.

The thesis is organized as follows. In Chapter 1, we give a brief review of the covering spaces

and fundamental groups of topological spaces. The following chapter contains an axiomatic char-

acterization of categories that are equivalent to π-Sets for some profinite group π. In Chapter 3,

we treat the basic properties of finite étale morphisms, which generalize the properties of projective

separable algebras. In the last chapter, we prove the main theorem of this thesis, by showing that

the category of finite étale coverings of a connected scheme is a Galois category.

I would like to thank my supervisor, Professor Adrian Iovita, for numerous helpful discussions.

1



Chapter 1

The topological fundamental group

1.1 The fundamental group

In this section we will give a brief review of the construction of the fundamental group of a topological

space. We shall assume that all spaces in this section are topological spaces and all maps are

continuous. We set I = [0, 1]. For the details of this section we refer to Armstrong (1983) (Chapter

5), Massey (1991) (Chapter II).

Definition 1.1.1. Two maps f0, f1 : X → Y are said to be homotopic if there exists a map

F : X × I → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X. The map F is called

a homotopy from f0 to f1 and we shall write f0 �
F
f1.

Definition 1.1.2. A path in a space X is a map f : I → X. A loop in X is a map f : I → X where

f(0) = f(1), and we shall say that the loop is based at the point x0 = f(0), which is referred to as

the basepoint.

Definition 1.1.3. Two paths f, g : I → X are said to be path homotopic, denoted by f �
(p)

g, if
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f(0) = g(0), f(1) = g(1) and there exists a map F : I × I → X such that

F (s, 0) = f(s)

F (s, 1) = g(s)

⎫⎪⎪⎬⎪⎪⎭ for all s ∈ I,

F (0, t) = f(0) = g(0)

F (1, t) = f(1) = g(1)

⎫⎪⎪⎬⎪⎪⎭ for all t ∈ I.

Proposition 1.1.1. Path homotopy is an equivalence relation.

We denote [f ] to be the homotopy class of a path f : I → X. If f and g are two paths in X

where f(1) = g(0) we define the product f ∗ g to be the path given by the formula

(f ∗ g)(s) =

⎧⎪⎪⎨⎪⎪⎩
f(2s), 0 ≤ s ≤ 1

2
,

g(2s− 1), 1
2
≤ s ≤ 1.

We can see that this product operation respects homotopy classes, i.e. if f0 �
(p)

f1, g0 �
(p)

g1, and

f0(1) = g1(0) then f0 ∗ g0 �
(p)

f1 ∗ g1. Let X be a topological space, choose a base point x0 ∈ X,

and consider the set of all homotopy classes [f ] of loops f : I → X based at x0. This set is denoted

π1(X, x0). We have the following theorem.

Theorem 1.1.1. π1(X, x0) is a group with respect to the product [f ][g] = [f ∗ g].

This group is called the fundamental group of X at the base point x0.

1.2 Covering spaces

Definition 1.2.1. Let X be a topological space.

(1) A space over X is a topological space Y with a continuous map p : Y → X .

(2) A morphism between two spaces pi : Yi → X (i = 1, 2) over X is given by a continuous map

3



f : Y1 → Y2 such that the following diagram

Y1

p1

f
Y2

p2

X

commutes.

(3) A covering space of X is a space Y over X where the projection p : Y → X satisfies the

following condition. For each point x ∈ X there is an open neighborhood V , and a decompo-

sition of p−1(V ) as a family (Ui)i∈D of pairwise disjoint open subsets of Y , in such a way that

the restriction of p to each Ui is a homeomorphism from Ui to V .

(4) A morphism between two covering spaces of X is a morphism of spaces over X.

Example 1.2.1. Take a nonempty discrete topological space D and form the topological product

X ×D. The projection X ×D → X on the first coordiate turns X ×D into a covering space over

X. It is called a trivial covering.

Proposition 1.2.1. A space Y over X is a covering if and only if each point of X has an open

neighborhood V such that the restriction of the projection p : Y → X to p−1(V ) is isomorphic (as

a space over X) to a trivial cover.

Proof. The “if” part is obvious by the previous example and the definition of covering. The “only

if” part can be seen as follows: Given a cover p : Y → X and a decomposition p−1(V ) ∼= ∐
i∈D

(Ui)

for some finite index set D, the map f :
∐
i∈D

(Ui) → V × D defined by sending ui ∈ Ui to the pair

(p(ui), i) is a homeomorphism, where D is endowed with the discrete topology. By construction

this is an isomorphism of trivial covers of V .

Let X be a topological space and π1(X, x) be the fundamental group of X with base point x.

Next we will show that given a cover p : Y → X , there is a natural action by the group π1(X, x)

on the fibre p−1(x). We need the following lemma.
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Lemma 1.2.1. Let p : Y → X be a cover, y ∈ Y and x = p(y).

(1) Given a path f : [0, 1] → X with f(0) = x, there is a unique path f̃ : [0, 1] → Y with f̃(0) = y

and p ◦ f̃ = f .

(2) Assume moreover given a second path g : [0, 1] → X homotopic to f . Then the unique

g̃ : [0, 1] → Y with g̃(0) = y and p ◦ g̃ = g has the same endpoint as f̃ , i.e. f̃(1) = g̃(1).

Proof. For the proof of this lemma we refer to Massey (1991) (Chapter V, Section 3), Szamuely

(2009) (Chapter 2, Section 2.3).

We can now construct the left action of π1(X, x) on the fibre p−1(x).

Definition 1.2.2. Let p : Y → X be a covering space of X and x ∈ X . For any y ∈ p−1(x) and

any [f ] ∈ π1(X, x) represented by a loop f based at x, we define a left action of π1(X, x) on p−1(x)

by [f ]y := f̃(1), where f̃ is the unique lifting given by the first part of the Lemma 1.2.1.

By the second part of the Lemma 1.2.1 we know that this definition does not depend on the

choice of f . And pf̃(1) = f(1) = x, i.e. [f ]y ∈ p−1(x). So this action is well defined.

A space X is called pathwise connected if any two points of X can be joined by a path. A pathwise

connected space is connected. A space is locally pathwise connected if each point has a basic family

of pathwise connected neighborhoods. A space is simply connected if it has trivial fundamental

group. A space is semilocally simply connected if every point x ∈ X has a neighborhood U such

that the natural homomorphism π1(U, x) → π1(X, x) is trivial.

If X is connected, locally pathwise connected, and semilocally simply connected, the group

π1(X, x) is independent of the choice of x, up to isomorphism. Denoting it by π1(X) we have the

following theorem.

Theorem 1.2.1. Let X be a topological space satisfying the above conditions. Then the category of

covers of X is equivalent to the category of π1(X)-sets.
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All the details of the proof of the theorem above can be found in Massey (1991) (Ch V, Section

7), Szamuely (2009) (Ch2, Theorem 2.3.4).

In the Theorem 1.2.1, the fundamental group π1(X) has no topology and the π1(X)-sets may not

be finite. If X is connected the next theorem gives the relationship between the category of finite

coverings of X and the category of π̂(X)-Sets for some profinite group π̂(X).

Theorem 1.2.2. Let X be a connected topological space. Then there exists a profinite group π̂(X),

uniquely determined up to isomorphism, such that the category of finite coverings of X is equivalent

to the category π̂(X)-sets of finite sets on which π̂(X) acts continuously.

The proof of this theorem is given in Section 2.1.7. If X satisfies the conditions stated just before

Theorem 1.2.1, then the group π̂(X) that we get from Theorem 1.2.2 is the profinite completion of

the fundamental group π1(X).

6



Chapter 2

Galois Categories

2.1 Galois Categories

2.1.1 Categories and Functors

A category C consists of a collection of objects Ob(C); and for two objects A,B ∈ Ob(C) a set

MorC(A,B) called the set of morphisms of A to B; and for three objects A,B,C ∈ Ob(C) a law of

composition

MorC(B,C)×MorC(A,B) → MorC(A,C)

satisfying the following axioms:

• Two sets MorC(A,B) and MorC(A
′, B′) are disjoint unless A = A′ and B = B′, in which case

they are equal.

• For each object A of C there is a morphism idA ∈ MorC(A,A) which acts as left and right

identity for the elements of MorC(A,B) and MorC(B,A) respectively, for all objects B ∈

Ob(C).

• The law of composition is associative (when defined), i.e. given f ∈ MorC(A,B), g ∈

7



MorC(B,C) and h ∈ MorC(C,D) then

(h ◦ g) ◦ f = h ◦ (g ◦ f),

for all objects A,B,C,D of C.

Example 2.1.1. The following are some examples of categories:

(1) The category Sets of finite sets with maps of sets.

(2) Given a group G the category G-Sets of sets with a left G-action, with maps of sets that are

compatible with G-action..

(3) Given a profinite group π the category of finite π−sets with a continuous left π-action together

with maps between sets which are compatible with the π-action. We denote this category by

π-Sets.

(4) The category of all finite coverings of a topological space X , denoted by Cov(X), with mor-

phisms between coverings (see definition 1.2.1).

(5) The category of schemes with morphisms of schemes.

Definition 2.1.1. A morphism u : X → Y is an isomorphism of the category C if there exists a

morphism v : Y → X such that u ◦ v = idY and v ◦ u = idX .

Let C,D be categories. A covariant (resp. contravariant) functor F of C into D is a rule which

to each object A in C associates an object F (A) in D, and to each morphism f : A → B associates

a morphism F (f) : F (A) → F (B) (resp. F (f) : F (B) → F (A)) such that:

• For all A in C we have F (idA) = idF (A).

• If f : A → B and g : B → C are two morphisms of C then

F (g ◦ f) = F (g) ◦ F (f) (resp. F (g ◦ f) = F (f) ◦ F (g)).

8



For categories C,D and functors (say covariant) F,G: C → D a natural transformation, or a

morphism of functors Φ : F → G is a rule which to each object X of C associates a morphism

ΦX : F (X) → G(X) such that for any morphism f : X → Y the following diagram is commutative:

F (X)
ΦX

F (f)

G(X)

G(f)

F (Y )
ΦY

G(Y )

Definition 2.1.2. Let F : C → D be a functor.

(1) We say F is faithful if for any objects X, Y of Ob(C) the map

F : MorC(X, Y ) → MorD(F (X), F (Y ))

is injective.

(2) If these maps are all bijective then F is called fully faithful.

(3) The functor F is called essentially surjective if for any object Y ∈ Ob(D) there exists an

object X ∈ Ob(C) such that F (X) is isomorphic to Y in D.

Definition 2.1.3. A functor F : C → D is called an equivalence of categories if there exists a

functor G : D → C such that the compositions F ◦ G and G ◦ F are isomorphic to the identity

functors idD, respectively idC. In this case we say that G is a quasi-inverse to F .

Lemma 2.1.1. A functor is an equivalence of categories if and only if it is both fully faithful and

essentially surjective.

We refer Mac Lane (1998) (Ch IV, Section 4, Theorem 1) for the proof of this lemma.

2.1.2 Initial,Terminal object, Monomorphism and Epimorphism

Definition 2.1.4. Let C be a category.

9



(1) An object S of the category C is called an initial object if for every object X of C there is

exactly one morphism S → X.

(2) An object T of the category C is called a terminal object if for every object X of C there is

exactly one morphism X → T .

Note that, from the definition above, initial or terminal object is unique up to isomorphism if

exists. We denote initial and terminal objects by 0C and 1C respectively. In Sets the empty set ∅

is an initial object, and any singleton, i.e., a set with one element, is a terminal object.

Definition 2.1.5. Let C be a category, and let f : X → Y be a morphism of C.

(1) We say that f is a monomorphism if for every object Z and every pair of morphisms u, v :

Z → X with f ◦ u = f ◦ v we have u = v.

(2) We say that f is an epimorphism if for every object W and every pair of morphisms u, v :

Y → W with u ◦ f = v ◦ f we have u = v.

Example 2.1.2. In Sets the monomorphisms correspond to injective maps and the epimorphisms

correspond to surjective maps.

We can see that the composition of monomorphisms (resp. epimorphisms) is still a monomor-

phism (resp. epimorphism).

Definition 2.1.6. Let C be a category. A subobject of an object X of C is a monomorphism Y → X.

A morphism of two subobjects Y → X, Y ′ → X of X is a morphism f : Y → Y ′ in C making the

diagram

Y
f

Y ′

X

commute.

10



2.1.3 Products, Fibre products, Coproducts and Equalizers

Definition 2.1.7. Let X, Y ∈ Ob(C), A product of X and Y is an object X × Y ∈ Ob(C) together

with morphisms p ∈ MorC(X × Y,X) and q ∈ MorC(X × Y, Y ) such that the following universal

property holds: For any Z ∈ Ob(C) and morphisms α ∈ MorC(Z,X) and β ∈ MorC(Z, Y ) there is

a unique γ ∈ MorC(Z,X × Y ) making the diagram

Z

α
βγ

X X × Yp q Y

commute.

We can similarly define a product of an arbitrary family of objects.

Definition 2.1.8. Let (Ai)i∈I be a collection of objects of a category Ob(C). The product of the Ai

is a pair (A, (pi)i∈I) consisting of an object A and a family of morphisms {pi : A → Ai} satisfying

the following property: Given a family of morphisms {gi : B → Ai}, there exists a unique morphism

γ : B → A such that pi ◦ γ = gi for all i. The product of (Ai) will be denoted by
∏

i∈I Ai.

The empty collection of objects has a product if and only if C has an terminal object. If I is

finite, I = {i1, i2, . . . , in}, we may write Ai1 × Ai2 × · · · ×Ain instead of
∏

i∈I Ai.

Definition 2.1.9. Let X, Y, Z ∈ Ob(C), f ∈ MorC(X,Z) and g ∈ MorC(Y, Z). A fibre product

of f and g is an object X ×Z Y ∈ Ob(C) together with morphisms p1 ∈ MorC(X ×Z Y,X) and

p2 ∈ MorC(X ×Z Y, Y ) making the diagram

X ×Z Y
p2

p1

Y

g

X
f

Z

commute, and such that the following universal property holds: For any T ∈ Ob(C) and morphisms

α ∈ MorC(T,X) and β ∈ MorC(T, Y ) with f ◦ α = g ◦ β there is a unique φ ∈ MorC(T,X ×Z Y )

11



making the following diagram

T

α

β

φ

X ×Z Y

p1

p2
Y

g

X
f

Z

commute.

Definition 2.1.10. We say the category C has fibre products if the fibre product exists for any

f ∈ MorC(X,Z) and g ∈ MorC(Y, Z).

The fibre product is uniquely determined up to isomorphism, if it exists. If a category C has fibre

products and terminal objects, then X × Y is just X ×1C Y . In Sets the fibre product X ×Z Y is

the set of all pairs (x, y) in the Cartesian product of X and Y for which x and y have the same

image in Z. If the maps X → Z, Y → Z are inclusions this may be identified with the intersection

of X and Y .

Definition 2.1.11. Let (Ai)i∈I be a collection of objects of a category Ob(C). The coproduct, or

amalgamated sum of the Ai is a pair (S, (fi)i∈I) consisting of an object S and a family of morphisms

{fi : Ai → S} satisfying the following property: Given a family of morphisms {gi : Ai → C}, there

exists a unique morphism γ : S → C such that γ ◦ fi = gi for all i. The coproduct of (Ai) will be

denoted by
∐

i∈I Ai.

The sum is unique up to isomorphism if it exists. In the category of sets the sum of the Ai is

their disjoint union.

Definition 2.1.12. We say that finite sum exists in C if any finite collection of objects has a sum

in C.

The empty collection of objects has a sum if and only if C has an initial object. If I is finite,

I = {i1, i2, . . . , in}, we may write Ai1 �Ai2 � · · · �Ain instead of
∐

i∈I Ai.

12



Definition 2.1.13. A morphism u : X → Y in a category C is called an isomorphism of X with a

direct summand of Y if there exists a morphism q2 : Z → Y such that Y , together with q1 = u and

q2, is the sum (or coproduct) of X and Z.

In Sets, we can simply get this by letting Z = Y − u(X).

Definition 2.1.14. Suppose thatX , Y are objects of a category C and u, v : X → Y are morphisms.

We say a pair (E, e) is an equalizer for the pair (u, v) if e : E → X is a C-morphism, u ◦ e = v ◦ e

and if (E, e) satisfies the following universal property: For every morphism f : W → X in C such

that u ◦ f = v ◦ f there exists a unique morphism φ : W → E such that f = e ◦ φ.

As in the case of the fibre product above, equalizers when they exist are unique up to unique

isomorphism. In Sets the equalizer of A
f

g
B is the subset {a ∈ A | f(a) = g(a)} of A with the

inclusion. We have the following properties of equalizers.

Proposition 2.1.1. If (E, e) is an equalizer of X
f

g
Y , then (E, e) is a subobject of X. Any two

equalizers of X
f

g
Y are isomorphic subobjects of X.

Proposition 2.1.2. If (E, e) is an equalizer of X
f

g
Y , then the following are equivalent:

(1) f = g.

(2) e is an isomorphism.

(3) e is an epimorphism.

For the proof of these two propositions, we refer to Herrlich and Strecker (1973) (Ch VI, 16.7

Proposition)

2.1.4 Quotient under group actions

Definition 2.1.15. Let Y be an object of a category C and G ⊂ AutC(Y ) a finite subgroup of the

group of automorphisms of Y in C. The quotient of Y by G is an object in C, denoted by Y/G,

13



along with a morphism ρ : Y → Y/G satisfying ρ ◦ σ = ρ for all σ ∈ G and the universal property:

If Z is an object of C and f : Y → Z satisfies f ◦ σ = f for all σ ∈ G, then there is a unique

morphism g : Y/G → Z such that f = g ◦ ρ.

Example 2.1.3. For any object Y of the category Sets of finite sets, the finite subgroup G ⊂

AutSets(Y ) acts on Y and Y/G is the set of G-orbits of Y .

2.1.5 Galois categories

Definition 2.1.16. Let C be a category and F a covariant functor from C to the category Sets

of finite sets. We say that C is a Galois category with fundamental functor F if the following six

axioms are satisfied.

(G1) There is a terminal object in C, and the fibre product of any two objects over a third one

exists in C.

(G2) Finite sums exist in C, in particular an initial object, and for any object in C the quotient by

a finite group of automorphisms exists.

(G3) Any morphism X u Y in C can be factored as

X

u1

u
Y

Y1

u2

where u1 is an epimorphism, u2 is a monomorphism and Y = Y1 � Y2, Y2 ∈ C.

(G4) The functor F maps terminal objects to terminal objects and commutes with fibre products.

(G5) The functor F commutes with finite sums and quotients (see Definition 2.1.15), maps epimor-

phisms to epimorphisms.

(G6) If u is a morphism in C such that F (u) is an isomorphism, then u is an isomorphism.

It is easy to see that the category Sets with the identity functor is a Galois category.
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2.1.6 The automorphism group of a fundamental functor

Let C be a Galois category with fundamental functor F . An automorphism of F is an invertible

natural transformation of functors F → F . Equivalently, an automorphism σ of F is a collection of

bijections σX : F (X) → F (X), one for each X ∈ Ob(C), such that for each C-morphism Y
f

Z

the diagram

F (Y )
F (f)

σY

F (Z)

σZ

F (Y )
F (f)

F (Z)

is commutative. Let SF (X) denote the permutation group of F (X). It is finite since F (X) is. Then

there is a natural injection:

Aut(F )
∏

X∈C SF (X)

given by σ 
→ (σX)X , where Aut(F ) is the group of all automorphisms of F . It is supposed here

that C is a small category, i.e. its objects form a set. Given each SF (X) the discrete topology and

endow
∏
X∈C

SF (X) with the product topology, the product above will be a profinite group.

For each C−morphism g : Y → Z, we define a subset as:

Γg =
{
(σX) ∈

∏
X∈C

SF (X)

∣∣∣ σZF (g) = F (g)σY

}
.

Γg is closed in the product since only two coordinates have been restricted. Then

Aut(F ) =
⋂

g:Y→Z

Γg

is a closed subproup of profinite group
∏

X∈C SF (X) hence is profinite. Since we may replace C by

an equivalent category, the foregoing is also valid if C is essentially small instead of small.

Let π = Aut(F ). There is a natural action of π on F (X) given by: σ · t = σX(t) for each

X ∈ Ob(C), σ ∈ Aut(F ) and t ∈ F (X). Then the kernel of this action

Ker(π) =
{
σ ∈ π

∣∣∣ σt = t for all t ∈ F (X)
}
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= π ∩
{
(σY ) ∈

∏
Y ∈C

SF (Y )

∣∣∣ σX(t) = t for all t ∈ F (X)
}

= π ∩
∏
Y ∈C

UY ,

where UY = SF (Y ) for Y �= X and UX = {σX ∈ SF (X) | σX(t) = t, ∀ t ∈ F (X)}. This means that

Ker(π) is open in
∏

Y ∈C SF (Y ) under the product topology hence π acts continuously on F (X) and

gives F (X) a π-set structure for ∀X ∈ Ob(C).

Given a C-morphism f : Y → Z, for any σ ∈ π, t ∈ F (Y ), we have

F (f)(σt) = F (f)(σY (t)) = (F (f)σY )(t) = (σZF (f))(t) = σZ(F (f)(t)).

This shows that F (f) is compatible with the π-action defined above. Now we may regard F as a

functor H : C → π-Sets by H(X) = F (X) and H(f : X → Y ) = (F (f) : F (X) → F (Y )), and that

F is the composite of H and the forgetful functor π-Sets → Sets. We have the following theorem.

Theorem 2.1.1. Let C be an essentially small Galois category with fundamental functor F . Then

we have:

(a) The functor H : C → π-Sets defined above is an equivalence of categories;

(b) If π′ is a profinite group such that the categories C and π′-Sets are equivalent by an equivalence

that, when composed with the forgetful functor π′-Sets → Sets, yields the functor F , then π′

is canonically isomorphic to π = Aut(F );

(c) If F ′ is a second fundamental functor on C, then F and F ′ are isomorphic;

(d) If π′ is a profinite group such that the categories C and π′-Sets are equivalent, then there is

an isomorphism of profinite groups π′ ∼= π which is canonically determined up to an inner

automorphism of π.

For the proof of this theorem, see Section 2.2. Next, we will show that the category Cov(X) (see

example 2.1.1) with X connected, is a Galois category and we will give the proof of Theorem 1.2.2.
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2.1.7 Finite coverings

Let X be a topological space, x ∈ X , and Cov(X) the category of finite coverings of X. Let

Fx : Cov(X) → Sets be the functor sending a cover f : X → Y to the fibre f−1(x). We shall prove

that, given X connected, Cov(X) is a Galois category with fundamental functor Fx. Then we can

deduce Theorem 1.2.2 from Theorem 2.2.1. We need to check the axioms (G1)− (G6) in Definition

2.1.16. First, we present several lemmas.

Lemma 2.1.2. Let X, Y , Z be topological spaces, f : Y → X, g : Z → X be finite coverings, and

h : Y → Z a continuous map with f = gh. Then for any x ∈ X, there exists an open neighborhood

U of x in X such that f , g and h are trivial above U , i.e., there exist finite discrete sets D and E,

homeomorphisms α : f−1(U) → U ×D and β : g−1(U) → U × E and a map φ : D → E such that

the diagram

f−1(U)

f

∼
α

h
g−1(U)

g

∼

β

U ×D
idU×φ

U × E

U
idU

U

is commutative where the maps U × D → U and U × E → U are the projections on the first

coordinate.

Proof. By Proposition 1.2.1, we can find neighborhoods V ′ and V ′′ of x in X , finite discrete sets

D, E and homeomorphisms α : f−1(V ′) → V ′ ×D, β : g−1(V ′′) → V ′′ ×E, such that the diagrams

f−1(V ′) α
∼

f

V ′ ×D g−1(V ′′)
β

∼

g

V ′′ × E

V ′ V ′′
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commute. First we let V = V ′ ∩ V ′′. Then we have the following commutative diagram

f−1(V )

f

∼
α

h
g−1(V )

g

∼

β

V ×D V ×E

V
idV V

We can get a continuous map βhα−1 : V ×D → V ×E. It respects the projections to V so the pair

(v, d) ∈ V ×D will be sent to (v, φv(d)) ∈ V ×E for some φv(d) ∈ E. For any fixed v this will define

a map φv : D → E by sending d to φv(d). Let φ = φx. The two maps V ×D D
φ

E and

V ×D
βhα−1

V ×E E combine into a continuous map V ×D → E ×E: (v, d) 
→ (φ(d), φu(d)).

The image of {x} ×D under this map will be contained in the diagonal of E × E, which is open.

Then there exists an neighborhood of {x}×D in V ×D whose image is also in the diagonal. Since

D is finite, we can take this neighborhood to be the form U × D, with U a neighborhood of x in

X. Replacing V by U we can prove Lemma 2.1.2.

Remark 2.1.1. From this lemma, we can get that under the assumptions of Lemma 2.1.2, h : Y → Z

is also a finite covering since U ×D
idU×φ

U × E is a trivial cover.

The following lemma is called the gluing lemma. The proof can be found in Armstrong (1983),

Chapter 4, Section 4.2.

Lemma 2.1.3. Suppose X = A∪B where A, B ⊆ X are closed. If f : X → Y is continuous when

restricted to A and to B, then f is continuous on X.

Lemma 2.1.4. Let X be a topological space and f : Y → X a finite covering. Then f is both open

and closed.

Proof. This property can be checked locally on X so we can assume that f : Y → X is a finite

trivial cover, i.e., Y ∼= X ×D for some finite discrete set D. For any open U ⊆ Y and ∀x ∈ f(U),

we can write U = U1 � U2 � · · · � Un where n = |D|, the cardinality of the set D and Ui is open
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in X for i = 1, 2, . . . , n. Then V =
n⋂

i=1

Ui is a neighborhood of x in X and V ⊆ f(U). This implies

that f is open. Similarly we can show that f is closed.

Lemma 2.1.5. Let X be a topological space. If g : Y → Z, h : W → Z are morphisms in C, then

the fibre product Y ×Z W , which is defined by

Y ×Z W =
{
(y, w) ∈ Y ×W

∣∣∣ g(y) = h(w) in Z
}
,

is a finite covering of X with the obvious map.

Proof. Let x ∈ X. We can find a neighborhood U of x in X such that the covering Y → X, Z → X

and the map g : Y → Z are trivial in the sense of Lemma 2.1.2. By shrinking U to a neighborhood

small enough, we can assume the cover W → X and the map h : W → Z are trivial on U , too. We

have the following commutative diagram:

U ×D′

idU×φ
′

U ×D
idU×φ

U × E

U

Then the fibre product Y ×Z W is just U × (D ×E D′) locally, where D ×E D′ is the fibre product

of φ : D → E and φ′ : D′ → E in the category Sets. It is obvious that U × (D ×E D′) → U is a

trivial cover. Then by Proposition 1.2.1 Y ×Z W is an object in Cov(X).

Lemma 2.1.6. Let X be a topological space and h : Y → Z is a morphism in Cov(X). Then

h is injective if and only if it is a monomorphism and that h is surjective if and only if it is an

epimorphism.

Proof. From Lemma 2.1.4 we can see that h(Y ) is open and closed in Z.

• (injection ⇐⇒ monomorphism)

“⇒” Suppose h is injective. If for any W in Cov(X) and morphisms ϕ1, ϕ2 : W → Y , such
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that hϕ1 = hϕ2, then for each w ∈ W , we have hϕ1(w) = hϕ2(w). Since h is injective, we

have ϕ1(w) = ϕ2(w) hence ϕ1 = ϕ2 and h is a monomorphism.

“⇐” Suppose h is a monomorphism inCov(X). Consider the following commutative diagram:

Y ×Z Y
p2

p1

Y

h

Y h Z

Then p1 = p2 since h is a monomorphism. If h(y1) = h(y2) for some y1, y2 in Y , then

(y1, y2) ∈ Y ×Z Y . So we have y1 = p1(y1, y2) = p2(y1, y2) = y2 which implies that h is

injective.

• (surjection ⇐⇒ epimorphism)

“⇒” First, we assume h is surjective. Suppose now we have two compositions

Y h Z
α

β

W

with α ◦ h = β ◦ h. For any z ∈ Z, there exists a y ∈ Y , such that h(y) = z. Then

α(z) = αh(y) = βh(y) = β(z), i.e., α = β which implies that h is an epimorphism.

“⇐” Suppose h is an epimorphism now. Let Z0 = {z ∈ Z : |h−1(z)| = 0} and Z1 = Z − Z0

be subsets of Z, where |h−1(z)| denotes the cardinality of the set h−1(z). Then Z1 = h(Y ) is

an open and closed subspace in Z. We have two compositions:

Y h Z = Z0 � Z1 Z0 � Z0 � Z1 .

Since h is an epimorphism, the two natural maps Z = Z0 � Z1 Z0 � Z0 � Z1 must be

equal. This implies Z0 = ∅ hence h is a surjection.

Next we will check the axioms (G1) − (G6) (see Definition 2.1.16) to show that Cov(X) with

functor Fx defined in the beginning of this section is a Galois category if X is connected.
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(G1) • The trivial cover idX : X → X is clearly a terminal object of Cov(X).

• By lemma 2.1.5 the fibre product of any two objects over a third one exists in Cov(X).

(G2) • The finite sum of fi : Xi → X , i ∈ I, is f :
∐

i∈I Xi → X , the disjoint union with the

usual topology and f
∣∣
Xi

= fi. By the gluing lemma (see Lemma 2.1.3),
∐

i∈I Xi is a

finite cover of X.

• The initial object is the empty cover f : ∅ → X.

• The quotient of p : Y → X by a finite subgroup G of the automorphisms of this covering

is the set of orbits of Y under G, given the quotient topology. The quotient space is a

finite cover of X in an obvious way.

(G3) Let h : Y → Z be a morphism in Cov(X). We can get a factorization of h as:

Y

h1

h
Z = Z1 � Z0

Z1

h2

where Z1, Z0 as in Lemma 2.1.6 with h1 epimorphism and h2 monomorphism.

(G4) • Fx(1Cov(X)) = Fx(idX : X → X) = id−1X (x) = {x} = 1Sets.

• Suppose we have the following commutative diagram:

Y ×Z W
p1

p2

Y

g

f1
W

h

f2

Z

f

X

Then

Fx(Y ×Z W ) = (fgp1)
−1(x) = (f1p1)

−1(x)

= {(y, w) | h(w) = g(y), f1p1(y, w) = f2p2(y, w) = x}

= {(y, w) | h(w) = g(y), f1(y) = f2(w) = x}
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= {f−11 (x)} ×{f−1(x)} {f−12 (x)}

= Fx(Y )×Fx(Z) Fx(W ).

(G5) • First we show Fx commutes with finite sums:

Fx(f : X1 �X2 � · · · �Xn → X) = f−1(x)

= {x1 ∈ X1 | f(x1) = x} � · · · � {xn ∈ Xn | f(xn) = x}

= {x1 ∈ X1 | f1(x1) = x} � · · · � {xn ∈ Xn | fn(xn) = x}

= {f−11 (x)} � · · · � {f−1n (x)}

= Fx(X1)� · · · � Fx(Xn).

• Since epimorphisms in both Cov(X) and Sets are surjections, it is obvious that Fx sends

epimorphisms to epimorphisms.

• We now show that Fx commutes with quotients.

Fx(pG : Y/G → X) = p−1G (x) = {Gy | pG(Gy) = x}

= {Gy | p(y) = x}

= {y ∈ Y | p(y) = x}/G

= Fx(Y )/G.

(G6) Finally, assume X is connected. Let Y h Z is a morphism in Cov(X). Then Fx(h) is

just the restriction of h to the fibre of x in Y . This map is bijective if and only if the map

φ from Lemma 2.1.2 is bijective. Let X1 = {x ∈ X | Fx(h) is bijective } and X2 = {x ∈

X | Fx(h) is not bijective }. From Lemma 2.1.2 both X1 and X2 are open in X. Since X is

connected and Fx(h) is an isomorphism, X1 �= ∅. Hence X1 = X and h is a bijective. By

Lemma 2.1.4 h is open, thus is an isomorphism in Cov(X).

Now, we have proved that Cov(X) is a Galois category if X is connected. Since every finite
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covering Y → X is equivalent to one in which the underlying set is a subset of X × Z, Cov(X) is

essentially small. Then we can deduce Theorem 1.2.2 from Theorem 2.2.1.

2.2 Proof of Theorem2.2.1

The goal of this section is to prove the following theorem in details:

Theorem 2.2.1. Let C be an essentially small Galois category with fundamental functor F . Then

we have:

(a) The functor H : C → π-Sets defined above is an equivalence of categories;

(b) If π′ is a profinite group such that the categories C and π′-Sets are equivalent by an equivalence

that, when composed with the forgetful functor π′-Sets → Sets, yields the functor F , then π′

is canonically isomorphic to π = Aut(F );

(c) If F ′ is a second fundamental functor on C, then F and F ′ are isomorphic;

(d) If π′ is a profinite group such that the categories C and π′-Sets are equivalent, then there is

an isomorphism of profinite groups π′ ∼= π which is canonically determined up to an inner

automorphism of π.

We will see that each axiom of (G1)−(G6) plays an important role in the proof. First we see some

equivalent descriptions of some axioms and some properties of Galois category and fundamental

functor. We will give the proof of the theorem as follows:

1. First we show that a Galois category is artinian (Def.2.2.1, Lemma 2.2.4).

2. We claim that the fundamental functor of a Galois category is strictly pro-representable

(Def.2.2.2, Lemma 2.2.9).
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3. We introduce the definition and some properties of connected objects (Def.2.2.3, Lemma

2.2.10).

4. We discuss Galois objects and their properties (Def.2.2.4, Lemma 2.2.11).

5. Finally we construct a profinite group π as required.

2.2.1 Properties of Galois category and Fundamental functor

Lemma 2.2.1. Let C be a category. Then C satisfies (G1) if and only if it has equalizers and finite

products.

Proof. “⇒” Suppose that C satisfies (G1). It is easy to see that finite product exist since fibre

product and terminal object exist. Now let Y
u

v
Z be morphisms in C, we have the following

commutative diagram:

(Y ×Z Y )×Y×Y Y

p′1

p′2
Y

(idY , idY )

Y ×Z Y
(p1, p2)

p1
p2

Y × Y

Y

u

Y
v

Z

For any W ∈ Ob(C) and any morphism W
f

Y with uf = vf , there exists a unique α : W →

Y ×Z Y such that p1α = p2α = f . This implies that (p1, p2)α = (f, f) = (idY , idY )f . So there

exists a unique morphism φ : W → (Y ×Z Y )×Y×Y Y such that the diagram

(Y ×Z Y )×Y×Y Y
p′2 Y

u

v
Z

W

∃ ! φ
f

commutes. This shows that (Y ×Z Y )×Y×Y Y is an equalizer for Y
u

v
Z .

“⇐” Now assume that C has equalizers and finite products. Taking the finite product over an
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empty set gives the terminal object. Next we suppose X
f

Z and Y
g

Z are morphisms in C.

Let p, q be the canonical projections X × Y
p

X , X × Y
q

Y . Let (E, e) be the equalizer of

X × Y
fp

gq
Z . For any object W and morphism α : W → X × Y with fpα = gqα, there exists a

unique morphism φ : W → E such that α = eφ.

W

pα

qα

φ

E

pe

qe
Y

g

X
f

Z

Hence E is the fibre product X ×Z Y .

Remark 2.2.1. Let C be a category satisfying (G1) and F a covariant functor from C to Sets. From

this lemma we can conclude that C satisfies (G4) if and only if F commutes with equalizers and

with finite products.

Corollary 2.2.1. Let C be a Galois category with fundamental functor F , then finite products and

equalizers exist in C and F commutes with finite products and equalizers.

Lemma 2.2.2. Let C be a category and F : C → Sets be a functor satisfying (G1), (G4) and (G6).

Let further f : Y → X be a morphism in C. Then

(a) f is a monomorphism if and only if the first projection p1 : Y ×X Y → Y is an isomorphism.

(b) f is a monomorphism if and only if F(f) is injective.

Proof. (a) “⇒” Suppose f is a monomorphism first. We have the following two commutative

diagrams:

Y ×X Y
p1

p2

Y

f

F (Y ×X Y )
F (p1)

F (p2)

F (Y )

F (f)

Y
f

X F (Y )
F (f)

X
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Since f is a monomorphism we have p1 = p2, hence F (p1) = F (p2). By (G4),

F (Y ×X Y ) = F (Y )×F (X) F (Y )

= {(x, y) | F (f)(x) = F (f)(y)}.

For any (x, y) ∈ F (Y×XY ), we have x = F (p1)(x, y) = F (p2)(x, y) = y. Since F (Y ) Δ F (Y ×X

we conclude that F (p1) is bijective. By (G6) p1 is an isomorphism.

“⇐” Now suppose p1 is an isomorphism. We can easily see that p2 is also an isomorphism by

(G4) and (G6). From the following commutative diagram

Y

idY

idY

Δ

Y ×X Y

p2

p1
Y

f

Y
f

X

we can get Δ = p−11 = p−12 . Suppose we have morphisms Z
h

g
Y with fh = fg. Then there

exists a unique φ : Z → Y ×X Y such that the following diagram

Z

g

h
φ

Y ×X Y

p2

p1

Y
Δ

f

Y

Δ

f
X

is commutative. Then g = p2φ = p2(Δh) = (p2Δ)h = h, i.e. f is a monomorphism.

(b) We can immediately get (b) from (a).

Lemma 2.2.3. Let C be a category, Y
f

X Y ′
f ′

morphisms in C, and suppose that the fibre

product Y ×X Y ′ exists. If Y
f

X is a monomorphism, then so is Y ×X Y ′
p2

Y ′ .
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Proof. For any object Z in C and morphisms Z
g

h

Y ×X Y ′ with p2h = p2g then f ′p2h = f ′p2g.

Since f ′p2 = fp1 we have fp1h = fp1g hence p1h = p1g. Thus we can obtain the following

commutative diagram

Z

p2g=p2h

p1g=p1h
g

h

Y ×X Y ′

p2

p1
Y

f

Y ′
f ′

X

The universal property of the fibre product implies g = h hence p2 is a monomorphism. Actually

the composition Y ×X Y ′
p2

Y ′
f ′

X is also a monomorphism.

Definition 2.2.1. A category C is artinian if any decreasing sequence

X1 X2j1
X3j2

· · ·
j3

of monomorphisms in C is stationary, i.e., there exists a positive integer n0 such that the jn are

isomorphisms for all n ≥ n0.

Lemma 2.2.4. A Galois category is artinian.

This lemma follows from (G6) and Lemma 2.2.2. Note that each F (Xi) is finite.

Let A be an object of C and a ∈ F (A). For each object X there is a map MorC(A,X) → F (X)

induced by a sending f ∈ MorC(A,X) to F (f)(a).

Definition 2.2.2. Let C be a category and F a set-valued covariant functor on C. We say that F is

pro-representable if ∃ a directed set I, a projective system (Ai, ϕij)i∈I of objects in C and elements

ai ∈ F (Ai) such that

(i) ai = F (ϕij)(aj) for j ≥ i.

(ii) For any X ∈ Ob(C), the natural map

lim−→
i∈I

MorC(Ai, X) F (X)
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induced by ai is bijective.

In addition, if the ϕij are epimorphisms of C, we say that F is strictly pro-representable.

Let C be a essentially small Galois category with a fundamental functor F . Without loss of

generality we assume C is small. Now we consider the set J of pairs (X, a) with X an object of C

and a ∈ F (X). We define a relation on J as follows:

(X, a) ≥ (X ′, a′) ⇐⇒ ∃f ∈ MorC(X,X ′) such that a′ = F (f)(a)

which is also denoted by (X, a) ≥
f
(X ′, a′) when f is given. This relation is reflexive and transitive

since (X, a) ≥
idX

(X, a) and (X, a) ≥
f
(Y, b), (Y, b) ≥

g
(Z, c) ⇒ (X, a) ≥

gf
(Z, c). Actually it may not

be antisymmetric so it is not a partial order on J . But we will see later that it is a partial order

on a subset of J . We say that a pair (X, a) is minimal in J if for any (Y, b) ≥
j
(X, a) with j a

monomorphism in C, then j is necessarily an isomorphism. Let I denote the subset of J consisting

of all minimal pairs of J . Next lemma tells us minimal pairs exist in J .

Lemma 2.2.5. For any (Y, b) ∈ J , there exists a pair (X, a) ∈ I such that (X, a) ≥ (Y, b).

This lemma follows from the fact that C is artinian (Lemma 2.2.4).

Lemma 2.2.6. If (X, a) ∈ I and (Y, b) ∈ J then a u ∈ MorC(X, Y ) such that (X, a) ≥
u
(Y, b) is

uniquely determined.

Proof. Suppose we have u1, u2 ∈ MorC(X, Y ) such that (X, a) ≥
u1

(Y, b) and (X, a) ≥
u2

(Y, b). Then

by (G1) and Lemma 2.2.1 the equalizer of (E, e) of X
u1

u2

Y exists.

E
e

X
u1

u2

Y and F (E)
F (e)

F (X)
F (u1)

F (u2)

F (Y )

By Remark 2.2.1, (F (E), F (e)) is the equalizer of (F (u1), F (u2)). Since F (u1)(a) = F (u2)(a) = b

we have a ∈ F (E), i.e., (E, a) ≥
e
(X, a) with e a monomorphism. Hence e is an isomorphism, i.e.,

u1 = u2.
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Thanks to this lemma, we can show that the relation ≥ is antisymmetric on the set of isomorphism

classes of elements in I hence is a partial order on I.

Lemma 2.2.7. (I,≥) is a directed partially ordered set.

Proof. It is enough to show that the relation ≥ is antisymmetric on I and I is directed.

• Antisymmetry.

Suppose we have both (X, a) ≥
f
(Y, b) and (Y, b) ≥

g
(X, a) in I, then Lemma 2.2.6 implies gf = idX

and fg = idY , so that (X, a) and (Y, b) are the same up to isomorphism.

• I is directed.

In fact, if (X, a), (X ′, a′) ∈ I. By (G4) and Remark 2.2.1 we get the following diagrams:

X ×X ′ p′

p

X ′ and F (X ×X ′) = F (X)× F (X ′)
F (p′)

F (p)

F (X ′)

X F (X)

where p and p′ are the natural projections. Since (a, a′) ∈ F (X × X ′) with F (p)(a, a′) = a and

F (p′)(a, a′) = a′ we have (X × X ′, (a, a′)) ≥
p

(X, a) and (X × X ′, (a, a′)) ≥
p′

(X ′, a′). In fact,

(X × X ′, (a, a′)) may not be in I. Thanks to Lemma 2.2.5, there exists an (Y, b) ∈ I such that

(Y, b) ≥ (X ×X ′, (a, a′)) hence (Y, b) ≥ (X, a) and (Y, b) ≥ (X ′, a′). I is directed.

Lemma 2.2.8. If (X, a) ∈ I, (Y, b) ∈ J and u ∈ MorC(Y,X) with (Y, b) ≥
u
(X, a), then u is an

epimorphism.

Proof. In fact, by (G3) we have a factorization of u

Y

u1

u
X1 �X0 = X

X1

u2

with u1 an epimorphism and u2 an monomorphism. Then a = F (u)(b) = F (u2u1)(b) = F (u2)F (u1)(b)

implies a ∈ X1. This means that (X1, a) ≥
u2

(X, a) hence X1
∼= X ⇒ u is an epimorphism.
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Lemma 2.2.9. The fundamental functor F of a Galois category C is strictly pro-representable.

Proof. Denote I as in Lemma 2.2.5. An element i ∈ I is a minimal pair (Ai, ai) in J . If (Ai, ai) ≥

(Aj , aj) we denote the unique morphism by ϕij such that (Ai, ai) ≥
ϕij

(Aj, aj). We write i ≥
ϕij

j

instead of (Ai, ai) ≥
ϕij

(Aj, aj) for convenience. Then (Ai, ϕij)i∈I is a projective system. If i ≥
ϕij

j in

I then the diagram of induced maps

MorC(Aj, X)

F (X)

MorC(Ai, X)

is commutative for any X, so there is a map lim−→
i∈I

MorC(Ai, X) F (X). By Lemma 2.2.5 this is

onto; it is injective since MorC(Ai, X) → F (X): u 
→ F (u)(ai) is injective for each i by Lemma 2.2.6.

From Lemma 2.2.8 the ϕij are epimorphisms. It thus follows that F is strictly pro-representable.

Next, we will discuss what conditions should an object A satisfies such that the pair (A, a) with

some a ∈ F (A) is in I.

Definition 2.2.3. Let C be a category with initial object. An object X is called connected if it has

precisely two distinct subobjects, namely 0C → X , and idX : X → X . Equivalently, an object X is

connected in C ⇔ X �= X1 �X2 in C with X1, X2 �= 0C.

Let C be a Galois category with fundamental functor F . Using the notations above, we have:

Lemma 2.2.10. (1) (X, a) ∈ I ⇔ X is connected in C.

(2) If X is connected in C, then any u ∈ MorC(X,X) is an automorphism.

(3) For any object X, Aut(X) acts on F(X) by u · a = F (u)(a), ∀ u ∈ Aut(X), ∀ a ∈ F (X).

If X is connected, then for any a ∈ F (X) the map θa : Aut(X) → F (X) defined by u 
→

F (u)(a) = u · a is injective.
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Proof. (1) “⇒” Let (X, a) ∈ I. Suppose X �= X1 �X2 in C with X1, X2 �= 0C and that (X, a) ∈ J .

Then by (G5) a ∈ F (X) = F (X1) � F (X2), say, a ∈ F (X1). Let X1
j

X be the morphism such

that (X1, a) ≥
j
(X, a) with a monomorphism j which is not an isomorphism, which is a contradiction

with (X, a) ∈ I .

“⇐” Now let X be connected and (X, a) ∈ J . Suppose we have (Y, b) ≥
j
(X, a) with j a monomor-

phism. By (G3) we have a factorization:

Y

j1

j
X1 �X0 = X

X1

j2

with j1 an epimorphism and j2 a monomorphism. As j is a monomorphism, so is j1 thus j1 is an

isomorphism. Then j is an isomorphism since X is connected.

(2) As X is connected, by similar argument in the proof of “⇐” part in (1) we have u is an

epimorphism. By (G5), F (u) : F (X) → F (X) is onto thus is bijective. Then by (G6) u ∈ Aut(X).

(3) Let u1, u2 ∈ Aut(X) such that F (u1)(a) = θa(u1) = θa(u2) = F (u2)(a), i.e., a ∈ E ′, where

E ′ is the equalizer of (u1, u2). By Remark 2.2.1 E ′ = F (E) where E is the equalizer of (u1, u2).

Then (E, a) ≥
e
(X, a) with a monomorphism e. By (1), (X, a) ∈ I thus e is an isomorphism, i.e.,

u1 = u2.

Let X be a connected object. Then |Aut(X)| ≤ |MorC(X,X)| ≤ |F (X)|, where the second

inequality follows from Lemma 2.2.6. So Aut(X) is finite.

Definition 2.2.4. A connected object X is Galois if for any a ∈ F (X), the map θa : Aut(X) →

F (X) defined by u 
→ F (u)(a) = u · a is bijective.

Note that X is a Galois object ⇔ the action of Aut(X) on F (X) is transitive

⇔ the quotient X/Aut(X) is 1C ⇔ F (X)/Aut(X) is a singleton.

The action is also free by Lemma 2.2.10.
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Lemma 2.2.11. Put Λ = {(X, a) ∈ I | A is Galois }. Then Λ is cofinal in I. In other words,

for any (Y, b) ∈ I, there is a Galois object X in C, a ∈ F (X) and a u ∈ MorC(X, Y ) such that

(X, a) ≥
u
(Y, b).

Proof. Let {(Ai, ϕij)}i∈I be a projective system as in Lemma 2.2.9 such that

lim−→
i∈I

MorC(Ai, X) ∼ F (X).

Let F (Y ) = {b1, b2, . . . , bn}. By Lemma 2.2.5, for each 1 ≤ j ≤ r, ∃ (Aij , aij ) ∈ I such that

(Aij , aij) ≥ (Y, bj). Taking N large enough we obtain a pair (AN , aN) ∈ I such that (AN , aN ) ≥

(Y, bj) for all 1 ≤ j ≤ r. This implies {u · aN = F (u)(aN) | u ∈ MorC(AN , Y )} = F (Y ). Then there

exists α : AN → Y r = Y × · · · × Y such that

AN
α

Y r = Y × · · · × Y
pj

Y and

(AN , aN) ≥
α
(Y r, (b1, . . . , bn)) ≥

pj
(Y, bj)

where pj is the jth projection Y r → Y . Then the elements (pjα) · aN are precisely b1, . . . , bn. By

(G3) we obtain a factorization:

AN

α1

α
Y r

X
β

with α1 an epimorphism and β a monomorphism. We claim that X is Galois.

(∗) X is connected.

Suppose X = X1 � X2, X1, X2 �= 0C. Then a = F (α1)(aN) ∈ F (X) = F (X1) � F (X2), say,

a ∈ F (X1). By Lemma 2.2.5 there is (AM , aM) ∈ I such that (AM , aM) ≥
ϕij

(AN , aN), (AM , aM) ≥
α′

(X1, a) ≥
β′
(X, a) with morphisms in the following diagram.

AN
α1 X = X1 �X2

X1

β′

AM

ϕij

α′
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Since F (α1 ◦ ϕij)(aM) = F (α1)F (ϕij)(aM) = F (α1)(aN) = a, we have (AM , aM) ≥
α1◦ϕij

(X, a). Then

by Lemma 2.2.6, we have β ′ ◦ α′ = α1 ◦ ϕij, i.e., the diagram above commutes. This, together with

Lemma 2.2.8 imply β ′ ◦ α′ is an epimorphism, which is impossible. Then X is connected and by

Lemma 2.2.10 the map Aut(X) → F (X) is injective.

(∗∗) Let a = F (α1)(aN). We will prove that the map θa : Aut(X) → F (X): u 
→ u·a is surjective.

Let a′ ∈ F (X). By taking N large enough we may assume that (AN , aN ) ≥
α1

(X, a) and (AN , aN) ≥
α
′

1

(X, a′). Then (pjβ) · a = (pjα) · aN , 1 ≤ j ≤ r give us all the distinct elements of F (Y ). Hence

the morphisms pjβ are all distinct. By Lemma 2.2.8 α
′

1 is an epimorphism thus pjβα
′

1 are distinct

morphisms. Then (pjβ) · a′ are precisely all elements of F (Y ).

Now we have (pjβ) · a = (pjα) · aN = bj . Let bρ(j) = (pjβ) · a′. We obtain a permutation ρ′ of set

{1, 2, . . . , r} which will induce an automorphism ρ on Y r such that the following diagram

X
β

Y r

ρAN

α1

α′1

X
β

Y r

commutes. This gives us two expression of α : AN → Y r as the composite of an epimorphism

and a monomorphism. Since such factorization is unique up to isomorphism, we then obtain an

isomorphism v ∈ Aut(X) such that α′1 = vα1. It follows θa is a surjection and X is Galois with

(X, a) ≥
pjβ

(Y, bj) for any bj ∈ F (Y ).

2.2.2 Proof of the Theorem

Let C be a small Galois category with fundamental functor F . We may assume now that F is

strictly pro-represented by a projective system (Ai, ϕij)i∈Λ with each Ai Galois object of C.

Let πi = Aut(Ai) and θi be the bijection πi → F (Ai), u 
→ u · ai where ai ∈ Ai and (Ai, ai) ∈ Λ.
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For j ≥ i we define ψij : πj → πi as the composite map

πj

θj
F (Aj)

F (ϕij)
F (Ai)

θ−1
i πi .

Then for any u ∈ πj we have

ψij(u) · ai = θi(ψij(u)) = F (ϕij)θj(u) = F (ϕij)(u · aj) = F (ϕij)F (u)(aj) = (ϕiju) · aj .

This implies (Aj , aj) ≥
ψij(u)ϕij

(Ai, bi) and (Aj, aj) ≥
ϕiju

(Ai, bi), where bi = ψij(u) · ai = (ϕiju) · aj . By

lemma 2.2.6, ψij(u)ϕij = ϕiju, i.e., the following diagram commutes.

Ai

ψij(u)
Ai

Aj u

ϕij

Aj

ϕij

It follows that ψij are group homomorphisms. Since each ϕij is epimorphism and θi, θj are bijective,

by (G5) each ψij is surjective. Now we obtain a projective system of finite groups (πi, ψij)i∈Λ. Let

π = lim←−
i∈Λ

πi = {(ui)i∈Λ ∈
∏
i∈Λ

πi : ψij(uj) = ui for all j ≥ i}.

Then π is a profinite group by giving
∏
i∈Λ

πi the product topology and π the relative topology.

For any object X of C, the group πi acts on MorC(Ai, X) to the left by (σ, f) 
→ fσ−1. For

any σ ∈ πi, f ∈ MorC(Ai, X) and for j ≥ i, let σ̃ be an element in πj with ψij(σ̃) = σ. We have

σ̃ · (fϕij) = fϕijσ̃
−1 and (fσ−1) ◦ ϕij = f ◦ (ψij(σ̃

−1)ϕij) = fϕij σ̃
−1. This implies the group action

we defined above is compatible with the map πj

ψij
πi and MorC(Ai, X)

ϕ̃ij
MorC(Aj, X), where

ϕ̃ij is the map induced by ϕij sending f ∈ MorC(Ai, X) to f ◦ϕij ∈ MorC(Aj , X). Thus the actions of

πi on MorC(Ai, X) induce a continuous π-action on the set lim−→
i∈Λ

MorC(Ai, X)
∼

F (X). Since F (X)

is finite, the action of π on F (X) is determined by the action of some πi on F (X). If f : X → Y is

a morphism in C then the induced map lim−→
i∈Λ

MorC(Ai, X) → lim−→
i∈Λ

MorC(Ai, Y ) is a morphism of π-sets

since the action comes from πi for some sufficiently large i. We have the following commutative
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diagram.

lim−→i∈Λ
MorC(Ai, X) MorC(Ai, X) F (X)

F (f)

lim−→i∈Λ
MorC(Ai, Y ) MorC(Ai, Y ) F (Y )

Thus F (f) is a morphism of π-sets.

Let us recall basic facts about the pro-category ProC. Informally speaking, an object of ProC

(called a pro-object of C) is a projective system P̃ = (Pi)i∈I′ in C. If P̃ , P̃ ′ = (P ′j)j∈J ′ are pro-objects

of C, we define

MorProC(P̃ , P̃ ′) = lim←−
j∈J ′

lim−→
i∈I′

MorC(Pi, P
′
j).

An object of C will be considered as an object of ProC in a natural way. In this notation, a pro-

representable functor on C can be seen as a functor “represented” by a pro-object of C. Let C be a

small Galois category with fundamental functor F . For any object X in C we have:

F (X) lim−→
i∈Λ

MorC(Ai, X) � MorProC(Ã, X)∼

where Ã is the pro-object (Ai)i∈Λ of C. Hence each element of F (X) can be seen as a ProC-morphism

Ã → X. Since Ai is a Galois object in C, we have MorProC(Ã, Ai) ∼= F (Ai) ∼= MorC(Ai, Ai) =

Aut(Ai) = πi and then

π = lim←−
i∈Λ

πi = lim←−
i∈Λ

MorC(Ai, Ai)

= lim←−
i∈Λ

MorProC(Ã, Ai)

= MorProC(Ã, Ã) = Aut(Ã).

Next we will give a description of connected objects in π-Sets.

Lemma 2.2.12. An object E of π-Sets is connected if and only if the action of π on E is transitive.

This lemma follows from the Definition 2.2.3 immediately.

If we write H(X) for the set F (X) equipped with the π-action and H(f) = F (f) for a morphism

f in C. Then H is a functor C → π-Sets that composed with the forgetful functor π-Sets → Sets
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yields F (we shall see later that this H is the same as we defined in section 2.1.6). Then we obtain

an equivalence of categories.

Lemma 2.2.13. The functor H : C → π-Sets is an equivalence of categories.

Proof. Claim 1 : H is essentially surjective.

Let E be any π-set. By (G2) and (G5) we may assume that E is connected in the category

π-Sets, i.e., π acts transitively on E. Fix an element e ∈ E, the map π → E defined by σ 
→ σ · e

is a surjection. As E is finite, this map will factor through πi for some i ∈ Λ,

π

fi

E

πi

where fi : π → πi is the natural projection and the map πi → E is defined by the group action

on e. Obviously this holds for each j ≥ i. Let Hi ⊆ πi be the isotropy group of e in πi, i.e.,

Hi = {σ ∈ πi : σ · e = e}. There is a natural action of π on πi/Hi induced by left multiplication.

We define a map Γ : πi/Hi → E by σHi 
→ σ · e. Obviously Γ is a bijective. For any τ ∈ π we

have Γ(τ · σHi) = Γ(fi(τ)σHi) = (fi(τ)σ) · e = fi(τ) · (σ · e) = τ · (σ · e) = τ · Γ(σHi). So Γ is an

isomorphism in π-Sets.

We then let Êi := Ai/Hi be the quotient described in section 2.1.4. By (G2), Êi is an object

in C and by (G5), F (Êi) = F (Ai)/Hi
∼= πi/Hi

∼= E as π-sets. If j ≥ i and Hj ⊆ πj is the

isotropy group of e in πj , the group homomorphism ψij : πj → πi induces a map πj/Hj → πi/Hi

by σHj 
→ ψij(σ)Hi. Since the following diagram

πj

ψij
πi

E

commutes, i.e., ψij(Hj) ⊆ Hi then the map πj/Hj → πi/Hi is well defined. Notice that we have the
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following two diagram.

Aj

ϕij

ρj

Ai

ρi

Ai

ψij(σ)
Ai

Aj/Hj Ai/Hi Aj

ϕij

σ Aj

ϕij

with the second one commutative. For any σ ∈ Hj thus ρjσ = ρj and ψij(σ) ∈ Hi. We have

(ρiϕij)σ = ρi(ϕijσ) = ρiψij(σ)ϕij = ρiϕij.

Then there exists a unique morphism μij : Aj/Hj → Ai/Hi such that ρiϕij = μijρj. Looking at the

images of Êj := Aj/Hj and Êi := Ai/Hi under F we have a commutative diagram.

F (Aj/Hj)
F (μij)

∼

F (Ai/Hi)

∼

E
∼

E

Thus F (μij) is an isomorphism of π-sets. By (G6), Êj
∼= Êi. This means that the object Êi

such that F (Êi) ∼= E is independent of the choice of i hence we denote it by Ê and denote the

isomorphism F (Ê)
∼

E by γE.

Now consider the map H : MorC(X, Y ) → Morπ-Sets(F (X), F (Y )) by f 
→ F (f).

Claim 2 : H is injective.

Let f, g ∈ MorC(X, Y ) with F (f) = F (g). Let (E, e) be the equalizer of X
f

g
Y . By (G4)

and Remark 2.2.1, (F (E), F (e)) is the equalizer of F (X)
F (f)

F (g)

F (Y ). Since F (f) = F (g) F (e) is an

isomorphism thus e is an isomorphism by (G6). This implies f = g.

Claim 3 : H is surjective.

As in Claim 1 we can assume X is connected. Fix an element a ∈ F (X). By Lemma 2.2.11

there exists (AN , aN) ∈ Λ and f ∈ MorC(AN , X) such that (AN , aN) ≥
f
(X, a). Actually, take N

large enough we may also assume that the map MorC(AN , X) → F (X), g 
→ F (g)(a) is bijective.

By (G3) and the connectedness of X the map F (f) : F (AN) → F (X) is surjective. Take any

f ′ ∈ MorC(AN , X) then there exists an a′N ∈ F (AN) such that F (f)(a′N) = F (f ′)(aN). As AN is a
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Galois object of C, πN acts transitively on F (AN). Thus we can find a σ ∈ πN such that σ ·aN = a′N ,

i.e., F (σ)(aN) = a′N . Then F (f)(F (σ)(aN)) = F (fσ)(aN) = F (f ′)(aN). By Lemma 2.2.6, fσ = f ′,

i.e., f = σ · f ′. This means the action of πN on MorC(AN , X) is transitive. Hence we obtain an

isomorphism of π-sets F (X) ∼= πN/G where G is the isotropy group of f in πN . Since F (X) is

finite, the map π → F (X), σ 
→ σ · a can be factored through some πM .

π

fM

F (X)

πM

By takingM large enough (namelyM ≥ N) we may assume that πM acts transitively on MorC(AM , X)

Since fM is surjective, π acts on F (X) transitively thus F (X) is connected in π-Sets.

For any α : F (X) → F (Y ), let b = α(a). The ProC-morphism b : Ã → Y can be factored

through some Ai as follows

Ã
b

gi

Y

Ai

bk

for some bk ∈ F (Y ). Take i large enough such that MorC(Ai, Y )
∼

F (Y ) and (Ai, ai) ≥
fk

(Y, bk) for

all bk ∈ F (Y ). Recall that ∀ σ ∈ πi, σ ·fk = fk ◦σ−1 and σ ·bk = F (fk ◦σ−1)(ai) = F (fk)F (σ)−1(ai).

Let Hi, H
′
i, H

′′
i be the isotropy group of a, ai and bi in πi, respectively. Then we have Hi ⊆ H ′

i ⊆ H ′′
i .

The map bk : Ai → Y can be factored through Ai/Hi
∼= F̂ (X) for i sufficiently large and the

following diagram

Ã

gi

b Y

Ai

bk

Ai/Hi

u

is commutative. Similarly, by taking i large enough, we have v : Ai/Hi
∼= F̂ (X) → X such that the

diagram

Ã

fi

a X

Ai

ai

Ai/Hi

v
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commutes. Then F (v) ◦ γ−1F (X) = idX , which implies F (v) is an isomorphism. Thus v is an isomor-

phism by (G6). So we have a composite

X
v−1

F̂ (X)
u

Y .

We complete the proof of this lemma.

Next lemma gives a concrete description of the automorphism group of the forgetful functor from

π-Sets to Sets.

Lemma 2.2.14. Let π be a profinite group and F the forgetful functor from π-Sets to Sets. Then

Aut(F ) ∼= π.

Proof. As π is a profinite group, π ∼= lim←−
π′�π open

π/π′, where π′ ranging over the open normal subgroups

of π. π/π′ is automatically a π-set where the action is induced by left multiplication. For any

σ ∈ Aut(F ), σ is determined by the bijections σX : F (X) → F (X). For any X ∈ Ob(C), fix an

element x ∈ F (X). Let x′ = σX(x) and πx be the isotropy group of x in π. Since π acts on X

continuously, πx is an open normal subgroup of π. Similarly we may assume that X is connected,

i.e., π acts transitively on X. Then π/πx → X by a 
→ a · x is an isomorphism as π-sets. We have

the following commutative diagram.

F (π/πx)
∼

τ

F (X)

σx

F (π/πx′)
∼

F (X)

where τ : π/πx → π/πx′ given by aπx 
→ aπx′ is an isomorphism. In fact, for any a ∈ π, x ∈ X

we have a · x = x ⇔ a · x′ = x′ with x′ = σX(x). Then πx = πx′ thus each τ gives rise to a map

σπ/πx : F (π/πx) → F (π/πx). So σX is determined by such σπ/π′ with π′ ranging over the open

normal subgroups of π.

Next we will prove that the map Φ : π/π′ → Autπ-Sets(π/π
′) defined by aπ′ 
→ (fa : bπ

′ 
→ ba−1π′)

is a group isomorphism.
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• Φ is well defined.

For a, a′ ∈ π with aπ′ = a′π′, thus aa′−1 ∈ π′, we have

fa(bπ
′) = ba−1π′ = ba−1aa′−1π′ = ba′−1π′ = fa′(bπ

′).

Moreover, fa(a
′ · bπ′) = fa(a

′bπ′) = a′ba−1π′ = a′ · fa(bπ′). Then it is easy to see that

fa ∈ Autπ-Sets(π/π
′).

• Clearly Φ is injective and a group homomorphism.

• Φ is surjective.

∀σ ∈ Autπ-Sets(π/π
′), ∀a ∈ π, fix some bπ′ ∈ π/π′ for some b ∈ π, let σ(bπ′) = b′π′ for some

b′ ∈ π and set a = b′−1b. We have fa(bπ
′) = bb−1b′π′ = b′π′. For any dπ′ ∈ π/π′,

σ(dπ′) = σ(db−1bπ′) = (db−1) · (b′π′) = da−1π′ = fa(dπ
′).

Then σ = fa.

Similarly we have any set-theoretic map π/π′ → π/π′ commuting with all π-Sets-automorphisms

of π/π′ is given by left multiplication by some bπ′ ∈ π/π′. Then Aut(F ) ∼= lim←−
π′�π open

Aut(π/π′) ∼=

lim←−
π′�π open

π/π′ = π. Hence the functor H : π-Sets → Aut(F )-Sets defined in section 2.1.6 is the

identity functor.

Now we prove the main theorem in this chapter, Theorem 2.2.1.

Proof of Theorem 2.2.1. We first prove (b). Let π be any profinite group and H : C → π-Sets be

an equivalence such that composed with the forgetful functor F1 : π-Sets → Sets it yields F . As

H is a equivalence we have Aut(F ) ∼= Aut(F1). By Lemma 2.2.14, π ∼= Aut(F1) ∼= Aut(F ). This

shows (b) and (a) follows from (b) immediately.

Now suppose (A, a), (A, a′) ∈ Λ, Aut(A) acts on F (A) transitively. Then there exists a u ∈

Aut(A) such that u(a) = a′ thus (A, a) = (A, a′) in Λ. This means all pairs (A, a) inΛ with the

same A are isomorphic, we may replace Λ by a subset Λ1 containing exactly one pair (A, a) for
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each Galois object A. Now we prove (c). Let F ′ be a second fundamental functor on C. F , F ′ are

pro-represented by pro-objects Ã, B̃, respectively. Then we have

F = MorProC(Ã,−) = lim←−
i∈Λ1

MorC(Ai,−) andF ′ = MorProC(B̃,−) = lim←−
j∈Λ2

MorC(Bj ,−)

where Λ1, Λ2 are subsets of Λ containing exactly one pair (A, a) for each Galois object A. It suffices

to prove that Ã ∼= B̃ in ProC. We denote the canonical morphism Aj → Ai (resp. Bj → Bi) by pij

(resp. qij) for j ≥ i, and the map Ã → Ai (resp. B̃ → Bj) by pi (resp. qj). Let ai ∈ F (Ai) (resp.

bj ∈ F (Bj)) be the element such that (Ai, ai) inΛ1 (resp. (Bj, bj) inΛ2). For any j ∈ Λ2 consider

the ProC-morphism bj : Ã → Bj . Since bl = qlj ◦ bj they induce a ProC-morphism b : Ã → B̃ such

that the following diagram commutes.

Ã
b

bj

B̃
qj

Bj

For any bj : Ã → Bj, there exists ij ∈ Λ1 such that (Aij , aij) ≥ (Bj , bj) and the following diagram

Ã

pij

b

bj

B̃

qj

Aij Bj

is commutative. Similarly, we can get a commutative diagram in other direction B̃ → Ã. Then

Ã ∼= B̃ in ProC. This implies F ∼= F ′ and proves (c). (d) follows from (b) and (c).

This completes the proof the Theorem 2.2.1.
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Chapter 3

Finite étale coverings

This chapter contains some basic properties for finite étale coverings. In the first two sections,

we introduce the affine information needed for finite étale morphisms. Throughout the first two

sections, let A be a ring (commutative with identity).

3.1 Projective modules and projective algebras

Definition 3.1.1. Let 0 → M0 → M1 → M2 → 0 be a short exact sequence of modules over a ring

A. The sequence is said to split if there is an isomorphism M1
∼→ M0 ⊕M2 of A-modules for which

the diagram

0 M0

id

M1

∼

M2

id

0

0 M0 M0 ⊕M2 M2 0

(with the obvious maps in the bottom row) is commutative.

Proposition 3.1.1. Let 0 → M0
f→ M1

f ′→ M2 → 0 be a short exact sequence of modules over a

ring A. The following three statements are equivalent:

(i) the sequence 0 → M0 → M1 → M2 → 0 splits;

(ii) there is an A-linear map h : M1 → M0 such that h ◦ f = idM0;
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(iii) there is an A-linear map h′ : M2 → M1 such that f ′ ◦ h′ = idM2.

Proof. (i) ⇒ (ii): Suppose the sequence splits. By definition there is an isomorphism ϕ : M1
∼→

M0 ⊕M2 of A-modules such that the following diagram

M0
f

id

M1

ϕ

M0
g1

M0 ⊕M2
p1

M0

commutes, where g1 is the natural inclusion and p1 is the projection with p1 ◦ g1 = idM0 . Let h be

the composite

M1
ϕ

M0 ⊕M2
p1

M0 .

Then h ◦ f = (p1ϕ)f = p1g1idM0 = idM0 as required.

(ii) ⇒ (iii): Suppose we have an A-linear map h : M1 → M0 with hf = idM0 ,

0 M0
f

M1
f ′

h

M2 0.

For any x ∈ M2, since f ′ is surjective, there exists a y ∈ M1, such that f ′(y) = x. Then we define

a map

h′ : M2 −→ M1, x 
→ y − f ◦ h(y).

• h′ is well defined. Suppose we have y, y′ ∈ M1 with f ′(y) = f ′(y′) = x. Thus y − y′ ∈

Ker(f ′) = Im(f), i.e., there is a z ∈ M0 such that f(z) = y−y′. Then z = h◦f(z) = h(y−y′)

and y − y′ = f(z) = f(h(y − y′)). This implies h′(y) = y − fh(y) = y′ − fh(y′) = h′(y′), i.e.,

h′ is well defined.

• h′ is A-linear since f, h are A-linear.

• ∀x ∈ M2, we have

f ′ ◦ h′(x) = f ′(y − fh(y)) = f ′(y)− (f ′f)(h(y)) = f ′(y) = x

since f ′f = 0, i.e., f ′ ◦ h′ = idM2.
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(iii) ⇒ (i): Suppose we have an A-linear map h′ : M2 → M1 with f ′h′ = idM2 ,

0 M0
f

M1
f ′

M2

h′
0.

For any x ∈ M1, consider the difference x− h′f ′(x) in M1. We have

f ′(x− h′f ′(x)) = f ′(x)− (f ′h′)(f ′(x)) = f ′(x)− f ′(x) = 0,

i.e., x − h′f ′(x) ∈ Ker(f ′) = Im(f). Since f is injective, there exists a unique x̂ ∈ M0 such that

f(x̂) = x− h′f ′(x). We define a map

ψ : M1 −→ M0 ⊕M2, x 
→ (x̂, f ′(x)).

• It is easy to see that ψ is a homomorphism of A-modules.

• ψ is injective. Suppose we have x̂ = 0 and f ′(x) = 0 for some x ∈ M1. Then x − h′f ′(x) =

f(x̂) = 0, i.e., x = h′f ′(x) = h′(0) = 0.

• ψ is surjective. For any (y, z) ∈ M0 ⊕ M2 with y ∈ M0 and z ∈ M2, let x = f(y) + h′(z).

Then we have

f ′(x) = f ′f(y) + f ′h′(z) = 0 + z = z, andf(y) = x− h′(z) = x− h′(f ′(x)).

Remember that x̂ is the unique element in M0 with f(ŷx) = x−h′f ′(x), which implies x̂ = y.

Thus ψ(x) = (y, z).

• For any y ∈ M0, since f ′f = 0 then f(y) = f(y) − h′(f ′f)(y) = f(y) − (h′f ′)(f(y)), which

implies f̂(y) = y. We have the following commutative diagrams.

M0
f

id

M1

ϕ∼

by y f(y)

M0 M0 ⊕M2 y (y, 0) (f̂(y), f ′f(y))

and

M1
f ′

ϕ ∼

M2

id

by x f ′(x)

M0 ⊕M2 M2 (x̂, f ′(x)) f ′(x)
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These prove that the sequence 0 → M0 → M1 → M2 → 0 splits.

Lemma 3.1.1. Let M be an A-module, (Pi)i∈I be a collection of A-modules and P =
⊕
i∈I

Pi. Then

(1) HomA(P,M) ∼= ∏
i∈I

HomA(Pi,M); (2) P ⊗A M ∼= ⊕
i∈I

(Pi ⊗A M).

Proof. Let ϕj be the natural map Pj → P , pj 
→ (pi)i∈I where pi = pj if i = j and pi = 0 if

i �= j. Obviously, ϕj ∈ HomA(Pj, P ). We first prove (1). For any f ∈ HomA(P,M), we have

f ◦ ϕj ∈ HomA(Pj ,M). We then define a map

ψ : HomA(P,M) −→
∏
i∈I

HomA(Pi,M), f 
→ (f ◦ ϕi)i∈I .

• It is easy to see that ψ is a homomorphism of A-modules.

• ψ is injective. Suppose we have an f ∈ HomA(P,M) such that f ◦ ϕi = 0 for any i ∈ I. Take

any x = (pi)i∈I ∈ P =
⊕
i∈I

Pi, thus pi is zero for all but finitely many i. Suppose pi1, pi2 , . . . , pin

are all the nonzero components. Then x = ϕi1(pi1) + ϕi2(pi2) + · · · + ϕin(pin). This implies

f(x) = fϕi1(pi1) + fϕi2(pi2) + · · ·+ fϕin(pin) = 0. Since x is arbitrary, f = 0.

• ψ is surjective. For any (fi)i∈I ∈
∏
i∈I

HomA(Pi,M), we define

f : P −→ M, x = (pi)i∈I 
→
∑
j∈J

fj(pj),

where J is a finite subset of I such that x =
∑
j∈J

ϕj(pj). It is easy to show that f ∈ HomA(P,M)

and ψ(f) = (fi)i∈I .

So ψ is an isomorphism, which proves (1).

For (2), we define fi : Pi × M → P ⊗A M by (pi, m) 
→ ϕi(pi) ⊗ m. fi is A-bilinear for

each i ∈ I. By the universal property of the tensor product, there exists a unique A-linear map

gi : Pi ⊗A M → P ⊗A M such that the following diagram

Pi ×M

fi

Pi ⊗A M
gi

P ⊗A M
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commutes. These maps will induce a map

g :
⊕
i∈I

(Pi ⊗A M) −→ P ⊗A M,

(pi ⊗mi)i∈I 
−→
∑
i∈I

gi(pi ⊗mi) =
∑
i∈I

(ϕi(pi)⊗mi).

This map is well defined since the sum on the right hand side is taken over only finitely many

nonzero elements.

We also have an A-bilinear map h′ : P × M → ⊕
i∈I

(Pi ⊗A M), ((pi)i∈I , m) 
→ (pi ⊗ m)i∈I . It

induces an A-linear map h : P ⊗A M → ⊕
i∈I

(Pi ⊗A M) such that the following diagram

P ×M

h′

P ⊗A M

h⊕
i∈I

(Pi ⊗A M)

is commutative. Then it is easy to check that g ◦ h = idP⊗AM and h ◦ g = id⊕
i∈I

(Pi⊗AM), which shows

(2).

Remark 3.1.1. Let (Pi)i∈I be a collection of A-modules and P =
⊕
i∈I

Pi. By the above lemma, we can

easily show that the functor HomA(P,−) (resp. − ⊗A P ) is exact if and only if each HomA(Pi,−)

(resp. −⊗A Pi) is exact.

Proposition 3.1.2. For any A-module P the following four assertions are equivalent:

(i) The functor HomA(P,−) is exact, i.e., if

0 M0
ϕ

M1
ψ

M2 0

is a short exact sequence of A-modules, then

0 HomA(P,M0)
ϕ′

HomA(P,M1)
ψ′

HomA(P,M2) 0

is also a short exact sequence, where ϕ′, ψ′ are natural homomorphisms induced by ϕ and ψ,

respectively.
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(ii) For every surjective A-homomorphism f : M → N and every A-homomorphism g : P → N

there exists an A-homomorphism h : P → M such that g = fh:

P

gh

M
f

N 0.

(iii) Every exact sequence 0 → L → M → P → 0 splits.

(iv) P is a direct summand of a free A-module.

Proof. (i) ⇒ (ii) is trivial.

(ii) ⇒ (iii): Let N = P and g = idP in (ii), then (iii) follows immediately using Proposition

3.1.1.

(iii) ⇒ (iv): Remember that every A-module P is a quotient of a free A-module and apply (iii).

(iv) ⇒ (i): Suppose P is a direct summand of a free A-module. By Remark 3.1.1, it suffices

to show that HomA(A,−) is exact. This is obvious since HomA(A,M) ∼= M for every A-module

M .

Definition 3.1.2. An A-module P is called projective if it satisfies any of the equivalent conditions

of Proposition 3.1.2.

Corollary 3.1.1. Free modules are projective. A finitely generated module is projective if and only

if it is a direct summand of a finitely generated free module.

Proof. The first assertion is obvious. The second statement follows from Proposition 3.1.2 (iii).

Remark 3.1.2. Recall that an A-module P is called flat if the functor −⊗AP is exact. Free modules

are flat hence projective modules are flat by Remark 3.1.1.

Example 3.1.1. (1) If A = K is a field, then every A-module is free and hence projective.

(2) If A is a principal ideal domain, a projective A-module is free.
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(3) Suppose A ∼= A1 ×A2 for rings A1 and A2. Then each Ai is a projective A-module. If the Ai

are nonzero they are not free. Let P be any A-module. There is an isomorphism P ∼= P1×P2,

where Pi = eiPi is an Ai module with e1 = (1, 0) and e2 = (0, 1). Moreover, P is projective

over A if and only if each Pi is projective over Ai.

Lemma 3.1.2. Let M , N and P be A-modules and P is flat. For any f ∈ HomA(M,N), we have:

(1) Ker(f ⊗ idP ) ∼= Ker(f)⊗A P and

(2) Coker(f ⊗ idP ) ∼= Coker(f)⊗A P hence Im(f ⊗ idP ) ∼= Im(f)⊗A P .

Proof. (1) We have an exact sequence 0 → Ker(f) → M → N . Since P is flat, the sequence

0 → Ker(f) ⊗A P → M ⊗A P → N ⊗A P is also exact. For any x ∈ Ker(f) and any p ∈ P ,

(f ⊗ idP )(x⊗ p) = f(x)⊗ p = 0. This implies Ker(f)⊗A P ⊆ Ker(f ⊗ idP ). We have the following

commutative diagram

0 0 Ker(f)⊗A P M ⊗A P
f⊗idP

id∼=

N ⊗A P

id∼=

0 0 Ker(f ⊗ idP ) M ⊗A P
f⊗idP

N ⊗A P

with each row exact. By five lemma, Ker(f)⊗A P ∼= Ker(f ⊗ idP ).

(2) We start with another exact sequence M → N → Coker(f) → 0. Since P is flat, the

sequence M ⊗A P → N ⊗A P → Coker(f) ⊗A P → 0 is also exact. There is a natural A-

bilinear map Coker(f) × P → Coker(f ⊗ idP ) with (x, p) 
→ x⊗ p. This induces an A-linear map

φ : Coker(f)⊗A P → Coker(f ⊗ idP ) and we obtain the following commutative diagram

M ⊗A P
f⊗idP

id∼=

N ⊗A P

id∼=

Coker(f)⊗A P

φ

0 0

M ⊗A P
f⊗idP

N ⊗A P Coker(f ⊗ idP ) 0 0

with each row exact. By five lemma, Coker(f ⊗ idP ) ∼= Coker(f) ⊗A P and thus Im(f ⊗ idP ) ∼=

Im(f)⊗A P .
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Proposition 3.1.3. Let A be a local ring with maximal ideal m and P a finitely generated A-module.

Then P is projective if and only if it is free.

Proof. The “if” part is obvious. For the “only if” part, since P is a finitely generated A-module,

P ⊗A A/m is a finite dimensional vector space. Take x1, x2, . . . , xn ∈ P such that {x1 ⊗ 1, x2 ⊗

1, . . . , xn ⊗ 1} is a basis of P ⊗A A/m. Let f : An → P be the map sending the i-th basis

to xi. Then f ⊗ idA/m : An ⊗A A/m → P ⊗A A/m is an isomorphism since it is a linear map

between two vector spaces sending basis to basis. Then M = Coker(f) is finitely generated and

M/mM ∼= M ⊗A A/m = Coker(f) ⊗A A/m ∼= Coker(f ⊗ idA/m) = 0, i.e., M = mM . Nakayama’s

lemma implies M = 0, so f is surjective. Now we get a short exact sequence of A-modules:

0 Ker(f) An P 0.

P is projective ⇒ An ∼= P ⊕ Ker(f) ⇒ Ker(f) is finitely generated. Since Ker(f)/mKer(f) ∼=

Ker(f)⊗A A/m ∼= Ker(f ⊗ idA/m) = 0. By Nakayama’s lemma Ker(f) = 0, i.e. f is injective thus

an isomorphism. So P is free.

Next, we will see some local characterization of projective modules. Recall that for any f ∈ A,

Af = S−1A where S = {fn : n ≥ 0} and Mf = S−1M = M ⊗A Af for an A-module M . We say

that M is finitely presented if there is an exact sequence Am → An → M → 0 of A-modules with

m,n < ∞.

Lemma 3.1.3. Let M , N be A-modules, with M finitely presented and let S ⊂ A be a multiplica-

tively closed subset. Then S−1HomA(M,N) ∼= HomS−1A(S
−1M,S−1N) as S−1A-modules.

Proof. The natural map ϕ : S−1HomA(M,N) −→ HomS−1A(S
−1M,S−1N) is given by f

t

→ (ft :

m
s

→ f(m)

st
) for any f ∈ HomA(M,N), m ∈ M and s, t ∈ S. ft is S

−1A-linear because

ft(
a

b

m1

t1
+

m2

t2
) = ft(

am1t2 + bt1m2

bt1t2
) =

f(am1t2 + bt1m2)

tbt1t2

=
af(m1t2) + f(bt1m2)

tbt1t2
=

a

b

t2f(m1)

tt1t2
+

bt1f(m2)

tbt1t2
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=
a

b
ft(

m1

t1
) + ft(

m2

t2
),

for any a ∈ A, m1, m2 ∈ M and b, t1, t2 ∈ S. It is easy to see that ϕ is well-defined. We claim that

ϕ is an isomorphism. This is clear if M = A since the following diagram is commutative,

S−1N
∼

S−1HomA(A,N)

ϕ

by y
t

(1	→y)
t

S−1N
∼

HomS−1A(S
−1A, S−1N) y

t
(1
1

→ y

t
)

where (1 
→ y) denotes the map in HomA(A,N) uniquely determined by sending the identity of A

to y. Similarly, taking direct sums we get a commutative diagram

S−1HomA(A
n, N) ∼

ϕ

n⊕
i=1

S−1HomA(A,N)

HomS−1A(S
−1An, S−1N)

∼
n⊕

i=1

HomS−1A(S
−1A, S−1N)

by

y
t

(
(1	→f(e1))

t
, . . . , (1	→f(en))

t

)
(
ft :

ei
1

→ f(ei)

t

) (
1
1

→ f(e1)

t
, . . . , f(en)

t

)
where ei = (0, . . . , 1, . . . , 0) has a 1 in the i-th component and zeros elsewhere with ei’s forming a

free A-basis for An. Hence ϕ is also an isomorphism if M ∼= An for some n < ∞. For general M ,

since M is finitely presented, we have

Am h→ An g→ M → 0 is exact with m,n < ∞,

⇒ 0 → HomA(M,N) → HomA(A
n, N) → HomA(A

m, N) is exact

(HomA(−, N) is left exact),

⇒ 0 → S−1HomA(M,N) → S−1HomA(A
n, N) → S−1HomA(A

m, N) is exact

(S−1 is flat).

Similarly, we have an exact sequence

0 → HomS−1A(S
−1M,S−1N) → HomS−1A(S

−1An, S−1N) → HomS−1A(S
−1Am, S−1N)
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and the following diagram

0 S−1HomA(M,N)

ϕ

S−1 HomA(A
n, N)

∼=

S−1HomA(A
m, N)

∼=

0 HomS−1A(S
−1M,S−1N) HomS−1A(S

−1An, S−1N) HomS−1A(S
−1Am, S−1N)

with both rows exact. The first square is commutative by

f
t

f◦g
t

(
ft :

m
t′

→ f(m)

tt′

) (
(f ◦ g)t : x

t′

→ fg(x)

tt′

)
(

x
t′

→ ft(

g(x)
t′
) = fg(x)

tt′

)
and the second square is commutative in similar way. Hence S−1HomA(M,N) ∼= HomS−1A(S

−1M,S−1N

by five lemma.

Lemma 3.1.4. Let (fi)i∈I be a collection of elements of A with
∑

i∈I Afi = A and M an A-module.

(a) If Mfi = 0 for all i ∈ I then M = 0.

(b) If Mfi is a finitely generated Afi-module for each i ∈ I then M is finitely generated.

Proof. (a) Let m be any maximal ideal of A. Since
∑

i∈I Afi = A, the set {fi : i ∈ I} is not

contained in m. There exists an i0 ∈ I such that fi0 ∈ A−m. Mfi0
= 0 ⇒ Mm = 0 ⇒ M = 0.

(b) Suppose we have
∑n

i=1 aifi = 1 for some a1, . . . , an ∈ A. By assumption, we may take a

finite subset of Mfi as generators over Afi. Moreover, we may take the generators of the form

mi1

fN
i
, mi2

fN
i
, . . . , mik

fN
i

for each 1 ≤ i ≤ n. Then for any m ∈ M , we can write m
1
as m

1
=

∑k
j=i bijmij

fN′
i

in

Mfi with bij ∈ A. Then there is an N ′′ such that fN ′′

i m =
∑k

j=1 b
′
ijmij .

〈f1, f2, . . . , fn〉 = (1) ⇒ 〈fN ′′

1 , fN ′′

2 , . . . , fN ′′

n 〉 = (1), i.e., there exist a′1, . . . , a
′
n ∈ A such that∑n

i=1 a
′
if

N ′′

i = 1. Hence we have

m = m ·
n∑

i=1

a′if
N ′′

i =
n∑

i=1

a′i

k∑
j=1

b′ijmij =
n∑

i=1

k∑
j=1

cijmij

with cij ∈ A. So M is a finitely generated over A.
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Theorem 3.1.1. Let P be an A-module. The following are equivalent:

(i) P is a finitely generated projective A-module.

(ii) P is finitely presented and Pp is a free Ap-module for any prime ideal p of A.

(iii) P is finitely presented and Pm is a free Am-module for any maximal ideal m of A.

(iv) There is a collection (fi)i∈I of elements of A with
∑

i∈I Afi = A such that Pfi is a free Afi-

module of finite rank for each i ∈ I.

Proof. (i) ⇒ (ii): Let Q be such that P ⊕ Q ∼= An for some n < ∞. Then Q is finitely generated

thus P is finitely presented. Let p be a prime ideal of A and we have An
p
∼= (P ⊕ Q)p ∼= Pp ⊕ Qp,

which implies Pp is finitely generated projective over APp
. By Proposition 3.1.3 Pp is free.

(ii) ⇒ (iii) because a maximal ideal is prime.

(iii) ⇒ (iv): Let m be a maximal ideal of A and suppose we have

An
m

g

∼

Pm

h

∼

where g, h are isomorphisms inverse to each other. By Lemma 3.1.3, HomAm
(An

m, Pm) ∼=
(
HomA(A

n, P )
)

and HomAm
(Pm, A

n
m)

∼=
(
HomA(P,A

n)
)
m
, so g = g′

s
, h = h′

t
for some g′ ∈ HomA(A

n, P ), h′ ∈

HomA(P,A
n) and certain s, t ∈ A−m. Then we have

idP

1
= idPm

=
g′h′

st
and

idAn

1
= idAn

m
=

h′g′

st
.

Then ∃u, v ∈ A − m such that g′h′u = (stu)idP and h′g′v = (stv)idAn . Let fm = stuv, g′′ = (tuv)g′

fm

and h′′ = (suv)h′

fm
. Then g′′ ∈ HomAfm

(An
fm
, Pfm) and h′′ ∈ HomAfm

(Pfm, A
n
fm
). Moreover g′′h′′ =

g′h′

st
= idPfm

and h′′g′′ = h′g′

st
= idAn

fm
, i.e., g′′, h′′ are isomorphisms inverse to each other. So Pfm is

a free Afm-module of finite rank. Let m range over all the maximal ideals of A we then obtain a

collection of f ’s that is not contained in any maximal ideal thus generates A.
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(iv) ⇒ (i): If we write the identity of A as a linear combination of finite fi we may assume that

I is finite. For any i ∈ I, we may choose an isomorphism gi : A
ni
fi

→ Pfi such that the image of the

j-th standard basis (0, . . . , 1
1
, . . . , 0) is of the form

pij
1

for 1 ≤ j ≤ ni. Let g
′
i : A

ni → P be the map

defined by (0, . . . , 1, . . . , 0) 
→ pij. Then the following diagram

Ani

g′i

Ani
fi

gi

P Pfi

commutes. These g′i’s induce a map g : A
∑

i∈I ni → P with
(
Coker(g)

)
fi
= 0. By Lemma 3.1.4 g is

surjective. Consider the map g ⊗ idAfi
: A

∑
i∈I ni

fi
→ Pfi. Then Ker(g ⊗ idAfi

) ∼= A
∑

j �=i ni

fi
is finitely

generated. Hence Ker(g)fi
∼= Ker(g ⊗ idAfi

) is finitely generated and so is Ker(g) by Lemma 3.1.4.

This implies P is finitely presented. Apply Lemma 3.1.3 to any surjective map ϕ′ : M → N of

A-modules, we have the following commutative diagram

(
HomA(P,M)

)
fi

ϕ⊗idAfi

∼=

(
HomA(P,N)

)
fi

∼=

Coker(ϕ⊗ idAfi
) 0

HomAfi
(Pfi,Mfi) HomAfi

(Pfi, Nfi)

with the first row exact, where ϕ : HomA(P,M) → HomA(P,N) is the natural map induced by ϕ′.

Moreover, ϕ′ : M → N is surjective implies the map Mfi → Nfi induced by ϕ′ is also surjective.

Then the map in the second row is surjective since Pfi are free thus projective over Afi. By five

lemma, Coker(ϕ ⊗ idAfi
) ∼=

(
Coker(ϕ)

)
fi

= 0 thus ϕ is surjective. By Proposition 3.1.2 P is

projective.

This completes the proof of the theorem.

Now let P be a finitely generated projective A-module. By Theorem 3.1.1 (ii), the Ap-module

Pp is free for each p ∈ Spec(A) and we denote the rank of Pp over Ap by rkAp
(Pp). Then we define

the rank function

rank(P ) = rankA(P ) : SpecA −→ Z by p 
→ rkAp
(Pp).
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We consider the rank function as a function between topological spaces where Z is equipped with

the discrete topology. Then this function is locally constant thus continuous. Moreover, if SpecA

is connected, i.e., A does not contain any nontrivial idempotents, then the function rank(P ) is

constant and may be identified with a nonnegative integer.

Definition 3.1.3. Let P be a finitely generated projective A-module. We say that P is faithfully

projective if rank(P )(p) ≥ 1 for all p ∈ Spec(A).

Proposition 3.1.4. Let P be a finitely generated projective A-module. The following four state-

ments are equivalent:

(i) P is faithfully projective.

(ii) The map A → EndZ(P ) giving the A-module structure is injective.

(iii) P is faithful, i.e., an A-module M is zero if and only if M ⊗A P = 0.

(iv) P is faithfully flat, i.e., a sequence M0 → M1 → M2 of A-modules is exact if and only if the

induced sequence M0 ⊗A P → M1 ⊗A P → M2 ⊗A P is exact.

Proof. First we prove an equivalent condition of (ii). The map φ : A → EndZ(P ) defined by

a 
→ (fa : p 
→ a · p) is Z-linear and gives EndZ(P ) the A-module structure. Then we have

Ker(φ) = Ann(P ). So condition (ii) holds if and only if Ann(P ) = 0. Now we start the proof of

the proposition.

(i) ⇒ (ii): Take any a ∈ Ann(P ), it suffices to show that a = 0. First we claim that a ∈ R(A),

which is the Jacobson radical of A. If not, then there is a maximal ideal m of A such that a ∈ A−m.

Then Pm = 0 since a ∈ Ann(P ), a contradiction with P faithfully projective. Hence a ∈ R(A). For

any maximal ideal m of A, since Pm is free over Am of rank ≥ 1, there exists x ∈ P and t ∈ A−m

such that x
t
�= 0. But a

1
· x

t
= 0, this implies a

1
= 0 in Am. Then there exists an s ∈ A − m such

that as = 0. Letting m range over all maximal ideals of A, we obtain a collection of s’s that is
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not contained in any maximal ideal and thus generates A. There exists r1, r2, . . . , rn ∈ A such that∑n
i=1 risi = 1 where si is obtained as above with asi = 0. Then a =

∑n
i=1 risia = 0.

(ii) ⇒ (iii): The “only if” part is obvious. For the “if” part, suppose M ⊗A P = 0. For any

maximal ideal m of A, since P is finitely generated projective, Pm is a free Am-module of finite

rank. Suppose Pm = An
m. Since P is finitely generated, by (ii), we have Pm �= 0, thus n ≥ 1. But

0 = (M ⊗A P )m ∼= Mm ⊗Am
Pm

∼= Mn
m, therefore Mm = 0. Thus M = 0.

(iii) ⇒ (iv): The “only if” part is clear since a projective module is flat. Conversely, suppose

M0
f→ M1

g→ M2 is a sequence of A-modules and the induced sequence M0⊗AP
f⊗idP−→ M1⊗AP

g⊗idP−→

M2⊗AP is exact. Then 0 = (g⊗idP )◦(f⊗idP ) = (gf⊗idP ). By (iii), gf = 0, i.e., Im(f) ⊆ Ker(g).

Let M = Ker(g)/ Im(f), by Lemma 3.1.2, M ⊗A P ∼= Ker(g⊗ idP )/ Im(f ⊗ idP ) = 0. Then M = 0,

i.e., M0
f→ M1

g→ M2 is exact.

(iv) ⇒ (i): We need to show that rank(P )(p) ≥ 1 for any prime ideal p of A, i.e., Pp �= 0. Suppose

not, i.e., there is a p ∈ SpecA such that Pp = 0. Then the sequence 0 → Pp = P ⊗A Ap → 0 is

exact. By (iv), 0 → Pp → 0 is exact, i.e., Ap = 0. Hence 0 ∈ A− p, a contradiction.

This completes the proof.

Let P be a finitely generated projective A-module and P ∨ = HomA(P,A) denote the dual module

of P . For each A-module M there is a natural bilinear map:

φ′ : P ∨ ×M → HomA(P,M) with (f,m) 
→ (p 
→ f(p) ·m).

This induces a homomorphism:

φ : P ∨ ⊗A M → HomA(P,M) with f ⊗m 
→ (p 
→ f(p) ·m).

We have the following property:

Proposition 3.1.5. The map φ : P ∨ ⊗A M → HomA(P,M) with f ⊗m 
→ (p 
→ f(p) ·m) is an

isomorphism.
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Proof. The proof of this proposition is similar to the proof of Proposition 3.1.3. Since we have the

following commutative diagram,

A∨ ⊗A M
φ

∼

HomA(A,M)

∼

by f ⊗m (a 
→ f(a) ·m)

A⊗A M

∼

f(1)⊗m

M M f(1) ·m f(1) ·m

φ is an isomorphism if P = A. Taking direct sums we have that φ is an isomorphism if P ∼= An for

some n < ∞. For general P , the same conclusion is obtained by passing to direct summands and

applying five lemma.

Proposition 3.1.6. Let P and P ′ be finitely generated projective A-modules. Then the A-modules

P⊕P ′, P⊗AP
′, HomA(P, P

′) and P ∨ are finitely generated projective and the rank of these modules

are given by

rank(P ⊕ P ′) = rank(P ) + rank(P ′),

rank(P ⊗A P ′) = rank(P )× rank(P ′),

rank(HomA(P, P
′)) = rank(P )× rank(P ′),

rank(P ∨) = rank(P ),

as functions on SpecA.

Proof. Let Q and Q′ be A-modules such that P ⊕Q and P ′⊕Q′ are free A-modules of finite rank.

Then

(P ⊕Q)⊕ (P ′ ⊕Q′) ∼= (P ⊕ P ′)⊕Q1,

(P ⊕Q)⊗A (P ′ ⊕Q′) ∼= (P ⊗A P ′)⊕Q2,

HomA(P ⊕Q,P ′ ⊕Q′) ∼= HomA(P, P
′)⊕Q3 and

(P ⊕Q)∨ ∼= P ∨ ⊕Q∨
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verify the claim P ⊕ P ′, P ⊗A P ′, HomA(P, P
′) and P ∨ are finitely generated projective over A,

respectively. Moreover, for any p ∈ SpecA, we have

(P ⊕ P ′)p ∼= Pp ⊕ P ′p
∼= A

rank(P )(p)
p ⊕ A

rank(P ′)(p)
p

∼= A
rank(P )(p)+rank(P ′)(p)
p ,

(P ⊗A P ′)p ∼= Pp ⊗Ap
P ′p

∼= A
rank(P )(p)
p ⊗Ap

A
rank(P ′)(p)
p

∼= A
rank(P )(p)·rank(P ′)(p)
p ,

(HomA(P, P
′))p ∼= HomAp

(Pp, P
′
p)

∼= HomAp
(A

rank(P )(p)
p , A

rank(P ′)(p)
p )

∼= A
rank(P )(p)·rank(P ′)(p)
p and

(P ∨)p ∼= HomAp
(Pp, Ap) ∼= HomAp

(A
rank(P )(p)
p , Ap) ∼= A

rank(P )(p)
p .

These verify the assertions of ranks.

Proposition 3.1.7. Let B be an A-algebra and P a projective A-module. Then P ⊗A B is a

projective B-module. Moreover, if P is finitely generated, the following diagram commutes.

SpecB

rankB(P⊗AB)

SpecA

rankA(P )

Z Z

Proof. Let Q be such that P ⊕Q is a free A-modules. Then (P ⊗A B)⊕ (Q⊗A B) ∼= (P ⊕Q)⊗A B

is a free B-module. This verifies the first assertion. Now suppose P is finitely generated projective

and A
ϕ−→ B makes B an A-algebra. Then for any p ∈ SpecB, we have

B
rank(P⊗AB)(p)
p

∼= (P ⊗A B)p ∼= P ⊗A Bp

∼= P ⊗A Aϕ−1(p) ⊗Aϕ−1(p)
Bp

∼= Pϕ−1(p) ⊗Aϕ−1(p)
Bp

∼= A
rank(P )(ϕ−1(p))

ϕ−1(p) ⊗Aϕ−1(p)
Bp

∼= B
rank(P )(ϕ−1(p))
p ,

i.e., rank(P ⊗A B)(p) = rank(P )(ϕ−1(p)). This completes the proof.

Definition 3.1.4. Let B be an A-algebra. B is said to be finite projective if B is finitely generated

projective as an A-module. For such an algebra we write [B : A] in stead of rankA(B), which is a

continuous function SpecA → Z.
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Proposition 3.1.8. Let f : A → B be a ring homomorphism making B be a finite projective

A-algebra. Then we have:

(a) f is injective ⇔ [B : A] ≥ 1.

(b) The following three assertions are equivalent:

(i) f is surjective;

(ii) [B : A] ≤ 1;

(iii) the map B ⊗A B → B, x⊗ y 
→ xy is an isomorphism.

(c) f is an isomorphism ⇔ [B : A] = 1.

Proof. (a): “ ⇒ ” Suppose there is a p ∈ SpecA with [B : A](p) = 0, i.e., Bp = 0. Since Ap �= 0,

the map fp : Ap → Bp is not injective, which implies f is not injective.

“ ⇐ ” Now suppose [B : A] ≥ 1. Then Ker(fp) ⊆ Ann(Bp) = 0 since Bp is a free Ap-module with

rank ≥ 1. Hence Ker(f)p ∼= Ker(fp) = 0 for all p. So Ker(f) = 0 thus f is injective.

(b): We will show that (ii) ⇒ (i) ⇒ (iii) ⇒ (ii).

(ii) ⇒ (i) We may assume that A is local with maximal ideal m. By Proposition 3.1.3, [B : A] is

constant. If [B : A] = 0, ⇒ B = 0 ⇒ f is surjective. If [B : A] = 1, then B is free of rank 1. Let b

is a basis of B over A, ∀x ∈ B, there is an ax ∈ A such that x = ax · b. Then for any α ∈ EndA(B),

we have

α(x) = α(ax · b) = axaα(b)b = aα(b) · x.

Thus α = aα(b) · idB. This means EndA(B) is a free A-algebra of rank 1 with basis idB. Then the

map g : B → EndA(B) defined by b 
→ (mb : x 
→ bx) is A-linear and injective since mb(1) = b.

Next we consider the composite

A
f−→ B

g−→ EndA(B)

with 1A 
→ 1B 
→ idB. This implies g ◦ f is an isomorphism. Since g is injective, f is surjective.
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(i) ⇒ (iii) Suppose f is surjective and let I denote the kernel of f thus B ∼= A/I. Then we have

a composite with natural isomorphisms

B ⊗A B
∼−→ B ⊗A A/I

∼−→ B/IB = B/f(I)B = B with

x⊗ y 
−→ x⊗ a (where f(a) = y) 
−→ a · x = f(a)x = xy.

This means the map B ⊗A B → B, x⊗ y 
→ xy is an isomorphism.

(iii) ⇒ (ii) Now suppose B ⊗A B ∼= B. By Proposition 3.1.6, [B : A] = [B ⊗A B : A] = [B : A]2.

So [B : A] ≥ 1.

(c) follows immediately from (a) and (b).

Definition 3.1.5. An A-algebra B is called faithfully projective if it is finite projective with [B :

A] ≥ 1, i.e., if it is faithfully projective as an A-module.

By Proposition 3.1.4 we see that B is faithfully projective if and only if it is faithfully flat. Next

we give some equivalent statements for faithfully flat algebras.

Proposition 3.1.9. Let B be a flat A-algebra. Then the following conditions are equivalent:

(i) aec = a for all ideals a of A.

(ii) SpecB → SpecA is surjective.

(iii) For every maximal ideal m of A we have me �= (1).

(iv) If M is any non-zero A-module, then MB = M ⊗A B �= 0.

(v) For every A-module M , the map M → MB by x 
→ x⊗ 1 is injective.

For the proof of this proposition, we refer to Atiyah and MacDonald (1994) Ch3, Ex. 16.

Proposition 3.1.10. Let B be a faithfully flat A-algebra, and P an A-module. Then P is a finitely

generated projective A-module if and only if P ⊗A B is a finitely generated projective B-module.
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Proof. By Proposition 3.1.7 the “only if” part is always true for any A-algebra B. Conversely, we

assume that P ⊗A B is a finitely generated projective B-module. Then we can choose a finite set

of generators of the form p1 ⊗ 1, p2 ⊗ 1, . . . pn ⊗ 1 with pi ∈ P for all i. Let e1, e2, . . . , en be the

standard basis of An and define a map

ϕ : An −→ P, ei 
→ Pi.

Then ϕ⊗idB : An⊗AB −→ P⊗AB is surjective. Since B is faithfully projective, ϕ is also surjective

by Proposition 3.1.4. Thus P is finitely generated. Let Q = Ker(ϕ). Using B faithfully projective

again, the exact sequence

0 −→ Q⊗A B −→ An ⊗A B −→ P ⊗A B −→ 0

splits. Hence Bn ∼= An ⊗A B ∼= (P ⊗A B)⊕ (Q⊗A B), which implies Q ⊗A B is finitely generated

projective. Applying the same proof we give for P to Q⊗AB we obtain that Q is finitely generated.

This shows that P is finitely presented.

Now we take an arbitrary A-module M . First we claim that the natural map

ψ : HomA(P,M)⊗A B −→ HomB(P ⊗A B,M ⊗A B), f ⊗ 1 
→ f ⊗ idB

is an isomorphism of B-modules. If P ∼= Am for some m < ∞, this claim is true by the following

commutative diagram,

HomA(A
m,M)⊗A B

ψ
HomB(A

m ⊗A B,M ⊗A B)

(
HomA(A,M)

)m ⊗A B

∼

HomB(B
m,M ⊗A B)

∼

Mm ⊗A B

∼ (
HomB(B,M ⊗A B)

)m∼

(M ⊗A B)m

∼

(M ⊗A B)m

∼

by
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(ei 
→ xi)⊗ 1B (ei ⊗ 1B 
→ xi ⊗ 1B)

(
(1A 
→ x1), . . . , (1A 
→ xm)

)⊗ 1B (e′i 
→ xi ⊗ 1B)

(x1, . . . xm)⊗ 1B
(
(1B 
→ x1 ⊗ 1B), . . . , (1B 
→ xm ⊗ 1B)

)
(x1 ⊗ 1B , . . . , xm ⊗ 1B) (x1 ⊗ 1B , . . . , xm ⊗ 1B)

where all the isomorphisms are natural and ei’s, e
′
i’s are standard basis for Am, Bm respectively.

For general P , we choose an exact sequence Am → An → P → 0. Then we have a commutative

diagram

0 HomA(P,M) ⊗A B

ψ

HomA(A
n,M) ⊗A B

∼=

HomA(A
m,M)⊗A B

∼=

0 HomB(P ⊗A B,M ⊗A B) HomB(A
n ⊗A B,M ⊗A B) HomB(A

m ⊗A B,M ⊗A B).

Both rows are exact by left exactness of HomA(−,M) and flatness of B. Then by what we just

proved for free modules and five lemma, ψ is an isomorphism.

Now let M → N → 0 be an exact sequence of A-modules. We have

M ⊗A B → N ⊗A B → 0 (B is flat).

⇒ HomB(P ⊗A B,M ⊗A B) → HomB(P ⊗A B,N ⊗A B) → 0 is exact

(P ⊗A B is projective).

⇒ HomA(P,M)⊗A B → HomA(P,N)⊗A B → 0 is exact.

⇒ HomA(P,M) → HomA(P,N) → 0 is exact (B is faithfully projective).

⇒ P is finitely generated projective over A.

This completes the proof.

Let P be a finitely generated projective A-module and P ∨ = HomA(P,A) denote the dual module

of P . Using Proposition 3.1.5, let M = P , we get an isomorphism

φ : P ∨ ⊗A P → HomA(P, P ) = EndA(P ) with f ⊗ q 
→ (p 
→ f(p) · q).
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We define the trace map tr = trP/A : EndA(P ) → A to be the composite

EndA(P ) = HomA(P, P )
φ−1−→ P ∨ ⊗A P −→ A,

where the second map is given by f ⊗ p 
→ f(p).

Proposition 3.1.11. Let P be a free A-module with basis w1, w2, . . . , wn, and define w∗i ∈ P ∨ by

w∗i (wj) = 1 if i = j and w∗i (wj) = 0 if i �= j. Let f ∈ EndA(P ), f(wi) =
∑n

j=1 aijwj with aij ∈ A.

Then we have

(a) P ∨ is a free A-module with basis w∗1, w
∗
2, . . . , w

∗
n.

(b) φ−1(f) =
∑
i,j

aijw
∗
i ⊗ wj.

(c) trP/A(f) =
n∑

i=1

aii.

Proof. (a): Clearly P ∨ is a free A-module of rank n. It suffices to show that the w∗i ’s generate P ∨.

Take an arbitrary g ∈ P ∨. For any x ∈ P , there exists a1, . . . , an ∈ A such that x =
∑n

i=1 aiwi.

Then

n∑
i=1

g(wi)w
∗
i (x) =

n∑
i=1

g(wi)w
∗
i (

n∑
j=1

ajwj) =
n∑

i=1

g(wi)
n∑

j=1

ajw
∗
i (wj)

=

n∑
i=1

g(wi)ai = g(

n∑
i=1

aiwi) = g(x)

This implies g =
n∑

i=1

g(wi)w
∗
i .

(b): Since φ is an isomorphism, it is enough to show that φ(
∑

i,j aijw
∗
i ⊗wj) = f . We shall check

this on the generators. For any 1 ≤ k ≤ n, we have

φ(
∑
i,j

aijw
∗
i ⊗ wj)(wk) =

∑
i,j

aijw
∗
i (wk) · wj) =

n∑
j=1

akjwj = f(wk).

(c): The image of f under the trace map is:

trP/A(f) : EndA(P )
φ

P ∨ ⊗A P A

f
∑
i,j

aijw
∗
i ⊗ wj

∑
i,j

aijw
∗
i (wj) =

n∑
i=1

aii.
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This completes the proof.

Remark 3.1.3. In the special case P = A, for any f ∈ EndA(A), we have trA/A(f) = f(1) by part

(c) of the above proposition.

We have the following properties for the trace map.

Proposition 3.1.12. Let B be an A-algebra and P a finitely generated projective A-module. Then

the following diagram of natural maps

EndA(P )
⊗idB

trP/A

EndB(P ⊗A B)

trP⊗AB/B

A B

is commutative.

Proof. Let p1, p2, . . . , pn be the generators of P as an A-module, then p1 ⊗ 1, p2 ⊗ 1, . . . , pn ⊗ 1

generate P ⊗A B as a B-module. For any f ∈ P ∨, f induces a B-linear map f̃ : P ⊗A B → B with

f̃(p⊗b) = f(p)·b. Recall that the map φ : P ∨⊗AP → EndA(P ) is defined by f⊗p′ 
→ (p 
→ f(p)·p′).

Then for any x ∈ P and b ∈ B, we have

φ(f̃ ⊗ (p⊗ 1))(x⊗ b) = f̃(x⊗ b) · (p⊗ 1) = f(x)b · (p⊗ 1)

= f(x) · p⊗ b = φ(f ⊗ p)(x)⊗ b

= φ(f ⊗ p)(x)⊗ idB(b) =
(
φ(f ⊗ p)⊗ idB

)
(x⊗ b).

Hence the following diagram

EndA(P )
φ−1

⊗idB

trP/A

P ∨ ⊗A P A

EndB(P ⊗A B)
φ−1

trP⊗AB/B

(P ⊗A B)∨ ⊗B (P ⊗A B) B

63



is commutative by

g
∑
i∈I

fi ⊗ pi
∑
i∈I

fi(pi)

∑
i∈I

fi(pi) · 1

g ⊗ idB

∑
i∈I

f̃i ⊗ (pi ⊗ 1)
∑
i∈I

f̃i(pi ⊗ 1),

where I is a finite index set. This completes the proof.

Proposition 3.1.13. Let 0 → P0 → P1 → P2 → 0 be an exact sequence of A-modules in which

P1 and P2 are finitely generated projective, and g : P1 → P1 an A-linear map with g[P0] ⊂ P0.

Denote by h the induced map P2 → P2. Then P0 is finitely generated projective and trP1/A(g) =

trP0/A(g|P0) + trP2/A(h).

Proof. Let Q be such that P1 ⊕ Q is a free A-module of finite rank. The assumption that P2 is

projective implies P1
∼= P0 ⊕ P2. Then P1 ⊕ Q ∼= P0 ⊕ P2 ⊕ Q ∼= P0 ⊕ Q1 proves the first claim.

Since P1
∼= P0 ⊕ P2, we have the following diagram:

EndA(P1)

φ−1 ∼

∼
EndA(P0)⊕HomA(P0, P2)⊕HomA(P2, P0)⊕ EndA(P2)

φ−1
1

∼ φ−1
2

∼ φ−1
3

∼ φ−1
4

∼

P∨1 ⊗A P1
∼

(P∨0 ⊗A P0)⊕ (P∨0 ⊗A P2)⊕ (P∨2 ⊗A P0)⊕ (P∨2 ⊗A P2)

A A,

where φ1, φ2, φ3, φ4 are isomorphisms given in Proposition 3.1.5 and the second arrow in the right

column is the sum of the two maps P ∨0 ⊗A P0 → A and P ∨2 ⊗A P2 → A. Then the composite of the

maps in the second column is just trP0/A + trP2/A. The above diagram is commutative by

g
(
π0gϕ0, π2gϕ0, π0gϕ2, π2gϕ2

)

f ⊗m
(
fϕ0 ⊗ π0(m), fϕ0 ⊗ π2(m), fϕ2 ⊗ π0(m), fϕ2 ⊗ π2(m)

)

f(m) f
(
ϕ0π0(m) + ϕ2π2(m)

)
,
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where ϕj is the natural inclusion Pj → P1 and πj is the natural projection P1 → Pj for j = 0, 2.

Actually, the image of g ∈ EndA(P1) under φ
−1 is of the form

∑
i∈I

fi ⊗mi with I finite. Since all the

arrows in the diagram are A-linear, we may assume that it is of the from f ⊗ m. Then we have

trP1/A(g) = trP0/A(π0gϕ0) + trP2/A(π2gϕ2).

Indeed, g|P0 = π0gϕ0 since g[P0] ⊂ P0. Moreover, the induced map h : P2 → P2 is just π2gϕ2.

Thus trP1/A(g) = trP0/A(g|P0) + trP2/A(h).

Proposition 3.1.14. Let P and Q be two finitely generated projective A-modules and f : P → Q,

g : Q → P two A-linear maps. Then

trP/A(g ◦ f) = trQ/A(f ◦ g).

Proof. By Proposition 3.1.5 we have

P ∨ ⊗A Q ∼

φ
HomA(P,Q) and Q∨ ⊗A P ∼

φ
HomA(Q,P ).

Let φ−1(f) =
∑
j∈J

fj ⊗ qj and φ−1(g) =
∑
i∈I

gi ⊗ pi, where I, J are finite set and fj ∈ P ∨, gi ∈ Q∨,

qj ∈ Q, pi ∈ P . Then for any p ∈ P , we have

φ
(∑

i,j

fj ⊗ gi(qj)pi

)
(p) =

∑
i,j

fj(p) · gi(qj)pi =
∑
j

fj(p)
∑
i

gi(qj)pi

=
∑
j

fj(p)g(qj) = g
(∑

j

fj(p)qj
)
= g ◦ f(p),

i.e., φ−1(g ◦ f) = ∑
i,j

fj ⊗ gi(qj)pi. Similarly we can show that φ−1(f ◦ g) = ∑
i,j

gi ⊗ fj(pi)qj. So by

the definition of the trace map, we have

trQ/A(f ◦ g) =
∑
i,j

gi
(
fj(pi)qj

)
=
∑
i,j

gi(qj)fj(pi) =
∑
i,j

fj
(
gi(qj)pi

)
= trQ/A(g ◦ f).

This verifies the statement.

Proposition 3.1.15. Let B1, B2, . . . , Bn be algebras over A. Then
n∏

i=1

Bi is finite projective over A

if and only if each Bi is finite projective over A.
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Proof. This follows from Lemma 3.1.1 immediately.

Proposition 3.1.16. Let B be a finite projective A-algebra and P a finitely generated projective

B-module. Then P is a finitely generated projective A-module.

Proof. Clearly, P is finitely generated as an A-module. Let M be an A-module such that B⊕M ∼=

An and Q be a B-module such that P ⊕Q ∼= Bm for some m,n < ∞. Then Amn ∼=
n⊕

i=1

(B⊕M)m ∼=

P ⊕Q′ verifies the assertion.

3.2 Separable algebras

Let B be a finite projective A-algebra. For any b ∈ B, let mb : B → B be map defined by the

multiplication by b, i.e., mb(x) = bx for any x ∈ B. Then we define the trace map

TrB/A : B → A, by b 
→ tr(mb).

This map is A-linear and induces another A-linear map

ψ : B → HomA(B,A) by ψ(b)(b′) = TrB/A(bb
′) for b, b′ ∈ B.

Proposition 3.2.1. Let B be a finite projective A-algebra and C a finite projective B-algebra. Then

C is a finite projective A-algebra and TrC/A = TrB/A ◦TrC/B.

Proof. The first claim follows immediately from Proposition 3.1.16. For the second assertion, first,

we claim that the natural homomorphism

Φ : HomA(C,A)⊗A B −→ HomA(C,B), f ⊗ b 
−→ (fb : c 
→ f(c) · b)

is an isomorphism. This is true if C = Bn for some n < ∞, since both sides may be identified with(
EndA(B)

)n
and the map Φ coincides with the identity map on

(
EndA(B)

)n
. In the general case

66



we choose an exact sequence Bm → Bn → C → 0. Then we have a commutative diagram

0 HomA(C,B) HomA(B
n, B) HomA(B

m, B)

0 HomA(C,A)⊗A B

Φ

HomA(B
n, A)⊗A B

∼=

HomA(B
m, A)⊗A B

∼=

with both rows exact. So Φ is an isomorphism.

Consider the following diagram

C C

EndB(C)

φ−1

EndA(C)

φ−1

HomB(C,B)⊗B C HomA(C,B) ⊗B C HomA(C,A) ⊗A B ⊗B C HomA(C,A) ⊗A C

B EndA(B)
trB/A

A,

whose map is given by

y y

my my

f ⊗ c f ⊗ c
( ∑

j∈J

gj ⊗ bj

)
⊗ c

∑
j∈J

gj ⊗ bjc

∑
j∈J

gj(bjc)

?

f(c) mf(c) trB/A(mf(c))

with I, J finite index sets and Φ
( ∑

j∈J

gj ⊗ bj

)
= f . The first arrow in the right column is verified

by

φ
(∑

j∈J

gj ⊗ bjc
)
(d) =

∑
j∈J

gj(d)(bjc) (∀d ∈ C)

=
(∑

j∈J

gj(d)bj

)
c = Φ

(∑
j∈J

gj ⊗ bj

)
(d)c

= f(d)c = φ(f ⊗ c)(d) = my(d).
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The proof of TrC/A = TrB/A ◦TrC/B is equivalent to showing that the above diagram is commutative.

So it suffices to show that trB/A(mf(c)) =
∑
j∈J

gj(bjc). Let μj be the map A → B, a 
→ a · bj and μc

be B → C, b 
→ b · c. Notice that Φ
( ∑

j∈J

gj ⊗ bj

)
= f , then for any z ∈ B, since f is B-linear, we

have

mf(c)(z) = f(c)z = f(z · c) = Φ
(∑

j∈J

gj ⊗ bj

)
(z · c)

=
∑
j∈J

bjgj(zc) =
∑
j∈J

(μj ◦ gj ◦ μc)(c),

i.e., mf(c) =
∑
j∈J

μj ◦ gj ◦ μc. Then by the linearity and Proposition 3.1.14, we conclude that

trB/A(mf(c)) = trB/A

(∑
j∈J

μj ◦ gj ◦ μc

)
=
∑
j∈J

trB/A

(
μj ◦ (gj ◦ μc)

)
=

∑
j∈J

trA/A

(
(gj ◦ μc) ◦ μj

)
=
∑
j∈J

(gj ◦ μc ◦ μj)(1)

=
∑
j∈J

gj(cbj) =
∑
j∈J

gj(bjc).

So TrC/A = TrB/A ◦TrC/B. This completes the proof.

Definition 3.2.1. A finite projective A-algebra B is said to be separable if the map ψ : B →

HomA(B,A) defined at the beginning of this section is an isomorphism. In what follows, we will

call projective separable algebras as separable algebras for convenience.

Next we will give an example of separable algebra.

Example 3.2.1. Let B = An with n < ∞, where multiplication is defined componentwise. B is

an A-algebra via the homomorphism given by

A −→ B, a 
→ (a, a, . . . , a).

Then B is a finite projective A-algebra. Let e1, . . . , en be the standard A-basis for B. For any

x = (x1, x2, . . . , xn) ∈ B, the map mx : B → B defined by y 
→ xy sends ei to xi · ei. Hence

TrB/A(x) = tr(mx) =
n∑

i=1

xi by Proposition 3.1.11.
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Recall that the map ψ : B → HomA(B,A) is given by x 
→ (ei 
→ TrB/A(xei) = xi). Define

α : HomA(B,A) → B by f 
→ (f(e1), . . . , f(en)). Clearly α is A-linear with

(α ◦ ψ)(x) = α(ei 
→ xi) = (x1, . . . , xn) = x and

(ψ ◦ α)(f) = ψ(f(e1), . . . , f(en)) = (ei 
→ TrB/A((f(e1), . . . , f(en))ei) = f(ei)) = f.

Hence ψ is an isomorphism and B ∼= An is separable.

Proposition 3.2.2. Let B1, B2, . . . , Bn be algebras over A. Then
n∏

i=1

Bi is separable over A if and

only if each Bi is separable over A.

Proof. Let B =
∏n

i=1Bi. By Proposition 3.1.15, B is finite projective if and only if Bi is finite

projective. It suffices to show that ψ : B → HomA(B,A) is an isomorphism if and only if ψi : Bi →

HomA(Bi, A) is an isomorphism for each i. Let ϕi denote the natural map Bi → B and πi the

projection B → Bi. As in the proof of Proposition 3.1.13 we can show a similar assertion that for

any b = (b1, b2, . . . , bn) ∈ B

TrB/A(b) = trB/A(mb) =

n∑
i=1

trBi/A(πimbϕi) =

n∑
i=1

trBi/A(mbi) = TrBi/A(bi).

Then the following diagram

B
πi

ψ

Bi

ψi

HomA(B,A) ∼

n∏
i=1

HomA(Bi, A)
πi

HomA(Bi, A)

is commutative, where the arrows are given by

b = (bi)
n
i=1 bi

(
x = (xi)

n
i=1 
→ TrB/A(bx)

) (
xi 
→ TrB/A([bixi])

)n

i=1
(xi 
→ TrBi/A(bixi)),

where [xi] denote the element (0, . . . , xi, . . . , 0) in B having xi in the i-th spot and zeros elsewhere.

Hence TrB/A([bixi]) = TrBi/A(bixi). Then ψ is an isomorphism if and only if ψi is an isomorphism

for each i, which completes the proof.
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Proposition 3.2.3. Let B be a separable A-algebra and C a separable B-algebra. Then C is a

separable A-algebra.

Proof. First, we claim that HomB

(
C,HomA(B,A)

) ∼= HomA(C ⊗B B,A). On the left hand side,

we consider HomA(B,A) as a B-module by (b′ · h)(b) = h(b′b) with h ∈ HomA(B,A) and b, b′ ∈ B.

Then for any f ∈ HomA(C ⊗B B,A), define f̃ : C → HomA(B,A) by c 
→ (
fc : b 
→ f(c ⊗ b)

)
.

It is easy to check that f̃ is B-linear. Moreover, for any g ∈ HomB

(
C,HomA(B,A)

)
, there is an

A-bilinear map C ×B → A associates to g by sending (c, b) to (g(c))(b). This induces an A-linear

map g : C ⊗B B → A sending c ⊗ b to (g(c))(b). Consider the map HomB

(
C,HomA(B,A)

) →

HomA(C⊗B B,A) by g 
→ g and the map HomA(C⊗B B,A) → HomB

(
C,HomA(B,A)

)
by f 
→ f̃ .

Then these two maps are inverse to each other, hence are isomorphisms.

We have the following commutative diagram

C
∼

ψB

ψA

HomB(C,B)
∼

HomB

(
C,HomA(B,A)

)
∼

HomA(C,A) HomA(C ⊗B B,A)
∼

by

c (x 
→ TrC/B(cx))
(
x 
→ (

b 
→ TrB/A(TrC/B(cx))b
))

(x 
→ TrC/A(cx))
(
x 
→ TrB/A(TrC/B(cx))

) (
x⊗ b 
→ TrB/A(TrC/B(cx))b

)
,

where the “ = ” follows from Proposition 3.2.1. So ψA : C → HomA(C,A) is an isomorphism thus

C is a separable A-algebra.

Proposition 3.2.4. Let C be any A-algebra. If B is a separable A-algebra then B ⊗A C is a

separable C-algebra. The converse is also true if C is faithfully flat.

Proof. By Proposition 3.1.7, B ⊗A C is finite projective over C. It suffices to show B ⊗A C ∼=

HomC(B⊗AC,C). First we claim that the natural map HomA(B,A)⊗A C −→ HomC(B⊗A C,C),

f ⊗ c 
→
(
b′ ⊗ c′ 
→ f(b′)cc′

)
is an isomorphism of C-modules. This is clear if B ∼= An for some

n < ∞ since both sides are isomorphic to Cn and the the natural map HomA(B,A) ⊗A C −→
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HomC(B⊗A C,C) coincides with the identity map on Cn. In general we localize at any p ∈ SpecC

then the following diagram

(
HomC(B ⊗A C,C)

)
p

∼
HomCp

((B ⊗A C)p, Cp)
∼

HomCp
(Cm

p , Cp)
∼

Cm
p

HomA(B,A)⊗A Cp
∼

HomA(B,A)⊗A Apc ⊗Apc
Cp

∼
Am

pc ⊗Apc
Cp

∼
Cm

p

commutes, where pc is the contraction of p in A. This proves the claim.

Since B is separable over A, B ∼= HomA(B,A) under ψ. Then B ⊗A C ∼= HomA(B,A) ⊗A C

under ψ ⊗ idC . The following diagram

B ⊗A C
ψ

HomC(B ⊗A C,C)

B ⊗A C
ψ⊗idC
∼ HomA(B,A)⊗A C

∼

is commutative, where the arrows are given by

b⊗ c
(
b′ ⊗ c′ 
→ TrB⊗AC/C(bb

′ ⊗ cc′) = TrB⊗AC/C(bb
′ ⊗ 1)cc′

)
Prop 3.1.12(

b′ ⊗ c′ 
→ TrB/A(bb
′)cc′

)

b⊗ c
(
b′ 
→ TrB/A(bb

′)
)⊗ c.

This proves the first assertion.

Now suppose C is a faithfully flat A-algebra and B ⊗A C is projective separable over C. From

Proposition 3.1.10, we see that B is finite projective over A. Moreover, the following diagram

B ⊗A C

ψ⊗idC

ψ

∼ HomC(B ⊗A C,C)

∼

HomA(B,A)⊗A C
∼

HomA(B ⊗A C,A⊗A C)

commutes, where the isomorphism in the bottom row is the same as in the proof of Proposition

3.1.10 since C is faithfully flat and B is finite projective. So ψ⊗ idC : B⊗AC −→ HomA(B,A)⊗AC

is an isomorphism. By the faithfully flatness of C, ψ : B → HomA(B,A) is an isomorphism hence

B is separable over A. This completes the proof.
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Lemma 3.2.1. Let B be a separable A-algebra and f : B → A an A-algebra homomorphism. Then

there is an A-algebra C and an A-algebra isomorphism g : B
∼→ A × C such that f = p ◦ g, where

p is the projection A× C → A.

Proof. Clearly, f ∈ HomA(B,A). Since B is separable, ψ : B → HomA(B,A) is an isomorphism.

Let e ∈ B be such that ψ(e) = f , i.e., TrB/A(ex) = f(x) for all x ∈ B. Since f is an A-algebra

homomorphism, TrB/A(e) = f(1) = 1. Furthermore, for all x, y ∈ B,

TrB/A(exy) = f(xy) = f(x)f(y) = f(x) TrB/A(ey) = TrB/A(f(x)ey),

i.e., ψ(ex) = ψ(f(x)e) for all x ∈ B. Since ψ is an isomorphism thus injective, we have ex = f(x)e

. This implies eKer(f) = 0. Then the diagram:

0 Ker(f)

0

B
f

me

A

mf(e)

0

0 Ker(f) B
f

A 0

commutes with both rows exact, where the first vertical arrow is just me

∣∣
Ker(f)

= 0 since eKer(f) =

0. Then

1 = TrB/A(e) = trKer(f)/A(0) + trA/A(f(e)) = 0 + f(e) = f(e).

Note that we have ex = f(x)e for all x ∈ B. Letting x = 1 we get e2 = f(e)e = e, i.e., e is an

idempotent of B. 1 − e ∈ Ker(f) since f(1 − e) = f(1) − f(e) = 0. Then the map A → Ker(f),

a 
→ a(1 − e) makes Ker(f) be an A-algebra. Acturally 1 − e is the identity of Ker(f) since

(1 − e)y = y − ey = y − f(y)e = y − 0 = y for all y ∈ Ker(f). Then the projectivity of A implies

B ∼= A × Ker(f), where the isomorphism g : B → A × Ker(f) is given by x 
→ (f(x), x − ef(x)).

Using the identity ex = f(x)e and the fact that f is an A-algebra homomorphism, we have

g(xy) =
(
f(xy), xy − ef(xy)

)
=

(
f(xy), xy − ef(y)f(x)− ef(x)f(y) + e2f(x)f(y)

)
=

(
f(x)f(y), xy − eyf(x)− exf(y) + e2f(x)f(y)

)
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=
(
f(x)f(y), (x− ef(x))y − (x− ef(x))ef(y)

)
=

(
f(x)f(y), (x− ef(x))(y − ef(y))

)
=

(
f(x), x− ef(x)

)(
f(y), y − ef(y)

)
= g(x)g(y),

for all x, y ∈ B. So g is also an isomorphism of A-algebras. Furthermore, for any x ∈ B, p ◦ g(x) =

p
(
f(x), x− ef(x)

)
= f(x), i.e., p ◦ g = f .

Remark 3.2.1. If B is a separable A-algebra, from Proposition 3.2.4 we see that B⊗AB is a separable

B-algebra via the second factor. Moreover, the map f : B ⊗A B → B, b ⊗ b′ 
→ bb′ is a B-algebra

homomorphism. If we apply Lemma 3.2.1 to f , there is a B-algebra C and a B-algebra isomorphism

g : B ⊗A B
∼→ B × C making the following diagram

B ⊗A B
g

f

B × C

p

B

commute, where p is the first projection.

3.3 Finite étale coverings

Definition 3.3.1. Let f : Y → X be a morphism of schemes. We call f affine if there is an open

affine cover {Ui} of X such that f−1(Ui) is affine for each i.

Proposition 3.3.1. A morphism f : Y → X of schemes is affine if and only if for every open

affine U ⊆ X, f−1(U) is affine.

Proof. The “if” part is clear by the definition. To prove the “only if” part, let U = SpecA be an

open affine subset of X. As in the proof of Hartshorne (1977), Ch II, Proposiiton 3.2, there is an

open affine cover of U , U =
⋃

i∈I Ui with Ui = SpecAfi for some fi ∈ A such that f−1(Ui) is affine

for each i. This implies the morphism f
∣∣
f−1(U)

: f−1(U) → U is affine.
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So we have reduced to proving the following statement: Let X = SpecA be an affine scheme and

a morphism f : Y → X is affine. Then Y is affine. By the above argument, we can cover X by open

affine subsets {Ui = D(fi) = SpecAfi}i∈I with fi ∈ A such that f−1(Ui) is affine. Furthermore,

we can assume that I is finite, say X =
⋃n

i=1D(fi). Taking global sections, f induces a morphism

ϕ : A → Γ(Y,OY ) � B. Let gi = ϕ(fi) then g1, g2, . . . , gn generate B since A =
∑n

i=1Afi. Write

f−1(D(fi)) = SpecBi. Recall that Yg = {y ∈ Y : gy /∈ my ⊂ Oy} for any g ∈ Γ(Y,OY ) (see

Hartshorne (1977), Ch II, Ex. 2.16). Then Ygi ∩ f−1(D(fj)) = D
(
gi
∣∣
f−1(D(fj))

)
. Let ϕi be the ring

homomorphism Afi → Bi induced by f
∣∣
f−1(D(fi))

. Then the following diagram

A
ϕ

B

Afj

ϕi
Bj

commutes, where the second vertical arrow is just the restriction of the global sections. Hence

ϕj(
fi
1
) = ϕ(fi)

∣∣
f−1(D(fj))

. Then we have

Ygi ∩ f−1(D(fj)) = D
(
gi
∣∣
f−1(D(fj))

)
= {p ∈ SpecBj : gi

∣∣
f−1(D(fj))

/∈ p}

= {p ∈ SpecBj : ϕ(fi)
∣∣
f−1(D(fj))

/∈ p}

= {p ∈ SpecBj : ϕj(
fi
1
) /∈ p}

= {p ∈ SpecBj : fi /∈ f(p)}

= f−1(D(fi)) ∩ f−1(D(fj)),

thus

Ygi = Ygi ∩ Y = Ygi

⋂( n⋃
j=1

f−1(D(fj))
)

=
n⋃

j=1

(
Ygi ∩ f−1(D(fj))

)
=

n⋃
j=1

(
f−1(D(fi)) ∩ f−1(D(fj))

)
= f−1(D(fi))

⋂( n⋃
j=1

f−1(D(fj))
)
= f−1(D(fi)) ∩ Y = f−1(D(fi)).
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So Ygi = f−1(D(fi)) = SpecBi is affine. By Hartshorne (1977), Ch II, Ex. 2.17(b), Y is affine. This

completes the proof.

Proposition 3.3.2. Let Y
g→ Z

f→ X be morphisms of schemes such that f and the composed

morphism f ◦ g are affine. Then g is affine.

Proof. Let {Ui}i∈I be an open affine cover of X. Since f is affine, f−1(Ui)i∈I is an open affine cover

of Z and
{
g−1

(
f−1(Ui)

)
= (fg)−1(Ui)

}
i∈I

is an open affine cover of Y by assumption that fg is

affine. Hence Y
g→ Z is an affine morphism.

Recall that a morphism f : Y → X of schemes is finite if there exists a covering of X by open

affine subsets Ui = SpecAi, such that for each i, f−1(Ui) is affine, equal to SpecBi, where Bi is

an Ai-algebra which is finitely generated as an Ai-module (see Hartshorne (1977) Ch II, section 3).

Then finite morphisms are affine.

Definition 3.3.2. Let f : Y → X be a morphism of schemes. We call f is finite and locally

free if there exists a covering of X by open affine subsets Ui = SpecAi, such that for each i,

f−1(Ui) = SpecBi is affine, where Bi is a Ai-algebra which is finitely generated and free as an

Ai-module.

From the above definition we can see that a finite and locally free morphism is affine. Similarly,

we have the following:

Proposition 3.3.3. Let f : Y → X be a morphism of schemes. Then f is finite and locally free

if and only if for each open affine subset U = SpecA of X, the open subscheme f−1(U) is affine,

equal to SpecB, where B is a finite projective A-algebra.

Proof. Then “if” part is clear from Theorem 3.1.1 (iv). For the “only if” part, assume f is finite

and locally free, and let U = SpecA be an open affine subset of X. Then f−1(U) is affine since

f is affine. Let f−1(U) = SpecB for some A-algebra B. Then there exists a covering of U by
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open affine subsets {Ui = SpecAfi}i∈I such that f−1(Ui) = SpecBfi is affine for each i, where Bfi

is a Afi-algebra which is finitely generated and free as an Afi-module (see the proof of Hartshorne

(1977), Ch II, Proposiiton 3.2). Then by Theorem 3.1.1 (iv), B is a finite projective A-algebra.

This completes the proof.

Let f : Y → X be a finite and locally free morphism of schemes. Let U = SpecA be an open

affine subset of X. Then we have f−1(U) = SpecB with B is finite projective over A. There is a

continuous rank function [B : A] : U = SpecA −→ Z, see Definition 3.1.4. Clearly, these functions

defined on different U ’s agree on their intersections, so we can glue them to obtain a continuous

function [Y : X] : X −→ Z, where [Y : X ]|U = [B : A]. This function is called degree of Y over

X, or of f , and denoted by [Y : X] or deg(f). Similar as in Section 3.1, we consider [Y : X] as a

function between topological spaces. For each integer n the set {x ∈ sp(X) : [Y : X](x) = n} is

open and closed in X, where sp(X) denotes the underlying topological space of X. Moreover, if X

is connected, [Y : X] is constant.

Definition 3.3.3. A morphism Y → X of schemes is called surjective if the map of the underlying

topological spaces is surjective.

Proposition 3.3.4. Let f : Y → X be a finite and locally free morphism of schemes. Then we

have:

(a) Y = ∅ ⇐⇒ [Y : X ] = 0.

(b) f is an isomorphism ⇐⇒ [Y : X ] = 1.

(c) The following three assertions are equivalent:

(i) f is surjective;

(ii) [Y : X] ≥ 1;
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(iii) for every open affine subset U = SpecA of X, we have f−1(U) = SpecB, where B is a

faithfully projective A-algebra.

Proof. We may assume that X = SpecA is affine. Then Y = SpecB for some finite projective

A-algebra B. Now (a) is trivial since Y = ∅ ⇔ B = 0 ⇔ [B : A] = 0. For (b), SpecB → SpecA

is an isomorphism ⇔ the induced map A → B is an isomorphism ⇔ [B : A] = 1 by Proposition

3.1.8. For (c), we know that SpecB → SpecA is surjective ⇔ B is a faithfully flat A-algebra (Prop.

3.1.9) ⇔ B is faithfully projective (Prop. 3.1.4) ⇔ [B : A] ≥ 1. This completes the proof.

Definition 3.3.4. Let f : Y → X be a morphism of schemes. f is called finite étale if there exists

a covering of X by open affine subsets Ui = SpecAi, such that for each i, f−1(Ui) = SpecBi is

affine, where Bi is a free separable Ai-algebra. In this case we also say that f : Y → X is a finite

étale covering of X.

We can easily see that a finite étale morphism is finite and locally free. Furthermore, we have an

equivalent definition:

Proposition 3.3.5. A morphism f : Y → X is finite étale if and only if for each open affine

subset U = SpecA of X, the open subscheme f−1(U) of Y is affine, equal to SpecB, where B is a

projective separable A-algebra.

The proof of this proposition is similar to the proof of Proposition 3.3.3. Just notice that the

map ψ : B → HomA(B,A) defined in Section 3.2 is an isomorphism if and only if the induced map

Bp → HomAp
(Bp, Ap) is an isomorphism for each p ∈ SpecA and the fact that Bp

∼= (Bf)p for all

p ∈ D(f) = {p ∈ SpecA : f /∈ p}, where f ∈ A.

3.4 Properties of finite étale morphisms

Proposition 3.4.1. Let fi : Yi → X be morphisms of schemes, for 1 ≤ i ≤ n, and f : Y = Y1�Y2�

· · ·�Yn −→ X the induced morphism. Then f is finite and locally free (resp. finite étale) if and only
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if each fi is finite and locally free (resp. finite étale). Moreover, we have [Y : X ] =
∑n

i=1[Yi : X] if

fi is finite and locally free.

Proof. Case (1): f is finite and locally free. Let U = SpecA be an open affine subset of X. Then

f−1(U) = f−11 (U)�f−12 (U)�· · ·�f−1n (U). f is finite and locally free if and only if f−1(U) = SpecB

with B a finite projective A-algebra, i.e., B =
n∏
i=i

Bi is finite projective over A, where f−1i (U) =

SpecBi. By Proposition 3.1.15, this is true if and only if Bi is finite projective over A, i.e., fi is

finite and locally free.

Case (2): f is finite étale. This follows from Proposition 3.2.2 in a similar way.

Now suppose f : Y → X is finite and locally free (note that a finite étale morphism is always

finite and locally free). For any p ∈ X, there exists an affine neighborhood of p, say U = SpecA

such that f−1(U) = SpecB, where B =
n∏
i=i

Bi and f−1i (U) = SpecBi with Bi finite projective over

A. Then we have

[Y : X](p) = [B : A](p) =

n∑
i=i

[Bi : A](p) =

n∑
i=i

[Yi : X ](p).

This implies [Y : X] =
∑n

i=1[Yi : X].

Proposition 3.4.2. Let (Xi)i∈I be a collection of schemes, and fi : Yi → Xi be a finite and locally

free (resp. finite étale) morphism, for each i ∈ I. Then the induced morphism f :
∐

i∈I Yi −→∐
i∈I Xi is finite and locally free (resp. finite étale), and each finite and locally free (resp. finite

étale) morphism
∐

i∈I Yi −→
∐

i∈I Xi is obtained in this way. Moreover, [
∐

i∈I Yi :
∐

i∈I Xi]
∣∣∣
sp(Xj)

=

[Yj : Xj], for each j ∈ I.

Proof. Let {Uij = SpecAij}j∈Ji be an open affine covering of Xi for each i. Since fi is finite and

locally free (resp. finite étale), f−1i (Uij) = SpecBij is affine and Bij is an Aij-algebra that is finitely

generated and free as an Aij-module (resp. Bij is a free separable Aij-algebra). Note that {Uij}i,j

is an open affine cover of
∐

i∈I Xi and f−1(Uij) = f−1i (Uij), by definition, f is finite and locally free

(resp. finite étale).
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Now suppose f : Y → ∐
i∈I Xi is a finite and locally free (resp. finite étale) morphism. Let

Yi = f−1(Xi), then Y =
∐

i∈I Yi. For any open affine subset Ui = SpecAi of Xi, Ui is also an open

affine subset of
∐

i∈I Xi. Then f−1(Ui) = SpecBi is an open affine subset in Y , where Bi is a finite

projective (resp. separable) Ai-algebra. Furthermore, f−1(Ui) = f−1(Ui) ∩ Yi is an open subset of

Yi. This implies the map fi := f |Yi
: Yi → Xi is finite and locally free (resp. finite étale) by Prop.

3.3.3 (resp. Prop. 3.3.5), and f is just the map induced by fi’s.

For any p ∈ Xj, there exists an affine subset Uj = SpecAj such that p ∈ Uj , f
−1(Uj) = SpecBj ⊆

Yj and Bj is a finite projective Aj-algebra. Then we have

[∐
i∈I

Yi :
∐
i∈I

Xi

]
(p) = [Bj : Aj ](p) = [Yj : Xj ](p).

This implies [
∐

i∈I Yi :
∐

i∈I Xi]
∣∣∣
sp(Xj)

= [Yj : Xj], for each j ∈ I.

Proposition 3.4.3. Let f : Y → X be a finite and locally free (resp. finite étale) morphism of

schemes, and let W → X be any morphism of schemes. Then

(a) Y ×X W → W is finite and locally free (resp. finite étale).

(b) The following diagram is commutative.

sp(W )

[Y×XW :W ]

sp(X)

[Y :X]

Z Z

(c) If f is surjective, then Y ×X W → W is surjective.

Proof. (a): Suppose we have the following commutative diagram,

Y ×X W
p1

p2

Y

f

W
g

X

where p1, p2 are the natural projections. Let {Ui = SpecAi}i∈I be an open affine covering of X and

let Wi = g−1(Ui), Yi = f−1(Ui). Since f is finite and locally free (resp. finite étale), Yi is affine,
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equal to SpecBi, where Bi is a finite projective (resp. separable) Ai-algebra. Cover Wi by open

affine subsets {Wij = SpecCij}j∈Ji, then {Wij}i,j is an open affine covering of W . Furthermore,

p−12 (Wij) ∼= Y ×X Wij
∼= Yi ×Ui

Wij = SpecBi ×SpecAi
SpecCij = Spec(Bi ⊗Ai

Cij).

(For the first two isomorphisms, see Hartshorne (1977) ChII, proof of Theorem 3.3). By Prop.

3.1.7 (resp. Prop. 3.2.4), Bi ⊗Ai
Cij is finite projective (resp. separable) over Cij, which implies

p2 : Y ×X W → W is finite and locally free (resp. finite étale).

(b) follows from Prop. 3.1.7.

(c): Suppose f : Y → X is surjective. By Prop. 3.3.4 (c), [Y : X ] ≥ 1. Then [Y ×X W : W ] ≥ 1

by (b) thus Y ×X W → W is also surjective.

Proposition 3.4.4. Suppose g : Z → Y and f : Y → X are finite and locally free (resp. finite

étale) morphisms of schemes, then f ◦ g is finite and locally free (resp. finite étale).

Proof. The case f is finite and locally free follows from Prop. 3.3.3 and Prop. 3.2.1. Similarly,

Prop. 3.3.5 and Prop. 3.2.3 imply the case f is finite étale.

Remark 3.4.1. In the next chapter, we will see a different proof of the case f is finite étale by a

base change of a surjective, finite and locally free morphism.

Proposition 3.4.5. Let g : Z → X and f : Y → X be finite and locally free (resp. finite étale)

morphisms of schemes. Then

(a) Y ×X Z → X is finite and locally free (resp. finite étale).

(b) [Y ×X Z : X] = [Y : X] · [Z : X].

(c) If f and g are surjective, then Y ×X Z → X is surjective.

Proof. (a) follows from Prop. 3.4.3 and 3.4.4 immediately.
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(b) is obvious since [B ⊗A B′ : A] = [B : A] · [B′ : A] for finite projective A-algebras B and B′ by

Prop. 3.1.6.

(c) is clear by Prop. 3.4.3 (c) and the fact that the composite of surjective maps is surjective.

Proposition 3.4.6. A morphism f : Y → X is surjective, finite and locally free if and only if for

each open affine subset U = SpecA of X, the open subscheme f−1(U) is affine, equal to SpecB,

where B is a faithfully projective A-algebra.

Proof. The “if” part is obvious and the “only if” part follows from Prop. 3.3.4 (c) immediately.

Proposition 3.4.7. Let f : Y → X be an affine morphism of schemes, and g : W → X a morphism

which is surjective, finite and locally free. Then f is finite étale if and only if Y ×X W → W is

finite étale.

Proof. The “only if” part follows from Prop. 3.4.3 (a). To prove the “if” part, let U = SpecA

be an open affine subset of X. Then f−1(U) is affine since f is affine. Suppose f−1(U) = SpecB

for some A-algebra B. By Prop. 3.4.6, there is a faithfully projective A-algebra C such that

g−1(U) = SpecC. Moreover, we have p−12 (g−1(U)) = f−1(U) ×U g−1(U) = Spec(B ⊗A C) (see

Hartshorne (1977) ChII, proof of Theorem 3.3), where p2 is the natural projection Y ×X W → W .

Then p2 is finite étale implies B ⊗A C is projective separable over C. From Prop. 3.2.4, B is a

separable A-algebra thus f is finite étale.

A morphism from a finite étale covering f : Y → X to a finite étale covering g : Z → X is a

morphism of schemes h : Y → Z for which the following diagram

Y
h

f

Z

g

X

commutes. Then for a given scheme X , all finite étale coverings Y → X of X with morphism

between them form a category and we denote this category by FEt(X). In the next chapter, we

will show that FEt(X) is a Galois category if X is connected and prove our main theorem:
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Theorem 3.4.1. Let X be a connected scheme. Then there exists a profinite group π, uniquely

determined up to isomorphism, such that the category FEt(X) of finite étale coverings of X is

equivalent to the category π-sets of finite sets on which π acts continuously.

To end this chapter, we give an explicit description of separable algebras over algebraically

closed fields, which will play an important role in the construction of the fundamental functor

F : FEt(X) → Sets in the next chapter. We introduce a lemma first.

Lemma 3.4.1. Let B be a finite dimensional algebra over a field K. Then B ∼=
t∏

i=1

Bi for some

t ∈ Z≥0, where Bi is a local K-algebra with a nilpotent maximal ideal.

Proof. We break the proof of this proposition to two cases. First we consider a simple case that

B is an integral domain. Then for any b ∈ B − {0}, the multiplication map mb : B → B is an

injective K-algebra homomorphism, thus is an isomorphism since the dimension over K is finite.

This implies that b ∈ B∗, the set of units in B. Hence B is a field, also is a finite extension of K.

Now let B be a finite K-algebra. For any p ∈ SpecB, applying the above argument to B/p we

deduce that every prime ideal p of B is maximal. Let m1,m2, . . . ,ms be distinct maximal ideals

of B. By the Chinese remainder theorem the natural map B → ∏s
i=1(B/mi) is surjective (since

distinct maximal ideals are pairwise relatively prime). So s ≤ ∑s
i=1 dimK(B/mi) ≤ dimK(B) = n.

This means that B has only finitely many maximal ideals, say m1,m2, . . . ,mt. Then we identify the

kernel of the natural map θ : B → ∏t
i=1(B/mi) by

Ker(θ) =
t∏

i=1

mi =
t⋂

i=1

mi = N(B),

where N(B) is the nilradical
√
0 of B. Note that B is obviously Noetherian, hence N(B) is finitely

generated. Then there exists an positive integer N such that N(B)N =
∏t

i=1m
N
i = 0. The mi’s are

pairwise relatively prime, so the same is true for the mN
i ’s. Then the Chinese remainder theorem

gives an isomorphism B ∼= ∏t
i=1(B/mN

i ). Let Bi = B/mN
i , thus Bi is a local K-algebra with mi/m

N
i

its only maximal ideal, which is clearly nilpotent. This proves our assertion.
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Theorem 3.4.2. Let Ω be an algebraically closed field and B be a finite Ω-algebra. Then B is

separable over Ω if and only if B ∼= Ωn as Ω-algebras, for some n ≥ 0.

Proof. Applying the previous lemma to B we have B ∼=
t∏

i=1

Bi for certain local Ω-algebras Bi with

nilpotent maximal ideal mi. By Prop. 3.2.2, each Bi is a separable Ω-algebra. This means that the

map ψi : Bi → HomΩ(Bi,Ω), b 
→
(
x 
→ TrB/A(bx)

)
is an isomorphism for each i. Fix an i and

take any b ∈ mi. Then for any x ∈ Bi, bx is a nilpotent of Bi and the corresponding multiplication

map mbx is thus a nilpotent Ω-linear map. From linear algebra and Example 3.2.1 we know that

Tr(bx) = 0 for any x ∈ Bi, i.e., ψ(b) = 0. b = 0 since ψ is an isomorphism. This implies mi = 0 thus

Bi is a finite field extension over an algebraically closed field Ω, therefore Bi = K. This completes

the proof.
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Chapter 4

The category FEt(X)

4.1 Totally split morphisms

Definition 4.1.1. A morphism f : Y → X of schemes is said to be totally split if X =
∐
n≥0

Xn, such

that for each n, the scheme f−1(Xn) ∼= Xn �Xn � · · · �Xn (n-copies), and the following diagram

f−1(Xn)
∼=

f

Xn � · · · �Xn

Xn Xn

commutes with the natural morphism Xn � · · · �Xn → Xn.

Remark 4.1.1. If f : Y → X is totally split, then f is finite étale since An is a separable A-algebra

by Example 3.2.1. If X is connected, then a totally split morphism f : Y → X gives an isomorphism

Y ∼= X �X � · · · �X (n copies of X), for some n ≥ 0. Totally split morphisms play a role similar

to trivial coverings in the topological case.

Proposition 4.1.1. Let f : Y → X be a totally split morphism of schemes and g : W → X any

morphism. Then the second projection p2 : Y ×X W → W is totally split.

Proof. First, we assume that [Y : X] = n is a constant, i.e., Y = X � · · · � X (n copies) and
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f : Y → X coincides with the natural morphism X � · · · �X → X. Then

Y ×X W ∼= (X � · · · �X)×X W

∼= (X ×X W )� · · · � (X ×X W ) (n copies)

∼= W � · · · �W (n copies),

and the second projection p2 : Y ×XW → W coincides with the natural morphismW�· · ·�W → W ,

so is totally split.

In general, suppose X =
∐
n≥0

Xn, such that for each n, the scheme f−1(Xn) ∼= Xn�Xn�· · ·�Xn

(n-copies). Then W =
∐
n≥0

Wn, where Wn = g−1(Xn). Moreover, we have

p−12 (Wn) ∼= Y ×X Wn
∼= f−1(Xn)×Xn Wn

∼= Wn � · · · �Wn (n copies)

by the previous case. So p2 : Y ×X W → W is totally split.

Theorem 4.1.1. Let f : Y → X be a morphism of schemes. Then f is finite étale if and only if f

is affine and Y ×X W → W is totally split for some W → X which is surjective, finite and locally

free.

Proof. The “if” part follows from Proposition 3.4.7 and the fact that totally split morphisms are

finite étale (see Remark 4.1.1). For the other direction, let f : Y → X be finite étale. First

we prove the case that [Y : X] = n is constant by induction on n. When n = 0, Y = ∅ and

W = X
idX−→ X satisfies the condition. For n ≥ 1, note that f is surjective by Prop. 3.3.4. We

make a base change by f and consider the morphism p : Y ×X Y → Y , which is also finite étale

and [Y ×X Y : Y ] = [Y : X] = n by Prop. 3.4.3. Let Δ : Y → Y ×X Y be the diagonal morphism

such that p ◦Δ = idY .

Next, we claim that Δ is an open and closed immersion. First we assume X = SpecA for some

ring A. Then Y = SpecB, where B is a projective separable A-algebra since f is finite étale. In this
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case, Y ×XY ∼= Spec(B⊗AB) and Δ corresponds to the multiplication m : B⊗AB → B, b⊗b′ 
→ bb′.

By Remark 3.2.1, there exists a B-algebra C and a B-algebra isomorphism B ⊗A B
∼→ B ×C such

that the following diagram

B ⊗A B
∼

m

B × C

π1

B B

commutes, where π1 is the natural projection. This diagram corresponds to a commutative diagram

of morphisms of schemes:

Y ×X Y ∼ Y � SpecC

Y

Δ

Y,

j

where j is the inclusion morphism. So Δ is an open and closed immersion when X is affine. In

general, we cover X by open affine subsets, our claim follows from the fact that f is affine. This

proves the claim.

Then we obtain the following commutative diagram

Y ×X Y
∼

p

Y � Y ′

Y Y

by gluing together all of the local decompositions. Prop. 3.4.1 tells us that Y ′ → Y is finite étale

and [Y ′ : Y ] = n−1. Applying the inductive hypothesis, there is a surjective, finite and locally free

morphism W → Y such that Y ′ ×Y W → W is totally split. Since

Y ×X W ∼= Y ×X (Y ×Y W ) ∼= (Y ×X Y )×Y W

∼= (Y � Y ′)×Y W ∼= (Y ×Y W )� (Y ′ ×Y W )

∼= W � (Y ′ ×Y W ) .

Then Y ×X W → W is totally split since W → W and Y ′ ×Y W → W are totally split. Moreover,

by Prop. 3.4.3 and 3.4.4, the composite W → Y → X is surjective, finite and locally free since each

of the morphisms is. This means the theorem holds for the case [Y : X ] = n is constant.
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In the general case, write X =
∞∐
n=0

Xn, where sp(Xn) = {x ∈ sp(X) : [Y : X](x) = n}. Then for

each n, the restriction f : Yn = f−1(Xn) → Xn is finite étale of constant degree n. By the above

argument, there exists a surjective, finite and locally free morphism Wn → Xn for each n, such that

Yn ×Xn Wn → Wn is totally split. Then W =
∞∐
n=0

Wn −→
∞∐
n=0

Xn = X is finite and locally free and

Y ×X W ∼=
∞∐
n=0

(Y ×X Wn) ∼=
∞∐
n=0

(Yn ×Xn Wn) → W by Prop. 3.4.2. This proves the theorem.

As said in Remark 3.4.1, we will give another proof of the property that the composite of finite

étale morphisms is finite étale.

Proposition 4.1.2. Let g : Z → Y and f : Y → X be finite étale morphisms of schemes. Then

the composed morphism f ◦ g : Z → X is finite étale.

Proof. First assume that Y → X is totally split and [Y : X ] = n is constant, i.e., Y = X � · · · �X

(n copies). Then Z = Z1 �Z2 � · · · �Zn and the composite morphism Z
g

Y
f

X induced by

finite étale morphisms Zi

g|Zi X
idX X is finite étale.

The case Y → X is totally split of non-constant degree is immediately reduced to the preceding

case.

In general, as in Theorem 4.1.1, choose a surjective, finite and locally free morphism W → X

such that Y ×X W → W is totally split. Since Z → Y is finite étale, by Prop. 3.4.3 Z ×X W ∼=

Z ×Y (Y ×X W ) → Y ×X W is finite étale. So the composition Z ×X W → Y ×X W → W is finite

étale. Then Z → X is finite étale by Prop. 3.4.7.

Let X be a scheme and E a finite set of cardinality n, we write X ×E for the disjoint union of n

copies ofX, one for each element of E, i.e., if E = {e1, e2, . . . , en}, thenX×E := Xe1�Xe2�· · ·�Xen

with each Xei = X for i = 1, 2, . . . , n. We have the following property:

Lemma 4.1.1. Given a ring A and a finite set E = {e1, e2, . . . , en}, we define AE to be the ring of

functions E → A, with pointwise addition and multiplication.
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(a) Let X be a scheme. Then X × E ∼= X ×Spec Z (SpecZ
E).

(b) Let X, Y be schemes. Then there is a natural bijection between the set Mor(X ×E, Y ) and the

set of maps E → Mor(X, Y ).

(c) (SpecA)×E ∼= SpecAE.

(d) Suppose A has no non-trivial idempotents and D = {d1, d2, . . . , dm} is a finite set. Then any

A-algebra homomorphism AE → AD is induced by a map D → E.

Proof. Suppose |E| = n, E = {e1, e2, . . . , en}.

(a) The property of a morphism of schemes to be an isomorphism is a local property. We may

assume X = SpecR for some ring R. Then it suffices to prove that SpecA×E ∼= SpecA×Spec Z

(SpecZE), i.e., A×A× · · · ×A ∼= A⊗Z ZE . Define

ϕ1 : A⊗Z ZE → A× · · · ×A, a⊗ f 
→ (f(ei) · a)ni=1 , and

ϕ2 : A× · · · × A → A⊗Z ZE , (a1, . . . , an) 
→
n∑

i=1

ai ⊗ gi,

where gi(ej) = 1 if i = j and gi(ej) = 0 otherwise. ϕ1 and ϕ2 are ring homomorphisms satisfying

ϕ1 ◦ ϕ2 = idA×···×A and ϕ2 ◦ ϕ1 = idA⊗ZZE . This shows (a).

(b) The following two maps satisfy the requirements:

ϕ : Mor(X × E, Y ) → {maps E → Mor(X, Y )} ,

f 
→ (ei 
→ f |Xi=X) ,

ψ : {maps E → Mor(X, Y )} → Mor(X ×E, Y ),

(ei 
→ gi) 
→ g,

where g|Xi=X = gi.
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(c) This is equivalent to show that A× · · · × A ∼= AE as rings. We define two maps as follows:

ϕ : AE → A× · · · × A, f 
→ (f(ei), . . . , f(en)) , and

ψ : A× · · · ×A → AE , (a1, . . . , an) 
→ (ei 
→ ai) .

Now, ϕ and ψ are ring homomorphisms inverse to each other. This prove (c).

(d) Suppose |D| = m, D = {d1, d2, . . . , dm}. Define functions fi : E → A for i = 1, 2, . . . , n as

follows: fi(ej) = 1 if i = j, fi(ej) = 0 otherwise. Obviously, such functions are idempotents

of AE. Moreover, these fi’s are generators of AE as an A-module which satisfy the following

equalities:
n∑

i=1

fi = 1AE and fifj = 0 if i �= j, for i, j = 1, 2, . . . , n. Let ϕ : AE → AD be

any homomorphism of A-algebras. Then for any fixed k, where 1 ≤ k ≤ m, ϕ(fi)(dk) is an

idempotent of A for each 1 ≤ i ≤ n, i.e., ϕ(fi)(dk) is either 1A or 0.

For a fixed k, 1 ≤ k ≤ m, since
n∑

i=1

ϕ(fi)(dk) = ϕ

(
n∑

i=1

fi

)
(dk) = ϕ (1AE) (dk) = 1AD(dk) =

1, at least one of the ϕ(fi)(dk)’s are 1A when i runs from 1 to n. On the other hand,

ϕ(fi)(dk)ϕ(fj)(dk) = ϕ(fifj)(dk) = 0, for i �= j, i, j = 1, 2, . . . , n, which means at most one

of the ϕ(fi)(dk)’s is 1A. So there is exactly one i, 1 ≤ i ≤ n, such that ϕ(fi)(dk) = 1A and

ϕ(fj)(dk) = 0 when j �= i for fixed 1 ≤ k ≤ m. Then we can define a map Θ : D → E sending

dk (1 ≤ k ≤ m) to eik such that ϕ(fik)(dk) = 1A and ϕ(fj)(dk) = 0 when j �= ik, 1 ≤ j ≤ n.

By the above argument, Θ is well-defined. Moreover, we have ϕ(fj)(dk) = (fj ◦ Θ)(dk), i.e., ϕ

is induced by Θ. Indeed, we can conclude that there is a bijection between the set {D → E}

of maps from D to E and the set HomA

(
AE, AD

)
of A-algebra homomorphisms.

We have completed the proof of this lemma.

Let A be a ring, D and E finite sets with a map φ : D → E. Then φ induces a map φ∗ : AE → AD,

defined by f 
→ f ◦ φ. Furthermore, the map φ∗ also induces a map φ∗ : X ×D −→ X ×E, where

X = SpecA. In general, if X is any scheme, we can write X =
⋃

i∈I Ui, where Ui = SpecAi is affine
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for each i. The maps (φ∗)i : Ui×D −→ Ui×E induced by φ : D → E coincide on the intersections,

hence we can glue them to a morphism φ∗ : X ×D −→ X ×E. This morphism φ∗ is finite étale by

Prop. 3.4.1, 3.4.2 and the fact that the identity morphism X → X is finite étale.

To prove an important property of finite étale morphism, we prove the following lemma first.

Lemma 4.1.2. Let f : Y → X, g : Z → X and h : Y → Z be morphisms of schemes such that

f = g ◦ h. If f and g are totally split, then f , g and h are locally trivial. That is, for any x ∈ X,

there exist an open affine neighborhood U of x in X, two finite sets D, E with a map φ : D → E

and two isomorphisms α : f−1(U) → U ×D, β : g−1(U) → U ×E such that the following diagram

f−1(U) h

f

∼
α

g−1(U)
∼

β

gU ×D
idU×φ

U × E

U
idU

U

commutes, where U × D → U , U × E → U are the first projections, and U × D → U × E is the

morphism induced by φ.

Proof. For any x ∈ X, we can find an open affine neighborhood V of x such that the totally split

morphisms f and g are of constant degree when they are restricted to V . Then we have f−1(V ) ∼= V D

and g−1(V ) ∼= V E for two finite sets D and E, where |D| = [Y : X ](x) and |E| = [Z : X](x).

Writing V = SpecA for some ring A, we have V ×D ∼= Spec(AD) and V ×E ∼= Spec(AE). Then

h : f−1(V ) → g−1(V ) induces a map V ×D → V ×E, which corresponds to a ring homomorphism ψ :

AE → AD. Localizing at x, we get a homomorphism ψx :
(
AE

)
p
∼= (Ap)

E → (Ap)
D ∼= (

AD
)
p
, where

p is the prime ideal of A corresponding to x. As Ap is local, it has no non-trivial idempotents, so

the local map ψx is induced by a map φ : D → E by Lemma 4.1.1 (d). Consider the homomorphism
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φ∗ : AE → AD induced by φ, we have the following commutative diagram:

HomA

(
AE , AD

) {D → E}

(
HomA(A

E , AD)
)
p

HomAp

(
AE

p , A
D
p

)
,∼

where the right vertical arrow is a bijection by Lemma 4.1.1 (d) and the bottom horizontal arrow

is an isomorphism since AE is finitely presented. This implies that ψx = φ∗x, where φ∗x is obtained

by localizing φ∗ at p. Then there exists an element a ∈ A − p such that aψ = aφ∗. The open

neighborhood U = D(a) of x in V = SpecA satisfies the requirements, which proves the lemma.

Remark 4.1.2. We may generate the above lemma in the following sense: With notations as above

and let σ1, σ2, . . . , σn : Y → Z be morphisms such that f = g ◦ σi for each i. Then for any x ∈ X,

there exist an open affine neighborhood U ⊆ X of x, maps of finite sets φ1, φ2, . . . , φn : D → E and

two isomorphisms α : f−1(U) → U ×D, β : g−1(U) → U × E such that the following diagram

f−1(U)
σi

f

∼
α

g−1(U)
∼

β

gU ×D
idU×φi

U × E

U
idU

U

commutes for all i.

Proposition 4.1.3. Let f : Y → X and g : Z → X be finite étale morphisms of schemes, and

h : Y → Z a morphism with f = g ◦ h. Then h is finite étale.

Proof. By Prop. 3.4.7, it suffices to show that there is a surjective, finite and locally free morphism

W → Z such that Y ×Z W → W is finite étale. First we assume that f and g are totally split,

then by the previous lemma h is finite étale since the morphism U ×D → U ×E induced by a map

D → E is finite étale, as we discussed before Lemma 4.1.2.

In the general case, using Prop. 4.1.1, we choose surjective, finite and locally free morphisms

W1 → X, W2 → X such that Y ×X W1 → W1 and Z ×X W2 → W2 are totally split. Let
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W ′ = W1 ×X W2, then W ′ → X is surjective, finite and locally free by Prop. 3.4.3, 3.4.5, and

Y ×X W ′ → W ′, Z ×X W ′ → W ′ are totally split. Hence by the case we already dealt with,

Y ×X W ′ → Z ×X W ′ is finite étale. Letting W = Z ×X W ′, we have the following commutative

diagram:

Y ×X W ′

h×idW ′

∼ Y ×Z (Z ×X W ′) = Y ×Z W

h×idZ×XW ′

Y ×X W ′
∼ Z ×Z (Z ×X W ′) = Z ×Z W ∼= W.

Then we deduce that h : Y → Z is finite étale, as Z ×X W → Z is surjective, finite and locally free.

This shows the proposition.

4.2 FEt(X)

Given a connected scheme X, in order to prove Theorem 3.4.1, it suffices to show that the category

FEt(X) is a Galois category. First, we will check axioms (G1) to (G3) for the category FEt(X).

Then we will construct a functor FEt(X) → Sets and check axioms (G4) to (G6).

4.2.1 (G1)

Proposition 4.2.1. Let X be a scheme. Then the terminal object and fiber products exist in

FEt(X).

Proof. • The morphism idX : X → X is clearly finite étale. So

{
X

idX X

}
is the terminal

object in FEt(X).

• Suppose Y , Z and W are objects in FEt(X) with morphisms f : Y → W and g : Z → W .

Then f and g are finite étale by Prop. 4.1.3. So Y ×W Z → W is finite étale by Prop. 3.4.5,

(a). It follows from Prop. 4.1.2 that the composed morphism Y ×W Z → X is finite étale,

i.e., Y ×W Z is an object in FEt(X). This shows that the fiber product of any two objects

over a third one exists in FEt(X).
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Thus FEt(X) satisfies (G1).

4.2.2 (G2)

At the beginning of this section we will list some basic definitions and propositions for sheaves of

modules. More details can be found in Hartshorne (1977), Ch II, Section 5 Sheaves of Modules.

Definition 4.2.1. Let A be a ring and let M be an A-module. We define the sheaf associated to

M on SpecA, denoted by M̃ , as follows. For each prime ideal p ⊆ A, let Mp be the localization

of M at p. For any open set U ⊆ SpecA we define the group M̃(U) to be the set of functions

s : U → ∐
p∈U Mp such that for each p ∈ U , s(p) ∈ Mp, and such that s is locally a fraction m

f
with

m ∈ M and f ∈ A. To be precise, we require that for each p ∈ U , there is a neighborhood V of p

in U , and there are elements m ∈ M and f ∈ A, such that for each q ∈ V , f /∈ q, and s(q) = m
f
in

Mq. We make M̃ into a sheaf by using the obvious restriction maps.

Proposition 4.2.2. Let A be a ring, let M be an A-module, and let M̃ be the sheaf on X = SpecA

associated to M . Then:

(a) M̃ is an OX-module;

(b) for each p ∈ X, the stalk
(
M̃
)
p
of the sheaf M̃ at p is isomorphic to the localized module Mp;

(c) for any f ∈ A, the Af -module M̃(D(f)) is isomorphic to the localized module Mf ;

(d) in particular, M̃(X) = M .

Definition 4.2.2. Let (X,OX) be a scheme. A sheaf of OX-modules F is quasi-coherent if X can

be covered by open affine subsets Ui = SpecAi, such that for each i there is an Ai-module Mi

with F
∣∣
Ui

∼= M̃i. We say that F is coherent if furthermore each Mi can be taken to be a finitely

generated Ai-module.
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Proposition 4.2.3. Let X be a scheme. Then an OX-module F is quasi-coherent if and only if

for every open affine subset U = SpecA of X, there is an A-module M such that F
∣∣
U
∼= M̃ .

Proposition 4.2.4. Let X be a scheme. The kernel, cokernel, and image of any morphism of quasi-

coherent sheaves are quasi-coherent. Any extension of quasi-coherent sheaves is quasi-coherent.

Let (X,OX) be a scheme. We call a sheaf of OX -algebras F to be quasi-coherent if it is at the

same time a quasi-coherent sheaf of OX-modules.

Lemma 4.2.1. Let X be a scheme and let A be a quasi-coherent sheaf of OX-algebras. Then there

exist a unique scheme Y , and a morphism f : Y → X, such that for every open affine V ⊆ X,

f−1(V ) ∼= Spec (A (V )) (which implies that f is an affine morphism), and for every inclusion

U ↪→ V of open affines of Y , the morphism f−1(U) ↪→ f−1(V ) corresponds to the restriction

homomorphism A (V ) → A (U). The scheme Y is called Spec(A ). Moreover, we have A ∼= f∗OY .

Proof. Let {Ui}i∈I be an open affine cover of X with Ui = SpecAi. Let Yi = Spec (A (Ui)). Since

A is a sheaf of OX -algebras, there is a ring homomorphism Ai = OX(Ui) → A (Ui), which induces

a morphism of schemes fi : Yi → Ui. We shall show that these fi : Yi → Ui’s can be glued together,

along the intersections. Let Uij := Ui ∩ Uj and Yij = f−1(Uij), then Yij is a subscheme of Yi. Let

W = SpecR be any open affine subset of Uij . By the quasi-coherence of A , A
∣∣
Ui

∼= Ã (Ui), we

have

f−1i (W ) = Spec
(
A
∣∣
Ui
(W )

)
= Spec (A (W )) = Spec

(
A
∣∣
Uj
(W )

)
= f−1j (W ).

Covering Uij by such open affine W ’s, we get an isomorphism ϕij : Yij
∼= Yji. It is easy to check

that these isomorphisms satisfy the Glueing Lemma (see Hartshorne (1977), Ch II, Exercise 2.12)

and fi’s coincide in the intersections. Then there is a scheme Y , and a morphism f : Y → X such

that f is affine. Our assertion follows from the construction of Y .

If there is a scheme Y ′ and f ′ : Y ′ → X with the same properties of Y , then we can define a

morphism Y → Y ′ by gluing together isomorphisms on open affines Spec (A (U)) where U is an
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open affine subset of X . Then this morphism will be an isomorphism, so we see that Y is unique.

Next, we will show that A ∼= f∗OY . Let (Ui)i∈I be an open affine covering of X and U any open

set of X. Then we get

f∗OY (U ∩ Ui) ∼= OY

(
f−1(U ∩ Ui)

) ∼= OY (Spec(A (U ∩ Ui))) ∼= A (U ∩ Ui).

So f∗OY (U) ∼= A (U) for any open subset U of X.

Lemma 4.2.2. Let f : Y → X be an affine morphism of schemes. Then A = f∗OY is a quasi-

coherent sheaf of OX-algebras, and Y ∼= Spec(A ).

Proof. First, we note that the corresponding morphism of sheaves f 
 : OX → f∗OY makes f∗OY

to be an OX -algebra. By Prop.4.2.3, being quasi-coherent is local on X, we may assume that

X = SpecA is affine and then Y = f−1(X) is also affine, say Y = SpecB. So f : Y → X is induced

by a ring homomorphism A → B, which we still denote by f . For each a ∈ A, D(a) = Spec(Aa) is

an open affine subset of X, and

(f∗OY ) (D(a)) = OY

(
f−1(D(a))

)
= OY (D(f(a))) = Bf(a) = Ba.

Hence f∗OY
∼= B̃ is quasi-coherent sheaf of OX -algebras.

Y ∼= Spec(A ) is obtained by the uniqueness of Spec(A ).

For a scheme X, let Aff(X) denote the category of all affine morphisms Y → X , a morphism

from an affine morphism f : Y → X to another affine morphism g : Z → X is a morphism

of schemes h : Y → Z for which f = g ◦ h. For any morphism h : Y → Z in Aff(X), this

corresponds to a morphism of sheaves h
 : OZ → h∗OY , which will induce another morphism of

sheaves g∗OZ → g∗ (h∗OY ) = f∗OY . Let QCoh(OX) denote the category whose objects are quasi-

coherent sheaves of OX -algebras on X . Then we define a contravariant functor

Γ : Aff(X) −→ QCoh(OX)
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(f : Y → X) 
−→ f∗OY

(h : Y → Z) 
−→ (g∗OZ → f∗OY ) .

Lemma 4.2.3. Γ is an anti-equivalence of categories from Aff(X) to QCoh(OX).

Proof. This follows from lemma 4.2.1 and 4.2.2.

Thanks to the above lemma, we can now construct the quotients under finite groups of automor-

phisms in Aff(X) via replacing it by the anti-equivalent category QCoh(OX). Let X be a scheme

and f : Y → X an affine morphism. Let G be a finite subgroup of the group of automorphisms of

Y → X in Aff(X). By the anti-equivalence we just proved in the previous lemma, Y corresponds to

a quasi-coherent sheaf of OX -algebras, say A , and G corresponds to a finite subgroup of AutOX
(A ),

which acts on A and fixes OX and which we still denote by G.

For each open subset U ⊆ X, we define:

A
G(U) := (A (U))G =

{
a ∈ A (U)

∣∣σa = a, ∀σ ∈ G
}
.

Note that the map OX(U) → A (U) factors through A G(U) since G fixes OX , which makes A G(U)

to be an OX(U)-algebra. Since σ is a morphism of sheaves, σ commutes with ρV U : A (V ) → A (U)

for any open sets U ⊆ V ⊆ X. Then for any a ∈ A G(U), σρV U(a) = ρV Uσ(a) = ρV U(a) ⇒

ρV U(a) ∈ A G(U). So we have the following commutative diagram:

A (V )
ρV U

A (U)

A G(V ) ρV U
A G(U).

This makes A G into a presheaf and it is easy to verify that A G is actually a sheaf. We still need to

show that it is quasi-coherent. Let U ⊆ X be any open subset. The map ϕU : A (U) → ⊕
σ∈G

A (U)

sending a to (σa− a)σ∈G is OX(U)-linear, and Ker(ϕU) = A G(U). It is easy to see that these ϕU ’s

give a morphism of sheaves of OX -algebras, ϕ : A → ⊕
σ∈G

A . Then A G = Ker(ϕ) is quasi-coherent
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since both A and
⊕
σ∈G

A are quasi-coherent (Prop.4.2.4). Moreover, any morphism θ : B → A

of quasi-coherent sheaf of OX -algebras satisfying σ ◦ θ = θ for all σ ∈ G factors uniquely via the

inclusion morphism A G → A . Again by the anti-equivalence of categories, A G corresponds to an

affine morphism over X, denoted by g : Y/G → X satisfying the universal property for the quotient

of Y → X under G.

For a scheme X, let f : Y → X be an affine morphism and G a finite subgroup of the group of

automorphisms of Y → X in Aff(X). The previous argument shows that the quotient g : Y/G → X

exists in Aff(X). From the above construction it can be easily seen that for any open set U ⊆ X

we have g−1(U) ∼= f−1(U)
/
G; and if U = SpecA is open affine, f−1(U) = SpecB, then g−1(U) =

Spec(BG).

Proposition 4.2.5. Let f : Y → X be an affine morphism, G a finite group of automorphisms

of Y → X in Aff(X), and g : W → X a finite locally free morphism. Then (Y ×X W )/G ∼=

(Y/G)×X W in AffW .

Proof. First we note that the base change Y ×X W → W is also an affine morphism. For each

σ ∈ G, f ◦ σ = f , and we have the following commutative diagram:

Y ×X W

p2

p1
Y

σ

fY ×X W

p2

p1
Y

f

W
g

X,

where the morphism Y ×X W → Y ×X W is obtained by the universal property of the fiber product

since g ◦ p2 = f ◦ p1 = (f ◦ σ) ◦ p1 = f ◦ (σ ◦ p1), we still denote this morphism by σ. Doing the

same argument to σ−1 yields that σ is an automorphism of Y ×X W → W in Aff(W ). Moreover

the action of G gives a canonical action of G on Y ×X W → W , so the quotient (Y ×X W )
/
G → W

is well-defined. Let us denote by ρ the morphism Y → Y/G in Aff(X) such that ρ ◦ σ = ρ for all

σ ∈ G. Then the morphism h : Y ×X W → (Y/G)×X W induced by ρ satisfies h ◦ σ = g for all
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σ ∈ G. By the universal property of the quotient, there exists a unique morphism

φ : (Y ×X W )
/
G −→ (Y/G)×X W.

We claim that φ is an isomorphism, which can be checked locally on the base. We may assume

that X = SpecA is affine, then Y = SpecB for some A-algebra B and W = SpecC for some finite

projective A-algebra C since f is affine and g is finite and locally free. Furthermore, the following

schemes are all affine:

Y/G = Spec
(
BG

)
,

Y ×X W = Spec (B ⊗A C) ,

(Y ×X W )/G = Spec
(
(B ⊗A C)G

)
,

(Y/G)×X W = Spec
(
BG ⊗A C

)
.

Now it suffices to show that the natural ring inclusion BG ⊗A C ↪→ (B ⊗A C)G is actually an

isomorphism. Consider the following exact sequence of A-modules:

0 −→ BG −→ B −→
⊕
σ∈G

B,

in which the last map is given by b 
→ (σ(b)− b)σ∈G for each b ∈ B. Then by the flatness of C (see

remark 3.1.2), it gives rise to an exact sequence:

0 −→ BG ⊗A C −→ B ⊗A C −→
⊕
σ∈G

(B ⊗A C),

where the last map sends b ⊗ c ∈ B ⊗A C to ((σ(b)− b)⊗ c)σ∈G, with kernel (B ⊗A C)G. So

BG ⊗A C ∼= (B ⊗A C)G as required.

Proposition 4.2.6. Let f : Y → X be a finite étale morphism and G a finite group of AutX(Y )

in FEt(X). Then the quotient Y/G exists in FEt(X).

Proof. Thanks to the previous proposition, we have seen that g : Y/G → X exists in Aff(X). So it

suffices to show that g : Y/G → X is finite étale if f : Y → X is.
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First we prove that the quotient exists in Aff(X) if Y = X ×D for some finite set D, the action

of G being induced by an action of G on D. Then for any morphism h : X × D → Z in Aff(X)

such that h ◦ σ = h for all σ ∈ G, there exists a unique morphism X × (D/G) → Z such that the

following diagram

X × (D/G) X ×D

Z X

commutes, i.e., X × (D/G) satisfies the universal property of the quotient of X × D by G, thus

Y/G = (X ×D)
/
G ∼= X × (D/G), then Y/G → X is finite étale.

Let us next assume that f : Y → X is totally split. For each x ∈ X , applying remark 4.1.2 when

Y = Z, f = g and {σ1, σ2, . . . , σn} = G, a finite group of automorphisms of Y → X in FEt(X),

there exists an open affine neighborhood U ⊂ X of x such that both f : f−1(U) → U and the action

of G are trivial above U , that is, there exists a finite G-set D such that f−1(U) ∼= U ×D and the

action of G on U ×D is induced by an action of G on D. Then by the case just dealt with, we have

(U ×D)
/
G ∼= U × (D/G), so U × (D/G) ∼= f−1(U)/G ∼= g−1(U), which implies that g−1(U) → U

is finite étale. Since we can cover X by such U ’s, the morphism g : Y/G → X is finite étale in this

case.

In the general case we choose a surjective, finite and locally free morphism W → X for which

Y ×X W → W is totally split. Then (Y ×X W )
/
G → W is finite étale by the result just proved,

and (Y ×X W ) /G ∼= (Y/G) ×X W by Prop. 4.2.5. From proposition 3.4.7 it now follows that

Y/G → X is finite étale. This proves our assertion.

Proposition 4.2.7. The category FEt(X) satisfies (G2).

Proof. • It follows from Prop. 3.4.1 that finite sums exist in FEt(X). In particular, ∅ → X is

the initial object.

• Quotients under finite subgroups of automorphisms exist by proposition 4.2.6.
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This proves our assertion.

4.2.3 (G3)

Proposition 4.2.8. Let f : Y → X, g : Z → X be finite étale and h : Y → Z a morphism with

f = g ◦ h. Then h is an epimorphism in FEt(X) if and only if h is surjective.

Proof. “Only if”: Suppose now h is an epimorphism in FEt(X). By Prop. 4.1.3, h : Y → Z

is finite étale hence it is finite and locally free. So Z0 = {z ∈ Z : [Y : Z](z) = 0} is an open and

closed subscheme of Z. Then the complement Z1 = Z − Z0 is also open and closed in Z and

Z = Z0 � Z1. Proposition 3.3.4 implies that h−1(Z0) = ∅. Thus, h factors through a finite étale

morphism h1 : Y → Z1, which is surjective since [Y : Z1] = [Y : Z]
∣∣∣
Z1

≥ 1. Next, we will show that

Z0 = ∅.

Let Z ′ = Z0 � Z0 � Z1. Since Z → X is finite étale, the restrictions Zi → X (i = 0, 1)

are both finite étale thus Z ′ → X is finite étale. It suffices to show that the two morphisms α,

β : Z → Z ′ which maps Z0 to the first and second copy of Z0 in Z ′ are equal. We check this

property locally. Assume X = SpecA is affine, hence Y , Z0, Z1 are all affine. We may assume

Y = SpecB, Zi = SpecCi (i = 0, 1), hence Z = Spec(C0 × C1) and Z ′ = Spec(C0 × C0 × C1).

Then the morphism h : Y → Z corresponds to a ring homomorphism h∗ : C0 ×C1 → B. This map

factors through C1:

h∗1 : C1 → B,

since h factors through h1, and h∗1 is just the ring homomorphism induced by h1. So we have

h∗ = h∗1 ◦ p, where p is the projection C0 × C1 → C1. Define

α∗ : C0 × C0 × C1 → C0 × C1 by (a, b, c) 
→ (a, c) and

β∗ : C0 × C0 × C1 → C0 × C1 by (a, b, c) 
→ (b, c).

Let α, β be the morphisms of schemes Z → Z ′ induced by α∗, β∗, respectively. Since h∗ ◦ α∗ =
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h∗1 ◦ p ◦α∗ = h∗1 ◦ p ◦ β∗ = h∗ ◦ β∗, we have α ◦ h = β ◦ h. Thus α = β as h is an epimorphism. Then

α∗ = β∗, which implies that C0 = 0 and thus Z0 = ∅. So Z = Z1 and h is surjective.

“If”: Now suppose h is surjective and let Z
p

q
W be finite étale morphisms over X such that

p ◦ h = q ◦ h. We need to prove p = q. This is a local property so we may assume X is affine, say

X = SpecA. Then Y, Z,W are all affine, say Y = SpecB, Z = SpecC and W = SpecD, then we

have the following corresponding ring homomorphisms D
p∗

q∗
C h∗ B such that h∗ ◦ p∗ = h∗ ◦ q∗.

h is surjective ⇒ [Y : Z] = [B : C] ≥ 1.

⇒ h∗ : C −→ B is injective (Prop. 3.1.8).

⇒ p∗ = q∗ ⇒ p = q.

So h is an epimorphism. This completes the proof.

Proposition 4.2.9. Let f : Y → X, g : Z → X be finite étale and h : Y → Z a morphism with

f = gh. Then h is a monomorphism in FEt(X) if and only if h is both an open immersion and a

closed immersion.

Proof. The “if” part is easy. Since an open (or closed) immersion can factor through an isomorphism

with an open (or closed) subscheme, it is obviously a monomorphism.

For the “only if” part, we assume h is a monomorphism in FEt(X). Considering the fibre product

Y ×Z Y via the morphism h, we have the following commutative diagram:

Y ×Z Y Z

X.

We note that Y ×Z Y → Z and Y ×Z Y → X are finite étale since Y → Z and Z → X are both

finite étale. So Y ×Z Y → Z is a morphism in FEt(X). Let p1 and p2 be the two projections

Y ×Z Y → Y , then we have h ◦ p1 = h ◦ p2 by the commutativity of the following square:

Y ×Z Y
p2

p1

Y

h

Y
h

Z.
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As h is an monomorphism, then p1 = p2. We claim that p1 is an isomorphism. In fact this is a

local property so we may assume that X is affine thus Y and Z are both affine, say X = SpecA,

Y = SpecB and Z = SpecC thus Y ×Z Y = Spec(B ⊗C B). Corresponding to the above square

for the fibre product, we have the following commutative square of rings:

B ⊗C B B
p∗2

B

p∗1

C,
h∗

h∗

where h∗ : C → B is the ring homomorphism corresponding to h and p∗1, p
∗
2 are the ring homo-

morphisms B → B ⊗C B corresponding to p1, p2, which are given by x 
→ x ⊗ 1 and x 
→ 1 ⊗ x,

respectively. Note the fact that p∗1 = p∗2 since p1 = p2, i.e., x⊗ 1 = 1⊗ x for any x ∈ B. So for any

x, y ∈ B, we have

p∗1(xy) = xy ⊗ 1 = (x⊗ 1)(y ⊗ 1) = (x⊗ 1)(1⊗ y) = x⊗ y.

This implies that p∗1 is surjective. Now let m denote the multiplicative homomorphism B⊗CB → B

by x ⊗ y 
→ xy. Then m ◦ p∗1 = idB, which means that p∗1 is injective. Then p∗1 is an isomorphism

hence m is an isomorphism. Proposition 3.1.8 shows that [B : C] ≤ 1. Extending this globally, we

have [Y : Z] ≤ 1.

Let Zi = {z ∈ Z : [Y : Z](z) = i} for i = 0, 1. Then Z = Z0 � Z1. By Prop. 3.3.4, h−1(Z0) = ∅

and thus h factors through an isomorphism h1 : Y → Z1. So h is both an open and closed immersion.

This completes the proof.

By Proposition 3.3.4, 4.2.8 and 4.2.9 we can easily conclude the following:

Corollary 4.2.1. Let f : Y → X, g : Z → X be finite étale and h : Y → Z a morphism with

f = gh. Then

(a) h is an epimorphism in FEt(X) if and only if [Y : Z] ≥ 1.

(b) h is a monomorphism in FEt(X) if and only if [Y : Z] ≤ 1.
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(c) h is an isomorphism if and only if it is both an epimorphism and a monomorphism in FEt(X).

Thanks to these propositions, we can check the axiom (G3) now.

Proposition 4.2.10. Let X be a scheme. Then FEt(X) satisfies (G3).

Proof. Suppose h : Y → Z is a morphism in FEt(X), i.e., we have the following commutative

diagram

Y
h

Z

X,

where each morphism is finite étale. We will show that h = h2 ◦ h1 factors as an epimorphism h1

and a monomorphism h2.

Let Z0 = {z ∈ Z : [Y : Z](z) = 0}, Z1 = Z − Z0. Then both Z0 and Z1 are open and closed

subschemes of Z. By Prop. 3.4.1, Z0 and Z1 are objects in FEt(X) with Z = Z0 � Z1. We have

seen that h−1(Z0) = ∅, so h factors:

Y

h1

h
Z = Z0 � Z1

Z1.
h2

Here, for h2, since it is both an open immersion and a closed immersion thus is a monomorphism

in FEt(X) (Prop. 4.2.9). For h1, it is an epimorphism in FEt(X) since it has degree at least one

(Prop. 4.2.1). This shows that the category FEt(X) satisfies axiom (G3).

4.2.4 (G4)

Definition 4.2.3. A geometric point of a scheme X is a morphism x : SpecΩ → X , where Ω is an

algebraically closed field.

The following property shows that geometric points exist if X is non-empty, in particular if X is

connected.
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Proposition 4.2.11. Let X be a scheme. Then giving a geometric point of X is equivalent to

giving a point y ∈ X together with a field homomorphism k(y) → Ω from the residue field at y to

an algebraically closed field Ω.

Proof. Let 0 denote the only point of SpecΩ.

� Firstly, Suppose given a geometric point of X , i.e., a morphism of schemes

x = (f, f 
) : {0} = SpecΩ −→ X,

where f : {0} → X is the continuous map of the underlying topological spaces, f 
 : OX →

f∗OSpec Ω is the morphism of sheaves of rings with Ω an algebraically closed field. Let y = f(0),

then y is a point of X. Considering the stalk OX,y, we get a local morphism

f 

0 : OX,y −→ OSpec Ω,0 = Ω.

Thus
(
f 

0

)−1
(0) = mX,y, where mX,y is the only maximal ideal of the local ring OX,y. So f 


0

will induce a field homomorphism k(y) = OX,y

/
mX,y −→ Ω from the residue field at y to an

algebraically closed field Ω.

� Conversely, giving a point y ∈ X together with a field homomorphism k(y) → Ω from the

residue field at y to an algebraically closed field Ω, we define a map between topological spaces

f : SpecΩ → X by f(0) = y. It is easy to see that f is continuous. Now for any open set

U ⊆ X, we define a homomorphism of rings f 
(U) : OX(U) → f∗OSpec Ω(U) as follows:

• if y /∈ U , then f∗OSpec Ω(U) = OSpec Ω(∅) = 0 (the zero ring), we define f 
(U) as the zero

map;

• if y ∈ U , then f∗OSpec Ω(U) = OSpec Ω(SpecΩ) = Ω, we define f 
(U) to be the composition

OX(U)
ρ
OX
y

OX,y
π

OX,y

/
mX,y = k(y) Ω,

where ρOX
y is the canonical projection OX(U) → OX,y = lim−→

y∈V⊆X open

OX(V ), π is the

natural projection to the quotient ring and the last map is the given field homomorphism.
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It is easy to check that f 
 : OX → f∗OSpec Ω is a morphism of sheaves and f 

0 : OX,y →

f∗OSpec Ω,0 = Ω is local. So x = (f, f 
) is a morphism of schemes Spec Ω → X , hence is a

geometric point of X.

We complete the proof.

Remark 4.2.1. If a scheme X is non-empty (in particular, X is connected), we may take a point

x ∈ X and let Ω be the algebraic closure of k(x), the residue field at x. Then x together with the

field inclusion k(x) ↪→ Ω gives a geometric point of X.

Now letX be a scheme and fix x : SpecΩ → X a geometric point of X over an algebraically closed

field Ω. If Y → X is finite étale then so is Y ×X Spec Ω → SpecΩ. Thus Y ×X Spec Ω = SpecK

is affine, and K is a projective separable Ω-algebra. Since Ω is algebraically closed, Theorem 3.4.2

implies that K ∼= Ωn for some positive integer n. Then Y ×X Spec Ω ∼= SpecΩ×D for some finite

set D with |D| = n. Here, D is unique up to isomorphism.

Moreover, if h : Y → Z is a morphism in FEt(X), then there exist finite set D and E such

that Y ×X SpecΩ ∼= SpecΩ × D ∼= Spec
(
ΩD

)
and Z ×X Spec Ω ∼= SpecΩ × E ∼= Spec

(
ΩE

)
, see

lemma 4.1.1. Then h× idSpec Ω : Y ×X SpecΩ → Z×X SpecΩ will induce a morphism Spec
(
ΩD

) →
Spec

(
ΩE

)
. Again by Lemma 4.1.1, it corresponds to a map Fx(h) : D → E. Now we define

Fx : FEt(X) −→ Sets

(Y → X) 
−→ D

(h : Y → Z) 
−→ (Fx(h) : D → E),

where Y ×X SpecΩ ∼= SpecΩ×D and Z ×X Spec Ω ∼= SpecΩ×E. Then it is easy to check that Fx

is a (covariant) functor. We want to check that axiom (G4) holds for Fx and we introduce a lemma

first.

Lemma 4.2.4. Let A be a ring and D,E,E ′ be finite sets. Then AE ⊗AD AE′ ∼= AE×DE′ as

A-algebras.
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Proof. It is easy to check that the following A-algebra homomorphisms are inverse to each other.

ϕ : AE ⊗AD AE′ −→ AE×DE′

(f, g) 
−→ ((e, e′) 
→ f(e)g(e′)) and

ψ : AE×DE′ −→ AE ⊗AD AE′

α 
−→
∑

(s,t)∈E×DE′

α(s, t)fs ⊗ gt,

where

fs(s
′) =

⎧⎪⎪⎨⎪⎪⎩
1, s′ = s,

0, otherwise.

for s, s′ ∈ E and

gt(t
′) =

⎧⎪⎪⎨⎪⎪⎩
1, t′ = t,

0, otherwise.

for t, t′ ∈ E ′.

Proposition 4.2.12. Let X be a scheme. Then the functor Fx sends the terminal object in FEt(X)

to the terminal object in Sets and commutes with fiber products.

Proof. • Since Fx(1FEt(X)) = Fx(X → X) = {1}, a singleton, clearly the terminal object in

Sets.

• Suppose Y , Z andW are objects in FEt(X) with morphisms f : Y → W and g : Z → W . And

assumeW×XSpecΩ ∼= SpecΩ×D, Y ×XSpecΩ ∼= SpecΩ×E and Z×XSpec Ω ∼= SpecΩ×E ′.

Then we have

(Y ×W Z)×X Spec Ω ∼= (Y ×X Spec Ω)×W Z

∼= (Y ×X Spec Ω)×(W×XSpec Ω) (W ×X Spec Ω)×W Z

∼= (Y ×X Spec Ω)×(W×XSpec Ω) (W ×X Spec Ω×W Z)
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∼= (Y ×X Spec Ω)×(W×XSpec Ω) (Z ×X SpecΩ)

∼= (SpecΩ×E)×(Spec Ω×D) (SpecΩ×E ′)

∼= Spec
(
ΩE ⊗ΩD ΩE′

) ∼= Spec
(
ΩE×DE′

)
∼= SpecΩ× (E ×D E ′) .

We conclude that (FEt(X), Fx) satisfies (G4).

4.2.5 (G5)

Proposition 4.2.13. Let f : Y → X be a finite étale morphism, G a finite group of AutX(Y ) in

FEt(X) and g : Z → X any morphism of schemes. Then (Y ×X Z)/G ∼= (Y/G)×X Z in FEt(Z).

Proof. As in the proof of proposition 4.2.5, the universal property of the quotient yields a morphism:

φ : (Y ×X Z)/G −→ (Y/G)×X Z.

We claim that this is an isomorphism. We proceed this in three steps.

First we assume that Y = X ×D for some finite G-set D, then the action of G on Y is induced

by an action of G on D. By lemma 4.1.1(a) we have

Y ×X Z ∼= (X ×D)×X Z ∼= (
X ×SpecZ (SpecZ

D)
)×X Z

∼= (X ×X Z)×SpecZ (SpecZD) ∼= Z ×D.

Moreover G acts on this fiber product via D in this expression. So

(Y ×X Z)/G ∼= (Z ×D)/G ∼= Z × (D/G) ∼= (X × (D/G))×X Z ∼= (Y/G)×X Z,

i.e., φ is an isomorphism.

Next we consider the case that f : Y → X is totally split. As we did in the proof of Prop. 4.2.6,

we can cover X by open affine sets U above which both f : Y → X and the action of G are trivial,

that is, we can identify f−1(U) with U × D for some finite set D such that the action of G on
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f−1(U) ∼= U ×D is induced by an action of G on D. Then by the case we just proved, φ is locally

an isomorphism, thus it is an isomorphism.

Finally we deal with the general case. By Theorem 4.1.1 we may choose a surjective, finite and

locally free morphism W → X such that YW → W is totally split; here we write −W for −×X W .

Then the base change

YW ×W ZW
∼= YW ×W W ×X Z ∼= YW ×X Z −→ W ×X Z ∼= ZW

is also totally split. Then the above result implies that

(YW ×W ZW )
/
G ∼= (

YW

/
G
)×W ZW .

. Since W → X is surjective, finite and locally free, so is ZW
∼= WZ = W ×X Z → X ×X Z ∼= Z.

By proposition 4.2.5, we have

(YZ ×Z WZ)
/
G ∼= (

YZ

/
G
)×Z WZ .

Note that we still have

(YZ ×Z WZ)
/
G ∼= (Y ×X Z ×X W )

/
G ∼= (Y ×X W ×W Z ×X W )

/
G

∼= (YW ×W ZW )
/
G ∼= (

YW

/
G
)×W ZW

∼= (
(Y ×X W )

/
G
)×W ZW

∼= (Y/G)×X W ×W Z ×X W

∼= (Y/G)×X Z ×X W ∼= (Y/G)×X Z ×Z WZ ,

thus we have an isomorphism:

(
YZ

/
G
)×Z WZ

∼= (Y/G)×X Z ×Z WZ ,

where the isomorphism above is just the base change to WZ of the map φ : (Y ×X Z)/G −→

(Y/G) ×X Z. Then by Prop. 3.4.6 and 3.1.4, φ is also an isomorphism, which completes the

proof.
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Proposition 4.2.14. Let X be a scheme and x a geometric point of X. Then the functor Fx

commutes with finite sums, transforms epimorphisms to epimorphisms, and commutes with passage

to the quotient by a finite group of automorphisms.

Proof. • Let Yi → X (i = 1, 2, . . . , n) be finite étale morphisms and suppose Yi ×X Spec Ω ∼=

SpecΩ× Ei. Then we have(
n∐

i=1

Yi

)
×X Spec Ω ∼=

n∐
i=1

(Yi ×X Spec Ω) ∼=
n∐

i=1

(SpecΩ×Ei)

∼= SpecΩ×
(

n∐
i=1

Ei

)
.

Hence Fx

(
(

n∐
i=1

Yi) → X

)
=

n∐
i=1

Ei =
n∐

i=1

Fx(Yi → X).

• Now let h : Y → Z be an epimorphism in FEt(X), i.e., h is surjective. Then by Prop.

3.4.3(c), the base change

Y ×X SpecΩ ∼= Y ×Z (Z ×X SpecΩ) −→ Z ×X SpecΩ

is also surjective. This is equivalent to the assertion that the map ΩFx(Y ) ∼= Y ×X Spec Ω →

Z ×X SpecΩ ∼= ΩFx(Z) induced by Fx(h) : Fx(Y ) → Fx(Z) is surjective. So Fx(h) must be a

surjection.

• Let Y → X be a finite étale morphism, G a finite group of AutX(Y ) in FEt(X). Using Prop.

4.2.13, we can obtain that

(Y ×X Spec Ω)
/
G ∼= (Y/G)×X Spec Ω ∼= SpecΩ× Fx(Y/G).

Moreover, we have

(Y ×X Spec Ω)
/
G ∼= (SpecΩ× Fx(Y ))

/
G ∼= (

ΩFx(Y )
) /

G

∼= Spec
(
(ΩFx(Y ))G

) ∼= Spec
(
ΩFx(Y )/G

) ∼= SpecΩ× (
Fx(Y )

/
G
)
.

Then we can conclude that SpecΩ × Fx(Y/G) ∼= SpecΩ × (
Fx(Y )

/
G
)
thus Fx(Y/G) ∼=

Fx(Y )
/
G.
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This proposition is equivalent to the assertion that the category FEt(X) with the functor Fx

satisfying (G5).

4.2.6 (G6)

Lemma 4.2.5. Let f : Y → X, g : Z → X be finite étale morphisms with [Y : X ] = [Z : X], and

suppose that h : Y → Z is a surjective morphism with f = gh. Then h is an isomorphism.

Proof. First, we assume f and g are totally split. By Proposition 4.1.2, for any x ∈ X , there exists

an open affine neighborhood U of x in X such that the following diagram

f−1(U) h

f

∼

g−1(U)
∼

gU ×D
idU×φ

U ×D

U
idU

U

commutes since [Y : X] = [Z : X ]. Note that φ is indeed surjective since h is surjective. The

finiteness of D implies φ is bijective, thus h
∣∣
f−1(U)

: f−1(U) → g−1(U) is an isomorphism, so is h.

In the general case we choose surjective, finite and locally free morphisms W1 → X, W2 → X

such that Y ×X W1 → W1 and Z ×X W2 → W2 are totally split. Then W = W1×X W2 → X is also

surjective, finite and locally free, and Y ×X W → W , Z×X W → W are totally split. Furthermore,

by Prop. 3.4.3 (b), we have [Y ×X W : W ] = [Y : X] = [Z : X] = [Z ×X W : W ]. Applying

the conclusion we got above, h × idW : Y ×X W → Z ×X W is an isomorphism. Since being an

isomorphism is a local property, we may assume now that X = SpecA affine for some ring A. Then

W = SpecB is affine with B a faithfully projective A-algebra since W → X is surjective, finite and

locally free. This implies h is an isomorphism (Prop. 3.1.4).

Proposition 4.2.15. Let X be a connected scheme and x a geometric point of X. Then (FEt(X), Fx)

satisfies (G6).
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Proof. Suppose we have a morphism h : Y → Z in FEt(X) such that Fx(h) : Fx(Y ) → Fx(Z) is an

isomorphism. This implies that [Y : X] = |Fx(Y )| = |Fx(Z)| = [Z : X]. Factor h as in the proof of

Prop. 4.2.10 into:

Y

h1

h
Z = Z0 � Z1

Z1,
h2

with h1 surjective and Z0 = {z ∈ Z : [Y : Z](z) = 0}. By Prop. 4.2.14, Fx(Z) = Fx(Z0) � Fx(Z1)

and Fx(h1) : Fx(Y ) → Fx(Z1) is surjective. Then we have:

Fx(Y )

Fx(h1)

Fx(h)
Fx(Z) = Fx(Z0)� Fx(Z1)

Fx(Z1),

Fx(h2)

where Fx(h) is an isomorphism and Fx(h1) is surjective. So Fx(Z1) = Fx(Z) thus Fx(Z0) = ∅, i.e.,

[Z0 : X ] = [Z0 ×X SpecΩ : Spec Ω] = |Fx(Z0)| = 0. This implies that Z0 = ∅ hence Z = Z1, i.e., h

is surjective. Then by lemma 4.2.5, h is an isomorphism. So (G6) was satisfied.

Now we may conclude that:

Theorem 4.2.1. Let X be a connected scheme, x a geometric point of X, and Fx : FEt(X) → Sets

as defined in Section 4.2.4. Then (FEt(X), Fx) is a Galois category.

4.3 Fundamental group

Let us write down the main theorem for this thesis:

Theorem 4.3.1. Let X be a connected scheme. Then there exists a profinite group π, uniquely

determined up to isomorphism, such that the category FEt(X) of finite étale coverings of X is

equivalent to the category π-Sets of finite sets on which π acts continuously.

Proof. Since X is connected, the degree [Y : X] is constant for each object (Y → X) in FEt(X).

Then it is straightforward to verify that FEt(X) is an essentially small category. Theorem 2.2.1(a)

111



and 4.2.1 imply that the category FEt(X) is equivalent to the category π-Sets for some profinite

group π, if X is connected. Again by theorem 2.2.1(d), π is uniquely determined up to isomorphism.

Let X be a connected scheme, x a geometric point of X, and Fx : FEt(X) → Sets as defined in

4.2.4. We write π(X, x) = Aut(Fx), called the fundamental group of X in x, see section 2.1.6.
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